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Preface

Over the course of the past decade, decoherence has become a ubiquitous
scientific term popular in all kinds of research, from fundamental theories of
quantum physics to applications in nanoengineering. Decoherence has been
hailed as the solution to long-standing foundational problems dating back to
the beginnings of quantum mechanics. It has been cursed as the key obstacle
to next-generation technologies, such as quantum computers (another seem-
ingly omnipresent field of research). And while decoherence has been directly
observed in various experiments, its scope and meaning have often been mis-
understood and misrepresented. Decoherence makes a fantastic subject of
research, as it touches upon many different facets of physics, from philo-
sophically inclined questions of interpretation all the way to down-to-earth
problems in experimental settings and engineering applications.

This book will introduce the reader, in an accessible and self-contained
manner, to these various fascinating aspects of decoherence. It will focus in
particular on the relation of decoherence to the so-called quantum-to-classical
transition, i.e., the question of how decoherence may explain the emergence
of the classical appearance of the macroscopic world around us from the
underlying quantum substrate.

The scope of this book is relatively broad in order to familiarize the reader
with the many facets of decoherence, in both the theoretical and experimental
domains. Throughout the book, I have sought to maintain a healthy balance
between the conceptual ideas associated with the decoherence program on the
one hand and the formal and mathematical details on the other hand. This
book will establish a proper understanding of decoherence as a pure quantum
phenomenon and will emphasize the importance of the correct interpretation
of the consequences and achievements of decoherence.

One beautiful thing about learning about decoherence is that, as vast
as its implications and applications are, the basic ideas and formal struc-
tures are actually quite clear and simple. As a general rule, I will wherever
possible avoid muddling important general insights with complicated mathe-
matical exercises. A basic knowledge of the formalism of quantum mechanics
should suffice to follow most, if not all, explanations and derivations in this
book. While certain sections inevitably contain somewhat lengthy mathemat-
ical considerations (the derivation of master equations in Chaps. 4 and 5 is
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probably the most striking example), readers less interested in these formal
structures underlying the decoherence program should be able to just glance
over these sections—or even skip them altogether—without significantly com-
promising their understanding of other parts of the book. At the same time,
the more advanced material included in this book will be useful to the work-
ing physicist who may already have some knowledge of decoherence and is
looking for a self-contained and detailed reference. Philosophers of physics
interested in the foundations of quantum mechanics should also find plenty
of interesting material throughout this book (especially in Chaps. 1, 2, 8, and
9).

The book is organized as follows. In Chap. 1, we will take a first “bird’s-
eye look” at decoherence by introducing some of the basic ideas and concepts.
We will emphasize the importance of considering “open” quantum systems
in addressing some of the long-standing issues of quantum theory, and con-
template why it may have taken over half a century for this realization and
the ideas of the decoherence program to take hold.

The core chapter of the book is Chapter 2, in which we will introduce and
discuss in detail the key conceptual ideas and formal descriptions of deco-
herence. First, we will analyze fundamental concepts of quantum mechanics,
such as quantum states (and their differences to classical states), the super-
position principle, quantum entanglement, and density matrices. A proper
grasp of these topics will turn out to be very important for the develop-
ment of a solid understanding of decoherence. We will then illustrate and
discuss different components of what has become known as the “quantum
measurement problem.” This problem encapsulates many of the fundamen-
tal conceptual difficulties that have to this date prevented us from arriving at
a commonly agreed-upon understanding of the physical meaning of the for-
malism of quantum mechanics and of how this formalism relates to the per-
ceived world around us. The measurement problem is also intimately related
to decoherence, since decoherence has direct implications for the different
components of the problem.

We will then illustrate basic concepts of decoherence in the context of the
well-known double-slit experiment. This approach will allow the reader to
develop a rather natural understanding of decoherence as a consequence of
environmental “monitoring” and quantum entanglement. It will also establish
a modern view of Bohr’s famous “complementarity principle.” We will formal-
ize decoherence in terms of system–environment entanglement and reduced
density matrices and discuss the two main consequences of decoherence, the
environment-induced suppression of quantum interference and the selection
of preferred “pointer” states through the interaction with the environment.

After the reader has thus become familiar with the ideas and formalism
of decoherence, the subsequent chapters can either be read in order, or the
reader may focus on particular chapters of interest. Each chapter is designed
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to present a fairly self-contained discussion of a particular aspect of decoher-
ence.

In Chap. 3, we will consider a very important model that describes de-
coherence of quantum objects due to collisions with environmental parti-
cles such as photons and air molecules. This scattering-induced decoher-
ence is ubiquitous in nature and of paramount importance in describing the
quantum-to-classical transition on macroscopic everyday-world scales.

Next, in Chap. 4, we will introduce the master-equation formalism that
provides us with a general method for determining the dynamics of deco-
herence models in many cases of physical interest. We will spend some time
deriving the important Born–Markov master equation that will allow us to
treat many decoherence problems in a fairly straightforward and intuitive
fashion.

In Chap. 5, we will then show how a large class of system–environment
models can be reduced to a few “canonical” decoherence models. We will
then analyze these models in detail. In particular, we will discuss so-called
quantum Brownian motion, which can be viewed as the quantum approxi-
mation to the familiar classical Newtonian trajectories in phase space. We
will also introduce the famous spin–boson model which has recently received
additional attention in the context of quantum computing.

After so much theoretical material, the reader will certainly be longing
for a break. Thus, in Chap. 6, we will describe some fascinating experiments
that have made it possible to directly observe in the laboratory the gradual
action of decoherence and therefore the transition from the quantum world
to the classical domain.

In Chap. 7, we will shift gears somewhat and enter the field of quantum
computing that has attracted so much interest over the past decade. We will
explain the crucial role that decoherence plays in this field. We will then
describe how the effects of decoherence can be mitigated through sophisti-
cated (but ultimately easy to understand) methods such as quantum error
correction, decoherence-free subspaces, and environment engineering.

Chapter 8 will discuss the implications of decoherence for several of the
main interpretations of quantum mechanics. We will describe how decoher-
ence may enhance, redefine, or challenge the most common interpretations,
such as the orthodox and Copenhagen interpretations, relative-state inter-
pretations, physical collapse models, modal interpretations, and Bohmian
mechanics.

Finally, in Chap. 9, we will discuss the role of the observer in quantum
theory and the question of decoherence processes in the brain. We will ex-
plain why this question is of interest in the first place and then review some
explicit model calculations that demonstrate the efficiency of decoherence in
the brain. The implications of these results will be discussed, in particular
with respect to a “subjective” observer-based resolution of the measurement
problem.
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A brief remark on notation. I have set � ≡ 1 throughout most of the book
except in situations where explicit numerical estimates play a role. In this way,
I hope to have kept the notation as clear as possible without compromising
the reader’s ability to derive and reproduce numerical values where needed.

There are many people who have contributed to making this book pos-
sible. First and foremost, I would like to thank my Ph.D. advisor, Arthur
Fine, for giving me both the freedom and guidance to study the field of de-
coherence. He suggested to me that I write up some “personal notes” on
decoherence so that he and I would better understand this area of research
(which was, at the time, new to both of us). These notes evolved into a review
article on decoherence [1], which in turn motivated this book. In this context,
I am deeply indebted to H. Dieter Zeh for many helpful discussions and for
bringing the idea for this book to the attention of Angela Lahee, editor at
Springer, who has since lent her patient, encouraging, and helpful support to
every aspect in the production of this book.

I thank Michael Nielsen and Gerard Milburn for their hospitality at the
University of Queensland where parts of this book were written. I would also
like to express my gratitude to Stephen Adler for comments on Sect. 8.4,
to Erich Joos for feedback on Chap. 3, to Gerard Milburn for introducing
me to quantum-electromechanical systems, and to Wojciech Zurek for many
valuable comments on the manuscript and for inspiring discussions. Most
importantly, though, I would like to thank my wife Kari for all her patience
and all-around inspiration during the long process of writing this book.

Melbourne, Australia Maximilian Schlosshauer
June 2007
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1 Introducing Decoherence

The “paradox” is only a conflict between reality and
your feeling of what reality “ought to be.”

Richard P. Feynman

What qualifies as a good experiment in physics? Clearly, the typical goal of
the experimenter is to study a particular aspect of a phenomenon of interest
in such a way that disturbances of this aspect by undesired influences are
minimized. For example, suppose we are interested in the dynamical laws of
a body. We may then devise an experiment in which we make appropriate
measurements on the motion of a ball rolling down an inclined plane. And,
of course, we will try our best to reduce any sources of noise, such as friction,
to arrive at the “exact” laws of motion.

This strategy has led to the idealization of isolated systems in physics,
that is, the fundamental idea that we always ought to be able to sufficiently
shield our system of interest from unwanted environmental disturbances in
such a way as to find out the objective, “true,” underlying nature of our
system under study. In fact, this idea has proven extremely successful and
fruitful in the history of physics, and an experiment is considered “good”
if it yields maximum information about the phenomenon of interest with a
minimum of environmental noise.

When quantum effects were discovered and quantum theory was formu-
lated in the early decades of the twentieth century, it caused an enormous
paradigm shift in our view of physics in particular and of nature in gen-
eral. Yet, the idealized and ubiquitous notion of isolated systems remained a
guiding principle of physics and was adopted in quantum mechanics without
much further scrutiny.

This might not come as a surprise. The experimental evidence at the time
hardly seemed to necessitate a reevaluation of the isolated-systems notion. For
example, the agreement between the experimental data and the theoretical
predictions for the discrete spectrum of the hydrogen atom was spectacular,
and those predictions were based on an application of quantum theory to the
model of a completely isolated atom.

More generally, the systems for which quantum effects were observed in
the early days of quantum mechanics typically resided in the microscopic
domain in which the isolated-system approximation indeed held to a good
degree in many cases. From our modern perspective, we now know that the
observation of quantum effects in these early experiments was made possible
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precisely because the systems under study did not interact much with their
environments.

To be sure, the pioneers of quantum theory already understood that
certain peculiar quantum features, while observable on microscopic scales,
seemed strikingly absent from the world of our everyday experience. But the
connection between the loss of “quantumness” and environmental interac-
tions was not realized for a long time.

At the same time, it was also recognized early that the predictions of
quantum theory imply that, by coupling a microscopic system to a macro-
scopic system, these quantum features should be transferable to the classical-
appearing objects around us, in obvious contradiction to our experience. Of
course, no other example has illustrated this problem of the quantum-to-
classical transition more poignantly and drastically than Schrödinger’s infa-
mous cat [2], which appears, by the verdict of quantum theory, to be doomed
into a netherworldy superposition of being alive and dead.

In this paradox, Schrödinger imagined a cat confined to a box (see
Fig. 1.1). Inside the box, the decay of an unstable atom serves as a trigger for
the hammer to break a vial containing poison. The release of the poison will
then kill the cat. According to the laws of quantum mechanics, the atom is at
all times described by a superposition of “decayed” and “not decayed.” The
feature of quantum entanglement (see below) then implies that this superpo-
sition spreads to the total system containing the cat, hammer, and poison,
which must then be described by a superposition of two states which seem
mutually exclusive according to our experience. One state corresponds to the
atom not yet decayed, the hammer untriggered, the vial unharmed, and thus
the cat alive. The other state represents a situation in which the atom has

Fig. 1.1. Illustration of Schrödinger’s cat paradox. Left: The laws of quantum
mechanics force the composite system containing the unstable atom, hammer, poi-
son, and cat into a superposition of two classically mutually exclusive states, one
of which contains an alive cat, the other one a dead cat. Right: According to the
standard interpretation of quantum mechanics, an observer opening the box and
looking at the cat then “collapses” the superposition onto either one of the two
components (here the “alive” component). However, this begs the question of the
state of the cat before the box was opened.
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decayed, the hammer has broken the vial, and the poison thus released has
killed the cat.

The second part of the paradox is established by the appearance of an ex-
ternal observer. When the observer opens the box, standard quantum theory
predicts that she will “collapse” the superposition onto one of its two com-
ponent states. Thus it is ensured that the observer will perceive only either
one of these states, in agreement with our experience. The observer would
therefore seem to suddenly decide the fate of the cat by simply looking at
the unfortunate animal. The paradox, then, consists of the simple question:
What was the state of the cat before the observer opened the box? Alive or
dead, both alive and dead, or neither? Has this question any meaning at all?
In a similar vein, as Einstein is reported to have asked sarcastically [3], is the
moon there when nobody looks?

In a certain sense, the seeds of a recognition of the importance of the
openness of quantum systems for their ability to lose their “quantumness”
and become effectively classical are already planted into examples such as
the cat paradox. The observer seems to be required to literally open the box
and look at the cat to ensure that it is “classical” (i.e., either alive or dead).

But in Schrödinger’s setup the role of the observer is simply derived from
the collapse (or “projection”) postulate of quantum mechanics. The observer
is not considered in physical terms as a macroscopic quantum system inter-
acting with the cat. Furthermore, the isolated-system assumption implicitly
underlies the remainder of the cat setup. Schrödinger considered the cat as
interacting with the poison—which in turn is linked to the unstable atom via
the hammer that breaks the vial containing the poison, thereby establishing
the coupling between the microscopic and the macroscopic domains—but as
otherwise isolated from the rest of the universe.

In the 1930s, when Schrödinger presented his cat paradox, it was consid-
ered a mere Gedankenexperiment (i.e., a thought experiment). Quantum phe-
nomena, such as interference effects, had at that time been observed only in
the microscopic domain. It was thus not only argued that quantum mechanics
is unnecessary for a description of the macroscopic world of our experience,
but moreover that quantum mechanics should be banned from this realm
altogether. An example of the latter stance is the Copenhagen interpretation
of quantum mechanics, which postulates a fundamental dualism between a
microscopic “quantum” domain and a macroscopic “classical” realm.

Today, our view has changed drastically. On the one hand, quantum effects
have been observed in the laboratory far beyond the microscopic domain.
Researchers have created mesoscopic and macroscopic “Schrödinger kittens”
such as superpositions of microampere currents flowing in opposite directions
and interference patterns for massive molecules composed of dozens of carbon
atoms (see Chap. 6).

On the other hand, over the past three or so decades it has been slowly
realized that the isolated-system assumption—which, as we have described
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above, had proved so fruitful in classical physics and had simply been taken
over to quantum physics—had in fact been the crucial obstacle to an under-
standing of the quantum-to-classical transition. It was recognized that the
openness of quantum systems, i.e., their interaction with the environment,
is essential to explaining how quantum systems (and thus, assuming that
quantum mechanics is a universal physical theory, all systems) become effec-
tively classical: How their “quantumness” seems to slip out of view as we go
to larger scales, finally arriving in the world of our experience where cats are
either alive or dead but are never observed to be in a superposition of such
two classically distinct properties.

How is it possible that the importance of interactions with the environ-
ment for the emergence of the classical world from the underlying quantum
domain had been overlooked for so long? We already discussed one likely
reason, namely, the deeply ingrained notion that physics is about (idealized)
isolated systems. Related to this issue, we can unearth another important
reason. States in classical physics, for which the isolated-systems notion was
originally conceived, are local.

As an illustration, consider a small grain of pollen immersed in a liquid.
The collisions with the molecules in the liquid may then cause the particle to
move in a random zig-zag path (which is the well-known effect of Brownian
motion). Thus the environment perturbs the motion of the particle, i.e., it
acts as classical “noise.” Nevertheless, it is clear that the grain of pollen
retains its “individuality” at all times, even in the presence of the liquid. In
other words, all physical properties of the particle always remain contained
within the particle itself. Thus we can imagine removing the liquid, and we
would expect to find the same particle as before.

This notion of the locality of states is deeply ingrained—in fact, so deeply
that we take it for granted, and anyone who has not come into contact with
the puzzling features of quantum theory is unlikely ever to challenge this
notion. Indeed, the locality of states provides the physical justification for
the isolated-system idealization. In this picture, isolating the system from its
surroundings would only diminish environmental noise effects (i.e., perturba-
tions of the system by its environment) but not alter the actual “nature” of
the system. Accordingly, it may be easy to see why the isolated-system view
had been deemed innocuous for such a long time.

Quantum mechanics has forced us to radically reevaluate our notion of the
locality of states. While interactions continue to be local also in the quantum
theory (i.e., quantum mechanics is still a local theory), the states that can be
generated by these local interactions are distinctly nonlocal. The key concept
is quantum entanglement, where two systems (which may be well-separated
in space) are described by a quantum state that, loosely speaking, cannot be
“broken down” into two separated quantum states for each individual system
(see Fig. 1.2). Entangled states encapsulate quantum correlations between the
two systems. Such correlations often embody entirely new physical properties



1 Introducing Decoherence 5

system A
ψA

ψB
system B

ψAB

system A

system B

Fig. 1.2. Illustration of the principles of quantum entanglement. Consider two
systems A and B initially described by their individual quantum states ψA and ψB.
If these two systems interact in certain ways, they can no longer be described by
such individual quantum states. They have become entangled with each other, and
only the composite system AB can be assigned a quantum state ψAB.

for the composite system that are not present in any of the two individual
subsystems. We may say that these subsystems have lost their individuality,
in the sense that physical properties are now at least partially encapsulated in
the nonlocal quantum correlations and therefore cannot be attributed to only
one of the subsystems. Broadly speaking, we may thus conclude that quantum
entanglement represents a situation where the quantum-mechanical whole is
different from the sum of its parts.

Thus, in the quantum picture, the (local) interactions between a system
and its environment now have the power to play a much greater role than
in classical physics. They will typically lead to entanglement between the
two interacting partners and thus change the nature of the object itself, in
the sense of fundamentally altering what we may observe at the level of the
system.

Thus environmental interactions in the quantum setting no longer amount
to a mere “perturbation” of the system of interest that ought to be minimized
in order to properly describe the physics of this system, or that could simply
be neglected if these interactions are sufficiently “weak” (for instance, in
the case of the influence of air molecules on the Newtonian trajectory of
a billiard ball). Instead, the coupling to the environment now defines the
observable physical properties of the system. At the same time, quantum
coherence, a measure for the “quantumness” of the system, is delocalized into
the entangled system–environment state, which effectively removes it from
our observation. This process is usually irreversible in practice and constitutes
a key component in explaining how the classical world of our experience
emerges from the underlying quantum substrate. (We will make these ideas
much more precise in the next chapter.)
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Thus there are two main, and intimately related, consequences of envi-
ronmental interactions (and thus of quantum entanglement) for a quantum
system:

1. The effectively irreversible disappearance of quantum coherence, the
source of quantum phenomena such as interference effects, from the sys-
tem.

2. The dynamical “definition” of the observable properties of the system,
i.e., the selection of a set of robust preferred states (or, formally, observ-
ables) for the system.

These consequences are subsumed under the heading of environment-
induced decoherence, or decoherence for short, the subject of this book. The
motivation for the term “decoherence” should be obvious from the first conse-
quence listed above. The second consequence is sometimes referred to in the
literature by its own name, environment-induced superselection. This term
is motivated by the analogy with so-called superselection rules in physics,
which (usually axiomatically) restrict the space of allowable superpositions,
i.e., prohibit the existence of certain observables. Similarly, the interaction
with the environment strongly limits, for all practical purposes, which phys-
ical quantities can actually be observed on a given quantum system. These
restrictions arise dynamically from the interaction of the system with its en-
vironment and explain why in our everyday world we only observe a few
“classical,” robust quantities, such as position and momentum.

Readers may still wonder why such a long time elapsed between the com-
pletion of the main formalism of quantum mechanics in the 1930s—including
the realization of the problem of the quantum-to-classical transition as ex-
emplified by Schrödinger’s cat—and the first groundbreaking work on the
importance of environmental interactions and decoherence for the quantum-
to-classical transition in the 1970s and 1980s [4–9]. After all, quantum entan-
glement, including its counterintuitive consequences for our well-established
notion of locality, was already well known in the 1930s. In 1935, Einstein,
Podolsky, and Rosen (EPR) [10] had written a seminal paper in which the
authors pointed out the puzzling “holistic” nonlocal character of the quan-
tum world implied by entanglement. Why, then, did it take another forty
years for researchers to recognize the crucial importance of environmental
interactions and entanglement for the explanation of how the classical world
emerges from the quantum domain?

There are at least two possible, complementary answers to this question.
First, even after Schrödinger had presented his cat paradox (which is based
on entangling a microscopic and a macroscopic system), for quite some time
entanglement may have seemed like a rather unusual state of affairs. It was
often regarded as a phenomenon that would need to be created in the lab-
oratory by means of an elaborate setup but would play no significant role
in other areas, and certainly not in the macroscopic world of our experience.
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This assessment turned out to be incorrect. In fact, it has been shown that en-
tanglement is ubiquitous especially in the macroscopic domain. Furthermore,
the focus was frequently put on usable entanglement, i.e., on quantum cor-
relations that can be manipulated and exploited in a controlled way such as
to implement certain “quantum protocols” (such as quantum cryptography).
This stance is evident in the slogan, often heard in the quantum-information
and quantum-computing community, of “entanglement as a resource.” While
entanglement can indeed be used in such a way, it usually comes in the form
of uncontrolled and thus “unusable” environmental entanglement.

A second reason for the relatively late discovery of the importance of
environmental interactions and entanglement for the emergence of classicality
may be found in the fact that the extreme effectiveness of even minimal
environments in bringing about the quantum-to-classical transition was not
realized for a long time. For example, in classical physics, it is perfectly
legitimate to neglect the influence of incident light (i.e., photons) on the
motional state of a macroscopic body in virtually all cases (see Fig. 1.3).
The amount of momentum transferred to the body by the photons is usually
negligibly small in comparison with the amount that would be needed to
perturb the motion of the body. Additionally, the incident photons are often
distributed isotropically, such that the net momentum transfer averages out
to zero.

However, when we switch from the classical to the quantum picture, the
situation changes completely (see again Fig. 1.3). Now the scattering interac-
tion between the photons and the body will lead to the formation of quantum

coherence

coherencecoherence

coherence

ψobject+photons

classical setting quantum setting

Fig. 1.3. The different influence of the environment on the system in the classical
and quantum settings, illustrated for the case of a macroscopic body immersed
into light (photons) incident from all directions. Left: In the classical case, light
scattering off the body will not change the motion of the body, even though the
environment interacts strongly with the system. Right: In the quantum setting, the
interaction leads to an entangled object–photon state ψobject+photons. Coherence
becomes delocalized from the object, making quantum effects such as interference
patterns unobservable at the level of the system.
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correlations between the two partners, which “carry away” coherence from
the body, thereby diminishing the degree of “quantumness” that we may ob-
serve at the level of the body (again, we will make these rather figurative
terms more precise later). The amount of momentum transferred to the body
does not play any role in this creation of entanglement—in fact, we may
simply assume that no momentum at all is transferred from each individual
photon to the system. Thus the photons do not need to lead to classical per-
turbations of the motional state of the body, and nonetheless they will exert a
strongly decohering influence on the body. Although decoherence may occur
simultaneously with the classical process of dissipation (i.e., the loss of energy
from the system), decoherence is a distinct and purely quantum-mechanical
effect without any analog in classical physics.

As we will see in this book, the decoherence of a macroscopic object
induced by the scattering of environmental particles is astonishingly strong
and fast. If we tried to prepare our object in a nonclassical quantum state
such as a coherent superposition of two different well-separated positions (a
situation we may refer to, sloppily speaking, as the body being in “two places
at the same time”), environmental entanglement with photons scattering off
the body will lead to a complete delocalization of the coherence between
the two components in the superposition within a tiny fraction of a second.
In this way, for all practical purposes of observations at the level of the
object, the behavior of the object will in virtually all cases become effectively
classical much faster than we could ever resolve. Even more surprisingly, we
do not even need the presence of an environment of incident light for this to
happen. Not only will the omnipresent thermal radiation completely suffice
to accomplish the task, but even cosmic background radiation, a relict from
the Big Bang that permeates the universe, will lead to rapid decoherence of
macroscopic bodies (see Chap. 3).

This demonstrates that decoherence is not only extremely effective, but
also virtually impossible to escape. In turn, this explains why it is so exceed-
ingly hard to observe “strange” quantum effects, such as the Schrödinger-cat
superposition, in the everyday world of our experience. In turn, now coming
back full-circle to the opening discussion of this chapter, it may also indicate
why for such a long time quantum mechanics was usually discussed in the
context of typically rather well-isolated microscopic systems. Unless a system
is extremely well shielded from its environment (which is virtually impossi-
ble for macroscopic objects), decoherence will usually make it prohibitively
difficult to observe the peculiar quantum effects of interest.

The question of how the appearance of a classical world can be brought
into agreement with, or even be derived from, the predictions of quantum
mechanics extended into the macroscopic domain is one of the greatest
foundational problems of quantum mechanics. It is almost ironic that this
question has found an (at least partial) answer not by forcing preconceived
classical concepts onto quantum mechanics in order to simply exorcise the
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“strange” implications of quantum mechanics for the macroscopic realm, but
from within quantum mechanics itself. After all, it is the distinctly quantum-
mechanical phenomenon of entanglement—that was initially only regarded as
leading to such “paradoxes” as Schrödinger’s cat and EPR—which ultimately
enforces the observed classical behavior of systems.

We may therefore understand our deeply rooted notion of “classicality”
as an emergent concept, as something that is not contradicted but rather
justified by the peculiar features of quantum mechanics. To what extent it
may be possible to derive all classical concepts as an effective consequence
of environmental interactions and decoherence—and thus to deny these con-
cepts a fundamental role in physical theories—is certainly an open question
that continues to fuel a lively debate among researchers interested in the
foundations of quantum mechanics. In this book, we will show that deco-
herence provides us with an explanation of the appearance of the classical
world around us that is “as good as it gets,” if quantum theory is assumed to
be universally valid—and there exists no compelling experimental evidence
to the contrary—and classicality is to be explained from within this theory
(which constitutes a highly desirable goal).

There certainly exist some open conceptual questions related to the “ul-
timate physical reality” underlying the effective classicality induced by de-
coherence. The particular form of these questions tends to vary according to
one’s interpretive stance toward quantum mechanics. But such questions are
unavoidable if the emergence of classicality is to be completely derived from
quantum mechanics. After all, at some global level all the “strange” nonclas-
sical phenomena of quantum theory, such as superposition states, nonlocal
quantum correlations, etc., must still persist, since they have not been exor-
cised by postulates but have rather been used to derive the classical world of
our experience.

Before digressing too far into these interpretive issues (which we will come
back to in many places of this book, especially in Chap. 8), let us empha-
size that, over the past years, decoherence has been studied extensively in
many experiments (see Chap. 6). In various such experiments, it has be-
come possible to control the interactions of the system of interest with the
environment in such a way as to observe the gradual action of decoherence
and thus the step-by-step transition between the quantum regime and the
classical domain. For example, quantum interference patterns produced by
large fullerene molecules sent through diffraction gratings were observed to
decay gradually as the density of surrounding gas molecules, and thus the
rate of scattering events between the fullerenes and the environmental par-
ticles, was increased. The characteristic time of such decoherence processes
has been measured with great precision and has been found to be in stunning
agreement with theoretical predictions. These experiments are so remarkable
because they allow us to study different quantitative degrees of decoherence.
Instead of simply attributing the already existing appearance of a fully classi-
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cal macroscopic world around us to the extremely effective and fast action of
decoherence, we are now in a position to directly measure how the continuous
interaction with the environment gradually degrades our ability to observe
quantum phenomena in the mesoscopic and macroscopic domains.

Many practitioners of quantum mechanics, especially researchers in exper-
imental disciplines of physics and in the area of quantum computing, have
now taken a very practical attitude toward decoherence. For example, de-
coherence is often viewed as a form of “quantum noise” that hampers the
experimental implementation of devices (e.g., by introducing “errors” into
quantum computations). More and more realistic decoherence models have
been developed, and their predictions have been compared to experimentally
observed decoherence phenomena. For all practical purposes of the working
physicist, decoherence provides a complete and self-contained framework for
a qualitative and quantitative description of the quantum-to-classical tran-
sition. On the other hand, it is hardly surprising that decoherence, as it
applies to philosophically charged notions such as the “classical world of our
experience,” leads to some interesting questions of a conceptual nature.

As decoherence is simply a consequence of the application of the standard
formalism of quantum mechanics to the interaction between a system and
its environment, decoherence is neither an extraneous theory distinct from
quantum mechanics itself nor something that we could freely choose to include
or neglect. Decoherence is a ubiquitous effect in nature, with far-reaching and
fascinating consequences that must be taken into account in order to arrive
at a realistic description of physical systems.

The volume of literature on decoherence has grown to enormous pro-
portions over the past years. For readers who are interested in exploring
the groundbreaking early papers that introduced the key ideas and concepts
of decoherence, we shall now give a brief survey of some of the main ref-
erences (see [11] for further historical remarks on the development of the
decoherence program). The first paper on what was later to become known
as “decoherence” was written by H. Dieter Zeh at the University of Heidel-
berg and published in 1970 in Foundations of Physics [4]. There, Zeh pointed
out that realistic macroscopic quantum systems are never closed and interact
strongly with their environments. Hence, if the Schrödinger equation is as-
sumed to be universally valid, such systems will typically be found in states
that are quantum-correlated with the environment, leading to a “dynamical
decoupling” of wave-function components and to the inability to describe the
dynamics of the system itself by the Schrödinger equation. Zeh suggested
that this could explain the observed fragility of quantum states of macro-
scopic systems and the emergence of superselection rules. In a subsequent
paper [6], he and Olaf Kübler investigated the dynamics of entanglement and
emphasized the dynamical robustness of coherent states. However, the term
“decoherence” was not introduced until the late 1980s. In fact, throughout
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much of the 1970s decoherence did not attract much attention at all (Zeh
recently called it the “dark ages of decoherence” [11]).

A milestone in the development of the decoherence program was reached
in 1981–82 when Wojciech Zurek (a postdoc of John Wheeler’s in 1981 and a
Tolman Fellow at Caltech in 1982) published two defining papers on decoher-
ence in Physical Review D [8,9]. Zurek clearly pointed out the importance of
the so-called “preferred-basis problem” (to be discussed in the next chapter),
which is central to decoherence and the problem of the quantum-to-classical
transition. Zurek developed the concept of environment-induced superselec-
tion that is a cornerstone of the decoherence program, and he defined a
precise framework for determining the environment-superselected preferred
states (which he called “pointer states”). He emphasized the importance of
the preservation of quantum correlations as the key criterion for the selection
of the preferred states. He also showed how environment-induced superselec-
tion effectively remedies the preferred-basis problem and how it explains the
fact that position is observed to be the ubiquitous preferred quantity in the
everyday world. Zurek’s work started to put decoherence into the spotlight
and marked the beginning of the end of the “dark ages” of decoherence. An-
other important contribution to the development of the decoherence program
was made in 1984 when Zurek derived a quite general and simple (and still
widely used) expression from which typical decoherence timescales could be
evaluated [12]. Although advertised in a series of talks at the time and also
described in a Los Alamos report, Zurek’s work was “officially” published (as
a part of the proceedings of a 1984 conference) only in 1986.

In 1985, Erich Joos (a student of Zeh’s) and Zeh coauthored a seminal
paper in Zeitschrift für Physik [7] that presented a detailed model for de-
coherence induced by the scattering of environmental particles. The article
also included the first explicit numerical estimates of decoherence timescales
for objects of various sizes and physical nature immersed into different types
of environments. Both the papers by Zurek and by Joos and Zeh made it
clear that decoherence constitutes an extremely fast and efficient process,
especially on macroscopic scales.

In 1991, Zurek’s Physics Today article [13] introduced decoherence to a
broader audience. The paper helped establish decoherence as a mainstay of
physics, and decoherence finally began to attract widespread attention from
physicists, material scientists, and philosophers alike. (Joos once called it a
“historical accident” [14, p. 13] that the implications of decoherence for fun-
damental problems of quantum mechanics had been overlooked for so long.)
Ongoing investigations of the role of the environment continue to lead to new
developments (such as so-called “quantum Darwinism,” the “environment as
a witness” program, or the connection between quantum entanglement and
probabilities—which are all research projects initiated and currently worked
on by Zurek and collaborators), yielding a more complete picture of the
quantum origin of the classical everyday world we are accustomed to. The
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ever-growing interest in quantum computing has further boosted research on
decoherence, opening up new theoretical and experimental avenues toward
an active control, shielding, and mitigation of decoherence processes. Thus
decoherence, with its manifold aspects, implications, and applications, is far
from fully explored to date, and we can be certain to continue to see many
exciting developments in the coming years.

In addition to this book, the interested reader may find reviews of the
decoherence program in the articles by Paz and Zurek [15], Zurek [16], and in
the book by Joos et al. [17]. The more technical book by Breuer and Petruc-
cione [18] also contains material on decoherence. In the next chapter, we will
make more precise, both conceptually and formally, the various notions and
ideas which constitute the foundations of decoherence and which have been
introduced, albeit rather handwavingly, in this preliminary discussion.



2 The Basic Formalism and Interpretation
of Decoherence

In the first part of this chapter, we will introduce the reader to some of the
formal and interpretive structures of quantum mechanics that underlie the
decoherence program. We will begin by discussing quantum states (Sect. 2.1).
Much of what makes quantum mechanics different from classical physics can
be centered around the concept and interpretation of quantum states. In clas-
sical physics, the “state of the system” simply denotes a catalog of values of
physical quantities such as position, momentum, temperature, etc. In quan-
tum physics, systems are described by abstract state vectors that in general
can be related to observed physical properties only through the additional—
but at best vaguely defined—concept of quantum measurement.

In Sect. 2.2, we will then discuss the superposition principle of quantum
mechanics. If the concept of abstract quantum states had been the first signif-
icant difference between classical and quantum mechanics, the superposition
principle widens the gap even further. Decoherence is to a large extent cen-
tered around the issue of quantum superpositions: It is the key mechanism
for telling us which superpositions we may be able to observe in nature, and
it provides an explanation for why most superpositions, allowed in principle
by the superposition principle, are in fact not seen in the world around us.

Section 2.3 will introduce another peculiar quantum-mechanical concept
important to decoherence, namely, that of quantum entanglement. Entan-
glement has become the key ingredient in harnessing the power of quantum
mechanics in technological applications such as quantum computing. It is also
the basic mechanism underlying decoherence. Section 2.4 will then discuss the
formalism and interpretation of density matrices, which are important tools
in the formal description of decoherence. In Sect. 2.5, we will introduce in
some detail the measurement problem of quantum mechanics and the related
problem of the quantum-to-classical transition. Decoherence is intimately re-
lated to these problems and provides, as we shall see in this chapter and also
in Chap. 8, at least partial solutions.

In Sect. 2.6, we will discuss, using the example of the double-slit experi-
ment, a consequence of entanglement that is crucial to decoherence, namely,
the encoding of “which-path” information in the partner entangled with a
given system. Our account will pave the way toward an understanding of
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decoherence as a consequence of environmental “monitoring” of a system via
system–environment entanglement.

In the subsequent Sects. 2.7, 2.8, and 2.9, we will then discuss in detail the
three main consequences of this environmental monitoring: The suppression
of interference effects at the level of the system; the selection of quasiclas-
sical preferred states, which are the states least sensitive to entanglement
with the environment; and the robust and redundant encoding of informa-
tion about these preferred states in the environment. As already pointed out
in Chap. 1, decoherence in the narrow sense is often associated only with
the first consequence (the decay of interference), whereas the second conse-
quence (the selection of preferred states) is often denoted by the separate
term “environment-induced superselection.” However, these two phenomena
have a common origin and are inextricably connected (since the damping of
interference must refer to a particular set of states between which interfer-
ence becomes suppressed). In this bigger picture, the “decoherence program”
should certainly be thought of as incorporating all three aforementioned con-
sequences of environmental monitoring.

In Sect. 2.10, we will explore these ideas in the context of a concrete,
simple model for decoherence. The remaining sections will be concerned with
the discussion of some important further topics, thus completing the picture.
We will emphasize fundamental differences between decoherence and dissipa-
tion (Sect. 2.11) and between decoherence and classical noise (Sect. 2.12). In
Sect. 2.13, we will describe instances in which decoherence may be reversible
and analyze the related process of quantum “erasure.” In Sect. 2.14, we will
discuss the problem of the resolution of the universe into subsystems, which
constitutes an important conceptual issue of the decoherence program. Fi-
nally, in Sect. 2.15, we will outline a few additional formal tools, namely,
the Schmidt decomposition theorem (Sect. 2.15.1), the Wigner representa-
tion (Sect. 2.15.2), the purification of nonpure states (Sect. 2.15.3), and the
Kraus operator-sum formalism (Sect. 2.15.4).

2.1 The Concept and Interpretation of Quantum States

2.1.1 Classical Versus Quantum States

In classical physics, the notion of the “state” of a physical system is quite
intuitive. We typically focus on certain measurable quantities of interest, for
example, the position and momentum of a moving body, and subsequently
assign mathematical symbols to these quantities (such as “x” and “p”). The
motional state of the body is then simply specified by assigning numerical
values to these symbols. In other words, there exists a one-to-one correspon-
dence between the physical properties of the object (and thus the entities of
the physical world) and their formal and mathematical representation in the
theory.



2.1 The Concept and Interpretation of Quantum States 15

To be sure, we may certainly think of some cases in classical physics where
this direct correspondence is not always established as easily as in the exam-
ple of Newtonian mechanics used here. For instance, historically it turned out
to be rather difficult to relate the formal definition of temperature in the the-
ory of thermodynamics to the underlying molecular processes leading to the
physical notion of temperature. However, reference to other physical quan-
tities and phenomena (e.g., by relating a collective thermodynamic variable
to the behavior of the microscopic constituents in a bulk of matter) usually
allowed one to resolve this identification problem at least at some level.

With the advent of quantum theory in the early twentieth century, this
straightforward bijectivism between the physical world and its mathematical
representation in the theory came to a sudden end. Instead of describing the
state of a physical system by means of intuitive symbols that corresponded
directly to the “objectively existing” physical properties of our experience, in
quantum mechanics we have at our disposal only an abstract quantum state
that is defined as a vector (or, more generally, as a ray) in a similarly abstract
Hilbert vector space.

The conceptual leap associated with this abstraction is hard to overes-
timate. In fact, the discussions regarding the “interpretation of quantum
mechanics” that have occupied countless physicists and philosophers since
the early years of quantum theory are to a large part rooted precisely in the
question of how to relate the abstract quantum state to the “physical reality
out there.”

Textbook quantum mechanics tells us that the connection with the famil-
iar physical quantities of our experience is only made in an indirect manner,
namely, through measurements of physical quantities, that is, of observables
(the “real-world” part) represented by Hermitian operators in a Hilbert space
(the “formal-theory” part). According to the commonly used collapse (or pro-
jection) postulate, measurements then instantaneously change the quantum
state into one of the eigenstates of the operator representing the measured
observable, where the probability of each of these eigenstates is given by the
Born rule [19] (see footnote 9 on p. 35).

The eigenstates of the measured operator represent the different definite
“values” that the corresponding physical quantity may assume in a mea-
surement. The notion associated with these eigenstates is therefore similar to
that encountered in classical physics discussed above (of course, the measured
observable may be distinctly nonclassical, as in the case of spin). Thus, to
a certain extent, the measurement allows us to revert to a one-to-one corre-
spondence between the mathematical formalism and the “objectively existing
physical properties” of the system, i.e., to the concept familiar from classical
physics.

However, an additional and distinctly quantum-mechanical caveat is lurk-
ing here. Due to the fact that many observables are mutually incompatible
(formally expressed by the noncommutativity of the representing operators),
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a quantum state will in general be a simultaneous eigenstate of only a very
small set of operator-observables. Accordingly, we may ascribe only a limited
number of definite physical properties to a quantum system, and additional
measurements will in general alter (“disturb”) the state of the system—
unless, of course, we measure, by virtue of sheer luck or prior knowledge,
an operator-observable with an eigenstate that happens to coincide with the
quantum state of the system before the measurement.

This fragility of quantum states is also reflected in the famous no-cloning
theorem (see Sect. 7.4.1), which states that it is in general impossible to
duplicate an unknown quantum state [20,21]. Another way of expressing this
fact is to say that it is impossible to uniquely determine an unknown quantum
state of an individual system by means of measurements performed on that
system only [22–26].

Needless to say, this situation is in stark contrast with classical physics.
Here we can enlarge our “catalog” of physical properties of the system (and
therefore specify its state more completely) by performing an arbitrary num-
ber of measurements of additional physical quantities, in any given order.
Furthermore, many independent observers may carry out such measurements
(and agree on the results) without running into any risk of disturbing the state
of the system, even though they may have been initially completely ignorant
about this state. Of course, this objective preexistence of classical states has
led to our deeply ingrained notion of “classical reality.”

We note that in the following we shall often—unless an ambiguity may
arise—refer to (Hermitian) operators representing (physical) observables sim-
ply as “observables,” instead of using the more precise term “operator-
observable.” Nonetheless the reader should bear in mind that the identifi-
cation between formal operators and physical quantities is introduced ax-
iomatically into the quantum theory and is therefore nontrivial (although
the concept of observables may also be viewed as emergent and therefore
derivable from the quantum-state formalism alone, thus matching the spirit
of John Bell’s quest for “beables” [27]; see Sect. 2.2 of [17] for an example of
this approach). The danger of falling into a näıve realism about such oper-
ators by describing measurements of physical quantities in an oversimplified
manner as “measurements of operators” has been pointed out before [28].

2.1.2 The Probabilistic Nature of Quantum States

In view of the properties of quantum states discussed in the preceding sec-
tion, it has often been argued that these states represent only “potentialities”
for the various observed “classical” states. At the same time, however, it is
important to emphasize that (according to our current knowledge) quantum
states represent a complete description of a quantum system, i.e., the quan-
tum state encapsulates all there is to say about the physical state of the
system. Yet, in general quantum states do not tell us which particular out-
come will be obtained in a measurement but only the probabilities of the
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various possible outcomes. This seemingly intrinsic probabilistic character of
quantum mechanics is one of the central features distinguishing this theory
from classical physics. In an experimental situation, the probabilistic aspect
is represented by the fact that, if we measure the same physical quantity on
a collection of systems all prepared in exactly the same quantum state, we
will in general obtain a set of different outcomes.

As is well known, throughout his life Einstein remained reluctant to accept
this apparent intrinsic randomness of nature [29], as captured in his famous
slogan that “God does not play dice with the universe.” This discomfort
has been shared by others, who have sought a way out by suggesting that
quantum mechanics does not constitute a complete theory, in the sense that
the quantum state does not suffice to completely specify the physical state
of a system. Thus, an ensemble of “identically prepared systems” would not
actually represent a collection of physically identical systems. While each
system in the collection would be described by the same quantum state,
the “complete state” of each system, which determines the outcomes of all
possible measurements on each individual system, would not be the same for
every member in the ensemble.

Such approaches are usually referred to as hidden-variables theories. They
attempt to restore determinism at the fundamental level by augmenting the
quantum state through the introduction of postulated “hidden variables”
whose values determine the particular outcome of any measurement per-
formed on the system. Therefore only the combination of the quantum state
together with the values of the relevant hidden variables specifies the com-
plete physical state of the system. The ensemble of systems, all of which are
prepared in the same quantum state, would then be described by a range
of different values of the hidden variables. This would give a completely de-
terministic account of the observation of different measurement outcomes.
Quantum mechanics would then only appear probabilistic to us, since we do
not have any means of knowing the specific values of the hidden variables
(hence the term “hidden”). Probabilities in quantum mechanics would there-
fore be purely epistemic: Just as in classical statistical mechanics, they would
be only an expression of our subjective lack of knowledge, but they would not
be representative of an objective indeterminism at the fundamental physical
level.

However, it turns out that it is in fact extremely difficult to construct
a hidden-variables approach that does not violate the experimentally well-
confirmed predictions of standard quantum mechanics. Most famously, in a
seminal paper of 1964 John Bell presented an inequality that would be obeyed
by any local hidden-variables theory but violated by standard quantum me-
chanics [30] (see also Bell’s later refined accounts in [27, 31]). Numerous ex-
periments have shown a clear violation of Bell’s inequality, thereby almost
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definitely1 ruling out local hidden-variables theories. These results show that
any hidden-variables theory would need to be highly nonlocal in order to
work. Probably the most famous representative of such a nonlocal hidden-
variables theory is the de Broglie–Bohm approach [34–37] (see Sect. 8.5).
Here, the hidden variable is chosen to be position, i.e., each particle in the
system has a definite position at all times.

Furthermore, Kochen and Specker [38] demonstrated that any hidden-
variables theory must necessarily be contextual : The particular value of a
physical quantity ascribed to a quantum system (by means of the hidden
variables) will in general be dependent on the measurement context, i.e.,
in which particular manner this value is eventually measured. For example,
depending on which other observables are co-measured on the system, the
system would possess different values of a particular observable. Contextu-
ality therefore forces us to relinquish the key idea motivating the hidden-
variables program in the first place: That the physical world is independent
of any measurements performed on it, and that a measurement simply re-
veals the preexisting value (determined by the values of the hidden variables)
of a physical quantity. It it thus clear that any postulated hidden-variables
concept would necessitate a sophisticated, highly nonlocal, and contextual
mechanism to work as suggested.

2.1.3 The Ontological Status of Quantum States

Another dispute has centered around the question of the ontological status
of quantum states (see [39] for an accessible short historical overview). In the
early days of quantum mechanics, Schrödinger attempted to identify narrow
wave packets in real space with actual physical particles (see the beginning of
Chap. 3). This strategy encountered two core problems. First of all, initially
localized wave packets generally tend to spread out very rapidly over large
regions of space, which is irreconcilable with the concept of particles, which,
by definition, are localized in space. (As we shall see in Chap. 3, this spreading
becomes effectively suppressed by the interaction with the environment, a
process Schrödinger had of course been unaware of at the time.) Second,
the wave function describing the quantum state of N > 1 particles in three-
dimensional real space resides in a 3N -dimensional Hilbert space and not
anymore in the familiar three-dimensional space of our experience.

Subsequently, Born and Pauli took a different approach and formulated
their famous interpretation of quantum states as representing a probability
amplitude, i.e., as specifying the probabilities of the outcomes of all possi-

1There remains a small, albeit ever diminishing, amount of leeway in interpret-
ing the experimental results. The main such “loophole” is due to imperfect detectors
with efficiencies of less than 100% [32]. Another issue is the so-called “communica-
tion loophole,” which is now commonly considered to have been closed through an
experiment by Weihs and coworkers [33].
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ble measurements that could be performed on the system. The act of mea-
surement was then assumed to play the fundamental role of dynamically
“actualizing” these potential properties. Wheeler [40, p. 182] (see also [41])
poignantly summarized this view as “no elementary [i.e., quantum] phe-
nomenon is a phenomenon until it is a recorded (observed) phenomenon.”
Similar ideas are apparent in Heisenberg’s statement that “the particle tra-
jectory is created by our act of observing it”2 [42, p. 185], and in Pauli’s
letter to Born in which he suggest that “the appearance of a definite position
x0 during an observation (. . . ) is then regarded as a creation existing outside
the laws of nature”3 [43]. Thus the widely accepted Born–Pauli interpreta-
tion of the wave function is neither purely ontological (in the sense of viewing
quantum states as directly representing physical reality) nor simply epistemic
(i.e., as representing but the lack of our subjective knowledge).

However, this interpretation leaves unanswered the fundamental question
of the ontological role of the “actualization by observation” and the physical
explanation of this process in dynamical terms. In this sense, the problem of
the interpretation of the quantum state is simply replaced by the problem
of the interpretation of measurement. Note also that the problem of the
“actualization” of physical properties is not solved by the assumption of a
wave-function collapse that reduces the quantum state to an eigenstate of the
measured observable. Such a collapse does not per se alter the ontological
status of this state, and thus the state of the system after the collapse cannot
be regarded as more “physically real” than before the collapse.

The opposite pole to a “realist” interpretation of quantum states is repre-
sented by the aforementioned purely epistemic view of quantum states. This
interpretation regards quantum states as describing only our knowledge but
not the objective physical state of a system (see, e.g., [44] and also Ballentine’s
“ensemble interpretation” [45, 46] for examples of such a stance). This view,
while obviously difficult to refute empirically, stubbornly refuses to address
the fundamental question of the physical reality underlying our observations
and thus our “knowledge.”

In this book, we shall adopt the widely accepted notion that a quantum-
state vector (expressed, for example, as a ket |ψ〉 in the standard Dirac no-
tation) provides a complete description of the physical state of an individual
system. To reflect the “completeness” of such quantum states, they are com-
monly called pure. (By contrast, so-called mixed states are simply classical
ensembles of pure states; we will discuss them in Sect. 2.4.2.) Our aim will be
to explain the nature of our observations from within the quantum formalism,
instead of taking the cop-out route of introducing ad hoc as-of-yet undiscov-

2The original German quote reads: “Die Bahn entsteht erst dadurch, daß wir
sie beobachten.”

3The original text reads: “Das Erscheinen eines bestimmten Ortes x0 bei der
Beobachtung (. . . ) wird dann als außerhalb der Naturgesetze stehende Schöpfung
aufgefaßt.”
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ered “hidden variables” or by taking our “knowledge” as the fundamental
entity described by the quantum formalism.

2.2 The Superposition Principle

The superposition principle lies at the heart of quantum mechanics, and it
is one of the features of quantum mechanics that most distinctly marks the
departure from classical concepts. Formally, the superposition principle is
rooted in the linearity of the Hilbert space. Since quantum states are repre-
sented by vectors in a Hilbert space, we may form linear combinations of such
vectors. The superposition principle then states that such a linear combina-
tion of vectors again corresponds to a new quantum state. This means that,
if the kets |ψn〉 represent a set of quantum states, then the superposition

|Ψ〉 =
∑
n

cn |ψn〉 (2.1)

also corresponds to a possible and equally admissible quantum state, with the
cn denoting arbitrary complex coefficients. Thus, by virtue of the egalitarian
nature of the superposition principle, the superposition state |Ψ〉 corresponds
to some possible (physical) state of the system in the same way as the com-
ponent states |ψn〉 do.

For example, suppose we are able to prepare a spin-1
2 particle in one of

the two states |0〉 (“spin up”) or |1〉 (“spin down”). Then the superposition
principle tells us that |Ψ〉 = (|0〉+ |1〉) /

√
2 is an equally admissible quantum

state, and that we could therefore (at least in principle) also prepare our
system in this superposition state.

2.2.1 The Interpretation of Superpositions

To understand why the superposition principle has such counterintuitive con-
sequences, the correct interpretation of a quantum-mechanical superposition
is crucial. Such a superposition state does not simply represent a classical
ensemble of its components (such an ensemble is often referred to as a proper
mixture [47–49]), i.e., a situation in which the quantum system actually is
in only one of the component states |ψn〉, but we simply do not know in
which (we may call this the “näıve ensemble interpretation”). Instead, each
of the components |ψn〉 in (2.1) is simultaneously present in the quantum
state. This situation is referred to the existence of coherence between these
components. To clearly emphasize the distinction from the classical case, a
quantum-mechanical superposition of the form (2.1) is therefore often re-
ferred to as a coherent superposition. (In this book, the term “superposition”
will always, unless explicitly stated otherwise, refer to a quantum, i.e., co-
herent, superposition.) Such a superposition of the component states defines
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a new (physical) state of an individual system and not merely a statistical
distribution of the component states.

We may give a general argument against the interpretation of superposi-
tions as classical ensembles of their component states, i.e., as an ensemble of
more fundamentally determined states. The proof is by contradiction. Sup-
pose that such an ensemble view could indeed be attached to a superposition
|Ψ〉 =

∑
n cn |ψn〉 of states |ψn〉. By virtue of measurements, we could then

obtain additional knowledge that would allow us to single out a subensemble
consisting of the states compatible with the results obtained in the measure-
ment. Because the time evolution has been completely deterministic accord-
ing to the Schrödinger equation,

i
d
dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (2.2)

this would enable us to backtrack this particular subensemble in time. This,
in turn, would allow us to specify the initial (premeasurement) state of the
system more completely (this process is often referred to as “postselection”
[50]), which implies that this state must physically differ from the initially
prepared superposition, establishing a contradiction.

2.2.2 Experimental Verification of Superpositions

How can we experimentally demonstrate the existence of coherence and
thereby show that a superposition is indeed different from an ensemble (i.e.,
a proper mixture) of its component states? There are two general methods:
A repeated direct projective measurement onto the superposition state, or
an indirect confirmation of the presence of all components in the superpo-
sition by means of an interference experiment. Let us illustrate these two
approaches using some simple examples.

Direct Measurements

The most direct way of confirming the existence of a superposition state of the
form (2.1) would be to carry out a projective measurement of the observable
Ô = |Ψ〉〈Ψ | on every member of an ensemble of identically prepared systems.
If we obtain an outcome equal to one in each measurement and the ensemble
is sufficiently large, we can conclude that the systems must indeed have been
prepared in the superposition (2.1).

An example for a setup that realizes such a measurement is the Stern–
Gerlach apparatus (see Fig. 2.1). A typical Stern–Gerlach experiment goes as
follows. Silver atoms are heated in an oven and then pass through collimating
slits and a magnetic field inhomogeneous in the z direction (for simplicity,
we shall neglect field components in other directions). Each silver atom has
47 electrons, 46 of which are contained in a spherically symmetric electron
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Fig. 2.1. Schematic illustration of the Stern–Gerlach experiment. Silver atoms with
a magnetic moment equal to the spin of a single electron are emitted from an oven
and subsequently pass through an inhomogeneous magnetic field in the z direction
(the inhomogeneity is created, for example, by the shape of the pole pieces of the
magnet). Depending on the spin state, the path of the atom is deflected along two
possible trajectories, thereby indicating the quantized value of the spin along the z
axis. After many atoms have traversed the apparatus, two distinct bands become
observable on the detection screen.

cloud. Thus only the spin of the 47th electron yields a net magnetic moment
of the atom as a whole. We therefore deal with a comparably massive atom
characterized by a magnetic moment equal to the spin magnetic moment of
a single electron.

Since the electron can take only two equal but opposite values of spin
along the z axis, namely, spin “up” or spin “down,” the silver atom has two
possible values ±μz of magnetic moment. When a silver atom passes through
the inhomogeneous magnetic field, it experiences a force in the z direction
due to the interaction of the magnetic moment with the field. This force
is proportional to the value of the magnetic moment. Thus the trajectory
of the silver atom will be deflected in either the +z or the −z direction,
depending on whether the 47th electron in the atom is in the spin-up or the
spin-down state along the z axis (we shall denote these states by |0z〉 and |1z〉,
respectively, which are the eigenstates of the Pauli z-spin operator σ̂z). When
the beam of atoms hits a detector screen, two spatially separated spots will
appear, corresponding to the two distinct trajectories that the atoms may
take. Alternatively, we may place a particle detector in one of the paths that
will then tell us whether a particular atom took this path. Either way, this
setup corresponds to a measurement of the z-component of electron spin.

Suppose now we prepare the incoming atoms in a quantum state corre-
sponding to “spin up” of the electron along the z axis, i.e., in the eigenstate
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|0z〉 of the z-spin operator σ̂z. As expected, the pattern on the screen will
experimentally confirm this preparation: All atoms will be found to impinge
in the upper region of the screen. At the same time, |0z〉 can be equally
rewritten as a linear combination of “spin up” and “spin down” along the
orthogonal x axis, |0z〉 = (|0x〉+ |1x〉) /

√
2, and thus the experiment can be

viewed as confirming the preparation of this superposition. If the superpo-
sition did represent a classical ensemble of the states |0x〉 and |1x〉, i.e., if
each electron actually was in either of the two states, a single spot in the
center of the screen would appear, since the inhomogeneity of the magnetic
field is oriented along the z axis only and would therefore not induce any
splitting of the beam of atoms. Of course, this is not the behavior observed
in the experiment. Conversely, we may choose to rotate the orientation of the
magnetic field by 90 degrees into the x direction. Now the 50–50 splitting of
the beam would be observed for all atoms prepared in the initial state |0z〉.

Therefore the superposition state |0z〉 = (|0x〉+ |1x〉) /
√

2 corresponds to
a (physical) state of an individual system in which the components |0x〉 and
|1x〉 are simultaneously present. The superposition thus does not just manifest
itself in form of interference fringes (see below) between the components |0x〉
and |1x〉. Instead, there always exists an orientation of the magnetic field in
the Stern–Gerlach apparatus such that the trajectory of the atom can be
“predicted with certainty” [10,39].

Interference Experiments

The example of spin measurements in a Stern–Gerlach apparatus represents
a rather unique case, since it is typically very difficult to directly measure
the projective observable corresponding to a superposition state. Instead,
all we usually have available are devices that perform measurements in a
particular basis corresponding to the components of the superposition. For
example, there are measuring devices (namely, our own eyes!) that can detect
whether Schrödinger’s cat is alive or dead, i.e., that perform measurements
in the {|“alive”〉 , |“dead”〉} basis. But there exists no obvious procedure that
would correspond to a measurement of observables in the conjugate basis
{(|“alive”〉 ± |“dead”〉) /

√
2}. This, of course, is the reason why Schrödinger-

cat superposition states appear so utterly counterintuitive: We simply have
usually no means (i.e., no measuring devices, and in particular no human
senses) that would allow us to observe such states directly.

To give a more down-to-earth example of this problem, let us consider the
famous double-slit experiment in which we let electrons pass individually, i.e.,
one at a time, through a double slit. At the level of the slits, the electron
is described by a superposition |Ψ〉 = (|ψ1〉+ |ψ2〉) /

√
2 of the components

|ψ1〉 and |ψ2〉 corresponding to passage through slit 1 and 2, respectively. To
directly confirm the existence of this superposition, we would need to perform
a projective measurement onto the state |Ψ〉. However, the wave function
Ψ(x) ≡ 〈x|Ψ〉 is spatially delocalized over each plane parallel to the slits,
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while the only type of measurement we have available is the measurement
of the position of the particles behind the slits. Thus in order to measure
the projective observable |Ψ〉〈Ψ |, we would need to exactly refocus the two
partial waves ψ1(x) ≡ 〈x|ψ1〉 and ψ2(x) ≡ 〈x|ψ2〉 onto a single point in space.
Obviously, this is virtually impossible in practice.

In such cases—where one has available only a measurement procedure for
the component states of the superposition—one typically resorts to demon-
strating interference effects between the components in the superposition.
The basic idea consists of designing the experiment in such a way as to in-
duce a spatial or temporal variation in the expansion coefficients cn that
define the superposition state |Ψ〉 =

∑
n cn |ψn〉 [see (2.1)], while this vari-

ation would be absent if the system was instead described by a classical
ensemble of the component states |ψn〉. We then carry out measurements in
the component basis {|ψn〉} on an ensemble of identically prepared systems.
Since |cn|2 specifies the probability of finding the component state |ψn〉, we
can infer that the systems had indeed been prepared in the superposition
state |Ψ〉 =

∑
n cn |ψn〉 if we observe the variation of these probabilities with

position or time. Let us mention two important examples.
In the double-slit experiment, we measure the spatial variation of the

density pattern on the distant screen, i.e., the (position-space) density distri-
bution �(x) of the particles at the level of the screen. The well-known result
is that we obtain an interference pattern, which is distinctly different from
the classical pattern that would be expected if we assumed that each electron
passes through either one of the slits (see Fig. 2.2). The density �(x) is not
described by the sum of the squared wave functions describing the addition of

Fig. 2.2. The double-slit experiment with particles. Left: Particles are incident on a
double slit. Center: The resulting “classical” density pattern obtained on a distant
detection screen. This pattern corresponds to a simple addition of the contributions
from each individual slit. Right: The interference pattern obtained in the quantum
setting (with the envelope modulated by diffraction).
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individual passages through a single slit (i.e., �(x) ∝ |ψ1(x)|2+ |ψ2(x)|2), cor-
responding to a classical distribution of component states ψ1(x) and ψ2(x),
but by the square of the sum of the individual wave functions,

�(x) =
1
2
|ψ1(x) + ψ2(x)|2 =

1
2
|ψ1(x)|2 +

1
2
|ψ2(x)|2 + Re {ψ1(x)ψ∗2(x)} ,

(2.3)
where the last term is responsible for the characteristic interference pattern
on the screen.

Thus this experiment clearly shows that, within the standard quantum-
mechanical formalism,4 the individual electron cannot be described by either
one of the wave functions describing the passage through a particular slit, but
only by a superposition of these wave functions, Ψ(x) = (ψ1(x) + ψ2(x)) /

√
2.

Formally, this finding is explained by the fact that quantum states represent
probability amplitudes rather than actual probabilities. This implies that a
superposition state describes a linear combination of probability amplitudes
rather than of probabilities, leading to interference terms in the probability
distribution (2.3) corresponding to the superposition. Note also that, since it
is completely feasible to carry out the double-slit experiment such that only
a single particle is present in the apparatus at any one time (see Sect. 6.2),
the interference pattern cannot be due to any interactions between different
electrons.

Another example of the indirect verification of the existence of a super-
position via the observation of interference effects—this time, in terms of
temporal (instead of spatial) variations—is given by the technique of Ramsey
interferometry [51]. Ramsey interferometry is directly based on the principle
of quantum-coherent Rabi oscillations in two-level systems, which we will
explain in more detail in Sect. 6.1.1. Suppose we have a two-level atom de-
scribed by a ground state |g〉 and an excited state |e〉, and we would like to
demonstrate the existence of the superposition state |ψ〉 = (|g〉+ |e〉) /

√
2 of

the atom. However, our experiment only allows us to measure the energy state
of the atom, i.e., we can only perform measurements in the {|g〉 , |e〉} basis
but not in the conjugate basis {(|g〉 ± |e〉) /

√
2}, which would be required for

a direct projective measurement of the superposition.
We can again use the method of performing an interference experiment

to accomplish our goal. First, we prepare our atom in the ground state |g〉
by means of a projective measurement of the observable Ô = |g〉〈g|. Then,
by applying a laser pulse of a particular duration (see Sect. 6.1.1 for details),
we can transform this state into the coherent superposition

4There exist alternative formulations of quantum mechanics which permit a
different view. For example, in Bohmian mechanics the positions of all particles are
taken to be determinate at all times (see Sect. 8.5), and thus each particle follows
a definite trajectory through either one of the two slits. While the wave function
is still delocalized over the slits, it only defines the various possible paths that a
particle may take.
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|Ψ〉 =
1√
2

(|g〉 − i |e〉) . (2.4)

The state then continues to evolve freely,

|Ψ〉 =
1√
2

(
|g〉 − ie−iφ(t) |e〉

)
, (2.5)

where φ(t) denotes the phase shift induced by the unitary evolution after
a time t has passed since the application of the laser pulse (we omit here
any global phase factors in |Ψ〉). Equation (2.5) represents the superposition
whose existence we would now like to experimentally verify. To do so, we
apply a second laser pulse of the same duration as the first pulse, which
changes the state (2.5) into

|Ψ〉 = sin (φ(t)/2) |g〉 − cos (φ(t)/2) |e〉 . (2.6)

Here the phase shift φ(t) can be adjusted by changing the time t between
the two laser pulses. Thus we have introduced a temporal variation into the
coefficients in the superposition. If we now measure the atom in the {|g〉 , |e〉}
basis, we will find the atom in the ground or excited state with probabilities
that explicitly depend on the value of φ(t).

On the other hand, suppose that during the time between the laser pulses
the atom had not been described by the superposition (2.5), but instead by a
classical ensemble of the components |g〉 and |e〉. As it is evident from (2.5),
during the time between the pulses the probabilities of finding the atom in the
ground or excited state are identical, i.e., the phase shift φ(t) present in the
superposition (2.5) would be completely irrelevant to the corresponding clas-
sical ensemble derived from (2.5). Consequently, if between the application of
the two pulses the atom was described by an ensemble (a proper, incoherent
mixture) of the component states instead of the superposition (2.5), then after
the application of the second pulse and the subsequent measurement of the
atom in the {|g〉 , |e〉} basis, the ground-state and excited-state probabilities
would be independent of the phase shift φ(t). By finding that the measure-
ment statistics indeed depend on φ(t), i.e., on the time t between the pulses,
we are therefore able to confirm the existence of coherent superpositions of
the form (2.5).

The Ramsey technique is by no means limited to the example of an atom
controlled by a laser pulse. The atom can be replaced by any two-level system
that can be addressed by some suitable control field. For example, Sect. 6.3.4
will describe an application of the Ramsey method to the measurement of
decoherence effects in superconducting systems.

2.2.3 The Scope of the Superposition Principle

Historically, quantum theory, and thus the superposition principle, were ap-
plied to microscopic phenomena only, for example, in explanations of the dis-
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crete spectrum of the hydrogen atom or in descriptions of interference exper-
iments with microscopic particles. The spectacular agreement between theo-
retical predictions and experimental observations explicitly demonstrated the
validity and power of the superposition principle in the microscopic domain.
Since superpositions seemed to be limited to the world of tiny physical enti-
ties (such as electrons) far removed from the range of our direct experience, it
was not too difficult to convince oneself that such superpositions were simply
a peculiar feature of the microworld.

As already noted in our introduction in Chap. 1, the reason for the ini-
tial restriction to the microscopic domain was twofold. First of all, only on
microscopic scales had the explanation of certain phenomena observed at
the beginning of the twentieth century demanded a departure from classical
physics. By contrast, the classical framework seemed to continue to provide
a satisfactory explanation of our observations in the macroscopic everyday
world of our experience. Moreover, however, the application of the superposi-
tion principle to macroscopic systems seemed to immediately lead to counter-
intuitive consequences that appeared to blatantly contradict our experience,
as exemplified by the Schrödinger-cat paradox discussed in Chap. 1. After all,
macroscopic systems are always observed to reside in a few “classical” macro-
scopic states, defined by having a small number of determinate and robust
properties such as position and momentum. How could one possibly reconcile
this observation with the vastness of the quantum-mechanical Hilbert space
and with the superposition principle, which would seem to allow for arbitrary
superpositions?

Accordingly, quantum mechanics was not only deemed unnecessary for a
description of the macroworld, but in fact often banned a priori from the
macroscopic realm. For example, the hugely influential Copenhagen interpre-
tation of quantum mechanics postulated a fundamental dualism (the so-called
Heisenberg cut) between the microscopic regime, in which quantum theory,
and in particular the superposition principle, was assumed to hold, and the
macroscopic domain, which was supposed to be entirely described in irre-
ducibly classical terms (see Sect. 8.1).

However, over the past decade a rapidly growing number of sophisticated
experiments have demonstrated the validity of the superposition principle on
larger and larger scales (see Chap. 6), leaving behind the “unproblematic”
territory of superpositions involving only microscopic entities such as elec-
trons and photons that had been studied by the founders of quantum theory.
Furthermore, these experiments have shown that any observed disappearance
of quantum coherence and interference can be attributed to interactions with
the environment, that is, to decoherence. These results suggest that there
may indeed exist no fundamental limit to the validity of the superposition
principle on macroscopic scales, i.e., that the “breakdown” of this principle
observed in the macroscopic world of our experience is of a purely apparent
nature and simply a consequence of decoherence. On the other hand, as we
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shall make more clear below, decoherence does not actually destroy the su-
perposition, it simply extends it to include the environment, which (as we
shall show, too) precludes the observation of coherence at the level of the
system.

This may indeed be enough to “save the phenomena,” but many peo-
ple do find, understandably, the idea of the persistent existence of “global
Schrödinger cats” (that now include the environment) worrisome on some
philosophical level. Accordingly, there exist proposals for exorcising such
“cat states” by means of postulated nonlinear corrections to the Schrödinger
equation, such that superpositions are, at some stage, physically and objec-
tively reduced to their components states (we will discuss such approaches in
Sect. 8.4). Since these proposals postulate deviations from standard unitary
dynamics, they are, at least in principle, experimentally falsifiable. However,
while conceptually the effect of such an “objective” reduction mechanism
is fundamentally different from a merely apparent reduction in form of a
nonobservability of coherence phenomena due to environmental interactions,
it would in fact be extremely difficult to experimentally distinguish these two
effects (see also Sect. 8.4.5).

2.3 Quantum Entanglement

Let us now turn to quantum entanglement, which is the key process underly-
ing decoherence. First of all, let us define entanglement. Suppose we are given
a quantum system S, described by a state vector |Ψ〉, that is composed of two
subsystems S1 and S2 (S is therefore called a bipartite quantum system). The
state vector |Ψ〉 of S is called entangled with respect to S1 and S2 if it cannot
be written as a tensor product of state vectors of these two subsystems, i.e.,
if there do not exist any state vectors |ψ〉1 of S1 and |φ〉2 of S2 such that
|Ψ〉 = |ψ〉1 ⊗ |φ〉2.5 Put in terms of entangled systems instead of entangled
states, S1 and S2 are called entangled if the state of the composite system S
cannot be expressed in the tensor-product form |Ψ〉 = |ψ〉1 ⊗ |φ〉2, with |ψ〉1
and |φ〉2 denoting some state vectors of S1 and S2, respectively. Note that in
the remainder of this book, we shall refrain from explicitly writing out the
tensor-product symbol “⊗” for tensor products of quantum states. We shall,
however, retain the symbol “⊗” in denoting products of operators pertaining
to different Hilbert spaces and in referring to products of Hilbert spaces.

5A brief remark on notation. When dealing with multiple systems, we will often
denote which system a ket is associated with by using a subscript at the end of
the ket symbol, such as in “|ψ〉1” to indicate that this ket refers to system S1.
Sometimes, on the other hand, it will be possible to label the quantum state in
direct reference to the system, e.g., by writing “|a〉” to refer to the state of a system
A. In such (and other similarly unambiguous) cases we will omit the subscript for
the sake of notational clarity.
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As an example for pure entangled states, consider two spin- 1
2 particles

described by the mutually orthogonal basis states |0〉i and |1〉i, i = 1, 2, of
their respective two-dimensional Hilbert spaces. The states |0〉i and |1〉i cor-
respond to particle i having its spin pointing “up” and “ down,” respectively,
along some given axis in space. There are several different pure entangled
quantum states for the composite system consisting of the two spin- 1

2 parti-
cles that are maximally entangled (we will explain the notion of “maximum
entanglement” below). These states are commonly referred to as Bell states
and given by

∣∣Φ±〉 =
1√
2

(|0〉1 |0〉2 ± |1〉1 |1〉2) , (2.7a)

∣∣Ψ±〉 =
1√
2

(|0〉1 |1〉2 ± |1〉1 |0〉2) . (2.7b)

It is quite easy to explicitly confirm that it is indeed impossible to write
these Bell states as a tensor product of states of the two spin- 1

2 subsystems.
Because in (2.7) the states |0〉1 and |1〉1 are one-to-one correlated with the
states |0〉2 and |1〉2, one often says that |0〉2 and |1〉2 are relative states of S2

with respect to the states |0〉1 and |1〉1 of S1 (and vice versa).
What does our definition of entanglement mean? If |Ψ〉 = |ψ〉1 |φ〉2, i.e.,

if S1 and S2 are not entangled, then we may regard the two subsystems S1

and S2 as individual entities. Each subsystem possesses its own quantum
state, which constitutes a complete description of the physical state of the
subsystem, and there exist no physical properties that could be measured only
on the composite system S but could not be derived from measurements on
the individual subsystems (such composite, or “global,” properties would be
embodied in quantum correlations between the subsystems). In other words,
the subsystems, although considered as part of a larger composite system,
completely retain their individuality. The whole (the composite system S)
is therefore simply the sum of the parts (the subsystems S1 and S2). This,
of course, is the situation familiar from classical physics. Conversely, if there
exist no subsystem states |ψ〉1 of S1 and |φ〉2 of S2 such that |Ψ〉 = |ψ〉1 |φ〉2,
all of the aforementioned “classical” features of separability fail to hold. Now
the subsystems S1 and S2 cannot be attributed quantum states of their own;
instead, they can only be described by a global composite quantum state (see
also Fig. 1.2).

The term “entanglement” (“Verschränkung” in German) was first coined
by Schrödinger in 1935 [2, 52, 53] who immediately emphasized the nonclas-
sical implications of entanglement [52, p. 555]:

When two systems, of which we know the states by their respec-
tive representatives, enter into temporary physical interaction due
to known forces between them, and when after a time of mutual
influence the systems separate again, then they can no longer be de-
scribed in the same way as before, viz. by endowing each of them
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with a representative of its own. I would not call that one but rather
the characteristic trait of quantum mechanics, the one that enforces
its entire departure from classical lines of thought.

The peculiar features of entanglement have now been confirmed in many
experiments, for instance, by using entangled pairs of photons separated by
distances of many kilometers.6 Entanglement is also at the heart of the “sec-
ond quantum revolution” [55] that is concerned with quantum technologies
such as quantum computers and quantum cryptography. Quantum computers
would be able to solve certain computational problems faster than any classi-
cal computer could ever do (see Chap. 7), and quantum cryptography allows
for completely secure communication. While it remains to be seen whether
and when a reasonably complex quantum computer may be experimentally
realizable, quantum cryptography already represents a comparably mature
field with existing commercial applications.

2.3.1 Quantum Versus Classical Correlations

It is important to note that quantum correlations (i.e., entanglement) are
fundamentally different from classical correlations.7 In classical physics, cor-
relations often arise due to certain conservation laws. For example, a particle
at rest may decay into two identical fragments that, due to the conservation of
total momentum, will then fly apart at the same speed but in opposite direc-
tion. If we measure the momentum of one of the fragments, we can therefore
immediately infer that the momentum of the other particle must be equal in
magnitude but of opposite sign. This is a purely classical (statistical) one-to-
one correlation between the two particles: The momentum of each fragment
“exists” independently of the measurement performed on the first fragment,
and the inference of the momentum of the second particle follows directly
from the conservation of momentum.

Now let us switch to the case of quantum entanglement. Suppose a pair
of spin- 1

2 particles is described by the Bell state [see (2.7b)]

∣∣Ψ+
〉

=
1√
2

(|0〉1 |1〉2 + |1〉1 |0〉2) . (2.8)

The analogy with the case of classical correlations holds to the extent that,
whenever we measure the first particle and find “spin up,” we can immediately

6For prospects of extending such demonstrations into space to achieve separa-
tions of many thousands of kilometers for proof-of-principle experiments on entan-
glement, the Bell inequalities, and theories of wave-function collapse, see [54].

7Schrödinger himself seems to sometimes not have made this difference suffi-
ciently clear in his early papers on entanglement. For instance, two of these papers
bear the common title “Discussion of probability relations between separated sys-
tems” [52, 53], which fails to reflect the peculiar quantum nature of entanglement
that goes far beyond (classical) probability relations.
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infer that the second particle would, upon measurement, always be found in
the “spin down” state.8

Thus we may say that, by the act of the first measurement, quantum
correlations are transformed into classical (purely statistical) correlations.
Note, however, that in the quantum setting the outcome of the measurement
on the first particle is completely random. We will get “spin up” or “spin
down” with equal probabilities, but we have no means of predicting which
particular outcome will be obtained. It would therefore appear that informa-
tion about the outcome of the measurement on the first particle is seemingly
instantaneously transmitted to the second particle, which may be spatially
separated by an arbitrary distance. (This observation is the basis of the EPR
“paradox” [10].)

This would, at a first glance, seem to violate the principle of special rel-
ativity that no (classical) signal can travel faster than at the speed of light.
However, there is in fact no such violation. Although the outcome of the mea-
surement on the second particle is instantaneously fixed by the outcome of
the measurement on the first particle, the complete randomness of the latter
outcome means that no useful information can be transmitted between the
two partners. (A more rigorous proof of this so-called no-signaling theorem
can be given in terms of the statistics of measurements performed on the
two subsystems; see, e.g., [56].) This is a rather remarkable result. Quantum
mechanics per se is a nonrelativistic theory that does not contain any explicit
axiom that would introduce fundamental limitations on the speed of trans-
mission of information, that is to say, quantum mechanics does not “know”
special relativity. Yet, its probabilistic structure nonetheless indirectly im-
poses no-signaling constraints such as the one described above.

A good way of thinking about such apparent instantaneous “spooky action
at a distance” (as Einstein put it) is to realize that the entangled state must
have been prepared locally by having let the two subsystems interact at some
point in the past. When these two subsystems are then separated from each
other, the quantum state is simply “spread out” (i.e., delocalized) over a
larger spatial region. There is no information that would need to be physically
transmitted between the two subsystems: The entangled state is already the
most complete description for the individual subsystems and encapsulates all
possible information about these systems.

This viewpoint is also reflected in Schrödinger’s earliest papers on en-
tanglement [2] of 1935 (quoted from the English translation by J. D. Trim-
mer [57]):

8To use the famous phrase of the original EPR paper [10], we can “predict
with certainty” the outcome of the measurement on system 2. Intuitively, we would
therefore conclude that the second system has been in the “down” state already
before any explicit measurement on this system has confirmed the prediction. In
essence, this viewpoint corresponds to EPR’s (in)famous “criterion of reality.”
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That a portion of the knowledge should float in the form of disjunc-
tive conditional statements between the two systems can certainly not
happen if we bring up the two from opposite ends of the world and
juxtapose them without interaction. For then indeed the two “know”
nothing about each other. A measurement on one cannot possibly
furnish any grasp of what is to be expected of the other. Any “entan-
glement of predictions” that takes place can obviously only go back
to the fact that the two bodies at some earlier time formed in a true
sense one system, that is were interacting, and have left behind traces
on each other.

The feature of entanglement seems to suggests that nature is fundamen-
tally nonlocal : The outcome of the local measurement on the second particle
is determined by quantum correlations encoded only in the global entangled
quantum state of the composite system.

2.3.2 Quantification of Entanglement and Distinguishability

In our introduction of the four Bell states (2.7), we noted that these states
are “maximally” entangled, suggesting the existence of different quantita-
tive degrees of entanglement. This raises the question of how to quantify
entanglement, i.e., of how to measure “how much” a given state is entangled.
This question is important to decoherence. As we shall see, broadly speak-
ing, the higher the degree of entanglement between the system of interest
and its environment, typically the stronger will be the decohering effect of
the environment.

Let us consider the situation of a bipartite entangled state of the form

|Ψ〉 =
1√
2

(|ψ1〉1 |φ1〉2 ± |ψ2〉1 |φ2〉2) , (2.9)

where |ψi〉1 and |φi〉2, i = 1, 2, are now arbitrary and not necessarily mutually
orthogonal states of the subsystems S1 and S2. A useful intuitive way of
quantifying the entanglement present in this state is to consider the following
question: How much can the observer learn about one system by measuring
the other system?

Let us have a look back at the Bell states (2.7). These states are maxi-
mally entangled, because a projective measurement on the system S2 in the
{|0〉2 , |1〉2} basis immediately tells us in which of the states |0〉1 and |1〉1
we will find the system S1 in a subsequent measurement. This fact relies on
two properties. First, the “relative” states |0〉2 and |1〉2 of S2 are one-to-one
correlated with the states |0〉1 and |1〉1 of S1. Second, the states |0〉2 and
|1〉2 are mutually orthogonal, i.e., they are perfectly distinguishable. We may
think of these states as corresponding to some pointer of an apparatus that
indicates the (relative) state of system S1. (In fact, this is precisely the ba-
sic idea underlying the von Neumann measurement scheme, which we shall
discuss in Sect. 2.5.1 below.)
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Now consider the state (2.9) and the limiting case in which the states
|φ1〉2 and |φ2〉2 of S2 are far from being orthogonal, i.e., in which they have
large overlap. It will therefore be very difficult to distinguish these two states
in a projective measurement performed on S2. In turn, this implies that it
also will be difficult to infer the corresponding relative state of S1 (|ψ1〉1 or
|ψ2〉1) from this measurement. Broadly speaking, we may say that the system
S2 encodes very little distinguishing “information” about S1 with respect to
the states |ψ1〉1 and |ψ2〉1.

In the extreme situation of the states |φ1〉2 and |φ2〉2 being equal, |φ1〉2 =
|φ2〉2 ≡ |φ〉2, we can write (2.9) as a product state,

|Ψ〉 =
1√
2

(|ψ1〉1 ± |ψ2〉1) |φ〉2 . (2.10)

Therefore, this state is no longer entangled and does not contain any quantum
correlations between the two systems. If we now measure system S2 (in any
basis!), we will not be able to infer anything about which of the states |ψ1〉1
and |ψ2〉1 we would expect to find upon a subsequent projective measurement
performed on S1. The two subsystems are now in separate pure states, each
of which completely specifies the physical state (or, put more epistemically,
“all that can be known,” e.g., in terms of measurement statistics) about each
individual system, and the feature of “quantum holism” has disappeared.
Finally, we can phrase the above argument in an analogous manner in regards
to the correlation between the degree of entanglement and the overlap of the
states |ψ1〉1 and |ψ2〉1 of S1.

As we shall soon see, this distinguishability of the states of one system cor-
related with the states of another system lies at the heart of an understanding
of the conceptual basis of decoherence. Here, the subsystem S2 corresponds
to an environment that encodes, via quantum correlations of the form (2.9),
“information” about S1. Following our above argument, the amount of this
information increases with the amount of system–environment entanglement,
and thus also with the distinguishability of the relative states of the environ-
ment correlated with the different component states of the system. The larger
the amount of this information about the system learned by the environment
becomes, the more the system loses its individuality (in the sense of the in-
ability to assign an individual quantum state to it). As a consequence, quan-
tum coherence initially localized within the system will become a “shared
property” of the composite system–environment state and can no longer be
observed at the level of the system, leading to decoherence. We will make
these ideas more precise in Sects. 2.6 and 2.7 below.

2.4 The Concept and Interpretation of Density Matrices

Density matrices, especially so-called reduced density matrices, play an im-
portant role in the formal description of decoherence. The main reason for this
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role can be traced back to the fact that entanglement between the system and
the environment makes it impossible to assign an individual quantum state
vector to the system (see the previous Sect. 2.3), and thus we typically cannot
describe the system of interest in terms of such pure quantum states. As we
shall see, reduced density matrices then provide an elegant method for rep-
resenting the measurement statistics for the system. In the following, we will
spend some time discussing the various aspects of pure-state, mixed-state,
and reduced density matrices.

2.4.1 Pure-State Density Matrices and the Trace Operation

Let us begin with the familiar concept of quantum state vectors. As we have
explained above, a quantum state vector |ψ〉 encapsulates maximum knowl-
edge about the state of a physical system. We can also define the density
operator ρ̂ corresponding to such a pure state |ψ〉 as

ρ̂ ≡ |ψ〉〈ψ|, (2.11)

which is simply the projection operator onto the state |ψ〉. In this book, we
shall interchangeably use the term density matrix for the density operator ρ̂.
Strictly speaking, the density matrix refers to the matrix representation of the
density operator in a particular basis, but the use of “density matrix” for the
operator ρ̂ is so established in the literature that we shall follow this widely
accepted terminology. In cases where we would like to explicitly refer to the
matrix representation of the density operator, we will make the distinction
clear by omitting the operator-indicating caret from ρ̂, that is, by denoting
such actual density matrices by ρ.

If we express |ψ〉 as a superposition of basis states |ψi〉,

|ψ〉 =
∑
i

ci |ψi〉 , (2.12)

the corresponding density matrix written in this basis {|ψi〉} reads

ρ̂ = |ψ〉〈ψ| =
∑
ij

ci c
∗
j |ψi〉〈ψj |. (2.13)

The terms i �= j on the right-hand side of this equation embody the quan-
tum coherence between the different components |ψi〉. Accordingly, they are
usually referred to as interference terms, or off-diagonal terms (since these
terms correspond to the off-diagonal elements in the matrix representation
of ρ̂ in the basis {|ψi〉}).

However, it is important to keep in mind that such interference terms
are always to be understood with respect to a particular basis {|ψi〉}, i.e.,
coherence and interference is present between certain components |ψi〉. There
always exists a basis in which the density matrix becomes diagonal, and thus



2.4 The Concept and Interpretation of Density Matrices 35

there will be no interference terms in this basis. Thus our association between
interference (coherence) and the “quantumness” of a system must not lead us
to the erroneous conclusion that the absence of interference terms from the
density matrix written in some basis necessarily implies that the system “does
not have quantum properties” or “behaves classically.” The basis in which
the density matrix takes this diagonal form may not at all correspond to
the familiar determinate quantities of our experience (see also Sect. 2.15.1).
Expressed in a different basis, interference terms will in general reappear,
showing the persistent quantum coherence between these basis states.

Let us now introduce the trace operation, denoted by “Tr.” This operation
always acts on some operator Â and is implemented in the following way.
Choose an orthonormal basis {|φi〉} of the Hilbert space of the system, and
perform the operation

Tr(Â) ≡
∑
i

〈φi| Â |φi〉 . (2.14)

It is easy to show that this operation is linear,

Tr(Â + B̂) = Tr(Â) + Tr(B̂), (2.15)

and that it is independent of the particular choice of the orthonormal basis
{|φi〉}. Thus we can use any arbitrary set of orthonormal basis vectors to
compute the trace.

What is the reason for introducing the trace operation? To answer this
question, let us consider the operator Â = ρ̂Ô, formed by the product of the
pure-state density matrix (2.11) and a Hermitian operator Ô representing
some observable that is measured on the system. Let us choose the eigen-
states |oi〉 of Ô, with corresponding eigenvalues oi (we shall assume a discrete
spectrum here), as the orthonormal basis for evaluating the trace (2.14) of
ρ̂Ô. This yields

Tr(ρ̂Ô) =
∑
i

〈oi| (|ψ〉〈ψ|) Ô |oi〉 =
∑
i

oi |〈oi|ψ〉|2 . (2.16)

But the term |〈oi|ψ〉|2 is simply the Born probability of the outcome oi in
a measurement represented by Ô.9 Thus Tr(ρ̂Ô) represents an average over

9The Born rule [19] can be stated as follows. Suppose a system is described by
a pure state |ψ〉. Suppose further that an observable represented by a Hermitian
operator Ô, with eigenstates |oi〉 and corresponding eigenvalues oi (again assuming
a discrete spectrum for Ô), is measured on the system. Then:

(i) The states |oi〉 and corresponding (eigen)values oi are the only possible out-
comes of the measurement.

(ii) The probability of finding the system in the state |oi〉 after the measurement
(or, put differently, of measuring the value oi) is given by |〈oi|ψ〉|2.
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all possible outcomes oi of this measurement, weighted by the correspond-
ing Born probabilities. But this is precisely the definition of the expectation
value 〈Ô〉 of the observable Ô. This connection between the (mathematical)
procedure of the trace of the operator ρ̂Ô and the (physical) concept of an
expectation value of a measurement is known as the trace rule,10

〈Ô〉 = Tr (ρ̂Ô). (2.17)

If we choose Ô = Î, we get the expected result

Tr ρ̂ = 1. (2.18)

This relation simply reflects the fact that pure states are normalized, i.e.,
that |〈ψ|ψ〉|2 = 1. Before proceeding, we emphasize again that the concept
and interpretation of the trace fundamentally relies on the Born rule. The
importance of this point will become clear later.

2.4.2 Mixed-State Density Matrices

So far, using density matrices to describe the state of a system has not re-
ally yielded any advantage. If our system is in a completely known quantum
state, then the descriptions of a system in terms of a (pure) quantum state
|ψ〉 or of the corresponding (pure-state) density matrix (2.11) are completely
equivalent, both formally and physically. However, we may also describe our
system by a mixed state. A mixed state expresses insufficient information
about the state of the system, in the sense that the system is (before the
measurement) in one of the pure states |ψi〉 (which do not need to be orthog-
onal) but the observer simply does not know in which. Therefore we can only
ascribe probabilities pi ≥ 0 to each of the states |ψi〉.11

Such a situation typically arises if the physical procedure used to prepare
a quantum state contains a probabilistic element (albeit with known probabil-
ities). For instance, the preparation device may be able to prepare one of two
possible states |ψ1〉 and |ψ2〉 (Fig. 2.3). Which particular state is prepared is
decided by a spin measurement on a spin-1

2 particle in an unknown quantum
state, which will yield “spin up” and “spin down” with equal probabilities

Statement (i) is, in essence, the collapse postulate of quantum mechanics and hence
often separated out from the Born rule, reducing the content of the Born rule to
the prescription (ii) for calculating the actual values of the probabilities.

10Of course, the trace rule is completely equivalent to computing pure-state ex-
pectation values via 〈Ô〉 = 〈ψ| Ô |ψ〉, as the reader can immediately confirm by
evaluating the trace (2.16) using a set of orthonormal basis states that contains the
state |ψ〉 of the system.

11For simplicity, we shall consider here the case of a finite-dimensional Hilbert
space. The generalization to the case of infinitely many dimensions is rather
straightforward (see, for example, [58]).
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|ψ1〉preparation “1”

preparation “2” |ψ2〉

“up”

“down”spin
measurement

Fig. 2.3. Example for a probabilistic state-preparation procedure. Depending on
the outcome of a spin measurement on a spin- 1

2
particle, the device prepares a

given system in either the quantum state |ψ1〉 or the quantum state |ψ2〉. The
observer, ignorant of the particular outcome of the spin measurement, will assign
equal (and classical!) probabilities to the states |ψ1〉 and |ψ2〉. To express this
subjective ignorance, she will describe the prepared system by the mixed-state
density matrix ρ̂ = 1

2
|ψ1〉〈ψ1| + 1

2
|ψ2〉〈ψ2|.

(such a measurement could be implemented, for example, using the Stern–
Gerlach device described in Sect. 2.2.2). Then, depending on the outcome
of this measurement, the device prepares (completely deterministically!) the
system of interest in either the state |ψ1〉 or the state |ψ2〉. However, the
observer does not inquire about the outcome of the spin measurement. She
will therefore only know that either |ψ1〉 or |ψ2〉 has been prepared but not
which of these two states. Of course, this is a somewhat artificial example,
because the probabilistic character of the preparation procedure is here intro-
duced deliberately. But it is easy to imagine other, more realistic situations
in which the probabilistic element is inherent to the physical device used
for state preparation. For example, the device may be imperfect and thus
produce a range of possible pure states.

Regardless of the physical origin of the probabilistic element, the mixed
state, i.e., the resulting set of possible pure states |ψi〉 with associated prob-
abilities pi, represents a classical ensemble. By this we mean to convey the
notion that the origin of the probabilities is purely classical. These prob-
abilities simply express the subjective ignorance of the observer about the
quantum state of the system, while physically the system has indeed been
prepared in a pure and thus completely known state (albeit not known to
the observer). In principle, we could always completely follow or backtrack
every step of the state-preparation procedure to determine which of the pure
states |ψi〉 has been produced in each run of the procedure. The probabil-
ities pi simply express our practical decision not to inquire into the finer
details of the preparation procedure, but there is nothing fundamental about
these probabilities. Therefore they simply correspond to a “coarse-graining”
approach as in classical statistical mechanics, where we cannot in practice
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(but could in principle) follow, say, the deterministic path of each individual
molecule in a gas.

How would the observer describe the statistics of measurements performed
on a system described by a mixed state? Clearly, since she is no longer able
to assign a pure quantum state |ψ〉 to the system, she cannot compute ex-
pectation values of observables Ô via the usual rules 〈Ô〉 = 〈ψ| Ô |ψ〉 or
〈Ô〉 = Tr (ρ̂Ô) [see (2.17)] with a pure-state density matrix ρ̂ = |ψ〉〈ψ|. How-
ever, these rules are easily generalized by combining the classical probability
concept (arising from the ignorance of the observer about the prepared pure
state of the system) with the intrinsic quantum-mechanical probabilities (aris-
ing from the probabilistic “collapse” of the quantum state into an eigenstate
of the measured observable). The intuitive idea consists of simply weighting
the expectation values 〈ψi| Ô |ψi〉 for each of the possible pure states |ψi〉
contained in the mixed state by their respective classical probabilities pi of
the |ψi〉 and sum the results over the entire ensemble, i.e.,

〈Ô〉 =
∑
i

pi 〈ψi| Ô |ψi〉 . (2.19)

This expression still contains two separate statistical elements, namely, the
classical probabilities pi as well as the quantum expectation values 〈ψi| Ô |ψi〉
for each of the pure states |ψi〉. It turns out we can introduce a mixed-state
density matrix that encapsulates both of these parts and thus completely
encodes all statistical properties of the system. This density matrix is given
by

ρ̂ =
∑
i

pi|ψi〉〈ψi|, (2.20)

with pi ≥ 0 and
∑
i pi = 1. We can view this density matrix as a classical

probability distribution of pure-state density matrices ρ̂i = |ψi〉〈ψi|.
Since the classical probability concept is already built into the mixed-

state density matrix (2.20), expectation values of observables Ô can now be
computed in exactly the same way as for pure states by using the trace rule
(2.17), i.e.,

〈Ô〉 = Tr (ρ̂Ô). (2.21)

As it should be, this is equivalent to the method (2.19) of computing the
expectation values in the pure component states |ψi〉 and weighting them by
the mixed-state probabilities pi.

Just as the pure-state density matrix, the mixed-state density matrix also
obeys the normalization condition (2.18),

Tr ρ̂ = 1. (2.22)

This follows directly from the normalization (2.18) of each constituent pure-
state density matrix ρ̂i = |ψi〉〈ψi| and the fact that

∑
i pi = 1,
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Tr ρ̂ =
∑
i

piTr (|ψi〉〈ψi|)
(2.18)
=

∑
i

pi = 1. (2.23)

As discussed in Sect. 2.3, entanglement between two subsystems corresponds
to the inability of writing the composite pure state |Ψ〉 as a tensor product
|Ψ〉 = |ψ〉1 |φ〉2 of pure subsystem states |ψ〉1 and |φ〉2. We may now restate
this situation equivalently in the language of density matrices. The two sub-
systems are entangled with each other if the composite system is described by
a (pure-state or mixed-state) density matrix ρ̂ that cannot be written in the
tensor-product form ρ̂ = ρ̂1 ⊗ ρ̂2, where ρ̂1 and ρ̂2 are density matrices per-
taining to the two subsystems. This criterion follows directly from the above
definition of entanglement in terms of state vectors. Thus, whenever the total
density matrix factorizes into subsystem density matrices, ρ̂ = ρ̂1 ⊗ ρ̂2 ⊗ · · · ,
there exist no quantum correlations between these subsystems.

Finally, at the risk of overstating an important point, we emphasize that
a mixed state must be clearly distinguished from a pure-state superposition
of the form

|ψ〉 =
∑
i

√
pi |ψi〉 . (2.24)

As discussed in Sect. 2.2.1, here all component states |ψi〉 are simultaneously
present, which can (at least in principle) always be experimentally verified.
There is no a priori probabilistic element contained in this superposition:
|ψ〉 is a pure state and therefore encapsulates maximum knowledge about
the system. The density matrix corresponding to the superposition (2.24) is

ρ̂ = |ψ〉〈ψ| =
∑
ij

√
pipj |ψi〉〈ψj |

=
∑
i

pi|ψi〉〈ψi|+
∑
i�=j

√
pipj |ψi〉〈ψj |. (2.25)

The presence of the off-diagonal terms i �= j (that represent interference be-
tween different states |ψi〉) clearly distinguishes this pure-state density matrix
from the mixed-state density matrix (2.20).

2.4.3 Quantifying the Degree of “Mixedness”

Since a pure-state density matrix ρ̂ = |ψ〉〈ψ| is simply the projection operator
onto the pure state |ψ〉, it immediately follows that

ρ̂2 = ρ̂. (2.26)

This projection-operator property ρ̂2 = ρ̂ in fact constitutes a necessary and
sufficient condition for the system to be in a pure state, as we can see from
the following argument. Suppose the system is not in a pure state but is
instead described by the mixed-state density matrix (2.20), with at least two
non-zero probabilities pi. For this density matrix, we obtain
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ρ̂2 =
∑
ij

pipj |ψi〉〈ψj |〈ψi|ψj〉. (2.27)

First, in general 〈ψi|ψj〉 �= 0 for i �= j, but even if 〈ψi|ψj〉 = 0 for i �= j, we
nonetheless end up with

ρ̂2 =
∑
i

p2
i |ψi〉〈ψi|. (2.28)

This expression differs from ρ̂, see (2.20), since the value of each pi is less
than one. Thus, if we are given some arbitrary density matrix ρ̂, we can easily
determine whether the system is in a pure state by simply checking whether
(2.26) holds, i.e., whether ρ̂2 = ρ̂.

We can go one step further and define measures that not only tell us
whether a given density matrix is pure, but also quantify the degree of
“mixedness” of this density matrix in the following sense. Consider again
the mixed-state density matrix as in (2.20),

ρ̂ =
∑
i

pi|ψi〉〈ψi|. (2.29)

As we know by now, the case of a pure-state density matrix corresponds to
all pi being equal to zero except for one, say p1 = 1. That is, there is no
“ignorance” about the state of the system in this situation. Suppose now we
decrease the magnitude of p1. The normalization condition for probabilities,∑
i pi = 1, tells us that now at least one other pi �= p1 must attain a non-

zero value, say, p2 > 0. Now there is a degree of “ignorance” present, as
we do not know with certainty in which of the pure states |ψ1〉 and |ψ2〉
the system has been prepared. Nonetheless, if, for example, p1 = 90% and
p2 = 10%, we can still be reasonably confident that the state |ψ1〉 has indeed
been prepared. Accordingly, the degree of “mixedness” is low. The opposite
extreme of the pure state is attained if the density matrix is proportional
to the identity operator, which corresponds to an equal-weight ensemble of
mutually orthogonal pure states which form a basis of the Hilbert space of the
system. In this case the density matrix contains no information whatsoever
about which pure state has been prepared and therefore expresses a maximum
degree of ignorance (“mixedness”).

Let us now introduce two measures that quantify the degree of mixedness
in a more general way. A simple and commonly used measure is the so-called
purity of the density matrix, defined as

ς ≡ Tr (ρ̂2). (2.30)

Why is this a sensible measure? If ρ̂ represents a pure-state density matrix, it
follows from (2.18) and (2.26) that ς = 1. On the other hand, assuming that
the states {|ψi〉} form an orthonormal basis of the N -dimensional Hilbert
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space of the system, the mixed-state density matrix (2.20) has purity [see
(2.28)]

ς =
N∑
i=1

p2
i . (2.31)

The sum is bounded from below by the value 1/N , which is attained precisely
if the density matrix is maximally mixed, i.e., if pi = 1/N for all i = 1, . . . , N .

Another commonly used measure for quantifying the (im)purity of the
density matrix is the so-called von Neumann entropy. This measure was
first introduced in 1927 by the mathematician John von Neumann [59], who
subsequently developed it further in his monumental book on quantum me-
chanics [60] (see also [61] for some interesting historical remarks). The von
Neumann entropy can be viewed as a generalization of the notion of entropy
in classical statistical mechanics to the case of quantum-mechanical density
operators. It is given by

S(ρ̂) ≡ −Tr (ρ̂ log2 ρ̂) ≡ −
∑
i

λi log2 λi, (2.32)

where the λi denote the eigenvalues of the density matrix ρ̂. By convention,
the case λi = 0 is handled by defining 0 log2(0) ≡ 0, such that states absent
from a mixture do not enter into the value of the entropy (as it should be).

Let us now again determine some explicit values for this measure. If ρ̂ is
pure, then all λi = 0 except for one (which must therefore take on a value of
one), and thus S(ρ̂) = 0. Thus a pure state is characterized by a value of zero
of the von Neumann entropy. On the other hand, for a maximally mixed state
that corresponds to complete ignorance about which of the mutually exclusive
(and thus orthogonal) pure states |ψi〉, i = 1, . . . , N , has been prepared, we
have λi = pi = 1/N and thus

S(ρ̂) = log2(N), (2.33)

which is the maximum value that S(ρ̂) can take. For the intermediate case of
non-maximally mixed states, the value is correspondingly lower. For example,
if the preparation device prepares only a subset of orthogonal states |ψi〉,
i = 1, . . . ,M < N , with equal probabilities, we obtain S(ρ̂) = log2(M).
These values show that the definition of the von Neumann entropy matches
our intuition about entropy in the classical (i.e., thermodynamic) setting,
where entropy is a measure of the amount of information—or, conversely, of
ignorance—about the state of the system, typically quantified by the number
of different possible states available to the system.

2.4.4 The Basis Ambiguity of Mixed-State Density Matrices

In Sect. 2.4.2 above we discussed how the notion of a mixed state is based on
a classical probability concept. Accordingly, one also says that a mixed-state
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density matrix (2.20) represents an ignorance-interpretable (proper) mixture
of pure states [47–49],12 in order to express the fact that a mixed-state density
matrix of the form (2.20) can, to some extent, be interpreted as a classical
probability distribution of pure quantum states |ψi〉. However, this is only
true if we actually know that the system has indeed been prepared in one
of the states |ψi〉, but we simply do not possess more specific information
about which of these states has been prepared. On the other hand, if we are
simply confronted with the density matrix (2.20) but are given no further
information (e.g., about the preparation procedure), we cannot infer that the
system actually is in one of the states |ψi〉. This is so because any nonpure
density matrix can be written in many different ways, which shows that
any partition into a particular ensemble of quantum states is arbitrary. In
other words, the mixed-state density matrix alone does not suffice to uniquely
reconstruct a classical probability distribution of pure states.

To illustrate this fact, let us consider the mixed-state density matrix

ρ̂ =
1
2
|0z〉〈0z|+

1
2
|1z〉〈1z|. (2.34)

We would use such a density matrix to describe a system that has been pre-
pared in either one of the eigenstates |0z〉 and |1z〉 of the Pauli spin operator
σ̂z (with equal likelihoods), but we simply do not know in which and must
therefore resort to a description in terms of a classical probability distribution
of these states.

On the other hand, the states |0z〉 and |1z〉 can also be rewritten in terms
of the eigenstates |0x〉 and |1x〉 of the Pauli spin operator σ̂x for spin along
along the x axis,

|0z〉 =
1√
2

(|0x〉+ |1x〉) ,

|1z〉 =
1√
2

(|0x〉 − |1x〉) .
(2.35)

Using these expressions, the density matrix (2.34) can be equivalently written
as

ρ̂ =
1
2
|0x〉〈0x|+

1
2
|1x〉〈1x|. (2.36)

In fact, ρ̂ can be rewritten in this form in infinitely many ways in terms of spin
eigenstates along any axis. Therefore, unless we know the physical axis along
which the spin state of the system has been prepared, the density matrix alone
provides us only with information about the probabilities of different sets of
pure states (here these sets would be represented by {|0z〉 , |1z〉}, {|0x〉 , |1x〉},
etc.), but not about which particular set of states has been prepared.

12This classification will become important when introducing reduced density
matrices (see Sect. 2.4.6), which will turn out to be not ignorance-interpretable.



2.4 The Concept and Interpretation of Density Matrices 43

2.4.5 Mixed-State Density Matrices Versus Physical Ensembles

An important remark is in order here. A mixed-state density matrix of the
form (2.20), ρ̂ =

∑
i pi|ψi〉〈ψi|, is also often used to describe a physical en-

semble of identical systems Sk, k = 1 . . . N (that is, a collection of “copies” of
a particular system of interest), each of which is prepared, in a deterministic
manner, in one of the pure states |ψi〉, i = 1, . . . ,M ≤ N . The quantity pi
now denotes the fraction of systems that have been prepared in the state |ψi〉.
This “ensemble” approach is frequently found in textbooks when motivating
the introduction of the density-matrix concept (see, e.g., [58]).

However, there is an important distinction to be made between (physical)
ensembles and (statistical) mixtures. In the case of ensembles, there is no
insufficiency of information whatsoever that would justify the description by
a mixed-state density matrix (unless, of course, each individual system is not
prepared in a pure state). Instead, the ensemble of all individual systems Sk
must rather be described by a Hilbert space H that is the tensor product of
the N constituent state-spaces Hk of each system Sk,

H =
N⊗
k=1

Hk. (2.37)

Similarly, the total system S is described by a pure (tensor) product state
|Ψ〉 of the individual states |ψk〉 ∈ {|ψi〉},

|Ψ〉 =

⎛
⎝
Np1∏
j=1

|ψ1〉

⎞
⎠
⎛
⎝
Np2∏
j=1

|ψ2〉

⎞
⎠ · · ·

⎛
⎝
NpM∏
j=1

|ψM 〉

⎞
⎠ . (2.38)

The corresponding N -system pure density matrix ρ̂ = |Ψ〉〈Ψ | is therefore
manifestly different from the expression (2.20) for the mixed-state density
matrix that describes a probability distribution of single-system pure states
|ψi〉.

Only in the limited and purely statistical sense of an ensemble average can
the description of ensembles of physical systems by a single-system mixed-
state density matrix be justified. This is the case if we restrict ourselves to
measurements on single systems in the ensemble and consider the average
statistics for the entire ensemble. Specifically, if we measure a single-system
observable Ô on every member in the ensemble described by the N -system
pure state (2.38) and average the results over the ensemble, we obtain

〈Ô〉 =
1
N

M∑
i=1

Npi 〈ψi| Ô |ψi〉 , (2.39)

where we have for simplicity assumed that the |ψi〉 form an orthonormal set of
basis states for each individual system. If we instead compute the expectation
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value of Ô for the mixed state ρ̂ [see (2.20)] by using the trace rule, we get
the same result,

〈Ô〉 =
M∑
i=1

piTr(ρ̂Ô) =
M∑
i=1

pi 〈ψi| Ô |ψi〉 . (2.40)

Thus, for single-system observables, in the ensemble average (and only in
this average!) the statistics generated by the pure-state density matrix corre-
sponding to the N -system pure state |Ψ〉 will be identical to those obtained
from the single-system mixed-state density matrix (2.20). By contrast, the
proper pure-state N -system description (2.38) of the ensemble allows one to
compute the statistics for any arbitrary observable of the ensemble of systems
and for each individual system.

2.4.6 Reduced Density Matrices

Reduced density matrices play an important role in the formal description
of decoherence and date back to the early years of quantum mechanics [60,
62, 63] (see also [64] for some interesting remarks). The basic motivation
underlying the concept of reduced density matrices is the description of a
quantum system A that is quantum-correlated (i.e., entangled) with another
system B. In this case, the quantum state of the total combined system AB
may well be pure (and therefore in principle be completely known). However,
suppose that the observer only has access to the first system A, i.e., she can
perform measurements only onA but not on B. Everything that can be known
about the state of the composite system must therefore be derived from such
local measurements on A only, which will yield the possible measurement
outcomes for this system and their probability distribution. The key question
is then: What is the suitable mathematical object in the quantum-mechanical
formalism that contains, exhaustively and correctly, all information (i.e., all
measurement statistics) that can be extracted by the observer of system A?

It turns out that this object is the reduced density matrix given by

ρ̂A ≡ TrB ρ̂. (2.41)

Here the subscript “B” means that the trace is to be performed using an or-
thonormal basis of the Hilbert space HB of B only. Accordingly, the operation
“TrB” is also referred to as the partial trace over B and may be interpreted
as an “averaging” over the degrees of freedom of the unobserved system B
(this interpretation will become more clear later). Equation (2.41) therefore
implies that the measurement statistics for all observables pertaining only to
system A are completely contained in the reduced density matrix ρ̂A obtained
by “tracing out” the degrees of freedom of B (which is quantum-correlated
with A).
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Relevance to Decoherence

Before deriving (2.41), let us first discuss the importance of the concept of
reduced density matrices for the description of decoherence. Recall that de-
coherence arises from interactions between two systems, namely, the “system
of interest” and its environment. Typically, such interactions will then lead to
an entangled state for the system–environment combination. Usually, the ob-
server will perform measurements only on the system of interest, whereas the
environment is typically either inaccessible, cannot be completely measured,
or is simply of no interest. As an example, we may consider the environment
of photons scattering off an object. In practice, it will usually be impossible
to intercept all of these scattered photons, and thus the observer will only be
able to measure observables that pertain to the system and a fraction of the
environmental photons.

This is where the reduced density matrix comes into play. By tracing
over (all, or a fraction of) the degrees of freedom of the environment of the
system–environment density matrix, we obtain a complete and exhaustive
description of the measurement statistics for our system of interest in terms
of the reduced density matrix of the system. All influences of the environ-
ment on local measurements performed on the system will automatically be
encapsulated in this reduced density matrix. Since the system is entangled
with its environment, no individual quantum state can be attributed to the
system itself. Therefore, the reduced density matrix is all we have available to
describe the statistics of measurements on the system,13 and this reduced den-
sity matrix is necessarily nonpure due to the presence of system–environment
entanglement.

Derivation of the Reduced Density Matrix

Let us now derive the expression (2.41) for the reduced density matrix. To
do so, let us consider an entangled state of two systems A and B of the form

|Ψ〉 =
1√
2

(|a1〉 |b1〉+ |a2〉 |b2〉) , (2.42)

where |ai〉 and |bi〉, i = 1, 2, are arbitrary normalized (but not necessarily
orthogonal) states of A and B, respectively. From (2.11), the corresponding
pure-state density matrix is

ρ̂ = |Ψ〉〈Ψ | = 1
2

2∑
ij=1

|ai〉〈aj | ⊗ |bi〉〈bj |. (2.43)

13The so-called “envariance” program, recently developed by Zurek [16, 65–67]
and outlined in Sect. 8.2.2, uses symmetries of entangled states to provide a frame-
work that allows one to discuss (given a set of assumptions) the state of, and mea-
surements on, a system entangled with another system without the use of reduced
density matrices (and thus without presuming the Born rule).
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Also, let {|ψk〉} and {|φl〉} be orthonormal bases of the Hilbert spaces HA
and HB of A and B.

Let us now consider observables acting on system A only, which can be
written as Ô = ÔA ⊗ ÎB, where ÎB is the identity operator in the Hilbert
space of B. Following our question posed earlier, we would like to investigate
whether there exists a mathematical object which is more simple than the
bipartite density matrix (2.43) but that will nonetheless allow us to compute
the expectation values of all such A-observables.

As we know, the expectation value 〈Ô〉 of any observable can be computed
using the standard trace rule (2.17), 〈Ô〉 = Tr (ρ̂Ô). Since now Ô = ÔA⊗ ÎB,
the part of the trace operation pertaining to system B can immediately be
carried out. Explicitly, we then obtain

〈Ô〉 = Tr (ρ̂Ô)

=
∑
kl

〈φl| 〈ψk| ρ̂
(
ÔA ⊗ ÎB

)
|ψk〉 |φl〉

=
∑
k

〈ψk|
(∑
l=1

〈φl| ρ̂ |φl〉
)

ÔA |ψk〉

=
∑
k

〈ψk| (TrB ρ̂) ÔA |ψk〉

≡
∑
k

〈ψk| ρ̂AÔA |ψk〉

= TrA
(
ρ̂AÔA

)
, (2.44)

where ρ̂A is precisely the reduced density matrix introduced in (2.41).
The concept of reduced density matrices can be generalized from bipartite

entangled states to any pure state |ψ〉 describing entanglement between N
subsystems. Consider an observable Ô that pertains only to system i,

Ô = Î1 ⊗ Î2 ⊗ · · · ⊗ Îi−1 ⊗ Ôi ⊗ Îi+1 ⊗ · · · ⊗ ÎN . (2.45)

The measurement statistics of Ô generated by applying the trace rule will
then be identical regardless of whether we use the pure-state density matrix
ρ̂ = |Ψ〉〈Ψ | of the composite system containing all N subsystems, or the
reduced density matrix

ρ̂i = Tr1,...,i−1,i+1,...,N (ρ̂) (2.46)

of the ith subsystem (obtained by tracing over all subsystems except for the
ith subsystem). This is so because it is easy to show that

〈Ô〉 = Tr(ρ̂Ô) = Tri(ρ̂iÔi). (2.47)
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Local Measurability of Interference and Distinguishability

For our bipartite state (2.42), we can easily evaluate ρ̂A [see (2.44)] from
the expression (2.43) for the full density matrix ρ̂. Expanding the states |bi〉,
i = 1, 2, of B in terms of the set {|φl〉} of orthonormal basis vectors of HB,

|bi〉 =
∑
l

c
(i)
l |φl〉 , (2.48)

we obtain

ρ̂A = TrA

⎛
⎝1

2

2∑
ij=1

|ai〉〈aj | ⊗ |bi〉〈bj |

⎞
⎠

=
1
2

2∑
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|ai〉〈aj |
∑
k

〈φk|
(∑

ll′
c
(i)
l

(
c
(j)
l′

)∗
|φl〉〈φl′ |

)
|φk〉

=
1
2

2∑
ij=1

|ai〉〈aj |
∑
k

c
(i)
k

(
c
(j)
k

)∗

=
1
2

2∑
ij=1

|ai〉〈aj |〈bj |bi〉

=
1
2

(|a1〉〈a1|+ |a2〉〈a2|+ |a1〉〈a2|〈b2|b1〉+ |a2〉〈a1|〈b1|b2〉) . (2.49)

This result can be easily generalized to the case in which the composite system
AB is not described by the two-component state (2.42) but instead by the
more general N -component state |Ψ〉 = 1√

N

∑N
n=1 |an〉 |bn〉 with N > 2. Then

the resulting reduced density matrix takes the form

ρ̂A =
1
N

N∑
ij=1

|ai〉〈aj |〈bj |bi〉. (2.50)

We see from (2.49) that the influence of the system B on the measurement
statistics is now effectively subsumed in the overlap 〈b2|b1〉 = 〈b1|b2〉∗ of
the B-states |b1〉 and |b2〉 that multiplies the off-diagonal terms |a1〉〈a2| and
|a2〉〈a1| in the reduced density matrix. As we have mentioned in Sect. 2.4.2,
these off-diagonal terms correspond to interference between the states |a1〉
and |a2〉.

Thus we obtain a very important result: The amount of overlap of the rel-
ative states |b1〉 and |b2〉 of B that are one-to-one correlated with the states
|a1〉 and |a2〉 of A [see (2.42)] quantifies the degree of interference in the
{|a1〉 , |a2〉} basis that can be measured on A. This immediately connects
with our earlier observation in Sect. 2.3.2. There, we had introduced an in-
tuitive notion of the degree of entanglement present in a bipartite pure state
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by referring to the amount of information encoded in one subsystem about
the corresponding (relative) states of the other subsystem. We had related
this measure to the distinguishability of the relevant states of one of the
subsystems, quantified by the mutual overlap of these states. We thus see
the intimate connection between the degree of entanglement, the amount of
distinguishability, and the extent to which interference can be observed by
performing measurements on only one of the subsystems.

For example, in the limiting case of vanishing overlap (and thus perfect
distinguishability) of the states |b1〉 and |b2〉, the reduced density matrix
(2.49) becomes diagonal in the {|a1〉 , |a2〉} basis,

ρ̂A =
1
2

(|a1〉〈a1|+ |a2〉〈a2|) . (2.51)

Since the off-diagonal (interference) terms |a1〉〈a2| and |a2〉〈a1| are now ab-
sent, there is no local observable Ô = ÔA⊗ ÎB that would allow us to measure
interference between the states |a1〉 and |a2〉.

Reduced Density Matrices Versus Ensembles

An important remark is in order here. Evidently, the reduced density matrix
(2.51) is formally identical to the density matrix that would be obtained if
system A were described by a proper mixture. Recall that such a proper
mixture would correspond to a situation in which the system is in either one
of the two pure states |a1〉 and |a2〉 with equal probabilities, as opposed to
the global entangled superposition (2.42) in which both components |a1〉 and
|a2〉 are present (which could, at least in principle, always be confirmed by
suitable interference experiments; see Sect. 2.2.1).

The formal identity between the reduced density matrix (2.51) (arising
from a tracing-out of the degrees of freedom of system B that is entangled
with system A) and a mixed-state density matrix implies that a measure-
ment of an observable that only pertains to system A cannot discriminate
between the two cases, pure vs. mixed state.14 However, it is of crucial im-
portance to understand that this formal identity must not be interpreted as
implying that the state of the system can be viewed as mixed too (see also
the discussions by d’Espagnat [47–49]). In general, density matrices are only
a calculational tool for computing the probability distribution of a set of
possible outcomes of measurements, but they do not specify the state of the
system. Since the two systems A and B are entangled and the total compos-
ite system is still described by the superposition (2.42), it follows from the

14One can show (see, e.g., pp. 208–210 of [68]) that this inability to operationally
discern mixed from pure states is in fact not just a consequence of the restriction
to local measurements, but also holds for any observable of the composite system
that factorizes into the form Ô = ÔA ⊗ ÔB, where ÔA and ÔB do not commute
with the projection operators |ai〉〈ai| and |bi〉〈bi|, i = 1, 2, in the Hilbert spaces of
A and B, respectively.
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standard rules of quantum mechanics that no individual definite state can
be attributed to either one of the subsystems. Reduced density matrices of
entangled subsystems therefore represent improper mixtures [47–49].

The fact that the reduced density matrix may be formally similar to a
mixed-state density matrix thus cannot be used to argue that somehow, mag-
ically, a definite subsystem state—i.e., |a1〉 or |a2〉 with equal probabilities,
as it would appear from the reduced density matrix (2.51)—has been ob-
tained from the global entangled superposition state (2.42) by means of the
(physical) interaction with system B and the (formal) trace operation. This
observation will turn out to be important when discussing the implications of
decoherence for the quantum measurement problem (see the next Sect. 2.5).
We will also come back to this issue in Chap. 8 (see especially Sect. 8.1).

2.5 The Measurement Problem
and the Quantum-to-Classical Transition

In this section, we shall describe the (in)famous measurement problem of
quantum mechanics that we have already referred to in several places in the
text. The choice of the term “measurement problem” has purely historical
reasons: Certain foundational issues associated with the measurement prob-
lem were first illustrated in the context of a quantum-mechanical description
of a measuring apparatus interacting with a system.

However, one may regard the term “measurement problem” as implying
too a narrow scope, chiefly for the following two reasons. First, as we shall see
below, the measurement problem is composed of three distinct issues, so it
would make sense to rather speak of measurement problems. Second, quantum
measurement and the arising foundational problems are but a special case
of the more general problem of the quantum-to-classical transition, i.e., the
question of how effectively classical systems and properties around us emerge
from the underlying quantum domain.

On the one hand, then, the problem of the quantum-to-classical transition
has a much broader scope than the issue of quantum measurement in the
literal sense. On the other hand, however, many interactions between physical
systems can be viewed as measurement-like interactions. For example, light
scattering off an object carries away information about the position of the
object, and it is in this sense that we thus may view these incident photons as
a “measuring device.” Such ubiquitous measurement-like interactions lie at
the heart of the explanation of the quantum-to-classical transition by means
of decoherence. Measurement, in the more general sense, thus retains its
paramount importance also in the broader context of the quantum-to-classical
transition, which in turn motivates us not to abandon the term “measurement
problem” altogether in favor of the more general “problem of the quantum-
to-classical transition.”
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As indicated above, the measurement problem (and the problem of the
quantum-to-classical transition) is composed of three parts, all of which we
shall describe in more detail in the following:

1. The problem of the preferred basis (Sect. 2.5.2). What singles out the
preferred physical quantities in nature—e.g., why are physical systems
usually observed to be in definite positions rather than in superpositions
of positions?

2. The problem of the nonobservability of interference (Sect. 2.5.3). Why
is it so difficult to observe quantum interference effects, especially on
macroscopic scales?

3. The problem of outcomes (Sect. 2.5.4). Why do measurements have out-
comes at all, and what selects a particular outcome among the different
possibilities described by the quantum probability distribution?

Familiarity with these problems will turn out to be important for a proper
understanding of the scope, achievements, and implications of decoherence.
To anticipate, it is fair to conclude that decoherence has essentially resolved
the first two problems. Since these problems and their resolution can be
formulated in purely operational terms within the standard formalism of
quantum mechanics, the role played by decoherence in addressing these two
issues is rather undisputed.

By contrast, the success of decoherence in tackling the third issue—the
problem of outcomes—remains a matter of debate, in particular, because this
issue is almost inextricably linked to the choice of a specific interpretation of
quantum mechanics (which mostly boils down to a matter of personal prefer-
ence). In fact, most of the overly optimistic or pessimistic statements about
the ability of decoherence to solve “the” measurement problem can be traced
back to a misunderstanding of the scope that a standard quantum effect
such as decoherence may have in resolving the more interpretive problem of
outcomes.

2.5.1 The Von Neumann Scheme for Ideal Quantum Measurement

Starting from two separate (nonentangled) systems, how can an entangled
composite state come about? How is it possible that the two subsystems
lose their individuality to become a quantum-mechanical whole? Quantum
entanglement can be viewed as arising from the kinematical concept of the
superposition principle combined with the dynamical feature of the linearity
of the Schrödinger time evolution. The resulting process is often represented
in terms of a von Neumann measurement, a scheme devised by von Neumann
during the early years of quantum mechanics and discussed in his seminal
book of 1932 [60].

Von Neumann’s goal was to describe the act of quantum measurement
in entirely quantum-mechanical terms as the physical interaction between
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the measured system and the measuring apparatus, treating not only the
system but also the apparatus (and, ultimately, the observer; see Sect. 9.2)
as quantum-mechanical objects. It is worth noting that this approach rep-
resented a radical departure from the Copenhagen interpretation that had
postulated the existence of intrinsically classical measurement apparatuses
which were regarded as not subject to the laws of quantum mechanics (see
Sect. 8.1).

Despite its name, the scope of the von Neumann measurement scheme
goes far beyond the context of quantum measurement in the actual sense. In
fact, the von Neumann scheme is the easiest way to understand how quan-
tum entanglement arises. It also illustrates nicely the aforementioned three
components of the measurement problem, namely, the problem of the pre-
ferred basis, the nonobservability of interference effects, and the problem of
outcomes. Finally, it will allow us to introduce the basic formalism of deco-
herence, by regarding decoherence as a consequence of a von Neumann–type
measurement interaction between the system and its environment.

After these introductory remarks, let us now formulate the von Neumann
measurement scheme. Its typical ingredients are a (typically microscopic)
system S, described by a Hilbert space HS with basis vectors {|si〉}, and a
(usually macroscopic) measuring apparatus A, formally represented by basis
vectors {|ai〉} in a Hilbert space HA. Strictly speaking, whether the system
and the apparatus are microscopic or macroscopic has no bearing on the
following general argument. However, it typically reasonable, from a physical
point of view, to associate microscopicity with the system, since we would
like to ensure that the system can be easily prepared in a superposition
state. On the other hand, the physical realization of a measuring apparatus
typically involves a macroscopic system with a large number of degrees of
freedom, and from our experience we would expect such an apparatus to
behave according to the laws of classical physics (although the von Neumann
scheme deliberately treats the apparatus in quantum-mechanical terms).

The purpose of the apparatus is now to measure the state of the system
S. We can think of the apparatus as having some kind of pointer that moves
to the position “i,” represented by the state |ai〉, if the system is measured
to be in the state |si〉 (see Fig. 2.4). Assuming that, before the measurement
takes place, the apparatus starts out in some initial “ready” state |ar〉, the
dynamical measurement interaction between the system and the apparatus
will then be of the form

|si〉 |ar〉 −→ |si〉 |ai〉 (2.52)

for all i. Here the initial and final states reside in the tensor-product Hilbert
space HS⊗HA describing the total SA system. We see that the measurement
has established a one-to-one correspondence between the state of the system
and the state of the apparatus: The latter perfectly mirrors the former. Also
note that, in writing the right-hand side of (2.52), we have tacitly assumed
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|si〉

i

|ai〉

system

apparatus

“ready”

Fig. 2.4. Von Neumann scheme for ideal quantum measurement. Both system and
apparatus are treated as quantum systems. The system–apparatus interaction is
such that the system’s being in state |si〉 causes the apparatus pointer to move from
the initial “ready” position on the dial to position “i,” represented by a quantum
state |ai〉 of the apparatus.

that the measurement interaction does not change the state of the system.
Because of these assumptions, the measurement scheme (2.52) is often called
ideal. Such measurements which do not disturb the state of the system are
also known as quantum nondemolition measurements [69].

Now we come to the key point. Thus far, the interaction (2.52) has not
led to any entanglement: The final system–apparatus state is still separable.
However, let us consider what happens if the system starts out in a superpo-
sition of the basis states |si〉,

|ψ〉 =
∑
i

ci |si〉 . (2.53)

In this case, the linearity of the Schrödinger equation implies that the system–
apparatus combination SA will evolve according to

|ψ〉 |ar〉 =

(∑
i

ci |si〉
)
|ar〉 −→ |Ψ〉 =

∑
i

ci |si〉 |ai〉 . (2.54)

This evolution represents the (ideal) von Neumann quantum-measurement
scheme.

Inspection of the right-hand side of (2.54) shows that the final state of the
system–apparatus combination is in general described by an entangled state,
i.e., we can no longer attribute an individual state vector to the system or the
apparatus. Entanglement has thus been created dynamically. The superposi-
tion initially present only in the system has been amplified to the level of the
(typically macroscopic) apparatus, in the sense that the final superposition
involves both the system and the apparatus.

The crucial difficulty is now that it is not at all obvious how one is to
regard the dynamical evolution described by (2.54) as representing measure-
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ment in the usual sense. This is so because the final state on the right-hand
side of (2.54) is, for at least two reasons to be discussed in the following,
not sufficient to directly conclude that the measurement has actually been
completed. To emphasize this fact, the scheme (2.54) is frequently referred
to as premeasurement.

2.5.2 The Problem of the Preferred Basis

The first problem is that there exists a basis ambiguity regarding the expan-
sion of the final composite state on the right-hand side of (2.54). We can
express this state in many different ways, implying that in the von Neumann
scheme stated above the observable that was supposedly measured is not
uniquely defined by this final state. In fact, given any set of states describing
our system S, there exists a corresponding set of apparatus states such that
the final composite state takes the form (2.54),

|ψ〉 |ar〉 −→ |Ψ〉 =
∑
i

ci |si〉 |ai〉 =
∑
i

c′i |s′i〉 |a′i〉 = . . . . (2.55)

However, this freedom in the choice of the basis is in practice to some degree
limited by two constraints. First of all, we will typically require the states
|ai〉 of the apparatus to be mutually orthogonal. This ensures that these
states correspond to classically distinct outcomes of the measurement, such
that the possible states |si〉 of the system can be reliably distinguished. Sec-
ond, for an arbitrary choice of the set of apparatus states |ai〉, the relative
states |si〉 for the system may fail to be mutually orthogonal. In this case
the system observables corresponding to the states |si〉 (i.e., the observables
with eigenstates |si〉) will not be Hermitian, which is usually an undesired
property.15

In view of these arguments, we may therefore require the apparatus states
|ai〉 to be mutually orthogonal, i.e., 〈ai|aj〉 = 0 for i �= j. In this case, it
follows from the so-called Schmidt theorem (see Sect. 2.15.1 below) that the
decomposition

|Ψ〉 =
∑
i

ci |si〉 |ai〉 , (2.56)

with ci real and
∑

c2i = 1, is unique, provided all the coefficients ci are
different from one another.

Let us consider a simple example showing that the decomposition (2.56)
is in general not unique if this condition on the coefficients does not hold.

15However, non-Hermitian observables are not a priori forbidden and arise in
certain experimental settings. For instance, in quantum optics one often performs
measurements that have coherent states as their outcomes. Coherent states, how-
ever, form an overcomplete set of states and can therefore not be represented by
Hermitian observables. See also the discussion by Zurek in [16].
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Suppose both the system S and the apparatus A are quantum-mechanical
two-state systems represented by spin- 1

2 particles, described by basis states
|0z〉 and |1z〉. Suppose further that the states |0z〉A and |1z〉A of A act as
“pointers” for the spin states |0z〉S and |1z〉S of S. That is, the von Neumann
interaction (2.52) is here described by the dynamics

|0z〉S |“ready”〉A −→ |0z〉S |0z〉A ,

|1z〉S |“ready”〉A −→ |1z〉S |1z〉A .
(2.57)

Assuming the system S starts out in the superposition (|0z〉S + |1z〉S) /
√

2,
it follows from (2.57) and the linearity of the Schrödinger equation [see also
(2.54)] that the final composite entangled spin–apparatus state will be

|Ψ〉 =
1√
2

(|0z〉S |0z〉A + |1z〉S |1z〉A) . (2.58)

Let us now use (2.35) to rewrite the z-spin states |0z〉i and |1z〉i, i = S,A,
in terms of the eigenstates |0x〉i and |1x〉i of the Pauli spin operator σ̂x.
Expressed in the new basis {|0x〉i , |1x〉i}, the state (2.58) reads

|Ψ〉 =
1√
2

(|0x〉S |0x〉A + |1x〉S |1x〉A) . (2.59)

Recall that we regarded A as a measuring device for the spin of the system S.
Equations (2.58) and (2.59) then imply that the apparatus A has formed one-
to-one correlations with both the z-spin and x-spin states of S. If we interpret,
in the spirit of the von Neumann scheme (i.e., without the assumption of
any subsequent wave-function collapse), this formation of system–apparatus
correlations as a complete measurement, this state of affairs seems to imply
the following. Once A has measured the spin of S along the z axis [see the
final state (2.58)], A may be considered as having measured also the spin of
S along the x axis, where the latter “measurement” is represented by the
equivalent form (2.59) of (2.58).

Thus our device A would appear to have simultaneously measured two
noncommuting observables of the system, namely, σ̂x and σ̂z, in apparent
contradiction with the laws of quantum mechanics. What is more, it is easy
to show that the state (2.58) can in fact be rewritten in infinitely many
equivalent ways using the spin-1

2 basis along any arbitrary axis. Thus it would
appear that, once our apparatus A has “measured” the spin of S along the z
axis—in the von Neumann sense of the formation of correlations of the type
(2.58)—it has also “measured” spin along any other spatial direction.

Such a situation of simultaneous measurement of a set of noncommuting
observables is not only forbidden by quantum mechanics, but also contradicts
our experience that measuring devices seem to be designed to measure only
very particular quantities. In our example, the apparatus A may be realized
in form of a Stern–Gerlach device (see Sect. 2.2.2), with the states |0z〉A
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and |1z〉A corresponding to the two separated paths through the apparatus
(with the magnetic field aligned along the z axis) that distinguish the spin
states |0z〉S and |1z〉S of the system S. This Stern–Gerlach apparatus is
therefore set up to measure spin only along the z axis, but not along any
other axis. Performing a measurement along an axis different from z would
require a physical rotation of the magnetic field and would thus correspond
to a physically different setup.

The existence of such a “preferred observable” (or of a “preferred basis”)
is thus not explained by the final system–apparatus state arrived at through
a von Neumann measurement. As we have seen, the form of this state will in
general not uniquely fix the observable of the system that is recorded by the
apparatus via the formation of quantum correlations. This problem of the pre-
ferred basis was first cleanly separated out from the problem of wave-function
collapse and the intimately related problem of outcomes (see Sect. 2.5.4 be-
low) by Zurek [8], who emphasized the distinct and important role played by
the preferred-basis problem in any account of quantum measurement. Before
the problem of outcomes may play any role, we ought to solve this preferred-
basis problem, since it does not make sense to even inquire about specific
outcomes if the set of possible outcomes is not clearly defined.

Zurek also recognized [8, 9] that the preferred-basis problem plays a key
role in the problem of the quantum-to-classical transition, well beyond the
narrow context of quantum measurement. Here, we encounter the core ques-
tion of why we perceive systems, especially macroscopic ones, in only a tiny
subset of the physical quantities in principle allowed by the superposition
principle. Most notably, for example, macroscopic systems are always found in
definite spatial positions but not in superpositions thereof. What singles out
position as the preferred quantity? As first suggested by Zeh [4] and spelled
out in detail by Zurek [8, 9], to answer these questions and to overcome the
preferred-basis problem one must consider the system and the apparatus as
open quantum systems, i.e., as interacting with their environment. We will
discuss this approach in detail in Sect. 2.8.

2.5.3 The Problem of the Nonobservability of Interference

In many experiments, we can observe interference patterns indicative of the
presence of quantum superpositions of component states in a particular basis
(see Sect. 2.2.2). However, as we go to larger scales, such interference patterns
are typically observed to vanish. For example, if we carry out the double-slit
experiment with microscopic particles such as electrons, interference fringes
appear on the distant detecting screen (see Fig. 6.6 in Chap. 6). However, as
we perform the experiment with atoms or molecules, the interference pattern
usually disappears rapidly.

In traditional textbook accounts, this inability to observe interference
patterns for mesoscopic and macroscopic objects in the double-slit experi-
ment has typically been explained by an analogy with classical light-wave
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interference. In the latter setting, it is well known from basic optics that the
separation between the diffracting slits must be on the order of the wave-
length of the light in order for an interference pattern to be observed. The
analogous argument is then applied to the quantum case of the double-slit
experiment with matter. Since the (de Broglie) wavelength of particles such
as atoms is extremely short, it is simply impossible in practice to manufacture
slits whose width and spacing would be of similar magnitude as the wave-
length of the particles. In other words, in this picture our inability to observe
interference patterns for massive particles would be rooted in the insufficient
“resolution” of the experimental device, preventing us from unlocking the
quantum nature of the particles.

However, this is only one part of the story. For example, it is possible to
observe spatial interference patterns for mesoscopic molecules in experimental
setups that are similar in spirit to the double-slit experiment but circumvent
the obstacle of having to manufacture microscopic slits (see Sect. 6.2 for
details on these experiments). Yet, when certain experimental parameters
unrelated to the diffraction process are changed (for instance, the density of
air surrounding the diffracted molecules), the interference pattern is observed
to decay. Thus, although the diffraction stage of the experiment clearly allows
for the creation of the spatial superposition (which could then be observed
in form of an interference pattern), there are other factors that prevent us
from observing the pattern. This clearly indicates that our difficulties in
“seeing interferences” cannot solely be due to the problem of generating the
superposition in the first place.

Furthermore, there exist many interference experiments involving various
physical systems that do not at all fall into the category of diffraction exper-
iments with matter. For instance, as already briefly mentioned earlier, there
are experiments that allow us to generate superpositions of electrical currents
flowing in opposite directions, which would lead to a temporal interference
pattern in form of a current oscillating back and forth between the two di-
rections (such experiments will be described in more detail in Sect. 6.3). Yet,
despite the fact that the experimental conditions allow for the generation
of the superposition state, observation of interference often fails or at least
requires extremely refined experimental conditions. Clearly, this problem can
no longer be described by the simple analogy between the diffraction of clas-
sical light waves and quantum “probability waves.”

A forteriori, from the final state (2.54) of the von Neumann measurement
scheme it follows that superpositions involving macroscopic measurement de-
vices should be ubiquitous in nature. Why, then, do we not seem to observe
interferences between different pointer positions of the apparatus in the ev-
eryday world around us? Why is it so difficult to observe any interference
effects in the mesoscopic and macroscopic regime, although the von Neumann
scheme clearly suggests that superpositions should be easily amplified from
the microlevel to the macrolevel?



2.5 The Measurement Problem and the Quantum-to-Classical Transition 57

This, in essence, constitutes the problem of the nonobservability of in-
terference. Shortly, we will see how decoherence provides a very elegant and
general answer to this problem, by explaining the observed decay of inter-
ference patterns (or the complete inability to experimentally observe such
patterns in the first place) as a result of interactions with environmental
degrees of freedom.

2.5.4 The Problem of Outcomes

Our experience tells us that every measurement results in a definitive value of
the measured quantity. In fact, the very definition of terms such as “outcome,”
“value,” “quantity,” etc., inherently relies on this definiteness. On the other
hand, the final state (2.54) obtained via the von Neumann scheme represents
a superposition of system–apparatus states. From our discussion in Sect. 2.2.1
we know that such a superposition is fundamentally different from a classical
ensemble of states, i.e., from a situation in which the system–apparatus com-
bination actually is in only one of the component states |si〉 |ai〉 but we simply
do not know in which (see also the analysis in Sect. 2.4.2 above). Therefore,
unless we supply some additional physical process (say, some collapse mech-
anism) or provide a suitable interpretation of such a superposition, it is not
clear how to account, given the final composite state, for the definite pointer
positions that are observed as the result of an actual measurement.

This problem can be further broken down into two distinct aspects. First,
we are faced with the question of why we do not perceive the pointer of
the apparatus in a superposition of different pointer positions |ai〉 at the
conclusion of the measurement (whatever it would actually mean to observe
such a superposition), i.e., why measurements seem to have outcomes at all.
And second, we may ask what “selects” a specific outcome. That is, why do
we observe, in each run of the experiment that realizes the measurement,
a particular pointer position i (and thus a particular pointer state |ai〉), as
opposed to one of the other possible states |aj �=i〉? We shall refer to both
issues jointly as the problem of outcomes.

The problem of outcomes directly underlies the Schrödinger-cat paradox
described in Chap. 1. Recall that the first part of the paradox is concerned
with the fact that quantum mechanics seems to predict that the final com-
posite atom–cat state is described by a superposition of classically mutually
exclusive states (for simplicity, we shall here refrain from explicitly including
the hammer and the poison in our discussion). This part can be understood
as simply arising from a von Neumann–type measurement-like interaction
between the atom and the cat. Here the atom corresponds to the micro-
scopic system S, while the cat represents the macroscopic apparatus (in the
sense that its vitality is an indicator—a “pointer”—of the state of the atom).
Following (2.52), the “measurement” scheme therefore reads
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|“atom not decayed”〉 |cr〉 −→ |“atom not decayed”〉 |“cat alive”〉 , (2.60a)
|“atom decayed”〉 |cr〉 −→ |“atom decayed”〉 |“cat dead”〉 . (2.60b)

Here |cr〉 denotes the initial state of the cat. Now, according to quantum
mechanics, an unstable atom is at all times described by a superposition of
the decayed state and the undecayed state of the atom,

|ψ〉 = α |“atom not decayed”〉+ β |“atom decayed”〉 , (2.61)

where α and β are time-dependent coefficients with |α|2 + |β|2 = 1. Just as
in the general von Neumann scheme (2.54), the fact that the Schrödinger
equation is linear implies that the final composite atom–cat system is then
described by an entangled state of the form

|ψ〉 |cr〉 −→ α |“atom not decayed”〉 |“cat alive”〉
+ β |“atom decayed”〉 |“cat dead”〉 . (2.62)

No individual quantum state can now be attributed to the cat, and it would
thus appear that “the cat is neither alive nor dead,” as the situation described
by the final state on the right-hand side of (2.62) is often interpreted.16 Note,
though, that it is not the cat itself that is described by a superposition of the
states “alive” and “dead.” Rather, it is the composite atom–cat state that is
represented by a superposition of atom–cat states (again, we have omitted
the hammer and the poison from the picture).

As explained in Chap. 1, the second part of the Schrödinger-cat paradox
refers to the fact that the superposition (2.62) persists until, at least according
to the standard interpretation of quantum mechanics (see Sect. 8.1), the box
is opened and its contents are directly observed (leading to the postulated
“collapse of the wave function”). This poses the question of how and why
the fate of the cat could possibly be left to the intervention (von Neumann’s
“erster Eingriff”) of an external observer. Of course, this is in essence nothing
else than the problem of outcomes: How can we account for the observer’s
experience of a definite state of the cat (i.e., of a cat that is either alive or
dead) given the superposition state (2.62)?

Remedying the problem of outcomes, i.e., solving the apparent conflict be-
tween the paramount and experimentally confirmed role of the superposition
principle and the observation of single definite outcomes in measurements,
has been one of the core motivations behind any interpretation of quantum
mechanics. The standard (or “orthodox”) interpretation of quantum mechan-
ics (see Sect. 8.1 for details) prescribes that an observable corresponding to
a physical quantity has a definite value if and only if the system is in an
eigenstate of this observable. On the other hand, if the system is described
by a superposition of such eigenstates, it is considered meaningless to speak

16Indeed, it is difficult to properly put such a state of affairs into words, as it is
simply not part of our experience.
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of the (physical) state of the system as having any definite value of the ob-
servable at all. This rule of orthodox quantum mechanics is often referred to
as the eigenvalue–eigenstate link (sometimes also called, more to the point,
the value–eigenstate link).

However, the eigenvalue–eigenstate link is not necessitated by the struc-
ture of quantum mechanics or by any empirical constraints [68]. Furthermore,
the concept of an “exact” eigenvalue–eigenstate link leads to difficulties of
its own. For instance, outcomes of measurements are typically registered by
pointers localized in position space. But these pointers are never perfectly
localized, i.e., they cannot be described by exact eigenstates of the position
operator, since such eigenstates are unphysical (they correspond to an infi-
nite spread in momentum and therefore to an infinite amount of energy to
be contained in the system). Therefore the states corresponding to different
pointer positions cannot be exactly mutually orthogonal.

The concept of classical “values” that can be ascribed through the
eigenvalue–eigenstate link based on observables and the existence of exact
eigenstates of these observables has therefore frequently been either weakened
or altogether abandoned. Either the quantum formalism and the concept of
measurement have then been reinterpreted in certain ways, or actual mod-
ifications of quantum mechanics itself have been introduced. In the former
category, relative-state and modal interpretations aim to interpret the final
composite system–apparatus state arising in the von Neumann scheme (2.54)
in such a way as to explain the existence, or at least the subjective percep-
tion, of outcomes in spite of the fact that the quantum state has the form
of a superposition. In the latter category, physical collapse models (already
briefly mentioned in Sect. 2.2.3) postulate the existence of some fundamental
mechanism in nature that breaks the unitarity of the Schrödinger evolution
and leads to an “objective” reduction of the wave function onto one of its
components. These various interpretations and their relation to decoherence
will be discussed in more detail in Chap. 8.

Generally, the problem of outcomes is rooted in the question of what ac-
tualizes a particular result in a probabilistic theory. In classical probabilistic
theories, answering this question does not, at least in principle, pose any
difficulties. Here, the notion of probability is simply a consequence of a con-
venient coarse-graining procedure that may simplify the treatment of certain
problems. At the fundamental level of the physical system, however, the par-
ticular outcome is completely specified by the underlying, deterministic laws
of physics (however complicated they may look in practice for, say, a sys-
tem composed of billions of atoms). Thus, in principle, we could always rid
classical physics of any probabilistic aspect.

By contrast, as we have discussed in detail in Sect. 2.1, quantum mechan-
ics appears to possess an intrinsically probabilistic character. Pure quantum
states already represent a complete description of the (physical) state of the
system, and their evolution is given by the deterministic Schrödinger equa-
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tion. Yet, there exists no fundamental mechanism that would determine which
particular outcome is realized in each measurement instance. Therefore, the
problem of outcomes is fundamental to quantum mechanics itself. Accord-
ingly, the best hope we can have for decoherence to help us solve this problem
is by explaining why only one of the possible outcomes is actually observed
in a measurement (rather than a superposition of outcomes). However, the
question of why a particular outcome appears to the observer rather than
another one of the possible outcomes, none of which is formally singled out
in any way in the final von Neumann state (2.54), pertains to fundamental
issues in the interpretation of quantum mechanics outside of the scope of
decoherence. We will come back to this topic in Chap. 8.

2.6 Which-Path Information
and Environmental Monitoring

Having laid out the key elements of the formalism and interpretation of
quantum mechanics relevant to decoherence—namely, quantum states, the
superposition principle, entanglement, density matrices, and the measure-
ment problem—we are now in an excellent position to finally approach our
actual subject of interest, namely, decoherence. We shall go about this task
by first revisiting the well-known double-slit experiment, which will provide
us with a very intuitive and accessible illustration of the basic mechanism of
decoherence.

2.6.1 The Double-Slit Experiment, Which-Path Information,
and Complementarity

Let us have a look back at Fig. 2.2, where we sketched the usual double-slit
setup. Particles (such as electrons) approaching from the left are incident on
a screen with two slits. After passage through the slits, they hit a distant de-
tector screen, leaving a permanent spot. As predicted by quantum mechanics
and confirmed by experiment, there exist two different limiting regimes (see
also our discussion in Sect. 2.2.2):

1. The “wave” scenario (illustrated on the right of Fig. 2.2). If we refrain
from measuring through which slit each particle has passed, the parti-
cle density observed at the level of the detecting screen corresponds to
an interference pattern given by �(x) = 1

2 |ψ1(x) + ψ2(x)|2, i.e., by the
probability density corresponding to a quantum-mechanical superposition
of the partial waves ψ1(x) and ψ2(x) representing passage through slit 1
and 2, respectively.

2. The “particle” scenario (shown in the center of Fig. 2.2). If we place a
detector at one of the slits to find out whether the particle has passed
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through this slit, the interference pattern disappears. Now the den-
sity pattern on the distant screen is simply equal to a classical addi-
tion of the pattern created by all particles that have traversed slit 1
(that is, the pattern that would be obtained if slit 2 was covered) and
the pattern created by all particles that have passed through slit 2:
�(x) = 1

2 |ψ1(x)|2 + 1
2 |ψ2(x)|2.

The standard explanation of the second case (the “particle” scenario) goes
as follows. According to quantum mechanics, the state of the particle at the
level of the slits is given by the superposition Ψ(x) = (ψ1(x) + ψ2(x)) /

√
2 of

the partial waves ψ1(x) and ψ2(x). This superposition is spatially spread out
over the region encompassing the two slits. If we now measure the position
of the particle at one of the slits and indeed find the particle to be present
at this slit, we localize Ψ(x) to the corresponding spatial region. That is,
since ψ1(x) and ψ2(x) have negligible overlap at the level of the slits, we
may say that, using the standard collapse postulate of quantum mechanics,
the measurement has collapsed the superposition Ψ(x) onto either one of the
component states ψ1(x) or ψ2(x). Thus we can no longer obtain interference
between these partial waves, and hence the interference pattern on the distant
screen disappears.

In other words, whenever we try to obtain which-path (“Welcher-Weg”)
information about the particle in order to see which of the two slits the parti-
cle has traversed—i.e., whenever we attempt to make sense of the quantum-
mechanical superposition of the two paths that would seem to describe a
counterintuitive simultaneous passage through both slits—it seems that we
cannot help but destroy the ability of the particle to exhibit the quantum
property of (spatial) interference. Thus there exists, to use Niels Bohr’s fa-
mous term [70], a complementarity between which-path information (the
“particle” aspect”) and interference (the “wave” aspect). Depending on the
experimental setup (namely, depending on whether we measure the path of
the particle or not), we seem to observe either “particle-like” or “wave-like”
behavior. This so-called “wave–particle duality” has been considered a cor-
nerstone of quantum theory and has been the subject of countless discussions
among physicists and philosophers of physics alike.

The complementarity principle and its application was the subject of a
famous debate between Einstein and Bohr at the Fifth Solvay Conference in
Brussels in 1927 [71]. At the conference, Einstein had challenged Bohr with
the following thought experiment involving the standard double-slit setup.
He argued that, based on the law of momentum conservation, the passage
of the particle through the top (bottom) slit should result in a recoil of the
screen containing the slits in the upward (downward) direction. Suppose now
we could measure the direction of the recoil of the screen (see Fig. 2.5).
This measurement would allows us to infer, at least in principle, the path of
the particle, thus providing us with which-path information. Einstein argued
that, since the interference pattern is solely due to the interference between



62 2 The Basic Formalism and Interpretation of Decoherence

Fig. 2.5. Einstein’s thought experiment for obtaining which-path information in
the double-slit experiment. Particles leaving the collimating slit on the left pass
through a double slit (center) and are registered on the detection screen on the
right. The passage of the particle through the slit transfers momentum to the slit,
which should in principle be measurable as a recoil of the screen containing the
slits. While the bottom slit is kept fixed, the upper slit is suspended by springs.
A particle passing through the upper slit would therefore induce a tiny oscillatory
motion of the suspended slit that could (at least in principle) be detected, which
would allow us to infer which slit the particle has traversed. The illustration is
based on original drawings of Bohr [72] and is reproduced from [73] by permission
from Macmillan Publishers Ltd: Nature, copyright 2001.

the two wave packets emerging from the slits, the determination of the di-
rection of the recoil at the stage of the screen cannot have any effect on the
subsequent evolution, and thus an interference pattern should be observable,
in apparent contradiction with Bohr’s principle of complementarity.

Bohr countered the challenge in the following way. The recoil imparted
on the slits by an individual particle will typically be extremely small. To
resolve this tiny change in momentum, we must know the initial momen-
tum of the screen containing the slits within a range at least as small as
the to-be-detected recoil. According to the uncertainty principle, measuring
the momentum of the screen with such high accuracy implies a large uncer-
tainty in the position of the screen. Bohr then showed that already due to
the measurement of the initial momentum of the screen (before the incident
particle even reaches the slits), the resulting indeterminacy of the position
of the screen translates into a range of possible positions of the interference
fringes on the detecting screen that would be on the order of the characteris-
tic spacing between these fringes. Thus, if we average the interference pattern
over this range of positions, the pattern is “washed out”: The position of a
maximum in the pattern for one of the possible positions coincides with the
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position of a minimum in the pattern for another position of the screen, and
hence the net interference pattern disappears.

Bohr’s central claim is therefore that obtaining which-path information
implies an inevitable disturbance of the system, which is indeed true in the
Bohr–Einstein example of gaining which-path information from a measure-
ment of the recoil of the screen. However, as first shown by Wootters and
Zurek [74] and further investigated by Scully and Drühl [75], in certain sit-
uations it is also possible to gather which-path information in such a way
that there is no significant change in the spatial wave function of the parti-
cles, moderating the effect of the position–momentum uncertainty principle
pointed out by Bohr. This will be discussed in the next section.

2.6.2 The Description of the Double-Slit Experiment
in Terms of Entanglement

Thus far, the complementarity between obtaining which-path information
and observing an interference pattern has been introduced as a discontinuous
either–or distinction. However, we may now ask whether we could retain parts
of the interference pattern by gathering only some which-path information,
e.g., by performing an imprecise measurement of which slit the particle has
traversed [74].

It turns out that the answer to this question is in the affirmative. However,
to discuss and explain this feature of quantum mechanics, the description in
terms of a wave-function collapse (as used above) will no longer be suitable.
By postulate, the collapse is a discontinuous, irreversible process and there-
fore cannot account for smooth, reversible changes in the amount of which-
path information and the degree of interference. Instead, we shall pursue a
purely quantum-mechanical account in terms of the von Neumann measure-
ment scheme (Sect. 2.5.1) and entanglement. This description will then also
become the basis for our description of the process of decoherence, where the
environment will assume the role of the which-path detector. The connection
between the observability of interference in the double-slit experiment and
entanglement was first discussed by Wootters and Zurek [74].

Let us denote the quantum states of the particle corresponding to pas-
sage through slit 1 and 2 by |ψ1〉 and |ψ2〉, respectively. As before, we place a
detector at each of the two slits, with both detectors initially in the “ready”
state. We can prepare our particle in, say, the state |ψ1〉 by covering slit 2,
and by placing the particle source directly behind slit 1 such that the parti-
cle will be guaranteed to pass through this slit. Consequently, the detector
associated with slit 1 will trigger, while the detector at slit 2 will remain
in the untriggered “ready” state. In the following we shall refer to the two
individual detectors jointly as “the detector.” We denote the joint “ready”
state of the (composite) detector by |“ready”〉, and the quantum state of this
detector system after preparation of the state |ψ1〉 (as described above) by
|1〉, indicating the passage of the particle through slit 1. Thus, in this case,
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the evolution of the state of the composite particle–detector system will be
of the form

|ψ1〉 |“ready”〉 −→ |ψ1〉 |1〉 . (2.63)

Repeating the above argument with the role of the slits reversed yields the
evolution

|ψ2〉 |“ready”〉 −→ |ψ2〉 |2〉 . (2.64)

Equations (2.63) and (2.64) correspond to the general description (2.52) of a
measurement interaction.

Now, if both slits are open, the particle must be described by a superpo-
sition |ψ〉 = (|ψ1〉+ |ψ2〉) /

√
2 of the two components |ψ1〉 and |ψ2〉. Using

(2.63) and (2.64), we therefore obtain a dynamical evolution of the von Neu-
mann type (2.54), leading to an entangled composite particle–detector state,

1√
2

(|ψ1〉+ |ψ2〉) |“ready”〉 −→ 1√
2

(|ψ1〉 |1〉+ |ψ2〉 |2〉) . (2.65)

Once again, the detector states |1〉 and |2〉 act as “pointers” for the relative
states |ψ1〉 and |ψ2〉 of the system.

What can we now learn about the particle by performing a measurement
on it, for instance by letting it impinge on the detection screen, which cor-
responds to a measurement of position? As we know from Sect. 2.4.6, the
quantity of interest is now the reduced density matrix for the particle, which
for the pure state on the right-hand side of (2.65) is given by [see (2.49)]

ρ̂particle =
1
2
{|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ1〉〈ψ2|〈2|1〉+ |ψ2〉〈ψ1|〈1|2〉} . (2.66)

This density matrix corresponds to a particle density �(x) at the detecting
screen given by

�(x) ≡ ρparticle(x, x)
≡ 〈x| ρ̂particle |x〉

=
1
2
|ψ1(x)|2 +

1
2
|ψ2(x)|2 + Re {ψ1(x)ψ∗2(x)〈2|1〉} , (2.67)

where ψi(x) = 〈x|ψi〉, i = 1, 2. The last term describes the well-known inter-
ference pattern, and we see that the visibility of this interference pattern is
quantified by the overlap 〈2|1〉. This observation directly connects with our
previous discussion in Sect. 2.4.6.

In particular, the limiting case of perfect distinguishability of the detector
states |1〉 and |2〉, 〈2|1〉 = 0, corresponds to the “particle” regime,

�(x) =
1
2
|ψ1(x)|2 +

1
2
|ψ2(x)|2 . (2.68)

Conversely, if |1〉 and |2〉 are completely unable to resolve the path of the
particle, 〈2|1〉 = 1 (disregarding phase factors), the “wave” scenario of full
interference pattern applies,
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�(x) =
1
2
|ψ1(x)|2 +

1
2
|ψ2(x)|2 + Re {ψ1(x)ψ∗2(x)} . (2.69)

The situation in which the detector obtains some but not full which-path
information is formally represented by an overlap of the two detector states
|1〉 and |2〉 that is nonzero but less than one. From (2.66) we see that we will
then be able to observe an interference pattern, but the pattern will decay
progressively as the overlap 〈2|1〉 decreases (i.e., as the detector states |1〉
and |2〉 become more distinguishable) and thus the amount of which-path
information obtained by the detector increases.

Thus we have shown that it is indeed possible to simultaneously observe
an interference pattern and obtain some information about the path of the
particle through the slits, provided this information remains incomplete. As
soon as the information acquired by the detector is sufficient to enable us to
infer with certainty which path the particle has taken, the interference pattern
disappears. In their analysis of this fundamental trade-off between which-path
information and interference and thus of the intimate connection between
complementarity and entanglement, Wootters and Zurek [74] pointed out
that one can obtain a fairly large amount of which-path information while
retaining a visible interference pattern. Specifically, they showed that 90%
certainty about the which-path question still allows for roughly 50% contrast
of the interference pattern.

In summary, the degree to which an interference pattern can be observed is
simply determined by the available which-path information encoded in some
system entangled with the object of interest, and this amount can be changed
without necessarily influencing the spatial wave function of the object itself.
Thus complementarity can be regarded as a consequence of quantum entan-
glement.

2.6.3 The Environment as a Which-Path Monitor

Let us consider this book. It is immersed into a large environment of air
molecules, light and thermal photons, even cosmic neutrinos and radioactive
background radiation. In every second, a huge number of these particles will
collide with and scatter off the book. Each of these collisions will deflect the
particle to some extent, depending on the position and orientation of the
book. Let us look at a particular air molecule. It starts from some initial
position with a certain velocity, scatters off the book, and then flies away
along a trajectory deflected by a certain angle with respect to the incoming
path.

Suppose now the book was oriented at a different angle. Now the air
molecule would in general fly off along a different direction than in the first
case. Thus, these two distinct paths of the scattered molecule would allow
us to distinguish the existence of two different spatial orientations of the
book. In other words, the scattered particles—the air molecules—carry away
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information about the position and orientation of the scattering object, which
is here represented by the book. Using our now-familiar terminology, they
therefore encode which-path information about the system. We remark that
the term “which-path information” should here (as in the remainder of the
text) be understood in the more general sense of “which-state information.”
The former term is historically motivated by the example of the double-slit
experiment in which the information of interest concerns the path of the
particle through the slits. Nonetheless, we shall often use the well-established
term “which-path information” even in cases where the relevant information
does not actually pertain to the trajectory of a particle.

A single air molecule colliding with the book may not carry away much
information about the orientation of the book. After all, the scattering takes
place only in a tiny region compared to the size of the book. However, as men-
tioned above, there are millions of such molecules scattering off the surface of
the book in any given moment. The which-path (or, maybe more appropri-
ately, “which-orientation”) information encoded in all these molecules taken
together will certainly be completely sufficient to distinguish two different
positions and orientations of the book, even if they are very similar.

Let us express our argument schematically in terms of the quantum for-
malism. Suppose we focus on all N particles that will scatter off the book
in the span of one second. Let us represent the quantum state of all N en-
vironmental particles before the collision by |E0〉. After the collision, each
particle will fly off along a certain trajectory with some velocity. For another
orientation of the book, the particle may scatter into a slightly different di-
rection. Now suppose all N particles have scattered off the book. Depending
on the orientation of the book, we denote the post-scattering state of the
environment by |E1〉 and |E2〉, respectively.

Following our above argument, these two states are clearly distinguish-
able, since the information contained in these two states is sufficient to dis-
criminate between the two orientations of the book. Therefore the overlap
between |E1〉 and |E2〉 will be negligibly small.17 We clearly see the connec-
tion with the which-path formalism introduced in the previous Sect. 2.6.2:
The environmental states |E1〉 and |E2〉 simply correspond to the states of a
which-path (or, in this case, which-orientation) detector.

The crucial point is that these environmental which-path detectors are
present everywhere in nature. Every object interacts with its environment,
which in turn will obtain information about certain physical properties of the
system. We may be able to shield our book from air molecules to some extent
by placing it in a good vacuum, we may block out visible photons (light), we

17We can think of |E1〉 and |E2〉 as products of states pertaining to each indi-
vidual molecule, |E1〉 =

∏N
i=1 |e1〉i and |E2〉 =

∏N
i=1 |e2〉i. While the overlap of

each individual pair of molecular states will be close to one, (〈e1|e2〉)i ≈ 1, the
product states |E1〉 and |E2〉 of a large number N of these individual states will be
approximately orthogonal.
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may even try to reduce the influence of thermal photons by cooling the book.
Still, as we shall see in the next Chap. 3, particles from other sources remain
that will continue to “measure” the position of the system. This crucial role
of the environment as a ubiquitous “measuring device” which continuously
performs effective measurements (in the von Neumann sense) on the system
was first clearly recognized and discussed by Zurek in the early 1980s [8,76].

We emphasize that this monitoring process does not require a human ob-
server of any sort. The fact that the which-path information encoded in the
environment could in principle be read out is sufficient for the interference
pattern to disappear, i.e., for the particles to “lose their wave nature.” This
lends a more precise, observer-independent meaning to Heisenberg’s state-
ment (already quoted in Sect. 2.1.3) that “the particle trajectory is created
by our act of observing it” [42, p. 185]. This positivist attitude had resulted
in much criticism directed at the quantum theory, as famously represented by
Einstein’s rhetorical question (mentioned in Chap. 1) of whether “the moon
exists only when I look at it” [3].

We can now go through a formal argument analogous to that of Sect. 2.6.2.
Suppose the system is described by a coherent superposition of two quantum
states |ψ1〉 and |ψ2〉 representing localization around two different positions x1

and x2 (in the case of the double-slit experiment, the corresponding position-
space wave functions ψ1(x) and ψ2(x) would represent the partial waves at
the slits). Before the scattering of environmental particles takes place, the
combined system–environment state has the product form

|ψ〉 |E0〉 =
1√
2

(|ψ1〉+ |ψ2〉) |E0〉 . (2.70)

Following our above discussion, the system–environment interaction dynam-
ics are given by

|ψ1〉 |E0〉 −→ |ψ1〉 |E1〉 , (2.71a)
|ψ2〉 |E0〉 −→ |ψ2〉 |E2〉 . (2.71b)

That is, the state of the environment evolves into |E1〉 or |E2〉 depending
on the state of the system. Then the linearity of the Schrödinger equation
implies the usual von Neumann evolution

1√
2

(|ψ1〉+ |ψ2〉) |E0〉 −→
1√
2

(|ψ1〉 |E1〉+ |ψ2〉 |E2〉) . (2.72)

We see that the relative states |ψ1〉 and |ψ2〉 of the system have become
entangled with the environmental states |E1〉 and |E2〉 that encode which-
path information. The superposition initially confined to the system has now
spread to the larger, composite system–environment state. Correspondingly,
coherence between the components |ψ1〉 and |ψ2〉 is no longer a property of
the system alone: It has become a shared property of the global system–
environment state. One therefore often says that coherence has been “delo-
calized into the larger system” [77, p. 5], which now includes the environment.
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The dynamical system–environment evolution described by (2.72) is the basic
formal representation of the decoherence process, and we shall now discuss
its consequences.

2.7 Decoherence and the Local Damping of Interference

The reduced density matrix ρ̂particle of the system for the state (2.72) is given
by [see (2.49) and (2.66)]

ρ̂particle =
1
2
{|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ1〉〈ψ2|〈E2|E1〉+ |ψ2〉〈ψ1|〈E1|E2〉} .

(2.73)
As usual, the last two terms correspond to interference between the com-
ponent states |ψ1〉 and |ψ2〉. Provided the environment has indeed recorded
sufficient which-path information (which will certainly be the case for our
above example of air molecules scattering off a macroscopic object over a
period of one second), the final environmental states |E1〉 and |E2〉 will be
approximately orthogonal, 〈E2|E1〉 ≈ 0. Then interferences in the reduced
density matrix (2.73) will become suppressed,

ρ̂particle ≈
1
2
{|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|} . (2.74)

Only measurements that include both the system and the environment could
possibly reveal the persistent coherence between the components in the su-
perposition state (2.72). However, in practice, it is impossible to include in
our observation all the many environmental degrees of freedom that have
interacted with the system. Joos and Zeh [7, p. 224] poignantly summarized
this state of affairs as “the interference terms still exist, but they are not
there.” That is, the interference terms remain present at the global level of
the system–environment superposition (2.72) but have become unobservable
at the local level of the system as described by the reduced density matrix
(2.74). Of course, typically some of the environmental degrees of freedom will
be part of our observation. For example, we will directly intercept a certain
fraction of the light scattered off the system.18 We can then simply regard
these environmental degrees of freedom as part of the system. However, the
important point is that there still remains a comparably large number of
other environmental degrees of freedom that will not be observed directly.

Because of this very large number of environmental degrees of freedom
interacting with the system and our inability to directly manipulate them,
the creation of system–environment entanglement described by (2.72) is vir-
tually impossible to undo in practice. Thus the environment-induced loss of

18In fact, this is how in practice observers will usually gather information about
the system (see Sect. 2.9).
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local phase coherence, i.e., of the well-defined phase relations between the
components in the superposition necessary for the observation of interference
effects, is usually irreversible for all practical purposes. (The case of—truly
or effectively—reversible decoherence will be discussed in Sect. 2.13.)

This practically irreversible delocalization of phase relations into the com-
posite system–environment state induced by inevitable and ubiquitous envi-
ronmental monitoring constitutes precisely the process of decoherence. (The
environment-induced selection of a preferred basis can be viewed as a conse-
quence of this decoherence process and will be discussed in Sect. 2.8 below.)
It leads to effectively nonunitary dynamics for the local system that may
manifest themselves (for example) in the decay of interference patterns [see
(2.74)]. The environment, composed of many subsystems, acts as an ampli-
fying, higher-order measuring device for the state of the system (note that
the very definition of measurement hinges on the property of irreversibility).

Environmental monitoring and the resulting decoherence processes there-
fore provide a solution to the problem of the nonobservability of interference
discussed in Sect. 2.5.3. As we have discussed, to observe interference ef-
fects between components of a superposition state, these components must
have not been measured, i.e., which-state information must not be available.
But all physical systems encountered in nature are open quantum systems
that interact strongly with their surroundings. These surroundings continu-
ously acquire information about the system, leading to a constant “leakage”
of coherence from the system into the environment. In our example of the
scattering of environmental particles, the larger the system, the more par-
ticles will bounce off the surface per unit time and carry away which-path
information. Accordingly, mesoscopic and macroscopic objects described by
superpositions of wave packets that are well-separated in position space are
usually extremely prone to decoherence, which explains why such superposi-
tions and the corresponding spatial interference patterns are so exceedingly
difficult to observe in nature.

We reiterate our warning, spelled out in Sect. 2.4.6 (see p. 48), against a
misinterpretation of reduced density matrices as describing a proper mixture
of states. Although formally identical to a mixed-state density matrix, the
reduced density matrix (2.74) describes an only improper mixture. Therefore
we must not conclude from (2.74) that the system actually is in either of the
two states |ψ1〉 or |ψ2〉. After all, both of these components remain fully and
equally present in the composite quantum state (2.72). The purely unitary
interaction with the environment by itself simply cannot single out either one
of the components. This issue will be analyzed in more detail in Sect. 8.1.

Our above account of decoherence relied on a rather intuitive argument
about how the relative environmental states |E1〉 and |E2〉 become distin-
guishable such that the environment can act as a which-path detector for
the system. A large part of research on decoherence is devoted to a realistic
modeling of system–environment interactions in various physical situations of
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interest. This yields precise dynamical descriptions for the time evolution of
the environmental states and the resulting influence on the dynamics of the
reduced density matrix of the system. Typically, these models show that the
different environmental relative states |Ei(t)〉 (which are quantum-correlated
with the distinct system states |si〉 monitored by the environment) become
distinguishable on very short timescales as a result of the system–environment
interaction.

Specifically, as we shall see, for many system–environment models the
overlap of the different relative environmental states |Ei(t)〉 is found to follow
an exponential decay, i.e.,

〈Ei(t)|Ej(t)〉 ∝ e−t/τd (2.75)

for i �= j. Here and in the following we shall take t = 0 to correspond to the
time at which the interaction is “switched on” (for times t < 0 the system
and environment are usually assumed to be completely uncorrelated). The
quantity τd denotes the characteristic decoherence timescale, which can be
evaluated numerically for particular choices of the parameters in each model.

Through (2.73), these decay characteristics (such as the functional form,
relevant timescales, etc.) for the overlap of the environmental states |Ei(t)〉
then translate directly into the characteristic time dependences and timescales
for the suppression of coherences between the superposition-state compo-
nents |si〉 of the system that are one-to-one correlated with the |Ei(t)〉 [see
(2.72)]. In order to quantitatively study the decoherence dynamics for a given
system–environment model, we must therefore evaluate the explicit form of
the |Ei(t)〉. We will study a first example in Sect. 2.10 below. More realistic
models will be treated later in the book.

In particular, Chap. 3 will be devoted to an explicit modeling of spatial
decoherence induced by the scattering of environmental particles such as air
molecules and photons. To anticipate, we will find that the overlap of the
relative environmental states decays as

〈Ex(t)|Ex′(t)〉 ∝ e−Λ|x−x
′|2t. (2.76)

Here |Ex(t)〉 denotes the relative state of the environment that is one-to-
one correlated with the state of the system that describes localization of the
system’s center of mass at position x. The constant Λ is determined by the
particular physical properties of the scattering process. We see that the over-
lap (2.76) decreases exponentially with time. Expression (2.76) is therefore
an example of the frequently encountered exponential-decay behavior (2.75).
Environmental particles continuously scatter off the object, steadily increas-
ing the amount of which-path information (namely, of information about the
position of the system) that becomes encoded in the environment.

We also observe from (2.76) that the characteristic decoherence timescale
τd [see (2.75)] is inversely proportional to the square of the coherent sepa-
ration |x− x′| between different (center-of-mass) positions x and x′ of the
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system. This result can be understood through the following intuitive ar-
gument (we will make the explanation much more rigorous in Chap. 3). If
the positions x and x′ are close together, the corresponding final relative
states of the scattered environmental particles can be expected to be very
similar, making it difficult for the environment to resolve the spatial dif-
ference between these two positions. Accordingly, a noticeable decay of the
overlap 〈Ex(t)|Ex′(t)〉 will require the accumulation of a large number of
scattering events, each of which encodes only highly incomplete which-path
information. Conversely, the more the center-of-mass positions x and x′ be-
come separated, the more easily the environment will be able to distinguish
between these two positions. In the limit where |x− x′| becomes sufficiently
large such that each individual scattering event completely resolves the dif-
ference between the two center-of-mass positions, the rate of the exponential
decay of the overlap 〈Ex(t)|Ex′(t)〉 becomes independent of the separation
|x− x′| and is simply proportional to the total scattering rate Γtot. In this
limit the expression (2.76) is replaced by

〈Ex(t)|Ex′(t)〉 ∝ e−Γtott. (2.77)

We will derive and discuss the expressions (2.76) and (2.77) in Chap. 3. Other
important decoherence models and their dynamics will be discussed in detail
in Chap. 5.

2.8 Environment-Induced Superselection

In the previous section, we showed how the system–environment interac-
tion leading to decoherence may be expressed in form of the standard von
Neumann measurement scheme [see (2.72)]. This, however, implies that the
preferred-basis problem discussed in the context of von Neumann measure-
ments (see Sect. 2.5.2) applies also here. That is, we may now ask: What
singles out the particular components (i.e., the states |ψ1〉 and |ψ2〉 in the
above example) as those between which interference is (locally) suppressed
through the interaction with the environment?

To answer this question, recall that in our example the interaction between
the system and environment is described by the evolution (2.71),

|ψ1〉 |E0〉 −→ |ψ1〉 |E1〉 , (2.78a)
|ψ2〉 |E0〉 −→ |ψ2〉 |E2〉 , (2.78b)

with 〈E1|E2〉 −→ 0. We motivated this form of the interaction by referring
to the fact that the states |ψ1〉 and |ψ2〉 correspond to sufficiently distinct
physical states of the system (such as different spatial positions and orien-
tations of a body), and that this difference is resolved by the environment
continuously monitoring the system.
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Let us now introduce the conjugate states |ψ±〉 of the system, defined as
even and odd superpositions of |ψ1〉 and |ψ2〉,

|ψ±〉 ≡
1√
2

(|ψ1〉 ± |ψ2〉) . (2.79)

Looking back at (2.70), we immediately see that ψ+(x) corresponds to the
previously considered initial (superposition) state of the system. Since |ψ1〉
and |ψ2〉 represent states localized in space, |ψ+〉 and |ψ−〉 correspond to
nonclassical delocalized states. Would the interaction (2.78) with the envi-
ronment also lead to the suppression of interference between the components
|ψ+〉 and |ψ−〉?

Recall that, in order for this suppression to happen, the interaction be-
tween the system and the environment must be such as to distinguish be-
tween the states |ψ+〉 and |ψ−〉. That is, the environment has to be able
to encode which-state information about |ψ+〉 and |ψ−〉. It is now easy to
see that the dynamics (2.78) do not accomplish this goal. The form of the
system–environment interaction implies the evolution

|ψ±〉 |E0〉 −→
1√
2

(|ψ1〉 |E1〉 ± |ψ2〉 |E2〉) . (2.80)

The system states |ψ1〉 and |ψ2〉 are by assumption distinct, 〈ψ1|ψ2〉 = 0.
Furthermore, following our above discussion, the final environmental states
|E1〉 and |E2〉 resolve the difference between these states, i.e., 〈E1|E2〉 −→ 0.
Hence the final composite state on the right-hand side of (2.80) is of the
nonseparable Bell type (2.7). A measurement performed on the environment
in the {|E1〉 , |E2〉} basis will reveal no information whatsoever about which
of the two states |ψ+〉 and |ψ−〉 has been prepared initially. This is so because
we will always obtain the outcomes |E1〉 and |E2〉 with equal probabilities,
regardless of whether the system started out in the state |ψ+〉 or the state
|ψ−〉. Moreover, we can rewrite the right-hand side of (2.80) in infinitely
equivalent many ways (see the discussion in Sect. 2.5.2) and still retain the
Bell-state structure (2.80),

1√
2

(|ψ1〉 |E1〉 ± |ψ2〉 |E2〉) =
1√
2

(|ψ′1〉 |E′1〉 ± |ψ′2〉 |E′2〉) = . . . , (2.81)

with 〈ψ′1|ψ′2〉 = 0 and 〈E′1|E′2〉 −→ 0. Accordingly, there exists no measure-
ment in any basis {|E′1〉 , |E′2〉} that could be performed on the environment
and would allow us to distinguish between the two states |ψ+〉 and |ψ−〉.

Hence the particular interaction (2.78) between the system and the envi-
ronment is completely insensitive to the difference between the states |ψ+〉
and |ψ−〉. No information is encoded in the environment as a result of this
interaction that would allow us to distinguish these two states by looking at
the environment. Thus the environment cannot bring about any suppression
of interference between |ψ+〉 and |ψ−〉.
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We can also understand this point more directly by considering a super-
position of the states |ψ+〉 and |ψ−〉,

|ψ〉 =
1√
2

(|ψ+〉+ |ψ−〉) . (2.82)

But from the definition (2.79) it is immediately obvious that this superposi-
tion is simply equal to the original localized state |ψ1〉. Thus it follows from
the dynamics (2.78) that the state (2.82) will not get entangled with the
environment at all,

|ψ〉 |E0〉
(2.78)−−−−→ |ψ〉 |E1〉 . (2.83)

Because of the absence of any environmental entanglement in (2.83), there
will be no local damping of interference between the components |ψ+〉 and
|ψ−〉.

We can generalize these observations to the main result of this section.
Some states of the system are more prone to decoherence than others, and
the sensitivity of a particular state is determined by the structure of the
system–environment interaction. The preferred states of the system emerge
dynamically as those states that are the least sensitive, or the most robust,
to the interaction with the environment, in the sense that they become least
entangled with the environment in the course of the evolution and are thus
most immune to decoherence. This is commonly referred to as the stability
criterion for the selection of preferred states, introduced and discussed by
Zurek in two seminal papers in the early 1980s [8, 9].

The resulting environmental dynamical selection of preferred states was
first studied and formalized in detail by Zurek [8, 9] under the heading of
environment-induced superselection (in the literature the abbreviation “ein-
selection” is also frequently used). The term “superselection” is chosen in
reference to so-called superselection rules frequently used in areas such as
elementary-particle physics [78–83] (see also Chap. 6 of [17]). Such (kine-
matical) superselection rules were historically postulated to a priori exclude
certain never-observed physical states, such as superpositions of a proton
and a neutron (which were thus considered forbidden by virtue of a “charge
superselection rule”).

Similarly, we may say that the interaction with the environment “super-
selects” the observable states of the system: Some states are robust in spite
of the environmental interaction, while other states are rapidly decohered
and become therefore unobservable in practice. However, in contrast with
the postulated “exact” superselection rules, environment-induced superselec-
tion represents effective superselection rules that dynamically emerge from
the (structure of the) system–environment interaction. Environment-induced
superselection may therefore be regarded as a more powerful concept than
that of postulated superselection rules, since it explains [4,8,9,83–85] why we
do not observe certain states, instead of simply precluding the existence of
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such states from the outset.19 Already early on, Zeh [4] had emphasized the
importance of dynamical stability conditions and suggested that the openness
of quantum systems may explain the “superselection” of preferred quantities
(such as charge, handedness of sugar molecules, parity of ammonia molecules,
etc.).

For the simple example of the system–environment interaction given by
(2.78), we immediately see that a system that starts out in either one of the
states |ψ1〉 and |ψ2〉 will not get entangled with the environment: The final
composite system–environment state will at all times remain in the separa-
ble product forms |ψ1〉 |E1〉 and |ψ2〉 |E2〉, respectively. Thus the environment
can be regarded as carrying out a quantum nondemolition measurement on
the system, i.e., a measurement that does not disturb the state of the system
(see also Sect. 2.5.1). In the case of the scattering of environmental parti-
cles discussed above, |ψ1〉 and |ψ2〉 represent spatially well-localized states,
and accordingly the environment-superselected preferred observable is the
position of the system. Conversely, if the system is described by the superpo-
sition (2.70) of |ψ1〉 and |ψ2〉, it will become maximally entangled with the
environment, leading to decoherence in the {|ψ1〉 , |ψ2〉} basis. The system
observable corresponding to the measurement of a superposition of positions
would therefore be “difficult” to measure, in the sense that the spatial in-
terference terms in the reduced matrix corresponding to a measurement of
this observable decay rapidly due to the interaction with the environment.
Broadly speaking, the fragility of such spatial superpositions thus means that
they are hard to observe in practice. As originally shown by Zurek [8, 9, 12]
and Joos and Zeh [7], this provides us with a powerful explanation for why
most physical systems are usually found in well-defined positions rather than
in delocalized superposition states (see Sect. 2.8.4).

Zurek also coined the term pointer states [8] for the preferred states se-
lected by the stability criterion. This terminology is motivated by the idea
that, because of their robustness, the environment-superselected preferred
states correspond to the physical quantities that are most easily “read off”
at the level of the system, analogous to the reading-off of a pointer on the dial
of a measurement apparatus. Since robustness is a hallmark of states in clas-
sical physics (see Sect. 2.1), pointer states can be viewed as a “stand-in” for
such classical states (one thus says that pointer states represent quasiclassical
states). In the following, we shall use the terms “environment-superselected
states,” “preferred states,” and “(preferred) pointer states” interchangeably
for the states selected by the interaction with the environment in the sense
of the stability criterion.

In some cases the environment-superselected states form a basis for the
Hilbert space of the system, i.e., decoherence leads to the emergence of a

19However, it should be noted that the “exact” superselection rules can often be
well motivated from symmetry and other arguments and are therefore not simply
introduced via arbitrary ad hoc postulates.
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pointer basis for the system. This situation is encountered, for example, in the
context of systems effectively described by a discrete two-dimensional state
space. On the other hand, there are important cases of interest in which the
environment-superselected states form an overcomplete set of states. That
is, the pointer states are not necessarily mutually orthogonal and therefore
do not represent proper basis states for the Hilbert space of the system.
An important example that will be discussed in more detail in Sect. 5.2 is
the environment-induced superselection of a continuum of coherent states in
phase space, i.e., of minimum-uncertainty Gaussian wave packets well local-
ized in both position and momentum [6,86]. Such coherent states have a finite
overlap and therefore do not represent a proper basis.

Let us now reconsider the von Neumann measurement scheme (2.52) (see
Sect. 2.5.1) and the associated preferred-basis problem (Sect. 2.5.2) by in-
cluding a subsequent interaction with the environment. Following our above
considerations, this interaction will select preferred pointer states for the
system–apparatus combination, which are those states that get least entan-
gled with the environment. This will be the case for the states |si〉 |ai〉 on
the right-hand side of (2.52) if the interaction with the environment has the
form of a nondemolition measurement of |si〉 |ai〉,20

|si〉 |ai〉 |E0〉 −→ |si〉 |ai〉 |Ei〉 for all i. (2.84)

For simplicity, we may assume that the environment is in direct interaction
dominantly with the (usually macroscopic) apparatus but only insignificantly
with the (often microscopic) system. Then (2.84) means that the states |ai〉—
which describe the different pointer positions of the apparatus—are the ro-
bust preferred states superselected by the environment. (This observation
is another direct motivation for Zurek’s pointer-state terminology.) In turn,
the form of the system–apparatus dynamics then implies the selection of the
states of the system which can be measured by the apparatus interacting with
the environment, i.e., which can be reliably recorded through the formation
of dynamically stable system–apparatus quantum correlations [8, 9].

We may also look at this issue from a slightly different angle by realiz-
ing that (2.84) corresponds to the requirement that the interaction with the
environment does not disturb the established quantum correlations between
the state |si〉 of the system and the corresponding apparatus state |ai〉. This
criterion was first suggested and explored by Zurek [8]. It can be viewed
as a generalization of the concept of “faithful measurement” to the realistic

20Note that while for two subsystems, say, S and A, there always exists a diag-
onal decomposition of the final state of the form

∑
n cn |sn〉 |an〉 (see Sect. 2.15.1),

for three subsystems (for example, S, A, and E) a decomposition of the form∑
n cn |sn〉 |an〉 |en〉 is not always possible. This implies that the total Hamilto-

nian that induces a time evolution of the kind (2.84) must be of a special form. For
a comment regarding these restrictions on the form of the evolution operator and
the possibility of a resulting disagreement with experimental evidence, see [64].
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case in which the environment is included. Faithful measurement in the usual
sense concerns the requirement that the measuring apparatus act as a reliable
“mirror” of the states of the system by forming only correlations of the form
|si〉 |ai〉 but not |si〉 |aj〉 with i �= j. But since any realistic measurement pro-
cess must include the inevitable coupling of the apparatus to its environment,
the measurement could hardly be considered faithful as a whole if the interac-
tion with the environment disturbed the correlations between the system and
the apparatus.21 In fact, this ability of the apparatus to serve as a robust and
faithful “indicator” of the state of the system amounts to the very definition
of a measurement device. Environment-induced superselection applied to the
von Neumann scheme therefore explains why measurement apparatuses seem
to be designed to measure only certain physical quantities but not others.

Let us now return to the case of a system interacting with an environment
without the explicit presence of an apparatus. Thus far, we have considered
the simplified ideal situation in which the effective system–environment dy-
namics were directly written in the von Neumann form, as in (2.78). This
allowed us to immediately infer the preferred states of the system. In gen-
eral, however, we are simply given a total Hamiltonian Ĥ, which describes
the intrinsic dynamics of the system and environment as well as the interac-
tion between the system and environment. Typically, this total Hamiltonian
is decomposed into the relevant three parts,

Ĥ = ĤS + ĤE + Ĥint, (2.85)

where ĤS and ĤE denote the self-Hamiltonians of the system and environ-
ment representing the intrinsic dynamics, and Ĥint is the system–environment
interaction Hamiltonian.

We may now ask the important question: Given an arbitrary total Hamil-
tonian defining the system–environment model, how are we to determine the
pointer states for the system? Of course, our general selection criterion re-
mains the same: The preferred set of pointer states corresponds to the set of
states of the system that are most robust under the influence of the environ-
ment. However, how are we to find out which states fulfill this requirement?
This problem will be discussed in the following.

2.8.1 Pointer States in the Quantum-Measurement Limit

Let us first consider an important special case that not only applies to many
situations relevant to decoherence, but also provides us with a simple and
intuitive criterion for determining the preferred set of pointer states of the
system. Suppose the energy scales associated with the system–environment
interaction Hamiltonian Ĥint in (2.85) are much larger than the energy scales

21For fundamental limitations on the precision of von Neumann measurements of
operators that do not commute with a globally conserved quantity, see the Wigner–
Araki–Yanase theorem [87,88].
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of the self-Hamiltonians ĤS and ĤE . That is, we consider the quantum-
measurement limit in which the interaction between the system and the envi-
ronment is so strong as to completely dominate the evolution of the system.
In other words, the intrinsic dynamics of the system and the environment
are negligible in comparison with the evolution induced by the interaction.
Then the total Hamiltonian (2.85) can be approximated by the interaction
Hamiltonian Ĥint alone,

Ĥ ≈ Ĥint. (2.86)

Let us now find the set of robust states of the system that do not get entan-
gled under the evolution generated by this Hamiltonian. To do so, we look for
system states |si〉 such that the composite system–environment state, when
starting from a product state |si〉 |E0〉 at time t = 0, remains in the prod-
uct form |si〉 |Ei(t)〉 at all subsequent times t > 0 under the action of the
interaction Hamiltonian Ĥint. That is, we demand that22

e−iĤintt |si〉 |E0〉 = λi |si〉 e−iĤintt |E0〉 ≡ |si〉 |Ei(t)〉 . (2.87)

This immediately yields our main result: In the quantum-measurement limit
(2.86) the pointer states |si〉 of the system will simply be given by the eigen-
states of the part of the interaction Hamiltonian Ĥint pertaining to the Hilbert
space of the system. This important result was first obtained by Zurek in his
famous paper of 1981 [8]. It is quite intuitive: After all, the eigenstates |si〉
will be stationary under the action of Ĥ = Ĥint.

We may also equivalently express this result in terms of pointer observ-
ables, which are simply linear combinations of the pointer projectors |si〉〈si|,

ÔS =
∑
i

oi|si〉〈si|. (2.88)

Since the |si〉 are eigenstates of Ĥint, it follows that each term |si〉〈si| com-
mutes with Ĥint, and therefore also ÔS itself commutes with Ĥint,

[
ÔS , Ĥint

]
= 0. (2.89)

This important condition is often referred to as the commutativity criterion
in the literature. It was first introduced and discussed by Zurek [8,9] and has
since become one of the cornerstones of the formal body of the decoherence
program.

Thus, we have found two alternative but equivalent ways of determining
the environment-superselected quantities in the quantum-measurement limit
(2.86). The pointer states are given by those states of the system that are
eigenstates of the interaction Hamiltonian, and the corresponding pointer ob-
servables of the system are those observables commuting with the interaction
Hamiltonian. Of course, pointer states and pointer observables are a largely

22We assume here that Ĥint is not explicitly time-dependent.
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synonymous concept, since the latter are simply linear combinations of the
pointer-state projectors [see (2.88)].

In many cases of interest, the structure of the interaction Hamiltonian is
such as to immediately reveal the corresponding system eigenstates and thus
the preferred set of pointer states. For instances, the interaction Hamiltonian
is often given in the product form

Ĥint = Ŝ ⊗ Ê, (2.90)

with Ŝ and Ê denoting operators acting on the Hilbert spaces of the system
and environment, respectively. Thus the environment-superselected observ-
ables will be those observables that commute with Ŝ. If Ŝ is Hermitian, the
product structure Ŝ ⊗ Ê of the interaction Hamiltonian (2.90) has a very
intuitive interpretation: Ŝ represents the physical quantity that is directly
monitored by the environment. A frequently encountered example for Ŝ is
the position operator x̂, such that the interaction Hamiltonian is of the form

Ĥint = x̂⊗ Ê. (2.91)

This interaction Hamiltonian describes the continuous monitoring of the posi-
tion of the system by the environment. That is, the environment is performing
an effective nondemolition measurement in the position basis of the system.
Thus we can immediately anticipate that spatial superpositions will become
decohered. If we denote the eigenstates of x̂ by |x〉, the explicit system–
environment evolution generated by the interaction Hamiltonian (2.91) is

e−iĤintt |x〉 |E0〉 = |x〉 e−ixÊt |E0〉 ≡ |x〉 |Ex(t)〉 . (2.92)

Here we have used the subscript “x” in |Ex(t)〉 to denote the fact that the
state of the environment now contains information about the position of
the system. As discussed in Sect. 2.7, the time dependence of the overlap
between the states |Ex(t)〉 for different values of x will then yield the resulting
decoherence dynamics and timescales [see (2.76) and (2.77)].

We note that one can show that it is always possible to write an arbitrary
interaction Hamiltonian Ĥint in form of a diagonal decomposition of (unitary
but not necessarily Hermitian) system and environment operators Ŝα and
Êα, respectively,

Ĥint =
∑
α

Ŝα ⊗ Êα. (2.93)

This interaction Hamiltonian is an obvious generalization of the single-term
Hamiltonian (2.90). If the Ŝα are Hermitian, (2.93) describes the simultane-
ous environmental monitoring of different observables Ŝα on the system. A
sufficient condition for {|si〉} to form a set of pointer states of the system is
then given by the requirement that the |si〉 be simultaneous eigenstates of
the operators Ŝα,
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Ŝα |si〉 = λ
(α)
i |si〉 for all α and i, (2.94)

since in this case

e−iĤintt |si〉 |E0〉 = e−i(∑α Ŝα⊗Êα)t |si〉 |E0〉

= |si〉 e−i
(∑

α λ
(α)
i Êα

)
t |E0〉

≡ |si〉 |Ei(t)〉 . (2.95)

That is, the system described by the initial state |si〉 does not get entangled
with the environment, and thus |si〉 represents an environment-superselected
preferred state. Fortunately, in decoherence models of practical interest, it is
rare to encounter interaction Hamiltonians (2.93) involving more than two
different observables Ŝα. In fact, the interaction Hamiltonians of the models
discussed in Chap. 5 will all be of the simple single-term form (2.90).

The pointer-state condition (2.94) can be strengthened to the concept of
pointer subspaces, first introduced by Zurek in 1982 [9] and recently further
explored (especially in the context of quantum computing) by several authors
under the heading of decoherence-free subspaces (DFS) [89–98]. Pointer sub-
spaces, or DFS, are subspaces of the Hilbert space of the system in which
every state in the subspace is immune to decoherence. (Recall that in general
superpositions of pointer states will not be pointer states themselves.)

One important condition for this to happen is that the preferred states
|si〉 defined by the requirement (2.94) form an orthonormal basis {|si〉} of
the subspace, and that the eigenvalues λ

(α)
i in (2.94) are independent of the

index i, i.e., that all |si〉 are simultaneous degenerate eigenstates of each Ŝα,

Ŝα |si〉 = λ(α) |si〉 for all α and i. (2.96)

Then any state |ψ〉 of the subspace can be expressed as a superposition |ψ〉 =∑
i ci |si〉 of the states |si〉, and the superposition will evolve as

e−iĤintt |ψ〉 |E0〉 = e−iĤintt

(∑
i

ci |si〉
)
|E0〉

=

(∑
i

ci |si〉
)

e−i(∑α λ
(α)Êα)t |E0〉

≡ |ψ〉 |Eψ(t)〉 . (2.97)

Thus the state |ψ〉 does not become entangled with the environment. Since
|ψ〉 was completely arbitrary, all states in the subspace spanned by the set of
orthonormal states |si〉 obeying (2.96) will be immune to decoherence.

We can interpret the condition (2.96) also as implying that there is no
term in the interaction Hamiltonian that would act jointly on both the system
and the environment in a nontrivial manner [see (2.97)]. Thus, if the system
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starts out in a state within the subspace spanned by basis vectors fulfilling
this condition and if it has no correlations with the environment, the system–
environment combination will automatically remain in a separable state at
all subsequent times (provided that ĤS does not take the state out of the
subspace; see the comment below). The system does not get entangled with
its environment, and thus no decoherence occurs. Also note that, since (2.96)
implies that the action of a given interaction operator Ŝα is the same for
all basis states |si〉 of the DFS, the existence of a DFS corresponds to a
symmetry in the structure of the system–environment interaction, i.e., to a
dynamical symmetry.

In the more general case where the self-Hamiltonian ĤS of the system
also plays a role we would additionally need to ensure that the subspace
remains decoherence-free over time under the action of ĤS . That is, we will
need to demand that none of the basis states |si〉 of the DFS will drift out
of the subspace under the evolution generated by ĤS . Otherwise an initially
decoherence-free state would in general become prone to decoherence. More
formally, we can express this condition by saying that ĤS must not project
any of the basis states |si〉 into a Hilbert subspace outside of the subspace
spanned by the basis {|si〉}. A third condition for a DFS to exist is given by
the requirement that the system S and the environment E must be completely
uncorrelated at some initial time t = 0. It can be rigorously proved that
the three conditions listed above are both sufficient and necessary for the
existence of a DFS.23

Pointer subspaces, or DFS, have attracted much interest over the past
decade because of their relevance to quantum computing. There the basic idea
is to encode the fragile quantum information stored in the quantum computer
in such subspaces so as to naturally protect it from decoherence. We will de-
scribe this approach in more detail in Sect. 7.5 (see also the review article by
Lidar and Whaley [101]). The ideas behind pointer subspaces have also been
used to propose methods for taming decoherence in other areas of interest,
for example, in the context of superposition states of macroscopically distin-
guishable states in Bose–Einstein condensates [102] (see Sect. 6.4.1). Finally,
we shall note here that the concept of DFS has recently been extended and
generalized to the formalism of noiseless subsystems (or “noiseless quantum
codes”), first developed by Knill, Laflamme, and Viola [98] (see also [100]).
A brief review of this topic can be found in Sect. 7 of [101].

23One of the earliest proofs (by Zanardi and Rasetti [92]) employed a standard
Hamiltonian approach. Lidar, Chuang, and Whaley [90], and independently Za-
nardi [93], used an approach based on the Born–Markov master-equation formalism
described in Chap. 4. This was later generalized to the non-Markovian setting by
Bacon, Lidar, and Whaley [99]. A general proof using the operator-sum formal-
ism (see Sect. 2.15.4) was given by Lidar, Bacon, and Whaley [94]. The conditions
can also be arrived at by employing the language of quantum error correction (see
Sect. 7.4) or the so-called “stabilizer” formalism (see, e.g., [100]). For a comparison
of these different formulations, see Sect. 5.6 of [101].
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2.8.2 Pointer States in the Quantum Limit of Decoherence

Let us now consider the situation in which the modes of the environment are
“slow” in comparison with the evolution of the system. That is, we assume
that the highest frequencies (i.e., energies) available in the environment are
smaller than the separation between the energy eigenstates of the system.
In this situation, the environment will be able to monitor only quantities
which are constants of motion. In the case of nondegeneracy, this quantity
will be the energy of the system, thus leading to the environment-induced
superselection of energy eigenstates for the system (i.e., eigenstates of the
self-Hamiltonian of the system). This process was first investigated in detail
by Paz and Zurek [103], who called it the quantum limit of decoherence.

In introductory textbooks on quantum mechanics, such energy eigenstates
(for closed systems) are usually attributed a special role since they are sta-
tionary under the action of the Hamiltonian. Indeed, much of the subsequent
problems considered in these textbooks are then concerned with calculating
the energy eigenstates for different Hamiltonians describing various (micro-
scopic) physical systems such as the hydrogen atom. However, the superpo-
sition principle would predict that arbitrary superpositions of such energy
eigenstates should nonetheless be perfectly legitimate.

It is therefore very important to emphasize that the selection of en-
ergy eigenstates in the limit where the evolution is dominated by the self-
Hamiltonian of the system is not equivalent to a situation in which the pres-
ence of the environment could simply be neglected altogether (which would
correspond to the aforementioned closed-system case commonly treated in
textbooks). Quite to the contrary, the environment plays the crucial role of
continuously monitoring the energy of the system, which leads to decoherence
in the energy eigenbasis of the system and hence to the local suppression of
superpositions of energy eigenstates. Thus, although the form of the pointer
states is dominated by the eigenstates of the self-Hamiltonian of the system,
it is (once again) the presence of the environment that imposes an effective
superselection rule on the space of observable superpositions.

2.8.3 General Methods for Determining the Pointer States

In most realistic cases of interest, the commutativity criterion (2.89) can
usually only be fulfilled approximately [84, 86]. For example, as mentioned
in Sect. 2.5.4, individual eigenstates of the position operator are not proper
quantum states of physical objects. Although, for example, the interaction
Hamiltonian (2.91) together with the commutativity criterion (2.89) would
imply the selection of such eigenstates as the preferred set of pointer states of
the system, in practice the preferred states will be narrow position-space wave
packets, i.e., they will represent only approximate eigenstates of position,
with a finite spread in position space. In other situations it may simply be
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impossible to find any observable for which the commutativity criterion (2.89)
would be fulfilled exactly.

Thus, although the diagonalization of the interaction Hamiltonian or the
application of the commutativity criterion (2.89) are conceptually intuitive
methods for determining the preferred states and observables in simple cases
for which the quantum-measurement limit holds, they are often not adequate
and practicable in more complex situations. The goal of finding exact pointer
states that are completely immune to the immersion into the environment is
therefore often weakened to the aim of determining the states of the system
that are most robust to the environmental interaction. Approximate pointer
states are then our best representation of quasiclassical states that are min-
imally affected by the inevitable interaction with the environment. Also, in
many realistic physical situations of interest, both the self-Hamiltonian of the
system and the system–environment interaction Hamiltonian both contribute
in roughly equal strengths (for example, this is the case in the model for quan-
tum Brownian motion discussed in Sect. 5.2). Then neither the quantum-
measurement limit of negligible intrinsic dynamics nor the quantum limit of
decoherence corresponding to a “slow” environment applies.

Therefore more general methods are needed for determining the preferred
states selected by the interaction with the environment. Such methods were
developed by Zurek [84,104] and Zurek, Habib, and Paz [86] under the name
of the predictability-sieve strategy. The basic idea consists of using a suitable
measure for the amount of decoherence introduced into the system, such as
the purity or the von Neumann entropy of the reduced density matrix (see
Sect. 2.4.3). One then computes the time dependence of the purity or von
Neumann entropy (or whichever measure has been chosen) for a large set
of initial states of the system evolving under the total system–environment
Hamiltonian. The states most immune to decoherence will be those which
lead to the smallest decrease in purity or the smallest increase in von Neu-
mann entropy. Application of this method leads to a ranking of the possible
preferred states with respect to their “classicality,” i.e., their robustness with
respect to the interaction with the environment.

We thus picture ourselves “sifting” through the Hilbert space, sorting
the states according to their robustness to environmental interactions. The
most stable states will also be the most predictable (thus motivating the
terminology “predictability sieve” introduced by Zurek). This is so because
the fact that the loss of purity or the increase in von Neumann entropy is
minimized for these states also means that the loss of “information” about the
state of the system is minimized (recall that a pure state, which has zero von
Neumann entropy, corresponds to a maximum amount of knowledge about
the state of the system).

In general, the preferred states selected by the predictability sieve may
differ depending on which measure is used to rank the robustness of the
states. We already mentioned two measures, namely, purity and von Neumann
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entropy, but other meaningful measures of decoherence and robustness exist
and more are likely to be suggested in the future. For particular models it has
been explicitly shown that the states picked out by the predictability sieve
are rather insensitive to the particular choice of the measure. For example, in
the model for quantum Brownian motion (see Sect. 5.2), different measures
lead to the same minimum-uncertainty wave packets [6,17,84,105,106]. It is
reasonable to anticipate that, at least in the macroscopic limit, the resulting
stable pointer states obtained from different criteria will turn out to be very
similar (see also the discussion by Zurek in [16]).

2.8.4 Selection of Quasiclassical Properties

Let us summarize our results for the environment-induced selection of pre-
ferred states and discuss the implications for the general preferred-basis prob-
lem outlined in Sect. 2.5.2 and for our observation of only particular physical
quantities in the world around us.

System–environment interaction Hamiltonians frequently describe a scat-
tering process of surrounding particles (photons, air molecules, etc.) inter-
acting with the system under study. Since the force laws describing such
processes typically depend on some power of distance (such as ∝ r−2 in
Newton’s or Coulomb’s force law), the interaction Hamiltonian will usually
commute with the position operator. According to the commutativity require-
ment (2.89), the pointer states will therefore be approximate eigenstates of
position. The fact that position is typically the determinate property of our
experience can thus be explained by referring to the dependence of most
interactions on distance. This origin of the special role of position in the
quantum-to-classical transition was clearly pointed out and analyzed for the
first time by Zurek [8, 9, 13]. Subsequently, the scattering model of Joos and
Zeh [7] showed directly how surrounding photons and air molecules contin-
uously measure the spatial structure of small objects such as dust particles,
leading to rapid decoherence into an (improper) mixture of narrow position-
space wave packets (see Chap. 3).

Similar results sometimes hold even for microscopic systems (usually
found in energy eigenstates; see below) when they occur in distinct spatial
structures that couple strongly to the surrounding medium. For instance, chi-
ral molecules such as sugar are always observed to be in chirality eigenstates
(left-handed and right-handed), which are superpositions of different energy
eigenstates [107, 108] (see also Sect. 3.2.4 of [17]). Once again, this can be
explained by the fact that the distinct spatial structure of these molecules
is continuously monitored by the environment through scattering processes.
This environmental monitoring gives rise to a much stronger coupling to the
“outside world” than could typically be achieved by a measuring device that
was intended to measure, say, parity or energy. Furthermore, any attempt
to prepare such molecules in energy eigenstates will lead to immediate deco-
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herence into the environmentally stable chirality eigenstates, thus selecting
position as the preferred quantity.

On the other hand, it is well known that microscopic systems such as
atoms are typically found in energy eigenstates, even if the interaction Hamil-
tonian depends on a different observable than energy. This is easily explained
by noting that in such cases the evolution of the system is dominated by the
self-Hamiltonian, while the environment is comparably slow (in the sense that
its largest frequencies are smaller than the spacing of the energy eigenstates
of the system). As discussed in Sect. 2.8.2, this quantum limit of decoher-
ence [103] results in the environment-induced selection of energy eigenstates,
with interference between different energy eigenstates being continuously sup-
pressed due to the environmental monitoring of the energy of the system.

Another interesting example is the environment-induced superselection of
charge. In nature, only eigenstates of the charge operator are observed, but
never superpositions of different charges. The corresponding superselection
rules were first only postulated [78, 79] but were subsequently explained by
Giulini, Kiefer, and Zeh [85] (see also [83]) by referring to the interaction of
the charge with its own Coulomb (far) field. This field plays the role of the
environment, leading to immediate decoherence of charge superpositions into
(improper) mixtures of charge eigenstates.

To summarize, we have distinguished three different cases for the type of
preferred pointer states emerging from interactions with the environment:

1. The quantum-measurement limit. When the evolution of the system is
dominated by Ĥint, i.e., by the interaction with the environment, the
preferred states will be eigenstates of Ĥint (and thus often eigenstates of
position).

2. The quantum limit of decoherence. When the environment is slow and
the self-Hamiltonian ĤS dominates the evolution of the system, a case
frequently encountered in the microscopic domain, the preferred states
will be energy eigenstates, i.e., eigenstates of ĤS [103].

3. The intermediary regime. When the evolution of the system is governed
by Ĥint and ĤS in roughly equal strengths, the resulting preferred states
will represent a compromise between the first two cases. For instance, in
the frequently studied model of quantum Brownian motion (see Sect. 5.2)
the interaction Hamiltonian Ĥint describes monitoring of the position
of the system. However, through the intrinsic dynamics induced by ĤS
this monitoring also leads to indirect decoherence in momentum. This
combined influence of Ĥint and ĤS results in the emergence of preferred
states localized in phase space, i.e., in both position and momentum (see
Sect. 5.2.5 and [16,17,86,106,109]).

In fact, these three regimes can in turn be understood as limiting cases of
the general rule that the preferred pointer states are the states of the system
that are most robust under the evolution generated by the total Hamiltonian.
Depending on which term dominates in this total Hamiltonian (in terms of the
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relative energy scales), the pointer basis is then formed either by eigenstates
of the interaction Hamiltonian, by eigenstates of the self-Hamiltonian, or
by states arising as a compromise between the interaction Hamiltonian and
self-Hamiltonian.

The clear merit of the approach of environment-induced superselection
to the preferred-basis problem lies in the fact that the preferred basis is not
chosen in an ad hoc manner so as to simply make our measurement records
determinate or to match our experience of which physical quantities are usu-
ally perceived as determinate (for example, position). Instead the selection is
motivated on physical, observer-free grounds, namely, through the structure
of the system–environment interaction Hamiltonian. The vast space of possi-
ble quantum-mechanical superpositions is reduced so much because the laws
governing physical interactions depend on only a few physical quantities (po-
sition, momentum, charge, and the like), and the fact that precisely these are
the properties that appear determinate to us is explained by the dependence
of the preferred basis on the form of the interaction. The appearance of clas-
sicality is therefore grounded in the structure of the physical laws governing
the system–environment interactions.

2.9 Redundant Encoding of Information
in the Environment and “Quantum Darwinism”

Thus far we have focused on what can be observed at the level of the system.
The environment has simply played the role of a “sink” that carries away
which-path (or, more generally, which-state) information about the system.
We have assumed that we do not further observe the environment or interact
with it. At the same time, since the interaction between the system and
the environment constantly encodes information about the system in the
environment, the environment constitutes a huge resource for the indirect
acquisition of information about the system. In fact, it is important to realize
that in most (if not all) cases observers gather information about the state of
a system through indirect observations, namely, by intercepting fragments of
environmental degrees of freedom that have interacted with the system in the
past and thus contain information about the state of the system. Probably
the most common example for such indirect acquisition of information is the
visual registration of photons that have scattered off the object of interest.
We see things not by directly interacting with them, but through the light
that has “measured” the spatial structure of the object.

Why is this realization of the importance of indirect observation of sys-
tems through the interception of environmental degrees of freedom so impor-
tant? To answer this question, recall that in Sect. 2.1.1 we pointed out that
a characteristic feature of classical physics is the fact that the state of a sys-
tem can be found out and agreed upon by many independent observers (who
all can be initially completely ignorant about the state) without disturbing
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this state. In this sense, classical states preexist objectively, resulting in our
notion of “classical reality.” By contrast, measurements on a closed quantum
system will in general alter the state of the system.

It is therefore impossible to regard quantum states of a closed system as
existing in the way that classical states do. This raises the question of how
classical reality emerges from within the quantum substrate, i.e., how observ-
ables are “objectified” in the above sense. The environment-induced super-
selection of preferred states discussed in the previous Sect. 2.8 has certainly
made a significant contribution toward answering this question by explain-
ing why only a certain subset of the possible states in the Hilbert space of
the system are actually observable. Nonetheless, the problem sketched in the
previous paragraph remains, as any direct measurement performed on the
system would, in general, still alter the state of the system.

As clearly recognized and systematically investigated for the first time
by the Los Alamos group of Zurek, Ollivier, Poulin, and Blume-Kohout
[16,66,76,84,104,110–113], it is here that the function of the environment as
a which-state monitor plays another important role. Since information about
the system is encoded in the environment, we can acquire this information
without having to directly interact (and thereby disturb) the system itself.
Thus the role of the environment is now broadened, namely, from the selec-
tion of preferred states for the system of interest and the delocalization of
local phase coherence between these states to the transmission of information
about the state of the system. The key question, first spelled out by the Los
Alamos group, is then the following. How, and which kind of, information is
both redundantly and robustly stored in a large number of distinct fragments
of the environment in such a way that multiple observers can retrieve this
information without disturbing the state of the system, thereby achieving
effective classicality of the state?24

The research of the Los Alamos group into answering this question is
carried out under the headings of the “environment as a witness” program
(the recognition of the role of the environment as a communication channel)
and quantum Darwinism (the study of what information about the system
can be stably stored and proliferated by the environment) [66, 110–113]. To
explicitly quantify the degree of completeness and redundancy of information
imprinted on the environment, the measure of (classical [110,111] or quantum
[16, 112, 113]) mutual information has usually been used. Roughly speaking,
this quantity represents the amount of information (expressed in terms of
Shannon [114–116] or von Neumann entropies) about the system that can be
acquired by measuring (a fragment of) the environment.25

24The importance of redundancy in quantum measurement was first emphasized
by Zurek [76] already in the early 1980s (see also [9]).

25Note that the amount of information contained in each fragment is always
somewhat less than the maximum information provided by the system itself (as
given by the von Neumann entropy of the system) [113].
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The measure of classical mutual information is based on the choice of
particular observables of the system S and the environment E and quantifies
how well one can predict the outcome of a measurement of a given observable
of S by measuring some observable on a fraction of E [110, 111]. The quan-
tum mutual information IS:E , used in more recent studies by Blume-Kohout
and Zurek [112, 113], can be viewed as a generalization of classical mutual
information and is defined as IS:E ≡ S(ρ̂S) + S(ρ̂E) − S(ρ̂), where ρ̂S , ρ̂E ,
and ρ̂ are the density matrices of S, E , and the composite system SE , re-
spectively, and S(ρ̂) is the von Neumann entropy (2.32). Thus IS:E measures
the amount of entropy produced by destroying all (quantum) correlations be-
tween S and E , i.e., it quantifies the degree of correlations between S and E .
Results derived from the two measures—classical mutual information based
on the Shannon entropies of the subsystems, and quantum mutual informa-
tion defined in terms of the von Neumann entropies—have been found to
nearly coincide [16, 110–113]. This robustness with respect to the particular
choice of measure is due to the fact that the difference between the two mea-
sures (the so-called quantum discord [117]) disappears when decoherence is
sufficiently effective to select a well-defined pointer basis, as shown by Ollivier
and Zurek [117]. Therefore the quantum discord for the information about
the system decohered by all of the environment (except for the fragment that
is being intercepted) must be small.

Ollivier, Poulin, and Zurek [110, 111] and Blume-Kohout and Zurek
[112, 113] found that the observable of the system that can be imprinted
most completely and redundantly in many distinct subsets of the environment
coincides with the pointer observable selected by the system–environment in-
teraction as discussed in Sect. 2.8. Conversely, most other states do not seem
to be redundantly storable. Thus it suffices to probe a comparably very small
fraction of the environment to infer a large amount of the maximum informa-
tion about the pointer state of the system. On the other hand, if the observer
tried to measure other observables on the same fragment, she would learn
virtually nothing, as information about the corresponding observables of the
system is not redundantly stored. Thus the environment-superselected states
of the system play a twofold role: They are the states that are least perturbed
by the interaction with the environment, and they also the states that are
most easily found out, without disturbing the system, by probing environ-
mental degrees of freedom. Since the same information about the pointer
observable is stored independently in many fragments of the environment,
multiple observers can measure this observable on different fragments and
will automatically agree on the findings. In this sense, one can ascribe ef-
fectively objective existence to the environment-superselected states (see also
Sect. 8.2.3).

The research of the Los Alamos group into the objectification of observ-
ables along the lines outlined in this section is only in its beginnings. Impor-
tant aspects, such as the explicit dynamical evolution of the objectification



88 2 The Basic Formalism and Interpretation of Decoherence

process [111] and the role of the assumptions and definitions in the current
treatments of the “objectification through redundancy” idea, are currently
still under investigation, as are studies involving more detailed and realistic
system–environment models. However, it should already have become clear
that the approach of departing from the closed-system view and of describ-
ing observations as the interception of information that is redundantly and
robustly stored in the environment represents a very promising candidate for
a purely quantum-mechanical account of the emergence of classicality from
the quantum domain.

2.10 A Simple Model for Decoherence

Let us now illustrate the basic features and dynamics of environment-induced
decoherence and superselection in the context of a model first introduced
and studied by Zurek in 1982 [9]. The model is solved quite easily and will
therefore nicely introduce the reader to the more complicated decoherence
models discussed in Chaps. 3 and 5. (Later, in Sect. 5.4.1, we will discuss a
more complex version of the model.) Despite its simplicity, the properties
of the model continue to capture the interest of researchers to this date
[118]. Moreover, the model seems to be realistic in certain circumstances. For
example, recently it has been shown that the model is capable of explaining
the behavior of the so-called Loschmidt echo observed in experiments on
nuclear magnetic resonance (NMR) [118–120].

The model consists of a central quantum two-level system S linearly cou-
pled to an environment E composed of a collection of N other quantum
two-level systems. The obvious examples for “true” quantum two-level sys-
tems are spin- 1

2 particles (where the two possible states correspond to “spin
up” and “spin down” along some axis) and photons with two different ori-
entations of polarization for a given orientation of an axis. Interestingly, as
we shall explain in more detail in Sect. 5.1, it turns out that numerous other
physical systems can be represented by quantum two-level systems. Therefore
the model of a spin interacting with a collection of other spins is relevant to
many more physical situations of interest than one might initially suspect.

Furthermore, since such (true or effective) two-state systems are the basis
of all proposed implementations of quantum computers (see Chap. 7), they
are often called “qubits,” short for “quantum bits.” Recall that a bit in classi-
cal computers is the smallest unit of information storage, represented by the
two possible values “0” (“off”) and “1” (“on”). Similarly, a qubit is repre-
sented by a quantum two-level system with basis states |0〉 and |1〉, which can
be thought of corresponding to the classical bit states “0” and “1.” However,
the key difference between a qubit and a classical bit is grounded in the fact
that a quantum two-level system can be prepared in arbitrary superpositions
α |0〉+ β |1〉 of its basis states |0〉 and |1〉. The interest in quantum comput-
ing and in the generation of mesoscopic and macroscopic “Schrödinger cats”
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has made the experimental realization of such qubit systems a major area of
research (see Chap. 6).

Let us now return to our simple model for decoherence. In the following,
let us denote the two basis states of S by |0〉 and |1〉, while we shall use |↑〉i
and |↓〉i, i = 1 . . . N , to represent the basis states of the N two-level systems
of the environment. We describe the total system–environment combination
by a 2N+1-dimensional tensor- product Hilbert space

H = HS ⊗HE1 ⊗HE1 ⊗ · · · ⊗ HEN
, (2.98)

where HS denotes the Hilbert space of the system and HEi
represents the

Hilbert space of the ith environmental spin.
We will now assume that the interaction Hamiltonian Ĥint governing the

interaction between the system and the environment completely dominates
the evolution, i.e., we shall neglect any intrinsic dynamics of the system
and the environment. Both system and environment are entirely static, and
the only dynamical process is the formation of correlations between the two
partners. This corresponds to the quantum-measurement limit described in
Sect. 2.8.1 above.

The interaction Hamiltonian Ĥint (and thus the total system–environment
Hamiltonian Ĥ) is chosen to be of the form

Ĥ = Ĥint =
1
2

(|0〉〈0| − |1〉〈1|)⊗

⎛
⎝ N∑
i=1

gi [(|↑〉〈↑|)i − (|↓〉〈↓|)i]
⊗
i′ �=i

Îi′

⎞
⎠

≡ 1
2
σ̂z ⊗

⎛
⎝ N∑
i=1

giσ̂
(i)
z

⊗
i′ �=i

Îi′

⎞
⎠ . (2.99)

Here Îi = (|↑〉〈↑|)i + (|↓〉〈↓|)i denotes the identity operator for the ith envi-
ronmental two-level system, and σ̂z and σ̂

(i)
z are the Pauli z-spin operators

of the system and the ith environmental spin, respectively. From now on in
this book, we shall simplify our notation by omitting the explicit inclusion of
the identity operators in interaction Hamiltonians and simply write (2.99) as

Ĥ = Ĥint =
1
2
σ̂z ⊗

N∑
i=1

giσ̂
(i)
z ≡

1
2
σ̂z ⊗ Ê. (2.100)

From (2.100) we observe that the central spin couples linearly through its z-
spin component to each of the environmental spins, with a coupling strength
given by the constants gi, i = 1 . . . N . Comparison with (2.90) shows that
the interaction Hamiltonian (2.100) is already in diagonal form, which allows
us to immediately infer the pointer states of the system selected by the in-
teraction with the environment. We see that the environment monitors the
observable σ̂z, i.e., the z-spin component, of the system. Thus, without any
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calculations, we can conclude that we expect the eigenbasis {|0〉 , |1〉} of σ̂z
to emerge as the dynamically selected preferred basis of the system. Super-
position states of |0〉 and |1〉 will be prone to decoherence, whereas |0〉 and
|1〉 will represent the dynamically robust states of the system.

We also observe that, since the Hamiltonian (2.100) commutes with the
Pauli operator σ̂z of the system, the populations of the system are conserved
quantities under the action of this Hamiltonian. There is no exchange of
energy between the system and the environment, and therefore the interaction
with the environment can influence only the degree of coherence present
in the system. This model is therefore an example of decoherence without
dissipation, showing that decoherence is a pure quantum effect without any
classical counterpart (see also Sect. 2.11).

Additionally, the Hamiltonian (2.100) is diagonal in the basis states
{|↑〉i , |↓〉i} of the environmental spins. Thus the energy eigenstates |n〉 of
the environment part Ê of this Hamiltonian are given by products of these
individual basis states, i.e., by states of the form

|n〉 = |↑〉1 |↓〉2 · · · |↑〉N , etc., (2.101)

where 0 ≤ n ≤ 2N − 1. The energy εn associated with such an eigenstate |n〉
is

εn =
N∑
i=1

(−1)nigi, (2.102)

where ni = 1 if the ith environmental spin is in the “down” state |↓〉i, and
ni = 0 otherwise.

The eigenstates of the total Hamiltonian Ĥ = Ĥint, see (2.100), are there-
fore simply of the form |0〉 |n〉 and |1〉 |n〉. Since these states form a basis of
the composite system SE , any arbitrary pure state |Ψ〉 of SE can be expanded
as

|Ψ〉 =
2N−1∑
n=0

(cn |0〉 |n〉+ dn |1〉 |n〉) . (2.103)

Let us now assume that at t = 0, before the interaction between S and E is
turned on, the system and the environment are completely uncorrelated, i.e.,
that the initial state |Ψ(0)〉 of SE factorizes into a product state of the form

|Ψ(0)〉 = (a |0〉+ b |1〉)
2N−1∑
n=0

cn |n〉 . (2.104)

Then the time evolution of the state of SE generated by the action of the
Hamiltonian (2.100) is given by

|Ψ(t)〉 = e−iĤt |Ψ(0)〉 = a |0〉 |E0(t)〉+ b |1〉 |E1(t)〉 , (2.105)

where
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|E0(t)〉 = |E1(−t)〉 =
2N−1∑
n=0

cne
−iεnt/2 |n〉 . (2.106)

The interpretation of the time-evolved state (2.105) is simple and follows our
general discussion of the role of the environment as a “which-state” detector
(see Sect. 2.6.3). The basis states |0〉 and |1〉 of the system have become
correlated with the corresponding relative states |E0(t)〉 and |E1(t)〉 of the
environment. The more distinguishable the states |E0(t)〉 and |E1(t)〉 are,
i.e., the smaller the overlap 〈E1(t)|E0(t)〉 is, the more information becomes
encoded in the environment that would allow one to distinguish between the
states |0〉 and |1〉 of the system by looking at the environment. Accordingly,
we expect that interference between these states |0〉 and |1〉 will become
progressively damped as the overlap 〈E1(t)|E0(t)〉 decreases.

This motivates us to interpret the overlap 〈E1(t)|E0(t)〉 as a decoherence
factor r(t), which is given by [see (2.106)]

r(t) ≡ 〈E1(t)|E0(t)〉 =
2N−1∑
n=0

|cn|2 e−iεnt, (2.107)

with |cn|2 ≤ 1 and
∑2N−1
n=0 |cn|

2 = 1. If r(t) −→ 0, then the off-diagonal terms
|0〉〈1| and |1〉〈0| of the reduced density matrix ρ̂S(t) of the system expressed
in the {|0〉 , |1〉} basis disappear, i.e.,

ρ̂S(t) = TrE ρ̂(t) ≡ TrE |Ψ(t)〉〈Ψ(t)|
= |a|2|0〉〈0|+ |b|2|1〉〈1|+ ab∗r(t)|0〉〈1|+ a∗br∗(t)|1〉〈0|
−→ |a|2|0〉〈0|+ |b|2|1〉〈1|. (2.108)

This describes the local damping of interferences between the states |0〉 and
|1〉. The expression (2.108) also explicitly confirms that the diagonal elements
of ρ̂S(t) are independent of time and that thus the two-level populations are
unchanged by the interaction, as already pointed out above.

The interesting question, of course, concerns the time evolution of the
decoherence factor r(t) and the dependence of this factor on the number
of environmental spins. From (2.107) we see that r(t) corresponds to the
addition of 2N vectors of lengths |cn|2 rotating in the complex plane with
different frequencies proportional to εn. For any fixed time t, this amounts
to a two-dimensional random-walk problem and was investigated in detail by
Zurek [9] and Cucchietti, Paz, and Zurek [118]. Each of the 2N steps of the
random walk has length |cn|2 and follows the direction given by the phase
εnt. Since

∑2N−1
n=0 |cn|

2 = 1, the average step length 〈|c|2〉 will be equal to
2−N . From standard random-walk theory it then follows that the average
squared length of the complex vector r(t) will scale as

〈|r(t)|2〉 ∝ 〈|c|2〉 = 2−N . (2.109)
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This shows that the degree of suppression of coherences in the {|0〉 , |1〉}
scales exponentially with the size N of the environment. Furthermore, Zurek
[9] and Cucchietti, Paz, and Zurek [118] demonstrated that, for sufficiently
large N and a large class of distributions of the couplings gi, r(t) follows an
approximately Gaussian decay with time,

r(t) ≈ e−Γ
2t2 . (2.110)

The precise value of the decay constant Γ 2 is determined by the initial state
of the environment and the distribution of the couplings gi. An example for
the time evolution of the decoherence factor (2.107) is shown in Fig. 2.6. We
observe rapid decay of |r(t)| for both N = 20 and N = 100.

However, it is important to realize that, as long as the number of environ-
mental spins (and thus the number of degrees of freedom in the environment)
is finite, there always exists a characteristic recurrence time τrec for which the
decoherence factor (2.107) will return to its initial value of one. This is simply
a consequence of the fact that (2.107) is a sum of functions that are periodic
in time. Any such sum of periodic functions must in turn be periodic, too.
The value of the recurrence time depends on the initial state of the environ-
ment and the distribution of the couplings gi. For example, in the limiting
case of a highly “nonrandom” initial state of the environment with no initial
correlations between the environmental spins,

|Ψ(0)〉 = (a |0〉+ b |1〉)
N∏
i=1

1√
2

(|↑〉i + |↓〉i) , (2.111)
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Fig. 2.6. Evolution of the absolute value of the decoherence factor r(t), see (2.107),
describing the time dependence of interference terms in a central static spin system
interacting with a collection of N static environmental spins for two different values
N = 20 and N = 100. The initial state of each environmental spin was assumed
to be completely random, with the environmental spins completely uncorrelated
with each other and with the system. The couplings were chosen randomly from
the interval [0, 1].
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and gi = g for all i, (2.107) yields

r(t) = cosN (gt). (2.112)

This decoherence factor is periodic with frequency g/2π. Thus only for times
t < π/g the absolute value |r(t)| of the decoherence factor will exhibit decay,
and a full revival of coherence will occur at times equal to integer multiples of
τrec = π/g. Note also that, in the extreme situation in which the environment
happens to start out in one of the eigenstates |n〉 of Ê, r(t) will not decay at
all, and thus no decoherence will occur.

In realistic cases, such highly ordered initial states and symmetrical
system–environment couplings are unlikely to be relevant. Here the char-
acteristic recurrence time τrec is typically extremely long and of the Poincaré
type with τrec ∝ N !. For macroscopic environments of realistic but finite
sizes, τrec can exceed the lifetime of the universe, as first pointed out by
Zurek [9]. Thus the loss of coherence from the system is typically irreversible
for all practical purposes not only because of our practical inability to control
and observe the environment, but also because the timescale for the recur-
rence of coherence is astronomically large in virtually all physically realistic
situations.

2.11 Decoherence Versus Dissipation

Dissipation, the loss of energy from the system, is a classical effect. If we let
a system interact with another system (which we may call the environment),
energy exchange will often take place between the two partners, and the
systems will then ultimately approach thermal equilibrium. The characteristic
timescale on which this happens is typically referred to as the relaxation
timescale for the system. If a particular system–environment interaction leads
to dissipation in the system, then the strength of the system–environment
interaction is a measure of the relaxation time. As the interaction strength
decreases, the relaxation times becomes longer, and vice versa.

However, if dissipation is absent or negligible, we must not conclude that
there is no (or only negligible) interaction between the system and its envi-
ronment. Even if a particular type of interaction does not lead to dissipation,
it will in general still result in decoherence, which is a pure quantum ef-
fect. That is, the environment may in general obtain which-path (or, more
generally, which-state) information without absorbing any energy from the
system. The model discussed in the previous Sect. 2.10 has provided us with
a first explicit example of such decoherence without dissipation. Thus deco-
herence may, but does not have to, be accompanied by dissipation, whereas
the presence of dissipation also implies the occurrence of decoherence.

If dissipation and decoherence are both present, then they are usually
quite easily distinguished because of their very different timescales. As nu-
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merous theoretical and experimental studies have demonstrated, the deco-
herence timescale is typically many orders of magnitude shorter than the
relaxation timescale. In Sect. 5.2.4, we will show that a rule-of-thumb esti-
mate for the ratio of the relaxation timescale τr to the decoherence timescale
τd for a massive object described by a superposition of two different positions
a distance Δx apart is

τr
τd
∼
(

Δx

λdB

)2

. (2.113)

Here, λdB is the thermal de Broglie wavelength of the object,

λdB =
�√

2mkBT
, (2.114)

where m is the mass of the object, T its temperature, and kB is the Boltzmann
constant. Equation (2.113) was derived by Zurek in 1984 [12], providing a first
general estimate for the decoherence timescale (then still called “decorrelation
timescale”).

In his paper (and also in his subsequent article in Physics Today [13]),
Zurek gave the following numerical example to illustrate the typically enor-
mous differences between the decoherence and relaxation timescales at the
macroscopic level. Zurek considered a macroscopic object of mass m = 1 g
at room temperature (T = 300 K). For this object, λdB is tiny, namely,
λdB ≈ 10−23 m. Clearly, this number is microscopic by all accounts. Suppose
now the particle is described by a coherent superposition of two mesoscopi-
cally or even macroscopically distinct locations. Then, the ratio (Δx/λdB)2

in (2.113) will be very large, and it follows that the decoherence timescale
τd for this superposition will be overwhelmingly shorter than the dissipation
(relaxation) timescale τr. Zurek [12,13] used the example of the object’s being
described by a superposition of two spatial locations a macroscopic distance
Δx = 1 cm apart. Then the ratio (2.113) is on the order of 1040. That is,
the typical decoherence time for an object described by such a superposition
is some 40 orders of magnitude shorter than the relaxation time required to
reach thermal equilibrium!

For macroscopic objects, the dissipative influence of the environment is
therefore usually completely negligible with respect to the dynamics of the
system on any timescale relevant to the decoherence induced by this environ-
ment. For example, photons scattering off a bowling ball will hardly affect the
ball’s motion in any way, while they will lead to virtually instantaneous de-
coherence of a superposition state involving macroscopically distinguishable
positions of the ball (see also Fig. 1.3).

Thus this crucial difference between relaxation and decoherence timescales
explains why we observe macroscopic objects to follow perfectly Newtonian
trajectories—effectively “created” through the action of decoherence (see
Sect. 5.2.5)—with often hardly any manifestation of dissipation, such as a
slowing-down of the object. To use an example going back to Joos [17, p. 79],
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the planet Jupiter has been revolving around the sun on a Newtonian tra-
jectory for billions of years, while its motional state has remained virtually
unaffected by any dissipative loss (friction) due to the sunlight scattered off
the planet’s surface. If relaxation and decoherence timescales were indeed
similar, this fact would obviously be very difficult to explain.

2.12 Decoherence Versus Classical Noise

In this book, we consistently reserve the term “decoherence” to describe the
consequences of (usually in practice irreversible) quantum entanglement with
some environment, in agreement with the historically established meaning
and the vast body of literature on environmental decoherence. As described
in detail in Sects. 2.6 and 2.7, the basic mechanism of decoherence can be
formalized as follows. Suppose we have a set of pointer states {|sn〉} of the
system S defined by their property of getting least getting entangled in the
course of the interaction with the environment E ,

|sn〉 |E0〉 −→ |sn〉 |En〉 . (2.115)

Then an arbitrary pure-state superposition
∑
n cn |sn〉 of these pointer states

|sn〉 results in the familiar entangled state
(∑

n

cn |sn〉
)
|E0〉 −→

∑
n

cn |sn〉 |En〉 . (2.116)

As described in Sect. 2.7, in the formalism of reduced density matrices this
leads to a decay of the off-diagonal terms in the {|sn〉} basis,

ρ̂S =
∑
nn′

cn c∗n′ |sn〉〈sn′ |〈En′ |En〉 −→
∑
n

|cn|2 |sn〉〈sn|, (2.117)

since the relative environmental states |En〉 become rapidly mutually orthog-
onal (distinguishable). Evidently, the interaction (2.116) does not result in
any dynamical change of any of the component states of S; its only effect
is pure, nonlocal entanglement. Thus decoherence should be understood as
a distinctly quantum-mechanical effect with no classical analog. This is the
formalism and the physical interpretation of decoherence used in this book.

However, the reader may find descriptions of several other processes in the
literature that are sometimes referred to as “decoherence” or that are claimed
to be “equivalent” to decoherence in some (formal, physical, etc.) sense. Most
of these associations are based on the observation that different processes may
all lead to the disappearance of off-diagonal elements (in some basis) in the
density matrix of the system. However, it is important to emphasize that
the density-matrix description is only a formal tool that, somewhat mislead-
ingly and deceptively, hides the crucial physical and conceptual differences



96 2 The Basic Formalism and Interpretation of Decoherence

between the processes whose effects may have a similar representation in the
density-matrix formalism. While in some cases, if one takes a practical point
of view (say, as a quantum engineer or experimentalist), it may occasionally
indeed be justified to associate processes different from pure environmental
entanglement with the term “decoherence,” the fundamental interpretation
of such processes is different from “true” decoherence in the sense used in
this book. This is not merely a philosophical issue: There always exists some
experimental procedure that would, at least in principle, be able to distin-
guish between the different physical processes underlying formally similar
density-matrix descriptions.

The most common and important example of “fake decoherence” (to use a
term coined by Joos [17]) is to interpret the result of an ensemble average over
different noisy realizations of a system as the description of a decoherence
process. This represents an example where formal similarities arising in the
density-matrix formalism lead to the (incorrect) classification as a physical
decoherence process. We may trace back the source of this confusion to the use
of density matrices to describe two physically very different settings. On the
one hand, the density-matrix formalism is often used to describe true physical
ensembles, i.e., a collection of N physical systems in which each individual
system is described by a pure state (see also the discussion in Sect. 2.4.5).
For example, suppose that each system is represented by a two-dimensional
Hilbert space spanned by the basis states |0〉 and |1〉, and that the pure state
of the ith system is given by

|ψi〉 =
1√
2

(
|0〉+ |1〉 eiφi

)
, (2.118)

where eiφi is some system-specific relative phase factor. These phase factors
may come about in two different ways. First, each system may have been
prepared in a slightly different initial state from the beginning. Alternatively,
all systems may start out in the same state but may be subject to slightly
different Hamiltonians. For example, the potential in the Hamiltonians Ĥi of
each system may contain random fluctuations, Vi(t) = V0(t) + δVi(t) [121].
In either case, the differences in the relative-phase factors for the different
systems can thus be thought of as being due to the presence of classical noise
(applied during the preparation of the system and/or during the subsequent
evolution).

If we now take the average over the ensemble {|ψi〉} of the pure states of
all N systems, we obtain the ensemble density matrix
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ρ̂ =
1
N

N∑
i=1

|ψi〉〈ψi|

=
1
2
|0〉〈0|+ 1

2
|1〉〈1|+

(
1

2N

N∑
i=1

eiφi

)
|1〉〈0|+

(
1

2N

N∑
i=1

e−iφi

)
|0〉〈1|.

(2.119)

In the limit of large N , the sums over the random phase factors e±iφi average
out to zero, and therefore

ρ̂ −→ 1
2
|0〉〈0|+ 1

2
|1〉〈1|. (2.120)

Evidently, this “ensemble dephasing” leads to a density matrix that has the
same diagonal form as the reduced density matrix of an individual system
subject to decoherence in the {|0〉 , |1〉} basis. However, in the case of (2.119)
and (2.120) the disappearance of the interference terms |0〉〈1| and |1〉〈0| is
simply the result of a mathematical averaging procedure over many members
in a physical ensemble of system (or, put differently, over the different in-
stances of particular noise processes). It does not correspond to decoherence
in our sense, which describes the delocalization of phase coherence for indi-
vidual systems. Another example of “fake decoherence,” this time resulting
from an averaging over dynamical phases in the density-matrix formalism,
has been critically analyzed in [122].

In fact, as we have pointed out in Sect. 2.4.5, the correct description of an
ensemble of N physical systems, each of which is described by a pure state
|ψi〉 of the form (2.118), is given by a pure-state (tensor) product of all states
|ψi〉,

|Ψ〉 =
N∏
i=1

|ψi〉 . (2.121)

This state “lives” in a 2N -dimensional Hilbert space, and thus the correspond-
ing density matrix has size 2N ×2N , rather than 2×2 as in (2.119). Without
environmental interactions, each individual system evolves completely unitar-
ily, and therefore the phase relations φi remain well-defined at all times. Only
formally these phases appear to be “washed out” when the density-matrix
formalism is used to represent ensemble averages over many physical systems,
as in (2.119), but they are not physically delocalized from the systems and re-
main therefore, at least in principle, experimentally accessible to the observer
of each of these systems. If we knew the time evolution of the noise process,
we could always apply a suitable unitary countertransformation to the sys-
tem that would completely reverse the effect of this noise on the system in
each individual run of the experiment. This reversal of ensemble dephasing
has been implemented in practice, for example, in NMR experiments. Here
a collection of spins eventually dephases, since noise effects cause each spin
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to precess at a slightly different frequency. However, by application of a suit-
ably chosen control pulse the spin ensemble can be “refocused” (this is the
so-called spin-echo technique).

Noise—the addition of random fluctuations to the Hamiltonian of the
system—does not create any system–environment entanglement and can be
completely undone (at least in principle) by local operations. By contrast,
decoherence means that the system becomes entangled with environmental
degrees of freedom such that phase relations are for all practical purposes
irreversibly lost from the system and can no longer be accessed by local mea-
surements performed on the system. In turn, information about the system
becomes imprinted in the environment. Thus, while in the case of classical
noise the system is perturbed by the environment, (2.115) shows that deco-
herence describes a situation in which the system perturbs the environment
(see also Sect. IV.C of [16]). The nonlocal nature of quantum states then
implies that this “distortion” of the environment by the system in turn influ-
ences what can be observed at the level of the system (as formally described
by the reduced density matrix). However, as discussed in Sect. 2.11, this influ-
ence takes place on typically much shorter timescales than the perturbation
of the system due to classical noise imparted by the environment.

Stochastic fluctuations (i.e., classical-noise processes) have often also been
used to simulate the influence of the environment on the system. Decoher-
ence is then modeled through stochastic “kicks” applied to the system (see,
e.g., [121, 123–125]). Of course, the same issues as discussed above apply
here as well. The application of classical noise to a system corresponds to
the unitary evolution of a closed system governed by a randomly fluctuating
Hamiltonian, while decoherence is represented by an open quantum system
becoming deterministically entangled with another quantum system (i.e., the
environment). In general, the quantum states of the system resulting from
these two situations will have different observable properties [121]. Only in
certain cases the simulation of decoherence by classical noise will lead to
formally similar results at the level of a density-matrix description. How-
ever, the fundamental conceptual differences between noise and decoherence
remain even in such cases. In Sect. 7.3, we will further discuss these differ-
ences in the context of quantum computing, in particular with respect to the
experimental and theoretical simulation of decoherence by noise.

2.13 Virtual Decoherence and Quantum “Erasure”

As discussed in Sect. 2.7, the effective irreversibility of the delocalization of
local phase relations—induced by our inability to control the large number
of degrees of freedom interacting with the system—is a hallmark of decoher-
ence. We may distinguish such “real” decoherence from a (truly or effectively)
reversible delocalization of phases, which we shall refer to as virtual decoher-
ence.
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The possibility of a true reversal of phase delocalization (i.e., the relocal-
ization of the superposition at the level of the system) is based on the fact that
the global system–environment evolution is completely unitary. Application
of an appropriate unitary countertransformation to the system–environment
combination then disentangles the system from the environment and dynam-
ically recovers the original separable system–environment product state. This
complete reversal of decoherence—corresponding, in effect, to a reversal of
the arrow of time—describes an actual recoherence process involving the lo-
cal recombination of wave-function components. This is analogous to the
reversible Stern–Gerlach experiment [126,127], where the two atomic beams
separated by the action of the magnetic field are subsequently recombined
(refocused). In practice, such reversible decoherence could be experimentally
studied through the coupling of the system to a second, fully controlled sys-
tem acting as an “artificial environment.” We will discuss a concrete proposal
for the experimental realization of this idea in Sect. 6.1.4.

The influence of decoherence on the system can also be effectively re-
versed by reconstructing the original pre-decoherence superposition state of
the system. An example of such an effective reconstruction of the original
state has become known under the heading of quantum erasure [75,128–130].
A similar idea underlies the concept of error correction in quantum computers
(see Sect. 7.4). The basic scheme of quantum “erasure” (the use of the quota-
tion marks will be motivated below) is typically described in the literature as
follows (see, e.g., [130]). We again consider the double-slit experiment, with
which-path detectors measuring through which slit the particle passes. The
composite system–detector evolution is then of the form (2.65), i.e.,

1√
2

(|ψ1〉+ |ψ2〉) |“ready”〉 −→ 1√
2

(|ψ1〉 |1〉+ |ψ2〉 |2〉) . (2.122)

We now couple the which-path detector to an explicit read-out device. The
measurement interaction is assumed to be of the form

|±〉 |Φ0〉 −→ |±〉 |Φ±〉 , (2.123)

where |Φ0〉 is the initial state of the read-out device, and |±〉 are the conjugate
states of the which-path detector,

|±〉 ≡ 1√
2

(|1〉 ± |2〉) . (2.124)

The resulting evolution of the total system composed of the particle, the
which-path detector, and the read-out device is then
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1√
2

(|ψ1〉+ |ψ2〉) |“ready”〉 |Φ0〉 −→
1√
2

(|ψ1〉 |1〉+ |ψ2〉 |2〉) |Φ0〉

=
1√
2

(|ψ+〉 |+〉+ |ψ−〉 |−〉) |Φ0〉

−→ 1√
2

(|ψ+〉 |+〉 |Φ+〉+ |ψ−〉 |−〉 |Φ−〉) ,

(2.125)

where |ψ±〉 are the conjugate states defined in (2.79).
The evolution (2.125) shows that the read-out device becomes quantum-

correlated with states of the which-path detector (namely, |±〉) that contain
no information about the path of the particle.26 In the standard collapse
picture of quantum mechanics, the measurement carried out by the read-
out device then projects the final state on the right-hand side of (2.125) onto
either one of the components |ψ+〉 |+〉 |Φ+〉 and |ψ−〉 |−〉 |Φ−〉. In other words,
the measurement “forces” the system into a state that does not allow us to
infer the path of the particle.

Hence interference between the path components |ψ1〉 and |ψ2〉 (as embod-
ied in the superpositions |ψ±〉) is restored in a nonlocal manner, in contrast
with an actual (local) recoherence process. It is in this sense that the initial
superposition |ψ+〉 (or the phase-reversed superposition |ψ−〉) of the system
is reconstructed. The erasure can therefore also be delayed until after the
registration of the particle on the screen. Such “delayed-choice” experiments
(see, e.g., [131]) go back in spirit to a thought experiment first proposed by
Wheeler [41]. Quantum “erasure” has been demonstrated in several experi-
ments [131–135], including a double-slit experiment with photons [135].

It should be emphasized, however, that the term “quantum erasure” is
quite misleading. To see this, let us distinguish two cases. First, we may as-
sume that the interaction (2.122) between the particle and the which-path
detector is irreversible (describing a measurement in the true sense—recall
that irreversibility may be regarded as a defining property of measurements).
In the open-systems picture, this irreversibility would arise from inevitable
environmental interactions and the resulting delocalization of phase relations
between the component states |ψ1〉 |1〉 and |ψ2〉 |2〉. Then the records of the
which-path measurement will be indelibly imprinted in the inaccessible envi-
ronment, and therefore we cannot actually erase this information.27

26This is so because, if we performed a measurement on the detector described
by either one of the states |+〉 or |−〉 to find out which of the two possible paths
the detector has registered, we would obtain the outcomes |1〉 and |2〉 with equal
probabilities.

27Of course, the particular source of the irreversibility of the which-path mea-
surement is not important for this argument. For example, we may also simply
assume that the irreversibility is due to a wave-function collapse.



2.14 Resolution into Subsystems 101

Alternatively, we may regard (2.122) as describing a reversible (and thus
only virtual) which-path “measurement.”28 In classical physics, “erasure”
would correspond to an irreversible destruction of information (e.g., via a
transformation into heat) [136]. The analogous process in the quantum set-
ting would be represented by an irreversible change of the (virtual) “results”
|1〉 and |2〉 of the reversible which-path “measurement” into new states |d1〉
and |d2〉 that depend in an uncontrolled manner on the previously registered
path of the particle and thus no longer encode which-path information. Hence,
from the point of view of which-path information, |d1〉 and |d2〉 are indistin-
guishable and may thus be jointly denoted by |d0〉. This reset [136,137] could
be accomplished by coupling the detector to an (uncontrolled) “sink” for in-
formation (realized, e.g., as a thermal bath), thereby inducing an effectively
irreversible evolution of the form

1√
2

(|ψ1〉 |1〉+ |ψ2〉 |2〉) |χ0〉 −→
1√
2
|ψ1〉 |d1〉 |χ1〉+ |ψ2〉 |d2〉 |χ2〉

≡ 1√
2

(|ψ1〉 |χ1〉+ |ψ2〉 |χ2〉) |d0〉 , (2.126)

where |χ0〉 is the initial state of the sink. The difference between the origi-
nal which-path detector states |1〉 and |2〉 must have been deterministically
transferred to the sink, thereby increasing the entropy of the detector and
compensating for the gain of information from the initial reversible which-
path “measurement.” Therefore the states |χ1〉 and |χ2〉 of the sink are distin-
guishable, and thus a true erasure of which-path information as implemented
by (2.126) would evidently introduce additional (and this time inevitably ir-
reversible) spatial decoherence of the particle. Evidently, the erasure process
(2.126) is very different from the evolution (2.125). In fact, for (2.125) to hold,
an irreversible destruction (i.e., an actual erasure) of which-path information
in the above sense (2.126) must not take place.

2.14 Resolution into Subsystems

Note that decoherence derives from the presupposition of the existence and
the possibility of a division of the world into “the system” and “the envi-
ronment.” In the decoherence program, the term “environment” is usually

28Here the use of quotation marks is intended to make clear the fact that it
is difficult to regard a reversible interaction as a proper measurement. Note also
that the transformation of the entangled particle–detector state from the first to
the second line of (2.125) leaves open the question of what was “measured” by
the which-path detector in the first place. From the first line of (2.125), we would
deduce a “measurement” in the basis {|ψ1〉 , |ψ2〉} of the system, while the second
line would imply a “measurement” in the conjugate basis {|ψ+〉 , |ψ−〉}. (This, of
course, is simply the preferred-basis problem discussed in Sect. 2.5.2.)
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understood as the “remainder” of the system, in the sense that the degrees
of freedom of the environment are typically not (cannot be, do not need to
be) controlled and are not directly relevant to the observation under con-
sideration, but that nonetheless the environment includes all those degrees
of freedom which contribute significantly to the evolution of the state of the
system. This is essentially the definition originally given in Zurek’s first paper
on decoherence and pointer states [8, p. 1520].

This system–environment dualism is generally associated with quantum
entanglement, which always describes a correlation between parts of the uni-
verse. As long as the universe is not resolved into individual subsystems, there
is no measurement problem: The state vector |Ψ〉 of the entire universe29

evolves deterministically according to the Schrödinger equation, which poses
no interpretive difficulty. The measurement problem arises only once we de-
compose the total Hilbert space H of the universe into a product of two
spaces H1⊗H2 and would like to assign an individual state to one of the two
subsystems. Zurek [16, p. 718] puts it like this:

In the absence of systems, the problem of interpretation seems to
disappear. There is simply no need for “collapse” in a universe with
no systems. Our experience of the classical reality does not apply to
the universe as a whole, seen from the outside, but to the systems
within it.

Moreover, terms like “observation,” “correlation,” and “interaction” will nat-
urally make little sense without a division into systems. Zeh has suggested
that the locality of the observer defines an observation in the sense that any
observation arises from the ignorance of a part of the universe, and that
this locality also defines the “facts” that can occur in a quantum system.
Landsman [139, pp. 45–46] argues similarly:

The essence of a “measurement,” “fact” or “event” in quantum me-
chanics lies in the non-observation, or irrelevance, of a certain part
of the system in question. (. . . ) A world without parts declared or
forced to be irrelevant is a world without facts.

However, the assumption of a decomposition of the universe into subsys-
tems (as necessary as it appears to be for the emergence of the measurement
problem and for the formulation of the decoherence program) is definitely
nontrivial. By definition, the universe as a whole is a closed system, and
therefore there are no “unobserved degrees of freedom” of an external envi-
ronment. We thus cannot apply the theory of decoherence to the universe
in its entirety in order to determine the “global” quasiclassical observables.
Also, there exists no general criterion for how the total Hilbert space is to
be divided into subsystems, while at the same time much of what is called a
property of the system will depend on its correlation with other systems. This

29If we dare to postulate this total state—see counterarguments by Auletta [138].
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problem becomes particularly acute if one would like decoherence not only to
motivate explanations for the subjective perception of classicality (see, e.g.,
Sects. 8.2 and 9.4), but moreover to allow for the definition of quasiclassical
“macrofacts.” Zurek [104, p. 1820] was one of the first to clearly point out
this conceptual difficulty:

In particular, one issue which has been often taken for granted is
looming big, as a foundation of the whole decoherence program. It is
the question of what are the “systems” which play such a crucial role
in all the discussions of the emergent classicality. (. . . ) [A] compelling
explanation of what are the systems—how to define them given, say,
the overall Hamiltonian in some suitably large Hilbert space—would
be undoubtedly most useful.

A frequently proposed idea is to abandon the notion of an “absolute” res-
olution and instead to postulate the intrinsic relativity of the distinct state
spaces and properties that emerge through the correlation between these
relatively defined spaces (see, for example, the proposals, unrelated to de-
coherence, in [140–143]). This relative view of systems and correlations has
counterintuitive, in the sense of nonclassical, implications. However, as in the
case of quantum entanglement, these implications need not be taken as para-
doxes that demand further resolution. Accepting some properties of nature
as counterintuitive is indeed a satisfactory path to take in order to arrive at
a description of nature that is as complete and objective as is allowed by the
range of our experience (which is based on inherently local observations).

2.15 Formal Tools and Their Interpretation

Let us now briefly outline a few formal procedures that are often used and
referred to in the context of decoherence. In Sect. 2.15.1, we will introduce
the Schmidt decomposition theorem, which tells us that a bipartite state can
always be written in a diagonal form reminiscent of the final state at the
conclusion of a von Neumann measurement. Both meaningful and spurious
connections between the Schmidt decomposition and decoherence will be dis-
cussed. In Sect. 2.15.2, we will introduce the Wigner representation of the
density matrix. This representation is often a useful tool for visualizing deco-
herence in phase space. In Sect. 2.15.3, we will then show that it is possible
to view any given density matrix as a traced-over pure-state density matrix
of a larger system. Finally, in Sect. 2.15.4, we shall introduce the so-called
operator-sum formalism. While application of this formalism to more com-
plex decoherence models is usually not feasible, it provides a very general
framework for describing the reduced dynamics of a system interacting with
an environment.
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2.15.1 The Schmidt Decomposition

Consider two systems A and B endowed with Hilbert spaces HA and HB,
respectively. Then the Schmidt decomposition theorem [144] tells us that an
arbitrary pure state |Ψ〉 of the composite system AB can always be written
in the diagonal (or “Schmidt”) form

|Ψ〉 =
∑
i

λi |ai〉 |bi〉 . (2.127)

Here the Schmidt states |ai〉 and |bi〉 form orthonormal bases (the so-called
Schmidt bases) of HA and HB, respectively, and the expansion coefficients
λi are complex numbers fulfilling

∑
i |λi|

2 = 1. However, by absorbing the
phase factors into the Schmidt basis states, these coefficients can be chosen
to be real and nonnegative numbers

√
pi obeying

∑
i pi = 1, and thus the

Schmidt decomposition can be written as

|Ψ〉 =
∑
i

√
pi |ai〉 |bi〉 . (2.128)

Furthermore, it can be shown that this decomposition is unique if and only
if the coefficients

√
pi are all different from one another.

The issue of the uniqueness of the Schmidt decomposition has already
been touched upon in our discussion of the preferred-basis problem in
Sect. 2.5.2. There we showed that the basis ambiguity in the final compos-
ite system–apparatus state (which arises as the result of a von Neumann
measurement interaction and is in the diagonal Schmidt form) leads to the
problem that the measured observable cannot be uniquely inferred from this
state.

The Schmidt theorem also has immediate implications for the reduced
density matrices ρ̂A and ρ̂B of A and B, respectively. Using (2.128), ρ̂A is
given by

ρ̂A = TrB |Ψ〉〈Ψ |

=
∑
k

〈bk|

⎡
⎣∑

ij

√
pipj |ai〉〈aj | ⊗ |bi〉〈bj |

⎤
⎦ |bk〉

=
∑
i

pi|ai〉〈ai|, (2.129)

and similarly

ρ̂B = TrA |Ψ〉〈Ψ |
=
∑
i

pi|bi〉〈bi|. (2.130)
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Thus ρ̂A and ρ̂B are diagonal in the bases {|ai〉} and {|bi〉}, respectively, and
have the same spectrum {pi}. Applied to the decoherence-relevant case of a
system interacting with an environment, the Schmidt theorem means that we
can always find an orthonormal basis in which the reduced density matrix of
our system of interest becomes exactly diagonal.

Thus the Schmidt decomposition of a density matrix refers simply to its
formal diagonalization and the fact that this diagonalization can always be
done. While this decomposition plays an important role in many areas of
quantum physics, its relevance to a description of decoherence and to inter-
pretive problems in quantum mechanics has sometimes been misrepresented.
This might be due to the fact that, since the effect of decoherence is described
in terms of a vanishing of off-diagonal elements of the (reduced) density ma-
trix in a specific environment-selected basis, decoherence may formally ap-
pear to correspond to a density-matrix diagonalization, which is precisely the
subject of the Schmidt decomposition.

In fact, the Schmidt basis, obtained by diagonalizing the density matrix of
the system at each instant of time, has been frequently studied with respect to
its ability to yield a preferred basis (see, for example, [5,6,145,146]). This has
led some to consider the Schmidt basis states as describing “instantaneous
pointer states” [145]. However, the Schmidt decomposition is a purely mathe-
matical procedure that has no a priori physical or interpretive meaning. The
Schmidt theorem applied to reduced density matrices simply states that every
such density matrix can be diagonalized in some basis. However, this basis
will not necessarily represent quasiclassical properties (see, e.g., [147, 148]).
This is in stark contrast with the environment-induced approximate diago-
nalization of the reduced density matrix in the pointer basis selected by the
structure of the system–environment interaction. The important distinction
between pointer states and the states that diagonalize the density matrix
was first clearly noted by Zurek [8], laying the foundation for subsequent
developments, such as the predictability sieve discussed in Sect. 2.8.3.

Other approaches have refrained from computing instantaneous Schmidt
states and have instead allowed for a characteristic decoherence time to pass
during which the reduced density matrix becomes approximately diagonal
in the basis selected by the structure of the system–environment interac-
tion (this process can, for example, be described by an appropriate master
equation; see Chap. 4). Schmidt states are then calculated by diagonalizing
this decohered density matrix. Since decoherence usually leads to rapid di-
agonality of the reduced density matrix in the pointer basis to a very good
approximation, the resulting Schmidt states are typically very similar to the
environment-superselected states, except in cases where the latter states are
very nearly degenerate.

This particular situation of near-degeneracy is readily illustrated [146].
Consider a system described by a two-dimensional Hilbert space. Suppose
the action of decoherence has resulted in the system’s being represented by
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a reduced density matrix (expressed in the environment-superselected basis)
of the form

ρ =
(

1/2 + δ ω∗

ω 1/2− δ

)
, (2.131)

with |ω| � 1 (strong decoherence) and δ � 1 (near-degeneracy). If decoher-
ence led to exact diagonality, ω = 0, the eigenvectors of ρ would be, for any
fixed value of δ, proportional to (0, 1) and (1, 0) (corresponding to the “ideal”
pointer states). However, for ω > 0 (approximate diagonality) and δ −→ 0
(degeneracy), the eigenvectors—and thus the Schmidt states—become pro-
portional to (±|ω|/ω, 1). This implies that, in the case of degeneracy, the
Schmidt decomposition of the reduced density matrix may yield states that
are very different from the environment-superselected states, even if the deco-
hered (rather than the instantaneous) reduced density matrix is diagonalized.

In summary, it is important to emphasize that the resilience to envi-
ronmental entanglement is the relevant criterion for obtaining the preferred
quasiclassical pointer states. These states cannot, in general, be arrived at by
simply diagonalizing the instantaneous density matrix of the system. How-
ever, the eigenstates of the decohered reduced density matrix will, in many
situations, approximate the quasiclassical stable pointer states well, especially
when these latter states are sufficiently nondegenerate.

2.15.2 The Wigner Representation

The Wigner representation (or Wigner function) is often used as an alter-
native to the density matrix for systems described by a continuous degree of
freedom. Typically, this degree of freedom is the position x of the system,
and we shall here focus on this case. Given the (pure-state or mixed-state)
position-space density matrix ρ(x, x′) ≡ 〈x| ρ̂ |x′〉 of the system, the Wigner
function is defined as [149,150]

W (x, p) ≡ 1
2π

∫ +∞

−∞
dy eipyρ(x + y/2, x− y/2), (2.132)

where p is the momentum of the particle (or, more generally, the variable
conjugate to x).

The Wigner function bears some similarities to a (classical) probability
distribution in phase space. For example, W (x, p) is a real-valued function
of x and p, and the probability distributions P (x) ≡ ρ(x, x) and P (p) ≡
ρ̃(p, p) ≡ 〈p| ρ̂ |p〉 for x and p can be recovered as the marginals of W (x, p),

P (x) = ρ(x, x) =
∫

dpW (x, p), (2.133)

P (p) = ρ̃(p, p) =
∫

dxW (x, p), (2.134)
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with
∫

dx
∫

dpW (x, p) = Tr(ρ̂) = 1.
However, there are important caveats that show that one must not take

too far this tempting identification between the Wigner function and a prob-
ability distribution in phase space. Most importantly, the Wigner function
will in general take on negative values in some regions, which demonstrates
that it cannot represent a proper probability distribution. (In fact, one can
show that the Wigner function of a pure state has no negative values if and
only if the state is Gaussian [151]). Of course, this finding should not be
all that surprising. After all, the uncertainty relation of quantum mechan-
ics forbids the simultaneous determination of position and momentum with
arbitrary precision. Therefore, quite simply, an actual quantum phase-space
distribution cannot possibly exist.

Despite these cautionary remarks, in many cases the Wigner function
allows us to nicely visualize position–momentum correlations and quantum
interferences in phase space. The use of the Wigner function to represent
“double slit–like” superpositions and to study the dynamics of phase-space
decoherence goes back to Zurek [13]. In this book, we will employ the Wigner
function in our study of quantum Brownian motion in Sect. 5.2.

To get a feel for what the Wigner function looks like, let us consider a
superposition of two Gaussian wave packets separated by a distance Δx in
position space (see Fig. 2.7). The corresponding Wigner function is shown
in Fig. 2.8. We observe two main peaks together with an oscillatory pattern.
The main peaks, often also called the direct peaks, are located in the clas-
sically expected phase-space regions (i.e., separated by Δx in position and
identical with respect to their extension in the momentum direction). We may
therefore view these peaks as akin to describing the “classical” phase-space
distribution described by the two superimposed peaks. We clearly see the
significant spread in the momentum direction, which is a consequence of the
fairly tight localization in position space: According to the uncertainty prin-
ciple, we cannot have perfect localization in both position and momentum,

x

Δx

Fig. 2.7. Illustration of a superposition of two Gaussian wave packets separated
by Δx in space.
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x

p

interferencedirect peak

direct peak

Fig. 2.8. Wigner representation of a superposition of two Gaussian wave packets
separated in position space (see Fig. 2.7).

and the better the localization in position, the broader will be the spread in
the momentum direction.

The oscillatory pattern visible in Fig. 2.8, with its ridges parallel to the
line joining the two main peaks, is the telltale sign for the presence of quantum
interference between the two wave packets. When the interaction with an
environment monitoring the position of the system leads to a suppression
of spatial coherence, these oscillations become damped (see Fig. 2.9). This
provides us with an intuitive method for visualizing the action of decoherence
in phase space.

One can show that, for the superposition state of two spatially separated
Gaussian wave packets considered here, the frequency f of the oscillatory pat-
tern in the Wigner function is directly related to the separation Δx between
the wave packets in position space via

f = Δx/�. (2.135)

Thus, broadly speaking, the oscillations in the Wigner function will get more
rapid as the superposition state becomes more nonclassical. We also clearly

x

p

Fig. 2.9. The interaction with the environment and the resulting suppression of
interference manifests itself through the damping of the oscillatory pattern in the
Wigner representation (compare Fig. 2.8).
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see from Fig. 2.8 that the Wigner function takes on negative values, in par-
ticular in the region of the oscillatory pattern. As discussed above, this is
a direct visual indicator that we cannot interpret the Wigner function as a
classical phase-space probability distribution.

2.15.3 “Purifying” the Environment

When discussing the trace operation in Sect. 2.4.6, we have shown how to
obtain the reduced state of a system from the pure state of a larger composite
system—in our case, the system of interest together with its environment. It
should not come as a surprise that we can also “invert” this procedure to
purify any given nonpure state (in a Hilbert space of finite dimension). By
this statement we mean the ability of regarding an arbitrary nonpure state
as the reduced state of the pure state of a larger system.

The proof of this statement is absolutely straightforward. Suppose our
system of interest S is described by some (in general nonpure) density matrix
ρ̂S in a Hilbert space HS . From Sect. 2.4 [see especially (2.20)] we know
that any density matrix can be written in the form ρ̂S =

∑
i pi|ψi〉〈ψi|,

where the pi are nonnegative real numbers obeying
∑
i pi = 1. Let us now

introduce another (fictitious) system, which we may call the “environment”
E (although, of course, no particular physical role or representation needs to
be attached to this second system). We take the Hilbert space HE of E to
have the same dimensionality as HS and choose an orthonormal basis {|φi〉}
of HE . Let us define the pure state

|Ψ〉 ≡
∑
i

√
pi |ψi〉 |φi〉 (2.136)

of the composite SE system. The corresponding pure-state density matrix is
then

ρ̂ = |Ψ〉〈Ψ | =
∑
ij

√
pipj |ψi〉〈ψj | ⊗ |φi〉〈φj |. (2.137)

If we now take the trace over our fictitious “environment” E , we simply
recover the original density matrix ρ̂S of S,

TrE ρ̂ =
∑
k

〈φk|

⎡
⎣∑

ij

√
pipj |ψi〉〈ψj | ⊗ |φi〉〈φj |

⎤
⎦ |φk〉 (2.138)

=
∑
i

pi|ψi〉〈ψi| = ρ̂S . (2.139)

This “purification theorem” has an important implication. In discussions of
decoherence one can always assume, without loss of generality, that the envi-
ronment is in a pure state before its interaction with the system of interest.
This is so because in cases where the environment is not in a pure state to
begin with, we can always purify it through the introduction of an additional
(fictitious) environment.
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2.15.4 The Operator-Sum Formalism

Let us introduce a completely general formalism for representing the influence
of the environment on the reduced density matrix of the system, without any
reference to the particular form of the Hamiltonian. The derivation of this so-
called operator-sum formalism (often also referred to as the Kraus-operator
formalism [152]) is very simple and goes as follows.

To begin, suppose that the system S and its environment E are initially
completely uncorrelated, such that the joint density matrix is

ρ̂(0) = ρ̂S(0)⊗ ρ̂E(0). (2.140)

We can then write down the diagonal decomposition of the initial density
matrix ρ̂E(0) of the environment,

ρ̂E(0) =
∑
i

pi|Ei〉〈Ei|. (2.141)

Here the coefficients pi obey
∑
i pi = 1, and the environmental states |Ei〉

form a set of orthonormal basis states of the Hilbert space HE of the envi-
ronment.

Given the usual unitary time evolution operator Û(t) = e−iĤt, where Ĥ is
the total Hamiltonian (here assumed to be time-independent) of the system–
environment combination, the evolution of the reduced density matrix ρ̂S(t)
of the system is given by

ρ̂S(t) = TrE

{
Û(t)

[
ρ̂S(0)⊗

(∑
i

pi|Ei〉〈Ei|
)]

Û†(t)

}
. (2.142)

If we explicitly carry out the trace operation in the basis {|Ei〉}, (2.142)
becomes

ρ̂S(t) =
∑
j

〈Ej | Û(t)

[
ρ̂S(0)⊗

(∑
i

pi|Ei〉〈Ei|
)]

Û†(t) |Ej〉

=
∑
ij

√
pi 〈Ej | Û(t) |Ei〉 ⊗ ρ̂S(0)⊗√pi 〈Ei| Û†(t) |Ej〉

≡
∑
ij

Êij ⊗ ρ̂S(0)⊗ Ê†ij .

(2.143)

In the last line we have defined the Kraus operators [152]

Êij ≡
√
pi 〈Ej | Û(t) |Ei〉 (2.144)

acting on the Hilbert space HS of the system.
The Kraus operators contain all the available information about the initial

state of the environment and about the dynamics of the system–environment
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combination. Thus they entirely encapsulate the effect of the environment on
the reduced density matrix of the system. The Kraus operators depend on
the particular choice of the basis {|Ei〉} used in performing the trace, but are
otherwise uniquely determined by the initial state of the environment E and
the Hamiltonian of the joint SE system.

Since the evolution of the composite SE system is unitary, the Kraus
operators satisfy the completeness constraint

∑
ij

ÊijÊ
†
ij = ÎS . (2.145)

This can be readily seen from the fact that
∑
ij

ÊijÊ
†
ij =

∑
ij

pi 〈Ej | Û(t) |Ei〉 〈Ei| Û†(t) |Ej〉

=
∑
i

pi 〈Ei| Û†(t)

⎛
⎝∑

j

|Ej〉〈Ej |

⎞
⎠ Û(t) |Ei〉

=
∑
i

pi 〈Ei| Û†(t)Û(t) |Ei〉

=

(∑
i

pi

)
ÎS

= ÎS . (2.146)

Equation (2.145) can therefore be viewed as an indicator for the unitary
evolution of SE . If this relation was not fulfilled, we would have to infer the
existence of another environment E ′ interacting with SE , which would lead
to an effectively nonunitary evolution of SE .

The operator-sum (or Kraus-operator) approach neatly represents the
effect of the environment as a sequence of (in general nonunitary) transfor-
mations of the reduced density matrix generated by the operators Êij , see
(2.144). This approach provides a compact and transparent framework for
the formal representation of the evolution of the reduced density matrix.
However, its practical usefulness for explicitly calculating the decoherence
dynamics in concrete situations of interest is somewhat limited, for several
reasons.

First, the task of computing the Kraus operators (2.144) corresponds to
diagonalizing the full Hamiltonian Ĥ. Except for a very few simple decoher-
ence models (such as the model described in Sect. 2.10), this diagonalization
is usually impossible to carry out in practical applications. Second, the Kraus
operators contain all (i.e., both unitary and nonunitary) contributions to the
evolution of the reduced density matrix. When discussing decoherence, how-
ever, we are usually interested only in the nonunitary terms (since these are
the contributions responsible for decoherence). This desired clear distinction
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into nonunitary and unitary terms is not afforded by the above operator-sum
formalism. Third, the dynamics described by the Kraus operators are often
unnecessarily detailed, as they represent the exact evolution of the reduced
density matrix, including, for example, all possible back-action effects from
the system on the environment. In many situations of practical interest, such
effects can be neglected, and one is then able to derive simplified (“master”)
equations for the approximate evolution of the reduced density matrix of the
system. Such equations will be discussed in detail in Chaps. 4 and 5.

2.16 Summary

Let us summarize some of the main points and results of this chapter.

– Quantum states differ fundamentally from states in classical physics. They
do not simply describe a catalog of values of physical quantities that could
be arbitrarily enlarged through additional measurements, since in general
a measurement fundamentally alters the quantum state.

– Coherent superpositions are at the heart of quantum mechanics and can-
not be interpreted as classical ensembles of states. Superpositions describe
individual physical states. In the laboratory, their existence and quantum
nature are typically verified by means of interference experiments.

– Quantum entanglement describes nonlocal quantum correlations between
systems and is at the heart of decoherence. Entanglement goes far beyond
the classical concept of probability relations between systems.

– The concept of density matrices plays an important role in the formal de-
scription of decoherence. We distinguished three different types of density
matrices:
– Pure-state density matrices are the direct density-matrix equivalent of

pure states and represent a completely known (physical) state of the
system.

– Mixed-state density matrices describe a classical probability distribu-
tion (i.e., an ignorance-interpretable ensemble) of pure states.

– Reduced density matrices exhaustively describe the statistics of all pos-
sible measurements that can be performed on a subsystem of a larger
system. In the context of decoherence, they are used to describe the
local measurement statistics for a system entangled with an environ-
ment. Reduced density matrices are obtained by a (nonunitary) trace
operation over all degrees of freedom other than those of the system of
interest. They represent improper ensembles and therefore must not
be interpreted as mixed-state density matrices.

– The measurement problem, and the more general problem of the quantum-
to-classical transition, is composed of three main issues:
– The preferred-basis problem (what determines the preferred physical

quantities of our experience?).
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– The problem of the nonobservability of interference (why is it so hard
to observe interference effects?).

– The problem of outcomes (why do measurements seem to have out-
comes at all, and what selects the particular observed outcome?).

As we have indicated in this chapter and will discuss further in other
places of this book (see, e.g., Chap. 8), it is reasonable to conclude that
decoherence is capable of solving the first two problems, whereas the third
problem is intrinsically linked to matters of interpretation that are mostly
outside of the scope of decoherence.

– Bohr’s famous “complementarity principle” can be understood as a conse-
quence of entanglement. A second system S ′ entangled with the system of
interest S can encode information about S in the following sense. The less
the overlap between the relative states of S ′ that are quantum-correlated
with the components in a superposition state of S, the better S ′ is able
to distinguish between these components and the more difficult it is to
observe interference between the components through measurements per-
formed on S only.

– Decoherence is based on the idea that physical systems are immersed
into environments that play the role of the second system S ′: Through
entanglement between the system and its environment, the environment
continuously monitors certain states of the system. Which states are mon-
itored in a particular situation depends on the form of the specific system–
environment interaction.

– This environmental monitoring implies that information about certain
states of the system becomes encoded in the environment. If the system
is described by a superposition of these states, we would (if only in prin-
ciple) be able to distinguish these component states by measuring the
environment, which forces out the decay of interference between the com-
ponents at the local level of the system. To observationally confirm the
existence of the superposition, we would need to perform measurements
on the composite system–environment system, which is impossible for all
practical purposes in most physically realistic situations. Thus coherence
is practically irreversibly delocalized into the larger system–environment
combination through uncontrolled environmental entanglement and thus
becomes effectively unavailable to the observer who has only access to the
system.

– This decoherence process has three interrelated consequences:
– The local damping of coherence between the states monitored by the

environment. This provides a solution to one component of the mea-
surement problem, namely, the problem of the nonobservability of in-
terference.

– The environment-induced superselection of preferred states (pointer
states) for the system. These are the states most immune to entangle-
ment with the environment and thus to decoherence. Because of their
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robustness, they can be regarded as effectively classical. We discussed
how to determine these pointer states, given the total Hamiltonian
describing the global system–environment dynamics. Environment-
induced superselection provides a very general explanation for the
emergence of the preferred physical quantities in nature (such as posi-
tion or charge, instead of superpositions thereof) and thus an effective
solution to the preferred-basis problem.

– The robust and redundant encoding of information about the environ-
ment-superselected states in the environment, allowing observers to
gain information about the system by intercepting fragments of the
environment. This approach mirrors closely how information is usually
gathered by observers and minimizes the disturbance of the system
imparted by the observer.

– We emphasized that decoherence is a pure quantum-mechanical effect
without classical analog. In particular, decoherence does not need to be
accompanied by dissipation. If it is, then decoherence typically happens
on timescales vastly shorter than the timescales for dissipation (especially
on macroscopic scales). Also, classical noise processes have to be clearly
distinguished from decoherence, both from conceptual and observational
points of view.



3 Decoherence Is Everywhere:
Localization Due to Environmental Scattering

It is fair to say that localization induced by the scattering of environmental
particles really lies at the heart of the decoherence program and the quantum-
classical transition, for several reasons.

Together with the emission of thermal radiation (see Sect. 6.2.5), en-
vironmental scattering is the dominant and ubiquitous process for decoher-
ence in the macroscopic domain. Air molecules, light (optical photons), back-
ground radioactivity, cosmic muons, solar neutrinos, and even the 3 K cosmic
background radiation present everywhere in the universe continuously mon-
itor the position of the quantum system of interest. This results in system–
environment entanglement that delocalizes local phase relations between spa-
tially separated wave-function components, leading to decoherence in position
space (i.e., to localization). While sophisticated experimental setups may be
able to shield the system from some of these environmental particles (such
as air molecules and light), it is prohibitively difficult, if not impossible, to
exclude other influences.

The quantum nature of decoherence is again important in understand-
ing why environmental scattering by essentially any particle is relevant. As
already pointed out in Chap. 1 and more generally discussed in Sect. 2.11,
in the classical picture of scattering the scatterer will only be influenced by
the scattered particle if the mass of the latter particle is sufficiently large in
comparison with the mass of the scatterer. Simply put, in determining the
Newtonian dynamics of a billiard ball we do not need to concern ourselves
with the influence of air molecules, photons, etc. By contrast, in the quan-
tum picture any interaction between the scattering system and the scattered
particle may lead to entanglement and thus to decoherence, irrespective of
the mass ratio. Typically, the more macroscopic the object, the larger its
scattering cross section, and thus the stronger and faster it is decohered by
environmental scattering. This behavior can be understood from the fact that,
as discussed in Sect. 2.12, decoherence corresponds to a situation in which
the system perturbs the environment (a process which in turn influences the
reduced dynamics of the system). It is thus intuitively clear that the degree
of this perturbation—and thus the amount of decoherence introduced into
the system—will increase with the size of the system.
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Environmental scattering and the resulting process of spatial localization
also play a key role for historical reasons. The attempt to directly identify
narrow wave packets in position space with particles and their trajectories
goes back to the early years of quantum mechanics. Based on ideas inspired
by the theory of relativity and the photoelectric effect, the French physicist
Louis de Broglie suggested in the early 1920s that every particle of mass
m and velocity v has a quantum “matter wave” of wavelength λ = h/mv
associated with it [34, 153–155]. Schrödinger was heavily influenced by de
Broglie’s Ph.D. thesis of 1924 [156], as evidenced in a letter to Einstein dated
November 16, 1925:

I have been intensely concerned these days with Louis de Broglie’s
ingenious theory. It is extraordinarily exciting, but still has some very
grave difficulties.

Only weeks later, Schrödinger identified de Broglie’s matter wave with a wave
function ψ and formulated his famous wave equation that specified the time
evolution of this wave function, thereby giving birth to wave mechanics.

However, in developing his theory, Schrödinger became immediately aware
of the problem of how to describe particles by spatially extended waves. It is
well known that, for a free particle, unitary time evolution tends to coherently
spread out any spatially localized wave packet (Fig. 3.1). For example, if at
time t = 0 a free particle is described by a wave packet of the form

ψ(x, t = 0) =
(

1√
πσ

)1/2

exp
[
− x2

2σ2

]
, (3.1)

the position probability density |ψ(x, t)|2 at a later time t > 0 is given by

|ψ(x, t)|2 =
1

√
πσ [1 + �2t2/(m2σ4)]1/2

exp
[
− x2

σ2 [1 + �2t2/(m2σ4)]

]

≡ 1√
πσ(t)

exp
[
− x2

σ2(t)

]
. (3.2)

x x

|ψ(x, 0)|2

|ψ(x, t)|2

Fig. 3.1. Coherent spread of the probability density |ψ(x, t)|2 for a free-particle
Gaussian wave packet under unitary time evolution.
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This means that the width σ of the wave packet grows as

σ(t) = σ
[
1 + �

2t2/(m2σ4)
]1/2

. (3.3)

For microscopic particles, this spreading occurs on very short timescales. For
example, if the Gaussian wave packet describes a particle with the mass of
an electron (m ≈ 10−30 kg) and has an initial width of σ = 1 Å, unitary time
evolution spreads the wave packet to a width on the order of 1016σ = 106 m
(or 1,000 km!) within a second. This effect of coherent spreading for free-
particle wave functions posed a serious difficulty to approaches that tried to
relate narrow wave packets to particles. How could we ever directly identify
any objects—that evidently remain in spatially well-defined regions—with
quantum-mechanical wave packets, if these packets immediately and coher-
ently disperse over macroscopic distances?

Since the attempt to establish a one-to-one correspondence between
wave packets and particles had failed for the case of isolated free particles,
Schrödinger turned his attention to situations in which particles are subject
to a potential. In particular, in a famous 1926 paper entitled “The continu-
ous transition from micromechanics to macromechanics”1 [157], he used the
example of the quantum harmonic oscillator to show that, by forming a par-
ticular linear combination of the position-space solutions of the Schrödinger
equation, each of which represents a spatially spread-out wave, the result-
ing wave packet is not only narrow at t = 0, but also remains narrow at all
subsequent times t > 0, with its peak oscillating back and forth just like a
classical point mass.

Schrödinger, of course, had discovered the coherent states of the quantum
harmonic oscillator, i.e., minimum-uncertainty wave packets in phase space
that follow classical trajectories. This success led Schrödinger to the upbeat
prediction that [157, p. 666]

in much the same way, one will be able to construct wave packets
which follow elliptical Kepler orbits with large quantum numbers and
which are the wave-mechanical image of the electron in the hydro-
gen atom; it is just that one might encounter more mathematical
difficulties than in the particularly simple example discussed here.2

1The original German title reads: “Der stetige Übergang von der Mikro- zur
Makromechanik.”

2The original German text reads: “Es läßt sich mit Bestimmtheit vorausse-
hen, daß man auf ganz ähnliche Weise auch die Wellengruppen konstruieren
kann, welche auf hochquantigen Keplerellipsen umlaufen und das undulationsmech-
anische Bild des Wasserstoffelektrons sind; nur sind da die rechentechnischen
Schwierigkeiten größer als in dem hier behandelten, ganz besonders einfachen Schul-
beispiel.”
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However, this—as it turns out, too optimistic3—assessment did not touch
upon the core problem identified earlier, namely, of how to describe free
particles in terms of wave packets. Several decades after the publication of
Schrödinger’s paper, an understanding of the importance of the openness
of quantum systems and of the resulting decoherence effects [4–6, 8, 9, 12]
brought us a major step closer to resolving the difficulty of how to reconcile
the predictions of the Schrödinger equation for free particles with the fact
that every macroscopic objects appears localized. The seminal paper of Joos
and Zeh [7] showed, through detailed models and numerical results, how
the ubiquitous scattering of photons, air molecules, and other environmental
particles effectively suppresses the coherent spreading on extremely short
timescales. This decoherence process leads to a reduced density matrix for
the system that represents an (improper) ensemble of position-space wave
packets whose widths rapidly decrease toward the thermal de Broglie wave
length (2.114).

In the following, we will study a model for scattering-induced decoherence
that goes back to the original model of Joos and Zeh [7]. It is now understood
that the derivation of the equation of motion for the reduced density matrix
as presented in [7] contains a subtle flaw, which results in a decoherence rate
that is larger by a factor of 2π compared to the correct result [159–161].
Of course, at the time of the publication of their paper (1985), Joos and
Zeh were merely interested in simple estimates of decoherence timescales,
since measurements of such timescales seemed out of reach for any exper-
iment. However, over the past few years a rapid progress in experimental
techniques has enabled researchers to make very precise measurements of de-
coherence timescales even for mesoscopic and macroscopic objects (see, e.g.,
the interference experiments with C70 molecules described in Sect. 6.2). These
measurements are sensitive to differences on the order of the aforementioned
factor of 2π, and it has therefore become important to employ a theory of
environmental scattering that gives the quantitatively correct results.

Furthermore, the original work by Joos and Zeh was based on an assump-
tion about the relative wavelengths of the object and the scattered environ-
mental particles. A more general approach that relaxed this assumption but
did not address the aforementioned flaw in the derivation (thus still leading

3The case of Kepler orbits does not give rise to the exact coherent states as in
the idealized example of a quantum harmonic oscillator. Another interesting exam-
ple is the case of Hyperion, a moon of Saturn that has been observed to exhibit
chaotic tumbling. Chaotic dynamics imply an exponential sensitivity of the (classi-
cal) trajectory on the initial phase-space parameters, which cannot be specified with
arbitrary precision due to the Heisenberg uncertainty principle. Thus an initially
narrow phase-space wave packet describing Hyperion would very rapidly spread
over large spatial regions. In fact, Zurek [158] estimated that within ≈ 20 years
the quantum state would be a highly nonlocal coherent superposition of macro-
scopically distinguishable orientations of the satellite’s major axes. Thus even on
planetary scales the problem of coherent spreading may arise.
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to the additional incorrect factor of 2π) was subsequently given by Gallis and
Fleming [162]. The first derivation remedying this flaw and arriving at the
correct result for the decoherence rate was presented by Diósi [159]. Several
years later, Hornberger and Sipe [160] revisited the problem of environmen-
tal scattering and obtained the correct result using a sophisticated approach
quite different from that of Diósi. While their reevaluation is very careful and
thorough, it is also rather complicated. Recently, Adler [161] showed that the
correct result can be obtained in a significantly easier manner by means of
a little trick. Other derivations have been discussed by, e.g., Halliwell [163]
and Hornberger [164, 165]. Our following presentation will mainly adhere to
the derivations of Hornberger and Sipe [160] and Adler [161], with the goal
of obtaining the correct result while keeping the calculations as simple as
possible.

This chapter is organized as follows. Section 3.1 will introduce our scatter-
ing model. In Sect. 3.2, we will compute the explicit form of the decoherence
factor that describes the decay of spatial coherences. In Sect. 3.3, we will
treat two important limiting cases, namely, the situation of environmental
wavelengths that are short (Sect. 3.3.1) and long (Sect. 3.3.2) in comparison
with the coherent separation between the two center-of-mass positions in a
spatial superposition state of the system. Section 3.4 will apply our theory
to the scattering of photons (Sect. 3.4.1) and air molecules (Sect. 3.4.2). Fi-
nally, in Sect. 3.5, we will discuss the explicit dynamics resulting from such
scattering-induced decoherence by studying the time evolution of the reduced
density matrix of the system.

3.1 The Scattering Model

We consider an object (the system S) that scatters a collection of environ-
mental particles (the environment E), see Fig. 3.2. We shall make the usual
assumption that S and E are initially completely uncorrelated, i.e., that the
(pure-state) density matrix ρ̂ for the composite SE arrangement factorizes at
t = 0,

ρ̂(0) = ρ̂S(0)⊗ ρ̂E(0). (3.4)

Let us first consider the case of a single scattering event and study its in-
fluence on the density matrix ρ̂S of the system (Fig. 3.3). In the following,
we will use very basic quantum-mechanical scattering theory. Reviews of this
subject matter can be found in most textbooks on quantum mechanics (e.g.,
in Chap. 7 of [58]), but the reader should be able to follow the derivation
without having to consult other literature.

Let us denote the initial state of the system with center-of-mass location
x by a position eigenstate |x〉 (with eigenvalue x), and let us write |χi〉 for
the initial state of the incoming environmental particle. Then the effect of
the scattering event can be formally expressed by the action of the scattering
operator Ŝ (the so-called “S-matrix”) on the initial state,
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Fig. 3.2. Environmental scattering. A collection of particles, such as photons or
air molecules, scatters off the object of interest.

|χi〉
|x 〉

|χ(x )〉
before after

|x 〉

Fig. 3.3. A single scattering event. The incoming environmental particle, described
by the initial state |χi〉, elastically scatters off a stationary object of interest, whose
center-of-mass state is represented by a position eigenstate |x〉. The range of the
scattering potential is sufficiently short, such that the states of the object and
the incoming particle are initially uncorrelated. The object is assumed to be much
more massive than the scattered environmental particle, such that the object is
not disturbed by the scattering event. Thus the interaction yields the evolution
|x〉 |χi〉 −→ |x〉 |χ(x)〉, where |χ(x)〉 is the final state of the scattered particle [see
also (3.12)].

|x〉 |χi〉 −→ Ŝ |x〉 |χi〉 , (3.5)

where we have used the separability assumption (3.4) for the initial state.
At the risk of stating the obvious, we note that |χi〉 is of course independent
of the location x of the scattering object. The state |x〉 can be thought of
the state |x = 0〉 (corresponding to the scattering center being located at the
origin) translated by the action of the momentum operator p̂ of the system,4

|x〉 = e−ip̂·x/� |x = 0〉 . (3.6)

We can hence rewrite (3.5) as

4Since our model will be used to calculate explicit numerical values of decoher-
ence timescales, we shall retain � throughout the following derivation.
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e−ip̂·x/� |0〉 |χi〉 −→ Ŝe−ip̂·x/� |0〉 |χi〉 = Ŝe−i(p̂+q̂)·x/� |0〉 eiq̂·x/� |χi〉 . (3.7)

Here, q̂ is the momentum operator for the scattered particle, and thus P̂ ≡
p̂ + q̂ is the momentum operator for the composite SE system.

If we now make the assumption that the scattering interaction is invariant
under spatial translations of the joint system SE (i.e., under translations
generated by the operator P̂ ),

[
Ŝ, P̂

]
= 0, (3.8)

we can pull the first exponential on the right-hand side of (3.7) out to the
front to obtain

Ŝ |x〉 |χi〉 = e−i(p̂+q̂)·x/�Ŝ |0〉 eiq̂·x/� |χi〉 . (3.9)

To proceed further, a key assumption is now made, namely, that the inter-
action between the object and the scattered particle does not lead to any
recoil of the object. This means that the particle remains essentially undis-
turbed by the scattering event, and that therefore the only consequence of
the scattering process is the creation of quantum correlations (entanglement)
between the system and the environment.

This is a good assumption in situations where the scattering system is
much more massive than the scattered particle such that recoil effects on the
system can be neglected. This can be expected to hold for the case of micro-
scopic or mesoscopic particles scattered off macroscopic objects. However, we
should note that timescales for spatial decoherence quoted in the literature
have sometimes been computed using this assumption even for scattering
processes in which the ratio of the mass of the scattering object to the mass
of the scattered environmental particle is either close to one or even less than
one. An example is the case of small molecules and free electrons decohered
by the scattering of air molecules [166]. Clearly, in this regime the no-recoil
assumption cannot be expected to be physically realistic, and one should
therefore resort to more general models, such as that of Diósi [159] (which
does take recoil into account).

For the following treatment, we should adopt the above assumption of a
recoil-free scattering process by taking the scattering object to be much more
massive than the environmental particle. Then the action of the S-matrix on
the composite system–environment state does not affect the center-of-mass
state |x〉 of the system, i.e., the center of mass remains at position x. We can
therefore evaluate (3.7) further,

Ŝ |x〉 |χi〉 = e−i(p̂+q̂)·x/� |0〉 Ŝ0eiq̂·x/� |χi〉
= e−ip̂·x/� |0〉 e−iq̂·x/�Ŝ0eiq̂·x/� |χi〉
= |x〉 e−iq̂·x/�Ŝ0eiq̂·x/� |χi〉 . (3.10)

Here, we have added the subscript “0” to the scattering operator Ŝ to indicate
that this operator refers specifically to a scattering process in which the
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scattering center is located at the origin. The last line of (3.10) can be used
to define the translated scattering operator

Ŝx ≡ e−iq̂·x/�Ŝ0eiq̂·x/�, (3.11)

which describes scattering with the scattering center located at the position
x. To summarize, the scattering interaction is then given by

|x〉 |χi〉 −→ Ŝ |x〉 |χi〉 = |x〉 Ŝx |χi〉 ≡ |x〉 |χ(x)〉 , (3.12)

where we have introduced the abbreviation |χ(x)〉 for the final state of the
environmental particle scattered at x. We see from (3.12) that the scattering
process can be thought of as a measurement-like interaction that establishes
correlations between the state |x〉, describing the center-of-mass position of
the system, and the final state |χ(x)〉 of the particle, which encodes which-
path information about the location x of the scattering center.

From (3.12) it follows that the scattering process transforms the initial
composite density matrix

ρ̂(0) = ρ̂S(0)⊗ ρ̂E(0) =
∫

dx

∫
dx′ ρS(x,x′, 0)|x〉〈x′| ⊗ |χi〉〈χi| (3.13)

into the density matrix

ρ̂ =
∫

dx

∫
dx′ ρS(x,x′, 0)|x〉〈x′| ⊗ |χ(x)〉〈χ(x′)|. (3.14)

Using (2.50), the corresponding final reduced density matrix ρ̂S of the system
is then given by

ρ̂S = TrE ρ̂ =
∫

dx

∫
dx′ ρS(x,x′, 0)|x〉〈x′|〈χ(x′)|χ(x)〉. (3.15)

Expressed in the position basis, the scattering-induced evolution of the re-
duced density matrix can therefore be summarized as

ρS(x,x′, 0) −→ ρS(x,x′, 0)〈χ(x′)|χ(x)〉. (3.16)

We see that the local suppression of spatial coherence due to the scattering
event is quantified by the overlap 〈χ(x′)|χ(x)〉 of the relative states of the
scattered particle (see also our general discussion in Sects. 2.6.3 and 2.7). We
shall now calculate the time dependence of this overlap.

3.2 Calculating the Decoherence Factor

To proceed, let us formally write the scattering operator Ŝ0 in terms of an-
other operator T̂ (the “T -matrix”) as
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Ŝ0 = Î + iT̂ . (3.17)

The T -matrix is well-known from standard quantum-mechanical scattering
theory (see, e.g., [58]). It is used here since its elements in the momentum
eigenbasis {|q〉} of the scattered particle are conveniently defined in terms of
the scattering amplitude f(q, q′) as

〈q| T̂ |q′〉 =
i

2π�q
δ(q − q′)f(q, q′) =

i
2π�m

δ(E − E′)f(q, q′). (3.18)

Here m is the mass of the environmental particle, and q = |q|. The term
δ(E − E′) ensures energy conservation, as mandated by the assumption of
recoil-free elastic scattering. We note that |f(q, q′)|2 is an experimentally
accessible quantity, namely, the differential cross section dσ

dΩ for the scattering
process, which is defined as

dσ
dΩ
≡ scattered flux

incident flux
. (3.19)

Since the scattering operator Ŝ0 is unitary,

Ŝ0Ŝ
†
0 = Î , (3.20)

we obtain the following relation from the definition (3.17) of the T -matrix,

T̂ T̂ † + i(T̂ − T̂ †) = 0. (3.21)

This result will come in handy below.
Using the expression (3.12) for the environmental states, the overlap

〈χ(x′)|χ(x)〉 is given by

〈χ(x′)|χ(x)〉 = 〈χi| Ŝ†x′ Ŝx |χi〉 . (3.22)

Evidently, this expression is simply equal to the expectation value of the
product Ŝ†x′ Ŝx of the translated scattering operators (3.11) in the (pure) state
|χi〉 of the incident environmental particle (the generalization to mixed states
is straightforward). Using the trace rule (2.17), we can therefore equivalently
rewrite (3.22) as

〈χ(x′)|χ(x)〉 = TrE
{
ρ̂E(0)Ŝ†x′ Ŝx

}
, (3.23)

with ρ̂E(0) = |χi〉〈χi|. This is the expression of interest that we shall now
evaluate. Let us begin by assuming the environmental particle is restricted to
a box-normalization volume V . Following [160], we define momentum eigen-
kets |q̃〉 which are normalized over the volume V ,

|q̃〉 ≡
[
(2π�)3

V

]1/2

|q〉 . (3.24)
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The kets |q̃〉 constitute an orthonormal basis over the volume V in the sense
that ∑

q∈QV

|q̃〉〈q̃| = ÎV . (3.25)

Here QV is the set of all momenta corresponding to the space of wave func-
tions that fulfill periodic boundary conditions in the volume V , and ÎV de-
notes the identity operator in this space.

We can then expand the initial density matrix ρ̂E(0) of the environmental
particle in terms of an ensemble of the normalized momentum eigenstates
|q̃〉,

ρ̂E(0) =
(2π�)3

V

∑
q∈QV

μ(q)|q̃〉〈q̃|, (3.26)

where μ(q) is the momentum-space density. The great advantage of using this
expansion is that the operator T̂ , see (3.17) and (3.18), is diagonal in the full-
space momentum basis {|q〉} and therefore also in the properly normalized
V -volume basis {|q̃〉}.

This feature enables us to evaluate the overlap 〈χ(x′)|χ(x)〉, see (3.23),
in a fairly straightforward manner. Using the expansion (3.26) for the state
of the environment in (3.23), we first get

〈χ(x′)|χ(x)〉 =
(2π�)3

V

∑
q∈QV

μ(q) 〈q̃| Ŝ†x′ Ŝx |q̃〉

=
(2π�)3

V

∑
q∈QV

μ(q) 〈q̃| e−iq̂·x′/�Ŝ†0e
−iq̂·(x−x′)/�Ŝ0eiq̂·x/� |q̃〉

=
(2π�)3

V

∑
q∈QV

μ(q)eiq·(x−x′)/� 〈q̃| Ŝ†0e−iq̂·(x−x′)/�Ŝ0 |q̃〉 .

(3.27)

Now using that Ŝ0 = Î + iT̂ [see (3.17)] and noting the relation (3.21), this
expression becomes

〈χ(x′)|χ(x)〉

=
(2π�)3

V

∑
q∈QV

μ(q)eiq·(x−x′)/� 〈q̃|
(
Î − iT̂ †

)
e−iq̂·(x−x′)/�

(
Î + iT̂

)
|q̃〉

=
(2π�)3

V

∑
q∈QV

μ(q)
[
1− 〈q̃| T̂ T̂ † |q̃〉+ eiq·(x−x′)/� 〈q̃| T̂ †e−iq̂·(x−x′)/�T̂ |q̃〉

]
.

(3.28)

Here, any exponentials associated with the second term within the square
brackets in the last line have dropped out, because the operator T̂ commutes
with the momentum operator [see (3.18)].
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Let us evaluate the second and third term in the sum in the last line of
(3.28) by inserting a complete set of momentum eigenstates |q̃〉, see (3.25),
and then using (3.18). This yields

〈χ(x′)|χ(x)〉

=
(2π�)3

V

∑
q∈QV

μ(q)

⎡
⎣1−

∑
q′∈QV

(
1− ei(q−q′)·(x−x′)/�

) ∣∣∣〈q̃| T̂ ∣∣q̃′〉
∣∣∣2
⎤
⎦ .

(3.29)

We now go to the continuum limit of momentum states |q̃〉 by replacing the
sum by an integral according to the usual transformation relation

(2π�)3

V

∑
q∈QV

−→
∫

dq. (3.30)

Using that
∫

dq μ(q) = 1 and employing definition (3.24), expression (3.29)
then reads

〈χ(x′)|χ(x)〉

= 1−
∫

dq μ(q)
(2π�)3

V

∫
dq′

(
1− ei(q−q′)·(x−x′)/�

) ∣∣∣〈q| T̂ |q′〉
∣∣∣2 . (3.31)

Following the approach of Adler [161], let us now introduce a time parameter
T which denotes the elapsed time in the scattering process. Then, from (3.16)
and (3.31), we may write the evolution of the reduced density matrix as

ρS(x,x′, T )− ρS(x,x′, 0) = −ρS(x,x′, 0)

×
∫

dq μ(q)
(2π�)3

V

∫
dq′

(
1− ei(q−q′)·(x−x′)/�

) ∣∣∣〈q| T̂ |q′〉
∣∣∣2 . (3.32)

Note that in writing (3.32), we have assumed that the characteristic timescale
for the free evolution of the object is much longer than the average time
between scattering events, such that the only change of the density matrix
of the object during the interval T arises from the scattering events.

Let us now evaluate the squared matrix element
∣∣∣〈q| T̂ |q′〉

∣∣∣2 appearing in
this equation. Using the form

〈q| T̂ |q′〉 =
i

2π�m
δ(E − E′)f(q, q′) (3.33)

of (3.18), we thus need to calculate
∣∣∣〈q| T̂ |q′〉

∣∣∣2 =
1

(2π�m)2
δ2(E − E′) |f(q, q′)|2 . (3.34)
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Squared energy delta functions δ2(E − E′) commonly appear in the deriva-
tion of Fermi’s Golden Rule for the transition probability in time-dependent
perturbation theory (see, e.g., Chap. 18 of [167]). In fact, the matrix ele-

ment
∣∣∣〈q| T̂ |q′〉

∣∣∣2 is evidently simply the probability of making the scattering-
induced transition |q〉 −→ |q′〉.

Then, following the method suggested by Adler [161] (which is akin to
the usual approach employed in the derivation of Fermi’s Golden Rule), we
can handle the squared energy delta function by using the Fourier-integral
representation of the energy delta function,

δ(E − E′) = lim
T→∞

1
2π�

∫ T/2

−T/2
dt ei(E−E′)t/�. (3.35)

This allows us to write

δ2(E − E′) = δ(E − E′) lim
T→∞

1
2π�

∫ T/2

−T/2
dt ei(E−E′)t/�

= δ(E − E′) lim
T→∞

1
2π�

∫ T/2

−T/2
dt

= δ(E − E′) lim
T→∞

T

2π�
, (3.36)

where the second line follows from the fact that the first delta function in
front of the integral vanishes unless E = E′.

In the general derivation of Fermi’s Golden Rule, the parameter T can
be interpreted as the time interval during which the interaction is “turned
on.” Equation (3.36) then shows that the transition probability grows ap-
proximately linearly with T for sufficiently large T . Therefore, if we let T
denote a time interval much longer than the typical time required for a single
scattering event to take place, we can write (3.36) as

δ2(E − E′) = δ(E − E′)
T

2π�
= δ(q − q′)

m

q

T

2π�
. (3.37)

We shall also assume that T is significantly shorter than the characteristic
decoherence time of the central particle induced by the scattering of a large
number of particles. The chosen regime for T is reasonable, since it will in
general require many collisions between the object and the environmental
particles to induce an appreciable degree of spatial decoherence.

We now use (3.37) in (3.34) and insert the resulting expression into (3.32).
The delta function δ(q−q′) in (3.37) enforces momentum conservation, |q′| =
|q|. Writing dq′ ≡ q2dn̂′, where dn̂′ is a solid-angle differential in momentum
space, we readily obtain
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ρS(x,x′, T )− ρS(x,x′, 0) = −ρS(x,x′, 0)

× T

V

∫
dq μ(q)v(q)

∫
dn̂′

(
1− ei(q−qn̂′)·(x−x′)/�

)
|f(q, qn̂′)|2 . (3.38)

Here v(q) denotes the speed of particles with momentum q. For scattering of
massive particles we have v(q) = q/m, while for scattering of photons and
other massless particles v(q) = c, with c representing the speed of light.

Equation (3.38) describes the effect of a single scattering event. A col-
lection of N independent scattering events may be represented by simply
multiplying the integral on the right-hand side of (3.38) by N . Then N/V
is the total number density of environmental particles. For simplicity, let us
assume that the incoming particles are isotropically distributed in space, i.e.,
that every initial direction q/ |q| is equally likely. We may then write the
momentum probability distribution μ(q) as

μ(q) ≡ 1
4π

(
N

V

)−1

�(q) dq dn̂, (3.39)

where the prefactor is chosen such that
∫

dq �(q) = N/V (recall that∫
dq μ(q) = 1), i.e., �(q) denotes the number density of incoming particles

with magnitude of momentum equal to q.
Dividing (3.38) by T and taking the differential limit of small T , we obtain

our final result for the time evolution of the reduced density matrix,

∂ρS(x,x′, t)
∂t

= −F (x− x′)ρS(x,x′, t), (3.40)

with the decoherence factor F (x− x′) given by

F (x− x′) =
∫

dq �(q)v(q)
∫

dn̂ dn̂′

4π

(
1− eiq(n̂−n̂′)·(x−x′)/�

)
|f(qn̂, qn̂′)|2 .

(3.41)
From (3.40) we see that F (x − x′) plays the role of a localization rate, i.e.,
it denotes the characteristic decoherence rate at which spatial coherences
between two positions x and x′ become locally suppressed.

Equations (3.40) and (3.41) represent our main result. We have found the
expression that quantifies the influence of a collection of incoming particles
scattering off our object of interest on the interference (off-diagonal) terms
in the position density matrix of the object. As we have not yet specified the
form of the scattering cross section |f(qn̂, qn̂′)|2, our expression is considered
fairly general.

Let us summarize the assumptions employed in our derivation of (3.40)
and (3.41):

1. There are no initial correlations between the system and the environment
[see (3.4)]. This assumption is made in virtually all decoherence models
(see also Chap. 5).
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2. The scattering interaction is invariant under translations of the composite
object–environment system [see (3.8)].

3. The center-of-mass state of the object is not disturbed by the scattering
event.

4. The rate of scattering is much faster than the characteristic rate of change
of the state of the system induced by the system’s self-Hamiltonian.

5. The distribution of the different directions of the incoming particles is
isotropic [see (3.39)].

Most of these assumptions are fairly innocuous and can be rather well
justified in the context of the physical situation that is to be modeled here,
namely, the scattering of a large number of microscopic or mesoscopic par-
ticles per unit time off a macroscopic body. The potentially most limiting
assumption is that of no recoil (assumption 3 above). As already pointed out
before, this assumption renders our localization model unrealistic for situa-
tions in which the scattering object and the scattered environmental particles
have similar masses.

3.3 Full Versus Partial Which-Path Resolution

Suppose now our object of interest is described by a coherent superposition of
two well-localized wave packets a distance Δx = |x− x′| apart. Based on our
results (3.40) and (3.41), how fast will such a superposition become decohered
as a consequence of environmental scattering? To answer this question, we
shall now discuss two limiting cases: The short-wavelength limit in which
each scattered particle completely resolves the separation Δx, and the long-
wavelength limit in which many such scattering events are required to encode
a significant amount of which-path information in the environment and to
thereby resolve this separation.

3.3.1 The Short-Wavelength Limit

First, let us consider the situation in which the typical wavelength λ0 of
the scattered particle is much shorter than the coherent separation Δx =
|x− x′|, that is, λ0 � Δx. Then we expect that the particle will be able to
well resolve this separation and thus carry away a maximum of which-path
information, inducing a maximum amount of decoherence in the system per
scattering event.

To check whether this prediction is indeed correct, let us have a look at
the expression (3.41) for F (x − x′). According to de Broglie relation, the
wavelength λ0 corresponds to a momentum q0 = 2π�/λ0, and thus λ0 � Δx
implies that q0Δx/� � 1. Therefore the exponential in the integral on the
right-hand side of (3.41) will oscillate very rapidly and thus in average not
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contribute to the integral when compared to the constant term of one. In this
limit

F (x− x′) =
∫

dq �(q)v(q)
∫

dn̂ dn̂′

4π
|f(qn̂, qn̂′)|2 . (3.42)

The integral ∫
dn̂′ |f(qn̂, qn̂′)|2 (3.43)

is simply equal to the total cross section for momentum q = qn̂. The second
volume integral over dn̂ then averages over all possible directions n̂ of q, and
thus we obtain ∫

dn̂ dn̂′

4π
|f(qn̂, qn̂′)|2 = σtot(q), (3.44)

where σtot(q) denotes the total cross section for momentum q (irrespective of
the direction). Therefore (3.42) becomes

F (x− x′) =
∫

dq �(q)v(q)σtot(q). (3.45)

We can simplify this expression even further by recognizing that the integral
is equal to the total scattering rate Γtot,

F (x− x′) = Γtot. (3.46)

Note that this result means that there is an upper limit to the decoherence
rate when going to larger and larger separations Δx. This, of course, con-
stitutes a completely reasonable finding: For any given separation Δx there
is a wavelength of the environmental particle that allows for complete res-
olution of this separation and therefore for a maximum amount of spatial
decoherence. Increasing this separation further therefore cannot lead to even
stronger decoherence.

Inserting (3.46) into (3.40), we thus see that the off-diagonal elements
ρS(x,x′), x �= x′, of the reduced density matrix of the system change as

∂ρS(x,x′, t)
∂t

= −ΓtotρS(x,x′, t). (3.47)

For short time intervals over which the internal dynamics of the system are
negligible, the time evolution of the interference terms is therefore given by

ρS(x,x′, t) = ρS(x,x′, 0)e−Γtott. (3.48)

This shows that in the limit of maximum decoherence, spatial interference
terms become exponentially suppressed at a rate set by the total scattering
rate Γtot.
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3.3.2 The Long-Wavelength Limit

Let us now consider the opposite limit in which the typical wavelength λ0

of the incoming particle is much larger than the coherent separation Δx =
|x− x′|. This implies that an individual scattered particle will not be able
to resolve the separation Δx, and it will thus carry away an only insufficient
amount of which-path information. Therefore we anticipate that it will take
a large number of scattering events to induce a significant degree of spatial
localization of the object.5

Let us investigate the influence of our assumption λ0 � Δx (or, equiva-
lently, q0Δx/� � 1 for a typical value q0 of momentum) on the form of the
expression for F (x−x′), see (3.41). We expand the exponential in (3.41) up
to first order in the argument q(n̂− n̂′)(x− x′), i.e.,

1−eiq(n̂−n̂′)(x−x′)/� ≈ − i
�
q(n̂− n̂′) · (x−x′)+

1
2�2

q2 [(n̂− n̂′) · (x− x′)]2 .

(3.49)
Now note that the first term in this expansion does not contribute to the
integral in the expression for F (x − x′), see (3.41). This is readily seen
from the fact that, since f(qn̂, qn̂′) = f∗(qn̂′, qn̂) [see (3.18)] and thus
|f(qn̂, qn̂′)|2 = |f(qn̂′, qn̂)|2, we encounter the situation of a product of a
function that is odd in (n̂, n̂′), namely, (n̂ − n̂′) · (x − x′), with a function
that is even in (n̂, n̂′), i.e., |f(qn̂, qn̂′)|2. Integrated over all directions n̂ and
n̂′ of q and q′, the contribution to the integral due to this product term thus
averages out to zero.

The expression for F (x− x′) in the limit q0Δx/�� 1 then becomes

F (x− x′) =
∫

dq �(q)v(q)q2

∫
dn̂ dn̂′

8π�2
[(n̂− n̂′) · (x− x′)]2 |f(qn̂, qn̂′)|2 .

(3.50)
We can further simplify this equation by assuming that the particular ori-
entation of scattering center (and thus of the coordinate system) does not
influence the scattering process. First, this allows us to average the term
[(n̂− n̂′) · (x− x′)]2 over all possible directions (x − x′). This average is
given by

(x− x′)2
1
3

∑
i=x,y,z

[
(n̂− n̂′) · î

]2
=

1
3
(x− x′)2(n̂− n̂′)2

=
2
3
(x− x′)2 (1− n̂ · n̂′)

=
2
3
(x− x′)2 (1− cosΘ) , (3.51)

5We note that the original derivation of Joos and Zeh [7] assumed the limit
λ0 � Δx from the outset (see the comment following equation (3.45) of [7]) and
thus was intended to lead to cautious lower-bound estimates of localization rates.
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where Θ is the angle between the incoming and the outgoing trajectory of
the scattered particle. Thus

F (x−x′) = (x−x′)2
∫

dq �(q)v(q)q2 2
3�2

∫
dn̂ dn̂′

8π
(1− cosΘ) |f(qn̂, qn̂′)|2 .

(3.52)
Second, we may take the cross section |f(qn̂, qn̂′)|2 to be isotropic, i.e., to
be dependent only on the magnitude q of the momentum and the scattering
angle Θ. Then we may further simplify (3.52) by carrying out some of the
angular integrations, which yields

F (x−x′) = (x−x′)2
∫

dq �(q)v(q)q2 2π
3�2

∫
d cosΘ (1− cosΘ) |f(q, cosΘ)|2 .

(3.53)
Apart from the angular weighting term (1 − cosΘ), the second integral is
similar to the expression for the total cross section σtot(q) of the scattering
process, see (3.44). Let us therefore interpret

σeff(q) ≡ 2π
3

∫
d cosΘ (1− cosΘ) |f(q, cosΘ)|2 (3.54)

as the effective cross section for the scattering interaction, which is conse-
quently on the order of the total cross section σtot(q).

Let us now explore the resulting time dependence of interference terms
ρS(x,x′), x �= x′, of the reduced density matrix of the object. Referring
back to (3.40) and using (3.53) and (3.54), the change of the reduced density
matrix due to scattering is given by

∂ρS(x,x′, t)
∂t

= −Λ(x− x′)2ρS(x,x′, t), (3.55)

where we have introduced the scattering constant

Λ ≡
∫

dq �(q)v(q)
q2

�2
σeff(q), (3.56)

which encapsulates the physical details of the interaction.
Over timescales that are short in comparison with the internal dynamics

of the system, (3.55) shows that the scattering events lead to a suppression
of off-diagonal terms that increases exponentially with time and with the
squared separation (Δx)2 = (x− x′)2,

ρS(x,x′, t) = ρS(x,x′, 0)e−Λ(Δx)2t. (3.57)

We see that the scattering constant Λ quantifies the rate at which spatial
coherences over a given distance Δx are suppressed. Equation (3.57) therefore
motivates the introduction of a decoherence timescale τΔx given by
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τΔx =
1

Λ(Δx)2
, (3.58)

which is the characteristic time required to damp spatial coherences over a
distance Δx by a factor of e. The inverse quantity τ−1

Δx therefore plays the
role of a decoherence rate.

By contrast with the result (3.48) obtained for the opposite limiting case
of environmental wavelengths that were assumed to be very short in com-
parison with the separation Δx, we see from (3.58) that the damping is now
explicitly, and strongly, dependent on Δx. This difference is rather easily
understood from our earlier discussion. If the wavelength of the particle is
much smaller than Δx, each scattering event leads to a complete resolution
of this separation, and thus the localization rate will be independent of Δx.
On the other hand, if the particle’s wavelength is much larger than Δx, it
will require a large number of particles to encode an appreciable amount of
which-path information in the environment, and this amount can be antic-
ipated to increase, for a given number of scattering events, as Δx becomes
larger.

Of course, the decoherence rate cannot exceed the value obtained in
the short-wavelength limit, since this case already corresponds to a max-
imum of which-path information acquired by the environment. Therefore
the long-wavelength decoherence timescale given by (3.58) cannot become
shorter without bounds for increasingly large separations Δx, as one might
be tempted to conclude from (3.58). At some point, Δx would become larger
than the typical wavelength of the environment. The long-wavelength as-
sumption would then be violated, and we would need to instead consider the
short-wavelength case in which the decoherence rate indeed saturates to a
value independent of the separation Δx [see (3.46)].

3.4 Decoherence Due to Scattering of Thermal Photons
and Air Molecules

Let us now explore the application of our decoherence model to concrete phys-
ical situations of interest. In the following, we shall consider environments
composed of thermal photons and air molecules, which represent ubiquitous
sources of decoherence in nature.

3.4.1 Photon Scattering

Let us first consider the case of a photon-gas environment at temperature T
interacting with a small object. Following the original example of Joos and
Zeh [7], we model this object as a dielectric sphere of radius a, and we assume
that the dielectric constant ε is independent of the frequency of the scattered
photon. In the present case of photon scattering, the long-wavelength limit of
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environmental scattering (see Sect. 3.3.2) is usually appropriate. At any rate,
considering this limit (rather than the short-wavelength limit of Sect. 3.3.1)
ensures that we obtain lower bounds on the decoherence rate.

The relevant differential cross section is then given by the Rayleigh law
[168] (averaged over the different polarizations of the scattered radiation),

|f(qn̂, qn̂′)|2 =
( q

�

)4

a6

(
ε− 1
ε + 2

)2 1
2
(
1 + cos2 Θ

)
. (3.59)

We see that this differential cross section depends on the magnitude q of
the momentum of the environmental particle and on the scattering angle Θ
between the directions n̂ and n̂′ of the particle before and after the scattering.

Let us now calculate the effective cross section σeff(q) for the Rayleigh
cross section (3.59). From (3.54) we obtain

σeff(q) =
( q

�

)4

a6

(
ε− 1
ε + 2

)2
π

3

∫
d cosΘ (1− cosΘ)

(
1 + cos2 Θ

)

=
8π
9

( q

�

)4

a6

(
ε− 1
ε + 2

)2

. (3.60)

Next, to compute the scattering constant Λ, see (3.56), we need to obtain
the momentum density �(q). Assuming black-body radiation, the average
occupation number of photons of energy cq at temperature T is given by the
Planck distribution

〈n(q)〉T =
2

ecq/kBT − 1
, (3.61)

where c denotes the speed of light, and the factor of 2 is due to the fact
that there are two possible polarization directions of the photon. To obtain
the number density �(q), we must multiply 〈n(q)〉T by the number of states
per unit volume with momenta between q and q + dq, which is given by
(assuming an isotropic distribution of momenta)

1
(2π�)3

d3q =
1

2π2�3
q2dq. (3.62)

This yields the number density

�(q) =
1

π2�3

(
q2

ecq/kBT − 1

)
. (3.63)

Let us now compute the resulting scattering constant Λ. Using (3.56), we
obtain

Λ =
∫

dq �(q)v(q)q2σeff(q)

=
∫

dq
1

π2�3

(
q2

ecq/kBT − 1

)
c
q2

�2

8π
9

( q

�

)4

a6

(
ε− 1
ε + 2

)2

=
8

9π�9
a6c

(
ε− 1
ε + 2

)2 ∫
dq

q8

ecq/kBT − 1
. (3.64)
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The integral can be computed using the definition of the Riemann ζ-function
for integer arguments n,

ζ(n) =
1

(n− 1)!

∫ ∞
0

dx
xn−1

ex − 1
. (3.65)

Evaluating this expression for x = cq/kBT and n = 9, we finally obtain

Λ = 8!
8
9π

a6c

(
ε− 1
ε + 2

)2 (
kBT

�c

)9

ζ(9) ∝ a6T 9, (3.66)

where ζ(9) ≈ 1.002. We emphasize the extremely strong dependence of Λ
on the size a of the object and the temperature T of the photon gas. For
example, increasing T by a factor of two makes the decoherence rate more
than 500 times larger.

Evaluating the constants appearing in (3.66), and assuming (ε− 1)/(ε +
2) ≈ 1, yields the scattering rate

Λ ≈ 1020 1
cm2 s

( a

cm

)6
(
T

K

)9

. (3.67)

Let us use this expression to compute numerical estimates for Λ for a few
cases of interest. For photons at room temperature (T = 300 K) scattering off
a dust grain of size a = 10−3 cm, we obtain Λ ≈ 1024 cm−2 s−1. Using (3.58),
this means that spatial interferences over distances on the order of as little
as Δx = |x− x′| ≈ 10−12 cm will become effectively suppressed within the
time span of a second. Similarly, interferences over separations on the order
of the size of the object (Δx ≈ 10−3 cm) will become significantly damped
within a mere 10−18 seconds. For the same object (a = 10−3 cm) immersed
into cosmic microwave background radiation (which consists of photons at
the characteristic temperature of 3 K), the scattering constant is reduced by
a factor of 1018, i.e., Λ ≈ 106 cm−2 s−1. Even this rate still corresponds to a
very efficient decoherence process, as coherences over distances on the order
of 10−3 cm will be locally suppressed within the time span of a second.

If we reduce the size of the object down to, say, a = 10−6 cm, corre-
sponding to a very small dust particle or a large molecule, we obtain Λ ≈
106 cm−2 s−1 for a photon gas at room temperature and Λ ≈ 10−12 cm−2 s−1

for cosmic microwave background radiation. We see that in the latter case,
decoherence is relatively slow, as the reader might have intuitively expected.
Our estimate means that, if the 3 K background radiation was the only
source of environmental scattering, interferences could here in principle be
maintained for several seconds over separations up to 106 cm before becoming
noticeably degraded.

All values for Λ calculated here are summarized in Table 3.1. In Table 3.2,
we have also listed the corresponding decoherence timescales (3.58) for co-
herent separations Δx equal to the size a of the object. Needless to say, the
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Table 3.1. Estimates for the scattering constant Λ, in units of cm−2 s−1, for a
dust grain of size a = 10−3 cm and for a large molecule of size a = 10−6 cm im-
mersed into radiation and gaseous environments. The quantity Λ(Δx)2 corresponds
to the characteristic rate at which spatial coherences over a distance Δx become
suppressed as a consequence of decoherence. The values for photon environments
shown in the first two rows were computed from (3.67), whereas the values for
scattering of air molecules (at room temperature) given in the last two rows were
obtained from (3.73) and (3.74).

Environment Dust grain Large molecule

Cosmic background radiation 106 10−12

Photons at room temperature 1024 106

Best laboratory vacuum 1020 1014

Air at normal pressure 1037 1031

Table 3.2. Estimates of decoherence timescales τΔx = Λ−1(Δx)−2 (in seconds) for
the suppression of spatial interferences over a distance Δx equal to the size a of
the object (Δx = a = 10−3 cm for a dust grain and Δx = a = 10−6 cm for a large
molecule). The timescales were computed using the values for Λ listed in Table 3.1.

Environment Dust grain Large molecule

Cosmic background radiation 1 1024

Photons at room temperature 10−18 106

Best laboratory vacuum 10−14 10−2

Air at normal pressure 10−31 10−19

shortness of these timescales is truly astonishing and indicates the extreme
speed and efficiency of decoherence. Our estimates demonstrate that spatial
interference effects are extremely difficult to observe for “ordinary” objects
(such as dust grains) immersed into similarly “ordinary” environments (such
as thermal photons).

Even coherence properties of electrons and other microscopic charged
particles are significantly influenced by the scattering of thermal radiation
[7, 166]. For the scattering of radiation by charged particles, the relevant
effective cross section is given by the Thompson cross section,

dσ
dΩ

(Θ) =
(

Q2

mc2

)2 1
2
(
1 + cos2 Θ

)
. (3.68)

The so-called Compton radius Q2/mc2 of the charged particle has units of
length and plays here a role analogous to that of the spatial size a of the
object in the case of Rayleigh scattering.

The scattering constant Λ corresponding to the scattering cross section
(3.68) can be computed in a similar way as above for Rayleigh scattering.
One then finds a temperature dependence of Λ ∝ T 5. Numerical estimates
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for the scattering constant for the case of a free electron range from Λ ≈
100 cm−2 s−1 for an environment of thermal (300 K) photons down to Λ ≈
10−15 cm−2 s−1 for an environment of solar neutrinos [166].

Although these values are much smaller than those obtained for meso-
scopic and macroscopic objects above, they still show that the coherent
spreading of wave packets induced by the free Schrödinger evolution is ef-
ficiently suppressed at the level of the system. Recall that in the beginning
of this chapter we had shown that the wave function of an electron with an
initial spatial width of 1 Å would very quickly become completely delocalized
under purely unitary time evolution, reaching a width of about Δx = 108 cm
within a second [see (3.3)]. Our numerical estimates demonstrate that lo-
calization of such a spread-out wave packet would occur within less than a
second even if only the environment of solar neutrinos was taken into account.
Thermal photons, on the other hand, would lead to an extremely short deco-
herence time of about 10−16 s for the electron described by this delocalized
wave packet. However, it is very important to keep in mind that for micro-
scopic particles such as electrons the assumption of a recoil-free interaction
(on which our above derivation of the expression for the localization rate
is based) is usually not physically reasonable. Therefore we should not take
these numerical estimates too literally.

3.4.2 Scattering of Air Molecules

Let us now consider the scattering of air molecules. Needless to say, this type
of environment constitutes a very important source of decoherence in the
everyday world around us. Air molecules are matter particles whose thermal
de Broglie wavelength (2.114) is typically very short. For example, an O2

molecule at room temperature has a thermal de Broglie wavelength of about
λdB ≈ 2× 10−11 m, or about 20 Å. At T = 3 K, the wavelength is ten times
longer, i.e., λdB ≈ 2 × 10−10 m, or about 200 Å. If we again take “dust”
particles with typical extensions between a = 10−6 cm and a = 10−3 cm
as our objects of interest, then it is clear that we are here in the regime
in which the relevant wavelength of the scattering environmental particle is
much shorter than the size of the object.

In this case, we may take the cross section |f(qn̂, qn̂′)|2 to be a constant
|f |2 such that the cross section integrated over all orientations is simply equal
to the geometric cross section πa2 of the object,

∫
dn̂ |f |2 = 4π |f |2 != πa2, (3.69)

which implies |f |2 = a2/4.
Since our goal is to determine lower-bound estimates of the decoherence

rate, let us again employ the long-wavelength limit of Sect. 3.3.2. That is, we
shall assume that the coherent separation Δx between the two position-space
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components of the spatial superposition describing the object is much shorter
than the wavelengths of the scattering air molecules.

Then (3.54) gives σeff = πa2/3. If we insert this value into our general
expression (3.56) for the scattering constant Λ in the long-wavelength limit,
we obtain

Λ =
∫

dq �(q)v(q)
q2

�2
σeff(q)

=
πa2

3�2

∫
dq �(q)v(q)q2

≡ πa2

3�2

〈
v(q)q2

〉

, (3.70)

where 〈v(q)q2〉 denotes the average value of the quantity v(q)q2 for a given
distribution �(q).

Since we deal with an environment of gas particles, we take the number
density �(q) of air molecules with momentum q to be distributed according
to the Maxwell–Boltzmann distribution,

�(q) =
N

V
4πq2

(
1

2πmkBT

)3/2

exp
[
− q2

2mkBT

]
, (3.71)

where N/V is the total density of the air. The average
〈
v(q)q2

〉


appearing
in (3.70), with v(q) = q/m, is then easily computed by carrying out the
Gaussian integral,

〈
v(q)q2

〉


=
∫

dq �(q)v(q)q2 = 4
N

V
(m/π)1/2 (2kBT )3/2 . (3.72)

Thus the scattering constant (3.70) is

Λ =
8

3�2

N

V
(2πm)1/2a2 (kBT )3/2 . (3.73)

We see that here the dependence of the scattering rate on the size a of the
object and the temperature T is much less dramatic than in the case of photon
scattering, where we had found Λ ∝ T 9 [see (3.66)]. The a2 dependence is a
direct consequence of the use of the geometric cross section, while Rayleigh
scattering is characterized by a much stronger a6 scaling [see (3.59)].

Using (3.73), we can estimate some typical values for Λ. Air at normal
pressure contains about 3× 1019 particles per cm3 and has a mass of about
29 kg per kmol (1 kmol contains about 6× 1026 particles). Thus the mass m
of an individual air molecule is approximately m = 0.5×10−25 kg. Evaluating
(3.73) with these values leads to

Λ(normal pressure) ≈ 1039 1
cm2 s

( a

cm

)2
(
T

K

)3/2

. (3.74)
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Let us again focus on the two objects previously considered, namely, a dust
grain of size a = 10−3 cm and a large molecule of size a = 10−6 cm (see
Table 3.1).

At room temperature (T = 300 K), we then obtain from (3.73) the values
Λ ≈ 1037 cm−2 s−1 for a dust grain (a = 10−3 cm) and Λ ≈ 1031 cm−2 s−1

for a large molecule (a = 10−6 cm). On the other hand, good laboratory
vacuums achieve particle densities on the order of a few hundred particles
per cm3 [169, p. 267]. Since the scattering constant is simply proportional
to the number density of the environmental particles, we thus obtain values
for Λ that are smaller by a factor of about 1017 than those for air at normal
pressure. This yields Λ ≈ 1020 cm−2 s−1 and Λ ≈ 1014 cm−2 s−1 for the dust
grain and large molecule, respectively. Our values for Λ are summarized in
Table 3.1.

Let us again illustrate the effectiveness of decoherence with a few ex-
amples. Suppose the large molecule is prepared in a superposition of two
distinct positions a distance Δx = 10 Å apart. Using (3.58), the scattering
of air molecules at normal pressure will then lead to decoherence of such a
superposition on a timescale τΔx ≈ 10−17 s. Even in the best available lab-
oratory vacuums, this decoherence time will still be on the order of a mere
second. The shortness of the decoherence times is of course even more im-
pressive if we consider a larger object such as the aforementioned dust grain.
Even for a microscopic separation Δx = 10 Å (which is much less than the
size of the object), (3.58) and (3.74) predict a decoherence time at normal air
pressure of τΔx ≈ 10−23 s. A few other values of characteristic decoherence
timescales for the case in which the coherent separation Δx is on the order
of the size of the object are listed in Table 3.2.

These decoherence times are extremely short and demonstrate impres-
sively the effectiveness of scattering-induced decoherence in locally suppress-
ing spatial coherences. Such estimates show why it is so difficult to observe
spatial interference patterns for mesoscopic and macroscopic particles not
only in the everyday world around us, but even under rather sophisticated
laboratory conditions.

Once again, our numerical estimates should be interpreted with a grain of
salt. For example, for the case of a molecule immersed into an environment
of air molecules, the ratio between the mass of the object and the masses
of the scattered environmental particles may not be sufficiently large for the
no-recoil assumption underlying our model to be appropriate.

3.4.3 Comparison with Experiments

There are several experiments that have explicitly measured rates of spatial
decoherence of atoms and molecules due to scattering of background particles
such as photons or background-gas molecules. A very impressive experiment
that directly demonstrates the gradual decohering influence of a scattering
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environment on the spatial coherence of C60 and C70 molecules will be de-
scribed in detail in Sect. 6.2.

Here we shall therefore only briefly note a couple of other experiments,
which have used atom interferometers of the Mach–Zehnder type in order to
observe interference patterns for matter particles [170]. In such an interfer-
ometer, the path of each atom is coherently split within the interferometer
and subsequently recombined. This results in an spatial interference pattern
in form of an oscillatory dependence of the atomic flux on position.

Kokorowski et al. [171] used a Mach–Zehnder interferometer to observe
the loss of coherence of sodium atoms due to scattering of controlled numbers
of photons emitted from a laser beam. They measured the loss of contrast of
the interference pattern as a function of the mean number of photons that
were spontaneously scattered by atoms within the interferometer for different
path separations (these separations correspond to the quantity Δx used in
our model). The experiment verified the theoretically predicted exponential
decay of this contrast, and thus of spatial coherence, with the square of
the separation Δx and with time [see (3.57)]. In a similar experiment, Uys,
Perreault, and Cronin [172] studied spatial decoherence of sodium atoms due
to scattering of gas molecules within the interferometer and found, again,
good agreement with theoretical predictions.

3.5 Illustrating the Dynamics of Decoherence

In the previous Sect. 3.4, we focused on estimating typical decoherence
timescales of spatial superpositions for various objects immersed into dif-
ferent types of environments. Let us now illustrate the explicit dynamics of
the decoherence process. We shall concentrate here on the case of a particle
moving in one spatial dimension.

Recall that, in the long-wavelength limit, the interference terms of the re-
duced density matrix of the object decay due to the influence of the scattering
environment as [see (3.55)]

∂ρS(x, x′, t)
∂t

= −Λ(x− x′)2ρS(x, x′, t). (3.75)

Let us now include the term describing the unitary evolution under the “free-
particle” Hamiltonian6 (setting � ≡ 1 in the remainder of this chapter)

H(x, p) =
p2

2m
≡ − 1

2m
∂2

∂x2
. (3.76)

This term is given by the Liouville–von Neumann equation,

6Of course, our particle is not truly free, since it is subject to collisions with the
environment.
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dρ̂(t)
dt

= −i
[
Ĥ(t), ρ̂(t)

]
. (3.77)

Expressed in the position representation, we then obtain the full equation of
motion for the particle,

∂ρS(x, x′, t)
∂t

= − i
2m

(
∂2

∂x′2
− ∂2

∂x2

)
ρS(x, x′, t)− Λ(x− x′)2ρS(x, x′, t).

(3.78)
In Chap. 4, we will recognize this equation as an example of a master equation
for decoherence, i.e., of an equation of motion that describes the evolution of
the reduced density matrix of an object interacting with an environment.

It is now fairly straightforward to construct solutions of the equation of
motion (3.78) [7]. We will closely follow Joos et al. [17] in our subsequent
discussion. Let us use the Gaussian ansatz

ρS(x, x′, t) = exp
{
−A(t)(x− x′)2 − iB(t)(x− x′)(x + x′)

−C(t)(x + x′)2 −D(t)
}
, (3.79)

where A(t), B(t), C(t), and D(t) are time-dependent coefficients which de-
pend on the state at t = 0. If ρS(x, x′, t) is Hermitian, then these coefficients
are real-valued functions of time.

Each of the coefficients A(t), B(t), C(t), and D(t) appearing in (3.79) has
a particular interpretation (see Fig. 3.4). The width of the Gaussian in the
“off-diagonal” x = −x′ direction quantifies the range of spatial coherence.
From (3.79) we see that this width is inversely proportional to

√
A(t), which

motivates the introduction of a characteristic coherence length

x

x′

ensemble
width

coherence
length

Fig. 3.4. Illustration of some of the key quantities relevant to the description of
the Gaussian density matrix (3.79). The extension of the density matrix in the off-
diagonal x = −x′ direction is quantified by the coherence length 	(t) ≡ 1/

√
8A(t),

which measures the characteristic distance over which the system can exhibit spatial
interference effects. The ensemble width ΔX(t) ≡ 1/

√
8C(t) represents the size of

the probability distribution P (x, t) ≡ ρS(x, x, t) for different positions x.
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�(t) ≡ 1√
8A(t)

. (3.80)

On the other hand, the width of ρS(x, x′, t) in the diagonal x = x′ direction
corresponds to the size of the probability distribution P (x, t) ≡ ρS(x, x, t),
which describes the probability of finding the system at x upon a mea-
surement of its position. This width is inversely proportional to

√
C(t) [see

(3.79)]. Accordingly, we shall introduce the ensemble width ΔX(t) as

ΔX(t) =
1√

8C(t)
, (3.81)

which quantifies the total size of the position-space ensemble.
The coefficient B(t), together with A(t) and C(t), is related to the spread

ΔP (t) of the momentum distribution, which is given by

ΔP (t) =
√

2
[
A(t) +

B2(t)
4C(t)

]1/2

. (3.82)

We can use (3.81) and (3.82) to write down the corresponding uncertainty
relation,

ΔX(t)ΔP (t) =
1
2

[
A(t)
C(t)

+
B2(t)
4C(t)

]1/2

. (3.83)

Finally, the term D(t) ensures that the trace of the density matrix is a con-
served quantity at all times.

Inserting our Gaussian ansatz (3.79) into the equation of motion (3.78)
yields a set of coupled differential equations for the coefficients A(t), B(t),
C(t), and D(t) that can be solved explicitly for arbitrary initial conditions
(see, e.g., Appendix A2 of [17]). Here, let us illustrate the decoherence dy-
namics of the reduced density matrix by choosing a particular initial state,
namely, a pure-state Gaussian wave packet of width b centered at x = 0,

ψ(x, 0) =
[

1
2πb2

]1/4

exp
(
−x2

4b2

)
. (3.84)

This yields the initial density matrix

ρS(x, x′, 0) =
[

1
2πb2

]1/2

exp
(
−x2 + x′2

4b2

)
, (3.85)

which corresponds to the initial values A(0) = C(0) = 1/8b2 and B(0) =
D(0) = 0 for the coefficients appearing in (3.79).

The density matrix (3.85) is plotted in Fig. 3.5. We see that the Gaussian
is symmetric with respect to the x and x′ axes, i.e., the coherence length
and ensemble width are of equal magnitudes. For this initial state (3.85), the
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x

x′

Fig. 3.5. Illustration of the initial density matrix ρS(x, x′, 0) [see (3.85)]. The
density matrix has the shape of a symmetric Gaussian in the (x, x′) plane, with a
coherence length 	(0) (the extension along the “off-diagonal” x = −x′) equal to the
ensemble width ΔX(0) (the width along the diagonal x = x′).

resulting time dependence of the coefficients A(t), B(t), C(t), and D(t) is
easily computed. Let us explicitly state the expressions for A(t) and C(t),
which read (see [7] or Appendix A2 of [17] for the derivation)

A(t) =
Λt3 + 3m2b2/2 + 2Λ2b2t4 + 12Λm2b4t

3t2 + 8Λb2t3 + 12m2b4
(3.86)

and

C(t) =
1
2

[
t2

m2b2
+

8
3
Λt3

m3
+ 4b2

]−1

. (3.87)

Before studying the resulting time evolution of related key quantities such
as the coherence length, ensemble width, and purity of the reduced density
matrix, let us briefly discuss how we expect the initial Gaussian (3.85) to
evolve over time if decoherence due to environmental scattering is taken into
account. We anticipate that the interaction with the environment will make
it increasingly hard to observe spatial coherences over a given distance Δx =
|x− x′|. That is, we expect the coherence length �(t) [see (3.80)] to decrease
over time, “squeezing” the Gaussian (3.85) in the direction perpendicular to
the “classical” diagonal x = x′. In the limit of complete decoherence, the
Gaussian would then approach the shape of the quasiclassical distribution,
i.e., that of an infinitely narrow ridge along the diagonal x = x′. At the same
time, we anticipate the squeezing in the x = −x′ direction to be accompanied
by a spreading in the x = x′ direction.

Let us now confirm these intuitions by studying the time evolution of some
of the relevant quantities, using the explicit expressions (3.86) and (3.87) for
the coefficients A(t) and C(t). Probably the quantity of most interest to
decoherence is the coherence length �(t) defined in (3.80). Using (3.86), the
time dependence of this quantity is given by
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�(t) =
1√

8A(t)
=

1
2

[
3t2 + 8Λb2t3 + 12m2b4

2Λt3 + 3m2b2 + 4Λ2b2t4 + 24Λm2b4t

]1/2

. (3.88)

As expected, at t = 0 the coherence length is simply equal to the width b of
the wave packet. In the absence of environmental interactions (Λ = 0), �(t)
becomes

�free(t) =
1
2

[
t2

m2b2
+ 4b2

]1/2

= ΔXfree(t). (3.89)

This expression simply describes the free coherent spread of the wave packet
discussed at the beginning of this chapter. It is analogous to (3.3) with the
obvious identification σ ≡

√
2b (recall also that we set � ≡ 1 in this section).

Let us study the time evolution of �(t) [see (3.88)] in more detail. In
the following, we shall measure time in units of τb ≡ 1/Λb2, which is the
characteristic localization timescale for spatial coherences over a distance
Δx = b (the initial width of the wave packet). A plot of �(t) is shown in
Fig. 3.6.

Let us first investigate the time evolution of �(t) for times t much shorter
than the localization timescale τb. Expanding (3.88) around Λb2t = 0 up to
first order in Λb2t yields

�(t) ≈ b
(
1− 4Λb2t

)
. (3.90)

with
environment

t [τb]
110−110−210−3 101

	(t) [b]

1

5

.5

without
environment

Fig. 3.6. Time dependence of the coherence length 	(t) given by (3.88) for a
Gaussian wave packet, as studied by Joos et al. [17]. The time t is measured in
units of the characteristic localization timescale τb = 1/Λb2, and 	(t) is displayed
in units of 	(0) = b, the initial width of the wave packet. The upper curve shows
the behavior without environmental interaction (Λ = 0). The lower curve displays
the effects of the environmental scattering, showing that the distance over which
the system is able to maintain spatial coherences decreases rapidly with time.
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We thus see that, due to the influence of environmental scattering, for short
times the coherence length decreases linearly with time, and that the rate of
decrease is proportional to the scattering constant Λ.

On the other hand, we may consider the limit in which t is much larger
than the localization timescale τb. In view of the fact that the scattering
rate Λ may take on very large values for macroscopic objects (see Table 3.1),
this does not mean that t itself needs to be large for this limit to apply. For
example, even with a rather low value of Λ ≈ 1020 cm−2 s−1 for a dust grain
of size a = 10−3 cm and an initial coherent spread of 10% of this size, i.e.,
b = 10−4 cm, we have τb ≈ 10−12 s. Thus, for a macroscopic object, the limit
t � τb will typically be reached within a tiny fraction of a second. In this
limit, (3.88) approaches the asymptotic expression

�(t) −→ 1√
2Λt

. (3.91)

Thus in this case the coherence length follows a t−1/2 dependence and is
independent of the width b of the initial state (3.84).

Let us now consider the time evolution of the total size ΔX(t) of the
ensemble. From (3.81) and (3.87), we obtain

ΔX(t) =
1√

8C(t)
=

1
2

[
t2

m2b2
+

8
3
Λt3

m3
+ 4b2

]1/2

. (3.92)

In the absence of any environmental interactions (Λ = 0), i.e., for a purely
unitary time evolution of the free particle described by the initial wave func-
tion (3.84), ΔX(t) coincides with the expression for the coherence length �(t)
evaluated for Λ = 0 [see (3.89)],

ΔXfree(t) =
1
2

[
t2

m2b2
+ 4b2

]1/2

. (3.93)

Thus, without the environment, the spreading proceeds at exactly the same
rate in both the x = x′ direction (describing the ensemble of positions) and
the x = −x′ direction (representing spatial coherence). This, of course, is
the expected behavior for a free particle: If the environment is absent, there
exists no physical mechanism that would single out one of these two direc-
tions over the other direction. However, once the environment is included, an
asymmetry is introduced. Now the scattering events act as a form of measure-
ment device for the position of the system. Broadly speaking, the scattered
particles will try to resolve differences |x− x′| between two positions x and
x′ while being insensitive to the sum (x+x′) of two positions. This asymme-
try of the environmental monitoring process with respect to the coordinates
(x+x′) and (x−x′) is encapsulated in the form of the equation of motion for
ρS(x, x′, t) [see the right-hand side of (3.78)] and leads to the different time
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evolutions for ΔX(t) and �(t), as seen by comparing the expressions (3.92)
and (3.88).

With the environmental interaction present, the additional term 8
3
Λt3

m3

appearing in (3.92) leads to an even faster increase of the width of the en-
semble with time (see Fig. 3.7).7 In our model, the fact that the presence of
the environment accelerates this “classical” spreading is due to the fact that
the scattering events lead to an increase in the mean energy of the system.
This energy increase is a consequence of our assumption that these scattering
events do not result in a recoil of the system (see p. 121).

We can thus visualize the time evolution of the density matrix as a com-
petition between two opposite influences, as illustrated in Fig. 3.8. On the
one hand, the overall spatial extension ΔX(t) of the position-space ensemble
tends to spread out more and more with time, induced by both the unitary
free-particle evolution and the increase in the mean energy due to the scat-
tering events. On the other hand, these scattering events also play the role of
a continuous monitoring of the position of the system, leading to a decrease
of the coherence length �(t) and thus to the suppression of spatial coherences
over increasingly short distances.

7At a first glance, this might seem like a surprising result. After all, in the intro-
duction to this chapter we suggested that decoherence counteracts the spreading of
the wave packet. However, there is no contradiction here. The crucial point to bear
in mind here is the difference between coherent and ensemble spreading. Coherent
spreading means that the system can be found in a superposition of increasingly
separated positions, e.g., by performing an interference experiment. By contrast,
ensemble spreading simply corresponds to an increased range of possible positions
in which the system can be found upon a measurement of its position.

110−110−210−3 101

ΔX(t) [b]

1

5
without

environment

101

with
environment

t [τb]

Fig. 3.7. Time evolution of the ensemble width ΔX(t) given by (3.92) for a Gaus-
sian wave packet, as studied by Joos et al. [17]. The time t is measured in units of
the characteristic localization timescale τb = 1/Λb2, and ΔX(t) is plotted in units
of the initial width ΔX(0) = b of the wave packet.
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x′

x

x′

Fig. 3.8. Time evolution of the Gaussian wave packet (3.79), with the initial state
given by (3.85), under the influence of a scattering environment. The coefficients
A(t) and C(t) appearing in (3.79) are determined by (3.86) and (3.87), respec-
tively. The width of the Gaussian in the off-diagonal direction x = −x′ (repre-
senting spatial coherences) becomes progressively reduced, with the density matrix
approaching a quasiclassical probability distribution of positions concentrated along
the diagonal x = x′.
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To quantify the interplay between the reduction of the coherence length
�(t) and the increase of the ensemble size ΔX(t), one often considers a com-
bined dimensionless quantity in form of the ratio (see, e.g., [17, 173]),

δ(t) ≡ �(t)
ΔX(t)

=

√
C(t)
A(t)

. (3.94)

A plot of δ(t) is shown in Fig. 3.9. Without the environment present, δ(t)
remains constant, i.e., the coherent spreading proceeds at the same rate in
the x = x′ and x = −x′ directions [see (3.89) and the subsequent discussion].
With the environment included, the coherence length �(t) decreases while
the overall width ΔX(t) increases. However, ΔX(t) increases at a slower
rate than the rate of decrease of �(t), leading to a net decrease of δ(t).

Another reason for our introduction of the quantity δ(t) is that it allows
us to easily establish an immediate connection to another measure of deco-
herence, namely, the purity ς = Tr (ρ̂2) of a density matrix ρ̂ as introduced
in Sect. 2.4.3 [see (2.30)]. For the reduced density matrix ρS(t) of our model,
the purity is found to be

ς(t) =

√
C(t)
A(t)

. (3.95)

But evidently this coincides with the expression (3.94) for δ(t), i.e., the quan-
tity δ(t) also describes the purity of the reduced density matrix in our scat-
tering model. From Fig. 3.9 we see that, as expected, the environmental
scattering leads to a decrease of the purity of the reduced density matrix,
reflecting the gradual action of decoherence.

1

10−1

10−210−3 101

δ(t)

1
without

environment

with
environment

10−1

10−2

t [τb]

Fig. 3.9. Time dependence of the ratio δ(t) ≡ 	(t)/ΔX(t) [see (3.94)] with and
without environmental scattering. The quantity δ(t) also describes the time evo-
lution of the purity of the local density matrix in our model. The time t is again
measured in units of the characteristic localization timescale τb = 1/Λb2.
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Finally, let us illustrate the time evolution of a superposition of two equal-
weight Gaussian wave packets of the form (3.84) centered around x = ±x0,
i.e.,

Ψ(x, 0) = ψx0(x, 0) + ψ−x0(x, 0)

=
[

1
2πb2

]1/4 {
exp

(
−(x− x0)2

4b2

)
+ exp

(
−(x + x0)2

4b2

)}
. (3.96)

This wave function is illustrated in Fig. 3.10.
If x0 � b, such a quantum state would correspond to the nonclassical

situation of a particle being described by a superposition of two well-defined,
distinguishable positions separated by a distance 2x0. The corresponding
density matrix is

ρS(x, x′, 0) = Ψ∗(x′, 0)Ψ(x, 0)
= ψ∗x0

(x′, 0)ψx0(x, 0) + ψ∗−x0
(x′, 0)ψ−x0(x, 0)

+ ψ∗x0
(x′, 0)ψ−x0(x, 0) + ψ∗−x0

(x′, 0)ψx0(x, 0). (3.97)

This density matrix is shown as the top plot of Fig. 3.11. The two peaks
along the off-diagonal x = −x′ correspond to the spatial interference terms
ψ∗x0

(x′, 0)ψ−x0(x, 0) and ψ∗−x0
(x′, 0)ψx0(x, 0) between the two wave packets

ψx0(x, 0) and ψ−x0(x, 0) introduced in (3.96).
The subsequent time evolution of the density matrix (3.97) as determined

by the equation of motion (3.78) is illustrated in Fig. 3.11. We observe that,
as expected, interference terms corresponding to spatial coherence between
the two regions around x = ±x0 are gradually suppressed due to the pres-
ence of the environment. In the limit of complete decoherence, we obtain an
(albeit improper!) ensemble of the two states describing localization of the
system around +x0 and −x0, respectively. That is, measurements that per-

−x0 x0

Ψ(x, 0)
ψx0(x, 0)ψ−x0(x, 0)

x

Fig. 3.10. Illustration of the superposition (3.96) of two Gaussian wave packets
centered around +x0 and −x0, respectively.
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x

x′

Fig. 3.11. Time evolution of the density matrix ρS(x, x′, t) for the superposition
(3.96) of two Gaussian wave packets. Interference terms along the off-diagonal x =
−x′ become progressively damped by the scattering of environmental particles.
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tain to the system alone will be unable to distinguish this ensemble from the
corresponding classical (proper) ensemble of localized positions.

3.6 Summary

Scattering of environmental particles is one of the dominant sources of de-
coherence in the macroscopic domain and thus plays an enormously impor-
tant role in the emergence of classicality in the everyday world around us.
Scattering-induced decoherence is also ideally suited for illustrating basic
conceptual aspects of decoherence, for instance, the understanding of this
decoherence as a consequence of the environment’s acting as a continuous
monitoring device for the position of the system.

We found that for the case in which each scattering event encodes only
incomplete which-path information in the environment (the “long-wavelength
limit”), spatial interference terms are exponentially damped according to [see
(3.57)]

ρS(x,x′, t) = ρS(x,x′, 0)e−Λ(x−x′)2t, (3.98)

where the scattering constant Λ embodies the particular physical properties of
the scattering process. Thus the characteristic timescale τΔx for decoherence
of spatial interferences over a distance Δx = |x− x′| is [see (3.58)]

τΔx =
1

Λ(Δx)2
. (3.99)

We see that τΔx decreases quadratically with the coherent separation Δx. If
this separation becomes larger than the typical wavelength of the environmen-
tal particles, it is completely resolved by each scattering event. Accordingly,
the decoherence rate saturates and is simply given by the total scattering
rate [see (3.48)].

We also obtained some explicit numerical estimates for typical decoher-
ence timescales, which impressively demonstrate the effectiveness and ubiq-
uity of scattering-induced decoherence. At a first glance, one may have as-
sumed that, by suitably shielding the system from the environment, one might
be able to completely avoid decoherence. However, as we have seen, such full
shielding is impossible to achieve in practice. Even in the best available lab-
oratory vacuum the density of air molecules remains large enough to lead to
strong and virtually immediate decay of macroscopic spatial interferences. If
we were able to completely prevent all these surrounding gas molecules from
interacting with the system, thermal photons would continue to induce rapid
decoherence. And even if we managed to reduce such effects, decoherence due
to an inescapable environment of solar neutrinos and microwave background
radiation would still occur. These arguments also show why position is the
ubiquitous preferred basis on macroscopic scales (and often even on micro-
scopic scales, e.g., in the case of chiral molecules mentioned in Sect. 2.8.4).
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The recognition that quantum systems are practically impossible to shield
from the influence of a scattering environment and that these scattering pro-
cesses have a crucial influence on the dynamics and observable quantum prop-
erties of the systems has supplied a missing key ingredient in Schrödinger’s
attempt for a true “wave mechanics” in which wave packets are directly
identified with the spatially extended objects around us. The reduced den-
sity matrix describing an object in contact with a scattering environment can
be used to define an improper ensemble of wave packets whose width is given
by the progressively decreasing coherence length. Each such wave packet may
then be identified (at least in the operational sense of local measurements)
with the appearance of a well-localized particle.

As we will discuss in more detail in Sect. 6.2, recent experiments of the
double-slit type involving massive molecules have allowed us to directly con-
firm the qualitative and quantitative predictions of models for scattering-
induced decoherence. As such experiments push toward the generation of
interference patterns and the observation of the gradual influence of deco-
herence for larger and larger objects, we will be able to directly test these
models in the laboratory on increasingly macroscopic scales.



4 Master-Equation Formulations
of Decoherence

In this chapter, we will introduce the description of decoherence dynamics
in terms of so-called master equations. Such master equations directly and
conveniently yield the time evolution of the reduced density matrix ρ̂S(t)
for the open quantum system S interacting with an environment E . They
relieve us from the need of having to first determine the dynamics of the
total system–environment combination and to then trace out the degrees
of freedom of the environment. The master-equation approach is motivated
by two issues. First, we are usually not interested in the dynamics of the
environment or of the global system–environment combination. All we really
care about is the influence of the environment on our system of interest.
Second, it is often impossible to analytically determine the time evolution of
the density matrix. In such cases, one can use approximation schemes that
lead to master equations for the approximate evolution of the reduced density
matrix.

In contrast with the dynamics of the density matrix of a closed system, the
evolution equation for the reduced density matrix will of course, in general, be
nonunitary, since the interaction with the environment will typically change
the amount of coherence present in the system. Put into more formal terms,
since the trace operation used to obtain the reduced density matrix is a
nonunitary operation, the master equation must in general also be nonunitary.

This chapter is organized as follows. In Sect. 4.1, we will introduce the
basic ideas and the general formalism of master equations. In Sect. 4.2, we
will then discuss in some detail a very important type of master equation,
namely, the so-called Born–Markov master equation. This master equation
plays a key role in studies of decoherence. The derivation of this equation,
given in Sect. 4.2.2, is inevitably somewhat technical, so some readers may
prefer to just glance over this section or skip it altogether. In Sect. 4.3, we will
discuss so-called Lindblad master equations, a special and more simplified
form of the general Born–Markov master equation that is valid under an
additional assumption. As we shall see, Lindblad master equations allow for
a very intuitive representation of decoherence processes. Finally, in Sect. 4.4,
we will briefly discuss the case of non-Markovian dynamics.

We note that master equations also play an important role in the the-
ory of so-called quantum dynamical semigroups. Since our focus here is on



154 4 Master-Equation Formulations of Decoherence

the modeling of decoherence, we shall not further discuss this mathematical
connection between master equations and dynamical semigroups. Instead we
refer interested readers to Chap. 7 of [17] and to the book by Breuer and
Petruccione [18] for further information on this topic.

4.1 General Formalism

In the “ordinary” formalism of decoherence, the reduced density matrix ρ̂S(t)
is computed via

ρ̂S(t) = TrE {ρ̂SE(t)} ≡ TrE
{
Û(t)ρ̂SE(0)Û†(t)

}
, (4.1)

where Û(t) denotes the time-evolution operator for the composite system
SE . As is evident from (4.1), this approach inevitably requires that we first
determine the dynamics ρ̂SE(t) of the total system SE before we can arrive at
the reduced description through the trace operation. As we have indicated in
the introduction to this chapter, this task is very difficult, if not impossible,
to carry out in practice for most reasonably complex model systems.

By contrast, in the master-equation formalism, we instead calculate ρ̂S(t)
directly from an expression of the form

ρ̂S(t) = V̂ (t)ρ̂S(0), (4.2)

where the operator V̂ (t) is the so-called dynamical map that generates the
evolution of ρ̂S(t). Since V̂ (t) represents an operator that in turn acts on
another operator, it is commonly referred to as a “superoperator.” Equa-
tion (4.2) is called a master equation for ρ̂S(t), and it represents the most
general form that such a master equation may take.

Obviously, if the master equation is exact, then (4.1) and (4.2) must be
equivalent by definition, i.e., we must have the identity

V̂ (t)ρ̂S(0) ≡ TrE
{
Û(t)ρ̂SE(0)Û†(t)

}
, (4.3)

and the master equation would amount to nothing else but a trivial rewriting
of (4.1).

Therefore, the power of master equations is only unlocked once we im-
pose certain assumptions about the system–environment states and dynam-
ics. Such assumptions then allow us to determine the approximate time evo-
lution of ρ̂S(t) even when it is impossible to calculate the exact global dynam-
ics ρ̂SE(t). In fact, here we shall restrict our attention to master equations
(obtained from certain approximations) that can be written as first-order dif-
ferential equations that are local in time, i.e., that can be expressed in the
form
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d
dt

ρ̂S(t) = L̂ [ρ̂S(t)] = −i
[
Ĥ ′S , ρ̂S(t)

]
︸ ︷︷ ︸
unitary evolution

+ D̂[ρ̂S(t)]︸ ︷︷ ︸
decoherence

. (4.4)

This equation is local in time in the sense that the change of ρ̂S at time t
depends only on ρ̂S evaluated at t but not at any other times t′ �= t. The
superoperator L̂ appearing in (4.4) acts on ρ̂S(t) and typically depends on
the initial state of the environment and the different terms in the Hamilto-
nian. To convey the physical intuition behind this superoperator, L̂ has been
decomposed into two parts:

1. A unitary part that is given by the usual Liouville–von Neumann commu-
tator with the Hamiltonian Ĥ ′S . It is important to note that this Hamil-
tonian is in general not identical to the unperturbed free Hamiltonian
ĤS of S that would generate the evolution of S in absence of the en-
vironment, because the presence of the environment often perturbs the
free Hamiltonian, leading to a renormalization of the energy levels of the
system. We emphasize that this effect (often called the Lamb-shift con-
tribution) has nothing do with the nonunitary evolution induced by the
environment but only alters the unitary part of the reduced dynamics.

2. A nonunitary part D̂[ρ̂S(t)] that represents decoherence (and possibly
also dissipation) due to the environment. This term will be of the most
interest to us in the following.

We note that, if the evolution of the system is completely unitary, we have
D̂[ρ̂S(t)] = 0, and thus (4.4) simply becomes

d
dt

ρ̂S(t) = −i
[
Ĥ ′S , ρ̂S(t)

]
. (4.5)

This equation differs from the standard Liouville–von Neumann equation for
closed systems only in the use of the environment-shifted system Hamiltonian
Ĥ ′S instead of the unperturbed Hamiltonian ĤS .

In the next section, we shall derive an explicit general expression for L̂
(i.e., for Ĥ ′S and D̂[ρ̂S(t)]) under a certain set of assumptions. Applied to a
given model, the resulting master equation then allows us to compute the
time evolution of ρ̂S(t) for all times t.

4.2 The Born–Markov Master Equation

The Born–Markov master equation plays an enormously important role in
the study of open quantum systems and decoherence. It allows one to treat
many decoherence problems in a mathematically simple, and often closed,
form. Comparisons between the predictions of models based on this equation
and experimental data have shown that the Born and Markov assumptions on
which the master equation is based are reasonable in many cases. However,
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we should emphasize already at this stage that there exist various important
physical systems (for example, low-temperature solid-state systems) which
do not obey Markovian dynamics and which therefore often cannot be ade-
quately modeled using the Born–Markov master equation. We will come back
to this issue in Sect. 4.4 below.

4.2.1 Structure of the Born–Markov Master Equation

The Born–Markov master equation is based on two core approximations that
can be broadly stated as follows (the formal representation and physical jus-
tification of these approximations is discussed in more detail in Sect. 4.2.2
below):

1. The Born approximation. The system–environment coupling is suffi-
ciently weak and the environment is reasonably large such that changes
of the density operator of the environment are negligible and the system–
environment state remains in an approximate product state at all times,
i.e.,

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂E , (4.6)

with ρ̂E approximately constant at all times.
2. The Markov approximation. “Memory effects” of the environment are

negligible, in the sense that any self-correlations within the environment
created by the coupling to the system decay rapidly compared to the
characteristic timescale over which the state of the system varies notice-
ably.

Assume now these assumptions hold. Suppose further that the system S
has self-Hamiltonian ĤS and that its coupling to the environment is described
by the interaction Hamiltonian Ĥint, which we may write in the diagonal form
[see (2.93)]

Ĥint =
∑
α

Ŝα ⊗ Êα. (4.7)

Here the system and environment operators Ŝα and Êα are unitary but not
necessarily Hermitian. As explained in Sect. 2.8, the intuitive physical in-
terpretation of the diagonal decomposition (4.7) is that the operators Ŝα
correspond to the physical quantities of the system that are continuously
“monitored” by the environment (provided the Ŝα are Hermitian).

Then the evolution of the reduced density operator ρ̂S(t) is given by the
Born–Markov master equation

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]
−
∑
α

{[
Ŝα, B̂αρ̂S(t)

]
+
[
ρ̂S(t)Ĉα, Ŝα

]}
. (4.8)

The system operators B̂α and Ĉα appearing in this equation are defined as
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B̂α ≡
∫ ∞

0

dτ
∑
β

Cαβ(τ)Ŝ(I)
β (−τ), (4.9a)

Ĉα ≡
∫ ∞

0

dτ
∑
β

Cβα(−τ)Ŝ(I)
β (−τ). (4.9b)

Here Ŝ
(I)
α (−τ) denotes the system operator Ŝα in the so-called interaction pic-

ture. The interaction-picture formalism will be used heavily in the derivation
of the Born–Markov master equation below and is reviewed in the Appendix.
From now on, we shall simplify our notation by omitting the superscript
“(I)” for indicating operators in the interaction picture. Instead we shall in-
troduce the convention that all operators bearing explicit time arguments
are meant to be understood as interaction-picture operators. For the density
operator, however, we will uphold the superscript notation to make clear the
distinction from the Schrödinger-picture density operator, which also car-
ries a time argument (since in the Schrödinger picture quantum states are
explicitly time-dependent).

The quantity Cαβ(τ) appearing in (4.9) is given by

Cαβ(τ) ≡
〈
Êα(τ)Êβ

〉
ρ̂E

, (4.10)

where the average is taken over the initial state ρ̂E of the environment (recall
that the Born approximation (4.6) means that ρ̂E remains approximately
constant at all times). The Cαβ(τ) will be referred to as the environment
self-correlation functions in the following. The reason for this terminology is
easy to understand. The operators Êα (provided they are Hermitian) can be
thought of as observables “measured” on the environment by the interaction
between the system and the environment. The environment self-correlation
functions then tell us to what extent the result of such a “measurement”
of a particular Êα is correlated with the result of a “measurement” of the
same observable carried out a time τ later. Broadly speaking, these functions
thus quantify to what degree the environment retains information over time
about its interaction with the system. In fact, the Markov approximation
corresponds to the assumption of a rapid decay of these environment self-
correlation functions relative to the timescale set by the evolution of the
system.

The form (4.8) of the Born–Markov master equation may look fairly
daunting and difficult to apply to concrete cases. To explicitly determine
the quantities B̂α and Ĉα [see (4.9)] for a given model, we would need to
calculate (i) the interaction-picture operators Ŝα(τ) and Êα(τ) (whose time
evolution is given by the system and environment Hamiltonians ĤS and ĤE ,
respectively; see Appendix), and (ii) the environment self-correlation func-
tions Cαβ(τ), see (4.10).

However, in many situations of interest, the master equation (4.8) simpli-
fies considerably. For example, in most cases we have to consider only a single
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system observable Ŝ that is monitored by the environment. Then the sum in
the diagonal decomposition (4.7) of the interaction Hamiltonian reduces to a
single term,

Ĥint = Ŝ ⊗ Ê. (4.11)

Also, the time dependence of the interaction-picture operators Ŝα(τ) and
Êα(τ) is often very simple (sometimes even trivial), facilitating the calcu-
lation of the quantities B̂α and Ĉα [see (4.9)]. We shall see how this works
in the next Chap. 5, where we will apply the Born–Markov master equation
(4.8) to some concrete examples.

4.2.2 Derivation of the Born–Markov Master Equation

In this section, we shall derive the Born–Markov master equation (4.8) from
first principles. Readers are encouraged to work through the main steps of
the derivation, in particular in order to get a better understanding of the
assumptions that enter into this derivation.

Interaction-Picture Description

First, let us begin by decomposing the total system–environment Hamiltonian
in the usual form as

Ĥ = ĤS + ĤE + Ĥint. (4.12)

Since we would like to apply perturbation theory, it is convenient to switch
to the interaction picture. Then

Ĥ0 ≡ ĤS + ĤE (4.13)

denotes the total free Hamiltonian, and Ĥint represents the interaction that
is to be treated perturbatively.

We now transform the interaction Hamiltonian Ĥint and the total system–
environment density operator ρ̂(t) to the interaction picture. These transfor-
mations are given by [see (A.4) and (A.5)]

Ĥint(t) = eiĤ0tĤinte−iĤ0t, (4.14)

ρ̂(I)(t) = eiĤ0tρ̂(t)e−iĤ0t

= eiĤ0te−iĤtρ̂eiĤte−iĤ0t. (4.15)

The time evolution of ρ̂(I)(t) is determined by the interaction-picture Liou-
ville–von Neumann equation [see (A.9)],

d
dt

ρ̂(I)(t) = −i
[
Ĥint(t), ρ̂(I)(t)

]
. (4.16)

Thus the evolution of the interaction-picture density operator is generated
only by the interaction-picture coupling part Ĥint(t) of the full Hamiltonian.
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Iterative Solution by Integration

If we now formally integrate (4.16), we get

ρ̂(I)(t) = ρ̂(0)− i
∫ t

0

dt′
[
Ĥint(t′), ρ̂(I)(t′)

]
. (4.17)

Let us insert this expression for ρ̂(I)(t) back into the right-hand side of (4.16).
This yields

d
dt

ρ̂(I)(t) = −i
[
Ĥint(t), ρ̂(0)− i

∫ t

0

dt′
[
Ĥint(t′), ρ̂(I)(t′)

]]

= −i
[
Ĥint(t), ρ̂(0)

]
−
∫ t

0

dt′
[
Ĥint(t),

[
Ĥint(t′), ρ̂(I)(t′)

]]
. (4.18)

Since we have [see (A.12) for the derivation]

ρ̂
(I)
S (t) = TrE

{
ρ̂(I)(t)

}
, (4.19)

we can transform (4.18) into an equation for the reduced density operator
ρ̂
(I)
S (t) by simply taking the trace over the environment,

d
dt

ρ̂
(I)
S (t) = −i TrE

[
Ĥint(t), ρ̂(0)

]
−
∫ t

0

dt′ TrE
[
Ĥint(t),

[
Ĥint(t′), ρ̂(I)(t′)

]]
.

(4.20)
In fact, without loss of generality, one can assume that

TrE
[
Ĥint(t), ρ̂(0)

]
= 0. (4.21)

It is easy to show that this can always be achieved by a formal redefinition
of the Hamiltonians Ĥ0 and Ĥint. Then (4.20) simplifies to

d
dt

ρ̂
(I)
S (t) = −

∫ t

0

dt′TrE
[
Ĥint(t),

[
Ĥint(t′), ρ̂(I)(t′)

]]
. (4.22)

All calculations leading up to this equation have been exact and no approxi-
mations have been made. Let us now pause for a moment and ask ourselves
the following question. What features are still absent from (4.22) that would
be desirable for a master equation for ρ̂

(I)
S (t)? Note that the right-hand side

of (4.22) still depends on the total system–environment density operator ρ̂(I)

evaluated at all times between 0 and t. Thus (4.22) is not yet a time-local
differential equation of the form (4.4) that would determine the change of ρ̂(I)

S
at time t solely in terms of ρ̂

(I)
S (t) and a set of known quantities. Therefore

two desirable properties emerge:
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(P1) We would like to express our master equation entirely in terms of the
reduced density operator ρ̂(I)

S (t) and the initial state of the environment,
i.e., we would like to eliminate any terms pertaining to a time-dependent
state of the environment. A master equation that fulfills this property
is called an integro-differential equation, since the differential change of
the quantity of interest at a certain time t depends on an integral of a
function of this quantity over all times t′ ≤ t.

(P2) We would like to eliminate any dependences of the change of ρ̂
(I)
S at

time t on ρ̂
(I)
S evaluated at times t′ < t.

The trick to accomplish these goals lies in the application of the Born and
Markov approximations mentioned above. Imposing the Born approximation
will eliminate the dependence on the full density operator ρ̂(I) on the right-
hand side of (4.22) and thus take care of (P1). The Markov approximation will
then transform the resulting integro-differential master equation into a time-
local differential equation, thereby achieving the goal stated in (P2). As we
will discuss below, both approximations can be motivated from assumptions
of weak system–environment couplings and of an environment that is large
compared to the size of the system.

Before proceeding, let us note that in the following we will assume the
absence of initial correlations between the system and the environment, i.e.,

ρ̂(0) = ρ̂(I)(0) = ρ̂S(0)⊗ ρ̂E(0). (4.23)

This is a reasonable assumption for the case of weak system–environment
coupling considered here.

Imposing the Born Approximation

As already mentioned in Sect. 4.2.1 [see (4.6)], the Born approximation as-
sumes that the density operator ρ̂ of the system–environment combination
remains at all times in an approximate product form and that temporal
changes in the density matrix ρ̂E of the environment can be neglected,

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂E ∀t ≥ 0, (4.24)

with ρ̂E = ρ̂E(0). The equivalent condition then also holds in the interaction
picture,

ρ̂(I)(t) ≈ ρ̂
(I)
S (t)⊗ ρ̂E ∀t ≥ 0. (4.25)

This is easily seen from the fact that ρ̂(I)(t) = eiĤ0tρ̂(t)e−iĤ0t [see (4.15)].
Since Ĥ0 = ĤS + ĤE acts separately on the system and the environment, it
cannot establish any entanglement between the two partners.

The physical intuition behind the Born approximation is that the in-
teraction between the system and the environment is sufficiently weak (the
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so-called “weak-coupling limit”), and that the environment is large in com-
parison with the size of the system, such that (i) the density operator for the
environment does not change significantly as a consequence of the interaction
with the system, and that (ii) the system and the environment remain in a
separable state at all times.

It turns out that the Born approximation is a reasonable assumption in
many cases of physical interest. Usually, the system is coupled to a very
large environment which, viewed as a whole, undergoes only negligibly small
changes in the course of the system–environment interaction compared to the
change of the state of the system. That is, the back-action of the system on
the environment can in such cases be ignored. Note that (4.25) allows for
arbitrarily large changes of the density operator of the system, and it does
not exclude the occurrence of environmental excitations in the environment
induced by the interaction with the system.

Using the Born approximation (4.25), the master equation (4.22) can now
be written as

d
dt

ρ̂
(I)
S (t) = −

∫ t

0

dt′ TrE
[
Ĥint(t),

[
Ĥint(t′), ρ̂

(I)
S (t′)⊗ ρ̂E

]]
. (4.26)

Evidently (by virtue of the Born approximation), we have fulfilled our de-
sired property (P1) stated above. Both sides of our master equation are now
expressed entirely in terms of the reduced density operator ρ̂

(I)
S (t), with the

state of the environment separated out and reduced to the initial state ρ̂E .

Imposing the Markov Approximation

The expression (4.26) is still an integro-differential equation, i.e., computing
the change of ρ̂(I)

S at time t requires knowledge of ρ̂(I)
S at all previous times

t′ < t. However, as we shall now show, by imposing a suitable approximation
(namely, the Markov approximation) we can transform (4.26) into a time-
local master equation of the form (4.4).

Let us start by writing the interaction Hamiltonian in the diagonal form
Ĥint =

∑
α Ŝα⊗ Êα [see (4.7)] and transforming it to the interaction picture,

Ĥint(t) = eiĤ0tĤinte−iĤ0t

=
∑
α

(
eiĤStŜαe−iĤSt

)
⊗
(
eiĤEtÊαe−iĤEt

)

=
∑
α

Ŝα(t)⊗ Êα(t). (4.27)

Then (4.26) can be expressed as
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d
dt

ρ̂
(I)
S (t)

= −
∫ t

0

dt′
∑
αβ

TrE
[
Ŝα(t)⊗ Êα(t),

[
Ŝβ(t′)⊗ Êβ(t′), ρ̂

(I)
S (t′)⊗ ρ̂E

]]
. (4.28)

Let us now define

Cαβ(t, t′) ≡ TrE
{
Êα(t)Êβ(t′)ρ̂E

}
=
〈
Êα(t)Êβ(t′)

〉
ρ̂E

. (4.29)

In the following, we shall suppose that the environment is in a stationary
state (i.e., in equilibrium), [

ĤE , ρ̂E
]

= 0. (4.30)

This implies that we can write

Cαβ(t, t′) = TrE
{
Êα(t− t′)Êβ ρ̂E

}
≡ Cαβ(t− t′), (4.31)

which are precisely the environment self-correlation functions (4.10) intro-
duced above.

We see that, due to the assumption (4.30), these environment self-
correlation functions do not depend on the absolute time t [as in (4.29)] but
only on the time interval between the results of the two identical “measure-
ments” (represented by a particular operator Êα) whose degree of correlation
is quantified by (4.31).1

Inserting (4.31) into (4.28) and writing out the double commutator, we
obtain

d
dt

ρ̂
(I)
S (t) =

−
∫ t

0

dt′
∑
αβ

{
Cαβ(t− t′)

[
Ŝα(t)Ŝβ(t′)ρ̂

(I)
S (t′)− Ŝβ(t′)ρ̂

(I)
S (t′)Ŝα(t)

]

+Cβα(t′ − t)
[
ρ̂
(I)
S (t′)Ŝβ(t′)Ŝα(t)− Ŝα(t)ρ̂(I)

S (t′)Ŝβ(t′)
]}

. (4.32)

In deriving this expression, we have used the basic fact that the trace is
invariant under cyclic permutations of the operators, such that

TrE
{
ÊαÊβ ρ̂E

}
= TrE

{
ρ̂EÊαÊβ

}
= TrE

{
Êαρ̂EÊβ

}
. (4.33)

We have also separated out the operators Ŝα(t) as well as the density operator
ρ̂
(I)
S (t′) from the trace operation. We are allowed to do this because the trace

is taken over the environment only.

1This simplification is not always appropriate. See, e.g., Sect. 3.4.3 of [18] for
an interesting counterexample.
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Let us now further simplify (4.33) by imposing the Markov approximation.
It turns out that in many physical situation of interest, the environment
can be assumed to very quickly “forget” any internal self-correlations that
have been established in the course of the interaction with the system. In
other words, in such situations the environment does not “keep track of its
history”—any dynamically established quantum correlations between parts
of the environment are destroyed on a timescale τcorr much shorter than the
characteristic timescale τS over which the reduced interaction-picture density
operator ρ̂(I)

S (t) of the system changes noticeably. This assumption τcorr � τS
constitutes the Markov approximation. It is appropriate if, as in our case, the
environment is only weakly coupled to the system, and if the environment is
at a sufficiently high temperature.

Readers may be familiar with Markovian processes from classical proba-
bility theory (see Sect. 1.4 of [18] for a good introduction to this subject).
Broadly speaking, a stochastic process is Markovian if the probability of a
particular event is independent of all earlier events. That is, each step in
the process is independent of the previous steps. In other words, the system
retains no memory of its past—the steps are completely uncorrelated. The
analogy with a “Markovian environment” should now be clear.

What are the consequences of the Markov approximation for our goal of
obtaining a time-local master equation in differential form? Let us look back
at the current structure (4.32) of the master equation. Applied to our deriva-
tion, the Markov approximation means that the environment self-correlations
functions Cαβ(t − t′) [see (4.31)] are sharply peaked around (t − t′) = 0 and
decay on a timescale much shorter than the timescale set by τS , which quan-
tifies the rate of change of the interaction-picture density operator ρ̂

(I)
S (t) of

the system. The implications of this property are twofold.
First, since the reduced interaction-picture density operator ρ̂

(I)
S (t) of the

system changes only insignificantly during the typical time interval τcorr over
which the environment self-correlations functions Cαβ(t − t′) vanish, we can
replace the retarded-time density operator ρ̂

(I)
S (t′) by the current-time den-

sity operator ρ̂
(I)
S (t) in the integrand on the right-hand side of (4.32). The

resulting master equation is the so-called Redfield equation [174, 175], which
fulfills our desired property (P2) of being time-local. In fact, the Markov
assumption allows us to simplify the master equation even further. Namely,
we realize that, for t � τcorr, we can safely extend the lower limit of the
integration on the right-hand side of (4.32) to −∞, since the self-correlation
functions Cαβ(t− t′) (and thus the integrand) vanish for t′ � t.

With these two modifications (which are both based on the Markov ap-
proximation of negligibly short environmental self-correlation times) and the
substitution t′ −→ τ ≡ t− t′, (4.32) becomes
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d
dt

ρ̂
(I)
S (t) =

−
∫ ∞

0

dτ
∑
αβ

{
Cαβ(τ)

[
Ŝα(t)Ŝβ(t− τ)ρ̂(I)

S (t)− Ŝβ(t− τ)ρ̂(I)
S (t)Ŝα(t)

]

+Cβα(−τ)
[
ρ̂
(I)
S (t)Ŝβ(t− τ)Ŝα(t)− Ŝα(t)ρ̂(I)

S (t)Ŝβ(t− τ)
]}

. (4.34)

As desired, the right-hand side of this master equation does no longer depend
on the full time-dependent density operator ρ̂(I)(t), but only on the reduced
density operator ρ̂

(I)
S (t) of the system, together with the initial state of the

environment [which enters through the self-correlation functions Cαβ(τ), see
(4.31)]. Also, the master equation is local in time. Only completely known
quantities, namely, the operators Ŝα(t) and Êα(t) (which are determined a
priori by the form of the Hamiltonian), enter into the master equation with
time arguments other than t.

Equation (4.34) establishes our core result, and our derivation is essen-
tially complete. The last remaining step is simply concerned with transform-
ing the equation back to the Schrödinger picture and with making some
formal rearrangements.

Transformation Back to the Schrödinger Picture

To transform a density-operator evolution equation written in the interaction
picture back to the Schrödinger picture, we can use the following general
recipe. From (A.12) we have

ρ̂
(I)
S (t) = eiĤStρ̂S(t)e−iĤSt, (4.35)

and thus it immediately follows that

d
dt

ρ̂
(I)
S (t) = i

[
ĤS , ρ̂

(I)
S (t)

]
+ eiĤSt

(
d
dt

ρ̂S(t)
)

e−iĤSt. (4.36)

Again using (4.35), this may be rewritten as

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]
+ e−iĤSt

(
d
dt

ρ̂
(I)
S (t)

)
eiĤSt. (4.37)

Let us apply this procedure to our interaction-picture Born–Markov master
equation (4.34). We insert the expression (4.34) for d

dt ρ̂
(I)
S (t) into the right-

hand side of (4.37). We pull the time evolution operators e±iĤSt into the
square brackets in (4.34) and then use (4.14) and (4.35). For example, for the
first term inside the brackets on the right-hand side of (4.34), this will lead
to
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e−iĤStŜα(t)Ŝβ(t− τ)ρ̂(I)
S (t)eiĤSt

=
(
e−iĤStŜα(t)eiĤSt

)(
e−iĤStŜβ(t− τ)eiĤSt

)(
e−iĤStρ̂

(I)
S (t)eiĤSt

)

= Ŝα

(
e−iĤSτ ŜβeiĤSτ

)
ρ̂S

= ŜαŜβ(−τ)ρ̂S . (4.38)

In this way, (4.34) can now be written as (reintroducing the commutator
notation)

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]
−
∫ ∞

0

dτ
∑
αβ

{
Cαβ(τ)

[
Ŝα, Ŝβ(−τ)ρ̂S(t)

]

+Cβα(−τ)
[
ρ̂S(t)Ŝβ(−τ), Ŝα

]}
. (4.39)

We can simplify our notation by realizing that the integral on the right-hand
side of (4.39) extends over the entire range τ = 0 . . .∞, and that therefore the
overall time dependence of the environment self-correlation functions Cαβ(τ)
and of the interaction-picture operators Ŝβ(−τ) is effectively integrated out.
Using the time-independent quantities B̂α and Ĉα introduced in (4.9),

B̂α =
∫ ∞

0

dτ
∑
β

Cαβ(τ)Ŝβ(−τ), (4.40a)

Ĉα =
∫ ∞

0

dτ
∑
β

Cβα(−τ)Ŝβ(−τ), (4.40b)

the Born–Markov master equation (4.39) then takes the final form (4.8) given
in Sect. 4.2, i.e.,

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]
−
∑
α

{[
Ŝα, B̂αρ̂S(t)

]
+
[
ρ̂S(t)Ĉα, Ŝα

]}
. (4.41)

This completes our derivation. In Chap. 5, we shall illustrate the applica-
tion of this master equation in the context of several important decoherence
models.

4.3 Master Equations in the Lindblad Form

Master equations in the so-called Lindblad form refer to a particular (al-
beit quite general) class of Markovian master equations. They arise from the
requirement that the master equation ought to ensure the positivity of the
reduced density matrix at all times, i.e., that

〈ψ| ρ̂S(t) |ψ〉 ≥ 0 (4.42)
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for any pure state |ψ〉 of the system S and for all t. This condition is phys-
ically reasonable, since we would like to interpret the elements 〈ψ| ρ̂S(t) |ψ〉
of the reduced density matrix as occupation probabilities. If the time evolu-
tion of ρ̂S(t) is exact, the positivity condition will of course be automatically
fulfilled. However, for reduced density matrices evolved by means of approx-
imate master equations, (4.42) will not necessarily hold.

It was first shown by Gorini, Kossakowski, and Sudarshan [176] and Lind-
blad [177] that the most general master equation that ensures the positivity
(4.42) of the reduced density matrix ρ̂S(t) is of the form

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]
+

1
2

∑
αβ

γαβ

{[
Ŝα, ρ̂S(t)Ŝ

†
β

]
+
[
Ŝαρ̂S(t), Ŝ

†
β

]}
.

(4.43)

Here, the operators Ŝα are the system operators appearing in the diagonal
decomposition Ĥint =

∑
α Ŝα⊗ Êα of the interaction Hamiltonian [see (4.7)].

The time-independent coefficients γαβ encapsulate all information about the
physical parameters of the decoherence (and possibly dissipation) processes
and define a coefficient matrix Γ ≡ (γαβ).

Evidently, the Lindblad master equation (4.43) is local in time. Moreover,
it is also Markovian. Equations of the form (4.43) can be derived in many dif-
ferent ways from various assumptions and are therefore not necessarily tied to
the Born–Markov master equation (4.8). Master equations of the Lindblad
form, derived from phenomenological models, were used by many authors
already in the 1960s (see, e.g., [178]). However, their rigorous mathemati-
cal derivation within the theory of generators and quantum dynamical semi-
groups was established only in the second half of the 1970s [176,177,179–181].

If we compare (4.43) to our general expression (4.8) for the Born–Markov
master equation, we observe a certain formal similarity between the two equa-
tions. Yet, evidently, they are not the same. In particular, the operators B̂α
and Ĉα appearing in (4.8) are in general nontrivial time integrals over the
interaction operators Ŝα and the environment self-correlation functions [see
(4.9)]. Still, the reader may suspect that it could be possible to transform
(4.8) into the Lindblad form (4.43). However, it turns out that this cannot
always be done: The Lindblad master equation is a special case of the general
Born–Markov master equation. It follows that density matrices evolved by
the latter equation do not necessarily fulfill the condition (4.42) of positiv-
ity [182].

It is, however, possible to bring (4.8) into the Lindblad form (4.43) if
another assumption (in addition to the Born–Markov approximations) is
imposed. This assumption is often called the rotating-wave approximation,
which is commonly made in quantum optics. This assumption is justified
whenever the typical timescale τS for the evolution of the system is short
in comparison with the relaxation timescale of the system. For details on
how the rotating-wave approximation is used to transform the Born–Markov
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master equation into the Lindblad form, we refer the reader to Sect. 3.3.1
of [18].

Conversely, the inability of writing a master equation in the Lindblad
form does not necessarily imply that the positivity condition (4.42) is vio-
lated. A good example is the model for quantum Brownian motion, which
we shall discuss in Sect. 5.2. For this model, it is possible to derive the ex-
act, non-Markovian master equation (see Sect. 5.2.7). This equation cannot
be brought into the Lindblad form without imposing several approximations
and assumptions [183]. Yet, it is clear that, since the master equation is ex-
act, it should automatically enforce the positivity of the density matrix at all
times. As it turns out, this is indeed the case. The explanation for this ini-
tially puzzling behavior can be found through a careful analysis of the exact
dynamics, which shows that in the exact master equation positivity arises
through rather subtle time dependences of the coefficients appearing in the
master equation [184,185].

We can simplify the Lindblad master equation (4.43) further by diagonal-
izing the matrix Γ defined by the coefficients γαβ appearing in this equation.
This diagonalization is always possible because, as one can show, this matrix
is positive (i.e., all its eigenvalues κμ are ≥ 0). Then (4.43) can be rewritten
in the diagonal form [177,179]

d
dt

ρ̂S(t) = −i
[
Ĥ ′S , ρ̂S(t)

]
− 1

2

∑
μ

κμ

{
L̂†μL̂μρ̂S(t) + ρ̂SL̂†μL̂μ − 2L̂μρ̂S(t)L̂†μ

}
.

(4.44)
Here Ĥ ′S denotes the renormalized (“Lamb-shifted”) Hamiltonian of the sys-
tem. The so-called Lindblad operators (or “Lindblad generators”) L̂μ are
simply appropriate linear combinations of the original operators Ŝα, with
coefficients determined from the diagonalization of the matrix Γ .

Note that, because the operators Ŝα are not necessarily Hermitian, the
Lindblad operators L̂μ do not always correspond to physical observables, but
when they do, we can rewrite (4.44) in the more compact double-commutator
form

d
dt

ρ̂S(t) = −i
[
Ĥ ′S , ρ̂S(t)

]
− 1

2

∑
μ

κμ
[
L̂μ,

[
L̂μ, ρ̂S(t)

]]
. (4.45)

In fact, our equation of motion (3.78) for environmental scattering,

∂ρS(x, x′, t)
∂t

= − i
2m

(
∂2

∂x′2
− ∂2

∂x2

)
ρS(x, x′, t)− Λ(x− x′)2ρS(x, x′, t),

(4.46)
is of the Lindblad form (4.45). To see this, let us evaluate (4.45) with the
single Lindblad operator L̂ = x̂ and the “free”-particle Hamiltonian Ĥ ′S =
ĤS = p̂2/2m,

d
dt

ρ̂S(t) = − i
2m

[
p̂2, ρ̂S(t)

]
− 1

2
κ [x̂, [x̂, ρ̂S(t)]] . (4.47)
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Expressing this master equation in the position representation then yields

∂ρS(x, x′, t)
∂t

= − i
2m

(
∂2

∂x′2
− ∂2

∂x2

)
ρS(x, x′, t)−

1
2
κ (x− x′)2 ρS(x, x′, t),

(4.48)
which is evidently identical to (4.46) if we identify the Lindblad coefficient
κ/2 with the scattering constant Λ, see (3.56).

Lindblad master equations provide us with an intuitive and rather sim-
ple way of representing the environmental monitoring of an open quantum
system. Most of the real physics behind this monitoring process is hidden
in the coefficients κμ appearing in (4.44). In fact, if the Lindblad operators
are chosen to be dimensionless, the coefficients κμ can be viewed as directly
representing decoherence rates, since they have units of inverse time. Accord-
ingly, usually the most important and difficult task of estimating decoherence
rates using the Lindblad equation consists precisely of determining these co-
efficients κμ.

From (4.45) we immediately see that the decoherence term vanishes if
ρ̂S(t) commutes with each of the Lindblad operators L̂μ for all times t,

[
L̂μ, ρ̂S(t)

]
= 0 ∀μ, t. (4.49)

In this case, ρ̂S(t) evolves purely unitarily. Since the L̂μ are simply linear
combinations of the Ŝα, (4.49) (typically2) implies that

[
Ŝα, ρ̂S(t)

]
= 0 ∀α, t. (4.50)

The connection to the concept of preferred pointer states (see Sect. 2.8)
should now be rather clear. Equation (4.50) implies that simultaneous eigen-
states of all Ŝα will be immune to decoherence, which is precisely the pointer-
state criterion (2.94).

Finally, let us briefly mention so-called quantum-jump and quantum-
trajectory methods. Here, the evolution of the reduced density matrix is con-
ditioned on an explicitly observed sequence of measurement results in the
environment. This allows for the (formal) description of a single realization
of the system evolving stochastically, conditioned on a particular measure-
ment record. The dynamics are then described by a master equation of the
Lindblad type (4.45) for the reduced density matrix ρ̂CS conditioned on the
measurement records of the Lindblad operators L̂μ,

dρ̂CS = −i
[
ĤS , ρ̂CS

]
dt− 1

2

∑
μ

κμ
[
L̂μ,

[
L̂μ, ρ̂

C
S
]]

dt +
∑
μ

√
κμW[L̂μ]ρ̂CS dWμ.

(4.51)
2One might of course devise some rather pathological linear combinations of the

Ŝα for a particular L̂μ such that the commutator (4.49) happens to vanish while
the individual commutators (4.50) are nonzero.
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Here,W[L̂]ρ̂ ≡ L̂ρ̂+ρ̂L̂†−ρ̂Tr
{
L̂ρ̂ + ρ̂L̂†

}
, and the dWμ denote the so-called

Wiener increments. Equation (4.51) corresponds to a diffusive “unraveling”
of the Lindblad equation (4.45) into individual quantum trajectories that can
then be expressed by means of a “stochastic Schrödinger equation.” We shall
not go into the details here—there exists a large volume of literature on this
topic (see, e.g., [186–198]).

4.4 Non-Markovian Dynamics

As we have emphasized before, the Born–Markov master equation is only
strictly applicable if the system–environment coupling is weak and memory
effects of the environment can be neglected. In many situations of physical
interest, however, this assumption is not fulfilled because of low tempera-
tures of the environment and strong interactions of the system with its en-
vironment. A concrete example of such non-Markovian dynamics is that of
a superconducting qubit strongly coupled to a low-temperature environment
of other two-level systems, a situation in which making the Born–Markov
approximations is no longer justified [199,200].

Intuitively, one might expect that pronounced memory effects in the envi-
ronment will cause strong dependences of the evolution of the reduced density
operator on the past history of the full system–environment combination and
thus make it impossible to describe the reduced dynamics by a differential
equation that is local in time. In some situations this is indeed the case, and
one will then, in general, have to resort to solving integro-differential equa-
tions such as (4.22), which depend on retarded-time kernels and integrations
over the history of the system. Such equations are encountered, for example,
in the context of the so-called Nakajima–Zwanzig projection-operator ap-
proach [201–203] (see also Chap. 7 of [17] for details). Such techniques lead
to equations that are not local in time and are difficult to solve analytically,
and they are therefore rarely used in their exact forms.

Surprisingly, however, in many other cases one can show that even non-
Markovian dynamics can still be described by a differential equation of the
form

d
dt

ρ̂S(t) = K̂(t)ρ̂S(t). (4.52)

In contrast with the Born–Markov master equation (4.8), the superoperator
K̂(t) depends here explicitly on t, but there are no dependences on previous
times t′ < t. In particular, the change in ρ̂S is entirely determined by ρ̂S
evaluated at the same time t only, and no integration over the history of the
system in the equation of motion is required. Therefore the master equation
(4.52) is still local in time.

Time-local non-Markovian master equations of the form (4.52) can be ar-
rived at in various ways. For example, in the case of quantum Brownian mo-
tion (see Sect. 5.2), one can derive a master equation that is non-Markovian
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(but still assumes the weak-coupling limit) in much the same way as the
equation deduced from the Born–Markov master equation (4.8). The two
master equations differ only in the range of the time integral appearing in
the expressions (4.9) for the operators B̂α and Ĉα. In the Markovian case, the
upper limit of the integral is taken to infinity, leading to time-independent
expressions for B̂α and Ĉα. Instead, one can let the integral extend from zero
to t only, resulting in explicitly time-dependent operators B̂α(t) and Ĉα(t).
With this formally simple modification, a “pre-Markovian” master equation
for quantum Brownian motion emerges that exhibits more fine-grained dy-
namics, especially in the initial regime close to t = 0. (This equation is of the
Redfield type mentioned in Sect. 4.2.2.)

In fact, for the case of quantum Brownian motion it is possible to de-
rive the exact non-Markovian master equation (see Sect. 5.2.7), which has
the same structure as the Markovian master equation save for more compli-
cated expressions for the environment self-correlation functions (4.10). The
existence of an exact solution of the quantum Brownian motion model also
enables us to directly compare the resulting dynamics to the dynamics ob-
tained from the approximate Born–Markov master equation. In this way, we
can investigate to what extent the Born–Markov assumptions may constitute
a reasonable set of approximations for a given physical situation described
by the model for quantum Brownian motion. The issue of Markovian vs.
non-Markovian dynamics in quantum Brownian motion will be discussed in
more detail in Sects. 5.2.2 and 5.2.7 (see also [183]). In general, it is often
possible to arrive at non-Markovian but time-local master equations of the
type (4.52) by using the so-called time-convolutionless projection operator
technique [204–207]. We shall not go into the details of this approach here.

We conclude that the Born–Markov master equation (4.8), especially
when written in the simple Lindblad forms (4.44) or (4.45), allows for a fairly
straightforward calculation of the approximate decoherence dynamics and for
an intuitive connection between the formalism (the Lindblad operators) and
its physical interpretation (the continuous monitoring of system observables
by the environment). However, in each physical situation one needs to care-
fully evaluate to what extent the assumptions underlying the derivation of
this master equation, such as weak system–environment couplings and neg-
ligible environmental memory effects, are actually appropriate. In the next
Chap. 5, when discussing concrete models, we will frequently come back to
this issue.



5 A World of Spins and Oscillators:
Canonical Models for Decoherence

Needless to say, there are countless different physical systems in nature for
which decoherence plays an important role. The task of modeling decoher-
ence in each and every of these systems would therefore appear rather daunt-
ing. Each time we are confronted with a different physical system, it would
seem that we would need to start from scratch in developing an appropriate
system–environment model and in determining its dynamics. How could we
accomplish this modeling task given the complexity of the many-body sys-
tems and interactions typically encountered on mesoscopic and macroscopic
scales?

Fortunately, a very convenient simplification comes to our rescue here. It
turns out that in many (if not most) situations of practical interest, the cen-
tral system interacting with an environment can be mapped onto a very small
set of canonical models. In such models, the central system is represented ei-
ther by a particle described by continuous phase-space coordinates moving in
some potential (e.g., a harmonic-oscillator potential), or by a spin-1

2 particle
if the state space of the system is discrete and effectively two-dimensional.
Similarly, the environment is modeled as a collection of harmonic oscillators
or spin particles. Accordingly, decoherence models in which the environment
is represented by harmonic oscillators are commonly referred to as oscillator-
environment models, and models based on an environment of spin particles
are called spin-environment models. (A quick note on terminology: In the
following, the expression “thermal bath,” or “bath” for short, will refer to an
environment in thermal equilibrium.)

Since there are four different possible ways in which these choices for
the representation of the system and the environment can be combined, we
thus obtain a total of four main canonical models for decoherence. Canonical
models play an enormously important role in studies of decoherence, since
they are very general: The details of a given physical system in contact with
a specific physical environment are largely encapsulated in the particular set
of parameters used to evaluate the model. Thus once the model is solved for
an arbitrary choice of parameters, it can rather easily be applied to a whole
host of systems in nature by simply choosing the parameters in such a way
as to match the physical situation of interest.
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Each of the canonical models gives rise to decoherence dynamics that
are unique to the model for some parameter regime and may approximate
another model for a different parameter regime. For example, in the limit of
weak couplings between the system and the environment, spin-environment
models can be mapped onto oscillator-environment models [199, 208] (see
Sect. 5.4.2 below).

This chapter is organized as follows. In Sect. 5.1, we shall discuss the
physical motivations and assumptions that underlie the mapping of physical
systems onto canonical models. Then, in Sect. 5.2, we will describe the first of
the canonical models that is very important to the description of decoherence
and the quantum-to-classical transition in the everyday world around us. This
is the model for quantum Brownian motion. It describes a particle represented
by continuous phase-space coordinates and coupled to an environment of
noninteracting harmonic oscillators.

In Sect. 5.3, we then go on to replace the central system with an effective
two-level system. The resulting model has become known as the so-called
spin–boson model, since here a central spin system interacts with a bosonic
environment of harmonic oscillators. We will analytically solve a simplified
version of this model and also derive the Born–Markov master equation for
the general model.

In Sect. 5.4, we will turn to spin-environment models. As we shall discuss
below, these models become particularly relevant at very low temperatures
such as those encountered in superconducting systems. We shall focus on the
physically most relevant case of a central two-level system (represented by a
spin- 1

2 particle) interacting with an environment of other spins. We will also
describe the mapping of spin environments onto oscillator environments.

The literature on the different decoherence models and their application
to concrete physical situations has become so vast that it would be hopeless
to even attempt to capture this field in its entirety. Nonetheless, this chapter
will provide readers with a good overview of the main decoherence models
and their physical relevance and demonstrate some of the standard techniques
employed in solving these models. Inevitably, the discussion will occasionally
be somewhat technical, so readers may pick and choose the preferred level of
detail with which to study the text. Those who would like to focus on only
one of the canonical models to begin with and later come back to the other
models are encouraged to start with the model for quantum Brownian motion
described in Sect. 5.2. This model not only is of crucial importance in studies
of decoherence, but will also allow us to discuss many important physical,
formal, and conceptual aspects of decoherence. We will see the Born–Markov
master equation formalism in action, analyze the physical meaning of the
different terms in the resulting master equation, describe the role and prop-
erties of spectral densities, illustrate the dynamics of decoherence and the
environment-induced superselection of preferred states in phase space, and
discuss general limitations of such decoherence models.
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5.1 Mapping onto Canonical Models

First, let us describe some of the physical ideas behind the mapping of the
central system (Sect. 5.1.1) and the environment (Sect. 5.1.2) onto harmonic
oscillators or spin- 1

2 particles.

5.1.1 Mapping of the Central System

In many cases, the relevant dynamics of the central system can be described
by one or two coordinates of interest, even if the full microscopic structure
of the dynamics of system is much more complicated. These coordinates may
be either continuous or discrete.

In the case of continuous coordinates, the typical situation of physi-
cal interest is that of a mass point described by phase-space coordinates
X̂ (position) and P̂ (momentum) and moving in some potential V (X̂). In
studies of decoherence, one often considers a harmonic-oscillator potential
V (X̂) = MΩ2X̂2/2, representing the motion of a particle, such as an atom
or ion, confined to a “trap,” for instance, a crystal lattice or magnetic field.
The free-particle case V (X̂) = 0 is also of obvious relevance to the quantum-
to-classical transition.

The selection of position and momentum as the relevant “classical” coordi-
nates is a consequence of environmental interactions, namely, of environment-
induced superselection (see Sect. 2.8). In many important cases, such as quan-
tum Brownian motion (Sect. 5.2), the evolution of the central system is gov-
erned in roughly equal strengths by the self-Hamiltonian ĤS of the system
and the system–environment interaction Hamiltonian Ĥint. Most interactions
in nature are dependent on the distance between the two interacting partners,
and thus Ĥint will typically be diagonal in position (see also Sect. 2.8.4). On
the other hand, the kinetic-energy term MP̂ 2/2 in ĤS is diagonal in momen-
tum. As we shall discuss in Sect. 5.2.5, the pointer states of the system then
emerge as a compromise between complete localization in position space and
complete localization in momentum space, leading to states that are approx-
imately localized in phase space [86,106,109].

The physically most relevant situation involving discrete coordinates is
that of a central system effectively acting as a two-level system. This typi-
cally happens if the system has two energy minimums separated by a barrier
and if the energy of the system is sufficiently low (i.e., close to the energy
minimums and much less than the barrier height). Then the dynamics of
the system are effectively those of a particle confined to a double-well po-
tential (Fig. 5.1). In many physical situations, besides the ground state only
one or two excited states (if any) are contained in each well, and these ex-
cited states are usually not populated. Thus we obtain an effective two-state
system, with the two states corresponding to localization in the “left” and
“right” wells, respectively. The two levels can then in turn be mapped onto
the two quantum states |0〉 (“spin up”) and |1〉 (“spin down”) of a spin-1

2
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q

V (q)

|0〉
|1〉

Fig. 5.1. Mapping onto two-state systems. We consider a system described by an
extended coordinate q and moving in a double-well potential V (q). In many cases,
the system occupies only the lowest-lying state in each well and can therefore be
effectively described by two basis states |0〉 and |1〉, corresponding to localization
in the left and right well, respectively.

particle. Such two-level systems play a particularly important role in quan-
tum computing, where they physically represent the qubits used to encode
quantum information (see Chap. 7).

Intrinsic dynamics of the two-level system are created by quantum tun-
neling between the wells, which results in transitions between the two states
|0〉 and |1〉. Taking the states |0〉 and |1〉 as the eigenstates of the Pauli z-
spin operator σ̂z, tunneling is therefore mediated by a term in the system’s
Hamiltonian of the form

Ĥtunnel
S = −1

2
Δ0 (|0〉〈1|+ |1〉〈0|) ≡ −1

2
Δ0σ̂x, (5.1)

where Δ0 is the so-called tunneling matrix element. The difference in energy
(the so-called “asymmetry energy”) between the ground states in each of
the two wells is often small in comparison with the energy spacing between
the states in a given well, such that the low-lying energy levels in each well
are approximately lined up. This ensures that a “particle” that is localized
in one well—say, the left well corresponding to the state |0〉—and tunnels
through the barrier usually cannot reach an excited level |1′〉 �= |1〉 in the
right well [209].

5.1.2 Mapping of the Environment

Let us now turn to the mapping of the environment. As mentioned above,
two situations of interest arise here: A description of the environment as a
set of harmonic oscillators and as a collection of spin-1

2 particles representing
quantum two-level systems.
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Oscillator Environments

The representation of environments by a large number of harmonic oscilla-
tors has a long history going back to quantum electrodynamics and to spin-
wave and electron-gas models (see [210] for an overview). Oscillator envi-
ronments correspond to a quasicontinuum of delocalized bosonic field modes,
with coherence and energy from the central system becoming effectively irre-
versibly lost into this extended bosonic environment. By “delocalized modes”
we mean to convey the notion that the wave function of each harmonic oscil-
lator (i.e., of each bosonic field mode) is spread out over a large spatial region.
This delocalization of the environmental modes is a characteristic property
of harmonic-oscillator environments.

Oscillator environments play an enormously important role in the model-
ing of decoherence processes, mainly because such environments are of great
generality. It can be shown that, at sufficiently low energies, a large class of
interacting system–environment compounds can effectively be represented by
one or two coordinates of the system linearly coupled to an environment of
harmonic oscillators. In fact, as was originally demonstrated by Feynman and
Vernon [211] (see also the work by Caldeira and Leggett [212]), the interac-
tion with any environment can be rigorously mapped onto a system (linearly)
coupled to an oscillator environment, provided the interaction is sufficiently
weak and second-order perturbation theory can be applied. (We will discuss
this mapping in more detail in Sect. 5.4.2 below.)

Spin Environments

Spin environments are typically the appropriate model in the low-temperature
setting. Of course, such low temperatures are usually not encountered in
the everyday world around us. However, they are routinely attained in the
laboratory and are crucial to many experiments. In particular, experiments
devoted to the studies of macroscopic quantum coherence and decoher-
ence (see Chap. 6)—most notably, those involving superconducting systems
(Sect. 6.3)—require temperatures close to absolute zero in order to oper-
ate. Such experiments are also of great interest with respect to the realiza-
tion of qubit systems that could be used to implement quantum computers
(Chap. 7).

It is therefore very important to be able to correctly model decoherence in
the low-temperature regime. Experimental evidence shows that in this regime
decoherence is typically dominated by interactions with localized modes, such
as paramagnetic spins, paramagnetic electronic impurities, tunneling charges,
defects, and nuclear spins [199, 200, 213] (see also Sects. 6.3 and 6.4.2). The
localization of these modes means that, in contrast with oscillator environ-
ments, the wave function associated with each of these modes is confined to
a small region in space.
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Each of the localized modes is described by a finite-dimensional Hilbert
space with a finite energy cutoff. Thus we can model these modes as a set
of discrete states, which can be mapped onto a spin system. In most cases
of interest, there are only two such states of interest, so we can map our
environment of localized modes onto an environment of spin-1

2 particles. The
spin-environment modes may be part either of the physical system of in-
terest itself (thus forming an “internal environment”) or of the surrounding
substrate. For example, in so-called superconducting quantum interference
devices (SQUIDs; see Sect. 6.3 for details) the flux coordinate couples elec-
tromagnetically not only to the huge collection of nuclear spins that make up
the bulk matter of the SQUID and are located within the penetration depth
of the flux, but also to any impurities in the material [214].

There are numerous other examples that show that spin environments are
a significant, and often dominant, source of decoherence. When researchers
try to create coherent superposition states on macroscopic scales, they typ-
ically operate the experiment at very low temperatures in order to “freeze
out” the thermal environment and to thus minimize decoherence effects. This
thermal environment is precisely the bath of delocalized bosonic modes (i.e.,
harmonic oscillators) discussed earlier. But lowering the temperature—often
down to the vicinity of absolute zero, as in superconducting systems such as
SQUIDs—usually does not affect the influence of localized modes such as nu-
clear spins and impurities that are intrinsically present in the material. These
sources of decoherence will then become dominant in this low-temperature
regime.

Oscillator Environments versus Spin Environments:
Differences and Similarities

Having separately outlined physical motivations behind the use of oscillator
and spin environments, let us now synthesize our exposition by discussing
some important differences (and similarities) between these two types of en-
vironments.

As mentioned above, oscillator environments become universal environ-
ments in the weak-coupling limit: The interaction of a system with an arbi-
trary environment can be mapped onto the linear coupling to an equivalent
oscillator environment [211,212]. In this sense one may say that (linearly cou-
pled) oscillator environments presume the validity of the weak-coupling limit.
Additionally, the coupling strength of each mode is usually assumed to scale
with the number N of oscillators in the environment as ∝ 1/

√
N . This scal-

ing ensures that summing up the contributions from all modes yields a value
that is independent of N , and that thus the thermodynamic limit N −→ ∞
is well-defined.

This combined assumption of weak and N -dependent coupling implies
that, while the central system will in general be strongly affected by the
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collective influence of the oscillators in the environment, each individual os-
cillator in the environment is only negligibly influenced by its coupling to
the system. Any effects imparted on the environment by the central system
usually decay away very quickly (this corresponds to the Born–Markov ap-
proximations introduced in Sect. 4.2). Thus the dynamics of the environment
itself are hardly affected by the dynamics of the central system.

As frequently emphasized [199,200,210,215,216], the assumptions of weak
and N -dependent coupling are usually not physically reasonable in the case
of the localized modes represented by spin environments. In many physical
situations of interest, the energy scale associated with the strength of the cou-
pling of each environmental spin to the (usually macroscopic) coordinate of
the central system dominates over the other relevant energy scales set by the
remaining terms in the Hamiltonian. In particular, interactions between the
spins in the environment are typically extremely weak. This is due to the fact
that the wave functions of the different environmental modes are localized,
such that there is only little spatial overlap between these wave functions. Be-
cause of their restricted phase space, the environmental spins couple usually
also only very weakly to any other external (delocalized) modes. Furthermore,
it has been argued [199, 200] that in the spin-environment case it is usually
neither necessary nor physically reasonable to use a strongly N -dependent
scaling of the couplings as in the case of an oscillator environment (although
spin-coupling scalings such as ∝ 1/N have sometimes been assumed in the
literature; see, e.g., [217]).

Thus the situation of interest in the case of spin environments is the
strong-coupling regime described by coupling coefficients that are indepen-
dent of (or only weakly dependent on) the number of spins in the environment.
This leads to a very different behavior of the environment—and thus in turn
of the system coupled to the environment—than in the case of an oscillator
environment. Typically, the spin-environment modes become very strongly
“slaved” to the relevant coordinate describing the central system, and thus
the dynamics of the environment are heavily influenced by the dynamics of
the central spin [199].

This behavior allows for dynamical changes of the environment even in
the zero-temperature limit when the intrinsic fluctuations (i.e., the dynamics
induced by the self-Hamiltonian and the interspin interactions) in the en-
vironment are frozen out. One consequence of this effect is that, as already
mentioned above, the spin environment typically exerts a significant decoher-
ing influence on the system even at temperatures close to absolute zero (say,
at μK temperatures), while the decohering effect of an oscillator bath would
in most cases become in comparison negligibly small at such temperatures.
The experimental observation of relatively fast decoherence rates at near-zero
temperatures would therefore indicate the interaction with localized modes
as the dominant source of decoherence. This enables one to experimentally
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distinguish the two sources of decoherence, namely, delocalized bosonic field
modes and localized spin-type modes.

5.2 Quantum Brownian Motion

The model for quantum Brownian motion consists of a particle moving in one
spatial dimension and interacting linearly with an environment of indepen-
dent harmonic oscillators in thermal equilibrium at a temperature T . Quan-
tum Brownian motion constitutes the probably most important and most
studied decoherence model. This model not only is the default choice for es-
timating decoherence effects especially on macroscopic everyday-world scales,
but also plays an extremely important role in general studies of dissipative
quantum systems [18,218]. We shall therefore spend some time investigating
the subject of quantum Brownian motion.

We will proceed as follows. First, in Sect. 5.2.1, we shall derive the Born–
Markov master equation for the model using the formalism developed in
Chap. 4. In Sect. 5.2.2, we shall discuss the master equation for the special
case of the central particle’s being confined to a harmonic-oscillator potential.
We further evaluate the resulting master equation in Sect. 5.2.3 by focusing
on a specific form of the so-called spectral density, which describes the prop-
erties of the environment. In Sect. 5.2.4, we will then consider the special case
of a high-temperature environment and derive the corresponding Caldeira–
Leggett master equation, which plays a central role in studies of decoherence.
In Sect. 5.2.5, we will analyze the dynamics of quantum Brownian motion by
studying the time evolution of a superposition of two Gaussian wave packets
in phase space. We will show how the interaction with the environment leads
to the emergence of preferred states that are localized in phase space. The
dynamical evolution of these pointer states then corresponds to the “quan-
tum version” of Newtonian trajectories. Some cautionary remarks against
an overgeneralization of the results of the Caldeira–Leggett model (as well as
the general model for quantum Brownian motion) will be made in Sect. 5.2.6.
Finally, in Sect. 5.2.7, we will briefly discuss the exact master equation for
quantum Brownian motion.

5.2.1 Derivation of the Born–Markov Master Equation

First, let us define our model. As usual, we decompose the total system–
environment Hamiltonian Ĥ into three parts [see (2.85) and (4.12)],

Ĥ = ĤS + ĤE + Ĥint. (5.2)

For now, we shall leave the self-Hamiltonian ĤS of the system unspecified.
(In Sect. 5.2.2 below, we will specialize on the case of a harmonic-oscillator
potential.) The self-Hamiltonian ĤE of the environment describes a collection
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of harmonic oscillators. Since, by assumption, these oscillators do not interact
with each other, ĤE is simply the sum of all single-oscillator Hamiltonians,
i.e.,

ĤE =
∑
i

(
1

2mi
p̂2
i +

1
2
miω

2
i q̂

2
i

)
. (5.3)

In obvious notation, mi and ωi denote the mass and natural frequency of
the ith environmental oscillator, and q̂i and p̂i are the canonical position and
momentum operators.

The form of the interaction between the system and the environment is
such that the position coordinate X̂ of the central particle (the system S)
couples linearly to the positions q̂i of the oscillators in the environment, with
coupling strengths ci. The interaction Hamiltonian Ĥint thus reads

Ĥint = X̂ ⊗
∑
i

ciq̂i ≡ X̂ ⊗ Ê. (5.4)

The assumption of bilinear coupling (linear in both X̂ and q̂i) is an important
assumption of our model, which is therefore often explicitly referred to as
“linear quantum Brownian motion.” Our following discussion will be based
on this most commonly studied model.

We see that the system–environment interaction is of the form (2.91),
which describes the continuous environmental monitoring of the position
coordinate of the system. Thus, without any further calculations, we can
already anticipate that the coupling (5.4) will, among other possible conse-
quences such as dissipative effects and decoherence in other bases, lead to
decoherence of the system in the position basis.

Our first goal is now to determine the environment self-correlation func-
tions (4.10). Since Ĥint, see (5.4), contains a single term, only one such func-
tion will need to computed, namely,1

C(τ) =
〈
Ê(τ)Ê

〉
ρ̂E

, (5.5)

where ρ̂E = ρ̂E(0) [see (4.6)]. Using (5.4), this expression can be evaluated,
which yields

C(τ) =
∑
ij

cicj 〈q̂i(τ)q̂j〉ρ̂E =
∑
i

c2i 〈q̂i(τ)q̂i〉ρ̂E . (5.6)

For the sake of notational simplicity, we have here omitted the tensor-product
symbol “⊗” in products of operators pertaining to different fragments of
the environment (and will continue to do so throughout this chapter). The

1As in the previous Chap. 4, throughout this chapter we shall use the convention
that all operators (other than the density operator) with explicit time arguments
should be understood as interaction-picture operators.
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vanishing of the terms i �= j in the last step in (5.6) is due to the fact that the
environmental oscillators do not interact with each other and are therefore
completely uncorrelated. Thus, for i �= j,

〈q̂i(τ)q̂j〉ρ̂E = 〈q̂i(τ)〉ρ̂E 〈q̂j〉ρ̂E = 0, (5.7)

since the expectation value 〈qi〉ρ̂E of the position coordinate of the oscillator
is equal to zero.

Thus our task of evaluating C(τ) is now reduced to the goal of computing
the averages 〈q̂i(τ)q̂i〉ρ̂E [see (5.6)]. This is easily accomplished. Let us switch
to the representation of q̂i in terms of the bosonic creation and annihilation
operators â†i and âi,

q̂i =
√

1
2miωi

(
âi + â†i

)
. (5.8)

Then the time evolution of the operator q̂i in the interaction picture can be
written as [see (A.4)]

q̂i(τ) = eiĤEτ q̂ie−iĤEτ =
√

1
2miωi

(
âie−iωiτ + â†i e

iωiτ
)
. (5.9)

Therefore

〈q̂i(τ)q̂i〉ρ̂E =
1

2miωi

〈
âiâ
†
i e
−iωiτ + â†i âie

iωiτ
〉
ρ̂E

=
1

2miωi

{〈
âiâ
†
i

〉
ρ̂E

e−iωiτ +
〈
â†i âi

〉
ρ̂E

eiωiτ

}
. (5.10)

But the quantity
Ni =

〈
â†i âi

〉
ρ̂E

(5.11)

is simply the mean occupation number of the ith oscillator in the environ-
ment. By assumption, the environment is in thermal equilibrium, which cor-
responds to

Ni ≡ Ni(T ) =
1

eωi/kBT − 1
. (5.12)

Using this expression and the standard commutation relation
[
âi, â

†
i

]
= 1 for

the operators âi and â†i , we can rewrite (5.10) as

〈q̂i(τ)q̂i〉ρ̂E =
1

2miωi

{
[1 + Ni(T )] e−iωiτ + Ni(T )eiωiτ

}

=
1

2miωi
{[1 + 2Ni(T )] cos (ωiτ)− i sin (ωiτ)}

=
1

2miωi

{
coth

(
ωi

2kBT

)
cos (ωiτ)− i sin (ωiτ)

}
, (5.13)
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where in the last step we have used the fact that [see (5.12)]

1 + 2Ni(T ) = 1 +
2

eωi/kBT − 1

=
eωi/kBT + 1
eωi/kBT − 1

= coth
(

ωi
2kBT

)
. (5.14)

Hence the environment self-correlation function (5.6) can now be written as

C(τ) =
∑
i

c2i
2miωi

{
coth

(
ωi

2kBT

)
cos (ωiτ)− i sin (ωiτ)

}

≡ ν(τ)− iη(τ). (5.15)

Here, the functions

ν(τ) =
1
2

∑
i

c2i 〈{q̂i(τ), q̂i}〉ρ̂E

=
∑
i

c2i
2miωi

coth
(

ωi
2kBT

)
cos (ωiτ)

≡
∫ ∞

0

dω J(ω) coth
(

ω

2kBT

)
cos (ωτ) , (5.16)

η(τ) =
i
2

∑
i

c2i 〈[q̂i(τ), q̂i]〉ρ̂E

=
∑
i

c2i
1

2miωi
sin (ωiτ)

≡
∫ ∞

0

dω J(ω) sin (ωτ) (5.17)

are commonly referred to in the literature as the noise kernel and dissipation
kernel, respectively. The curly brackets {·, ·} in the first line of (5.16) denote
the anticommutator {Â, B̂} ≡ ÂB̂ + B̂Â. The function J(ω), introduced in
the last line of (5.16) and (5.17), is defined as

J(ω) ≡
∑
i

c2i
2miωi

δ(ω − ωi) (5.18)

and is called the spectral density of the environment. Spectral densities en-
capsulate the physical properties of the environment and play an immensely
important role in theoretical and experimental studies of decoherence. In
modeling the environment, one often goes to a continuum limit for the en-
vironment in which the description in terms of individual oscillators with
discrete frequencies ωi and masses mi is replaced by a spectral density J(ω)
corresponding to a continuous spectrum of environmental frequencies ω. We
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shall discuss examples for such continuous spectral densities below. For the
moment being, we shall stick to the original expression (5.18) for J(ω). Thus
far, the benefit of the definition (5.18) therefore merely amounts to a slightly
more compact notation of the noise and dissipation kernels (5.16) and (5.17).

Having successfully determined the environment self-correlation function
C(τ) [see (5.15)], we have completed the main step in the derivation of the
desired Born–Markov master equation for quantum Brownian motion. The
rest of the derivation is now straightforward. The operators B̂ and Ĉ [see
(4.9a) and (4.9b)] are immediately written down as

B̂ =
∫ ∞

0

dτ C(τ)X̂(−τ), (5.19a)

Ĉ =
∫ ∞

0

dτ C(−τ)X̂(−τ), (5.19b)

where
X̂(τ) = eiĤSτ X̂e−iĤSτ (5.20)

is the position operator of the system S in the interaction picture. Inserting
(5.19a) and (5.19b), with C(τ) given by (5.15), into our general expression
(4.8) for the Born–Markov master equation then yields

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]

−
∫ ∞

0

dτ
{
C(τ)

[
X̂, X̂(−τ)ρ̂S(t)

]
+ C(−τ)

[
ρ̂S(t)X̂(−τ), X̂

]}
. (5.21)

Using the decomposition C(τ) = ν(τ)− iη(τ) [see (5.15)] involving the noise
and the dissipation kernels (5.16) and (5.17) and rearranging terms leads to
the final form of the master equation,

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]
−
∫ ∞

0

dτ
{
ν(τ)

[
X̂,

[
X̂(−τ), ρ̂S(t)

]]

−iη(τ)
[
X̂,

{
X̂(−τ), ρ̂S(t)

}]}
. (5.22)

We see that the decohering (and dissipative) influence of the environment is
completely described by integrals over the noise and dissipation kernels (5.16)
and (5.17) multiplied by products of (Schrödinger-picture and interaction-
picture) position operators of the system.

5.2.2 Harmonic Oscillator as the Central System

To simplify the master equation (5.22) even further and to gain an under-
standing of the physical meaning of the noise and dissipation terms, let us
now specialize to the case of the system’s being represented by a harmonic
oscillator with the standard self-Hamiltonian
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ĤS =
1

2M
P̂ 2 +

1
2
MΩ2X̂2. (5.23)

The explicit form of the interaction-picture position operator X̂(τ) [see (5.20)]
is then easily determined by solving the Heisenberg equations of motions for
the operators X̂ and P̂ of the system, which yields

X̂(τ) = eiĤSτ X̂e−iĤSτ = X̂ cos (Ωτ) +
1

MΩ
P̂ sin (Ωτ) . (5.24)

Inserting this expression for X̂(τ) into (5.22) yields the Born–Markov master
equation describing the reduced dynamics of a harmonic oscillator linearly
and weakly coupled to a thermal environment of harmonic oscillators,

d
dt

ρ̂S(t) = −i
[
ĤS +

1
2
MΩ̃2X̂2, ρ̂S(t)

]
− iγ

[
X̂,

{
P̂ , ρ̂S(t)

}]

−D
[
X̂,

[
X̂, ρ̂S(t)

]]
− f

[
X̂,

[
P̂ , ρ̂S(t)

]]
. (5.25)

Here, we have introduced the coefficients Ω̃2, γ, D, and f defined as

Ω̃2 ≡ − 2
M

∫ ∞
0

dτ η(τ) cos (Ωτ) , (5.26a)

γ ≡ 1
MΩ

∫ ∞
0

dτ η(τ) sin (Ωτ) , (5.26b)

D ≡
∫ ∞

0

dτ ν(τ) cos (Ωτ) , (5.26c)

f ≡ − 1
MΩ

∫ ∞
0

dτ ν(τ) sin (Ωτ) . (5.26d)

Each of these coefficients carries a particular physical interpretation, derived
from its role in the master equation (5.25). Before discussing these terms
one by one, let us first rewrite (5.25) in two other equivalent ways that are
frequently used in the literature.

First of all, it is often convenient to express (5.25) in the position repre-
sentation. Using the basic relation

〈X| P̂ ρ̂S(t) |X ′〉 = −i
∂

∂X
〈X| ρ̂S(t) |X ′〉 ≡ −i

∂

∂X
ρS(X,X ′, t), (5.27)

we obtain the equation of motion for the reduced density matrix ρS(X,X ′, t)
in the position basis,

∂

∂t
ρS(X,X ′, t) =

[
− i

2M

(
∂2

∂X ′2
− ∂2

∂X2

)
− i

2
M

(
Ω2 + Ω̃2

) (
X2 −X ′2

)

+ γ(X −X ′)
(

∂

∂X ′
− ∂

∂X

)
−D(X −X ′)2

+if(X −X ′)
(

∂

∂X ′
+

∂

∂X

)]
ρS(X,X ′, t). (5.28)
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We may also express (5.25) as a master equation for the Wigner represen-
tation W (X,P ), see (2.132) and Sect. 2.15.2, of the position-space reduced
density matrix ρS(X,X ′). Without giving the derivation here, we shall simply
state the result [219],

∂

∂t
W (X,P, t) =

[
− P

M

∂

∂X
+ M

(
Ω2 + Ω̃2

)
X

∂

∂P
+ γ

∂

∂P
P

+D
∂2

∂P 2
− f

∂

∂X

∂

∂P

]
W (X,P, t). (5.29)

Readers familiar with statistical mechanics may recognize the formal simi-
larity between (5.29) and the Fokker–Planck equation in classical statistical
physics.

Let us proceed by discussing the interpretation of the different terms
appearing in the master equation (5.25). The first commutator on the right-
hand side of (5.25),

−i
[
ĤS +

1
2
MΩ̃2X̂2, ρ̂S(t)

]
, (5.30)

describes the reversible unitary dynamics of a harmonic oscillator of physical
frequency (Ω2 + Ω̃2)1/2. Thus we see that Ω̃2 introduces a temperature-
independent shift of the natural frequency Ω of the central oscillator, repre-
senting an example of the Lamb-shift contribution discussed on p. 155.

Next, the term
−iγ

[
X̂,

{
P̂ , ρ̂S(t)

}]
(5.31)

in (5.25) describes momentum damping—and thus dissipation—due to the
interaction with the environment. To see this, consider the time evolution
of the expectation value 〈P̂ 〉t for the momentum of the central oscillator as
determined by the equation of motion (5.25). Using the trace rule 〈P̂ 〉 =
TrS (ρ̂S P̂ ), we obtain

d
dt
〈P̂ 〉t =

d
dt

TrS
{
ρ̂S(t)P̂

}
= TrS

{
dρ̂S(t)

dt
P̂

}

= −M(Ω2 + Ω̃2)〈X̂〉t − 2γ〈P̂ 〉t. (5.32)

The first term −M(Ω2 +Ω̃2)〈X̂〉t is due to the usual unitary evolution in the
(Lamb-shifted) harmonic-oscillator potential. Let us, for the moment being,
disregard this unitary nondissipative term. Then, from (5.32), we immediately
see that, due to the interaction with the environment, the expectation value
for the momentum of the central system decreases exponentially at a rate 2γ,

〈P̂ 〉t ∝ e−2γt〈P̂ 〉0. (5.33)

Thus we have shown that the term (5.31) in the master equation (5.25)
indeed describes momentum damping at a rate proportional to γ. Note that
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this rate depends only on the spectral density but not on the temperature of
the environment [see (5.17) and (5.26b)].

Let us now consider the third term on the right-hand side of (5.25),

−D
[
X̂,

[
X̂, ρ̂S(t)

]]
. (5.34)

Note that this term is of the Lindblad double-commutator form (4.45), de-
scribing environmental monitoring of the position coordinate X̂ of the system
and thus decoherence in the position basis. This role can also be easily seen
by writing out the double commutator in the position representation,

D
[
X̂,

[
X̂, ρ̂S(t)

]]
−→ D(X −X ′)2ρS(X,X ′, t). (5.35)

The reader may recognize the term on the right-hand side as being of a
similar form as the expression (3.55) that described spatial localization in
the model for environmental scattering discussed in Chap. 3. The coefficient
D multiplied by (X − X ′)2 therefore plays the role of a decoherence rate.
That is,

τ|X−X′| =
1

D(X −X ′)2
(5.36)

is the timescale on which spatial interferences over a distance |X −X ′| be-
come suppressed by a factor of e [see also (3.58)].

The coefficient D also describes diffusion in momentum, as seen from the
time evolution of the expectation value 〈P̂ 2〉t of the squared momentum of
the system. A simple calculation similar to the one leading to (5.32) yields

d
dt
〈P̂ 2〉t = −M(Ω2 + Ω̃2)〈X̂P̂ + P̂ X̂〉t − 4γ〈P̂ 2〉t + 2D. (5.37)

Focusing on the time dependence of 〈P̂ 2〉t due to the D term only, we obtain
the evolution 〈P̂ 2〉t ∝ Dt, which shows that D indeed describes diffusion in
momentum space. D is therefore often referred to as the normal-diffusion
coefficient in the literature on quantum Brownian motion. Here, the termi-
nology “normal diffusion” refers to the linear time dependence of 〈P̂ 2〉t.

Recall that such normal diffusion is a signature of classical Brownian mo-
tion, where the variance σ2

x of the normal distribution describing the possible
positions of the particle increases as σ2

x(t) ∝ t. In fact, the same time depen-
dence holds also in the quantum case. It is easy to show that, in the long-time
limit γt � 1, the master equation (5.25) yields for the time dependence of
the position-space dispersion

ΔX2(t) =
D

2m2γ2
t. (5.38)

That is, the width ΔX(t) of the ensemble in position space asymptotically
scales as ΔX(t) ∝

√
t, just as in classical Brownian motion. Indeed, this
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similarity between the quantum and classical settings originally motivated
the choice of the term “quantum Brownian motion.” Incidentally, (5.37) also
confirms our earlier finding (5.33) that the coefficient γ quantifies dissipation,
since 〈P̂ 2/2M〉 is the kinetic energy of the system.

The role of D as a diffusion coefficient can also be seen from the master
equation (5.29) in the Wigner representation. Singling out the D term, we
obtain the evolution equation

∂

∂t
W (X,P, t) = D

∂2

∂P 2
W (X,P, t), (5.39)

which has the well-known form of a diffusion equation in the variable P for
the case of a constant diffusion coefficient D.

Finally, we turn our attention to the last term

−f
[
X̂,

[
P̂ , ρ̂S(t)

]]
(5.40)

in the master equation (5.25). This term, too, describes diffusion and deco-
herence, just like the normal-diffusion term (5.34). This can best be seen from
the Wigner form (5.29) of the master equation. The contribution due to the
f term alone is

∂

∂t
W (X,P, t) = −f ∂

∂X

∂

∂P
W (X,P, t). (5.41)

This form is similar to the diffusion equation (5.39) in terms of the appearance
of a double derivative on the right-hand side of the equation. However, in
contrast with the “normal” diffusion equation, in (5.41) this double derivative
is composed of single derivatives with respect to two different variables X
and P . Motivated by this difference, the quantity f is often referred to as the
anomalous-diffusion coefficient in the literature. As we will show below, in
many physical situations of interest the influence of this anomalous-diffusion
term (5.40) on the reduced dynamics of the system is negligibly small in
comparison with the normal-diffusion term (5.34). In such cases, we may use
a simplified version of the master equation (5.25) without the anomalous-
diffusion term (see Sect. 5.2.4).

Note that in our model the normal-diffusion and anomalous-diffusion co-
efficients depend on both the spectral density J(ω) and the temperature T
of the environment [see (5.26) with (5.16) and (5.17)]. This is in contrast to
the frequency shift Ω̃2 and the momentum-damping rate γ, which, as already
mentioned above, are independent of the temperature of the environment.

Finally, we shall mention that in the literature a (partially) “pre-Marko-
vian” form of the coefficients (5.26) is often discussed (see, e.g., [15, 16]). In
this case, the upper limit of the time integral is not yet taken to infinity but
only up to the time t (see also the discussion on p. 163). In other words, an
explicitly time-dependent version of the coefficients Ω̃2(t), γ(t), D(t), and
f(t) is considered,



5.2 Quantum Brownian Motion 187

Ω̃2(t) = − 2
M

∫ t

0

dτ η(τ) cos (Ωτ) , (5.42a)

γ(t) =
1

MΩ

∫ t

0

dτ η(τ) sin (Ωτ) , (5.42b)

D(t) =
∫ t

0

dτ ν(τ) cos (Ωτ) , (5.42c)

f(t) = − 1
MΩ

∫ t

0

dτ ν(τ) sin (Ωτ) . (5.42d)

The master equation (5.25) evaluated with these time-dependent coefficients
instead of the “Markovian coefficients” (5.26) is then of the Redfield type
[174,175] mentioned in Sect. 4.2.2. That is, the master equation is based on (i)
the Born approximation and (ii) the first Markov approximation of replacing
the retarded-time density operator ρ̂

(I)
S (t′) by ρ̂

(I)
S (t) in the integrand on the

right-hand side of the Born master equation (4.32). However, the limit of the
integration in (4.32) is not extended to infinity.

The resulting master equation [i.e., (5.25) with coefficients given by (5.42)]
allows for a more realistic treatment of quantum Brownian motion in situ-
ations where the Markov approximation is not (fully) appropriate, for ex-
ample, in the case of low-temperature environments [109, 220]. In fact, the
coefficients (5.42) represent a middle ground between the Markovian setting
[the master equation (5.25) evaluated with the time-independent coefficients
(5.26)] on the one hand, and the exact master equation for quantum Brow-
nian motion on the other hand (see Sect. 5.2.7), which is valid for arbitrary
system–environment interaction strengths and not just in the weak-coupling
limit considered here.

The time dependence of the coefficients (5.42) has been studied in detail
in the literature (see, e.g., the discussions by Hu, Paz, and Zhang [219] and by
Paz and Zurek [15]). For example, in the case of an ohmic spectral density of
the environment (see the next Sect. 5.2.3) it can be shown that the frequency
shift Ω̃2(t) and the momentum-damping coefficient γ(t) both start out from a
value of zero and asymptotically approach their final values on a timescale set
by the order of magnitude of the highest frequencies that are present in the
environment to a significant degree. The diffusion coefficients D(t) and f(t)
exhibit an initial temperature-independent transient and then settle rather
quickly into their (temperature-dependent) asymptotic values.

Since the Markovian coefficients (5.26) correspond to taking the limit
t −→∞ in the integrals in (5.42), the coefficients Ω̃2(t), γ(t), D(t), and f(t)
asymptotically approach the values of these Markovian coefficients. In the
following, we shall focus on the Markovian case, i.e., on the master equation
(5.25) together with the time-independent expressions (5.26) for the coeffi-
cients.
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5.2.3 Ohmic Decoherence and Dissipation

Let us now further evaluate the coefficients Ω̃2, γ, D, and f [see (5.26)]
appearing in the master equation (5.25) for quantum Brownian motion of a
central harmonic oscillator. To do so, we must choose a specific functional
form for the spectral density J(ω) appearing in the expressions for ν(τ) and
η(τ) [see (5.16) and (5.17)].

As indicated above, one typically replaces the discrete sum in the original
expression (5.18) for J(ω) with an (often phenomenologically motivated) con-
tinuous function of the environmental frequencies ω. Usually, the frequency
dependence of J(ω) is taken to follow a power-law dependence of the form
J(ω) ∝ ωα. The most common choice for the exponent α is α = 1, such
that J(ω) increases linearly with ω. This type of spectral density is called
ohmic (the nomenclature has its origin in an analysis of dissipative effects in
the spin–boson model). Other, less important examples include “subohmic”
spectral densities characterized by α < 1 and “supraohmic” spectral densities
for which α > 1.

Let us now focus on the case of an ohmic spectral density J(ω) ∝ ω,
which we may write explicitly as

J(ω) =
2Mγ0

π
ω. (5.43)

Here, the constant γ0 describes the effective coupling strength between the
system and the environment. In our original discrete expression (5.18) for
the spectral density, this interaction strength was represented by the sum
over terms containing the individual oscillator couplings ci. As we shall see
shortly, γ0 plays the role of a frequency-independent damping constant. (In
phenomenological models of decoherence based on concrete experimental sit-
uations, one often derives γ0 from measured data.)

A power-law frequency dependence of J(ω) would imply that the distri-
bution of environmental frequencies grows without bound. However, this is
physically unreasonable. Typically, the linear dependence of J(ω) on the fre-
quency ω only holds for small values of ω and becomes attenuated toward
higher frequencies. One therefore usually chooses a high-frequency cutoff Λ
and modifies (5.43) to include a term that damps J(ω) for frequencies ω > Λ.
A common choice is a cutoff term of the so-called Lorentz–Drude form,

J(ω) =
2Mγ0

π
ω

Λ2

Λ2 + ω2
. (5.44)

A plot of this spectral density is shown in Fig. 5.2. We see that, as intended,
for environmental frequencies ω exceeding the cutoff Λ the corresponding
density J(ω) of frequencies decreases.

The explicit choice (5.44) for the spectral density J(ω) now allows us to
compute the coefficients Ω̃2, γ, D, and f [see (5.26)]. It turns out that the
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Fig. 5.2. Plot of the spectral density J(ω) (in units ofMγ0) as given by (5.44). J(ω)
increases approximately linearly for frequencies ω well below the high-frequency
cutoff Λ and decreases subsequently for frequencies ω > Λ. The frequency axis is
displayed in units of the cutoff Λ.

momentum-damping coefficient γ and the normal-diffusion coefficient D are
particularly easy to evaluate. To see this, note that the noise kernel ν(τ) [see
(5.16)] is simply, apart from a missing prefactor

√
2/π, the Fourier cosine

transform of the function J(ω) coth (ω/2kBT ). Similarly, the dissipation ker-
nel η(τ) [see (5.17)] is proportional to the Fourier sine transform of J(ω).
Furthermore, a look at the expression for γ [see (5.26b)] shows that this
function is proportional to the Fourier sine transform of η(τ).

But, for odd functions g(−x) = −g(x), the double Fourier sine transform
returns the original function,

2
π

∫ ∞
0

dk sin(x′k)
∫ ∞

0

dx g(x) sin(kx) = g(x′). (5.45)

Since our spectral density (5.44) is an odd function of ω, and γ is (apart from
a prefactor) the double Fourier sine transform of J(ω), γ is therefore simply
proportional to J(ω) evaluated at the frequency Ω of the harmonic oscillator
of the system [cf. (5.26b) and (5.45)]. Taking into account the prefactor 2

π
arising from the definition of the double Fourier transform (5.45), we thus
obtain

γ =
π

2
1

MΩ
J(Ω) = γ0

Λ2

Λ2 + Ω2
. (5.46)

This relation between the momentum-damping coefficient γ appearing in the
master equation (5.25) and the effective coupling strength γ0 introduced in
the expression (5.43) for the spectral density justifies our earlier claim that
γ0 can be viewed as a frequency-independent damping constant. If we do not
impose any cutoff on the spectral density (Λ → ∞), γ and γ0 are exactly
equal.

To calculate the normal-diffusion coefficient D [see (5.26b)], we can follow
a similar argument. D is proportional to the double Fourier cosine transform
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of J(ω) coth (ω/2kBT ). For even functions g(−x) = g(x), an identity analo-
gous to (5.45) holds for such double Fourier cosine transforms, namely,

2
π

∫ ∞
0

dk cos(x′k)
∫ ∞

0

dx g(x) cos(kx) = g(x′). (5.47)

Since the function J(ω) coth (ω/2kBT ) is indeed even in ω, we therefore ob-
tain

D =
π

2
J(Ω) coth

(
Ω

2kBT

)
= Mγ0Ω

Λ2

Λ2 + Ω2
coth

(
Ω

2kBT

)
. (5.48)

The temperature dependence of D is illustrated in Fig. 5.3. We observe that
D increases with temperature: Decoherence becomes stronger as the tem-
perature of the environment is raised. For high temperatures kBT � Ω,
coth (Ω/2kBT ) ≈ 2kBT/Ω, and thus D increases approximately linearly with
temperature (this high-temperature limit will be studied in more detail in
Sect. 5.2.4 below).

The expression for the frequency renormalization Ω̃2 [see (5.26a)] is a
Fourier cosine transform of a Fourier sine transform. Although no simple
identities of the form (5.45) or (5.47) hold in this case, it is quite straight-
forward to explicitly evaluate this coefficient. We shall here simply state the
result without derivation,

Ω̃2 = −2γ0
Λ3

Λ2 + Ω2
. (5.49)

Finally, the anomalous-diffusion coefficient f [see (5.26d)] is more difficult to
evaluate because of the presence of the term coth (ω/2kBT ). One case that is
relatively easy to treat is that of a high-temperature environment such that

1
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1.4
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0
T [Ω/kB]

D(T ) [D(0)]

1.2

1.6

2.0

2.2

Fig. 5.3. Temperature dependence of the normal-diffusion coefficient D, see (5.48),
for the case of the ohmic spectral density (5.44). The vertical axis is shown in units
of D(T = 0), the zero-temperature value of the normal-diffusion coefficient, and
the temperature axis is displayed in units of Ω/kB.
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kBT � Ω (see the next section). In this limit, the resulting expression for f
is smaller than the normal-diffusion coefficient (5.48) by a factor on the order
of the cutoff frequency Λ.

5.2.4 The Caldeira–Leggett Master Equation

In the following, we shall have a closer look at the limit of a high-temperature
environment. That is, we consider the situation in which the thermal en-
ergy kBT of the environment is much larger than (the energies correspond-
ing to) the natural frequency Ω of the system and the environmental cutoff
frequency Λ. Then we can approximate the term coth (Ω/2kBT ) appearing
in the expression (5.48) for the normal-diffusion coefficient D by 2kBT/Ω,
which is the first-order term in the Taylor expansion of coth (Ω/2kBT ) around
Ω/2kBT = 0. In this case the coefficient D becomes

D
kBT
Ω−−−−−→ 2Mγ0kBT

Λ2

Λ2 + Ω2
. (5.50)

We also assume that the cutoff Λ (the upper-limit region of environmental
frequencies) is much larger than the characteristic frequency Ω of the system.
Then (5.50) takes the form

D
Λ
Ω−−−→ 2Mγ0kBT. (5.51)

Furthermore, the momentum-damping coefficient γ, see (5.46), approaches
the value of the effective coupling strength γ0,

γ
Λ
Ω−−−→ γ0, (5.52)

and the frequency normalization Ω̃2, see (5.49), becomes

Ω̃2 Λ
Ω−−−→ −2γ0Λ. (5.53)

Finally, given the assumptions considered here, the anomalous-diffusion co-
efficient f can be explicitly evaluated to give the result

f
kBT
Ω−−−−−→
Λ
Ω

2γ0kBT

Λ
. (5.54)

To gain further insight into the relevance of the corresponding anomalous-
diffusion term f [X̂, [P̂ , ρ̂S(t)]] in the master equation (5.25), let us compare
the magnitude of this term to that of the term D[X̂, [X̂, ρ̂S(t)]]. These mag-
nitudes are on the order of, respectively,

DX2 ∼ 2Mγ0kBTX2 (5.55)

and
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fXP ∼ fXMΩX ∼ 2γ0kBT

Λ
MΩX2 = D

Ω

Λ
X2. (5.56)

Since by assumption Λ � Ω, we can here safely neglect the anomalous-
diffusion term in the master equation (5.25).

Let us now insert our above expressions (5.51), (5.52), and (5.53) for the
coefficients D, γ, and Ω̃2 into the Born–Markov master equation (5.25). The
result is

d
dt

ρ̂S(t) = −i
[
Ĥ ′S , ρ̂S(t)

]
− iγ0

[
X̂,

{
P̂ , ρ̂S(t)

}]
− 2Mγ0kBT

[
X̂,

[
X̂, ρ̂S(t)

]]
,

(5.57)
where the frequency-shifted Hamiltonian Ĥ ′S of the system is

Ĥ ′S = ĤS +
1
2
MΩ̃2X̂2 =

1
2M

P̂ 2 +
1
2
M

[
Ω2 − 2γ0Λ

]
X̂2. (5.58)

The interpretation of the terms appearing on the right-hand side of (5.57)
has already been discussed in the context of the more general form (5.25) of
the master equation (see Sect. 5.2.2). The first term is the usual Liouville–
von Neumann term with a frequency-shifted Hamiltonian. The second term
describes momentum damping (i.e., dissipation) with a characteristic rate
proportional to γ0. The third term represents decoherence in the position ba-
sis with consequent momentum diffusion, with a characteristic temperature-
dependent localization rate given by the product of the coefficient Mγ0kBT
and the squared separation (X −X ′)2.

Equation (5.57) is commonly known as the Caldeira–Leggett master equa-
tion (here written for the case of a central harmonic-oscillator system), which
was first derived by Caldeira and Leggett in the early 1980s using a path-
integral approach [221]. It is widely used in the modeling of decoherence and
dissipation processes. In fact, it has often been quite successfully applied to
situations in which the assumptions on which the derivation of the equation
is based were not strictly fulfilled (for example, in quantum-optical settings
where often kBT � Λ [222]).

A particularly appealing feature of the Caldeira–Leggett master equation
is that it allows for very intuitive and simple estimates of decoherence rates
and of the relationship of these rates to the relevant rates for dissipation. To
see this, recall [see (2.114)] that the expression for the thermal de Broglie
wavelength for a particle of mass M at temperature T is given by (setting,
as usual, � ≡ 1)

λdB =
1√

2MkBT
. (5.59)

Using the position representation, the last term on the right-hand side of
(5.57) can therefore be written as

−γ0

(
X −X ′

λdB

)2

ρS(X,X ′, t). (5.60)
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This term describes spatial localization with a decoherence rate τ−1
|X−X′| given

by [compare (3.58) and (5.36)]

τ−1
|X−X′| = γ0

(
X −X ′

λdB

)2

. (5.61)

We see that the ratio of the decoherence rate to the damping rate γ0 is sim-
ply equal to the squared ratio of the spatial separation to the thermal de
Broglie wavelength (5.59) of the object. Since the constant γ−1

0 quantifies
the dissipation (relaxation) timescale of the system, (5.61) is precisely the
expression (2.113) given (but not derived) in Sect. 2.11. As mentioned there,
the expression (5.61) derived from the model for quantum Brownian motion
was first used by Zurek in the early 1980s to introduce the notion of a deco-
herence timescale [12]. In the same section, we had also pointed out that the
thermal de Broglie wavelength is extremely small for macroscopic and even
mesoscopic objects. Hence such objects described by superpositions of macro-
scopically separated center-of-mass positions will typically be decohered on
timescales many orders of magnitude shorter than the relaxation timescales.

Over timescales on the order of the decoherence time, we may therefore
often neglect the dissipative term in the master equation (5.57). This yields
the simplified, “pure-decoherence” master equation

d
dt

ρ̂S(t) = −i
[
Ĥ ′S , ρ̂S(t)

]
− 2Mγ0kBT

[
X̂,

[
X̂, ρ̂S(t)

]]
, (5.62)

or, expressed in the position basis,

∂

∂t
ρS(X,X ′, t) =

[
− i

2M

(
∂2

∂X ′2
− ∂2

∂X2

)
− i

2
M

(
Ω2 − 2γ0Λ

) (
X2 −X ′2

)

−γ0

(
X −X ′

λdB

)2
]
ρS(X,X ′, t). (5.63)

This equation describes the local damping of spatial coherence at a rate
given by (5.61). Note that (5.63) has the same structure as the equation
of motion (3.78) for the case of environmental scattering. The role of the
scattering constant Λ [see (3.56)] in the scattering model is now played by the
coefficient γ0/λ

2
dB. The difference between the two equations (3.78) and (5.63)

is simply that (5.63) corresponds to the case of the central system confined
to a harmonic-oscillator potential, whereas the scattering model underlying
(3.78) considered an unbound system.

However, this difference is far from critical, since it turns out that the form
of the Caldeira–Leggett equation (5.57) is in fact not tied to the assumption
of a system represented by a harmonic oscillator. It is possible to write down
an equation of the form (5.57) for any arbitrary potential of the system.
The system does not even need to be described by the canonical position
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and momentum coordinates X̂ and P̂ . Instead, we may choose to model a
discrete two-level system represented by the Pauli spin operators σ̂x and σ̂z,
as in the case of the spin–boson model (see Sect. 5.3). Then these Pauli spin
operators simply take the place of the coordinates X̂ and P̂ in the master
equation, and the distinct physical properties of the system are reflected in
the particular choice of the physical quantities entering into the coefficients
in the master equation.

5.2.5 Dynamics of Quantum Brownian Motion

Let us now return to the general form of the master equation (5.25) for quan-
tum Brownian motion (with the central system represented by a harmonic
oscillator) and illustrate the resulting time evolution of the system gener-
ated by this equation. These dynamics have been studied in detail by many
authors. We will here mostly follow the analysis given by Paz, Habib, and
Zurek [184].

We shall take the initial wave function of the system to be the coherent
superposition

Ψ(X, t = 0) = Ψ1(X) + Ψ2(X), (5.64)

where Ψ1(X) and Ψ2(X) are Gaussian wave packets given by

Ψ1,2(X) = N exp
[
− (X ∓X0)2

2δ2

]
exp (±iP0X) . (5.65)

Here, N is a normalization constant, and δ is the width of the Gaussian in
position space. Thus we consider superpositions of two Gaussians that are
initially symmetrically located in phase space, namely, at positions ±X0 with
opposite and equal momenta P0.

This strategy will allow us to investigate the decoherence dynamics in
position and momentum space and thus to address key questions such as:
Does decoherence in quantum Brownian motion also affect superpositions
of momenta, or only superpositions of positions? How do the characteristic
timescales for decoherence in these two bases differ? To answer these ques-
tions, we shall consider the decoherence dynamics for two limiting cases of
interest [184]. The first situation is that of the superposition (5.64) of two
Gaussians separated in position only (X0 > δ, P0 = 0),

Ψpos(X, t = 0) = N

{
exp

[
− (X −X0)2

2δ2

]
+ exp

[
− (X + X0)2

2δ2

]}
. (5.66)

The second case corresponds to the superposition (5.64) with Ψ1(X) and
Ψ2(X) separated in momentum only (X0 = 0, P0 > 1/δ),

Ψmom(X, t = 0) = 2N exp
[
−X2

2δ2

]
cos (P0X) . (5.67)
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Since we are now working in a phase-space picture described by the coor-
dinates X and P , it will be convenient to switch to the Wigner representa-
tion W (X,P ), see (2.132), of the position-space density matrix ρS(X,X ′) =
Ψ(X)Ψ∗(X ′). The Wigner function corresponding to the initial state (5.64)
is rather easy to compute, since the Wigner representation of a Gaussian
wave packet is again a Gaussian localized in the (X,P ) plane. The Wigner
representation of the two direct terms Ψ1(X)Ψ∗1 (X ′) and Ψ2(X)Ψ∗2 (X ′) can
be shown to be of the form [184]

W1,2(X,P, t = 0) = N2δ2 exp
[
− (X ∓X0)2

δ2

]
exp

[
−δ2(P ∓ P0)2

]
. (5.68)

The contribution from the off-diagonal (interference) terms Ψ1(X)Ψ∗2 (X ′) and
Ψ2(X)Ψ∗1 (X ′) reads in the Wigner representation

Wint(X,P, t = 0) = 2N2δ2 exp
[
−X2

δ2
− δ2P 2

]
cos [2X0P + 2P0X] . (5.69)

The resulting full Wigner function of the initial state (5.64) is therefore

W (X,P, t = 0) = W1(X,P, t = 0) + W2(X,P, t = 0) + Wint(X,P, t = 0).
(5.70)

This function is illustrated in the top row of Fig. 5.4 for the two different
limiting cases Ψpos(X, t = 0), see (5.66), and Ψmom(X, t = 0), see (5.67),
representing separation in, respectively, position and momentum only. We
clearly see the localization of the two “classical” (direct) peaks along the X
and P axes, respectively (see also our general discussion in Sect. 2.15.2). We
also observe the characteristic oscillatory pattern between these peaks. Note
that the “ridges” and “valleys” of this pattern are parallel to the axis joining
the peaks, i.e., parallel to the axis corresponding to the variable in which the
separation occurs. As evident from (5.69), the wavenumber of the oscillations
is directly determined by the separations X0 and P0 [see also (2.135)].

Let us now study the subsequent time evolution of the Wigner function
(5.70) as given by the Born–Markov master equation (5.29) expressed in the
Wigner representation. Without going into the details of the derivation here,
one can show that the resulting time-evolved Wigner function can again be
written in the form [184]

W (X,P, t) = W1(X,P, t) + W2(X,P, t) + Wint(X,P, t), (5.71)

with the direct and interference terms given by
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Fig. 5.4. Time evolution of a superposition of two Gaussian wave packets in the
Wigner picture, as studied by Paz, Habib, and Zurek [184]. The left column cor-
responds to a separation of the initial wave packets in position only, whereas the
right column represents the dynamics of a superposition of wave packets separated
in momentum only. Interference between the two wave packets is represented by
oscillations between the direct peaks. The interaction with the environment damps
these oscillations, a process which represents decoherence. However, this damping
occurs on different timescales for the two initial conditions.
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W1,2(X,P, t) = N2δ2 δ2
δ1

exp
[
− (X ∓Xc)2

δ2
1

]

× exp
[
−δ2

2 (P ∓ Pc − β(X ∓Xc))
2
]
, (5.72a)

Wint(X,P, t) = 2N2δ2 δ2
δ1

exp (−Aint) exp
[
−X2

δ2
1

− δ2
2(P − βX)2

]

× cos [2κpP + 2(κx − βκp)X] . (5.72b)

Here, the coefficients δ1, δ2, Xc, Pc, β, Aint, κx, and κp are in general time-
dependent, with initial values [compare (5.72) with (5.68) and (5.69)]

δ2
1 = δ2

2 = δ2, (5.73a)
κx = Pc = P0, κp = Xc = X0, (5.73b)

Aint = 0. (5.73c)

Explicit (however rather complicated) general expressions for these coeffi-
cients obtained from the exact solution of the quantum Brownian model
(i.e., the solution derived without making the Born–Markov approximations
used in our above treatment; see Sect. 5.2.7 below) have been given by Paz,
Habib, and Zurek [184] for arbitrary choices of the spectral density of the
environment. More simple and concrete expressions for these coefficients can
be obtained if we focus on the Born–Markov approximation and choose a
particular form of the spectral density.

Regardless, the precise form of the coefficients will not be of further in-
terest to us here. Instead, we shall try to get a good qualitative picture of
the time evolution of the Wigner function as described by (5.71) and (5.72).
This evolution is shown in Fig. 5.4 for the two limiting cases (5.66) and (5.67)
of initial states. We see that for both initial conditions, the interaction with
the environment leads to a suppression of the oscillations representing quan-
tum interference between the wave packets. However, the timescales on which
this decoherence happens are observed to be very different: The superposi-
tion (5.66) of two wave packets that are initially separated in position only
is decohered much faster than the superposition (5.67) of momenta. In fact,
as we shall analyze in more detail below, in the first case decoherence occurs
on a timescale that is virtually independent of the relaxation and dynamical
timescales of the system. By contrast, in the second case of a superposition
of momenta quantum, interference is damped on the timescale set by the
intrinsic dynamics of the system, i.e., by the self-Hamiltonian of the system.

This observation is quite easily explained. The interaction Hamiltonian
explicitly depends on the position of the system. This means that the en-
vironment directly monitors this position, which leads to strong and rapid
decoherence in the position basis. The momentum of the system, on the
other hand, does not appear in the interaction Hamiltonian and is thus not
directly monitored by the environment. Therefore decoherence in momentum
can occur only in an indirect manner, i.e., as the result of the monitoring of
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position and the resulting decoherence in position. In the case in which the
wave packets are initially separated in momentum only, the state (5.67) is
already well-localized in position. Therefore the environmental monitoring of
the position of the system cannot make this state even more localized in po-
sition, and the superposition (5.67) is initially insensitive to the monitoring
by the environment, and thus to decoherence.

However, on a dynamical timescale this superposition evolves into a su-
perposition of positions, since the opposite momenta ±P associated with the
two direct peaks shift these peaks into opposite X-directions (see the right
column of Fig. 5.4). Now the state becomes sensitive to the environmental
monitoring of position, which in turn leads to the damping of the oscilla-
tions. This explains why decoherence in momentum does happen in spite
of the absence of a momentum term in the interaction Hamiltonian, and
why this decoherence occurs on a dynamical timescale rather than on the
much shorter timescale for decoherence in position (i.e., the timescale cor-
responding to decoherence in the quantity that is directly monitored by the
environment). In the following, we shall make these arguments more precise
by analyzing the time dependence of the quantities appearing in the direct
and interference terms (5.72a) and (5.72b) of the Wigner function (5.71).

First, let us look at the dynamics of the Gaussian peaks described by the
direct terms W1,2(X,P, t). These peaks follow “classical” trajectories given
by X(t) = ±Xc(t) and P (t) = ±Pc(t), which depend on the particular choice
of the spectral density but not on the temperature of the environment. The
widths of the Gaussian peaks, given by δ1 (the width in position) and δ2 (the
width in momentum), change over time due to the presence of the environ-
ment. We also see that the environment leads to a distortion of the shape
of the Gaussians, quantified by the coefficient β. Both the widths δ1,2 and
the distortion β depend on the spectral density and the temperature of the
environment.

Of most interest for our discussion of decoherence is the interference term
Wint(X,P, t), see (5.72b), representing the characteristic oscillations that are
a signature of interference between the wave packets Ψ1(x) and Ψ1(x). First
of all, we see that the (temperature-dependent) wavenumbers κx and κp of
these oscillations along the X and P axes are altered by the interaction
with the environment. The quantity most relevant to decoherence is the term
exp (−Aint), which (as we shall see) describes the damping of the oscillations
and thus decoherence. We can interpret this term as quantifying the visibility
of the interference fringes, since exp (−Aint) equals the peak-to-peak ratio
between the interference term Wint(X,P ) (which takes its maximum value
at X = P = 0) and the direct terms W1,2(X,P ) (which assume their peak
values at X = ±Xc and P = ±Pc),

exp (−Aint) =
1
2

Wint(X = 0, P = 0)

[W1(X = Xc, P = Pc)W2(X = −Xc, P = −Pc)]1/2
. (5.74)
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In view of this interpretation, the term exp (−Aint) is therefore often called
the “fringe-visibility function.” One can show that the quantity Aint is given
by [184]

Aint =
X2

0

δ2
+ δ2P 2

0 −
κ2
p

δ2
2

− δ2
1κ

2
x, (5.75)

where all quantities appearing in this expression should be understood as
explicitly time-dependent. At time t = 0, we have δ1 = δ2 = δ, κx = P0,
κp = X0 [see (5.73)], and thus Aint = 0. For subsequent times t > 0,
Aint increases but is always bounded from above by its asymptotic (time-
independent) maximum value of

Amax
int =

X2
0

δ2
+ δ2P 2

0 . (5.76)

In fact, one can derive an explicit equation of motion for Aint from the master
equation for quantum Brownian motion. The result is [184]

d
dt

Aint = 4Dκ2
p − 4fκp(κx − βκp), (5.77)

where D and f are the usual normal-diffusion and anomalous-diffusion co-
efficients in the Born–Markov approximations. (If the Redfield equation or
the exact master equation [219] are used, these coefficients will be explicitly
time-dependent; see also Sect. 5.2.7.)

Equation (5.77) shows that the time evolution of Aint, and thus the dy-
namics of the suppression of the interference terms, depends on several pa-
rameters. First of all, we see that the change of Aint over time exhibits an
explicit direct dependence on the diffusion coefficients D and f , but neither
on the momentum-damping (friction) coefficient γ appearing in the master
equation (5.25) nor on the free evolution given by the renormalized Hamil-
tonian Ĥ ′S . However, the time evolution of Aint is indirectly influenced by
γ and Ĥ ′S , since it turns out that the dynamics of κx and κp appearing in
(5.77) depend on γ and Ĥ ′S .

On the other hand, as we will see below, this indirect influence of γ and
Ĥ ′S on Aint is typically very weak in comparison with the direct dependence
of Aint on the diffusion coefficients. This already hints at an important con-
clusion. In many cases the evolution of Aint, and thus the suppression of the
oscillatory terms in the Wigner function, occurs on a timescale that is essen-
tially independent of the relaxation timescale set by γ and of the dynamical
timescale determined by Ĥ ′S .

Since first term 4Dκ2
p on the right-hand side of (5.77) is strictly non-

negative, the normal-diffusion coefficient D will always correspond to a sup-
pression of the interference terms and thus to decoherence. From (5.72b) we
see that κp quantifies the wavenumber of the Wigner oscillations along the
momentum direction. As evident from (5.77), the sign of the second term is
not fixed but rather depends on the interplay between κx and βκp. Thus the
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anomalous-diffusion coefficient f may switch its role from aiding the suppres-
sion of interference to a counteracting of this suppression.

A crucial feature of the time evolution of Aint as given by (5.77) is the
direct dependence on the initial conditions, in particular, on the initial sep-
arations X0 and P0. The dependence enters via the coefficients κx and κp,
which at time t = 0 take the values κx = P0 and κp = X0 [see (5.73b)].
As we shall see now, this dependence is responsible for the very different
timescales for decoherence in position and momentum as mentioned above
(see also Fig. 5.4).

First, let us focus on the limiting case (5.66) in which the initial state
corresponds to a superposition of two Gaussians separated in position space
only. Since κp = X0 at t = 0, we see that the contribution from the normal-
diffusion term 4Dκ2

p in the evolution equation (5.77) for Aint immediately
plays a role in damping interference.

Let us study the time dependence of Aint as given by (5.77) for the simple
Caldeira–Leggett case of a high-temperature ohmic environment discussed in
Sect. 5.2.4 above. Here, the anomalous-diffusion coefficient f becomes neg-
ligible in comparison with the normal-diffusion coefficient D, and D can be
approximated by the value 2Mγ0kBT [see (5.51)]. Furthermore, let us make
the simplifying assumption that the interference fringes do not move much
over time, i.e., that we can neglect the time dependence of κp and replace it
by its initial value of X0. With these assumptions, (5.77) is readily solved to
give

Aint = 8Mγ0kBTX2
0 t, (5.78)

or, using the thermal de Broglie wavelength λdB = 1/
√

2MkBT ,

Aint = γ0
(2X0)2

λ2
dB

t. (5.79)

Thus the oscillations in the Wigner function are exponentially damped at a
decoherence rate

τ−1
ΔX = γ0

(ΔX)2

λ2
dB

, (5.80)

where ΔX is the coherent separation in position space. We thus recover our
previous result (5.61) for the decoherence rate in the context of the Caldeira–
Leggett case.

Let us now consider the situation (5.67) in which the superposition of
Gaussians is initially only separated in momentum, i.e., X0 = 0. Thus κp = 0
at t = 0, and consequently we initially have dAint/dt = 0. That is, Aint will
remain at its initial value of zero until κp = 0 begins to differ from zero,
and thus at this initial stage no decoherence occurs. For a weakly damped
system, one can then show [184] that κp evolves as κp(t) ∝ Xc(t), i.e., its
value follows the trajectory of the direct peaks. Thus an increase in κp will
be tied to a change in Xc. Xc starts out from an initial value of zero and
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then evolves on a dynamical timescale. Now the diffusion terms in (5.77)
can have an effect on Aint, resulting in positive values of Aint, which in turn
leads to the suppression of the oscillations of the Wigner interference term
Wint(X,P, t), see (5.72b).

Therefore, in the case of a superposition of Gaussian wave packets sepa-
rated in momentum only, decoherence is related to two distinct timescales.
First, a comparably slow dynamical timescale on which the superposition of
positions is generated (i.e., on which Xc becomes sufficiently different from its
initial value of zero) such that the environmental monitoring of the position
of the system can have an effect. Second, once this superposition of positions
is dynamically created, it is rapidly decohered on the decoherence timescale
for such position-space superpositions (as given by, e.g., (5.80) for the case
of high-temperature ohmic environments). Thus the decoherence rate in mo-
mentum is continuously limited by the rate of the dynamical evolution of
the system. This means that the only timescale relevant to decoherence in
momentum is the dynamical timescale. This analysis provides the rigorous
support for our initial intuitive explanation of the much slower decoherence
rate in momentum space when compared to the decoherence rate in position
space.

What are the resulting preferred states (i.e., the pointer states) singled
out by the interaction with the environment? To answer this question, one
can compute the change in purity ς = Tr ρ̂2

S [see (2.30)] of the reduced density
matrix ρ̂S of the harmonic-oscillator system. We can calculate this change
from the Born–Markov master equation (5.25). We shall here neglect the
influence of the momentum-damping term γ, because one can show that
this term always leads to an unphysical increase in purity over time that
is completely insensitive to the form of the density matrix [16]. Omitting
this term can be well justified in the limit of weak damping, i.e., in the
case of an “underdamped” harmonic oscillator. We shall also neglect the
anomalous-diffusion term, which is appropriate in the high-temperature limit
(see Sect. 5.2.4). With these assumptions, the instantaneous change in purity
is found to be [86]

d
dt

ς(t) = −4DΔX2(t), (5.81)

where ΔX2(t) = 〈X̂2〉t − 〈X̂〉2t is the dispersion in position space. Thus
we see that the instantaneous decrease in purity, and thus the amount of
decoherence, is minimized if this spatial dispersion is minimized. That is, the
instantaneous pointer states would be those perfectly localized in position.
We may have anticipated this result based on the fact that the environment
directly monitors the position of the system.

However, the intrinsic evolution of the harmonic-oscillator system as given
by the self-Hamiltonian (5.23) also plays an important role. In fact, as is
well known for a harmonic oscillator, over the course of an oscillation period
T = 2π/Ω position and momentum interchange their roles. This symmetry
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of the Hamiltonian of the system with respect to the position and momen-
tum variables means that a state that is asymmetrically localized in phase
space (say, well localized in position but completely delocalized in momen-
tum) would be strongly altered under the time evolution generated by the
Hamiltonian of the system.

To make this argument more precise, instead of studying the instanta-
neous change (5.81) in purity, let us now look at the change in purity aver-
aged over one full period t = 0 . . . T of the harmonic-oscillator system. This
average change can be shown to be given by [15,84]

ς(T )− ς(0) = −2D
(
ΔX2 +

ΔP 2

M2Ω2

)
, (5.82)

where ΔX2 ≡ ΔX2(0) and ΔP 2 ≡ ΔP 2(0) are the dispersions in position
and momentum at the initial time t = 0. Note that the anomalous-diffusion
term f does not appear in (5.82) even if we do not neglect it a priori [as in
(5.81)], because it turns out that the influence of this term averages out over
one oscillation period.

Equation (5.82) shows that the average decrease in purity, and thus the
amount of decoherence, is smallest if ΔX2 and ΔP 2 are chosen such as to
minimize the term in brackets on the right-hand side of the equation, con-
strained by the requirement ΔXΔP ≥ 1/2 as mandated by the uncertainty
relation (recall that we have set � ≡ 1 throughout this chapter). The choice
for ΔX2 and ΔP 2 that minimizes the decrease (5.82) in purity is then found
to be

ΔX2 =
1

2MΩ
, ΔP 2 =

MΩ

2
. (5.83)

Thus the environment-superselected pointer states in quantum Brownian mo-
tion are minimum-uncertainty Gaussians (coherent states) that are well local-
ized in both position and momentum. This was first shown by Zurek, Habib,
and Paz [86] (see also [84,223–226]).

Quantum mechanics, of course, forbids perfect localization in phase space,
but the coherent states selected by the interaction with the environment rep-
resent phase-space localization that is “as good as it gets.” Thus we may
view these coherent states as the quantum version of the idealized concept
of a classical point in phase space. By reidentifying over time the (improper)
ensembles of minimum-uncertainty Gaussian wave packets described by the
reduced density matrix, we can recover quasi-Newtonian trajectories of par-
ticles in phase space.

Strictly speaking, the above derivation of coherent states as the pointer
states in quantum Brownian motion was based on the assumption of a weakly
damped harmonic oscillator. However, our conclusions are not significantly al-
tered in the strong-damping regime, the main difference being a preference for
stronger localization in position than momentum [227]. Moreover, Eisert [106]
showed that the environment-induced superselection of minimal-uncertainty
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Gaussian states is completely generic for the case of free quantum particles
coupled to a thermal bath, in the sense that exact decoherence to such co-
herent states occurs for arbitrary bath temperatures, system–environment
coupling strengths, and spectral densities of the environment.

Finally, one may also investigate the environment-induced superselection
of preferred states in quantum Brownian motion for the limiting case of very
small frequencies of the environment relative to the intrinsic frequency of the
system. This limit of a “slow” environment is opposite to the situation of
the Caldeira–Leggett model of Sect. 5.2.4 and corresponds to the “quantum
limit” of decoherence (see Sect. 2.8.2). Paz and Zurek [103] considered a
variant of the standard quantum Brownian motion model (namely, a particle
interacting with a scalar field) and found that in this limit the decrease of
purity of the reduced density matrix is minimized for energy eigenstates of
the system (i.e., eigenstates of the self-Hamiltonian), which thus emerge as
the pointer states for the system. This result is in agreement with our general
discussion in Sect. 2.8.

5.2.6 Limitations of the Quantum Brownian Motion
and Caldeira–Leggett Models

In Sect. 5.2.4, we showed how the Caldeira–Leggett model leads to the very
simple equation (5.61) for estimating the rate of spatial decoherence. In par-
ticular, we found that the ratio of the rate of spatial decoherence to the rate
of dissipation was given by the ratio of the coherent separation to the thermal
de Broglie wavelength. As demonstrated in Sect. 2.11, in typical situations of
mesoscopic and macroscopic objects described by superpositions of two posi-
tions separated by similarly mesoscopic or macroscopic distances, this ratio
can be extremely large. This suggests that in such situations typical deco-
herence rates will be many orders of magnitude larger than the dissipation
rates.

One should be somewhat guarded, however, against too a literal interpre-
tation of such estimates. The assumptions that have led to the Caldeira–
Leggett equation (5.57), and thus to the expression (5.61) for the deco-
herence rate, are often not fulfilled in physically realistic cases of inter-
est [162,228,229]. It would therefore be inappropriate to overgeneralize (5.61)
by interpreting it as a universally valid expression for the decoherence rate of
spatial superpositions. Moreover, the general decoherence (and dissipation)
dynamics arising from the Caldeira–Leggett equation (5.57) should be con-
sidered in the context and within the scope of this model, and one should
be cautious about drawing overly generic conclusions from results obtained
from this model.

For example, the decoherence rate as given by (5.61) scales quadratically
with the coherent separation ΔX = |X −X ′| in a position-space superposi-
tion state. Of course, this is intuitively reasonable: The larger the separation,
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the more nonclassical the superposition state, and the faster we expect de-
coherence to be. However, on physical grounds there should exist an upper
limit to this decoherence rate that cannot be exceeded even if we increase
the separation further.

The reason for this limit is easy to see by recalling our results for the case
of environmental scattering discussed in Chap. 3. There, we distinguished two
cases: The situation in which the typical wavelength of the scattered envi-
ronmental particles is short with respect to the coherent separation ΔX (the
“short-wavelength limit,” see Sect. 3.3.1), and the opposite case in which this
wavelength is long in comparison with ΔX (the “long-wavelength limit,” see
Sect. 3.3.2). In the short-wavelength limit, a single scattering event is able
to completely resolve the separation ΔX, whereas in the long-wavelength
limit many such events are needed to transmit an appreciable amount of
which-path information to the environment. As discussed in Sect. 3.3.2, the
decoherence rate obtained in the short-wavelength limit therefore imposes an
upper bound on the decoherence rate: The environment cannot possibly ob-
tain any more which-path information, and thus the decoherence rate cannot
exceed the value calculated in the short-wavelength limit.

A similar argument should be expected to hold true for the case of the
model for quantum Brownian motion discussed here. That is, we would anti-
cipate that the environment of harmonic oscillators possesses a certain max-
imum coherence length. Then, for separations ΔX exceeding this coherence
length, we would enter the equivalent of the short-wavelength regime consid-
ered for the case of environmental scattering, leading to a saturation of the
decoherence rate. Evidently, such saturation does not occur in the Caldeira–
Leggett model. There is no place in which a quantity equivalent to a coherence
length of the environment would enter into the model, and the decoherence
rate (5.61) grows without bounds as we increase the separation ΔX.

This example clearly shows that the results of the Caldeira–Leggett model
cannot be extrapolated to arbitrary physical situations and parameters. To
investigate this issue further, one can consider the general model of a massive
particle coupled to a massless scalar field. This model was investigated in
detail by Unruh and Zurek [109]. It was shown that the model for quantum
Brownian motion emerges as a limiting case of this particle–field model if one
assumes that the dominant wavelengths of the environmental field are much
longer than the typical coherent separation ΔX of the central particle (this
corresponds to a dipole-type approximation) [15,109].

This indicates that an implicit long-wavelength assumption underlies the
model for quantum Brownian motion—not only the Caldeira–Leggett model
but also the more general model described by the master equation (5.25).
This in turn explains why the decoherence rate predicted by the Caldeira–
Leggett model does not saturate. In fact, in the general particle–field model
the decoherence rate is found to exhibit an approximately quadratic depen-
dence on the separation ΔX for values of ΔX small in comparison with the
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dominant wavelengths of the field, and to approach a constant value as ΔX
grows much larger [15, 109, 229]. The lack of saturation of the decoherence
rate as evident in (5.61) is therefore merely an artifact of the underlying
model [228,229].

Another limitation of the Markovian model for quantum Brownian motion
is due to the use of the time-independent coefficients (5.26). As mentioned
at the end of Sect. 5.2.2, if the more realistic treatment of time-dependent
coefficients is used [see (5.42)], the normal-diffusion coefficient D is found to
exhibit a temperature-independent transient during which D grows from an
initial value of zero before settling into its final value (5.48). The timescale
of this transient is given by the high-frequency cutoff Λ, see (5.44), which
therefore imposes a limit on the decoherence rate. In our treatment, we have
completely neglected this transient, and instead assumed that the coefficient
D is constant at all times.

Furthermore, the role of the assumption (4.23) of an initially completely
uncorrelated system–environment state in inducing rather spurious decoher-
ence dynamics has been discussed in detail by Anglin and Zurek [229]. Finally,
the Caldeira–Leggett model is based on the assumption of a high-temperature
environment, and hence it may be inadequate for representing decoherence
in low-temperature experimental settings such as those involving, say, super-
conductors. In particular, at low temperatures the anomalous-diffusion term
(5.40) in the full master equation (5.25) may become relevant, approaching a
similar magnitude as the normal-diffusion term (5.34) and thus significantly
influencing the dynamics of the system [15,220].

Thus, in summary, conclusions drawn from a specific decoherence model
should not be misinterpreted as universally valid statements about generic
properties of decoherence in nature. As we have seen, some seemingly phys-
ically relevant features observed in models of decoherence may often simply
be due to artifacts of the model and the assumptions made in deriving the
model.

However, despite these cautionary remarks, it should not go unmentioned
that the estimates for decoherence rates obtained from the Caldeira–Leggett
model have been found to yield surprisingly robust estimates of decoherence
rates. That is, when these estimates are compared to predictions derived from
more general and realistic models, good agreement is found even in cases
where one may have anticipated greater discrepancies. For example, for envi-
ronments where the high-temperature assumption underlying the Caldeira–
Leggett model is not valid, the estimates of decoherence rates obtained from
this—now strictly speaking incorrect—model are often surprisingly close to
those derived from more complicated non-Markovian models. (See the anal-
ysis by Paz, Habib, and Zurek [184] for a more detailed comparison and
discussion.) This feature, together with the simplicity of arriving at such es-
timates [see (5.61)], makes the Caldeira–Leggett model an excellent starting
point for the treatment of many decoherence problems.
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5.2.7 Exact Master Equation

The model for linear quantum Brownian motion has the remarkable feature
of being exactly solvable. Maybe even more astonishing, as first shown by
Hu, Paz, and Zhang in 1992 [219] following preliminary work by other au-
thors [109,221,230–232], the resulting exact (non-Markovian) master equation
is local in time for arbitrary spectral densities of the environment (see also our
discussion in Sect. 4.4). This master equation takes exactly the same func-
tional form as the Born–Markov master equation (5.25) derived in Sects. 5.2.1
and 5.2.2 above, namely,

d
dt

ρ̂S(t) = −i
[
ĤS +

1
2
MΩ̃2(t)X̂2, ρ̂S(t)

]
− iγ(t)

[
X̂,

{
P̂ , ρ̂S(t)

}]

−D(t)
[
X̂,

[
X̂, ρ̂S(t)

]]
− f(t)

[
X̂,

[
P̂ , ρ̂S(t)

]]
, (5.84)

with ĤS = 1
2M P̂ 2 + 1

2MΩ2X̂2 representing the harmonic-oscillator self-
Hamiltonian (5.23) of the system.

The only—and key—difference between the exact equation (5.84) and
the Born–Markov version (5.25) is the fact that now the coefficients Ω̃2,
γ, D, and f are explicitly time-dependent and fairly complicated functions
of other time-dependent coefficients, which in turn involve various integrals
over the noise and dissipation kernels (5.16) and (5.17) (see [219] for details).
All subtle features of the exact non-Markovian dynamics are encapsulated
in these coefficients Ω̃2(t), γ(t), D(t), and f(t) appearing in (5.84), while
the interpretation of the different terms on the right-hand side of (5.84) is
exactly the same as in the case of the Born–Markov master equation (5.25).
As briefly mentioned in Sect. 4.3, the particular time dependences of the
coefficients Ω̃2(t), γ(t), D(t), and f(t) enforce the positivity of the reduced
density matrix [see (4.42)], despite the fact that (not surprisingly) the exact
master equation cannot be written in the positivity-ensuring Lindblad form
(4.44).

The fact that the reduced dynamics in the model for linear quantum Brow-
nian can be determined exactly and are given by a time-local master equation
is a fairly unique feature. Not many other physically interesting models seem
to allow for the calculation of the exact master equation. One such example
that permits an exact solution is that of a two-level system interacting with
an environment of harmonic oscillators described by an interaction Hamilto-
nian of a particular form (which is an example of a spin–boson model; see
the next Sect. 5.3). As shown by Garraway [233, 234], the resulting exact
master equation is local in time and has time-dependent coefficients, just as
the master equation (5.84) for quantum Brownian motion.
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5.3 The Spin–Boson Model

The spin–boson model corresponds to a single two-level system interacting
with a large reservoir of bosonic field modes, i.e., a spin-1

2 particle coupled to
an environment of harmonic oscillators. This model has been widely studied
in the context of decoherence and dissipation in quantum systems. The role
of two-level (qubit) systems in quantum computing (Chap. 7) and in exper-
iments on macroscopic quantum coherence (Chap. 6) has led to additional
interest in the spin–boson model. Recently, the model has even been used to
analyze the role of quantum decoherence in biological systems [235].

The seminal review paper by Leggett et al. [209] discusses the extremely
rich dynamics of the spin–boson model in great detail. Since the environment
consists of harmonic oscillators, it is possible to derive the exact Feynman–
Vernon influence functional [211] for the model and thereby to effectively
eliminate the individual bath degrees of freedom from the problem (see
Sect. IV of [209]). Thus, despite its complex dynamics, it is in principle pos-
sible to solve the spin–boson model exactly. In particular, one can formally
write down exact expressions for the quantities of interest for the central spin,
such as the expectation value 〈σ̂z(t)〉 and correlation functions.

Unfortunately, these exact expressions are rather complicated and very
cumbersome to evaluate in practical situations of interest. One therefore often
employs certain assumptions and approximations. One important example is
the so-called “non-interacting blip approximation” that has been studied in
detail by Leggett et al. [209]. This approximation not only greatly simplifies
the task of determining the dynamics of the central spin, but the solutions
obtained from it also turn out to be very close to the exact results over most of
the parameter space. In fact, in certain parameter regimes they even coincide
with the exact results.

Here we shall not discuss these more advanced methods and instead ap-
proach the spin–boson model in the following two steps. First, we shall con-
sider a simplified version of the model in which the Hamiltonian of the spin
system does not contain a tunneling term. For this model, the exact system–
environment dynamics can be determined in a fairly straightforward manner
without the use of the master-equation formalism. This simplified spin–boson
model neatly exhibits characteristic features of decoherence, making it an
ideal candidate for the study of decoherence in two-level systems. In fact,
when quantum information and quantum computation started to attract at-
tention in the 1990s (see Chap. 7), the model was used to gain some first
insights into the decoherence of a single qubit in the presence of a ther-
mal environment [89, 236]. Since then, it has been frequently revisited (see,
e.g., [96, 237]).

In Sect. 5.3.2, we shall then generalize our model to the full spin–boson
model by including a tunneling term in the Hamiltonian. We will derive
the explicit form of the Born–Markov master equation (4.8) for this model,
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which will give us another opportunity to see how the general master-equation
formalism described in Sect. 4.2 is applied to a concrete example.

5.3.1 Simplified Spin–Boson Model Without Tunneling

In the following, let us consider the simplified spin–boson model described
by the Hamiltonian

Ĥ = ĤS + ĤE + Ĥint. (5.85)

Here,

ĤS =
1
2
ω0σ̂z (5.86)

is the self-Hamiltonian of the system. Let us denote the eigenstates of σ̂z by
|0〉 and |1〉. The asymmetry energy ω0 is the difference in energy between
the basis states |0〉 and |1〉 of the system. By contrast with the general spin–
boson model, we have not included a tunneling term − 1

2Δ0σ̂x [see (5.1)] in
ĤS that would generate intrinsic dynamics of the central spin.

In (5.85), ĤE denotes the familiar self-Hamiltonian (5.3) of the environ-
ment of harmonic oscillators,

ĤE =
∑
i

(
1

2mi
p̂2
i +

1
2
miω

2
i q̂

2
i

)
. (5.87)

As usual, the ith harmonic oscillator in the bath is described by its natural
frequency ωi, mass mi, and position and momentum operators q̂i and p̂i,
respectively, and it defines a bosonic mode i. The interaction Hamiltonian

Ĥint = σ̂z ⊗
∑
i

ciq̂i (5.88)

describes the linear coupling of the σ̂z coordinate of the system to the po-
sitions coordinates q̂i of each harmonic oscillator in the environment, with
coupling strengths ci. Finally, let us also define Ĥ0 as the sum of the self-
Hamiltonians of the system and the environment, Ĥ0 ≡ ĤS + ĤE .

Equivalently, we may recast the Hamiltonian (5.85) in terms of bosonic
creation and annihilation operators â†i and âi for each mode i. This formu-
lation leads to a more compact notation which, among other things, does no
longer require us to explicitly include the oscillator masses mi in the Hamil-
tonian. Using the standard relations

q̂i =
√

1
2miωi

(
âi + â†i

)
, (5.89a)

p̂i = −i
√

miωi
2

(
âi − â†i

)
, (5.89b)
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and dropping, for simplicity, the vacuum-energy term
∑
i
ωi

2 , we can rewrite
(5.85) as

Ĥ =
1
2
ω0σ̂z +

∑
i

ωiâ
†
i âi + σ̂z ⊗

∑
i

(
giâ
†
i + g∗i âi

)
, (5.90)

with the obvious relations between the ci and gi.2 The operators â†i and âi
obey the usual bosonic commutation relations,

[
âi, â

†
j

]
= δij . (5.91)

Let us first note that, similarly to the spin–spin model described in Sect. 2.10,
we have [

Ĥ, σ̂z
]

= 0. (5.92)

There exists neither an intrinsic tunneling term proportional to σ̂x nor any
coupling between an environmental coordinate and σ̂x that could induce any
transitions between the two basis states |0〉 and |1〉 of the system. Thus the
populations of the two levels of the system are conserved quantities. There is
no energy exchange between the system and the environment, and we there-
fore deal with a model of decoherence without dissipation. As discussed in
Sect. 2.11, while in realistic systems usually both dissipation and decoher-
ence are present, the timescale for decoherence is typically many orders of
magnitude shorter than the timescale for thermal relaxation. Thus our model
can be regarded as a good representation of such rapid decoherence processes
during which the amount of dissipation is negligible.

Solving the Model

To solve the model defined by the Hamiltonian (5.90), let us now switch to
the interaction picture (see Appendix). Here the evolution of the interaction-
picture Hamiltonian Ĥint(t) is given by the free part Ĥ0 of the total Hamil-
tonian,

Ĥint(t) = eiĤ0tĤinte−iĤ0t = σ̂z ⊗
∑
i

(
giâ
†
i e

iωit + g∗i âie
−iωit

)
. (5.93)

This equation is easily proved by noting that the Heisenberg equations of
motion for the operators σ̂z, â

†
i , and âi read, using (5.91),

2Note that, although the ci are real numbers and are related to the gi by a real-
valued factor, we have used the complex conjugate of gi in (5.90). This complex
notation, introduced a posteriori, is a generalization that should be of no concern
to the reader here.
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dσ̂z
dt

= i
[
Ĥ0, σ̂z

]
= 0, (5.94a)

dâ†i
dt

= i
[
Ĥ0, â

†
i

]
= iωi

[
â†i âi, â

†
i

]
= iωiâ

†
i , (5.94b)

dâi
dt

= i
[
Ĥ0, âi

]
= iωi

[
â†i âi, âi

]
= −iωiâi. (5.94c)

Next, we write down the evolution operator in the interaction picture, which
reads

Û(t) = T← exp
[
−i

∫ t

0

dt′ Ĥint(t′)
]
, (5.95)

where T← denotes the time-ordered product of operators (i.e., operators are
arranged such that their time arguments increase from right to left).3 We can
formally expand (5.95) in terms of a Dyson series [58] as

Û(t) =
∞∑
n=0

(−i)n

n!

∫ t

0

dt1
∫ t1

0

dt2 · · ·

×
∫ tn−1

0

dtn T←
{
Ĥint(t1)Ĥint(t2) · · · Ĥint(tn)

}
. (5.96)

Since the commutator
[
Ĥint(t), Ĥint(t′ �= t)

]
will in general be equal to an-

other (time-dependent) operator, the required time ordering means that we
usually cannot evaluate this series in closed form. However, a great simpli-
fication occurs in the present case. Since the commutator of the operators
â†i and âi is a c-number (instead of another operator), the commutator of
Ĥint(t) and Ĥint(t′ �= t), with Ĥint(t) given by (5.93), is simply a function of
c-numbers, [

Ĥint(t), Ĥint(t′)
]

= −2i
∑
i

|gi|2 sinωi(t− t′). (5.97)

The explicit evaluation of (5.95) using (5.97) is somewhat cumbersome, so we
refer readers interested in the derivation to [237] for details. The important
point for our present discussion is that (5.97) enables us to write Û(t) as
a product of a global time-dependent phase factor and the ordinary (not
time-ordered) equivalent of (5.95),

Û(t) = eiφ(t) exp
[
−i

∫ t

0

dt′ Ĥint(t′)
]
≡ eiφ(t)V̂ (t). (5.98)

In our subsequent discussion, the global phase factor will play no role (al-
though it may become relevant in other settings; see [96] for an example).

3The necessity of a time ordering of the operators has sometimes been overlooked
in discussions of this model in the literature (see, e.g., [89] and the correction in [96]
and [237]).



5.3 The Spin–Boson Model 211

Therefore, for our purposes, instead of the time-ordered evolution operator
(5.95) we may simply use V̂ (t), which can be directly evaluated by carrying
out the integration in the argument of the exponential. This yields

V̂ (t) = exp

[
1
2
σ̂z ⊗

∑
i

(
λi(t)â

†
i − λ∗i (t)âi

)]
, (5.99)

where we have defined the time-dependent coefficients

λi(t) ≡ 2
gi
ωi

(
1− eiωit

)
. (5.100)

What time evolution does V̂ (t), see (5.99), induce? For the remainder of this
section, let us make the usual assumption that there exist no correlations
between the system and the environment at t = 0,

|Ψ(0)〉 = (a |0〉+ b |1〉) |ΦE〉 . (5.101)

We then readily obtain the time evolution

|Ψ(t)〉 = V̂ (t) |Ψ(0)〉
= a |0〉

∏
i

D̂ (λi(t)/2) |ΦE〉+ b |1〉
∏
i

D̂ (−λi(t)/2) |ΦE〉

≡ a |0〉 |E+(t)〉+ b |1〉 |E−(t)〉 . (5.102)

Here we have introduced the operator

D̂ (λi(t)) ≡ exp
[
λi(t)â

†
i − λ∗i (t)âi

]
, (5.103)

which generates the evolution of the ith environmental oscillator.
The reader may immediately recognize the similarity of the time evolu-

tion described by (5.102) to that encountered in the simple static model of
Sect. 2.10, see (2.105). In both cases, the interaction establishes quantum
correlations between the basis states |0〉 and |1〉 of S and the corresponding
relative states |E+(t)〉 and |E−(t)〉 of the environment.

What concrete form do these environmental states |E+(t)〉 and |E−(t)〉
take? To answer this question, we must first choose a particular initial state
|ΦE〉 of the environment [see (5.101)], which we shall now do for two examples
of interest. First, we shall consider the case in which the environment is in
the ground state. Second, we will look at the situation of the environment’s
being in thermal equilibrium.

Case Study #1: Environment in the Ground State

Here we shall assume that each harmonic oscillator in the environment is
initially in the energy ground state |E0〉,
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|ΦE〉 =
∏
i

|E0〉i , (5.104)

where the index i runs over all environmental oscillators. For a quantum
harmonic oscillator, a coherent state |λ〉 of amplitude λ is defined via the
relation [238–241]

|λ〉 ≡ exp
[
λâ† − λ∗â

]
|E0〉 . (5.105)

Comparing this definition with the expression for the operator D̂ (λi(t)),
see (5.103), we immediately see that D̂ (λi(t)) is simply the generator of a
coherent state of amplitude λi(t) for the ith environmental oscillator. Thus
the two final states |E±(t)〉 are products of coherent states with amplitudes
±λi(t)/2,

|E±(t)〉 =
∏
i

|±λi(t)/2〉 . (5.106)

Therefore we deal with a measurement-like process. If the system is in the
state |0〉 (|1〉), the state of the environment gets shifted into the state |E+(t)〉
(|E−(t)〉). If the states |E±(t)〉 are sufficiently distinguishable, i.e., if their
overlap 〈E−(t)|E+(t)〉 is small, they act as “pointers” capable of discriminat-
ing between the states |0〉 and |1〉. In this case quantum coherence between
|0〉 and |1〉 will be lost (or, rather, delocalized) from the system, and the
off-diagonal elements in the reduced density matrix of the system expressed
in the {|0〉 , |1〉} basis will decay.

To quantify this decoherence process, let us compute the time evolution
of the overlap r(t) ≡ 〈E−(t)|E+(t)〉 (which plays the role of a decoherence
factor). For two coherent states |λ〉 and |μ〉 we have

〈λ|μ〉 = exp
[
−1

2
|λ|2 − 1

2
|μ|2 + λ∗μ

]
. (5.107)

Thus the decoherence factor r(t) is given by

r(t) = 〈E−(t)|E+(t)〉 =
∏
i

exp
[
−1

2
|λi(t)|2

]

= exp

[
−
∑
i

4
|gi|2

ω2
i

(1− cosωit)

]
. (5.108)

For times t much smaller than the dynamical timescales ω−1
i of the envi-

ronmental modes, i.e., ωit � 1, we can approximate the cosine in (5.108)
by

cosωit ≈ 1− 1
2
ω2
i t

2. (5.109)

In this case the decoherence factor is

r(t) = 〈E−(t)|E+(t)〉 ≈ exp

[
−
∑
i

2 |gi|2 t2
]
, (5.110)
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i.e., we obtain Gaussian decay of coherence between the states |0〉 and |1〉.
Deviations from this Gaussian behavior occur when t becomes compa-

rable to the typical timescales of the environment, ωit ≈ 1, and thus the
approximation (5.109) starts to fail. Fig. 5.5 shows an example for the time
evolution of the decoherence factor r(t) also for such larger times, with the
purely Gaussian decay (5.110) pictured for comparison.

As already pointed out in Sect. 2.10, it is important to keep in mind that
for finite numbers of environmental oscillators, r(t) will return to its initial
value of one after a finite (albeit for large environments very long) time.
We can see this point directly from recognizing that the argument in the
exponential of (5.108) is a sum of functions that are periodic in time, and thus
the sum itself is periodic in time. Therefore, for finite-sized environments, the
coherence initially localized at the level of the system will always be restored
after a finite time span.

Case Study #2: Environment in Thermal Equilibrium

Let us now turn to the more general case in which each environmental oscil-
lator i is in a thermal state,

ρ̂Ei
=

1
Zi

e−ωiâ
†
i âi/kBT ≡ 1

Zi
e−ĤEi

/kBT . (5.111)

Here
Zi = TrEi

e−ĤEi
/kBT (5.112)

is the partition function for the ith mode. Thus the initial state of the com-
posite system SE is given by

0 0.5

short-time
approximation

exact
solution

t

r(t)

10−5

10−10

10−15

1

10−20

1.0 1.5 2.0 2.5 3.0

Fig. 5.5. Time evolution of the decoherence factor r(t) = 〈E−(t)|E+(t)〉 (i.e., of
the overlap of the relative environmental states). Both the exact evolution (5.108)
and the short-time approximation (5.110) are shown for an environment consisting
of N = 20 harmonic oscillators. The couplings gi and frequencies ωi were chosen
randomly from the interval [0, 1].
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ρ̂(0) = ρ̂S(0)
⊗
i

1
Zi

e−ĤEi
/kBT . (5.113)

The time evolution of the reduced density matrix ρS(t) for the system is then
obtained in the usual manner via

ρ̂S(t) = TrE
[
V̂ (t)ρS(0)V̂ −1(t)

]
, (5.114)

with V̂ (t) given by (5.99). Since we already know from (5.92) that the diago-
nal elements ρ

(ii)
S (t) of ρ̂S(t) expressed in the {|0〉 , |1〉} basis are constant in

time,
ρ
(ii)
S (t) = ρ

(ii)
S (0), i = 0, 1, (5.115)

we only need to compute the off-diagonal elements,

ρ
(01)
S (t) = 〈0|TrE

[
V̂ (t)ρ̂(0)V̂ −1(t)

]
|1〉 ,

ρ
(10)
S (t) = 〈1|TrE

[
V̂ (t)ρ̂(0)V̂ −1(t)

]
|0〉 . (5.116)

Using the definitions above, these expressions are readily computed as follows,

ρ
(01)
S (t) = ρ

(01)
S (0)TrE

{
exp

[∑
i

(
λi(t)â

†
i − λ∗i (t)âi

)]⊗
i

ρ̂Ei

}

= ρ
(01)
S (0)

∏
i

TrEi

{
D̂ (λi(t)) ρ̂Ei

}

= ρ
(01)
S (0)

∏
i

〈
D̂ (λi(t))

〉
ρ̂Ei

=
[
ρ
(10)
S (t)

]∗
. (5.117)

In other words, the decoherence factor r(t) is given by

r(t) =
∏
i

〈
D̂ (λi(t))

〉
ρ̂Ei

=
∏
i

〈
exp

[
λi(t)â

†
i − λ∗i (t)âi

]〉
ρ̂Ei

, (5.118)

i.e., by the product of the expectation values of the operators D̂ (λi(t)), see
(5.103), for the thermal modes ρ̂Ei

of the environment.
It now turns out that

χ(λi, t) ≡
〈
exp

[
λi(t)â

†
i − λ∗i (t)âi

]〉
ρ̂Ei

(5.119)

is just the symmetrically ordered characteristic function for a single harmonic
oscillator (a single field mode) in thermal equilibrium, a function that is
well-known from quantum optics (see, e.g., [241]). This function is given by
[18,150]

χ(λi, t) = exp
[
−1

2
|λi(t)|2 coth (ωi/2kBT )

]
. (5.120)
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Hence

r(t) = exp

[
−4

∑
i

|gi|2

ω2
i

(1− cosωit) coth (ωi/2kBT )

]
≡ eΓ (t), (5.121)

where we have denoted the argument of the exponential by Γ (t).

Time evolution of the decoherence factor

After these rather formal manipulations, let us now try to get a feel for
the time dependence of r(t) by studying Γ (t). First, let us assume that the
environment is sufficiently large such that we can assume a continuous density
of environmental modes. Just as in our discussion of quantum Brownian
motion in Sect. 5.2, we therefore go from our expression (5.121) in terms of
a sum over the discrete couplings gi to a continuous description by means of
a spectral density J(ω),

∑
i

|gi|2 −→
∫ ∞

0

dω J(ω). (5.122)

With this replacement, Γ (t) appearing in (5.121) becomes

Γ (t) = −
∫ ∞

0

dω
4J(ω)
ω2

(1− cosωt) coth (ω/2kBT ) . (5.123)

Of course, if we choose

J(ω) =
∑
i

|gi|2 δ(ω − ωi), (5.124)

the right-hand side of (5.123) will be trivially identical to our original expres-
sion (5.121). Instead, let us now represent J(ω) by a suitably chosen smooth
function of ω.

As in the case of quantum Brownian motion (see Sect. 5.2.3), we shall
consider a spectral density that is ohmic for sufficiently small frequencies,
J(ω) ∝ ω, and that has a smooth high-frequency cutoff quantified by Λ.
Instead of the Lorentz–Drude form (5.44) used in our model for quantum
Brownian motion, let us here choose an exponential cutoff of the form e−ω/Λ.
Thus our spectral density takes the form

J(ω) = 4J0ωe−ω/Λ, (5.125)

where J0 is a dimensionless constant. The factor of four appearing in (5.123)
has been absorbed into (5.125). The spectral density is plotted in Fig. 5.6.
As desired, J(ω) increases approximately linearly for frequencies ω < Λ and
decreases for ω > Λ.

With the functional form (5.125) for J(ω), (5.123) reads
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Fig. 5.6. Spectral density J(ω) given by (5.125), shown in units of 4J0. The spec-
tral density is chosen to be approximately ohmic (i.e., J(ω) ∝ ω) for frequencies
well below the cutoff frequency Λ. At frequencies ω > Λ, the ohmic character is
suppressed by a term e−ω/Λ. The frequency ω is measured in units of the cutoff Λ.

Γ (t) = −J0

∫ ∞
0

dω e−ω/Λ
1− cosωt

ω
coth (ω/2kBT ) . (5.126)

If we now make the reasonable assumption that the thermal energy kBT of the
environment is small in comparison with the cutoff frequency Λ, kBT � Λ,
this integral can be solved exactly. The result can be decomposed as

Γ (t) = Γfluc(t) + Γtherm(t). (5.127)

Here
Γfluc(t) = −1

2
ln
(
1 + Λ2t2

)
(5.128)

is the (exact) contribution to Γ (t) due to purely quantum vacuum fluctua-
tions (note that this term is independent of the bath temperature), and

Γtherm(t) ≈ − ln
[
sinh(πkBTt)

πkBTt

]
(5.129)

is the contribution due to thermal fluctuations in the bath.
A plot of Γ (t) is shown in Fig. 5.7. We see that Γ (t) decreases from its

initial value of one. We can therefore conclude that coherence between the
components |0〉 and |1〉 indeed becomes locally damped, since the relevant
decoherence factor (5.118) is given by r(t) = eΓ (t). As we shall see in the
following, we can distinguish several characteristic timescales for this deco-
herence process.

Decoherence timescales

Let us investigate the relevant timescales over which either one of the two
contributions Γfluc(t) and Γtherm(t) dominates the time evolution of Γ (t).
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Fig. 5.7. Time dependence of the exponent Γ (t) (in units of J0), see (5.126),
with time measured in units of the cutoff period Λ−1. Here we have chosen the
temperature of the bath such that kBT = Λ/60, i.e., the thermal correlation time
is assumed to be 60 times longer than the cutoff period Λ−1.

From (5.128) and (5.129) we see that these timescales will be defined by the
magnitude of t relative to the cutoff period Λ−1 and the thermal correlation
time (kBT )−1.

First, let us assume that we are in the extreme short-time regime with
t � Λ−1 and t � (kBT )−1. Then we can terminate the Taylor expansion of
the natural logarithm in the expression (5.128) for Γfluc(t) after the second
term (i.e., we expand Γfluc(t) to first order in Λ2t2),

Γfluc(t) ≈ −
1
2
Λ2t2, (5.130)

and therefore Γfluc(t)� 1. The thermal contribution Γtherm(t) plays no role at
all in this regime. Thus the decoherence factor r(t), see (5.118), is close to one,
with any (weak) decay being entirely due to quantum vacuum fluctuations.

Second, suppose t is larger than the characteristic period set by the cutoff
frequency, t� Λ−1, but still much smaller than the thermal correlation time,
t� (kBT )−1. Then we can again neglect the contribution of Γtherm(t) to Γ (t),
and we can approximate Γfluc(t) as

Γfluc(t) ≈ −
1
2

ln
(
Λ2t2

)
= − lnΛt. (5.131)

Thus Γfluc(t) is of magnitude larger than one, and quantum vacuum fluctua-
tions are a dominant source of decoherence in this regime.

Finally, let us assume the long-time regime for which t is much larger than
the typical thermal fluctuation time, i.e., t� (kBT )−1. Then, using that

sinh(x) =
1
2
(
ex − e−x

)
≈ 1

2
ex if x� 1, (5.132)

we obtain
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Γtherm(t) ≈ −πkBTt + ln (2πkBTt) ≈ −πkBTt� Γfluc(t), (5.133)

and thus
Γ (t) ≈ −πkBTt. (5.134)

Inserting this expression for Γ (t) into (5.121), we thus see that the deco-
herence factor r(t) decays exponentially on a timescale set by the thermal
correlation time (kBT )−1,

r(t) ≈ e−(πkBT )t. (5.135)

5.3.2 Born–Markov Master Equation for the Spin–Boson Model

In the simplified spin–boson model discussed in the previous Sect. 5.3.1, the
total Hamiltonian (5.90) was completely diagonal in the σ̂z eigenbasis of the
central spin. This means that the spin system has no intrinsic dynamics in
the {|0〉 , |1〉} basis: If the system did not couple to any environment, the
probability of finding the system in the state |0〉 (or |1〉) upon measurement
would not change in time.

Let us now generalize this simplified model to include intrinsic dynamics
by adding a tunneling term − 1

2Δ0σ̂x to the Hamiltonian (5.90), where Δ0

denotes the tunneling matrix element [see (5.1)]. Switching back to the (q̂i, p̂i)
representation for the environmental coordinates, this yields the general spin–
boson model defined by the Hamiltonian

Ĥ =
1
2
ω0σ̂z −

1
2
Δ0σ̂x +

∑
i

(
1

2mi
p̂2
i +

1
2
miω

2
i q̂

2
i

)
+ σ̂z ⊗

∑
i

ciq̂i. (5.136)

Leggett et al. [209] showed in detail how this form of the Hamiltonian can
be rigorously motivated from physical considerations. For our purposes, the
introductory remarks of Sect. 5.1 on the role of spin-system and oscillator-
environment models will be considered sufficient to motivate our interest in
the Hamiltonian (5.136).

Despite the fact that this Hamiltonian seems only marginally more com-
plicated than the no-tunneling Hamiltonian (5.90) considered in Sect. 5.3.1,
the presence of the tunneling term renders the general spin–boson model
defined by (5.136) much more complex, both in terms of its mathematical
solution and of the dependences of the resulting decoherence dynamics on
the relative magnitudes of the parameters. The aforementioned review by
Leggett et al. [209] discusses in great detail exact and approximate solutions
of the model.

Here, we shall focus on the derivation of the Born–Markov master equa-
tion for the spin–boson model. Recall that this master equation is appropri-
ate if the system is weakly coupled to a large environment. To facilitate the
subsequent calculations, we shall introduce one minor simplification in the
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Hamiltonian (5.136). Namely, we will assume that the asymmetry energy ω0

is equal to zero, corresponding to the central system moving in a symmet-
ric double-well potential. With this assumption, the first σ̂z term in (5.136)
vanishes, such that our model is now defined by the Hamiltonian

Ĥ = −1
2
Δ0σ̂x +

∑
i

(
1

2mi
p̂2
i +

1
2
miω

2
i q̂

2
i

)
+ σ̂z ⊗

∑
i

ciq̂i. (5.137)

This slightly simplified form of the Hamiltonian when compared with (5.136)
makes the subsequent derivation of the Born–Markov master equation more
transparent and will also allow us to more closely establish interesting analo-
gies with quantum Brownian motion.

Fortunately, in our derivation we can proceed in a very similar manner as
in the case of quantum Brownian motion (see Sect. 5.2.1). In fact, since we
deal with the same type of environment and a bilinear system–environment
coupling, many results can be taken over directly. For example, the bulk of
the derivation of the master equation for quantum Brownian motion had
been devoted to the calculation of the environment self-correlation functions
(5.15). Since these functions are independent of the representation of the
central system, we can directly use the results obtained in Sect. 5.2.1 in the
following derivation.

In particular, we can take over the form of the master equation (5.22) for
quantum Brownian motion and simply replace the position operator X̂ by
the Pauli z-spin operator σ̂z,

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]
−
∫ ∞

0

dτ {ν(τ) [σ̂z, [σ̂z(−τ), ρ̂S(t)]]

−iη(τ) [σ̂z, {σ̂z(−τ), ρ̂S(t)}]} , (5.138)

where ĤS = − 1
2Δ0σ̂x is the system Hamiltonian. The noise and the dissipa-

tion kernels ν(τ) and η(τ) appearing in (5.138) have exactly the same forms
(5.16) and (5.17) as in the case of quantum Brownian motion, namely,

ν(τ) =
1
2

∑
i

c2i 〈{q̂i(τ), q̂i}〉ρ̂E ≡
∫ ∞

0

dωJ(ω) coth
(

ω

2kBT

)
cos (ωτ) ,

(5.139)

η(τ) =
i
2

∑
i

c2i 〈[q̂i(τ), q̂i]〉ρ̂E ≡
∫ ∞

0

dωJ(ω) sin (ωτ) . (5.140)

The time dependence of the operator σ̂z in the interaction picture can be
computed by solving the Heisenberg equations of motion with respect to the
system Hamiltonian ĤS . The result is

σ̂z(τ) = eiĤSτ σ̂ze−iĤSτ = σ̂z cos (Δ0τ)− σ̂y sin (Δ0τ) . (5.141)
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Note the formal similarity of this expression to the result (5.24) for the
interaction-picture position operator X̂(τ) used in the context of the model
for quantum Brownian motion.

We now insert (5.141) into our master equation (5.138). After some
straightforward algebra, which involves rearranging terms and using the stan-
dard identity relations σ̂yσ̂z = iσ̂x and σ̂zσ̂y = −iσ̂x for the Pauli spin op-
erators, we obtain the final expression for the Born–Markov master equation
for the spin–boson model defined by the Hamiltonian (5.137),

d
dt

ρ̂S(t) = −i
(
Ĥ ′S ρ̂S(t)− ρS(t)Ĥ

′†
S
)
− D̃ [σ̂z, [σ̂z, ρ̂S(t)]]

+ ζσ̂z ρ̂S(t)σ̂y + ζ∗σ̂yρ̂S(t)σ̂z. (5.142)

Several new quantities appear in this equation. First,

Ĥ ′S =
(
−1

2
Δ0 − ζ∗

)
σ̂x (5.143)

is the renormalized (and in general non-Hermitian) Hamiltonian of the sys-
tem. Thus the tunneling term − 1

2Δ0 is changed by an amount ζ∗ due to the
influence of the environment, where

ζ∗ = f̃ − iγ̃. (5.144)

The coefficients D̃, f̃ , and γ̃ appearing in (5.142) and (5.144) are determined
by expressions analogous to those for, respectively, the normal-diffusion and
anomalous-diffusion coefficients D and f [see (5.26c) and (5.26d)] and the
damping coefficient γ [see (5.26b)] in the model for quantum Brownian mo-
tion,

D̃ ≡
∫ ∞

0

dτ ν(τ) cos (Δ0τ) , (5.145a)

f̃ ≡
∫ ∞

0

dτ ν(τ) sin (Δ0τ) , (5.145b)

γ̃ ≡
∫ ∞

0

dτ η(τ) sin (Δ0τ) . (5.145c)

Accordingly, once a specific form of the spectral density of the environment
is chosen, the coefficients (5.145) can be evaluated in much the same way as
discussed for the case of quantum Brownian motion (see Sect. 5.2.3).

The interpretation of the different terms appearing on the right-hand side
of the master equation (5.142) is also similar to the case of quantum Brownian
motion. The term

D̃ [σ̂z, [σ̂z, ρ̂S(t)]] = D̃

(
1
2
ρ̂S(t)− 2σ̂z ρ̂S(t)σ̂z

)
(5.146)
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is of the standard Lindblad double-commutator form (4.45), representing the
direct monitoring of the system observable σ̂z by the environment, as already
evident from the structure of the interaction Hamiltonian, see (5.136). It thus
describes decoherence in the basis {|0〉 , |1〉} at a rate given by the coefficient
D̃.

This can also be seen explicitly by expressing (5.146) as a 2× 2 matrix in
the basis {|0〉 , |1〉}. If we denote the matrix elements 〈i| ρ̂S(t) |j〉, i ∈ {0, 1},
of the reduced density matrix by ρ

(ij)
S (t), we get

D̃ [σ̂z, [σ̂z, ρ̂S(t)]] =̇ D̃

(
0 ρ

(01)
S (t)

ρ
(10)
S (t) 0

)
. (5.147)

Thus the time evolution of the off-diagonal matrix elements of the reduced
density matrix (expressed in the eigenbasis of σ̂z) due to the influence of the
D̃ term (5.146) alone (neglecting all other terms appearing in the master
equation) is

d
dt

ρ
(01)
S (t) = −D̃ρ

(01)
S (t),

d
dt

ρ
(10)
S (t) = −D̃ρ

(10)
S (t). (5.148)

This implies exponential decay of the off-diagonal elements at a rate given
by D̃. The diagonal elements ρ

(00)
S (t) and ρ

(11)
S (t) (i.e., the occupation prob-

abilities) remain unaffected by the dynamics generated by the term (5.146),
indicating a pure decoherence process without damping. This, again, is anal-
ogous to the case of quantum Brownian motion, where we found that the
normal-diffusion term induced exponential damping of spatial coherences [see
(5.35)].

Note that for the case of a vanishing tunneling matrix element, Δ0 = 0,
we also have ζ = 0. Then the master equation (5.142) reduces to the “pure-
decoherence” form

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]
− D̃ [σ̂z, [σ̂z, ρ̂S(t)]] , (5.149)

which does not contain any terms that correspond to damping or frequency
shifts. This is simply the Lindblad equation (4.45) with Lindblad operator
L̂ = σ̂z, describing the environmental monitoring of the value of z-spin of the
system.

Finally, the last two terms on the right-hand side of the master equation
(5.142) describe the decay of the two-level system, quantified by an interplay
between the coefficients f̃ and γ̃, see (5.145b) and (5.145c). This can be seen
quite easily, e.g., by writing out these terms in matrix form. (Since our focus
is on decoherence, we shall not show the proof here.)
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In summary, we have seen how the Born–Markov master equation for the
spin–boson model can be obtained in a manner quite analogous to the deriva-
tion of the master equation for quantum Brownian motion. The next step
would consist of studying the spin–boson model beyond the Born–Markov ap-
proximations, which often break down in physical situations where the central
two-level system and its environment are at very low temperatures (see the
discussion in Sect. 4.4). Prominent examples for such low-temperature sys-
tems are the superconducting qubit systems operated at temperatures close
to absolute zero (see Sect. 6.3).

As mentioned above, the rich non-Markovian dynamics of the spin–boson
model have been analyzed in great detail by Leggett et al. [209]. As expected,
the dynamics are found to exhibit strong dependences on the various param-
eters in the model, such as the temperature of the environment, the form
of the spectral density (subohmic vs. ohmic vs. supraohmic), and the overall
system–environment coupling strength. For each parameter regime, a charac-
teristic dynamical behavior emerges: Localization, exponential or incoherent
relaxation, exponential decay, and strongly or weakly damped coherent oscil-
lations (see Table I of [209] for an overview of the different parameter regimes
and the resulting dynamics).

We shall here refrain from discussing these rather complex dynamics
and instead consider ourselves satisfied with the two models studied above,
namely, the simplified spin–boson model and the spin–boson model in the
framework of the Born–Markov approximations. These models already ex-
hibit the main features relevant to a study of decoherence in models of
the spin–boson type. Readers interested in an in-depth analysis of the non-
Markovian dynamics of dissipation and decoherence in the spin–boson model
will find a vast amount of information in the article by Leggett et al. [209]
and the book by Weiss [218].

5.4 Spin-Environment Models

Let us now switch our focus from the study of environments composed of
harmonic oscillators to the analysis of models in which the environment is
represented by a collection of spin-1

2 particles (i.e., quantum two-level sys-
tems). In Sect. 5.1.2, we already discussed the physical motivation for the
consideration of such spin environments and mentioned some key differences
between spin and oscillator environments.

A central system represented by a spin particle linearly coupled to a col-
lection of other spins comprises the physically most relevant (and most stud-
ied) spin-environment model. The typical physical situation for which such
a “spin–spin model” is appropriate is that of a single two-level system, such
as a superconducting qubit, strongly coupled to a low-temperature environ-
ment (see our discussion in Sect. 5.1). The other “canonical” possibility of a
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central harmonic oscillator interacting with an environment of two-level sys-
tems has only recently begun to attract attention in the context of studying
decoherence and dissipation in so-called quantum-electromechanical systems
(see Sect. 6.4.2) and also in micron-scale ion traps [242].

In this section, we shall investigate different aspects of such spin-environ-
ment models. We shall structure our discussion of spin–spin models in a
similar manner as in the case of the spin–boson model. First, in Sect. 5.4.1,
we will discuss a spin–spin model that is a simple generalization of the de-
coherence model studied in Sect. 2.10. Next, in Sect. 5.4.2, we will discuss
spin-environment models in the limit of weak linear system–environment cou-
plings. We will show how in this case the spin environment can be mapped
onto an oscillator environment with a modified spectral density, as originally
suggested by Feynman and Vernon [211] (see also Sect. 5.1.2). This will al-
low us to take over the formal results from our study of quantum Brownian
motion, that is, we can derive a Born–Markov master equation of the form
(5.22) for a central system weakly interacting with a spin bath.

In Sect. 5.4.3, we will discuss features of more general spin–spin mod-
els. We will focus on giving an overview of the decoherence dynamics aris-
ing in such models, without going into the mathematics required to solve
the models. Readers interested in a more detailed account of the theory of
spin-environment models will find plenty of material in the review article by
Prokof’ev and Stamp [199]. A short and accessible summary is given in [200].

5.4.1 A Simple Dynamical Spin–Spin Model

We already encountered a member of the class of spin–spin models in
Sect. 2.10 when we discussed a prototype model for illustrating basic features
of environmental decoherence and superselection. We were able to solve the
global dynamics of this model exactly in a straightforward fashion, because
we had neglected the self-Hamiltonians of both the central spin and the spin
environment, and because we had assumed that the interaction Hamiltonian
was already diagonal in the σ̂z eigenbasis of both the central spin and the
collection of environmental spins [see (2.100)]. Clearly, this model was rather
artificial, as it did not model the internal dynamics of the system and environ-
ment and thus corresponded to the limit of strong system–environment inter-
actions which completely dominate the dynamics (the quantum-measurement
regime).

We shall now generalize this static spin–spin model by adding a tunneling
term of the form − 1

2Δ0σ̂x [see (5.1)] to the original Hamiltonian (2.100). Thus
we consider the model described by the total Hamiltonian

Ĥ = ĤS+Ĥint = −1
2
Δ0σ̂x+

1
2
σ̂z⊗

N∑
i=1

giσ̂
(i)
z ≡ −

1
2
Δ0σ̂x+

1
2
σ̂z⊗Ê. (5.150)

We will show that the inclusion of the tunneling term in (5.150) will in
general lead to significantly different dynamics compared to the original static
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model defined by the Hamiltonian (2.100). The last term on the right-hand
side of (5.150) corresponds to the familiar linear interaction between the
z-spin coordinate of the central system and the z-spin coordinate of each
environmental spin, with coupling strengths gi.

Solving the Model

Despite the presence of the tunneling term, the global dynamics of the model
defined by (5.150) can be solved exactly, as shown by Dobrovitski et al.
[243] and Cucchietti, Paz, and Zurek [118]. We shall closely follow the latter
approach [118] in our subsequent derivation.

A key simplifying feature of the Hamiltonian (5.150) arises from the fact
that this Hamiltonian still contains only σ̂z environment operators, just as
in the static case (2.100). Thus, as in the model discussed in Sect. 2.10, the
eigenstates |n〉 of the environment part Ê of the Hamiltonian are given by
products of the eigenstates |↑〉i and |↓〉i of the ith environment operator σ̂

(i)
z

[see (2.101)]. Explicitly,

Ê |n〉 = εn |n〉 , n = 0, . . . , 2N − 1, (5.151)

with eigenvalues [see (2.102)]

εn =
N∑
i=1

(−1)nigi, (5.152)

where ni = 0 if the ith environmental spin is in the “up” state, and ni = 1 if
this spin is in the “down” state.

Consider now a pure product system–environment state given by

|Ψn〉 = |ψS〉 |n〉 , (5.153)

where |ψS〉 denotes an arbitrary state vector of the system. The action of the
Hamiltonian (5.150) on this state is

Ĥ |Ψn〉 =
(
−1

2
Δ0σ̂x +

1
2
εnσ̂z

)
|Ψn〉 . (5.154)

In other words, for every environment state |n〉 we can consider a correspond-
ing effective system Hamiltonian of the form

Ĥ
(n)
S ≡ −1

2
Δ0σ̂x +

1
2
εnσ̂z. (5.155)

The time evolution of an arbitrary initial product state of the form

|Ψ(0)〉 = |ψS(0)〉

⎛
⎝2N−1∑

n=0

cn |n〉

⎞
⎠ (5.156)
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can be written as

|Ψ(t)〉 =
2N−1∑
n=0

cn

[
Ûn(t) |ψS(0)〉

]
|n〉 , (5.157)

and thus

ρ̂S(t) = TrE |Ψ(t)〉〈Ψ(t)| =
2N−1∑
n=0

|cn|2 Ûn(t)ρ̂S(0)Û†n(t), (5.158)

where ρ̂S(0) = |ψS(0)〉〈ψS(0)|. Here Ûn(t) is the system evolution operator
corresponding to the effective Hamiltonian (5.155). This operator is given
by [118]

Ûn(t) = Î cos (Ωnt)−
i

Ωn

(
εnσ̂z −

1
2
Δ0σ̂x

)
sin (Ωnt) , (5.159)

with Ωn =
√

ε2n + Δ2
0/4.

Following the approach of [118], let us now formally express the reduced
density matrix ρ̂S(t) in terms of the so-called polarization vector p(t) ≡
(px(t), py(t), pz(t)) as

ρ̂S(t) =
1
2

(
Î + p(t) · σ̂

)
=

1
2

(
Î + px(t)σ̂x + py(t)σ̂y + pz(t)σ̂z

)
. (5.160)

We can interpret p as follows. Broadly speaking, the direction of p tells us into
what set of eigenstates the density matrix (5.160) decomposes. For example,
if px = py = 0,

ρ̂S =
1
2

(
1 + pz 0

0 1− pz

)
, (5.161)

and thus the eigenstates of ρ̂S are given by the eigenstates |0〉 and |1〉 of σ̂z.
On the other hand, if py = pz = 0,

ρ̂S =
1
2

(
1 px
px 1

)
, (5.162)

and the eigenstates of this density matrix are the eigenstates of σ̂x.
The dominating component of the polarization vector p(t −→ ∞) will

tell us in which “direction” (i.e., in which basis) the decoherence process is
most effective. Thus the polarization-vector description allows for an intuitive
analysis of the preferred pointer basis arising in our model. For example, if
px(t) and py(t) tend toward zero while pz(t) approaches a finite asymptotic
value, we can conclude that the eigenbasis {|0〉 , |1〉} of σ̂z is the pointer basis
of the system.

Therefore our next goal will be to calculate the components px(t), py(t),
and pz(t) of the polarization vector corresponding to the reduced density
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matrix (5.158). This will then allow us to study the resulting dynamics of
the system. Explicit expressions

(
p
(n)
x (t), p(n)

y (t), p(n)
z (t)

)
corresponding to

each term Ûn(t)ρ̂S(0)Û†n(t) in the sum on the right-hand side of (5.158) are
obtained rather easily by using the explicit expression (5.159) for Ûn(t) (see
[118] for the results).

The next step is then to calculate the sums over all individual terms of
the form |cn|2 p(n)

s (t), s ∈ {x, y, z}, to obtain the full polarization vector [see
(5.158) and (5.160)]. Instead of working with discrete indices n, let us now
take the usual approach of rewriting (5.158) in an equivalent integral form as

ρ̂S(t) =
∫

dε J(ε)Ûε(t)ρ̂S(0)Û†ε (t), (5.163)

where we have introduced the spectral density describing the distribution of
the environment energies ε as

J(ε) =
2N−1∑
n=0

|cn|2 δ(ε− εn). (5.164)

As shown by Cucchietti, Paz, and Zurek [118], this distribution approaches
a Gaussian for large numbers N of environmental spins,

J(ε) N−→∞−−−−−→ 1√
2πs2

N

exp
(
− ε2

2s2
N

)
. (5.165)

The width sN of the Gaussian (5.165) quantifies the typical range of the envi-
ronmental energies ε [see (5.152)]. We proved the result (5.165) in Sect. 2.10
for the simplified situation in which all environment couplings and expansion
coefficients were assumed to be equal. However, (5.165) not only holds for
much more general choices of coefficients, but is also a good (continuum)
approximation to the exact expression (5.164) for already very modest values
of N [118].

Using the Gaussian spectral density (5.165), the components px(t), py(t),
and pz(t) of the polarization vector are then given by [118]

px(t) =
∫

dε J(ε)
Δ2

0 + ε2 cos (2Ωεt)
Ω2
ε

px(0), (5.166a)

py(t) =
∫

dε J(ε)
[
cos (2Ωεt) py(0)− Δ0 sin (2Ωεt)

Ωε
pz(0)

]
, (5.166b)

pz(t) =
∫

dε J(ε)
[
ε2 + Δ2

0 cos (2Ωεt)
Ω2
ε

pz(0) +
Δ0 sin (2Ωεt)

Ωε
py(0)

]
,

(5.166c)

where Ωε =
√

ε2 + Δ2
0/4.
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Dynamics of the Model

Let us now evaluate the above integrals (5.166) for two important limiting
situations. The first case, Δ0 � sN , corresponds to weak intrinsic dynamics of
the system. In this limit, the dynamics of the system will hardly be influenced
by the presence of the self-Hamiltonian of the system. Thus we expect our
model to approach the results of the static model discussed in Sect. 2.10.
Following the study of Cucchietti, Paz, and Zurek [118], the evolution of the
components (5.166) of the polarization vector for this case is shown as the
top graph in Fig. 5.8. The polarization vector at time t = 0 was chosen to
be px(0) = py(0) = pz(0) = 1/

√
3 so as to avoid initial bias toward the

eigenstates of any one of the operators σ̂x, σ̂y, or σ̂z.
We see that the components px(t) and py(t) rapidly decay from their initial

values. The component py(t) converges toward zero, while px(t) approaches
a constant positive value close to zero. By contrast, pz(t) hardly decays at
all. Instead, it remains close to its initial value. The components px(t) and

0
20 30

0.2

0.6

0.4

px(t)

pz(t)

py(t)

t [Ω−1
ε ]

0

0.8

0.4

−0.8

−0.6

10

10
t [Ω−1

ε ]

px(t)

py(t)
pz(t)

Fig. 5.8. Time dependence of the components px(t), py(t), and pz(t) of the polar-
ization vector, see (5.166), as studied by Cucchietti, Paz, and Zurek [118]. This po-
larization vector describes the evolution of the reduced density matrix [see (5.160)]
for the spin–spin model defined by the Hamiltonian (5.150). The time t is measured
in units of the characteristic timescale Ω−1

ε for the intrinsic evolution of the sys-
tem. The top plot shows the case of weak intrinsic dynamics (Δ0 = 0.1sN ), which
leads to the selection of approximate eigenstates of σ̂z as the preferred basis. The
bottom plot depicts the opposite situation of strong self-dynamics of the system
and low-energy (“slow”) modes of the environment (Δ0 = 5sN ). Now approximate
eigenstates of σ̂x, and thus of the self-Hamiltonian, emerge as pointer states.
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pz(t) settle into final values whose ratio is similar to the (small) ratio Δ0/sN .
We thus see that the preferred pointer states selected by the environment are
close to the eigenstates of σ̂z, with a small added contribution from σ̂x.

Let us now consider the second limiting case in which the highest energies
available in the environment are smaller than the energy spacing Δ0 of the
system, i.e., sN � Δ0. The bottom graph in Fig. 5.8 depicts the correspond-
ing time evolution of the components of the polarization vector. We observe
that py(t) and pz(t) exhibit an oscillatory time dependence with a quickly de-
caying envelope, whereas px(t) rapidly settles into a stationary value close to
1/2. This implies that the dynamically selected preferred basis of the system
is now close to the eigenbasis of the x-spin operator σ̂x and thus to the eigen-
basis of the self-Hamiltonian. That is, the dynamics select energy eigenstates
as the pointer basis for the system.

Our model nicely illustrates the dependence of the preferred basis on
the relative strengths of the self-Hamiltonian of the system and the inter-
action Hamiltonian. The preferred basis emerges as the local basis that is
most robust under the total Hamiltonian. As we have seen, in the quantum-
measurement limit, i.e., when the interaction Hamiltonian dominates over the
self-Hamiltonian (Δ0 � sN ), the preferred states are eigenstates of the in-
teraction Hamiltonian, in agreement with the commutativity criterion (2.89)
discussed in Sect. 2.8.1. Conversely, when the modes of the environment are
“slow” (sN � Δ0) and the self-Hamiltonian dominates the evolution of the
system, the resulting preferred basis of the system is given by “local” en-
ergy eigenstates, i.e., eigenstates of the self-Hamiltonian. As emphasized in
Sect. 2.8.2, this quantum limit of decoherence [103] is not simply equivalent
to neglecting the presence of the environment. Rather, the environment leads
to the decoherence of superpositions of energy eigenstates.

5.4.2 Spin-Environment Models in the Weak-Coupling Limit:
Mapping to Oscillator Environments

In several places we have already alluded to the remarkable fact that, under
the assumption of weak system–environment couplings, the dynamics of the
reduced system interacting with some environment can be represented by this
system interacting with an equivalent environment of harmonic oscillators
[211,212]. The mapping of a spin environment was first studied by Caldeira,
Castro Neto, and de Carvalho [208].

We emphasize that this mapping does not mean that the dynamics of
the system generated by an oscillator environment will be identical to those
induced by the spin environment. In fact, the resulting dynamics will in gen-
eral be very different. Instead, by “mapping” we mean to convey the insight
that the reduced dynamics in the presence of the spin environment with a
given spectral density are identical to those in the presence of an oscilla-
tor environment described by a spectral density that is suitably modified
from the spectral density of the original spin environment. In other words,
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the Born–Markov master equation for the spin environment is given by the
Born–Markov master equation (5.22) for the oscillator environment evaluated
with a modified spectral density. We shall now show how this is done.

The Model

We decompose the Hamiltonian for our spin-environment model in the usual
form as

Ĥ = ĤS + ĤE + Ĥint. (5.167)

Here, ĤS is a general self-Hamiltonian of the system. We have also included
a self-Hamiltonian

ĤE = −
∑
i

Δi

2
σ̂(i)
x ≡

∑
i

Ĥ
(i)
E (5.168)

of the environment, where Δi denotes the tunneling matrix element for the
ith environmental spin. This self-Hamiltonian lends intrinsic dynamics to the
environment, in contrast with the more simplified spin-environment models
considered in Sects. 2.10 and 5.4.1. For simplicity, we assume here that the
asymmetry energy for each spin vanishes, i.e., that each environmental “par-
ticle” moves in a symmetric double-well potential.4

Finally, the interaction Hamiltonian Ĥint takes the usual form [compare
(5.150)]

Ĥint = ŝ⊗
∑
i

giσ̂
(i)
z ≡ ŝ⊗ Ê, (5.169)

i.e., a general coordinate ŝ of the system interacts bilinearly with each envi-
ronmental spin, with coupling strengths quantified by the gi. Later, we will
specialize on the cases ŝ = σ̂z for a spin system (the “spin–spin model”) and
ŝ = X̂ for a harmonic-oscillator system.

Computing the Spin-Environment Self-Correlation Function

We assume the limit of weak system–environment couplings and take the en-
vironment to be in thermal equilibrium at temperature T . We would now like
to derive the Born–Markov master equation (see Sect. 4.2) for this spin-bath
model. To do so, the first goal will be the derivation of the environment self-
correlation functions (4.10). Just as in the case of quantum Brownian motion
[compare (5.5)], the interaction Hamiltonian (5.169) contains only a single
term, and thus we need to calculate only one environment self-correlation
function, namely,

C(τ) =
〈
Ê(τ)Ê

〉
ρ̂E

. (5.170)

4The case of nonvanishing asymmetry energies, and thus the inclusion of terms
proportional to σ̂

(i)
z in the self-Hamiltonian (5.168), can be treated in much the

same way as outlined in this section [242].
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Here Ê(τ) = eiĤEτ Êe−iĤEτ denotes the collective environment operator Ê
[defined in (5.169)] in the interaction picture.

Since the environmental spins do not interact with each other and thus[
σ̂

(i)
x , σ̂

(j)
z

]
= 0 for i �= j, the exponential eiĤEτ factors into single-spin terms,

eiĤEτ ≡ ei
∑

i Ĥ
(i)
E τ =

∏
i

eiĤ
(i)
E τ . (5.171)

Therefore we can write the environment self-correlation function (5.170) as

C(τ) =
∑
ij

gigj

〈
eiĤ

(i)
E τ σ̂(i)

z e−iĤ
(i)
E τ σ̂(j)

z

〉
ρ̂E
≡
∑
ij

gigj

〈
σ̂(i)
z (τ)σ̂(j)

z

〉
ρ̂E

.

(5.172)
We now use again the fact that the environmental spins do not directly inter-
act with each other and are therefore uncorrelated, which implies [compare
(5.7) for the analogous argument in the model for quantum Brownian motion]

〈
σ̂(i)
z (τ)σ̂(j)

z

〉
ρ̂E

=
〈
σ̂(i)
z (τ)

〉
ρ̂E

〈
σ̂(j)
z

〉
ρ̂E

(5.173)

for i �= j. We may therefore decompose the sum in (5.172) as

C(τ) =
∑
i

gi

〈
σ̂(i)
z (τ)

〉
ρ̂E

∑
j �=i

gj

〈
σ̂(j)
z

〉
ρ̂E

+
∑
i

g2
i

〈
σ̂(i)
z (τ)σ̂(i)

z

〉
ρ̂E

. (5.174)

We now make the nonrestrictive assumption that the average of the “quantum
force” due to the spin bath vanishes at t = 0 (if this is not the case, we can
always add a constant to achieve this goal), that is,

〈
Ê
〉
ρ̂E

=
∑
i

gi

〈
σ̂(i)
z

〉
ρ̂E

= 0. (5.175)

This implies that the term
∑
j �=i gj

〈
σ̂

(j)
z

〉
ρ̂E

appearing in the first sum on

the right-hand side of (5.174) is also (approximately) zero. This allows us to
greatly simplify (5.172) by neglecting the crossterms i �= j,

C(τ) =
∑
i

g2
i

〈
σ̂(i)
z (τ)σ̂(i)

z

〉
ρ̂E

=
∑
i

g2
i TrE

{[
1
Z

∏
i

e−ĤE/kBT

]
σ̂(i)
z (τ)σ̂(i)

z

}
. (5.176)

In the last line we have explicitly written out the expression for the thermal
average over the initial state ρ̂E of the bath, with Z = TrE e−ĤE/kBT . First of
all, since the bath spins are uncorrelated, the thermal average over the initial
state ρ̂E involving all bath spins reduces to single-spin averages,
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C(τ) =
∑
i

g2
i

1
Zi

TrEi

{
e−Ĥ

(i)
E /kBT σ̂(i)

z (τ)σ̂(i)
z

}
, (5.177)

where Zi is defined as in (5.112). Next, we need to compute the time evolution
of the interaction-picture operator σ̂

(i)
z (τ) given by

σ̂(i)
z (τ) = e−iĤ

(i)
E τ σ̂(i)

z e−iĤ
(i)
E τ . (5.178)

Denoting the eigenbasis of σ̂
(i)
z by {|↑〉i , |↓〉i}, the explicit matrix represen-

tation of the environment Hamiltonian Ĥ
(i)
E is

Ĥ
(i)
E =

(
0 −Δi/2

−Δi/2 0

)
. (5.179)

Diagonalizing this matrix yields the eigenvalues E± = ±(−Δi/2) and corre-
sponding eigenvectors |±〉i = (|↑〉i∓ |↓〉i)/

√
2. In this new basis {|+〉i , |−〉i},

the operator σ̂
(i)
z takes the form

σ̂(i)
z = (|+〉〈−|)i + (|−〉〈+|)i. (5.180)

Thus the time evolution in the interaction picture is

σ̂(i)
z (τ) = e−iΔiτ (|+〉〈−|)i + eiΔiτ (|−i〉〈+|)i. (5.181)

With these explicit expressions, the argument in curly brackets on the right-
hand side of (5.177) reads

e−Ĥ
(i)
E /kBT σ̂(i)

z (τ)σ̂(i)
z = eΔi/2kBT−iΔiτ (|+〉〈+|)i + e−Δi/2kBT+iΔiτ (|−〉〈−|)i.

(5.182)
Taking the trace over this expression (for simplicity in the {|+〉i , |−〉i} basis)
and using that

Zi = TrEi
e−Ĥ

(i)
E /kBT = eΔi/2kBT + e−Δi/2kBT , (5.183)

we obtain the explicit form of the environment self-correlation function
(5.177),

C(τ) =
∑
i

g2
i

1
Zi

TrE
{

e−Ĥ
(i)
E /kBT σ̂(i)

z (τ)σ̂(i)
z

}

=
∑
i

g2
i

{
cos (Δiτ)− i tanh

(
Δi

2kBT

)
sin (Δiτ)

}
. (5.184)

Finally, let us follow the usual procedure and replace the discrete sum in-
volving the environmental self-energies Δi by an integral using the spectral
density
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J(Δ) ≡
∑
i

g2
i δ(Δ−Δi). (5.185)

This establishes our final expression for the environment self-correlation func-
tion,

C(τ) =
∫

dΔJ(Δ)
{

cos (Δτ)− i tanh
(

Δ

2kBT

)
sin (Δτ)

}
. (5.186)

This equation is our main result, which we shall now use to see how the spin
bath is mapped onto an equivalent bath of oscillators.

Mapping Spins onto Oscillators

Let us contrast our expression (5.186) for the spin-environment self-correlation
function with the environment self-correlation function (5.15) obtained for the
case of an harmonic-oscillator bath, which reads

Cosc(τ) =
∫

dω Josc(ω)
{

coth
(

ω

2kBT

)
cos (ωτ)− i sin (ωτ)

}

≡ ν(τ)− iη(τ), (5.187)

where

Josc(ω) ≡
∑
i

g2
i

2miωi
δ(ω − ωi) (5.188)

is the spectral density of the harmonic-oscillator environment. Here, we have
added the subscript “osc” in order to distinguish the above expressions from
their counterparts in the spin-bath case.

Comparing expressions (5.186) and (5.187), we see that the explicitly
temperature-dependent noise kernel ν(τ) [i.e., the real part of Cosc(τ)] in
the oscillator-bath case has lost this temperature dependence in the case
of the spin bath: The real part of C(τ) in the expression (5.186) does not
contain any explicit temperature dependence. On the other hand, the imagi-
nary part of C(τ) for the spin bath contains a temperature-dependent factor
tanh(Δ/2kBT ), whereas the corresponding dissipation kernel η(τ) appearing
in Cosc(τ) does not exhibit such an explicit temperature dependence.

The only case for which the two expressions (5.186) and (5.187) agree is
at zero temperature, since tanh(Δ/2kBT ) −→ 1 and coth(ω/2kBT ) −→ 1
as T −→ 0. This behavior can be understood as follows. At zero tempera-
ture, both the spins and harmonic oscillators in the respective environments
will be effectively confined to their ground states and cannot occupy any ex-
cited states. Thus the characteristic difference between spins and oscillators—
namely, that the former are restricted to a two-dimensional state space, while
the latter can occupy a continuum of energy levels—fades away in the limit
T −→ 0, and the spin and oscillator baths behave similarly.
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However, even at finite temperatures, we can map the expression (5.186)
for the spin bath onto the expression (5.187) for the oscillator bath by using
a little trick. Suppose we introduce a new effective spectral density Jeff(Δ,T )
defined as

Jeff(Δ,T ) ≡ J(Δ) tanh
(

Δ

2kBT

)
, (5.189)

where J(Δ) is the original spectral density (5.185) of the spin bath. Let
us now replace the oscillator-bath spectral density Josc(ω) appearing in the
environment self-correlation function (5.187) by this explicitly temperature-
dependent expression Jeff(Δ,T ). Changing notation ω −→ Δ in the integral
on the right-hand side of (5.187), we get

Cosc(τ) =
∫

dΔJ(Δ) tanh
(

Δ

2kBT

){
coth

(
Δ

2kBT

)
cos (Δτ)− i sin (Δτ)

}

=
∫

dΔJ(Δ)
{

cos (Δτ)− i tanh
(

Δ

2kBT

)
sin (Δτ)

}
. (5.190)

But this is precisely the expression (5.186) for the environment self-correlation
function of the spin bath!

We have therefore discovered a simple route for taking over all of our
previous results derived in Sect. 5.2 for the oscillator bath to the spin-bath
case. All we need to do is to evaluate the oscillator-bath expressions that
depend on the spectral density of the bath with the modified “surrogate”
spectral density (5.189), which is given by the true spectral density J(Δ)
of the spin bath multiplied by the additional temperature-dependent and
frequency-dependent factor tanh(Δ/2kBT ).

In particular, the kernels ν(τ) and η(τ) for the spin bath are given by

ν(τ) =
∫ ∞

0

dΔJ(Δ) cos (Δτ) , (5.191)

η(τ) =
∫ ∞

0

dΔJ(Δ) tanh
(

Δ

2kBT

)
sin (Δτ) , (5.192)

obtained by inserting the new effective spectral density (5.189) into (5.16)
and (5.17). The formal differences between these expressions for the kernels
and their counterparts (5.16) and (5.17) for the oscillator bath may not seem
dramatic at a first glance. However, the effect on the reduced dynamics can be
enormous. Let us now study two explicit examples for the mapping procedure.

Example #1: Mapping of the Spin–Spin Model
onto the Spin–Boson Model

We consider the case of the central system’s being represented by a spin- 1
2

particle bilinearly coupled to the spin bath through σ̂z. Following our above
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mapping technique, the Born–Markov master equation can then be immedi-
ately written down by substituting X̂ −→ σ̂z in the general expression (5.22)
for the master equation for quantum Brownian motion,

d
dt

ρ̂S(t) = −i
[
ĤS , ρ̂S(t)

]

−
∫ ∞

0

dτ {ν(τ) [σ̂z, [σ̂z(−τ), ρ̂S(t)]]− iη(τ) [σ̂z, {σ̂z(−τ), ρ̂S(t)}]} . (5.193)

The kernels ν(τ) and η(τ) are now given by the spin-bath expressions (5.191)
and (5.192).

If we take the self-Hamiltonian of the system to be of the form ĤS =
− 1

2Δ0σ̂x, as in our discussion of the spin–boson model (see Sect. 5.3.2), the
explicit time evolution of the interaction-picture operator σ̂z(τ) is

σ̂z(τ) = eiĤSτ σ̂ze−iĤSτ = σ̂z cos (Δ0τ) + σ̂y sin (Δ0τ) . (5.194)

Using this expression in (5.193) yields the master equation

d
dt

ρ̂S(t) = −i
[
Ĥ ′S , ρ̂S(t)

]
−D̃ [σ̂z, [σ̂z, ρ̂S(t)]]+ζσ̂z ρ̂S(t)σ̂y+ζ∗σ̂yρ̂S(t)σ̂z.

(5.195)

This equation is formally identical to the spin–boson master equation (5.142).
This result is of course not surprising: After all, it was our goal to map the
spin bath onto an equivalent oscillator (i.e., bosonic) bath. The quantities
appearing in (5.195) are defined just as in the spin–boson case, see (5.143),
(5.144), and (5.145a), but are now evaluated with the kernels (5.191) and
(5.192).

Example #2: Mapping of the Oscillator–Spin model
onto the Model for Quantum Brownian Motion

As another example for the mapping approach, let us discuss the case of a
central harmonic oscillator (weakly) coupled to a spin bath [242]. A potential
application of this (weak-coupling) “oscillator–spin model” is the modeling
of decoherence and dissipation in quantum-electromechanical systems, which
will be discussed in more detail in Sect. 6.4.2. Let us consider the rather
general oscillator–spin model described by the total Hamiltonian

Ĥ = ĤS + ĤE + Ĥint = ĤS −
∑
i

Δi

2
σ̂(i)
x + X̂ ⊗

∑
i

giσ̂
(i)
z , (5.196)

where

ĤS =
P̂ 2

2M
+

MΩ2

2
X̂2 (5.197)
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is the usual harmonic-oscillator Hamiltonian describing the intrinsic dynam-
ics of the central system. The environment self-Hamiltonian ĤE has the fa-
miliar form (5.168). The interaction Hamiltonian Ĥint describes the bilinear
coupling of the position coordinate of the central oscillator to the z-spin
coordinate of each environmental spin.

Again following our strategy for mapping spin baths onto oscillator baths
(assuming the weak-coupling limit applies), we can now readily describe the
reduced dynamics of the oscillator system by the Born–Markov master equa-
tion (5.25) for quantum Brownian motion of a particle confined to a harmonic-
oscillator potential,

d
dt

ρ̂S(t) = −i
[
ĤS +

1
2
MΩ̃2X̂2, ρ̂S(t)

]
− iγ

[
X̂,

{
P̂ , ρ̂S(t)

}]

−D
[
X̂,

[
X̂, ρ̂S(t)

]]
− f

[
X̂,

[
P̂ , ρ̂S(t)

]]
. (5.198)

The frequency shift Ω̃2, momentum-damping rate γ, and the diffusion coef-
ficients D and f are given by the same expressions (5.26) as in the case of
quantum Brownian motion, but with the kernels ν(τ) and η(τ) appearing
these expressions replaced by the “surrogate” spin-bath kernels (5.191) and
(5.192).

Let us consider the example of an ohmic spectral density for the spin
bath,

J(Δ) =
2Mγ0

π
Δ

Λ2

Λ2 + Δ2
. (5.199)

This spectral density is formally identical to the ohmic spectral density (5.44)
considered in the context of quantum Brownian motion. Following the same
approach as detailed in Sect. 5.2.3, the choice of an explicit form for the
spectral density now allows us to evaluate the coefficients appearing in the
master equation (5.198).

As before, the coefficients γ and D are given by double Fourier sine and
cosine transforms, respectively (see the discussion in Sect. 5.2.3 for details).
Thus we can readily write down the resulting expressions [compare (5.46)
and (5.48)],

γ =
π

2
1

MΩ
Jeff(Ω,T ) = γ0

Λ2

Λ2 + Ω2
tanh

(
Ω

2kBT

)
, (5.200)

D =
π

2
Jeff(Ω,T ) coth

(
Ω

2kBT

)
= Mγ0Ω

Λ2

Λ2 + Ω2
. (5.201)

We see that, in contrast to an ohmic oscillator bath, for the ohmic spin bath
the momentum-damping coefficient γ is explicitly temperature-dependent.
The factor tanh(Ω/2kBT ), and thus γ, decrease with increasing temperature.
This observation may seem rather counterintuitive at a first glance, since we
would expect a “warmer” environment to either have a stronger effect on the
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system, or, at least, not induce less damping of the system than a “colder”
environment.

However, the temperature dependence of the damping coefficient is rather
easily explained. For an oscillator bath, each oscillator possesses an infinity
of energy levels, so there is no upper limit to the amount of energy that
can be absorbed by the bath. By contrast, a spin-1

2 particle has only two
possible energy levels, so the spin bath as a whole saturates very quickly
as the temperature (and thus the amount of energy that can be absorbed
from the system) is increased. It follows that, since the dissipation rate of the
oscillator bath (in the model for quantum Brownian motion) is temperature-
independent [see (5.46)], the ability of the spin bath to exert a dissipative
effect on the system must decrease with increasing temperature. Indeed, the
temperature dependence of the damping rate as predicted by (5.200) has
been observed experimentally [244] in physical systems such as glasses, where
dissipation is due to the interaction of phonon (i.e., oscillator) modes with
two-level systems [245].

The normal-diffusion coefficient (5.201), and thus the rate of spatial de-
coherence, is seen to have no explicit temperature dependence in the case of
an ohmic spin bath. This is in contrast with the normal-diffusion coefficient
(5.48) in quantum Brownian motion, which scales as coth(Ω/2kBT ), making
spatial decoherence stronger as we go to higher temperatures of the environ-
ment. In fact, in the high-temperature limit of the Caldeira–Leggett model,
we had found a linear increase of D with temperature [see (5.51)].

Once again, this difference between the spin-bath and oscillator-bath set-
tings can be understood from the point of view of the size of the state spaces
available to each particle in the environment. The ability of environmental
oscillators to occupy a significant number of increasingly excited energy levels
with growing temperature translates into shorter and shorter characteristic
wavelengths present in the environment. The shorter the typical environ-
mental wavelengths, the better the position of the central system can be
resolved and thus the more which-path information can be obtained, leading
to stronger spatial decoherence (see also the discussion in Sect. 5.2.6).

By contrast, spin- 1
2 particles can only occupy two energy levels. The range

of typical environmental wavelengths, and therefore the rate of spatial deco-
herence, will saturate very quickly as we increase the temperature. Within the
context of our particular model, this even leads to a completely temperature-
independent decoherence rate. In fact, in this model we had assumed that the
environmental two-level systems move in a symmetric double-well potential.
Thus the two states of the corresponding spin particle are here associated
with the same energy, restricting the state space even further. It is easy to
show that if this symmetry assumption is dropped and an asymmetry term
of the form

∑
i
ωi

2 σ̂
(i)
z is included in the bath Hamiltonian, the rate of spatial

decoherence is increased by a constant (but still temperature-independent)
value. This increase reflects the larger state space now available to the bath
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particles, which corresponds to the presence of shorter environmental wave-
lengths.

5.4.3 Beyond Markov: Solving General Spin-Environment Models

Finally, let us conclude our discussion of spin-environment models by giv-
ing the reader a brief idea of how more general models of this type may
be solved without resorting to the limiting Born–Markov approximations.
As we discussed in Sect. 5.1.2, the interesting regime for spin-environment
models is typically that of low temperatures and strong system–environment
couplings. This leads to significant non-Markovian memory effects in the
environment and usually renders simplifying weak-coupling approximations
inapplicable. It follows that spin-environment models frequently cannot be
treated by means of an approximate Born–Markov master equation (as we did
in the previous Sect. 5.4.2), whose derivation is based on weak couplings and
negligible environment self-correlation times. This renders the mathematical
solution of such non-Markovian spin-environment models often somewhat
cumbersome.

In most cases, the relevant decoherence dynamics arising from general
spin-environment models—for example, in terms of the central-spin expecta-
tion value 〈σ̂z(t)〉—can be calculated analytically using advanced techniques
such as the instanton formalism [199]. In this context, the problem arises of
how to properly “average” over the degrees of freedom of a strongly coupled
spin environment. Prokof’ev and Stamp [199] showed that this task can be
facilitated by breaking down the general spin-environment model into four
limiting cases, each of which emphasizes a different parameter regime and
thus disregards certain terms in the general expression for the total Hamil-
tonian. Each of these cases can then be solved separately, and each yields an
expression for an averaging integral over certain quantities in the model. As
shown in [199], the correct procedure for averaging over the spin environment
in the general case—and thus for obtaining the reduced dynamics of the cen-
tral system—is then simply given by the combined application of these four
separate averages. Here, we shall not go into the details of this approach and
instead refer interested readers to [199] for details. Further discussions of the
physical and mathematical foundations of spin-environment models can be
found in [200,210,214,216].

5.5 Summary

This chapter on decoherence models has been somewhat lengthy and techni-
cal. Let us therefore summarize some of the main results.
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Mapping onto Canonical Models

A large class of physical systems of interest can be represented either by
spin- 1

2 particles (for systems whose state space is effectively reduced to two
different basis states), or by particles that are described by the continuous
canonical coordinates position and momentum and that move in some po-
tential.

Environments can be modeled either as a collection of harmonic oscilla-
tors, corresponding to a quasicontinuum of delocalized bosonic field modes,
or as a collection of localized modes represented by spins. Spin environments
are often the appropriate model for low-temperature environments strongly
coupled to the central system.

Quantum Brownian Motion

This is the model of a central particle moving in some potential in real space
and bilinearly interacting with an environment of noninteracting harmonic
oscillators. We focused on the case of the central system represented by a
harmonic oscillator.

We derived the Born–Markov master equation for this model [see (5.25)],

d
dt

ρ̂S(t) = −i
[
ĤS +

1
2
MΩ̃2X̂2, ρ̂S(t)

]
− iγ

[
X̂,

{
P̂ , ρ̂S(t)

}]

−D
[
X̂,

[
X̂, ρ̂S(t)

]]
− f

[
X̂,

[
P̂ , ρ̂S(t)

]]
. (5.202)

The first term on the right-hand side of this equation describes the unitary
dynamics (with a frequency shift quantified by Ω̃2). The second term cor-
responds to momentum damping with a rate proportional to γ. The third
term describes decoherence of spatial coherences over a distance ΔX at a
rate D(ΔX)2. The fourth term also represents decoherence but can often
be neglected, especially at higher temperatures. All coefficients appearing in
the master equation (5.202) are strongly dependent on the spectral density
of the environment, which encapsulates the physical characteristics of the
environment.

In the high-temperature limit, the reduced dynamics of the central system
are in many cases well approximated by a simplified form of the master
equation (5.202) known as the Caldeira–Leggett master equation, given by
[see (5.57)]

d
dt

ρ̂S(t) = −i
[
Ĥ ′S , ρ̂S(t)

]
− iγ0

[
X̂,

{
P̂ , ρ̂S(t)

}]
− 2Mγ0kBT

[
X̂,

[
X̂, ρ̂S(t)

]]
.

(5.203)
Again, the first term on the right-hand side represents the unitary evolution
(governed by the environment-renormalized self-Hamiltonian Ĥ ′S), the second
term describes dissipation, and the third term corresponds to decoherence of
spatial superpositions at a rate that increases linearly with the temperature
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of the bath. Let us summarize the assumptions that have entered into the
derivation of the Caldeira–Leggett master equation (5.57):

– The Born–Markov approximations hold (see Sect. 4.2.1).
– The environment of harmonic oscillators is described by an ohmic spectral

density J(ω) ∝ ω with a high-frequency cutoff Λ.
– The environment is at a sufficiently high temperature, such that its ther-

mal energy is much larger than the energy scale set by the natural fre-
quency of the system (kBT � Ω).

– The natural frequency of the system is much smaller than the high-
frequency cutoff Λ of the environment (Ω � Λ).

We found that the interplay of environmental monitoring and intrinsic dy-
namics leads to the emergence of pointer states that are minimum-uncertainty
Gaussians and that are therefore well-localized in both position and momen-
tum, approximating classical points in phase space (see Sect. 5.2.6). These
states arise as a compromise: They are the most robust under the combined
influence of the direct monitoring of the position coordinate by the environ-
ment on the one hand, and under the intrinsic dynamics of the system (whose
self-Hamiltonian is symmetric in both position and momentum coordinates)
on the other hand. The intrinsic dynamics, through their creation of spatial
superpositions from superpositions of momentum, lead to decoherence in mo-
mentum, even though the momentum coordinate is not directly monitored
by the environment.

This difference between “direct” decoherence in position and “indirect”
decoherence in momentum is also reflected in the fact that the timescales for
decoherence in position and decoherence in momentum are distinctly differ-
ent. Decoherence in momentum occurs on the dynamical timescale set by the
intrinsic evolution of the system. By contrast, the timescale for decoherence
in position is essentially independent of (and typically much shorter than)
this dynamical timescale.

Spin–Boson Model

This model consists of a central two-level system (represented by a spin- 1
2

particle) bilinearly coupled to an environment of noninteracting harmonic
oscillators.

For a simplified version of the model (without a tunneling term in the
Hamiltonian of the system) and for an ohmic spectral density of the environ-
ment, we found that interferences between the “spin up” and “spin down”
states of the system are exponentially damped at a rate which increases lin-
early with the temperature T of the environment (see Sect. 5.3.1).

We also derived the Born–Markov master equation for the general spin–
boson model, which reads [see (5.142)]
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d
dt

ρ̂S(t) = −i
(
Ĥ ′S ρ̂S(t)− ρS(t)Ĥ

′†
S
)
− D̃ [σ̂z, [σ̂z, ρ̂S(t)]]

+ ζσ̂z ρ̂S(t)σ̂y + ζ∗σ̂yρ̂S(t)σ̂z. (5.204)

The term in round brackets on the right-hand side represents the evolution
under the environment-shifted self-Hamiltonian Ĥ ′S , the second term corre-
sponds to decoherence in the σ̂z eigenbasis of the system, and the last two
terms describe the decay of the two-level system.

Spin-Environment Models

We used the model of a tunneling central spin whose σ̂z coordinate is lin-
early coupled to an environment of other spins to illustrate the selection of
different preferred pointer bases by the environment. We also showed how,
in the weak-coupling limit, spin environments can be mapped onto oscillator
environments. That is, the reduced dynamics of the system weakly coupled
to a spin environment can be described by this system coupled to an equiva-
lent oscillator environment described by an explicitly temperature-dependent
spectral density of the form

Jeff(ω, T ) ≡ J(ω) tanh
(

ω

2kBT

)
, (5.205)

where J(ω) is the spectral density of the spin environment. We can there-
fore take over all our previous expressions from the oscillator-environment
case (i.e., from the quantum Brownian motion and spin–boson models), but
evaluate them with the effective spectral density (5.205). We discussed the
mapping of the spin–spin model onto the spin–boson model, and the mapping
of the oscillator–spin model onto the model for quantum Brownian motion.

Master Equations are General;
Coefficients and Spectral Densities are Specific

The canonical models are described by fairly general master equations that,
under certain assumptions, may even take similar formal structures for dif-
ferent canonical models. For example, in Sect. 5.4.2 we have seen that, in the
weak-coupling limit, spin-environment models can be mapped onto oscillator-
environment models in the sense that the former can be described by master
equations that are formally identical to the master equations derived for the
latter models. In fact, the oscillator-environment equations turn out to be
universal in the case of weak coupling [211].

However, what encapsulates the differences between environments and
their physical properties is the specific form of the coefficients multiplying
the terms in the master equation. These coefficients are in turn dependent on
the spectral density of the environment. For example, the master equation for
quantum Brownian motion evaluated with a standard ohmic spectral density
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will in general describe reduced dynamics that are significantly different from
the reduced dynamics obtained from the master equation evaluated with the
temperature-dependent “effective” spectral density (5.205).

The specific functional form of the coefficients also plays an important
role. For example, in our treatment of quantum Brownian motion we have
mainly focused on Markov-type coefficients without explicit time dependence
[see (5.26)]. However, we have also shown how an explicitly time-dependent
version of the coefficients [see (5.42)] can be used instead to achieve a more
realistic treatment of the short-time dynamics of decoherence. Finally, one
can use the exact expressions for the coefficients, yielding the complete non-
Markovian dynamics (see Sect. 5.2.7). In each case, the master equation takes
the same form (5.202), but the resulting dynamics may differ greatly between
the different choices for the coefficients, even when using the same spectral
density.

Thus we conclude that the actual physics of a master equation for a de-
coherence model is mainly contained in the particular form of the coefficients
and spectral density used to evaluate the master equation.

Generality

Needless to say, models are only simplified representations of physical sys-
tems. We discussed several important assumptions and approximations that
have entered in some of our models:

– The Born–Markov approximations.
– The assumption of bilinear system–environment couplings (made in all

models discussed here).
– Implicit long-wavelength assumptions for the environment, leading to an

unrealistic lack of the saturation of the decoherence rate in quantum
Brownian motion.

– The approximation of time-dependent coefficients in the master equation
by their long-time asymptotic values [compare (5.26) and (5.42)].

– The assumption of a high-temperature environment in deriving the Cal-
deira–Leggett master equation.

Any of these assumptions may be completely innocuous in the context of
the modeling of one physical system, but may lead to unrealistic results for
another system. Therefore, whenever a concrete experimental situation is to
be modeled by a particular canonical model for decoherence, special care must
be taken to properly understand the assumptions underlying each model and
the extent to which these assumptions may hold in the experimental setting
of interest.



6 Of Buckey Balls and SQUIDs:
Observing Decoherence in Action

Until the mid-1990s, decoherence was mainly studied through theoretical
models. As described in Chap. 3, in 1985 Joos and Zeh [7] showed that spatial
superposition states of even minuscule objects, such as dust grains or large
molecules, are rapidly decohered by the scattering of only minimal environ-
ments. Furthermore, the rule-of-thumb expression (2.113) for spatial decoher-
ence rates derived by Zurek in 1984 [12] suggested that on macroscopic scales
decoherence would be overwhelmingly more rapid than dissipation. These re-
sults led to the common notion that decoherence is extremely efficient and
fast, and to the general prediction that any nonclassical superposition in the
everyday world would be immediately decohered.

That much was known (or at least suspected) in the 1980s. What was
sorely missing, though, was some kind of experiment that would demonstrate
the dynamics of decoherence, by showing how superposition states becomes
gradually unobservable due to the action of decoherence. Instead of simply
stating that decoherence is so strong and rapid as to preclude the observation
of Schrödinger-cat states at all length scales relevant to the world of our ex-
perience, such experiments would enable us to see directly how this quantum-
to-classical transition happens. We could observe how the smooth action of
decoherence carries away quantum features and shuttles our object of interest
safely into the classical domain—and maybe even how quantum coherence
can subsequently be restored, thus showing that the quantum-to-classical
transition really is a two-way process. We could change the dynamics and
properties of this process by manipulating experimental parameters, thereby
challenging the Copenhagen view of a fundamental quantum–classical bound-
ary (see Sect. 8.1). Finally, we could test our theoretical models for decoher-
ence to find out how much they really capture the effects of environmental
interactions in an actual experimental setting.

Now that readers have hopefully been convinced of how useful and ex-
citing such experiments would be, let us look at the difficulties that we im-
mediately face in realizing experiments on decoherence. What do we need to
do in order to observe the gradual action of decoherence? First, we ought to
be able to prepare a system in a nonclassical superposition state. Of course,
the system should have some minimal “size” to be sufficiently susceptible
to decoherence—it should not just be a single electron, but preferably some
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mesoscopic system such as a few entangled photons or a molecule. But here
lies the catch. We know from theoretical studies that superposition states in
such systems would typically be decohered much faster than we could resolve
in an actual experiment. Therefore the experiment must be designed very
cleverly to ensure that decoherence does not happen too quickly and that
it can also be sufficiently well controlled. Then, once the superposition state
is created, we must have means available to continuously monitor the state
of the system, but without introducing too much additional decoherence.
Given all these desired properties, the realization of experiments on decoher-
ence constitutes a formidable task which requires very special systems and
observation techniques.

In this chapter, we shall describe some of the recent experiments that have
made it possible to generate “Schrödinger kittens” in the laboratory and to
observe how they are turned into effectively classical systems through deco-
herence, in impressive agreement with theoretical predictions. In Sect. 6.1, we
will discuss the first experiment that allowed for the observation of gradual de-
coherence processes. This experiment was based on superpositions of distinct
states of an electromagnetic field. In Sect. 6.2, we will describe experiments
in which interference patterns (and their decoherence-induced disappearance)
were observed for rather massive C70 molecules. In Sect. 6.3, we will focus on
experiments involving superconducting two-level (“qubit”) systems. Finally,
in Sect. 6.4, we will outline two other experimental domains—Bose–Einstein
condensation and quantum-electromechanical systems—that are promising
candidates for future studies of decoherence.

6.1 The First Milestone: Atoms in a Cavity

The year 1996 saw several experimental breakthroughs in the creation and
verification of mesoscopic Schrödinger-cat states. The basic mechanism of
these experiments is rooted in a process similar to that originally envisioned
by Schrödinger in his cat paradox (see Chap. 1) and can be formally de-
scribed by the von Neumann measurement scheme (see Sect. 2.5.1). We let
a microscopic system S, which is rather easily prepared in a superposition
state (|s1〉+ |s2〉) /

√
2, interact with a mesoscopic or macroscopic apparatus

A, such that the latter “measures” the state of S in the {|s1〉 , |s2〉} basis (in
the general von Neumann sense of the formation of quantum correlations; see
Sect. 2.5.1). This results in an entangled joint state [compare (2.54)],

|Ψ〉 =
1√
2

(|s1〉 |a1〉+ |s2〉 |a2〉) . (6.1)

Thus the combined mesoscopic or macroscopic system SA is now described
by the superposition (“cat”) state |Ψ〉.

Monroe and coworkers [246] used this principle to generate a superposition
of two mesoscopically separated but spatially well-localized coherent-state
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wave packets of a single trapped 9Be+ ion, where each wave packet was
correlated with distinct (microscopic) internal electronic states of the ion.
Thus the ion is described by an entangled cat state of the form (6.1), namely,

|Ψ〉 =
1√
2

(|x1〉 |↑〉+ |x2〉 |↓〉) . (6.2)

Here the |xi〉 denote the two wave packets localized around xi, and |↑〉 and |↓〉
are the two relevant electronic states of the ion (Monroe et al. used a pair of
hyperfine ground states). In the notation introduced above, these electronic
states would correspond to the system S, whereas the two distinct spatial
regions of the wave packets act as the mesoscopic “meter” A.

In the experiment, the centers of the wave packets were about 80 nm
apart, much more than the width of each individual wave packet (which was
about 7 nm). The existence of the superposition was verified through the
explicit observation of an interference pattern. While Monroe et al. pointed
out some possible techniques for studying decoherence in the experiment,
they did not actually experimentally investigate this problem.

This ambitious goal was accomplished during the same year in a re-
markable experiment by Michel Brune and coworkers at the Ecole Normale
Supérieure in Paris [247] (see also [248] for an accessible review of the experi-
ment). Instead of creating superpositions of a matter particle, the researchers
generated a mesoscopic cat state of radiation fields with classically distin-
guishable phases and then “watched” how this superposition was gradually
destroyed by decoherence. This experiment comes even closer to the spirit of
the original Schrödinger-cat setting than the experiment by Monroe et al., as
the microscopic system S and the “meter” A are here realized as physically
distinct systems.

The basic idea of the experiment is as follows. An atom is prepared in
a superposition of two energy eigenstates |g〉 and |e〉 and then allowed to
transverse a cavity containing a coherent state |α〉 of an electromagnetic
field. The field effectively measures the state of the atom in such a way that,
if the atom is in the state |e〉, the coherent state of the field undergoes a
phase shift φ, |α〉 −→

∣∣eiφα〉, whereas nothing happens if the atom is in the
state |g〉. Due to the linearity of the time evolution, the superposition of the
atom is imprinted on the combined atom–field state,

1√
2

(|g〉+ |e〉) |α〉 −→ 1√
2

(
|g〉 |α〉+ |e〉

∣∣αeiφ
〉)

. (6.3)

Since in the experiment the coherent state consists of about 10 photons and
the achieved phase shift φ is on the order of π, the relative states |α〉 and∣∣eiφα〉 of the field are mesoscopically distinct. Therefore the right-hand side
of (6.3) represents a truly mesoscopic cat state. A cleverly designed method,
to be described below, is then used to verify the existence of the superposition
state and to observe the gradual decoherence of this superposition. We will
explain this experiment in more detail in the following.
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6.1.1 Atom–Field Interactions and Rabi Oscillations

In the experiment, the microscopic system S (which serves as the “seed” of
the superposition) is realized in form of a rubidium atom prepared in a su-
perposition of two distinct energy eigenstates |g〉 and |e〉 corresponding to
two circular Rydberg states. These are states with a large quantum number
n (Brune et al. [247] used n = 50 and 51) and maximum orbital angular
momentum along the quantization axis, i.e., |m| = n− 1. The corresponding
valence-electron probability density is torus-shaped, such that the valence
electron moves in a quasiclassical circular planar orbit perpendicular to the
quantization axis. Such states have many interesting properties. Most impor-
tant to this experiment, they interact strongly with even weak microwave
radiation due to their large magnetic dipole moment. Also, the electrons are
far away from the nucleus and thus their acceleration is comparably small,
leading to long radiative decay times. Both features allow for the prepara-
tion of long-lived atom–field correlations necessary to an observation of the
gradual action of decoherence.

Since the interaction between an atom and an external oscillating field
is the key component of the experiment, let us briefly review so-called Rabi
oscillations. Suppose that we can make the assumption that only the two
energy levels |g〉 (with energy Eg) and |e〉 (with energy Ee) of the atom are
relevant. Since the circular Rydberg levels used in the experiment interact
very strongly with radiation, this is a good approximation. The state of the
atom can then be written as

|ψatom〉 = cg(t) |g〉+ ce(t) |e〉 , (6.4)

where cg(t) and ce(t) are arbitrary complex coefficients such that |cg(t)|2 +
|ce(t)|2 = 1. Without the field, the Hamiltonian for the atom is

Ĥ0 = Eg|g〉〈g|+ Ee|e〉〈e|. (6.5)

Let us now turn on an external sinusoidal oscillating field with frequency ω.
We will treat this field classically, which turns out to be a perfectly legitimate
approximation in our experiment for the following reason. The particular
cavity used in the experiment that contains the field is very dissipative, i.e.,
it interacts strongly with the environment. Thus energy and coherence of the
field continuously leak out of the cavity, making the field effectively classical
(another decoherence process!) [249]. This is despite the fact that the average
number of photons in the cavity in the experiment is of order one, such that
a quantum treatment may have appeared necessary.

When the field is turned on, the Hamiltonian of the atom becomes (setting
� ≡ 1)

Ĥ = Ĥ0 +
ε

2
eiωt|g〉〈e|+ ε

2
e−iωt|e〉〈g|, (6.6)

where the Rabi frequency ε measures the coupling between the atom and
the field. Thus the external field can induce transitions between the atomic
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levels |g〉 and |e〉. Suppose the atom is initially in the ground state |g〉 (i.e.,
cg(0) = 1, ce(0) = 0), then a simple calculation yields the probability of the
atom to be found in state |e〉 after a time t,

|ce(t)|2 =
ε2

Ω2
sin2 Ωt

2
. (6.7)

Here Ω ≡
√
Δ2 + ε2 is called the generalized Rabi frequency, where Δ =

ω − ωeg quantifies the detuning between the frequency ω of the field and
the atomic transition frequency ωeg ≡ (Ee −Eg). We see that the larger the
detuning Δ, the smaller the maximum amplitude of the component |e〉 in the
state |ψatom〉.

At resonance, i.e., when the frequency ω of the field is tuned to the atomic
transition frequency ωeg and thus Δ = 0, we have Ω = ε. Then (6.7) becomes

|ce(t)|2 = sin2 εt

2
=

1
2

(1− cos εt) , (6.8)

i.e., the atom cycles between the two energy levels |g〉 and |e〉 at the Rabi
frequency ε. In particular, if the atoms starts out in the state |g〉 (or |e〉)
and the field is switched on for a time τ = π/2ε (a so-called “resonant π/2
pulse”), |ce(τ)|2 = 1/2, i.e., the resulting state of the atom is the equal-weight
superposition

|ψatom〉 ∝ |g〉+ eiΦ |e〉 , (6.9)

where Φ is some (real) phase. This is exactly how the initial superposition
state of the rubidium atom is achieved in the experiment.

We shall also note that the technique of Ramsey interferometry outlined
in Sect. 2.2.2 is directly based on the application of two π/2 Rabi pulses.
The first π/2 pulse creates the superposition of the two basis states, as in
(2.4) and (6.9), whereas the second π/2 pulse, applied after a certain delay
time, leads to the final state (2.6) in which the magnitudes of the expansion
coefficients fluctuate as a function of the delay time.

6.1.2 Creating the Cat State

How precisely is the superposition state of radiation fields achieved in the
experiment? For the following discussion, the reader may refer to Fig. 6.1 for
a schematic overview of each step of the process. Let us start by having a
look at the experimental arrangement sketched in Fig. 6.2. Rubidium atoms,
emitted from the source O and prepared in the initial state |e〉, pass through
a series of three cavities, labeled R1, C, and R2. The purpose of the first
cavity R1 is to create the superposition state of the rubidium atoms in the
manner described above. Namely, a π/2 pulse with frequency equal to the
frequency of the atomic transition |g〉 ←→ |e〉 is applied to the rubidium
atoms, creating the state (6.9) with Φ = 0, i.e.,
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R1 C R2 De Dg

|ψatom〉 = 1√
2

(
|g〉 + |e〉

)
π/2 pulse

|Ψatom+field〉 = 1√
2
(|g〉|α〉 + |e〉|−α〉)

atom–field
interaction

|Ψatom+field〉 = 1
2
(|g〉|α〉 − |e〉|α〉 + |g〉|−α〉 + |e〉|−α〉)

π/2 pulse

|ψ(g,e)
field 〉 ∝ (±|α〉 + |−α〉)

measurement

(a)

(b)

(c)

(d)

rubidium
atom

Fig. 6.1. Sequence of events leading to the generation the cat state. (a) A rubidium
atom is prepared in the superposition (6.10) of the states |g〉 and |e〉 by application
of a π/2 pulse in cavity R1. (b) When passing through cavity C containing a
coherent field |α〉, the atom imparts a dispersive phase shift |α〉 −→ |−α〉 on the
field if the atom is in state |e〉. Since the atom is in a superposition of |g〉 and |e〉, an
entangled atom–field state [see (6.15)] is created. (c) In the cavity R2, another π/2
pulse is applied to the atom, leading to the atom–field state (6.17). (d) The energy
state of the atom (|g〉 or |e〉) is measured by the detector pair De and Dg, projecting

the state of cavity C on the nonentangled cat state
∣∣∣Ψ (g,e)

field

〉
∝ (± |α〉 + |−α〉).

cavity R1

cavity R2

De

Dg

rubidium
atom

(π/2 pulse)

(π/2 pulse)

cavity C
(atom–field interaction)

detection

oven O

Fig. 6.2. Setup used in the experiment by Brune et al. [247] for creating mesoscopic
Schrödinger-cat states of radiation fields and for monitoring the gradual decoher-
ence of these states. Rubidium atoms emitted from the oven O pass through a
sequence of cavities R1, C, and R2 containing photon fields and are detected by
the ionization chambers De and Dg. Figure adapted with permission from [250].
Copyright 1996 by the American Physical Society.
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|ψatom〉 =
1√
2

(|g〉+ |e〉) . (6.10)

(If the initial state of the atom had been |g〉, the final state would be
|ψatom〉 = 1√

2
(|g〉 − |e〉).) Next, the atoms enter the cavity C, which is cooled

down to the superconducting regime close to absolute zero in order to min-
imize the thermal radiation present in the cavity. In contrast to cavity R1,
C has a very large so-called “Q factor” (Q stands for “quality”). This means
that dissipative losses are minimized, such that photons in the cavity have
rather long lifetimes. The cavity is made of two parallel mirrors about 3 cm
apart. However, the distance between these mirrors can also be adjusted, and
thereby the frequency of the radiation inside the cavity can be varied. This
radiation consists of a coherent field containing a few photons.

It is very important to note that the frequency in the cavity is far off the
resonance frequency for any transitions from level |g〉, so nothing happens to
the state |g〉 interacting with the field, but the frequency is fairly close to
that of a transition from |e〉 involving yet another level |i〉 (namely, the cir-
cular Rydberg state with n = 52). However, the field increases and decreases
in strength so slowly along the trajectory of the atom that the atom–field
interaction is nearly adiabatic, i.e., no energy quanta are exchanged between
the atom and the field and no actual changes in the amplitude |ce(t)| for
the component |e〉 in the state (6.4) occur. What happens instead is most
interesting. The atom entering the cavity C acts as a refractive medium for
the field, i.e., it leads to a shift δω in the frequency of the field. It turns out
that this shift is only significant if the atom is in the state |e〉, and the shift
is negligible if the atom is in the state |g〉. By fine-tuning the interaction
time τ between the atom and the field, the experiment achieves a phase shift
φ = τδω of the field with a value close to π if the atom is in state |e〉.

What happens to the coherent state |α〉 if such a phase shift φ is applied
to each photon? A coherent state of a photon field, with (complex) amplitude
α, is defined as a superposition of photon-number eigenstates |n〉 [238–241],

|α〉 =
∞∑
n=0

cn |n〉 , (6.11)

with
cn = e−|α|

2/2 αn√
n!

. (6.12)

Thus the distribution of photon-number states follows a Poisson distribution
with average photon number n̄ = |α|2,

�(n) ≡ |cn|2 = e−n̄
(
n̄n

n!

)
. (6.13)

Now, if every photon suffers a phase shift φ, the state |α〉 becomes
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|α〉 −→ e−|α|
2/2

∞∑
n=0

einφ αn√
n!
|n〉 = e−|α|

2/2
∞∑
n=0

(eiφα)n√
n!
|n〉 =

∣∣eiφα
〉
. (6.14)

Hence for a phase shift φ = π, as in the experiment, the coherent field state
|α〉 is transformed into the state |−α〉. This implies that, after the atom has
passed through the cavity C, the composite atom–field system is described
by the state [see (6.3)]

|Ψatom+field〉 =
1√
2

(|g〉 |α〉+ |e〉 |−α〉) . (6.15)

Let us now have a look back at the experimental setup sketched in Fig. 6.2.
We see that there is in fact a third cavity, R2, which is identical to R1 and
positioned after cavity C along the atomic trajectory. Inside R2, a second
π/2 pulse is applied to the atom emerging from the cavity C. Recall that this
pulse implements the transformations [see (6.10)]

|g〉 −→ 1√
2

(|g〉 − |e〉) ,

|e〉 −→ 1√
2

(|g〉+ |e〉) . (6.16)

Thus the entangled state (6.15) becomes

|Ψatom+field〉 =
1
2

(|g〉 |α〉 − |e〉 |α〉+ |g〉 |−α〉+ |e〉 |−α〉)

=
1
2

(|α〉+ |−α〉) |g〉+ 1
2

(− |α〉+ |−α〉) |e〉 . (6.17)

After passage through R2, the atom enters two ionization chambers De and
Dg, which measure whether the atom is in the state |g〉 or |e〉. Given the
state (6.17) and the usual projection postulate of quantum mechanics, this
means that the state of the field after the measurement will be either

∣∣∣ψ(g)
field

〉
=

1
N

(|α〉+ |−α〉) (6.18)

if the atom is found in the state |g〉, or

∣∣∣ψ(e)
field

〉
=

1
N

(− |α〉+ |−α〉) , (6.19)

if the atom is found in the state |e〉. Here, N is a normalization factor that
is very close to

√
2 for larger values of |α|2. For simplicity, let us assume

N =
√

2 in the following.
From (6.18) and (6.19) we see that we have now indeed prepared a su-

perposition of two coherent field states with distinct phases. The “catness”
of these states increases with the average number n̄ = |α|2 of photons in the
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cavity C. We note that these superposition states differ from the entangled
state |Ψatom+field〉, see (6.15). The latter state does not allow one to speak of
the field itself being in a superposition—only the combined atom–field system
is described by a superposition. By contrast, the measurement of the state of
the atom after passage through the cavity R2 disentangles the atom and the
field, and thus (6.18) and (6.19) represent true superposition states of the
radiation field.

One important question remains: How can we distinguish the superpo-
sitions (6.18) and (6.19) from the corresponding mixture? This is not only
important for claiming success of the above scheme for the creation of meso-
scopic Schrödinger cats, but also for achieving our main goal, namely, for
observing the action of decoherence. The experiment solves this problem
through a clever trick, which will be explained in the next section.

6.1.3 Observing the Gradual Action of Decoherence

Note that the passage and measurement of the first atom has left behind
information in the cavity C about the state of the atom, since the final state
of the field in C is either

∣∣∣ψ(g)
field

〉
or

∣∣∣ψ(e)
field

〉
, depending on the outcome of

the measurement. As we can see from (6.18) and (6.19), this information is
encoded in the relative sign between the components |α〉 and |−α〉 of the
superposition. We know that decoherence tends to delocalize such phase in-
formation into the environment and to thus make it inaccessible at the level
of the system. How can we monitor the resulting decay of coherence?

The trick is to send a second atom, acting as a probe, through the sequence
R1→C→R2 of cavities. If this is done quickly enough after passage of the
first atom, the information about the first atom will still be well-encoded
in the state of the field in the cavity C, and the second atom will become
correlated with this information. The remarkable result is that, in absence of
decoherence (and for photon numbers n̄ = |α|2 � 1), after detection at De

or Dg the second atom will always be found in the same state as the first
atom.

That this is indeed true can be easily seen from the following simple
calculation (see Fig. 6.3). Let us assume atom 1 has been detected in the state
|e〉, such that the field state is

∣∣∣ψ(e)
field

〉
. After traversing cavity R1, atom 2

is described by the superposition |ψatom2〉 = 1√
2

(|g〉+ |e〉) [see (6.10)] (the
basis states |g〉 and |e〉 now refer to atom 2). Thus the initial uncorrelated
state of this atom and the field is

|Ψatom2+field〉 =
1
2

(|g〉+ |e〉) (− |α〉+ |−α〉) . (6.20)

What happens when atom 2 passes through cavity C? Recall that the field
state suffers a phase shift |±α〉 −→ |∓α〉 if the atom is in the state |e〉.
Therefore the combined state after passage through C is now
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R1 C R2 De Dg

|ψatom2〉 = 1√
2
(|g〉 + |e〉)

π/2 pulse

atom–field
interaction

|Ψatom2+field〉 = 1
2
(−|g〉|α〉 + |g〉|−α〉

π/2 pulse

measurement

(a)

(b)

(c)

(d)

second
rubidium

atom

|Ψatom2+field〉 = 1√
2
|e〉(|α〉 − |−α〉)

|ψatom2〉 = |e〉

−|e〉|−α〉 + |e〉|α〉)

Fig. 6.3. Sequence of events for detecting the superposition state of fields in the
cavity C and for monitoring its decoherence, assuming that the initial atom has
been detected in the state |e〉. (a) A π/2 pulse in cavity R1 prepares a second
rubidium atom in the superposition (6.20) of the states |g〉 and |e〉. (b) The atom
enters cavity C, which has been left in a superposition state after passage of the
first atom. Atom 2 imparts another phase shift on the field in C, leading to an
entangled atom–field state [see (6.21)]. (c) The π/2 pulse in cavity R2 disentangles
the field and the atom [see (6.22)]. (d) If the field states |±α〉 are (approximately)
orthogonal, this means that atom 2 will always be detected in state |e〉, identical to
the state of atom 1. Thus the two measurement outcomes are perfectly correlated.
Decay of this correlation implies decoherence of the cat state in the cavity C.

|Ψatom2+field〉 =
1
2

(− |g〉 |α〉+ |g〉 |−α〉 − |e〉 |−α〉+ |e〉 |α〉) . (6.21)

Next, the atom passes through cavity R2, which transforms |g〉 and |e〉 into
superpositions of these states [see (6.16)]. Thus the state (6.21) becomes

|Ψatom2+field〉 =
1

2
√

2
(− |g〉 |α〉+ |e〉 |α〉+ |g〉 |−α〉 − |e〉 |−α〉

− |e〉 |−α〉 − |g〉 |−α〉+ |e〉 |α〉+ |g〉 |α〉)

=
1√
2
|e〉 (|α〉 − |−α〉) . (6.22)

Assuming that |α〉 and |−α〉 are orthogonal—an approximation that gets
better as the number of photons n̄ = |α|2 in the cavity C increases—the
reduced density operator for atom 2 corresponding to the state (6.22) is

ρ̂atom2 = Trfield |Ψatom2+field〉〈Ψatom2+field| = |e2〉〈e2|. (6.23)

It immediately follows that the probability Pee of finding atom 2 in the state
|e〉, given the detection of atom 1 in the state |e〉, is Pee = 1. A similar
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calculation can be done under the assumption that atom 1 was detected
in the state |g〉. This establishes our above assertion of perfect two-atom
correlations.

Thus all we need to do to observe the decoherence of our cat state is
to measure the decay of correlations Pee(T ) [or Pgg(T )] between measure-
ment outcomes for pairs of atoms as we increase the time interval T between
sending off the first and the second atom. If T is much smaller than the char-
acteristic decoherence time of the field superposition, Pee(T ) will be close
to one, reflecting the perfect correlation between the measurement outcomes
when the superposition has not yet been appreciably decohered. As we make
the delay time T longer, the superposition in the cavity will become increas-
ingly decohered, until all relative-phase information (and thus information
about the state of the first atom) has been delocalized into the environment
and the field is described by the incoherent statistical mixture

ρ̂field =
1
2

(|α〉〈α|+ |−α〉〈−α|) . (6.24)

This will then yield completely uncorrelated measurement results between the
first and the second atom, i.e., the outcome of the measurement on the second
atom will be random and independent of the result of the measurement on
the first atom. Thus this decoherence process will be observable as the decay
of Pee(T ) down to a value of 1

2 .
Fig. 6.4 shows a theoretical prediction for Pee(T ) [250], which was found

to match very well the experimental observations [251]. We clearly see how
Pee(T ) quite rapidly decreases from its initial value of one down to a plateau
of Pee(T ) = 1

2 , corresponding to full decoherence. The reader may wonder
why Pee(T ), after remaining at around 1

2 over a range of delay times T ,
suddenly continues to decay toward a value of zero for larger values of T .
The explanation is quite simple. The photons in the cavity C have an only
finite lifetime, so eventually there are no photons left in C. Thus this cavity
ceases to have an effect on the atoms passing through it. In this case, the
atoms experience only the two π/2 pulses in the cavities R1 and R2, whose
combined effect it is to transform the initial state |e〉 into |g〉 [see (6.16)],

|e〉 π/2−−→ 1√
2

(|g〉+ |e〉) (6.25)

π/2−−→ 1√
2

[
1√
2

(|g〉 − |e〉) +
1√
2

(|g〉+ |e〉)
]

= |g〉 . (6.26)

Thus the atoms are never detected in the state |e〉, and thus Pee(T ) −→ 0 as
T −→∞.

From the graph in Fig. 6.4, we can read off the characteristic decoherence
time of the field superposition. The experiment showed that the decoherence
time depends on two key parameters:
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Fig. 6.4. Dependence of the joint probability Pee(T ) on the delay time T between
the passage of a pair of atoms, as given by Davidovich et al. [250]. The initial fast
decay of Pee(T ) corresponds to decoherence of the cat state in the cavity C; a
value of Pee(T ) = 1

2
represents complete decoherence. For even larger values of T ,

Pee(T ) decreases further due to photon leakage from the cavity. The delay time T
is measured in units of the characteristic dissipation period γ of the cavity. Figure
adapted with permission from [250]. Copyright 1996 by the American Physical
Society.

1. The phase shift φ of the field induced by atoms in the state |e〉 passing
through the cavity C. It is found that, the larger φ, the shorter the deco-
herence time of the field superposition. This behavior is reasonable: The
“catness” of the superposition state depends on how distinguishable the
components of the superposition are. If φ is small, then the field states
|α〉 and

∣∣eiφα
〉

[see (6.14)] have a large overlap. On the other hand, as
φ approaches its maximal value of π (the value that we had assumed in
our above discussion and that comes close to the phase shift achieved in
the experiment), |α〉 and

∣∣eiφα〉 become orthogonal and thus maximally
distinct.

2. The mean number n̄ = |α|2 of photons in the cavity C. Again, this makes
sense: The more photons, the more mesoscopic (and ultimately macro-
scopic) the states

∣∣∣Ψ (g,e)
field

〉
, see (6.18), and thus the more strongly these

states are subject to decoherence. Also, the larger n̄, the smaller the over-
lap between the components |α〉 and

∣∣eiφα〉 for a given phase shift φ, and
thus the more distinct these components become.

In their experiment, Brune and coworkers varied these parameters and
observed how the decoherence rate changed accordingly. Remarkably, the
results were found to be in astonishing agreement with theoretical predictions
of Davidovich et al. [250]. It was the first time that a mesoscopic “Schrödinger
kitten” was generated, its existence verified, and its decoherence observed in
a controlled way.
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The type of experiment carried out by Brune and coworkers has since
inspired a number of further experiments that have confirmed and extended
the results described above. For example, by increasing the number of photons
in the cavity C (which requires improving the Q factor of the cavity), larger
and larger cat states can be created (recent experiments have used several
tens of photons [252]). This class of experiments is commonly referred to as
“cavity quantum electrodynamics,” or “cavity QED” for short. Apart from
allowing for the generation of Schrödinger-cat states and the observation
of their decoherence, cavity QED could potentially be used to implement
quantum computers. Readers interested in learning more about cavity QED
will find a good and entertaining introduction in the book by Dutra [253].

6.1.4 Bringing Schrödinger Cats Back to Life

Despite the fact that decoherence is a completely unitary (and thus in prin-
ciple reversible) process, we are accustomed to thinking of the quantum-to-
classical transition as a “one-way street.” Once quantum coherence is lost, the
object behaves classically, and nothing seems to bring it back to the quantum
world. Of course, from our general discussion of decoherence in Sect. 2.7, we
know the reason why decoherence is considered irreversible for all practical
purposes. To actually “relocalize” the superposition at the level of the system
(i.e., to effectively time-reverse the process of decoherence), we would need to
have appropriate control over the environment, which is usually impossible
to achieve in practice.

In Sect. 2.13, we pointed out that a truly reversible decoherence process
(an example of virtual decoherence) could be studied by letting the system
interact with an appropriately designed “artificial” environment over which
we can maintain full control. In 1997, the Brune group [254] proposed a mod-
ified version of the cavity-QED experiment described in the previous sections
that contains such an engineered environment. As of 2007, the proposal has
not yet been experimentally realized, mainly because it requires a reversible
coupling between two superconducting cavities that is difficult to implement
in practice. Nonetheless, since the idea behind this experiment is very in-
triguing and chances are good that the technical obstacles can be overcome
in the near future, we shall outline the proposal in this section.

The experimental setup is essentially the same as described above (see
Fig. 6.2). The key difference is that now the superconducting cavity C is
linearly coupled (e.g., by means of a superconducting wave guide) to a second,
identical cavity C2 that is initially empty. (We shall denote the first cavity C
by C1 in the following to distinguish it clearly from the additional cavity C2.)
Through the coupling, C1 and C2 can exchange energy (i.e., photons). Recall
that after a rubidium atom has passed through the apparatus and its state
has been measured by the detectors De and Dg, the cavity C1 is left in a
superposition of the two field states |α〉 and |−α〉 [see (6.18) and (6.19)], and
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the relative sign between these two components encodes information about
the measured state of the atom.

Now suppose that this phase information is transferred to the “reservoir”
C2 by the coupling between the two cavities. Then the state of C1 must
accordingly be described by the mixture (6.24). The idea behind the exper-
imental proposal is that, if the coupling between C1 and C2 is reversible
to a sufficiently large degree, the direction of this information transfer can
subsequently be reversed, such that the initial superposition state in C1 is
restored while C2 is returned to its initial empty state. Thus we can simulate
a reversible decoherence process, in which the cavity C2 plays the role of a
controllable single-mode environment for C1 that leads to decoherence and
subsequent reappearance of the Schrödinger-cat state in C1.

Let us make this argument a little bit more precise. Suppose energy is
exchanged between the two cavities C1 and C2 in an oscillatory manner with
frequency ΩC . This frequency is chosen such that the time required for the
preparation of the cat state in C1 is much shorter than the time it takes for
one cycle of energy exchange. Thus it is assumed that the coupling between
C1 and C2 does not influence the preparation of the superposition state.
Since the coupling is linear, a coherent field |α(t)〉 in C1 gives rise to another
coherent field |β(t)〉 in C2. Taking into account the fact that C2 contains no
field at t = 0, we can write α(t) = α0 cos(ΩCt/2) and β(t) = α0 sin(ΩCt/2).
Therefore the initial cat state in C1 [see (6.18) and (6.19)]

∣∣∣Ψ (g,e)
C1

〉
=

1
N

(± |α〉+ |−α〉) , (6.27)

evolves into an entangled state for the combined C1+C2 system,
∣∣∣Ψ (g,e)
C1+C2

〉
=

1
N

(± |α(t)〉 |β(t)〉+ |−α(t)〉 |−β(t)〉) . (6.28)

What happens now can easily be understood from the fact that the overlap of
the two coherent-field states |±α〉 decreases as the mean number of photons
n̄ = |α|2 increases. After a time t = π/ΩC has passed, β(t) = α0, so all pho-
tons are concentrated in cavity C2. Thus the states |±β〉 have attained their
maximum degree of distinctness, whereas the distinguishability of the states
|±α〉 is at its minimum. This implies that cavity C2 now holds a maximum
amount of information about the relative sign between the components in
the superposition, at the expense of cavity C1. In other words, there is no
measurement that we could perform on C1 alone that would tell us anything
about the relative sign between the components. C2 has carried away the
phase information, and C1 is formally described by an incoherent mixture of
states |±α〉, see (6.24).

The reader may recognize this state of affairs as exactly analogous to our
usual description of decoherence processes where the states associated with
the environment rapidly attain orthogonality, leading to a decay of relative-
phase information in the density matrix of the system (see Sect. 2.7). This
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analogy is expected, since cavity C2 precisely plays the role of the environ-
ment in this context. However, the key difference of the proposal discussed
here is that, after a characteristic time τ = 2π/ΩC , which is the period of
energy exchange between the two cavities C1 and C2, the process has been
completely reversed: Now the states |±α〉 are again maximally distinct, as at
t = 0. All information about the relative sign can be retrieved from cavity C1,
and the coherence of the superposition of field states in C2 has been restored.

Now we can observe the gradual decoherence and recoherence in exactly
the same way as before, namely, by sending a second atom through the ap-
paratus and measuring the dependence of the joint probability Pee(T ) on the
delay time T between the passages of the two atoms. If sources of decoher-
ence other than the coupling between the cavities C1 and C2 are neglected,
we expect that Pee(T ) will periodically return to its initial value of one at
times Tn = nτ = 2nπ/ΩC , with n = 1, 2, . . .. At these times Tn the deco-
herence of the cat state in C1 has been completely undone. Conversely, at
intervals nτ/2 = nπ/ΩC , the state of C1 is described by an incoherent mix-
ture, and thus the outcomes of the measurements on atom 1 and 2 are fully
uncorrelated, yielding Pee(nτ/2) = 1

2 .
This behavior is sketched in Fig. 6.5. Instead of directly plotting the joint

probability Pee(T ), we have here used the two-atom correlation function η(T )
as originally introduced by Raimond, Brune, and Haroche [254]. This function
takes a value of 1

2 in the case of perfect correlations, and a value of zero in the
case of complete decoherence. We see that for delay times equal to integer
multiples of the characteristic time τ = 2π/ΩC , the initial state is restored
and we thus obtain a revival of coherence.
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Fig. 6.5. Dependence of the two-atom correlation function η(T ) on the delay time
T in the recoherence experiment proposed by Raimond, Brune, and Haroche [254].
Coherence is continuously removed from, and returned to, the cavity C1 by a second
cavity C2 (the reservoir). This leads to a periodical revival of the cat state in C1

and thus to reappearance of the maximum-correlation signal η(T ) = 1
2
. The delay

time T is expressed in units of the characteristic period τ = 2π/ΩC with which
energy (and thus phase information) is exchanged between the two cavities C1 and
C2. The initial field in C1 was taken to contain an average of five photons.



258 6 Observing Decoherence in Action

Of course, in a realistic experimental setting, this revival process will not
go on forever, since the cavities C1 and C2 are subject to other sources of
decoherence and dissipative effects such as photon loss on the mirror surfaces.
It has been shown [255] that these processes would lead to an exponential
decay of the amplitude of the revival peaks shown in Fig. 6.5, and thus
it is unlikely that more than a few peaks could be observed in practice.
Nonetheless, the observation of a single revival peak would already be an
impressive experimental illustration of the fact that decoherence is, at least
in principle, completely reversible.

6.2 Interferometry with C70 Molecules

In this section, we will describe a series of experiments carried out by the
group of Anton Zeilinger at the University of Vienna. In essence, these exper-
iments are a sophisticated version of the well-known double-slit experiment.
However, instead of light or microscopic entities such as electrons, interfer-
ence patterns are here observed for massive molecules. These experiments are
remarkable for two reasons. First, they demonstrate the quantum “wave na-
ture” of objects that would normally clearly fall into the “matter” category.
Second, they show directly how the continuous action of decoherence gradu-
ally takes away the “quantumness” of these objects and transforms them into
the familiar classical objects of our experience. Before we describe these ex-
periments in more detail, let us first sketch in a few paragraphs a predecessor,
namely, the double-slit experiment carried out with single electrons.

6.2.1 The Double-Slit Experiment with Electrons

When, in the year of 2002, the readers of Physics World were asked to
nominate the “most beautiful experiment in physics” of all times, the win-
ner turned out to be the double-slit experiment with single electrons [256].
Feynman had famously remarked [257] that the double-slit experiment is a
phenomenon “which has in it the heart of quantum mechanics; in reality
it contains the only mystery” of the theory. Indeed, it is probably difficult
to fathom another experiment that embodies so simply and completely the
strange features of quantum mechanics.

Interestingly, it was not until the year 1961 that the experiment in its orig-
inal form—a double slit traversed by electrons—had actually been carried out
by Claus Jönsson, a student of Gottfried Möllenstedt’s at the University of
Tübingen [258,259]. Möllenstedt had previously experimentally demonstrated
electron interference using a different device, called the electron biprism—in
essence, a very thin wire that splits the electron beam in half. This method
bears similarities to the slip of paper the English scientist Thomas Young had
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used at the beginning of the 19th century to split a beam of sunlight in ex-
periments demonstrating the ability of light to exhibit wave-like constructive
and destructive interference effects [260].

Perhaps even more surprising, the experiment that ensured that only a
single electron was present in the apparatus at any time was carried out
only in 1989 by Akira Tonomura and coworkers at Hitachi using an elec-
tron biprism, just as in Möllenstedt’s experiments [261]. The resulting in-
terference pattern is shown in Fig. 6.6. This experiment clearly reflects the
“mysteries” of quantum mechanics, as it shows that the interference fringes
are not induced by interactions between electrons, but are rather due to the
wave nature of individual electrons. Decoherence in the electron-biprism in-
terferometer was recently investigated by Sonnentag and Hasselbach [262],
who studied the decay of the visibility of the interference pattern induced by
Coulomb interactions between the electrons and a macroscopic and dissipa-
tive electron-gas and phonon-gas environment.

6.2.2 Experimental Setup

Let us now outline the experimental setup used by the Zeilinger group for
demonstrating the wave nature of massive molecules. The original experi-
ment, reported in 1999 in a Nature article by Markus Arndt and cowork-
ers [263], used C60 molecules, often nicknamed “buckey balls” because of
their shape (see Fig. 6.7). Subsequent experiments, results of which were first
reported in a 2002 paper by the Zeilinger group [264], were carried out using
even bigger C70 molecules (in the shape of an elongated buckey ball) and a
different experimental setup [264–267]. Our following discussion will be based
on this later series of experiments.

Let us first get a sense of how truly massive these C70 molecules are (rel-
ative to microscopic entities such as electrons, that is). Since each carbon

Fig. 6.6. Interference pattern from single electrons obtained in the double-slit
experiment by Tonomura and coworkers [261]. Figure reprinted with permission
from [261]. Copyright 1989 American Institute of Physics.



260 6 Observing Decoherence in Action

Fig. 6.7. Schematic illustration of a C60 molecule used in the original matter-wave
interference experiment of Arndt et al. [263]. Sixty carbon atoms are arranged in
the shape of a buckey ball with a diameter of about 1 nm.

atom contains six protons, six neutrons, and six electrons, a C70 molecule
is composed of a total of over 1,000 microscopic constituents. Each such
molecule possesses a very large number of highly excited internal rotational
and vibrational degrees of freedom. This makes it possible to assign a finite
temperature to each individual molecule. Also, emission of thermal radia-
tion (i.e., of photons) from the molecules can be observed [267]. Thus, C70

molecules seem to clearly fall into the “particle” category.
Why is it so difficult to observe interference effects for such massive

molecules? The relevant quantity is the matter de Broglie wavelength λ =
h/mv, where m and v are the mass and velocity, respectively, of the particle.
Thus the more massive and faster the particle, the shorter this wavelength.
To observe interference effects with particles in a double slit–type experiment,
the separation between the slits (and thus even more so the width of each
slit) must be on the order of the wavelength. For typical velocities of C70

molecules in the experiment (around 100 m/s), the de Broglie wavelength of
these molecules is a mere few picometers. The reader may easily imagine the
impossibility of manufacturing such narrow, and narrowly spaced, slits.

How can this difficulty be overcome? The experiments of the Zeilinger
group solve the problem through a neat trick that is based on the so-
called Talbot–Lau effect. The basic principle of this effect is the follow-
ing (see Fig. 6.8). Suppose a plane wave is traveling in the +z direction,
f(z) = e2πiz/λ. Now we place a grating, composed of an array of parallel
slits, at a right angle to the incoming wave. Let us denote the spacing of
adjacent slits by d. One can then show (which we will not do here—see [268]
for a short derivation) that at integer multiples of the distance

Lλ =
d2

λ
(6.29)

behind the grating the plane wave will in fact be equal to the pattern of the
grating. In other words, if we place a screen at a distance nLλ, n = 1, 2, . . .,
behind the grating and carry out the experiment with light, the screen will
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Lλ

Fig. 6.8. Illustration of the Talbot–Lau effect. A plane wave traversing the grating
on the left will generate an image of the grating at distances nLλ, n = 1, 2, . . .,
from the grating.

show dark and light bands spaced a distance d apart, creating an image of
the grating itself. This Talbot–Lau effect is a true interference phenomenon.
Hence, if we carry out this experiment with matter particles and observe
a density pattern equal to the grating pattern at multiples of the “Talbot
length” Lλ, we have demonstrated the wave nature of these particles. To be
sure, the fringes may in principle also be due to a simple blocking of rays
by the grating (the so-called Moiré effect). However, the Moiré pattern is
independent of the wavelength λ. Thus, to make sure that we actually deal
with the Talbot–Lau effect, we can simply observe a variation in the pattern
while varying λ. In the matter-wave case, this is achieved by changing the
mean velocity v of the particles, since λ = h/mv.

A simple estimate will immediately convince the reader of the advan-
tage of the Talbot–Lau method for detecting interference effects with C70

molecules. In the experiments of the Zeilinger group, the spacing d of the
grating is about one micrometer, and the wavelength of the molecules equals
a few picometer. Thus Lλ ∼ (10−6 m)2/10−12 m = 1m, i.e., all we need to
do to observe the interference pattern is to place the “screen,” i.e., a parti-
cle detector, at the macroscopic distance Lλ behind the grating. (The actual
distance in the experiment is Lλ = 38 cm.) If we then measure a periodic
variation of the particle density (with period d) that exhibits the character-
istic wavelength dependence as we change the velocity of the molecules, we
have confirmed the wave nature of these molecules.

The setup in the experiments of the Zeilinger group is schematically shown
in Fig. 6.9. The C70 molecules are emitted from a source and then pass
through a total of three identical free-standing gold gratings, each containing
on the order of a thousand slits with period d = 990 nm. The purpose of the
first grating is to induce a certain degree of coherence in the beam such that
a diffraction pattern can be observed. The center grating acts as the actual
diffraction grating. Finally, a third grating is placed at a distance equal to the



262 6 Observing Decoherence in Action

grating 1

grating 2

grating 3

ion detector

ionizing
laser beam

z

x

C70

source (oven)

velocity selector

Fig. 6.9. Setup for observing matter-wave interference with C70 molecules in the
experiments of the Zeilinger group [264–267]. Figure adapted with permission from
[264]. Copyright 2002 by the American Physical Society.

Talbot length Lλ behind the diffraction grating. Recall that this means that,
if the C70 molecules indeed possess a wave nature, an interference pattern will
be obtained that, at the position of the third grating, will be an image of the
diffraction grating itself. In other words, the molecular density would have
periodic maximums and minimums along the x direction, with the peaks
spaced apart by the slit spacing d. The purpose of the third grating is to
act as a scanning mask for this molecular-density pattern. By moving the
grating along x, the number of molecules registered behind the grating will
fluctuate between a maximum and minimum value if an interference pattern
is present. This fluctuation can then be easily measured by counting the
number of molecules behind the third grating as a function of the x position
of the grating.

The mean velocities of the molecules passing through the apparatus can
be adjusted between about 90 m/s and 220 m/s by changing the position
of the molecular source such that the fixed-height delimiter selects different
portions of the beam, which follows a free-flight parabola. These velocities
correspond to de Broglie wavelengths between 2 and 6 pm. The entire appa-
ratus is contained in a vacuum chamber to minimize collisions between the
C70 molecules and other particles.

6.2.3 Confirming the Wave Nature of Massive Molecules

The result of a typical run of the experiment is shown in Fig. 6.10. The hori-
zontal axis corresponds to the position of the scanning mask along the x axis
(see Fig. 6.9), and the vertical axis shows the molecular density behind the
grating for each position. We clearly see the oscillatory fluctuations in the
density of C70 molecules, which confirms the existence of spatial coherence
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Fig. 6.10. Interference fringes for C70 molecules observed in the experiments of
the Zeilinger group. The solid line is a fitted sine curve based on theoretical predic-
tions. Figure adapted with permission from [264]. Copyright 2002 by the American
Physical Society.

and interference effects. By varying the velocity of the molecules and observ-
ing the change in the density pattern (in agreement with the Talbot–Lau
theory), it was also explicitly confirmed that this pattern is indeed due to
the Talbot–Lau effect.

Also, the interference effect is a strict one-particle effect and not due to
any interference between different molecules, for two reasons. First, inter-
particle interference would require that the interacting molecules are in the
same state. However, since each C70 molecule has a very large number of
internal degrees of freedom, the chances for this to be the case are effectively
zero. Second, the distance between two molecules is much larger than the
range of any intermolecular forces, so essentially only a single molecule is
passing through the apparatus at any given time.

6.2.4 Which-Path Information and Decoherence

Let us now turn to the main theme of this chapter, namely, the experimental
observation of decoherence. In the C70-interference experiments, decoherence
is dominantly due to collisions between C70 molecules and molecules in the
background gas (which is always present in the apparatus to some degree,
since the vacuum is never perfect). We described such collisional decoherence
in detail in Chap. 3 and showed that it constitutes a ubiquitous source of
decoherence in nature. However, as mentioned in the opening paragraphs
of this chapter, for mesoscopic and macroscopic objects this decoherence is
typically so fast as to make it effectively impossible to observe its gradual
action.
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This brings us to a key advantage of the C70-interference experiments.
Here, the amount of collisional decoherence can be precisely tuned by chang-
ing the density of the background gas. Fig. 6.11 displays the experimentally
measured interference pattern for the C70 molecules for two different pressures
(i.e., densities) of the background gas, as reported by Lucia Hackermüller et
al. [268] (see also [265]). The left plot shows clearly visible interference fringes.
As the pressure of the background gas is increased, the interference fringes
become less pronounced (right plot). Let us quantify the visibility V (p) of
the interference pattern at a given background-gas pressure p as the relative
difference between the maximum amplitude cmax(p) and minimum amplitude
cmin(p) of the interference pattern,

V (p) =
cmax(p)− cmin(p)
cmax(p) + cmin(p)

. (6.30)

In the idealized case of no decoherence and no other experimental imper-
fections, we would have cmin = 0 and therefore full visibility. In the com-
pletely decohered case, no interference pattern would be observable and thus
cmax = cmin, which implies zero visibility.

The experimental data [265, 268] for the change of the visibility (6.30)
with gas pressure p is shown in Fig. 6.12. The visibility is found to decrease
exponentially with p (note that the vertical axis is in logarithmic units). This
exponential decay is in remarkable agreement with theoretical calculations
[160,269].
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Fig. 6.11. Diminished interference effect in C70-molecule interferometry due to
decoherence induced by collisions with background-gas molecules, as observed in
the experiments of the Zeilinger group [268]. The visibility of the interference fringes
decreases when the pressure of the gas is increased from the left to the right panel.
Figure adapted, with kind permission from Springer Science and Business Media,
from [268].
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Fig. 6.12. Dependence of the visibility (6.30) of the interference pattern on the
pressure of the background gas, as reported by the Zeilinger group [268]. The
measured values (circles) are seen to agree well with the theoretical prediction
(solid line), which describes an exponential decay of the visibility with pressure.
Figure adapted, with kind permission from Springer Science and Business Media,
from [268].

Thus these experiments provide impressive direct evidence for how the in-
teraction with the environment gradually delocalizes the quantum coherence
required for interference effects to be observed. This decoherence process oc-
curs in a completely controlled way: By changing the amount of which-path
information obtained by the environment (e.g., by altering the density of the
background gas), the amount of decoherence and thus the loss of quantum
features can be precisely tuned. So we can smoothly navigate and explore the
quantum–classical boundary, and we find our observations to be in excellent
agreement with theoretical predictions.

6.2.5 Decoherence Due to Emission of Thermal Radiation

What are the most important decoherence mechanisms for macroscopic bod-
ies? Certainly, as we have seen, collisions with other particles (photons, air
molecules, etc.) are ubiquitous and play a crucial role. However, another
fundamental source of decoherence on these length scales is the emission of
thermal radiation. Every “large” object is able to store energy in its many in-
ternal degrees of freedom. Macroscopic bodies essentially continuously absorb
and emit photons. Each emitted photon carries away information about the
path of the body, leading to decoherence in the position basis and therefore
to spatial localization of the object.

For macroscopic objects, thermal emission of radiation is typically so
strong as to completely preclude the possibility of observing spatial inter-
ference effects. Interestingly, as we shall see below, C70 molecules perfectly
navigate the boundary between the microscopic and macroscopic regimes
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with respect to thermal decoherence. They are small enough to allow for vis-
ible interference patterns to emerge, but they are also sufficiently complex
that, when heated to a temperature of several thousand Kelvin, thermal de-
coherence leads to a complete disappearance of interference patterns. Thus
these molecules are ideally suited for an explicit observation of thermal deco-
herence effects. All we need to do is to gradually heat up the molecules before
they pass through the apparatus and then record the decay of the visibility
of the interference fringes as a function of the molecular temperature.

This idea has been realized in a remarkable experiment that was carried
out by members of the Zeilinger group and reported in 2004 by Hackermüller
et al. [267]. Before passage through the gratings, the C70 molecules were
heated by a laser beam from their source temperature of about 900 K to tem-
peratures up to around 3,000 K. The observed interference pattern for four
different values of laser power (and thus mean temperature of the molecules)
is shown in Fig. 6.13.

We see that the visibility decreases with laser power due to thermal emis-
sion of radiation from the molecules, as expected. The results from a series of
runs at various laser heating powers are shown in Fig. 6.14, and we observe
that the experimental data is in good agreement with predictions obtained
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Fig. 6.13. Interference patterns for C70 molecules for different laser heating pow-
ers (inducing different mean temperatures of the molecules), as measured in the
experiment by Hackermüller et al. [267]. The visibility of the interference fringes
decreases as the average temperature of the molecules is increased. The variation
in the overall average count rate at different values of laser heating power is due
to variations of the efficiency of the ion-counting detector with the energy of the
molecules and due to ionization and fragmentation effects in the heating stage.
Figure reprinted from [267] by permission from Macmillan Publishers Ltd: Nature,
copyright 2004.
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Fig. 6.14. Decay of the visibility of the C70 interference pattern as a function of
laser heating power and mean molecular temperature in the experiment of Hack-
ermüller et al. [267]. The circles represent experimental data, which agrees well with
the theoretical prediction represented by the solid line. Figure reprinted from [267]
by permission from Macmillan Publishers Ltd: Nature, copyright 2004.

from theoretical calculations [267]. A further detailed theoretical analysis of
the experiment can be found in [270,271].

The results demonstrate that for C70 molecules below temperatures of
about 1,000 K, thermal decoherence is sufficiently weak for an interference
pattern to be observed. At temperatures above about 2,000 K, thermal deco-
herence significantly reduces the visibility of the fringes, while around 3,000 K
the interference pattern disappears completely.

This behavior can be explained as follows. For an emitted photon to trans-
mit a sufficient amount of which-path information to resolve the path of the
C70 molecule, its wavelength must be comparable to the separation of the dif-
ferent paths of the molecule, i.e., to the spacing between the maxima of the
wave packets corresponding to passage of the molecule through the different
slits in the diffraction grating. This separation is on the order of the spacing of
the slits themselves, d ≈ 1μm, so thermal decoherence requires the emission
of photons of wavelength λ � 1 μm. It turns out that only for temperatures
above 2,000 K there is a significant probability of a C70 molecule to emit a
photon of this wavelength. For temperatures around 3,000 K, the molecule
typically emits several such photons. This transfers a sufficient amount of
which-path information to the environment to entirely destroy the interfer-
ence pattern.

6.2.6 Beyond Buckey Balls

Now that single-particle interference fringes have been experimentally ob-
served for C70 molecules, we can naturally go further and attempt to demon-
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strate such quantum effects for larger and larger molecules. In fact, the
Zeilinger group has already taken the next step into this direction in an exper-
iment reported by Hackermüller et al. in 2002 [266]. Using an experimental
setup similar to that for C70 molecules, interference patterns were observed
for the even more massive fluorinated fullerene C60F48 (mass m = 1632 amu,
108 atoms) and for the biomolecule tetraphenylporphyrin C44H30N4 (mass
m = 614 amu, width over 2 nm). The structure of these molecules is sketched
in Fig. 6.15, and the resulting interference patterns are displayed in Fig. 6.16.
Again, well-defined interference fringes are observed even for these compara-
bly massive and complex molecules, and the measured visibilities were found
to be in good agreement with theoretically predicted values.

Fig. 6.15. Three-dimensional structure of the C60F48 molecule (left) and the
biomolecule tetraphenylporphyrin C44H30N4 (right) used in the interference exper-
iments by Hackermüller et al. [266]. Figure reprinted with permission from [266].
Copyright 2003 by the American Physical Society.
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Fig. 6.16. Interference fringes for the C60F48 molecule (left) and the biomolecule
tetraphenylporphyrin (C44H30N4) (right) observed in the experiment by Hack-
ermüller et al. [266]. The solid line is a fitted sine curve. Figure adapted with
permission from [266]. Copyright 2003 by the American Physical Society.



6.2 Interferometry with C70 Molecules 269

One may now speculate about the feasibility of interference experiments
that use even larger particles, for instance, biomolecules such as proteins and
viruses [268, 272] or carbonaceous aerosols [271]. Such experiments will be
limited by three main factors:

1. Collisional decoherence. In order to observe interference fringes for these
molecules, the vacuum in the apparatus must be very good. Using a de-
coherence model for the visibility of interference fringes as a function
of the density of the background gas, the quality of the vacuum in the
apparatus required for the observation of interference effects has been
estimated for several biomolecules up to the size of a rhinovirus [268,272]
(see Fig. 6.17). The estimates assume the availability of an elongated
Talbot–Lau interferometer with a spacing of one meter between the grat-
ings (which is about three times more than the currently used distance),
which has not yet been experimentally realized. Given this design, the
required low background-gas densities are within the reach of current
technology [265,268].

2. Thermal decoherence. This effect will become increasingly relevant on
larger scales. For example, for a simple double-slit setup (as opposed to
the Talbot–Lau interferometer) it has been estimated that a small virus
(mass 5×107 amu) would need to be cooled down to about 40 K to exhibit
a sufficiently visible interference pattern [271]. Obviously, it would be
quite difficult to produce a beam of such “cold viruses” in the laboratory.
For objects larger than the C70 molecules, it may thus well turn out that
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Fig. 6.17. Estimates for the maximum background-gas pressure p that would still
permit the observation of interference fringes for several biomolecules in an elon-
gated Talbot–Lau interferometer. The horizontal axis shows the molecular weight
m relative to the mass of a C70 molecule. The pressure, shown on the vertical axis,
is normalized by the pressure required to observe interference with C70 molecules.
Plot generated using data reported by Hackermüller et al. [268].
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it will be experimentally much more challenging to mitigate the effect of
thermal decoherence than that of collisional decoherence [271].

3. Dephasing due to inertial forces and vibrations. While not a decoherence
effect per se, the visibility of the interference pattern is also affected by
noise due to gravitational, rotational, and acoustic perturbations, which
are induced by the mass and rotation of the earth and by vibrations of the
diffraction gratings [273]. These effects can severely limit the observability
of the interference fringes, so the experimenters have taken much care to
minimize these sources of noise in the Talbot–Lau setup described here.
Still, for the particles listed in Fig. 6.17, vibrational noise is predicted to
be a major obstacle to observing interference [273]. In currently available
setups, this noise is likely to diminish the visibility of the interference
pattern to a larger extent than collisional and thermal decoherence.

The important point to bear in mind is, however, that the conditions for
an observation of interference effects can be precisely specified and quantified
using theoretical decoherence models. We no longer have to limit ourselves to
the assumption of a vaguely defined, fundamental divide between the quan-
tum and classical realms as postulated by the Copenhagen interpretation.
Instead, by treating the molecules of interest as open quantum systems in-
teracting with their environments, we can understand what we need to do in
order to observe interference effects, and why interference fringes are unob-
servable in a particular experimental setting.

The C70 molecules have the perfect amount of susceptibility to decoher-
ence to allow for an observation of the gradual action of decoherence due to
collisions with surrounding particles and due to the emission of thermal radia-
tion. Thus it is difficult to imagine a more accessible and intuitive experiment
for demonstrating the direct and controllable influence of decoherence that
drives the system into the classical regime. It will be exciting to follow the
development of research in this field, as future interference experiments are
expected to push the envelope even further toward the macroscopic realm.

6.3 SQUIDs and Other Superconducting Qubits

Let us now turn to superconducting quantum two-state (qubit) systems. Over
the past decade, these systems have become key players in experimental stud-
ies of macroscopic coherence and decoherence. They have gained additional
importance as potential building blocks of superconducting quantum com-
puters [274]. In the following, we shall focus on so-called superconducting
quantum interference devices, or SQUIDs for short. We will also mention
some related types of superconducting qubit systems such as Cooper-pair
boxes.

A SQUID is a macroscopic quantum system that can exhibit a variety
of fascinating quantum effects. In SQUIDs the state of billions of Bose-
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condensed electron pairs (see below) is described by a single collective macro-
scopic variable whose evolution is governed by the Schrödinger equation. The
potential of SQUIDs for explorations of the quantum domain and of possible
limits to quantum mechanics has been recognized early. In 1980, Leggett [275]
proposed a Gedankenexperiment involving the superposition of macroscopic
flux states in a SQUID to demonstrate the possibility of quantum-coherent
behavior in a macroscopic system. However, it took two decades for this pro-
posal to mature into successful experiments [276,277].

6.3.1 Superconductivity and Supercurrents

The phenomenon of superconductivity was first discovered in the early 1900s
by Heike Kamerlingh Onnes. Onnes used liquid helium to cool down solid
mercury and found that at a temperature of several Kelvin above absolute
zero, the electrical resistance of the mercury disappeared. He published his
results in 1911 in a paper aptly entitled “On the sudden rate at which the
resistance of mercury disappears” [278]. Two years later, he was awarded the
Nobel Prize for his work. However, a theoretical understanding of supercon-
ductivity at the microscopic level was not reached until 1957, when Bardeen,
Cooper, and Schrieffer [279] explained superconductivity as the formation of
so-called Cooper pairs of electrons of opposite spin, where the mutual attrac-
tion is mediated by phonons in the crystal lattice of the material. Cooper
pairs effectively act as bosons and can therefore exhibit properties that are
strikingly different from those of single electrons, which are fermions.

Why can Cooper pairs traverse the material without encountering any re-
sistance? To answer this question, we note that each Cooper pair corresponds
to a low-energy ground state that is separated by an energy gap ΔE from
the first excited state. If the thermal vibrational energy of the crystal lattice
is less than ΔE, the lattice cannot induce any transitions in the state of
the Cooper pair, and thus the pair remains unaffected by collisions with the
lattice. This is in contrast with a single (free) electron that can absorb and
emit arbitrary amounts of energy, leading to dissipation and thus to electrical
resistance.

A key feature of superconductivity is the fact that, since the Cooper pairs
all assume the same low-energy quantum state, a number of Cooper pairs
can form a resistanceless current (“supercurrent”) in which the collective
center-of-mass motion of the pairs is represented by a single macroscopic
wave function. Thanks to the peculiar features of quantum mechanics, the
flow of such a current does not even require the application of an external
voltage. All we need to do is to insert a very thin insulating barrier between
two pieces of superconducting material. Cooper pairs then tunnel through
the barrier, leading to the flow of a supercurrent at zero voltage. This ex-
perimentally well-confirmed, purely quantum-mechanical phenomenon is one
of the different incarnations of the so-called Josephson effect, and the bar-
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rier is correspondingly referred to as the Josephson junction (for reviews,
see [280,281]).

6.3.2 Basic Physics of SQUIDs

A SQUID is directly based on the Josephson effect. It consists of a ring
of superconducting material interrupted by one (rf-SQUID) or several (dc-
SQUID) Josephson junctions (Fig. 6.18). In this section, we shall focus on
the rf-SQUID with a single junction. The quantum-mechanical tunneling of
Cooper pairs through the junction leads to the flow of a supercurrent around
the loop, which creates a magnetic flux threading the SQUID ring. Addition-
ally, the SQUID is immersed into an external magnetic field whose strength
can be adjusted, giving rise to an additional flux Φext through the loop. The
purpose of this external flux will be explained below.

Quantum mechanics requires that the wave function describing the su-
percurrent be continuous around the loop, and thus an integer multiple of
the wavelength must equal the circumference of the loop. The total change
in phase around the loop is given by 2πΦ/Φ0. Here Φ0 = h/2e is the so-called
flux quantum (with e being the electron charge). Φ denotes the total trapped
flux through the loop, composed of the flux created by the flow of supercur-
rent around the loop and the flux Φext due to the external magnetic field.
If the loop did not contain a Josephson junction, then the requirement of
continuity of the wave function would translate into the condition

Φ/Φ0 = k, k = 1, 2, . . . (6.31)

However, the presence of the Josephson junction introduces an additional
phase shift ΔφJ, which is completely determined by the physical properties
of the junction. The complete condition for phase continuity then reads

ΔφJ + 2πΦ/Φ0 = 2πk, k = 1, 2, . . . . (6.32)

Josephon junction

superconducting ring

supercurrent

Fig. 6.18. Schematic illustration of a SQUID. A ring of superconducting material
is interrupted by one or several Josephson junctions, which induce the flow of a dis-
sipationless “supercurrent” around the loop. This supercurrent creates a magnetic
flux through the loop.
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Since the quantities ΔφJ and Φ0 are fixed, the only free parameter in (6.32) is
the total flux Φ. Thus in SQUIDs the dynamics of a macroscopic quantity of
matter (namely, on the order of 109 Cooper pairs) are collectively determined
by the quantum-mechanical evolution of a single macroscopic coordinate Φ.
Because flux is the key variable in SQUIDs, these devices are often referred to
as superconducting flux qubits. (As we shall describe in Sect. 6.3.4, there exist
other types of superconducting qubit systems in which physical quantities
such as charge or phase are the key variables [281].)

Let us now discuss the dynamics of Φ. It turns out that the evolution of
Φ is governed by an effective Hamiltonian of the form

H =
P 2
Φ

2C
+ U(Φ) =

�
2

2C
d2

dΦ2
+
[
(Φ− Φext)2

2L
− IcΦ0

2π
cos

(
2π

Φ

Φ0

)]
. (6.33)

Here C denotes the total capacitance, L is the self-inductance of the loop, and
Ic is the critical current of the Josephson junction. We shall not derive the
structure of this Hamiltonian here (interested readers may find the derivation
in [218]). Instead, let us get a feel for what kind of dynamics this Hamiltonian
implies.

We can interpret the Hamiltonian as determining the motion of a ficti-
tious “particle” of “mass” C in a potential given by U(Φ). The role of the
usual canonical variables position and momentum is here played by the total
trapped flux Φ and the conjugate quantity PΦ = −i�d/dΦ, which is often
referred to as the total displacement current and has units of charge. The
analog of the kinetic energy of a particle moving in real space is in our case
the electrostatic energy.

If the external magnetic field is adjusted such that the induced flux Φext is
in the vicinity of the bias point Φext = Φ0/2, U(Φ) takes the form of a tilted
one-dimensional double-well potential (Fig. 6.19). This is the experimentally
relevant situation, which we shall assume from now on. The amount of tilt
is determined by the flux Φext, and at Φext = Φ0/2 the double well becomes
exactly symmetric (this case will be discussed in more detail below). Thus
we can change the shape of the potential by adjusting the strength of the
externally applied magnetic field.

Broadly speaking, the two wells of the potential U(Φ) correspond to the
two possible directions (clockwise and counterclockwise) of the supercurrent
around the loop. Each well contains a number of energy eigenstates |k〉 of the
Hamiltonian (6.33) that are (provided the damping induced by the Josephson
junction is weak) localized well below the barrier separating the two wells.
Thus we have a set of left-well (right-well) energy eigenstates that correspond,
in an approximate manner, to a classical persistent clockwise (counterclock-
wise) current around the loop.

More precisely, the corresponding wave functions ψk(Φ) ≡ 〈Φ|k〉 are lo-
cally of the s-wave type. This means that the amplitudes of these wave func-
tions are narrowly peaked around the bottom of either one of the wells of
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Fig. 6.19. Effective double-well potential U(Φ) of the SQUID (in units of IcΦ0)
in the vicinity of the bias point Φext = Φ0/2. Low-lying energy eigenstates
ψk(Φ) ≡ 〈Φ|k〉 are well-localized near the bottom of each well and are therefore
also approximate eigenstates of the flux operator. In the plot, the Φ-axis is mea-
sured in units of the flux quantum Φ0, and we chose Φext = 3

5
Φ0.

U(Φ), with very little spread in flux space. Thus each state |k〉 corresponds
to a relatively narrow range of values of the total flux Φ and can therefore
(at least for sufficiently small k) also be regarded as a “fuzzy” eigenstate of
the flux operator, with the possible discrete flux values determined by the
continuity condition (6.32). Accordingly, the states |k〉 are often referred to
as “k-fluxoid states.”

Classically, the barrier separating the two wells of the potential U(Φ) is
impenetrable for the low-lying k-fluxoid states |k〉, since their energy is less
than the barrier height. However, quantum-mechanically, resonant tunneling
between the wells can occur [282,283]. For example, one can apply a radiation
field to excite the system from a low-lying state to a higher-energy state,
localized in the same well, and this state can subsequently decay to a lower (or
equal) energy level in the other well via quantum tunneling. Such tunneling
processes lead to a macroscopic change of the flux Φ threading the ring, which
can in turn be observed in form of a macroscopic change in the magnetic
moment of the system.

One typically engineers the SQUID in such a way as to ensure that the
ground state |0〉 and first excited state |1〉 (localized at the bottom of opposite
wells) are well-separated in energy from higher-lying states. Then the SQUID
can be effectively described as a macroscopic two-state (qubit) system. As
basis states, we choose the two classical persistent-current states |�〉 and |�〉
corresponding to the supercurrent flowing in, respectively, definite clockwise
and anticlockwise directions around the loop. Formally, we may then write
the effective Hamiltonian of this two-state SQUID as

Ĥ = −εσ̂z −Δσ̂x. (6.34)
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Here the eigenstates of the Pauli spin operator σ̂z are |�〉 and |�〉, with
2ε = 2Ip (Φext − Φ0/2) denoting the asymmetry energy between these states,
and Ip ≈ Ic. Δ is the matrix element for tunneling between |�〉 and |�〉. The
two lowest-lying energy eigenstates |0〉 and |1〉 are then linear combinations
of |�〉 and |�〉 given by

|0〉 = cos(θ) |�〉+ sin(θ) |�〉 , (6.35a)
|1〉 = − sin(θ) |�〉+ cos(θ) |�〉 , (6.35b)

with tan 2θ = Δ/ε and energies E0,1 = ∓
√
Δ2 + ε2. The energy-level split-

ting between |0〉 and |1〉 is therefore ΔE = 2E1 = 2
√
Δ2 + ε2. Away from

the bias point Φext = Φ0/2, ε � Δ, and thus the states |�〉 and |�〉 are
essentially identical to the zero-fluxoid and one-fluxoid energy eigenstates |0〉
and |1〉, in agreement with our discussion above. The expectation value of
the supercurrent corresponding to the two states |0〉 and |1〉 can be shown to
be equal to ±Ip cos 2θ (where the positive sign indicates clockwise direction
of the current).

6.3.3 Superposition States and Coherent Oscillations in SQUIDs

Let us now consider what happens if the SQUID is at the bias point
Φext = Φ0/2. Now the double well becomes symmetric and we have ε = 0 in
(6.34), i.e., the energy levels in the left and right wells line up. In this case,
classically, the energy levels associated with the states |0〉 and |1〉 would cross
and therefore these states would become degenerate. Quantum-mechanically,
however, this degeneracy is lifted by the continued existence of a tunneling
barrier Δ between the wells [see (6.34)], which leads to a “repulsion” of the
energy levels, producing an anticrossing of these levels (Fig. 6.20). Since now
θ = π/4 in (6.35a) and (6.35b), the energy ground state |0〉 and the first
excited state |1〉 are given by symmetric and antisymmetric superpositions
of the persistent-current states |�〉 and |�〉,

|0〉 =
1√
2

(|�〉+ |�〉) , (6.36a)

|1〉 =
1√
2

(− |�〉+ |�〉) . (6.36b)

The energy splitting ΔE between these two new eigenstates is typically very
small and is solely determined by the capacitance C of the junction, scaling
as ΔE ∝ e−

√
C .

Since |�〉 and |�〉 are localized in, respectively, the left and right wells,
superpositions (6.36a) and (6.36b) are delocalized across the two wells. The
existence of these superpositions in a SQUID was experimentally confirmed
in 2000 by Friedman et al. [276] and independently by van der Wal et al. [277].
In the experiment by Friedman et al., the states |�〉 and |�〉 corresponded
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Fig. 6.20. Effective potential U(Φ) of the SQUID at bias Φext = Φ0/2. At this bias
point the double well becomes symmetric. The presence of the tunneling barrier
prevents the energy levels in the two wells from crossing. Instead, level anticrossing
occurs via the formation of delocalized energy eigenstates |0〉 = 1√

2
(|�〉 + |�〉) (the

new symmetric ground state) and |1〉 = 1√
2

(− |�〉 + |�〉) (the new antisymmetric

first excited state). These eigenstates are superpositions of the “classical” persistent-
current states |�〉 and |�〉. Their presence has been confirmed experimentally via
spectroscopic measurements [276, 277] and via the observation of coherent Rabi
oscillations [284,285].

to opposite-direction supercurrents of several μA, each current composed of
billions of Cooper pairs. This amounts to a macroscopic difference of more
than Φ0/4 in the flux generated by these two currents, equal to about 1010μB

(where μB is the Bohr magneton) in local magnetic moment. The states
(6.36a) and (6.36b) therefore represent superpositions of macroscopically dis-
tinct states of the Schrödinger-cat type, just as envisioned in Leggett’s orig-
inal thought experiment [275] twenty years earlier. Friedman et al. verified
the existence of the superposition states by indirect means via a static spec-
troscopic measurement of the energy difference ΔE between these two states.
Their result for ΔE turned out to be in excellent agreement with theoretical
predictions.

There is another way of demonstrating the existence of such superposition
states in SQUIDs, namely, through the observation of coherent oscillations
between the persistent-current states |�〉 and |�〉. These oscillations are of
the Rabi type described in Sect. 6.1.1. First, the external flux threading the
SQUID is tuned slightly away from the degeneracy point Φext = Φ0/2, such
that the energy eigenstates |0〉 and |1〉 are close to degeneracy. The SQUID
is initialized in the ground state |0〉 by allowing it to relax. Then a pulse
of microwave radiation is applied whose frequency is tuned to the (small)
energy difference ΔE between the states |0〉 and |1〉. Following our discus-
sion of Rabi oscillations in Sect. 6.1.1, this will cause the qubit to oscillate
between the states |0〉 and |1〉 and thus also between the persistent-current
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states |�〉 and |�〉 [see (6.35)]. This effect manifests itself in an oscillation of
the macroscopic supercurrent in the SQUID between clockwise and counter-
clockwise directions around the loop (see Fig. 6.21). The oscillation occurs
at the Rabi frequency, which is determined by the strength of the coupling
between the qubit and the microwave field and is linearly dependent on the
microwave amplitude. Thus the relative probability of the SQUID’s being in
each of the two states |�〉 and |�〉 depends on the amplitude and length of
the microwave pulse [see (6.8)].

In 2003 Chiorescu and coworkers [284] experimentally demonstrated such
Rabi oscillations in a superconducting flux qubit. The full experimental
setup consisted here of a μm-sized superconducting loop interrupted by three
Josephson junctions (Fig. 6.22). The use of three junctions does not signif-
icantly alter the basic physics of this type of qubit compared to the single-
junction rf-SQUID described above, but it facilitates the correct tuning of the
qubit. The qubit was in turn coupled to a dc-SQUID (with two Josephson
junctions), which acted as an extremely sensitive read-out device for the flux
in the qubit.

Chiorescu et al. applied a microwave pulse of given length and ampli-
tude and then performed a projective measurement on the flux qubit in the

supercurrent

t

Rabi period

+I

−I

+I−I

Fig. 6.21. Quantum-coherent tunneling in a SQUID (tuned close to the degeneracy
point Φext = Φ0/2) can be observed via the coherent oscillation of the macroscopic
supercurrent between clockwise and counterclockwise directions.

Fig. 6.22. Superconducting flux qubit used in the experiment by Chiorescu et al.
[284]. The actual qubit, shown on the right, consists of a tiny superconducting loop
with three Josephson junctions. The two possible directions of the persistent current
around the loop are indicated by white and black arrows. The change in magnetic
flux in the qubit is detected by a SQUID composed of a larger superconducting loop
(partially shared with the qubit) interrupted by two Josephson junctions. Figure
reprinted with permission from [284]. Copyright 2003 by AAAS.
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persistent-current basis {|�〉 , |�〉} (corresponding to the experimentally ac-
cessible observable). By carrying out this procedure several thousand times,
they obtained the experimental probability of finding the qubit in (say) the
state |�〉, corresponding to the supercurrent flowing in clockwise direction.
By repeating this experiment over a range of pulse lengths of the microwave
radiation (while keeping the microwave amplitude fixed), they were able to
trace out hundreds of damped Rabi oscillations with a surprisingly long de-
cay time of about 150 ns (Fig. 6.23). To confirm that these oscillations were
indeed quantum-coherent oscillations of the Rabi type, the researchers suc-
cessfully verified that the observed oscillation frequencies scaled linearly with
the amplitude of the microwave pulse, which is a key signature of the Rabi
process. An alternative continuous read-out scheme for the detection of co-
herent oscillations was implemented in a subsequent experiment by Ilichev et
al. [285].

The Rabi oscillations observed by Chiorescu et al. [284] and Ilichev et
al. [285], together with the earlier spectroscopic results of Friedman et al. [276]
and van der Wal et al. [277], impressively demonstrate the presence of co-
herent superpositions involving macroscopically distinct supercurrent states.
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Fig. 6.23. Rabi oscillations between the macroscopic opposite-direction supercur-
rent states |�〉 and |�〉 in a superconducting flux qubit as observed in the experi-
ment by Chiorescu et al. [284]. These oscillations confirm the existence of coherent
superpositions of the states |�〉 and |�〉. Results for three different amplitudes of
the resonant microwave radiation are shown (with the amplitude decreasing from
top to bottom). The vertical axis denotes the percentage P�(τ) of runs in which
the qubit was found in the particular definite-current state |�〉 (say), as a function
of the length τ of the microwave pulse. Figure adapted with permission from [284].
Copyright 2003 by AAAS.
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SQUIDs are particularly good candidates for the creation of such superpo-
sition states, because the relevant macroscopic variable (the trapped macro-
scopic flux through the SQUID ring) can be controlled via microscopic energy
differences in the Josephson junction [286]. The height Δ of the tunneling bar-
rier is dominantly determined by properties of the junction, independently
of the size of the loop. This means that the scaling of the achievable “size”
of the superpositions of macroscopically distinct flux states is only weakly
dependent on the amount of distinctness itself (i.e., on the difference in flux
between the persistent-current states).

This feature of SQUIDs allows for the creation of superpositions of “classi-
cal” states that have a significantly larger degree of macroscopic distinctness
than those achieved in other experiments. For example, in the matter-wave
diffraction experiments with C70 molecules (Sect. 6.2), the spacing of the
diffraction grating must decrease as 1/

√
N with the number N of atoms in

the molecule in order for a diffraction pattern to be observed. Thus, in this
case, our ability to experimentally produce interference patterns for molecules
of a particular size scales with the size of the molecules itself.

6.3.4 Observing and Quantifying Decoherence

It is important to note that the characteristic damping time of the Rabi os-
cillations derived from the decay of the envelope of the oscillatory occupation
probability (see Fig. 6.23) does not immediately give access to the intrinsic
decoherence timescale of the persistent-current superpositions (6.36a) and
(6.36b). The reason lies in the fact that the Rabi oscillations are induced by
an external driving field, namely, by the applied microwave pulse. To mea-
sure the decoherence timescale, however, we must consider the delocalization
of relative phase information between the components in the superposition
under the free (nondriven) evolution of the qubit interacting with its uncon-
trolled environment.

This goal can be accomplished by using the technique of Ramsey interfer-
ometry [51]. The following procedure is a variation of the “resonant” Ramsey
technique described in Sect. 2.2.2. First, with the qubit biased close to the
degeneracy point Φext = Φ0/2, we again start by initializing the qubit in the
energy ground state |0〉. We then apply a π/2 microwave pulse to the qubit
that is off-resonance by an amount δf from the transition frequency ΔE/2π
between the two levels |0〉 and |1〉. This transforms the state of the qubit
into a coherent superposition of the states |0〉 and |1〉, which is then allowed
to evolve freely for a certain period of time τ . During this time the relative
phase between the components |0〉 and |1〉 in the superposition increases by
2π(δf)τ (in the frame rotating with the applied microwave frequency). Then
a second off-resonant π/2 pulse is applied. In the resulting superposition,
the magnitudes of the coefficients multiplying the components |0〉 and |1〉
will exhibit an oscillatory dependence on the delay time τ , with a frequency
equal to δf/2. It follows that the occupation probabilities of the classical
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persistent-current states |�〉 and |�〉 will oscillate as a function of τ with
frequency δf .

In practice, we expect the amplitude of this oscillation to decay, as deco-
herence diminishes the amount of coherence between the states |0〉 and |1〉
(and thus also between the persistent-current states |�〉 and |�〉) during the
duration τ of the free qubit evolution. As we have explained in Sect. 2.2.2,
if the superposition becomes completely decohered, then we arrive at an
incoherent mixture of the states |�〉 and |�〉 for which the occupation prob-
abilities are independent of the delay time τ .

This eventual disappearance of the oscillations of the occupation proba-
bilities with increasing delay time τ allows us to observe and quantify the
gradual effect of decoherence. Chiorescu et al. [284] measured the relevant
occupation probabilities of the persistent-current states over a range of delay
times τ . They traced out a damped oscillation of this probability, from which
the characteristic decoherence timescale could be read off (Fig. 6.24).

We see the expected oscillatory dependence of the occupation probability
on the delay time τ . The frequency of the oscillation was found to match
the detuning δf of the microwave radiation, in excellent agreement with the
predictions of the Ramsey theory. From the decay of the envelope of the
oscillations, the authors obtained a decoherence time of about 20 ns, which
represents the characteristic timescale for an environment-induced loss of
phase coherence between the classical persistent-current states |�〉 and |�〉
during the free evolution of the qubit in this experiment.

In more recent experiments involving superconducting flux qubits, signif-
icantly longer decoherence times up to 4 μs have been observed [287]. These
promising results have nourished hopes that superconducting qubits might
be good candidates for the implementation of solid-state quantum-computing
devices (see Chap. 7). Here, gate operations via the application of control
pulses can be performed very fast and single-qubit gate operations can be as
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Fig. 6.24. Dependence of the occupation probability P�(τ) on the delay time
τ between the application of two π/2 pulses in a superconducting flux qubit as
observed in the experiment of Chiorescu et al. [284]. The damping of the oscillation
amplitude corresponds to the gradual loss of coherence from the system. Figure
adapted with permission from [284]. Copyright 2003 by AAAS.
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short as about 2 ns. One may therefore be able to perform on the order of a
thousand gate operations before coherence is appreciably lost. This number,
however, is still rather far away from the O(100, 000) gate operations required
to implement even simple quantum algorithms.

Quantum-coherent oscillations and decoherence have also been observed
in superconducting devices whose key variable is either charge or phase, in-
stead of the flux variable used in the case of SQUIDs. Generally, the formal
description of the physics of superconducting charge and phase devices is very
similar to that of the SQUID given above.

Superconducting charge qubits, commonly known as Cooper-pair boxes,
consist of a tiny superconducting “island” onto which Cooper pairs can tun-
nel from a reservoir through a Josephson junction. The two qubit basis states
then correspond to two different charge states of the island, differing by at
least one Cooper pair. Cooper-pair boxes were the first superconducting qubit
systems that allowed for the experimental observation of Rabi oscillations be-
tween charge states, which was accomplished in 1999 by Nakamura, Pashkin,
and Tsai [288]. In 2002, Vion et al. [289] reported the observation of many
thousands of coherent oscillations with a decoherence time of 0.5 μs.

Coherent oscillations of the Rabi type have also been observed in phase
qubits. Phase qubits contain a single Josephson junction, similar to the rf-
SQUID. However, instead of the flux threading the loop, the key variable
is here the phase difference between the electrodes of the junction. Yu et
al. [290] measured Rabi oscillations between macroscopically distinct phase
states and found decoherence times up to several μs. Similar results were also
reported by Martinis et al. [291].

Current experimental evidence (see, e.g., [291, 292]) indicates that the
main source of decoherence in superconducting qubits is the presence of in-
trinsic defects in the Josephson junctions and the superconductor, rather
than (as one may have expected) interactions with the external circuit used
to control the loop–junction setup. Often, these defects can be modeled as
effective two-level systems. As briefly mentioned in Sect. 5.1.2, it has been
well known for a while that decoherence and dissipation in low-temperature
(e.g., superconducting) systems is mainly due to such intrinsic two-level sys-
tems [199, 200]. Since the superconducting qubit itself is a two-level system,
the appropriate model for a theoretical description of decoherence in such
qubits is likely to be of the spin–spin type discussed in Sect. 5.4 [199].

For example, Martinis et al. [292] applied this model to a study of deco-
herence in superconducting phase qubits due to dielectric loss from two-level
states present both in the bulk insulating material as well as in the Joseph-
son junction. Insights gathered from these theoretical studies were success-
fully translated into significantly improved experimental structures. Other
theoretical studies of decoherence in superconducting qubits have focused
on the influence of noise processes, such as fluctuations in the bias current
controlling a current-biased Josephson junction [293]. However, in view of



282 6 Observing Decoherence in Action

our general discussion in Sect. 2.12 (see also Sect. 7.3) it is important to
clearly distinguish such noise-induced ensemble dephasing from “true” deco-
herence created by environmental entanglement, even though both processes
may lead to similar results from the phenomenological perspective of local
measurement statistics.

6.4 Other Experimental Domains

In the previous sections, we have described experiments that have successfully
generated and detected superposition states of mesoscopically and macro-
scopically distinct states and that have allowed us to observe the gradual de-
coherence of such superpositions. In these experiments, decoherence has pro-
vided a qualitative and quantitative explanation of the quantum-to-classical
phenomena observed in the laboratory.

In a similar vein—but now taking a different point of view—decoherence
also helps us understand what prevents us from being able to generate and
observe superposition states in certain experiments. In this section, we will
describe two such experimental domains, which are promising candidates for
the future creation and observation of even larger nonclassical superposition
states than those available to date. As we shall see, decoherence allows us to
describe qualitatively and quantitatively why it is so difficult to create and
observe such superpositions in these experiments. Furthermore, decoherence
suggests methods for improving the experimental procedures, such that we
can come closer to achieving our goal of generating the desired superposition
states in the laboratory.

6.4.1 Decoherence in Bose–Einstein Condensates

Bose–Einstein condensation is a quantum-mechanical phenomenon in which
a macroscopic number of atoms (up to O(107) in some experiments) under-
goes a quantum phase transition into a condensate in which all atoms lose
their individuality and occupy the same quantum state. Thus the conden-
sate can be fully described by a single quantum-mechanical N -particle wave
function with a phase. This phase of the wave function is experimentally
accessible. For example, if two condensates are allowed to overlap, an in-
terference pattern is observed due to the phase difference between the two
condensates [294, 296–299] (Fig. 6.25). Recently it has also become possible
to construct an interferometer in which a single condensate is coherently split
and then recombined, resulting in the observation of interference fringes [295]
(see again Fig. 6.25).

In spite of these successes in demonstrating the quantum properties of
Bose–Einstein condensates, experimental attempts to produce Bose–Einstein
condensates in a superposition of states involving macroscopically distin-
guishable numbers of particles have thus far failed, despite several promising
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Fig. 6.25. Interference patterns of the atomic gas density in Bose–Einstein conden-
sates. Left: Pattern resulting from the phase difference between two independent
condensates that were let to overlap. Figure reprinted with permission from [294].
Copyright 1997 by AAAS. Right: Interference fringes obtained in a “double-slit”
interferometer for Bose–Einstein condensates. A single condensate was coherently
split (mimicking the role of the slits in the standard double-slit experiment) and
subsequently recombined. Figure reprinted with permission from [295]. Copyright
2004 by the American Physical Society.

theoretical proposals [300–306]. However, this failure can be well understood,
both qualitatively and quantitatively, by taking into account the relevant de-
coherence mechanisms. In the case of superposition states of Bose–Einstein
condensates, decoherence is found to be dominantly due to elastic and inelas-
tic scattering between condensate and noncondensate atoms.

Detailed models of such scattering processes have been developed (see,
e.g., [102]), providing us with realistic predictions for decoherence timescales
as a function of the key parameters of the experiment (such as the size of
the condensate). Insights gained from these decoherence models have also led
to concrete proposals for how to minimize decoherence through clever ex-
perimental design. Examples of such suggested improvements include the
construction of modified condensate traps that allow for a faster evapo-
ration of the decoherence-inducing thermal cloud of noncondensate atoms
[102]; the creation of macroscopic superpositions of relative-phase (instead
of number-difference) states, thereby taking into account the environment-
selected pointer basis in order to minimize decoherence [303]; the implemen-
tation of active environment engineering (Sect. 7.5.3) to decrease the effective
size of the thermal cloud [102]; and the faster generation of the superposi-
tion state [306]. Each of these proposals is derived from an analysis of the
various decoherence mechanisms involved in a particular experimental setup.
Given such a setup, models for decoherence then tell us the location of the
quantum–classical boundary and what we can and need to do to push this
boundary in order to realize the desired cat states.
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6.4.2 Decoherence in Quantum-Electromechanical Systems

Quantum-electromechanical systems, or QEMS for short, are a relative re-
cent addition to the zoo of experiments that have the potential to gener-
ate even larger nonclassical superposition states [307] (see also [308, 309]
for an introduction to QEMS). We already mentioned QEMS in Sect. 5.4.2
in the context of the “oscillator–spin model” for decoherence and dissipa-
tion. QEMS show great promise for the demonstration of truly mechanical
“Schrödinger kittens” involving billions of atoms in a superposition of two
well-distinguishable positions in space. Given the rapid experimental progress
in the field of QEMS, it is quite likely that over the next few years these sys-
tems will become a major player in explorations of the quantum-to-classical
transition.

QEMS are a result of the recent revolution in nanotechnology. The main
component of a QEMS is a miniature mechanical double-clamped beam or
single-clamped cantilever, manufactured from crystalline materials such as
silicone and with typical dimensions on the order of nanometers to micro-
meters (Fig. 6.26). The beam (or cantilever) acts as tiny mechanical res-
onator. If a suitable driving force is applied for a brief period of time, the
resonator is set into an oscillatory motion.

Because of the extremely small dimensions of the resonator, the oscilla-
tion frequencies can be remarkably high, given the mechanical nature of such
systems. Recent experiments have achieved frequencies up to one gigahertz,
i.e., frequencies in the microwave range [311]. Furthermore, dissipative effects
in the resonators can be made relatively weak, resulting in tens of thousands
of free oscillations before a significant decrease in the oscillation amplitude
occurs. The oscillatory motion of the resonator is detected by an electronic

transducer

2 μm

mechanical resonator

Fig. 6.26. Experimental realization of a quantum-electromechanical system, con-
structed in the laboratory of Keith Schwab at Cornell University [310]. A beam of
width 200 nm and length 8 μm acts as a nanomechanical resonator with a natu-
ral frequency of 19.7 MHz. The vibrational motion of the beam is translated into
an electrical signal by means of an electronic transducer. Figure reprinted with
permission from [310]. Copyright 2004 by AAAS.
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transducer and converted into a corresponding electrical signal that is subse-
quently read out.

Remarkably, most degrees of freedom of the resonator are either “frozen
out” at the typical low (millikelvin) temperatures at which QEMS operate, or
they couple only negligibly to the transducer. Thus, in most cases, the macro-
scopic resonator can be effectively treated as a single quantum-mechanical
harmonic oscillator (corresponding to the lowest fundamental flexural mode
of the beam or cantilever). The nanomechanical resonators in QEMS are
macroscopic mechanical objects composed of billions of atoms and perturbed
by a host of intrinsic defects, imperfections, etc. Nonetheless, as we shall
discuss now, they can exhibit distinctly quantum-mechanical effects.

One key feature of QEMS is their extreme sensitivity to spatial displace-
ments. In this context, an important quantity is the quantum zero-point
displacement uncertainty Δxzp of the harmonic oscillator, which represents
the quantum limit to position detection. For the nanomechanical resonators
currently manufactured in the laboratory, Δxzp is on the order of only a
tenth of a picometer [307]. Nonetheless, in recent experiments (involving, for
example, the QEMS shown in Fig. 6.26) it has been possible to resolve spatial
displacements of the resonator down to a few times of Δxzp [310]. Thus ex-
periments on QEMS are very close to achieving the goal of quantum-limited
position measurements.

A Scheme for Creating Mechanical “Schrödinger Kittens”
Using QEMS

Researchers have also considered the possibility of putting the resonator into
a coherent superposition of two different spatial displacements and to observe
the gradual decoherence of such states. What makes this prospect particu-
larly exciting is the fact that QEMS are purely mechanical structures that are
much more closer to the objects of the everyday world around us than, say,
superconducting qubits (Sect. 6.3) or Bose–Einstein condensates (Sect. 6.4.1).
Mechanical “Schrödinger kittens” in QEMS, if realized, would represent su-
perpositions of two distinct positions of a macroscopic “rough” ordinary-
matter mechanical object. At this point, no such superposition states have
been realized in the laboratory, but concrete proposals exist [312] and the-
oretical studies of the relevant decoherence and dissipation mechanisms are
underway [242,313–315]. The idea of entangling several nanomechanical res-
onators that are separated by macroscopic distances has also been investi-
gated theoretically [316]. One may even conceive of the possibility of using
QEMS as mechanical qubits in quantum computers [317].

Let us now briefly outline the scheme for the generation of spatial super-
position states in QEMS as proposed by Armour, Blencowe, and Schwab [312]
(see also [307]). The basic idea consists of using a two-state quantum system
whose basis states |0〉 and |1〉 couple to two different displacements of the
resonator and which is rather easily prepared in a superposition of |0〉 and
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|1〉. In [312], the authors chose a Cooper-pair box (see Sect. 6.3.4). Here the
two basis states |0〉 and |1〉 correspond to different values of electrical charge
present on the superconducting island. The electrostatic interaction between
the Cooper-pair box and the cantilever will result in two different displace-
ments of the resonator, depending on whether the Cooper-pair box is in the
state |0〉 or in the state |1〉 (see Fig. 6.27). Let us denote the center-of-mass
position states of the resonator corresponding to these two displacements by
|P0〉 and |P1〉.

Suppose now we prepare the Cooper-pair box in a superposition of the
form 1√

2
(|0〉+ |1〉). As shown in [312], if a particular sequence of control

pulses is applied to the box, we can obtain an entangled box–resonator su-
perposition state of the form

|Ψ〉 =
1√
2

(|0〉 |P0〉+ |1〉 |P1〉) . (6.37)

Provided the spatial separation between the center-of-mass states |P0〉 and
|P1〉 is sufficiently macroscopic, we have therefore generated a state of the
Schrödinger-cat type. Here, the resonator plays the role of the cat, while the
Cooper-pair box corresponds to the unstable atom in Schrödinger’s original
setting.

The existence of the superposition state (6.37) can be confirmed using
the technique of Ramsey interferometry (see Sect. 2.2.2). By applying an
additional control pulse to the Cooper-pair box after a certain delay time,
the entangled state (6.37) is transformed in such a way that the probabilities

|0〉 |1〉

q0 q1

|P0〉 |P1〉

“+” |Ψ〉 = 1√
2

(
|0〉|P0〉 + |1〉|P1〉

)

Fig. 6.27. Scheme for the generation of a superposition state involving two dis-
tinct positions of the nanomechanical resonator, as proposed by Armour, Blencowe,
and Schwab [312]. A Cooper-pair box, described by basis states |0〉 and |1〉 (cor-
responding to different electric charges q0 and q1 on the superconducting island
of the box), is electrostatically coupled to the nanomechanical resonator. If the
Cooper-pair box is prepared in a coherent superposition 1√

2
(|0〉 + |1〉) and a suit-

able sequence of control pulses is applied, an entangled box–resonator superposition
state 1√

2
(|0〉 |P0〉 + |1〉 |P1〉) results, where |P0〉 and |P1〉 correspond to the two dis-

tinguishable center-of-mass positions of the resonator.
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of finding the box in the state |0〉 or |1〉 exhibit an oscillatory dependence on
the delay time. This dependence would be absent if the box–resonator system
were in a classical mixture of the component states of the superposition. As
discussed in Sect. 6.3.4, the Ramsey method also yields information about
the characteristic decoherence time of the superposition.

Decoherence in QEMS

To evaluate the practical viability of the superposition scheme described
above, it will be important to understand the main sources of decoherence
affecting such superpositions states in QEMS. First of all, the Cooper-pair
box itself will of course be subject to decoherence. However, as mentioned in
Sect. 6.3.4, relatively long decoherence times in the microsecond regime are
within experimental reach [289]. We can therefore focus on the decoherence
due to the environmental interactions of the resonator itself.

Interestingly, current experimental evidence [318,319] (see also earlier re-
sults in, e.g., [320,321]) indicates that the dominant source of dissipation (and
therefore also decoherence) in QEMS may be the interaction of the lowest
fundamental flexural mode of the resonator with localized defects present in
the resonator itself. These defects are effective two-level systems that may
assume various physical realizations, such as charge traps, impurity atoms,
elastic centers, and dangling bonds created by the disruption of the crystal
structure at the surface of the resonator.

At this point, the precise physical details underlying these defects and
their interactions with the flexural mode of the resonator are rather poorly
understood at the level of both experiment and theory. Since the spatial
superposition states in QEMS described above have not yet been experi-
mentally realized, there exists no direct experimental data on decoherence in
QEMS. However, recent experiments have yielded valuable information on
the characteristic properties of dissipation in QEMS [318,319].

Since dissipation is generally accompanied by decoherence (but not vice
versa), such measurements can also provide us with insights into the decoher-
ence properties of QEMS. For example, we may be able to extract an effective
spectral density of the environment composed of the defects from the data on
dissipation. Provided we have available a suitable model for the interaction
between the resonator and the defects, we can compute the relevant deco-
herence coefficients and dynamics using this spectral density. This will then
allow us to estimate characteristic decoherence rates for the above QEMS su-
perposition states and thus to assess the viability of proposed schemes for the
generation of such states. One overarching goal is therefore the development
of realistic models for dissipation and decoherence in QEMS [242, 314, 315].
Achieving this goal would not only enhance our theoretical understanding of
QEMS, but it would also enable us to make progress toward the experimen-
tal realization of superpositions states in QEMS and would suggest general
improvements in the implementation of QEMS.
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In their original proposal [312], Armour, Blencowe, and Schwab estimated
the decoherence time of the spatial box–resonator superposition state (6.37)
using the well-explored model for quantum Brownian motion described in
Sect. 5.2. Here, the central harmonic oscillator represents the fundamental
flexural mode of the resonator, which is in turn weakly coupled to an envi-
ronment of other harmonic oscillators. However, as we have outlined above,
a more realistic representation of the environment of a nanomechanical res-
onator at millikelvin temperatures may be a collection of two-level systems
representing the defects. If we model these two-level systems as quantum
spin- 1

2 particles, we arrive at the oscillator–spin model. We derived the weak-
coupling master equation for this model in Sect. 5.4.2 [see (5.198)].

However, the temperature dependence of the damping rate derived from
this model [see (5.200)] is found to disagree with data obtained from experi-
ments on QEMS, in which the dissipation rate has been observed to increase
with temperature [318,319]. This discrepancy indicates that at least some of
the two-level defects in the resonator should be modeled as spin-1

2 particles
that are strongly coupled to an additional decohering and dissipative envi-
ronment (see Fig. 6.28). This environment renders the tunneling of the spins
incoherent and also leads to relaxation of the spins, thereby inducing defect
dynamics akin to those of classical two-level fluctuators. By absorbing the
excess energy from the spin bath, it prevents this bath from saturating. The
more realistic model for decoherence and dissipation in QEMS may therefore
be that of the central harmonic oscillator coupled to a number of indepen-
dent spin–boson models (i.e., spins interacting with an oscillator bath). First
studies of this model have been carried out very recently [242]. QEMS thus
offer the opportunity to experimentally distinguish and test different models
for decoherence and dissipation.

oscillator
bath

oscillator
bath

oscillator
bath

spin spin spin

system
(harmonic oscillator)

Fig. 6.28. Schematic illustration of a possible model for decoherence and dissipa-
tion in QEMS. The central system consists of a harmonic oscillator, which represents
the fundamental flexural mode of the nanomechanical resonator. The oscillator in-
teracts with a collection of two-level defects modeled as spin- 1

2
particles. In turn,

each spin is further coupled to a dissipative bath of oscillators that absorbs energy
from the (otherwise easily saturated) spin environment.
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6.5 Outlook

When Schrödinger first sketched his cat paradox in 1935, he regarded it as
a pure thought experiment, as an example for the evidently “absurd” conse-
quences that arise if one applies quantum mechanics to the macroscopic world
of our experience. Yet, over the past years immense progress has been made
in breeding (and observing) comparably small, but nonetheless macroscopic
Schrödinger cats in the laboratory. In this chapter, we have described ex-
periments that have achieved the generation of superpositions of two macro-
scopically distinguishable states involving dozens of photons (Sect. 6.1), the
observation of interference patterns for massive C70 molecules (Sect. 6.2), and
the verification of the existence of superpositions of two μA currents flowing
in opposite directions (Sect. 6.3).

In each of these experiments, researchers have also managed to explicitly
observe the gradual action of decoherence, i.e., to measure how the super-
position becomes eventually unobservable due to the interaction with the
environment. We have thus clearly seen the smoothness of the quantum-to-
classical transition: There is no fixed barrier between the quantum and clas-
sical domains that would manifest itself as a discontinuous transformation of
a quantum state into a classical state. By manipulating the interactions of
the system with its environment, we can directly change the dynamics and
timescales of the transition.

The experiments described in this chapter therefore show that the scope
of decoherence is much broader than to simply refer to the effectively in-
stantaneous “localization” of macroscopic objects around us. Instead, de-
coherence explains the emergence of effective classicality as a gradual and
controllable process that can be directly observed and tested in the labora-
tory and is accessible to a rigorous theoretical description in terms of the
standard quantum-mechanical formalism.

The interplay between theory and experiment is here a very close one.
Measurements of decoherence timescales and other properties of the deco-
herence dynamics enable us to directly test our decoherence models in the
laboratory. We thereby learn to what extent these models are realistic and
physically adequate. In turn, the decoherence models provide us with valu-
able information about existing and future experiments. They tell us at which
stage of “macroscopicity” the quantum-to-classical transition can be expected
to occur in a particular experimental setting, what type of “Schrödinger kit-
tens” we might be able to create and observe given a certain set of experimen-
tal parameters, and how we may be able to improve our experiments to gener-
ate increasingly “cat-like” superpositions. In this chapter, we have described
two experimental domains—Bose–Einstein condensation (Sect. 6.4.1) and
quantum-electromechanical systems (Sect. 6.4.2)—that have not yet achieved
the creation of certain superposition states proposed in theoretical schemes.
Nonetheless, decoherence models, combined with measured data, allow us to
identify the physically relevant decoherence mechanisms in these systems that
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prevent us from “seeing” the desired superposition states, and they suggest
strategies for mitigating these detrimental decoherence effects.

The natural question to ask is where the experiments on superpositions
of macroscopically distinct states will be headed in the future, and what the
resulting implications for our understanding of quantum mechanics and for
the construction of large-scale quantum systems, such as quantum computers,
will be. There are many answers to this question, so let us just mention a few
key points.

First of all, on the scales investigated thus far, the existing experimental
evidence does not point to any fundamental limitations of the superposition
principle. It appears that, as long as we are able to sufficiently control de-
coherence effects (and this limit is open to precise quantitative analysis) via
a proper experimental design which minimizes unwanted interactions with
the environment, any number of superpositions of “classical” states could be
generated and observed.

Thus it is safe to say that, over the next few years, we will witness many
experiments that will push the envelope for the achievable “size” of superpo-
sitions of macroscopically distinct states further and further. We may soon
be able to observe interference patterns for even larger biomolecules such
as viruses, realize superposition states of Bose–Einstein condensates and
nanomechanical resonators, and achieve impressively increased decoherence
times in superconducting qubits. Such experiments will also be motivated by
the continuing search for possible breakdowns of the superposition principle.
However, since decoherence leads to an apparent breakdown from the view of
the local observer, it will remain very difficult to design an experiment that
would be sufficiently shielded from decoherence but reasonably susceptible to
the mechanism inducing the deviation from unitary evolution (see Sect. 8.4
and also [286,322]).

It is important to emphasize that the ability to generate and observe su-
perpositions of increasingly distinct macroscopic states does not solve any of
the fundamental interpretive questions associated with such superpositions
in particular, and with decoherence and quantum mechanics in general. The
problem of the proper interpretation and physical meaning of quantum states
(Sect. 2.1), especially of superposition states (Sect. 2.2.1), is already evident
in microscopic settings, such as the Stern–Gerlach experiment described in
Sect. 2.2.2. While the recent experiments on superpositions in the macro-
scopic domain may add a flavor of counterintuitivity of the Schrödinger-cat
type to the problem, they neither solve nor exacerbate the fundamental prob-
lems of interpretation.

In particular, the question of how to understand the persistence of coher-
ence in the global quantum state involving the environment, and thus the is-
sue of how to properly relate the improper mixtures of quantum states arising
in the density-matrix description of decoherence to some form of underlying
quantum reality, remains a matter of foundational debate. Experiments of
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the type discussed here will certainly continue to enlighten the discussion,
if only by further challenging our preconceived notions about the “nature of
reality.” Once experiments may be able to conclusively demonstrate (or rule
out) deviations from purely unitary dynamics, we may gain—or be forced
into—new insights into quantum mechanics and the structure of quantum
reality. For now, though, the interpretive issues are here to stay, even in view
of the stunning experimental achievements described in this chapter.



7 Decoherence and Quantum Computing

Quantum information theory and quantum computing have received rapidly
growing attention over the past decade and have become one of the focal
points of theoretical and experimental research. Quantum information theory
views many fundamental concepts of quantum mechanics through a new lens.
It has also inspired proposals for quantum technologies and applications,
including the possibility of constructing a quantum computer in the future.
Quantum computers that would implement useful algorithms are still far
from any experimental realization, but many ideas have been worked out and
some components that could serve as the basic building blocks of quantum
computers have already been developed in the laboratory.

At the same time, research on quantum information theory and quantum
computing has enormously increased the interest in studying and control-
ling decoherence effects. From a fundamental point of view, the basic for-
mal description of decoherence as a von Neumann measurement interaction
with the environment (see Sects. 2.5.1 and 2.6.3) can be recast in quan-
tum information–theoretical terms using the formalism of conditional quan-
tum dynamics [16,323] (see also Sect. 7.4.1 below). Furthermore, in previous
chapters of this book we have already alluded to the connection between
decoherence and a (rather vague) notion of “information.” Specifically, we
have made this link in discussing how environmental entanglement carries
away which-state information, leading to decoherence (see Sect. 2.6). From
a practical point of view, the functioning of any quantum computer is cru-
cially dependent on the ability to maintain quantum coherence. Decoherence
induces errors into the computation and is therefore the key obstacle to im-
plementations of quantum computers.

In this chapter, we shall outline the role played by decoherence in quantum
computing. In Sect. 7.1, we will review basic aspects of quantum computa-
tion, including the key differences between quantum and classical compu-
tation and the historical development of the core ideas on which quantum
computation is based. In Sect. 7.2, we will discuss the trade-off between de-
coherence and controllability that is at the heart of any implementation of
quantum computers. Next, in Sect. 7.3, we will make some further remarks
on the differences between decoherence and noise (see also Sect. 2.12), tai-
lored to the topic of quantum computation. Sect. 7.4 will describe methods of



294 7 Decoherence and Quantum Computing

mitigating detrimental decoherence effects in quantum computers by means
of so-called quantum error correction. Finally, in Sect. 7.5, we will discuss
quantum computation using the concept of decoherence-free (i.e., pointer)
subspaces introduced in Sect. 2.8.1. Readers who would like to learn more
about quantum information theory and quantum computing in general will
find plenty of material, for example, in the book by Nielsen and Chuang [56].

7.1 A Brief Overview of Quantum Computing

We all know that a computer bought today will be hopelessly outdated only
a few years later. The rate at which computers have become faster over the
past decades is nothing short of astounding. Accordingly, the complexity of
the circuits that make up the computer’s processor (measured, for example,
by the number of transistors per chip) continues to increase rapidly. Readers
may have heard of Moore’s famous “law,” which states that circuit complexity
roughly doubles every two years, a prediction that has proved surprisingly
accurate up to date.

As a consequence, a few researchers in the 1970s and 1980s realized that
at some point, the individual processing structures (e.g, transistors) on a chip
would have to reach atomic scales at which quantum effects would become
important.1 They were thus led to speculations about whether such quan-
tum effects could in fact be harnessed in order to enhance computing power.
Or, put even more boldly, could one build a computer whose power depends
specifically on a clever use of quantum-mechanical principles?

7.1.1 The Power of Quantum Computing

Let us think for a second why a computer that is inherently quantum in nature
would be so much more powerful than a standard (“classical”) computer. A
classical computer encodes information in the elementary unit of a logical
bit, which can take values of either “0” or “1.” A key mantra of quantum
information theory is that “information is inevitably physical” (an insight
probably first emphasized by Landauer [325]). Information must always be
encoded by some physical system, be it by a pencil stroke on a sheet of paper
or by the presence of electrons in a transistor, and as such, the encoding of
information itself is subject to the laws of physics.

Accordingly, let us consider a physical system that can be in two states
corresponding to the bit values of “0” and “1,” and that therefore is capable
of encoding one bit of information. In the spirit of our above argument of
shrinking component sizes in computers, this system may well be a quantum
system with two basis states |0〉 and |1〉 that are classically distinguishable

1In a 1997 speech, Moore himself predicted this to happen around the year
2017 [324].
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and correspond to the two possible values of the classical bit. Such “qubit”
systems have already been discussed in Sect. 2.10 and Chap. 5. In principle,
any quantum system with an effectively two-dimensional state space can be
used as a qubit. Examples include photons with their two polarization degrees
of freedom, ionic or nuclear spins, and atoms with two dominant energy levels.
We shall describe some of these physical realizations in Sect. 7.1.5 below.

Quantum mechanics then tells us that this system could, at least in prin-
ciple (i.e., provided decoherence in the {|0〉 , |1〉} basis can be neglected), also
be found in a coherent superposition

|ψ〉 = α |0〉+ β |1〉 . (7.1)

Sloppily speaking, this means that a qubit can simultaneously encode both
logical bits 0 and 1, in contrast with a classical bit that has a value of either
0 or 1. Since there are infinitely many ways to choose the coefficients α and
β, there exist infinitely many possible states of a single qubit, as opposed to
the two states of a classical bit. A single qubit in a given state |ψ〉 can encode
two real numbers, whereas a classical qubit represents only a single binary
digit. This can be seen from the fact that |ψ〉 can always be written in the
form

|ψ〉 = |α| eiφ0 |0〉+ |β| eiφ1 |1〉 . (7.2)

If we disregard an irrelevant overall phase factor, this may be expressed as

|ψ〉 = |α| |0〉+ |β| ei(φ1−φ0) |1〉 . (7.3)

The normalization requirement |〈ψ|ψ〉|2 = 1 then implies that we may rewrite
this equation as

|ψ〉 = cos
(
θ

2

)
|0〉+ sin

(
θ

2

)
eiφ |1〉 , (7.4)

with φ ≡ φ1 − φ0 and an appropriate choice of the angle θ (0 ≤ θ ≤ π).
We note that the form (7.4) allows for a nice visualization of such a state in
terms of the Bloch-sphere picture (see Fig. 7.1). We have thus shown that any
of the infinitely many possible single-qubit states encodes two real numbers
(here given by the angles θ and φ).

Suppose now that our system is composed of N qubits. The Hilbert space
of this system has dimension 2N , since it is given by the tensor product
H = H1⊗H2⊗· · ·⊗HN of the single-qubit Hilbert spacesHi, 1 ≤ i ≤ N . Thus
there are 2N mutually orthogonal basis states, which are typically chosen to
be product states of the original single-qubit basis states |0〉i and |1〉i of the
ith qubit (1 ≤ i ≤ N),

|00 · · · 0〉 ≡ |0〉1 |0〉2 · · · |0〉N ,

|00 · · · 1〉 ≡ |0〉1 |0〉2 · · · |1〉N ,

...
|11 · · · 1〉 ≡ |1〉1 |1〉2 · · · |1〉N . (7.5)
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Fig. 7.1. Geometrical representation of the state of a qubit as a point on the
Bloch sphere, a unit sphere in R

3. An arbitrary qubit state can be described by
two real parameters θ and φ [see (7.4)], where 2θ and φ play the role of the familiar
spherical coordinates. That is, the state (7.4) is represented by the unit vector
x̂ = (sin 2θ cosφ, sin 2θ sinφ, cos 2θ).

This basis is referred to as the computational basis for the N -qubit system.
Any N -qubit state can also be described by a 2N × 2N density matrix. If
we diagonalize this matrix, we see that this state can simultaneously encode
2N independent real numbers, since there are 2N real-valued entries (rep-
resenting the populations in the eigenbasis of the density operator) on the
matrix diagonal. This is to be compared to N classical bits which encode
only a binary string of length N . This shows the first advantage of quantum
computers: The storage capacity of arrays of qubits is exponentially larger
than that of classical bits, and a qubit can be in any of the infinitely many
coherent superposition states (7.1).

The second advantage is related to the different ways in which classical
and quantum computers process information. In a classical computer, we
apply logical gates (such as and, not, and xor) that act on one or two bits
at a time. In the quantum case, implementation of gates corresponds to the
application of unitary transformations Û that act on the Hilbert space of the
N -qubit system.2

2We note that there exists an alternative approach to quantum computing in
which the entire quantum computation proceeds in form of a time-ordered series of
projective measurements on a qubit system which has initially been prepared in a
highly entangled state (the so-called cluster state) [326–328]. It can be shown that
such measurement-based (or cluster-state) quantum computation is able to per-
form exactly the same computational tasks as conventional quantum computation
based on unitary gate operations. In other words, a measurement-based quantum
computer is just as universal as a “standard” quantum computer. This is a rather
remarkable result, since the nonunitary nature of quantum measurement would in-
tuitively lead one to believe that it is incompatible with the simulation of arbitrary
(and therefore also unitary) quantum dynamics. Since cluster-state quantum com-
putation requires the preparation of a highly entangled N -qubit state that must
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The key point is now that any such transformation Û , even if it acts on
only a single qubit, is capable of changing the global state of the N -qubit
system. For a maximally entangled state, for example, a unitary operation
applied to a single qubit will in general alter the global state of all N qubits. It
thus operates simultaneously on all 2N basis states of the total qubit system.
As a simple example, suppose a two-qubit entangled state of the Bell form
(2.7a), ∣∣Φ+

〉
=

1√
2

(|00〉+ |11〉) , (7.6)

is subject to a unitary transformation Û that acts only on the first qubit,
e.g.,

Û = (−|0〉〈1|+ |1〉〈0|)1 ⊗ Î2. (7.7)

Then the transformed state reads

Û
∣∣Φ+

〉
=

1√
2

(|10〉 − |01〉) . (7.8)

We may view this feature as a consequence of the nonlocal, holistic nature
of entangled multi-particle states. Again, this is to be contrasted with the
classical situation, in which we would either need to perform the same oper-
ation 2N times, or have 2N “processors” operating in parallel, each of which
applies one classical logic gate.3 We remark here that, in practice, one needs
to consider only quantum gates that act on one or two qubits at a time, since
one can show that a certain set of such one-qubit and two-qubit gates is suffi-
cient to perform any quantum computation [56,331–334]. This is a very useful
result, since it is in practice difficult to engineer interactions between more
than two qubits that would be required to physically implement multi-qubit
gates.

7.1.2 Reading Out a Quantum Computer

In the case of a classical computer, we obtain the result of the computation
simply by reading out the final values of all bits. We can do this at any time
without altering the state of the computer. The corresponding procedure in

remain sufficiently robust to decoherence over time, its general decoherence prop-
erties are likely to be similar to those of gate-based quantum computation. For an
accessible introduction to cluster-state quantum computation, we refer the reader
to [329].

3In analogy with this observation, quantum computers are often said to exhibit
massive “quantum parallelism” (this feature was pointed out early by Zurek under
the name of “quantum Monte Carlo” [330]). However, this term should be inter-
preted with care. Parallelism creates the impression of many independent processes
performed in parallel, whereas in the quantum case we really should think of a
single quantum-mechanical “whole” (namely, the global quantum state) subject to
a single operation (the quantum gate).
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quantum computing consists of a projective measurement, carried out in some
chosen basis, of some (or all) qubits at the end of the computation. According
to the standard theory of quantum measurement, this will collapse the global
state of the N -qubit system onto one of the states in the measured basis and
destroy any existing entanglement between each individually measured qubit
and the other qubits. The key difference to the classical case is related to
the fact that measurement in quantum mechanics is probabilistic. That is,
if we apply the same series of quantum gates to a collection of identically
prepared N -qubit systems, the measurement outcomes will in general vary
from system to system—we can only specify the probability of the system to
be found in a certain state upon measurement (see Sect. 2.1).

This fact may seem to render quantum computation essentially useless,
since we would in general not be able to obtain a single consistent result at
the conclusion of a set of identical quantum computations. Thus the quantum
computer will typically at least in some cases not yield the correct answer to
the computational problem in question. Fortunately, in many situations it is
rather easy to verify whether a given output is actually the correct result or
not. For example, the famous algorithm for the factorization of integers on a
quantum computer (see Sect. 7.1.4 below) will not always yield the correct
answer. However, it is trivial to check whether a given decomposition of an
integer into prime numbers is correct, and therefore we can simply manu-
ally discard any incorrect results from the quantum computer. Provided the
probability of the final measured state to correspond to the correct solution is
reasonably high (e.g., such that obtaining the correct answer does not require
a number of runs of the quantum computer that grows exponentially with
the size of the problem), we have still employed the power of the quantum
computer to our advantage.

7.1.3 Simulating Physical Systems

Let us now ask the following question: Could a classical computer, at least
in principle, always simulate a quantum system?4 After all, one might think
of emulating the evolution of, say, an N -qubit system by representing its
quantum state by 2N × 2N matrices and by applying other 2N × 2N matrices
to represent gate operations. There are, however, two caveats. First, as we

4At the risk of stating the obvious, we note that a quantum computer can
also simulate any classical computer if states are prepared and quantum gates
are applied such that each qubit is at any time described by either one of the
states |0〉 and |1〉 but not by superpositions thereof. This point is directly relevant
to our subsequent discussion of the role of decoherence in quantum computing.
Decoherence tends to destroy any coherent superpositions of the computational-
basis states (7.5) of an N -qubit system, thereby effectively transforming the qubits
into a classical logical-bit register. The quantum computer then loses its “quantum
power”—it still can perform the same functions as a classical computer, but nothing
more.
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have seen, this approach becomes prohibitively computationally expensive for
larger N , since the size of the matrices and the number of matrix operations
(and thus the demand for storage space and processing power) blows up
exponentially with increasing N . This makes it impossible for all practical
purposes to simulate a larger quantum system (in other words, a quantum
algorithm) on a classical computer. Second, from a more fundamental point
of view, Bell’s theorem [30] shows that there exists no classical mechanism
that could prepare two correlated distant systems whose correlations violate
the Bell inequality. Thus such (EPR/Bell-type) correlations are a distinct
feature of the quantum world and of quantum computing [335,336].

The problem of how to efficiently simulate quantum systems lies at the
roots of the quantum-computing program. In a seminal paper of 1982, Feyn-
man [335] explored the issue of constructing a quantum system that could
efficiently emulate the physical behavior of any other (quantum) system in
nature. Consequently, such a system would not only represent a universal
emulator, but also a universal quantum computer, since quantum computers
must necessarily also be physical systems. Feynman modeled this universal
emulator in terms of a lattice of spins with nearest-neighbor interactions.
Famously, Feynman was able to demonstrate that this model would, in prin-
ciple, be able to simulate any other quantum system that can be described by
a finite-dimensional Hilbert space. This was a truly groundbreaking discovery
of fundamental importance. However, Feynman’s model still had a drawback.
Each new computational problem would in general require one to choose a
different form and strength of the spin–spin interactions. Obviously, this re-
quirement is hard to implement in practice, and Feynman did not specify the
physical mechanism that would enable the user to freely choose the governing
Hamiltonian.

Therefore the next step consisted of devising a universal quantum com-
puter that, based on a fixed Hamiltonian (i.e., on a specific physical archi-
tecture), would be able to solve any given problem simply by choosing differ-
ent operations applied to the quantum computer. This was accomplished by
David Deutsch in an important paper of 1985 [337]. Deutsch used a model
based on a collection of two-state systems. He showed that a small set of uni-
tary transformations—the aforementioned “quantum gates”—applied to the
combined state of these systems could in principle implement any arbitrary
unitary evolution and thus simulate any physical system. For a large class of
possible evolutions, this quantum computer would also run efficiently [338],
in the sense that the number of computational steps required to implement a
particular evolution would grow less than exponentially with the size of the
input (i.e., the number of two-state systems in Deutsch’s model). This ability
to efficiently simulate (virtually) any other physical system made Deutsch’s
proposal the first blueprint for a (virtually) universal quantum computer.
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7.1.4 Examples of Famous Quantum Algorithms

In the years following Deutsch’s paper, researchers busied themselves with
finding computational problems that would demonstrate the superior power
of a quantum computer over a classical computer [339–343]. Initial attempts
were rather unfruitful, until in 1994 Peter Shor [344,345] presented a quantum
algorithm that could solve the factoring problem (i.e., the task of decompos-
ing a given integer into a product of prime numbers) in only polynomial
time—namely, in time O(N2) for an N -digit number. By contrast, solving
the factoring problem on a classical computer is widely believed (although
not rigorously proved) to require exponential time and is therefore essentially
impossible to accomplish on such a computer for any reasonably large num-
ber. The importance of Shor’s discovery may not lie as much in its potential
practical applications as in the fact that the algorithm plays, as Steane [336]
put it, a “conceptual role similar to that of Bell’s inequality, in defining some-
thing of the essential nature of quantum mechanics.”

It is fair to say that Shor’s algorithm was the root of much of the initial
and continuing interest that surrounds the field of quantum computing. Since
then, progress in finding new algorithms that would demonstrate the power
of quantum computers has been rather slow (cf. [339, 342]). The probably
most significant discovery since Shor’s algorithm has been Grover’s search
algorithm [346,347]. This algorithm allows for highly efficient database search:
It is capable of finding a particular entry in a completely unstructured list
of N items in O(

√
N) steps. By contrast, on a classical computer this task

would take on the order of N steps, since in average we will need to look
through half of the list (i.e., perform N/2 steps) to find a specific entry. Thus
a quantum computer that implements Grover’s algorithm would be faster by
a factor O(

√
N) than any classical computer.

7.1.5 Physical Realizations of Quantum Computers

Our above introduction to quantum computing has been deliberately kept
rather abstract. We have simply assumed that we have a collection of qubits
available that we can coherently manipulate through the application of uni-
tary transformations (gates). We have specified neither the physical nature of
the qubits nor how such gate operations are implemented in practice. In fact,
the area of research on experimental realizations of prototype quantum com-
puters (systems containing a few qubits that can be coherently controlled) is
vast, and it would be completely outside of the scope of this book to attempt
to give an overview of this rapidly evolving field.

Just to give the reader a first idea, in Table 7.1 we list some of the possible
physical realizations of the qubits and control mechanisms (which implement
gates and measurements) that may have the potential to mature into full-
blown quantum computers at some point in the future. Each technology has
its advantages and disadvantages, which can in general be traced back to
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Table 7.1. Examples for the physical realization of the qubit system and the qubit
control.

Scheme Qubits realized as Qubits controlled by

Optical Photons Optical media
Ion trap Trapped ions Laser beam
Cavity QED Two-level atoms Laser beam
NMR Nuclear spins Magnetic field
Solid state Coupled quantum dots Point contact

Superconducting tunnel junctions Bias current of junction

the fundamental trade-off problem between decoherence and controllability,
which we shall discuss in the following Sect. 7.2. Current experiments using
the components listed in Table 7.1 have achieved coherent control of only
a few qubits. Implementation of any useful quantum algorithms will require
many more qubits, and thus these experiments are still a far cry from practical
realizations of quantum computers.

7.2 Decoherence Versus Controllability
in Quantum Computers

As we have already indicated in several places, quantum computers derive
their power from the presence of nonlocal coherent superpositions of the
computational-basis states (7.5), which are product states of the individual
qubit basis states |0〉 and |1〉 (which must be sufficiently distinguishable so we
can manipulate and measure them by means of some apparatus controlling
the quantum computer). Thus quantum computing is based on superposi-
tions of mesoscopically or macroscopically distinct states, which are typically
extremely sensitive to decoherence. It is fair to say that decoherence is the
number-one enemy of quantum computers, and that much, if not most, of the
research on the implementation of a quantum computer has revolved around
the problem of how to control, minimize, and “undo” decoherence.

To address the problem of decoherence in quantum computers, one might
be tempted to suggest that it will be sufficient to shield the qubits as much
as possible from any environmental interactions. Indeed, isolating the qubits
from their surroundings would minimize decoherence. However, such a strat-
egy would also compromise the functionality of the quantum computer. As we
have seen, a quantum computation is carried out through the application of
a series of unitary operations to the qubits. Physically, such gate operations
correspond to some interaction between the qubit system and an external
apparatus. The specific physical form of the interaction depends on the par-
ticular implementation of the quantum computer (see Table 7.1). To reliably
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implement quantum gates, the interaction between the qubits and the control
apparatus must be sufficiently strong.

Thus we are faced with two opposing demands. On the one hand, we
would like to isolate the qubits in order to minimize unwanted environmental
interactions and to thus protect the qubit superposition states. On the other
hand, however, we need to keep the qubit system sufficiently open to allow for
the qubits to be manipulated (in form of state preparations and gate opera-
tions) and read out by controlled interactions with a macroscopic apparatus.
In turn, such qubit–apparatus interactions will in general induce decoherence
of the qubits due to entanglement with the apparatus, with further pertur-
bations introduced by classical noise (fluctuations) in the apparatus.

Therefore, the formidable challenge of designing a quantum computer
consists of meeting both demands in a balanced way. Obviously, a quantum
computer that has a very low environmental decoherence rate but cannot
be manipulated in any reasonable way is as useless as a quantum computer
that we are able to control well but whose environmental interactions are so
strong as to immediately deteriorate the device into a classical computer. In
short, we require the qubits to interact strongly with certain components of
the environment (namely, the apparatus) but not with the remainder (the
uncontrolled surroundings into which the qubits are immersed).

For example, optical quantum computing uses photons as physical qubits,
with the two different orientations of polarization representing the computa-
tional-basis states. Photons are relatively insensitive to decoherence, since
they are uncharged particles and exhibit usually only weak interactions with
each other and with matter. In ordinary linear optical media photons do not
interact with each other at all (and only extremely weakly in nonlinear me-
dia), posing the problem of how to implement two-qubit gate operations that
would entangle a pair of photons. A possible way of out of this dilemma has
been suggested by the famous Knill–Laflamme–Milburn scheme [348], which
uses only linear optics, single-photon states, and projective measurements to
entangle two photonic qubits. However, this scheme in turn introduces new
challenges that need to be overcome for the construction of an optical quan-
tum computer to become feasible. Similarly, qubits implemented as single
spins inside of a nucleus have long decoherence times but are very difficult
to control and measure.

7.3 Decoherence Versus Classical Fluctuations

As discussed in Sect. 2.12, decoherence should be understood as a distinctly
quantum-mechanical effect with no classical analog. By contrast, in the liter-
ature on quantum computing readers will often find that the term “decoher-
ence” is used in a more sloppy way as referring to any process that affects
the qubits, including perturbations due to classical fluctuations and imperfec-
tions. Examples for sources of such classical noise in the context of quantum
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computing are the fluctuations in the intensity [349] and duration [350] of
the laser beam incident on qubits in an ion trap, inhomogeneities in the
magnetic fields in NMR quantum computing [351], and bias fluctuations in
superconducting qubits [293].

Phenomenologically and formally the influence of such classical processes
on the qubits may be described in a manner similar to the effect of envi-
ronmental entanglement, namely, in terms of “qubit errors” (see Sect. 7.4.2
below). From a purely practical point of view, the distinction between deco-
herence due to entangling interactions with an environment on the one hand,
and the loss of phase coherence due to classical noise (in an ensemble average)
on the other hand, may therefore not be relevant and is often not made ex-
plicit. The distinction between classical noise and quantum decoherence has
been further blurred by the field of quantum error correction (see Sect. 7.4),
since the error-correcting schemes are insensitive to the physical origin of the
qubit errors.

Furthermore, as mentioned in Sect. 2.12, the loss of phase coherence due
to environmental entanglement is sometimes simulated by classical fluctua-
tions perturbing the system, i.e., by the addition of certain time-dependent
terms to the self-Hamiltonian of the system. This strategy was implemented,
for example, in theoretical [349,352] and experimental [125,353] studies of the
influence of fluctuating parameters on the phase coherence of qubits in ion-
trap quantum computers. In the theoretical domain, Schneider and Milburn
investigated “decoherence” due to random fluctuations both in the phase and
intensity of the qubit-controlling laser beam [349] and in the parameters of
the trap which confines the ions. In experiments carried out by a group at
NIST [125, 353], the influence of different types of reservoirs on the decay of
Schrödinger-cat states of a trapped ion (superpositions of coherent states and
number eigenstates) was experimentally simulated by letting certain param-
eters of the harmonic trap, such as the location of the minimum or the trap
frequency, fluctuate randomly.

As we have already discussed in Sect. 2.12, the key point is now that, if
the influence of the environment is modeled in this way as classical noise, the
decay of coherence can manifest itself only in an ensemble, i.e., in the form
of an average over a large number of particular realizations of such noise
processes. Since the system is not coupled to any external environment, in
any individual realization of the noise process the dynamics of the system
are completely unitary, and thus no coherence can have been lost from the
system. By contrast, if the system becomes entangled with environmental
degrees of freedom, at the very least we would need to perform a pair of
measurements on the environment before and after the interaction with the
system in order to gather enough information to reverse the effect of deco-
herence by application of an appropriate countertransformation. Moreover,
as shown in the NIST experiment [125], these measurements would not al-
ways constitute a sufficient procedure for “undoing” decoherence (see also
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Sect. IV.C of [16]). Thus this experiment illustrates nicely some of the key
similarities and differences between classical noise and environmental deco-
herence.

This is of course not to say that classical noise is not important in quan-
tum computing. To the contrary, noise due to fluctuations and imperfections
in experimental implementations may be equally significant as the effect of
decoherence induced by environmental entanglement. While we will continue
to reserve the term “decoherence” to describe the consequences of environ-
mental entanglement, the more general term “qubit error” will, if not specified
further, refer to any change of the state of the qubit, regardless of whether
the change is induced by classical noise or environmental entanglement.

7.4 Quantum Error Correction

We have available two main avenues toward combating decoherence effects
in quantum computers. The first route consists of minimizing detrimental
environmental influences before they even have a chance to severely corrupt
the coherent superposition states of the qubits. In Sect. 7.5, we will discuss
one possible method, namely, the encoding of logical qubits states in pointer
subspaces that are immune to decoherence.

The second, complementary approach consists of trying to actively “undo”
the effect that decoherence has imparted on the qubits. Since it is impossi-
ble in practice to exert full control over the environment, phase relations are
typically irreversibly delocalized from the qubits into the environment (see
Sect. 2.7). A true (time) reversal of the decoherence process, i.e., a complete
relocalization of the phase coherence at the level of the qubits, is therefore
out of reach. However, as discussed in Sect. 2.13, through the coupling of
the system to an auxiliary system, we can reconstruct the original superposi-
tion state in a nonlocal fashion. In the context of quantum computing, such
schemes have become known under the heading of quantum error correction,
first developed independently by Steane [354] and Shor [355] in the mid-1990s
(for accessible reviews, see, e.g., [56,356,357]). As we shall see, the basic idea
of quantum error correction is similar to the process of quantum “erasure”
discussed in Sect. 2.13. The main difference between the two schemes lies
in the fact that quantum error correction requires the reconstruction of the
exact initial superposition state. By contrast, quantum “erasure” simply re-
covers the possibility of interference between the path components, and the
reconstructed superposition may be either the original or the phase-reversed
superposition state [see (2.125)].

Let us emphasize that quantum error correction will be an integral, indis-
pensable element of any foreseeable implementation of a quantum computer.
Decoherence induced by interactions with the environment and the control
apparatus as well as noise due to faulty gate operations will simply be too
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strong, according to current estimates, to allow for useful quantum compu-
tations to be carried out if no error-correcting methods are employed. A
concrete example that demonstrates the importance of active quantum error
correction for an even comparably basic computational task has been given
by Miquel, Paz, and Zurek [350] and by Miquel, Paz, and Perazzo [358]. The
authors modeled an ion-trap quantum computer composed of 18 ions (the
qubit system) that implements Shor’s factorization algorithm [344, 345] (see
Sect. 7.1.4) through a series of about 15,000 gate operations, physically rep-
resented by laser pulses incident on the ions. Errors are introduced into the
computation both by imperfect implementations of the gate operations [350]
and by environmental decoherence of the qubit system [358]. It was demon-
strated that, without error correction, the computational task of factorizing
even small numbers (the authors studied the example of the number 15)
would very rapidly go astray, making it effectively impossible to implement
the algorithm in practice.

7.4.1 Classical Versus Quantum Error Correction

First of all, to get a feel for how error correction in the quantum setting de-
mands new approaches, let us briefly review how error correction is typically
implemented in a classical computer. Here, the key idea is that of redundancy.
That is, instead of encoding one bit of information (a logical bit) in a single
physical bit, we encode the logical bit in several physical bits. If now a small
fraction of these physical bits gets corrupted, we can still extract the original
logical bit by a simple majority vote. For example, we may encode the logical
bits 0 and 1 in three physical bits,

0L ←→ 000, (7.9a)
1L ←→ 111, (7.9b)

where we have used the subscript “L” to denote the logical bit. Suppose now
that some noise process flips the third physical bit of the encoded bit 0L,

000 −→ 001. (7.10)

By a simple majority vote, we may now conclude that the uncorrupted state
was likely to be “000.” Of course, this protocol fails if more than one bit was
flipped. Clearly, for our scheme to bring about any improvement over the
completely uncorrected case, we must therefore require the probability of a
single bit flip to be less than 50%. If this probability was larger than 50%,
then the three-bit state would in average suffer more than one bit flip, and
the error correction would, in average, yield the wrong state.

The approach of redundant encoding cannot be directly taken over to the
quantum setting. The idea analog to the classical case would be to copy a
single-qubit state
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|ψ〉 = α |0〉+ β |1〉 (7.11)

onto a set of N − 1 other qubits, such that the total state of all N qubits
would read

|Ψ〉 =
N∏
i=1

(α |0〉i + β |1〉i) . (7.12)

Thereby we would have redundantly encoded the same single-qubit state |ψ〉
in N physical qubits. However, it is a fundamental consequence of the linearity
of quantum-mechanical time evolution that cloning of arbitrary quantum
states is not possible. The proof of this famous no-cloning theorem [20, 21]
is rather straightforward. Suppose we have some sort of device that is able
to copy our two qubit basis states |0〉1 and |1〉1. That is, given a second
qubit described by the initial state |ψ0〉2, the machine would implement the
following process:

|0〉1 |ψ0〉2 −→ |0〉1 |0〉2 , (7.13a)
|1〉1 |ψ0〉2 −→ |1〉1 |1〉2 . (7.13b)

For the special case |ψ0〉2 = |0〉2, this evolution is referred to as a so-called
controlled-not (or cnot) gate in quantum information theory. It simply cor-
responds to an evolution of the von Neumann type (2.52), where the change
of the state of the second system is conditional on the state of the first system.
That is, if the first system is in the state |0〉1, the state of the second system
remains unchanged, whereas the latter changes to |1〉2 if the first system is
in the state |1〉1. This type of evolution is an example of so-called conditional
quantum dynamics.

Since the evolution of the composite system consisting of the device and
the two qubits is unitary and thus linear, it follows from (7.13) that the
output for the input state (|0〉1 + |1〉1) of the first qubit would be

(|0〉1 + |1〉1) |ψ0〉2 −→ |0〉1 |0〉2 + |1〉1 |1〉2 . (7.14)

But this final state is evidently different from the desired output state, which
is

(|0〉1 + |1〉1) (|0〉2 + |1〉2) = |0〉1 |0〉2 + |0〉1 |1〉2 + |1〉1 |0〉2 + |1〉1 |1〉2 . (7.15)

This simple observation concludes our proof. Thus we can clone the single-
qubit state (7.11) only if we had advance knowledge of the coefficients α and
β. But this requirement would be extremely limiting, since we usually do not
know these coefficients, except maybe for a very brief period of time directly
after the preparation of the initial qubit state.

In fact, even if we were able to perfectly clone arbitrary quantum states
and thus mimic the classical redundant encoding, it would not help us in de-
tecting and correcting quantum errors. The reason for this problem lies in the
second fundamental difference between the classical and quantum settings.
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In classical computing, to detect the error that has occurred in a collection of
bits, we can simply read out the state of each bit and then analyze the result
in a suitable manner. By contrast, any measurement performed on the qubits
will in general reveal some information about the state of the qubits. If we
think of this measurement in the usual way as an interaction that entangles
the qubits with some measurement device, then we know that this process
will in turn lead to decoherence of the qubits.

The upshot of this fact is that, in order to successfully do error detection
in the quantum setting, we must extract information about the error that has
occurred in the qubit system without extracting any information about the
state of the qubits themselves. Thus, even if we had managed to redundantly
encode the state of a single qubit in a collection of physical qubits as in
(7.12), we would have no direct way of measuring and comparing the states
of each of the qubits without destroying the superposition and therefore the
very quantum information that we were seeking to protect. We will see in the
following sections how to overcome these obstacles and how to implement
error correction in quantum computation.

7.4.2 Representing the Influence of Decoherence
by Discrete Errors

While in the classical case we only need to correct discrete bit flips, in the
quantum setting the qubit state is represented by a superposition described
by two real numbers that can change by any continuous amount. It would
therefore appear that we need to have available an infinite (in fact, uncount-
ably infinite!) number of different error-correcting operations. Fortunately,
this turns out not to be the case. As we shall see now, we can in fact dis-
cretize the continuum of possible errors into linear combinations of a very
small number of errors, which we can then quite easily correct. This remark-
able result is one of the cornerstones for making quantum error correction
possible. Let us see how this discretization comes about.

For this purpose, consider a single qubit S interacting with some environ-
ment E . Suppose S is initially in a pure state

|ψ〉 = α |0〉+ β |1〉 . (7.16)

Then, following our discussion in Sect. 2.15.3, the initial state of the com-
posite qubit–environment system can always be written in the product form
|ψ〉 |er〉. A completely arbitrary interaction between S and E can be repre-
sented by the evolution

|0〉 |er〉 −→ c00 |0〉 |e00〉+ c01 |1〉 |e01〉 , (7.17a)
|1〉 |er〉 −→ c10 |0〉 |e10〉+ c11 |1〉 |e11〉 , (7.17b)

where the coefficients cij are here equal to either zero or one, and where
the environmental states |eij〉 are not necessarily orthogonal or normalized.
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Depending on the value of the cij , different physical interpretations may be
attached to the general evolution (7.17). For example, the choice c00 = c11 = 1
and c01 = c10 = 0 would correspond to decoherence in the true sense, i.e., to
a purely entangling (von Neumann–type) interaction with the environment
[see (2.52)],

|0〉 |er〉 −→ |0〉 |e00〉 , (7.18a)
|1〉 |er〉 −→ |1〉 |e11〉 , (7.18b)

without any change of the component states |0〉 and |1〉.
Let us for now assume the most general case in which all coefficients cij

in (7.17) are equal to one. Then the arbitrary pure initial state (7.16) of S
evolves according to

|ψ〉 |er〉 −→ α [|0〉 |e00〉+ |1〉 |e01〉] + β [|0〉 |e10〉+ |1〉 |e11〉] . (7.19)

It is elementary to rewrite this equation in the form

|ψ〉 |er〉 −→ (α |0〉+ β |1〉) 1
2

[|e00〉+ |e11〉]

+ (α |1〉+ β |0〉) 1
2

[|e01〉+ |e10〉]

+ (α |0〉 − β |1〉) 1
2

[|e00〉 − |e11〉]

+ (α |1〉 − β |0〉) 1
2

[|e01〉 − |e10〉] . (7.20)

In fact, we can simplify this expression by noting that the part of each term
in the sum corresponding to the qubit system can be written as either the
identity operator Î or one of the Pauli operators σ̂x, σ̂y, and σ̂z acting on the
initial state |ψ〉 of the qubit. Namely,

|ψ〉 |er〉 −→
(
Î |ψ〉

) 1
2

[|e00〉+ |e11〉]

+ (σ̂x |ψ〉)
1
2

[|e01〉+ |e10〉]

+ (σ̂z |ψ〉)
1
2

[|e00〉 − |e11〉]

+ (σ̂y |ψ〉)
1
2

[|e01〉 − |e10〉] . (7.21)

We can summarize this result as follows. Consider a single qubit S, initially
described by a pure state |ψ〉 and interacting with an environment E . Then
an arbitrary evolution of the combined qubit–environment state can always
be written in the form

|ψ〉 |er〉 −→ Î |ψ〉 |eI〉+
∑

s=x,y,z

(σ̂s |ψ〉) |es〉 . (7.22)
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Here the σ̂s act on the Hilbert space HS of S, and |eI〉 and {|es〉} are envi-
ronmental states that are not necessarily orthogonal or normalized.

Let us appreciate the meaning of this result. Equation (7.22) shows that
a completely arbitrary influence of the environment on the qubit can be ex-
pressed simply in terms of a weighted sum of the discrete Pauli operators and
the identity operator acting on the original state of the qubit. This discretiza-
tion of the continuum of possible changes of the state into a superposition
of only four operators can be done because {Î , σ̂x, σ̂y, σ̂z} forms a complete
set of operators for the Hilbert space HS of S. We will see below that this
discretization is crucial in detecting and correcting errors in quantum com-
puters.

Because of their effect on the state of a qubit, the effect of σ̂x and σ̂z is
often referred as a “bit-flip error” and “phase-flip error,” respectively. This
can be seen by comparing (7.20) and (7.21), or directly from the fact that

σ̂x (α |0〉+ β |1〉) = α |1〉+ β |0〉 , (7.23a)
σ̂z (α |0〉+ β |1〉) = α |0〉 − β |1〉 . (7.23b)

In other words, the operator σ̂x swaps the two bits |0〉 and |1〉, while σ̂z
rotates the phase of the bit |1〉 by 180o (which amounts to a sign flip). Note
that the phase flip operation has no classical analogue, since a classical bit
is in either one of the two states 0 and 1. Therefore phase relations between
these two states cannot play a role. Furthermore, the reader may easily verify
that the operator σ̂y is simply a combination of a bit-flip and a phase-flip
error, since σ̂xσ̂z = −iσ̂y.

It should be emphasized, though, that despite this suggestive labeling of
the Pauli operators the physical interpretation of (7.20) and (7.21) in terms of
a sequence of bit-flip and phase-flip errors is only justified if the corresponding
relative states of the environment are orthogonal. Only in this case the Pauli
operators represent mutually exclusive “error possibilities” (with associated
probabilities) that could be distinguished in a measurement.

For our purpose of describing environmental entanglement and the result-
ing decoherence effects, a simplified version of the general result (7.22) will
suffice. From (7.18) and (7.21) we see that the influence of environmental
decoherence on a single qubit can be represented as a combination of the
identity operator and the Pauli operator σ̂z. That is,

|ψ〉 |er〉 −→
1√
2

(
Î |ψ〉 |e+〉+ σ̂z |ψ〉 |e−〉

)
, (7.24)

where we have defined new (conjugate) relative environmental states |e±〉 as

|e±〉 ≡
1√
2

(|e00〉 ± |e11〉) . (7.25)

This result may not come as a surprise, since decoherence is associated with
the delocalization of local phase relations, and we may thus intuitively expect
the effect of decoherence to be related to phase-flip errors.
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The evolution (7.22) can be generalized to a system of N qubits interact-
ing with an environment. One can show that the dynamics of the composite
system composed of these qubits and the environment can be written as

|ψ〉 |er〉 −→
∑
i

(
Êi |ψ〉

)
|ei〉 . (7.26)

Here |ψ〉 is the initial N -qubit state, and the Êi are tensor products of N
operators involving identity and Pauli operators, with each operator acting
on the Hilbert space of a single qubit. For example,

Êi = σ̂(1)
y ⊗ Î(2) ⊗ σ̂(3)

x ⊗ · · · ⊗ σ̂(N)
z etc., (7.27)

where the superscripts indicate which qubit each operator acts on.
For the case of a single qubit, we found that an entangling interaction with

the environment can be described as a combination of no error (represented
by the identity operator) and a phase-flip error (represented by the Pauli
operator σ̂z) [see (7.24)]. The analogous result holds true also for the case of
N qubits. Now the relevant error operators Êi are products of N single-qubit
operators, each of which is either the identity operator or the operator σ̂z
acting on the Hilbert space of a single qubit.5 For example,

Êi = σ̂(1)
z ⊗ Î(2) ⊗ σ̂(3)

z ⊗ · · · ⊗ Î(N) etc. (7.28)

To establish a more transparent notation, let us denote these N -qubit error
operators (7.28) in the form Ẑj1j2···jN , where each jk is either equal to 0 if
the identity operator Î(k) acts on the kth qubit, or equal to 1 if the phase-flip
operator σ̂

(k)
z acts on this qubit. For example, in this notation the operator

Êi written out in (7.28) would read Ẑ101···0. Then we can express a purely
entangling system–environment interaction as

|ψ〉 |er〉 −→

⎧⎨
⎩

1∑
j1=0

1∑
j2=0

· · ·
1∑

jN=0

Ẑj1j2···jN |ψ〉

⎫⎬
⎭ |ẽj1j2···jN 〉 , (7.29)

where the |ẽj1j2···jN 〉 are some relative states of the environment.
We remark that the most general form of (7.29) corresponds, errorwise,

to the “worst-case scenario” of environmental entanglement: In principle, 2N

different error operators Ẑj1j2···jN will need to be taken into account. We
say that phase-flip errors up to weight N will have to be considered, where

5There are at least two equivalent different ways of proving this result. First, we
may try an explicit proof along the lines of the one-qubit case considered above. This
proof, although quite straightforward, is notationally somewhat cumbersome. The
second (and more elegant) route consists of making use of the so-called Jamiolkowski
isomorphism [359]. Since this approach requires the introduction of new formal
elements, we shall not further consider it here.
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the weight of a general error operator Êi is defined as the number of the
constituent single-qubit operators that are different from the identity.

Fortunately, in many cases of interest relevant to quantum error correc-
tion, simplified versions of this general setting can be used. One important
case is that of partial decoherence. Here, only a small number K < N of qubits
becomes entangled with the environment during the time between two appli-
cations of an error-correcting mechanism. Then it will be sufficient to restrict
our attention to the 2K possible error operators of weight ≤ K. Another case
of interest is that of independent qubit decoherence. Here, we focus on error
operators of weight equal to one only, i.e., we consider the case of a collec-
tion of independent phase-flip errors acting on single qubits. Thus each qubit
undergoes phase flips independently of all other qubits: Phase-flip errors are
not correlated among multiple qubits, but only occur locally at the site of an
individual qubit. The assumption of independent qubit decoherence can be
physically justified in situations where each qubit couples dominantly to its
own environment and where these individual environments do not interact
with each other. For example, this may be the case if the qubits are spatially
separated and only couple to their immediate surroundings.

7.4.3 “Undoing” Decoherence in a Quantum Computer

Let us now employ the above results and insights to see how we can effec-
tively “undo” the effects of decoherence on the system and return the qubit
system to its original pre-decoherence state, thereby implementing quantum
error correction. Instead of trying to find out which error to correct by mea-
suring the system and then to directly manipulate the system–environment
combination, we use an additional set of qubits, referred to as the ancilla, to
help us in detecting and correcting errors. Such ancilla qubits play the role of
an artificial “environment.” They are in general of the same physical form as
the computational qubits, but they do not take part in the actual execution
of the quantum algorithm. Their only role is to help the quantum computer
combat decoherence. Instead of manipulating the qubit–environment system
(which is difficult, if not impossible), we operate on the qubit–ancilla system
(over which we assume to have perfect control).

Recall that the influence of an entangling interaction between the qubit
system S and its environment E can be written in the form6 [see (7.26)]

|ψ〉 |er〉 −→
∑
i

(
Êi |ψ〉

)
|ei〉 . (7.30)

Our objective is now to recover, given the entangled state on the right-hand
side of (7.30), the initial (and of course unknown!) state |ψ〉. To do so, let

6Although here we focus on decoherence-induced errors, the following scheme
holds for arbitrary error operators Êi and is not restricted to error operators of the
form Ẑj1j2···jN .



312 7 Decoherence and Quantum Computing

us now bring the aforementioned ancilla qubits (to be denoted by A in the
following) into the game. One purpose of these ancilla qubits is to act as a
diagnostic tool in the following sense. Suppose the initial state of the ancilla
is described by the state |ar〉. We now let the ancilla interact with the qubit
system such that

|ar〉
[∑

i

(
Êi |ψ〉

)
|ei〉

]
−→

∑
i

|ai〉
(
Êi |ψ〉

)
|ei〉 . (7.31)

This equation describes a von Neumann-type interaction (see Sect. 2.5.1),
with the ancilla playing the role of the “apparatus.” To make the following
argument more clear, let us assume that the ancilla states |ai〉 appearing on
the right-hand side of (7.31) are at least approximately mutually orthogonal,
such that they can be distinguished by measurement. (We will elaborate on
this important issue below.)

Now we can use the following procedure (see Fig. 7.2). First, we measure
the observable

ÔA =
∑
i

ai|ai〉〈ai| (7.32)

on the ancilla, with ai �= aj for i �= j. The projective measurement will yield
a particular outcome, say, ak, and lead to the reduction of the entangled state
on the right-hand side of (7.31) onto the kth component of the superposition,
i.e., ∑

i

|ai〉
(
Êi |ψ〉

)
|ei〉 −→ |ak〉

(
Êk |ψ〉

)
|ek〉 . (7.33)

Since we know that the outcome of our measurement was ak, we also imme-
diately know which transformation to use to “undo” the effect of the environ-
ment, namely, Ê−1

k = Ê†k. (This feature motivates our earlier statement that
the ancilla qubits act as a “diagnostic tool” for the “symptom” Êk.) Thus
we now apply the transformation Ê−1

k to our qubit system, which yields

|ak〉
(
Êk |ψ〉

)
|ek〉

Ê−1
k−−−→ |ak〉 |ψ〉 |ek〉 . (7.34)

We have reached our desired result: We have successfully returned the qubit
to its original state |ψ〉. In this way, we have indeed recovered from the
detrimental effect of decoherence.

Note that, as required in order to avoid introducing additional decoher-
ence in the computational basis of the qubit system, we have obtained no
information whatsoever about the state of the qubits themselves. Instead, by
quantum-correlating the composite qubit–environment system with the an-
cilla, we have encoded information about the various errors Êi in the different
relative states |ai〉 of the ancilla. We can safely measure the ancilla without
destroying the quantum information contained in the qubits, since each of
the states |ai〉 of the ancilla is correlated with the full initial state |ψ〉 of
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Fig. 7.2. Quantum error correction by means of ancilla qubits. (a) The interaction
between the system S and the environment E entangles the two partners [see (7.30)].
(b) The ancilla qubits A are let to interact with S, creating the tripartite entangled
state (7.31) involving S, A, and E . (c) A projective measurement on A reduces this
state to a product state of the form (7.33), effectively disentangling the subsystems.
The outcome of the measurement contains information about the error that needs
to be corrected. (d) Application of an appropriate countertransformation Ê−1

k then
restores the original state of S.

the qubits, albeit transformed by the error operators Êi. The measurement
of the ancilla then simultaneously reduces the total composite ancilla–qubit–
environment state to a single one of these errors (it has “forced” the system
to “decide” among the set {Êi} of possible errors), and tells us which error
has been singled out. Thus the task of reconstructing the original superpo-
sition state has boiled down to reversing a single, and known, discrete error
Êk.

In this sense, the basic idea of quantum error correction is, as Preskill
put it [360], to “fight entanglement with entanglement.” By this statement
we mean to convey the insight that we can combat the detrimental effect of
environmental entanglement on our qubit system by entangling the qubit–
environment combination with a third “artificial environment,” namely, the
ancilla, over which we have full control. Our procedure for error recovery has
transferred entropy from the qubits to the ancilla, and the ancilla therefore
acts as a sink for the entropy introduced into the qubit system by the envi-
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ronmental interaction. Accordingly, we must “erase” any error information
stored in the ancilla qubits (i.e., we must in turn couple the ancilla to some
other sink for entropy) before we can reuse the ancilla in a subsequent cycle
of error correction.

Our above scheme for quantum error correction has been highly ideal-
ized. In particular, three issues will make it challenging to implement this
scheme in practice. First, as we shall discuss in Sect. 7.4.4 below, it is im-
possible to design an interaction between the computational qubits and the
ancilla that would allow us to distinguish between all possible errors through
a measurement of the ancilla. Second, in realistic settings the error opera-
tors Êi may be very complex, and it remains to be seen whether and how
the corresponding countertransformations (whose physical implementation
will require interactions of the computational qubits with some macroscopic
device) can be applied to the quantum computer without introducing signif-
icant further decoherence. Third, the ancilla qubits are physically similar to
the computational qubits and can therefore be expected to be equally prone
to environmental interactions (and thus decoherence) as the computational
qubits themselves. Such effective measurements of the ancilla qubits by the
environment would then compromise the proper functioning of the quan-
tum error-correction scheme. Since the inclusion of ancilla qubits increases
the total number of qubits in the quantum computer, and since decoherence
rates typically scale exponentially with the size of the system, it will require
sophisticated experimental designs to ensure not only that quantum error
correction works in practice, but also that it does not unintentionally make
the problem of qubit decoherence even worse.

7.4.4 When Does an Error-Correcting Code Exist?

To keep the above outline of the basic principles of quantum error correction
as simple as possible, we have assumed [see (7.31)] that there exists a unitary
transformation acting on the Hilbert space of the composite ancilla–qubit
system that leads to a correlated ancilla–qubit–environment state in such a
way that the relative ancilla states |ai〉 are all distinguishable and correspond
to the different error types Êi, i.e., 〈ai|aj〉 ≈ δij for two different errors
Êi �= Êj . However, we did not elaborate at all on the question of how to
show that this transformation exists and of how to determine it.

In fact, this question is at the heart of quantum error correction. It turns
out that it is usually impossible to find a transformation that would account
for all possible errors Êi that may in principle occur. Instead, the typical scope
of a scheme for quantum error correction is restricted to transformations of
the form (7.31) that can distinguish all errors Êi up to a certain weight
t < N . Furthermore, error-correcting codes are usually not able to recover
arbitrary initial qubit states, but only those states contained in a certain
subspace Hcode of the total Hilbert space HS of the qubit system. (The
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subspace Hcode is often referred to as the code subspace for the quantum
error-correcting scheme.)

As we have seen in our above outline, the basic strategy of quantum error
correction is to project the qubit state into orthogonal subspaces labeled by
the error operators Êi. Then we can perform a measurement that reveals into
which of these error subspaces the state has been projected and thus obtain
information about which countertransformation to use in order to correct the
error. Formally, a sufficient (albeit not necessary) condition for the existence
of an error-correcting code that can correct errors up to a certain weight t is
therefore given by requiring that the “error-projected” subspaces

{ÊiHcode |weight(Êi) ≤ t} (7.35)

are (at least approximately) mutually orthogonal for all i. Then, for any
initial state |ψ〉 ∈ Hcode, the different error terms Êi |ψ〉 |ei〉 in the expansion
of the perturbed state will be mutually orthogonal and thus distinguishable
by a measurement, without revealing the quantum information encoded in
the state |ψ〉 itself.

7.4.5 Importance of Redundant Encoding
and the Three-Bit Code for Phase Errors

It turns out that, in order to fulfill condition (7.35), it is usually necessary
to use redundant encoding. In Sect. 7.4.1, we explained how in classical com-
puting redundant encoding helps recover the original, unperturbed state. We
also mentioned that we cannot clone an unknown quantum state. However,
note that (7.14) points to a method for how we can easily accomplish a re-
dundant encoding in the “relative-state” form using the computational-basis
states as the preferred basis. Namely, we simply apply a series of cnot gates
between the first and all other qubits, i.e.,

(α |0〉+ β |1〉) |00 · · · 0〉 −→ α |000 · · · 0〉+ β |111 · · · 1〉 . (7.36)

How may such redundant encoding help us in correcting quantum errors?
First of all, to see why we usually cannot get very far without such en-

coding, consider the example of a single-qubit state |ψ〉 = α |0〉 + β |1〉 that
becomes entangled with an environment. The final composite state can then
be written as [see (7.24)]

|Ψ〉 =
1√
2

[(α |0〉+ β |1〉) |e+〉+ (α |0〉 − β |1〉) |e−〉] . (7.37)

The assumption encapsulated in (7.31) is now that there exist two orthogonal
ancilla states |a0〉 and |a1〉 and a unitary transformation acting on the Hilbert
space of the composite ancilla–qubit system such that we can induce the
evolution



316 7 Decoherence and Quantum Computing

|ar〉 |Ψ〉 −→
1√
2

[|a0〉 (α |0〉+ β |1〉) |e+〉+ |a1〉 (α |0〉 − β |1〉) |e−〉] . (7.38)

But if we make the replacement β −→ −β, then the role of the ancilla states
as “error indicators” will be reversed. Namely, the ancilla state |a0〉 will now
be correlated with a term of the phase-flip type, whereas the state |a1〉 will
correspond to the error-free term. Thus a measurement of the ancilla will not
reveal any valuable information about the error that has occurred—unless,
of course, if we knew something about the coefficients α and β (and, in
turn, if the ancilla states were some function of these coefficients). But such
knowledge can clearly not be assumed to exist, since the initial qubit state
will in general be completely unknown.7

This difficulty marks the departure of quantum error correction from the
more simple approach of quantum “erasure” (see Sect. 2.13). Note that the
evolution described by (7.37) and (7.38) is essentially that of the “erasure”
protocol (2.125), with the ancilla and environment corresponding to, respec-
tively, the read-out device and the which-path detector. In quantum “era-
sure,” the interference pattern is recovered in the sense of a conditioning of
the outcome of the read-out measurement (2.124) on the observed position
of the particle on the screen [130]. This conditioning is necessary because
the states |ψ+〉 and |ψ−〉 in (2.125) correspond to, respectively, fringe and
“antifringe” patterns on the screen, with the combined pattern being equal
to the no-interference classical distribution. Thus the effective recovery of an
interference pattern requires us to be able to distinguish the final relative
states |Φ±〉 of the read-out device, but we do not need to infer from the
read-out measurement the particular value of the relative phase between the
components |ψ1〉 and |ψ1〉 in the states |ψ±〉. By contrast, in quantum com-
puting it is important to restore the original superposition state, and thus
we will need to be able to detect and correct the relative phase between the
computational-basis states, a requirement that (7.38) does not fulfill.

This problem can be solved through a redundant encoding of the single-
qubit state. To illustrate this approach, we shall consider the example of a
single logical qubit redundantly encoded in three physical qubits using the
scheme (7.36),

(α |0〉+ β |1〉) |00〉 −→ α |000〉+ β |111〉 . (7.39)

As we will see in the following, this encoding allows us to diagnose (and
recover from) a phase-flip error affecting a single qubit without any knowledge
about the initial qubit state.

First, we transform the encoded state (7.39) to the conjugate basis
{|+〉 , |−〉} for each qubit, where |±〉 = (|0〉 ± |1〉) /

√
2. This transformation

7This is of course the whole point of error correction in both the classical and
quantum settings: We are given a perturbed state and would like to reconstruct
the unknown initial state. If we knew from the outset what the unperturbed state
should be, we could trivially just reprepare the system in this state.
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can be performed by applying the so-called Hadamard rotation

H =
1√
2

(
1 1
1 −1

)
(7.40)

to the original basis states |0〉 and |1〉. Note that a phase-flip σ̂z in the basis
{|0〉 , |1〉} looks like a bit-flip error in the basis {|+〉 , |−〉}, because

σ̂z |±〉 = |∓〉 . (7.41)

We have thus accomplished the encoding

α |0〉+ β |1〉 −→ α |+ + +〉+ β |− − −〉 . (7.42)

The three qubits will interact with the environment and thus be subject to
entanglement and decoherence, leading to phase errors Ẑijk, (i, j, k) ∈ {0, 1}.
Suppose we only consider error operators of weight≤ 1 (namely, the operators
Ẑ000, Ẑ100, Ẑ010, and Ẑ001). Then the composite qubit–environment state may
be written as

|Ψ〉 = (α |+ + +〉+ β |− − −〉) |e000〉
+ (α |−+ +〉+ β |+−−〉) |e100〉
+ (α |+−+〉+ β |−+−〉) |e010〉
+ (α |+ +−〉+ β |− −+〉) |e001〉 . (7.43)

In the following, we shall refrain from writing down the environmental states.
As we do not care about their precise form, we may simply imagine each of
the qubit terms in the state to be correlated with some relative state of the
environment.

Now we would like to diagnose the error. To do so, we first apply the
Hadamard rotation (7.40) one more time to each qubit, which returns us
to the original basis {|0〉 , |1〉}. Then the state (7.43) becomes (omitting the
environmental states)

|Ψ〉 = (α |000〉+ β |111〉)
+ (α |100〉+ β |011〉)
+ (α |010〉+ β |101〉)
+ (α |001〉+ β |110〉) (7.44)

Next we introduce two ancilla qubits prepared in the state |ar〉 = |00〉.8 To
encode information about the qubit errors in the ancilla, we perform a series
of cnot gates in the following way:

8In fact, it can be shown that these two ancilla qubits are not strictly required
to perform the error diagnosis and correction. The error syndrome could in princi-
ple also be extracted directly from the three encoded qubits themselves. However,
inclusion of the ancilla allows our description of the three-bit code to follow more
clearly the basic ideas of quantum error correction outlined above. Furthermore, it
turns out that the ancilla qubits are required to implement so-called fault-tolerant
schemes for error correction (see Sect. 7.4.6 below).



318 7 Decoherence and Quantum Computing

1. First, we apply cnot gates from the first and the second of the S-qubits
to the first ancilla qubit.

2. Then, we carry out cnot gates from the first and the third of the S-qubits
to the second ancilla qubit.

The effect of this sequence of cnot gates on the initial ancilla state |00〉
for each of the three-qubit computational basis states as the input is shown
in Table 7.2. The combined state (7.44) of the ancilla and the three-qubit
system after application of the above sequence of cnot gates then reads

|Ψ〉 |00〉 −→ (α |000〉+ β |111〉) |00〉
+ (α |100〉+ β |011〉) |11〉
+ (α |010〉+ β |101〉) |10〉
+ (α |001〉+ β |110〉) |01〉 . (7.45)

We now see that we have correlated each of the four possibilities Ẑ000, Ẑ100,
Ẑ010, and Ẑ001 with a distinct ancilla state |ij〉, (i, j) ∈ {0, 1}. Since these
states are mutually orthogonal, we can perfectly distinguish the four error
types by measuring the two ancilla qubits.

Now our error-correction procedure is almost complete. Suppose that the
ancilla measurement has yielded the outcome (i.e., the error syndrome) “01.”
This measurement has reduced the composite state (7.45) of the ancilla and
the qubit system to

(α |001〉+ β |110〉) |01〉 . (7.46)

Since the ancilla is now completely disentangled from the qubit system, we
can ignore the ancilla state in the following.

Based on the measurement outcome, we immediately know that we must
apply the countertransformation Î⊗Î⊗σ̂x to correct the error (see Table 7.3).
This transformation changes the state (7.46) according to

Table 7.2. Evolution of the initial two-qubit ancilla state |00〉 after application of
the first (center column) and the second (right column) cnot gate, for the different
qubit–environment input states listed in the left column.

Input First cnot Second cnot

|000〉 |00〉 |00〉
|111〉 |00〉 |00〉
|100〉 |10〉 |11〉
|011〉 |10〉 |11〉
|010〉 |10〉 |10〉
|101〉 |10〉 |10〉
|001〉 |00〉 |01〉
|110〉 |00〉 |01〉
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Table 7.3. Three-bit code for correcting phase-flip errors. The table shows the four
possible error syndromes obtained by measuring the two ancilla qubits, the corre-
sponding errors in the encoded three-qubit state, and the countertransformations
needed to restore the original three-qubit state.

Syndrome Error Recovery transformation

00 Ẑ000 (no error) None needed

11 Ẑ100 (phase-flip of first qubit) σ̂x ⊗ Î ⊗ Î

10 Ẑ010 (phase-flip of second qubit) Î ⊗ σ̂x ⊗ Î

01 Ẑ001 (phase-flip of third qubit) Î ⊗ Î ⊗ σ̂x

α |001〉+ β |110〉 Î⊗Î⊗σ̂x−−−−−→ α |000〉+ β |111〉 , (7.47)

and we have therefore restored the initial, redundantly encoded qubit state
(7.39). We can then, finally, apply the inverse of the encoding transformation
(7.39) to arrive at the original, unperturbed single-qubit state α |0〉+ β |1〉.

This scheme for the correction of phase errors cannot always succeed if
we include phase errors that affect more than one qubit (i.e., if we consider
phase-error operators of weight greater than one). This can be easily seen
from the fact that our two ancilla qubits can give us only two classical bits
of information about the error. Therefore we can distinguish with certainty
only up to four different error possibilities. If we include all possible phase-
error operators for three qubits (i.e., all operators of weight between zero and
three), we can recover the original state only with a certain probability. Since
we now have to be able to correct for eight different errors, a specific error
syndrome will correspond to two different errors. We can compute the prob-
abilities of these two possibilities and then apply the countertransformation
corresponding to the error that is more likely.

Assuming that the probability p of a single-bit error is less than 50% and
that the errors are uncorrelated (such that the probabilities of two-qubit and
three-qubit errors are 3p2(1 − p) and p3, respectively), the most likely error
types will be precisely the ones considered in our example above, namely,
Ẑ000, Ẑ100, Ẑ010, and Ẑ001. More specifically, since the probability of our
scheme to fail is 3p2(1 − p) + p3 (which is simply the probability of the
occurrence of two-qubit and three-qubit errors), the probability of failure
scales as O(p2) and therefore decreases quite rapidly as p becomes smaller.
This is to be compared to the completely uncorrected case, in which the
probability of failure scales as O(p) (since our state will be perturbed any
time a single error occurs, which, by definition, happens with probability
p). Thus our error-correcting scheme described above will improve matters
over the case of no error correction whenever p < 50%. This situation is
similar to the majority-voting scheme for classical error correction discussed
in Sect. 7.4.1. There we showed that error recovery will yield an advantage
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only if in average no more than one bit flips (i.e., if the probability of single-bit
flips is less than 50%).

Interestingly, the three-bit code for phase errors described here was the
basis of the first experimental implementation of quantum error correction re-
alized in 1998 [361].9 The experiment was carried out using liquid-state NMR
to represent an ensemble quantum-computing device [351]. It was found that
the experimentally implemented quantum error-correction protocol indeed
led to a slowdown of the theoretically predicted loss of coherence from the
qubit system.

Since redundant encoding requires a significant increase in the number of
physical qubits in the quantum computer over the unencoded case, redundant
encoding has to be implemented very carefully so as to avoid introducing
large amounts of further decoherence. (Above we had pointed out a similar
problem in the context of the ancilla qubits.) The overarching goal is therefore
to achieve a maximum of error-correcting abilities with the smallest possible
ratio of physical to logical qubits.

7.4.6 Apparatus-Induced Decoherence and Fault Tolerance

Thus far we have considered interactions with the uncontrolled environment
as the source of our phase errors. However, we really meant to convey a
broader notion of “environment” in this context—namely, that of any physi-
cal system interacting with the qubit system. An important such interaction
is the coupling of the qubit system to the apparatus that prepares, manip-
ulates, and measures the qubits and thus processes quantum information.
Any such interaction with the apparatus will in general lead to entangle-
ment between the apparatus and the qubit system and thus to decoherence
of the qubits. Each gate operation, for example, will then typically induce
some qubit decoherence. In addition, the practical implementation of gate
operations will always be imperfect, introducing classical noise. Quantum al-
gorithms usually require the application of many thousands of gates to the
qubit system, leading to the rapid accumulation of errors.

Therefore, we must not only periodically correct qubit errors due to the
continuous interaction with the uncontrolled environment, but also due to
the processing of quantum information. Of course, as mentioned above, since
error correction itself is based on measurements and gate operations per-
formed by some apparatus, it will in turn introduce decoherence effects into
the qubits and cannot be executed with infinite accuracy in any realistic sit-
uation. This problem can be mitigated by so-called fault-tolerant methods
for error detection and recovery [362–366], which aim at ensuring reliable op-
eration of the quantum computer even in the realistic setting of each single

9We note, though, that this experiment did not make use of the two ancilla
qubits introduced above. Instead the error syndrome was obtained directly from
certain joint measurements on the qubit system.
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gate and measurement operation being “noisy” (i.e., having a certain error
probability).

While we shall not go into the details of fault-tolerant quantum computing
(see, e.g., [56,367] for accessible reviews of this subject), we shall state an im-
portant result that is often referred to as the threshold theorem [360,368–371].
If one adopts a fault-tolerant implementation of quantum-error correction,
then one can show that, provided the error rate per gate operation (in some
physical implementation) is below a certain threshold value,10 it should be
possible, at least in principle, to efficiently perform arbitrarily large quan-
tum computations. This important theorem can be proved given a small set
of physically reasonable assumptions about the nature of the errors, and it
suggests that there should be no fundamental obstacle to an implementation
of quantum computers.

7.5 Quantum Computation
on Decoherence-Free Subspaces

We introduced the general concept of decoherence-free subspaces (DFS)
[89–98], or pointer subspaces [9], in Sect. 2.8.1. Recall that DFS are sub-
spaces HDF of the Hilbert space H of the system such that any state |ψ〉
in this subspace remains (exactly or approximately) pure in spite of interac-
tions with the environment. Applied to quantum computing, with the system
represented by a collection of computational qubits, DFS allow us to encode
quantum information in “quiet corners” of the Hilbert space so as to au-
tomatically protect this information from the detrimental influence of the
environment. By contrast with quantum error correction, DFS prevent errors
from happening in the first place and thus represent a strategy for intrinsic
error avoidance.

We showed that [see (2.96)], given the general diagonal decomposition of
the interaction Hamiltonian,

Ĥint =
∑
α

Ŝα ⊗ Êα, (7.48)

a necessary requirement for a DFS to emerge is the existence of a set of
orthonormal degenerate eigenstates |si〉 of the operators Ŝα,

Ŝα |si〉 = λ(α) |si〉 for all α and i. (7.49)

In Sect. 2.8.1, we also discussed that the condition (7.49) amounts to the
presence of dynamical symmetries. Below, we will consider a model in which
all qubits couple in exactly the same way to a single environment. In this

10Current estimates for this accuracy threshold vary between about 10−2 and
10−6 per computational step; see [372] for an analysis of the different estimates.
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case the system–environment interaction is completely symmetric with re-
spect to any permutations of the qubits, leading to a DFS of maximum size.
What happens if this perfect symmetry is broken by additional small inde-
pendent coupling terms? Clearly, we would like our DFS to be reasonably
robust to such perturbations. Following initial studies by Lidar, Chuang, and
Whaley [90], Bacon, Lidar, and Whaley [99] showed that, to first order in
the perturbation strength, the storage of quantum information in DFS is
stable to such perturbations to all orders in time. However, the processing
of such quantum information encoded in DFS was found to be robust to
symmetry-breaking perturbations only to first order in time. The authors
also demonstrated how this insufficient robustness of quantum computation
on DFS can be mitigated by combining DFS with active quantum error-
correction schemes [94].

7.5.1 What Does a Decoherence-Free Subspace Look Like?

So far, we have only stated the general conditions for the existence of a
DFS, without giving any concrete examples of its structure. Also, a DFS
would obviously be of little use for quantum computation if it was so small
as to effectively make it impossible to form the necessary higher-dimensional
superposition states. The question of the size of the DFS relative to the
dimension of the full Hilbert space of the system is therefore very important.
Probably not surprisingly, we must adopt particular models for the system–
environment interaction to give specific answers to this question. Here we will
consider the model most commonly considered in the literature on DFS (see,
e.g., [89,91,93,96,237]), namely, the spin–boson model discussed in Sect. 5.3.

Independent Versus Collective Decoherence

Let us distinguish two limiting cases for modeling decoherence in qubits. The
first limit is that of independent decoherence, i.e., the assumption that each
qubit couples independently to its own environment, without any interactions
between these environments. We already mentioned this case in Sect. 7.4.2.
The assumption of independent decoherence is often made in the context of
quantum error correction. It implies that the error processes affecting the
qubits are completely uncorrelated. Thus, if the probability of a particular
error to affect one qubit is p, the probability of this error to occur in K
qubits will be pK . In this case, we may represent qubit errors simply as a
linear combination of error operators of weight equal to one, i.e., as a com-
bination of single-qubit errors with all other qubits unaffected. Many error-
correcting schemes (such as the three-qubit code discussed in Sect. 7.4.5) are
only efficient in correcting such single-qubit errors, and thus the assumption
of independent decoherence frequently underlies these schemes.

However, this assumption is rather unrealistic when the qubits are located
spatially close to each other (relative to the typical coherence length of the
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environment). In this case, all qubits “feel” the (approximately) same envi-
ronment, and it is likely that errors will become correlated among multiple
qubits. The limiting case corresponding to this situation is that of collective
decoherence, in which all qubits couple to exactly the same environment.

It turns out that these two extremes, completely independent decoher-
ence on the one hand and purely collective decoherence on the other hand,
delineate the limits on the size of a DFS. For the spin–boson model, in the
limit of collective decoherence (and many qubits), the dimension of the DFS
will asymptotically approach the dimension of the original Hilbert space,
thus allowing for optimal decoherence-free encoding. In the opposite limit
of independent decoherence, however, we shall see that there exists no DFS
that would allow for an encoding of logical qubits. We shall not reproduce
the detailed models and proofs necessary to establish these results, but we
nonetheless would like to gain some intuition into the relationship between
the size of the DFS and the particular decoherence model. This will be done
in the following.

A Simple Example

Let us first consider the case of collective decoherence in the spin–boson model
[89, 91, 93, 96, 237]. DFS emerge here almost by definition. The interaction
Hamiltonian for a collection of N qubits is given by a generalization of the
interaction Hamiltonian in (5.90), i.e.,

Ĥint =
N∑
i=1

σ̂(i)
z ⊗

∑
j

(
gij â

†
j + g∗ij âj

)
≡

N∑
i=1

σ̂(i)
z ⊗ Êi. (7.50)

Here the gij denote the coupling strength of the ith qubit to the jth environ-
mental oscillator, and the âj (â†j) are the annihilation (creation) operators
for the jth mode of the bosonic field.

The assumption of collective decoherence means that all qubits couple to
the same environment, which implies that the couplings gij (and thus the
environment operators Êi) must be independent of the index i. Then (7.50)
becomes

Ĥint =

(∑
i

σ̂(i)
z

)
⊗ Ê ≡ Ŝz ⊗ Ê. (7.51)

The precise form of the environment operator Ê is not really important here.
The key point is that the interaction Hamiltonian has now been written in
the form (7.51) with the sum replaced by a single term Ŝz ⊗ Ê.

Now let us recall that a DFS is spanned by a degenerate set of eigenstates
of the system operators Ŝα of the interaction Hamiltonian [see (7.49)]. Thus
in this case the DFS will be spanned by degenerate eigenstates of the collec-
tive spin operator Ŝz defined in (7.51). Clearly, any N -qubit product state
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expressed in the computational basis (7.5) will be an eigenstate of Ŝz. There
are 2N + 1 different possible integer eigenvalues m, ranging from m = −N
(corresponding to the basis state |1 · · · 1〉) to m = +N (for the basis state
|0 · · · 0〉). Generally, a computational-basis state with m0 qubits in the “0”
state has eigenvalue m = 2m0 −N .

The largest number of mutually orthogonal computational-basis states
with the same eigenvalue m of Ŝz is given by the set S0 of basis states with
m = 0, i.e., those with an equal number of qubits being in the “0” and “1”
states. Formally, we may write

S0 =

⎧⎨
⎩ |i1 · · · iN 〉 | ij ∈ {0, 1},

N∑
j=1

ij = 0

⎫⎬
⎭ , (7.52)

and there are

n0 =
(

N

N/2

)
(7.53)

states in this set. Therefore the states contained in S0 span a DFS of dimen-
sion n0. For large values of N , we can approximate the binomial coefficient
in (7.53) using Stirling’s formula,

log2

(
N

N/2

)
≈ N − 1

2
log2(πN/2) N
1−−−→ N. (7.54)

Thus, as claimed above, in the limiting case of collective decoherence the
dimension of our DFS approaches the dimension of the original Hilbert
space, and the encoding efficiency approaches unity (i.e., we can, in the limit
N −→ ∞, encode all 2N qubit basis states of our original Hilbert space in a
decoherence-free fashion).

For example, for N = 4 qubits, the set

S0 = { |0011〉 , |0101〉 , |0110〉 , |1001〉 , |1010〉 , |1100〉 } (7.55)

of computational-basis states spans a maximum-size DFS of dimension equal
to six, to be compared with the dimension of the original Hilbert space, which
is 24 = 16. Thus, given the model for collective decoherence considered here,
we can encode up to two logical qubits in our DFS. Three logical qubits would
already require 23 computational basis states, which (7.55) evidently does not
afford. Using four physical qubits, we can therefore carry out decoherence-free
quantum computations that require no more than two logical qubits.

Conversely, in the case of purely independent decoherence, it is not possi-
ble to find any DFS of dimension greater than one. This can be seen from the
following simple observation. The environment operators Êi appearing in the
interaction Hamiltonian (7.50) will now in general all be different from one
another. To find a DFS, we follow the usual strategy (7.49) of determining a
set of orthonormal basis states {|si〉} such that
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[
Î(1) ⊗ · · · ⊗ Î(j−1) ⊗ σ̂(j)

z ⊗ Î(j+1) ⊗ · · · ⊗ Î(N)
]
|si〉 = λ(j) |si〉 (7.56)

for all i and 1 ≤ j ≤ N . As the reader may easily verify, there is only a single
state that fulfills this eigenvalue problem, namely, the computational-basis
state |0 · · · 0〉. Since we need at least a two-dimensional subspace to encode
a single logical qubit, the case of independent decoherence in the spin–boson
model does not allow for the existence of a DFS for quantum computation. In
the language of pointer subspaces, there is only a single exact pointer state,
and this environment-superselected preferred state of the system will be the
ground state |0 · · · 0〉.

Of course, in realistic settings neither the assumption of purely indepen-
dent decoherence nor the limit of entirely collective decoherence will be com-
pletely appropriate. Fortunately, however, we have now two powerful, comple-
mentary methods at our disposal for combating decoherence in each of these
two limiting cases. We can use encoding in DFS to protect our qubit sys-
tem from collective decoherence effects, and we can recover from single-qubit
errors due to independent decoherence using the active error-correction meth-
ods described in Sect. 7.4. In fact, these two approaches can be tied together
(or “concatenated” [94]) to allow for universal fault-tolerant quantum com-
putation even when the restriction to single-qubit errors is dropped [95,373].

7.5.2 Experimental Realizations of Decoherence-Free Subspaces

The results of the first experiment that explicitly demonstrated the existence
of a DFS were reported by Kwiat and coworkers in 2000 [374]. One should
emphasize that the experiment was more a proof-of-principle demonstration
than an actual realization of a DFS relevant to quantum computation. It was
simply shown that a particular Bell state [see (2.7)] of a pair of photons was
essentially immune to collective decoherence, while photon pairs in the other
three Bell states suffered significant decoherence, in agreement with theoret-
ical predictions. The experiment used an artificial environment, namely, two
little pieces of quartz oriented at adjustable angles with respect to the paths
of the two photons, to induce a controllable decohering interaction with the
photons passing through the quartz. Aligning the two quartz pieces at iden-
tical angles (modulo 90o) induced collective decoherence. Changing the angle
then corresponded to inducing decoherence in different bases. In essence, this
experiment simply demonstrated the existence of a single pointer state.

The results of another experiment on DFS were reported in 2001 by
Kielpinski et al. at NIST [375]. The authors used two-qubit Bell states sim-
ilar to those employed in the experiment by Kwiat et al. [374] described in
the previous paragraph. However, this time they encoded the single logical
qubit into a DFS of a pair of two trapped and strongly interacting 9Be+ ions.
The experiment demonstrated that superpositions of the encoded basis states
were indeed immune to the influence of collective decoherence. The observed
decay of coherence was much slower than for an unencoded qubit state and
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could be attributed to sources other than collective decoherence (such as the
degradation of the read-out pulses and the heating of the motional state of
the ions). Thus the experiment successfully demonstrated the experimental
construction of a two-dimensional subspace (using a four-dimensional Hilbert
space of physical qubits) that was immune to collective decoherence.

Since then, experiments have aimed to create increasingly large DFS using
different physical realizations of the qubits. For example, in 2001 Viola et al.
succeeded in generating the first three-qubit DFS using NMR qubits [376].

7.5.3 Environment Engineering and Dynamical Decoupling

One may wonder to what extent the conditions for the existence of a DFS
can be fulfilled, at least approximately, in situations of practical (i.e., ex-
perimental) interest. In the previous section we have described some recent
experiments in which DFS have indeed been realized. But these DFS are still
very small. It is clear that for reasonably large DFS to exist, the system–
environment interaction must exhibit a sufficiently high degree of symmetry,
and it seems quite unlikely that such conditions will arise naturally in a given
experimental setting.

One possible way of overcoming this limitation is based on environment
engineering. Here, one tries to actively create certain symmetries in the struc-
ture of the system–environment interactions. For obvious reasons, this strat-
egy is sometimes also referred to as a “symmetrization of the environment.”
For example, Dalvit, Dziarmaga, and Zurek [102] showed how such an ap-
propriately engineered symmetrization of the system–environment coupling
could make superposition states in Bose–Einstein condensates to correspond
to (approximate) degenerate eigenstates of the interaction Hamiltonian. Thus
such superposition states would lie within a DFS, thereby significantly en-
hancing their longevity (see also Sect. 6.4.1).

As shown by Poyatos, Cirac, and Zoller [377], by changing the parameters
in the effective system–environment interaction Hamiltonian for a trapped ion
(with the controlling laser beam playing the role of the environment), one
can also select different pointer subspaces and thereby actively control into
which DFS the system (i.e., the trapped ion) is driven. This feature was sub-
sequently experimentally demonstrated in ion-trap experiments, with appli-
cation to the control and simulation of decoherence [125,353] (see also [378]).
This neatly lends direct experimental evidence to the pointer-basis concept.
The form of the “classical” states is not predefined by some a priori criterion
introduced into quantum mechanics from the outside, but is instead dynam-
ically determined by the structure of the system–environment interaction
Hamiltonian, as described in Sect. 2.8. By modifying this interaction Hamil-
tonian, various pointer bases emerge, corresponding to different quasiclassical
states.

Another approach to the active creation of DFS has become known as
dynamical decoupling [379–384]. Here the basic trick consists of introducing
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time-dependent modifications of the Hamiltonian of the system that effec-
tively counteract the influence of the environment. These modifications take
the form of sequences of rapid projective measurements or strong control-field
pulses acting on the system only (“quantum bang-bang control” [379]). Even
if the structure of the system–environment interaction Hamiltonian is not
known at all, decoherence can be suppressed arbitrarily well in the limit of
an infinitely fast rate of the decoupling control field, thus dynamically creat-
ing a DFS (which then represents a dynamically decoupled subspace). In the
realistic case of a finite control rate, sufficient (albeit imperfect) protection
from decoherence can be achieved via this decoupling technique provided the
control rate is larger than the fastest timescale set by the rate of formation
of environmental entanglement.

7.6 Summary and Outlook

The key obstacle to the realization of a quantum computer is the required
trade-off between shielding and controllability. On the one hand, we need
to construct qubit systems that are reasonably protected from unwanted
interactions with the environment in order to minimize decoherence. On the
other hand, these qubit systems must remain sufficiently open to allow for
their coherent control in order to perform the quantum computation.

Given that we thus cannot simply isolate the qubits, the minimization
of decoherence in quantum computation will always require a combination
of techniques, such as active quantum error correction, decoherence-free sub-
spaces, environment engineering, dynamical decoupling, etc. One can show
that, once the (typically rather unrealistic) restriction to single-qubit errors is
dropped, universal fault-tolerant quantum computation can only be achieved
if one uses both DFS and quantum error correction [373]. The idea is then to
first construct the quantum computer in such a way as to exploit (or create)
dynamical symmetries which allow for an encoding in subspaces that are ap-
proximately decoherence-free to a sufficient degree. Effective DFS can also
be created and maintained during the quantum computation via externally
induced time-dependent modifications of the evolution of the qubit system.
Since DFS exhibit a certain degree of robustness toward small perturbations
from the ideal conditions, this approach will induce a certain stability of the
quantum computation toward decoherence effects. Then, as a second step,
schemes for quantum error correction can be used to try to actively recover
from the influence of decoherence.

To date, it has been possible to coherently control only a handful of qubits,
much too few to allow for any useful quantum computation to be carried out.
It remains to be seen if, and when, it will be possible to sufficiently prolong
decoherence times to enable the construction of a working quantum computer.
Regardless, the research into strategies for combating decoherence sparked by
the interest in quantum computing has also proved fruitful for improving our
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understanding of decoherence itself, in both the theoretical and experimental
domains.

In the early days of research on decoherence, the focus had been put
on the fundamental implications of decoherence for quantum measurement
and the quantum-to-classical transition in general, with the main feature
of interest being the practically irreversible nature and extreme efficiency
of decoherence. In the past decade, the field of quantum computation has
significantly broadened this scope by focusing on the active control and en-
gineering of decohering interactions. For instance, we have learned, and ex-
perimentally demonstrated, how to design and manipulate the structure of
system–environment interactions in order to exploit and create niches in the
Hilbert space that are less affected by decoherence. Quantum error correc-
tion has cast the influence and mitigation of decoherence effects into the
language of discrete errors that can be effectively “undone” by exploiting the
very effect that causes decoherence, namely, quantum entanglement. Many
more examples, some of which have been discussed in this chapter, could be
listed here. In this sense, our understanding of decoherence has received a
significant boost from the recent work on quantum computing, and we can
expect many more exciting insights into decoherence to result from this area
of research.



8 The Role of Decoherence in Interpretations
of Quantum Mechanics

Many decades have now elapsed since the famous Solvay conference of 1927
during which the elite of physicists engaged in a heated debate about the in-
terpretation of quantum mechanics [385]. Yet, discussions about the meaning
of quantum theory show no sign of abating. If one would like to go beyond a
purely pragmatic “shut-up-and-calculate” approach to quantum mechanics1

and relate the quantum formalism to a presumed physical reality “out there,”
it is virtually impossible not to get tangled up in interpretive questions. The
existence of a variety of interpretations of quantum mechanics is therefore as
old as quantum theory itself.

In this chapter, we shall discuss the following key question. What impli-
cations does decoherence have for these different interpretations of quantum
mechanics, given that decoherence itself is related to interpretive problems of
quantum mechanics? This question is of particular interest given that deco-
herence was “discovered” a fairly long time after many of the main interpre-
tations of quantum mechanics—such as relative-state interpretations, modal
interpretations, and the pilot-wave theory of de Broglie and Bohm—had al-
ready been formulated. (As recounted at the end of Chap. 1, it was only in
the early 1990s that decoherence started to attract broader attention from
the scientific community.) When the importance of decoherence for a realis-
tic description of interpretation-related topics such as quantum measurement
was finally realized, the question of the implications of decoherence for ex-
isting (and future) interpretations of quantum mechanics became acutely
relevant. Since one of the main goals of interpretations was to make sense
of the puzzling aspects of quantum measurement, and since decoherence was
concerned (among other things) with a realistic description of such measure-
ments, it became inevitable to revisit these interpretations in the context of
the new insights gained from decoherence.

Let us outline some of the key questions that one encounters when in-
vestigating the implications of decoherence for interpretations of quantum
mechanics:

1Although often attributed to Feynman, it appears that the nickname “shut-up-
and-calculate interpretation” was actually coined by Mermin [386]. For an example
of such an interpretive stance, see [44].
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– Is decoherence by itself capable of solving certain foundational problems of
quantum mechanics, thereby rendering some of the interpretive or formal
additives to quantum mechanics introduced by particular interpretations
superfluous? If this is indeed the case, what core foundational problems
remain, and what form do they take?

– Can decoherence enforce the empirical adequacy of interpretations, that
is, can it protect an interpretation from experimental disproof?

– In turn, can decoherence rule out certain interpretations by demonstrating
that these interpretations lead to clashes with standard quantum mechan-
ics or with our observations?

– Can decoherence provide physical motivations for some of the assumptions
introduced by a particular interpretation and thereby also lend a more
precise (physical) meaning to these assumptions?

– To what extent can decoherence act as an “amalgam” that may unify
and simplify a spectrum of different interpretations, thereby showing that
seemingly different interpretations can be reduced to a common core?

These and other questions will be addressed and analyzed in this chapter
(parts of which are based on a review paper [1] of this author2), separately
for each of the main interpretive strands of quantum mechanics. We will
consider the standard and Copenhagen interpretations (Sect. 8.1), relative-
state interpretations (Sect. 8.2), modal interpretations (Sect. 8.3), physical
collapse theories (Sect. 8.4), and Bohmian mechanics (Sect. 8.5). By doing
so, we will not only be able to assess the current status of the different
interpretations in the light of decoherence, but also acquire new insights into
the meaning and scope of decoherence itself.

8.1 The Standard and Copenhagen Interpretations

In this section, we shall discuss the standard interpretation of quantum me-
chanics as commonly presented (either explicitly or implicitly) in most text-
books on quantum mechanics. This interpretation is often also referred to
as “orthodox” quantum mechanics. We deliberately distinguish the standard
interpretation from the Copenhagen interpretation,3 which introduces the
additional assumption of the necessity of fundamental, irreducible classical
concepts in order to describe quantum phenomena, including measurements.

2Parts of this chapter adapted with permission from [1]. Copyright 2004 by the
American Physical Society.

3It has been argued [387], and is now widely recognized, that there exists in
fact no single coherent “Copenhagen interpretation” but rather a patchwork of
sometimes divergent views due to Bohr, Heisenberg, and their contemporaries. Here
our discussion shall refer to the interpretive notions as put forward by Bohr and
Heisenberg (which often need to be distinguished).
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We shall come back to this particular aspect of the Copenhagen interpreta-
tion in Sect. 8.1.3 below. An in-depth discussion of the relationship between
the Copenhagen interpretation and decoherence can be found in [388]; see
also [389,390].

A defining feature of the standard interpretation is the collapse postulate,
which we have already mentioned in many places of this book. This postulate
can be decomposed into several parts. First, it states that every measurement
performed on a quantum system induces a discontinuous break in the unitary
time evolution. Second, this break results in the “collapse” of the wave func-
tion, expanded in terms of the eigenstates of the measured observable, onto
one of these terms. Thereby a single component in the superposition of terms
is selected as the outcome of the measurement. Third, the probability of a
particular outcome is given by the amplitude-squared overlap between the
initial wave function and the quantum state corresponding to the outcome
(Born’s rule; see also footnote 9 on p. 35).

The standard interpretation does not give any explanations of the nature
of the collapse.4 Despite the prominent role of measurement and the collapse
postulate in this interpretation, the concrete definition of “measurement”
remains rather unclear. In principle, the standard interpretation does not
a priori exclude the possibility of macroscopic superpositions of “classical”
states. At the same time, it tells us that such superpositions could never be
observed, since any such observation would amount to a collapse-inducing
measurement interaction. However, the question of what precisely counts as
a measurement is not answered: Is a human observer required to induce the
collapse? When does a given interaction induce a collapse, and when does it
allow the system to continue to evolve unitarily?

8.1.1 The Problem of Outcomes

We have already discussed the problem of outcomes in the context of the von
Neumann measurement scheme (see Sect. 2.5.4). As mentioned there, in the
standard interpretation the interpretive rule for the existence of outcomes (or
definite “values”) is given by the eigenvalue–eigenstate link, which prescribes
that a system has a definite value of a physical quantity if and only if it
is in an eigenstate of the observable corresponding to this quantity. This is
an “objective” criterion since it allows us to infer the existence of a definite
(quantum) state of the system to which a value of a physical quantity can be
ascribed.

Within this interpretive framework (and without presuming the collapse
postulate) decoherence cannot solve the problem of outcomes described in

4The Copenhagen interpretation, on the other hand, appears to emphasize an
epistemic nature of the collapse. Since this interpretation regards the wave function
as representing a probability amplitude only, the collapse has the character of a mere
“increase of information” rather than that of an actual physical process. See also
the discussion in Sect. 2.1.
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Sect. 2.5.4. This is so because phase coherence between macroscopically dif-
ferent pointer states is preserved in the state that includes the environment,
and we can always enlarge the system so as to include (at least parts of)
the environment. In other words, the superposition is only enlarged, with co-
herence being delocalized into the environment (“the interference terms still
exist, but they are not there” [7, p. 224]), and the process of decoherence
could in principle always be reversed. Therefore, if we assume the orthodox
eigenvalue–eigenstate link to establish the existence of determinate values of
physical quantities, decoherence cannot ensure that the system actually ever
is in a definite pointer state (unless, of course, the system is initially in an
eigenstate of the pointer observable), or that measurements have outcomes
at all.

Let us discuss this important issue in some more detail. First note that,
with respect to the global system–environment quantum state vector, the
interaction with the environment has only led to additional entanglement,

|Ψ(t = 0)〉 =

(∑
n

cn |sn〉
)
|E0〉 −→ |Ψ(t)〉 =

∑
n

cn |sn〉 |En(t)〉 . (8.1)

In some sense, the entanglement brought about by the interaction with the
environment could initially even be considered as making the measurement
problem, as considered in the context of the von Neumann scheme (see
Sect. 2.5), even worse. Bacciagaluppi [391, Sect. 3.2] puts it like this:

Intuitively, if the environment is carrying out, without our interven-
tion, lots of approximate position measurements, then the measure-
ment problem ought to apply more widely, also to these spontaneously
occurring measurements. (. . . ) The state of the object and the envi-
ronment could be a superposition of zillions of very well localized
terms, each with slightly different positions, and which are collec-
tively spread over a macroscopic distance, even in the case of ev-
eryday objects. (. . . ) If everything is in interaction with everything
else, everything is entangled with everything else, and that is a worse
problem than the entanglement of measuring apparatuses with the
measured probes.

The rapid decrease of the overlap 〈En(t)|Em �=n(t)〉 of the relative states of
the environment, corresponding to an increase in the distinguishability of
these states, becomes only relevant once we consider local measurements in
the context of the usual measurement axioms of quantum mechanics, for
example, by forming the reduced density matrix of the system corresponding
to the state (8.1),

ρ̂S(t) =
∑
mn

cmc∗n|sm〉〈sn|〈En(t)|Em(t)〉. (8.2)

As discussed in Sect. 2.7, the rapidly decaying overlap 〈En(t)|Em �=n(t)〉means
that interference terms |sm〉〈sn�=m| become damped. The reduced density
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matrix is transformed into an approximate, albeit improper, ensemble of the
component states |sn〉,

ρ̂S(t) ≈
∑
n

|cn|2 |sn〉〈sn|. (8.3)

Recall that the introduction of the reduced density matrix was motivated by
the fact that this mathematical object completely encapsulates all measure-
ment statistics of the local system. These statistics are given by the expecta-
tion values of all possible local observables ÔS , computed from the trace rule
〈ÔS〉 = Tr(ρ̂SÔS). For all practical purposes and for any local measurement
performed on the system only, the statistics generated by the reduced density
matrix (8.3) of the system will then be (approximately) the same as those
generated by the corresponding proper mixture (ensemble) of pure states. In
this purely operational sense, decoherence thus explains why certain interfer-
ence effects are so difficult to observe, especially in the macroscopic domain
(see also Sects. 2.7 and 2.5.3).

However, note that the trace operation is nonunitary and generally mo-
tivated by, and interpreted as, an averaging over different outcomes of mea-
surements. As shown in Sect. 2.4.1, the identification of the formal expression
Tr(ρ̂Ô) as the expectation value of a quantity represented by the operator Ô
relies on the mathematical fact that, when writing out this trace, it is found to
be equal to a sum over the possible outcomes of the measurement represented
by Ô, weighted by the Born probabilities for the system to be “thrown” into
a particular state corresponding to each of these outcomes in the course of
a measurement. This interpretation, however, already presumes that mea-
surements have outcomes and that the Born rule holds. Therefore the trace
operation, and thus the concept and interpretation of reduced density ma-
trices, is based on the statistical interpretation and the usual measurement
axioms of quantum mechanics. In the words of Pessoa Jr. [64, p. 432], “taking
a partial trace amounts to the statistical version of the projection postulate.”

Since, in the standard interpretation of quantum mechanics, it is precisely
this projection (or collapse) postulate that ensures the existence of outcomes
and, consequently, defines when we can assign definite values of physical
quantities to systems, this existence of outcomes cannot be derived from any
formal structure that is obtained by means of the trace rule, such as the
reduced density matrix. Once the measurement axioms (and thus the trace
rule) are dropped, we are left with a global entangled system–environment
state (8.1) that, according to the standard interpretation, does not allow us to
say anything about the physical state of the system or to assign a particular
outcome (i.e., a definite value of a physical quantity) to the system.
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8.1.2 Observables, Measurements,
and Environment-Induced Superselection

In the standard and Copenhagen interpretations, the assignment of physical
properties is determined by an observable that represents the measurement
of a physical quantity and that in turn defines the preferred basis. However,
any Hermitian operator can play the role of an observable, and thus any given
state has the potential for an infinite number of different properties, whose
attribution is usually mutually exclusive unless the corresponding observables
commute (in which case they share a common eigenbasis, which preserves the
uniqueness of the preferred basis). What, then, determines the observable
that is being measured? In the standard and Copenhagen interpretations, it
is essentially the “user” who simply “chooses” the particular observable to
be measured and thus determines which properties the system possesses.

This positivist point of view has led to a lot of controversy. It runs counter
to the notion of an observer-independent reality, which has been at the heart
of natural science since its beginning. Moreover, in practice, one certainly
does not have the freedom to choose arbitrary observables and measure them.
Instead, one has “instruments” (including one’s senses) that are designed to
measure a particular observable. For most (and maybe all) practical purposes,
this will ultimately boil down to a single relevant observable, namely, position.
But what makes the instruments designed for a particular observable?

Answering this crucial question essentially means abandoning the ortho-
dox view of treating measurements as a “black-box” process that has little,
if any, relation to the workings of actual physical measurements. The formal-
ization of measurements as a formation of quantum correlations between a
system and an apparatus goes back to the early years of quantum mechanics
and is reflected in the von Neumann measurement scheme (see Sect. 2.5.1).
However, as we have discussed in Sect. 2.5.2, it does not resolve the issue
of how the choice of observables is made. The second element, the explicit
inclusion of the environment in a description of the measurement process,
was brought into quantum theory by the studies of decoherence. The sta-
bility criterion for pointer states introduced by Zurek [8] means that mea-
surements must be of such a nature as to establish robust records, that is,
the system–apparatus correlations ought to be preserved in spite of the in-
evitable interaction with the surrounding environment (see the discussion in
Sect. 2.8). The “user” cannot choose the observables arbitrarily, but must
design a measuring device whose interaction with the environment is such
as to ensure stable records (which, in turn, defines a measuring device for
this observable). In the reading of orthodox quantum mechanics, this can be
interpreted as the environment determining the properties of the system.

In this sense, the decoherence program has embedded the rather for-
mal concept of measurement as proposed by the standard and Copenhagen
interpretations—with its vague notion of observables that are seemingly freely
chosen by the observer—into a more realistic and physically motivated frame-
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work [388]. This is accomplished via the specification of observer-free crite-
ria for the selection of the measured observable by taking into account the
physical structure of the measuring device and its interaction with the en-
vironment. In most cases, the environment is also needed to amplify the
measurement record [76] and thereby to make it accessible to the external
observer (see also Sect. 2.9).

8.1.3 The Concept of Classicality
in the Copenhagen Interpretation

The Copenhagen interpretation additionally postulates that classicality is not
to be derived from quantum mechanics, for example, as the macroscopic limit
of an underlying quantum structure (as is in some sense assumed, but not
explicitly derived, in the standard interpretation). Instead it prescribes that
classicality ought to be viewed as an indispensable and irreducible element of
a complete quantum theory—and, in fact, be considered as a concept prior to
quantum theory. In particular, the Copenhagen interpretation assumes the
existence of macroscopic measurement apparatuses that obey classical physics
and that are not supposed to be described in quantum-mechanical terms (in
stark contrast to the von Neumann measurement scheme). Such classical
apparatuses are considered necessary in order to make quantum-mechanical
phenomena accessible to us in terms of the “classical” world of our experience
(see, e.g., [72, p. 209]). This dualism between the system, to be described
by quantum mechanics, and the apparatus, obeying classical physics, also
entails the existence of a fundamental (albeit in principle movable) boundary
between system and apparatus, which separates the microworld from the
macroworld (the “Heisenberg cut” [392, p. 15]).5

To understand precisely what Bohr, Heisenberg, and others meant when
they insisted on the necessity of “irreducibly classical concepts” is a notori-
ously difficult task, and we shall refer the reader to, e.g., [388,396] for further
discussions. Whether such fundamental notions of classical concepts are ren-
dered superfluous or even untenable in light of the emergent-classicality pro-
gram of decoherence depends largely on the kind of status—epistemological,
physical, etc.—one attributes to these concepts [388]. It is certainly clear

5As discussed in detail in [388], Bohr and Heisenberg seemed to have held rather
different views of the cut. In particular, Heisenberg suggested that the location of
the cut “cannot be established physically”—it represents no physical discontinuity
[393, p. 49]—“and moreover it is precisely the arbitrariness in the choice of the
location of the cut that is decisive for the application of quantum mechanics” [394,
p. 416]. By contrast, as recounted by Heisenberg [395, p. 24], “Bohr has emphasized
that it is more realistic to state that the division into the object and rest of the
world is not arbitrary” and that the object is determined by the very nature of
the experiment. Howard [396] has also argued that for Bohr the quantum–classical
distinction did not exactly coincide with the object–instrument distinction, whereas
this appears to have been precisely the case for Heisenberg.
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that environment-induced superselection and suppression of interference have
demonstrated how quasiclassical robust states can emerge, or remain absent,
using the quantum formalism alone and over a broad range of microscopic
to macroscopic scales, in excellent agreement with recent experiments (see
Chap. 6) showing that the boundary between system and apparatus is to
a large extent movable toward the apparatus. Similar results have been ob-
tained from the general study of quantum nondemolition measurements (see,
for example, Chap. 19 of [138]), which include the monitoring of a system by
its environment. In this way decoherence unambiguously specifies the location
of the Heisenberg cut and thus provides a physical, quantitative underpinning
of the quantum–classical divide and the dynamics at this boundary.

Note that the Copenhagen view implies that the apparatus is macroscopic
by definition, since it is described in classical terms. However, the actual “in-
strument” could well be microscopic. Only the “amplifier,” which ensures
the effective irreversibility and redundancy of the measurement records (as
first emphasized by Zurek [76]; see also his discussion in [16,323,389]), must
be macroscopic. As an example, consider the decoherence model described
in Sect. 2.10. Here the system can be associated with an “instrument” rep-
resented by a bistable atom, while the environment plays the role of the
amplifier (“bit-by-byte measurement”). Similarly, certain macroscopic mea-
surement devices may be described in (“microscopic”) quantum-mechanical
terms. Examples include the macroscopic detectors of gravitational waves
[69] and the macroscopic resonators in quantum-electromechanical systems
[307] used to implement quantum-limited position measurements [310] (see
Sect. 6.4.2). Both devices may be treated as quantum-mechanical harmonic
oscillators.

Based on the progress already achieved by the decoherence program, it
is reasonable to anticipate that decoherence embedded in some additional
interpretive structure could lead to a complete and consistent derivation of
the (appearance of the) classical world from quantum-mechanical principles.
From a physical point of view, this would make the postulate of intrinsically
classical apparatuses (which have to be treated outside of the realm of quan-
tum mechanics) appear as neither necessary nor viable. In this way, we can
simultaneously acknowledge the correctness of Bohr’s epistemological notion
of the necessity of a classical world and view the classical world as part of, and
as emerging from, a purely quantum-mechanical substrate [67,104,388,391].

8.2 Relative-State Interpretations

The system–observer duality of orthodox quantum mechanics introduces into
the theory external “observers” who are not described by the deterministic
laws of quantum systems but instead follow a stochastic indeterminism. This
approach obviously runs into problems when the universe as a whole is con-
sidered, since by definition there cannot be any external observers.
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The central idea of relative-state interpretations, first described (but not
worked out in detail) by Hugh Everett in the late 1950s [140] and subsequently
further developed by many authors, is to abandon this system–observer dual-
ity. Instead, one (i) assumes the existence of a total quantum state |Ψ〉 repre-
senting the physical state of the entire universe and (ii) upholds the universal
validity of the Schrödinger evolution. In addition, one (iii) postulates that
at the completion of a measurement all terms in the expansion of the total
state in the eigenbasis of the measured observable correspond to (physical)
states in some sense, that is, no particular “outcome” is singled out, neither
formally nor physically. Each of these (physical) states can be understood as
relative (a) to the state of the other part in the composite system (as in Ev-
erett’s original proposal; see also [141,143]), (b) to a particular “branch” of a
constantly “splitting” universe (the many-worlds interpretation, popularized
by DeWitt [397] and Deutsch [398]), or (c) to a particular “mind” in the set
of minds of the conscious observer (the many-minds interpretation; see, for
example, [399]).

Relative-state interpretations face two main difficulties. First, the pre-
ferred-basis problem: If states are only relative, the question arises, relative
to what? What determines the particular basis terms that are used to define
the branches, which in turn specify the relative properties, worlds, or minds
in the next instant of time? When precisely does the “splitting” occur? Which
properties are made determinate in each branch, and how are they connected
to the determinate properties of our experience? Second, what is the meaning
of probabilities, given that every possible outcome “occurs” in some sense,
and how can Born’s rule be motivated in such an interpretive framework?
As we will describe below, proponents of relative-state interpretations have
frequently appealed to decoherence in solving these difficulties (see, for ex-
ample, [398,400–407]).

In turn, the pioneers of the decoherence program, such as Zeh and Zurek,
have often made use of ideas of Everett’s relative-state framework (see, for
instance, [4, 5, 104, 408]), presumably because the Everett approach takes
unitary quantum mechanics essentially “as is,” with a minimum of added
interpretive elements. This matches well the spirit of the decoherence pro-
gram, which attempts to explain the emergence of classicality purely from
the formalism of basic quantum mechanics. Zeh adheres to an Everett-style
branching to which distinct observers are attached [408] (see also Sect. 9.4).
Zurek has employed relative states as a useful concept to clearly bring out
the preferred-basis problem [8] and to emphasize the importance and role of
stable measurement records [84,104] (see Zurek’s “existential interpretation”
described in Sect. 8.2.3 below).

8.2.1 Everett Branches and the Preferred-Basis Problem

Stapp [409, p. 1043] stated the requirement that “a many-worlds interpre-
tation of quantum theory exists only to the extent that the associated ba-
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sis problem is solved.” In the context of relative-state interpretations, the
preferred-basis problem is not only much more severe than in the orthodox
interpretation, but also more fundamental for at least two reasons:

1. The branching occurs continuously and essentially everywhere. If mea-
surements are understood in the general sense of the formation of quan-
tum correlations, every newly formed correlation, whether it pertains to
microscopic or macroscopic systems, corresponds to a branching.

2. The ontological implications are much more drastic, at least in those
relative-state interpretations which assume an actual “splitting” of worlds
or minds, since the choice of the basis determines the resulting “world”
or “mind” as a whole.

The environment-induced superselection criteria of the decoherence pro-
gram have frequently been employed to solve the preferred-basis problem
of relative-state interpretations (see, for example, [104, 406, 407, 410]). A
decoherence-based approach to selecting the preferred Everett bases has sev-
eral advantages. First, no a priori existence of a preferred basis needs to
be postulated, but instead the preferred basis arises dynamically from the
physical criterion of robustness. Second, the selection will be empirically
adequate, since the decoherence program is derived solely from the well-
confirmed Schrödinger dynamics (modulo the possibility that robustness may
not be the universally valid selection criterion). Lastly, the evolving decohered
components of the wave function can be reidentified over time (forming “tra-
jectories” in the preferred state spaces) and thus can be used to define stable,
temporally extended Everett branches. Similarly, such trajectories can be as-
sociated with robust record states of observers and with environmental states
that make information about the state of the system accessible to many ob-
servers (see Sect. 2.9 and also Sect. 8.2.3 below).

The approach of using environment-induced superselection and decoher-
ence to define the Everett branches has been criticized on grounds of being
“conceptually approximate,” since environment-induced superselection gen-
erally leads to an only approximate specification of a preferred basis (see
Sect. 2.8.3) and therefore cannot give an “exact” definition of the Everett
branches (see, for example, the comment of Kent [411], and also Bell’s es-
say [412]). Wallace [407, pp. 90–91] has argued against such an objection
as

(. . . ) arising from a view implicit in much discussion of Everett-style
interpretations: that certain concepts and objects in quantum me-
chanics must either enter the theory formally in its axiomatic struc-
ture, or be regarded as illusion. (. . . ) [Instead] the emergence of a
classical world from quantum mechanics is to be understood in terms
of the emergence from the theory of certain sorts of structures and
patterns, and . . . this means that we have no need (as well as no
hope!) of the precision which Kent [411] and others (. . . ) demand.
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Indeed, it is reasonable to assert that there is no a priori reason to doubt that
an “approximate” criterion for the selection of the preferred basis can give a
meaningful definition of the Everett branches—one that is empirically ade-
quate and that accounts for our experiences. The environment-superselected
basis emerges from the physically very reasonable criterion of robustness, to-
gether with the purely quantum-mechanical effect of decoherence. It would
be rather difficult to imagine how an axiomatically introduced “exact” rule
could be able to select preferred bases in a manner that is similarly physically
motivated and capable of ensuring empirical adequacy.

Besides using the environment-superselected pointer states to describe the
Everett branches, various authors have also directly used the instantaneous
Schmidt decomposition of the composite state (or, equivalently, the set of
orthogonal eigenstates of the reduced density matrix) to define the preferred
basis (we discussed the Schmidt decomposition in Sect. 2.15.1). This ap-
proach is easier to implement than the explicit search for dynamically stable
pointer states, since the preferred basis follows directly from a simple math-
ematical diagonalization procedure at each instant of time. Furthermore, it
gives an “exact” rule for basis selection in relative-state interpretations. The
quantum origin of the Schmidt decomposition, which matches well the “pure
quantum mechanics” spirit of Everett’s proposal (where the formalism of
quantum mechanics supplies its own interpretation), has also been counted
as an advantage [147]. In an earlier work, Deutsch [398] attributed a funda-
mental role to the Schmidt decomposition in relative-state interpretations as
defining an “interpretation basis” which imposes the precise structure that
is needed to give meaning to Everett’s basic concept. However, as pointed
out in Sect. 2.15.1, basis states obtained from the instantaneous Schmidt de-
composition will frequently have properties that are very different from those
selected by the stability criterion and that are undesirably nonclassical. For
example, they may lack the spatial localization of the robustness-selected
Gaussians [409].

The question to what extent the Schmidt basis states correspond to clas-
sical properties in Everett-style interpretations was investigated in detail by
Barvinsky and Kamenshchik [147]. The authors compared the states selected
by the Schmidt decomposition to coherent states (i.e., minimum-uncertainty
Gaussians), where the latter were chosen as the “yardstick states” represent-
ing classicality. As we have seen in Sect. 5.2.5, such coherent states emerge
as the preferred states, for example, in the model for quantum Brownian mo-
tion. For the investigated models, Barvinsky and Kamenshchik found that
only subsets of the Everett branches defined by the Schmidt decomposition
exhibit classicality in the sense of coherent states. Furthermore, the degree
of classicality of these branches is very sensitive to the choice of the initial
state and the interaction Hamiltonian, such that classicality emerges typi-
cally only temporarily, and the Schmidt basis generally lacks robustness un-
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der time evolution. Similar difficulties with the Schmidt-basis approach have
been reported by Kent and McElwaine [148].

8.2.2 Probabilities in Relative-State Interpretations

The question of the origin and meaning of probabilities in a relative-state
interpretation based solely on a deterministically evolving global quantum
state, and the problem of how to consistently derive Born’s rule in such a
framework, has been the subject of much discussion and criticism directed at
this type of interpretation. Early approaches that aimed at an understanding
of probabilities in the relative-state framework in terms of relative frequencies
(see, e.g., [140,397,413–415]) have been shown to be circular [411,416,417].

Initially, decoherence was thought to provide a natural account of the
probability concept in a relative-state framework. The idea was to relate the
diagonal elements of the decohered reduced density matrix to the collection
of possible “events” and to interpret the corresponding coefficients as relative
frequencies of branches [104,418]. Since decoherence enables one to reidentify
the individual localized components of the wave function over time (describ-
ing, for example, observers and their measurement outcomes attached to
well-defined branches; see also Sect. 9.4), this leads to an interpretation of
the Born probabilities as empirical frequencies. However, this argument can-
not yield a noncircular derivation of the Born rule, since the formalism and
interpretation of reduced density matrices presume this rule (see our discus-
sion in Sects. 2.4.1, 2.4.6 and 8.1.1). Attempts to derive probabilities from
reduced density matrices are therefore circular [16,419].

A derivation that is based on the nonprobabilistic axioms of quantum
mechanics and on elements of classical decision theory has been presented by
Deutsch [418] (see also the critique by Barnum et al. [420] and the subsequent
defense by Gill [421] and Wallace [422]; Saunders [423] embedded Deutsch’s
derivation into an operational framework). However, it is important to realize
that such decision-theoretic approaches are subject to the same charge of
circularity pointed out in the previous paragraph. This is so because these
approaches first need to define the “classical” events (outcomes) to which
probabilities are to be assigned. If one starts from pure states of the form
|ψ〉 =

∑
n eiϕn |φn〉, as Deutsch’s derivation does, one would need to (i) justify

the identification of the states |φn〉 with the possible events, and (ii) show
that the phase relations ϕn between these states are irrelevant, i.e., do not
influence the “decision” of the observer. The approach of Deutsch does not
address these issues. Thus it tacitly uses environment-induced superselection
(which selects the set of events that can be observed) and decoherence (which
explains the irrelevance of phase relations from the view of the local observer),
while it fails to supply a derivation of these processes in a manner that does
not presume Born’s rule.

The solution to the problem of understanding the meaning of probabilities
and of deriving Born’s rule in a relative-state framework must therefore be
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sought on a much more fundamental level of quantum mechanics. Quantum
information theory has established the notion that quantum mechanics can
be viewed as a description of what, and how much, “information” nature is
willing to proliferate [56]. For example, a peculiar feature of quantum me-
chanics is that complete knowledge of a global pure bipartite quantum state
|Ψ〉 = (|a1〉 |b1〉+ |a2〉 |b2〉) /

√
2 does not appear to contain any information

about the “absolute” state of one of the subsystems. This hints at ways how
a concept of “objective ignorance,” and therefore of objective probabilities,
may emerge directly from the quantum feature of entanglement without any
classical counterpart. This idea has recently been developed under the head-
ing of environment-assisted invariance, or envariance for short, in a series
of papers by Zurek [16, 65–67]. The motivation and spirit of this approach
is strongly based on decoherence. Envariance and Zurek’s derivation of the
Born rule have been discussed further by Schlosshauer and Fine [424], Bar-
num [425], and Mohrhoff [426]. Given a set of assumptions, envariance leads
to a derivation of quantum probabilities and Born’s rule. We shall outline
this promising approach in the following.

Zurek’s derivation is based on a study of the properties of a composite
entangled state and therefore intrinsically requires the decomposition of the
Hilbert space into subsystems and the usual tensor-product structure. Zurek
considers a bipartite product Hilbert space HA⊗HB and a completely known
composite pure state |Ψ〉 written in the diagonal Schmidt decomposition [see
(2.127)]

|Ψ〉 =
1√
2

(
eiϕ1 |a1〉 |b1〉+ eiϕ2 |a2〉 |b2〉

)
. (8.4)

Here {|a1〉 , |a2〉} and {|b1〉 , |b2〉} are sets of orthonormal basis vectors that
span the Hilbert spaces HA and HB, respectively. Then the core result to be
established by Zurek’s derivation is to show that the probabilities of obtaining
either one of the relative states |a1〉 and |a2〉 (identified by Zurek with the
“events” of interest to which probabilities are to be assigned [66, p. 12]; see
also the discussion in [424]) are equal. Given this result, generalizations to
higher-dimensional Hilbert spaces and to the case of unequal absolute values
of the Schmidt coefficients in (8.4) can be achieved by means of a counting
argument [67].

The result is arrived at in two key steps. First, a few simple and quite
natural assumptions (called “facts” by Zurek [67]) are introduced that relate
the global quantum state vector (8.4) to properties of the “state of the system
A.” This is necessary because the global quantum state of the composite
system is all that the pure state-vector formalism of quantum mechanics
provides for the description of two entangled subsystems. More generally,
the relative-state framework presumes nothing besides the global unitarily
evolving state vector, which usually contains a high degree of environmental
entanglement. There does not exist a quantum state vector that could be
assigned to one of the subsystems alone, and (as discussed above) we must
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not use reduced density matrices to describe the local system. Zurek’s “facts”
can be stated as follows [67]:

(i) The state of A is completely determined by the global quantum state
(8.4).

(ii) The state of A specifies all measurable properties of A, including prob-
abilities of outcomes of measurements on A.

(iii) Unitary transformations can change the state of A only if they act on A.
That is, when the transformation has the form ÎA ⊗ ÛB, the state of A
remains the same. This amounts to a “no-signaling” assumption, i.e., to
the assumption that entanglement cannot be used to send instantaneous
“messages” between subsystems (see also [424,425] for discussions of this
assumption).

Granted these three assumptions, Zurek shows that measurable properties of
A can depend neither

(1) on the phases ϕi in (8.4), such that we can assume the simplified form

|Ψ〉 =
1√
2

(|a1〉 |b1〉+ |a2〉 |b2〉) (8.5)

for our purpose of discussing probabilities associated with A;
(2) nor on whether |a1〉 is paired with |b1〉 or with |b2〉, i.e., the unitary

transformation acting on A that changes the quantum state vector

|Ψ〉 =
1√
2

(|a1〉 |b1〉+ |a2〉 |b2〉) (8.6)

into
|Ψ ′〉 =

1√
2

(|a2〉 |b1〉+ |a1〉 |b2〉) (8.7)

cannot have altered the state of A.

In a way, result (2) already indicates a feature of ignorance about the state
of A, since interchanging the potential “outcomes” |ai〉 through local op-
erations performed on A does not change any measurable properties of A.
This feature may be viewed as leading to a form of “objective indifference”
among the |ai〉. It is important to note that this effect is crucially dependent
on the feature of entanglement. In a nonentangled pure state of the form
|ψ〉 =

(
|a1〉+ eiϕ |a2〉

)
/
√

2, the phase ϕ must of course not be ignored (and
would be measurable in a suitable interference experiment), and therefore the
system described by the “swapped” state vector |ψ′〉 =

(
|a2〉+ eiϕ |a1〉

)
/
√

2
is clearly physically different from that represented by the original state vec-
tor |ψ〉.

To make the above argument more precise, the second key step of the
derivation explicitly connects the notion of probabilities of the outcomes |ai〉
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in a measurement performed on A (previously only subsumed under the gen-
eral heading of “measurable properties of A”) to the global state vector via
an additional assumption. In [67], Zurek offers three possible choices for this
assumption, of which we should quote only one (see also [425]). Namely, it
is assumed that the form of the Schmidt product states |ai〉 |bi〉 appearing in
(8.4) implies a perfect correlation between the Schmidt “partners,” i.e., that
the detection of the Schmidt state |ai〉 implies detection of its partner |bi〉
with certainty. This leads one to conclude that the probabilities for |ai〉 and
|bi〉 must be equal. Given this assumption and using result (2) above, it can
be readily established (see [67, 424]) that the probabilities for |a1〉 and |a2〉
must be equal, thus completing the derivation.

The need for the final assumption may be considered a reflection of the
well-worn phrase that a transition from a nonprobabilistic theory (such as
quantum mechanics solely based on deterministically evolving state vectors)
to a probabilistic theory (that refers to “probabilities of outcomes of local
measurements”) requires, at some stage, to “put probabilities in to get prob-
abilities out” [424]. However, in the quantum setting, this introduction of
the probability concept relies only on a special case of probability—namely,
certainty—and has a far more objective character than in the classical setting.
While in the latter case probabilities refer to subjective ignorance in spite of
the existence of an underlying well-defined physical state, in the quantum
case all that is available, namely, the global entangled quantum state, is per-
fectly known. The objectivity of ignorance in quantum mechanics can thus be
viewed as a consequence of a form of “complementarity” between local and
global observables [67] and helps explain the fundamental need for a proba-
bilistic description in the quantum setting despite the deterministic evolution
of the global state vector.

It is the great merit of Zurek’s proposal to have emphasized this objective
character of quantum probabilities arising from the feature of quantum entan-
glement. On the basis of the above assumptions and the resulting derivation
of Born’s rule, Zurek [67] has also shown how key elements of the decoherence
program, such as the environment-induced superselection of pointer states,
can be rederived using the framework of envariance alone, without resorting
to a description in terms of reduced density matrices. The importance of
such an approach lies in the fact that, as discussed in several places of this
book, the usual formalism of decoherence relies fundamentally on reduced
density matrices and thus on the usual measurement axioms of quantum me-
chanics, in particular on Born’s rule. It is fair to say that this reliance has
been a key challenge to the development of a decoherence-based no-collapse
interpretation of quantum mechanics that derives the measurement postu-
lates as emerging in an effective manner from consequences of environmental
entanglement alone.
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8.2.3 The “Existential Interpretation”

A relative-state interpretation that relies heavily on decoherence has been
proposed by Zurek [84, 104] (see also the recent reevaluation in [67]). This
approach, termed the “existential interpretation,” defines the reality, or ob-
jective existence, of a state as the possibility of finding out what the state is
and simultaneously leaving it unperturbed, similar to a classical state. Zurek
assigns a “relative objective existence” to the environment-superselected ro-
bust states. By measuring properties of the system–environment interaction
Hamiltonian, the observer could, at least in principle, determine the set of
observables that can be measured on the system without perturbing it and
thus find out the “objective” state of the system. What actually happens, of
course, is that the observer takes advantage of the redundant records of the
state of the system encoded in the environment (see Sect. 2.9). By intercept-
ing parts of this environment, the observer can determine the state of the
system essentially without perturbing it [16,66,110,323]).

Zurek emphasizes the importance of stable records for observers, i.e., of
robust correlations between the environment-selected states and the memory
states of the observer. Information must be represented physically [325], and
thus the “objective” state of the observer who has detected one of the poten-
tial outcomes of a measurement must be physically distinct and objectively
different from the state of an observer who has recorded an alternative out-
come (since the record states can be determined from the outside without
perturbing them—see the previous paragraph). The different objective states
of the observer are, via quantum correlations, attached to different branches
defined by the environment-selected robust states; they thus ultimately label
the different branches of the universal state vector. This is claimed to lead
to the perception of classicality. The impossibility of perceiving arbitrary
superpositions is explained via the rapid decoherence-induced suppression of
interference between different memory states, where each (physically distinct)
memory state represents an individual observer identity (see also Chap. 9).

Recently, Zurek has connected the existential interpretation to his en-
variance program and his derivation of the Born rule (see the previous
Sect. 8.2.2) [67]. The derivation can be recast in the framework of the ex-
istential interpretation such that probabilities refer explicitly to the future
record state of an observer. This concept of probability bears similarities with
classical probability theory (for more details on these ideas, see [67]).

8.3 Modal Interpretations

The first type of modal interpretation was suggested by van Fraassen [427,
428] based on his program of “constructive empiricism,” which proposes to
take only empirical adequacy, but not necessarily “truth,” as the goal of sci-
ence. Since then, a large number of interpretations of quantum mechanics
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have been suggested that can be considered as modal (for a review and dis-
cussion of some of the basic properties and problems of such interpretations,
see [429]).

In general, the idea of modal interpretations is to weaken the orthodox
eigenvalue–eigenstate link by allowing for the assignment of definite measure-
ment outcomes even if the system is not in an eigenstate of the observable
representing the measurement. In this way, one can preserve a purely uni-
tary time evolution and account for definite measurement results without the
need for an additional collapse postulate. Of course, this immediately raises
the question of how physical properties perceived through measurements and
measurement results are connected to the quantum state. The general goal of
modal interpretations is therefore to specify rules that determine a catalog of
possible properties of a system described by the density matrix ρ̂(t). Two dif-
ferent views are typically distinguished, namely, a “semantic approach” that
only changes the way of talking about the connection between properties and
state, and a “realistic view” that provides a different specification of what
the possible properties of a system really are, given the state vector (or the
density matrix).

Such an attribution of possible properties must fulfill certain require-
ments. For instance, probabilities for outcomes of measurements should be
consistent with the usual Born probabilities of standard quantum mechanics.
It should also be possible to recover our experience of classicality at the level
of macroscopic objects. And finally, an explicit time evolution of properties
and their probabilities should be definable that is consistent with the results
of the Schrödinger equation. As we shall see in the following, decoherence has
frequently been used to motivate and define rules for property assignment in
modal interpretations. Dieks [430,431] even suggested that one of the central
goals of modal approaches is to provide an interpretation of decoherence.

8.3.1 Property Assignment Based on
Environment-Induced Superselection

The intrinsic difficulty of modal interpretations is to avoid any ad hoc charac-
ter of the property assignment, yet to find generally applicable rules that lead
to a selection of possible properties that include the determinate properties
of our experience. To solve this problem, various modal interpretations have
embraced the results of the decoherence program. A natural approach would
be to employ the environment-induced superselection of preferred bases to
define sets of possible quasiclassical properties associated with the correct
probabilities. This approach would be based on an entirely physical and very
general selection criterion (namely, the stability criterion) and has, for the
cases studied, been shown to give results that agree well with our experience,
thus matching van Fraassen’s goal of empirical adequacy.

Furthermore, since the decoherence program is based solely on Schrödinger
dynamics, the task of defining a time evolution of the “property states” and
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their associated probabilities which is in agreement with the results of unitary
quantum mechanics would presumably be easier than in a model of property
assignment in which the set of possibilities does not arise dynamically via the
Schrödinger equation alone (for a detailed proposal for modal dynamics of
the latter type, see [432]). The need for explicit dynamics of property states
in modal interpretations is controversial. One can argue that it suffices to
show that at each instant of time, the set of possibly possessed properties
that can be assigned to the system is empirically adequate, in the sense that
it contains the properties of our experience, especially with respect to the
properties of macroscopic objects (this is essentially the view of, for example,
van Fraassen [427, 428]). On the other hand, this cannot ensure that these
properties behave over time in agreement with our experience (for instance,
that macroscopic objects which are left undisturbed do not spontaneously
change their position in space in an observable manner). In other words, the
emergence of classicality is to be tied not only to determinate properties at
each instant of time, but also to the existence of quasiclassical “trajecto-
ries” in property space. Since decoherence allows one to reidentify compo-
nents of the decohered density matrix over time, this could be used to derive
property states with a continuous, quasiclassical trajectory-like time evolu-
tion based on Schrödinger dynamics alone. For discussions of this approach,
see [432,433].

8.3.2 Property Assignment Based on
Instantaneous Schmidt Decompositions

Since it is often rather difficult to determine explicitly the robust pointer
states in more complicated models (see the predictability-sieve approach de-
scribed in Sect. 2.8.3), the problem arises of how to specify a simple yet
general rule for property assignment based on environment-induced supers-
election that is easy to apply to concrete cases of interest. To simplify this
situation, several modal interpretations have restricted themselves to the or-
thogonal decomposition of the density matrix to define the set of properties
that can be assigned (see, for instance, [68,434–437]).

For example, the approach of Dieks [436] recognizes, by referring to the
decoherence program, the relevance of the environment by considering a com-
posite system–environment state vector and its diagonal Schmidt decomposi-
tion, |Ψ〉 =

∑
k

√
pk |sk〉 |ek〉, which always exists (see Sect. 2.15.1). Possible

properties that can be assigned to the system are then represented by the
Schmidt projectors |sk〉〈sk|. Although all terms are present in the Schmidt
expansion (which Dieks calls the “mathematical state”), the “physical state”
is postulated to be given by only one of the terms, with probability pk. A
generalization of this approach to a decomposition into any number of sub-
systems has been described by Vermaas and Dieks [437]. In this sense, the
Schmidt decomposition itself is taken to define an interpretation of quantum
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mechanics. Dieks [438] suggested a physical motivation for the Schmidt de-
composition in modal interpretations based on the assumed requirement of
a one-to-one correspondence between the properties of the system and its
environment. (For a comment on the violation of the property composition
principle in such interpretations, see the analysis by Clifton [429].)

However, as discussed in Sects. 2.15.1 and 8.2.1, the states selected by
the (instantaneous) orthogonal decomposition of the reduced density matrix
will in general differ from the robust environment-superselected states and
may have distinctly nonclassical properties. That this will be the case es-
pecially when the states selected by the orthogonal decomposition are close
to degeneracy (as it is often the case for macroscopic systems with many
degrees of freedom) has already been shown in Sect. 2.15.1. This issue has
also been explored in more detail in the context of modal interpretations by
Bacciagaluppi [439] and Donald [440], who showed that in the case of near-
degeneracy, the resulting projectors will be extremely sensitive to the precise
form of the state [439]. Clearly such sensitivity is undesired, since the projec-
tors, and thus the properties of the system, will not be well-behaved under
the inevitable approximations employed in physics [440].

8.3.3 Property Assignment Based on
Decompositions of the Decohered Density Matrix

Other authors have therefore used the orthogonal decomposition of the deco-
hered reduced density matrix (instead of the decomposition of the instanta-
neous density matrix), which has led to noteworthy results. When the system
is represented by an only finite-dimensional Hilbert space, the resulting states
were indeed found to be typically close to the robust states selected by the
stability criterion, unless again the final composite state was close to degen-
eracy [441, 442]. Thus, in sufficiently nondegenerate cases, decoherence can
ensure that the definite properties selected by modal interpretations of the
Dieks type will be reasonably close to the properties corresponding to the
ideal pointer states, provided the modal properties are based on the orthog-
onal decomposition of the decohered reduced density matrix.

On the other hand, Bacciagaluppi [443] showed that, in the case of an
infinite-dimensional state space of the system, the predictions of the modal
approach [436, 437] and those of decoherence can differ significantly. Using
the scattering model of Joos and Zeh [7] described in Chap. 3, it was demon-
strated that the definite properties obtained from the orthogonal decomposi-
tion of the decohered density matrix were highly delocalized (that is, smeared
out over the entire spread of this matrix), although the coherence length of
the density matrix itself was shown to be very small, so that decoherence in-
dicated localized properties. Thus, based on these results (and similar ones of
Donald [440]), decoherence can be used to argue for the physical inadequacy
of the rule for the assignment of definite properties proposed by Dieks [436]
and Vermaas and Dieks [437].
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8.4 Physical Collapse Theories

The basic idea of physical collapse theories is to introduce an explicit modifi-
cation of the Schrödinger time evolution to achieve a physical mechanism for
state-vector reduction (for an extensive review, see [444]). This is in general
motivated by a “realist” interpretation of the state vector, that is, the state
vector is directly identified with a physical state. This assumption is then seen
as requiring the reduction of a superposition state onto one of its components
to establish equivalence to the observed determinate properties of physical
states (at least as far as the macroscopic realm is concerned). Physical col-
lapse models are not only motivated by the problem of the nonobservability
of macroscopic interference effects, but moreover also by the conceptual goal
of resolving a felt “weirdness” in the existing quantum theory [445] as exem-
plified by Schrödinger’s cat paradox. Since such models lead to an objective
reduction of the wave function of a system, they allow for the assignment of a
pure quantum state, i.e., a definite wave function, to the system at (almost)
all times.

The first proposals for theories of this type go back to Pearle [446–448] and
Gisin [194], who developed models that modify the unitary dynamics such
that a superposition of quantum states evolves continuously into one of its
terms (see also the review by Pearle [449]). Typically, terms representing ex-
ternal white noise are added to the Schrödinger equation, causing the squared
amplitudes |cn(t)|2 in the state-vector expansion |Ψ(t)〉 =

∑
n cn(t) |ψn〉 to

fluctuate randomly in time, while maintaining the normalization condition∑
n |cn(t)|2 = 1 for all t. Eventually one amplitude |cn(t)|2 approaches a

value of unity, while all other squared coefficients decay to zero (the “gam-
bler’s ruin game”), where |cn(t)|2 −→ 1 with probability |cn(t = 0)|2 to
ensure agreement with the predictions of the Born rule. Such models are
known under the heading of stochastic dynamical reduction.

These early models exhibit two main difficulties. First, they suffer from
the preferred-basis problem. What determines the terms in the state-vector
expansion onto which the state vector gets reduced? Why does reduction lead
to the distinct macroscopic states of our experience and not superpositions
thereof? Second, how can one account for the empirical fact that the effec-
tiveness of the collapse seems to increase from microscopic to macroscopic
scales?

These problems motivated spontaneous localization models, first proposed
by Ghirardi, Rimini, and Weber (henceforth GRW) [450]. Here state-vector
reduction is not implemented as a dynamical process (i.e., as a continuous
evolution over time), but instead occurs instantaneously and spontaneously,
leading to a spatial localization of the wave function. To be precise, the N -
particle wave function ψ(x1, . . . ,xN ) is at random intervals multiplied by a
Gaussian of the form exp

[
−(X− xk)2/2Δ2

]
(this process is often called a

“hit” or a “jump”), and the resulting product is subsequently normalized.
The occurrence of these hits is not explained, but simply postulated as a new
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fundamental physical mechanism. Both the coordinate xk and the center X
of the Gaussian hit are chosen at random, but the probability of a specific X
is postulated to be given by the squared inner product of ψ(x1, . . . ,xN ) with
the Gaussian (and therefore hits are more likely to occur where |ψ|2, viewed
as a function of xk only, is large).

The mean frequency ν of hits for a single microscopic particle is chosen
so as to effectively preserve unitary time evolution for microscopic systems,
while ensuring that for macroscopic objects composed of a very large number
N of particles the localization occurs rapidly (on the order of Nν) in order to
preclude the persistence of nonclassical spatial superpositions on timescales
shorter than realistic observations could resolve. In their original paper [450],
GRW chose ν ≈ 10−16 s−1, and thus a macroscopic system containing on the
order of 1023 particles would undergo localization on average every 10−7 s.
Inevitable coupling to the environment can in general be expected to lead to
a further drastic increase of N and therefore to an even higher localization
rate. Note, however, that the localization process itself is independent of any
interaction with the environment.

Subsequently, the ideas of stochastic dynamical reduction and the GRW
theory were combined into continuous spontaneous localization models [451,
452]. Here localization of the GRW type can be shown to emerge from
a nonunitary, nonlinear Itô stochastic differential equation, namely, the
Schrödinger equation augmented by spatially correlated Brownian motion
terms (see also [191, 453]). The particular choice of the stochastic terms
determines the preferred basis. Frequently, these terms have been based
on the mass density, which yields spatial localization similar to the GRW
model [451–453]. Stochastic terms driven by the Hamiltonian, leading to a
reduction in the energy basis, have also been studied [454–463].

8.4.1 The Preferred-Basis Problem

Physical reduction theories typically remove wave-function collapse from the
restrictive context of the orthodox interpretation (where the external observer
arbitrarily selects the measured observable and thus determines the preferred
basis). Instead, they understand reduction as a universal mechanism that
acts constantly on every state vector regardless of an explicit measurement
situation. It is thus particularly important to provide a definition for the
states onto which the wave function collapses.

As mentioned before, the original stochastic dynamical reduction models
suffered from this preferred-basis problem. Taking into account environment-
induced superselection of a preferred basis could help resolve this issue. Since
decoherence occurs on extremely short timescales (especially for mesoscopic
and macroscopic objects), it would presumably be able to bring about basis
selection much faster than the time required for dynamical fluctuations to
establish a “winning” expansion coefficient.
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By contrast, the GRW theory solves the preferred-basis problem by postu-
lating a mechanism that leads to spatial localization. That is, position is here
assumed to be the universal preferred basis. On the one hand, decoherence
supplies the physical motivation for this basis selection (see Sect. 2.8.4). On
the other hand, however, by restricting the reduction mechanism to spatial lo-
calization, GRW bypasses the question of why certain systems are observed to
be in robust states which are not necessarily spatially localized. For example,
microscopic systems are usually found in energy eigenstates, and SQUIDs
are described by states of supercurrents flowing in specific directions (see
Sect. 6.3). In the case of microscopic systems, the particular choice of the
parameters of the localization process in the GRW model means that these
systems remain essentially unaffected by the reduction mechanism. Similarly,
in the case of SQUIDs, the GRW mechanism would only result in a small re-
duction of the supercurrent below the detectable level due to a breaking-up of
Cooper pairs, but not in an approximate reduction onto one of the persistent-
current states [444,464,465].

However, given that these systems are effectively exempt from the GRW
collapse, what makes it then so difficult to observe superpositions of energy
eigenstates in microscopic systems, or superpositions of supercurrent states in
SQUIDs? Of course, one may argue that essentially all our observations must
be grounded in a position measurement,6 and that thus the GRW mechanism
will lead to an indirect reduction of such superpositions through the coupling
to measurement devices, which are usually macroscopic and thus suscepti-
ble to the localization mechanism. However, such an argument introduces a
dependence on measurements for the “world as we perceive it” to emerge.
This runs counter to the basic idea of physical collapse theories, namely,
that quantum states directly represent a physical, observer-independent re-
ality that does not require measurements at a fundamental level. In compar-
ison, environment-induced superselection constitutes a much more general
approach to the problem of the preferred basis, by explaining the emergence
of a range of preferred robust observables on the basis of the physical prop-
erties of the relevant system–environment interactions.

A similar argument can be made with respect to continuous spontaneous
localization models. Here, one essentially preselects a preferred basis through
the particular choice of the stochastic terms added to the Schrödinger equa-
tion. This allows for a greater range of possible preferred bases, for instance by
combining terms driven by the Hamiltonian and by the mass density, leading
to a competition between localization in energy and position space (corre-
sponding to the two most frequently observed preferred bases). Nonetheless,

6This measurement may ultimately occur only in the brain of the observer; see
the objection to the GRW model by Albert and Vaidman [466]. With respect to the
general preference for position as the basis of measurements, Bell [412] once said
that “in physics the only observations we must consider are position observations,
if only the positions of instrument pointers.”
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any particular choice of terms will again be subject to the charge of possessing
an ad hoc flavor.

8.4.2 Simultaneous Presence of Decoherence
and Spontaneous Localization

Since decoherence will always be present, the assumption that a physical col-
lapse theory holds means that the evolution of a system will be guided by
both decoherence effects and the collapse mechanism. Let us first consider
the situation in which decoherence and the collapse mechanism act construc-
tively in the same direction, i.e., toward a common preferred basis. This
raises the question in which order these two effects influence the evolution
of the system [391]. If the collapse occurs on a shorter timescale than the
environment-induced superselection of a preferred basis and the suppression
of local interference, decoherence will in most cases have very little influence
on the evolution of the system, since typically the system will already have
evolved into a reduced state. Conversely, if decoherence acts more quickly on
the system than the localization mechanism, the interaction with the envi-
ronment would lead to the preparation of quasiclassical robust states that
are subsequently chosen by the localization mechanism. As demonstrated in
Chap. 3, decoherence usually occurs on extremely short timescales and can
be shown to be typically significantly faster than the action of the reduction
mechanism (for such studies related to the GRW model, see [166,467]). This
indicates that decoherence will typically play an important role even in the
presence of physical wave-function reduction.

The second case corresponds to the situation in which decoherence leads
to the selection of a different preferred basis than the basis specified by the
collapse mechanism. As remarked by Bacciagaluppi [391] in the context of
the GRW theory, one might then imagine the collapse either to occur only
at the level of the environment (which would thus serve as an amplifying
and recording device with different localization properties than the system
under study), or to lead to an explicit competition between decoherence and
collapse effects.

8.4.3 The Tails Problem

The clear advantage of physical collapse models over the consideration of
decoherence-induced effects alone for a solution to the measurement problem
lies in the fact that collapse models achieve an actual quantum-state reduc-
tion. Thus one may be tempted to conclude that at the conclusion of the
reduction process the system actually is in a determinate state. However, all
collapse models lead to an only approximate reduction of the wave function.
In the case of dynamical reduction models, the state will always retain small
interference terms for finite times. Similarly, in the GRW theory the width
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Δ of the multiplying Gaussian cannot be made arbitrarily small, and there-
fore the reduced wave packet cannot become perfectly localized in position
space, since this would entail an infinitely large energy gain by the system
due to the time–energy uncertainty relation, which would certainly show up
experimentally (in their original paper [450], GRW chose Δ ≈ 10−5 cm). This
need for an only approximate reduction leads to wave function “tails” [468].
That is, in any region in space and at any time t > 0, the amplitude of the
wave function will remain nonzero if it had been nonzero at t = 0 (before
the collapse), and thus there will always be a part of the system that is not
“here.”

In this sense, collapse models are as much “fine for all practical purposes”
(to paraphrase Bell [469]) as decoherence is, where perfect orthogonality of
the relative states of the environment is only attained as t −→∞. The sever-
ity of the consequences, however, is not equivalent for the two strategies. Since
collapse models directly change the state vector, a single outcome is at least
approximately selected, and it only requires a weakening of the eigenvalue–
eigenstate link to make this state of affairs correspond to the (objective)
existence of a determinate physical property.7 In the case of decoherence,
the lack of an exact disappearance of local interference terms is not the main
problem. Even if exact orthogonality of the relative environmental states were
ensured at all times (leading to complete decoherence), the resulting reduced
density matrix would still represent an improper mixture. We would there-
fore have to supply some additional interpretive framework to explain our
perception of outcomes (see also the comment by GRW [445]).

8.4.4 Connecting Decoherence and Collapse Models

It was realized early that there exists a striking formal similarity of the equa-
tions of motion that govern the time evolution of density matrices in the GRW
approach and in models of decoherence. For example, the GRW equation for
a single free mass point in one dimension reads [450]

i
∂ρ(x, x′, t)

∂t
=

1
2m

[
∂2

∂x′2
− ∂2

∂x2

]
ρ(x, x′, t)− iΛ(x− x′)2ρ(x, x′, t), (8.8)

where the second term on the right-hand side accounts for the destruction of
spatial interference terms. This equation is formally identical, for example,
to the master equation (3.78) describing the evolution of the reduced density
matrix in the presence of environmental scattering.

Joos [471] used this formal similarity to question the need for an explicit
reduction-inducing mechanism, at least with respect to achieving the suppres-
sion of spatial coherences over macroscopic distances. Provided the value of

7It should be noted, however, that such “fuzzy” eigenvalue–eigenstate links may
in turn lead to difficulties, as the discussion of Lewis’ “counting anomaly” has
shown [470].
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the GRW localization parameter Λ appearing in (8.8) is chosen in agreement
with the value derived from the physical properties of the relevant system–
environment interaction, the time evolution of the reduced density matrix
describing the dynamics of the system coupled to a scattering environment
on the one hand, and the time evolution of the density matrix of the system
under the influence of the GRW collapse on the other hand, will be identical.

Of course, as pointed out also by GRW [445] in response to Joos’ comment,
it is important to bear in mind the fundamental difference between the ap-
proximately proper ensembles arising from collapse models and the improper
ensembles resulting from decoherence. The latter ensembles are derived from
entangled global system–environment states and therefore do not allow for
the assignment of a pure quantum state to the system (see Sects. 2.4.6 and
8.1.1). The reduced density matrix arising from decoherence does not describe
the state of the system, but only the statistics of local measurements in the
context of the usual measurement axioms of quantum mechanics (with these
statistics then explaining the nonobservability of macroscopic interference ef-
fects). Therefore, despite the formal similarity between the GRW evolution
equation (8.8) and the master equation (3.78) for scattering-induced decoher-
ence, these equations describe the dynamics of two types of density matrices
whose conceptual, interpretive, and formal underpinnings must be carefully
distinguished.

Finally, the formal similarity of the evolution equations may nourish hopes
that the postulated reduction mechanisms of collapse models could possibly
be derived from novel (nonunitary) interactions with a universal collapse-
inducing “environment.” For example, Penrose [472, 473] has suggested that
quantum gravity might act as such an “environment” (see also [449,453]).

8.4.5 Experimental Tests of Collapse Models

Collapse theories postulate deviations from Schrödinger dynamics and could
thus be tested in experiments. Several proposals for an experimental detection
of the GRW collapse, and for the demonstration of potential deviations from
the predictions of quantum theory when dynamical state-vector reduction
is included, have been discussed in the literature (see, e.g., [464, 474–477]).
Conversely, one may speculate that the simultaneous presence of both de-
coherence and reduction effects might allow for an experimental disproof of
collapse theories by preparing states that differ in an observable manner from
the predictions of the reduction models.

If we acknowledge the existence and feasibility of interpretations of quan-
tum mechanics that only appeal to decoherence in explaining the perception
of apparent collapses (see, for example, the “existential interpretation” of
Zurek [84,104] described in Sect. 8.2.3), we will not be able to experimentally
distinguish between a “true” collapse and a mere suppression of interference
due to decoherence. Instead, an experimental situation is required in which a
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given collapse model predicts a reduction of the wave function, but in which
no (significant) suppression of interference through decoherence arises.

The problem in realizing such experiments is the required shielding of the
system from decoherence effects. In fact, it would be very difficult to dis-
tinguish collapse effects from decoherence, since the large number of atoms
required for the collapse mechanism to be effective also leads to strong deco-
herence [166, 444, 467]. It would therefore be necessary to isolate the system
of interest extremely well from its environment, such that decoherence effects
can be neglected in comparison with the environment-independent collapse
mechanism. Even in this case it might be difficult to exclude the influence of
decoherence due to, for example, thermal emission of radiation, as demon-
strated in the case of C70 interferometry (see Sect. 6.2 and [267,270]). Based
on explicit numerical estimates, Tegmark [166] has shown that decoherence
due to scattering of environmental particles such as air molecules or pho-
tons will have a much stronger influence on the evolution of the system than
the proposed GRW effect of spontaneous localization (see also [444,467]; for
different results for energy-driven reduction models, see [461]).

The increasing size of physical systems for which interference effects have
been experimentally observed imposes bounds on the parameters used in col-
lapse models. However, the current experiments demonstrating mesoscopic
and macroscopic interferences are still quite far away from disproving the ex-
isting collapse theories. For example, even the rather impressive C70 diffrac-
tion experiments still fall short of ruling out continuous spontaneous localiza-
tion models (which lead to the strongest deviations from Schrödinger dynam-
ics among all physical collapse theories) by eleven orders of magnitude [478].
A mirror-superposition experiment recently proposed by Marshall et al. [477],
which could lead to a spatial superposition involving O(1014) atoms, fails to
rule out continuous spontaneous localization models by about six orders of
magnitude [477,479]. The superpositions observed in coherent quantum tun-
neling in SQUIDs and other superconducting qubit systems (see Sect. 6.3)
also appear to be compatible with dynamical reduction models. As men-
tioned above, the spatial localization mechanism is ineffective in bringing
about a collapse onto the persistent-current states [444, 464, 465]. However,
given the rapid development of experiments demonstrating quantum super-
positions and interference effects on increasingly large scales, it may be only
a matter of time when it becomes possible to probe the range relevant to a
test of physical reduction models.

8.5 Bohmian Mechanics

David Bohm’s approach [35–37] is a modification of de Broglie’s original
“pilot-wave” proposal [34]. In Bohmian mechanics, a system containing N
(nonrelativistic) particles is described by a wave function ψ(t) and the con-
figuration Q(t) = (q1(t), . . . ,qN (t)) ∈ R

3N of particle positions qi(t). Thus
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Fig. 8.1. A sample of Bohmian trajectories that particles may follow in the double-
slit experiment. Figure reprinted, with kind permission from Springer Science and
Business Media, from [480].

the state of the system is represented by (ψ,Q) at each instant t. The evo-
lution of the system is guided by two equations. The wave function ψ(t) is
transformed as usual via the standard Schrödinger equation, while the par-
ticle positions qi(t) of the configuration Q(t) evolve according to the guiding
equation

dqi
dt

= vψi (q1, . . . ,qN ) ≡ 1
mi

Im
ψ∗∇qi

ψ

ψ∗ψ
(q1, . . . ,qN ), (8.9)

where mi is the mass of the ith particle. The particles follow determinate
trajectories described by Q(t), with the distribution of Q(t) given by the
quantum equilibrium distribution |ψ|2.

In Bohmian mechanics, the wave function plays the role of a “guiding
field.” That is, through the guiding equation (8.9) the wave function generates
a velocity field which the particles follow. Thus the Bohm theory describes
the motion of particles along trajectories, similar to Newtonian mechanics.
However, instead of the force–acceleration law of classical mechanics, the
equation of motion for the particles is now given by (8.9), with the change of
the wave function ψ, which enters on the right-hand side of (8.9), determined
by the Schrödinger equation.

We can neatly illustrate this formalism in the context of the double-slit
experiment [37,481]. Fig. 8.1 shows a set of possible Bohmian trajectories of
single particles behind the slits. Each particle follows one of these determinate
trajectories and thus passes through either one of the slits. Which particular
Bohmian trajectories is taken by an individual particle simply depends on
the initial position of the particle. Thus, although each particle at any given
time is described by the same wave function ψ, the particles deterministically
follow different determinate trajectories. Bohmian mechanics is therefore an
example of a hidden-variables theory (see Sect. 2.1.2). That is, the wave
function ψ does not constitute a complete description of the physical state
of the system, and the always-determinate positions qi(t) of the particles
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play the role of the hidden variables. From Fig. 8.1 we observe that the
particles take distinctly non-Newtonian paths. Instead of being straight lines,
the particle trajectories become concentrated in areas in which the amplitude
of the wave function ψ is large. The familiar maximums and minimums of the
interference pattern observed on the screen can therefore be directly related
to the “density” of the Bohmian trajectories.

8.5.1 Particles as Fundamental Entities

Bohm’s theory has been criticized for attributing a fundamental ontological
status to particles. General arguments against particles on a fundamental
level of any relativistic quantum theory have been frequently given (see, for
instance, [482,483]).8 Moreover, and this is the point we would like to discuss
in this section, it has been argued that the appearance of particles could be
derived from the continuous process of decoherence, leading to claims that no
fundamental role need be attributed to particles [408,486,487]. Based on the
fact that decohered reduced density matrices of mesoscopic and macroscopic
systems essentially always represent (improper) ensembles of narrow wave
packets in position space, Zeh [408, p. 190] holds that such wave packets can
be viewed as representing individual “particle” positions:

All particle aspects observed in measurements of quantum fields (like
spots on a plate, tracks in a bubble chamber, or clicks of a counter)
can be understood by taking into account this decoherence of the
relevant local (i.e., subsystem) density matrix.

Of course, to interpret the improper ensembles of narrow wave packets re-
sulting from decoherence as leading to the perception of individual particles,
we must supply an additional interpretive framework that explains why only
one of the wave packets is perceived. That is, we need to add some inter-
pretive rule to get from the improper ensemble emerging from decoherence
to the perception of individual terms, so decoherence alone does not neces-
sarily make Bohm’s particle concept superfluous. But it suggests that the
postulate of particles as fundamental entities may well be unnecessary, and
taken together with the difficulties in reconciling such a particle theory with
a relativistic quantum field theory, Bohm’s a priori assumption of particles
at a fundamental level of the theory appears seriously challenged.

8.5.2 Bohmian Trajectories and Decoherence

A well-known property of Bohmian mechanics is the fact that its trajectories
are often highly nonclassical (see, for example, [37,488,489]). This poses the

8On the other hand, there are proposals for a “Bohmian mechanics of quan-
tum fields,” i.e., a theory that embeds quantum field theory into a Bohmian-style
framework [484,485].
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serious problem of how Bohm’s theory can explain the existence of quasiclas-
sical trajectories at a macroscopic level.

Bohm and Hiley [37] considered the scattering of a beam of environmen-
tal particles on a macroscopic system, a process that gives rise to decoher-
ence [7, 17]. The authors demonstrated that this scattering yields quasiclas-
sical trajectories for the system. Furthermore, Appleby [489] showed that for
isolated systems, the Bohm theory will typically not give the correct classi-
cal limit. It was thus suggested that the inclusion of the environment and
the resulting decoherence effects might be helpful in recovering quasiclassi-
cal trajectories in Bohmian mechanics [486, 490–494]. The basic idea is then
to associate the quasi-Newtonian phase-space trajectories in the improper
ensemble created by decoherence (see, e.g., Sect. 5.2.5) with the particle tra-
jectories Q(t) of the Bohm theory. As pointed out by Bacciagaluppi [391], a
great advantage of this strategy lies in the fact that the same approach would
allow for a recovery of both quantum and classical phenomena.

However, a careful analysis by Appleby [490] showed that only under cer-
tain additional assumptions will processes that lead to decoherence also result
in the correct quasiclassical Bohmian trajectories for macroscopic systems
(Appleby described the example of the long-time limit of a system that has
initially been prepared in an energy eigenstate). Interesting results were also
reported by Allori [491], Allori and Zang̀ı [492], and Allori et al. [493]. These
authors demonstrated that decoherence effects can play the role of preserv-
ing classical properties of Bohmian trajectories. Furthermore, they showed
that, while in standard quantum mechanics it is important to maintain nar-
row wave packets to account for the emergence of classicality, the Bohmian
description of a system by both its wave function and its configuration al-
lows for the derivation of quasiclassical behavior from highly delocalized wave
functions.

Sanz and Borondo [494] studied the double-slit experiment in the frame-
work of Bohmian mechanics and in the presence of decoherence. They showed
that even when (spatial) coherence is fully lost, and thus interference is ab-
sent, nonlocal quantum correlations remain that influence the dynamics of
the particles in the Bohm theory. This example demonstrates that in general
decoherence does not suffice to ensure the correct classical limit in Bohmian
mechanics.

8.6 Summary

We have shown how the environment-induced superselection of preferred
states has been incorporated into different interpretations of quantum me-
chanics in order to achieve a very general and empirically adequate defini-
tion (and explanation) of the “determinate quantities” in each interpretation.
Thus the decoherence program has made a very significant contribution to
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solving the infamous preferred-basis problem that had haunted many inter-
pretations for a long time. In some cases, such as in relative-state interpreta-
tions, the lack of a clear definition of preferred bases had been at the focus of
ongoing criticism directed at such interpretations. In other cases, such as in
physical collapse theories or Bohmian mechanics, the particular form of the
preferred basis is simply postulated. Here decoherence can provide a physical
motivation for the particular choice of the postulated quantity.

We have argued that, within the standard interpretation of quantum
mechanics, decoherence cannot solve the problem of outcomes in quantum
measurement. We are still left with a multitude of (albeit individually well-
localized quasiclassical) components, and we need to supplement or otherwise
to interpret this situation in order to explain why and how single outcomes
are perceived. Accordingly, we have discussed how environment-induced su-
perselection and the local suppression of interference terms can be put to
great use in physically motivating, or potentially disproving, rules and as-
sumptions of alternative interpretive approaches that change (or altogether
abandon) the eigenvalue–eigenstate link and/or modify the unitary dynamics
in order to account for our perception of outcomes and classicality in general.

For example, to name just a few applications, decoherence can provide
a universal criterion for the selection of the branches in relative-state inter-
pretations and a physical argument for the noninterference between these
branches from the point of view of an observer. In modal interpretations,
decoherence can be used to specify empirically adequate sets of properties
that can be assigned to systems. In collapse models, the free parameters
(and possibly even the nature of the reduction mechanism itself) might be
derivable from environmental interactions. Decoherence can also help select
quasiclassical particle trajectories in Bohmian mechanics. Moreover, it has
become clear that decoherence is capable of ensuring the empirical adequacy
and thus empirical equivalence of different interpretations. This observation
has led the physicist Max Tegmark to the suggestion [495, p. 855] that the
choice between, for example, the orthodox and the Everett interpretation may
become “purely a matter of taste, roughly equivalent to whether one believes
mathematical language or human language to be more fundamental.”



9 Observations, the Quantum Brain,
and Decoherence

Biological systems are rarely analyzed in quantum-mechanical terms. The
enormous complexity of such systems makes a quantum-mechanical treat-
ment essentially impossible. Furthermore, structures in biological systems
are typically embedded into aqueous environments at room temperatures. It
is therefore reasonable to expect that such systems will be subject to very
strong decoherence, which will effectively suppress any quantum-coherent be-
havior. At the same time, if we expect quantum mechanics to be valid on all
scales, the behavior of biological structures will be governed by the laws of
quantum mechanics.

In this context, the brain is a biological system of particular interest. It
constitutes the central organ that processes our perceptions. It is clear that
every empirically relevant statement of a physical theory must be related to
precisely these perceptions. Therefore, in trying to explain our observations
based on what is predicted by the theory, we may need to give an account of
the role of the system that delivers these perceptions to us, namely, the brain.
Furthermore, as we shall outline below, historically the related question of
the role of “consciousness” in quantum theory arose, including proposals that
consciousness may induce a collapse of the wave function.

In this chapter, after a few introductory remarks on the general prob-
lem of observation in quantum mechanics (Sect. 9.1), in Sect. 9.2 we will
explicitly include the observer in the von Neumann measurement scheme
(see Sect. 2.5.1) and discuss the resulting consequences. We will then focus
on the quantum-mechanical brain (Sect. 9.3). We will describe some explicit
modeling studies of the decoherence properties of neuronal (and other) su-
perposition states in the brain, which have resulted in explicit numerical
estimates for the relevant decoherence timescales. In Sect. 9.4, we shall also
briefly discuss the implications of these results for “subjective” resolutions of
the measurement problem.

9.1 The Role of the Observer in Quantum Mechanics

The role of the observer in quantum mechanics has been at the heart of many
foundational disputes reaching back to the early days of the theory. Recall
that a peculiar feature of quantum mechanics is the fact that, in contrast with
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classical physics, states are inherently fragile (see Sect. 2.1). The measurement
of a particular physical quantity will in general perturb the quantum state of
the system and thus the outcome of a subsequent measurement of a different
quantity represented by a noncommuting observable.

It thus seems that the physical state of the system “is” what the observer
chooses to measure. This feature introduces a flavor of “subjectivity” into
our description of nature that is rather unknown in the classical theories.
Therefore observations, and consequently observers, seem to play a much
more fundamental role in quantum mechanics than in classical physics. We
already quoted Heisenberg’s radical statement (see p. 19) that “the particle
trajectory is created by our act of observing it” [42, p. 185]. In this positivist
view (which is most apparent in Bohr’s writings), the entire formalism of
quantum mechanics constitutes, in essence, a recipe for predicting what the
observer will find if a measurement was to be performed, but it does not
make any ontological claims as to “what is really out there.” In fact, any
statements about the physical state of the system prior to measurement are
deemed meaningless by the Copenhagen interpretation.

Even the many people who subscribe to some variant of the Copenhagen
interpretation when dealing with practical issues of experimental physics still
maintain a belief in the existence of an observer-independent physical reality
that quantum mechanics ought to refer to. The overarching question is then
how to reconcile the lesson learned from quantum mechanics—that physical
systems cannot, in general, be assigned an exhaustive set of premeasurement
values of physical quantities—with our intuitively felt need for an “objectively
existing” world around us to which we wish the theory to pertain in some
way.

At the same time, we are also forced to carefully examine notions that we
have come to regard as objective and thus as a required part of a physical
theory, despite the fact that they might simply be artifacts of our subjective
perception. Von Neumann [60, Chap. VI] reminded us that

experience makes assertions only of the kind “an observer has made a
particular (subjective) observation,” but never of the kind “a certain
physical quantity has a particular value.”1

Similarly, d’Espagnat [496, pp. 134–135] cautions us as follows:

The fact that we perceive such “things” as macroscopic objects lying
at distinct places is due, partly at least, to the structure of our sen-
sory and intellectual equipment. We should not, therefore, take it as
being part of the body of sure knowledge that we have to take into
account for defining a quantum state. (. . . ) In fact, scientists most

1The original German text reads: “Denn die Erfahrung macht nur Aussagen
von diesem Typus: ein Beobachter hat eine bestimmte (subjektive) Wahrnehmung
gemacht, und nie eine solche: eine physikalische Größe hat einen bestimmten
Wert.”



9.2 Quantum Observers and the Von Neumann Chain 361

rightly claim that the purpose of science is to describe human expe-
rience, not to describe “what really is”; and as long as we only want
to describe human experience, that is, as long as we are content with
being able to predict what will be observed in all possible circum-
stances (. . . ) we need not postulate the existence—in some absolute
sense—of unobserved (i.e., not yet observed) objects lying at definite
places in ordinary 3-dimensional space.

Von Neumann and d’Espagnat therefore urge us to realize that the often
deeply felt commitment to a general objective “definiteness” is only based
on our everyday experience of macroscopic systems. If it was possible for us
to know, independently of our experience, that definiteness in fact existed
in nature, then subjective definiteness would (presumably) be a consequence
of the objective definiteness once we have constructed a simple model which
connects the “external” physical phenomena with our “internal” perceptual
and cognitive apparatus. (Here we may justify the expected simplicity of such
a model by referring to the presumed identity of the physical laws governing
external and internal processes, an assumption von Neumann referred to
as “psycho-physical parallelism” [60].) However, any knowledge is directly
or indirectly based on our observations, and therefore there is no way of
acquiring knowledge about the objective existence of definiteness without
rooting such knowledge in our (subjective) observation of definiteness. At
the same time, macroscopic interference and coherence phenomena clearly
show the fuzziness of the boundary between the quantum world and the
definiteness observed at the level of our direct experience (see Chap. 6).

It may therefore indeed be reasonable to give up the demand that objec-
tive definiteness should be an a priori part of a satisfactory physical theory—
provided, of course, the theory is able to account for all of our subjectively
observed definiteness in agreement with our experience. The corresponding
“subjective” resolutions of the measurement problem have received an enor-
mous boost from the theory of decoherence. In fact, decoherence makes many
of these types of subjective approaches empirically viable in the first place,
because decoherence may allow us to derive definiteness from the point of
view of local observers without having to enforce definiteness on the global
level. We will discuss such strategies in more detail in Sect. 9.4 below.

9.2 Quantum Observers and the Von Neumann Chain

Instead of attributing a particular a priori role to measurements and ob-
servers, as done in the Copenhagen interpretation (Sect. 8.1) and other inter-
pretations of quantum mechanics, let us now take a different viewpoint. We
simply treat the observer as a quantum system interacting with the observed
system. We may model this situation using the von Neumann measurement
scheme discussed in Sect. 2.5.1, with the observer included as the final link
in the von Neumann chain of measurement interactions (Fig. 9.1).
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system apparatus observer

Fig. 9.1. The von Neumann chain with the observer included as the last link.

Then, the quantum states of the observer corresponding to the observa-
tion of the different possible outcomes of the measurement become quantum-
correlated with the corresponding relative states of the measurement appara-
tus, which in turn is quantum-correlated with the different components in the
superposition state describing the system of interest. We may schematically
express this measurement interaction in the usual von Neumann form as [see
(2.54)]

(∑
n

cn |n〉
)
|“apparatus ready”〉 |“observer ready”〉

−→
∑
n

cn |n〉 |“pointer at n”〉 |“observer perceives outcome n”〉 , (9.1)

where
∑
n cn |n〉 is the state of the observed (measured) system. Thus the

final quantum state describing measurement in this formalism is an entan-
gled system–apparatus–observer superposition state whose components cor-
respond to the different “outcomes” of the measurement.

However, the inclusion of the observer as in (9.1) does not terminate the
von Neumann chain of interacting systems. The addition of further links
to this chain—such as an environment, secondary apparatuses or observers,
etc.—will again lead to a final entangled state involving states corresponding
to all possible outcomes, just as in (9.1). As long as the time evolution of
the composite system that includes all these links is strictly unitary, there
cannot be any change in the amount of information contained in this state
(as measured, for example, by the purity or the von Neumann entropy, see
Sect. 2.4.3), and the chain does not terminate. We are thus faced with a
problem of infinite regression.

This raises the fundamental question of how and when these different
correlated component states may reduce to the single measurement outcome
actually experienced by the observer. The problem of whether, how, and
where the von Neumann chain becomes terminated is of course, in essence,
the problem of outcomes, which we have already discussed in several places
in this book (see, for example, Sects. 2.5.4 and 8.1). Von Neumann himself
was clearly aware of this problem. To him, the only sure fact was that we, as
observers, always perceive definite outcomes at the conclusion of the measure-
ment. Thus the theory must account for such definite perceptions at least at
the level of the experience of the observer. The statistical predictions of quan-
tum mechanics are insensitive to where exactly the Heisenberg cut is placed
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along the observational chain. Thus some form of wave-function collapse may
be introduced at any stage between the apparatus and the observer. How-
ever, only at the level of the observer an explanation of our perception of
manifestly definite outcomes is actually forced out by the obvious empirical
constraints.

In this spirit, von Neumann postulated a collapse of the wave function
within the observer, which he referred to as the “first intervention” (“er-
ster Eingriff” in German).2 This approach stood in stark contrast to the
Copenhagen interpretation (see Sect. 8.1). While in the latter the collapse
of the wave function was only implicit in the assumption of the existence of
intrinsically classical measurement devices that are not to be subjected to
further quantum-mechanical analysis, von Neumann did not attribute any
special role to the measurement devices themselves. However, unable to re-
solve the problem of how to explain our perception of definite outcomes from
his purely quantum-mechanical formalism of interacting quantum systems,
he felt forced to uphold a fundamental quantum–classical boundary, albeit
now pushed all the way toward the observer. We may say that von Neumann’s
ambitious goal of providing a purely quantum-mechanical description of the
measurement process was therefore cut short by his ad hoc introduction of a
collapse at the level of the observer.

Von Neumann himself did not elaborate on the nature of the collapse
in the observer, or on what distinguished observers from inanimate objects
such as measurement devices. However, by placing the Heisenberg cut within
the observer, a new door was opened, namely, the question of the role of
“consciousness” in the quantum measurement process and in the (actual or
just perceived) collapse of the wave function.

The approach of including rather vague terms such as “mind” and “con-
sciousness” at a fundamental level of a physical theory surely runs counter to
the traditional strategy of natural science in general, and physics in particu-
lar. At the same time, the peculiar relevance of the observer in the quantum
theory—the seemingly inevitable need to depart from the previously unques-
tioned assumption of an observer-independent reality that is similar in struc-
ture to the world directly observed by us—seems to have reintroduced the
idea of attributing a distinct (physical) role to the mind of the observer.

Even the Copenhagen interpretation itself, and the positivist attitude
embodied in it, implicitly assigns relevance to the concept of a “mind” by
regarding quantum mechanics essentially as a set of statements that obtain
physical meaning only in the context of verification (i.e., measurements) by
an observer. As discussed by d’Espagnat [497], by referring not to what “is”
but only to what can be “found out” by the observer, the observer’s mind
(that verifies, finds out, etc.) constitutes a primitive notion which is prior to

2Interestingly, the unitary Schrödinger evolution governing the interaction be-
tween the system, the apparatus, and the observer was referred to as the “second
intervention.”
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that of scientific reality. Yet, terms such as “mind” and “consciousness” were
not an explicit part of the Copenhagen interpretation, and the basic intuition
that the knowledge obtained by the observer nonetheless must refer to some
underlying physical reality was not truly relinquished by the proponents of
this interpretation.

A famous (albeit only temporary) supporter of the idea that conscious-
ness plays a fundamental role in the quantum measurement process was Eu-
gene Wigner. His motivation was grounded in a Gedankenexperiment that
he devised in the early 1960s and that has since become known as the prob-
lem of Wigner’s friend [498]. This thought experiment is a variation of the
Schrödinger-cat setup. The poison is replaced by a measuring device that
emits a flash of light when the unstable atom decays, and—crucially—the
cat is substituted by a human observer, referred to as “Wigner’s friend.” Let
us call the external observer in the original Schrödinger-cat scenario “Wigner”
to distinguish him from his friend.

Thus our setup now contains two human observers: An “inside” ob-
server (Wigner’s friend) whose measurement-type interaction with the atom–
apparatus system is described quantum-mechanically within the von Neu-
mann scheme, and an “outside” observer (Wigner himself) that later inquires
about the result of this interaction. The box of the original cat scenario (hous-
ing the cat together with the unstable atom and the poison) corresponds
here to the laboratory room containing the atom, the measuring device, and
Wigner’s friend. Wigner waits outside of the room for some period of time,
during which the combined state of the atom, apparatus, and Wigner’s friend
evolves into the usual cat-type superposition. We may schematically express
this evolution in the form

(α |“atom not decayed”〉+ β |“atom decayed”〉)
⊗ |“device ready”〉 |“observer ready”〉
−→ α |“atom not decayed”〉 |“no flash emitted”〉 |“no flash observed”〉

+ β |“atom decayed”〉 |“flash emitted”〉 |“flash observed”〉 . (9.2)

Wigner then enters the room to inquire about the outcome of the experiment.
He asks his friend whether she has seen a flash of light or not. The friend,
evidently, will answer that she either has or has not observed the flash. De-
pending on the answer, Wigner would conclude that, from his perspective,
the cat state describing the combined atom–apparatus–friend system has col-
lapsed onto either one of its two components on the right-hand side of (9.2).
But what would Wigner’s friend say if Wigner asked her about her experience
regarding the flash of light before he had entered the laboratory and asked
the first question?

In essence, just as in the case of the Schrödinger-cat scenario, the overar-
ching issue brought out by the example of Wigner’s friend is the question of
when and where the collapse-inducing measurement takes place. In the case
of Wigner’s friend, however, the difference—and in Wigner’s thinking, the
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crucial difference—to the Schrödinger-cat paradox is that the superposition
involves a conscious observer who should be able to provide a verbal state-
ment to Wigner (after he has entered the room) about her experience before
Wigner had gone into the laboratory and had asked her about whether or
not she has seen the flash of light.

Wigner himself believed that the superposition of two distinct “states
of consciousness” in (9.2)—one corresponding to the observation of a flash,
the other to the failure to observe a flash—would need to be regarded as
absurd. In his opinion, the conscious observer must always be in only one of
these states [498]. This belief led him to conclude that conscious observations
cannot be described by the standard linear quantum formalism as in (9.2), i.e.,
that consciousness must be fundamentally different from material objects, in
the sense that it breaks the unitary evolution and induces a collapse of the
wave function onto a definite state of the conscious observer.

From a purely empirical point of view, a strong counterargument to the
conclusiveness of Wigner’s reasoning is that superpositions of different states
of consciousness do not necessarily need to be regarded as absurd and thus
be excluded, as long as these states do not interfere in any way, i.e., as long
these different “quantum versions” of the conscious observer are not “aware”
of each other. Decoherence would inevitably also affect the conscious observer,
and thus we may conjecture that it would be impossible to empirically confirm
the existence of the different “branches of consciousness” in (9.2) from the
“inside view” of the observer. We will discuss this point in more detail in
Sect. 9.4. In fact, Wigner later abandoned [499] his views on the special role
of consciousness in quantum measurement once he became aware of Zeh’s
paper of 1970 [4], which had introduced some of the basic ideas underlying
the decoherence program.

9.3 Decoherence in the Brain:
The Brain as a Quantum Computer?

The brain comprises an astonishingly complex network of O(1011) neurons
interconnected via O(1014) synapses. There are convincing arguments that
the memory capabilities and dynamical interactions of this neuronal network
are the physiological core for the storing and processing of our sensory input.
It is not unreasonable to conjecture that ultimately all cognitive processes,
including our perception of “consciousness,” can be reduced to neuronal ac-
tivity. Researchers in neurobiology and biophysics typically model the brain
in completely classical terms as a massively parallel interconnected web of
on–off “switches” (nodes) [500–502]. Each such node represents a single neu-
ron and is turned on or off (corresponding to, respectively, the firing and
resting state of a neuron) depending on a particular, often nonlinear, acti-
vation function. For obvious reasons, such models are usually referred to as
artificial neuronal networks.



366 9 Observations, the Quantum Brain, and Decoherence

Broadly speaking, the brain is thus modeled as a classical computer. One
of the surprising insights that has been gained from such modeling studies
is that even relatively simple networks, based on a fairly small number of
nodes and on only very few rules for the activation of each node, can yield
an astonishingly complex behavior, not dissimilar to that observed in simple
cognitive processes. Yet, despite the success of such classical models, the ques-
tion of whether quantum effects may play an important role in our cognitive
apparatus has been discussed in at least two respects.

First, quantum “uncertainties” and the apparent indeterminism of quan-
tum mechanics have sometimes been invoked to evade the strict determinism
mandated by classical physics and to restore a notion of “free will.” Such
a strategy, however, is fundamentally flawed. Any quantum “uncertainties”
would represent wholly uncontrollable effects, completely different from our
understanding of the concept of “free will,” which is based on our feeling of
being able to actively control and decide our actions. For the same reason,
the fact that quantum mechanics only predicts probabilities for measurement
outcomes and thus seems to reintroduce indeterminism into the description
of the physical world cannot be used to infer the existence of a free will. Once
again, any actions triggered by such “quantum randomness” would not be
controllable by the individual claimed to possess free will. Thus, if anything,
invoking quantum theory in these ways renders the old “problem of free will”
(if there is any problem at all) even more severe.3 Finally, we should also note
that synaptic transmissions in the brain have a fairly high failure rate due to
the complexity of the underlying biological processes [504]. This inevitably
leads to a rather high degree of unpredictability on the “everyday level.”
Any such purely functional unpredictabilities will presumably be far more
significant than any quantum-uncertainty effects. Therefore the view of the
brain as a deterministic classical computer with a predictable input/output
pattern should in fact not be taken too literally.

3On the subject of free will, Einstein once said in his thoughtful Credo of 1932
[503]:

I do not believe in free will. Schopenhauer’s words: “Man can do what he
wants, but he cannot will what he wills,” accompany me in all situations
throughout my life and reconcile me with the actions of others, even if they
are rather painful to me. This awareness of the lack of free will keeps me
from taking myself and my fellow men too seriously as acting and deciding
individuals, and from losing my temper.
(The original text reads: “Ich glaube nicht an die Freiheit des Willens.
Schopenhauers Wort: “Der Mensch kann wohl tun, was er will, aber er
kann nicht wollen, was er will”, begleitet mich in allen Lebenslagen und
versöhnt mich mit den Handlungen der Menschen, auch wenn sie mir recht
schmerzlich sind. Diese Erkenntnis von der Unfreiheit des Willens schützt
mich davor, mich selbst und die Mitmenschen als handelnde und urteilende
Individuen allzu ernst zu nehmen und den guten Humor zu verlieren.”)
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Beyond this “näıve” application of quantum theory to the brain lies the
realm of suggestions that the complexity of human cognitive processes gener-
ated by the brain may be explainable only if the brain is capable of acting as
a quantum computer. In other words, such proposals are based on the idea
that at least part of the abilities of the brain may be due to the presence and
manipulation of quantum-coherent superposition states of the usual classi-
cal states in the brain (such as the resting and firing states of a neuron, for
example). If this was true, it would follow that classical artificial neuronal
networks would be intrinsically insufficient to fully simulate the brain.

In particular, the question of whether human consciousness may be linked
to quantum-coherent processes has frequently been discussed. In the previ-
ous Sect. 9.2, we have already alluded to a related but opposite-directed
concept, namely, Wigner’s early speculation [498] that the collapse of the
wave function may be precipitated by the action of consciousness. There,
consciousness was invoked to effectively destroy the quantum coherence em-
bodied in the global entangled state (9.1) produced by the von Neumann
chain of measurement-type interactions. Now, the direction of the problem is
reversed: May quantum coherence be associated with the emergence of con-
sciousness? In this context, various macroscopic quantum-coherent processes
have been suggested as the origin of consciousness (see, e.g., [505–511]). Most
prominently, Penrose [473] and others [512–514] have suggested that so-called
microtubules in the brain—dynamically active structures that are a dominant
part of the cytoskeleton (i.e., of the internal scaffolding of cells)—may have
sufficiently long decoherence times to allow for quantum computations, and,
moreover, that such computations could be associated with the emergence of
consciousness (see Sect. 9.3.2 below).

Quite independently of issues concerning the rather vague notion of con-
sciousness and its potential role in a fundamental theory of physics, the
obvious overarching question that we shall now discuss is then the follow-
ing. Could the relevant structures in the brain—most notably, neurons and
microtubules—sustain quantum coherence long enough to allow for quan-
tum computations in the brain to be carried out? Based on our discussion
of decoherence in the previous chapters of this book, we would expect that
such decoherence times would be extremely short. After all, neurons and mi-
crotubules, while small on a biological scale, are still macroscopic and very
complex objects on the typical scales considered in quantum physics. A state
of, say, a neuron being in a superposition of firing and resting would fall
clearly into the category of superpositions of macroscopically distinct states
(see below). Furthermore, these structures are embedded into a macroscopic
“warm and wet” environment and interact strongly with this environment.

Our intuition regarding the shortness of decoherence times has been sup-
ported by quantitative results reported by Tegmark in 2000 [515]. Tegmark
considered models for the interaction of neurons and microtubules with their
natural environment within the brain and presented order-of-magnitude esti-
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mates for the resulting decoherence timescales of superposition states in these
structures. We shall describe these results in the following Sects. 9.3.1 (de-
coherence in neurons) and 9.3.2 (decoherence in microtubules). Implications
of these results for “subjective” resolutions of the measurement problem will
be discussed in Sect. 9.4.

9.3.1 Decoherence Timescales for Superposition States in Neurons

Let us first discuss the case of neuronal decoherence as considered by Tegmark
[515]. The neuron’s key component of interest is here the so-called axon, which
can be thought of as a long hollow tube with a diameter of about d ≈ 10 μm
(Fig. 9.2). Most of the wall of the axon is coated with myelin, which acts as an
insulator. However, there are narrow bands (several nanometers wide) along
the axon where this insulation is absent, creating patches of semipermeable
membrane (with a thickness of about h ≈ 10 nm) that allow for the exchange
of ions between the inside of the axon and the aqueous medium surrounding
the axon. The firing of a neuron is represented by a very rapid flux of sodium
ions from the surroundings through these membrane patches into the inside
of the axon, mediated by voltage-gated sodium channels located inside the
membrane. This firing propagates along the axon at high speeds (up to 100
m/s), causing the sodium channels in every patch to open. The influx of ions
only last for about one millisecond, after which the sodium channels close up
again, and the neuron returns to its resting state. Using parameters typical
for neurons found in the central nervous system, Tegmark estimated that a
total of O(106) sodium ions traverse the entire length of the axon membrane
(combining the contributions from all individual patches) during firing.

This means that during firing there are on the order of N = 106 more
sodium ions in the interior of the axon than during resting (see Fig. 9.3). Thus

dendrites

bouton (foot)

nucleus (cell body)

axon

myelin
insulation

semipermeable
membrane

d ≈ 10 μm

Fig. 9.2. Schematic illustration of a neuron. A segment of the axon is magnified
for clarification. For the most part, the axon wall is covered with myelin, which
insulates the inside of the axon from the surrounding medium. Small band-shaped
areas, however, lack this insulation, and ions can traverse through the resulting
semipermeable membrane.
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Fig. 9.3. Illustration of the resting (left) and firing (right) states of a neuron. In
the firing state, O(106) more sodium ions are present on the inside of the axon than
in the resting state.

a superposition of firing and resting states corresponds to a superposition of
the two states describing a collection of O(N) sodium atoms located on the
inside and outside, respectively, of the axon. In other words, we deal with a
system composed of O(N) sodium atoms and described by a superposition
of two center-of-mass positions a distance O(h) apart.

Tegmark then studied three types of environmental interactions by which
the neuronal superposition will lose coherence, namely, collisions of the
sodium atoms with other nearby sodium (and potassium) ions, collisions with
surrounding water molecules, and electrostatic (Coulomb) interactions with
distant ions. All three cases can be treated using the theory for scattering-
induced decoherence described in Chap. 3.4 Let us briefly sketch the reason-
ing for the first two cases of ion–ion and ion–water collisions. The thermal
de Broglie wavelength (2.114) of a sodium (or potassium) ion and of a water
molecule at T = 310 K (i.e., at human body temperature) are of similar
magnitude, namely, λdB ≈ 0.03 nm. This value is much smaller than the
coherent spatial separation h ≈ 10 nm. This means that such an ion or water
molecule, acting as a scattered environmental particle, can perfectly resolve
the separation h. We are therefore entirely within the short-wavelength limit
discussed in Sect. 3.3.1.

4Note that the model developed in Chap. 3 is based on the assumption that the
momentum change of the scatterer, i.e., of the system of interest, is much smaller
than the momentum change of the scattered environmental particles, such that
recoil of the object can be neglected. Strictly speaking, this approximation does not
hold in our case, since the mass of the scatterer (the sodium ion) is similar to the
mass of the environmental particle (a sodium or potassium ion, or a water molecule).
The following numerical estimates should therefore not be taken too literally. On
the other hand, for the present purpose, we shall be content with a few crude
estimates. Even if the correct values deviated by several orders of magnitude from
our estimates, the general conclusion of extremely short decoherence timescales for
such neuronal superposition states, relative to the timescales relevant to biological
and cognitive processes, will remain unaffected.
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In this limit of maximum decoherence, we have shown that the rate of de-
cay of the off-diagonal elements of the position-space reduced density matrix
of the system saturates at a value set by the total scattering rate Γtot [see
(3.48)],

ρ(x,x′, t) = ρ(x,x′, 0)e−Γtott. (9.3)

For a single sodium ion in a superposition of being located on the inside
and outside of the axon, and using the cross section for Coulomb scattering,
Tegmark estimated Γtot ≈ 1014 s−1 for collisions with sodium and potassium
ions, and roughly the same value for the scattering of water molecules. The
decoherence timescale τd for the spatial superposition involving N = 106 ions
is then estimated to be on the order of

τd = (NΓtot)
−1 ≈ 10−20 s. (9.4)

For the third case of decoherence due to Coulomb interactions with more
distant ions, Tegmark employed a similar scattering model. Without going
into the details here, the resulting estimate for the typical timescale for de-
coherence of the neuronal superposition turns out to be very similar to that
of (9.4), namely, τd ≈ 10−19 s. All values are summarized in Table 9.1.

How do these values compare to the timescales relevant to biological and
cognitive processes in the brain? The duration of a single firing is on the
order of 10−3 s, which is thus many orders of magnitude larger than τd.
We thus conclude that the process of firing itself is effectively classical by
virtue of decoherence. Tegmark estimated the timescale for typical cognitive
processes—such as deliberate actions, thoughts, speech, motor response to
external stimuli, etc.—to be around 10−2–100 s, which certainly seems rea-
sonable in light of our own experience and of general experimental evidence
from neurophysiology. It is clear that such timescales massively exceed the
decoherence times of 10−19–10−20 s estimated for neuronal superpositions.
We can therefore quite safely conclude that such superpositions cannot play
a significant role in the above examples of cognitive processes.

We can go even further and also use these results to arrive at insights
about the aforementioned “quantum nature of consciousness” suggested by
some authors. As we have pointed out, general evidence from neurobiology

Table 9.1. Estimates of decoherence timescales (in seconds) for superpositions of
firing and resting neuronal states and of kink-like excitations in microtubules, as
reported by Tegmark [515].

Object Environment Decoherence timescale

Neuron Sodium and potassium ions 10−20

Neuron Water molecules 10−20

Neuron Distant ions 10−19

Microtubule Distant ions 10−13
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suggests that conscious perceptions are linked to certain neuronal patterns
of resting and firing in the brain. As argued by Tegmark [515], this would
mean that consciousness cannot have the suggested quantum nature, for the
following reason. Suppose that, at some fundamental level, the source of con-
sciousness was indeed due to some subsystem of the brain with a sufficiently
long decoherence time, such that one may assume that quantum-coherent pro-
cesses should be possible. However, to actually create the conscious percep-
tion within the observer, this subsystem would need to continuously interact
with the neuronal network. Since the neurons are in turn strongly coupled to
their environment, these subsystem–neuron interactions would rapidly sup-
press any quantum coherence within the subsystem, thus effectively destroy-
ing the proposed quantum nature of consciousness. This argument is quite
independent of the precise form that such a quantum consciousness would
take. It only requires the (quite well-motivated) assumption that different
conscious perceptions correspond to different neuronal patterns of firing and
resting.

Finally, let us note that it is of course no coincidence that the relevant
“computational” states of the neurons—i.e., the resting and firing states—
correspond to the most ubiquitous environment-superselected states in na-
ture, namely, states that are localized in position space. These neuronal states
can be identified with “record states” that are capable of robustly encoding in-
formation in spite of environmental interactions [67,104] (see also Zurek’s “ex-
istential interpretation” outlined in Sect. 8.2.3). If the computational states
of neurons corresponded to the spatial superpositions of resting and firing,
they would be subject to rapid scattering-induced decoherence and would
therefore be hardly useful for encoding information in the brain.

9.3.2 Decoherence Timescales for Superposition States
in Microtubules

Tegmark also estimated typical decoherence timescales for superposition
states in microtubules. As mentioned on p. 367, it has been suggested that
such microtubules may allow for quantum-coherent dynamics and may even
be the “origin of human consciousness” [473,512–514]. Microtubules are a key
component of neurons in the brain and also play important roles in various
cellular processes. They take the shape of hollow cylinders with a diameter of
about 24 nm and lengths on the order of micrometers to millimeters (Fig. 9.4).
Each cylinder consists of a bundle of 13 individual so-called protofilaments.
Each such protofilament is a linear row of tubulin dimers composed of the
monomers α-tubulin and β-tubulin. The β subunit carries an extra 18 Ca2+

ions, whereas an equal number of negative charges is located at the nearby
α subunit. This gives the dimer an electric dipole moment of strength 36e.
Along each protofilament, the tubulin dimers align such that the α subunit
of one dimer is in contact with the β subunit of the next dimer. Thus, from a
physics point of view, protofilaments are strings of tiny electric dipoles that
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Fig. 9.4. Structure of a microtubule. The image shows a three-dimensional recon-
struction based on data obtained from cryoelectron microscopy at a resolution of
about 8 Å. Created by the Visualization Group of Ken Downing at the Lawrence
Berkeley National Laboratory [516,517].

are bundled together in parallel so as to create a net electric dipole moment
of the microtubule as a whole (Fig. 9.5).

The inside of each dimer contains a single delocalized electron which can
be localized in either one of two hydrophobic pockets located toward the
side of the α subunit and β subunit, respectively (Fig. 9.6). If the electron
is localized toward the β subunit (referred to as the β state of the dimer),
the dimer undergoes a conformational distortion of about 30 degrees from
the vertical axis associated with the conformation in which the electron is
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Fig. 9.5. Dipole moment of a microtubule. Left: Each tubulin dimer (composed of
α and β monomers) acts as a miniature electric dipole. Middle: The protofilaments
are strings of such electric dipoles. Right: Since the protofilaments bundle together
in a parallel manner to form the microtubule, the latter possesses a dipole moment
that is the sum of the dipole moments of the individual protofilaments.
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Fig. 9.6. The two conformational states α and β of the tubulin dimer.

localized toward the α subunit (the α state of the dimer). Thus, the dimer can
be described as an effective two-state system, with basis states corresponding
to the conformational states α and β. As a consequence of the distortion of
the dimer, the direction of the electric dipole moment will be different for
the α and β states, and we can associate these two states with two distinct
values pα and pβ of electric dipole moment along the axis of the microtubule.
We may thus regard the protofilaments as a set of interacting Ising spin-1

2
chains, where the spin states “up” and “down” now correspond to the two
possible states α and β of electric dipole moment along the microtubule axis.

Certain processes, such as the supply of energy via a process of hydro-
lysis, can induce a change between the conformational states α and β of
a tubulin dimer located at one end of the microtubule [518]. Mediated by
dipole–dipole interactions between the dimers, it has been suggested that the
resulting change in the dipole moment associated with the dimer may then
propagate rapidly along the axis of the microtubule (see Fig. 9.7). Sataric,
Tuszynski, and Zakula [519] proposed a detailed theoretical model for such

αβ β β β α α

p(z)

z

Fig. 9.7. Model for kink-like excitations in microtubules. A change of the local
dipole moment at one end of the microtubule, corresponding to a conformational
switch between the states α and β of the tubulin dimer, travels along the axis of
the microtubule, mediated by dipole–dipole interactions between the dimers. This
results in kink-like excitations of the dipole moment p(z) along the axis of the
microtubule, with these excitations propagating down the axis of the microtubule
at high speeds. (For simplicity, we have associated the states α and β with equal
but opposite values of the electric dipole moment along the microtubule axis.)



374 9 Observations, the Quantum Brain, and Decoherence

“kink-like” excitations (solitons) to describe the possibility of lossless energy
transfer in microtubules.

Tegmark [515], focusing on this particular model, estimated typical deco-
herence timescales for a superposition of two kink-like excitations separated
by a distance of many dimers. He considered Coulomb interactions between
the net charge at the location of the kink (taken to be equal to the total
charge due to the 18 Ca2+ ions in the 13 β subunits contained in the “ring”
of dimers formed by a cross section of the microtubule) with distant en-
vironmental ions. The corresponding timescale τd for the decoherence of a
superposition of two well-separated kinks was estimated using a Coulomb-
scattering model similar to that employed in the modeling of decoherence of
neuronal superpositions due to interactions with distant ions (see Sect. 9.3.1).
Tegmark found a value of τd ≈ 10−13 s (see also Table 9.1). If we choose to
identify the potential nature of quantum-coherent behavior of microtubules
with this type of superposition, Tegmark’s numerical estimate quite clearly
rules out the possibility that microtubules may exhibit quantum-coherent
behavior akin to a quantum computer.

However, another possibility has been considered in (rather controver-
sial) models developed by Penrose and Hameroff [473, 512, 513]. Here, in-
stead of the superpositions of spatially separated kink-like excitations stud-
ied by Tegmark, the authors considered superpositions of the two conforma-
tional states α and β of an individual tubulin dimer. Attempting to chal-
lenge Tegmark’s claim that decoherence is too strong for microtubules to ex-
hibit quantum-coherent dynamics, Hagan, Hameroff, and Tuszynski [514] sug-
gested that such configurational superpositions involving individual dimers
would allow for decoherence times many orders of magnitude longer than the
decoherence times for superpositions of solitons estimated by Tegmark.

To calculate the decoherence time of superpositions of the α and β states,
Hagan, Hameroff, and Tuszynski [514] used a model similar to that employed
by Tegmark but applied it to the dipole moment of a single dimer. However,
as pointed out by Rosa and Faber [520], once an unjustified approximation
in the calculations presented in [514] is corrected, the resulting decoherence
times are of similar magnitude as those originally given by Tegmark for su-
perpositions of spatially separated kink-like excitations. Although not con-
clusively ruling out the models of the Penrose–Hameroff type, these estimates
present a very serious challenge to such theories.

It is fair to say a majority of researchers now uphold the view that biolog-
ical structures in the brain are most likely too prone to decoherence to allow
for any quantum coherence to persist over timescales relevant to cognitive
and conscious processes [521]. Therefore classical models of the brain remain
largely unchallenged to date. Based on Tegmark’s numerical results and on
general intuitions about decoherence on macroscopic scales, it is unlikely that
this situation will change any time soon.
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9.4 “Subjective” Resolutions
of the Measurement Problem

The final state of the von Neumann chain (9.1) describes different “men-
tal states” of the observer (corresponding to the perception of the differ-
ent outcomes labeled by n) quantum-correlated with the relative states of
the apparatus, system, etc. Approaches toward a subjective resolution of the
measurement problem then try to explain how the observer’s perception of
only a single one of these possible outcomes may arise, in spite of the per-
sistence of coherence in the global state. In this case the “physical reality
out there” (whatever it might be) may well continue to be exhaustively de-
scribed by the global superposition state (9.1), without the (empirical) need
to single out any of the component states. As we have discussed in Sect. 9.1,
there is no fundamental reason that would prevent us from regarding such a
subjective resolution of the measurement problem as satisfactory and suffi-
cient, provided the theory is capable of correctly accounting for all possible
observations (see also [1, 322,496]).

We mentioned above that current scientific evidence suggests that most,
if not all, cognitive activity—and thus, presumably, the “states of mind,” or
“mental states” of an observer5—can be associated with certain resting/firing
patterns of the network of neurons in the brain (see [504, 522] for more pre-
cise definitions of the relationship between perceptions and the neuronal pat-
terns). This would mean that, broadly speaking, each of the abstract states
“observer perceives outcome n” on the right-hand side of (9.1) corresponds
to a certain resting/firing pattern of a collection of neurons. As we have seen
above, superpositions of firing and resting states will be rapidly decohered by
the interaction with the environment. It is therefore reasonable to conclude
that this decoherence will result in a practically irreversible dynamical de-
coupling of the “branches” on the right-hand side of (9.1), which correspond
to the distinct outcomes labeled by the index n.

One may now ask the question of why the robust neuronal pointer states
(i.e., the resting and firing states) become quantum-correlated precisely with
the stable quasiclassical pointer states in the world around us, i.e., why the
“outcome states” in (9.1) correspond to the familiar states of our experi-
ence. For example, why does an environment-superselected resting or firing
state of a neuron get correlated with spatially well-localized states of macro-
scopic objects, instead of with superpositions of macroscopically separated
states? Apart from the obvious reason of a limited set of available interaction
Hamiltonians and thus of a heavily constrained set of detectable observables,
Zurek [13] has pointed out another important reason:

5The frequent use of quotation marks in the following paragraphs inevitably
reflects the rather vague nature of notions such as “mind,” “consciousness,” and
“mental states.”
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Our senses did not evolve for the purpose of verifying quantum me-
chanics. Rather, they have developed in the process in which survival
of the fittest played a central role. There is no evolutionary reason
for perception when nothing can be gained from prediction. And,
as the predictability sieve illustrates, only quantum states that are
robust in spite of decoherence, and hence, effectively classical, have
predictable consequences. Indeed, classical reality can be regarded as
nearly synonymous with predictability.

We also need to show that the branches defined by the (objective) phys-
ical interactions between the subsystems indeed correspond to the (subjec-
tive) conscious experiences of the different individual measurement outcomes.
That is, we ought to demonstrate that the classical neuronal resting/firing
patterns associated with each individual branch indeed represent the rele-
vant collective memory (or “record”) states in the brain associated with the
conscious perception of the different possible outcomes (corresponding to von
Neumann’s aforementioned principle of a “psycho-physical parallelism” [60]).

Needless to say, quantum mechanics itself does not allow us to derive a
relationship between subjective experience and its physical correlates. This
fact has led some to the conclusion that the question of this connection can
only be fully answered through the introduction of new physical laws [504].
Other authors, such as Zeh [39, 523], have suggested that the empirical fact
of decohering wave-function components in neuronal processes constitutes
sufficient (if not compelling) grounds for postulating, within the quantum-
mechanical formalism, the “existence of consciousness.” In this picture, dy-
namically autonomous conscious observers are then associated with the ro-
bust components of the global wave function of the type (9.1), with each
of the components labeled by the decohered neuronal states corresponding
to definite resting/firing patterns. We thus obtain a multitude of classical
“worlds” (defined by the robust branches) within a single quantum universe
(described by the unitarily evolving global quantum state vector).

Given this setting, it may indeed not be far-fetched to conclude that a
multitude of such conscious perceptions of the observer can co-“exist,” while
at the same time this co-“existence” could never be explicitly empirically
confirmed (which is why we have put the terms “exist” and “existence” in
quotation marks). In view of this nonobservability, Zeh called the “existence”
of different conscious versions of the observer6 a “heuristic fiction” [523],
since the “existence” of multiple branches representing different conscious
perceptions arises simply as a consequence of the assumption of universally
valid unitary dynamics (together with a “realist” interpretation of the global
quantum state).

6Since the identity of an observer may be regarded as determined by the ob-
server’s particular conscious perceptions, it may be difficult to argue that this sit-
uation would represent different conscious versions of the same observer.
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The conjecture is then that, because the different conscious versions of
the observer would not be “aware” of each other, from the inside perspective
of the observer one should be able to account for the empirically required
perception of definite measurement outcomes, without relinquishing the as-
sumption that quantum states describe (some form of) physical reality and
that unitary dynamics is universally valid.

Not surprisingly, the resulting “many-minds” interpretation of quantum
mechanics (e.g., [4, 5, 16, 39, 67, 104, 399, 523]; see also Sect. 8.2) sits uncom-
fortably with many people. It is not so much a concern about the empirical
adequacy (i.e., the possibility of experimental disproof) of such a view that
creates the discomfort. After all, decoherence, together with an additional
assumption about the connection between neuronal resting/firing patterns
and the emergence of our conscious perceptions (an assumption that in turn
could find its physical justification in decoherence effects), may indeed suffice
to ensure the perception of definite outcomes at the level of the observer.

Rather, the discomfort with many-minds interpretations (as well as with
“many-worlds” interpretations; see Sect. 8.2) is rooted in our feeling that
such interpretations run counter to a deeply ingrained philosophical intuition
of ours, namely, that the subjective observations of the world around us are
a reasonably good mirror of the “objective external physical reality.” In the
many-minds picture, the quantum universe described by the global quantum
state would appear “to be” of a radically different form than the observed
structure of the world (given by a single “classical” branch defined by the
locality of observers and by decoherence processes), even though we would
presumably never be able to empirically verify the “existence” of this global
quantum universe. Of course, ultimately this amounts to a purely philosoph-
ical discussion about the ontological status of the “other” (unobservable)
branches. After all, terminology such as “physical reality” and “to be” can
only refer to existence as confirmed (or at least verifiable) by our subjective
observations. Zeh [408] has put it as follows:

[A]fter an observation one need not necessarily conclude that only one
component now exists but only that only one component is observed.
(. . . ) Superposed world components describing the registration of dif-
ferent macroscopic properties by the “same” observer are dynamically
entirely independent of one another: they describe different observers.
(. . . ) He who considers this conclusion of an indeterminism or split-
ting of the observer’s identity, derived from the Schrödinger equation
in the form of dynamically decoupling (“branching”) wave packets on
a fundamental global configuration space, as unacceptable or “extrav-
agant” may instead dynamically formalize the superfluous hypothesis
of a disappearance of the “other” components by whatever method
he prefers, but he should be aware that he may thereby also create his
own problems: Any deviation from the global Schrödinger equation
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must in principle lead to observable effects, and it should be recalled
that none have ever been discovered.

Regardless of one’s personal interpretive preferences, one of the main take-
home points of this section is the insight that decoherence constitutes the
core mechanism for ensuring the empirical adequacy of interpretations such
as the many-minds view (see also Sect. 8.2 on this issue). Indeed, without
decoherence the many-minds (and many-worlds) interpretations would stand
no chance. Decoherence, or, more precisely, the physical interactions between
subsystems (including the observer) and the resulting entanglement, account
for the emergence of locally preferred states, thus dynamically defining the
structure of the branching. Decoherence also ensures the nonobservability
of interference effects between these preferred states from the point of local
observers, leading to effectively independent (i.e., dynamically decoupled)
“classical” branches.

The question of how exactly these branches (containing, among other
things, certain patterns of neuronal states) may be linked to our actual con-
scious experiences is of course inherently difficult to answer, as it touches
upon many aspects in the physical, chemical, biological, and psychological sci-
ences. However, the important point is that, while the practical details of this
modern “psycho-physical parallelism” are presently only poorly understood,
decoherence provides the fundamental ingredients necessary to in principle
describe observers and observations in a purely quantum-mechanical and em-
pirically adequate manner. For example, the robust, temporally extended
branches “created” by decoherence contain all of the essential properties as-
sociated with observers, such as well-defined stable measurement records that
are correlated with the familiar determinate quantities of our experience and
that are also redundantly imprinted in the environment. In contrast with the
extraneous introduction of a collapse postulate, or with the assumption of the
existence of intrinsically classical measurement devices or a collapse-inducing
consciousness outside of the laws of quantum mechanics, this description is
based solely on interacting physical systems governed by a universally valid
quantum theory and is open to precise quantitative theoretical and experi-
mental analysis.
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The technique of expressing operators and quantum states in the so-called
interaction picture is of great importance in treating quantum-mechanical
problems in a perturbative fashion. It plays an important role, for example, in
the derivation of the Born–Markov master equation for decoherence detailed
in Sect. 4.2.2. We shall review the basics of the interaction-picture approach
in the following.

We begin by considering a Hamiltonian of the form

Ĥ = Ĥ0 + V̂ . (A.1)

Here Ĥ0 denotes the part of the Hamiltonian that describes the free (un-
perturbed) evolution of a system S, whereas V̂ is some added external per-
turbation. In applications of the interaction-picture formalism, V̂ is typically
assumed to be weak in comparison with Ĥ0, and the idea is then to deter-
mine the approximate dynamics of the system given this assumption. In the
following, however, we shall proceed with exact calculations only and make
no assumption about the relative strengths of the two components Ĥ0 and
V̂ .

From standard quantum theory, we know that the expectation value of
an operator observable Â(t) is given by the trace rule [see (2.17)],

〈Â(t)〉 = Tr
[
Â(t)ρ̂(t)

]
= Tr

[
Â(t)e−iĤtρ̂(0)eiĤt

]
. (A.2)

For reasons that will immediately become obvious, let us rewrite this expres-
sion as

〈Â(t)〉 = Tr
[(

eiĤ0tÂ(t)e−iĤ0t
)(

eiĤ0te−iĤtρ̂(0)eiĤte−iĤ0t
)]

. (A.3)

In inserting the time-evolution operators e±iĤ0t at the beginning and the
end of the expression in square brackets, we have made use of the fact
that the trace is cyclic under permutations of the arguments, i.e., that
Tr

(
ÂB̂Ĉ · · ·

)
= Tr

(
B̂Ĉ · · · Â

)
, etc. Thus we could move the first factor

eiĤ0t to the end of the argument of the trace, canceling out the extra factor
e−iĤ0t at that position.
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Equation (A.3) motivates us to now introduce the interaction-picture form
of general operators Â(t) and density matrices ρ̂(t) as

Â(I)(t) = eiĤ0tÂ(t)e−iĤ0t, (A.4)

ρ̂(I)(t) = eiĤ0tρ̂(t)e−iĤ0t

= eiĤ0te−iĤtρ̂(0)eiĤte−iĤ0t. (A.5)

Here the superscript (I) is used to denote interaction-picture operators. Note
that the dynamics of the interaction-picture operators Â(I)(t) are fully de-
termined by the unperturbed (free) Hamiltonian Ĥ0 rather than by the total
Hamiltonian Ĥ.

With the new definitions (A.4) and (A.5), our expectation-value equa-
tion (A.3) can then be written in the compact form

〈Â(t)〉 = Tr
[
Â(I)(t)ρ̂(I)(t)

]
. (A.6)

Let us now determine an evolution equation for the interaction-picture den-
sity matrix ρ̂(I)(t). Using the standard Liouville–von Neumann equation for
the density matrix ρ̂(t) in the Schrödinger picture,

d
dt

ρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
, (A.7)

we obtain

d
dt

ρ̂(I)(t) = i
[
Ĥ0, ρ̂

(I)(t)
]
+ eiĤ0t

(
d
dt

ρ̂(t)
)

e−iĤ0t

(A.7)
= i

[
Ĥ0, ρ̂

(I)(t)
]
− ieiĤ0t

[
Ĥ, ρ̂(t)

]
e−iĤ0t

(A.1)
= i

[
Ĥ0, ρ̂

(I)(t)
]
− ieiĤ0t

[
Ĥ0 + V̂ , ρ̂(t)

]
e−iĤ0t. (A.8)

From (A.4) and (A.5) we see that the application of the time-evolution opera-
tors e±iĤ0t to the quantities in the second commutator amounts to a transfor-
mation of these quantities to the interaction picture. Equation (A.8) therefore
becomes

d
dt

ρ̂(I)(t) = i
[
Ĥ0, ρ̂

(I)(t)
]
− i

[
Ĥ0, ρ̂

(I)(t)
]
− i

[
V̂ (I)(t), ρ̂(I)(t)

]

= −i
[
V̂ (I)(t), ρ̂(I)(t)

]
. (A.9)

This establishes our first main result: The time evolution of the interaction-
picture density operator is given by an equation of the Liouville–von Neu-
mann type, but with the interaction-picture perturbation V̂ (I)(t) instead of
the full Hamiltonian Ĥ. Appropriately, (A.9) is called the interaction-picture
Liouville–von Neumann equation.
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Up to now, we have considered the case of a single system S subject to
some perturbation V̂ whose origin we have not specified further. Let us now
enter the setting relevant to decoherence: We suppose that the perturbation is
due to the interaction with some external environment E described by an in-
teraction Hamiltonian Ĥint, i.e., V̂ ≡ Ĥint. If we denote the self-Hamiltonians
of the system and the environment by ĤS and ĤE , respectively, we may write
the total Hamiltonian of the composite system SE in the form

Ĥ = Ĥ0 + V̂ ≡ ĤS + ĤE︸ ︷︷ ︸
≡Ĥ0

+ Ĥint︸︷︷︸
≡V̂

. (A.10)

Following the usual strategy, we are interested in determining the time evo-
lution of the reduced density operator ρ̂S(t). In our case, we would like to
obtain the reduced interaction-picture density operator

ρ̂
(I)
S (t) ≡ TrE

[
ρ̂(I)(t)

]
. (A.11)

We will now address the following two questions:

1. Given the reduced density operator ρ̂S(t) in the Schrödinger picture, what
is the corresponding operator ρ̂

(I)
S (t) in the interaction picture?

2. What is the appropriate time-evolution equation for ρ̂
(I)
S (t)?

Let us answer the first question. Evaluating the trace in (A.11) gives

TrE
[
ρ̂(I)(t)

]
(A.5)
= TrE

[
eiĤ0tρ̂(t)e−iĤ0t

]

(A.10)
= eiĤSt

{
TrE

[
eiĤEtρ̂(t)e−iĤEt

]}
e−iĤSt

= eiĤSt {TrE [ρ̂(t)]} e−iĤSt

= eiĤStρ̂S(t)e−iĤSt

(A.11)
≡ ρ̂

(I)
S (t), (A.12)

where in the second-to-last line we have again used the invariance of the
trace operation under cyclic permutations of the arguments (or, put slightly
differently, the invariance of the trace under unitary transformations of the
argument).

Equation (A.12) shows that the reduced density operator in the interac-
tion picture is obtained by a unitary transformation of the reduced density
operator in the Schrödinger picture involving the free system Hamiltonian
ĤS only, i.e.,

ρ̂
(I)
S (t) = eiĤStρ̂S(t)e−iĤSt. (A.13)

The analogy of (A.13) to the corresponding transformation for the total
interaction-picture density operator ρ̂(I)(t), see (A.5), should now be clear. In
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each case, the transformation involves only the free Hamiltonian, namely, the
Hamiltonian Ĥ0 for ρ̂(I)(t) and the system Hamiltonian ĤS for the reduced
interaction-picture density operator ρ̂

(I)
S (t).

We note that the definition (A.13) also ensures, as desired, that expec-
tation values of system observables ÂS(t) automatically agree in both the
Schrödinger and interaction pictures, i.e., that

〈ÂS(t)〉 = TrS
[
ρ̂S(t)ÂS(t)

]
= TrS

[
ρ̂
(I)
S (t)Â(I)

S (t)
]
, (A.14)

where

Â
(I)
S (t)

(A.4)
= eiĤ0tÂS(t)e−iĤ0t (A.10)

= eiĤStÂS(t)e−iĤSt. (A.15)

The proof of (A.14) is immediate:

TrS
[
ρ̂
(I)
S (t)Â(I)

S (t)
]

= TrS
[
eiĤStρ̂S(t)ÂS(t)e−iĤSt

]

= TrS
[
ρ̂S(t)ÂS(t)

]
. (A.16)

Finally, let us now answer the second question posed above, i.e., let us find
an equation of motion for the reduced interaction-picture density operator
ρ̂
(I)
S (t). Taking the trace over the environment on both sides of our evolution

equation (A.9) for the full interaction-picture density operator ρ̂(I)(t), with
V̂ (I)(t) ≡ Ĥ

(I)
int (t), yields

d
dt

ρ̂
(I)
S (t) = −i TrE

[
Ĥ

(I)
int (t), ρ̂(I)(t)

]
. (A.17)

A closer inspection reveals that this equation is not of the standard Liouville–
von Neumann form, since the right-hand side depends on the full density
operator ρ̂(I)(t) rather than on the reduced density operator ρ̂

(I)
S (t). This

fact should not be too surprising to the reader. After all, the state of the
environment will generally influence the evolution of the reduced density
operator.

Thus, in general, we must consider the full interacting system–environment
combination to determine the reduced dynamics. (This observation is, of
course, independent of whether we work in the Schrödinger or the interac-
tion picture.) Only once certain approximations are imposed (for instance, the
assumption of weak system–environment coupling), we may obtain an evolu-
tion equation for the reduced density operator of the system that does not
explicitly depend on the time-dependent total (system–environment) density
operator. Such master equations are derived in Chaps. 4 and 5.
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Bell inequalities, 17
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Born approximation, 156, 160–161
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Born–Markov master equation, 155–165
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derivation of, 158–165
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C70 interference experiments, 258–270
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apparatus-induced, 320–321
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mechanics, 329–358
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in quantum-electromechanical
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in SQUIDs, 279–282
in the brain, 365–374
independent, 322–323
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rate, see separate entry
reversal of, 98–101, 255–258
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dissipation kernel, 181
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double-slit experiment, 23, 60, 258–259,

355
double-well potential, 174, 273
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dynamical symmetry, 80
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von Neumann, 41
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Lamb-shifted Hamiltonian, 155
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Lindblad operator, 167
Liouville–von Neumann equation, 139

interaction-picture, 380
local theory, 4
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measurements, 15
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Born–Pauli interpretation of, 19
collapse in, 15
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interference, 21–26
irreversible, 69, 100
local, 44
noncommutativity in, 15
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observables and, 15
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projective, 15
virtual, 101

memory effects, 156, 163, 169
microtubules, 367, 371–374
mixed states, 19, 36–41
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ignorance-interpretable, 42
improper, 49, 69, 333
proper, 20, 42

modal interpretations, 344–347
and environment-induced superselec-
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Schmidt decomposition in, 346–347

models
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spin-environment, 88–93, 222–237



Index 413
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myelin, 368

neurons, 365–371, 375–378
NMR, 88, 97, 301
no-cloning theorem, 16, 306
no-signaling theorem, 31
noise kernel, 181
non-Hermitian observables, 53
non-Markovian dynamics, 169–170
noncommutativity of observables, 15,

54
nondemolition measurement, 52

by the environment, 74
nonlocality, 4, 6, 32
nonunitary dynamics, 10, 28, 69, 111,

155, 290, 331, 348–354
normal-diffusion coefficient, 185, 189,
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nuclear magnetic resonance, 88, 97, 301

objectification through redundancy, 88
observables, 15
observation

in quantum mechanics, 359–361
indirect, 85

off-diagonal terms, 34
openness of quantum systems, 3–4, 69,

74
operator-sum formalism, 110–112
optical quantum computing, 301
orthodox interpretation, 330–336
oscillator environments, 175

in the weak-coupling limit, 176
outcomes, 16

in hidden-variables theories, 17
problem of, 50, 57–60, 331–333, 362

overcomplete set of states, 53, 75

partial trace, 44, 333
and decoherence, 45
interpretation of, 44, 333

phase qubits, 281
phase relations, 69

delocalization of, 69, 98–101
phase-flip error, 309
physical collapse theories, 348–354

competition with decoherence in, 351
experimental tests of, 353–354

preferred-basis problem in, 349–351

tails problem in, 351–352

physical ensembles, 43–44, 96, 303

physical reality, 15, 360, 375

Poincaré recurrence, 93, 213

pointer (of apparatus), 51

pointer basis, 75–85

pointer observable, 77–85

pointer states, 74–85

and implications for interpretations,
329–358

and predictability sieve, 82

commutativity criterion for, 77

general selection methods for, 81–83

in charge space, 84

in modal interpretations, 345–346

in phase space, 194–203

in position space, 83

in relative-state interpretations,
337–344

in the Copenhagen interpretation,
334–335

in the quantum limit of decoherence,
81

in the quantum-measurement limit,
76–80

predictability of, 82

redundant encoding of, 87

stability criterion for, 73

pointer subspace, see decoherence-free
subspace

positivist view, 67, 360

postselection, 21

predictability, 82, 376

predictability sieve, 82–83

preferred basis, 55, 75–85

preferred observable, 55, 74–85

preferred states, see pointer states

preferred-basis problem, 50, 53–55, 71,
83–85

in modal interpretations, 344–347

in physical collapse theories, 349–351

in relative-state interpretations,
337–340

in the Copenhagen interpretation,
334–335

premeasurement, 53

probabilities
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and envariance, 341–343
Born, 35
classical, 37
epistemic, 17
in mixed states, 36
in relative-state interpretations,

340–343
quantum, 15–18, 331

probability amplitude, 18
problem of outcomes, 50, 57–60,

331–333, 362
problem of the nonobservability of

interference, 50, 55–57, 69, 333
proper mixture, 20, 42
protofilaments, 371
psycho-physical parallelism, 361,

376–378
pure states, 19
purification of the environment, 109
purity, 40, 147, 201

quantum algorithms, 300
quantum bit, 88, 270–282, 295–297
quantum brain, 359–378
quantum Brownian motion, 178–206

and oscillator–spin models, 234–237
Born–Markov master equation for,

178–182
decoherence rate in, 193
dynamics of, 194–203
exact master equation for, 206
harmonic-oscillator master equation

for, 182–187
high-temperature limit of, 191–194
in the Wigner representation, 184,

195–197
limitations of models for, 203–205
phase-space decoherence in, 194–203
pre-Markovian form of the master

equation for, 186
quantum computers, 30, 293–328

and the brain, 365–374
decoherence vs. classical noise in,

302–304
decoherence vs. controllability in,

301–302
error correction in, 304–321
fault tolerance in, 320–321
ion-trap, 301, 303, 305, 326

NMR, 301

optical, 301

physical realizations of, 300–301

power of, 294–297

read-out of, 297–298

redundant encoding in, 305–307,
315–320

storage capacity of, 296

quantum computing, see quantum
computers

quantum correlations, 4, 29

quantum cryptography, 30

quantum Darwinism, 86

quantum discord, 87

quantum erasure, 98–101, 304, 316

quantum error correction, 304–321

classical vs. quantum, 305–307

discretization of errors in, 307–311

fault-tolerant, 320–321

three-bit code for, 315–320

quantum holism, 6, 33, 297

quantum information theory, 293–328

quantum limit of decoherence, 81, 228

quantum Monte Carlo, 297

quantum observer, 361–365

quantum parallelism, 297

quantum states

classical vs. quantum, 14–16

completeness of, 16

concept and interpretation of, 14–20

fragility of, 16, 74

global, 29

in Bell form, 29

mixed, 19

ontological status of, 18–20

preparation procedure for, 36

probabilistic nature of, 16–18

pure, 19

realist interpretation of, 19, 348, 376

relative, 29

quantum-electromechanical systems,
234, 284–288, 336

decoherence in, 287–288

superposition states in, 285–287

quantum-jump approach, 168

quantum-measurement limit, 76–80,
228
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quantum-to-classical transition, 2,
49–60

quantum-trajectory approach, 168
qubit, 88, 270–282, 295–297

Rabi frequency, 246
Rabi oscillations, 25, 246–247, 276
Ramsey interferometry, 25–26, 279
recoherence, 99, 255–258
recoiling slit, 61
recurrence of coherence, 92, 213
Redfield equation, 163, 187
reduced density matrices, 44–49, 64, 68

and decoherence, 45
derivation of, 45–46
interpretation of, 48–49, 333
positivity of, 165
vs. ensembles, 48–49

redundancy, 85–88, 305, 336, 344, 378
redundant encoding of information

in classical computers, 305–307
in quantum computers, 315–320
in the environment, 85–88

relative states, 29, 47
relative-state interpretations, 336–344

preferred-basis problem in, 337–340
probabilities in, 340–343
Schmidt decomposition in, 339

relaxation timescale, 93
reset, 101
resolution into subsystems, 101–103
resonant π/2 pulse, 247
resting/firing of neurons, 365–371
reversible decoherence, 98–101, 255–258
revival of coherence, 98–101, 255–258
rf-SQUID, 272

S-matrix, 119
scattering, 7, 45, 65, 115–151

master equation for, 140
of air molecules, 136–138
of photons, 132–136

scattering constant, 131
Schmidt basis, see Schmidt decomposi-

tion
Schmidt decomposition, 104–106

and classicality, 105–106, 339
and decoherence, 105–106
and pointer states, 105–106

degeneracy in, 105, 347

for density matrices, 104

in modal interpretations, 346–347

in relative-state interpretations, 339

uniqueness of, 104

Schmidt states, see Schmidt decompo-
sition

Schrödinger equation, 21

augmented, 349

stochastic, 169, 348

Schrödinger’s cat, 2–3, 57–58, 364

second intervention, 363

selection of quasiclassical properties,
83–85

self-Hamiltonian, 76

Shannon entropy, 86

Shor’s factoring algorithm, 300

short-wavelength limit, 128–129

shut-up-and-calculate interpretation,
329

Solvay conference, 61, 329

spatial localization, 74, 83, 115–151,
265, 348–351

special relativity, 31

spectral density, 181

cutoff in, 188

effective, 233

in Lorentz–Drude form, 188

ohmic, 188

spin echo, 98

spin environments, 175–176, 222–237

spin–boson model, 207–222

and spin-environment models,
233–234

Born–Markov master equation for,
218–222

simplified version of, 208–218

spin-environment models, 222–237

in the quantum limit of decoherence,
228

in the quantum-measurement limit,
228

in the weak-coupling limit, 228–237

non-Markovian, 237

simple example of, 223–228

splitting (of branches), 337, 375–378

spontaneous localization models,
348–354
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spooky action at a distance, 31
SQUID, 176, 270–282

basic principles of, 272–275
observation of decoherence in,

279–282
physical collapse theories and, 350,

354
Rabi oscillations in, 276
superposition states in, 275–279

stability criterion, 73
standard interpretation, 330–336
Stern–Gerlach experiment, 21–23, 37

reversible, 99
stochastic dynamical reduction,

348–354
subjectivity, 360
subsystem, 28, 101–103
superconducting qubits, 270–282
superconductivity, 271–272
supercurrent, 271–272
superposition principle, 20–28

interpretation of, 20–21
scope of, 26–28

superpositions, 20–28
amplification of, 52
and interference experiments, 23–26
coherent, 20
direct measurements of, 21–23
experimental verification of, 21–26
of Gaussians, 194
of radiation fields, 245
of supercurrents, 275–279
qubit state in, 295
relocalization of, 99, 255–258
vs. classical ensembles, 20

superselection rules, 6, 73
symmetrization of the environment, 326
system–observer duality, 336

T -matrix, 122, 123
tails problem, 351–352
Talbot–Lau effect, 260–261
thermal bath, 171
three-bit code, 315–320
threshold theorem, 321
timescale

for coherent spreading, 117
for decoherence (general), 70, 94
for decoherence in quantum Brownian

motion, 197
for decoherence in the Caldeira–

Leggett model, 185
for decoherence in the spin–boson

model, 216
for recurrence of coherence, 93
for relaxation, 93
for scattering-induced decoherence,

127, 131, 134
trace operation, 34–36

and decoherence, 45
interpretation of, 36, 44, 333
partial, 44, 333

trace rule, 36, 46
for mixed states, 38

tubulin, 371
tunneling, 174, 271, 277
tunneling matrix element, 174

uncertainty principle, 62, 202, 366

virtual decoherence, 98–101
virtual measurement, 101
von Neumann chain, 361–365
von Neumann entropy, 41
von Neumann measurement scheme,

50–53, 361–362

wave packets, 18
coherent spreading of, 116
Gaussian, 116

weak-coupling limit, 176
weight (in quantum error correction),

310
which-path information, 60–68, 263–265

and entanglement, 60–68
and environmental monitoring, 65–68

Wigner representation, 106–109
direct peaks in, 107
in quantum Brownian motion, 184,

195–197
oscillatory pattern in, 107

Wigner’s friend, 364–365
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