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Preface

This volume contains a collection of peer-reviewed articles arising from StartUp
Research. This meeting took place on June 25–27, 2017, at the ancient Certosa di
Pontignano (Pontignano Charterhouse), a few kilometers from Siena (Italy).
StartUp Research was a satellite event of the Statistical Conference of the Italian
Statistical Society, held in Florence (Italy) in June 2017. The event was additionally
endorsed by the young group of the Italian Statistical Society (https://youngsis.
github.io/), whose aim is to promote activities and provide a social networking
platform for early-career researchers in statistics.

StartUp Research was a stimulating experience. It brought together 28
early-career researchers in statistics and seven international professors with the
common task of developing novel statistical methods for complex and multimodal
brain imaging data. It is, in fact, increasingly common in neuroscience to monitor
the brain activity of each subject under different imaging technologies. This
motivates the development of novel statistical methods for joint modeling of
complex and multimodality data on brain function and structure. The junior
researchers, divided into seven groups, focused on brain imaging data from a study
of the Enhanced Nathan Kline Institute-Rockland (NKI1) project (http://fcon_1000.
projects.nitrc.org/indi/enhanced/). This pilot study comprises multimodal imaging
data and subject-specific covariates for 24 individuals. In particular, for each sub-
ject, the following data are available:

– Structural networks measuring, from diffusion tensor imaging, white matter fiber
interconnections among brain regions of interest.

– Functional activity data measuring the dynamic activity of each brain region
through changes in the blood oxygen level-dependent signal during resting state
functional magnetic resonance imaging.

– Functional networks denoting regions’ synchronization in brain activity.

v
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Spatial information on the brain regions of interest and subject-specific data on
age, handedness, and psychological traits are also provided. The imaging data were
pre-processed and generously provided by Greg Kiar and Eric Bridgeford from
NeuroData at Johns Hopkins University, who are gratefully acknowledged.

Motivated by the above dataset, the groups proposed stimulating methods during
StartUp Research and continued their studies in the following year. More specif-
ically, the contribution “Understanding Dependency Patterns in Structural and
Functional Brain Connectivity Through fMRI and DTI Data” leverages latent
variable models and dynamic Bayesian networks to learn, possibly similar, patterns
in brain structural and functional connectivity. The contribution “Hierarchical
Graphical Model for Learning Functional Network Determinants” instead adopts a
modular approach which combines smoothing procedures, graphical models, and
regression methods to relate functional connectivity with regions and
subject-specific features. Different directions in the analysis of brain interconnec-
tions are proposed in “Three Testing Perspectives on Connectome Data”. The first
focuses on learning structural restrictions in brain functional activity. The second
aims at estimating the effective number of white matter fibers via parsimonious
models, while the third studies group differences in brain connectivity with sub-
jects’ traits under an object-oriented perspective. Also the work “An Object
Oriented Approach to Multimodal Imaging Data in Neuroscience” analyzes the
human brain data as object-valued and provides a wide set of procedures, including
clustering, low-dimensional embeddings, and hypothesis testing, to obtain coherent
findings in neuroscience. In a similar research direction, the contribution “Curve
Clustering for Brain Functional Activity and Synchronization” focuses on appro-
priate methods to infer grouping structures and functional outliers in fMRI trajec-
tories. These data are further explored in “Robust Methods for Detecting
Spontaneous Activations in fMRI Data” via novel filtering methods which incor-
porate heavier tails than classical Gaussian assumptions. Parsimonious, yet flexible,
Bayesian dynamic latent factor models are instead considered in the contribution
“Hierarchical Spatio-Temporal Modeling of Resting State fMRI Data” to infer
spatial and temporal effects of brain functional activity across multiple regions.
A final article by Michele Guindani and Marina Vannucci summarizes the different
proposals and opens toward new stimulating research directions in this field.

We would like to thank the early-career participants, Emanuele Aliverti, Gaia
Bertarelli, Alessandra Cabassi, Alessia Caponera, Andrea Cappozzo, Alessandro
Casa, Alice Corbella, Federico Crescenzi, Marta Crispino, Silvia D’Angelo,
Francesco Denti, Jacopo Di Iorio, Roberta Falcone, Federico Ferraccioli, Matteo
Fontana, Laura Forastiere, Francesca Gasperoni, Anastasiia Gorshechnikova, Tullia
Padellini, Sally Paganin, Michele Peruzzi, Alexios Polymeropoulos, Saverio
Ranciati, Tommaso Rigon, Dutta Ritabrata, Massimiliano Russo, Andrea
Sottosanti, and Marco Stefanucci for their enthusiasm and dedication to this
stimulating experience. Also, the group leaders Alessio Farcomeni, Alan Gelfand,
Alessandra Luati, Antonietta Mira, Piercesare Secchi, Marian Scott, and Ernst Wit
are warmly acknowledged for their fundamental and inspiring contribution in
leading the groups, both personally and scientifically.
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Finally, we would like to thank the Italian Statistical Society, the Department of
Economics and Statistics of the University of Siena, and the Department of
Statistical Sciences of the University of Bologna for supporting StartUp Research.
We are also grateful to the referees for their thoughtful revisions.

Padua, Italy Antonio Canale
Milan, Italy Daniele Durante
Milan, Italy Lucia Paci
Padua, Italy Bruno Scarpa
July 2018
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Understanding Dependency Patterns
in Structural and Functional Brain
Connectivity Through fMRI and DTI
Data

Marta Crispino, Silvia D’Angelo, Saverio Ranciati and Antonietta Mira

Abstract Neuroscience and neuroimaging have been providing new challenges for
statisticians and quantitative researchers in general. As datasets of increasing com-
plexity and dimension become available, the need for statistical techniques to ana-
lyze brain related phenomena becomes prominent. In this paper, we delve into data
coming from functional Magnetic Resonance Imaging (fMRI) and Diffusion Ten-
sor Imaging (DTI). The aim is to combine information from both sources in order
to learn possible patterns of dependencies among regions of interest (ROIs) of the
brain. First, we infer positions of these regions in a latent space, using the observed
structural connectivity provided by the DTI data, to understand if physical spatial
coordinates suitably reflect how ROIs are effectively interconnected. Secondly, we
inspect Granger causality in the fMRI data in order to capture patterns of activa-
tions between ROIs. Then, we compare results from the analysis on these datasets,
to find a link between functional and structural connectivity. Preliminary findings
show that latent space positions well reflect hemisphere separation of the brain but
are not perfectly connected to all the other structural partitions (that is, lobe, cortex,
etc.); furthermore, activations of ROIs inferred from fMRI data are tied to observed
structural connections derived from DTI scans.
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Keywords Network analysis · Resting state fMRI · DTI · Latent space models
Penalized weighted regression

1 Motivating Real World Dataset

Advances in neuroimaging have led to an increase in the availability of data to
study complex systems (for instance, neurological processes in human brain). It is
now possible to collect data considering different aims and assimilating different
sources, a strategy that better captures the underlying dynamics of the phenomenon
at study. The main interest lies in unraveling the mechanisms originating structural
and functional brain activity, and simultaneously in understanding how these aspects
are intertwinedwith patients covariates: for instance, how significant and relevant are
the differences in brain connectivity and activity among subjects with heterogeneous
characteristics. From different available multimodal brain imaging frameworks, here
we focus on functional Magnetic Resonance Imaging (fMRI), and Diffusion Tensor
Imaging (DTI).

The datasets we consider for the analysis were collected during a pilot study of
the Enhanced Nathan Kline Institute-Rockland Sample project (information about
the project itself is available at http://fcon_1000.projects.nitrc.org/indi/enhanced/).
Data consist of 24 subjects, whose brain activity and structural connectivity were
captured through DTI and resting state fMRI scan. The raw data were preprocessed
and the scanned areas of the brain were parceled to determine a set of regions of
interest (ROIs). An overview of the preprocessing steps is given in [4, 29]. Interest
in analyzing rich and significant data from neuroimaging received a huge boost in the
last decades, through a significant spillover of network analysis into neuroscience
[2]. In an attempt to both distill information from complex systems and to infer
the main mechanisms underlying brain activity, methods and concepts from network
analysiswere used into the framework of brain data. Concepts and terms such as hubs,
centrality, hierarchy, node connectedness, and so forth, became both vocabulary and
methodological tools shared by network analysis and neuroscience communities. A
comprehensive reviewof this bridgingbetweennetwork analysis andneuroimaging is
provided in [2]; more recently, in [30] an overview on connection between network
properties and brain imaging data is also discussed, with emphasis on detection
of neurological disorders via changes in the network structure itself. In [25, 29],
Statistics and network science are directly tied to the study of functional and structural
connectivity, and how both could help in deepening our understanding of interactions
and, possibly, causality, among regions of the brain. In particular, for causal inference
with an emphasis on fMRI data, refer to [22, 26].

From a statistical point of view, we find interest in exploiting—in a synergized
approach—all the information at disposal. This can be done in many ways: for exam-
ple, one could inject the number of white matter fibers for each pair of regions (DTI
data) as a covariate information in amodel capturing the correlation in the fMRI data.
Alternatively, one might describe the statistical properties of an assumed underlying

http://fcon_1000.projects.nitrc.org/indi/enhanced/
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network model originating the DTI dataset, then use some network’s properties as
aid in discovering (in fMRI data) patterns of synchronization between regions of
the brain. Given the variety of questions and ways to address them, we adopt a sta-
tistical framework unifying these two ways of looking at brain connectivity, with
the intent to assimilate different kinds of information captured by these different
technologies, DTI and fMRI. The main goal of this work is thus to combine results
from structural and functional observed data, in order to enhance the interpretation
of each separate findings. In particular, our aim is to assess if the two datasets give
‘coherent’ answers with respect to the behavior we expect from the phenomenon:
the patterns of activation among ROIs from fMRI data should be tied to structural
connectedness highlighted by DTI data. The two datasets obviously share informa-
tion on the overall activity of the brain but, from a modeling perspective, they bring
different contributions to the whole research framework. In particular, data for the
structural connectivity should depict the ‘hardware’ reference for us to understand
which regions of the brain are physically connected. On the other hand, data from
resting fMRI should provide insights on the dynamic counterpart of signals com-
muting between ROIs, and thus a different aspect on the concept of connectivity. For
these reasons, we consider separate statistical models for the two available datasets.

First, we analyze the structural connectivity information provided by the DTI
dataset, with the aid of models and tools coming from network analysis’ framework.
In particular, we investigate the idea that a statistical interpretation of the topology of
the network differs from the physical observed topology, represented by the spatial
coordinates of theROIs. For this reason,we resort on latent spacemodelswhich allow
us to infer positions of the ROIs, in terms of how close they are, directly from the data
onwhitematter fibers and their structural connectivity. Latent spacemodels for social
network analysis have been introduced in [15]. In their work, the authors assume that
the observed network data depend on a set of latent variables. Indeed, the nodes are
assumed to be in a p-dimensional latent space. Then, the probability that two nodes
are joined by an edge in the network depends on some function of the unknown
latent coordinates of the nodes. In the case of distance latent space models, this
function is generally assumed to be the Euclidean distance: the smaller the distance,
the greater the probability of an edge. While for projection latent space model, the
function considers the angle formed between two nodes in the bilinear latent space:
the smaller the angle the higher the probability that the dyad is connected. This class
of models can take into account some of the typical features of network analysis,
such as the presence of degree heterogeneity and of group structure. Indeed [14]
introduced sender and receiver effects for networks and [13] proposed a clustering
model for the nodes in the latent space. A different approach that makes use of latent
variable to model the dependency structure observed in network data is stochastic
block modeling [21, 27]. Stochastic block models are particularly suited to cluster
the nodes into blocks. From this rich literature, wemainly draw from the contribution
of [15] in order to gain insights about spatial organizations of the ROIs.

Second, we deal with temporal information provided by the dataset on rest-
ing state fMRI, which comprises of time series of brain activity. In particular, we
exploit a weighted linear regression model that encodes a type of causality between
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observations at different time points and for different ROIs. This causality, called
Granger causality, is tied to the estimation of parameters in the weighted linear
regression. Granger Causality [9, 10] was first introduced in the Econometric lit-
erature, specifically developed for time series analysis. This notion of causality is
grounded on the rather obvious intuition that the origin of a cause should necessarily
precede in time its effect. In particular, it states that, given two sets of time series
data, V1 and V2, the series V1 (Granger) causes V2 if past values of V1 are helpful in
predicting the future values of V2. It is important to underline that Granger causality
is not intended as causality in a deep sense: it just measures whether one time series is
likely to influence the other one, that is, if V1 provides more information about future
values of V2 than past values of V2 alone. As such, Granger causality not always
overlaps with actual causality, but it is still a useful instrument to infer whether two
series are related by some, generally unknown, phenomenon. Recently, the notion
of Granger causality entered into the network literature on multivariate time series,
with the objective of learning sparse sets of Granger causal relationships between
univariate series [11, 12, 17, 24, 31]. In this paper, we exploit this notion in order
to infer any existing relationship between different brain regions.

In light of the above discussion, the remainder of the paper is organized as fol-
lows: in Sect. 2 we provide some exploratory statistics on the datasets, to summarize
the salient features of the data we are modeling; in Sect. 3, we outline a model-
ing approach to static network data along with the results we get by applying this
methodology to the DTI dataset (Sect. 3.1). Then, a time-varying dynamic linear
model formulation for the time-series dataset is presented in Sect. 4, together with
preliminary results from the fMRI dataset (Sect. 4.1). Finally, in Sect. 5, we discuss
the results so far obtained, also providing a glimpse of future developments.

2 Descriptive Analysis

As mentioned in Sect. 1, we here analyze two core datasets. The first one, DTI,
refers to subjects’ brain structural connectivity, measured using DTI. For the scan
of each individual (and re-scan, if available), a 70 × 70 matrix reports the observed
count of whitematter fibers connecting pairs of ROIs; a structural ‘NA’ (not assigned)
value is reported for self-connectivity, which is the diagonal of the aforementioned
matrix. The number of white matter fibers is thus an observed measure of connec-
tivity between brain regions. To compare our results with a standard brain represen-
tation, we refer to the atlas for brain parcelation in [6] (also reported in Appendix
6), that has a total of n = 68 ROIs. To match the analyzed regions with those of
the Desikan atlas, two of the 70 ROIs in the data labeled as “unknown” are dis-
carded, when comparing the results. Moreover, two of the regions in the data refer to
the corpus callosum (left and right), while the Desikan atlas does not represent this
region but instead considers the insula, which includes the corpus callosum together
with the lateral ventricles. Therefore, when comparing our results with the Desikan
atlas representation of the brain, we refer to the corpus callosum as insula. The
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second dataset, fMRI, comprises of resting state dynamic functional activities of
the ROIs, measured via blood-oxygen-level dependent (BOLD) technique through
fMRI, at T = 404 equally spaced time points with in-between lags of 1400 (ms). A
third collateral dataset was produced by computing, from the fMRI dataset, time-
wise correlations among the ROIs, resulting in a 70 × 70 matrix for each subject
(and each re-scan, when available). Additional information is provided in the form
of covariates. For the subjects, characteristics available are: status of current (sin-
gle episode/recurrent depressive disorder, cannabis abuse, anxiety, social phobia)
or lifetime (alcohol abuse, drug dependence, Attention Deficit Hyperactivity Disor-
der, eating disorder, major depressive disorder) mental disorder; handedness (left,
right, ambidextrous); age. For the ROIs, their lobe and hemisphere memberships
are recorded, together with the physical spatial coordinates of the centroids used in
the atlas. Information is not always available for all individuals and, in some cases,
not every subject has a re-scan dataset to be paired with the original scan, causing
missing values in the reported observations.

We here provide some descriptive statistics to familiarize the reader with the data
at hand. In Table 1 we focus on the DTI dataset. The data for 4 subjects (labeled 6,
17, 20 and 22) are not available, and the disease diagnosis is missing for four patients
(labeled 3, 4, 5, 6). We also notice that the seven patients who are diagnosed with
lifetime disease, are also diagnosed with current disease. More importantly, three out
of four patients with a diagnosis of current disease havemissing data. The descriptive
analysis in this section therefore focuses only on differences among patients with
diagnosis of lifetime disease (four available out of seven), and patients with no such
diagnosis (twelve available out of thirteen). The most salient feature of Table 1 is that
the variability within subject of the number of white matter fibers is extremely high,
with a range of values between zero and several thousands; distribution of the number
of white matter fibers for each patient is highly skewed, and the median values are
always much smaller than the mean values. We check if adjusting marginally (that is,
one at a time) for covariates can help explain the distribution of the median number
of white matter fibers across the patients. For example, the boxplot in Fig. 1 (left
panel) represents the median number of white matter fibers, stratified by the lifetime
disease diagnosis of the subjects (YES/NO).

From this plot, we notice that there is a difference, in terms of median number of
white matter fibers, among patients with and without lifetime disease diagnosis. This
result is confirmed by aWilcoxon rank sum test which rejects the null hypothesis (p-
value = 0.0077) of equal medians in the two groups. We also performed a Wilcoxon
rank sum test to assess whether there is a difference between subjects with/without
diagnosis of lifetime disease in terms of the percentage of zeros in the adjacency
matrix (column 8 of Table 1). The null hypothesis in this case is not rejected. These
findings suggest that the number of white matter fibers may be particularly informa-
tive about disease status, while the presence/absence of white matter fibers is not.
There is a huge literature (see e.g [18, 20, 23]) that studies associations between
mental disorders and DTI of white matter fibers. Analogous considerations can be
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Fig. 1 Boxplots of the median number of white matter fibers stratified by the lifetime disease
diagnosis (left), handedness (middle), age (right)

drawn for other covariates, such as age or handedness1 (see Fig. 1, middle and right
panels). However, in this paper we do not model directly the number of white matter
fibers (see Sect. 3), or the potential impact of covariates on these counts. Rather, we
look at absence/presence of fibers since our focus is mainly in joining information
coming from the two datasets. Nevertheless, we are willing to investigate this aspect
in a future development of the current analysis (see also Sect. 5).

The fMRI dataset reports the dynamic activity time series of each brain region,
for each subject in the study. Data for 2 subjects (1 and 21) are not available, whereas
for other 11 subjects (labeled 4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20) only the first
scan is observed. In Fig. 2 we report some plots produced as follows:

• for each subject and each region of the brain,we compute the range of the activation
levels along the time series;

• we then plot the obtained values versus the regions on the x-axis, with different
symbols related to the user-specific covariates (as in the legend).

The range for patients who are diagnosed with a lifetime disease (black squares in
the upper panel of Fig. 2) seems to be much higher than the one of the patients who
did not receive a positive diagnosis (grey circles). Differences are noticeable also
inspecting the handedness plot, in the lower panel of Fig. 2. We see that the range of
activation is smaller for ambidextrous (A) patients (light-grey triangles).

The third dataset reports synchronization in brain activity for each pair of brain
regions, obtained from the correlation in the dynamic functional activity of the fMRI
dataset. In the heatplot of Fig. 3 is depicted the adjacencymatrix corresponding to the
functional network measuring correlation in brain activity between pairs of regions.
The upper triangular panel is built averaging values of the patients who were not
diagnosed a lifetime disease, while the lower triangular one refers to patients with
lifetime disease. The structure of the two triangular panels is very similar, as indicated
by the dark cells common in the two panels, and by the evident subdivision of both
plots into three areas. However, it is evident an overall higher correlation for patients
with diagnosis, in particular regarding pairs of brain regions that do not activate

1Handedness is the dominance of one hand over the other, or the unequal distribution of fine motor
skills between the left and right hands.
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Fig. 2 Range of activation for each brain region (x-axis). Top-panel: symbols refer to the lifetime
diagnosis covariate; Bottom-panel: symbols refer to the handedness covariate: Left (L), Right (R),
and Ambidextrous (A)

simultaneously in patients without diagnosis: in fact, many light cells of the upper
triangular panel are darker in the lower triangular panel.

As a final insight, we show in Fig. 4 the adjacency matrix corresponding to the
functional network measuring correlation in brain activity between pairs of regions,
for a subject picked at random (patient labeled as 2). The black stars reported on
some cells indicate whether there is physical connection in terms of white fibers:
the presence of the star corresponds to a non-zero entry in the adjacency matrix
of dataset DTI. From a rapid inspection, it seems that there is some relationship
between the physical connectivity and the correlation in brain activity, as almost all
dark cells are labeled with a star. We therefore check if this result holds for all the
patients. We compute, separately for each patient, the fraction of dark starred cells,
that is, cells corresponding to a value of correlation > 0.8, among all starred cells.
After averaging across all the patients, we obtain an average fraction greater than
0.75, with no different pattern tied to covariate information such as mental disorder
diagnosis or handedness. This means that, on average, three in four starred cells are
also highly correlated in terms of brain activity as measured in the fMRI dataset.
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Fig. 3 Heatplot of the adjacency matrix of the network measuring correlation in brain activity
between pairs of regions. Upper triangular: averaged across subjects who did not receive a diagnosis
of lifetime disease (scan 1); Lower triangular: averaged across subjects who did receive a diagnosis
of lifetime disease (scan 1)

3 Latent Space Model for DTI Dataset

We model each of the 20 patients, those whose data are available, separately: to
lighten the notation, no subscript or superscript for the subject is used. Data consist
of an n × n adjacency matrix N, collecting information on n = 70 units which are
the ROIs of the brain. Notice that, for the latent space analysis we use n = 70 but to
make the comparison with the Desikan atlas n is, ex-post, reduced to 68 by dropping
the two ROI that in the original data are labeled as “unknown”.

Matrix N is symmetric, with n(n − 1)/2 distinct elements, where a generic ele-
ment Ni, j ∈ N represents the number of white matter fibers connecting the pair of
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Fig. 4 Heatplot of the adjacency matrix of the network measuring correlation in brain activity
between pairs of regions, in patient 2. The black stars indicatewhether therewas physical connection
in terms of white matter fiber (the presence of a star indicates a non-zero entry in the adjacency
matrix of dataset DTI)

regions i and j . There is a correspondence between the matrix N and the adjacency
matrix of a weighted undirected graph, whose vertices are the ROIs and the edges
represent connections between them. Edges’ weights are the number of white matter
fibers. Given the limited knowledge-domain we possess, especially about variabil-
ity of the data, we follow the approach used in [7] and focus the analysis on the
dichotomized version ofN. This new data matrix Z has the same dimension asN but
each element is defined as:

Zi, j =
{
1 if Ni, j > 0 i.e. if at least one white matter fiber connects i and j;
0 if Ni, j = 0 i.e. if no white matter fiber connects i and j.
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Thus, we are here disregarding the weight of the edges: in the model we will treat
equally pairs of brain regions connected by only one white matter fiber and pairs
connected by many (possibly thousands of) white matter fibers. This is a strong
assumption and we plan to relax it in future developments. Following the idea of
[15], for each i = 1, . . . , n and j �= i we model the probability of observing an edge
between (i, j) as

P
(
Zi, j |xi , x j , β

) = Bern

(
Zi, j ;πi, j = exp{β − ||xi − x j ||}

1 + exp{β − ||xi − x j ||}
)

(1)

where xi and x j are p-dimensional vectors representing the positions of ROI i and
ROI j , respectively, in a p-dimensional latent space. The term ||xi − x j || represents
the �2 distance between pair (i, j) of ROIs, and encodes the idea that the probability
πi, j of observing a connection between regions i and j depends on how close/far
they are in the p-dimensional latent space. The choice of p is a research direction
by itself. A few proposals have been made in the literature to tackle this issue, for
instance [8]. For simplicity and ease of visualization, we decide to work with p = 2
throughout the rest of the manuscript. The coefficient β controls the highest possible
edge probability value in the network. Indeed, if a couple of nodes (i, j) are at
zero distance in the latent space, the probability of them being connected would be
exp{β}/(1 + exp{β}).

Althoughwedopossess spatial coordinates of theROIs,webelieve that computing
Euclidean distance directly on those covariates can mask (if not hinder) the effective
spatial dependency in the data. The argument is that brain surface is not flat, nor
regular, and a simple distance in the physical space between the centroids of the ROI
is not representative of how structural proximity is reflected into the observed white
matter fibers counts. To circumvent this limitation, we decide to let the data organize
themselves inside a latent space, and we use this projected spatial configuration as
our proxy for spatial dependency patterns. We collect all latent positions {xi } as row
vectors of an n × p matrix X, with p = 2 as previously mentioned. Given that no
self-loops (i, i) are allowed, the diagonal elements ofZ are not considered;moreover,
symmetry of Z makes it possible to focus on either the lower- or upper- triangular
part of the matrix. As a result, the likelihood can be expressed as:

LZ
(
θ ,X

) = P
(
Z|X, θ

) =
n∏
j=1

∏
i< j

P
(
Zi, j |xi , x j , θ

)
, (2)

where we assume independence between ROIs conditional on the set of parameters
(θ,X), which contains also β. Notice that the presence of isolated nodes in the data,
that is, regions that are not linked by white fiber matter to any other region, would
correspond to an unbounded likelihood. Indeed, the distance in the latent space
between the isolated region and the others could potentially be infinite. However,
isolated regions are not present in the data. The assumed prior probability distribution
forX is aMultivariate Normal Distribution for each xi , as in [15]. Indeed, we assume
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for each unit i = 1, . . . , n, that xi ∼ N
(
xi ; 0,Σ

)
, where the variance-covariance

matrix Σ is equal to σ 2 Ip, with σ 2 measuring the dispersion of the latent positions
in the 2-dimensional space. The corresponding hierarchical formulation is then

P(σ 2|θσ 2) = IG(σ 2; θσ 2),

P(xi |σ 2) = N
(
xi ; 0, σ 2 Ip

) ∀i = 1, . . . , n,

P(β|θβ) = N(β; θβ),

P
(
Zi, j |xi , x j , β

) = Bern(Zi, j ;πi, j ) ∀i, j,

denoting with: IG the Inverse-Gamma density function; θσ 2 and θβ the vectors of
hyper-parameters; πi, j the probability of a link being present between pair (i, j), as
defined in Eq. 1. The associated likelihood LZ

(
θ ,X

)
is the one in Eq. 2 with θ =

(θβ, θσ 2). The latent positions are assumed to be a priori independent, conditionally
on σ 2, that is, P(X|σ 2) = ∏n

i=1 P(xi |σ 2).
Themodel,whichwenameModel I, can befittedwith thelatentnetRpackage

[16], which provides, the currently adopted, default options to set the hyperparame-
ters.

3.1 Results on the DTI Dataset

We model the presence of white matter fibers connecting the ROIs according to the
approach described in Sect. 3, and estimate their latent positions via posterior means
for each of the 20 subjects.

In Fig. 5 we plot the estimated latent coordinates for subjects 8, 9 and 24. Subjects
9 and 24 are non-diagnosed with mental disorder, and of age 21 and 36 respectively.
Subject 8 is 21 years old and is diagnosed with major depressive disorder (single
episode), cannabis abuse, and eating disorder. Both subjects 8 and24 are right handed,
while 9 is left handed. The symbols in the plots refer to the belonging hemisphere of
each region: black triangles indicate the region belongs to the right hemisphere, while
grey dots are for regions belonging to the left hemisphere. It is immediate to notice
that the use of a Gaussian distribution for the latent coordinates produces a space
which clearly separates left and right hemispheres, and this partition is recovered for
all the subjects; also, the shape of the coordinates resembles an horizontal projection
of the brain on a 2D surface. Although some of the ROIs’ estimated positions do
not match with the classical Euclidean projection, our findings are mostly coherent
with the physical observed topology of brain regions, as the estimated latent coor-
dinates resemble those of the Desikan atlas. In order to quantify the latter finding,
we inspected the Procrustes correlation2 between the estimated latent spaces and

2Procrustes correlation, ρ(S1, S2), is ameasure of similarity among two spaces, S1, S2. In particular,
it measures up to which degree space S2 was generated by a transformation (rotation, translation or
scaling) of space S1. It is bounded in [0, 1].
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(c) Subject 24, Model I.

Fig. 5 Estimated latent positions for the brain regions of subjects 8, 9 and 24. Grey dots indicate
left hemisphere regions; black triangles right hemisphere regions. The latent spaces for subjects
9 and 24 are rotated to match the estimated latent space of subject 8, to allow comparison of the
different representations. The plots are all drawn on the same scale
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(b) Subject 8, Desikan Atlas.

Fig. 6 Brain regions coordinates according to latent spaceModel I and theDesikan atlas, for subject
8. The Desikan regions are coded according to the numbering in Table 6, reported in the Appendix

the atlas representation. We found an average value of 0.9, and the representations
recovered for the different subjects are quite similar: pairs of estimated latent spaces
exhibit a 0.95 Procrustes correlation on average. The high values of the correlation
confirm the estimated latent structure to be similar between all the subjects in the
study, and show that this latent space model provides a parsimonious representation
of brain regions, as different subjects can be described by a similar space, a space
highly correlated with the physical one but not identical. This suggests that a latent
space representation could be meaningfully used to jointly describe data coming
from different subjects. Figure 6 provides comparison of the estimated latent space
for subject 8 and the general Desikan atlas representation of brain regions.

The estimated posterior means for the β coefficients of subjects 8, 9 and 24 are
reported in Table 2, together with the standard deviations and the lower (q2.5) and
upper bounds (q97.5) of the corresponding 95% credible intervals. In Appendix 7
we report Markov chain Monte Carlo trace plots and histograms of the estimated
posterior distributions of the intercept parameters, for subjects 8, 9, and 24. The
trace plots indicate good mixing of the MCMC sampler.
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Table 2 Estimated posterior summaries of the β coefficients for subjects 8, 9, and 24

Subject q2.5 q97.5 Posterior mean Posterior s.d.

8 7.79 8.98 8.36 0.30

9 6.29 7.15 6.71 0.22

24 6.53 7.54 7.03 0.25

4 Time-Varying Dynamic Bayesian Networks for the fMRI
Dataset

The second batch of data is a collection of n time series yi = (y1i , . . . , y
t
i , . . . , y

T
i ),

i = 1, . . . , n, each of length T = 404, representing the BOLD technique signal
recovered through resting state fMRI scans. The vector yt = (yt1, . . . , y

t
i , . . . , y

t
n)

′ is
thus a snapshot of the activity levels for all n regions at time t . In the spirit of [28], we
model the data with a time-varying dynamic Bayesian network (BN). First of all, we
assume a first-order Markovian property that allows us to break down, with respect
to time t , the joint probability of vectors {yt }t=1,...,T into a product of conditional
terms referring to each yt . Also, given the parameters of the model, we assume the
n units to be independent from one another. We thus have:

P(y1, . . . , yt , . . . , yT |Ω) = P(y1|Ω)

T∏
t=2

n∏
i=1

P(yti |yt−1,Ω) (3)

where the time-varying transition (conditional) probability P(yt |yt−1,Ω) follows a
time-varying linear dynamic model, where Ω collects all the parameters of interest.
Notice that the dependency on t is omitted in the notation. More formally:

yt = Γ (t)yt−1 + ε (4)

where: ε is a vector of idiosyncratic errors distributed as N(0, ς2 In), with ς2

measuring the global noise level of the observed time series; Γ (t) = {γ t
i }ni=1 is

an n × n matrix of real-valued regression coefficients, where for each i, t , γ t
i =

(γ t
i,1, . . . , γ

t
i, j , . . . , γ

t
i,n) is the vector of coefficients explaining the effect of all the

units from the previous snapshot (yt−1
1 , . . . , yt−1

n )′ on the current value of yti . This
means that, if γ t

i, j �= 0 then yt−1
j regulates yti , with an edge being therefore present

in the associated dynamic network at time t . In the original work, the authors cast
the inferential problem in a penalized weighted regression framework. Following a
frequentist approach, in order to estimate the coefficients γ̂

t�

i , for each t
� = 1, . . . , T ,

[28] maximize the likelihood obtained from Eqs. 3 and 4, providing the following
objective function to be optimized:
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γ̂
t�

i = argmin

{
1

T

T∑
t=1

wt�(t)
[
yti − γ t�

i y
t−1

]2 + λ||γ t�
i ||1

}
, (5)

where λ is the penalization parameter. In Eq. 5, the weights of the weighted linear
regression can be readily computed, as they are defined to be

wt�(t) = Kh(t − t�)∑T
t=1 Kh(t − t�)

,

with the Gaussian kernel Kh(t − t�) = exp
(−h−1(t − t�)2

)
, where h is a tuning

parameter (for a suggested criterion choice, we refer to [28]). We implemented the
algorithm outlined in the original paper and some preliminary results on the data are
presented in Sect. 4.1.

4.1 Results on the fMRI Dataset

We model brain activity via its BOLD proxy as described in Sect. 4. For each time
point and each subject, we constructed a BN whose nodes are the ROIs. In this
representation, an edge connecting node i to node j at time t ,means that the activation
of node i at time t − 1 leads to the activation of node j at time t . The weights of
each edge are given by the values of the coefficients γ̂

t�

i j , appearing in Eq. (5).
For each subject, we considered both scans, and constructed two BNs: as a matter

of fact, the scans are repeated measures on the same subject and can thus be used to
validate the estimates of the coefficients γ̂

t�

i . Looking at the time dynamic, the more
often two regions are connected by an edge, the more we could expect the two to
interact. The direction of the edge also indicates the causality (in a Granger sense)
in the activation process. We consider the activation of region j by region i to be
relevant only if the associated weights γ̂

t�

i j are positive in both the scan and re-scan
BNs, and draw an edge whenever this happens. Applying this rule of thumb, we find
that the BNs of each subject shared roughly 30% of their positive coefficients.

Figure 7 reports the dynamic BNs at times t = 200 and t = 300, for subjects 8,
9, and 24. The edges are drawn according to the concordance between white matter
fiber presence and high value of the activation coefficient among two regions, with
dashed lines indicating concordance and continuous lines discordance. The oldest
subject (labeled 24) had the largest number of connections per time, on average:
250, approximately 9% more than the other two younger participants (labeled 8 and
9). Discordant edges have been found to be more frequent than concordant ones
in subjects 8 and 24, indicating the prevalence of interaction between regions not
connected by white matter fibers. This tendency is reversed for subject 9, that has a
larger count of concordant edges than of discordant ones. However, if these counts are
compared to the overall observed number of white matter fibers, the BNs for all the
subjects exhibit a higher relative frequency of concordant lines, hence of estimated
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(a) Subject 8, t = 200.
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(b) Subject 9, t = 200.
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(c) Subject 24, t = 200.
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(d) Subject 8, t = 300.
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(e) Subject 9, t = 300.
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(f) Subject 24, t = 300.

Fig. 7 Frame of Dynamic Bayesian Networks at time t = 200 and t = 300, for subjects 8, 9 and
24. The edges are drawn according to the concordance between white fiber matter presence and high
value of the activation coefficient among two regions. Black (dashed line) indicates concordance,
grey (continuous line) discordance

connections between regions that are already joined by white matter fibers. Figure
8 shows the ten most frequent connections for the same three subjects (8, 9, and
24). For these three individuals, connections within the same hemisphere were more
frequent. Subject 8 and 24 share three of their ten most frequent connections:

• from the left insula (34) to the left caudal anterior cingulate (2): the first region is
believed to play a role in consciousness and in functions linked to body’s home-
ostasis and emotion [32]; the latter helps regulating blood pressure and heart rate
[3], and it is also believed to be involved in the decision making process [1];

• from the left pericalcarine (20) to the left cuneus (4): cuneus’ function is linked to
visual processing [5], while the activating region (20) is where the primary visual
cortex is concentrated;

• from the left caudal anterior cingulate (2) to the right caudal anterior cingulate
(36).

In Appendix 6 we provide the names of all the Desikan regions, corresponding
to the numbers in the plots. Figures 7 and 8 refer to the Desikan atlas representation
of the brain. As already mentioned, only 68 of the 70 regions in the data are plotted
and the two regions labeled as “unknown left” and “unknown right” are removed.
This was done without loss of information in Fig. 8, because the strongest relations
never involved such “unknown” regions.
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(a) Subject 8.
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(b) Subject 9.
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(c) Subject 24.

Fig. 8 Ten most frequent connections in the dynamic BNs for subjects 8, 9 and 24. The edges are
drawn according to the concordance between white fiber matter presence and high value of the acti-
vation coefficient among two regions. Dashed lines indicate concordance, continuous discordance.
The arrows point to the activated regions

For the benefit of science reproducibility, the R Script used for the analysis are
available at http://www.github.com/silviadangelo.

5 Discussion

In this work, we analyzed both fMRI and DTI data, aiming at combining information
from these sources, so as to learn possible patterns of dependencies between brain
regions.

First, using the structural connectivity information of the DTI data, we esti-
mated the latent positions of the brain regions, for each subject under study, with a
latent space approach. Comparing the estimated latent space positions with the refer-
ence Desikan atlas, we found that—consistently for all subjects—the inferred latent
space is highly correlated with the physical one, even if not completely identical.
We are aware that the proposed latent space model is simplistic, being based on a
dichotomized version of the data at hand: in fact, we only took into account whether
a pair of regions was connected or not, loosing information regarding the strength
of the physical connection. In future developments, we thus aim at considering this
additional information, which amounts to modeling the entries of the count matrix.
We also aim at generalizing the model to deal with over-dispersion and zero infla-
tion of the data, thus moving from the Bernoulli as the distribution for the data to,
for instance, a zero-inflated Negative Binomial distribution. A final direction we are
interested in exploring is to incorporate into the analysis information regarding the
volume of the brain regions. We indeed have the intuition that larger regions might
inherently have a greater number of white matter fibers. The most immediate way to
integrate the volume information would be to provide it to the model as a covariate
or an offset term.

http://www.github.com/silviadangelo
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In a second moment, we studied Granger causality in the fMRI data, in order
to learn patterns of activations between ROIs. In particular, we modeled the data of
each subject separately with a dynamic Bayesian network approach as prescribed in
[28], and fit it following a frequentist approach. The main finding of this analysis
is that the presence of an edge in the inferred BN, measuring activation between
pairs of regions, was tied to the physical connectivity measured by the DTI dataset.
Regarding future developments for this second model, we plan to fit it following
the Bayesian paradigm. The Bayesian approach would help in assessing coherently
the uncertainty about the quantities of interest, and also aid in incorporating prior
information into the statistical analysis.

Bridging the two models together would be an interesting and powerful way to
combine all the information at our disposal in a single framework.One possible direc-
tion, in this sense, could be to use the information onwhitematter fibers, coming from
the DTI dataset, as prior information for developing a more complex hierarchical
structure to model the functional activity collected in the fMRI dataset: for example,
additional latent layers, or inferred latent distances to be used as additional covariates
of the weighted penalized regression. Another option would be to employ the latent
space positions inferred from the DTI dataset as quantities to plug-in into the com-
putation of the weights {wt� (t)} of the weighted penalized regression we perform the
fMRI dataset. This approach would indeed smooth observations both across time
and space, increasing the borrowing of information. Finally, we briefly report some
considerations elaborated during and after this work. The first one regards the huge
preprocessing the data underwent before being considered for analysis. For exam-
ple, the data may have been corrected for slice timing, realignment, co-registration
of structural and functional images, normalization and smoothing. So far, we did not
have the opportunity to go deeper into this aspect of the data. We believe, however,
this data preprocessing information to be potentially relevant in guiding us to choose
a more appropriate modeling framework, since the preprocessing itself may have
resulted in some artifacts, captured by the models we used, and/or altered the very
same structure of the phenomenon.

On a related note, the second consideration involves the additional information a
knowledge-domain expertwould bring to the discussion table, allowing us to enhance
the quality of the analysis and give insights about the obtained results. This is espe-
cially true when considering delicate modeling choices, as for example the threshold
on the number of fibers we adopted for the first dataset. Also, on this matter, the
potential impact of other covariates could prove to be an interesting direction for
comparing groups of subjects: for example, gender has been shown in the literature
to be correlated with white matter fibers’ counts [19].

A last consideration concerns the fMRI data: given the nature of ‘resting state’
observations, information was only inspected from a correlation point of view
because, without stimuli, the signal in the time-series appeared to be swamped by
noise.An alternative, enriched,way to look at the datawould involve fMRI recordings
of subjects asked to perform different tasks, in order to effectively provide occasions
to observe noticeable changes in the signal.
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6 A. Desikan Atlas Codes

Code Left/Right Code Left/Right Region name
1 L 35 R bank of the superior temporal sulcus
2 L 36 R caudal anterior cingulate
3 L 37 R caudal middle frontal gyrus
4 L 38 R cuneus
5 L 39 R entorhinal
6 L 40 R fusiform
7 L 41 R inferior parietal lobule
8 L 42 R inferior temporal gyrus
9 L 43 R isthmus cingulate cortex
10 L 44 R lateral occipital gyrus
11 L 45 R lateral orbitofrontal
12 L 46 R lingual
13 L 47 R medial orbitofrontal
14 L 48 R middle temporal gyrus
15 L 49 R parahippocampal
16 L 50 R paracentral
17 L 51 R pars opercularis
18 L 52 R pars orbitalis
19 L 53 R pars triangularis
20 L 54 R pericalcarine
21 L 55 R postcentral
22 L 56 R posterior cingulate cortex
23 L 57 R precentral
24 L 58 R precuneus
25 L 59 R rostral anterior cingulate cortex
26 L 60 R rostral middle frontal gyrus
27 L 61 R superior frontal gyrus
28 L 62 R superior parietal lobule
29 L 63 R superior temporal gyrus
30 L 64 R supramarginal gyrus
31 L 65 R frontal pole
32 L 66 R temporal pole
33 L 67 R transverse temporal
34 L 68 R insula

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
www.congressi.unisi.it/startupresearch/
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7 B. MCMC Diagnostics of Intercept Parameters
of the Latent Space Model

See Fig. 9.
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0 1000 2000 3000 4000

6.
5

7.
0

7.
5

8.
0

iter

be
ta

Fr
eq

ue
nc

y

6.5 7.0 7.5 8.0

0
20

40
60

80
10

0
12

0

(c) Subject 24.

Fig. 9 Trace plots and histograms of the posterior distributions of the intercept parameters β in the
latent space model, for subjects 8, 9 and 24
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Abstract Analysis of brain functionality is a stimulating research topic from both a
neuroscientific and statistical perspective.Although severalworks have improved our
comprehension of the relationship between subject-specific information and brain
architecture,many questions remain open. The aimof this paper is to relate functional
connectivity patterns with subject-specific features and brain constraints, such as age
andmental illness of the subject and lobesmembership for brain regions, and illustrate
whether these phenotypes affect the neurophysiological dynamics. To address such
goal we consider a modular approach that allows to remove noise from the fMRI
data, estimate the functional dependency structure and relate functional architecture
with structural and phenotypical information.
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1 Introduction

In recent years, neuroscience has been a great source of inspiration in statistical
methodology (e.g., [5, 19, 32]). The reason behind this interest, beside the obvious
fascination with the quest for insights on how the brain works, is that neuroimaging
modeling is at the crossroad between spatial statistics, time series, network analysis
and high dimensional inference, thus allowing for an exciting interplay between
different branches of statistics andother sciences.Anarea that is increasingly growing
is the analysis of functional connectivity, which seeks to identify brain areas that
behave similarly, potentially despite their spatial proximity or their membership to
the same lobes and hemisphere.

The focus of this work is on estimating the relation between phenotypes and
anatomical structure with functional brain behavior, employing functional magnetic
resonance imaging (fMRI) as a measure of brain activity.

There is a rich literature related to the statistical study of functional connectivity
patterns within the brain. Several approaches focus on representing the functional
relationship among brain regions by means of a network, whose edges connect areas
of the brain sharing similar behaviors in terms of functional properties. Nodes of
the network are usually defined as regions of interest (ROIs), typically provided by
experts in neuroscience (e.g., [7, 15]). Alternatively, ROIs can be identified with
data-driven approaches [12] recovering lower dimensional structures in the high-
dimensional fMRI data, such as Principal Component Analysis [3] or Independent
Component Analysis.

A common approach to determine the functional edges interconnecting brain
regions consists in thresholding the empirical correlations between fMRI series. The
functional connectivity among subjects is then analyzed by assessing network prop-
erties (e.g. small-world, scale free connectivity) and comparisons are made using
network summary statistics; see [10, 25] and references mentioned therein for a gen-
eral review of these methods. A naive correlation-based approach, however, provides
an incomplete representation of the brain’s functional connectivity, since it does not
take into account covariates and has been shown to produce nonzero estimates for the
correlation of independent brain regions [32]. Furthermore, when the number of brain
regions is relatively big with respect to the lengths of the fMRI series, the empirical
estimator of the correlation matrix may exhibit poor performance, especially if the
covariance matrix is close to singularity.

Several alternative approaches have been investigated to obtain more reliable
representations and robust descriptions of the functional networks, such as wavelet
based correlation analysis [1] and graphical models [14], along with a broad discus-
sion about properties of the resulting networks. Nevertheless, these approaches still
fail to acknowledge the impact of covariates, and more in general, little work has
been done in assessing the relation between such networks and brain structure or
subject-specific covariates.

We address such issue by proposing a sequential hierarchical approach, which
estimates the functional connectivity from denoised signals and then relates it to
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Fig. 1 Hierarchical model
representing the assumed
probabilistic generative
mechanism. Observed
quantities are colored in light
grey, unobservable in white
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t = 1, . . . , T

observed phenotypes. Although we build on hierarchical models in defining the
probabilistic representation of the available quantities, we bypass the joint estimation
procedure in order to provide a fast exploratorymethod, able to assess the relationship
between phenotypes, brain constraints and neurophysiological dynamics. For the
model fitting we adopt a modular strategy that leverages available methods in the
literature. The modularization procedure consists of decomposing the hierarchical
model in three sub-models: (i) a smoothing procedure to remove noise from the fMRI
signal, (ii) a graphical model which encodes the functional brain connectivity and
(iii) a regression model investigating the relation between phenotypes and functional
connectivity patterns. Our approach retains ease of interpretation while accounting
for functional relations across all the subjects; moreover, the robustness of inferential
conclusions is assessed by means of a multiscale analysis.

The rest of the paper is organized as follows. In the following Sect. 2, we introduce
thenotation anddefine thegeneral hierarchical specificationof ourmodular approach.
In Sect. 3 we detail the methods used in each module, along with the application to
the data. Finally, Sect. 4 is dedicated to final remarks and our conclusions.

2 Hierarchical Model

Ourmotivating application is drawn from theNKI1 pilot study, part of the “Enhanced
Nathan Kline Institute-Rockland Sample project” conducted over 24 healthy sub-
jects; the dataset used in this application was kindly provided by Greg Kiar and Eric
Bridgeford (NeuroData—Johns Hopkins University). The resting
state fMRI raw measurement have been preprocessed using the ndmg pipeline [24]
and the C-PAC software; for additional details on this procedure, see
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https://fcp-indi.github.io/. Two subjects were removed from the anal-
ysis due to missing data in several features, and the final sample size for this appli-
cation is equal to n = 22 subjects.

For each subject i = 1, . . . , 22, fMRI signals referred to v = 1, . . . , 70 regions
of interest (ROI) of the brain were collected at t = 1, . . . , 404 equally spaced times,
with a time span between measurements of 1400 ms. Let Yit = (yit[1], . . . , yit[70])
denote the vector of length 70 encoding the fMRI measurement for subject i at
time t , for all the ROIs considered jointly, with generic element yit[v] referred to the
v-th ROI. Along with fMRI data, some additional features are available for every
subject, such as age, mental status and handedness, which comprise the vector xi for
each i = 1, . . . , 22. Some features related to the brain architecture, such as the lobe
membership of each ROI, are also provided; these covariates are denoted as zv , for
v = 1, . . . , 70. Although each subject was scanned twice, we decided not to use data
from the second scan, as it was not available for every subjects.

In order to study the presence and the type of relation between the measured
brain signals and the available features, we consider a global generative mechanism
for the observed quantities, summarized in Fig. 1. We assume that the fMRI data
stems from a generative process in which subject-specific features and brain anatomy
affect the functional brain behavior, and such characteristics are associated with a
set of parameters θ = {θx , θz} with elements referring respectively to the observed
subject-specific features and ROI-specific properties. Furthermore, we suppose that
the observed covariates affect the dependence structure among the functional time
series, which we characterize by a graphical model or, equivalently, by its associated
adjacencymatrixKi . In the neuroscientific literature,Ki covers a central role, since it
characterizes the functional network among brain regions (e.g., [10]). In our specific
setting, each node of the functional network—or, equivalently, each row and column
of the associated adjacency matrix—represents one of the 70 regions of interest.
The edges summarize dependence among ROIs in a functional perspective; if two
nodes are connected, the corresponding brain regions will mutually influence their
functional activity, resulting in cross-correlated measurements of the clean signal,
that we denote with Y ∗

i t . If we suppose that the true signal can be accurately identified
removing accidental noise from the observed data Yit , the crucial aim of this appli-
cation is to estimate properly the set of parameters θ , since those quantities measure
the effect of phenothypical variation on the neurophysiological dynamics.

A joint model specification for all the quantities involved in Fig. 1 might be fairly
complicated, since it requires the specification of a joint likelihood for the observed
series Yit as a function of all the unknown quantities and observed covariates; the
inclusion of subject-specific information within the estimation of the dependency
structure of the functional network is particularly challenging. The same conclusion
holds for a potential joint estimation of the cross-sectional dependencies among the
signal. In this application, we will consider a modular approach for estimating the
model in Fig. 1, in order to provide preliminary insights about the phenotypical effect
on brain functional dynamics, and potentially guide further investigations.

The statistical model in Fig. 1 can be decomposed in stages or “modules”, with
each component specifying a single model for one or more variables at time. For
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every module, several strategies of analysis are feasible, each of which has been
extensively investigated and employed in the neuroscientific literature. We will con-
sider then a separate approach in the estimation process, fitting each module and
plugging-in the results from the previous step in the subsequent procedure. This plug-
in approach, often called modularization [28] or two-step estimation [30], allows to
build a complete model by combining different methods sequentially, with the out-
put of a former stage used as input for the latter. Notable examples of application
of modular approaches can be found in casual inference area with propensity score
[31], pharmacology [6] and meta-analysis [27].

3 Modular Estimation Using Connectome Data

Modularization leads to two noticeable advantages in the estimation process. The
first one is computational: since blocks are estimated disjointly, the parameter space
to be explored in every module is small, and thus we can rely on relatively quickly
estimation routines. This also allows for the possibility to conduct analysis under
different settings in order to validate robustness of the results. The second benefit
is that modularization reduces the effect of model misspecification, since fitting
each step separately mitigates the propagation of error among consecutive steps and,
potentially, reduces the impact of severe errors.

Our approach is particularly general and enables the inclusion of several tech-
niques within each separate module; in the following we describe in details the
modeling strategies adopted in every step along with their application to the data
under investigation. For the ease of illustration, the hierarchical model in Fig. 1 was
discussed from top to bottom, i.e. starting from what inference will focus on and
describing how those quantities relate to the observed data; estimation, instead, will
proceed in the opposite direction, using observed raw data as input to make inference
on the parameters of interest.

3.1 Denoising

We firstly focus on obtaining the signal component from the observed time series
data.Despite the elaborate preprocessing procedures, neuroimagingdata are typically
corrupted by noise thatmasks the true signal; especiallywith fMRI data, it is common
to filter them before the analysis to increase the signal to noise ratio and hence the
reliability of the results. Recall that Yit , t = 1, . . . , 404, denotes the multivariate
time series referred to the i-th subject for i = 1, . . . , 22, encoding the fMRI signal
recorded over time. It is reasonable to assume that the path of the series over time
domain is contaminated by some additive random noise that masks the original
properties of the series itself; hence we assume that, at each time t , the observed
fMRI signal for the i-th subject can be decomposed as
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Yit = Y ∗
i t + εi t i = 1, . . . , 22 t = 1, . . . 404 (1)

where Y ∗
i t is the clean signal and εi t represents the noise component. Noise correction

is a crucial step of mapping resting state signal fluctuations, however which method
is the most appropriate to remove noise from such signal is still an open question,
since it is not clear what the “ground truth” signal consists of when the subject is
not focused on well identified activities [8]. Several methods can be employed to
perform this denoising, for example smoothing splines or total variation (e.g., [16,
Chapter 6]). We opt for a smoothing approach to denoising, and to estimate the clean
signal Y ∗

i t , as denoted in Eq. (1), by means of smoothing splines (e.g., [4]). Let yit[v]
denote the univariate time series for ROI v in subject i , with v = 1, . . . , 70 and
i = 1, . . . , 22, let y∗

i t[v] denote its smoothed counterpart. The smoothed time series
is the solution to the following minimization problem:

argmin
y∗
i ·[v]

{
T∑
t=1

(
yit[v] − y∗

i t[v]
)2 + λ

∫ (
∂2

∂t2
y∗
i t[v]

)2

dt

}
, (2)

where y∗
i ·[v] = (y∗

i1[v], . . . y
∗
i404[v]). Smoothing the signal from each ROI separately,

we neglect the spatial dimension of the fMRI data; however, since our aim is not
focused on modelling the effect of spatial constraints, we did not include such infor-
mation on purpose. This strategy also avoids the potential issues involvedwith spatial
smoothing, for example changes in the correlation structure of the data and strength-
ening of spurious spatial dependency [2].

The parameter λ in Eq. 2 controls the trade-off between complexity and goodness-
of-fit of the smoothed series, and its choice determines implicitly the amount of noise
we wish to remove. Existing methods for selecting the tuning parameters take into
account the temporal structure of the data, however they are built for noisier fMRI
signals and tend to oversmooth in the case of resting state fMRI [13]. Although it is
reasonable to tune this parameter with automatedmethods such as Generalized Cross
Validation, we considered conducing a sensitivity analysis with respect to the choice
of this parameter, and evaluate whether inferential conclusions are stable when the
smoothed series capture different trends. In Fig. 2 we reported, for two subjects,
original and smoothed fMRI data referred to a region in the inferiotemporal lobes
of the left hemisphere. Smoothed series are reported with two different levels of
smoothing, respectively λ = 2 and λ = 10. Figure 2 suggests that when the value of
λ is increased, the estimated series become smoother and highlight the large scale
variability, while when λ is fixed to a small value the estimated series tend to follow
the accidental fluctuation.
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Subject 3, lh − inferiortemporal, λ = 10

Subject 3, lh − inferiortemporal, λ = 2
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Fig. 2 An example of the original time series Yit (solid line) and denoised estimates Y ∗
i t (dashed

line), for subjects 3 and 14 with two different levels of the smoothing parameter λ

3.2 Estimation of the Graphical Model

The dependence structure among the signal measured at different ROI is a key quan-
tity in our model, since it connects the brain constraints and subject-specific features
to the observed fMRI series, and describes the synchronization in brain activity for
each pair of brain regions in each subject. Neuroscientific literature commonly refers
to such structure as functional network, and several methods have been employed
to provide a reasonable estimator for such quantity. A typical approach consists
in representing functional connectivity by means of graphical models; in particular,
Gaussian graphical models are becoming increasingly popular in neuroimaging (e.g.,
[14]), since they are able to capture conditional dependencies between brain regions
with fast estimation routines and robust guarantees [17].
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In order to estimate the functional network among brain regions, we first centered
each smoothed time series with respect to its empirical mean. Assuming that for the
i-th subject, at each time t = 1, . . . , 404, we observe a realization of a 70-variate
Normal distribution with mean vector zero and precision matrix Ωi , conditional
independence can be assessed estimating the precision matrix Ωi . Note that, even if
the normality assumption is violated, Ωi still provides a measure of the association
between the functional series for the i-th subject. A popular and reasonable approach
to estimate a graphical model induces sparsity in the estimation of the precision
matrixΩi through an �1 penalty, favouring some elements of the estimated matrix to
be shrunken toward zero and providing a well defined estimator when the covariance
matrix is singular [17].

The problem solves, in its general form,

Ω̂i = argmax
Ωi∈G70

{
log |Ωi | − Tr(Ωᵀ

i Si ) − ξi ||Ωi ||1
}
, (3)

where Gk is the manifold of positive definedmatrices of dimension k, Si is the sample
covariancematrix, ξi is a penalization parameter, | · | indicates thematrix determinant
while || · ||1 the �1-norm; see [11, 18] for detailed information on this particular
optimization problem. LetKi denote the binary version of Ωi , with generic element
ki [u,v] = I(Ωi [u,v] �= 0). Every Ki can be interpreted as the adjacency matrix of the
functional network for subject i , and the generic element ki [u,v] indicates whether,
for subject i , region u and region v are connected, for subjects i = 1, . . . , n and brain
regions u = 2, . . . , 70 and v = 1, . . . , u − 1.

The parameters ξi in Eq. 3 control the sparsity of the resulting matrix, and can be
selected with several information criteria or stability principles [34]. Since we are
assuming that the graphical models stem from the same generative process, we fix
the value of ξi = ξ across subjects. Moreover, the choice of the smoothing level in
the previous module has an important role in determining the characteristics of the
resulting estimated graph, and since we aim to compare inferential conclusions at
different level of the smoothed series, we opted for a fixed procedure in the choice
of ξ .

In choosing the global penalization value, however, standard criteria often selected
over-sparse solutions. Although extra sparsity does not constitute a serious issue in
high-dimensional graphical models, when interest is on describing the functional
networks more conservative configuration are preferred [10]. We restricted the range
of the penalization parameter ξ indirectly, by placing constraints on the resulting
minimum value of the functional networks density, measured as proportion of non-
zero entries of the network’s adjacency matrix. Different values for the minimum
density were tried, ranging in the interval (0.05–0.20), with resulting estimates robust
against different choices of the parameter.

In Fig. 3 we reported the estimated functional network for the same subjects
reported in Fig. 2, using λ = 10 and with a constraint on the functional networks
density to values greater or equal to 0.10.Wewill use this setting for the remaining of
the discussion, unless explicitly specified.Both functional networks report interesting
patterns, for example a block structure that recalls hemisphere division. However,
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Subject 14 Subject 3

Fig. 3 Estimated functional networks for subjects 3 and 14. Black tiles correspond to edges, white
to non-edges

there are also substantial differences between the twonetworks, that justify the further
step of our procedure.

3.3 Regression with Covariates

The investigation of the relations between functional connectivity patterns and
observed phenotypes is motivated by the subject-specific differences observed in
the estimated graphs. The inclusion of covariates into the analysis of functional con-
nectivity patterns aims to identify whether brain activity relates with personal fea-
tures and behaviours and whether subject-specific information can provide insights
on observed differences. Recent studies highlighted the relation among connectivity
patterns and, amongmany others, diseases [33], violent behaviours [9, 29], or gender
[20]. Functional networks, as opposed to structural information, contain important
information regarding dynamical patterns of the brain architecture, and there is a
promising extent of agreement between studies based either on functional or struc-
tural networks (e.g., [10]).

We investigate the relation among functional networks and covariates exploiting
a simple model that encourages the interpretation of its coefficients and is able to
provide interpretable insights on the effect of phenotypes over the structural network.
Differently from standard models for network data—such as ERGM [23] or latent
space models [21]—we want to focus on modeling multiple adjacency matrices
K1, . . . ,Kn , instead of a single one.
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We assume that the probability of a connection between each pair l = (u, v)

of brain regions, with u = 2, . . . , 70 and v = 1, . . . , u − 1 in the network Ki can
be modeled using an exponential family, with natural parameters as function of
phenotypical information, such as age, mental status, handedness, and brain-region
specific information, such as lobes membership.

More formally, let Pr(kil = 1) = πil define the vectorised probability to observe
a connection for subject i in the pair of brain regions l, with i = 1, . . . , 22 and
l = 1, . . . , 2415 = (70 × 69)/2. We model the logit of the connection probability
as a function of phenotypical and brain-region information as follow:

logit(πil) = α + θT
x xi + θT

z zl

In particular we considered the following variables:

• subject covariates xi : age of the subject, mental health indicating the pres-
ence/absence/unknown status of a mental problem (absence used as reference
class), handedness with three categories for left/right-handed and ambidextrous
(ambidextrous as reference class).

• edge covariates zl : lobemembership, indicatingwhether the pair l = (u, v)of brain
regions is in the same lobe (not belonging to the same lobe is taken as reference
class).

The resulting estimates, for a value of the smoothing parameter λ = 10, are reported
in Table 1.

Our empirical findings suggest a strong tendency for brain regions located in the
same lobe to create more connections in the functional network. Moreover, subjects
with a positive mental diagnosis report, on average, a lower probability to observe
connected brain regions, with respect to healthy subjects and given the effect of the
remaining covariates. Individuals whose mental status is not known report, instead, a
higher probability to observe a connection. Handedness of the subjects under investi-
gation is not resulted to be a determinant of functional network. Lastly, the age of the
subjects in this study seems to have an effect in the determination of the connections

Table 1 Estimated coefficients for the GLM model, λ = 10

Estimate Std. Err. z value Pr (> |z|)
(Intercept) −1.805 0.056 −32.225 0.000

Age −0.002 0.001 −2.209 0.027

Hand L −0.005 0.054 −0.084 0.933

Hand R 0.004 0.044 0.087 0.931

Diagnosis YES −0.128 0.034 −3.784 0.000

Diagnosis UNK 0.140 0.032 4.366 0.000

Lobes 0.774 0.026 29.676 0.000
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of the functional network, even though the magnitude of this effect is small enough
to be negligible.

3.4 Multiscale Analysis

In order to assess the robustness of our empirical findings, we performed amultiscale
sensitivity analysis under different settings. The core idea of the multiscale approach
is that whenever a signal can be measured at multiple resolutions, such as different
level of smoothing in our case, information can and should be drawn exploiting all
this information jointly. The principle that there is not one “correct” resolution at
which the analysis should be performed is especially soothing in our context. As
in resting state fMRI, it is not clear how noise may look [8], and it is important to
consider more than just one resolution, or, equivalently, to explore different noise
assumptions.

In the multiscale analysis, we track the evolution of the regression coefficients as
the smoothness level increases. In Table 2, we re-estimated the entire model for dif-
ferent values of λ and evaluate changes in the regression coefficients. Smoother series
(greater value of λ) correspond to sparser graphs; when the smoothness increases,
in fact, the method is able to detect only large scale variations. Since low scale
dependency are suppressed, the resulting graphical models tend to be more sparse.
In general, results for the sensitivity analysis tend to validate findings presented in
the previous section, and estimated coefficient in Table 2 seems coherent with what
shown in Table 1.

In particular, the impact of lobes and diagnosis is quite stable across different
smoothing levels, which can be interpreted as an indication of robustnesswith respect
to different noise scenario. The handedness of the subject, on the other hand, seems
to have a more erratic effect on the connectivity structure, but its contribution is
not substantial in the cases analyzed. A noticeable change in such behavior can be
observed for values of λ ≥ 18, which we interpreted as a symptomatic effect of
over-smoothing in the denoising step.

Table 2 Results of themultiscale sensitivity analysis conducted over different levels ofλ. Estimated
coefficients are reported for some representative levels of λ, with bold coefficients indicating an
associated p-value less than 0.05

λ (Intercept) Age Hand L Hand R Diagnosis
YES

Diagnosis
UNK

Lobes
YES

0 −1.951 −0.001 0.018 0.046 −0.008 0.124 0.880

4 −1.838 −0.002 0.014 −0.004 −0.083 0.147 0.854

8 −1.836 −0.002 0.025 0.015 −0.116 0.146 0.818

10 −1.805 −0.002 −0.005 0.004 −0.128 0.140 0.774

14 −1.957 −0.003 −0.098 −0.035 −0.079 0.068 0.721

18 −2.156 −0.002 −0.171 −0.057 −0.002 0.038 0.695
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4 Discussion

The analysis of neuroimagingdata is a stimulating applicationfield that embraces sev-
eral disciplines; statistics covers a determinant role in this context, since it can provide
deep insights on the underlying wiring mechanisms. However, statistical modeling
of multiple brain networks is still in its infancy, and the inclusion of subject-specific
information within repeated networks is incomplete from a literature viewpoint.

The approach suggested in this work has guided some preliminary insights on
the relationship among functional networks, brain constraints and subject-specific
phenotypes. One of the main advantages of our approach is its generality; within the
modular structure, each block can be as complex as data allows for, leaving room for
more appropriate model when needed. We have shown that even with rather simple
modules, our empirical findings seem to give reasonable insights on the covariates
effect on the functional dependence structure, and the sensitivity analysis performed
at different levels of smoothing of the raw data did not seem to provide contradicting
results.

The use of the modular approach is motivated by the computational burden and
possible model misspecification that would otherwise affect a joint model. However,
a two stages approach does not take full advantage of the hierarchical structure of
the model, precluding the possibility to treat all uncertainties simultaneously.

An interesting future direction consists in the inclusion of models specific for
network data, capable to take into account heterogeneity within the brains architec-
ture. This aim could be achieved including random effects pairs for each ROI of the
functional network [26], or using a more appropriate model for multiway data, for
example adapting [22].
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Three Testing Perspectives
on Connectome Data

Alessandra Cabassi, Alessandro Casa, Matteo Fontana, Massimiliano Russo
and Alessio Farcomeni

Abstract Guided by an application in the analysis of Magnetic Resonance Imag-
ing (MRI) scans from the neuroimaging realm, we provide some perspectives on
statistical techniques that are able to address issues commonly encountered when
dealing with Magnetic Resonance images. The first section of the chapter is devoted
to a boostrap-based inferential tool to test for correlation between anatomy and func-
tional activity. The second provides a Bayesian framework to improve estimation of
fiber counts fromDiffusion Tensor Imaging (DTI) scans. The third one introduces an
object-oriented framework to explore and perform testing over network-valued data.

Keywords Hypothesis testing · Permutation tests · Object oriented data analysis
Bootstrap inference · Bayesian statistics · Graphical lasso
1 Introduction

The exceptional improvement in medical imaging techniques has provided clini-
cians and data analysts with a plethora of data objects, that can be seen as “big” in
several ways: many data points, many features per data point, as well as complex

A. Cabassi
MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
e-mail: ac2051@cam.ac.uk

A. Casa · M. Russo
Department of Statistical Sciences, University of Padova, Padua, Italy
e-mail: casa@stat.unipd.it

M. Russo
e-mail: russo@stat.unipd.it

M. Fontana (B)
Department of Management, Economics and Industrial Engineering, DIG, Politecnico di Milano,
Milano, Italy
e-mail: matteo.fontana@polimi.it

A. Farcomeni
Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
e-mail: alessio.farcomeni@uniroma1.it

© Springer Nature Switzerland AG 2018
A. Canale et al. (eds.), Studies in Neural Data Science, Springer Proceedings
in Mathematics & Statistics 257, https://doi.org/10.1007/978-3-030-00039-4_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00039-4_3&domain=pdf
mailto:ac2051@cam.ac.uk
mailto:casa@stat.unipd.it
mailto:russo@stat.unipd.it
mailto:matteo.fontana@polimi.it
mailto:alessio.farcomeni@uniroma1.it
https://doi.org/10.1007/978-3-030-00039-4_3


38 A. Cabassi et al.

dependencies and patterns inside a given data point. In particular, Magnetic Reso-
nance Imaging (MRI) techniques have proven to be extremely powerful in unveiling
novel insights about human anatomy and physiology, in particular in neurology and
neuroimaging. MRI scans of the brain provide a lot of information but, even if the
actual acquisition technique is stable and widely used, we still lack recognized sta-
tistical methods that are able to deal with the sheer complexity of the data generated.

In this contribution we aim to provide insights about some of the issues a statisti-
cian has to dealwithwhenworkingwithMRI data. Thework embraces three different
aspects of the analysis ofMRI scans. In Sect. 2 we develop a bootstrap-based inferen-
tial tool to test if the functional connectivity among different brain areas corresponds
to their structural connectivity and anatomical characteristics. In Sect. 3 we provide a
Bayesian framework to estimate the fiber-count number provided by Diffusion Ten-
sor Imaging (DTI) data. Finally, in Sect. 4 we describe an object-oriented approach to
exploratory data analysis and hypothesis testing for network data. We shall see how
it is possible to explore network valued datasets, and develop tests for the equality
of network data, making use of results from functional data analysis, object-oriented
data analysis and permutation testing.

2 Testing Functional Correlations in Connectomic Maps

2.1 Background and Motivation

The correlation in the activity of brain regions is known as functional connectivity.
A set of brain areas together with the connections among them is then called a
functional connectome or a functional network. In the past decades there has been
an increasing attention on the detection of patterns of connections and activity in
the human brain [14]. In the neuroscience it is widely assumed that the functional
connectome should reflect the underlying structural networks, i.e. the anatomical
links among different brain regions [26]. However, as [17] points out, the nature of
these relations among different types of connectivity is not completely clear and it
is still worth to investigate on it. There are indeed several questions still waiting for
an answer. For example, it is interesting to study if it is possible to infer structural
connections from functional ones and to obtain some indications about how these
networks and their relations vary across time. The work by [17] tries to answer to
some of these questions, highlighting some interesting results.

The aim of our method turns out to be slightly different since we propose a test
to check if the absence of white matter fibers connecting brain regions is reflected
in their functional correlation. Thus, the underlying hypothesis is confirmative since
is related to the idea that the absence of connections between two different brain
areas in the structural network should be reflected also in the functional network.
Furthermore, if the relation among structural and functional connectomes is taken
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for granted, the proposed method could be seen as a way to assess the quality of the
collected data.

Before presenting the proposed procedure, we briefly introduce the considered
statistical background and some of the ideas this work is built on.

To analyze and construct functional and structural networks we resort to graph-
ical models. These are probabilistic models where a graph is used to express the
conditional dependence structure between sets of observed random variables. In the
last few years we have witnessed an increasing interest in these models since they
constitute a useful tool to obtain information and to understand the relationships
among variables in an intuitive way.

When dealing with a n × p data matrix X whose rows are independent and iden-
tically distributed as a Gaussian random variable N (0,Σ) the interest is shifted
towards the estimation of the so called precision matrix Θ = Σ−1. Precision matri-
ces turn out to be particularly relevant since their estimation can be thought of as a
way to estimate a graphical model: if we associate a node in a graph to each observed
variable, there is an edge among node i and node j if and only if Θi j �= 0. Thus the
zero entries in Θ give a clear indication about conditional independence among
variables.

Given S = XT X/n, the empirical covariance matrix, the maximum likelihood
estimate for Θ is obtained maximizing the following profile log-likelihood

log |Θ| − tr(SΘ), (1)

where |A| is the determinant and tr(A) the trace of a matrix A. The maximization
in (1) leads to Θ̂ = S−1, generally not containing elements equal to zero; note that
in high-dimensional cases, when p > n, the maximum likelihood estimate cannot
be computed since S will be singular. To overcome such a drawback and to induce
sparsity [21] propose to fit a lasso model to each variable using the others as predic-
tors. Thus Θ̂i j is estimated to be zero if both the coefficient of variable i on j and
the coefficient of variable j on i are zero.

Alternatively a penalized log-likelihood has been proposed, where the estimate
for the precision matrix results from maximizing

log |Θ| − tr(SΘ) − λ‖Θ‖1,

where, in a lasso-type fashion, λ is a tuning parameter and ‖A‖1 = ∑
i �= j |Ai j | is the

component-wise L1 norm of the matrix A excluding the diagonal. This approach has
been proposed by [13] and goes under the name of graphical lasso. It has a relevant
advantage that an estimate for Θ is given even when S is singular. Furthermore
a sparse representation of the precision matrix, and consequently of dependence
structures of data, is provided. As λ varies, the level of sparsity changes and so does
the dependence among variables.

Given the interpretation of the entries of Θ , inference procedures on these entries
are crucial in assessing if the conditional dependence among two variables are sta-
tistically significant. One of the first attempts to derive rigorous inferential tools in
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this setting can be found in [16]. The authors proposed a set of hypotheses and test
statistics corresponding to a sequence of λ along the solution path of the graphical
lasso. The approach consists in testing if the variables that should be connected are
actually in the same connected component.

Another inferential method, closely related to Gaussian graphical models and
graphical lasso, can be found in [4]. The goal of this work is to identify differences in
Gaussian graphical models known to have similar structure. They aim to determine
which edges are different between two populations for which we expect different
brain activity and connections (e.g. autistic and non-autistic in theirwork, left-handed
and right-handed or people diagnosedwithmental disorder or not, in our data). Lastly,
note that the authors suggest the use ofGaussian graphicalmodels, thus the estimation
of the precisionmatrix, as a way to estimate and construct the functional connectivity
network.

Hence, even if the statistical tools considered are similar, the previouslymentioned
works try to answer to slightly different questions with respect to our procedure. In
the next section the methodology will be introduced in detail and the results obtained
on our data are shown.

2.2 Methodology and Application

The aim of our proposed method is to test if the anatomical connections among brain
regions are reflected in their functional connections. It can be seen both as a method
to confirm the widely assumed link among structural and functional network and as
a way to assess the quality of the collected data, if the former assumption is taken to
be true.

We propose a test based on a parametric bootstrap approach (for an intuitive sketch
of the procedure see Pseudo-algorithm 1) comparing the value of the test statistic
evaluated on the observed data with the bootstrap distribution obtained sampling
from the null distribution. In this situation the null hypothesis is that the absence of
white fibers matter connecting brain areas is reflected in the absence of a functional
correlation among them. In a more sintetic way the test could be represented as

H0 : Ω = Ω0 versus H1 : Ω �= Ω0,

where Ω and Ω0 are two correlation matrices with the second one constrained by
external information, in our situation coming from structural network.

Assume we have a n × p data matrix X containing observations about functional
activity of p different brain regions recorded for n distinct subjects. From X weobtain
the unconstrained sample covariance matrixC , evaluating the functional covariances
between the areas. Then we consider the matrix D expressing the structural network
for the individuals and we estimate, using the graphical lasso, a constrained covari-
ance matrix C∗ where the constraints are given by the zero entries in the matrix
D. The aim is to obtain an estimate C∗ such that its inverse has zero entries if and
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Algorithm 1 Parametric bootstrap procedure
Denote with X an n × p matrix containing functional activity of p brain regions for
n different subjects. Let D be a matrix representing the structural network, hence
containing the number of fibers connecting each pair of brain areas.

Input X , D.
1: from X , obtain the covariance matrix C ;
2: using the graphical lasso estimate C∗ such that (C∗)−1

i j = 0 iff Di j = 0;
3: obtain C∗

1 , . . . ,C∗
B matrices sampling from Wishart distribution with scale matrix C∗;

4: from C and C∗
k , k = 1, . . . , B, obtain the correlation matrices c and c∗

k ;
5: S(c): sum of the squared correlations among not connected regions;
6: compare S(c) with the bootstrap distribution obtained from S(c∗

i ) with i, . . . , B;
7: compute bootstrap p-value pobs.

Output: pobs, p-value of the bootstrap test.

only if we have zero entries in the corresponding elements of D, i.e. (C∗)−1
i j = 0 iff

Di j = 0. In this way we are estimating a functional connectome considering a con-
straint which consists in the absence of edges when two areas are not anatomically
connected, hence reflecting the nature of the null hypothesis. The graphical lasso is
thus used mainly as a tool to obtain the constrained estimate; in a sense the degree of
sparsity is considered fixed and linked to the specific hypothesis that we are testing.

Once C∗ is obtained, we get B matrices sampling from Wp(C∗, n), a Wishart
distribution with n degrees of freedom and scale matrix C∗. Note that n has to
be greater than (p − 1): this could constitute a serious limitation in the specific
considered neurological context but, as we will see, it turns out not to be a problem
in our application. The choice of theWishart distribution as the sampling one appears
reasonable and could be motivated by standard distributional results for the sample
covariance matrix when data comes from a multivariate normal distribution.

After constructing the correlation matrices c and c∗
k , k = 1, . . . , B from the corre-

sponding covariance matrices C and C∗
k , the test statistic is given by S(c) = ∑

U c2i j
whereU represents the set of anatomically unconnected brain regions. Therefore, as
test statistic, we are simply considering the sum of the squared functional correlation
values for the unconnected regions: if the null hypothesis is true this sum should be
small, supporting the assumption about the duality between functional and structural
connectome. The inferential indication is thus obtained comparing the value of S(c)
with the bootstrap distribution of S(c∗

k ) with k = 1, . . . , B.
In our application we have dynamical functional activity measured on 24 subjects

for 70 different brain regions over 404moments in time. Furthermore these measures
are taken in two different scans; we have conducted our analysis considering both
scans. Regarding the first scan, we ignored the last measured time and two different
subjects due to the large amount of missing values. For the second scan the missing
values issue is more serious and we have had to remove again the last measured
time as well as 13 subjects. In both cases we are in a high-dimensional setting since
n1 = 22 and n2 = 11,with ni referring to the sample size for the i th scan, and p = 70.
Hence the sparsity implied by the graphical lasso is required to obtain an estimate
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for the covariance matrix. Nonetheless, in principle we cannot consider the Wishart
distribution as the sampling one since it would require ni > p − 1 with i = 1, 2.
Nevertheless, we bypass this problem simply by stacking the temporal dimension
thus obtaining the functional activitiesmatrixwith dimensionni T × p, with i = 1, 2,
p = 70 and T = 403.Hencewe are treating each observation in differentmoments of
time as coming from a different subject, enlarging our effective sample size. Losing
temporal dependencies among measurements could be harmful but, in our situation,
some exploratory analyses have suggested that the informative content in the time
domain is quite poor.

Note that different subjects could have different anatomical characteristics. In
order to decide which elements of the precision matrix have to be estimated exactly
equal to zero we have collapsed the structural network among individuals. In this
way a zero entry in the precision matrix corresponds to two brain regions not being
connected in any of the considered subjects; this choice could be somewhat arbitrary
and could be relaxed. Among all the possible 2415 connections between brain areas,
we have 816 anatomically unconnected regions in the first scan and 999 in the second
one, indicating also a certain amount of variability between scans.

A graphical summary of the obtained results is shown in Fig. 1 where we compare
the value of the test statistic computed from our data with the bootstrap distribution
obtained by sampling from the null distribution. In both the first and the second
scan we do not reject the null hypothesis, hence our data do not support the absence
of a relation among the two networks. The obtained results hence appear to be
consistent with the usual assumption made in the neuroscience community. For the
sake of comparison,we consider also a likelihood ratio test comparing the constrained
estimate of the covariance matrix with the unconstrained one and the obtained results
are in agreement to the one mentioned above. We would like to highlight that these
two tests are based on a different rationale, since the proposed test is not comparing
directly the two matrices but is specifically focusing on that covariances between
areas having a corresponding zero entry in the structural network.

In conclusion we proposed a simple, fast and easily implementable parametric
bootstrap-based test that turns out to be useful to check the relation among the
anatomical features and the functional connections among different brain regions.

Some possible directions for improvements and further research could require an
accurate simulation study to check the statistical characteristics of the proposed test
and to compare it with other possible solutions in the literature. As [4] point out, one
of the main problems in this framework is indeed related to the statistical power of
the tests used; a simulation study should help to shed light on it for the proposed
method. Furthermore, it could be interesting to handle the temporal dimension more
carefully than we did, trying to incorporate information about different moments of
time. It is indeed well known that the functional connectivity reconfigures in less
than seconds while the structural connections are more stable. This could lead to
different conclusions depending on the time and on the specific activity required of
the subject. Other useful information to integrate and to consider could be related
to the distances among brain regions and to the specific condition of the considered
individual (e.g. affected or not from some neurological disease).
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Fig. 1 Bootstrap distribution of S(C∗) for the first scan (left) and the second one (right). The
vertical lines denote the values of the observed S(c)

3 A Bayesian Framework for Fiber Count Estimation

3.1 Introduction

DTI is a method capable of mapping the fibers’ architecture of tissues (e.g. ner-
vous tissue, muscle) in vivo, and has been extensively used to detect the number of
white matter fibers connecting areas of the brain. This technique was rapidly imple-
mented by major MRI scanner companies, and due to the great availability of data,
and to the plausibility of some results, DTI was viewed by imaging neuroscientists
as a powerful and unique new tool for exploring the structural connectivity of the
human brain. However, as noted in [18], DTI is a rather approximate techniquewhich
has frequently been given implausible interpretations leading to misleading results.
Coherently with their findings, [5] pointed out that the reproducibility of the whole
brain structural connectome, for the same subject and in similar experimental con-
ditions, is affected by several external causes, including the quality of the scanner
used, the method applied for calculating connectivity from DTI fiber tracking, and
anatomical properties of each link. The effect of such inter-individual variability is
evident in the considered data where we can observe white matter fiber counts for
the same subject and brain’s region that differ of several thousand units across the
two considered scans.

To mitigate this effect related to high variability present in the available data we
propose a hierarchical Bayesian model to estimate the effective unknown number
of white matter fibers connecting each pair of brain regions. To accomplish this
goal we leverage available information both at subject and brain region scale. We
describe our approach with the aim of directly estimating the number of white matter
fibers in each brain’s region and for each subject, however the proposed procedure
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Fig. 2 Graphical representation of the weighted structural networks measuring fiber counts in
log(1+x) scale, averaged across subjects for Scan 1 (left), Scan 2 (center). The right panel represents
instead the averaged absolute value of the differences across scans

should be considered as a building block for more refined Bayesian models, allowing
additional uncertainty quantification on the number of fibers. Findings deriving from
this procedure should in any case be compared with the ones obtained using raw
white matter fiber counts highlighting the differences and assessing sensitivity of the
results with respect to the specified model.

DTI brain data are available at different resolutions, going from single voxels to
broader brain regions. Several classifications have been proposed, and for this contri-
bution we focus on the one identified by the Desikan atlas parcellation [8], consisting
of 70 interconnected areas. Our findings can, however, be applied to more refined
and potentially more complicated brain structures. The available data consists of two
brain scans for n = 24 subjects. We discarded 4 of them because of the presence of
missing data in both scans, hence information on the number of white matter fibers
connecting each pair of brain regions is available via 70 × 70 dimensional matrices
Dki for each subject i = 1, . . . , 20 considered in the analysis, and scan k = 1, 2.
The structural networks are sparse, with a moderate number of fibers counts being
zero, and others having a wide range of variability both across subjects and across
scans for the same subject. The average number of white matter fibers connecting
all pair of regions for both scans is showed in Fig. 2, together with the absolute value
of the difference of the two scan counts. We can notice that, although the average
number of connections is quite stable across the two scans, individual variability is
very high. To limit the effect of such variability, while seeking more robust findings,
a broad section of research focused on binary structural networks measuring pres-
ence or absence of white matter fibers (e.g. [1]). Compared to raw counts, binary
networks are in general more stable across scans, nonetheless they still retain a high
inter individual variability. Moreover, this approach deeply reduces the amount of
information used for modeling purposes.
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3.2 Model Formulation

With the aim of estimating the effective number of white matter fibers connecting
each pair of brain regions for each subject, we consider as data the raw counts dki j for
each i = 1, . . . , n = 20 subject, k = 1, . . . , K = 2 scan, and j = 1, . . . , J = 2415
pairs of brain regions, obtained by stacking the elements of the lower triangular part
of Dki . Each of the two available scans is considered as a sample from a Binomial
distribution with a common index Mi j . To take into account uncertainty in the value
of Mi j , representing the unknown amount of white mater fibers connecting pair of
regions j for subject i , we consider a Poisson distribution for this index, depending
on both subject specific and area specific covariates. The considered model can be
expressed in the following hierarchical form

({dki j : k = 1, . . . , K }) ∼ Bin(Mi j , π j ),

logit(π j ) = α j + αMatchHemisphere j ,

Mi j ∼ Pois(λi j ),

log(λi j ) = βi + β j + βagei , (2)

where the variable agei indicates the age of the subject i , while
MatchHemisphere j is a dichotomous variable indicating if the pair of brain
regions indexed by j share the same hemisphere. It is worth noting that accord-
ing to model specification (2) the probability of observing a single connection in
the pair j , denoted by π j , does not depend upon individual scale parameters. This
hypothesis reflects the fact that the probability of observing a connection might be
influenced by region-specific covariates, such as shape, size, anatomical location of
the considered brain areas, and, as in our case, if the regions share the same hemi-
sphere. As noted in [5], these characteristics can in fact alter the sensitivity of the
machine used to produce the data, which is not expected to change across subjects.
We can also note that without additional constraints both individual specific and brain
region specific parameters in model (2) are not identifiable, however this raises no
concern when the inference is just targeted towards estimation of the white matter
fibers connecting brain regions.

The posterior distribution for model (2) cannot be obtained in closed form, but an
MCMC algorithm can be used to draw samples from it. To produce a better mixing
we integrate the parameter Mi j with respect to its distribution. The integrated model
can be easily obtained leveraging Proposition 1.

Proposition 1 Let N | M ∼ Bin(M, π) and M ∼ Pois(λ) then N ∼ Pois(λπ).

The resulting integrated model is a special case of a Poisson regression with an
unknown offset, where the values of π j represents the population probability of a
connection between the pair of regions j = 1, . . . , J . Alternatively, we can interpret
the valuesπ j as information about themachine resolution for each pair of locations j .
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Model based average of the weighted structural network

3.5 6.5 10.0 13.5

Sample average of the weighted structural network

0.0 2.5 5.0 7.5 10.0

Fig. 3 Graphical representation of the structural networks measuring logarithm of 1 plus fiber
counts, averaged across subjects and scans, using model (2) (right) and using the sample mean
(left)

Similar offset estimationhas been carried out inPoisson factormodel usingmaximum
likelihood estimation in [19] with the aim of normalizing Rna-seq counts derived
from multiple experiments.

3.3 Application to DTI Data

We used non informative normal priors for all the coefficients in model (2), relying
on Hamiltonian Monte Carlo implemented in the R packages [32] for the sampling.
We run the algorithm for 5000 iterations, and trace plots suggested that convergence
has been reached after a burn-in of 2500.

Figure3 shows the estimated average number of counts for the brain regions,
obtained from the posterior sample of model (2), and the sample average. We can
notice that the connection pattern looks almost the same as the original one—we
have the same active connections—while the model based estimate has, on average,
a slightly higher fiber count compared to the naive estimate, obtained as sample
average across subjects and scans. This finding agrees with the current literature
which tells that some DTI scans might present an underestimate of the fiber counts
due to several exogenous causes (e.g. [31]).

Additionally the π j s indicate which areas have an higher connection probability
according to the results of model (2). Provided the validity of model (2), these
parameters can be interpreted as giving information on the regions in which is easier
to measure connections. The first 60 highest π j s are represented in Fig. 4, indicating
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Fig. 4 Network based
representation of the brain
where the edges indicates the
60 pairs having higher values
of the posterior mean of π j
according to model (2)

that, according to (2), regions with higher probability to observe connections share
the same hemisphere and are located in the right one.

In conclusion, DTI data represent a valid source of information for data analysis,
however they should be treated with care, and information on how the data have
been collected and preprocessed should always be considered during data analysis
and interpretation. In our opinion the proposed approach can mitigate the effect of
subject-specific variability, leading to more reliable estimates of the fiber counts that
can help assessing sensitivity with respect to possible undercount effects.

4 Object-Oriented Nonparametric Exploration
and Hypothesis Testing for Network Data

4.1 Introduction

In this section we develop an object-oriented nonparametric test for the equality of
two or more groups of functional networks derived from the functional magnetic
resonance imaging (fMRI) data. We work in the context of Object-Oriented Data
Analysis [20, 33], the branch of statistics that treats data that are “complex”, in
the sense that they do not live in the classical Rn space. Using this perspective, we
consider the whole network as the statistical unit of our analysis, and we aim to use
techniques that analyze the data in the mathematical space in which they live.

Several other methods already exist in the literature to address this problem (see
for example [6, 30]). Many of them proceed by reducing each observed network to
a vector of summary statistics, as in [25, 28, 29]. However, using summary statistics
usually leads to the loss of important information that can explain differences across
groups [2]. Others have proposed univariate testing approaches that consider each
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edge separately and then adjust the resulting p-values to control the false discovery
rate [11] or the family-wise error rate [34] with thresholding procedures that take into
account the network structure. [27] gain power in multiple testing by using auxiliary
data such as spatial proximity to inform the posterior probability that specific pairs
of nodes interact differently across groups or with respect to a baseline. [10] develop
a Bayesian procedure for inference and testing of group differences in the network
structure, which relies on a nonparametric representation for the conditional proba-
bility mass function associated with a network-valued random variable. [15] propose
to test the equality of two groups of networks using the concept of Fréchet mean of
networks and deriving a central limit theorem for sequences of network averages,
using the Euclidean distance. Here we focus on inference on the average network, but
we use distances that have been shown to perform better than the Euclidean distance
in previous studies [9].

4.2 Metrics for Network Data

4.2.1 The Procrustes Size-and-Shape Distance

Let G1, . . . ,GN denote the adjacency matrices of N graphs, each assumed to have
the same number of vertices V . The Gi s are assumed to be positive semi-definite
(PSD) and independent and identically distributed according to a distribution f .

Given a distance d(·, ·) between PSD matrices and a probability distribution for
a V × V PSD matrix G on a Riemannian matrix space with probability distribution
q(G), we can define the Fréchet mean as

Γ = arg inf
Γ

1

2

∫

d(G, Γ )2q(G)dG, (3)

[12]. Moreover, given a sample G1, . . . ,GN of independent and identically dis-
tributed observations, the sample Fréchet mean is

Γ̂ = arg inf
Γ

N∑

n=1

d(Gn, Γ )2, (4)

Contrary to [15], we use non-Euclidean metrics, that have been shown to perform
better in practice. In particular,we consider the square root distance and theProcrustes
size-and-shape distance, that have proved useful for positive-semidefinite matrices
[9]. Given two PSD matrices G1 and G2, the former is defined as

dS(G1,G2) = ‖G1/2
1 − G1/2

2 ‖, (5)

and the latter is
dP(G1,G2) = inf

R∈O(V )
‖L1 − L2R‖, (6)
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where Li is a decomposition of Gi such that Gi = Li L ′
i , i = 1, 2, O(V ) is the set of

V × V orthogonal matrices and ‖·‖ denotes the Frobenius norm. However, any other
distance between PSD matrices can be used, such as for example the log-Euclidean
distance of [3].

4.2.2 The Metric Approach and Gromov-Wasserstein Distances

TheProcrustes size-and-shape distance is defined only for PSDs.While this condition
is verified for fMRI connectomes (that are positive semidefinite by construction), this
is in general not true for DTI connectomes, for which the element of the connectome
adjacency matrix gi j is the count of fibers that connect ROI i to ROI j . Moreover,
while for this application we are considering a fixed number of ROIs, positioned on
an atlas that is common for all subjects, this is actually not the case for more general
applications of statistical methods for network-valued data objects. For this reason,
we also propose as a viable network-oriented approach the one by [23], based on
Gromov-Wasserstein (GW) distance.

Thebasic idea behind the use of theGWdistance is to see data points as represented
by metric spaces, then, looking for a sufficiently rich, abstract metric space Z that
admits isometric copies of available data, and then computing some kind of distance
between the isometric copies. The arbitrary nature of the procedure can be eliminated
by optimizing over the choice of Z .

We now very briefly define Gromov-Hausdorff and Gromov-Wasserstein dis-
tances: for a full understanding of the theoretical properties and features of these dis-
tances, the reader should refer to [23], and references therein. TheGromov-Hausdorff
distance between compact metric spaces (X, dX ) and (Y, dY ) is:

dGH = 1

2
inf
R

sup
(x,y),(x ′,y′)∈R×R

|dX (x, x ′) − dY (y, y′)|,

where R ranges over the set of all correspondences between X and Y , denoted by
R(X,Y ). The previous formulation is equivalent to:

dGH = 1

2
inf
R

‖dX (x, x ′) − dY (y, y′)‖L∞
R×R

.

The Gromov-Wasserstein distance is obtained by replacing the L∞ norm with a
L p one, thus obtaining

dGH = 1

2
inf
R

‖dX (x, x ′) − dY (y, y′)‖L p
R×R

.

It can be shown that this formulation becomesmore tractable from amathematical
point of view, yielding a continuous (even if not convex) optimization problem,
instead of a combinatoric one.
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4.3 Hypothesis Testing

Let G11, . . . ,GN11 and G12, . . . ,GN22 be two groups of adjacency matrices where
the observations in each group are independent and identically distributed samples
from two random processes with mean Γ1 and Γ2 respectively. We would like to test
the hypothesis

H0 : Γ1 = Γ2 against H1 : Γ1 �= Γ2. (7)

We can adopt a similar strategy to the one used in [24] for testing the equality of
covariance operators of functional data, i.e. we reformulate the test as follows

H0 : d(Γ1, Γ2) = 0 against H1 : d(Γ1, Γ2) > 0 (8)

and we use the distance between the sample Fréchet means of the two groups
d(Ĝ1, Ĝ2) as a test statistic. Then we consider B permutations of the group labels
and for each of them compute the distance between the sample means Ĝ∗

i , i = 1, 2
of the permuted samples. The p-value of the test is the proportion of the d(Ĝ∗

1, Ĝ
∗
2)

that are greater than or equal to d(Ĝ1, Ĝ2). Similarly, the comparison of multiple
samples can be done using synchronized permutations, as explained in [7].

4.4 Results

From the imagingdata,we construct a functional network, calculated as theSpearman
correlation of the fMRI scans. We are interested in testing the equality of the mean
network in different groups of patients. We are also looking at the morphologic
connectome as obtained by DTI scans: the edges weights ni j are the count of the
number of fibers from ROI i to ROI j . Throughout this section we only consider data
obtained from the first scan.

4.4.1 Exploratory Analysis

First, we want to demonstrate the use of the distances defined above in the more
intuitive case of data exploration and clustering. In particular, here we are interested
to see if there are evident differences between the observed brain networks. To this
end, we utilize the Procrustes distances to apply standard clustering methods to the
data. In Fig. 5a is shown a plot of the matrix containing the differences between
each pair of individuals. The hierarchical clustering performed on that matrix of
distances is shown in Fig. 5b. From this exploratory analysis, there seems to be two
main clusters of people.

We also propose the same analysis using GW distances. In Fig. 6a we can see a
heatmap of thematrix containing the distances between different pairs of individuals.
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(a) Heatmap of the Procrustes distances. (b) Hierarchical clustering.

Fig. 5 Exploratory analysis of fMRI data with the Procrustes distance

Fig. 6 Exploratory analysis of fMRI data with the Gromov-Wasserstein distance

In Fig. 6b the hierarchical clustering dendrogram performed using Ward linkage is
shown. The results seem to confirm the presence of two clusters of subjects, and
appear to be even sharper than the ones obtained using the Procrustes distance.

The flexibility of the Gromov-Wasserstein distance, that is defined for every
matrix, and not only PSMs allows us to perform an exploratory data analysis also on
the DTI data. The results are shown in Fig. 7. In Fig. 7a the usual distance heatmap
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Fig. 7 Exploratory analysis of DTI data with the Gromov-Wasserstein distance

can be seen: again a bipartite nature of the dataset can be identified. This intuition is
again supported by the analysis of the dendrogram in Fig. 7b.

4.4.2 Hypothesis Testing

After exploring the data with the newly defined distances for networks, we can
formulate and test hypotheses about them. In particular, we want to test if there
exists a difference between the average functional networks in the following groups
of people:

1. People who have or have had during their life a diagnosis of a mental disorder
versus the others;

2. People who are less than 30 years old versus the others;
3. People who are less than 50 years old versus the others.

It is important to note that for the first test we are considering only 18 people, since the
information about previous and current mental disorder diagnoses is not available
for all the individuals considered in this study. The p-values of the tests of these
hypotheses are reported in Table1. We used a Bonferroni-Holm procedure to control
the family-wise error rate.

Despite the very small sample size, the third test has a low p-value. This may
indicate that there are some differences in the functional brain networks of people
over and under 50 years old. Interestingly, all the individuals over 50 belong to the
cluster on the left in Fig. 5b.
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Table 1 p-values of the tests

Test p-value Adjusted p-value

1. Mental disorder diagnosis 0.914 1

2. Under versus over 30 0.634 1

3. Under versus over 50 0.091 0.273

This approach can be in principle used also for the Gromov-Wasserstein distance.
However, the extreme computational burden for the calculation of this distancemakes
the permutation approach unfeasible in this case.

4.5 Discussion

By employing an object-oriented framework, we developed a novel approach for
performing exploratory data analysis for any kind of network valued data object.
Subsequently one can simply test the equality of networks and all data objects that
can be put into the form of symmetric and positive definite matrices. Since it does not
require matrix inversion, our method avoids the numerical problems encountered by
the state-of-the-art approach described in [15]. As grounds for future work we plan
to devise an approach to perform a post-hoc analysis, aimed at identifying which
pairs of nodes are different among the groups, similarly to what is done in [15].
The testing method used in this work is easily generalized to Gromov-Wasserstein
distances: further developments are in any case needed to speed up the computation
of the distance, and thus be able to use computational intensive methods such as
permutation testing.

We have used our proposed approach to analyze a complex data set with little
information (admittedly, a pilot study).We thus have demonstrated how our approach
works in practice, and that it can identify groups of subjects that may have signif-
icantly different functional brain networks even with a very coarse measurement
network. However, given the complexity of the considered data objects, a larger
sample size is required to obtain sufficient statistical evidence.

Acknowledgements The authors are very grateful to Greg Kiar and Eric Bridgeford from Neuro-
Data at Johns Hopkins University, who graciously pre-processed the raw DTI and R-fMRI imaging
data available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html, using the pipelines
ndmg and C-PAC. Moreover, the authors would like to thank the organizing committee of StartUp
Research for the splendid management of such a beautiful event. Alessandra Cabassi and Matteo
Fontana wish to thank Dr. Davide Pigoli and Prof. Piercesare Secchi for the fruitful discussions.

http://www.webcitation.org/6ASACEUxB)


54 A. Cabassi et al.

References

1. Agosta, F., Sala, S., Valsasina, P., Meani, A., Canu, E., Magnani, G., Cappa, S.F., Scola, E.,
Quatto, P., Horsfield, M.A., Falini, A., Comi, G., Filippi, M.: Brain network connectivity
assessed using graph theory in frontotemporal dementia. Neurology 81(2), 134–143 (2013)

2. Arden, R., Chavez, R.S., Grazioplene, R., Jung, R.E.: Neuroimaging creativity: a psychometric
view. Behav. Brain Res. 214(2), 143–156 (2010)

3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log Euclidean metrics for fast and simple
calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

4. Belilovsky, E., Varoquaux, G., Blaschko, M. B.: Testing for differences in Gaussian graphical
models: applications to brain connectivity. In: Advances in Neural Information Processing
Systems, pp. 595–60 (2016)

5. Bonilha, L., Gleichgerrcht, E., Fridriksson, J., Rorden, C., Breedlove, J.L., Nesland, T., Paulus,
W., Helms, G., Focke, N.K.: Reproducibility of the structural brain connectome derived from
diffusion tensor imaging. PloS one 10(9), e0135247 (2015)

6. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and
functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

7. Cabassi, A., Pigoli, D., Secchi, P., Carter, P.A.: Permutation tests for the equality of covariance
operators of functional data with applications to evolutionary biology. Electron. J. Stat. 11(2),
3815–3840 (2017). https://doi.org/10.1214/17-EJS1347

8. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T.,Dickerson, B.C., Blacker,D., Buckner, R.L.,
Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling
system for subdividing the human cerebral cortex on MRI scans into gyral based regions of
interest. Neuroimage, 31(3), 968–980 (2006)

9. Dryden, I.L., Koloydenko, A., Zhou, D.: Non-Euclidean statistics for covariance matrices, with
applications to diffusion tensor imaging. Ann. Appl. Stat. 3(3), 1102–1123 (2009)

10. Durante, D., Dunson, D.B.: Bayesian inference and testing of group differences in brain net-
works. Bayesian Anal. 13(1), 29–58 (2018)

11. Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: promise,
progress, and pitfalls. Neuroimage 80, 426–444 (2013)

12. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann.
l’Institut Henri Poincaré 10(3), 215–310 (1948)

13. Friedman, J., Hastie, T., Tibshirani, R: Sparse inverse covariance estimation with the graphical
lasso. Biostatistics 9(3), 432–441 (2008)

14. Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain
Mapp. 2(1–2), 56–78 (1994)

15. Ginestet, C.E., Li, J., Balachandran, P., Rosenberg, S., Kolaczyk, E.D.: Hypothesis testing for
network data in functional neuroimaging. Ann. Appl. Stat. 11(2), 725–750 (2017)

16. GSell, M.G., Taylor, J., Tibshirani, R.: Adaptive testing for the graphical lasso. arXiv preprint
(2013). arXiv:1307.4765

17. Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.:
Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl.
Acad. Sci. 106(6), 2035–2040 (2009)

18. Jones, D.K., Knösche, T.R., Turner, R.: White matter integrity, fiber count, and other fallacies:
the do’s and don’ts of diffusion MRI. Neuroimage 73, 239–254 (2013)

19. Lee, S., Chugh, P.E., Shen,H., Eberle, R.,Dittmer,D.P.: Poisson factormodelswith applications
to non-normalized microrna profiling. Bioinformatics 29(9), 1105–1111 (2013)

20. Marron, J.S., Alonso, A.M.: Overview of object oriented data analysis. Biometrical J. 56,
732–753 (2014)

21. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selectionwith the lasso.
Ann. Stat. 34(3), 1436–1462 (2006)

22. Mémoli, F.: The Gromov-Wasserstein distance: a brief overview. Axioms 3(3), 335–341 (2014)
23. Mémoli, F.: Gromov-Wasserstein distances and themetric approach to object matching. Found.

Comput. Math. 11(4), 417–487 (2011)

https://doi.org/10.1214/17-EJS1347
http://arxiv.org/abs/1307.4765


Three Testing Perspectives on Connectome Data 55

24. Pigoli, D., Aston, J.A., Dryden, I.L., Secchi, P.: Distances and inference for covariance opera-
tors. Biometrika 101(2), 409–422 (2014)

25. Rubinov, M., Sporns, O: Complex network measures of brain connectivity: uses and interpre-
tations. Neuroimage 52(3), 1059–1069 (2010)

26. Rykhlevskaia, E., Gratton, G., Fabiani, M: Combining structural and functional neuroimaging
data for studying brain connectivity: a review. Psychophysiology 45(2), 173–187 (2008)

27. Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression:
an application to neural synchrony detection in primary visual cortex. J. Am. Stat. Assoc.
110(510), 459471 (2015)

28. Simpson, S.L., Hayasaka, S., Laurienti, P.J.: Exponential random graph modeling for complex
brain networks. PloS one 6(5), e20039 (2011)

29. Simpson, S.L., Bowman, F.D., Laurienti, P.J.: Analyzing complex functional brain networks:
fusing statistics and network science to understand the brain. Stat. Surv. 7, 1 (2013)

30. Stam, C.J.: Modern network science of neurological disorders. Nat. Rev. Neurosci. 15(10),
683–695 (2014)

31. Stippich, C.: Clinical Functional MRI: Presurgical Functional Neuroimaging. Springer, Hei-
delberg (2015)

32. Stan Development Team. RStan: the R interface to Stan. R package version 2.17.2 (2017).
http://mc-stan.org/

33. Wang,H.,Marron, J.S.: Object oriented data analysis: sets of trees. Ann. Stat. 35(5), 1849–1873
(2007)

34. Zalesky, A., Fornito, A., Bullmore, E.T.: Network-based statistic: identifying differences in
brain networks. Neuroimage 53(4), 1197–1207 (2010)

http://mc-stan.org/


An Object Oriented Approach
to Multimodal Imaging Data
in Neuroscience

Andrea Cappozzo, Federico Ferraccioli, Marco Stefanucci
and Piercesare Secchi

Abstract We propose a methodological framework for exploring complex multi-
modal imaging data from a neuroscience study with the aim of identifying a data-
driven group structure in the patients sample, possibly connected with the pres-
ence/absence of lifetime mental disorder. The functional covariances of fMRI sig-
nals are first considered as data objects. Appropriate clustering procedures and low
dimensional representations are proposed. For inference, a Frechet estimator of both
the covariance operator itself and the average covariance operator is used. A permu-
tation procedure to test the equality of the covariance operators between two groups
is also considered. We finally propose a method to incorporate spatial dependencies
between different brain regions, merging the information from both the Structural
Networks and the Dynamic functional activity.

Keywords Data objects · Functional data analysis · Principal components
Multimodal Imaging · Neuroscience
1 Introduction

The following work arises from the StartUp Research experience, a workshop held
at Certosa di Pontignano on June 25–27 2017. Seven groups formed by early-career
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researchers and a senior mentor acting as group leader were challenged to develop
novel methods for analysing a common dataset.

Both researchers and practitioners involved in the field of data analysis are nowa-
days increasingly challenged in confronting with data structures that lie outside the
classical Euclidean framework. That is, thanks to the technological advancements
of measurement machineries, not only datasets are becoming massive in terms of
size (the way-too-exploited buzzword big data is a living proof of the concept) but
also substantial in terms of data complexity. As a consequence, statisticians are
encouraged to sharpen their mathematical and programming skills for tackling the
enormous knowledge-discovery opportunities that lie within these complex datasets.
Object oriented data analysis (OODA) is a framework, firstly introduced in [24], for
approaching data challenges in which the object of the analysis (i.e., the observation
or statistical unit) possesses distinctive features that would not be exploited by per-
forming a classical multivariate analysis after data dimension reduction. Examples
of data objects that are considered by OODA include (but are not limited to) curves,
images, tree structured data and positive semi-definitematrices [14]. In such a context
mathematics plays a fundamental role in rigorously defining the embedding space
and properties of the objects under study, and consequently fostering the develop-
ment of new statistical methodologies. Two central notions are the base-ground for
understanding the conceptual framework of OODA:

• Object Space: is the set in which the mathematical representation of the data lie.
For example, the employed object space for the dynamic functional activity (see
Sect. 2) is the Hilbert space L2 of square-integrable functions.

• Feature Space: is the set of features that numerically represent the data object. The
feature space for the scan-rescan dynamic functional activity of the 24 subjects in
the study (see Sect. 2) is a digitized 70 × 404 × 24 × 2 array.

The OODA framework is particularly appropriate when applied to neuroscience,
where the large use of Magnetic Resonance Imaging (MRI) in the study of brain
connectivity and activity has recently created new challenges for statisticians. The
nature and complexity of data coming from electroencephalography (EEG), func-
tional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) have
favoured the development ofz ad-hocmethodologies greatly expanding the statistical
neuroscience literature [8, 18]. During the StartUp Research workshop our group
attempted to analyse the provided dataset employing mathematical tools coming
from OODA, with the aim of exploring the connectivity structure within subject
brains and across groups of subjects with different traits in order to identify possible
meaningful and significant patterns.

The data comes from a pilot study of the Enhanced Nathan Kline Institute-
Rockland Sample project; it comprisesmultimodal imaging data and subject-specific
covariates for n = 24 subjects, for 12 of which 2 scan-rescan imaging sessions are
available. A detailed description of the project, scopes, and technical aspects can be
found at http://fcon_1000.projects.nitrc.org/indi/enhanced/. The pilot study includes
three data sources:

http://www.webcitation.org/6ASACEUxB)
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• Structural networks: These data measure the anatomical interconnections—
made by white matter fibers—among brain regions of interest, and are collected
from DTI.

• Dynamic functional activity: These data measure the dynamic activity of each
brain region through changes in the blood-oxygen-level dependent (BOLD) signal
during resting state fMRI (R-fMRI) sessions.

• Functional networks: These data measure synchronization in brain activity for
each pair of brain regions, and are obtained from the correlation in dynamic func-
tional activity.

Some missing data are present in the dataset: the Dynamic functional activity for
2 subjects and the Structural networks for 4 subjects were not collected. Addi-
tionally, subject-specific information related to age, whether she/he is left-handed,
right-handed or ambidextrous and her/his current and lifetime mental disorder were
available only for 20 samples, impacting the performance evaluation of the method
proposed in Sect. 7.

In Sect. 2 the necessary framework is introduced and Functional Data Analysis
methods [19] are employed for obtaining the main data object of our analysis: a set
of 22 functional networks numerically represented as correlation matrices. Subse-
quently, a proper distance metric for the aforementioned objects is considered for
performing cluster analysis, as reported in Sect. 3. Section4 considers a low dimen-
sional representation of the data objects, and comparison with the results obtained
by the clustering method is addressed. Section5 reports a formal permutation pro-
cedure to test the equality of the mean functional networks between the two groups
determined in Sect. 3. In order to identify possible different sources of variation a
thorough study of the eigenstructure for the twomean functional networks is reported
in Sect. 6. Section7 considers a possible solution to account for spatial dependence
between Dynamic functional activity of different regions, performing data fusion for
the subset of subjects for which both Structural networks and Dynamic functional
activity are available.

2 Curves and Correlation Matrices as Data Objects

Let us first consider the fMRI signal from the first scan. The data consist of 70 sig-
nals for each of the 24 subjects, corresponding to the BOLD activity of the 70 brain
regions described by the Desikan Atlas [5]. Over the past decades the number of
fMRI studies has increased exponentially [20], fostering the development of sev-
eral methods for the analysis and interpretation of resting-state fMRI data, such as
seed-based correlation analysis, independent component analysis and network-based
models [4].We propose to employ a Functional Data Analysis approach for perform-
ing the analysis, considering each signal as a realization of a stochastic process X (ti )
sampled at times ti , where i = 1, . . . , 403; the last instant of time was not recorded
for several patients and therefore it was not considered in the analysis. Subjects are
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sampled at the same time schedule, so that registration is not deemed to be necessary
[19]. Two subjects are not considered in the following analysis because of missing
data, namely patient with ID 1 and patient with ID 21.

When dealing with functional data the usual starting point is to represent the
data observed on a finite grid of points as functions. This part of the analysis is
called smoothing, and there are several approaches to do it. Two important classes
of smoothers are represented by kernel smoothing and orthogonal basis [19]. Both
approaches sharing the idea of filtering out the short-time variation while keeping
the global shape of the signal: we employ the latter for pre-processing the fMRI
data. Orthogonal basis smoothing relies on the fact that, given an orthogonal basis
for the space of interest, every function can be represented as an infinite linear
combination of bases. A truncated version of the infinite sum provides a continuous
representation of the discrete signal and reduces the dimensionality of the problem.
The following analyses are based on a Fourier expansion, a standard choice in signal
processing literature, with 100 bases. As it happens, it is not clear whether the short-
time oscillations can be treated as noise or they might be related to some specific
conditions of the brain. Future work might consider more appropriate bases such as
wavelets [13] or Hierarchical Component Analysis [23]. An example of a smoothed
function and its residuals for a given brain area and subject is reported in Fig. 1. A first
interesting question that arises from the smoothing process would be to understand
whether the residuals of the smoothing have some kind of clinical interpretation. We
now have 70 functions for each of the 22 subjects, each function related to a different
brain region. We used these functions to construct a correlation matrix between
regions for each of the subjects. More in detail, we can compute the correlation
between pairs of functions for every subject

Cor( fi , f j ) = 〈 fi , f j 〉
|| fi |||| f j || = cos(θi j ), for i, j = 1, . . . , 70. (1)

Here 〈·, ·〉 denotes the inner product

〈 fi , f j 〉 =
∫

Ω

fi f j dμ (2)

on the Hilbert space L2(Ω,B, μ), where Ω = [0, 403], B is the Borel σ -algebra
of [0, 403] and μ the Lebesgue measure. The norm || · || = 〈·, ·〉1/2 is induced by the
inner product in (2). For a more detailed treatment of the underlying Hilbert space
theory for functional data analysis, see [9, 10]. Processing the functional signal
through the operator defined in (1) results in a 70 × 70 correlation matrix for each
of the 22 subjects in the study. In Fig. 2 a subset of the so computed correlations
matrices are graphically represented as heatmaps.

There is a clear difference in terms of correlationmagnitude amongst subjects. Par-
ticularly, it seems that a subgroup of patients (ID 7, 10, 15, 17, 20, 22 and 23) present
a much higher positive correlation between brain regions than the ones recorded for
the rest of the subjects, visible by the overall darker blue areas in the correlation
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Fig. 1 Observed and smoothed signals (left plot) and residuals after the Fourier basis approxima-
tions (right plot) for a given subject and brain area
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Fig. 2 Heatmaps of the first scan fMRI signal correlation matrices for 3 patients in the study, each
belonging to a different subgroup identified by visual exploration of the magnitudes in the matrices

plots. Another interesting pattern visible in some patients (ID 6, 12, 14, 17 and 19
primarily) is given by the presence of a specific brain region, namely rh-frontalpole,
that is negatively correlated to the remaining areas identified by the Desikan Atlas. A
third behaviour that emerges from the visual exploration of the plots in Fig. 2 is the
mild negative correlation and/or almost absence of correlation for two brain areas
with the others for some subjects (ID 7, 8, 11, 14, 15, and 23). Particularly, these
two areas are lh-frontalpole and lh-temporalpole. Lastly, there are two subjects (ID
2 and 23 ) that present almost individual patterns in the correlation structure between
brain regions.

3 Clustering of Functional Networks

It is of interest to verify the presence of groups of subjects with similar brain activity,
employing appropriate statistical methods given the complex structure of the objects
under analysis. That is, the aim is to define a suitable distance concept in order to
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characterize proximity amongst objects and subsequently perform cluster analysis
according to the provided metric.

Given the considered context we cannot embed our objects of interest, i.e., the
aforementioned correlation matrices, in a classical Euclidean space. Particularly,
the correlation matrices represented in Fig. 2 are finite-dimensional approximations
of a rescaled covariance operator for functional random processes, and therefore a
suitable inference framework must be considered. Given a random function f taking
values in L2(Ω) we define the covariance operator C f for g ∈ L2(Ω):

C f g(t) =
∫

Ω

E([ f (t ′) − E( f (t ′))][ f (t) − E( f (t))]g(t ′)dt ′. (3)

For a review of definitions and theoretical properties of operators on L2(Ω) see [2].
Denote with PD(p) the space of positive semi-definite symmetric matrices of

dimension p, that is the set of real symmetric matrices having non-negative eigen-
values [1]. We recall that PD(p) is not a vector space and an inner product is not
defined; it is however a Riemaniannmanifold inwhichwe can define a distance. For a
detailed list of non-Euclidean distances for covariance matrices, see for example [6].
However, in a context of functional data, infinite dimensional extension ofmetrics for
positive-semidefinite matrices must be used. Employing the inferential framework
for covariance operators introduced in [17] we are able to extend the matrix-based
distances to the functional case.

With the aim of measuring synchronization in brain activity and their respective
dissimilarities among patients we consider the functional extension of the square
root distance between variance covariance matrices, firstly defined in [6]. That is,
given two covariance operators S1 and S2 their square root distance is defined as

dR(S1, S2) = ||S1/21 − S1/22 ||HS (4)

where || · ||HS denotes the Hilbert-Schmidt norm, generalization of the Frobenius
norm for finite-dimensional matrices. Among the available matrix-based distances
extendable to the functional casewe decided to consider (4) since it takes into account
the full eigenstructure of the covariance operator [17]. The definition of a proper dis-
tance is directly linked to the introduction of a mean value concept, given the chosen
distance. Particularly, letting S1, . . . , Sn be a sample of independent covariance oper-
ators we define its sample Fréchet mean based on the square root distance (4) as

Σ̂ = Δ̂Δ̂� (5)

where

Δ̂ = arginf
Δ

{
n∑

i=1

||S1/2i − Δ||2HS

}
= 1

n

n∑
i=1

S1/2i . (6)
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Fig. 3 Dendrogram from hierarchical clusteringwithWard agglomerationmethod to the functional
network data. The dendrogram highlights the presence of two main clusters not seemingly related
to patients’ mental health status

For proofs and discussion related to the consistency of the sample Fréchet mean
based on the square root distance, refer to [11].

Making use of the square root distance defined in (4) we proceed in trying to
identify possible presence of groups amongst the data objects employing a distance-
based clustering algorithm. Particularly, the analysis was carried out considering
hierarchical clustering with Ward agglomeration method [15].

The result of the clustering algorithm is graphically presented in Fig. 3: the den-
drogram clearly highlights the presence of two different clusters in our sample of
patients. The groups however do not seem to be separated along the additional infor-
mation on the subjects provided in the study. Therefore, even though the difference
between the mean correlation matrices of the two groups results to be statistically
significant (see Sect. 5), interpretation explaining the groupings remains still unclear.
A clinician assessment, together with a thorough consideration of themedical history
of each patient involved in the study would provide insight on groups interpretability
and classification.

In the upcoming section, the problem of finding homogeneous groups amongst
functional networks is differently tackled employing a non-linear dimensionality
reduction technique. Both methodologies agree in terms of identified number of
groups and groups structure.



64 A. Cappozzo et al.

4 Low Dimensional Representation

In order to obtain a low dimensional representation of the correlation matrices a
Local Linear Embedding (LLE) algorithm [21] is considered. This method is based
on a simple geometric intuition. Suppose the data consist of N real-valued vectors
Xi , each of dimensionality D, sampled from some smooth underlying manifold. We
expect each data point and its neighbours to lie on or close to a locally linear patch
of the manifold. We can characterize the local geometry of these patches by linear
coefficients that reconstruct each data point from its neighbours. In the first step of
the algorithm one identifies K nearest neighbours per data point, as measured by
Euclidean distance. In the second step the weights Wi j that best reconstruct each
data point Xi from its neighbours are computed, minimizing

n∑
i=1

⎛
⎝Xi −

K∑
j=1

Wi j X j

⎞
⎠

2

.

The weights Wi j summarize the contribution of the j-th data point to the i-th recon-
struction. Finally we can compute the vectors Yi of low dimensional coordinates,
d < n, best reconstructed by the weights Wi j , minimizing

d∑
i=1

⎛
⎝Yi −

K∑
j=1

Wi j X j

⎞
⎠

2

.

This cost function—like the previous one—is based on locally linear reconstruction
errors, but here we fix the weights Wi j while optimizing the coordinates Yi . In Fig. 4
we can see the two dimensional representations (d = 2), for different number of
neighbours (from 3 to 11, starting from the left upper corner). The triangles represent
the patients with lifetime disease, while the colour represents the groups identified
by hierarchical clustering. We firstly note that the algorithm is robust with respect to
the choice of the hyper-parameter K . Secondly, and more relevant for the scope of
our analysis, we recognize that in all the considered representations 5 out of the 7
subjects with lifetime disease are in the red group and the remaining 2 in the black
group (these are patients labelled with ID 8 and 19 respectively). We can also note
that the low dimensional representation preserves the structure of the original space
and the separation performed by the hierarchical clustering is still clearly visible:
an average Adjusted Rand Index of 0.96 between the groupings found with the two
methods, varying K from 3 to 11 in the LLE, is obtained. A formal permutation test
for statistically assessing the significant difference between the two sub-populations
identified by both hierarchical clustering and LLE is developed in the upcoming
section.
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Fig. 4 2-dimensional representation of the correlation matrices through Local Linear Embedding
algorithm for different number of neighbours K . Triangles represent patients with lifetime disease;
colours represent the groups identified by hierarchical clustering of Sect. 3

5 Hypothesis Testing for Correlation Structures

Let us consider the two groups of patients identified in the previous Sections. We
want to verify whether the functional activity, recorded in terms of 70 × 70 cor-
relation matrices for each of the 22 subjects, is significantly different in the 2
groups. We assume that our two samples are such that S(1)

1 · · · S(1)
n1 are random

PD(p) matrices with expectation E(Si ) = Σ1, i = 1, . . . , n1 and S(2)
1 · · · S(2)

n2 are

random PD(p) matrices with expectation E(Sj ) = Σ2, j = 1, . . . , n2. S
(1)
1 · · · S(1)

n1

and S(2)
1 · · · S(2)

n2 are the sample correlation matrices belonging to the first and second
group respectively. Particularly, in our context n1 = 12 and n2 = 10 with patients
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(2, 3, 4, 5, 8, 9, 11, 14, 16, 18, 19, 24) belonging to the first group and patients
(6, 7, 10, 12, 13, 15, 17, 20, 22, 23) to the second group (see Fig. 3). We would like
to test

H0 : Σ1 = Σ2 versus H1 : Σ1 �= Σ2 .

To test these hypotheses we follow a permutational approach along the methods
advanced in [16, 17]. We reformulate the test in terms of square root distances
between covariance objects: the considered test statistic is d(Σ̂1, Σ̂2) where Σ̂1 and
Σ̂2 denotes the Fréchet mean as defined in (6) for the samples in the two groups. H0

is rejected for large values of d(Σ̂1, Σ̂2). The test is simply a two way ANOVA, but
equipped with a proper metric and consequently with a proper definition of sample
mean. If H0 is true, complete exchangeability of the random variables generating
the sample observations holds and therefore, in order to approximate the distribution
of the test statistic under H0, the two samples are pooled together and randomly
assigned to the two groups preserving sample sizes. The test consists in a com-
parison of d(Σ̂1, Σ̂2) with M random permutations computed via Monte Carlo of
d(Σ̂

(m)
1 , Σ̂

(m)
2 ), m = 1, . . . , M ; where Σ̂

(m)
i is the sample mean correlation matrix

for group i in permutation m. The p-value with M = 100 permutations is less than
0.01, with a difference of the two sample means of 2.41. Thus, we conclude that
the two sub-populations have statistically different correlation matrices, confirming
and validating the results previously highlighted by the clustering and LLEmethods.
The same permutation test had been initially applied to groups clustered by subjects
characteristics; notwithstanding, none of the additional information available for the
subjects under study (age, handedness, current/lifetime mental disorder) have been
proved significant in distinguishing different groups. Figure5 shows the heatmaps of
the sample mean correlation matrices of the two considered groups. The difference
between the two is clear, with higher correlation values in the second group.

Σ̂1 Σ̂2

0.00
0.25
0.50
0.75

Fig. 5 Heatmap of the sample mean correlation matrices in the two identified groups
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6 Eingenstructure of the Mean Correlation Matrices

In this Section a comprehensive analysis of the main sources of variability for the
two samplemean correlationmatrices identified in Sect. 3 will be addressed. Figure6
displays the generalized variance in subspaces of increasing dimension for the two
correlation matrices, defined as the cumulative product of their eigenvalues [7].

The generalized variance is proportional to the square of the volumes of the hyper-
ellipsoids projected onto the principal components subspaces. It is clearly visible that
the first group is characterized by a much larger generalized variance, supporting the
significant difference between the two groups highlighted by the permutation test.

A spectral decomposition of the two sample mean correlation matrices is reported
in Fig. 7. Since we are considering correlation matrices, the employed terminology
comes from the Principal Components Analysis literature [12]. Particularly, the vari-
ance denotes the magnitude of the different eigenvalues whereas the contribution
to the total variability is calculated dividing the cumulative sum of the eigenvalues
by their total. The magnitude of the eigenvalues in the first group decreases more
slowly than in the second group, as it was already apparent in Fig. 6. Five components
account for 80% of the total variability in Σ̂2, whereas for Σ̂1 nine components are
necessary for achieving the same contribution.

In order to check whether the source of variability is different in the two groups,
the components (loadings) of the first six eigenvectors for the two sample mean
covariancematrices are plotted in Fig. 8. As it can be seen from the graphs, the source
of variability seems different, especially considering the first three loadings. This is
further highlighted by the graphical representation of the 3-D spatial coordinates for
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Fig. 7 Eigenvalues and relative cumulative sum of eigenvalues for the mean correlation matrices
of the two groups identified in the patients sample
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matrices of the two groups identified in the patients sample
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the centroids of the brain regions reported in Fig. 9, where centroids are coloured
according to the first, second and third loading vectors entries respectively. A spatial
pattern seems to be present in the matrices eigenstructure. The present analysis
motivates and justifies the novel approach introduced in the upcoming section, where
we attempt to account for the spatial dependence employing a re-weighted version of
the functional network. Particularly, the structural network (i.e., the count of number
ofwhite fibers that connect each brain region) is interpreted as ameasure of proximity
between the brain regions.

7 Spatial Dependence for Functional Networks

So far, we have only considered the fMRI data corresponding to the 70 regions of
the Desikan atlas as independent. Nonetheless, the spatial dependence has not been
filtered out during pre-processing and it is therefore reasonable to suppose that some
sort of spatial dependence is still present in the registered signals, as it can be graph-
ically seen in Fig. 9. A possible procedure for incorporating the spatial dependence
within our analysis framework would be to exploit the information contained in the
structural networks available for each patient. The structural networks contain the
total number of white matter fibers connecting each pair of brain regions for each
subject. The aforementioned structure can be interpreted as an adjacency matrix:
the intuition behind this definition is that the more white fibers connecting a pair of
brain regions the closer the two brain regions can be considered. Particularly, the
functional networks (identified by the correlation matrices employed in the previous
Sections) can be re-weighted according to the magnitude enclosed in the structural
networks, subject-wise. Considering only the first scan, indicate with duv the count
of how many white matter fibers are found to connect brain regions u and v for a
specific subject. We define the symmetric 70 × 70 weight matrix W induced by the
structural network for each subject having entries as follows:

wuv =
{
1 u = v

duv/
(∑70

u=1

∑70
v=1 duv

)
u �= v

(7)

Subsequently, we define the re-weighted functional networks R as the Hadamard
product between W and the functional networks computed in (1). For obtaining R
both structural and functional networksmust be available, therefore it was possible to
calculate the re-weighted functional networks only for 18 out of 24 patients present
in the study. Notice that R is still a symmetric and positive semi-definite matrix
thanks to Schur product theorem [22]. Employing the same methodology described
in Sect. 3 we perform hierarchical clustering on the re-weighted functional networks:
the dendrogram of the clustering procedure is reported in Fig. 10. Likewise in the
previous analysis the dendrogram highlights the presence of two different clusters,
with a significant difference in their mean correlation matrices (the test in Sect. 5 was
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Fig. 9 Graphical representation of the 3-D spatial coordinates for the centroids of the brain regions,
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repeated and the null hypothesis rejected). In addition, the two identified groups seem
at least partially related to the presence or absence of lifetime mental disorder for
the available set of patients. Although the sample size is very small, we empirically
evaluate the main source of dissimilarity between the two groups of patients with
and without lifetime mental disorder considering their mean re-weighted functional
networks, computed using (5). The preeminent differences are due to the higher
weighted correlations found for patients with lifetime mental disorder between areas
lh - posteriorcingulate and lh - corpuscallosum, rh - posteriorcingulate and lh -
posteriorcingulate, rh - superiorfrontal and rh - caudalmiddlefrontal, rh - corpus-
callosum and lh - posteriorcingulate, compared to the weighted correlations in these
areas for patients with absence of lifetime mental disorder.

8 Conclusions and Future Research Directions

The present work is the result of a 48h workshop during which the authors, guided
by their senior group leader Piercesare Secchi, were asked to propose original sta-
tistical methods for data analysis in neuroscience [3]. We applied several techniques
from Object Oriented Data Analysis literature for exploring data coming from the
Enhanced Nathan Kline Institute-Rockland Sample project. Three different cluster-
ing methods are proposed for the fMRI data, with the last and most promising one
involving the processing of both structural and functional network for each patient.
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Our approach began with the identification of two clusters in the space of the cor-
relationmatrices of the smoothed fMRI signals. These two groups corresponded only
partially to the labelling concerning the presence/absence of mental disease. A non-
linear dimensional reduction technique helped us to visualize the clusters: the two
sub-populations structure is clear in the identified subspace. The difference between
the two groups, formalized through a statistical test in which the null hypothesis was
the equality of the two mean correlation matrices, is highly significant. A deeper
analysis of the eigenstructure of the two mean correlation matrices highlighted the
differences in the sources of variability in the two groups, together with a possible
spatial dependence in the data objects. Lastly, an attempt at performing data fusion
weighting the functional networks with the structural networks is addressed: promis-
ing initial results seem to have been achieved. In particular, employing re-weighted
functional networks, subjects with confirmed presence of mental disease are more
clearly separated from patients with absence of mental disease, fostering the employ-
ment of the aforementioned procedure whenever functional and structural networks
are available. Nevertheless, both a larger sample size as well as knowledge domain
would be necessary for establishing and interpreting the described discoveries.

The StartUp Research workshop has been a challenging yet enriching and unfor-
gettable experience, in which we had the chance to meet, connect and learn from
our peers, colleagues and senior mentors. We early-career researchers had a direct
experience on the essential importance of interaction and knowledge-sharing which,
ultimately, lead to knowledge creation.
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Curve Clustering for Brain Functional
Activity and Synchronization

Gaia Bertarelli, Alice Corbella, Jacopo Di Iorio, Anastasia Gorshechnikova
and Marian Scott

Abstract Functional Magnetic Resonance Imaging (fMRI) has become one of the
leading methods for brain mapping in neuroscience and it is an important tool in
modern neuroscience investigation. Moreover, the recent advances in fMRI analysis
are widely used to define the default state of brain activity, functional connectiv-
ity and basal activity. Signal processing schemes have been suggested to analyze
the resting state Blood-Oxygenation-Level-Dependent (BOLD) signal from simple
correlations to spectral decomposition. Our goal is to determine which brain areas
behave similarly in the time domain. To address this question, we apply functional
curve clustering methods. We carry out an exploratory study using classical func-
tional clustering of fMRI time series. The analysis confirms the hypothesis of a
possible spatial influence on the results and therefore suggests the development of
spatial curve clustering methods for brain data.
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1 Introduction

Over the past two decades the study of human cognition has greatly benefited from
innovations in magnetic resonance imaging, such as the development of techniques
that aim at detecting physiological markers of neural activity. Functional Magnetic
Resonance Imaging (fMRI) is a tool for studying brain function, that is the rela-
tion between a neural substrate and a particular behaviour or condition. The fMRI
measurement is related to the amount of de-oxygenated haemoglobin in the blood
and it measures the so-called Blood-Oxygenation-Level-Dependent (BOLD) signal.
While dependent upon many other factors, the BOLD signal gives an indication of
the amount of blood that flows to specific locations of the brain over time. Data might
be more or less granular according to the measurement discretization on time and
space (at specific voxels). After neurons in a small area become more active, the
blood flows to that area is increased to supply the metabolic demand of the neural
activity. The more intense the neural activation is, the more the blood flow increases,
but the relationship is not necessarily linear or straightforward [11]. However, the
mechanisms according to which the neural activity is related to cerebral blood vol-
ume, flow and oxygenation are still not completely clear [9] and this fact restricts
the interpretation of fMRI studies [17].

Different types of analyses can be performed on fMRI data. For example, the
characterization of the neural substrate of behaviour in terms of the location in the
brain and the magnitude of the response may be clinically relevant for an individual
to make a diagnosis, assess the course of disease or arrange a treatment and monitor
its impact. Furthermore, it is also relevant to study how the location, the intensity
and size of the neural activation differ between sick and healthy individuals in the
population.

One of the main problems of fMRI data is that they are affected by multiple
sources of noise. Hence, the true time evolution of brain-functional activity is often
masked by systematic noise (e.g., scanner instability or changes); individual errors
(e.g., anatomical variability, head motion, spin history, heartbeat, respiration, subject
wakefulness) [11] as well as by other sources of noise. In approaching fMRI data we
should firstly perform exploratory analysis to assess the quality of the data used in
subsequent modelling. This may highlight aberrant features of specific regions, par-
ticular individuals or unexpected observations. Clustering of the fMRI time series has
emerged in recent years as a possible alternative to parametric modelling approaches
[10, 12], going beyond the traditional analysis of fMRI data which typically evaluate
the level of activation of individual voxels. The study of the possible aggregation of
different active voxels has the potential to identify biological relationships between
the different functional areas of the brain. This motivated our investigation of fMRI
clustering where we aim at grouping the regions with similar time series [25]. In this
paper, we focus on a preliminary investigation of k-means clustering applied to a
small subset of the existing data as a proof of concept.

The paper is organized as follows. Section 2 is dedicated to examining the available
dataset. In Sect. 3 the k-means clustering is introduced and the proposed functional
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methodology for the descriptive analysis of our data is described, whereas Sect. 4
reports our results. Section 5 contains discussion and possible future directions of
our preliminary work.

2 Data Description

Investigation of brain structure and function has been much enhanced by recent
innovations in both instruments (e.g., fMRI) and data analytic tools. This has raised
new questions on brain function and it has motivated statistical developments to
handle complex data structures [2, 17, 20, 21] and infer non-trivial phoenomena.

The multimodal imaging dataset provided for this study comes from a pilot study
of theEnhancedNathanKline Institute-RocklandSampleproject. This project aims at
providing a large cross-sectional sample of publicly sharedmultimodal neuroimaging
data and psychological information to support and motivate researchers to explore
the mechanisms underlying the complex brain system. A detailed description of the
project, scope, and technical aspects can be found at http://fcon_1000.projects.nitrc.
org/indi/enhanced/.

The specific data come from the pilot NKI1 study and includemultimodal imaging
data and subject-specific covariates for 24 subjects in resting state. In the NKI1 study,
the subjects are simply asked to stay awakewith their eyes open.Detailed information
can be found at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html. The
main variable of interest in our study is the dynamic functional activity: these data
measure the dynamic activity of each brain region through changes in the BOLD
signal during resting state fMRI (R-fMRI) sessions.

The anatomical brain regions on which such data are collected, are always the
same across the subjects and they are based on the Desikan atlas [5]. For these
e = 1, . . . , 70 regions we have additional information on 3 − D spatial locations,
hemisphere and lobe membership. In addition, for the subjects in the study, we
have age, handedness and psychological traits (whether diagnosed with a current or
lifetime illness).

The dataset comprises an array of dimensions 70 × 404 × 24 × 2 comprising
the 70 × 404 multivariate time-series activity data collected for the 24 subjects in
each of the 2 scan-rescan imaging sessions. In particular, Y [, ,m, v] is a 70 × 404
matrix whose rows contain the dynamic activity data of the brain regions, collected
at l = 1, . . . , 404 equally spaced times, for subject m, monitored during scan v, for
every m = 1, . . . , 24 and v = 1, 2.

2.1 Data Selection

Data are highly affected by missingness: if we consider the first scan, the time series
over all regions are fully missing for two patients; regarding instead data on the
second scan, more than half of the subjects have fully missing time series. This was

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
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Fig. 1 Time series of the BOLD from scan 1 for Patient 2: each plot groups all the measurements
taken in a specific lobe

a first reason that motivated the selection of the time series of only one patient as our
main dataset.

Furthermore, data are collected while patients are in resting state, and therefore
there is no reason to believe that observations at a given time point should be similar
across patients. Hence,we decided to focus part of our analysis only on one individual
and we selected Patient 2 since he/she has very few missing values. In selecting only
one patient we remove the main source of variability (subject) at the expense of
obtaining results that will not be generalizable to the whole population.

The selected patient is a 52-years old, right handed person. If we group the BOLD
time series by lobe, focussing only on the first scan, different patterns are identifiable,
as shown in Fig. 1. Time series of some regions belonging to the same lobe show
similarities, e.g., the time series of the inter-hemispheric, parietal and occipital lobes.
Nevertheless, other lobe groups contain highly heterogeneous time series. This fact
motivates us to apply k-means clustering to explore potentially unexpected spatial
aggregation of BOLD time series.

3 Methodology

3.1 k-Means Clustering

In recent years many studies have addressed the analysis of fMRI time series [10].
The aim of our contribution is to perform and evaluate k-means clustering of the
available fMRI time series. To do that, we smooth the time series by b-splines and
partition the estimated curves using k-means algorithm as in [1].
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k-means [16] is one of the simplest unsupervised clustering algorithms which is
used when data are unlabelled (i.e., data without defined categories or groups). The
procedure classifies units of a given dataset into k clusters, where k, the number
of clusters, is fixed a priori. The implementation of this methods starts with the
definition of k centroids, one for each cluster. Then, each unit is associated to the
nearest centroid. k-means algorithm is a simple method with a fast convergence but,
on the other hand, the results could severely depend on the number of clusters and
distribution of the data. In fact, the algorithm relies on the parametric assumption that
the data distribution is a mixture of k components. Furthermore, k-means algorithm
does not necessarily find the optimal configuration, corresponding to the global
objective function minimum.

To choose the number of clusters k, we use the well-known gap statistic [23]

gap(k) = 1

U

∑

u

log(W ∗
u (k)) − log(W (k)) (1)

which compares the observed within-cluster dispersion, W (k), with the dispersion
expected under the null hypothesisW ∗

u (k) (i.e., no obvious clustering). This measure
is calculated onU different uniform datasets, eachwith the same range as the original
data, which are generated and grouped in k clusters. We computed the value of the
gap statistic for several k and we selected the smallest number of clusters k such that

gap(k) ≥ gap(k + 1) − sk+1

where sk is the standard deviation of log(W ∗
u (k)).

3.2 Smoothing Procedure

Curves are usually observed at discrete observation points. For this reason, when
working with functional data it is necessary to reconstruct the functional form of
data by smoothing the time series. Smoothing is a very common procedure in the
field of functional data analysis (FDA) as it estimates a smooth and manageable
function able to capture relevant patterns in the original data while leaving out noise.

To perform the smoothing procedurewe decided to use b-splines [4]. The selection
of these techniques is motivated by the ease of their use and high flexibility. To do
this, the abscissa-axis is divided into a number of intervals, where the endpoints of
each interval are called breakpoints. These breakpoints are then converted to knots
by imposing continuity and smoothness conditions at each interface. Given a non-
decreasing knot vector t = {t0, t1, . . . , tn+o−1}, the n bases splines of order o are
defined by
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Bh,1(x) =
{
1 th ≤ x ≤ th+1

0 otherwise

Bh,o(x) = x − th
th+o−1 − th

Bh,o−1(x) + th+o − x

th+o − th+1
Bh+1,o−1(x)

for h = 0, . . . , n − 1. When appropriate, knots are chosen on an interval, then the
b-splines knots form a complete set on that interval and we can write the smoothing
function as

f (x) =
n−1∑

h=0

ch Bh,o(x) (2)

where the coefficients ch can be readily obtained from a least-squares fit [4]. In
order to use b-splines, some parameters have to be tuned: specifically, we need
to set the order of the spline and the number of basis functions (i.e., the knots)
used for interpolation. Given the high level of noise that affects our time series,
the choice of the number of basis functions is not straightforward as there is the
risk of under-smoothing by choosing too many bases. The information on the data-
collection scheme provided is not useful in determining the level of smoothing we
should adopt. Therefore it is challenging to decide how much to smooth the original
data since, possibly, turbulent and instantaneous phenomena, such as spikes, are not
to be interpreted as pure noise, but as significant events that should not be smoothed.

We base our choice of the number of bases both on graphical evaluation and on
cross-validation methods, while recognising that in a correlated data context cross-
validation is known for not being optimal. The basic idea behind cross-validation is
to divide the data into p subsets. Then the model that has to be validated is fitted
p times, such that each time, one of the p subsets is used as the test set/validation
set and the other p − 1 subsets are put together to form a training set. Taking this
procedure to its extreme, one can select a validation sample composed of one single
datum, fit the data to the whole data except this one and then estimate the fitted value
for the left out data value. This procedure is repeated for each observation in turn
and for each parameter λ, such as the number of basis functions belonging to a user
defined range. A criterion is recorded every time and, by minimizing it, the best λ is
identified.

In the spline smoothing literature the most famous cross-validation technique is
Generalized Cross-Validation (GCV) developed by Craven and Wahba in 1978 [3].
It has been proven to be more conservative than other cross-validation methods in
avoiding over-smoothing. The criterion tominimize can be expressed in the following
formula:

GCV (λ) =
(

n

n − d f (λ)

) (
SSE

n − d f (λ)

)
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where the SSE , the residual sum of squares, is first discounted by n − d f (λ), the
number of training data minus an equivalent degrees of freedommeasure, and then is
further discounted by n/(n − d f (λ)), the left factor. The minimization of GCVwith
respect to λ will inevitably involve a large number of values of λ, where grid-search
or a numerical optimization algorithm is used. However it is possible to speed up the
computation by performing a preliminary generalized eigenanalysis.

In this analysis we used the Generalized Cross-Validation available in the R pack-
age fda [18].

3.3 Functional Boxplot

The boxplot, firstly introduced by Tukey [24], is a graphical method used for sum-
marizing the distribution of a dataset through the 5-number summary, which are the
minimum and the maximum range values, the upper and the lower quartiles and the
median. One of the advantages of this technique is the ability to identify observations
classified as outliers in the data distribution. This exploration tool is principally based
on data ordering which in the functional setting requires the introduction of a new
depth measure indicating how much an observation is deep (central) or outlying.

In the case of functional data, Lopez and Romo [15] introduced the notion of
Simplicial Band Depth (SBD) to order a set of real functions yi (q)with i = 1, . . . , s
and q ∈ I , where I is an interval in R

2. Precisely, denoting y[i](q) as the sample
curve associated with the i-th largest band depth value, y[1](q), y[2](q), , y[s](q) can
be viewed as order statistics where y[1](q) is the deepest (most central) curve, i.e.
the median curve.

Given the curves y1, . . . , ys,

D(y1, . . . , ys) = {(q, x(q)) : q ∈ I,mini=1,...,s yi (q) ≤ x(q) ≤ maxi=1,...,s yi (q)}

is the band in R2 composed by these curves. The band depth for a given curve x(q)
is obtained by computing the fraction of the bands determined by j different curves
containing the whole trajectory of the curve x(q). The bigger the value of band depth,
the more central position the curve has. In order to give a more flexible definition
of the band depth, a Modified version of the Band Depth (MBD) was introduced by
measuring the proportion of times that a curve x(q) is in the band. Taking inspiration
from the classical boxplot, Sun and Genton [22] used these depth measures to define
the functional boxplot.

In the classical boxplot, the middle 50% of the data are represented by the box
itself. This same idea is still used in the functional boxplot: the α central region of
the plot delimits the α proportion of deepest curves. For instance the 50% central
region is

C0.5 = {(q, x(q)) : mini=1,...,[s/2]y[i](q) ≤ x(q) ≤ maxi=1,...,[s/2]y[i](q)}
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where [s/2] identifies the smallest integer not less than s/2. The borders of the box
of the classical boxplot are the borders of the central region of the functional boxplot.
In addition, the central region, which is a robust range, contains the median y[1](q) or
the curve having the largest band depth value. In order to identify outlying curves the
whiskers must also be defined. The whiskers are vertical lines of the plot extending
from the box and indicating the maximum envelope of the dataset except the outliers.
These fences are obtained, following the classical outlier criterion, by increasing the
50% central region by 1.5 times the range of the 50% central region. Any curve
outside the whiskers can be considered potential outliers. More useful information
about a functional dataset can be revealed by looking at the position, size, length and
shape of box, whiskers and median.

4 Results

This section reports the results of the analyses introduced in Sect. 3. As mentioned
in Sects. 2.1 and 3.1, the clustering technique was applied to the data of Patient
2. From Sect. 4.1 onwards, data are treated as functional data and therefore they
are smoothed. We then use an exploratory method for functional data analysis: the
functional boxplot (Sect. 4.2). Finally, the results of k-means clustering are reported
in Sect. 4.3.

4.1 Smoothing Procedure

According to the methods exposed in Sect. 3.2, we smoothed the time series using
splines of order 3 with 60 basis functions in order to give the data a more regular
surface without losing possible differences in the signal between the time points. To
further evaluate our chosen bases number, we verify the goodness of our choice with
GCV. Using the gcv function, available in the R package fda [18], the number of
basis functions, minimizing the aforementioned criterion, was 79. Despite this result,
we stick to our initial choice of 60 basis, because of the graphical evaluation of Fig. 2
and of Fig. 3. The former shows that two smoothed functions, obtained by using 60
and 79 bases functions, differ only in some minor peaks. The latter demonstrates no
visually-evident difference between selecting 60 or 79 basis functions in terms of the
GCV criterion, rather than having a unique minimum, the GCV, is relatively small in
the range 50-90, among these values we chose one of the smaller to minimize model
complexity. The results of the smoothing procedure is shown in Fig. 4.

We repeated the same analysis on the data from scan 2 and we selected 150 bases.
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Fig. 3 GCV value for numbers of basis functions in the case of the first scan of Patient 2

4.2 Functional Boxplot

The functional boxplot was used to identify outlying curves in the smoothed dataset.
Focusing on Patient 2, it is possible to notice how, passing from scan 1 to scan
2, the detected outliers differ. Figure 5a, b show these differences. Precisely, blue
solid curves denote envelopes, black curves represent the median curve and the red
dashed curves are the outlier candidates which are those curves out of the boundaries
identified by the whiskers. The magenta area indicates the 50% central region.

As one can see in Fig. 5a, scan 1 presents 10 curves detected as outliers.
These are the lh-caudalanteriorcingulate, the lh-cuneus, the lh-parsorbitalis,
the lh-parstriangularis, the lh-superiorfrontal, the lh-frontalpole, the rh-
caudalanteriorcingulate, the rh-rostralanteriorcingulate, the rh-superiorfrontal, and
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Fig. 4 Smoothed data with b-splines of order 3 and 60 knots
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(b) Patient 2 scan 2.

Fig. 5 Functional Boxplots
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(a) scan1.
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Fig. 6 Percentage of scans 1 and 2 having a particular zone as outlier

the rh-frontalpole. Instead there are 4 outlying functions shown in Fig. 5b:
the lh-lateraloccipital, the lh-parstriangularis, the lh-frontalpole and the rh-
transversetemporal. Hence, only the lh-parstriangularis and the lh-frontalpole are
coherently detected as outliers in both the scans.

Using the functional boxplot applied to every scan of every patient we could
assess whether some brain regions are detected as outlying more often than others.
Figure 6 shows the percentage of patients having a particular curve as outlier in scan
1 and scan 2, respectively. Figure 6a, shows that the lh-cuneus is an outlier curve
in all the patients. Repeating the same analysis on scan 2, (Fig. 6b) lh-cuneus is
identified as the second most frequent outlier region below the lh-frontalpole. Based
on the comparison between scan 1 and scan 2 of the patients having both scans, it is
evident that the curves detected as outliers usually differ from one scan to another.
This means that there is no patient having the same outlying functions according to
both scan 1 and scan 2.

4.3 k-Means Clustering

Functional data analysis focuses on the development of statistical tools for analysing
samples of curves. Classical multivariate techniques can be applied to functional
datasets, but they do not take advantage of the additional information contained in
the functions and its derivatives. Using the smoothed data it is possible to find clusters
[14]. We apply k-means clustering to smoothed data of Patient 2, for scan 1 and scan
2 separately.
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Fig. 7 gap Statistic for k-means clusters algorithm (k = 1, . . . , 10) in Patient 2 in scan 1 (a) and
scan 2 (b) for the smoothed data

Table 1 Clusters’ cardinality in k-means algorithm with k = 6

Scan Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

1 21 9 25 9 2 4

2 4 11 8 39 5 3

Regarding the choice of k, the gap statistic does not uniquely identify the number
of clusters k, i.e., there is no clear point at which the rate of increase of the gap
statistic reaches a plateau (Fig. 7). The number of selected clusters seems to be
higher than k = 10 and this is not desirable in our context. However, the tendency
of the gap statistic to overestimate the number of clusters has been demonstrated by
Dudoit and Fridlyand [6]. One possible reason for the deficiency of the gap method
is that the statistic summarizing the within-clusters homogeneity, is not suitable for
measuring the clustering adequately. Another reason might be the excessive noise
of the observations over time despite the smoothing procedure. Given that the gap
statistic curve does not give a clear result, we adopted a more pragmatic criterion to
chose the number of clusters k. Since human brain is divided in six lobes, this could
be a criterion for the choice of the number of clusters. Therefore, we select k = 6
clusters.

In Table 1 we report the cluster cardinalities of the k = 6 clusters resulting from
the analysis applied to data from scan 1 and scan 2: results are not consistent across
scans. Hence, we test the robustness of the classification by the adjusted Rand Index
[13, 19] using R package mclust [7, 8]. The resulting adjusted Rand index is
equal to 0.1 and it confirms the hypothesis of weak agreement between the results
of k-means alignment cluster applied to scan 1 and scan 2.
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Fig. 8 Clusters for k-means algorithm with k = 6 in Patient 2 in scan 1
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Fig. 9 Clusters for k-means algorithm with k = 6 in Patient 2 in scan 2
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(a) scan 1

(b) scan 2

Fig. 10 Clustering on human brain based on k-mean clustering with k = 6

Figures 8 and 9 show the curves inside each clusters in scan 1 and scan 2. With
regard to scan 1, we can observe that some clusters have very high peaks while others
(e.g., cluster 3) have more smooth curves. This does not happen in scan 2 where all
the curves are characterized by high peaks.

The brain is neuro-anatomically divided into two hemispheres and the clustering
results, which are shown in Fig. 10, support the statistically defined clusters.
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5 Discussion and Future Directions

In this paper we have explored a dataset of resting state measurements of BOLD
over time and over brain regions for 24 patients. These data are by nature very com-
plex, being spatio-temporal and with repeated measures. Firstly, there are no specific
reasons for systematic changes over time that a non-resting state fMRI experiment
could imply, with reactions to external stimulus. Secondly, regions are characterized
by their location in the brain. However, due to the physical structure of the grey
matter, geometric distance on the 3D space might not be an adequate measurement
for the actual distance across regions. The consequence of these features are detected
in our exploratory analysis that concludes that the raw-data are dominated by noise
and by variability across the subjects.

The aimof this paper is to classify the regions of the brain according to the temporal
pattern of the BOLD. We have focused on the data from one patient. Clearly this
could be extended to include the set of patients and the repeated scans.

k-means is one of the simplest unsupervised clustering algorithm but, despite
its computational tractability, it is a stochastic algorithm, and therefore it strongly
depends on the initialization of the centroids.

To perform functional clustering we firstly must detect the signal underlying the
noisy. b-splines smoothing has been used to approximate the time series. The choice
of the number of knots and basis functions to use was made according to graphical
evaluation and cross validation.

Then k-means clustering was performed on the smoothed data with the number
of groups k = 6, same as the number of lobes in the brain.

Brain data are very complex and noisy, traditional clusteringmethodsmight not be
adequate to classify the regions of the brain. Advanced spatial functional clustering
leads to the identification of areas behaving similarly, even in resting states time
series. While our work has focussed on a very limited subset of the data, it would
be interesting to analyse how selecting different smoothing procedures and settings
could affect the clustering results and to explore amore detailedmodel for all patients
and both scans. To do this, the joint work of statisticians, neurologists and technicians
who take the measurements seems to be essential.
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Robust Methods for Detecting
Spontaneous Activations in fMRI Data

Francesca Gasperoni and Alessandra Luati

Abstract Functional magnetic resonance imaging (fMRI) is a technique for mea-
suring brain activity. The outcomes of fMRImeasurements are complex data that can
be interpreted as multivariate time series, recorded at different brain locations, usu-
ally across subjects. The literature has been mainly concerned with task-based fMRI
analysis, which focuses on the response to controlled exogenous stimuli. Neverthe-
less, resting state fMRI (RfMRI) analysis, dealing with spontaneous brain activity,
is considered the key to understand the neuronal organisation of the brain. The aim
of this paper is to identify spontaneous neural activations and to estimate the brain
response function in RfMRI data, called Hemodynamic Response Function (HRF).
To this purpose, we apply an existing method based on a normality assumption for
the data generating process and we consider a novel, more general method, based on
robust filtering. Finally, we compare the neural activations and HRF estimates for
two specific patients.

Keywords BOLD signal · Heavy tails · HRF estimation · Resting state
Robust filtering · Spatial dependence

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non invasive technique for col-
lecting data on brain activity, with a good resolution in terms of space and time.
Essentially, fMRI measures the increase in the oxygenation level at some specific
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brain region, as long as an increase in blood flow occurs, due to some brain activity.
The latent signal in the observed fMRI data is referred to as the blood oxygenation
level dependent (BOLD) signal.

A large stream of the literature has dealt with the analysis of task based experi-
ments, where the BOLD is measured in response to some stimulus or event. On the
other hand, only in recent years the interest has been concentrating toward resting
state fMRI (RfMRI), as the key to understand the neuronal organisation of the brain,
through the investigation of the spatial and temporal structure of spontaneous neural
activity. The earliest work that focused on RfMRI was the one of Biswal et al. [2],
where it is shown that the same brain regions that were active and correlated during
finger tapping were also correlated with the spontaneous BOLD fluctuations in the
absence of any stimulus. Since then, growing attention has been devoted to RfMRI
data analysis. In the review paper by Biswal [3], resting state fMRI is described as
the candidate approach capable of addressing the core challenge in neuroimage, i.e.,
the development of common paradigms for interrogating the functional systems in
the brain, without the constraint of a priori hypotheses.

When analysing fMRI series, major inferential issues arise, due to the complexity
of the data. As a matter of fact, fMRI are recorded as high frequency time series,
observed at different brain region of interests (ROI) or, on a finer scale, at differ-
ent voxels, across individuals. Hence, besides the intrinsic dynamic nature of fMRI,
the researcher has to take into account aspects like curse of dimensionality at the
voxel level, presence of explanatory variables depending on the design of the exper-
iment, spatial correlation, which is of interest for connectivity analysis, as well as
multivariate aspects related to multisubject or group analysis.

Despite specifically depending on the aim of the analysis, the most common
approach followed to analyse fMRI data consists in a sequence of analytical steps that
eventually result in a general linear model accounting for time and space correlation.
The basic assumption for thefirst step, that is a univariate time series analysis, consists
in a simple decomposition of pre-processed fMRI data into an unobserved signal
plus noise. The underlying hypothesis on the two latent variables are related to the
evolution of the components in the time andwith the dependence on some explanatory
variables. Once the dynamic characteristics of the series are acknowledged, their
interrelation across ROIs and subjects becomes the main object of the analysis, so
that methods ranging from spatial modelling to large covariance matrix estimation
are required.

Most of the models used for the time series analysis of fMRI assume a stationary
Gaussian distribution for the noise term. However, the stationarity hypothesis seems
to be not justifiable and the assumptions on the dynamics in fMRI are still controver-
sial. Indeed, there is still a considerable debate on the dynamic properties of fMRI
and AR(p) errors have been considered, see e.g. [23, 27], as well as fractional noise
error processes [5], and recently change point methods [1] as an alternative to sta-
tionarity. Moreover, Lund et al. in [24] concluded that no commonly accepted model
for noise in fMRI exists and that regressors may whiten the noise as well as high
pass filters. In resting state studies, the dynamics of the noise component are even
more relevant than in task based experiments, as recognised in [12], since, ideally,
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no exogenous stimulus affects the underlying signal and the noise dynamics reflect
the human brain resting activity.

In this paper, we aim at specifying a model with more general assumptions on
the noise term, which is allowed to be non Gaussian, and on the signal, which is a
possibly non stationary dynamic process thatmaydependon estimated hemodynamic
response functions specifically designed for spontaneous neural activity.

The first contribution of our analysis is indeed the estimation of the hemodynamic
response function, and consequently, of the potential explanatory variables for the
signal of RfMRI data. In the case of resting state experiments, the challenge lies
in the specification of an impulse response function that accounts for spontaneous
neural activity in the absence of controlled stimulus for each ROI. Considering a
general regression model with Gaussian stationary autocorrelated errors, Wu et al.
in [29] designed a strategy for HRF reconstruction based on the identification of
spontaneous activations as extreme values from a Gaussian distribution. As pointed
out in [28], the problem of detecting spontaneous activations has much in common
with outlier detection. Our idea is then to identify spontaneous activations as outliers
of a Normal distribution or as extreme values of a heavy tailed distribution. Specifi-
cally, we assume a Student-t distribution for the noise term and identify spontaneous
activations as extreme values of residuals obtained from a robust procedure for sig-
nal extraction, as in [18]. Modeling the data under the assumption of a heavy tail
distribution for the noise affecting the BOLD signal is the second contribution of the
paper.

We shall estimate and compare the HRF obtained from the twomethods and illus-
trate the results on two patients and four ROIs. Spatial dependence will be explored
through the investigation of a proper similarity index for binary data. In particular,
we compute and plot the similarity matrices related to the estimated spontaneous
events across ROIs. Thanks to this approach, we are able to detect and study groups
of ROIs with the highest similarity.

The paper is organised as follows. Section 2 describes the methods used for
identifying the spontaneous activations and estimating the HRF. Section 3 illustrates
the results of the analysis obtained in four specific ROIs of two patients. Section 4
concludes the paper with some directions for further research.

1.1 Dataset Description

The multimodal imaging dataset that we are considering comes from a pilot study of
the Enhanced Nathan Kline Institute-Rockland Sample project. This project aims at
providing a large cross-sectional sample of publicly shared multimodal neuroimag-
ing data and psychological information to support and motivate researchers in the
relevant scientific goal of understanding the mechanisms underlying the complex
brain system. A detailed description of the project, scopes, and technical aspects
can be found at http://fcon_1000.projects.nitrc.org/indi/enhanced/. The pilot NKI1

http://fcon_1000.projects.nitrc.org/indi/enhanced/
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study comprises multimodal imaging data and subject-specific covariates for n = 24
subjects. Detailed information can be found at http://fcon_1000.projects.nitrc.org/
indi/CoRR/html/nki_1.html. An appealing aspect of this pilot study, compared to the
whole dataset, is that for a wide set of subjects scan-rescan imaging data are avail-
able, thereby allowing validation and inference also on subject-specific variability in
brain functions and structures.

For each subject several information are collected, both personal covariates (i.e.,
anxiety diagnosis, age, gender, handedness) and BOLD signals, which are recorded
for all 70 ROIs according to Desikan atlas. For such V = 70 regions we have addi-
tional information on 3-D spatial locations, hemisphere and lobe membership. One
region, in the left and right hemisphere, is marked as unknown, and typical analyses
consider only the 68 regions characterizing the Desikan atlas.

We have the following datasets:

(1) Structural networks, 70 × 70 × 24 × 2, comprising the 70 × 70 structural
connectivity networks collected for the 24 subjects in each of the 2 scan-rescan
imaging sessions.
Focusing on subject i and on scan k, where i = 1, . . . , 24 and k = 1, 2, we have
a 70 × 70 symmetric adjacency matrix measuring the total number of white
matter fibers connecting each pair of brain regions.

(2) Dynamic functional activity, 70 × 404 × 24 × 2, comprising the 70 × 404
multivariate time-series data collected for each subject in each of the 2 scan-
rescan imaging sessions.
This imaging technology monitors brain functional activity at different regions
via dynamic changes in blood flow creating a low frequency BOLD signal when
the subject is not performing an explicit task during the imaging session. In the
present NKI1 study, the subjects are simply asked to stay awake with eyes open.
Focusing on subject i and on scan k, where i = 1, . . . , 24 and k = 1, 2, we have
70 × 404 matrix whose rows contain the dynamic activity data of the brain
regions, collected at T = 404 equally spaced times (time lag is 1400 ms).

(3) Functional networks, 70 × 70 × 24 × 2, measuring synchronization in activ-
ity for each pair of brain regions (obtained through Pearson correlation of the
previous dataset fixing the ROI, the subject and the scan).

Our major interest lays on the investigation of differences among subjects, based
on the dynamic functional activity of their brains, so we focus on the second dataset.

Moreover,we haveROI-specific information.Not having voxel-specific data leads
to small data, which means that we expect not to have computational issues and
thereforewe shall not need to apply dimension reduction techniques such as principal
component analysis (PCA) or independent component analysis (ICA).

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
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2 Modelling fMRI Data

The most common approach for analysing fMRI data is based on General Linear
Models (GLM), where the observed fMRI is taken as the response variable, while
the BOLD signal is modelled through a set of explanatory variables, usually taken
as the HRF and its temporal and dispersion derivatives. The latter are the partial
derivatives with respect to the two parameters that characterise the canonical HRF
distribution: the time to peak and the width of the HRF at half the height (Chap. 14
in [20]). On one hand, the estimate of temporal derivatives allows us to capture small
changes in the latency of the response, on the other hand, the estimate of dispersion
derivatives allows us to capture differences in the duration of the peak response.

A stationary Gaussian process with non-spherical covariance matrix is assumed
for the noise term. This approach is usually named general linear model and it has
been studied in literature at individual level [26]. A common choice for the HRF is
the double-gamma function, which can be derived through a deconvolution process
between a stimulus function and theBOLDsignal. The choice of the stimulus function
is straightforward when task based experiments are considered (e.g. a step function),
but it is not trivial in case of RfMRI.

The main contribution of this paper consists in the estimate of RfMRI hemody-
namic response functions at the ROI level, with two different methodologies: on one
hand,we take advantage of the blind deconvolution technique proposed in [29]; on the
other hand, we consider a more general method, based on robust filtering, developed
in [18]. We then compare the performance of the two methods in terms of sponta-
neous activation detection and analyse the estimated parameters that characterize the
HRF.

Both methods are based on a signal plus noise decomposition,

yt = μt + εt

where yt , t = 1, 2, . . . , T , is the observed fMRI data (in fMRI, the term functional
refers to time series data), μt is the unobserved BOLD signal and εt is a noise term.

In the framework of general linear modelling, where the blind deconvolution
technique is developed [29], the signal is explained by a set of (estimated, see Sect.
2.2) HRF and the noise is a first order Gaussian autoregressive process, i.e. μt = Xtβ

and εt = φεt−1 + ηt where ηt
i.i.d∼ N (0,σ2) and |φ| < 1.

The alternativemodelwe are considering here assumes that the noise is a Student-t
process, εt ∼ tν(0,σ2), while the signal follows a first order autoregressive model,
μt = Xtβ + φμt−1 + κut−1, where ut is a martingale difference sequence, i.e.,
E(ut |Ft−1) = 0, Ft−1 represents the information set up to time t − 1, and |φ| ≤ 1,
i.e., the model can account for non stationary components. This model belongs to
the class of score driven models, recently introduced in [9] and in [19].

These are nonlinear observation driven models where the dynamic parameters (μt

in our case) are updated by filters that are robust with respect to extreme values. The
robustness comes from the properties of the martingale difference sequence ut that
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drives the dynamics of the time varying parameter. The main feature of score driven
models is that ut is proportional to the score of the conditional (with respect toFt−1)
likelihood of μt . When the data come from a heavy tail distribution, the score ut is
less sensitive to extreme values than the score of a Gaussian distribution or than the
innovation error vt = Xt − μt . We shall further discuss the robustness properties of
the model in Sect. 2.2.

The static parameters, ν,φ,κ,σ in our case, are consistently estimated by maxi-
mum likelihood and asymptotic standard errors can be derived [18, 19]. An important
property of the proposed specification is that it encompasses the Gaussian case, in
that the score of the Student-t converges to that of the Gaussian distribution when the
degrees of freedom tend to infinity. In practice, if a score driven model is estimated
when the underlying dataset is in fact Gaussian, a very high value for the degrees of
freedom is estimated and a Gaussian model is eventually fitted.

2.1 The BOLD Signal

The BOLD signal arises from the interplay of blood flow, blood volume, and blood
oxygenation in response to changes in neural activity. Under an active state, the local
concentration of oxygenated hemoglobin increases, with a corresponding increase in
the homogeneity of magnetic susceptibility, which, in turn, results in an increase of
MRI signal. The BOLD signal does not increase instantaneously and does not return
to baseline immediately after the stimulus ends. Because these changes in blood flow
are relatively slow (evolving over several seconds), the BOLD signal is a blurred and
delayed representation of the original neural signal. The HRF can be described as
the ideal, noiseless response to an infinitesimally brief stimulus. Five characteristics
determine the HRF: time from the stimulus until peak (TP, or time-to-peak), height
of response (H), the width of the HRF at half the height (FWHM), poststimulus
undershoot (PSU) and initial dip (ID), see Fig. 1 reproduced from [25]. Importantly,
there is substantial variability in each of these features of the HRF across brain areas
and across individuals. For example, in [21], the time until peak varied between 6
and 11 seconds across voxels in a single subject. In [17], a study of the HRF shape
revealed that both the time until peak and width of the HRF varied within subjects
across different regions of the brain and across subjects, with intersubject variability
higher than intrasubject variability. D’Esposito et al. in [10] reviewed a number of
studies that compared the BOLD signal in healthy young and old subjects and found,
while the shape of the HRF was similar between the groups, elderly had reduced
signal-to-noise ratios in the response magnitudes.

The HRF is not observed, i.e., it is not recorded by medical instruments, but
it has to be estimated from the observed fMRI series based on some underlying
assumptions on its behaviour in time. To this aim, a widely recognized technique
in neuroscience is the convolution between a controlled temporal stimulus and an
unobservable hemodynamic response, depending on an unknown static parameter.
Additively combined with a zero mean noise, the convolution results in an explana-
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Fig. 1 Example of a hemodynamic response function (HRF). The abscissa reports the time, in sec-
onds, ranging from 0 (occurrence of the stimulus) to 15 s (following the post-stimulus undershooot,
when the level returns to the baseline); the ordinates report the value of hemodynamic response
function across time on a standardised scale from 0 to 1. The main characteristics of HRF are
highlighted: time from the stimulus until peak (TP), height of response (H), the width of the HRF
at half the height (FWHM), poststimulus undershoot (PSU) and initial dip (ID)

tory variable for the observed data, which reflects that neural response and the BOLD
signal exhibit linear time invariant (LTI) properties. By applying deconvolutionmod-
els, Friston et al. in [15] and Lange and Zeger in [22] found out that in general HRF
could be described by a gamma function. However, this function is not able to cap-
ture the poststimulus undershoot which characterizes the HRF, so later on Friston
et al. in [14] and Glover in [16] proposed a combination of two gamma functions,
known as double-gamma, for describing the HRF. All these studies are related to task
based fMRI, when a deconvolution procedure according to the explicit task design is
possible. Methods for estimating the HRF and the role of the HRF in case of RfMRI
are far less explored in literature.

A first attempt to estimate the HRF in RfMRI through a blind-deconvolution
technique is described in [29]. The latter is illustrated in the next section along with
our alternative strategy.

2.2 HRF Estimation

In task based experiments, HRF estimation is based on the convolution of some basis
function, xBF , with an activation function which accounts for the stimulus, st , that
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is usually represented by a step function or by a series of delta functions, according
to the experimental design (e.g., finger-tapping, hot-cold exposure).

In resting state analysis, where no external stimuli are recorded, spontaneous
activations, commonly referred to as spontaneous low-frequency fluctuations, as
in [12] or spontaneous neural state, as in [29], should be estimated, hence the reference
to ŝt . In the current analysis, ŝt will be a binary time series of zeros and ones with one
corresponding to activation and zero to rest. The key idea behind the identification
of the time series of spontaneous events is that it can be expressed as a sequence of
delta functions that are activated in correspondence of extreme values of a Gaussian
or Student-t distribution. The idea is motivated by the fact that time series extreme
values can be seen as spontaneous neural activations of the brain.

Once the spontaneous events are detected, and this is the central focus of this
work, the estimated HRF is obtained by the estimation procedure shown in [29], for
the two models illustrated in the introduction of Sect. 2.

The overall HRF estimation strategy can be summarised as follows:

(i) estimate the spontaneous activations ŝt ;
(ii) find a preliminary estimate of the design matrix Xt as the convolution of ŝt with

a suitable basis function (a canonical double gamma function, in this case) xBF ,
as follows,

Xt = ŝt ⊗ xBF =
∫ +∞

−∞
ŝt · xBF (t − τ ) dτ ;

(iii) plug the preliminary estimate of Xt as the matrix containing the explanatory
variables in the Gaussian or Student-t model, in order to obtain an estimate of
the coefficients β̂;

(iv) obtain the HRF estimate as ĥt = xBF β̂.

We now discuss the procedure under the Gaussian linear model and the Student-t
non linear model described in the introduction of Sect. 2.

Under the Gaussian model in the formulation proposed in [29], spontaneous acti-
vations are estimated by standardising the original data and marking as outliers those
points that exceed a certain cut-off, fixed at 1.65σ̂, i.e., the 10% of extreme values
of each series are considered as spontaneous activations. The preliminary estimate
of the design matrix Xt is then obtained by the convolution of ŝt with an HRF basis,
chosen as a classical double gammawith its first derivative and dispersion derivative.
Then, an estimate of β is obtained (along with that of φ) by the Cochrane-Orcutt
procedure. Finally, ĥt = xBF β̂. Figures 10 and 11 will report examples of estimated
HRF on the case study considered in the paper. Note that ĥt , the estimated HRF is
not μ̂t , the estimated signal μ̂t = X̂t β̂ though some circularity affects procedure of
BOLD estimation in [29]. The aim, here, is mainly to estimate the HRF rather than
the BOLD signal.

Under the Student-t model in the formulation proposed in [18], described in
the introduction of Sect. 2, spontaneous activations are estimated by considering as
extreme values those values of vt = yt − μ̂t which exceed the threshold max{κ̂ut }
if κ̂ > 1 or max{ut } if κ̂ < 1 where, under the assumptions of the model, vt , the
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one-step-ahead prediction error, has a Student-t distribution while ut , the martingale
different sequence proportional to the score of the Student-t that drives the dynamics
of the BOLD signal, has a thin tailed distribution. The selection of the threshold
is motivated as follows. In practice, ut itself is a thresholded version of vt , where
extremes are cut off by construction, as ut = vt/(1 + v2t /(νσ2)). The parameter κ
further regulates the thresholding of vt , and thus the robustness of μ̂t . A natural
choice for the threshold then relates to the case when κ̂ > 1 versus the case when
κ̂ ≤ 1. We choose to take as extremes those values of vt which exceed ut by keeping
the estimated κ̂ut when κ̂ > 1 and ut otherwise. The opposite choice would lead
to a larger number of outlying observations, i.e., of spontaneous activations. The
preliminary estimate of the design matrix Xt is obtained, as in the Gaussian case, by
the convolution of ŝt with the HRF basis formed by the double gamma with its first
derivative and dispersion derivative. An estimate of β is obtained (along with that
of all the static parameters of the model) by maximum likelihood in the case when
explanatory variables are included in the model, see [18] Sect. 7. Finally, ĥt = xBF β̂,
see Figs. 10 and 11. The estimated HRF ĥt may then be considered as an explanatory
variable for the filtered signal,μt = ĥtγ + φμt−1 + κut−1. As before, focus here was
primarily on HRF estimation, but we aim at further pursuing this analysis in future
research.

3 Illustrative Examples

We focus on patients 18 and 22 and on ROI 64, 51, 63, 59, for reasons explained
below.

Patient 18 is 46 years old, right-handed and healthy while 22 is 42 years old,
right-handed and has a diagnosis of depression with a clinical history of alcohol,
cannabis and cocaine abuse. Our aim consists in investigating and comparing brain
connections in these two subjects.

According to Fox et al. [13], some brain regions have positive correlations, while
other brain regions show negative correlations. In particular, there is a positive corre-
lation among frontal eye field (FEF), intraparietal (IPS) and middle temporal region
(MT), while there is a negative correlation among medial prefrontal cortex (MPF),
posterior cingulate precuneus (PCC) and lateral parietal cortex (LP). In our dataset,
we do not have the same atlas representation of the brain, so we have to find the
correspondence between our atlas and the one used in [13]. After this procedure, we
analyze the following brain regions:

• Positive correlation: ROI 64 (rh-frontal superior, for FEF) and ROI 51 (rh-middle
temporal, for MT);

• Negative correlation: ROI 63 (rh-rostral middle frontal, for MPF) and ROI 59
(rh-posterior cingulate, for PCC).

In our dataset, the lateral parietal cortex cannot be distinguished from the intraparietal
sulcus and this is the reasonwhywe focus only on the correlation between two regions
of interest.
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Fig. 2 Observed RfMRI series at all ROI for subjects 18 and 22

The 70 observed fMRI series for patients 18 and 22, first scan, are represented
in Fig. 2. One can immediately notice the difference of range and amplitude of the
fluctuations between the two series, being the variability of fMRI of patient 22 larger
than that of patient 18.

We proceed to compare the estimated ŝt with both methods. Spontaneous events
detected in the time series of ROI 64, 51, 63 and 59 for patient 18 are reported in
Fig. 3, those detected in the time series of the same ROI for patient 22 are reported
in Fig. 4. We remark here that the number of spontaneous activations detected under
the hypothesis of a Student-t model for patient 22 drastically drops down if the first
extreme observation is removed from the series, compare Figs. 4 and 5. Neverthe-
less, we illustrate the results of the analysis on the original series including the first
observation. The method based on the assumption of a Student-t distribution for
the noise is expected to select a smaller number of spontaneous activations than the
method based on the Gaussian assumption. However, several series analysed in the
dataset turned out to be Gaussian, in which case the two methods give, as expected,
similar results.

Despite of the fact that similar peaks are detected (ROI 63 in Fig. 3), we would
like to understand whether there are correlations among activations of different brain
regions andwhether the twomethods used for detecting peaks lead to different results.
In order to further investigate this idea, we need a concept of distance/similarity for
binary vectors. Indeed, standard correlation indices, such as Pearson’s correlation
index, are not suitable for this case. There are several similarity indices for binary
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Fig. 3 Detected spontaneous activations for patient 18 inROI 64,51,63 and 59.Green stars represent
spontaneous activations estimated with robust method, while red dots correspond to the general
linear model

vectors in literature, such as Jaccard, Dice, Kulczyńskia and Driver and Kroeber (a
review is presented in [8]). In this case study, we focus on Dice’s similarity index
[11] with expression:

2n11
2n11 + n10 + n01

.

Given ŝt related to two different ROIs, n11 is the total number of activations that
occurred at the same time in the two ROIs, while n10 and n01 are activations that
occurred in one ROI and not in the other. Dice index ranges from 0 to 1. The results
for patient 18 are reported in Fig. 6 while those of patient 22 are reported in Fig. 7.
In both figures, we notice that computing the Dice index after the application of the
robust method leads to a clearer correlation pattern with respect to computing it after
the application of the classical method based on linear model.

Moreover, the highest value of Dice index recorded for patient 18 according to
the robust method allows us to detect the following clusters, that are summarized in
Fig. 8:
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Fig. 4 Detected spontaneous activations for patient 22 inROI 64,51,63 and 59.Green stars represent
spontaneous activations estimated with robust method, while red dots correspond to the general
linear model

• lh-unknown, lh-entorhinal, lh-parahippocampal, lh-transversetemporal (ROIs: 1,
7, 17, 35);

• lh-caudalmiddlefrontal, lh-inferiorparietal, rh-inferiorparietal, rh-postcentral, rh-
supramarginal (ROIs: 4, 9, 44, 58, 67);

• lh-rostralmiddlefrontal, lh-superiorfrontal, rh-superiorfrontal (ROIs: 28, 29, 64);
• lh-lateralorbitofrontal, rh-bankssts, rh-corpuscallosum, rh-lateralorbitofrontal, rh-
medialorbitofrontal (ROIs: 13, 37, 40, 48, 50);

• lh-inferiortemporal, rh-inferiortemporal, rh-middletemporal, rh-precentral (ROIs:
10, 45, 51, 60);

• rh-unknown, rh-entorhinal (ROIs: 36, 42).

Note that ‘lh’ and ‘rh’ stand respectively for the left and right hemispheres. It is
interesting to notice that symmetrical ROIs belong to the same groups, such as infe-
riorparietal, second group, superiorfrontal, third group, lateralorbitofrontal, fourth
group and inferiortemporal, fifth group. Moreover, this detection is graphically con-
firmed by the recorded BOLD, indeed BOLD signals from ROIs of the same group
show similar trend (Fig. 8). On the other hand, the highest value of Dice simil-
iarity index with the standard approach is 0.55, between lh-lateralorbitofrontal and
rh-superiorfrontal.
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Fig. 5 Detected spontaneous activations for patient 22without the first observation in ROI 64,51,63
and 59. Green stars represent spontaneous activations estimated with robust method, while red dots
correspond to the general linear model
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Fig. 6 Similarity matrix based on Dice distance for patient 18, classical methods (left) robust
method (right)

The same analysis can be done on patient 22. For this specific patient, a high peak
is recorded in the first time frames as discussed in Sect. 3. If we consider the whole
time series, the maximum value of Dice index is recorded for only one group of time
series. This group is composed by those RfMRI measures with only one peak at the
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Fig. 7 Similarity matrix based on Dice distance for patient 22, classical methods (left) robust
method (right)

0 100 200 300 400

-6
-2

2
6

time

BO
LD

1 7 17 35

ROIs: 1, 7, 17, 35

0 100 200 300 400

-1
0

0
5

10

time

BO
LD

4 9 44 58 67

ROIs: 4, 9, 44, 58, 67

0 100 200 300 400

-1
0

0
5

10

time

BO
LD

28 29 64

ROIs: 28, 29, 64

0 100 200 300 400

-1
0

0
5

10

time

BO
LD

13 37 40 48 50

ROIs: 13, 37, 40, 48, 50

0 100 200 300 400

-6
-2

2
6

time

BO
LD

10 45 51 60

ROIs: 10, 45, 51, 60

0 100 200 300 400

-4
0

2
4

time

BO
LD

36 42

ROIs: 36, 42

Fig. 8 BOLD measured in groups with the highest Dice’s index for patient 18

beginning. The obtained result is not as informative as the one achieved by detecting
peaks on the reduced time series (time series without the first time frames). Focusing
on the reduced time series, the highest value of Dice index according to the robust
method allows us to detect the following clusters, that are summarized in Fig. 9:
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Fig. 9 BOLD measured in groups with the highest Dice’s index for patient 22

• lh-caudalmiddlefrontal, lh-precentral (ROIs: 4, 25);
• lh-corpuscallosum, lh-lateralorbitofrontal (ROIs: 5, 13);
• lh-medialorbitofrontal, rh-parsorbitalis (ROIs: 15, 55);
• rh-parahippocampal, rh-temporalpole (ROIs: 52, 69);
• rh-fusiform, rh-superiorfrontal (ROIs: 43, 64);
• lh-bankssts, lh-inferiorparietal, lh-inferiortemporal, lh-parsopercularis,
lh-posteriorcingulate, lh-supramarginal, rh-lateraloccipital,
rh-medialorbitofrontal, rh-middletemporal, rh-parsopercularis,
rh-posteriorcingulate, rh-precuneus, rh-rostralmiddlefrontal, rh-supramarginal
(ROIs: 2, 9, 10, 19, 24, 32, 47, 50, 51, 54, 59, 61, 63, 67).

The detected pattern is difficult to interpret and requires further investigation.
To conclude, we report in Fig. 10 the estimated HRF in ROIs 64, 51, 63 and 59 for

patient 18 and in Fig. 11 the corresponding estimates for patient 22. It is immediate
to see that the time-to-peak is similar among all the considered regions, while both
the height and the FWHM may be quite different.
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Fig. 10 Estimated HRF with both methods for patient 18 in ROI 64, 51, 63 and 59
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Fig. 11 Estimated HRF with both methods for patient 22 in ROI 64, 51, 63 and 59
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Fig. 12 Estimated height parameter across ROIs for patient 18 with the classical (left) and robust
method (right). This plot shows the estimated height parameter in xy-section of the brain that is
obtained by projecting all ROIs centroids in a horizontal plane
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Fig. 13 Estimated FWHM parameter across ROIs for patient 18 with the classical (left) and robust
method (right). This plot shows the estimated FWHM parameter in xy-section of the brain that is
obtained by projecting all ROIs centroids in a horizontal plane

In order to have a clearer picture of these differences we plotted the estimated
values of these parameters across the regions of interest. The estimated HRF height
of patient 18 in a xy-section of brain (horizontal plane of brain) is reported in Fig. 12.
The estimatedHRFFWHMof patient 18 in a xy-section of brain is reported in Fig. 13.
The corresponding pictures for patient 22 are in Figs. 14 and 15. A pattern of height
distribution across ROIs seems to be identifiable, but it is still under investigation.
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Fig. 14 Estimated height parameter across ROIs for patient 22 with the classical (left) and robust
method (right). This plot shows the estimated height parameter in xy-section of the brain that is
obtained by projecting all ROIs centroids in a horizontal plane
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Fig. 15 Estimated FWHM parameter across ROIs for patient 22 with robust method and a more
restrictive cut-off. This plot shows the estimated FWHM parameter in xy-section of the brain that
is obtained by projecting all ROIs centroids in a horizontal plane

4 Concluding Remarks and Further Developments

The paper was concerned with the problem of detecting spontaneous activations in
resting state fMRI time series and of estimating the hemodynamic response function.
Two methods have been considered, one based on a classical, Gaussian, assumption
for the data generating process of fMRI data and another based on the assumption
that the data may be generated by an heavy tailed distribution. The assumption of
a heavy tailed distribution for RfMRI series is supported by the fact that several of
the series in the dataset that we have used for our empirical illustrations have shown
evidence of extreme values, confirmed by high kurtosis, indicating a violation of the
Gaussian assumption. The cut-off threshold used for identifying an observation as
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an extreme one, i.e. for detecting a spontaneous event, was rather restrictive, so that
fewer spontaneous activations are detected than in the Gaussian case. Methods for
determining an optimal threshold may be the object of future investigation.

Future works aim at taking into account the spatial correlation of the data, e.g., by
considering a locally anisotropic stationary spatialmodel, as in theworkofCastruccio
et al. [6], or by considering spatio-temporal score-driven models, as in [4, 7].
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of Resting State fMRI Data
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Abstract In recent years, state of the art brain imaging techniques like Func-
tional Magnetic Resonance Imaging (fMRI), have raised new challenges to the
statistical community, which is asked to provide new frameworks for modeling
and data analysis. Here, motivated by resting state fMRI data, which can be
seen as a collection of spatially dependent functional observations among brain
regions, we propose a parsimonious but flexible representation of their dependence
structure leveraging a Bayesian time-dependent latent factor model. Adopting an
assumption of separability of the covariance structure in space and time, we are
able to substantially reduce the computational cost and, at the same time, pro-
vide interpretable results. Theoretical properties of the model along with identi-
fiability conditions are discussed. For model fitting, we propose a mcmc algo-
rithm to enable posterior inference. We illustrate our work through an appli-
cation to a dataset coming from the enkirs project, discussing the estimated
covariance structure and also performing model selection along with network
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analysis. Our modeling is preliminary but offers ideas for developing fully Bayesian
fMRI models, incorporating a plausible space and time dependence structure.

Keywords Bayesian factor analysis · Gaussian processes
Low-rank factorizations · Separable models

1 Introduction

Functional magnetic resonance imaging (fMRI) is an imaging technique which
allows the study of human brain activities without being invasive. Such a technique
provides a high resolution 3d image reconstruction of a human brain, starting from
the blood-oxygen-level dependent (bold) signal. The bold value is the difference in
magnetization between oxygenated and deoxygenated blood, arising from changes
in regional cerebral blood flow. In particular, the data at our disposal consist of a col-
lection of bold signals obtained from a resting state functional magnetic resonance
imaging (rs- fMRI) session. This means that the subjects were not performing any
explicit task during the scan. Refer, for instance, to [1–4] for detailed discussions on
rs- fMRI data, statistical techniques commonly employed, andmedical implications.

From a modeling perspective, what emerges from a rs- fMRI scan is a collec-
tion of spatially dependent functional observations. This kind of data collection has
encouraged the development of suitable statistical techniques, and indeed, several
novel spatio-temporal and dynamicmodels have been proposed (e.g., [5–10]).Within
the Bayesian framework, comprehensive reviews of the main statistical methodolo-
gies employed for fMRI data are given in [11, 12].

Since we are proposing a preliminary specification here, we focus on the model of
one subject at time, i.e., of a single brain, which is usually referred to as single-subject
analysis. Although such an approach does not account for borrowing of information
across subjects, it simplifies the modeling process and the related estimation proce-
dures. An early reference to single-subject analysis is given by [13], who propose
a general linear model to learn about the blood activity of a single brain. Several
contributions appeared afterwards in the context of single-subject modeling and we
mention here just a few. For example, the authors of [7] specify a Gaussian random
field to capture the spatial correlation, while in [5] the spatial dependence is induced
through a hierarchical specification of the parameters.

One of the main goals in the analysis of rs- fMRI data is to study the com-
plex covariance structure between brain regions [3, 14]. In this paper, we propose a
Bayesian factor model for fMRI data which is based on the structural assumption of
separability. This means that, with regard to the dependence in brain activity across
regions, we assume that the covariance structure can be split into two multiplicative
components: the spatial and the temporal one. Mainly motivated by the high com-
putational cost that would arise by using a non-separable specification, separability
has been employed in several fMRI applications (e.g. [6, 7, 15]). The model pre-
sented in this paper benefits from this simplifying assumption, which, in addition,
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provides interpretable inferential results. This allows the assessment of functional
connectivity across brain regions.

The paper is organized as follows. In Sect. 2, we introduce the rs- fMRI dataset at
our disposal andwe conduct some explorative analysis. In Sect. 3,we specify a single-
subject Bayesian factor model for the blood functional activity, which accounts also
for temporal dependence. In Sect. 4 we present aMarkov ChainMonte Carlo (mcmc)
for fitting the proposed model. In Sect. 5, we discuss the performance of our model
and we present some empirical results. Concluding remarks are given in Sect. 6.

2 The rs- fMRI Dataset

Our dataset comes from the pilot study of the Enhanced Nathan Kline Institute-
Rockland Sample project (enkirs), which aims at providing a publicly avail-
able large sample of multimodal neuroimaging data. Comprehensive informa-
tion about the project can be found at the link http://fcon_1000.projects.nitrc.org/
indi/CoRR/html/nki_1.html. From the original multimodal imaging dataset, we
retained the bold values of two different subjects, which were randomly chosen
among the patients. The bold values refer to the L = 68 brain regions of the Desikan
atlas parcellation [16], equally divided into the left and right hemispheres, discarding
the two regions labeled as unknown.

Each measurement is a functional observation composed of T = 403 equally
spaced bold values, with a lag of approximately 1400ms, meaning that our dataset
comprises two matrices of size L × T , for individuals i = 1, 2. From the original
dataset, two bold values were discarded since they were missing. The bold func-
tional activities, displayed inFig. 1, are obtained from the rawrs- fMRI scans through

http://www.webcitation.org/6ASACEUxB)
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of the 68 brain regions, for subjects i = 1, 2. Values from 1–34 refer to the left hemisphere, whereas
the remaining 35–68 refer to the right hemisphere

an automated pipeline called c- pac, whose details can be found at https://fcp-indi.
github.io.

As shown in Fig. 1, the set of regional bold functional activities can be regarded
as multiple realizations of continuous functions. That is, bold, though continu-
ous in time at each region, is evaluated on a finite grid of time t = 1, . . . , T ,
while brain regions are specified discretely, being obtained from the Desikan
parcellation [16]. There is a considerable statistical literature in spatio-temporalmod-
eling in continuous space and time (see e.g., [17]), particularly in the Bayesian setting
[18]. However, data over continuous time and discrete space is rather uncommon in
spatio-temporal applications, as pointed out in [19]. In particular, our data should not
be modeled, at least in principle, through classical multivariate time series models,
since the bold activities are continuous in time. Refer for instance to (Chap. 1, [20])
about the use of continuous models for functional observations. Moreover, our data
cannot be modeled via standard functional data analysis techniques because some
sort of dependence across brain regions is expected. There is need for general mod-
eling methodology for the analysis of this type of rs- fMRI data. We aim to partially
fill this gap by introducing a simple spatio-temporal model in the continuous-time
and discrete-space framework. Then, we apply it to the rs- fMRI data.

As already mentioned, one of the main goals in the analysis of rs- fMRI data is to
study the functional connectivity, e.g. dependence, between brain regions [3, 14]. A
simple approach consists in computing the Pearson correlation coefficients between
bold functional activities, treating the bold values as if they were independent
over time [2]. The correlation coefficients for subjects i = 1, 2 are shown in Fig. 2.
We argue that this strategy, although useful in an explorative phase, could lead to
misleading inferential results, for instance revealing fictitious relationships which
are due to temporal dependence. In fact, bold functional activities are characterized
by a non-negligible amount of autocorrelation, as evidenced in Fig. 3, suggesting that
Pearson coefficients should be, at the very least, interpreted with care. Nonetheless,
correlation matrices like those in Fig. 2 provide an interpretable picture of the bold

https://fcp-indi.github.io
https://fcp-indi.github.io
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functional connectivity. Additionally, dichotomized versions of these correlations
are often at the basis of network analyses for functional connectivity [21, 22]. We
aim to preserve this simple structure by seeking a model that naturally leads to an
alternative estimate of such a correlation structure, but also takes into account the
temporal component.

Some additional difficulties arise when trying to model the spatial component of
our rs- fMRI dataset. In particular, areally referenced temporal processes typically
rely on some notion of distance, or neighborhood, between different regions, whose
definition crucially impacts the results of the analysis. However, given the natural
complexity of the brain morphometry, unavoidable questions about the choice of
such a distance can be raised [23]. Although there is some evidence that connectivity
among brain regions rapidly decays as a function of the Euclidean distance [23, 24],
this is often a crude approximation. For instance, as shown in Fig. 2, high levels
of connectivity characterize symmetric pairs of brain regions, which are far apart
in terms of Euclidean distance. In order to avoid potential misspecification issues,
we do not rely on any notion of physical distance between brain regions. Thus,
the spatial structure of the bold functional activities is reconstructed entirely from
the data, without imposing the brain morphometry. This is not to say that there is no
potential information in terms of proximity of regions. If a suitablemeasure reflecting
the foregoing caveats were developed, it would provide valuable information and it
could improve estimation performance.
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3 Modeling and Theory

3.1 Low-Rank Multivariate Processes

Consistent with the discussion in Sect. 2, we propose a hierarchical model for rs-
fMRI data which (i) accounts for both the spatial and temporal aspects, specifying
Gaussian processes for time, and latent factor models for the spatial dimension; (ii)
allows a simple interpretation of the functional connectivity among brain regions in
terms of a suitable covariance matrix; (iii) avoids misspecification issues by placing
few assumptions on the spatial structure. Again, we focus on single-subject models,
which means that the two different individuals i = 1, 2 are treated separately and
independently, having in common only the model structure. For the sake of notation,
we omit the subject index i = 1, 2 and we describe a model for a generic brain. We
also note that, with a single subject, we cannot build a regression explanation of
response since we cannot include individual level covariate information.

We aim to describe the joint behavior of realizations from a L-dimensional
stochastic process, i.e., the collection of the bold functional activities. Formally,
we will denote the L-dimensional stochastic process as B(t), whose entries are the
bold functional activities Bl(t), for l = 1, . . . , L . We assume a customary additive
error structure, that is

B(t) = Z(t) + ε(t), (1)

where ε(t) is a L-dimensional pure error, and Z(t) is a L-dimensional process,
which we refer to as the mean process. Specifically, ε(t) is a Gaussian white noise
process with variance σ2, whose entries are independent Gaussian random vari-
ables over time and brain regions.1 Notice that no intercept term is included in
specification (1), since, as shown in Fig. 1, the dataset is centered around zero during
the c- pac pipeline.

The overarching goal of our contribution is to infer functional connectivities
among brain regions [3]. Therefore, consistent with the available literature and with
the descriptive analysis in Sect. 2, the components of the L-dimensional process Z(t)
should not be modeled as independent realizations. Moreover, the high dimension-
ality of our data calls for parsimonious representations, which can be obtained for
instance via low-rank approximations. As a notable example, covariance regression
models [25, 26] address similar issues and assume that the mean process Z(t) can
be decomposed as follow:

Z(t) = A(t)V (t), (2)

where A(t) is a L × K time varying factor loading matrix, and V (t) is a K -
dimensional vector whose entries are independent Gaussian processes—called latent
factors in this context. The dimensionality reduction is performed by fixing some

1Richermodelingmight allow heterogeneity in variances, e.g., across regions but we do not consider
that here.
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K � L , e.g. K = 3 or K = 5. The covariance regression model of [26] is a flexible
model for multidimensional stochastic processes, having large support and a familiar
interpretation in terms of Bayesian factor models, for any fixed time. Moreover, with
discrete time, the covariance regression model could be formally related to the class
of dynamic latent factor models (Chap.10 [27]).

3.2 A Time-Dependent Latent Factor Model

We simplify (2) and we set A(t) = A, that is, the matrix A is now constant over time
and

Z(t) = AV (t). (3)

Hence, A is a L × K factor loading matrix. Although such an assumption reduces
the global flexibility of the covariance regression model in Eq. (2), it allows the
factor loading matrix A to be interpreted as a simple measure of dependence, e.g.,
connectivity, among brain regions, a key feature of our analysis.

In Sect. 5 we provide some empirical support for the factorization (3) as a rea-
sonable assumption for modeling rs- fMRI data while in Sect. 6 we discuss possible
extension to the non-stationary case.Additionally, decomposition (3) formally relates
our model to the class of latent factor models, which have been used as a dimension
reduction tool for instance in genomic applications [28, 29]. Thus, our model can
be regarded as a time-dependent extension of a Bayesian factor model, in which the
latent factors V (t) are independent random functions of time rather than independent
draws.

Gaussian processes [30] are a flexible class of stochastic processes to provide
random realizations within the space of functions over a specified domain. There-
fore, they are a suitable candidate for modeling the time-dependent latent factors
V (t). We suppose that the components of V (t) are independent and identically dis-
tributed Gaussian processes GP

(
0,κρ(t, t ′)

)
, with zero mean and correlation func-

tion ρ(t, t ′). As we will discuss in Sect. 3.3, for identifiability purposes we assume
κ = 1. Independence among the Gaussian latent factors and the restricted factor-
ization (3) imply a multivariate Gaussian distribution for the mean process Z(t)
evaluated at a fixed time t0, that is

Z(t0) ∼ NL (0,Σ A) , for any fixed t0, (4)

withΣ A = AAT, which does not depend on time. The role of A is now clearer since
it can be viewed as the square root of the covariance matrix Σ A. We remark that
Σ A is singular, being of rank K � L . In turn, this implies that Z(t0) for any fixed t0
would be a degenerate multivariate Gaussian, lying in a subspace of dimension K .
Factorization (3) effectively induces dependence among the components of the mean
process, e.g. among brain regions, but implicitly enforces some form of stationarity,
since the spatial dependence structure is constant over time. Such an assumption is
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discussed in depth for instance in [31], who suggest that it might be worth looking
at non-stationary models to obtain a more complete picture of the phenomenon.
However, as argued by [31] themselves, stationarity is also convenient in order to
prevent the model from becoming vastly more complex. The stationary temporal
dependence of our model can be appreciated by observing the covariance matrix
between Z(t) and Z(t ′), that is, the so-called cross-covariance matrix

Cov
(
Z(t), Z(t ′)

) = ρ(t, t ′)Σ A, t �= t ′, (5)

whose limit as |t − t ′| → 0 is Σ A = AAT, consistently with Eq. (4). Moreover, for
t �= t ′ we have Cov

(
B(t), B(t ′)

) = Cov
(
Z(t), Z(t ′)

)
. Thus, the cross-covariance

in (5) has an appealing interpretation: dependence between bold values is multi-
plicatively adjusted according to temporal proximity.

In practice, we observe the bold functional activities only over a finite grid of
times t = 1, . . . , T ; we denote with Z the L × T matrix containing the values of
Z(t) over this time grid. Also, let B be a L × T observed data matrix having entries
Bl(t), for t = 1, . . . , T . We can re-express the model of Eqs. (1), (3) and (4) in terms
of matrix Gaussian distributions [32], evaluated over the finite time grid:

(B | Z,σ2) ∼ NL ,T (Z,σ2 IL×L , IT×T ), (6)

(Z | A) ∼ NL ,T (0,Σ A,ΣT ), (7)

where ΣT denotes the Gram-matrix obtained by evaluating the covariance functions
ρ(t, t ′) over the finite grid t = 1, . . . , T . Notice that the stationarity assumption
translates into a separability assumption in the finite-dimensional setting, since we
have

(vec(Z) | A) ∼ N(0,Σ), Σ = ΣT ⊗ Σ A. (8)

This convenient separability result is well described in the spatial literature on multi-
variate spatial processes: see for instance [18]. FactorizationΣ = ΣT ⊗ Σ A has rel-
evant benefits: it provides a parsimonious representation of the covariance matrix Σ

and it facilitates numerical computations. Notice that under the separability assump-
tion themarginal distribution of the rows ofZ is a multivariate Gaussian with covari-
ancematrixΣT and, symmetrically, the columns ofZ follow amultivariateGaussian
with covariance Σ A. In other words, the dependence structure over time does not
depend on the brain regions, and vice versa.

3.3 Identifiability

Without further restrictions, the model described in Eqs. (6) and (7) is not identified.
There are two sources of non-identifiability which can be handled by imposing some
constraints on the parameters. Notice that A appears in Eq. (7) only in terms of
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product with its transpose. This means, for instance, that for any orthogonal matrix
Q such that QQT = IK×K we get

AAT = AQQTAT = Ã Ã
T
,

where Ã = AQ. Thus, it is not possible to discriminate between amodelwith param-
eter A and another with parameter Ã, since they lead to exactly the same likelihood.
Thus, we let A to be lower triangular with positive diagonal, as commonly done in
coregionalization models in spatial statistics [18]. To avoid confusions: since A is a
L × K rectangular matrix, by lower triangular with positive diagonal we mean that
the elements alk of A are such that alk = 0 for k > l and akk > 0 for k = 1, . . . , K .
Thanks to the Cholesky decomposition for positive semi-definite matrices, under
these assumptions the matrix A is a Cholesky factor, which uniquely identifies
Σ A = AAT.

The second source of non-identifiability concerns the scale of the covariance
matrices in Eq. (7). For any positive constant c ∈ R

+ we have that

Σ A ⊗ ΣT = (cΣ A) ⊗
(
1

c
ΣT

)
= Σ̃ A ⊗ Σ̃T ,

which leads again to non-identifiability. To overcome this difficulty, we set the trace
Tr(ΣT ) equal to some constant, which can be easily obtained by letting the scaling
parameter of the covariance function κ to be equal to one. Under these constraints,
the model is fully identified. As an alternative, one could impose the first, or the last,
diagonal entry to be equal to one.

3.4 Prior Specification

We conduct inference within the Bayesian framework and therefore we need to
specify prior distributions for both A and σ2. In the latter case, we choose an inverse
gamma prior for the residual variance, that is

σ−2 ∼ Ga(aσ, bσ), (9)

with aσ, bσ > 0 some fixed hyperparameters. In the former case, we can equivalently
deal with the coefficients in A or with the covariance matrix Σ A, since they are in
a one-to-one correspondence. We formulate the prior distribution in terms of the
coefficients in A: we let its elements alk , for l = 1, . . . , L and k = 1, . . . , K , to be
independently distributed as follow
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alk
iid∼ N (0, γ2), l = 1, . . . , L , k = 1, . . . , K , k < l,

a2kk
ind∼ γ2χ2

K−k+1, k = 1, . . . , K ,

alk = 0, otherwise,

(10)

for some variance hyperparameter γ2 > 0. By employing specification (10), we auto-
matically deal with the identifiability constraints of Sect. 3.3.

4 Posterior Inference

Posterior inference cannot be conducted in closed form.Weneed to turn to simulation-
based fitting techniques to obtain samples from the posterior distribution. Generally,
we would prefer to work with a marginal specification in order to reduce the dimen-
sionality of the problem as much as possible before doing any computation. The
normal-normal conjugacy enables marginalization of Eq. (6) over Z , leading to the
following Gaussian model, no longer having a factorized specification

(vec(B) | A,σ2) ∼ N(0,C), (11)

where n = L × T , and C = ΣT ⊗ Σ A + σ2 In×n . The covariance matrix in Eq. (11)
is diagonally dominant and thus invertible, allowing to ignore singularity issues that
would arise when considering Σ = ΣT ⊗ Σ A alone. In Appendix A we describe a
simple Metropolis-Hastings (m-h) model fitting algorithm with multivariate Gaus-
sian random walk which is based on the marginal specification (11) and is sufficient
to guarantee a satisfying mixing. For this purpose, it is convenient to parametrize
the residual variance σ2 on the logarithmic scale, i.e., τ = logσ2. Computational
details concerning them-h sampler are provided in Sect. 4.1, where we describe how
to exploit the separability assumption for fast computations.

Suppose we are able to draw posterior samples for A and τ , for instance by using
the m-h in Algorithm 1 (in Appendix). Then, predicting the new bold values at a
new time and brain region, conditionally on the data, is relatively simple and can
be obtained by means of the so-called kriging equations (e.g., [18]), Chap. 2. We
remark that kriging the bold values is not of direct interest in the analysis of rs-
fMRI data. However, as we will discuss in Sect. 5, this procedure is useful to conduct
model assessment in terms of out-of-sample prediction performance. Let B0 be the
L0 × T0 matrix of unobserved bold values over a new grid of time values with length
T0 for some subset of L0 brain regions from the original L regions. We are interested
in finding the predictive distribution

p(B0 | B) =
∫

p(B0 | B,θ)p(θ | B)dθ, (12)
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where we have defined θ = (vec(A), τ ). The conditional distribution p(vec(B0) |
B,θ) is available in closed form, being a multivariate Gaussian distribution

(vec(B0) | B,θ) ∼ N
(
μ0,Σ0

)
,

μ0 = C̃
T
0C

−1vec(B),

Σ0 = C0 − C̃
T
0C

−1C̃0,

(13)

whereC is the covariancematrix of vec(B) given the parameters,C0 is the covariance
matrix of vec(B0), and finally C̃0 represent the cross-covariance matrix between
vec(B) and vec(B0). Thus, draws from the predictive distribution in (12) can be
obtained by composition sampling, by first drawing posterior values for A and τ and
then by sampling from the multivariate Gaussian distribution in (13).

4.1 Computational Difficulties

Some useful matrix identities can be exploited to reduce the computational burden
both for the m-h algorithm and for Eq. (13). We start by inspecting the log-posterior
distribution of the marginal model (11) which is equal, up to an additive constant, to
the following quantity

L (A, τ ;B) = −1

2
log |C| − 1

2
vec(B)TC−1vec(B) + log p(A) + log p(τ ), (14)

where p(A) and p(τ ) denote the probability density functions of the priors for A
and τ = logσ2, respectively. During the mcmc chain the log-posterior is evaluated
several times and therefore it is crucial to maintain computations as fast as possible.
A potential computational bottleneck is represented by the inverse of the matrix
C = ΣT ⊗ Σ A + σ2 In×n , which in our case is a n × n matrix, with n = T × L . In
the separable case, thanks to the properties of the Kronecker product, this issue can
be attenuated by exploiting the following decomposition of the inverse of C , being
equal to

C−1 = (UT ⊗ UA)(ΛT ⊗ ΛA + σ2 In×n)
−1(UT ⊗ UA)

T, (15)

where ΣT = UTΛTUT
T and Σ A = UAΛAUT

A are the spectral decompositions of
the matrices. Detailed calculations leading to (15) are given in Appendix A. The
above spectral decompositions are relatively cheap in our context. Notice also that
the decomposition of ΣT has to be computed only once, since it does not depend on
unknown parameters in our formulation. More importantly, the matrix (ΛT ⊗ ΛA +
σ2 In×n)

−1 is diagonal, and can be, therefore, inverted directly.
Decomposition (15) allows easy evaluation of the log-determinant of C , which is

given as a simple function of the previously obtained eigenmatrices ΛT and ΛA,
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log |C| = log |ΛT ⊗ ΛA + σ2 In×n| =
n∑

i=1

log
(
λi + σ2

)
,

where λi is the i-th entry of the diagonal matrix ΛT ⊗ ΛA, for i = 1, . . . , n. Notice
that, as long as K � L , the covariance matrixΣ A is not full rank, meaning that some
of the eigenvalues λi are exactly equal to zero.

Leveraging the decomposition (15) and using some simple properties of the Kro-
necker product, we can express the quadratic form vec(B)TC−1vec(B) in (14) as
follows:

vec(B)TC−1vec(B) = vec
(
UT

ABUT
)T

(ΛT ⊗ ΛA + σ2 In×n)
−1vec

(
UT

ABUT
)
.

This drastically reduces the computational burden, since it avoids storage in memory
of very large n × n matrices. With similar reasoning, the kriging Eq. (13) can also be
obtained quite cheaply, adopting fast algorithms for products between matrix involv-
ing Kronecker products, implemented for instance in the klin
R package [33]. The code used in the paper is made available at the link https://
github.com/tommasorigon/StartUpResearch.

5 Data Analysis

5.1 Model Checking

Wenow apply the spatio-temporal model presented in Sect. 3 to the rs- fMRI dataset.
However, before proceedingwith the interpretation of the results, it is crucial to check
the adequacy of the fit to the data to assess the plausibility of the proposed model
(Chap. 6, [34]). We measure the goodness of fit of our model by means of out-of-
sample predictions, dic indices, and by direct graphical inspection.

In performing Bayesian inference, we employ the priors described in Sect. 3.4,
which require the specification of some tuning parameters. The hyperparameter γ2

controls the prior variability of the coefficients in A. By choosing γ2 = 100 we
incorporate vague prior information into the model. Following a similar rationale,
we let the parameters of the residual variance σ2 to be equal to aσ = bσ = 1, which
induces a fairly noninformative prior for the residual variance.

As discussed in Sect. 3, the temporal component is controlled by theGaussian pro-
cesses in V (t), which in turn are characterized by their correlation function ρ(t, t ′).
Depending on the choice of such a function, the latent processes V (t) could behave
quite differently. An extreme example consists in setting ρ(t, t ′) = 1(t = t ′), with
1(·) denoting the indicator function, which would imply that the processes V (t) are
independent over time, and themodel in Eqs. (6) and (7) reduces to a simple Bayesian
factor model. Instead, by letting ρ(t, t ′) = exp {−ψ|t − t ′|}, with ψ = 3 × 10−2,
we introduce temporal dependence favoring stationary and quite regular paths for

https://github.com/tommasorigon/StartUpResearch
https://github.com/tommasorigon/StartUpResearch


Hierarchical Spatio-temporal Modeling of Resting State fMRI Data 123

Table 1 For different values of K = 1, 3, 5, and for subjects i = 1, 2, the dic index, the total
number of parameters and the out-of-sample root mean squared error (rmse) are reported. For each
individual, it is also shown the out-of-sample rmse of a random forest model. For both the subjects,
the bold values represent the best model according to each index; in both cases, the lower the better

K dic Total # of
parameters

rmse

Subject 1 1 65988.81 69 3.63

3 60204.04 202 3.34

5 54800.08 331 3.17
Random forest − − 3.21

Subject 2 1 48108.30 69 2.26

3 35941.24 202 2.06

5 31555.90 331 2.00
Random forest − − 2.24

the latent processes V (t). In fact, such a correlation function implicitly induces
a continuous-time first order autoregressive process for each element of V (t), with
autocorrelation coefficient equal to exp {−3 × 10−2} ≈ 0.97,which favors fairly reg-
ular latent trajectories.

Finally, the number of latent processes K has to be carefully selected, since
its choice critically impacts the computational performance. Indeed, the number of
parameters grows linearly as a function of K and therefore overly complex mod-
els become harder to fit using the m-h algorithm. More sophisticated and efficient
approaches might mitigate this issue, and a brief discussion is given in Sect. 6. We
set K = 5 mainly because of these practical considerations, but we provide below
some empirical evidence which offers some reassurance that a model based on such
a choice is sufficiently flexible to capture the brain connectivity structure of our data.

To assess whether our model leads to reasonable inferential conclusions and to
discriminate between competing models, we conduct some posterior checks, obtain-
ing measures of out-of-sample accuracy as well as the dic indices [35]. The original
dataset is split in two parts: the first one is used for estimation and it comprises
the 75% of randomly selected columns of B, i.e., different time instants, selected at
random, while the remaining 25% is used as a test set to compute for instance the
out-of-sample root mean squared error (rmse).

In Table1 we compare our model with alternatives involving a smaller number
of latent processes, e.g., with K = 1, or K = 3, showing that for both the subjects
we obtain improved accuracy and lower dic indices with K = 5. The out-of-sample
predictions are obtained by means of the kriging Eq. (13), after plugging in the
map estimate. Formally, this is incorrect and may lead to the underestimation of
the predictive uncertainty. More correctly, we should take the average of the kriged
estimates over posterior realizations of the parameters. However, the latter procedure
turns out to be computationally too expensive, so we adopt the aforementioned plug-
in alternative. Posterior samples for all the competingmodels andboth the subjects are
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Fig. 4 Scatter plots of the bold values for subjects i = 1, 2, over the time grid t = 1, . . . , 403,
for 6 selected brain regions. Three of these regions are located in the left hemisphere
(lh-lateraloccipital, lh-lateralorbitalfronal, lh-lingual), while the
others are their symmetric correspondent of the right hemisphere (rh-lateraloccipital,
rh-lateralorbitalfronal, rh-lingual). The solid lines represent the predicted values
obtained by means of the kriging Eq. (13), after plugging-in the map estimate
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obtained using the m-h algorithm, which rely on a Gaussian random walk proposal,
each with its own covariance matrix. These matrices, one for each competing model
in Table1, have been carefully tuned essentially by trial and error, to ensure good
mixing and quick convergence of each mcmc chain. For each mcmc chain we retain
250,000 thinned samples from a chain of 5,000,000 iterations, after a burn-in period
of about 100,000 draws. The trace plots show no evidence against convergence and
a decent mixing.

As shown in Table1, we further compare our model with a benchmark method
for regression, random forests [36], in which the bold response values are fitted
as a function of time and brain regions. Although the latter method is specifically
designed to provide accurate predictions of response values, our proposal seems to
have better out-of-sample performance.

Finally, in Fig. 4 we graphically explore the predictive performance of our model
by comparing the original bold values with their predictions. For illustrative reasons
wedisplayedonly fewbrain regions, butwe remark that the other cases present similar
patterns. The graphs of Fig. 4 further corroborate the reasonableness of our proposal,
which is able to capture the main trends and the differences in variability of the bold
values among brain regions.

We remark that, in order to reduce the computational burden, the dic indices
of Table1 and the results in Sect. 5.2 are also based on this 75% partition of the
observations, which we believe well-represents the whole dataset.

5.2 Network Analysis

In neurological applications it is common practice to explore functional connectivity
networks exploiting graph theoretical approaches. As summarized in [21], the typical
pipeline of the analysis of structural and functional brain networks consists of the
following steps: the identification of the brain regions of interests, the estimation of
a continuous measure of association between regions, the application of a threshold
to generate a binary adjacency matrix, and the computation of network indices on
the obtained undirected graph. In our case, the regions of interests are those obtained
from the Desikan parcellation [16], whereas a continuous measure of association can
be obtained from the covariance matrix Σ A, appropriately standardized. Following
[22], we define a L × L binary adjacency matrix G as the truncation of a correlation
matrix, that is

[G]ll ′ = 1 ([Cor (Σ A)]ll ′ > threshold) , for l �= l ′, (16)

and [G]ll = 0 for l = 1, . . . , L and l ′ = 1, . . . , L , where threshold is a constant
between 0 and 1, and Cor (Σ A) denotes the correlation matrix obtained by
standardizingΣ A. The covariancematrix has a direct interpretation, but the precision
matrix, i.e., its inverse, might be considered as well. The choice of the threshold is
crucial in determining G but, unfortunately, there are no general guidelines. Indeed,
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Fig. 5 Posterior distributions (violin plots) of the transitivity indices and the average path lengths,
for subjects i = 1, 2, evaluated on a graph G with threshold = 0.8

for any value of the threshold, we could obtain a graph having different sparsity and
network properties. To mitigate this issue, we explored a range of plausible thresh-
olds [21] and we noticed that in our setting the inferential conclusions are insensitive
to moderate variations of the threshold.

Given the threshold, the adjacency matrix G is a random quantity whose posterior
distribution can be easily approximated using the output of the mcmc. In particular,
it is possible to quantify the uncertainty of any network characteristic one could be
possibly interested in. Among several alternatives, a relevant network index is the so
called clustering coefficient, also known as transitivity in the statistical literature, or
fraction of transitive triples, which is a measure of global cohesion of the graph G.
Another index which provides a measure of global connectivity of a given graph is
the average path length, defined as the average minimal distance between two brain
regions.

We expect these indicators to be negatively correlated in our application: broadly
speaking, a high number of transitive triples suggests that two brain regions require
a low number of step to be connected. We refer to [37] for the formal definition
of these indices and their theoretical properties. In Fig. 5 we reported the posterior
distributions of thesemeasures for both of the subjects.We see substantial differences.
In particular, subject 2 presents amuch higher functional activity compared to subject
1, in terms of both indices. Understanding the qualitative reasons for such a marked
distinction between the two subjects is beyond the aim of this paper. Nonetheless,
we remark that our proposal was able to capture the differential traits of the two
brains, thus providing a tool for detecting differences in functional connectivity and
for quantifying the related uncertainty.
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6 Discussion

In this paper we proposed a spatio-temporal Bayesian factor model for the analysis
of rs- fMRI data. Both for interpretational and computational reasons, we employed
a separable structure. We discussed how to obtain posterior inference using a m-h
algorithm, providing also some technical details that could speed up computations.
Finally, we applied ourmodel to a real rs- fMRI dataset andwe provided an example.

Although the model we described is designed for a single-subject analysis, it
could be extended to the multi-subject case adding a further layer in the hierarchical
specification of Sect. 3. One possibility is to borrow information across individuals
assuming exchangeable prior distributions for the subject-specific covariance matri-
ces Σ

(i)
A . In particular, if we let (Σ (i)

A | V ) ∼ InverseWishart(K , V ) independently
and identically distributed, we could then induce dependence across subjects by
placing a hyperprior distribution for V , which in turn could be interpreted as the
baseline covariance structure, common to all the individuals. Additionally, in the
multi-subject setting it might be possible to explore the effect of individual covari-
ates on functional connectivity, which we did not attempt, having considered only
two subjects.

Another possible extension, already mentioned in Sect. 3.2, could be the imple-
mentation of a dynamic model. This would take us to a non separable model by
specifying a factor loading matrix A(t) that also evolves in time. This issue is exam-
ined in depth, in a different applied context, by [25, 26]. To capture the evolution
of A(t), avoiding, at the same time, naive approaches with poor performances, they
use independent Gaussian processes with unit variance as a set of basis functions.
Thus, the factor loading matrix A(t)would itself be a time-varying random function,
implying that Σ A(t) = A(t)Aᵀ(t), for any fixed t . As a consequence, the evalua-
tion of the adjacency matrix in Eq. (16) for each correlation matrix would generate
a dynamic network.

Generalizing our model beyond separability can be done in several other ways.
For instance, one could assume that the latent Gaussian processes in V (t) are inde-
pendent but not identically distributed, and characterized by different correlation
functions ρk(t, t ′). This would imply a more sophisticated and non stationary covari-
ance structure for the mean process Z(t). Both the above settings are arguably more
realistic [31], but unfortunately they do not lead to the simple interpretation which
follows from our separable model.

Besides the difficulties in interpretation that could arise from the above general-
izations, the main challenge is on the computational side. The algorithm for posterior
inference we described in Sect. 4 can be improved in several different directions. For
instance, the default prior setting and the parameter expansion strategy of [38] could
be adapted to our framework to provide better mixing. In multi-subject scenarios, or
whenever the number of brain regions is massive, and therefore mcmc computations
are prohibitive, one could attempt deterministic model fitting approximations like
variational Bayes. In the context of fMRI data this approach was developed by [9],
and it could possibly be adapted to our model.
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7 Computational Details

In this appendix we describe a simple Metropolis-Hastings for posterior inference.
The algorithm is summarized in Algorithm 1. Additionally, we derive the identity in
Eq. (15). Because of orthogonality, we have thatUTUT

T = IT×T and UAUT
A = IL×L

and recall also that the matrices ΛT and ΛA are diagonal, containing the eigenvalues
of ΣT and Σ A, respectively. Exploiting the spectral decompositions of ΣT and Σ A

and the basic properties of the Kronecker product, we get

C = (UTΛTUT
T ) ⊗ (UAΛAUT

A) + σ2 In×n

= (UT ⊗ UA)(ΛT ⊗ ΛA)(UT ⊗ UA)
T + σ2 In×n .

Then, we can write the identity matrix In×n = (UTUT
T ) ⊗ (UAUT

A) = (UT ⊗ UA)

(UT ⊗ UA)
T. Rearranging the above equation, we get

Algorithm 1: Metropolis-Hastings algorithm for posterior inference

begin
Let the matrix ΣMetropolis be a tuning parameter and let the superscript (r) denote the
value of the corresponding parameter at the r -th step of the mcmc chain.
for r from 1 to R do

Step [1]. Sample a proposed value θ∗ = (vec(A∗), τ∗) from a multivariate Gaussian

θ∗ ∼ N
(
θ(r),ΣMetropolis

)
,

having care that the upper triangular values of A∗ should be equal to zero. This can
be accomplished either by ignoring them in the mcmc step, or forcing the
corresponding elements of the ΣMetropolis matrix to have zero variance. Step [2]. Set
the acceptance probability α equal to

α = min
{
1, exp

{
L (A∗, τ∗;B) − L (A(r), τ (r);B)

}}
,

where L (A, τ ;B) denotes the log-posterior distribution (14), up to an additive
constant.

Step [3]. With probability α, accept the proposed value θ∗ and set

A(r+1) ← A∗ and τ (r+1) ← τ∗.

http://www.webcitation.org/6ASACEUxB)
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C = (UT ⊗ UA)(ΛT ⊗ ΛA + σ2 In×n)(UT ⊗ UA)
T,

from which decomposition of C−1 in Eq. (15) follows directly.
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Challenges in the Analysis
of Neuroscience Data

Michele Guindani and Marina Vannucci

Abstract In the last two decades, our understanding of the mechanisms
underlying the functioning and disruption of the human brain has advanced con-
siderably. The previous chapters of the book have provided a compelling argument
for demonstrating the advantages of thoughtful, non-naive, statistical approaches for
analyzing brain imaging data. Here, we provide a review of the main themes high-
lighted in those chapters, andwe further discuss some of the challenges that statistical
imaging is currently confronted with. In particular, we emphasize the importance of
developing analytical frameworks that allow to characterize the heterogeneity typ-
ically observed in brain imaging both within- and between- subjects, by capturing
the main sources of variability in the data. More specifically, we focus on clustering
methods that identify groups of subjects characterized by similar patterns of brain
responses to a task; on dynamic temporal models that characterize the heterogeneity
in individual functional connectivity networks; and on multimodal imaging analysis
and imaging genetics that combine information from multiple data sources in order
to achieve a better understanding of brain processes.

Keywords Brain imaging data · fMRI data · Clustering
Dynamic functional connectivity · Multimodal analysis · Imaging genetics

1 Introduction

In the last two decades, our understanding of the mechanisms underlying the func-
tioning and disruption of the human brain has advanced considerably. The develop-
ment of a number of innovative technologies has spurred unparalleled enthusiasm
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for research in the Neurosciences. Major breakthroughs have escaped the bounds of
academic labs, and have been often widely publicized by the media. For example,
in February 2014, a special issue of the National Geographic magazine enthusias-
tically hailed the new technologies that are “shedding light on biology’s greatest
unsolved mystery: how the brain really works”. In the future, these technologies are
expected to have a profound impact on the type of clinical treatments administered
by physicians. On September 21st 2013, the British journal The Guardian dedicated
an article to the new landscape of psychiatry, where the use of widely employed
anti-depressant drugs has been called into question in favor of alternative treatments
directly targeting the functioning of specific neural circuits. By studying how brain
areas interact differently in healthy and depressed patients, the hope is to decode the
determinants of complex human emotion and behavior.

Statistical methods play a crucial role in the quest for a better understanding of
brain mechanisms, and their disruption in the face of disease. As an illustration, in
the analysis of many types of brain imaging data, it is customary to employ statis-
tical parametric maps, e.g., localized maps of p-values or posterior probabilities, to
inform on the significance and spatiotemporal organization of the observed signal
across distinct brain regions [1]. Those images provide a synthetic representation of
significant areas of the brain, which may be targeted for further research and, also, to
improve clinical diagnosis or intervention. However, early approaches based on naive
t-tests or ANOVA statistics have shown limitations, especially due to their inability
to take into account the complexity and specific characteristics of the data. Thus, the
need for fairly sophisticated statistical techniques has emerged, e.g. to address the
typically weak signal, high dimensionality and complex spatio-temporal correlation
structure of the data.

The previous chapters of the book have provided a compelling argument for
demonstrating the advantages of thoughtful, non-naive, statistical approaches for an-
alyzing brain imaging data. Here, we provide a review of themain themes highlighted
in those chapters, and we further discuss some of the challenges that statistical imag-
ing is currently confronted with. More specifically, in Sect. 2 we provide a summary
review of the main inferential objectives associated with structural and functional
brain imaging modalities, and discuss general modeling strategies that have been
developed to achieve such inferences. In Sect. 3, we discuss the importance of devel-
oping analytical frameworks that allow to characterize the heterogeneity typically
observed in brain imaging both within- and between- subjects. In Sect. 4, we exam-
ine clustering approaches, that allow to identify groups of subjects characterized by
similar patterns of brain responses to a task. In Sect. 5, we discuss dynamic temporal
models to capture the heterogeneity of functional connectivity network states expe-
rienced by subjects in the course of an experiment. In Sect. 6, we present recent
modeling trends, which aim at combining information from multiple data sources
in order to achieve a better understanding of brain processes: multimodal imaging
analysis and imaging genetics are examples of those developments. In Sect. 7, we
provide some concluding remarks.
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2 Statistical Analysis of Brain Imaging Data

We start our discussion by noting that the statisticalmethods employed in the analysis
of brain imaging data necessarily depend on the specific type of technology employed
and need to be necessarily informedby the expert knowledge of neuroscientists. Brain
imaging technologies can be roughly separated into three categories: structural,
functional and molecular imaging technologies. Each technology aims at capturing
different characteristics of brain mechanisms, and therefore requires specifically
tailored methods.

2.1 Structural Imaging

Structural brain imaging aims at providing a description of the anatomical structure of
the brain. As an illustration, computed axial tomography (CT) uses X-rays to quickly
identify different levels of density and tissues inside a solid organ, and can be used to
obtain clinical evidence of trauma, e.g., a stroke. MRI scans use powerful magnetic
fields and radio frequency pulses to create high-resolution images, and thus they are
able to depict the brain anatomy in greater detail. Signal change and cerebral atrophy
visible on structural MRI can be used to identify diagnostically relevant imaging
features to help the clinical diagnosis of neurodegenerative dementias.

Diffusion tensor imaging (DTI) is a popular MRI-based technique which allows
to identify fiber tracts connecting brain regions by estimating the diffusion of the
water molecules along their main direction. More specifically, the three-dimensional
diffusion of water is mapped and characterized as a function of spatial location. The
diffusion tensor describes themagnitude, the degree of anisotropy, and the orientation
of diffusion anisotropy, that is how the water molecules differently move in the
directions parallel to the fiber tracts rather than in the two orthogonal dimensions.
Many different measures of diffusion anisotropy have been proposed to visualize
and quantify the properties of the diffusion tensor [2]. The most commonly used
parameters are fractional anisotropy (FA), a measure of the orientation of diffusion,
and (rotationally indifferent) mean diffusivity (MD). DTI has been suggested as an
indirectmarker for white-matter integrity. For example, in epilepsy, the epileptogenic
hippocampus demonstrates increased MD and decreased FA [3].

The two chapters by Crispino et al. and Cabassi et al. in this volume (pp. 1 and
37) provide interesting modeling approaches for the analysis of DTI data. Cabassi et
al. argue that the quality of diffusion-weighted images could be affected by several
types of artifacts, due to the low signal-to-noise ratio and the relatively long scan
time required by the DTI tractography [4]. In particular, those artifacts may cause
underestimation of diffusion coefficients and bias anisotropy measures. To address
such issues, Cabassi et al. propose a hierarchical Bayesian model to estimate the
effective unknown number of white matter fibers connecting each pair of brain re-
gions. More precisely, they assume a discrete measurement error model, where each
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observed white matter fiber count is assumed to be Binomially sampled from the
true unknown population of white matter fibers, which is assigned a latent Poisson
prior. The model leverages available information both at the subject and the brain re-
gion scale. These results provide some evidence that the fiber-counts may be indeed
severely underestimated.

The chapter by Crispino et al. provides an exploratory analysis of how struc-
tural connectivity may inform patterns of activation captured by functional imaging
techniques among regions of interest (ROIs). This is an issue which we will discuss
again in Sect. 6.2 later on in this chapter. In their latent space model for the DTI
data, Crispino et al. consider the structural imaging data as an observed network of
connections between ROIs and model the probability of observing an edge in the
network (i.e., the probability that at least one white matter fiber connects two ROIs)
as a function of how close/far the regions are. They conclude that the inferred latent
space of the DTI is highly correlated with the physical one represented by ROIs
locations, although the two may not completely overlap.

Also Durante and Dunson [5] have recently developed a statistical model to infer
expected network structures fromDTI data, which takes into account that fiber track-
ing pipelines are subject to measurements error. More specifically, they consider a
latent variable framework, where the probability mass function of the network is
characterized using a mixture of low-rank factorizations. Within each mixture com-
ponent, connections among pairs of nodes are characterized as conditionally indepen-
dent Bernoulli random variables given component-specific edge probabilities, which
are further obtained as a function of node-specific latent variables. The model allows
for group dependence in the mixing probabilities, which can be used to conduct
global and local testing for differences in brain connectivity networks between two
groups of subjects. The study of undirected connections estimated from structural
imaging data will certainly be the objective of further investigations in the future.

2.2 Functional Imaging

Functional brain imaging involves the study of brain functioning, both in terms of
its specialization (i.e., which parts of the brain respond to a given task) as well as its
integration (i.e., how different brain regions interact with each other). Perhaps the
two most popular functional brain imaging techniques are electroencephalography
(EEG) and functional MRI (fMRI). EEG data record the electrical activity of the
brain from the scalp. They are characterized by high temporal resolution. However,
they present low spatial resolution, due to the configuration of the electrodes on the
scalp. Due to the early influence of signal processing, statistical methods for EEG
data often involve spectral time series representations of the temporal signal. With
respect to EEG data, fMRI data are characterized by higher spatial resolution but
lower temporal resolution. fMRI data provide an indirect measure of brain activity,
since they record the metabolic activity in the brain, as represented by differences
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in local blood flow (blood-oxygen level-dependent, BOLD, signal). It is beyond the
scope of this chapter to provide further details about the physiology of fMRI signals,
for which we refer to Poldrack et al. [6]. We only mention that, due to their high
spatial resolution, fMRI data have been typically employed to identify changes in
brain activity across different brain regions, and also over time, although their ability
to identify brain events over very short time periods may be somewhat limited.

The analysis of fMRI data Statistical methods for fMRI data vary widely according
to the experiment design (e.g., task-based or resting-state experiment) and the objec-
tives of the study. In a task-based experiment, for example, the whole brain is scanned
atmultiple timeswhile a subject performs a series of tasks. Therefore, a typical objec-
tive is to detect which brain regions get activated by the external stimuli (activation
detection). Statistical methods for this analysis typically include linear and nonlinear
models, as well as mixture models, for both single- and multiple-subject studies.

The chapter by Gasperoni and Luati in this volume (p. 91) highlights the impor-
tance of taking into proper account the physiology of the different neuroimaging
experiments in the statistical analysis of fMRI data. The hemodynamic response
function (HRF) models the vascular response to neuronal activity, which contributes
to the observed fMRI signal. Since the estimation of neural activity is a major interest
of fMRI studies, the interpretation of fMRI findings may be severely impaired if the
hemodynamic response were not accurately taken into account in the analysis [7, 8].
The HRF varies considerably over different brain regions and across subjects. Most
fMRI studies have primarily focused on estimating the amplitude of evoked HRFs
in task-based experiments. However, the influence of the hemodynamic response
has been shown also in resting state experiments, to characterize the BOLD signal
in response to spontaneous neuronal activity. For example, Rangaprakash et al. in
[9] have shown that the variability of the HRF across the brain may alter functional
connectivity estimates obtained from resting-state fMRI. In their chapter, Gasperoni
and Luati extend a multi-step blind-deconvolution approach, first presented in [10],
to estimate the HRF from spontaneous brain activity. In particular, they robustify the
procedure by assuming a Student-t distribution for the noise affecting the BOLD sig-
nal and then they identify spontaneous activations as extreme values of the residuals
obtained from a robust procedure for signal extraction. They discuss how the method
based on the assumption of a Student-t distribution for the noise should select a
smaller number of spontaneous activations then the method based on the Gaussian
assumption. This is certainly an area of continuous interest in the fMRI literature, as
it affects the validity of any subsequent inferences.

Brain connectivity Another important task in fMRI studies, which has received
increased attention in recent years, is to infer brain connectivity. In general terms,
connectivity looks at how brain regions interact with each other and how information
is transmitted between them, with the aim of uncovering the actual mechanisms of
how our brain functions. In particular, it is customary to distinguish between func-
tional (undirected) and effective (directed) connectivity, as first defined by [11]. In
the study of functional connectivity, the goal is to identify multiple brain areas that
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exhibit similar temporal profiles, either task-related or at rest. On the other hand,
effective connectivity seeks to estimate the directed influence of one brain region on
another. In the classical literature, simple approaches to capture functional connec-
tivity are based on temporal correlations between regions of interest, or between a
“seed” region and other voxels throughout the brain. Alternative approaches include
clustering methods, to partition the brain into regions that exhibit similar temporal
characteristics, and multivariate methods for dimension reduction, such as Princi-
pal Components Analysis (PCA) [12] and Independent Components Analysis (ICA)
[13], which determine spatial patterns that account for most of the variability in the
time series data. Approaches that allow to estimate partial correlations between pre-
defined regions of interest (ROIs) have also been proposed, for example by using the
graphical Lasso (GLasso), which estimates a sparse precision matrix [14].

In the Bayesian literature, Bowman et al. (2009) in [15] employed a two-stage
modeling approach to capture short-range task-related (or between-group) connec-
tivity between voxels within a given anatomical region. The model assumes that
voxels within anatomically defined regions exhibit task-related activity that deviates
around an overall mean for that region. By appropriatemodeling of a flexible unstruc-
tured covariance matrix for regional mean parameters, the model allows to estimate
spatial correlations which are interpretable as task-related functional connections.
This modeling framework also allows to develop a measure of inter-regional (or
long-range) connectivity between two regions. Long-range connectivity is observed
whenever relatively distant pair of voxels exhibit high positive correlations, even
when compared to a more proximal pair of voxels. For example, Broca’s area and
Wernicke’s area are two noncontiguous anatomical regions that may exhibit long
range correlations, given their joint involvement in speech generation, processing
and understanding. More recently, Zhang et al. in [16] allow clustering of spatially
remote voxels that exhibit fMRI time series with similar characteristics, by imposing
a Dirichlet Process (DP, [17]) prior on the parameters of a long memory error term.
The induced clustering can be viewed as an aspect of functional connectivity, as it
naturally captures statistical dependencies among remote neurophysiological events.

Many of the chapters in this volumehave focused on estimating functional connec-
tivity. For example, the chapter by Caponera et al. in this volume (p. 111) proposes an
elegant Bayesian time-dependent latent factormodel, where the factor loadingmatrix
can be interpreted as a simple measure of connectivity. Their method can be seen as a
further contribution to the collection ofmultivariatemethods for dimension reduction
discussed above. A key assumption of their approach, which we will discuss further
on in this chapter, is stationarity, i.e., the spatial dependence structure is assumed
constant over time. Another interesting aspect of their work is the discussion of the
graph theoretical approach to explore functional connectivity networks, according
to the paradigm of analysis discussed in Bullmore and Sporns [18]. In neurological
applications it is common practice to report the brain network structure by threshold-
ing the estimated association measures (e.g., correlation matrices). The thresholding
generates binary adjacency matrices which can be used to compute network indices
to summarize the topological properties of the network. A vast number of graph
theory measures of network topology have been recently studied in various neuro-
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logical diseases. The majority of those features relate to various aspects of global
network integration or local segregation. A relevant subset of features identifies the
nodes that have a strong influence on the communication of the network, which are
known as centrality or hub measures. The simplest of those centrality measures is
degree centrality, which counts the number of edges connected to each node. Other
centrality measures capture more nuanced quantities, such as eigenvector centrality,
which identifies nodes that are connected to other highly central nodes, or between-
ness centrality, which captures the number of shortest paths that pass through a
node [19]. In addition, deviations from a small-world configuration have been con-
sistently found to characterize various types of brain diseases, including Alzheimer’s
disease, epilepsy, brain tumors, and traumatic brain injury [20]. Therefore, by inves-
tigating the inference on the graph theory measures of network topology induced by
a particular modeling approach, it is possible to achieve additional understanding
about the clinical implications of the estimated functional connectivity networks.

An alternative approach, which has been explored in a few chapters of this vol-
ume, regards the fMRI time-series as instances of functional data, to be consid-
ered in an object-oriented data analysis in non-Euclidean spaces. Instead of compar-
ing networks based on a set of connectivity measures summarizing the topological
properties of functional brain networks, the chapter by Cabassi et al. in this vol-
ume develops a procedure for testing group differences in the network structure
based on several types of non-Euclidean metrics. Also Ginestet et al. (2017) in [21]
have recently proposed to employ statistical inference on manifolds to develop one-
and two-sample tests for network data objects. Similarly, the chapter by Cappozzo
et al. in this volume (p. 57) considers a functional data analysis approach to define
a rescaled covariance operator for functional random processes, in the Riemaniann
manifold defined by positive semi-definite symmetric matrices. All contributions
show that global tests may result in more statistical power than when using a mass-
univariate approach, which is the standard approach in the field. On the other hand,
global tests may be limited as in practice the interest ofmany investigators is often fo-
cused on local discrepancies in the network structure. Methodologies, like the one in
[5], which allow for both global and local testing of differences in brain connectivity
networks, may perhaps be adapted to this object-oriented data analysis framework.

Differently than functional connectivity, which relates to undirected associations
between time series, effective connectivity refers to the influence that “one neural sys-
tem exerts over another” [22]. Effective connectivity refers to causal dependence, as
opposed to simple association. Therefore, commonly used approaches for capturing
effective connectivity include many of the methods typically employed to repre-
sent causal relationships: structural equation modeling (SEM, [23, 24]), dynamic
causal modeling (DCM, [25]) vector autoregressive (VAR) models [26], Granger
causality [27] and Bayesian networks [28]. It should be pointed out, however, that
even though such methods allow inference on directed connections between brain
regions, they do not necessarily imply physiological causality. Due to the nature of
fMRI experiments, the models can only be used to assess causality at the hemody-
namic level rather than the neuronal level. Brain scientists are typically more inter-
ested to make inference on neural activity. However, the connectivity estimated at
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the hemodynamic level can still yield interesting results. More appropriately, physio-
logical causality should be assessed through a carefully crafted experimental design
[29]. In particular, the often-used notion of Granger causality is based on the idea that
causes always precede effects. Therefore, past signal values from one brain region
can be used to predict current values in another region. Gorrostieta et al. in [30] have
developed a Bayesian hierarchical VAR model for investigating Granger causality
and effective connectivity in multiple subjects, accounting for the variability in the
connectivity structure within and between subjects. Yu et al. in [31] have further ex-
tended this framework, for simultaneously estimating brain activation and effective
connectivity in a study of how brain motor function is altered in patients who have
suffered a stroke, with respect to healthy subjects. With the hierarchical structure,
subject-specific estimates for activation and connectivity are obtained by pooling
information from other subjects. The approach allows to study local activation and
connectivity between brain regions, and to compare the inferred patterns for stroke
patients and healthy controls in order to explore the effects of stroke on brain motor
function.

In this section, we have provided a limited overview of the main goals typically
associated with functional imaging studies. We refer to [32] for a review of modeling
approaches to study functional and effective connectivity, causal modeling, connec-
tomics, and multivariate analyses of distributed patterns of brain responses. Bowman
in [33] provides a more extensive background on various types of neuroimaging data
and analysis objectives that are commonly targeted in brain imaging studies. Stephan
and Friston in [34] provide an extensive review of the conceptual andmethodological
basis of linear and nonlinear DCMs for characterizing effective connectivity using
fMRI data.

In the following sections, we discuss a few of the most recent interests and arising
challenges in the analysis of neuroimaging data.

3 Describing the Heterogeneity of Brain Mechanisms

One of the main objectives in the analysis of brain imaging data is to character-
ize the heterogeneity typically observed both within- and between- subjects, espe-
cially in subjects affected by behavioral and psychiatric disorders. An improved
understanding of the heterogeneity of brain mechanisms is considered key for en-
abling clinicians to deliver targeted, precision, medicine to individuals affected by
such disorders. Current medical practice often relies on symptom-based diagnostic
criteria. Despite the progress enabled by neuroimaging technologies in the under-
standing of the pathophysiology of the major psychiatric disorders, the diagnosis
or treatment of individual patients have not been yet significantly impacted by such
revolution [35]. On the other hand, traditional diagnostic criteria are increasingly
recognized as inappropriate to describe the variety of the disorders actually observed
in individuals, which are progressively seen as the result of the interplay of differ-
ent characteristics [36, 37]. In 2010, the United States National Institutes of Mental
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Health (NIMH) started the Research Domain Criteria (RDoC) project to develop
new ways for classifying mental disorders, on the basis of experimental research
criteria rather than traditional diagnostic categories. The RDoC assumes that further
insights and progress in the understanding and diagnosis of psychiatric disorders
will be achieved by integrating many levels of information (from genomics to neu-
roimaging and self-reports). This holistic approach will allow to investigate both the
normal and the disrupted dimensions of brain functioning and human behavior at
a deeper level than it has been currently achieved. The ultimate long-term goal of
the NIMH RDoC initiative is precision medicine. Data from genetics and clinical
neuroscience will eventually allow the identification of prognostic and predictive
biomarkers. That is, the goal is to develop an analytical framework that allows to
incorporate the specific genomic and neuroimaging characteristics of a subject into
a predictive decision-making paradigm, so that clinicians may optimize the choice
of individual treatments based on their expected predicted outcome [38, 39].

Statistics can provide innovative tools for a data-driven classification of subjects,
by combining the neuro-imaging data with the available genomic, behavioral and
clinical information on the subjects. Figure 1 illustrates the general scheme under-
lying the unified approach sought for better understanding the heterogeneity of the
brain disorders. Here, we will focus on a few approaches that can be used to capture
the main sources of variability in fMRI data, with respect to

(a) identifying clusters of subjects, characterized by similar patterns of brain re-
sponses to a task;

(b) characterizing the heterogeneity in the individual dynamics of functional con-
nectivity networks;

Fig. 1 Understanding the heterogeneity of the brain disorders based on neuro-imaging data and
other information on the subjects in a unified framework is key for attaining the goal of precision
medicine
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(c) relating the observed imaging patterns to additional available information on
the same subjects, including genetic covariates and other observable clinical or
behavioral outcomes.

4 Clustering Subject-Specific Imaging Patterns

In single-subject analysis, the clustering of fMRI time-series has emerged as a way
to classify the regions of the brain according to the temporal pattern of the BOLD
response. For example, the chapter by Bertarelli et al. in this volume (p. 75) proposes
k-means and functional clustering approaches to cluster fMRI time-series beyond
the traditional statistical methods which are typically used to evaluate the level of
activation of individual voxels. In the analysis of fMRI data, unsupervised clustering
methods have been used also in the context of Gaussian mixture models applied
to processed data (either “contrast” maps or simple z-statistic images), to capture
distinct clusters of activations, e.g., for pre-surgical assessment of peritumoral brain
activation [40, 41]. Alternatively, Zhang et al. (2014) in [16] provide a joint analytical
framework to detect regions of the brain which exhibit neuronal activity in response
to a stimulus and, simultaneously, infer the association, or clustering, of spatially
remote voxels that exhibit fMRI time series with similar characteristics.

In multi-subject analyses, clustering methods have been used to identify groups
of subjects that are characterized by similar patterns of brain activity. The chapter by
Cappozzo et al. in this volume proposes functional clustering of networks based on
the definition of a suitable distance between covariance operators, or alternatively on
a low dimensional representation of the correlation matrices. Woolrich et al. in [42]
and Xu et al. in [43] model the inter-subject variability in brain activity via (possibly
infinite) Gaussian mixture models that estimate the probability that an individual
has an activation at a particular location. Zhang et al. in [44] leverage on more
advanced multi-level Bayesian nonparametric approaches to allow for the separate
inferential objectives within and between subjects. More precisely, they employ a
hierarchical Dirichlet Process prior construction to induce clustering among voxels
within a subject at one level of the hierarchy and across subjects at the second level.
This formulation allows, in particular, to capture spatial correlation among potential
activations of distant voxels, within a subject (an aspect of functional connectivity),
while simultaneously borrowing strength in the estimation of the parameters from
subjects with similar activation patterns. Let Yiν = (Yiν1, . . . ,YiνT )� be the T × 1
vector of the BOLD response data at the νth voxel in the i th subject, with i =
1, . . . , N , ν = 1, . . . V , and with the symbol (·)� indicating the transpose operation.
The BOLD time-series response is then modeled with a general linear model

Yiν = Xiνβiν + εiν, εiν ∼ NT (0,Σiν), (1)
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where Xiν is a T × p covariate matrix, βiν = (βiν1, . . . , βiνp)
� is a p × 1 vector of

regression coefficients and εiν = (εiν1, . . . , εiνT )� is a T × 1 vector of errors. Typ-
ically, the matrix Xiν contains the design matrix, i.e., the convolved hemodynamic
response function, which captures the change in the metabolism of the BOLD con-
trast due to an outside stimulus. Thus, each column of Xiν is modeled through the
convolution ∫ t

0
x(s) hv(t − s) ds, t = 1, . . . , T

of the external time-dependent stimulus function for a given task, x(s), which is
known and corresponds to the experimental paradigm (for example, a vector de-
fined with elements set to 1 when the stimulus is “on” and 0 when it is “off”), and
a parametrically specified hemodynamic response function hv(·). In addition, the
matrix Xiν can also include precision covariates that incorporate motion correction
estimates obtained from the preprocessing steps.Of course, additional individual spe-
cific covariates may also be included (e.g., demographic and clinical information),
depending on the specific study objectives.

In model (1) the detection of brain voxels that activate in response to the stimulus
reduces to a problem of variable selection, i.e., the identification of the nonzero βiν’s
and is achieved, in the Bayesian framework, by imposing amixture prior, often called
spike-and-slab prior, on the regression coefficients. Zhang et al. [44] embed the selec-
tion into a clustering framework and effectively define amulti-subject nonparametric
variable selection prior with spatially informed selection within each subject. More
specifically, they employ a hierarchical Dirichlet Process (HDP) prior [45], which
implies that the non-zero βiν’s within subject i are drawn from a mixture model and
possibly shared between subjects. Let γiν be the binary indicator of whether voxel
ν in subject i is active or not, i.e., γiν = 0 if βiν = 0 and γiν = 1 otherwise. Zhang
et al. [44] impose a spiked HDP prior on βiν , i.e., a spike-and-slab prior where the
slab distribution is modeled by a HDP prior,

βiν |γiν,Gi ∼ γiνGi + (1 − γiν)δ0

Gi |η1,G0 ∼ DP(η1,G0)

G0|η2, P0 ∼ DP(η2, P0) (2)

P0 = N (0, τ ),

with δ0 a point mass at zero, with τ fixed, η1, η2 the mass parameters and P0 the
base measure. The spike-and-slab formulation enforces sparsity in the pattern of
activations within each subject. The HDP prior allows for non-zero coefficients to
be shared within and across subjects, potentially highlighting regions characterized
by similar intensity of brain activity across subjects. Since the number of mixture
components is unknown and inferred from the data, this prior formulation provides an
unsupervised clustering framework to account for between-subjects heterogeneity in
neuronal activity. In order to take into account information on the anatomical structure
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of the brain, in particular the correlation between neighboring voxels, they further
place a Markov Random Field (MRF) prior on the selection parameter γiν .

A single fMRI experiment can yield hundreds of thousands of high frequency time
series for each subject, arising from spatially distinct locations. Therefore, compu-
tational efficiency is essential for the practical relevance of any statistical method.
This is particularly true for multi-subject studies. In particular, Bayesian methods
face a significant challenge, since typically Markov chain Monte Carlo sampling al-
gorithms are too slow and inefficient for this type of problems. Thus, there is a need
for computational methods which approximate the posterior distribution for faster
inference. Variational Bayes methods have been employed successfully in Bayesian
models for single-subject fMRI data [46–50]. Typically, these approaches provide
good estimates of means, although they tend to underestimate posterior variances
and also to poorly estimate the correlation structure of the data. In a comparative
study on simulated data, Zhang et al. [44] show that a variational Bayes algorithm
approximating the posterior distribution of model (1)–(2) achieves robust estima-
tion results at a much reduced computational costs, therefore allowing scalability
of their method. Additionally, they demonstrate on synthetic data how their unified,
single-stage, multiple-subject modeling approach, with variational Bayes inference,
achieves improved estimation performance with respect to two-stage approaches
which may be employed to ease the computational burden of multi-subject analyses.

The availability of user-friendly software implementations is also a required con-
dition for the general adoption of novel statistical methods by the neuroscientist. For
example, the model by Zhang et al. [44] has been implemented in a a MATLABGUI
(NPBayesfMRI, [51]), comprising two components, one formodel fitting and another
one for visualization of the results. Within the model fitting interface, the user can
define the type of analysis (voxel-based or whole-brain parcellation into regions of
interest, i.e., ROIs) and the model parameters. Users have the option of a pre-defined
default setting for all parameters. Alternatively, they can set the parameters according
to customized choices, depending on the available prior information. We should also
mention Neuroconductor (https://neuroconductor.org/), an open-source R-platform
for medical imaging analysis [52]. The platform provides data, methods, and soft-
ware packages designed to support the analysis of populations of images using the
publicly available statistical software R.

5 Dynamic Functional Connectivity

Behavioral and psychiatric disorders have been associated to differences in the brain
functional connectivity networks, i.e., the set of interactions that take place between
spatially segregated but temporally related regions of the brain [53]. Traditionally,
brain network studies have assumed functional connectivity as spatially and tem-
porally stationary, i.e., connectivity patterns are assumed not to change throughout
the scan period [54]. However, in practice, the interactions among brain regions may
vary during an experiment. For example, different tasks, or fatigue, may trigger vary-

https://neuroconductor.org/
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Fig. 2 Dynamic functional connectivity assumes that the functional connectivity networks may
change over time

ing patterns of interactions among different brain regions. Therefore, more recent
work has pointed out that it is more appropriate to regard functional connectivity
as dynamic over time [55]. Figure 2 provides a pictorial representation of the new
paradigm. Current approaches for studying dynamic connectivity typically rely on
multi-step approaches for inference, where the analysis may comprise the following
steps. First, the fMRI time courses are segmented by selecting a sequence of sliding
windows. Then, a covariance (or precision) matrix is estimated separately within
each window, e.g., by using graphical Lasso. Finally, k-means clustering methods
are used to identify re-occurring patterns of functional connectivity state [56]. Dif-
ferences between states are assessed by computing and comparing descriptive graph
metrics that capture structural properties of the networks, such as their clustering co-
efficient and efficiency. Arguably, those approaches are straightforward but present
some major limitations. For example, the length of the window is arbitrarily selected
before the analysis, through a trial-and-error process. This trial-and-error process can
potentially lead to an increased number of false positive and false negative detections
in the estimation of the networks, and ultimately affects the reproducibility of the
findings. Indeed, Lindquist et al. in [57] show that the choice of the window length
can affect inference in unpredictable ways. To partially obviate the issue, Cribben
et al. in [58] and Xu and Lindquist in [59] have recently investigated greedy algo-
rithms, which automatically detect change points in the dynamics of the functional
networks. Their approach recursively estimates precision matrices using GLasso on
finer partitions of the time course of the experiment, and selects the best resulting
model based on the Bayesian Information Criterion (BIC). The algorithm estimates
independent brain networks over noncontiguous time blocks. Of course, this is not
so desirable, as it may be preferable to borrow strength across similar connectivity
states in order to increase the accuracy of the estimation. Another issue is related to
greedy searches, which often fail to achieve global optima.

Chiang et al. in [60] investigate the stationarity of the brain network topology, as
measured by the graph theorymeasures of functional connectivity networks. The aim
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of their study is to identifywhich aspects of network topology exhibit lesswithin-scan
temporal variability in resting-state networks, with the objective of evaluating which
graph theory metrics may be robustly estimated using static functional connectivity
analyses. In particular, they argue that some aspects of brain topology, such as the
level of small-worldness, may exhibit greater temporal stationarity, whereas others,
such as local measures, may be more susceptible to local dynamics and more likely
to traverse multiple configurations. They use a Bayesian hidden Markov model to
estimate the transition probabilities of various graph theoretical network measures
using resting-state fMRI (rs-fMRI) data and to investigate the stationarity of different
graph theory mesaures. They further propose two estimators of temporal stationarity,
which can be used to assess different aspects of the temporal stationarity of functional
networks: a deterministically-based estimator of the number of change-points, and
a probabilistically-based estimator that takes into account stochastic variation in the
estimated states. They show that small-world index, global integration measures, and
betweenness centrality exhibit greater temporal stationarity than networkmeasures of
local segregation. Thismay reflect the organization of the resting-state brain, inwhich
the small-world architecture of the brain is thought to have evolved in order to create
systems that support efficiency in both local and global processing. Since long-range
connections are generally thought to ensure the interaction between distant neuronal
clusters, a large component of fluctuations between neuronal clusters (e.g., long-
range connections) may therefore occur downstream to fluctuations within neuronal
clusters (e.g., local connections), resulting in slightly greater temporal stationarity
among global relative to local connections. On the other hand, connectivity within
local subgraphsmay bemore susceptible to local cell dynamics and likely to fluctuate
over time.

The chapter by Crispino et al. in this volume discusses a penalized likelihood
approach to estimate time-varying Bayesian networks, based on a first-order Marko-
vian assumption to model the connectivity dynamics. The strength of the interaction
between two brain regions is a function of how often two regions are connected by
an edge at different time points.

Warnick et al. in [61] propose a principled, fully Bayesian approach for studying
dynamic functional network connectivity, that avoids arbitrary partitions of the data
in slidingwindows.More specifically, they cast the problemof inferring time-varying
functional networks as a problem of dynamicmodel selection in the Bayesian setting.
As we have previously discussed, brain networks can bemathematically described as
graphs. A graphG = (V ,E ) specifies a set of nodes (or vertices)V = {1, 2, . . . , V }
and a set of edges E ⊂ V × V . Here, the nodes represent the neuronal units, whereas
the edges represent their interconnections. For example, nodes could be intended as
either single voxels or macro-areas of the brain which comprise multiple voxels at
once. Let Y t = (Yt1, . . . ,YtV )� be the vector of fMRI BOLD responses of a subject
measured on the V nodes at time t , for t = 1, . . . , T . Then, the general linear model
(1) can be re-expressed as follows,
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Y t = μ +
K∑

k=1

Xk
t ◦ βk + εt , (3)

where ◦ denotes the element-by-element (Hadamard) product, Xk
t is the V × 1

design vector for the k-th stimulus, μ the V -dimensional global mean and βk =
(β1k, . . . , βVk)

� the stimulus-specific V -dimensional vector of regression coeffi-
cients. A spike-and-slab prior is imposed on the coefficients βvk to identify brain
activations and allow decoupling of the task-related activations from the functional
connectivity states. To characterize possibly distinct connectivity states, i.e., network
structures, within different time blocks, Warnick et al. (2018) assume that functional
connectivity may fluctuate among one of S > 1 different states during the course of
the experiment. Let s = (s1, . . . , sT )�, with st = s, for s ∈ {1, . . . S}, denoting the
connectivity state at time t . Then, conditionally upon st , they assume

(εt |st = s) ∼ NV (0,Ωs), (4)

where Ωs ∈ R
V × R

V is a symmetric positive definite precision matrix, i.e., Ωs =
Σ−1

s , withΣ s the covariance matrix. The zero elements inΩs encode the conditional
independence relationships that characterise state s, that is graph Gs = (V ,Es).
Specifically, ω

(s)
i j = 0 if and only if edge (i, j) /∈ Es . Many of the estimation tech-

niques for Gaussian graphical models rely on the assumption of sparsity in the pre-
cision matrix, which is generally considered realistic for the small-world properties
of brain connectivity in fMRI data. Thus, a G-Wishart distribution is considered as
a conjugate prior on the space of the precision matrices Ω with zeros specified by
the underlying graph G [62, 63]. The estimation of the unknown connectivity states
at each of the time points is treated as a problem of change points detection, by
modeling the temporal persistence of the states through a Hidden Markov Model
(HMM). The approach is in line with recent evidence in the neuroimaging literature
which suggests a state-related dynamic behavior of brain connectivity with recurring
temporal blocks driven by distinct brain states [64, 65]. In the model proposed by
Warnick et al. (2018), however, the change points of the individual connectivity states
are automatically identified on the basis of the observed data, thus avoiding the use
of a sliding window. Furthermore, they adapt a recent proposal put forward by Peter-
son et al. in [66] to conduct inference on the multiple related connectivity networks.
The model formulation assumes that the connectivity states active at the individual
time points may be related within a super-graph and imposes a sparsity inducing
Markov Random field (MRF) prior on the presence of the edges in the super-graph.
Thus, the estimation of the active networks between two change points is obtained
by borrowing strength across related networks over the entire time course of the
experiment, also avoiding the use of post-hoc clustering algorithms for estimating
shared covariance structures.
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6 Combining Information from Multiple Data Sources

The term “big data” is often employed to indicate the high-dimensionality and the
complexity of data captured bymodern technologies.With this meaning, brain imag-
ing data can be regarded as inherently “big”. However, in Sect. 2, we have described
how each neuroimaging technology is able to capture only specific characteristics of
brain processes. Therefore, each single technology is also inherently limited in its
ability to shed light on relevant brain mechanisms. Multi-modal analysis combines
different neuroimagingmodalities, and possibly information from different data plat-
forms, to achieve a more comprehensive understanding of brain functioning. In this
section, we review some recent interesting trends and contributions in this area.

6.1 Covariate-Dependent Analysis and Predictive Modeling

It is often of interest to study how imaging-based inferences vary depending on
known covariates or risk factors, and to make predictions on a clinical or behavioral
response based on the estimated individual’s brain activity.

For example, the chapter by Aliverti et al. in this volume (p. 23) proposes a se-
quential hierarchical approach, which starts by using a penalized GLasso approach
to estimate functional connectivity. Then the connection probabilities are modeled
through a latent logit regression involving both phenotypical and brain-region infor-
mation. The covariates include the age of the subject, an indicator of mental health
diagnosis, and another indicator of shared lobe membership for each pair of edges.

As an example of a modeling approach aimed at improving clinical prediction,
we refer to Chiang et al. in [67]. They consider positron emission tomography (PET)
imaging data from a study on Temporal lobe epilepsy (TLE), the most common form
of adult epilepsy and the most common epilepsy refractory to anti-epileptic drugs.
PET imaging is a well-developed technique in which the subject is injected with
a positron-emitting isotope, such as 18F-FDG, and a PET image reconstructed of
the isotope concentration based on the incidence of gamma rays from the positron-
electron annihilation. In PET studies, the quantity that is clinically assessed is a
scalar rate of regional glucose uptake. This quantity is then normalized relative to
an internal reference standard, such as the whole-brain activity and compared to
the expected level for a normal subject. The assessed quantity therefore provides a
measure of the level of metabolic activity in each region, relative to that expected in
healthy controls. Uptake levels may be quantified on the single-pixel level or based
on the mean uptake within fixed regions of interest. Chiang et al. (2017) develop a
Bayesian predictive modeling framework to identify whole-brain biomarkers from
PET imaging which are associated to the prediction of post-surgical seizure recur-
rence following anterior temporal lobe resection. Post-surgical seizure recurrence is
often due to the incomplete resection of the epileptogenic zone, which is defined as
the area of cortex necessary and sufficient for initiating seizures, and whose removal
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is necessary for seizure abolition. Indeed, patients with different epileptogenic zone
configurations may be expected to exhibit different risks of post-surgical seizure
recurrence. The epileptogenic zone, however, cannot be identified pre-operatively.
In their model formulation, Chiang et al. (2017) take this into account by looking
at the observed PET brain measurements as the phenotypic manifestation of latent
individual pathological states that are assumed to vary across the population. More
precisely, the joint distribution of the data is factored into the product of two con-
ditionally independent submodels, an outcome model that relates the post-surgical
outcome to the latent states, and a measurement model that relates those latent states
to the observed brain measurements. For the latter, they employ mixture models
for clustering and variable selection priors that capture spatial correlation among
neighboring brain regions. Thus, subjects are clustered into subgroups with different
latent states, i.e., different epileptogenic zone configurations, while simultaneously
identifying discriminatory brain regions that characterize the subgroups. A logistic
regression model relates the latent states to the binary clinical outcome. Alterna-
tive predictive modeling approaches for neuroimaging include the use of pattern
recognition techniques, such as Linear Discriminant Analysis [68], Support Vector
Machines [69, 70] and Bayesian classifiers [71, 72]. We refer to the review in [73]
for a discussion of Bayesian methods for classification and prediction.

6.2 Multi-modal Imaging Analysis

Multi-modal imaging refers to imaging performed using different instrumentation
platforms, although a given modality may also provide multiple types of imaging
outcomes. The objective is to obtain a more accurate understanding of brain pro-
cesses by combining two or more datasets obtained with different instruments. For
example, in the study of epilepsy, simultaneous acquisition of EEG and fMRI has
been employed to improve the spatio-temporal resolution of either data with the
aim of localizing epileptic foci [74]. Statistical models for multi-modal analysis are
necessarily integrative. In particular, Bayesian methods are well suited for the anal-
ysis of multi-modal data, due to their ability to integrate the data into a hierarchical
model. We refer to the reviews in [75, 76] for a discussion of general strategies for
multi-modal analysis and to [73] for a review of Bayesian methods. Jorge et al. in
[77] present a review of the most relevant EEG-fMRI integration approaches for the
study of human brain function.

For example, Kalus et al. in [78] use EEG-informed spatial priors in their
Bayesian variable selection approach to detect brain activation from fMRI data.
Specifically, they relate the prior activation probabilities to a latent predictor stage
ζ = (ζ1, . . . , ζV )� via a probit link p(γv = 1) = Φ(ζv), with Φ the standard normal
cdf and ζv consisting of an intercept term and an EEG effect, that is
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ζv = ζ0,v + ζEEG,v =

⎧⎪⎨
⎪⎩

ς0,v, if predictor 0

ς0,v + ςG Jv, if predictor glob,

ς0,v + ςv Jv, if predictor f lex

(5)

where Jv, v = 1, . . . , V is the continuous spatial EEG information and where 0, glob
and flex indicate three types of predictors: predictor 0 contains a spatially-varying
intercept ς0 = (ς0,1, . . . , ς0,V )�, and corresponds to an fMRI activation detection
scheme without incorporating EEG information; predictor glob contains a global
EEG effect ςG in addition to the intercept; predictor flex contains a spatially-varying
EEG effect ς = (ς1, . . . , ςV )�.

An interesting avenue of research is the development of methods for the inte-
gration of fMRI and structural imaging data. Here, we mention a recent proposal
by Chiang et al. in [79], where the authors develop a multi-subject multi-modal
vector autoregressive (VAR) modeling approach for inference on effective connec-
tivity based on resting-state functional MRI data. More in detail, their method uses
Bayesian variable selection techniques to allow for simultaneous inference on effec-
tive connectivity at both the subject- and group-level. Furthermore, it accounts for
multi-modal data by integrating structural imaging information into the prior model,
encouraging effective connectivity between structurally connected regions.

6.3 Imaging Genetics

Recent developments in molecular genetics have lowered the cost of individual ge-
netic profiling, creating the opportunity to collect massive amounts of genetic in-
formation and neuroimaging data on the same subjects. Thus, the field of imaging
genetics has emerged as a promising approach for investigating the genetic determi-
nants of brain processes and related behaviors or psychiatric conditions. Ultimately,
the objective is to identify specific brain activity features and genetic variants that
can be used as biomarkers to assist medical decision making. However, the high-
dimensionality and complexity of the data add challenges to statistical analysis. On
one hand, there is a problem of variable selection and multiple decision testing, due
to the large number of variables’ calls and the necessity to identify a sparse set of
relevant fMRI features or genetic covariates. On the other hand, naive multi-step
multivariate approaches may lead to results that are difficult to interpret, especially
if existing biological information is not incorporated at some stage of the analysis.

Nathoo et al. in [80] provide a comprehensive review of recent statistical ap-
proaches for the joint analysis of high-dimensional imaging and genetic data, with
particular consideration for approaches proposed within the frequentist paradigm.
In particular, they distinguish massive univariate and voxel-wise approaches, where
the spatial association among separate brain regions is not explicitly modeled, from
more sophisticated multivariate approaches, either through regression techniques or
low rank regression, mixture models, and group sparse multi-modal regression.
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In the Bayesian literature, Stingo et al. in [81] have proposed a hierarchical mix-
ture model based on ROI summary measures of BOLD signal intensities measured
on schizophrenic patients and healthy subjects. The model incorporates prior knowl-
edge via network models that capture known dependencies among the ROIs. More
specifically, let {xi j , i = 1, . . . , n, j = 1, . . . , p} indicate theROI-based summaries
of BOLD signal intensity on a set of p features (the anatomical ROIs) in n subjects.
The authors envision that some of the features could discriminate the n subjects
into K separate known groups (e.g., schizophrenia cases and healthy controls). Let
γ = (γ1, . . . , γp)

� be a latent binary vector such that γ j = 1 if the j-th feature is dis-
criminatory and γ j = 0 otherwise. By employing a discriminant analysis framework,
they model the data as a mixture model of the general type

fk(xi j |γ j ) = (1 − γ j ) f0(xi j ; θ0 j ) + γ j f (xi j ; θk j ), k = 1, . . . , K , (6)

where f0(xi j ; θ0 j ) describes the distribution of the “null” model for the non-
discriminatory features, while f (xi j ; θk j ) is the distribution of the measurements
on the discriminatory features for subjects in group k. Gaussian distributions
are assumed for the mixture components, that is f0(xi j ; θ0 j ) = N (0, σ 2

0 j ), and
f (xi j ; θk j ) = N (μk j , σ

2
k j ). A spatialMRF prior that captures available knowledge on

connectivity among regions of the brain is employed to select ROIs that discriminate
schizophrenic from healthy controls:

P(γ j |γi , i ∈ N j ) = exp(γ j F(γ j ))

1 + exp(F(γ j ))
, (7)

where F(γ j ) = e + f
∑

i∈N j
(2γi − 1) and N j is the set of direct neighbors of feature

j in the network. The parameter e controls the sparsity of the model, while higher
values of f encourage neighboring features to take on the same γ j value. Note that
if a feature does not have any neighbor, then its prior distribution reduces to an inde-
pendent Bernoulli, with parameter exp(e)/[1 + exp(e)], a prior often adopted in the
Bayesian variable selection literature. Themodel also allows the group-specific com-
ponents to depend on selected covariates (e.g., single nucleotide polymorphisms—
SNPs) measured on the individual subjects. Let Zi = (Zi1, . . . , Zi R)� denote the
set of available covariates for the i-th individual. The vectors of the means of the
discriminating components are modeled as subject-specific parameters

μik(γ ) = μ0k(γ ) + β�
k(γ ) Zi , k = 1, . . . , K , (8)

where μ0k(γ ) is a baseline process which captures long-range brain connectivity
and βk(γ ) is a R × pγ matrix of coefficients describing the effect of the covariates
on the observed measurements. This model formulation uses component-specific
parameters that determine how covariates, and other relevant spatial characteristics,
affect the observedmeasurements xi(γ ), on the n subjects, given the selected features.
In this respect, the classification of the n subjects in K groups is driven by the
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subjects’ covariates. Different covariates are allowed to affect the individual mixture
components, bymodeling theβk(γ ) through spike-and-slab priors. Posterior inference
will result in the simultaneous selection of a set of discriminatory ROIs and the
relevant SNPs, together with the reconstruction of the correlation structure of the
selected regions.

More recently, Greenlaw et al. in [82] have developed a hierarchical Bayesian
model with regularizing shrinkage priors, such that the posterior mode corresponds
to the estimator proposed by Wang et al. in [83], in order to obtain uncertainty
estimates on the regression parameters. Chekouo et al. in [84] have extended the
proposal in [81] by developing an integrative Bayesian risk prediction model, which
directly links genetic and imaging data with the clinical outcome (e.g., a clinical
diagnosis of schizophrenia). The model allows for the identification of a regulatory
network between SNPs and ROI intensities, thus exploiting the imaging features as
an intermediate phenotype, and further assumes that: (i) genetic factors may affect
non-discriminatory brain regions (as endophenotypes); and that (ii) genetic factors
may be independently associated with disease status without the mediation of a
discriminatory imaging endophenotype. With respect to other approaches, the risk
predictive framework allows a direct assessment of the individual probability of being
affected by schizophrenia as a function of the observed fMRI and SNP biomarkers,
and can also be seen as an extension of recently proposed scalar-on-image regression
models to the challenging setting of imaging genetics.

7 Conclusions

The chapters in this volume provide a stimulating outlook over many current trends
in the analysis of brain imaging data. Well-thought statistical models contribute to
a deeper understanding of brain functioning, and its disruption as a consequence of
disease. The approaches need to take appropriately into account the physiology of the
different neuroimaging experiments. However, the involvement of a large community
of statisticians in the analysis of this type of data is relatively recent. The section on
Statistics in Imaging of the American Statistical Association was only founded in
2012, with the goal to increase the influence of statistics and statisticians on imaging
science.

All the contributions in this volume show how the use of novel advanced sta-
tistical methods could contribute greatly to future developments in neuroimaging.
For example, the chapters by Cabassi et al. and by Cappozzo et al. call attention to
the possibilities offered by recent developments in object-oriented data analysis in
non-Euclidean spaces. The chapter by Bertarelli et al. also proposes functional data
approaches for clustering fMRI time-series. The chapter by Gasperoni and Luati
uses a modern robust filtering method for detecting spontaneous activations in rest-
ing state fMRI time series and thus improving the estimation of the hemodynamic
response function. The chapter by Caponera et al. emphasizes the use of established
spatio-temporal modeling techniques to take appropriately into account the depen-
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dence structure of the data, achieve dimension reduction, and provide an interpretable
assessment of functional connectivity across brain regions. The chapter by Aliverti et
al. uses a sequential hierarchical approach that leverages multiple available methods
in literature, in order to remove noise from the fMRI signal, estimate the functional
brain connectivity networks and investigate the association between phenotypes and
functional connectivity patterns. Finally, the chapter by Crispino et al. employs latent
space models from network analysis to estimate the structural connectivity informa-
tion provided by DTI data and examine how structural connectivity may inform
patterns of activation captured by functional imaging techniques among regions of
interest.

The fast developments in the Neurosciences will keep proposing new challenges
to the applied statistician. Multimodal analysis, imaging genetics, and predictive
modeling techniques are still at their infancy, in the attempt to identify satisfactory
biomarkers for targeted intervention. Novel efficient algorithmsmay fully exploit the
information of existing technologies. For example, fMRI time courses are originally
complex-valued signals giving rise to both magnitude and phase data. However,
most studies—including all those discussed in this volume—typically use only the
magnitude signals and thus irreversibly discard half of the data that could potentially
contain important information.Multiple studies show that detectability in low signal-
to-noise regions ofmagnetic resonance images is improved by using the full complex-
valued fMRI data. Yu et al. in [85] have recently proposed a Bayesian variable
selection approach for detecting brain activation at the voxel level from complex
valued fMRI data, where inference is conducted via a complex-valued extension
of the Expectation-Maximization (EM) algorithm for Bayesian variable selection
of [86] that allows for fast detection of active voxels in large-dimensional complex-
valued fMRI. By considering both the real and imaginary information, their approach
is able to detect more true positives and less false positives than magnitude-only
models, especially when the signal-to-noise ratio is small.

New high-resolution imaging technologies promise to deliver more accurate rep-
resentations of brain processes. In the last few years, the US NIH Brain Initiative
has sponsored multiple grants for developing several next generation human imag-
ing techniques. For example, investigators at University of California, Berkeley are
now working on MR Corticography (MRCoG), a new tool for studying neuronal
circuitry that improves resolution by an order of magnitude, making it possible to
visualize cortical layers and microcircuit columns throughout the whole brain. Re-
searchers at Stanford University are developing a novel PET photon detector concept
that promises to enhance substantially PET image reconstruction and should permit
joint PET-MR (magnetic resonance) imaging. Joint PET-MR collection would allow
multi-modal, simultaneous image acquisition of neuron receptor function, functional
MR, and high-resolution neuroanatomy. Other technological developments promise
to enhance the spectrum of experimental designs available to investigators. Boto
et al. in [87] have recently introduced a magnetoencephalography system that can be
worn like a helmet, allowing free and natural movement during scanning. The system
would make it easier to conduct experiments with subjects who are traditionally dif-
ficult to study under a fixed scanner, such as young children with epilepsy or patients



152 M. Guindani and M. Vannucci

affected by Parkinson’s disease. One of the experiments conducted by the investi-
gators to test the new technology also included a simple “ping-pong” ball-game in
which subjects were asked to bounce a table tennis ball on a bat!

In addition to new technologies, new directions of researchwill surface. For exam-
ple, the so-called gut-brain axis has been recently implicated in multiple conditions.
The enteric nervous system in our abdomen has been shown to communicate di-
rectly with the brain through the vagus nerve, which connects the brain with many of
our major organs. For this reason, the enteric nervous system is often referred to as
our “second brain”. Feelings of appetite and satiety are mediated through complex
pathways where gut hormones play crucial roles. Understanding the brain-gut mech-
anisms of appetite andweight control may help the identification of novel therapeutic
interventions. The gut microbiome has been implicated also in the development of
irritable bowel syndrome as a consequence of anxiety and stress, as well as of neuro-
logical/behavioral disorders like autism, ADHD, and various mood disorders. Due to
the complexity of the data employed for those investigations, the contribution of ad-
vanced statistical models will be necessary to ensure interpretable and reproducible
findings for clinical diagnosis and future therapeutic research.
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