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Preface

Time series appear naturally with data sampled in time, but many other physical
situations also lead to evolutions indexed by integers (e.g., enumeration of
nucleotides on a DNA chain).

We provide some tools for the study of such statistical models. The purpose of
this book is introductory, and this is definitely not a systematic study.

This book is divided into three parts, each including four chapters, and three
appendices.

Independence and Stationarity

Even though this part addresses mainly items of the independent world, the choice
of subjects is biased and motivated by the fact that they easily extend to a dependent
setting.

(a) Independence.
This is a main concept in these notes so we include some simple comments
concerning independence as a separate chapter. For instance, we mention all the
elementary counterexamples invoking independence. Other examples relating
orthogonality with independence may be found in Chap. 8 and in Appendix A.3.

(b) Gaussian convergence and moments.
Special emphasis is given on the Lindeberg method which easily extends to a
dependent setting. Applications of the central limit theorems are proved in the
independent setting. Moment and exponential inequalities related to Gaussian
convergence are also derived.

(c) Estimation concepts.
Standard estimations techniques, such as empirical ones, contrasts and non-
parametric techniques are introduced. Kernel density estimators are described

vii
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in some detail as an application of previous results in view of their extension to
time series in a further chapter.

Stationarity.

The notions of stationarity are essential for spectral analysis of time series.
Brockwell and Davis (1991) use filtering techniques in order to return to such a
simple stationary case. Indeed, this assumption is not naturally observed. Weak
stationarity and strong stationarity are considered together with examples.
Second-order weak dependence or long-range dependence is defined according
to the convergence of the series of covariances.

Stationarity and an introduction to spectral techniques are then discussed. We
provide the spectral representation for both a covariance and the process itself,
and we briefly describe some applications of time series.

Models of Time Series

(a)

(b)

(©)

Gaussian chaos.

Due to the CLT, the Gaussian case plays a central role in statistics. The first
time series to be considered are Gaussian. We introduce the Gaussian chaos and
Hermite polynomials as well as some of their properties. Gaussian processes
and the methods of Gaussian chaos are investigated. Namely, Hermite repre-
sentations and the Mehler formula for functions of Gaussian processes are
developed precisely, while the diagram formula for higher-order moments is
simply considered. The fractional Brownian motion essential hereafter for the
long-range dependent setting is also introduced. The asymptotic theory for
Gaussian functionals is also precisely stated. We recall the fourth-moment
method based on Malliavin calculus.

Linear models.

From Lindeberg’s lemma, the linear case is the second case to consider after the
Gaussian one. For example, ARMA processes are weakly dependent processes,
and ARFIMA models are long-range dependent. We again refer to Brockwell
and Davis (1991) for further information.

Nonlinear models.

This central chapter proposes a wide botany for the models of time series.
Nonlinear models are naturally considered as extensions of the previous ones.
The elementary ideas of polynomials and chaoses are first considered. We then
check an algebraic approach to the models which are explicit solutions of a
recursion equation. General contractive iterative systems with (non-explicit)
stationary solutions are introduced. Finally, the abstract Bernoulli shifts yield a
general and simple overview of those various examples; their correlation pro-
perties are explicitly provided. This class of general nonlinear functionals of
independent sequences yields a large number of examples.
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(d)

Association.

Associated processes are then briefly investigated. It was introduced for relia-
bility and for statistical physics. The association property admits a main
common point with the Gaussian case: Independence and orthogonality coin-
cide in both cases. This feature is exploited in the following chapter.

Dependences

(a)

(b)

(©)

(d)

Ergodic theorem.

As an extension of the strong law of large numbers, the ergodic theorem is the
first result proposed in this chapter. In order to find confidence bounds for
asymptotic distribution of the mean, one first needs consistency of the empirical
mean. Also needed asymptotic expansions are obtained from SRD/LRD
properties.

We then make a tour of the tools for the asymptotic theory under long-range or
short-range dependence (resp. SRD and LRD).

Long-range dependence.

Under LRD, the more elementary examples are seen to have such asymptotic
explicit expansion in distribution up to non-Gaussian limits. Gaussian and
subordinated Gaussians are first considered as well as linear LRD models, and a
rapid description of nonlinear LRD models is also included.

Short-range dependence.

In the SRD case, we give a rapid idea of techniques. Namely, the standard
Bernstein blocks technique is proposed as a way to derive CLTs by using a
recent dependent Lindeberg approach.

Moment methods.

The final chapter is devoted to moment and cumulant inequalities developing
the more standard spectral ideas of the Chap. 2.

Such inequalities are needed on many occasions, but first in order to derive
CLTs, another application is for subsampling. This technique applies to the
kernel density estimator.

Appendices

The appendices recall some basic definitions and some R scripts for figures. The
reader is also referred to the index for notations which may differ from one author to
another.
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(A) Probability.
The first appendix recalls essential concepts of probability, including cumu-
lative distribution functions and some Hoeffding’s inequalities.
Useful examples of probability distributions are introduced in relation to the
dependence conditions. Standard Gaussians, Gaussian vectors, and -y-dis-
tributions are then considered.

(B) Convergence and processes.
In the second appendix, some basic concepts of random processes and con-
vergence are recalled. Sufficient conditions for convergence are also briefly
discussed. Basic notations of statistics and martingale theory are also
provided.

(C) R scripts used for the figures.
The software R is used for figures (Team 2017). This may be useful for a
reader who wants to process alternative simulation procedures.

For elementary sets, we shall use the notations N={0,1,2,...} and
Z ={0, £1, £2, ...}, and R and C respectively, denote the sets of rational, real,
and complex numbers. Other notations may be found in the index.

Applications of those techniques to spectral estimations are developed in an
elegant way in Rosenblatt (1985, 1991). Relations with the asymptotic theory for
kernel density estimation are also given. The monographs (Azencott and
Dacunha-Castelle 1986 and Rosenblatt 1985) also lead to a large amount of
additional developments. Functional estimation frameworks are synthetically des-
cribed in Rosenblatt (1991). The monograph (Doukhan et al. 2002b) provides a
wide amount of directions for the study of LRD. The weakly dependent setting is
introduced in two papers Doukhan and Louhichi (1999) and Dedecker and
Doukhan (2003); a relevant global reference is the monograph (Dedecker et al.
2007).

Paris, France Paul Doukhan
November 2017 AGM, UMR 8088
University Cergy-Pontoise

Associate member, SAMM, EA 4543

Paris Panthéon-Sorbonne

References

Azencott R, Dacunha-Castelle D (1986) Series of irregular observations: forecasting and model
building. In: Applied Probability. Springer-Verlag, New-York, Paris

Brockwell PJ, Davis RA (1991) Time series: theory and methods. Springer-Verlag Series in
Statistics, New-York. 2nd edn. Springer-Verlag, New-York

Dedecker J, Doukhan P (2003) A new covariance inequality and applications. Stoch Proc Appl
106:63-80



Preface xi

Dedecker J, Doukhan P, Lang G, Leon JR, Louhichi S, Prieur C (2007) Weak dependence: with
examples and applications. Lecture Notes in Statistics 190, Springer-Verlag, New-York

Doukhan P, Louhichi S (1999) A new weak dependence condition and applications to moment
inequalities. Stoch Proc Appl 84:313-342

Doukhan P, Oppenheim G, Taqqu M (2002b) Theory and applications of long-range depen-
dence. Birkhatiser, Boston

Rosenblatt M (1985) Stationary processes and random fields. Birkhduser, Boston

Rosenblatt M (1991) Stochastic curve estimation, NSF-CBMS regional conference series in
probability and statistics, Vol. 3

Team RC (2017) R: a language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria



Acknowledgements

. . 1
Preliminary versions of those notes were processed for courses at

e IMPA in Rio (Brazil), during summer 2015,

and before that in

University of Rio Grande de Sul, Porto Alegre (Brazil),
Universidad National, Bogota (Colombia),
University of Valparaiso (Chile),

University of Louvain la Neuve (Belgium),
University Paris 6 (France),

University of Cergy-Pontoise (France),

Hong Kong University (Hong-Kong),

University Nicolas Copernic, Torin (Poland),
Steklov Institute, Saint Petersburg (Russia),
Universidad de la Republica, Montevideo (Uruguay),
Kiev Polytechnic Institute (Ukraine),

Columbia University, New York (USA), and
Universidad Central, Caracas (Venezuela).

The constant support of Silvia and Artur Lopes (Porto Alegre) was essential for the
redaction of this book.

Adam Jakubowski (Tortn), Konstantinos Fokianos (Cyprus), Yvan Nourdin
(Luxembourg), and Gabriel Lang (Paris) provided me with many useful sugges-
tions. Also, I wish to thank Natalia Bahamonde (Valparaiso), Jean-Marc Bardet
(Paris 1), and Xiaoyin Li (Cleveland) for kindly providing me with helpful com-
prehensive illustrative figures. The comments of Jean-Luc Prigent (Cergy-
Pontoise), Joseph Rynkiewicz (Paris 1), Francois Roueff (Telecom Paris), and
many others were also precious.

1Developed within the MME-DII center of excellence (ANR-11-LABEX-0023-01), and with the
help of PAI-CONICYT MEC N° 80170072.

Xiii



Xiv Acknowledgements

I am also extremely indebted to my friend Alain Latour (Grenoble); he provided
me with the final version of figures and the corresponding R codes.

Special thanks are due to the SAMM Laboratory and to all its members who
supported me over many years and for important collaborations.

An anonymous referee also helped me to organize the material. Mathieu
Rosenbaum (Ecole Polytechnique, Paris) and Marc Hoffmann (Paris 9, Dauphine),
as well as the staff of Springer, also helped me to provide a more comprehensive
final version of the volume, including an important revision of the language.

I am also grateful to University Cergy-Pontoise for its support.



Contents

Part I Independence and Stationarity

1
2

Independence ........... ... .. .. . ... . ... ... ..
Gaussian Convergence and Inequalities . ....................
2.1 Gaussian CONVErgence . .. ...........ovueuineeennn ..
2.1.1  Central Limit Theorem . ... ....................
2.1.2  Empirical Median. . . . .......... ... ... L.
2.1.3  Gaussian Approximation for Binomials ... .........
2.2 Quantitative Results . ... ........ ... ... . ... .. .. ... ....
2.2.1  Moment Inequalities . . . .. .....................
2.2.2  Exponential Inequalities . ......................
Estimation Concepts . . . .. ........ ... ... . ... ... .........
3.1 Empirical Estimators . . .. ........ ... ... ... ... ......
3.2 CONMrasts . .. vvv et
3.3 Functional Estimation . .. ............................
34 Division Trick ........... . ... . . ..
3.5 A Semi-parametric Test. .. ............. . ... .. ......
Stationarity . . .. ............... ... ...
4.1 Stationarity . ... ...... ...
4.2 Spectral Representation . . .. ............ ... ... ... .....
4.3 Range and Spectral Density. . . .............. ... ... ....
43.1 Limit Variance . ... .............. .
4.3.2  Cramer-Wold Representation . ..................
44  Spectral Estimation . . . ................. .. ... ... .....
4.4.1 Functional Spectral Estimation . .................
442  Whittle Estimation . ... .......................
4.5  Parametric Estimation . .. ........ ... ... . . o o L.
4.6 Subsampling............. .. i i i i

XV



XVi Contents

Part I Models of Time Series

5 Gaussian Chaos. .. ........ ... . ... ... ... ... . ... .. 73
5.1 Gaussian Processes . . .. .......... .. ... 73
5.1.1  Fractional Brownian Motion . .. ................. 74

52 Gaussian Chaos .......... ... ... . .. ... .. 78
5.2.1 Hermite Polynomials ......................... 80

5.2.2 Second Order Moments . ...................... 86

5.2.3  Higher Order Moments. . ...................... 90

5.2.4  Integral Representation of the Brownian Chaos . ... .. 94

5.2.5 The Fourth Order Moment Method . . ... .......... 96

6 Linear Processes . . . ........... ... . ... ... 101
6.1  Stationary Linear Models . ........................... 101

6.2 ARMA(p,q)-Processes . ... .......cuiiiiiiin.. 104

6.3  Yule-Walker Equations. . . .............. ... ... ... . ... 107

6.4 ARFIMA(0,d,0)-Processes . . .. ........ovuuuenuenn... 108

6.5 ARFIMA(p,d,q)-Processes. ...............cuiinioo... 112

6.6  EXtensions .. ............ ... 113

7 Non-linear Processes . . . .. .............. ... . . ... .. ... ... 115
7.1 Discrete Chaos . . ........... ... 115
7.1.1  Volterra Expansions . . .. ...................... 115

7.1.2  Appell Polynomials .......................... 117

7.2 Memory Models . . ...... ... ... ... 120
72.1 Bilinear Models .. ................ ... .. .. ..... 122

722 LARCH(oco)-Models. . . ............. oo, 127

7.3  Stable Markov Chains. . .. ........................... 128
73.1 AR-ARCH-Models. . ......................... 131

7.3.2 Moments of ARCH(1)-Models .................. 133

7.3.3  Estimation of LARCH(1)-Models . ............... 135

7.3.4 Branching Models ............. ... ... ... .. .. 144

7.3.5 Integer Valued Autoregressions. ................. 147

7.3.6  Generalized Linear Models . . . .................. 149

7.3.7 Non-linear AR(d)-Models . . .................... 154

7.4 Bernoulli Schemes ........... ... ... ... . ... ........ 155
7.4.1 Structure and Tools .. ........................ 155

742 Couplings ........ ... 162

8 Associated Processes . ... ....... ... ... ... ... .. ... ... 167
8.1  ASSOCIAtiON. . ... ... ... 167

8.2 Associated Processes. . ... ......... ... .. ... .. 169

8.3 Main Inequality ......... ... ... ... .. 170

84 Limit Theory . ..... ... .. .. 172



Contents xvii

Part III Dependence

9 Dependence. ............ . . ... ... 177
9.1 Ergodic Theorem . ............. ... . . ... . ... 177

9.2 Range ....... .. . ... 186

10 Long-Range Dependence. . . .............................. 189
10.1 Gaussian Processes . . . ......... ... 189

10.2  Gaussian Polynomials . . .. ............. . ... ... ...... 191

10.3 Rosenblatt Process .. ............. ... ... ... . ... ... 192

10.4 Linear Processes . . .. ......... ... 195

10.5 Functions of Linear Processes . ... ..................... 196

10,6 More LRD Models . ........... . ... . ... 198
10.6.1 Integer Valued Trawl Models .. ................. 198

10.6.2 LARCH-Models. ............................ 201

10.6.3 Randomly Fractional Differences. ... ............. 202

10.6.4 Perturbed Linear Models. . ..................... 203

10.6.5 Non-linear Bernoulli-Shift Models. . .............. 203

11 Short-Range Dependence . ............................... 205
11.1 Weak-Dependence ............ ... ... .. ... ... ... ... 205

11.2 Strong Mixing . ... ... 206

11.3 Bootstrapping AR(1)-Models. ... ...................... 209

11.4 Weak-Dependence Conditions . . .. ..................... 211

11.5 Proving Limit Theorems . .. ........ ... ... ... ... ... 219

12 Moments and Cumulants ... ............................. 225
12.1 Method of Moments . . .. ...t .. 226
12.1.1 NOtationS . . . . oottt et e et 226

12.1.2 Combinatorics of Moments . . .. ................. 228

12.2 Dependence and Cumulants. . . ........................ 230
12.2.1 More Dependence Coefficients . ................. 231

12.2.2 Sums of Cumulants . ......................... 235

12.2.3 Moments of Sums . ................. ... . ... .. 236

12.2.4 Rosenthal’s Inequality ........................ 238

12.3 Dependent Kernel Density Estimation . .................. 240
Erratum to: Non-linear Processes. . . . .......................... El
Appendix A: Probability and Distributions. . . . .................... 247
Appendix B: Convergence and Processes .. ....................... 275
Appendix C: R Scripts Used for the Figures. . . .................... 287
References . . .. ... ... .. .. . . . . . 301



List of Figures

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

2.1

3.1

32

33

4.1
4.2

5.1
52
53
54
5.5
6.1
6.2

6.3
6.4

Accuracy of Gaussian approximation for binomials. We
represent the renormalized distribution of B(n,3/10) with

the A/(0,1) density, forn =30, and n =100 ..............
Proportion of heads among n tosses of a faircoin . ..........
Empirical cumulative distribution of fuel consumption

of 32 cars. ... ...
Sample distribution function and a kernel estimate
ofthedataof Fig. 3.2. ... ... ... . ... ... ... .. .. ...
Annual flow of Nile River at Aswan 1871-1970 .. ..........
Correlograms of the annual flow of the Nile River

in Aswan 1871-1970. See Fig. 4.1. ... ... ... ... ... .. ...
Fractional Brownian motion simulated with H = 0.30

and evaluated in 1024 points . .. ........... ... ... ... ...
Differenced time series of Fig. 5.1. This process

isafractional noise. . . ....... .. ... L L il
Fractional Brownian motion simulated with H = 0.90 and
evaluated in 1024 points. . .. ......... ...
Differenced time series of Fig. 5.1 . ......................
Hermite polynomials. . . ............. ... .. ... .. .......
Simulated trajectory of an ARMA (1,1) Here,

X, = 0.6X, | +¢&+0.7¢,_; with, g ~N(0,1)...............
Sample simple and partial correlograms of the series

of Fig. 6.1. ... ..
ARFIMA (0,d,0) trajectories for different values of d........
Sample correlograms of ARFIMA trajectories for different
values of d. See Fig. 6.3. .. ... ... ... ... . ... .. .. .. ...

33
50

59

111

XiX



XX

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

7.1

1.2

7.3

7.4

7.5

7.6

1.7

7.8

11.1
11.2
Al
A2
A3
A4

List of Figures

Simulated trajectory of an bilinear process and

sample autocorrelation function. Here, X; =

0.75X,_1 + &1+ 0.6X,_1&_1 with & ~N(0,1) ............. 123
Simulated trajectory of an ARCH(2) process.

Here X, = /02¢, with 0 = o® + f°X> | +~°X>, and

&E~N(0,1). Weused a =0.5,=0.6and vy =0.7 ......... 133
Simulated trajectory of an GARCH(1,1). Here, X, = \/a»? &

with 0'12 =a?+ ﬁ2Xt271 +’yzar271 and & ~N(0,1). We used
0=05=06andy=0.7 ...... ... .. ... ... ... 134
NYSE returns. Source: Shumway and Stoffer (2011), p. 7.

The data are daily value weighted market returns from

February 2, 1984 to December 31, 1991 (2000 trading days).

The crash of October 19, 1987 occurs at r =938. .. ......... 134
Simulated trajectory and simple correlogram of an LARCH

(1,1) process. Here X; = &(1 + f,x,—1) with & ~ 3(0.95).

Weused f; =045, ... 136
Simulated trajectory and simple correlogram of a switching

process. Here, X, = éfl)Xt,l + 552) with 551) ~B(0.5) and

¢? ~ N(0,1). This model switches between a random walk

and an iid behaviour. . . ....... ... .. 146
Simulated trajectory and simple correlogram of INAR(1).

Here, process satisfying X; = o0 X, + {, with {, ~P(2)

and B(0.5) thinning operator . .......................... 148
Simulated trajectory and simple correlogram of INGARCH.

Here, X, ~P(\;) with A\, =0.5+0.25X, 1 +05N_13 ........ 151
Asymptotic independence . . ... ... . 206
A non-mixing AR(1)-process, and its autocovariances . . .. .. .. 207
Convex function as supremum of affine functions ........... 252
Gaussian white noise of variance 1.......... ... ... ... .... 266
Standard normal density . ... ...... ... L 266

Cumulative distribution function of a N'(10,2) ............. 266



Part I
Independence and Stationarity

This part provides basic references to probability theory useful for time series
analysis; namely, we provide some details on stochastic independence. Gaussian
approximation is then considered in the same spirit of extensions outside of the inde-
pendence properties. We then recall some concepts of statistics, namely those which
extend to time series. The final chapter is dedicated to introduce the basic concept
of stationarity of time series.



Chapter 1 ®)
Independence i

This chapter deals with the standard notion of stochastic independence. This is a cru-
cial concept, since this monograph aims to understand how to weaken it, in order to
define asymptotic independence. We discuss in detail the limits of this idea through
various examples and counter-examples. Below we denote by (§2, A, IP) the underly-
ing probability space and we shall make use of the notations and concepts in Appendix
A without additional reference, e.g. examples of distributions are provided in Sect.
A.2, and specific notations are given in the Index.
We first recall independence of two events:

Definition 1.1.1 Events A, B € A are independent in case

P(AN B) =P(A)P(B).
To define the independence of more than two events it is worse considering the
independence of several random variables:

Definition 1.1.2 The random variables X1, ..., X, (with values for instance in the
same topological space E) are independent in case, for any g;,...,9, : E = R
continuous and bounded:

B(g1(X1) % -+ X g (X)) = E(g1(X1)) x -+ x E(gn(X,).

Definition 1.1.3 Events (Ay, ..., A,) are independent if the random variables X | =
I4,,..., X, = 1L, are independent.

Setting g;(x) = (x VO) A1if j € E and g;(x) = 0 otherwise, derive as an exercise
the more usual definition of a finite family of independent events:

© Springer International Publishing AG, part of Springer Nature 2018 3
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4 1 Independence

Proposition 1.1.1 Events (A, ..., A,) are independent if and only if, for each
Ec{l,...,n},
]P’(ﬂA,») = [ew@o. (1.1)
icE icE

Remark 1.1.1 Let I be an arbitrary set (finite or infinite). A family (A;);¢; is inde-
pendent if the previous relation (1.1) still holds for each finite subset £ C 1.

Definition 1.1.4 The random variables X1, ..., X,, are called pairwise independent
if each couple (X;, X ;) is independent fori # j,and 1 < i, j < n.

In case E = R and the characteristic functions ¢x,, ..., ¢x, (see Definition A.2.3
and Lemma 2.15 on p. 15 in van der Vaart (1998)) are analytic around 0, then the
previous remarks imply that the independence of (X, ..., X,,) holds if and only if:

OX ot X, = Pxy X -0 X Py,

Assume now that X; admits a density f; with respect to some measure v; on E;
then an independent random vector (X1, ..., X,) € E| x --- x E,, then this vector
admits the density

f(xl"nvxn)=fl(xl)"‘fn(xn)a v(xl:“"xn) eEl X oo XEn

on the product space E| x - - - X E, with respect to the product measure v; X - - - X 1,,.

If Ay, ..., A, € A are events then simple random variables write X; = 14, €
{0, 1} and the independence of couples (X;, X;) is easily proved to coincide with
the independence of couples of events A;, A;.

The independence of the family of events Ay, ..., A, is written as:
P((A:) =[P, VE C{l,....n}.
ieE ieE

Example 1.1.1 As a probability space consider a model (£2, A, P) for two (fair)
independent dice
2=11,2,3,4,5,6", A=7P),

and the uniform probability P on this finite set with 36 elements.
Let A, B be the events that the dice show an even number, then

1
P(A) = P(B) = 5.

Then, those events are independent.

Now let C be the event that the sum of the results of both dice is also even then
AN B C C and on the event A N C the second dice is necessarily even too, so that
ANC CB.



1 Independence 5

Analogously B N C C A so that it is easy to check that A, C and B, C are
independent pairs of events,

P(A N B) = P(A)P(B),
P(ANC) = P(A) P(C),
P(B N C) = P(B)P(C),

(those values all equal % = % . %).
On the other hand AN BN B = AN B thus

P(ANBNC) = ‘1—1 #P(A)P(B)P(C) = %

Then the triplet of events (A, B, C) is not independent. We have proved that the
events A, B, C are pairwise independent but not independent on this probability set
with 36 elements equipped with the uniform law.

Another very similar example is as follows.

Example 1.1.2 Consider 2 = [0, 17> with its Borel sigma-field and with P the
uniform distribution. The events A = [0, 1] x [0, 1], B = [0, 31> U [4, 1]* and
C =10, 1] x [0, 5] admit probability 1. Further ANB = ANC = BNC = [0, T
has the probability }1 = % . %, thus those events are pairwise independent. They are
not independent since P(A N BN C) = ; # P(A)P(B)P(C) = 3.

Remark 1.1.2 (k-wise independence)

e From the previous example, it is possible to exhibit three pairwise-independent

random variables which are not independent, namely X = 14, Y = 1 and
Z = lc.
Pairwise independence should be carefully distinguished from independence.

e Foreach p, (Derriennic and Klopotowski 2000) exhibita vector X = (X, ..., X))

€ R?” whose components are not independent but such that any sub-vector with
dimension strictly less than p is independent. A concomitant counter-example to
the CLT is given in Bradley and Pruss (2009). It is always possible to build iid
sequences with a given marginal distribution on R, see Example A.2.3. Hence the
above constructions really make sense.

e Let Xy, ..., X, beindependent Bernoulli b(p)-distributed random variables, then
the calculation of generating functions implies that X; + --- + X,, ~ B(n, p)
admits a binomial distribution.

The following result is essential but very simple; it is thus stated as an exercise in
this book:

Exercise 1 Let X, Y € R be real valued random variables with EX? + EY? < oc.
If (X, Y) are independent then Cov(X,Y) = 0.
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Solution to Exercise 1. In case the variables are bounded, then independence indeed
asserts that EXY = EXEY.
The general unbounded case is derived from a truncation by setting

Xu=XV(=M)AM

and use of the Lebesgue dominated convergence theorem with M 1 co.

Exercise 2 Let X, R € R be independent random variables with X symmetric (i.e.
— X admits the same distribution as X ), EX* < oo and if moreover P(R = £1) = %
then we set Y = RX.

Prove that:

o Cov(X,Y)=0,
o If|X| is not almost surely (a.s.) constant then X, Y are not independent.

Remark 1.1.3 An important use of this exercise in provided in Exercise 68, much
later in those notes.

Solution to Exercise?. The first equality follows from independence in the case of

bounded X and dominated convergence yields the general case as in Exercise 1.
The second result also follows since because |X| is not a.s. constant there is

an even function g such that Varg(X) # 0, now since g(X) = ¢g(Y), we have:

Cov(g(X), g(Y)) # 0.

Exercise 3 If the random variables X, Y € {0, 1} admit only two values and if they
satisfy Cov(X,Y) = O, then prove that the pair (X, Y) is independent.

Hint for Exercise 3. To prove the independence of those random variables one needs
to prove the independence of the four following couples of events:

(A4, Bp) foralla,b =0, or 1.

Here we set A, = (X = a) and B, = (Y = b) fora, b € {0, 1}2.

Relation Cov(X, Y) = 0 infers as the independence of the events A, By,
Relation Cov(X, 1 — Y) = 0 infers as the independence of events Ay, By,
Relation Cov(l — X, Y) = 0 is the independence of A, and By,

Relation Cov(l — X, 1 — Y) = 0 is the independence of Ay, and By.

Note that either Gaussian or associated vectors fit the same property: orthogonality
implies independence too, see in Appendix A.3, and Chap. 8 respectively.
Exercise 3 above admits tight assumptions as the following exercise also suggests.

Exercise 4 Exhibit random variables X € {0, &1}, and Y € {0, 1} which are not
independent, but are orthogonal, in other terms such that Cov(X, Y) = 0.
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Solution to Exercise4. Consider the uniform random variable X on the set {—1, 0, 1}
and ¥ = Ix—_g), then EX = 0, Cov(X,Y) = EXY = 0 because their product
vanishes XY = 0 (a.s.) while these random variables are not independent. Indeed
with f(x) = T=0y and g(x) = x we derive

Ef(X)g(Y) =P(X =0) #Ef(X)Eg(Y) = P*(X =0).

This concludes the proof.

Example 1.1.3 (Bernoulli INARCH(q) models) Set
X = ly<ng,

for some iid and uniform sequence (Uy) on [0, 1] and ), is a random stationary
sequence measurable wrt X;_1, Xy_», ... as in Example7.3.4. If some function g :
R? — R satisfies

q
lg(x") — g(x)| < Zajlx} —xjl, Yx=(xp, ., x), X = (x, . xp) € RY
j=1

for coefficients a; > 0 with o« = a; +--- +a, < 1, then Theorem 7.3.1 in Sect. 7.3
proves the existence of a stationary sequence (see Definition4.1.1) with Bernoulli
marginals and such that Ay = g(Xy—1, ..., Xs—y). Ife.g.

and Xo ~ b(p) with p = P(Xo = 1) = EXy = IEX% from stationarity. We derive
p =d +apsothat p =d/(l —a), and the relation a + d < 1 implies p < 1. Set
ry = Cov(Xo, Xy) thenrg = p(1 — p) #0.
Consider g(x1, ..., x;) =d+ax, fora > 0,d > 0anda+d < 1, then for each
k>0,
re = EXo Xy — p* = EXo(d + aXi—y) — p*

We successively derive:

L d
ad
rg=EXoXy—p*=pd+a—p =g 50 -a=d)#0.
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e if 0 < k < g, then

re = EXo(d +aXs_y) — p*
=dp — p* +a(ri—q + p*)
= p(d — (1 —a)p) +ari,
=ary_q.

2

Thus iterating this relation gives r, = a“ry so that r, = 0.

We thus proved that for each ¢ > 2 the vector (Xo, ..., X,_1) associated to this
INARCH(g) model is pairwise independent but (X, X1, ..., X,) is not an indepen-
dent vector.

We conjecture that the vector (Xo, . .., X,—1) isinfactindependent; Remark 1.1.2

provides an example of this situation.



Chapter 2 ()
Gaussian Convergence and Inequalities Gzt

This chapter describes a simple Gaussian limit theory; namely we restate simple cen-
tral limit theorems together with applications and moment/exponential inequalities
for partial sums behaving asymptotically as Gaussian random variables. A relevant
reference for the whole chapter is Petrov (1975), results without a precise reference
should be found in this reference, and the others are in Hall and Heyde (1980). Topics
related to empirical processes are covered by van der Vaart and Wellner (1998) and
Rosenblatt (1991).

Gaussian behaviours are often observed in the case of time series from the accu-
mulation of small events.

2.1 Gaussian Convergence

Itis a standard feature that accumulation of infinitesimal independent random effects
are accurately approximated by the Gaussian distribution (see Sect. A.3 for more on
Gaussian distributions) as proved in the monograph (Petrov 1975). The best way
to make this rigorous is illustrated by the Lindeberg method. Definitions of the
convergence in distribution may be found in Appendix B.

Definition 2.1.1 We denote C’g([u, v]) the set of k-times differentiable functions
on the interval Ju, v[, such that f¢) can be continuously extended on [u, v] if
j=0,... k.

In case the interval of definition is obvious, we simply write C,’j.

Lemma 2.1.1 (Lindeberg) Assume that U, ..., Uy are centred real valued inde-
pendent random variables such that E|U ; [>*¢ < oo, for some € € [0, 1].

Let Vi, ..., Vi be independent random variables, independent of the random
variables Uy, . .., Uy and such that V; ~ N(O, IEUJ?) are centred Gaussians with

the same variance as U}, and g € Cg (R).
© Springer International Publishing AG, part of Springer Nature 2018 9
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10 2 Gaussian Convergence and Inequalities

SetU =Uy+---+UrandV =V, +---+Vy, then, we obtain the two bounds:

>~

IE(g(U) —g(V)| < 4 Z (U (19" oo A (19" ool Ui))) -

<41g"1 Ng" % ZE|U,~|”<

Remark 2.1.1 The first bound may involve ¢ = 0 and only square integrable random

variables are needed.
k

The second bound is meaningful in case Z E|U; |>t¢ < 0o and usually needs
i=1
e > 0.

k
Indeed fore = 0, E|V|*> = X:IE|UJ-|2 is the limit variance o2 > 0.
i=1

Proof of Lemma2.1.1.Set Z; = Uy +---+Uj_1 + Vizu + -+ Vy and 0; =
9(Z; +Uj)—g(Z; + V) for1l < j <k, then

k k
E(g(U) — g(V)) = ) E(9(Z; +Uj) — g(Z; + V) = ) _E5;.

Jj=1 j=1

Set for simplicity 0 =gz+u)—ug'(z) — l u*g" (z) then Taylor formula with order
2 entails |§] < uzlg”(z) g’ (t)] for somet €lz, z +ul.
This 1mphes from either the mean value theorem or from a simple bound that

6] < (uzug”nm)A( lu| ||g”’||oo)
lg” |
@*1lg"ls0) (1A<—| | ==
lg" lloo
9" llso \©
u?lg" [l (—| ||| ,,”°°

- 2
= 27Nl llg" oo N9 N5

IA

Apply the above inequality with z = Z; and u = U; or V;. In order to conclude we
also note that

3/2
E\V;[* =E|U;I>, and  E|V;’ =E|Z] (BU;)™"",

for a standard Normal random variable Z ~ A/(0, 1). The Holder inequality (Propo-
3/2
sition A.2.2) yields (EU}) <E|U;P.
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Integration by parts implies

4
E|Z]P= — <2,  thus, (E|Z]?)*? ~2.015 < 3.
V27

From the Jensen inequality (Proposition A.2.1) we derive, for 0 < e < 1:
E|V [ = (BU?)' T2 EIZP < (BIZP)FEIUPY < 3E|U .
Now

EIS;1 < 27Ug" 15 Ilg” IE (1U; 12 + 1V;17F9)
< 4llg"II5 Mg IS EIU; 1T

This yields the desired result.
As a simple consequence of this result we derive:

Theorem 2.1.1 (Lindeberg) For each integer n, let (C,r)kez be independent
sequences of centred random variables. Suppose

o0
2 2
E ]Equk o0 07 >0,

k=—00
00

Z Eg‘ik Ic, 1>} —n—o0c 0, foreache > 0.

k=—00

Then the following convergence in distribution (defined in Appendix B) holds:

o]

Z Cn,k_ﬁ)n—mo N(Ov 0'2)'

k=—00

Proof Use the notation in Lemma?2.1.1. Set Uy = G« Iy, ,|<¢), for a convenient
€ > 0. From the first inequality in Lemma?2.1.1 we get that

and setting

we derive
Y EUP <C-e

k=—00



12 2 Gaussian Convergence and Inequalities

Now from independence,

o0
E (¢ — U)* < Z B¢, Lie,u1=e) = an(e).

k=—00

The triangle inequality implies 0> = EU? —,,_, «, o*. Those bounds together imply
for Z ~ N(0, 1), a Normal random variable:

[E(g() — g(a2))] < [E(g(¢) — g(U))]
+ |E(g(U) — g(0,2))]
+ |E(g(0,2) — g(cZ))|.

To prove the result use |E(g(0,Z) — g(cZ))| < |9’ lE|Z]| x |0, — o] and select
€ = ¢, conveniently such that lim, (a,(¢,) + €,) = 0.
Then the result follows.

In order to prove the power of this result the following subsections derive some other
consequences of the Lindeberg lemma, see van der Vaart (1998) for much more.
The classical Central Limit Theorem?2.1.2 is a first consequence of this result. Then
the asymptotic behaviour of empirical medians are derived in the Proposition2.1.1
following the proof in van der Vaart (1998). Finally the validity of the Gaussian
approximation of binomial distributions is essential for example in order to assert
the validity of y2-goodness-of-fit tests. To conclude this section a simple depen-
dent version (see Bardet et al. 2000) of the Lindeberg lemma will be developed in
Lemma11.5.1 below.

2.1.1 Central Limit Theorem

Theorem 2.1.2 The Central Limit Theorem ensures the convergence

1
ﬁ(xl + X)) =5 N(0,EXD),

for independent identically distributed sequences with finite variance.

Proof This follows from Theorem2.1.1. Set (, x = X/+/n. The only point to check
is now lim EX% ]I‘leﬁ = 0, which follows from IEIXI2 < 00.
n—00 -

Exercise 5 Provide an alternative proof of Theorem2.1.2 using Lemma?2.1.1.
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Setk = n and U; = X;/+/n. To prove Theorem2.1.2 simply note that the random
variable X satisfies the tightness condition

| X0l

Jn

EXM2A< )—n%wo

The result is derived from Exercise 86.

Remark 2.1.2 Bardet and Doukhan (2017) prove the existence of some convex non-
decreasing function on R* — R7 such that E¢)(Xy|) < oo and lim,_, o, ¢(x)/x*> =
oo. It also implies that the Orlicz norm of Xj is finite, the following expression is
indeed a norm:

1X]ly = inf {u -0/ e < 1},

The above point is useful to derive CLTs as sketched in Remark 8.4.1.

2.1.2 Empirical Median

Here we follow the elegant method in van der Vaart (1998) to derive the asymptotic
behaviour of a median. In order to make it easier we assume the following regularity
condition.

Definition 2.1.2 An atom of the distribution of a random variable Y is a point such
that P(Y = a) # 0.

In case such a distribution admits no atom we shall say that it is atomless or
continuous, since its cumulative distribution function is then continuous.

Suppose that the number of observations n = 2N + 1 is odd; we consider here an
independent identically distributed n-sample Y1, ..., Y, with median M

1
F(Y; < M) < 5 <P(Y) > M),

To simplify notations and make this median unique, assume this law is continuous.
The empirical median of the sample is the value M, of the order statistic with rank
N+ 1

Proposition 2.1.1 Assume that (X;) is an atomless identically distributed and inde-
pendent sequence. If the cumulative distribution function F of Y admits a derivative
~ at point M then

VM, = M) S N (0, %) :
4y
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Proof Notice that P(s/n(M,—M) < x) =P(M, < M+ %) is the probability that
n

N + 1 observations Y;, among the n = 2N + 1 considered, satisfy ¥; < M + x//n:

PW/My = M) =) =P( Y Wy zaraeym = N +1).
i=1

Setting
pn =P <M +x/vn)
and
¥, — Mi=mis/yim — P
, \/npn(l - pn)
yields
- N+1- npn
P(\/;(Mn - M) < x) = P<Sn =< Xi,n)a Sp = —F/————.
Z Y "Pn(l - pn)

i=1

The continuity of the distribution of Y, at point M implies p,, — % and its differen-
tiability yields s, — —2x+. The Lindeberg theorem implies

3" Xin Suoo N(O, 1),

i=1
allows to conclude.

Remark 2.1.3 If instead of the continuity of X’s cdf' we deal with more general
properties then only the regularity around the median is really required.

2.1.3 Gaussian Approximation for Binomials

Theorem 2.1.3 Let S, ~ B(n, p) be a binomial random variable (see Exam-
pleA.2.1). Fix some € € (0, 1], then using Landau notation:

1
sup  sup A, ,w) =0——),
np(l—p)e>1 uekR ’ ((np(l - p))%)

" A, ) = ‘]P(S"_—”p < u) — P
PP N mp(T=p) ~

't is the atomless assumption.
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0.4 — 0.4
0.3 0.3
2 >
% 0.2 - S 02
a a
0.1 4 0.1+
0.0 0.0 /f(« %\h\
I T T T 1 I T T T 1
-4 -2 0 2 4 -4 -2 0 2 4
X X

Fig. 2.1 Accuracy of Gaussian approximation for binomials.
We represent the renormalized distribution of B(n, 3/10) with the A/(0, 1) density, for n = 30, and

n =100

Proof We shall use Lemma?2.1.1. Rewrite S, = by + - - - + b, withiid by, by, ... ~
b(p). Set
b; —
= —p, 1<i<n.
vnp(l —p)
Then X, ..., X, are centred independent identically distributed and
Eb; = E(b; — p)* = p(1 — p).

Let0 < p<1—¢ N~N(0,1)and f € Cj. We get from Lemma 2.1.1:

An(f) = ‘E(f(%) — fa)|

1" oo X
== §E|Xi|

A

T e np(=p)

Exercise 6 below is useful. The relation

P(N € [u,u+n]) <

-
3

entails

An(fufn,n) + IP(N € [u, u— 77])
<A, )
< Ay(fuy) +P(N € [u, u+nl).
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Thus |
App(u) < C(—+n>,
. 3 /np(d = p)

for some constant not depending on n, 1, € and p.
The choice = (np(1 — p))~'/® allows us to conclude.

Remark 2.1.4 Theorem?2.1.3 validates the Gaussian approximation if the product
np(1l — p) is large; the classical heuristic np > 5 is used in statistics to validate the
Gaussian approximation of binomials. Figure 2.1 reports the effective approximation

of renormalized binomials by a Normal distribution.

This result is not optimal and the exponent % may be replaced by %, use

(Petrov 1975), theorem 3 on page 111. To this aim assume that p = p, and
np,(1 — pp) =400 00 then it is possible to choose any sequence n =1, =, 0
above in order to get the convenient convergence rate.

Exercise 6 For each 7 > 0, u € R there exists a function f, , € C}f with

-3
]I[u+7],oo[ S II[u,oo[ f fu,r] and ”fu/t,n”OO = O (77 ) .

1. Setfirstu = 0,n = 1. Then we set g(x) = 0if x ¢]0, 1[ and:

(a)
gx) =x*(1—x)*  x €0, 1L

Then g € ;.
() |
g(x) = exp (—m> ., x€lo,1[.

Then g € C;°. Indeed each of g’s derivatives can be written as g (x) =
F(x)g(x) for some rational function F' with no pole excepted 0 and 1.

Consider f(x) = G(x)/G(0) where we set

1
G(x) :/ g($)ds, for0<x <1,

and f(x) = 0 for x > 1 with g as above.
2. General case. With f as before set f, ,(x) = f(u + x/n):

®
X
—)5 ™ oo

1
900 = — (u+ 22 for k=0,1,20r3.
' Ui Ui Ui
For the second function, the number k may be chosen arbitrarily large.

This allows us to conclude.
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2.2 Quantitative Results

2.2.1 Moment Inequalities

We now derive two important moment inequalities respectively called the Marcin-

kiewicz—Zygmund and the Rosenthal inequalities, they follow from Hall and Heyde

(1980), see respectively Biirkholder and Rosenthal’s theorems2.10 and 2.12.
Alternative proofs of these results will be obtained below.

Lemma 2.2.1 Let (X,,), be a sequence of identically distributed, independent and
centred random variables with finite p-th order moment, for some p > 1.

Then, there exists a constant C > 0 which only depends on p such that the
following inequalities hold:

e Marcinkiewicz—Zygmund inequality:
E|X| 4+ X,|” < Cn?EX".
e Rosenthal inequality:
E|X; + -+ X,|” < C(nEX?)* + nEX)).
Remark 2.2.1 (Rosenthal’s inequality) For p = 2 the Rosenthal inequality is:
E(X) 4 -+ X)* < C(nEX?)? + nEX}).

The second inequality also extends to non identically distributed, independent and
centred random variables if p > 2.
There exists a constant C only depending on p, and such that

n ]Zl n
ElX;+ -+ X, <C <ZEX?> +Z]E|Xi|p
i=1 i=l1

Proof We restrict the proofs to p € 2N* and p = 4, respectively. Indeed the tech-
nique suitably extends under dependence.

Simple combinatoric arguments yield:

E(Xl+"'+Xn)2p:i“.iEXil"'Xizp

=1 iyy=l

n

ZZ...ZT(i],...,in)

=1 iyy=l
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<D DTGy

i1=1 i2p=l

=@p!t Y TG izl

1<i|<-<ip=<n

Now from centring conditions we see that terms 7" vanish except for cases when
iy = i2,...,02p—1 = i2p, since otherwise an index i would be isolated and the
corresponding term vanishes by using independence.

Among A = {iy, i4, ..., i2,} which take precisely n” values, one needs to make
summations according to Card(A).

If all those indices are equal 7 = EX(%” and there are n such terms, and if they
are all different, it is (EX, (2))” .

For p = 2 we get the second point in this lemma.

For any p > 1, just use the Holder inequality (Proposition A.2.2) to derive the
first result.

The Rosenthal inequality may be improved:

Exercise 7 (Rosenthal’s inequality with order 4) For independent and centred ran-
dom variables with order 4 moments

n 2 n
EIX 4+ X,[*=3 (Z Ex,.2> + ) (EX] - 3(EXD))

i=1 i=1

n 2 n
<3 <Z EX}) +) EX;.
i=1 i=1
Hint. As above, we write:
n
E(X;+ -+ X)*= Z EX;X; Xy X; = My + My + M3 + M.
ijk =1
Here

L<i )k,
carali, . k.

My= Y EX:X;XeX), s=1234,
k1
k. 1}

)1A

stands for summations over indices such that s of them are distinct.
n

This means M| = E EX?, and moreover M3 = M, = 0 since one index is
i=1

distinct from all the othel:rs in such cases; independence and centring proves that such
terms indeed equal 0. Now M, deserves a bit more attention and one index i, j, k, or/
differs from the others; independence and centring again proves that the contribution
of such terms is 0 except in case we have two couples of equal indices.
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There exists six choices of such unordered couples:

n 2
My=6 Y  EXEX]<3 (Z ]EX,?) .

I<i<j<n i=1

The above bound is the only one which is not an equality so that we have the sharp
identity

n 2 n
E(X;4---+ X,)* =3 (Z EX?) +y (Exj‘ - 3(EX3)2). 2.1)

i=l i=1

This proves the optimality of the constants. The constant 3 is also the fourth order
moment of a standard Normal random variable.

As an exercise, we suggest a really simple relation which we were not able to find
in the literature.

Exercise 8 For independent and centred random variables with finite third order
moments

E(Xi+ -+ X' =Y _EX]. (2.2)

i=1
Hint. As before

n n n

EXi 4+ X0 =) > Y EX;X; Xk

i=1 j=1 k=1

To conclude, just note that any non vanishing term in this expansion involves triplets
(i, j, k) such that no index is different from the two other indices.
For triplets this simply means i = j = k.

Remark 2.2.2 A simple way to check the optimality the above identities (2.1) and
(2.2) is to turn to the Gaussian setting, here X; ~ N(0, aiz) are independent for
i=1,...,n.

And

S = Zn:Exi ~N@©,0%), o= Xn:o,?,
i=1

i=1

then relation (2.1) becomes a tautology

ES* = o'EN* =EN‘0* + ) ol (BN* - 3),

i=1
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since EN* = 3 for a Normal A/(0, 1)-r.v. (see Sect. A.3). Relation (2.2) is again the
trivial identity 0 = 0 since EN? = 0.

Exercise 9 (The Weierstrass theorem) This result states that a continuous function
over the interval is the uniform limit of some sequence of polynomials. Let g :
[0, 1] — R be a continuous function we define:

w() = sup |g(x) — gyl

[x—yl<t

This expression satisfies lim; o w(t) = 0 since Heine’s theorem2.2.1 (recalled
below) entails that the function g is uniformly continuous.

Let X1, X2.x, . .. be iid random variables with marginal Bernoulli b(x) distribu-
tions (Bernoulli distributed with the parameter x), we denote

1
Sn.x = ;(Xl,x +-- Xn.x)'

Set g, (x) = Eg(sn,x) :

. Prove that g, is a polynomial with degree n with respect to the variable x.
Prove the bound:

N =

1 1
Var g(S,,,) = —Var X, < —.
n 4n
3. Apply the Markov inequality to derive:

lim sup [g,(x) —g(x)| =0.

n—00)<y<|
4. Assume that g is an Holder function, then there exist constants ¢, v > 0 with
lg(x) —g(y)| <clx —y[", foreachx,y €[0,1].

Propose explicit convergence decay rates in the Weierstrass approximation theo-
rem.
5. Now use Lemma?2.2.1 for moment inequalities with even order 2m.
Then
E(Sn,x - gn(x))zm = cn—m’

for a constant which does not depend on x € [0, 1].
6. Use the previous higher order moment inequality to derive alternative convergence
rates in the Weierstrass theorem.

Hints.

n

k k
L g.(x) = Z (n)xk(l - x)nikg (;) .

k=0
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2. Prove that x(1 —x) < 1if0 <x < I.
3. Sett > 0 arbitrary and A, , = (|S,,, — p| > t), then:

gn(x) — g(x) = E(g(Sp.x) — 9(x))
= E(g(Snx) = g(0)) Iy, , + E(g(Sux) — g(p)) Iy ..

From the Markov inequality and from the above second point

1
P(An,x) =< W,

a bound of the first term in the previous inequality is

llglloo

|E(g(Snx) - g(x)) I[A,,,Xl =< 2nt2 s

and from definitions the second term is bounded above by w(#).
Let first n tend to infinity, in order to conclude.
4. Here w(t) < ct” and the previous inequality gives

gl
2nt?

”gn - g”oo =

Setting 1>™7 = ||gloo/(2cn) provides a rate noT
5. From Lemma?2.2.1
E(Syx — ga(x))*" < cEXY 7"

6. Now

clgloe .

”gn _g”oo =< 2n1m + ct

my

Set t>"+7 = C/n™ then a rate is n~ 27 is now provided.

Recall that the continuity at point xy € [0, 1] and the uniform continuity of g :
[0, 1] — R give respectively

Ve >0, 3dn >0, Vx € [0, 1] : [x —xo| < n = |g(x) —g(x0)| <€
Ve>0,3n>0,Vx,yel[0,1]: |x—y| <n= lgix) —g(y)] <e

In the latter case 77 does not depend on x.

Exercise 10 The function x — ¢(x) = x? is not uniformly continuous over R.

1
Hint. By contradiction. Setx =nand y =n + 5 then
n

1
g(y) —gx) =1+ s does not tend to zero as n 1 co.
n
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E.g. (Choquet 1973) proves the fundamental and classical result:

Theorem 2.2.1 (Heine) Let g : K — R be a continuous function defined on a
compact metric space (K, d) then g is uniformly continuous.

2.2.2 Exponential Inequalities

Below we develop two exponential inequalities which yields reasonable bounds for
the tail of partial sums of independent identically distributed random variables. From
the Central Limit Theorem we first check the Gaussian case.

Exercise 11 Let N ~ A(0, 1) be a standard Normal random variable, then derive:

12

ol—

<1 1) - <P(1)=P(N >1) < e
_— = > - .
t ) Jar T T 27

Hint. Use integration by parts and the Markov inequality.
Analogously we obtain:

Lemma 2.2.2 (Hoeffding) Let R, ..., R, be independent Rademacher random
variables (i.e. P(R; = £1) = %).
For real numbers ay, . .., a, set

and assume that

Then:
2
1. P(€>x)<e =, forallx >0,

2
2. P(J¢] = x) < 2e =, forall x >0,

{2
3. Ee+x < 2.

Proof We first prove that for each s € R:

Ee'®t < ¢'/2, (2.3)
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The inequality (2.3) is rewritten as

(es _}_efs) < 652/2.

| =

chs =

Indeed the two previous functions may be expanded as analytic functions on the real

line R, and:
oo 2k 00 2%k

s 2 s
chs:kg;@, es/zzéﬂ.
Inequality (2.3) follows from the relation (2k)! > 2% - k! simply restated as
k+Dk+2)---k+k) =2 -D2-1)---2-1)=2"
Markov’s inequality now implies
P > x) < e ™Ee'*, Vt>0,
because (2.3) entails with independence:
Ee't = ﬁEem"R" < o2,
i=1

For t = x/c we derive point (/).

Point (2) comes from the observation that £ is a symmetric random variable and

P(|£] > x) = 2P(€ > x) for x > 0.
Point (3) is derived from the following calculations:

¢ ¢ t
Eex —1 = 4cIE/ exp <—) dt
0 4c
e t
= 4CE‘/(‘) 11{1552} exp <E> dt

e 1

= 46‘/ E H{t§§2}€7‘dl‘
0
e t

= 40/ P(&? > 1)esdt
0

< 40/ e iedt = 1.
0

Here the Fubini—Tonnelli theorem (see e.g. in Doukhan and Sifre 2001) justifies the
first inequalities while the last inequality is a consequence of the relation (2).



24 2 Gaussian Convergence and Inequalities

Remark 2.2.3 Let R € [—1,1] be a centred random variable, then Ee'® <
= (e’ + e"), and the Hoeffding Lemma?2.2.2 instantaneously extends to sums

> a;R; for R; with values in [—1, 1], centred independent random variables.

Lemma 2.2.3 (Bennett) Let Y1, ..., Y, be independent centred random variables
with |Y;| < M for 1 <i < n, and denote

V= Xn:EYf.
i=1

n

If¢ = Z Y; then for each x > 0 the Bennett inequality holds:

i=1
P(|€| > x) < ZGXP< ( ‘} ))
ZL ’

2
with B(t) = 7 (I4+1)log(l+1)—1).
The Bernstein inequality also holds:

2
P(l¢] > x) < 2exp <—m) .
3

Proof The proof is again based upon Markov’s inequality. We shall make use of the
independence of Y1, ..., ¥,,. We first need to bound above the Laplace transform of
Y;. Using first the facts that EY; = 0 and |EY*| < M*—2EY? for each k > 1 yields:

[e.0]

Ee'V = Z EEY’C <1+EY? Z —IEY" =1+EY?g(t) < exp{EY’g(r)}
k=0

where we set
M_1—tM

g(t) = e

Both from independence and from Markov’s inequality we then obtain:
P(E > x) < V10,

Optimizing this bound with respect to V yields V¢'(t) = x.

Hence
t_ll l—i—x 0
= — 10 _ > s
M £ \%4
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and

Vg(t) t—x t(V+)
PO=x= =y ™

yields Bennett’s inequality.
The Bernstein inequality follows from the relation

t2

(I+0Dlog(l1+1) —1t > m

t
The latter inequality is rewritten (1 + =) B(z) > 1.

To prove it one studies the variations of the function

_p2 r _
tes ()=t ((1+ J)BO) 1).

Note that {
f'(0)=0, and f"(t) = 5((1 +t)log(1 +1t) —1) >0,

then f(0) =0and f'(¢) > 0.

25

Exercise 12 Let g : R™ — R* be an a.s. differentiable non-decreasing function,

then

Eg(€]) = / ()P e (d2) = f JQOB(E| > 2)dz.
and 3V 4M o0

E[§]? < (ﬁ)ﬁ +2P<T)p/w xP e dx.

Hint. From non-negativity, the Fubini—Tonnelli theorem gives

Eg(€]) = / 9P (dz) = / J@P(E| > 2)dz.

Set A = 3V /M then from Bernstein’s inequality in Lemma2.2.3 we get
3V o0
Eg(1€D) = 9(—) + 2/ g (e dz,
M i

and

3V SM [ ,(4Mx\ _,
Eg(l&) < g(g) + 5 |u g/< 3 )e dx,
oz

with x = 3z/4M.
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Hence if g(x) = |x|? for some p > 0,

Eg(1&]) < (%)p + 2p(4—M>p /Oo xPle ™ dx.

3 v
am?

This is a more general form of the Rosenthal inequality in Lemma2.2.1.



Chapter 3 ®)
Estimation Concepts ez

Many statistical procedures are derived from probabilistic inequalities and results;
such procedures may need more precise bounds as this is proved in the present chapter
for the independent case. Basic notations are those from AppendixB.1. Develop-
ments may be found in van der Vaart (1998) and those related with functional esti-
mation may be found in the monograph (Rosenblatt 1991). We begin the chapter
with applications of the moment inequalities in Lemma?2.2.1 which are useful for
empirical procedures. Then we describe empirical estimators, contrast estimators
and non-parametric estimators. The developments do not reflect the relative interest
of the topics but are rather considered with respect to possible developments under
dependence conditions hereafter.

3.1 Empirical Estimators

The behaviour of empirical means are deduced from the behaviour of partial sums,
and below we restate such results in a statistical setting (see Appendix B). The param-
eter is implicit: this is the distribution of X.

Corollary 3.1.1 Let(X,),>0 be anindependent and identically distributed sequence.
IFEX§ < oo then,

- 1
X=-Xi++Xy) »ns00 EXo, as
n

Remark 3.1.1 Note that the ergodic Theorem9.1.1 proves that the simple assumption
E|Xy| < oo ensures indeed this SLLN. We give this result as a simple consequence
of the previous Marcinkiewicz—Zygmund inequality in Lemma2.2.1 for clarity of
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Fig. 3.1 Proportion of heads 1.0
among 7 tosses of a fair coin
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exposition. Convergence in this LLN is simulated in Fig. 3.1; here the 1000 dots are
the values of one trajectory of (X,)1<n<1000-

Proof Let € > 0 be arbitrary then Markov’s inequality entails

— EX}
P(|X|2€)§C'ﬁ-
en

Hence

o0
D PUX,| = 6 < oo,

n=I1

is a convergent series. The a.s. convergence is a consequence of the Borel-Cantelli
lemmaB.4.1.

Now when EX 5 < 00, then the Markov inequality yields L.>-convergence of X, since
Var (X) = Var (X,)/n; the convergence in probability also holds.

Convergence of the cumulative distribution function for a 1000 sample of binomial
distributions with parameter p = 0.5 is also illustrated in Fig.3.2.

This allows us to prove first fundamental statistical result:

Theorem 3.1.1 Let (Y,) be a real valued and independent identically distributed
sequence such that Yy admits the cumulative distribution function F (y) = P(Yy < y)
on R.

Define the empirical cumulative distribution:

] n
Fa(y) =~ > Miyey
j=1

Then EF,(y) = F(y), the estimator is said to be unbiased (see Definition B.5.2),
and

sup |Fn(y) - F()’)| —> 00 0, a.s.
yeR
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Fig. 3.2 Empirical cumulative distribution of fuel consumption of 32 cars

Remark 3.1.2 Figure3.2 represents one trajectory of the cumulative distribution
function.

The data come from the classical mtcars R dataset. According to the docu-
mentation, “the data was extracted from the 1974 Motor Trend US magazine, and
comprises fuel consumption in terms of miles per gallon and 10 aspects of car design
and performance for 32 cars (1973 and 1974 models)”.

Proof The previous SLLN (Corollary 3.1.1) implies the convergence.
The uniform convergence follows from the standard variant of Dini’s theorem in
Exercise 13.

Exercise 13 (Variant of the Dini theorem) Assume that a sequence of cdf satisfies
lim,_, o F,,(x) = F(x) foreachx € R.If F is a continuous cdf then the convergence
is uniform.

Proof Let ¢ > 0 be arbitrary. From the properties of a cdf there exists A > 0 such
thatif x > Athen 1 — F(x) < ¢/2 and x < —A implies F(x) < €/3.

From Heine theorem2.2.1, there exist x; = —A < x < -+ < X, = A such that
if x € [x;, x;41] then

F(xiar) — F(x) < § F(x)— F(x;) < =

3 b
ifi =1,...,p—1.Setxg = —oo and x,4; = 00, and the oscillation of F'is less
that €/3 over each interval J; = [x;, x;41) foreachi =0, ..., p (limits are included
for each finite extremity).
The relation lim,— F,(x;) = F(x;), fori = 1,..., p, makes it possible to

exhibit N such that, if n > N, then |F,(x;) — F(x;)| < €/3.
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Each x € R belongs to some interval J; so that in case i 7 0:
[Fp(x) — F)| = [Fp(x) — F ()| + [ Fa(xi) — F(x)| + [F(x) — F(x)| < e

For i = 0 one should replace xgp = —oo by x; = —A in the above inequality to
conclude.

3.2 Contrasts

Assume an independent identically distributed sample with values in a Banach space
E admits a marginal distribution in a class (Py)pceo-

Definition 3.2.1 Let X ~ Py,. A function p : E x & — R is a contrast if the
expression 6 +— D(f, 0) = Eg,p(X, 0) is well defined and if it admits a unique
minimum 6.

Note that p(X, ) is an unbiased estimator for the function g(6y) = D(6y, ) (for
each 0 € ©). If we only dispose of a simple realization X of this experiment, then
the true parameter 6 is estimated by a minimizer ﬁ(x ) of the contrast 8 — p(X, 6)
(we shall assume that such a minimizer exists):

A(X) = Argmin,_,, p(X, 0). 3.1

Assume that ® CB" is open and such that the function 6 — p(X, 6) is differentiable.

The estimator 6(X) of the parameter 6 satisfies the following condition, usually
easier to check than (3.1): R

Vo(X, 0(X)) =0. (3.2)

Example 3.2.1 This situation occurs for example in the cases of:

e Maximum Likelihood Estimator (MLE)

p(x, 0) = —log fy(X)

with fy the density of Pj.

Let X = (Xi,...,X,) be an independent identically distributed sample with
marginal densities py(x).
Then

p(x,0) = = > log fo(Xy).

k=1
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The point that the above expression is indeed a contrast relies on the following
identifiability condition:

f91 = f()z a.s. = 91 = 92.

e Least squares estimator (LSE) Assume that X = G(0) 4 o(#)¢, and

IX =GO
) =0
p(x, 0) 520
If& = (&, ..., &) are independent identically distributed random variables and

G@) =(g90,z1),...,9(0,z,)) itis aregression model with a fixed design.

Remark 3.2.1 (Model selection) A large part of the modern statistics is based on
contrast techniques. Assume that the statistical model itself is unknown but it belongs
to a class of models M; precisely each of those models M € M is indexed by a
parameter set ®), and a contrast (pu (X, 0))gco,, is given (this is model selection).
The price to pay for using the model M is a penalization p(M) which increases
with the complexity of the model. One may estimate the model M and the parameter
0 € Oy as:

argmin{p(M)+9i1})f (X, 0), Me/\/l}.
€Oy

We choose in this book to avoid a precise presentation of those techniques essen-
tially introduced by Pascal Massart, see e.g. Massart (2007). Indeed very intricate
concentration inequalities are needed in this fascinating setting. Unfortunately, in the
dependent case, no completely satisfactory extension has been developed yet.

3.3 Functional Estimation

We now introduce another standard tool of statistics related to function estimation;
Rosenblatt (1991) provides a good presentation of these features. Let (X ;) ;> be an
independent identically distributed sequence with a common marginal density f.

Inordertofit f = F’the simple plug-in technique consists of deriving an estimator
of the cumulative distribution function. This does not work since differentiation is not
a continuous function in the Skorohod space D[0, 1], of right continuous functions
with left limits (see Appendix B), moreover F),’s derivative is 0 (a.s.).

Consider a realization of a sample X1, ..., X,, then a reasonable estimator is the
histogram; divide the space of values into pieces with a small probability then we
may count the proportion of occurrences of X;’s in an interval to fit f by a step
function.
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Formally this means that

)

% Z Zej,m(x)ej,m(xi),

i=1 j=I
ejmx) = 1y, (x), 1 <j<m,

for a partition Iy ,, - - U Lum = R.

Remark 3.3.1 A difficulty is that histograms are not smooth even if they estimate
possibly smooth densities. More generally (¢}, ) 1< j<» may be chosen as an orthonor-
mal system of L2(R), such as a wavelet basis; Doukhan (1988) initially introduced a
simple linear wavelet estimator. Any orthonormal systeme; ,, =e; for1 < j <m
may also be considered. Note also that

o~

fx) =

M-

E'\j,mej,m (X),
1

J

where we set

~ 1 ¢
Cj,m = ; Xl:ej,m(X,)
i=

Note that c; ,, is the empirical unbiased estimator of Ee; ,, (X¢) (see Definition B.5.2
below).

Such estimators are empirical estimators of the orthogonal projection f,, of f
of the vector space spanned by (e ;) i<j<m; they are known as projection density
estimations of f.

In order to make them consistent one needs to choose a sequence of parameters
m = m, 1 oo. Such general classes of estimators are reasonable and may be proved
to be consistent.

Here we develop an alternative classical smoothing technique, based on kernels.
Contrary to the case of projection estimators, an asymptotic expansion of the bias may
be exhibited; wavelet estimators (Doukhan 1988 and Doukhan and Le6n 1990 seem
to be the first works related to this subject) corrects this real problem of projection
estimators.

A simple estimation is introduced through a smoothing argument of F,,. We now
introduce kernel estimators of the density:

Definition 3.3.1 Let (X,) be a real valued and independent identically distributed
sequence such that X, admits a density f on R.
Assume that K : R — R is a function such that:

fR(1+|K(y)I)|K(y)|dy<Oo, /RK(y)dy=1-
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Fig. 3.3 Sample distribution
function and a kernel

estimate of the data of
Fig.3.2 /\
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A kernel estimator of f is defined through a sequence & = h, —,_.~ 0 by:

o~ _Ln X]—y
f(y)—nh;K< p )

Figure 3.3 shows the competitive behaviors of a histogram and a kernel density
estimator. Note that dependence of those data is not assumed here.
The first following result allows us to bound the bias of such estimators:

Lemma 3.3.1 Let g denote a bounded density for some probability distribution with
moments up to order p € N*, then there exists a polynomial P with degree < p such
that K = Pg is a kernel satisfying

K _ 17 | =
/RyK(y)dy_{O, if 1<j<p.

Remark 3.3.2 Such functions are called pth order kernels. Note that if p > 2 such
kernels cannot be non-negative.
For p = 1 and g symmetric (g(—y) = g(y)) itis simple to see that P = 1 satisfies

the previous relations but maybe not / y?g(y)dy = 1, anyway this expression is

positive.

Proof 1t is simple to use the quadratic form associated with the square matrix (with
size (p+1) x (p+ 1))

A= (airi)og jzn With ax= fRykg(y) dy.
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This matrix is symmetric positive definite.
Indeed for each x = (xg, ..., x,) € R”*! one obtains:

p
x'Ax = /R (ijyj)zg(y) dy > 0.
=0

In case the previous expression vanishes, the fact that g 7 0 on a set with positive
measure (this set is thus infinite), implies that the polynomial

P
y = ijyj,
j=0

vanishes on an infinite set. Hence it admits null coefficients.

The change of variable u = (v — y)/h entails:

~ 1 v—y

Bf) = [ & Fwdo = [ K hudu

h R h R

Together with a simple application of Taylor’s formula, left as an exercise, the pre-
vious expression yields Proposition3.3.1:

Proposition 3.3.1 Assume that h = h,, —,_. 0. Let [a, b] be a compact inter-
val and € > 0. We assume that the function f admits p continuous and bounded
derivatives on [a — €, b + €.

Then if K is a pth order kernel with a compact support:

lim sup h~" [Ef(y) — f(y) — gf“”(w / u”K (u)du| = 0.

10 yela,b)

Assume now that for some p €]p, p + 1] there exists a constant such that | f P (x) —
FPO| < Clx —yPP, forall x,y € [a — e, b+ €l.
Then there exists a constant ¢ > 0 with:

sup [EF(y) — f()] < ch?.
y€la,b]

Remark 3.3.3 Some details and improvements are needed here.

e Independence of (Y}) is not necessary but only the fact that Y}’s are identical
distributed for 1 < k < n.!
e The uniformity over R may be omitted if K admits a compact support, then

-~ h?
Ef() = fO]=— sup If(p)(u)I/IMIPIK(M)Idw

s uey+V

'In fact even stationarity may not hold as e.g. if they are subsampled from a stationary process:
Yy = Zj, for (Z;) jez stationary, see Definition4.1.1.
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Here V denotes a neighbourhood of 0 such that 2V C Support(K).

e It is possible to describe infinite-order kernels, see Politis (2003).

Use the previous results together with Lindeberg theorem with £ = n and

o= g (e () - ()

Theorem 3.3.1 Letnowh =h, | 0asn — oo.
Assume that nh,, —,_, o 00:

nhy Var () oo () f K2(u)du,
i (Fo) —EF() =5, (0 £O) / Kz(wdu)

If the conditions in the previous Proposition3.3.1 and Theorem 3.3.1 hold and if we
assume also that h,, —,_.~ 0, then:

N 1 hY ?
E(F() — fON? ~imoo K2 (u)du + (—f”’) ) f uPK(u)du) :
nhn R p'

Convergence in probability holds for such estimators, a CLT is also available. Usual
minimax rates (see Tsybakov 2004) of such estimators give (’)(nﬁ): they are
obtained by minimizing this expression wrt & = h, or, equivalently, by equating
the squared bias and variance of the estimator.

Moreover, if nh,, — o0, the use of Rosenthal’s moment inequalities from Remark
2.2.1 implies

Elf(y) —Ef ()| <

(nh)*~
This bound together with Markov’s inequality and the Borel-Cantelli lemmaB.4.1
imply the following result:

Proposition 3.3.2 Besides the assumptions in Theorem3.3.1, assume that f is a
continuous function around the point y, then

f(y) > n—00 f()))v a.s.

as soon as
1
h= hn > n—o0 Oa
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Remark 3.3.4 Sharper results may be developed by using the Bernstein exponential
inequality; the present section is only an introduction to statistical applications which
will be extended later under dependence.

Rosenthal’s inequalities are also proved in Chap. 12 under dependence condi-
tions; the Rosenthal inequalities from Sect. 12.2.4 are then used for dependent kernel
estimation in Sect. 12.3.

Exercise 14 Prove the bound:
o~ o~ 12
P(y/nh,| f(x) —=Ef(x)] > 1) < 2e 90, (3-3)

forall ¢ <2 | K?(u)du, and for n large enough.

R
From integration derive that for each p > 1:

~ ~ 1 .
”f(x)_Ef(x)”p:O(\/TTn)’ it nh,>1.

Proof Theresults rely on simple integration tricks. We will use the Bernstein inequal-
ity, see Lemma?2.2.3.
Write R R
Vah(F ) =Ef(x) = Zi+ -+ Z,

with

Z;=U; —EU;. Uj:mK< L y).

Then the relations 5
1Zilloo < —hllKlloo,

Vnh

EZ; ~ ﬁ £ / K2(s) ds,
n

complete the proof of the first inequality.
The moment inequality relies on the fact that setting u = ¢/+/ f (x) yields:

and

2 p+1 u?
2[#’5% dt = 2f%(x)/u1’e*7 du < 0.

This allows us to conclude.

Chaining arguments are detailed below to derive uniform convergence properties.
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Exercise 15 (Uniform convergence) Consider again the kernel density estimator f
based upon a compactly supported and uniformly Lipschitz kernel function.

n
Assume lim —* = oo
n—o0 logn
e Prove that a.s. uniform convergence holds over any compact interval I, if the
density is uniformly continuous.
e As in Proposition 3.3.2 also prove the existence of C > 0 such that:

<C logn.
- nh

p n

sup | f(x) — Ef(x)]

xel

e Assuming that the function f satisfies a p-regularity condition uniformly over a
compact neighbourhood of / as in Proposition3.3.1, prove that for a convenient

constant ¢ > 0 ,
n T 2pHT
<C .
» logn

Hint. Typically I = [0, 1]. Divide I = [0, 1] intom intervals [, . .., I,, with measure
1/m. Under p-regularity conditions, we obtain:

sup |/ (x) — f(x)|

xel

sup | f(x) — F(x)| < sup|f(x) — Ef(x)| + sup | f (x) - Ef(x)l,

xel xel

IA

sup | f(x) —Ef(x)| + Ch?.

xel

From uniform continuity of the function and from uniform convergence properties
of the bias, only the first member in the RHS of the previous inequality needs con-
sideration.

Then if the chosen kernel is Lispschitz the oscillation of fover each such interval
is less than C/ mh?, for some suitable constant.

If mh? > C’is large enough for a constant C' = C'(t, C, f), the oscillation of the
function f— Efover each interval J; will be less that some fixed positive number ¢.

From the assumption nh,/logn — oo we also derive that m = O(n°*) for some
s > 0.

Choose now some point x; € I; for each 1 < k < m. Then it follows, for each
€ > 0

P( sup |7 (0) = £ ()l > 2t) <m max P(f(x) = [ ()] > 1),

xef0,1]
12
< Cn’exp (— ) .
cf (x)

The more precise calibration of  and m yields a.s. uniformresults for the convergence
of f, improving Proposition3.3.2.
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[o.¢]
Integration yields the first moment bound EZ = / P(Z > v)dv withv = t?
0

and Z = sup |f(x) — f(x)|?, as in the second part of the proof of Proposition 3.3.2.
xe[0,1]
Remark that this reinforcement of a.s. convergence is not related to independence,
see Exercise 78.

Moreover, the uniform moment bound follows from

sup 1) = Fl| < | sup 170 ~EFl| + sup 1) ~EF )l

x€[0,1] x€[0,1] x€[0,1]
< [ sup 7o) —EF@)1| +cny.
xel P

L
The last bound follows from the choice h, = (n /log n) e

Example 3.3.1 Many other functions of interest may be fitted. We rapidly present
some of them through kernel estimators.

1. Non-parametric regression
The natural estimator of a mean is the empirical mean, but think now of a centred
independent sequence

Ykzr(§)+fk, k=1,....n (3.4)

for some independent identically distributed sequence (&) and a smooth regres-
sion function r.
A natural estimator would be a local mean

n
Do MY

o~ k=1
Fy=4

D Mtian
k=1

This idea is easily generalized as a kernel regression estimator in the previous
fixed regression design:

1 < E_x
7 = — Y.K | £ .
7(x) nh;k ( - )

Monographs Priestley and Chao (1972) and Rosenblatt (1991) exhibit the asymp-
totic properties of such estimators.
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2. Random regression designs

i =r(Xp) +&, for k=1,...,n,

where (Xy) is an independent identically distributed sequence.
Here the Nadaraya—Watson estimator gives:

g
=1 Tw TIOAEO (3.5)
0, if o) =0,

with

1 « Xi—y
o) =—)Y X;K|—~L—).
0= %) (%)

The functions f and g estimated are respectively the marginal density and g = rf.

3. Differentiating a density
For example to estimate f’ one may just differentiate f’s estimator if K is a
smooth function. This makes a change in rates since e.g.

One may indeed check that each term in the sum above admits a variance equiv-
alent to its second moment.
The usual change in variable u = y 4 th yields with the dominated convergence

theorem:
Xi—y 2
E <1< (’T)) = h/K/Z(t)f(y +th)dt
0 BE () / K21 dr.

We differentiate analogously
X —
]EK’( L y) — O,

and from independence, we obtain with 7 = h,,:

1
Vafﬁ()’) ~n—o00 %f(y)/l(/z(t)dt

as soon as lim,_, » 4, = 0 and lim,,_, nhZ = 00.
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1 _
The variance of this estimator, (’)(?), admits a different decay rate than f(y),
n

n
which makes convergence rates pretty distinct.
4. Differentiating regression functions

/g /
The same phenomenon occurs for r’ = M

Higher order differentials of f or of » may even be considered.

Such estimators may be analogously controlled. However we shall not develop the
theory here and we refer the reader to Rosenblatt (1991, 1985) for several elegant
developments.

Exercise 16 (Regression) Let [a, b] be a compact interval. Consider the previous
fixed design regression setting in Example 3.3.1-1.
Provide bounds for
sup E[g(x) — g(x)|”.

x€la,b]
Hint. Proceed as in Exercise 15.

Exercise 17 (Nadaraya—Watson’s estimator) Let [a, b] be a compact interval. Con-
sider now the previous random regression setting in Example 3.3.1-2. Provide bounds
for

sup E[g(x) — g(x)[”.

x€la,b]

In order to avoid a division by 0, we now assume that for some € > 0,

inf  f(x) > 0.

x€la—e,b+e|

Deduce convergence results for the Nadaraya—Watson estimation of a regression
function.

Hint. Proceed as in Exercise 15.

Exercise 18 (Derivative) Let [a, b] be a compact interval. Consider the estimation
of a derivative setting in Example 3.3.1-3.
Provide bounds for

sup E|f'(x) — f'(x)|”.

x€la,b]

Hint. Proceed as in Exercise 15 by taking into account the different variance bounds
h,, replaced by k3.
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3.4 Division Trick

In this section we revisit a result of interest for statistics, as stressed below. This
ratio-trick was initiated in Colomb (1977) and it was improved in Doukhan and
Lang (2009). Due to its importance, we decided to include it in this chapter. It is
reformulated in a simplified version below.

Setting D = ED,,, and N = EN, where N,,, D,, are random quantities, it is an
interesting problem to get evaluations for centred moments of ratios in some special
cases, when it may be expected that

N

N,
”D_n_ﬁ = O(INy = Nllp + |Dy = Dlly), (3.6)

m

for convenient values of p, g > m.
Assume that this ratio appears as a weighted sum where V; > 0

Dn=aniviv Nn=aniUiVi-
i=1 i=1

Maybe more simply, set

Vi
Wi = —; )
2V
j=1
then one may rewrite
Rn:&:iw,‘lj,‘, with Xn:wizl, w; > 0. 3.7
D =

i=1 i=1
In the general case for the previous relation (3.6) to hold we prove:

Theorem 3.4.1 Assume that the sequence (v,) is such that v, |, 0 (asn 1 o0) and

v, < 1. Assume also that ¢ > m. We consider a €]0, 1] with g > m(1 + a), and we

1 1 1
set — + — = —.
m
If there exists an absolute constant M > 0 such that:

mq
f>—" (3.8)
qg—m(+a)
max [[Uill; +nvy <M (3.9)
Dy — Dllg + IN, — Nl < v, (3.10)

then the relation (3.6) holds.
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Remark 3.4.1 The above result always implies p, g > m; possible exponents are
p = q = 2m which implies ¢t > 2m/(1 — a) (if e.g. v, = 1//n this implies
a>1/(m+1)).

Now if a = 1 the result needs ¢ > 2m, and if a > 0 is very small this needs high
order moments ]111?21 U ll; < oo.

If g > 2m then p < 2m (may be close to m), we choose ¢ = 1 and t >
gm/(q —2m).

If 2m > g > m the above result needs p > 2m.

Theorem 3.4.2 Assume that the sequence (v,) is such that v, | 0 asn 1 oo, and
vy < 1. Set p =m and q > m(1 + a) for some 0 < a < 1.

1
Assume also that for some constant M > 0, a, = — and 1max Villoo < M; if
n <i<n

qg > m(l +a), if (3.8), (3.9), and (3.10) hold, then the relation (3.6) holds.

Remark 3.4.2 Here p = m (no further conditions on the convergence rate of N,
besides | N, — N|,, = O(v,)) and ¢ > m and in this situation we may assume that
v, = 1/4/n.

If m < g < 2m then a < 1; the result only needs high order moments
max ||U;|; < oo.

1<i<n
If g > 2m and a = 1 then at > 2 and, if max;<;<, ||U;||; is bounded, it implies
(3.8), since we derive mg > 2(g — 2m) from (3.8).

A useful main lemma follows:

Lemma 3.4.1 Foreachz € R, and 0 < a < 1 the following inequality holds:

1 |Z|1+a
— 1 <zl + :
1—z ‘ g [1 —z|
Proof of Lemma 3.4.1. Begin with the relations
S S S
-z -z 1-z

Now since 0 <a < 1:

‘ : -1 <max<|z|+ i | d )
1—z - I1—z|" |1 -z
max(1, |z
e
[1—z]
|Z|l+a
<zl + .
|z| 2]

The last inequality follows from the elementary inequality (12.18).
Proof of Theorems3.4.2 and 3.4.1. Set z = (D — D,)/D in the previous lemma.
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Then notice with R = N /D that:
IR, — R| < |R N"+1|N N|
n —_ n D D n
= |Na| : ! + lIN N|
~""Up, D| D"
INu| | D 1
= — -1 —|N, — N
D |D. + DI I
_ Nl 1 1| + ]|N N|
D |l—z D"
|2, | 1
= —— +|R, ta 4 —|N, — N|.
D + IR, |z] + DI |
Hence
IR, — Rlln <A+B+C
with
1
1 14a
B= |Ru1Dy — D" (3.12)
1
C = —| N, — N|m 3.13
DII I (3.13)
Denote generic constants by ¢, ¢/, ¢”, ... > 0. First the bound C < cv,, follows from

the relation p > m. Now remark that since (3.7) allows to write R, as a convex
combination, a classical idea of Gilles Pisier (see Marcus and Pisier 1981) entails

foreacht > 0,

n
Rl < max Uil' < ) (Ul < nM".
<i<n

i=1

Thus:
EIR,* < (E|R,|)" < (mM")i,  forl<s <t.

Now using Holder’s inequality (Proposition A.2.2) implies
11
”YZ”m = ”Y”um”Z”vm’ if _+_=17
u v
and with Y = R,, Z = |D, — D|'"**, um = s and vm = ¢q /(1 + a):

B=pra

1 1 L]
IRy - |Dy — D"l < [ RylsII Dy — DI < "mrwy e

(3.14)
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Now ]
m omdtae o ma
s q g —m(l +a)

anda = a5 _ (g + 1). We need v,‘jn% = O(1), in order that B < c'v,,.
m

1 1 1
End of the proof of Theorem3.4.1. Set — + — = —, then inequality (3.14) implies:
p q m

N 1
A < 51Dy = Dl + 51Dy = DYN, = Nl

< "y + Dy = DY(Ny = N)lm)
= CW(Un + N, — N”p”Dn - D”q)
< C/W(Un + vrzz)

S 2C//an’

where the constants ¢, ¢’ . . . are suitably chosen.
The last inequality follows from v, < 1.
End of the proof of Theorem 3.4.2. Here the Minkowski triangular inequality implies

[Nall: = max [|U; |l max || V;]],
1<i<n 1<i<n

is bounded, and A < ¢""v,,.

Example 3.4.1 Relations (3.6) are needed in many cases, examples are provided
below:

1. Empirical estimator for non-totally observed data.
Here one intends to fit the mean of the incompletely observed iid sequence (U;);>0.
Namely we suppose that this is according to the fact that an independent Bernoulli-
distributed sequence V; ~ b(p) take the value 1. The observed variables are
n

X; = U,V;, and their number is D, = Z V.
i=1
Now with @, = n, v, = 1/4/n we calculate D = p and N = p - EV; so that
R =EV,.
2. Regression with random design.
For the previous Nadaraya—Watson estimator (3.5) we may complete Exercise 17.
This is indeed important to bound centred moments

70 = rColly = (BFC) = r(x|”)",

as well as uniform moments

1

sup [7(0) = ()] | = (E sup [Feo)—r)”)".

x€la,b] xela,b]
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For clarity we will only address the first question but the other one may be handled
analogously to Exercise 17.

In order to use the above results the weights need to be non-negative, and as
this was noted above, this condition implies that kernels considered should have
regularity less than 2. The regularity 2 is obtained with symmetric kernels.
Assume that the functions admit the regularity p = 2. Then from the section
above, the biases f(x) — f(x) and g(x) — g(x) admit order h2.

The previous relation does the hard part of the job since with N, = §(x) and
D, = f(x) and here a,, = 12 and v, = 1/«/%.

It implies:

O LG
Foo b * 75~ 7ol

SC(JL_h+h2)'

70 = r )l = |70 =

With the choice h = n=5 :
I7(x) = r(0)lm < 2Cn~5.

Exercise 19 (Example 3.4.1-1, continued) Make precise the assumptions in Exam-
ple3.4.1-1.

Hint. First conditions (3.8) follow from independence, and vj; n ! = ni~%isabounded
2 —
sequence in case f > M This ends the proof.
(m — p)s + pm
Exercise 20 (Example 3.4.1-2, continued) Make precise the assumptions in Exam-
ple3.4.1-2.

3.5 A Semi-parametric Test

In case the model is indexed by a class of functions but the only parameter of interest
is a constant in R?, the framework is semi-parametric.

An example of such semi-parametric estimation is provided here. Let w : R — R
be a weight function such that the following integral converges. We estimate the
energy parameter:

0:/f2(x)w(x)dx.

2 An alternative choice is a, = 1/nh and N,, = nhg(x) and D, = nh f(x).
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For this, use a plug-in estimator of the density f, a reasonable estimator is:

0, :/fz(x)w(x)dx. (3.15)

Here h = h,, | 0 will also satisfy additional conditions described later.
Set 0, = / (IE]/‘\()C))2 w(x)dx, then

0= 0= =0+~ 0

— / (Fx) —EF ()’ w(x) dx

+ / (f) —Ef(0) QEF(x) - w(x)) dx

+ f (EF2@) = £200) wx)dx

= / () —Ef(x) QEF(x) - w(x)) dx

1 2

ro(Lan).
The Landau expressions O correspond to bounds obtained in I, as well as in prob-
ability.

Using the previous bounds in Sect. 3.3, we are in position to derive the following
theorem:

Theorem 3.5.1 Besides the previous assumptions, assume that both the relations
nh% — 0, and nh? — oo hold as n — oo.
Then:

VIO = 0) S N O, V),V = 4Var (f(XDw (X)),
Proof Setv(x) = 2 f(x)w(x). The above remarks yield the study of the expressions
l n
[ (Fw —EF) v dn = = 3" @0x) ~ Buix) + 4~ B4y,
i=1
the above sums are decomposed as sums of independent random variables with

A= f K (5)(0(X; + sh) — v(X1)) ds.
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The Central Limit Theorem for the iid random variables v(X;) yields the Gaussian
convergence of the expressions:

1 n
N ;v(xo — Ev(X))).

Now conditions over 4 = h,, entail that the remainder terms may be neglected.
Indeed, the Lebesgue dominated convergence theorem applies to the sequence
0, = Ay (where the dependence with respect to n refers to the decay of h = h,,) and
the continuity of v implies lim, E|4,|> = 0.
Hence

2
1 n
El—=) (4 —EA) | =El6]* 120 0.
(Gr 2 —sa0)

This concludes the proof.

Example 3.5.1 (Some more parameters of interest) Rosenblatt (1991) suggests addi-
tional estimation problems.
Consider e.g.:

e Fisher information
This is the expression
f(x)
fx)

dx.

1(f) =

It may also be estimated under comparable conditions. We leave as an exercise the
proof that f , is also a convergent estimator of f” and is asymptotically Gaussian.

In this case, one may check that the normalization V/nh3 holds.
The differentiability of the map (u, v) > u?/v yields an affine approximation of
this non linear functional of the bivariate random process F, = ( fans fn’7 h).
e Regression
Using bivariate iid samples (X, Y,,) yields estimation of the regression function:

r(x) = E(Yo|Xo = x).

We already mentioned that 7 = g/ f with

—~ 1 - X,'—)C
= YlK )
9(x) nh; ( g )

accurately estimates r.
This is the Nadaraya—Watson estimator, see Rosenblatt (1991).
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e Linearity of regression functions
If one wants to test the linearity of r,

//_ D(f’.g’f/’g/’f”’g,/) _
r’ = 73 =

or analogously D(f, g, ', ¢, f”, g") = 0 where this expression is a polynomial
wrt the derivatives of f and g. Since the function D is a polynomial, a Taylor
expansion may be derived.

It is possible to build tests of linearity for r by considering a CLT for the conve-
niently renormalised expressions:

0,

9=/Dz(f(X),g(x),f'(x),g'(X),f”(X),g”(X))w(X)dx-

e Directly involving the dependence structure, spectral estimation is considered in
Sect.4.4 and multispectral estimation in Rosenblatt (1985), see also Chap. 12.

Exercise 21 Extend ideas in the last item of Example3.5.1 to propose a goodness-
of-fit test for the linearity of a regression function.

Hint. Using notations of Example 3.5.1, a central limit theorem such as Theorem 3.3.1
gives R
Vn—0) =~ N(©,d?).

Hence under the null hypothesis # = 0 the above result provides us with a level for
the corresponding test of goodness of fit.
The study of the power of this test is a still unsolved and more difficult question.



Chapter 4 ®
Stationarity ot

Some bases for the theory of time series are given below. The chapter deals with the
widely used assumption of stationarity which yields a simpler theory for time series.
This concept is widely considered in Rosenblatt (1985) and in Brockwell and Davis
(1991). The latter reference is more involved with linear time series.

Time series are sequences (X,),cz of random variables defined on a probability
space (always denoted by (§2, A, IP)) and with values in a measurable space (E, &).
We assume that sequences of independent random variables can be defined on the
same probability space. Another extension is the case of random fields (X,,),cz¢;
they are not in our scope.

Nile flooding data, see Fig. 4.1 (ordinates are measured in millions of m? of water
per day), are classically used as an example of non-linear time series data, see Cobb
(1978).!

4.1 Stationarity

Definition 4.1.1 (Strict stationarity) A random sequence (X, ),cz is said to be strict-
ly stationary if, for each k > 0, the distribution of the vector (X, ..., X;4x) does
not depend on/ € Z.

Definition 4.1.2 (Weak stationarity) A random sequence (X, ),cz is second order
stationary if EX? < oo and if only:

EX[ IEX(), and Cov (X[,Xk+1) = Cov (Xo,Xk), for each l,k € 7.

INile data may be found on: https:datamarket.com/dataset22w8mean-annual-
nile-flow-1871-1970.

© Springer International Publishing AG, part of Springer Nature 2018 49
P. Doukhan, Stochastic Models for Time Series, Mathématiques et Applications 80,
https://doi.org/10.1007/978-3-319-76938-7_4
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Fig. 4.1 Annual flow of Nile River at Aswan 1871-1970

We shall denote by m the common mean EX of X,, and by r(k) = Cov (Xo, Xx)
the covariance of such a process.

In other words (X,), ¢z is strictly stationary if for each k, [ € N and each continuous
and bounded function 4 : RFt! — R:

Eh(X, ..., Xi0) = Eh(Xo, ..., Xp).

Under second moment assumptions strict stationarity implies second order station-
arity (set k = 1 and /& a second degree polynomial).

Under the Gaussian assumption we will see that both notions coincide. However
this is not true in general.

Example 4.1.1 An independent identically distributed sequence is always strictly
stationary, however if the variables do not admit finite second order moments, this is
an example of a strictly stationary but not a second order stationary sequence.

Exercise 22 Consider a sequence (£,),<cz, independent and identically distributed.

1. Assume now that E§y = 0, then the sequence X, = ¢,&,-; is centred and
orthogonal but not necessarily an independent sequence.

2. There exists a second order stationary sequence which is not strictly stationary.

3. Write now X,, = ¢, V, with

2 2 2
Vn = C”é-nfl + S"§n72'
If a = E¢} < oo then EXY is not a constant in general.

Again, we obtain a second order stationary sequence which is not strictly
stationary.
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Hints.

1. Indeed if those variables admit fourth order moments:
Cov (X, X,_)) = BE, &, —EB&E EE (&,
— (E€2)* Var&l.

does not vanish if fé is not a.s. constant.
2. A modification of the previous example is:

1 1
Xn=£n< 1_;§n1+ﬁ§n2)

If E¢2 = 1 then
0, n#m,

1, n=m.

EX, X, = {

Non-stationarity relies on the calculation of E(X, X,_;X,_2). This expression
will be proved to depend on 7.
Write X, = &, 'V, for asequence with V,, independent of £,,. Set similarly as above

V, = c &1 + s,&—>,  for constants such that cﬁ + s,f =1.

This sequence is always centred and orthogonal if EV? < co. Also using inde-
pendence leads to
EX:X, 1 =EV, V. & .

If now the sequence V,, is independent of the sequence &, we consider the similar
example

V., = CnCn—l + ann—Z,

for a sequence (,, independent of &,.
3. Simple calculations follow:

EX} =aRV}
= aB (& + 565 5)°
= a(a(cy + 57) + 25,Cy)
=a(a + 2s,cy).

This exercise provides a family of useful counter-examples.

Remark 4.1.1 Stationarity effects are rather mathematical notions. For any type
of financial, the stationarity seems quite problematic. E.g. large peaks appear on
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September 11 and many seasonal effects may be seen, corresponding to opening of
stock exchange.

The following remark includes the standard non-stationarity useful for statistical
uses. Namely we consider “signal + noise” models.

Remark 4.1.2 (Non-stationarity) Assume that a process

Xt:ht“r‘Z[

for a stationary and centred (or symmetric if Z, ¢ L") sequence is observed at times
t=1,...,n.

1. Periodic signals. A natural way to fit 4, in case it is T -periodic is to set

o~

s

1
Y X Ea=s+ T[]
S t€E,,

N, = Card (E;,), 1=<s<T.

2. Local stationarity. If 7, = H(t/n) for a smooth function H, then for some
bandwidth b = b,, with b = o(n), one sets

ﬁ(x)zL Z X, N, = Z 1.

§ |[nx—k|<b,te[1,n] |nx—k|<b,te[l,n]

Clearly a kernel smoother may also be used here (see Example 3.3.1).
3. If h, = p, + H(t/n) then we must normalize the representation with e.g. po = 0
and

—~ 1 ~
Py=— Z X, — i, 4.1)

S t—seT-ZN[1,n]
N, = oL 1=s<T,

t—seT-ZN[1,n]
1 n

m = — X.. 4.2
i . ; j 4.2)

The above re-centring allows us to assume py = 0. In this case we define H (x)
as above.

4. Almost periodicity (Besicovitch 1954). Let r — h, be a function defined on
R* — R, and € > 0, then T is an e-period period of & if sup, |k, 47 — h| < €
denote E(h, €) the set of such e-period periods. Then if for each € > 0 there
exists some £ > 0 such that E(h, €) N [a,a + €] # @, the function A& is said
almost-periodic in the sense of Bohr.
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Those functions are the closure in the space of the vector space spanned by
exponentials 7 — ¢/'* in the Banach space C(RT), || - [|cc-

The following mean exists M (h) = limy ftTH hg ds and it does not depend on
t > 0. If now h, is almost-periodic then (Bohr 1947)’s representation tells us that
there exists sequences of numbers ay, T} such that

oo o0
ho=m+Y pe pa=ae’ Y ak < M),
k=0 k=0

the sequence 7} is assumed to be non-decreasing.

When the frequencies 1/ T are known the above study applies by setting p; , m
(the empirical mean) respectively as in relations (4.1) and (4.2).

If the frequencies are unknown, as in Paraschakisa and Dahlhaus (2012), a mini-
mum contrast estimator based on the periodogram needs to be developed.

Many other simple ways to build non-stationary time series can be considered. As
an example for a deterministic sequence ¢, the model

X, =£t'zz,

is simple and its logarithm may be considered as above. Unfortunately a combination
of these two difficulties seems really tough, and for the model

X;=h+ ¢ - Z4,

this seems reasonable to fit two different T'-periodic functions #,, ¢, or even two
locally stationary functions (point 2).

The additive part can again be estimated as above, and the multiplicative signal
is estimated (through log transforms) with replacing sums by products and 1/n by
nth order roots.

Other non stationarity situations may be found in Bardet and Doukhan (2017).

4.2 Spectral Representation

It is easy and important to prove the following property of covariances.

Consider n € N*. Let ¢; € C for all |/| < n, we sett ¢ = (¢))j<» and %, =
(rii—jiit,1jl<n-

We obtain:

2
> 0. 4.3)

¢' T = Z Z CiCjli—j| = E‘ Z ciXi

lil=n |jl<n lil=n
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Theorem 4.2.1 (Herglotz) If a sequence (r,),cz Satisfies (4.3) then there exists a
non-decreasing function G, unique up to Lebesgue-nullsets, with G(—m) = 0 and

re = / G N).

™

Notation. The symbol d G () is a Stieljes integral, it may be defined from the measure
1 such that:
pl=m, A) =G, VA€ [-m, 7]

If h: [—m, 7] — Ris continuous:

/ﬂ h(NAG(\) = '/ﬂ h(A\)p(dN).

Proof of Theorem4.2.1. Set

n—1 n—1

n—1 .
1 i 1 |7l i
L) = s it=)A _ 11— . lj/\’
I 27n Zrt‘e 277‘2 n ri¢
s=0 =0 j=—(n—-1)

and G,(\) = f:\ﬂ gn (1) du then relation (4.3) implies g, («) > 0 hence G, is con-
tinuous, non-decreasing and G, (7) = ry.
From a compactness argument, some subsequence G, of G, is convergent.
Note that dG,(\) = g, (A\)d\, and then

k T
(1 — U) re = / e*N G, ().
n —T

Integration by parts yields
o= (=Dro — ik / ¢ dG,(\) d),

-7

and implies the uniqueness of G. The existence of G follows from the fact that it is
the only possible limit of such a convergent subsequence G,.

Definition 4.2.1 The spectral measure of the second order stationary process
(X,)nez (defined from G) is such that for each A € [—m, 7]:

px ([=m, AD) = G(A).

2Use a triangular scheme, by successive extraction of convergent subsequences. Choose a denu-
merable and dense sequence (\g)g in [—, 7].
Here ¢y+1(n) will denote a subsequence of ¢ (n) suchthat G ¢, (n) (Ak+1) convergesasn — oo.
Setting G y(n) = G, (n) allows to end the proof.
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If G is differentiable, the spectral density of the process (X,,),cz is the derivative
g=G'.

Example 4.2.1 (Spectral measures)

e For an orthogonal sequence (i.e. EX; X; = 0 for k # [ with EX,, = 0, EX,% =1),
it is clear that g(\) = A\/2m, from integration we derive: G(\) = 1/2 + \/27, the
measure associated is Lebesgue on [—, 7].

In Exercise 22-1 we recall that there exist such non-independent sequences.

e The random phase model admits complex values.

Given constants ay, by, . . ., ai, by € Rand independent uniform random variables
Uy, ..., Ug on[—m, m] this model is defined through the relation

k
Xn — 2 :aje’(”l”+Uf).
j=1

Then: .
Cov (X, X) = EX Xy = 1oy = ) la; %07,
j=1

This model is associated with a stepwise constant function G.
e Let (&,),cz be a centred and independent identically distributed sequence such
that E¢2 = 1, let a € R, the moving average model MA(1) is defined as

X, = 5}1 + agnfl-

Here,ro=1+a%r=r_y =a,andr, = 0ifk #—1,0, 1.
With the proof of the Herglotz theorem we derive

1
g(\) = — (ro + 2rycos \)
2

2i(1+a2~|—2acos/\)
vy

— ((l +acos\)? + a®sin® /\) > 0.
2w

Notation. For a function g : [—m, w] — C denote g(I) = g(v) — g(u) if I = (u, v)
is an interval.

If g : [—7, ] — Risnon-decreasing, we identify g with the associated non-negative
measure.

Definition 4.2.2 (Random measure) A random measure is defined with a random
function
Z:2 x[-m, n]— C, (W, N) = Z(w, N),
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non-decreasing for each w € £2, with E|Z()\)|> < oo and such that there exists a
non-decreasing function H : [—m, 7] — RT with,

e EZ(\) =0for A € [, 7],

e EZ(I)Z(J) = H(I N J) for all the intervals I, J C [—m7, 7].

Let g : [-m, 7] — C be measurable and [*_|g(\)[*dH()\) < oo.
Stochastic integrals

/Q(A)dZ(/\),

with respect to a deterministic function may be defined in two steps:

e If g is a step function, g(\) = g, for A;-; < A < A, 0 < s < S with \y =
—7, Ag = T, set

S
I(g) = / gNAZN) =Y 6. Z(s—1, A5
s=1

Notice that

EIL@F =Y 9 GEZ(As1, AD ZMD—1, A

= Y 1g:PEIZ(D-1, ADI
=D g PH 1, A = / g VAH).

e Otherwise approximate g by a sequence of step functions g, with

f 19(N) = gnWPdH(A) =400 0.
The sequence Y, = f gn(N)dZ (M) is such that if n > m,

E|Y, — Yul* = / 192 () = g (MVIPAH(N) =500 0.

™

This sequence is proved to be a Cauchy sequence. It converges in L2(£2, A, P)
and its limit defines the considered integral.

Example 4.2.2 Simple examples are provided from processes with independent
increments.
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e A natural example of such a random measure is the Brownian measure. Namely,
denote W ([a, b]) = W(b) — W (a) then this random measure is defined with the
Lebesgue measure as a control spectral measure .

e Another random measure of interest is the Poisson process on the real line, see
Definition A.2.5.

e Compound Poisson processes write through a unit Poisson process P with X; = 0
if P, =0 and

for some iid sequence (V;) independent of P;.
The process satisfies E|X,|? < oo in case E|V]| < oo and if p = 1 the process
is centred if EV;) = 0.

Theorem 4.2.2 (Spectral representation of stationary sequences) Let (X,,),cz be a
centred second order stationary random process then there exists a random spectral
measure Z such that

X, :/ein)\dz()\)’

and this random measure is associated with the spectral measure of the process.
Relevant random spectral measures are reported in Example4.3.1.

Proof The spectral function G of the process X, is non-decreasing, hence its dis-
continuities are at most a denumerable set denoted by D’
If I = (a, b) is an interval with a, b ¢ Dg, set

1 b
Z,() = — X/ e 'du,
2 Z J B

lil=n

then the sequence (Z,(1)),> is Cauchy in L%(£2, A, P).
Indeed forn > m,

E|Z,(I)=Z(])I?

1 b ’
:mE ZXJ‘/l;e Yidu

m<|j|<n

- / " ) — PG,

™

3Recall that monotonic functions admit limits on the left and on the right at each point, the non-
empty open intervals (f(x—), f(x+)) are disjoint in R. Choose a rational number in each of them
to conclude.
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Denote now by #,,, the truncated Fourier series of the indicator function 1;:

1 b
hn(A) = g Z / Eilj(ui)\)du.

ljlsn ¢

Write Z(I) for the limit in L2 of Z,,(I), then EZ(I) = 0 because EX,, = 0 and with
immediate notations

EZ(1)Z(J) =1mEZ,(1)Z,(J)

= lim f ’ Iy, (NAG(N) = G NJ),

in case the extremities of /, J are notin D¢. The set D¢ of continuity points is dense.
In case we only consider extremities of this interval in D¢, taking limits also allows
us to conclude. In the general case, check that

7 1\ 1 b iju
EX,Z,(I) = o= Zrn_j/a eV"du

ljl=n

T d b -

2—U/ Ze’](”_”)dG(u)
2T
b

a -
ljl=n

= f e"dG (v).

Hence for step functions f:

™

EX, / FNAZ(N) = / "™ FNAGN).

-

This extends to continuous functions f by considering limits.
If now f(\) = e then

2

E‘Xn—/ei”’\dZ()\) =r9g—2rg+ro=0.

Example 4.2.3 Examples of spectral densities may be found in Example4.2.1.
Besides measures with independent increment (Example 4.2.2), some relevant exam-
ples are reported in Examples4.3.1. In Fig. 4.2 we plot empirical autocovariances.

This non-stationary setting is not much addressed but a local empirical covariance
around the point # € (0, 1) may be considered by restricting summations over a set
[nu — m,, nu + m,] and with the normalization 2m,, where m,/N — 00, see
Dahlhaus (2012).

The following remark is a shy incursion into one of the most accurate proposals
for non stationarity.
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Fig. 4.2 Correlograms of the annual flow of the Nile River in Aswan 1871-1970. See Fig.4.1

Remark 4.2.1 (Local stationarity) Dahlhaus (2012) defined it in the spectral way
from a family of spectral densities f(u, A) such that around point k ~ u - n in the
sample {1, ..., n}, the spectral density looks like f(u, \).

In other words

2
Cov (Xy, Xiae) ~ / e 2T (u, N d.
0

This is a very geometric idea telling us that some tangent stationary models locally
fit such spectral behaviour data with index close to [u - n].

4.3 Range and Spectral Density

Here we denote (X,,),cz a centred second order stationary process.
Assume that

oo
32 <o,
k=0
then the spectral density
| ¢ —ikA
g = D ne ™,

is defined in L2([—, 7]). Moreover:
ry = / e’“g()\)d)\.

Here the spectral measure G of the process is absolutely continuous with derivative
2
gel-.
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Definition 4.3.1 A centred second order stationary process (X,,) is called long-range
dependent (LRD) if

o0 o0
E r,? <00, and E |ry| = oo.
k=0 k=0

It is short-range dependent (SRD), if

o0
Z |ri| < oo.
k=0

In this case, the spectral density g is uniformly continuous and

1 o0
lglleo < 5= > Irel-
k=0

Example 4.3.1 Some examples follow:

o If rp ~ k= for % < «a < 1 the sequence is LRD and there exists 3 > 0 with
g\ ~cAdPas A — 0.
o If the spectral density

o2

g\) = E,

is a constant function, then the sequence

& = / ' e Z(dN),

™

is a second order white noise with variance o2.

This means:
0, if n#m,
o, if n=m.

Efn fm = {

Let W be the Brownian motion (Bm),* this is the case if:
o2
Z([0,AD = 2—W(>\),
vy

Here Gaussianness of the white noise also implies its independence and it is an
independent identically distributed sequence (a strict white noise).

4This process is the centred Gaussian process indexed on R with the covariance EW (s)W (¢) =
SAL.
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If A\ = Z([0, A]) admits independent increments, the sequence &, is again a strict
white noise.

A weak white noise is associated with random spectral measures with orthogonal
increments.
o If

[e.¢] o0

2
X, = E ckén—ks E ¢ < 00,

k=—00 k=—00

then the spectral density gy of X gives

2

gx(N) = ge(N).

[}
§ Ckeftk)\
k=—00

To prove this compute X’s covariance.
Moreover
oo
Zx(d)) = ( > qe'“) Ze(dN),
k=—00

where Z; denotes the random spectral measure associated with .

E.g. autoregressive models, AR(p), may also be defined for dependent inputs,
P
X, = Zakxnfk + gn'
k=1
In case the sequence (&) is a white noise with variance 1, they are such that
)

1
7

gx(\) = 5

14
1 — § ake—lk/\
k=1

Now, the spectral density gx is continuous if the roots of the polynomial

p
P(z) =z — Zakzpfk,
k=1

are inside the complex unit disk.
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Exercise 23 The roots of the polynomial
p
P(x) =7 — Zakz”_k
k=1

are inside the complex unit disk if

)4
> lal < 1.
k=1

P
Hint. If some z with |z| > 1 satisfies P(z) = 0, then z” = Zakz”_k.
k=1
The triangular inequality implies

P P
—k -1
2|7 < E lagllz|P™" < 1z|” E lal.
k=1 k=1

4
Thus |z| > 1 implies Z lag| > 1.
k=1
The previous heredity formulae extend to LL2-stationary sequences &,

Proposition 4.3.1 Let (X)) be a centred second order stationary sequence and c,
be a real sequence:

Y, = Z ckXnks, h(N) = Z cre’™,
k=—o00 k=—o00

with Y po o c,% < 00. Then the sequence Y, is also centred second order stationary
sequence and

grN) =R gx V), Zy(@dA) = h(N) Zx(dN).
Proof The first claim follows from the bilinearity properties of the covariance:
oo oo
Cov(Yo. Y= > | D ¢iciom | rism.

m=—00 \ j=—00

The second claim is just algebra.
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4.3.1 Limit Variance

A limit variance is the main difference between expressions the classical central limit
theorem under independence and short range dependence. The above definition of
the short range of a process is justified as follows in case X, is centred. Indeed:

EIXi 4+ X, =) Y EXX, =) Y r,
s=1 r=1 s=1 r=1
Thus: N
EIXi+ -+ X, = ) (n— [kDr. (4.4)

|k|<n
According to the previous section one derives:

Proposition 4.3.2 If X, is SRD then
E|X| + -+ X,|* ~ ng(0).

Proof This result is a variant of Cesaro’s lemma. It will be enough to prove by using
the standard Landau notation> that:

> Ikl = o).

lk|<n

For each € > 0 there exists K such that |r;| < € for |k| > K.
Split the expression

Z [k[lrg] < Z |k||7x| + en.

lk|<n |k|<K

Recall that in case EX = 0, then:

9(0) = ) EXoXi.

k=—00

5Landau notations:
vy = o(uy) if lim, (v, /u,) = 0in case u, # 0 for all n,
v, = O(uy) if there exists C > 0 such that |v,| < C|u,| for all n.
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The previous quantity is of a specific importance. Indeed, according to the indepen-
dent case a first possibility is to fit each term of the sum above approximated for a
convenient sequence m = m, by

m
Urzn = Z EX()Xk.

k=—m

An empirical estimator of this expression gives

m n
=R 1
02 = Z - ZEXiXi+k. (4.5)
k=—m n i=1
or alternatively if one only has a sample X, ..., X,
my 1 nA(n+k)
=0 - D EXiXi, (4.6)
k=—m, ~ i=1vk

All the terms in the previous sum do not have the same number of elements.
Namely the k-element of the sum is over n — | k| terms which makes this estimator
biased.
A variant of the previous estimator which is unbiased now gives

m, 1 nA(n+k)

~2 _ .Y

Gr= Y pp— > EXiXig (4.7)
k=—m, i=1vk

The previous estimator may also be seen as a non-parametric estimator of the spectral
density at the origin which also justifies the introduction of a smoothing parameter
even though one only aims at estimating a real parameter.

4.3.2 Cramer-Wold Representation

The second-order stationary processes are represented as infinite order moving aver-
age of a weak white noise under a weak assumption. The proof of following results
may be found in the volume (Azencott and Dacunha-Castelle 1986):

Theorem 4.3.1 (Cramer—Wold) Let (X,)ucz be a second ordered stationary
sequence with a differentiable spectral measure G such that g = G’ satisfies

/logg(x) dx > —o0.



4.3 Range and Spectral Density 65

Then there exists a unique orthogonal sequence &, second order stationary (weak
white noise) with E{g = 1 and a sequence (c,)neN With

o0

2
E c, < 00, co >0
n=0

such that

o0
Xo=EXo+ ) kb (4.8)
k=0

Theorem 4.3.2 (Wold decomposition) Let (Z,),cz be a second order stationary
sequence then there exists X,, V; with Z, = X, + V, such that (X,) is as in (4.8) and
V; is measurable wrt to o (&, /u < t).

The first part of the representation of Z, is as before while the second part V; is
something new. That part is called the deterministic part of Z, because V; is perfectly
predictable based on past observations X, for s < r.

A parameter of a main interest for stationary time series is the spectral density.

4.4 Spectral Estimation

This section is a very short survey of the question addressed in several nice volumes:
see Azencott and Dacunha-Castelle (1986), and Giraitis et al. (2012) for a complete
study of the LRD case (see Sect.4.3), for parametric setting, see also Brockwell and
Davis (1991), and for non-parametric setting see in Rosenblatt (1991).

Our aim is to make explicit how probabilistic limit theory can be used for the
development of statistical methods for time series analysis rather than to provide a
course of time series analysis since some really good textbooks are already available.
The present viewpoint allows us to present many tools usually not considered directly
by statisticians.

Definition 4.4.1 For a centred and second order stationary (X;);cz define the peri-

odogram:
2

1 .
=5 DT
™

[€|<n

I,(\) = Z Xpe
k=1

1
2mn

foreachn > 1 and )\ € R, where

nA(n+L)
RO ==Y XX
" =ivao

Example 4.4.1 An example of classical real data is the annual flow of the river Nile
at Aswan 1871-1970 in Figs. 4.1 and 4.2 which show the fitted covariances. A rapid
decay of covariances is observed from the covariogram.
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Remark 4.4.1 The last sum extends over (n — |£|)-terms, hence the estimator 7, (£)
of the covariance r(¢) = EXyX, is biased for £ # 0, which means that we do not
necessarily have Er, (£) = r(£). Remark that in case > o Ir(@)] < oo the spectral
density of the process f is continuous and that EZ,(\) = f(\). Unfortunately the
variance of this estimator of f does not converge to 0: 1,()\) is not a reasonable
estimator of f ().

The integrated statistics

2
Ju(9) :/0 gL, (N) dA,

admit smoother behaviours and usually converge to

2
J(g)=f0 g f(N) dA.

They even may be proved to satisfy a central limit theorem.

The previous feature may be used in directions as briefly discussed in the following
two subsections.

4.4.1 Functional Spectral Estimation

First, we use a kernel method to consider g ~ 4, and for a convenient window width
h = h, and a kernel K we consider the estimator

> 1 2T A'—
fO) =1L, xKy(\) = Z/ L () K (Tﬂ> dp.
0

This allows us to consider reasonable spectral density estimators. If now one replaces
the smoothing function %K () by the Dirichlet kernel

N Sin (Cm+ 1D%)
D)= Y &= T

k=—m

with order m = m,, = 1/h,, the previous estimators give

27
f(A)!Z L?* LM%(A) ::j[ In(u)l)m”(A —'M) de
0
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which almost fits the abov~e—mentioned estimator (4.5) of f(0). In fact it can be
written in such a way that f,,(0) is as in (4.6), so contrary to (4.7) this gives a biased
estimator:

my, 1 nA(n+k)
f0) = Z - Z EX; Xk
k=—m, i=1vk

Remark 4.4.2 Asymptotic properties of such estimators may be derived under spe-
cific assumptions on the time series. One may prove them by approximating the
spectral density by its Fourier expansion. Then standard empirical arguments allow
us to derive asymptotic properties of such estimators as for the simple empirical
means considered in Sect.3.1 for independent sequences. Further improvements of
inequalities for dependent samples are needed to complete the program. The case
of the kernel estimator is in fact analogous since regularity conditions of a spectral
density are tightly related to the quality of their approximation by trigonometric
polynomials. This point may be proved by using the Jackson polynomials approach,
see Lorentz (1966) or Doukhan and Sifre (2001).

4.4.2 Whittle Estimation

Assume that the time series is in a parametric set of models; maybe ARMA or others,
see hereafter. Then the distribution of the whole process X = (X;);cz may depend
on a parameter ¢, the spectral density which is defined in a family (fp)peo (for
some ® C R?) and a suitable estimator, named the Whittle estimator, is the value 6
minimizing the contrast, as defined in Sect. 3.2:

2 1OV
U,0) = 1 A d,
©) /0 <0gfe( >+f6w)

2T
= / log fo(N) dX+ J, <i> .
0 Jo

Here again central limit theorems extending these for independent sequences allow
us to expand pointwise the previous expression. An additional argument such as
for example a uniform result (see e.g. Sect.3.1) is then necessary so that the Taylor
expansion still holds after integration.

4.5 Parametric Estimation

Remark also that parameters based on the spectral density may be estimated from
other contrast estimators. Usually there is no close expression for the density
po(x1, ..., x,)of asample (X1, ..., X,) but MLE 6 estimators are defined through
the relation: R
0 € argmax po(Xy,..., X,).
0e®
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An interesting special case is that of a homogeneous Markov chain with transitions
Py(x, A) =Pyp(X; € Al Xy = x).

If this Markov chain admits a density my(x, y) and an invariant measure with
density vy (x), then:

Po(X1, ooy Xp) = vo(x)To(X1, X2) + -+ T (Xp—1,5 Xn)-
For instance this applies to the non-linear auto-regressive processes
X, =rg(X,—1) + &,
in case &) admits a density gy, and then
mo(x, ¥) = go(y — ro(x)).
Consider now an homogeneous Markov chain, solution of a recursive equation,
X = ﬁzUH(Xz—l)

with iid centred innovations (&;).

The MLE can be written

(x, ) = — ( o )

(X, y) = - g )

og(x) op(x)

in case & admits a density g. Instead of considering py it is better to consider the
minimization of

qo(x1, ..., xp) = m(x1, X2) + - - To(Xp—1, Xp).

Usually such maximization problems are numerically unstable; the QMLE is the
minimization of the previous expression but with simply & ~ A/(0, 1) a Normal
distribution. Now the MLE maximizes 6 — Ly(X, ..., X,). Even in this simplest
case of Gaussian inputs fy does not usually admit a closed form. The following
expression is simpler to minimize:

Lo(X1. ... X,J—Z 2(X 2oy Tleeai X ).
t—1

This estimator is considered in the most general situations in the monograph
(Straumann 2005).
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Remark 4.5.1 A last related remark is that for Gaussian processes with a fixed vari-
ance Var X, = o? the least squares coincide with the MLE because of the quadratic
expression of a Gaussian density.

4.6 Subsampling

Besides model-based bootstrap techniques in Sect. 11.3 this section is aimed at expli-
cating the specific features of resampling under dependence.
Namely assume that a limit theorem holds for a sequence

L
(X1, ooy Xim) 2 mooo T

It is not unusual that the distribution of 7 is not accessible. As before a test of
goodness-of-fit is based on quantiles of the limiting distribution 7. In case one wants
more generally to fit the limit distribution of the convergent series of statistics

Tw=tn(X1,..., X)), for some m=m, L n.
A way to proceed is to consider families of m-samples (X;,...,X;,) with
(i1, ...yim) € Eppand iy < --- < i,, then the expression for 7,,’s distribution

is provided from the value of K (g) = Eg(T,,) which is obtained from the empirical
method as

~ 1
K, = — th(Xi, ..., X;)). 4.9
9 = Cad B > 9 ) (4.9)
R (ST im)€EEn
In order that the distribution of #,,(X;,, . .., X;,) is the same as for 7,, it is natural to
assume that the distribution of (X;,, ..., X; ), is the same as for (X, ..., X;,).

For iid samples the set E,, , may admits the huge cardinality

|
n: o m

(n —m)!

One may select E,, , as the set of all the ordered m-tuples among {1, ..., n}. This is
unfortunately a huge sum and it is better to choose randomly among those sets and
use the law of large numbers to exhibit a consistent procedure.

Unfortunately not all m-tuples admit the same distribution when independence is
omitted. Two choices of sets are considered to support this distributional equality:

Em,n:{(l+1,,l+m)/ OSlSn—m},
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satisfies Card E,,, , = n — m + 1| and gives overlapping samples,

n
Epp = [((i _ 1)m+1,...,im)/ 1<i< E}’
satisfies Card E,,, , = n/m + 1 for n a multiple of m and gives non-overlapping
samples.
Again asymptotic consistency of such expressions still relies either on moment
inequalities, or on exponential inequalities.
Suppose that we have the following schemes:

Gim = g(tm(Xi-H’ ey Xi-‘rm)) (410)
Gim = 9 Xmi-1+15 - - +» Xi+1)m)) (4.11)
and the set E,, , is indexed by an integer i = 1, ..., N with either N ~ n — m or

N ~n/m.
In order to prove the convergence of such expressions, a simple way is to calculate
the variance of the expressions and from Cesaro’s lemma to derive that

K. (9) = ns0o Eg(T),  in probability.

Equation (4.4) entails

var ‘< (g) < § |Co'( NUE 5 )l'
n = C lE g()m Qim

i€Ey n
Usually g(x) = (y<y) so that using Exercise 69 the limits in probability

SUp | Ky () = P(T < )] —paoe 0. Ky(u) = K, (9). (4.12)

holds uniformly with respect to u by using Exercise 13 as in the proof of the Glivenko—
Cantelli theorem 3.1.1.

Remark 4.6.1 Such uniform convergences are taken into account to consider non-
convergent cases, in Doukhan et al. (2011); we consider extreme value theory.
The divergent statistic sequence is then

ty(X1, ..., X,) = mMax x;.
1<i<n

Self-normalization of those series then relies on the uniform convergence properties
of the sequence (K, n, )n>1-

Remark 4.6.2 In order to prove almost-sure convergence of such expressions, higher
order moments need to be accurately bounded, as done in Doukhan et al. (2011).
Refer to Chap. 12.



Part 11
Models of Time Series

This part is of main importance in this volume. The idea is to recall standard tech-
niques and also to introduce new concepts adapted to model time series. In a natural
way, the first chapter is restricted to the Gaussian world; Gaussians indeed admit the
exceptional feature that all the moments may be explicitly computed.

After this moving averages are the simplest non-Gaussian random processes. Then
extensions to nonlinear processes are similar to the Gaussian chaos in the previous
moving average setting. Most of the time series models can be written as Bernoulli
shifts, and adapted techniques are developed here. In particular, we consider wide
classes of memory models, extending on Markov cases.

The final brief chapter is dedicated to association which defines, as Gaussians, a
very tiny conic class of time series. It shares the same specific feature of Gaussian
processes: independence and orthogonality coincide here too.



Chapter 5 ()
Gaussian Chaos Creck for

Gaussian distributions (Appendix A) are natural and play a special role in the field
of probability theory since they appear as limit distributions from the CLT (Theorem
2.1.1, Lemma 11.5.1). Gaussian linear spaces admit a simple geometric property:

L2 and distributional properties of Gaussian processes are equivalent.

The Gaussian chaos is the > closure of polynomials of a Gaussian family. For
one Normal random variable this chaos admits the Hermite polynomials as a basis.

The organization of the chapter follows. Discretely indexed Gaussian random
processes (time series), and Brownian motion, as well as fractional Brownian motion
(important for long-range dependence), are first considered. This provides enough
tools to study the convergence of functionals of Gaussian processes. The method of
moments is briefly reviewed, including the Mehler and the diagram formulae. The
final sections introduce the so called fourth-order moment method which proves that
in order that a sequence Z,, of random variables belonging to some chaos to converge
to the Normal standard distribution, it is enough to prove that only lim, EZ, = 0,
lim, EZ? = 1 and lim, EZ?} = 3 as proved in Nourdin et al. (2011).

5.1 Gaussian Processes

Definition 5.1.1 A Gaussian process (or a Gaussian family) ¥ = (Y;),cr is a collec-
tion of random variables defined on the same probability space such that each finite
subset defines a Gaussian random vector.

Remark 5.1.1 Alternatively, ¥ = (Y;);er is Gaussian if for (u;),cT, a family of real
numbers such that u, = 0 except for finitely many ¢,

Z u Y,

teT
is a Gaussian random variable.
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As an application of Lemma A.4.1:

Proposition 5.1.1 If a sequence of real numbers (ry); satisfies r_, = r, for all

n>0and
n
E Uilhjri—j = 0,
ij=1
foralluy, ...,u, €R, then there exists a stationary Gaussian process with covari-

ance ry = EXoX;.

Proof From the Lemma A 4.1, for each d € N*, the law N ;(0, X;) is well defined
with Xy = (ri-j)1<i,j<a-

The Kolmogorov consistency Theorem B.1.1 entails the existence of such a
process.

More generally:

Theorem 5.1.1 Let G : T2 — R be such that the matrix

(G, tj))lsi,jf”

satisfies (4.3) for all possible choices t; € T, then there exists a Gaussian process
with covariance G.

An example, central for the study of dependence, is described below.

5.1.1 Fractional Brownian Motion

Definition 5.1.2 (Hurst 1951; Dobrushin and Major 1979) The fractional Brownian
motion (fBm) with Hurst exponent H € (0, 1] is a centred Gaussian process (Z;),cr
with covariance 'y (s, t) = Cov (Z;, Z,) defined as

1
Ty(s, 1) = 3 (IsPH + 1P —|s —t1?7), Vs,teR. (5.1

Proposition 5.1.2 The function I'y in (5.1) for s, t € R is indeed the covariance of
a centred Gaussian process (By (t)):efo,1]-

Proof See Taqqu in Doukhan et al. (2002b). From Theorem 5.1.1 we need to prove
thatforall0 <t <---<t, <l,anduy,...,u, € C

A= Z Iy (4, tj)uju; > 0.

i,j=1
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e Step 1. Setty =0, uy = — Zle u; then

Y P

i=1 j=I
Analogously
>3
i=1 j=1

hence

2H, 2H —
Z|t1| - [t; — tol™" u;u

it = Zn, to* uott;

j=0

n n
- ZZ It — t;1* ;s

e Step 2. For € > 0 set

i=0 j=0

n
Celt—tPH —
B. = E e~ My

i,j=0

Then the Taylor formula simply implies

B, ~ €A, el 0.

75

e Step 3. For each ¢ > 0 and H € (0, 1], there exists a real random variable ¢ with

Be(t) = Ee'' = e~

(the law is 2 H -stable); this non-trivial point may be derived from Fourier inversion,
as in Taqqu (Doukhan et al. 2002b).

Then

2

n
B.=E Zu.]_eitjf > 0.

This ends the proof.

j=0

Remark 5.1.2 The case H = % yields the Brownian motion W =

R™. In this case:

F%(s,t)zsAt.

B
2

defined on

Lemma 5.1.1 Let 0 < h < H then, for almost all w € §2, there exist constants

c, C > 0 with

|Bu(s) — Bu()| < Clt —s|",  if 0<s,t<1,|s—1]<ec.
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1.0 4

0.5

By ®

0.0

-0.5-
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t

Fig. 5.1 Fractional Brownian motion simulated with A = 0.30 and evaluated in 1024 points

0.4

VB, (1)

0.0 0.2 0.4 0.6 0.8 1.0
t

Fig. 5.2 Differenced time series of Fig.5.1. This process is a fractional noise

Proof Note that:
2E(Bp(s) — By ())* = |s* + [t — (Is/* + [t — |s — ) = |s — 1.

The result is a consequence of both the first point in the Chentsov Lemma B.2.1, and
of the above calculation.

Remark 5.1.3 The regularity properties of the fBm are clear from Figs.5.1 and 5.3
representing its trajectories respectively for H = 0.3 and 0.9. while their differenti-
ates are provided in Figs.5.2 and 5.4. The larger H is, and the more regular are the
trajectories. We use the R package dvfBM, see Coeurjolly (2009).
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Fig. 5.3 Fractional Brownian motion simulated with H = 0.90 and evaluated in 1024 points

VB (H)x10°3
o
Il

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5.4 Differenced time series of Fig.5.3

e Hence for H = 0.9, close to 1, the trajectories are rather regular.

e For H = 0.3 the trajectories of the fBm are similar to those of a Gaussian noise,
in Fig. A.2.

Definition 5.1.3 The process (Z(¢));cr+ is H-self-similar if for all a > 0

(Z(at))er+ = (@™ Z(t));er+,  in distribution.

Figure 5.4 is dedicated to represent the fractional noise.
We leave the following point as exercises for the reader:

Proposition 5.1.3 Let Z be a random process on R*. The previous condition of
H -self-similarity (Definition 5.1.3) is equivalent to the stationarity of the process

Y ())ier, Yi)=eMZ(E), teR.
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For this, only check that finite-dimensional repartitions of both processes coincide.

Remark 5.1.4 As (Y (t));cr is easily proved to be a Gaussian process, strict sta-
tionarity and IL*-stationarity (or weak stationarity) are equivalent; this clarifies the
previous result.

Also it is quite straightforward to prove that:

Exercise 24 1. If Z is self-similar then Z(0) = 0.
2. If Z is self-similar and its increments (Z(t + s) — Z(t)),cr are stationary for
each s then: EZ(¢) = 0 if H # 1 because EZ(2t) = 2"EZ(¢) and

E(Z21) = Z(1)) = E(Z(t) — Z(0)) = EZ(1)

implies 27 —2)EZ(t) = 0.

3. If increments of Z are stationary we obtain the equality in distribution
L(Z(=1)) = =L(Z1))".

4. From the previous point and self-similarity: EZ?(z) = |¢|>7.

H<12?

6. For H = 1, EZ(s)Z(t) = o>st implies E(Z(t) — tZ(1))*> = 0 and the process
is degenerated Z (1) =tZ(1).

e

We obtain:

Proposition 5.1.4 By is Gaussian centred and H -self-similar with stationary incre-
ments.

5.2 Gaussian Chaos

Linear combinations of Gaussian random variables were investigated above. In order
to leave this Gaussian world a first question is as follows:

What are products of Gaussian random variables?
or equivalently
Do Gaussian polynomials admit a specific structure?

Polynomials of Gaussian random variables are needed and in order to consider any
asymptotic one needs a closed topological vector space. A simple topology of the
Hilbert space .?(£2, A, P) of the set of classes® of squared integrable random vari-
ables may be used. The Gaussian chaos is convenient for deriving expressions of any

Ut follows from the equality of distributions Z(0) — Z(—t) and Z(t) — Z(0).

2Because E|Z(2)| = 2H9E|Z(1)| < E|Z(2) — Z(1)| + E|Z(1)| = 2E|Z(1)], hence 27 < 2.
3This means the quotient space of the set of L2-integrable functions, identified through P-almost
sure equality: f ~ gincase f — g =0, P-ass.
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moment expression and yields limit theory in this chaos, through the Mehler formula
and the diagram formula respectively. The diagram formula is complicated and we
present the so-called fourth order moment method; this is a powerful technique prov-
ing Gaussian asymptotic behaviours. Namely any element Z in the Gaussian chaos
such that EZ = 0 and EZ? = 1 is Gaussian if and only if EZ* = 3 (it belongs to
the first order chaos). This method needs an integral representation of elements of
the chaos which we first explain.

Definition 5.2.1 LetY = (Y;);cr be a Gaussian process defined on some probability
space (£2, A, P). The Gaussian chaos Chaos(Y) associated with Y is the smallest
complete vector sub-space L?(£2, A, P) containing ¥; (for all ¢ € T) as well as the
constant 1 and which is stable under products; this is the closure in L2(£2, A, P) of
the algebra generated by Y.

Remark 5.2.1 Chaos(Y)’s elements are IL>-limits of polynomials:

d=1t,eT’ tyeT’

for some finite subset 7" C T, d > 1 and a(d,?”,, e R, fort,...,t; € R. Thisis a
Hilbert space. In order to get easy calculations in this space, a basis is first provided
in case T = {f} is a singleton. Further subsections allow calculations of second
order moments and of higher order moments respectively.

Contrary to the conventions in ergodic theory, chaoses have nothing to do with a
erratic behaviour; their origin lies in the tough expression of polynomials with several
variables. The annulus of such polynomials of several variables does not share any of
the standard properties of spaces of polynomials of one variable, such as principality
or the Noether property, the first of which characterizes ideal sub-rings as generated
from products with a fixed polynomial, principal rings: this property is essential for
factorization.

Example 5.2.1 (Hermite expansions)

e An interesting example of such random variables that concerns the case of single-
tons T = {0} is
Z=go), Yo~N(O,1).

If Z € L? then we will prove that such expansions exist

Z= Z SH(Yo), g =EH(N)g(N), N~NO,1),
k=0 !

with H; some polynomial to be defined below, called Hermite polynomials, see
Remark 5.2.4.
Z is also a IL>-limit of polynomials in Y.
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e A second case is more suitable for time series analysis 7 = Z and (Y;);ez is a
stationary time series with ¥y ~ A(0, 1): one may consider partial sum processes

Z=gY)+ - +g), Eg¥) <oc.

It will be proved that such expressions are again L?-limits of polynomials; they
belong to the chaos.

A difficult question is to determine the asymptotic behaviour of such partial sums.
This will be addressed below.

We aim to provide the reader with the tools necessary for Gaussian calculus.

5.2.1 Hermite Polynomials

The Normal density p(x) = exp(—x2/2)/+/27 is described with some details in the
Appendix A.3.

Definition 5.2.2 (Hermite polynomials) Let k > 0 be an arbitrary integer. We set

(=DF d* o)

Hi(x) = oG dxk

Then H; is a kth degree polynomial with leading term 1.

Those polynomials are graphically represented in Fig.5.5. The above degree consid-
erations are easily deduced from the following exercise.

100

50

Hy (%)
!

Degree
— n=0
[

n=2
S on=3
——- n=4
= n=5
; i — n=6
T T T T T T 1

-6 -4 -2 0 2 4 6

_50 -

-100 -

Fig. 5.5 Hermite polynomials



5.2 Gaussian Chaos 81
Exercise 25 Prove that for k > 1:

Hi1(x) = xHy(x) — H{(x).
Proof This follows from the relation

Hi()p(x) = (=D “ ().

By differentiation: H](x)p(x) + Hi(x)¢'(x) = (=D ®+D (x).
Using ¢'(x) = —xp(x) we get

(H{(x) — x He(x))p(x) = (=1 "D (x).
Hence Exercise 25 follows.

Hence d°H;+1 = d°Hi + 1 admits the same leading coefficient and Hy(x) = 1
concludes the above definition.
For example

Hy(x) =1
Hi(x)=x
Hy(x) = x> —1

H;i(x) = x> —3x
Hy(x) = x* —6x> +3
Hs(x) = x> — 10x> — 9x.

Exercise 26 Hermite polynomials (H)x>o form an orthogonal system with respect
to the Gaussian measure (x) dx. Moreover || Hy ||,i = k!, foreach k € N.

Hint. Let N ~ N(0, 1) be a standard Normal rv. Then k integrations by parts yield
fork > I:

EH,(N)H(N) = / Hy () Hy (0 (x)dx

oo gk
- (_1)k/ L) oy

o dxk
* dkH(x)
= /_OO Ik p(x)dx.
The above expression vanishes if k > [.
d*H,
In case k = [, this yields ¢ =kl

Hence IEsz (N) = k!, which ends the proof.
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This system is also total as proved e.g. in Choquet (1973), it means that if
IE|g(N)|2 < oo for a standard Normal random variable, then Eg(N)H;(N) =
0,Vk = g = 0. Hence any measurable function g with E|g(N)|*> < oo admits
the L>-representation:

e Gk
900 = Hi ().
k=0
o =Eg(N)H(N), k=0,1,2,...
= g l?
2 _ k
Elg(N)| _,;_k! :

Definition 5.2.3 Assume that g € L%(¢) is not the null-function. Define as before
gk = Eg(N)Hi(N).
The Hermite rank of the function g (% 0) is the smallest index k > 0 such that

gk # 0.
It will be denoted m, or m(g).

Proposition 5.2.1 This orthonormal basis in ]Lz(ga(x)dx) also satisfies:

> Zk 29
Z S Hy(x) = ¥ /2, (5.2)

k!
k=0

This equality is only an equality in the Hilbert space L% (¢ (x)dx).
The previous series converges (normally) in L? ((x)dx) because:

-k PR 02,k if k#1
E( > H(N)=H(N))| =
iy PN 7 Hi (N % if k=1

We shall need the lemma:
Lemma 5.2.1 H] = kH;_,.

Proof of Lemma 5.2.1. Since the leading term of H, is x* it is simple to check that
d(H] —kH_y) <k —1.
The lemma will follow from the relation

/(Hk/(x) —kHi_1(x))H;(x)p(x)dx =0, forall [ <k.

First

0, if l<k-—1
k/ Hi_1(x)H(x)p(x)dx = {k(k O kLif Ik 1.
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An integration by parts implies

/ H,(x)H(x)p(x)dx = (=1)! / H(x)¢"” (x)dx
_ (—py / He (1)) () dx
=fHk(x)Hz+1(x)¢(x)dx.

This expression vanishes if / < k — 1. If now / = k — 1 we get the same value, k!,
as for the other quantity which implies H, = kHj_;.

Remark 5.2.2 An alternative and more elementary proof of the previous relation
begins with the identity ¢’ (x) = xp(x).
From the definition ¢® (x) = (—=1)¥¢(x) hence the previous expression can be

rewritten as
Hiy1(x) = xHi(x) — Hy(x).

Derive k times this relation with the Leibniz formula,* then
(@) = —xp® (@) — k" V().
We obtain
Hip1(x) = xHi(x) — kHi—1(x).

The formula follows from comparing the two previous expressions of Hj. .
Now the function
x—2%/2

x> g(x) =e

belongs to IL?(¢), it admits the Hermite expansion

4If the functions f, g : R — R are differentiable enough then:

(9" = Z (Z) A

k=0
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This function indeed satisfies:

9ok = Eg.(N)H(N)
dx

o 00
= H, (X)eZszZ/Z (x)dx :/ H (x)e*(zfx)Z/Z
[ ’ o Nor

o0 k 1 e’}
=/ H(t + 2)p()dt =) %/ H (Dp(n)dr
—0oQ 1=0 M —0Q

k %
=Y ¢ / Hi(Dp(ndt = 25
=0 o

For the above identities, use the change in variables t = x — z, a Taylor expansion,

k!
and finally the relation H, O _ H,_,;.
T k=1
We get the L?>-expansion:
o) Zk >
> FH,((N) — N7, in L3R, A,P). (5.3)
k=0 "

Consider L2 () the Hilbert space of such measurable functions g with
/ g ()p(x) dx = Eg*(N) < oo.
R

The convergence of (5.3) in the space L?(¢) for each z € C, also implies the x-a.s.
convergence of the series

o0

k
<
90,0 =) THix),  VzeC.

Exercise 27 (Orthogonal polynomials) Assume that —oco < a < b < 400. More
generally let p : (a, b) — R be a measurable function such that

Alfx € (a,b)/ p(x) =0}) = 0.

with A, the Lebesgue measure on R.
Set also

b
(Frg) > (frg)y = / FOO9() px) dx.
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the scalar product on the pre-Hilbert space I?(p) of classes (wrt to a.s. equality) of
integrable measurable functions with

b
[ F2(x) p(x)dx < oo.

1. Schmidt orthogonalization. Consider 0 < N < oo. Suppose that the polynomials
x > 1,..., x" satisfy this relation. Analogously to Hermite polynomials, define
recursively a sequence of orthogonal polynomials such that Py = 1, and such that
P,(x) — x" is orthogonal to 1, x, .. ., x" ! foreachO0 <n < N < 400.

2. Recurrence relation. There exist sequences a, € R, b, > 0 such that

Py(x) = (x + ay) Pp—1(x) + by Py—2(x), Vx €(a,b),2<n=<N.

3. Roots of orthogonal polynomials. In case (a, b) is any closed, open or semi-open
interval of R, then each orthogonal polynomial admits » distinct roots.
From now on we consider examples with N = oco.

4. If (a,b) = [—1,1] and p(x) = (1 — x)"(1 + x)” we get Jacobi’s polynomials
for u,v > —1.In case u = v = 1 one obtains Legendre’s polynomials and
U =v = % yields Tchebichev’s polynomials. Prove that (P,) is a complete
system.

5. If (a,b) = [0, +00) and p(x) = e~ we get the Legendre polynomials. Analo-
gously to the Hermite case, prove that

et d"

Pn(x) = ﬁdx”

(x”efx).
Proofs.

1. We use the Schmidt orthogonalization technique; this is a recursive technique.
Assume that Py, ..., P, are orthogonal and

d°Py =k, d°(Pu(x)—x*) <k, O<k<n
have been constructed, then set P, (x) = x"*! + a9 + - - + a,x" such that
(Pys1, P) = 0 (0 < k < n) and thus relations ai(Px, Pr) + (Py, Puy1) = 0

determine the coefficients of this expansion of P,y ;.
The system of orthogonal polynomials is a Hilbert basis and we need to prove:

Viel(p): {Vn >0, (f. Py, :0} = =0
2. As the degree of P,(x) — xP,_1(x) is < n — 1, one may write its expansion

Py(x) —xPy_1(x) = coPy(x) + -+ - + cp2 Pia(x).
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Now
(xPy_1, Pk)p = (Pn—l’xpk)p = cr (P, Pk)p > 0.

Fork <n —2thisentailsc;, =0andifk + 1 =n — 1 thisis > 0.
3. Letx; < --- < x¢ be the real roots of P, with a change of sign.
Set

Ox)=(x—x1) - (x —x;)

then P,(x)Q(x)p(x) > 0 (a.s.), this excludes the relation (P,, Q), = 0 which
holds by construction in case k < n.

4. Properties of these polynomials may be found in Szegd (1959) or in Sansone
(1959), and the Weierstrass theorem (see Exercise 9 for a first approach, and
e.g. Doukhan and Sifre 2001 for more comments) entails that these systems are
complete.

5. Prove that the leading coefficient of RHS is 1 and that the corresponding system
is orthogonal. To this aim again use integrations by parts and due to the fact that
integrated terms all vanish we get for n > k:

(Pu, P)p = L /00 Pi(x) @ (x"e*)dx = (ol foo P (x)e ™ dx
Tl A P n Jo ok '

This ends the proof.

5.2.2 Second Order Moments

The following results allows us to better understand the Euclidean structure of the
chaos.

Lemma 5.2.2 (Mehler formula) Let Y = (Y, Y>) be a Gaussian random vector

with law
1r
“0.(1)

0, ifk#I,
K\, if k= 1.

then
Cov (Hy (Y1), H|(Y>)) = {

Remark 5.2.3 The main Lemma 5.2.2 allows to control the second order structure
of elements in the chaos.
Consider a closed Gaussian space V| spanned by the Gaussian process (X, )eT-

e Mehler’s formula proves the orthogonality of the various chaoses V; linearly gen-
erated by (Hy(X;))eT, for k > 1.
e Each chaos V} admits a geometry described by Mehler formula.

Proof If t;, 1, € R set

0% = Var (1Y) + 62Y) =t} + 13 4 2rtyta,
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then t,Y; + Y, ~ oN. The relation (A.6) implies:
_ l 2 2 __ i
Eexp|#©Y1 + 6> 2(1‘1 +l2) =e ",

From the L>-identity (5.3) we may exchange integrals and sums from dominated
convergence

1
]EGXP <Z‘1Y] + Y, — E(tlz + 2‘22)> = ¢
0 k l
= Y L2 EH (V) H (Y.
kl:Ok I

Identifying the previous expansion with respect to powers of #; and #, yields the
conclusion since EH(Y;) # 0 only for the case k = 0.

Remark 5.2.4 Let g : R — C be measurable and E|g(N)|?> < oo in the setting of
Example 5.2.1.

Then
o0 g -
=2 = EH,(N)g(N).
k=0
Now
Eg(Y)g(¥2) =§:|g"| rk
glr2 Xl )
k=0
o Lkl
— Kl k
Cov (g(1), g(¥2) = =
k=1
Below we consider a stationary Gaussian process (Y,),cz such that EYy, = 0,
Var Yy = 1, then r, = EY,Y,,.
Assume also that Eg(Yy) = 0, which means that the Hermite rank satisfies
m(g) = L.
Then:

n

2
E|Y grp| =) Eg¥)g¥)
j=1

s=1 t=1

=ny (1 - 'n—'> Eg(Yo)g(¥))

|l|<n
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—nz( ) 5 ot

|l|<n k=m(g)
[
Z |9k| Z( ||) ) (5.4)
k=m(g) ! |l|<n
oo o0
In case Z |r;| < oo, each series R, = Z r,k converges (for k > 1) because
l——oo [=—00

Zg(Y) ~n Y Rk'g’" — O,

k=m(g)

if only
oo
S = Z Ir|"® < oo.

I=—00

The Hermite rank in Definition 5.2.3 is written m(g). The previous claim still holds
true; indeed all series Ry are then convergent for k > m(g).
The Cauchy—Schwarz inequality implies |r(¢)| < 1 = EY3. Thus

r@F < Ir@™?, if k>mg).

Moreover |Ry| < S which proves that the previous expansion (5.4) is indeed
convergent.

Exercise 28 The empirical cumulative distribution is of a main interest for statistics:

1 n
F,(x) = ; Z ]I[YkSX}'
k=1

F, (x) is an unbiased estimator of the cumulative function.
Prove that:

1 o PP & Y &
Var F,l(x)zzkz)—!‘; <1—;>r,.
=m(g <n

This expression is

1
Var F,(x) = (9(—), asn — 0o, if Z Iri| < oo.
n

l=—00
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If now

o0
> Inl=o0

I=—00
then

1 1
Var F,(x) =0 | - -
ar F,(x) - doinl] > .

|l|<n

However, Cesaro’s lemma proves that this expression converges to 0 if the sequence
r; converges to 0.

Proof F,(x) is unbiased, since a simple calculation yields:
EF,(x) = F(x).
The expression for its variance relies on the previous identity written for the function
ur gu) = Ty<y.
Here again with N a standard Normal rv:

g = EH(N) Tiy<y

X
= / Hy(u)e(u)du
—0o0
= (=1f / P @)du
—00
_ o), (a primitive of ¢) for k=0
=~ Hi 1 (x). if k#0.
Hence -
1 e ) Y &
VaIFn(X)ZZZTZ 1—; .
k=m(g) [l]<n
o0
If now Z |r;| = oo, then its order of magnitude is
l=—00

1 [ 1
Var F,(x) = O ;Z(l—'ﬂ—')hﬂ =0(=-> Inl|,

|l|<n |l|<n
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. 1 . .
admits a rate of growth larger than —. From Cesaro’s lemma this expression converges
n

to 0 if the sequence r; converges to 0.

Again we assume that the polynomials form a complete system in Chaos(X).
Mehler’s formula in Lemma 5.2.2 allows us to decouple chaoses of different orders.

We consider a Gaussian process X = (X;),er and we denote by Chaos(X), the
corresponding chaos.

5.2.3 Higher Order Moments

The technique used to derive Mehler’s formula suggests an extension for an arbitrary
number of factors H,(Y;). ThusletY = (Yy,...,Y,) ~ ./\/p (0, R) for a symmetric
matrix

R = (rijhsijzp

with diagonal entries r; ; = 1.
Hencer; ; = Cov (Y;, Y;). If (#1, ...,1,) € R” we derive

p P
thYj :thz—i—Z,o, p = Z rijlit;.
=1 j=1 I<i<j<p

Relation (A.6) proves

12

= Eexp é(th — —)

As in the proof of Mehler’s formula (Lemma 5.2.2), the idea is to identify the coef-
ficient of these expansions. If the expansion (5.3) was also valid in L?, then it would
be possible to write:

00 ) l[] l
exp Z rijlitj :EZZﬁpE HHZ(Y)
I<i<j<p h=0  1,=0 b
—————
p sums

An argument allowing the inversion of sums and integrals would provide the identi-
fication of such moments.

Unfortunately, such convergences are not accessible and to derive expressions of
the moments we will use an alternative argument from Slepian (1972).
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The characteristic function of the random vector Y = (Y7, ..., Y;) can be written
By (s) = e 2%,

if this is a centred Gaussian vector and its covariance X .

Then an alternative representation of its density function follows from Fourier
inversion. Assuming X' to be invertible will imply the convergence of the following

integrals:
1 o0 o0 sl 1 ry
f, X)) = / / e Ve 28 #5 s,
(271')% —00 —00

If ¥ = (r;j)1<i, j<k Withr; ; = 1 we thus get the heat equation from differentiations:

Exercise 29 (Heat equation)

of (3, 2) _ f(y, %)
ar,-,j - 8)116)/]

if i # j. The function f(y, X) is analytic wrt the multidimensional variable X

Hint. Apply Lebesgue’s dominated convergence.
This will allow the expansion below. Letn = (n; j)1<;< <k be such thatn; ; € N for
eachcouple 1 <i < j <k.

‘We denote
nij _
r" ZH’”i,_/a n!—l_[n,-,j!
i<j i<j
Also set
nij=~nji, if i >j, and Sn,i ZZI’l,’,J’.
J#i
Then, with
k
oI =[TeGn,
i=1
we get

r" 6{Zi<f”ivf}f(y, I)
fom= 2 o T or
n:(n,',j) 1<j ¥
00
n! l_[i<j ayz'ni‘ja)’?i'j

n=(n; ;)

3 T () 5.5)

_' ayfn,i

n=(n; ;) Ti=l i
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r’ k
= Z ;n(p(sn,i)(yi)
n=m;;)  i=l
Thus,
ril k
Fo = 3 =[] Ha 006 (5.6)
n=(n; ;) i=l1

where

k
¢(y) = [ [
i=1

denotes the density function of a random vector N; (0, ;) and the previous sums
extend to all integer multi-indices n = (1; ;) 1<i<j<k-

Indeed s, ; is the number of appearances of y; in the second identity.

Relation (5.6) thus implies

k n k oo
E[[H.(x0=>" % I f Hy,, (i) Hy, () ()i,
i=1 n Ti=1Y7%

and orthogonality of the Hermite polynomials implies:

Proposition 5.2.2 (Diagram formula) For k > 2:
k r
E[[Hay=stst 3 —
i=1 nenN (sy,..., Sk)
for sums extended to such multi-indices n = (n; ;) with
Sn,i = Sis if 1<ic<k.

The n; ’s correspond to partitions of the array such that

X| ... X| appears s| times
X3 ... X3 appears s times
Xg ... X appears sy times.

Precisely the first line of the arrays may be divided into (k — 1) parts with respective
sizes ny,..., Ny k.

The number of such multi-indices is also the number of arrays satisfying the
constraints s, ; = S;.
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Exercise 30 Prove again Mehler’s formula in Lemma 5.2.2.

Hint. If k = 2 the sum in 7 is a simple sum on the set of integers N because i < j
impliesi = 1 and j = 2.
Thus the summation

>

nenN(sy,s2)

corresponds to the value n; » = s; = $;: this is again Mehler’s formula.
Based on Melher’s formula, Lemma 5.2.2 for the case p = 2 and on the diagram
formula for larger values of p, the following decomposition may be derived:

Theorem 5.2.1 (Chaotic decomposition) Let X = (X;):;cr be a Gaussian process,
the decomposition of the chaos Chaos(X) generated by X is orthogonal,

o0
Chaos(X) = P Hi(X).
Here Hy (X) is the subspace of L>(2, A, P) spanned by
[[H, (X)), ki+-+ky=k t,....t,€T.

Remark 5.2.5 Various applications of the diagram formula to time series are known.
Breuer and Major (1983) prove that if a stationary Gaussian process satisfies ¥y ~

N, 1),
1
Sn \/—E 9(Ye) =5 N (0, o),

if
o0
Y nlm <00, rlk) =EYY,,

and m = m(g) denotes the Hermite rank of g. The convergence of moments of S, to
the Gaussian ones is proved with the diagram formula.

Another application is the Arcones inequality for vector valued processes, see
Taqqu in Doukhan et al. (2002b). This inequality is extended in Soulier (2001) and
further by Bardet and Surgailis. Other developments are also reported in Rosenblatt
(1985).

The fourth order moment approach yields an impressive simplification of the calcu-
lations.
The two following subsections introduce the technique.
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5.2.4 Integral Representation of the Brownian Chaos
Consider a square integrable function f : RT — R. Wiener integrals are simple to
define®

hU)=A FOAW (D)

as centred Gaussian random variables, in the corresponding Gaussian closed space
generated by the Brownian process (W (s))s>0.

With ,
= ¥ d )2
HNz(AfOM

f = L(f), L2 (R") - L2(£2, A, P)

the application

is an isometry.

A first simple extension is to define stochastic integrals on the real line. Consider
two independent Brownian motions W_ and W,.

A way to define the Brownian motion on the line is to set W () = W, () ift > 0
and W(t) = W_(—r) if + < 0. Wiener integral is straightforwardly extended on
(—00, 0).

There exist two different ways to define

Ik(h)=/ / hty,....t)dW () ---dW(t).

We denote by H; the set of symmetric functions & € L2(R¥), i.e. such that for any
arbitrary bijection (permutation) 7 : {1, ..., k} = {1,...,k}:

h(trtys o teo) = h(t1, ..o 1),

We use the symmetrized version of a function & € L>(R¥) by setting:

1
Sym() (@, .. 1) = o Zh(zﬂ(l), )

SDefine it first for step functions and notice that for such functions f + I;(f) is an isometry on this
dense subspace in order to prove the same for the application defined on L>(RT) — L2(£2, A, P),

£l = ( /0 fz(t)dt)) = (BL(P?)" = I0Dlg.an:

This is a standard trick to extend it by using a density argument in L2 (R).



5.2 Gaussian Chaos 95

These spaces are naturally equipped with their natural Hilbert norms

||h||%1k 2/ Wty ... ) dt - diy,
Rk
and the triangle inequality justifies the above symmetrization

ISym() (13, < 1]l -

We refer the reader to Major (1981) for precise statements. Questions of convergence
are extremely specific and technically difficult in this framework as noticed in a
following chapter concerned with dependence.

e A first way is to simply set it by recursion but in this case the stochastic integrals
to be considered are anticipative.
e An alternative way to proceed is to consider integrals over sets

{(t,....t) eRY ) 1y <o <),

then if the function is invariant through permutations one defines

Ik(h)zk!/ / -~-/Hh(tl,...,tk)dW(tl)---dW(tk).

e Assume now that / is a symmetric function with

h(xty, ..., xt) =h(t, ..., t%).

An alternative construction in Major (1981) is based again on an approximation by
step functions. Firstif A1, ..., Ay C R are closed intervals, set A; =A;U(-A))
and A = Ay x --- x Ag. Then define

Ik(IIA)ILl X-~-XLk, with L]=W+(AJ)—W_(A])

If Ay, ..., Ay are pairwise disjoint then these random variables are independent.
This definition is extended by linearity to functions constant on such intervals A.
A uniform continuity argument is thus used to define such multiple integrals for
h € H;. Namely this integral is an isometry over simple functions; it thus extends
to the closure H; of this set.

Exercise 31 Prove that:

Hi (L (f)) = L(f®h),
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with [ the kth Ito—Wiener integral and

) = f@) - f @)
For example this formula is just the Ito formula for k = 2.

Hint. As for the construction of multiple Ito integrals, first proceed with simple
indicator functions, and then extend it linearly to piecewise constant functions. We
conclude with the previous extension argument.

5.2.5 The Fourth Order Moment Method

Peccati and coauthors, see e.g. Nourdin et al. (2011) recently documented important
developments.®

The fourth order method is a nice alternative to the diagram formula. In order to
simplify expressions we consider the chaos generated by {W(z)/ ¢t > 0}.

From now on we restrict to functions on the interval [0, 1] and we keep using the
same notations as above.

For f € Hy and g € H,,, for 1 < p < k A m, define with Nourdin et al. (2011)
the expression:

f Qp gty, ..., tm+k72p)
= f(tl,...,tk,p,sl,...,sp)
RP
X g(tk—p-Ha ) tk+m—2pa Styenes sp) dS] o 'dsp'

For example if m = 0 or k we have respectively:

f®g=f®g, f®kg=/ka(s)g(s)ds.

Ito’s formula is a way to represent product of elements in the k-th and in the mth order
chaos in the chaos with order k + m. It can be written in this case as the following
formula and the other two formulae are also useful:

kAm

k
L(f)In(g) = Zp!( )(m)1k+m_2p(f ® 9)-
= \P/\P

SMany thanks to Ivan Nourdin for his friendly help for his redaction of this section.
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and

(k + )

Ty 1Sym (f @ Pl = 1 £ 17, 19115,

kAm
+2( (s 0.,

Now the fourth order moments may also be calculated:
ELE(f) = 32 flI3,

+ - Zp p( ) 2k = p)HISym(f ®, Nz, , -

In particular, observe from the above representation that
Jim (EZE(f) = 3B (f))?) =
is equivalent to
lim [ISym(f, ®, fi)ly,, , =0, Vpe(l....k—1}.

We now present the deep rigidity result from the Nualart-Peccati-Tudor theory.

Theorem 5.2.2 Assume that a sequence f, € Hy satisfies
tim [ fullzg, = 1,

then .
Ik(fn) > n—>00 N(O, 1) < llm]EI,f(f,l) = 3.

Remark 5.2.6

e Essentially a sequence of standard random variables (EZ, = 0, EZ? = 1) in the
k-order chaos converges to a Gaussian rv if and only if

limEZ} = 3.
e More simply a standard rv Z in the kth chaos is Normal if and only if EZ* = 3.
Proof (thanks to Ivan Nourdin). In fact this will be enough to prove the result if, only
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In order to prove the result, two additional tools will be needed:

1. For each function ¢ : R — R in C},

EL ()T (f) = kEl//(f)f IE(fCn)dr.

o0
Var / I} (fC,0)dt
—0Q0
1 & K\
=T p(p!f(p) (2% = p)!ISym(f ®, flg,,
p=1
This entails in particular

o0
lim Var/ L (fu( ) dt =0
n—0oQ —00
& lim [Sym(f, ®, fi)ll3, , =0. (1 < p <k)
— lim EL}(f,) =3.
Now set

Ua(0) = €7 E(explit I (f)).

Then

W0 = 14 (1) + i TEUL(f) exp(itl (f,)
= 1" E (1 — / 12 ful 1) dt) L(f) exp(t I (f,)),

and

[, ()] < te'jEll —/ 12 fuGot) dt
o0

Note that: o
]E/ IE fuCndt =1,
—0oQ

then from the Cauchy—Schwarz inequality we need to control the variance of

/ 12 (fuGo0)) dt
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which tends to 0 from the above equivalence. Thus we have proved that the sequence
of the characteristic functions of I; ( f,) converge to that of a standard Gaussian. See
Nourdin et al. (2011) for more details.



Chapter 6 ()
Linear Processes Becit

We consider stationary sequences generated through independent identically dis-
tributed (&,),cz. A reference is Brockwell and Davis (1991). Such models are nat-
ural in signal theory since they appear through linear filtering of a white noise. The
usual setting is that (,),cz is only a }Lz-stationary white noise sequence and not an
independent identically distributed sequence.

6.1 Stationary Linear Models

Definition 6.1.1 Let (c,),cz a sequence of real numbers, and (§,),cz be an iid
sequence. When it makes sense, define stationary linear processes as:

o0

Xp= ) e (©6.1)

=—00

Lemma 6.1.1 The relation

[e.¢]
Z |Ck|m/\1 < 00

k=—00

implies that the previous series converge if E|&y|" < oo for some m > 0, then this
series converges in probability.

If Eé‘g < o0 (m = 2) and E& = 0, then a weaker condition holds for the
stationarity and the existence of (6.1) in L2

o0
Z |ck|2 < Q.

k=—o00

© Springer International Publishing AG, part of Springer Nature 2018 101
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Proof From Markov’s inequality we derive, if m < 1:

IP(Z il || >A)
k=—00
<Lk f}| [ m
—_— Crellén—
= Am Rt k k

1 m m
< ElEl" 3 lad”.

k=—00

Use Exercise 32-1) to get the last inequality. Now to prove the convergence, consider
an arbitrary A > 0 and restrict the above sums to k > K(A) to derive Cauchy
convergence criteria. Since (cy) is a convergent series, there exists K (A) such that if
k > K (A) is large enough then the RHS of the previous relation is arbitrarily small
as desired whatever A is chosen.

The case m > 1 is analogue and follows with Minkowski inequality.

Exercise 32 Leta,b >1:

1. Prove the relation (a + b)" <a™ +b™,if 0 <m < 1.
2. Prove the relation (a + b)" < 2"~ Y™ +b™),if m > 1.

Hints.

1. m < 1. Divide both members by @™ if a # 0 and set t = b/a. Then we need to
prove that g(t) = (1+6)" —t" —1 <0form < 1 andt = b/a. Here g(0) = 0.
One remarks that ¢'(¢) = m((1 +1)"~! — ") < 0 thus g(¢) < 0 for ¢t > 0.

2. m > 1. The function h(x) = x™ is convex in case m > 1, indeed it is easy to
check that 47 (x) = m(m — 1)x”~2 > 0. The inequality now follows with the
convexity inequality with equal weights

h (“ 42“ b) < %(h(a) + h(b)).

The sequence (§,) considered is zero-mean in case m > 1 and we assume that this
is an independent sequence in order to derive strict stationarity assumptions.

Definition 6.1.2 If ¢, = 0 for £ < 0 then the stationary process (6.1) is said to be
causal.

Assume here that (£,) is a L?-white noise. This process admits the covariance:

o0
ry = Cov (Xo, Xp) = Z ClClyk = C * C, (6.2)

l=—00

denoting ¢ = (Cy)kez With ¢, = c_4.
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Remark that by completing infinite series simply yields:

i Irel < <§oo|ck|)2,

k=—00

this series converges in case

o0
Z lek| < oo.
k=—o00

We thus obtain:

Proposition 6.1.1 Let (X;) be a linear process defined from (6.1) (with iid inputs &,)
then the above series converge a.s., this process is stationary and in L' in case, either

o0
El§|" <00, Y lel" <00, O0<m=<1,
k=—00
or it is causal and,
o0
2 2
Elo* <00, ) lal<oo, m=2.
k=0

In the latter case the covariance of the process can be written as in (6.2). The series
of covariances converges if

[o.¢]

E |ck| < o0.

k=0

Definition 6.1.3 The backward or shift operator B is defined for sequences x =
(x1)nez by the relation:

X = (Xp)nez — Bx, (Bx), = X,_1, n €Z.

Remark 6.1.1 The convention is to write Bx = (Bx,),cz, or equivalently Bx, =
Xxn—1, €.2. for any discrete time stochastic process we set:

BX, =X,_1, teZ.
In the econometric literature this operator is also denoted by L, the lag-operator.

Using the backward operator B the previous causal models also can be written

o0

X=gB)E with g(x)=) azf, incase [z]<]1.
k=0
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We now briefly describe some very simple models of constant use in statistics.
Clearly this chapter has no statistical ambition but we shall simply rephrase some
currently used models.

Remark 6.1.2 (Centring) In case (X,);cz is not a centred process, given a sample
Xy, ..., Xy, the parameter m = EX may be estimated empirically by

1 n
== X,
k=1

the estimation is consistent from the ergodic theorem (Corollary 9.1.3) in case the
process (X;)sez 1s ergodic.

Remark 6.1.3 (Local means) Assume now that the process is observed on the period
{1,...,n} and there exists a continuous function and a centred stationary linear
process such that

t
Xo=m(=)+Y. r=12...n
n
In this case a local mean may be used; the function m is fitted by

k

~ 1 .
T ——— an s
m(x) 2kn+1k:2_; [nx]+k

and for k, such that lim,_, o (k,/n) = 0 and lim,_, , k, = oo this estimation is
consistent.

Smoothing techniques, analogously to (3.4), may also be used; regular and more
accurate estimators of the function m may thus be deduced by using kernel functions
of higher order.

6.2 ARMA(p, q)-Processes

Auto-regressive moving average processes (ARMA) are stationary solutions of the
equation

P q
Xi =D ajXej =&~ ) biki. (6.3)
j=1 k=1

The above equation is formally written

a(B)X; = B(B)&
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for polynomials defined as:

p q
a(z) =1 —Zajzj, Bz) =1 —ijzj. (6.4)
j=1 j=1

Proposition 6.2.1 (ARMA-Processes) The recursion (6.3) admits a stationary solu-
tion in L, in case the inputs satisfy §; € IL” for some p > 0 and the rootsry, ..., 1,
of the polynomial o are such that

il >1,...,0rp| > 1.
If moreover p > 2 then the covariance of this stationary process satisfies:
Vk e Z: Irel < cp'®, for 0 <p<1,c>0.
Remark 6.2.1 The Exercise 23 shows that the condition
jar] + -+ lap| < 1

implies that the roots of the polynomial « are outside the unit disk.

Trajectories of these ARMA models are reported in Fig. 6.1; here both coefficients
equal 0.2 and inputs are standard Gaussian (Fig. 6.2).

ARMAC(1,1)-Processes admit quite erratic trajectories as may be seen in the first
graphic of the Fig. 6.1. The second graphic proves that they also admit covariances
with extremely fast decay rates.

o 4

200 400 600 800 1000
t

Fig. 6.1 Simulated trajectory of an ARMA (1,1). Here, X; = 0.6X,_; + & + 0.7¢,_; with,
& ™~ ./\/(0, 1)
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Fig. 6.2 Sample simple and partial correlograms of the series of Fig. 6.1

Sketch of the proof. A solution of (6.3) is written:

oo
X, = Z cjbi-j
Jj=0

where the ¢;’s are defined from

—  _;_B®
Y =20,
0 «(z)
with:
z
a()=1—aiz—---—apz’ = (1——)~-~<
r
If the roots 7y, . .., r,, of the polynomial « are such that

[ril>1,...,0rpl > 1
then the function 1/« is analytic if

|z] < min{|r(|, ..., |rpl}

and thus on a neighbourhood of the closed complex unit disk. For example
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Moreover the analyticity of the function 8/« on some disk D(0, 1 + €) implies
lek] < Ce 7k,

Remark 6.2.2 We use the classical decomposition of rational functions. Let « be
the maximal order of roots r with = min; |r;| then one may precisely prove that
lck| < Ck*~'r=F, for some constant C > 0 if k £ 0.

6.3 Yule-Walker Equations

This section provides a brief approach to Yule—Walker equations yielding parametric
estimation for ARMA models, we refer the reader to the textbook (Brockwell and
Davis 1991). Those equations are based on causality:

foreacht € Z and p > 0, the innovation is independent of (X;_1, ..., X,—,).
This condition means that the history of X, is meaningful and that X, = g(X,—_1, ...,
X;—p, &) can be written explicitly as a function of the (finite) past and of some
innovation; this is a natural condition for processes indexed by time.

For simplicity we restrict to AR(p) models where (&;);<z denotes an iid sequence
centred and with o2 = E£7, as before

Xi=ar X+ +a,X,_p,+&. (6.5)

We again assume that

p
z

-1— . P__ll 1—=),
a(2) a1z apz j_1< rA>

J

admits roots such that |r;| > 1for j =1, ..., p. Then we just proved that a MA(c0)-
expansion indeed holds:
oo
Xf = Z CjSt—j~
j=0
Parameters of interest in this model are 0 = (a, o) witha’ = (ay, ..., ap). In case

the inputs are iid Gaussian A/ (0, o) these are the only parameters.
We aim at estimating these parameters.
Multiply Eq.(6.5) by X,_; for 0 < j < p then taking expectations entails
Ra=r, o> =ro—dr,

with

Rp = (rifj)lfi,jfpa I'p = (}"0,...,}"[,),.
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Plugging-in estimators 7; of covariances r; as in (9.2) provides us with empirical
estimators of the parameters.
It is easy to define R, = (7;_;)1<i j<p and T,, and thus

R,a=71,, 0" =Try—ar,.

Remark 6.3.1 (ARMA-Models) The above equations extend to ARMA-Models, see
Brockwell and Davis (1991), Chap. 8.

Remark 6.3.2 (Non-Linear models) Extensions to the case of weak-white noise are
used; for example non-linear models such as ARCH-models are such white noises
and a linear process with such input may also be considered. In the following chapter
we describe some elementary versions of this idea.

Remark 6.3.3 (Durbin—Levinson algorithm) From such estimation a plug-in one-
step-ahead prediction of the process can be written:

Xt = AlXt—l + - ‘I’apXt—pv
once the parameters have been estimated from the data Xy, ..., X,_;.

Two-steps ahead predictions are similar by replacing now X, by X, in the previous
relation and:
Xpi=aXi+oX o+ +a,Xi—py1.

Now we may replace the covariances by their empirical counterparts, see Brockwell
and Davis (1991) and Sect. 8.2.

6.4 ARFIMA(0, d, 0)-Processes

Set A = I — B with B the backward operator. The operator A allows us to rewrite
the previous models but it also helps to define some new models.
We aim at solving the formal equation
AdXt - St'
e Incase d = 1 the equation is X; — X,_| = & thus
Xr=Xo+& +--+6&, Vi > 1,
which is a random walk if Xy = 0.

e If d = 2 the relation is
A’X, = A(AX)) =&,
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which leads to a recursive definition with initial condition O for the solution of the
equation
AlX, = &, for deN.

e If d € —N the relation is

—d

X, = A_dft = Z (_Jd> St—j'

j=0

e More generally, for d > —1, we do not necessarily assume that d € N, the
relation X, = (I — B)™%, is interpreted as an expansion for |z| < 1 of the
function g(z) = (1 —2)™ = Y72 b;z/.

Exercise 33 Prove that if d > —1, the coefficients of ¢g’s expansion are:

 Ty+d 1 fHk-14d
'“_FU+DFM)_FM)II kK

(6.6)
k=1

Hint. The analyticity of g over the disk D (0, 1) follows from the representation

g(z) = exp(—d In(1 — z)).
Now ¢(0) = 1 = bg and (1 — 2)¢'(z) = dg(z) for |z| < 1, thus
D bl =0t =d+d ) b7,
j>0 Jj>0

This relation can be rewritten as

d+) (d+ bz =) jbiz/ ™ =bi+ ) (k+ Dbzt
j>0 j>0 k>0

The last identity follows with j = k 4 1.
Thus analytic continuation theorem entails b; = d, which also may be derived
from the relation ¢’(0) = d, and

d+j
I+

@d+k—1)---(d+1d

bj, thus b=
k(k—1)---2-1

bjt1 =

The conclusion follows.

E.g. Feller (1968) proves the useful standard Stirling formula:

n n
n! ~ «2nn (—) , n— oo.
e
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This implies
1

bi~——j
J F(d)J

For—%<d<

d—1

9

as

%, this define the operators A+,

6 Linear Processes

j — oo.

To define A out of this range, use relations AT = AA9 and

Ad_lxt = sr = AdXt = Aét = sr - §t71~

The evolution of trajectories of ARFIMA(O, d, 0) is reported in Fig. 6.3 (we use the
R package dviBM, see Coeurjolly 2009).

Clearly the smallest values of d = 0.01 yields a white noise behaviour and the
trajectories look more and more regular as d < 0.5 becomes larger.

d=0.01
3
2
1
=
o
-1
-2
-3
r T T T T 1
0 200 400 600 800 1000
t
3 d=0.2
2
1
=
$o
-1
-2
-3
r T T T T 1
0 200 400 600 800 1000
t
d=0.4
2
= 0
X
-2
_4 r T T T T 1
0 200 400 600 800 1000

t

d=0.1
r T T T T 1
0 200 400 600 800 1000
t
d=0.3
r T T T T 1
0 200 400 600 800 1000
t
d=0.49
r T T T T 1
0 200 400 600 800 1000

t

Fig. 6.3 ARFIMA (0, d, 0) trajectories for different values of d
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Fig. 6.4 Sample correlograms of ARFIMA trajectories for different values of d. See Fig. 6.3

It is clear from Fig. 6.4 that the corresponding covariogram (listing covariance
estimators for such models) confirms the impression provided by trajectories of such
ARFIMA models. The covariances are those of white noise again for d = 0.01 and
then seem more and more cyclical for larger values of d.

Proposition 6.4.1 Assume that d < %, and &; is a centred iid sequence in 1.2, then
ARFIMA(0, d, 0) are linear causal processes in L2
The coefficients in (6.6) satisfy:

o0
> b <o,
Jj=0

and the series

o0
X, = ijé,,j converge in L2.
j=0
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Moreover, with 0> = EE2:

, (1 —2d)
21 —d)
r+dra-d , -2 HoR
T'k—d+ DI'(d) r(drd—d ’

r0) =0

r(k) =r(0)

as |k| — oo.

Hence

S )] = 00 <= de(O,%).
k

Remark 6.4.1 The Hurst coefficient H = d + % is used as a parameter for these
models. It was introduced to model river flooding in Hurst (1951).

Let Z be the random spectral measure associated with an iid white noise &; such
that E§y = 0, and Eég = 2. Then

X, :/ e —e ™ Zd))

-7

and

o? 1 o? A\
g =—— = — (4sin2 —> .

27 |1 - e—ik‘z‘] 2 2

Remark 6.4.2 (Simulation) Such integral representations are used to simulate these
models. For the case of Gaussian inputs the previous spectral process is Gaussian
with independent increments which makes the previous simulation trick possible by
providing independent random variables with a given distribution, see Remark A.2.8.

This idea extends to each process with independent increments such as the Poisson
unit process.

The other possibility to simulate such time series is to truncate the corresponding
series. However the simulations may be inefficient in this case, and alternatives may
be preferred, see Doukhan et al. (2002b).

6.5 ARFIMA(p, d, q)-Processes

The models ARFIMA(p, d, gq) fit the equation
a(B)(I — B)!X, = B(B)&,.

o, B are again polynomials with respective degree p, ¢ and with constant coefficient
equal to 1, as in (6.4).
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Ifd < % the process is causal and well defined in case the roots of « are not inside
the unit disk. It is invertible if d > —% and the roots of « are out of the unit disk.

Indeed in this case & = y (B) X, admits an MA(co) representation, for a function
y analytic on the unit disk

DO, 1)={zeC/ |z| <1}.

Let again Z denote the random spectral measure associated with the white noise (&;)
then

b4 il
K=/e“@—fﬂ%ﬁ@)ﬂﬁ)

,ﬂ ael*)

Hence 5

Ble™)

a(eit)

o? -2
gx () = 5— |1 =™

6.6 Extensions

For any meromorphic function y : C — C without singularities on D(0, 1) with
finitely many singularities on the unit circle, we define analogously to Sect.6.5, a
process

X, =y (B)&.

In case 1/y satisfies the same assumptions, then the process is reversible (zeros
replacing singularities).

The singularities different from 1 on the unit circle are called periodic long-range
singularities.

Now let (ck.¢)r.ccz be a sequence of real numbers, analogously to (6.1) we may
define non stationary linear processes from the relation

o0
Xe= ) ceikir

{=—00

The existence of such models is proposed as an exercise.

Example 6.6.1 (Non-stationarity) Cases of interest correspond to trends, local sta-
tionarity, and periods:

o ¢ ¢ = c¢ + Cy Ljy=y correspond to trends.

® Cri=cCy (S) for a family ¢, (-) of smooth functions. This class of locally stationary
models observed over epochs 1, ..., n was introduced in Dahlhaus (2012).
There exist in fact two ways to define this notion and the other spectral way is
sketched in Remark 4.2.1. We prefer the present state domain presentation for
possible non-linear extensions which usually are less related with the spectrum.
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ik . .
® Cri=cCy (ez”’f) corresponds to 7 -periodic random processes.

All such specific behaviours may be combined in order to provide non-stationary
behaviours more adequate to data sets.

Besides periods on also may think of exogenous data interfering with the phe-
nomenon of interest. The point is that such data should also admit some dependence
structure.

A simple example is the temperature at some place, indeed hourly and seasonal
periodicity appear together with the global warming phenomenon. An example of
exogenous data is nebulosity. Analogue modelling considerations may be drawn for
electricity consumption and for only retail data.



Chapter 7 ()
Non-linear Processes Check for

This chapter aims at describing stationary sequences generated from independent
identically distributed samples (§,,),<z. Most of the material in this chapter is specific
to this monograph so that we do not provide a global reference. However Rosenblatt
(1985) performs an excellent approach to modelling. Generalized linear models are
presented in Kedem and Fokianos (2002). The Markov case has drawn much atten-
tion, see Duflo (1996), and for example Douc et al. (2015) for the estimation of such
Markov models. Many statistical models will be proved in this way. The organization
follows the order from natural extensions of linearity to more general settings. From
linear processes it is natural to build polynomial models or their limits. Then we
consider more general Bernoulli shift models to define recurrence equations besides
the standard Markov setting.

7.1 Discrete Chaos

This section introduces some basic tools for algebraic extensions of linear to poly-
nomial models.

7.1.1 Volterra Expansions

Definition 7.1.1 Set X ,(,0) = ¢ for some constant and consider arrays (ci.k)) ezt
of constants and a sequence of arrays of independent identically distributed random

variables
k.
<(£n )lfjsk)nel '
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If the following series converge in L7, for some p > 1, set:

) _ ®  pkD) k)
Xy = Z Cromitnjy En e

J1<jp<-<Ji

Define now a Volterra process as a process such that the following Volterra expansion
holds:

[e.¢]

X, =y X

k=0

Remark 7.1.1 According to Chap.5 devoted to the Gaussian case, such stationary
models can also be written in the chaotic form generated from

((gr(Lk’ﬂ)lSjSk)neZ '

We better use the more standard expression of Volterra expansions, below.

Example 7.1.1 To understand why the previous definition involves arrays
((f,sk” )) 1<j<k)nez Of independent identically distributed random variables, it seems
better to consider the simplest example of second degree polynomials

oo oo
X, = Z Z a; j&i&;-
i=—00 j=—00
The previous expansion holds if we set

X9 = Z(ai,j +a;i)n—ibn—j

i<j

x{ = Zai,i(ff_,- —a?)
;

X,(:)) = (Za,;,-) 0'2.
i

with 02 = E€2.

Consider now Volterra models with higher order Appell polynomials A (&), see
Sect.7.1.2. Remark that £2 — o takes into account the repetitions in the diagonal
terms.

Exercise 34 For IL>-Volterra processes suppose, without loss of generality, that
E ]&5"’”‘2 —1.
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Then
EXPxD =0, if k#1
2
(k) v (k) (k)
EXo Xy = Z ’le ..... Je

J1<jp<-<Jk
(k) yr (k) __ 2 (k) (k)
EXO Xn = C it Sttt ji
Ji<ja<-<jk

Those calculations yield explicit expressions for the covariance of the process
(X1n)nez from a simple summation in case

Z ‘cy]{)]k

Ji<ja<-<jk

Remark 7.1.2 (Local stationarity) The notion sketched in Remark 4.2.1 for the spec-
tral approach and in Sect. 6.6 for linear processes still fits the present framework with
now

7.1.2  Appell Polynomials

Analogously to the special case of the Gaussian laws, which yields the construction
of Hermite chaos, one may define orthogonal polynomials associated with a fixed
distribution on the real line R. Let &, be a real valued random variable.

Definition 7.1.2 Let m € N*, we assume that E|{y|" < oo.
The Appell polynomials Ay, ..., A, associated with the distribution of &, are
defined recursively by Ag(x) = 1 and

k
Ap(x) =kAi(x), D EE-A;0)=0, 1<k=<m.
j=0
Hence

Ag(x) =1
Ai(x) = x —E&
Ax(x) = x? — 2E&x + 2(E&)? — E&]

Ar() = x4
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If the Laplace transform of &;’s distribution is analytic around 0, this entails

o0

Z

E 2 Ar(0)Ee™ = o,
k!

k=0

Let P be a polynomial with degree d = d°P:

d

P =Y %Ak(x).
k=0 "

Reasoning on the degree allows us to derive uniqueness in the above representation.

Assume that the cumulative distribution function F of &y’s distribution (defined
for x € Rby F(x) = P(§y < x)) is continuously differentiable, then we denote by
f = F’the density of this law. Then under higher order differentiability assumptions,

a =EP® (&) = (- / N Px) f®(x)dx.

An important property of those Appell polynomials is
EA () P(&) =0, if d°P <k.

Set g(x) = f(x)P(x), then

[e¢]

EAL(€) P (&) = / A()g(x)dx.

—00

Since the function g admits k derivatives then k integrations by parts prove this
identity. Set g;(x) = f/f then, analogously to the proof for the Gaussian chaos:

EA(0)gi (o) = {(1) "

Remark 7.1.3 Extensions to more general functions are much more complicated
than the previous Gaussian theory! To consider non-polynomial functions, Kazmin
(1969) assumes that the function

x> A(z) =

Eez€
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is analytic and it does not vanish on the open disk
D(0,0)={zeC/z| <a}.

Then each function g, analytic on a disk D (0, 7), admits a representation

[e ]

Cn . 1
9@ =Y T A, limsup ol <.

! n—00
n=0

for series which converge uniformly over compact subsets of the disk D (0, 7). Con-
versely for a sequence such that

. 1
lim sup |c,|" < T,
n— o0

the function g defined this way is proved to be analytic on D (0, 7).
Under those assumption the series defining g is convergent and

cn = Eg™(6),

this proves uniqueness of the expansion of analytic functions. Those results are far
from representing all the IL2-functions as in the Gaussian case.

To justify the representation of Volterra processes in Definition 7.1.1, the notion of
Appell polynomials needs multivariate extension.

Multivariate Appell Polynomials

If now & = (£1, ..., &) € R¥is a vector valued random variable it is easy to define
analogously A,, . ., (x1, ..., x;) through relations
0 .
aAnl ..... nk(xl"“v-xk):niAnl ..... nk(xl?""-xk)v 1 <1 Sk
1
and
L, ifny+---+n =0,

EAn .. () = {0 otherwise.
If the random variables &, . . . , & are independent and admit respective distributions
Vi, ..., , then

Ay (X1 x0) = AV (xp) - AU ().

These multivariate polynomials allow the orthogonality property in Definition 7.1.1.
General polynomial chaotic expansions can be written as orthogonal Volterra series.

Unfortunately Remark 7.1.3 does not allow such chaotic representations of sta-
tionary processes.
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7.2 Memory Models

This section considers some few models with explicit Volterra expansions.

As usual these memory models will be excited by iid innovations with values in
the measurable space (R, B(R)).

They are solutions of some recursion:

X, = M(thls Xio,..0, 5{)

for iid inputs an some explicit function RY x R — R. More general spaces may
also be used, both for the innovations and for the states, but this section is restricted
to real values for simplicity. Multivariate extensions are immediate and left to the
reader.

Remark 7.2.1 Here again, locally stationary models (see Remark 4.2.1 and Sect. 6.6,
and Example 6.6.1) may be defined in the space domain by replacing M by a para-
metric family u +— M, now

XZZML(Xl—lvxt—za"~7§t)v 1§t§n

Exercise 35 (rvAR(1)) Dahlhaus (2012) defines, among others, time varying AR(1)-
models from a recursion for large sample sizes n. Suppose that Xy, = x and

t
Xin=a (‘) X1+ &, 1 <t<n,
n

then

t—1 k—1 .
r—
1. Xt,n=x+§ fr—kna(#),forlftfl’l.
k=0 =0

2. Assume thata : [0, 1] — R is a C'-function with a bounded derivative such that
a =sup, la(u)| < 1.
Fix u € [0, 1] and set X® as the stationary solution of the equation:
X" = a@X{, +&.
‘We now suppose that Xy, = X (()”) then derive that foreach 1 <t < n:

= 1
Xow — X1 <) k" d o (141 + = ).
Xew = X[ < Y ko d' I ( 141+

k=0



7.2 Memory Models 121

3. Deduce that for some 0(%) in probability and in L7, as n — oo and for each

fixed ¢
W) ! d ow 1
Xen=X;,"+|—-——u)—X;"4+o0|—-]).
’ n du n

Hint (see Dahlhaus 2012, Sect. 3).

1. As in the proof of Proposition (7.2.1) a simple recursion leads to:

Xin = §z +a <£> X1
=& +a (L) §—1+a <£> a <2> Xi—2n
n n n
=& +a (L) &-1+a <£> a <§> &2
n n n
(1) (57)e(5)
+al|l—)a a| — ) Xi3n
n n n

Due to the condition X, = x, only 7 iterations are possible in the above display.
2. Use the fact that

o0
X" =36 wat W),
k=0

t
then with A = — — u:
n

=l
Ha <—]> —ak(u)
n
k—1 -
k—1 _
g () e

j=

k-1 .

_ J iy 1
< oMl { KIAI+ Y 2 | < kot e (|A|+;).
j=0

Summing up yields the requested bound.
3. A Taylor expansion in the above point yields the result.

Many developments of those non-stationarity are processed and an example exhibit-
ing together periodic behaviour is Bardet and Doukhan (2017).
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7.2.1 Bilinear Models

We first consider a very simple bilinear model.
Proposition 7.2.1 Consider the Markov bilinear model
X = (a+b&) Xn—1 + &, (7.1)
Assume that for some p > 1,
af =Ela + b&|P < 1.

Then there exists stationary solution of this Markov recursion, this solution is in L?;
it can be written:
[e'9) k—1
X, = Zgnfk l_l(a + bgnfj)~
k=0 j=0

Proof 1t is simple to check that the previous series is normally convergent in L7
since independence entails

k—1
&r[T@+b&n| =colyla+be 1.
j=0 r
To check the result, write

m k—1 m—1
X, = Zfll—k H(a + bgn—j) + Xo—m H(a + bgn—j)'

k=0 j=0 j=0

Then the previous remark implies that the main term in this equality converges as
m 1 0o, and its L”-norm is bounded above by some A > 0.
This also entails (1 — o)[| Xoll, < A.

Bilinear models (7.1) behave quite analogously to some white noises. The asso-
ciated sequence of covariances presents some bumps and then rapidly decays.

InFig.7.1 we present empirical covariances; the convergence of these expressions
is considered later.

Exercise 59 proves the consistence of such estimates for models listed in Example
9.1.3, extending bilinear models.

For such bilinear models, the sequence of covariances also fits a recursion.

Exercise 36 Assume that E¢y = 0, E¢} = 1 and consider the L?-strictly stationary
solution (X,) of (7.1).
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Fig. 7.1 Simulated trajectory of an bilinear process and sample autocorrelation function.
Here, X; = 0.75X;_1 + &/-1 + 0.6X,_1&,—1 withe; ~ N(0, 1)

Set also the notations M = ]EX% and C = Cov (Xo, X1).

1. Prove that

1 a

EXg=0, M= ————— C=—
0 1— (a2 + b?) 1— (a2 + b?)

2. From empirical estimators of the previous expressions

PO ~ —
M=;§ Xz, c:n_1§ X Xi_1,
k=1 k=2

deduce that the following estimators of parameters a, b in the model are consis-
tent:
_ e —a
. b= —_— =
M

1. From independence of &, with X,_; and (7.1):

a =

) )

Hints for Exercise 36.

EX, = aE¢, EX? =E(a+b&)*EX] +EE;
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hence M (1 — (a® + b?)) = 1, moreover C = EXo X, = aM.
2. The previous relations are rewritten accurately:

C=aM, M*(1—@+b)=M*1A-b)-C*=M

hence
Mb> =M?>—C*— M.

M M>—-C>*—M
a=—, b=\ ——mF7——.
C M

See results in Sect.7.3.3 for a formal justification and the consistency of these
estimators, namely the ergodic theorem applies to prove a.s. consistency of these
empirical estimators (Corollary 9.1.3) and a 4/n-CLT also applies to get asymp-
totic confidence bounds for these estimators. The A-method applies to transfer
those properties to the proposed plug-in estimators.

‘We obtain:

This entails the conclusions of this exercise.

Exercise 37 (Resampling bilinear models) Let (X,) be the stationary solution of
(7.1). Prove the equation
Xn - aXn—l

Sn = 14+bX,-1 ’

As in Sect. 4.6 use Exercise 36 to resample this model.

Hint. Consider observations over the epochs Obs = {1, ..., T'}. These observations
are divided into three disjointed parts Obs= AUBUC withA ={l,..., N}, B =
{N+1,..., N+g},andsetting7 = N+q+p,withC = {N+qg+1,..., N+q+p},
and

e | € g < p AN is designed to make the two parts A and C almost independent
(the part B is used to make them almost independent),

e Exercise 36 provides the estimation of the coefficients a, b in this model over
observations (Y;);ca,

e Residuals are fitted through observations (Y;);cc from the above relation

~  X,—aX,

é-n == > Vn € C.
1+bX,

Then consider an iid sequence with marginal distribution

1
i,
=10

seC

to complete the resampling procedure.
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Remark 7.2.2 (Centring innovations) A more adequate resampling will be per-
formed with the centred form

~ o~ 1 —~
gs—gs_;ZSu

ueC

of 25, and

1
v=— 0z .
5=ty

seC

Thanks to a personal communication with Patrice Bertail (Paris, Nanterre), that this
conditional centring of innovations, improves the computational performances of the
resampling procedure.

An extension of the above-mentioned bilinear models is sketched below:

Exercise 38 One variant for the model (7.1) is
Xn = h(gn)xn—l + fn
and, in case E|h(&))| < 1, a stationary solution is
oo
Xn = Zgnfk 1_[ h(fnfj)'
k=0 j<k

Notice that such expressions may be provided under more complicated assumptions
for models like

X, = H, X1 +£n
with H, some adapted and stationary sequence.

Assume that:
y ‘
k=0

gnfkl_[anij <

j<k

then the following series is convergent in 7.
An L” and strictly stationary solution of the previous recursion writes as:

00
X, = Zgn—k l_[ Hn—j-
k=0

Jj<k
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Hints for Exercise 38. Use the recursion

Xn =& + H, X1
=&+ Hy(§uo1 + Hi1 X 22)
=&+ 6 Hy+ X2 H Hy
=&+ 6 Hy+ G+ Hy 20X, 3)H Hy
=&+ &1 Hy + &2 HyHy oy + Hy 2 X, 3Hy Hy

This allows us first to prove that this series is normally convergent in the Banach
space L”, and then to check that the remainder term tends to 0. The expansion of the
stationary solution is thus proved.

Remark 7.2.3 Note in Exercise 38 that if H, = h(&,, &—1, -+, Enry) 1S @n r-
dependent sequent.

Then H, and X,,_; are not independent anymore which needs additional moment
conditions,

fn—k 1_[ Hn—j H =
Jj<k P

k—r
S [T ] [TT 0]
k—r<j<k P j=0 P

-1
G [T His| 1E01G"

k—r<j<k

=<

ifk =4r.
Indeed it follows from the Holder inequality (Proposition A.2.2) that if k = £r,

€—1)r

1_[ Hl’l*js
j=0

can be written as the product of » products of (¢ — 1) independent terms.
Assumptions ||Hyll,, < 1, |Hy---H,—1& ||, < oo, together ensure the LL7-
convergence of the previous series.
The last relation holds if

IlfOqu < oo, and | Holly pr < 00,

11
forg,q' € [1,+oo] with — + — = 1.
q9 q
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7.2.2 LARCH/(oc0)-Models

General stationary non-Markov models are introduced hereafter, see for example
Doukhan et al. (2007b) and Giraitis et al. (2012) for analogous LRD models (see
Sect.4.3).

Theorem 7.2.1 Assume that (&)iey is an iid real valued sequence. Consider the
recurrence equation LARCH(00)-equation:

00
X, = b0+ijanj gn-

j=1

Under condition

o0
I€ll, Y 1bel < 1,

k=1

an LLP-valued strictly stationary solution of this recursion, called linear auto-
regressive conditionally heteroskedastic with infinite order;, LARCH(00), can be writ-
ten as

oo [0¢] o0
Xn =bo &y Z Z T Zbll e blkfnfllgnflrlz T f"*(ll“r““‘rlk)

k=0 [;=1 k=1

=bo& Y, Y. bbb G b

k=0 0<jj<--<jr=I
(here we set 1 for the empty sum obtained for k = 0).

Hints. Indeed, it is easy to derive from the independence of those factors that:
”é.n—jlfn—jz T fn—jk ”p = ||§0||I;;

If now the variables ¢, are centred and admit a finite variance the representation of
Theorem 7.2.1 still holds in 1.2 if, only,

o0
EG > bp < 1.

k=1

This assumption allows long-range dependent behaviours as proved in the volume
(Giraitis et al. 2012).

A vector valued variant of this model as well as a random field variant have both
been developed.

Usual ARCH-models (Y,,),cz are such that squares X, = Yn2 satisfy the previous
equation.
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They are defined through a sequence of non-negative real numbers (b;) withb; =

0 if j is large enough or a centred sequence of independent identically distributed
random variables (£;)

(7.2)

In this case the vector valued model Y¥,, = (X,,, ..., X,,_;+1) is a Markov process
with values in R’. Remark that the general model is not J-Markov for any J > 0.

Exercise 39 (Resampling LARCH(J )-models) To resample (see Sect. 4.6) the model
(7.2), use the equation

Hint. One considers an observation sample over epochs Obs= {1, ..., T}. These
observations are divided into three disjointed parts Obs= A U B U C with A =
{1,....,N},B={N+1,...,N+g}andC ={N+qg+1,..., N+q+ p} where
T'=N+gqg+ pand

e | €K g < p AN is designed to make both parts A, C almost independent.
e Whittle estimation allows us to fit coefficients by, ..., , b; over observations

(Y t)teA-
e Residuals are fitted through observations (Y;);c¢ from the above relation

Then consider an iid sequence with marginal distribution
1
P
» S
seC

to complete the resampling procedure.
Again Remark 7.2.2 is valuable to improve the practical performance of resam-

pling.

7.3 Stable Markov Chains

Proposition 7.6 of Kallenberg (1997) proves that any Markov chain (homogeneous
in time) (X,) with values in R for some d > 1 may be represented as the solution of
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a recursion or iterative random model or autoregressive model assuming Condition
1 below:
X, =M(X;1, gl) (7.3)

Condition 1 (&);cz an independent identically distributed sequence with values in
a measurable space (E, £) for a measurable function M is a (measurable) kernel

M : (R, B(RY)) x (E, &) — (R, B(RY)).

For several models the innovation space has to be specified differently. Sometimes it
will be R? but sometimes a product space, the one associated with thinning operators,
or a point process distribution, associated with Poisson processes, see Definition
A.2.5, may be needed.

This section exhibits simple sufficient conditions for such iterative models to
admit a stationary solution.

Further we will see that such solutions can be written as Bernoulli shifts (7.15).
A contraction argument is used.

Suppose that (§;) is an independent identically distributed sequence with values
in a space E. Moreover for d > 1 and for a measurable space (E, £) we denote by
|l - || some norm on R?.

‘We shall assume as in Duflo (1996) that the model is contractive:

Condition 2 The Markov kernel M (u, z) fits the conditions (7.4) and (7.5). There
exista € [0, 1), and uy € RY, such that for allu, v € R4,

E[M(u, &) — M@, )17 < a’|lu — ||, (7.4)
K[| M (ug, &) II” < 00. (7.5)

Theorem 7.3.1 Assume that conditions (7.5) and (7.4) hold for some p > 1.
Equation (7.3) admits a stationary condition in IL? such that for each t € Z, X,
is measurable wrt to the o-algebra F, = 0(&/ s < t).

Proof Define (Ut(n))teZ a Markov chain such that

U,(n) = uyg, if t < —n,
v =MW, &), if 1> —n.
The Lipschitz condition implies with independence of inputs:

p _ p
E|ug - vy < arE |ug - v

From a recursion

P
E v - ug | < @B Mo, G) — uoll”.

Hence Ué") — Uy (n — 00) converges in L” to a random variable Uy € L.
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Moreover Ué") is measurable wrt the o-algebra generated by {£,/ ¢ < 0} hence this
is also the case for Uy. Uy may also be represented as a function Uy = H (§p, £—1, - - .)
of this sequence.

Then the sequence X, = H(&, &—1,&—-2,...) is a stationary solution of the
previous recursion.

Now the sequences (U,(O) ); and (U,(l)),, satisfy

Ué()) = Uuop,
U\” = M(uo. &) =H(&,0,0,..)
U2(O) = M(M(u07 gl)’ 52) = H(fz’ gl’ 0’ O’ o )

and from a recursion for each t > 0,

U® =V, &, ...,6,0,0,0,...).
Analogously
Ut(l) = H(gt’ft—l’ e 7§1’ 5070’ 0’ : )
Hence
Yn = || U,g()) - nyl)”p =< aAYn—1,
and thus:

Y < a"yo = a" | M (uo, Go) — uoll, (7.6)

decays exponentially to O since a < 1.

In fact the assumption that the function u +— M (u, e) admits a fixed point may
simply be replaced by assumption (7.5).

Set U™ = M (uy, £_,) to conclude.

Set:
Condition 3 (Fixed point) Suppose (7.4) holds and that, for some e € E, the function

u +— M(u, e) admits a fixed point u (if E is a vector space a simple change allows
to suppose e = 0).

We also obtain:

Proposition 7.3.1 The stochastic equation (7.3) admits a strictly stationary solution
inlL? (p > 1), if Conditions I and 3 hold.

Example 7.3.1 Diaconis and Freedman (1995) provide a nice series of examples
for which the previous technique applies. One may also refer to Doukhan (1994),
Doukhan and Louhichi (1999), as well as to the volume (Dedecker et al. 2007).

More general models with infinite memory may in fact be considered, see Theorem
74.1.
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7.3.1 AR-ARCH-Models

Proposition 7.3.2 Letd = 1, E = R and set
M(u,z) = A) + B(u)z (7.7)

for Lipschitz functions A(u), B(u),u € R.
If
Au) — A
Lin(t) — sup AW~ AW)
u#v |u - U|

then the stability conditions in Sect. 7.3 hold if moreover &, € L.

e If p>1lincase
a = Lip(A) + ||& |l ,Lip(B) < 1.
o If p =2and E& = 0 with
a® = (Lip(A))* + E&Z (Lip(B))* < 1.

Remark 7.3.1 For p =2 and in case E{, = 0, then the second assumption improves
on the first one, indeed

(Lip(A) + [|&l2Lip(B))? = (Lip(A))? + E&2 (Lip(B))? + 2||&ll2Lip(A) Lip(B)
> (Lip(A))? + E&Z (Lip(B))>.

Moreover, the inequality is strict except in case )||&o||2Lip(ALip(B) # 0.
Proofs. Note that the Minkowski inequality (Corollary A.2.1) implies that for p > 1,

1M (o, E) Il < 1A @)l + 1B (uo) 1ol s
and,
1M (u, &) — M@, E)ll, < 1A@) — A+ 1Bw) — B@) &l .

which allows us to derive the second point of the proposition.
If p = 2 then

E(M (u, &) — M (v, &))* = (A(u) — A(v))* + (B(u) — B(v))*E&]
+ 2(A(u) — A())(B(u) — Bw)E&

and the last rectangle term simply vanishes from E&y, = 0; improving the previous
bound, as noted in Remark 7.3.1.
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These relations yield a simple way to conclude.

Example 7.3.2 (Some special cases) Specializing the above model yields very clas-
sical models (see e.g. Doukhan 1994)

e Non-linear AR(1)-models (with B = 1) satisfy the equation
Xp = AXp-1) + &
e Stochastic volatility models (with A = 0) are solutions of the equation
Xn = B(Xn-1)&n-

e The AR-ARCH(1)-classical model is solution of the equation
Xy = aXyo1 +/ B+ X0 &

Here A(u) = au and B(u) = /3 + ~*u? for o, 3,7 > 0.
The Lipschitz constant can be written a = o + Eg“gfy from a direct calculation of
the derivatives A’(1) = o and

vl P
VB B T

This model is defined conditionally wrt to its past history:

|B'(u)| =

Xi | Fioi ~ N@Xio1, B+7°X]);
remark that the above recursion is just the simplest way to get such conditional
distributions for Gaussian innovations.
e ARCH(2)-models are solutions of the equations

X, = 0,&, O’tz =a’+ ﬂthz_l + ’YZXtZ—Z'

Their trajectories may be seen in Fig.7.2.

Exercise 40 Consider the ARCH(1)-model X, = 0,&,, with 02 = o? + 3> X?> | for
E¢ = 0 and E€? = 1. Then

X2 =a’+ X2 +n,  with g =0 1.
Determine p such that Z, = X ,2 — p is the solution of the AR(1) equation

Z, = ﬂzzz—l + 1.
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0 200 400 600 800 1000
t

Fig. 7.2 Simulated trajectory of an ARCH(2) process.
Here X; = /07 witho? = o+ 32X? | ++2X? ,and & ~ N(0,1). Weuseda = 0.5, 3 = 0.6
and v = 0.7

This is a special case of the point that an ARCH model may be rewritten as an
AR process excited by a weak white noise, here 7, is not iid but it is a martingale
increment. It is simple to extend this representation to ARCH(p) models.

Note that En? < co < ?Var (§}) < 1 from Proposition 7.3.2.

e GARCH(1,1)-models are solutions of the equations
X = o0/&, otz =a2+ﬂ2Xr2_] +720t2_,.
It is clear through iterations that one may rewrite such models as
[o¢]
of =’ + ) X
k=1

and such models have also been designed for financial purposes for the associated
clustering properties; trajectories may be seen in Fig.7.3.

Shumway and Stoffer (2011), Example 5.5, p. 288 propose a GARCH(1,1) model
for the NYSE returns, as this seems reasonable from the Figs.7.3 and 7.4.

7.3.2 Moments of ARCH(1)-Models

We are interested here in checking that recursive models without low order moments
may be generated from inputs with all finite moments. Consider the simplest ARCH-
model
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T T T 1
0 200 400 600 800 1000

Fig. 7.3 Simulated trajectory of an GARCH(1,1).
Here, X; = \/0?¢ witho? = o>+ 32X2 | +7%02  and & ~ N(0, 1). Weused o = 0.5, 3 = 0.6
and vy = 0.7
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0.00
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Fig. 7.4 NYSE returns.

Source: Shumway and Stoffer (2011), p. 7.

The data are daily value weighted market returns from February 2, 1984 to December 31, 1991
(2000 trading days). The crash of October 19, 1987 occurs at t = 938

X, =/B+7XL, & (7.8)

We check that the function p +— |||, is monotonically non-decreasing from
Jensen’s inequality (Proposition A.2.1) applied with ¢ + ¢ for r > 1. If |£] is
not constant a.s. this function is strictly increasing. E.g. if P(|&y| ¢ {0, a}) = 0 then

”50”[2 = (l +Clp]P)(|§o| = a))%

Remark 7.3.2 Thisresultisusedin Szewcsak (2012) to derive a central limit theorem
with the unusual /n log n rate in this case.
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For the AR-LARCH models with centred inputs the limit condition o +7*E£2 = 1,
analogously implies that any solution of this equation does not have second order
moment.

Lemma 7.3.1 Let Z > 0 be a non-negative, and non a.s. constant, random variable
such that EZ™ < oo for some m > 0, then the function p > ||Z|, defined on
(0, m] — RT is strictly monotonic.

Proof With Z = |£|? we need to prove that if p’ > pandr = p’/p then EZ <
1Z]].

As in the proof of (A.2) Jensen’s inequality for g(u) = u” withr = p'/p > 1,
we consider an affine minorant f(#) = au + b for the function g with f(z) = g(2),
for some z to be defined.

Indeed @ = rz"~! makes f'(z) = ¢’(z) and b = (1 — r)z", then implies f(z) =
9(2).

Now if u # z then f(u) < g(u) hence E f(Z) < Eg(Z) because Z is not a.s. a
constant.

Let now z = EZ, then

Ef(Z) = (EZ) <Eg(Z) =EZ'.

This is enough to conclude.

Proposition 7.3.3 ~||&ll, < 1 is a necessary condition for (7.8) to admit an LL”
and strictly stationary solution (X;).

Moreover if v||&oll2 = 1 and |&y| is not constant a.s., then the stationary solution
of (7.8) satisfies IEXt2 = o0 and E| X, |P < oo.

Proof The first statement follows from Proposition 7.3.2.
Ifv[|&ll2 = 1,from Lemma7.3.1 the previous equation admits a strictly stationary
solution in IL” for each p < 2. Moreover this solution is not L.?-integrable.
Otherwise indeed:

EX? = (B +YEX2 )& I3
= BI& 15 +EXZ
> EX? | =EX2

Also there exists a L”-solution of this equation in case p is small enough and if |£|
is not constant.

7.3.3 Estimation of LARCH(1)-Models

This section describes some important features of LARCH(1)-models in order to
provide some simple estimators of their parameters as sketched in Exercise 36.
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The ideas are essentially from the Yule—Walker equations, Sect. 6.3, and the main
point is an MA-representation with L?-weak-white noise inputs.
Also (&) is an iid real valued sequence with E|£y|” < oo for some p > 0 and

Z, = (5 + 5szl)§t~ (7~9)

Remark that even though covariances of the model appear to decay quite rapidly, the
behaviour of the trajectory looks erratic.

Lemma 7.3.2 Let p > 0 be a fixed positive number. Then the assumption
[0] - ol < 1 implies that a unique stationary solution exists and it is in ILP .

Proof Remark that || - ||£]l, < 1 is the contraction constant in this case. Now the
solution of the equation is the limit of a polynomial in the innovations and can be
written as a Bernoulli shift in 7.

A first estimator of the parameter = (3, d) is described in Sect.4.4.2; this is the
Whittle estimator based on a minimization of the periodogram.

The latter estimate needs explicit expressions of Z’s spectral density, or equiva-
lently of all the covariances of Z. This may be quite heavy (Fig.7.5).

In Sect. 4.5 the QMLE of the Markov chains

Z = ftU(f(Xt—l),

trren mn

X (b)

0.5

0.0

100 200 300 400 500

o

1.0
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0.4

0.2
0.0 thth [ 1

ACF

Fig. 7.5 Simulated trajectory and simple correlogram of an LARCH(1,1) process.
Here X; = &;(1 + B1x;—1) with &, ~ B(0.95). We used 3; = 0.45
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is considered in case & ~ N'(0, 1); here the transition probability density is

(x.3) L. ( ¥ )
mp(x,y) = ——exp| ———— ] .
Vo rone P\ 2+ 02
The QMLE of (Z,) is now the couple § = (3, J) minimizing the expression
n 2

Lo(Zy, ..., 2Z,) = —t
o : t;(ﬁwz,,l)z

+log(B+0Z,1)*

This estimator is considered under general situations in the monograph (Straumann
2005).

In our simple situation we choose a more direct way to estimate the parameters.
It will result in simple empirical estimators.

Lemma 7.3.3 (Close expressions of moments) Let (Z,) be the stationary solution
of (7.9), and assume that Z, € 7.

BEo
1 — k&
2. Assume that p > 2 and E{y = 1 and set v = Efg; then

1. Assume that p > 1 thenm = EZy =

v3*(1 +96)

— 2 _
M=Ez = (1—0)(1—vd?)

3. Assume now that p > 3 and that E§y = E 5(3) =0, then:

vp

M:]Ezgzl_—w;z.

Set £ = Cov (Z,, Z%) = EZOZ% the leverage of Z then:

202 3%6
{=2v3M = ———.
vp 1—vé?
3 2 v
4. Ifnowp >3, E& =0and By # 0, then M = EZy = =5
—v

Set ) = E&; then:

24 368°M
p— EZS _ nBB° + )
1 —nd3

Proofs.
1. From L'-stationarity and independence: EZy = E& (8 + dEZp).
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2. From independence and IL’-stationarity:

EZ} = vE{(B + 0Zo)*}
= v(6* +2B6EZy + 8*EZ3)
2 2
=v (ﬁz + % + 62EZ§>

2
=v <51%+55) + 62]EZ§) .

3. Proceeding as before, we derive EZ3 = v(3* + 6°EZ3), since E& = 0. Thus

vB

2
M=EZj=1—-.

We have here E& = 0, hence:

¢ =vEZy(B+ 6Z0)* = v(2BSEZE + §°EZ})
= 2030RZ] (7.10)
2023268
==

4. From independence,
P =Rz} = EEEB + 6Z0)°.

The binomial formula yields the result.

All possible cases when moments exist may be considered.

Lemma 7.3.4 A.s. consistent estimators of m = EZo, M = EZ3, P = EZ} and ¢
are provided if respectively p > 1,2, 3 by

R 1 n . 1 n 5
m:r—lZZk, M = ;sz,
k=1 k=1

~ 1< ~ j
P=;§ Z3, z:n_l§ ZiZrs1.
k=1 k=1

Proof From Proposition 7.2.1, the process Z; admits an explicit chaotic expansion
with respect to the iid sequence (;). Hence it is ergodic from the examples following
Corollary 9.1.3. The ergodic theorem (Corollary 9.1.3) entails the a.s. convergence
of those empirical expressions, as n — 00.

From the above results we derive the consistency of the estimators from the inversion
of a function; in Lemma 7.3.4:
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Corollary 7.3.1 Assume that 9| - ||€olli < 1 and B = 1 then an a.s. consistent
estimator of § is

S=1-

S

Corollary 7.3.2 Assume that 9| - ||oll2 < 1 and that EEy = 1, Ef% = v, then a.s.
consistent estimators of (3, § are:

-~ vM — 2 ~ vM — 2
0= — = ﬂ = 1 - — =
v(M — m?) v(M — m?)
Remark 7.3.3 (A-method) The A-method drives the construction of empirical con-

fidence intervals from a central limit theorem for the empirical moments.
Namely if a constant vector 1 and a sequence of random vectors i, are such that

L
Vi, — 1) =0 Na(0, X).
If G : RY — R” is a C!-differentiable function, then the following asymptotic
holds outside of a set with small probability:

G(pn) — G() ~ DG () (pn — 1),

thus
V(G = G(w)) S uoe N0, DG () EDG ().

Remark 7.3.4 Applying the previous results to the ARCH(1)-model

Xz = \/ﬁ—i—(Sth_l 'Ct

is simple since Z, = X? is a LARCH(1)-model with innovations ¢ = ¢? hence
E&y # 0 and may be chosen equal to 1 and v = EC{)‘ .

Proof 1tis easy to derive that 3 = (1 — §)m and:

m(1 — 82)
1 —vé2 M,

and m>(1 — 6%) = (1 — v6*)M implies v6*(vM — m*) = (M — m?), and thus
Var Zyg = M —m? > 0.

Also, even though the Cauchy—Schwarz inequality entails v > 1 the above relation
implies M — vm? = vm?Var &, > 0 and the following expression is well defined:

5= M — vm? (1 M — vm?
"V uM —m?)’ - v(M — m?)

The corresponding estimators 3, and § are consistent.
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Corollary 7.3.3 Assume that |9]||&ll3 < 1, E§ = 0, Efg = v, and E§8 =0, then
a.s. consistent estimators of (3, and § are:

S=—1+vV1+vl, B=

TR

(2 1+1/Z—(1+1/Z)).

Remark 7.3.5 As a special case of situation (3) in Lemma 7.3.3, note that for the
symmetric innovations with third order finite moments, we have indeed E&, =
E& = 0.
In the special case P(§y) = +1) = % of Rademacher-distributed inputs and 3 = 1,
Doukhan et al. (2009) prove that the model is not strong mixing if € ]3_7*@, %]
Moreover the polynomial equation £6%> 4+ 26 — 1 = 0 only admits the solution
0 = —1++/14+¢in ] — 1, 1[. Indeed the other solution of the previous second

degree equation is not in this set | — 1, 1[.

Proof Relations (3, > 0 imply with its existence that £ > 0. Now (7.10) together
with v = M (1 — 6°) entails £(1 — v§%) = 26M. Then ¢ is the positive solution of
the second order equation

ve6* +20M — £ = 0.

Hence 6 = —1 + /1 + v€ and

g=%<1_(_1+m)2)=%(zm—<1+ue>).

The plug-in empirical estimator takes the same form as above.
The sign of £, relies on the sign of the product 3 - J; thus leverage £ < 0is deduced
from the equation: § = —1 — /1 +v¢ < 0.

Remark 7.3.6 Assume that [§]|&lls < 1, E§ = 0, E{é = v, ]E{g =17 # 0 and
(3,6 > 0 then a.s. consistent estimators of (3, § can be written analogously by solving
equations (4) in Lemma 7.3.3 and replacing M, P by their empirical counterparts
M, P.

The above equation in Lemma 7.3.3(3) is easy to solve:

M

A= v(l —vd?)’

In the definition of P and solving the remaining equation wrt &

_ nB(B* + 36*°M)

P
1 —nd3
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Unfortunately the resulting equation appears as a polynomial of degree 3 wrt to the
variable 62. Hence the solution results of the Cardan formula, which provides the
roots of 3rd degree polynomials.

Empirical use of financial data, see e.g. Giraitis et al. (2012), leads to:

Definition 7.3.1 The stationary process (X,) is said to have leverage of order k > 1
in case £ :COV(X(),X?) <Oforl <j<k.

Exercise 41 (Asymmetric ARCH-model) Assuming that the iid real valued sequence
(&), admits pth order moment, consider the following equation:

X, =V@X 1 +b2+2-& a>0.

The previous equation admits a stationary solution in L7 if |a| - [|§oll, < 1.
Prove that for each « €]0, 1[, there exists A > 0 such that

l(ax +b)> + 2% > (1 — a)|ax|” — A.

If al|&ll, > 1 and al|&oll; < 1 for some ¢ < p, deduce that the LL9-stationary
solution is not in IL.7.

If p = 2 and a’E|&)> = 1, and allélly < 1 for some g < 2, prove that
]EX% = 00, if moreover b% + ¢2 # 0. Hence the result in the first question is
essentially tight.

Assume that p > 1 then the previous stationary solution satisfies EXy = 0.

If now p > 2, E{, = 0, and Egg =1, then

b+ ¢

2
BXo=Ta

Assume that p = 3 and &, admits a symmetric distribution, then EX} = 0.
Leverage ¢, = Cov (X, X?) measures the asymmetry properties of a random
process. Prove that if &, is symmetric and if again p = 3, then for ¢t > 1:

2a2t—lb(b2 + C2)

b= 1 —a?

Deduce thatif ab < 0 this asymmetric ARCH(1) model admits leverage at order
k for each integer k.

Fit such asymmetric ARCH(1) models.

If p = 4 and &, admits a symmetric distribution, set v = ]Egé. Prove that

6a2b*(b* + ) + (1 — a®)(b* + ¢
1 —=a®> (1 —va* ’

EXy =
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Hints. See Doukhan et al. (2016) for many further developments of such models with
infinite memory.

For the case of the above model with order 1, we also fit the marginal density of
innovations and we resample the model in Doukhan and Mtibaa (2016).

1. Use Proposition 7.3.2.
2. As p > 1 the function x — |x|” is convex which entails that for each € €]0, 1],

writting
ax +b —b
ax = (1 —¢) +e—,
1—¢ €
then,
b|\? b|\?
lax|” < (1— € ('ax + ') +e (U) .
1—¢ €
Hence

1 Pl
(1 — e’ "ax|? < |ax + b|P + <- — 1) |b|P
€
, 1\*!
<l|(ax + b2+ 7 + (1 - —) b|”.
€

The inequality holds with:

1 p=1
a=1-—(1-er !, A=(--1> |b|”.
€

3. Choosing « small enough so that 3 = (1 — a)a?E|&y|? > 1, we derive:

E|X,|” = El&|”?(E(aXo + b)> 4 ¢*)*
> BE|Xo|” — AE|&|”.

Then E|X,|? — B > B(E|Xo|” — B), for B = AE|& |7 /(8 — 1).
Soif we suppose that the L7 -stationary solution is also in L” we derive E| X(|? = 0.
Alternatively, with v, = E|X,|” — B, the proof yields 7, > Gv,_; andy; > '
hence v, = 400 if E|X(|” # 0.

4. In case p = 2 and a’E|&|*> = 1, we have

E|X1[* = El&i* (E@Xo +b)° +¢%) = E[X1” +b% + .
Hence b* + ¢? > 0 entails EX3 = oo.
5. This follows from the independence of & and X,_;.

6. Squaring the ARCH equation, the moment M = EX} satisfies:

M =a’M + > + 2.
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7. If p = 3 and &, admits a symmetric distribution, analogously to point (4) we
derive EX3 = 0 from E& = 0.
If p = 3 and E& = 0, we derive EX? = EEE((aX, + b)* = ¢?)2.

8. Take into account that E¢3 = 1 and EX = 0. Then first

¢ =EXoX? = EXo((aXo + b)* +c*) -E&
=EXo((aXo + b)* + )
= a’EX; + 2abEX}
2ab(b* + c?)
- 1—a2

A recursion entails:

¢, =EXoX? = EXo((aX,_i + b)* +c?)
= a’EXoX? | 4+ 2abEX X, | + *EX,
=a’EXoX?,
2a%'b(b? + ?)
T
9. The triplet is (M, £, ¢,) = F(a, b, c). From these relations ¢,/¢; = a? and

€, = 2abM imply a = T, /0,, b = £,° )2Me)>.
Finally

2 2 2 &) E?
A=M1—-a® —b =M(1——)— .
£ AM?2e,
10. Expanding the square of this expression we take advantage of the fact that all
the finite odd order moments of &; vanish.
Then setting N = EX{ we derive N = va*N + 6a’b>M + b* + ¢*.
We obtain

b2+c2

212 4 4

N 6ab1_—az+b +c
B 1 —va*

This yields an alternative estimation of this model.

Howeveritneeds a||&yll4 < 1 while, even if the fourth order moment is finite, the
first estimator needs the weaker condition a||&|l3 < 1 (indeed [|&]l3 < I&oll3
and Lemma 7.3.1 proves that the inequality is often a strict inequality.

Remark 7.3.7 In Exercise 41 we may inverse the relation relating the coefficients
with the second order moment the leverages:

6, b 0 5
(Cl, bs C) = PR ) MI1——])— .
Ly 2M /e, £y 4M2¢,
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Since the above relation defines the inverse the function F, an accurate estimator of
the model is:

@50 =F (W.0.7).

Define the standard empirical estimators:

-~ 1<
M==) Xx°
1 n—1
7 yv2
Zl_n_lgxlxi-ﬁ-l’

n—2

- 1 )
b=— ;X,»X,.H.

Some Asymptotic Considerations.

By using the previous transforms the only asymptotic to be considered is for empirical
estimators of M, €4, £5:

e The consistency of those estimators follows from the ergodic Theorem 9.1.1.

e A central limit theorem provides asymptotic confidence intervals by using the
A-method in Remark 7.3.3. This result holds for empirical (vector-) moments
since

— f-weak-dependence (see Definition 11.1.1) holds with a geometric decay and,
— the moment condition a||&p|l¢+e < 1 holds for some ¢ > 0.

See Dedecker et al. (2007) for more details.

7.3.4 Branching Models

We introduce models branching or switching models, analogue to (7.3). We assume
that different “regimes” are randomly obtained, moreover some of those “regimes”
may even be explosive.

Here the Eq.(7.3) concerns a process with values in R (d = 1) and innovations
¢ € E =RP" for some D > 2 in L? (hence m = 2).

Let¢& = ( ,(0), ,“),..., ;D)> be such that

o £ is independent of( o ,,,,gz(D))’
e E¢V¢ = 0,ifi # jandi, j > 1,
o P(® ¢ (1,2,...,D}) =0.
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If the functions M, ..., Mp are Lipschitz on R and satisfy assumptions (7.4) and
(7.5) with constants a; > O foreach j =1, ..., D:

Vu,v e R, 1M, &) = M@, &)1 < ajllu— vl

Juy € R, 1M (uo, Sl » < 00.
We set

D
M (u, (Z(l), e, Z(D))) = ZM]'(M, Z(j)) L o=j,
j=1

for (z©, ..., z(PtD) e RP,
The previous contraction assumption holds with the Euclidean norm || - || if

D
a= ZajP(ﬁéO) =j) <l
j=1

= 0 and we denote

Now in case p = 2 we also improve the result if Egéj )

D
a’ =Y al P&’ =j) <1
j=1

For example in case M;(u, z) = Aj(u) +z we havea; = Lip A;:

o Let 5,( D~ b( p) be an iid sequence Bernoulli-distributed and independent of the
centred iid sequence 5{(2) € L. Prove that p < 1 implies the stationarity of an

L2-solution of:
(Kb e®, i =1,
Xn=1¢0), it £ = 0.

n

(7.11)

Its trajectories are simulated in Fig.7.6.

Exercise 42 Estimate the parameters (p, u), p = IP’(ft(l) =1andp = ]Eft(z), in the

model (7.11).
Hints. Use a moment method for m = EX, and M = EXZ.
Setg=1—pandv = IE(E,(Z))Z, which we assumed to be known, then

m=qu+p(M+m)=u+pm=>m=§,

andM:qy—i—p(M—i—Zum—l—z/)=pM+1/+2u2-E,then
q

v

v
q q
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Fig. 7.6 Simulated trajectory and simple correlogram of a switching process.
Here, X, = £V X,_1 + €2 with £V ~ B(0.5) and £€? ~ A/(0, 1). This model switches between
a random walk and an iid behaviour

v
The relation g = I entails M = — i + 2vm?, so that:
m m

A:A—, A:l—A—
H m P M —2vin?

The ergodic Theorem 9.1.1 entails the consistency of such estimators.

e If D =3and 5((,1) =1- {62) ~ b(p) is again independent of the centred random
variable 533) € L%, we get random regime models if A3 = 1 and the contraction
)|2

conditions can be written as E|§é3 < oo and

a = p Lip(A))* + (I = p) (Lip(42)* < 1.
This model is defined through the recursion

X = Al(anl) +§,§3)s if f,(,l) - 17
" AaXm) H YL GV =0.
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7.3.5 Integer Valued Autoregressions

Definition 7.3.2 Let (P(a)),cr denote a family of integer valued distributions where
P(a) admits the mean a.
The Steutel-van Harn (or thinning) operator is defined if x € N as

X
ZK, forx > 1,
aox =

i=1
0, otherwise.

for a sequence of independent identically distributed random variables with marginal
distribution ¥; ~ P(a). The random variables Y; are also assumed to be context free,
i.e. independent of any past history.

Remark 7.3.8 In any case (a,x) — Z(a,x) = a o x is a stochastic process (see
Exercise 49).

The previous “context free” assumption means in fact that this process is inde-
pendent from the past history.

Example 7.3.3 (Integral distributions) The following distributions admit integer
supports.

e Bernoulli distributions are generated from a an iid sequence of uniform random
variables Uy, U,, ... ~ U]O0, 1], and simultaneously through the relation

aox = <+ + My, <a)-
e For the Poisson case, assume that P is a Poisson process:
aox = P(ax).
e For any random variable Z € [0, 1], a o x = P(axZ) yields a very general class
of random variables.
A simple example is if Z ~ b(p) then

aox ~ P(ax)

with the probability p and it is 0, otherwise.

For example the Galton—Watson process with immigration (naturally called
INAR(1)-model) fits the simple recursion

X;=aoX, 1 +.
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Fig. 7.7 Simulated trajectory and simple correlogram of INAR(1).
Here, process satisfying X; = oo X,—1 + (; with {; ~ P(2) and B(0.5) thinning operator

Here ((;) denotes another independent identically distributed and integer valued
sequence, which is also independent of the thinning operators. This model is simu-
lated in Fig.7.7.

Now, for an independent identically distributed triangular array (Y, ;);cz.ien, W€
have

Xl—l

X =Zi(a, X,—1) + Ctv = Z Yt,i + Ct~
i=1

Hence we again write this as a model with independent and identically distributed
innovations (&;);cz

X =M(X_1,&), with & = ((Yr0)i=1, G-

Here M (0, §) = (o hence | M (0, £o)ll, = 1ol p-
For y > x and p > 1 we derive

My, &) - M(x.6) = Y ¥,
i=x+1

and
My, §o) — M(x, &)l < aly — x|.
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Many other integer models contain the same idea. A simple example is the following
bilinear model:
Xi=aoX,1+bo(Xi—1¢) + .

The following exercise is immediate:

Exercise 43 Prove that the contraction assumption (on a, b and on (,’s distribution)
in the previous theorem, if p = 1, can be written as:

aE(p+b < 1.

Integer valued extensions of AR(p) models are also easy to define as well as vector
valued models.

Definition 7.3.3 (INMA-models) Define a sequence of iid thinning operators (Z;)
as above. Let ay, . .., a,, > 0. Define integer moving averages with order m as

X = ZI(GOv 1) +--+ Zt—m(ama 1)

Exercise 44 The above model is again strictly stationary; determine both its mean
and its variance in the Poisson case, @ o x = P (ax). Define this distribution in terms
of the distributions determined in Exercise 91.

Exercise 45 Let ((;);cz be an iid integer valued sequence, define
Xl = bOZt(aOs Cf) +---+ bmzl—m(ama Cl—m)‘

e Prove that this model is another stationary time series model with integer values.
It is also an m-dependent sequence. This means that the sigma-fields

o(Xi/i <k), ando(X;/i > k +m)

are independent for each k.
e Assume now that (; = 1 is constant and that Z; (a, 1) are independent unit Poisson
processes. Describe the marginal distribution of X (refer to Exercise 91).

7.3.6 Generalized Linear Models

Another way to produce attractive classes of integer valued models follows the same
lines as for AR-ARCH models.

Generalized Linear Models (GLM) are easily produced from the rich monograph
(Kedem and Fokianos 2002).
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Definition 7.3.4 Assume that (V (u)),cp is a process defined on a Banach space U
equipped withanorm || - || and f : E x U — E is a measurable function. Then

X Fizi ~ V(A, A= f(Xt—l» Ai=1)

and F,_; = 0(Z,/ s < t) denotes the historical filtration associated with the process
Z; = (Xla Ut)‘

Remark 7.3.9 GARCH(p, ¢) models are analogously solution of the above equation
with Ay = f(Xi—1, o0, X, M—1s ooy, Aig).

Example 7.3.4 Some examples of this situation follow.

e LetU ~ UJO0, 1] follow a uniform distribution, a simple example of such a process
is
V() = ]I{Ufu}-

This provides us with Bernoulli distributed GLMs. A first example of this situation
isdeveloped in Example 1.1.3. Such models are nice for modelling categorical data.
e The usual way to define ARCH-models follows with U = R, V = W (the Brow-

nian motion) and
f,u) =B +v2x2 u.

e Set P()\) the Poisson distribution with parameter \. Consider a unit Poisson pro-
cesses (see Definition A.2.5). Poisson GLM models (integer valued) are defined
as:

X1 Fio1 ~ P, A= f(Xzfl» Ar—1)-

The simple equations fitting the above constraints can be written as the recursive
system
X =P(A), M= fXim, A (7.12)

for some independent identically distributed sequence P, of unit Poisson processes.
Note that X, is not Markov and that either A, nor Z, = (X,, \;) are Markov
processes, equivalently random iterative systems, X, = M (X,—1, &). As an exercise
on may check the existence of IL'-solutions of those processes determined with the
affine function f(x, £) = a + bx + c¢£ in Fig.7.8.
A main point relies on the fact that, for a homogeneous unit Poisson process:

|P(u) — P(v)| ~ P(lu—vl).
Consider the bivariate model Z, = (X;, \;) on RT x N C R? equipped with the

norm || (u, £)|| = |u| + €|€]| for a given parameter € > 0.
Then this GLM model can be written as

M((x, ), P) = (P(f(x,0), f(x,£)).
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Fig. 7.8 Simulated trajectory and simple correlogram of INGARCH.
Here, X; ~ P(\;) with A\, =0.54+0.25X,—1 +0.5\,_13

Here for Z € R? a random vector, we set || Z||; = E||Z||. Then it is possible to check
the contraction assumptions in Sect.7.3:

e M((0,0), P) is a vector with a first random coordinate P(f (0, 0)) and a deter-
ministic second coordinate f (0, 0); it admits moments e.g. with order 1.
e Increments are considered as follows:

M((x,0), P) — M((x',¢), P)
=(P(f(x,0) = P(f(X'. ), f(x, ) — f(x', £)).

We derive:
[M((x,0), P) = M((x',€), P)lli = (1 + ol f(x,0) = fF&', ).
If the function f is Lipschitz with
If (e, O = f(x', )] < alx — x| + b€ = €],

then relations (1 +e¢€)a < 1 and (1 4 €)b < € together imply the relation (7.4) with
k =a+ b < 1Dby choosing e = b/a.
Then, some cases may be considered:

e The stability holds if Lip f < 1; for this set e = 1.
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o If f(x,¢) = g(x) only depends on x (analogous to ARCH-cases), the stability
condition holds if Lipg < 1 (e = 0).

o If f(x,£) = g(¢) only depends on ¢ (analogous to the MA-case), the stability
condition holds if Lipg < 1 (with a large € > 0).

Exercise 46 (ARCH(oo)-representation of GARCH-models) Define X, as in Defi-
nition 7.3.4. Prove that this is possible to write A, = g(X,—1, X;—2, ...) for some
function g.

Assume that

| 8) = fx, O < alx” — x|+ bt —£].

Prove that

oo
l9(y) — g =Y _a’ by, —x,|.
p=1

Note that

> b

E a”"b:l <le=a+b<l.
—a

p=I1

This last point also proves that assumptions in Theorem 7.4.1 thus hold in case
a+b<l1.

Hints. First g(x;, x2,...) = f(g(x2, x3,...), x1). Thus iteratively g(x;, x2, ...) is

an explicit function of (x1, x2, ..., x,) in case x; = 0 for k > p. The idea is that

iterating p times provides an explicite form of g as a function of (x1, x2, ..., x,).
Now for x = (x1, x2,...) and y = (y1, 2, . ..) we derive recursively:

l9(y) — g = 1f (g2, y3, .., ¥1) — f(g(x2, x3,...), x1)]
<alg(y2, y3,...) — gx2, x3,..)| + b|ly1 — x1|
< a®|g(y3, Yas .- ) — g(x3, X4, . .)| + ablys — x2| + |y, — x
< allg(ypsts Yps2s - o) — 9(Xpy1s Xpy2, . )]
+ a7 'bly, — x,| + -+ ablys — x2| + bly; — x1].

The proof is complete.

Exercise 47 (GARCH-Poisson model) In Eq. (7.12) consider the function f (x, £) =
a+bx+cl. Assume that coefficients are such that a stationary solution of the equation
(X;, M), exists in L?. Then

a
b+c’

EXo=EN =
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Set = EXq then u = a + (b + ¢) . As before such considerations are useful to fit
the model.

Exercise 48 (ARCH-Bernoulli model) Let (Uy) be an iid uniform random variables
on [0, 1] and U be uniform too. Set Gx(x) = Ly, <y}, S(x) = Liy<yy and a, b > 0,
consider the equation:

X = (axk,l + b). (7.13)

1. Write (7.13) as X; = F(Xy_1, Ox). Give a condition on a, b > 0 such that (7.13)
admits a stationary solution; also prove that P(X; ¢ {0, 1}) = 0.

2. If b > 0 prove that 0 is not solution of (7.13).

3. If a4+ b < 1, then derive EF (x, v) = ax + b for x € {0, 1}.

4. Suppose from now on that a > 0,b > 0,a + b < 1. Compute m = EXy,
¢ = EX; Xy as a function of a, b.

5. How may parameters a, b be fitted?

The Example 1.1.3 exhibits some advantages of analogue models.
Hints.

1. EF(x,v) = (ax+b)A1.Now E|F(y,3) — F(x, 8)| < (b—a)x if y > x, thus
a< 1.

2. P(F(x,08)=1)>b > 0.

Immediate.

4. m = am + b impliesm = b/(1 — a),
c=EX; Xjy1 =EXi(@aXy +b) =(a@a+b)m =bla+b)/(1 —a).

5. b=m(l —a)hence c(1 —a) =m(l —a)(m(l —a) + a).
Then (1 — a)(m(m(1l — a) + a) — ¢) = 0 which implies

[SS]

a=1, or m(l—m)a:c—mz;

condition a + b < 1 excludes a = 1 and then a = (¢ — mz)/(m(l —m)).a,b
are fitted by plug-in through empirical estimates of m, c.

Exercise 49 Consider the simplex:

1= {Pz(Pk)kzo/PkEO, Zpk=1}-

k=0

Use the simulation trick in (A.4) to define an iid sequence of processes Z, (p) where
p = (p)k=o € IT with a fixed support {x;/ k > 0} in case one generates an iid
sequence (U, ),z with uniform marginals.

Remark 7.3.10 For simplicity let the support be N (x; = k for k > 0) then Z,(p) €
N is integer valued.

For a function g : R — [T one goes back to a sequence of random processes
Y, ()\) analogously to the Poisson case by setting p = g(\).



154 7 Non-linear Processes
The simplest case of this situation is a Bernoulli distributed processes
Y,(N) = Ly, <.

Such models allow to define GLM-models, also introduced in Remark 7.3.8.

7.3.7 Non-linear AR(d)-Models

The (real valued) non linear auto-regressive model with order d is:
Xt =r(Xf—la"-7X[—d)+§la (7'14)
The vector valued sequence U, = (X,, X,—1, ..., Xn—q+1) can be written as a
Markov models with values in R¢.
Here E = R and
M(uy, ..., uq,2) = A(uy, ..., uq) +(1,0,...,0)z,

where
A(ul, ...,ud) = (r(ul, ...,ud),ul, ...,ud_l).

Theorem 7.3.2 Assume that E|&|" < oo and
d
r(uy, . ug) = r(on, vl <Y ailu — vl
i=1

foray,...,a; > 0 such that
d
al = Zai < 1.
i=1

Then the Eq.(7.14) admits a stationary solution and this solution is in ™.

Proof Define a norm on R¢ by

d—1
l(ui, ..., u) |l = max{lu], aluzl, ..., " |ugl}.
Foru = (uy,...,ug),v=(v1,...,vq) € Rsetw; = |u; —v;|forj=1,...,d:
Aw) — A - d d—1
[|A(u) ()] < max {a“ max{wi, ..., wg}, aw, ..., " wy_q
< amax {o/ " max{wi, ..., wal, wi, ..., 0" Pwy_y}

< max{w;, aws, ...,a" Twy) = allu —v|.
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The Duflo condition (7.4) holds witha = o™ < 1.

Remark 7.3.11 As an alternative proof, Theorem 7.4.1 directly implies the result.

7.4 Bernoulli Schemes

The following approach to time series modelling is definitely simpler and sharper
but it is also less intuitive so that it appears only at the end of the chapter.

7.4.1 Structure and Tools

Definition 7.4.1 (Informal definition) The model
X, =H(E™), with £ = (& ez (7.15)

is defined through the function H defined on EZ — R! and €™ = (&,_p)kez is
again an iid sequence with a shifted time index.

Suppose that {&/ k € Z} takes values in a measurable space (E, &).

We consider some examples of such situations.

An important special case is that of causal processes H : EN — R and we write
in a simpler formulation

Xn = H(fm Sn—lv 511—27 .. )

Such a stationary process is said causal since the history of X before the epoch 7 is
included in that of £. This means

o(Xs/s <n) C O'(ES/S <n).

Fix some e € E we denote 5 (n) = (5 j(n)); the sequence with current element
fj(n) =¢;,if [j| < nand 5,(11) = e if |j| > n. Let m > 1, a simple condition to
define such models is

ign < oo, (7.16)

with R R
=E|H (ém) - H (€ —D)|". (7.17)

"Few such functions H may be rigorously defined; this question is solved through the “formal
definition” 7.4.2.
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Due to the completeness of the space IL”, a normally convergent series is convergent
and:

Proposition 7.4.1 Let p > 1 be such that relation (7.16) holds then the sequence
(Xn)nez defined this way is stationary and LP-valued.

Proof The relation (7.16) indeed implies the convergence IL” of the well-defined

sequence H ((fj)‘j‘Sn).

A bit more is needed to conclude; one extends the previous remark to the random
variable Z,, = (X411, ..., Xp15) € RS,

This is the limit of a sequence of R*-valued random variables with a distribution
independent of .

Example 7.4.1 (Bernoulli shifts)

e Let H : R" — R then the process X,, = H(&,, - .., & —m+1) 1S an m-dependent
sequence, i.e. 0{X;/ j < a}and o{X;/ j > a + m} are independent o-algebras.
e Infinite moving averages

H(ug, uy, ...) = apuo + ajuy + - -

yield ¢, = |a,| - [I€oll »» which again confirms Lemma 6.1.1. This simple example
is a case for which the function H is not always properly defined, in case infinitely
many coefficients a; do not vanish. E.g. let N = {k/ a; # 0} then set u; = 1/a;
if k € N and O otherwise, then H (ug, uy,...) = Card N = oo.

e Stochastic volatility model. Let Y, = H(,,&,—1,...) be a causal Bernoulli
scheme such that the independent identically distributed innovations &, € L2
are centred.

Set

X, = gnYn—l = an(gn—l’ fn—27 e
The sequence X, is orthogonal and
Var (X, |F,_1) = Ynz_l.

This property indicates possible rapid changes adapted to model the stocks
exchange.

e Allthe previous sections of the present chapter provide us with a series of examples
of this situation.

The previous Definition 7.4.1 is really adapted to deal with the previous chaotic
examples for which tails may be bounded above.
A more general setting is adapted to prove the existence of a stationary process.

Definition 7.4.2 (Formal definition) Let 1 be a probability distribution on a mea-
surable space (E, £). Consider an iid sequence (§,),cz with marginal law p. Set
v = pu®” the law of (§,),ez on the space (EZ, £87).
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Then L7 (v) is the space of measurable functions v-a.s defined on EZ and such
that

B|# (€nez)| < oo

Analogously, we set v+ = /L®N for the law of (§,),en on the space (E N gon),
A Bernoulli shift is an L.”-stationary process defined as

X, = H((f,,_j)jez), for some H € L”(v).

A causal Bernoulli shift is associated with H € L” (v ™).

Remark 7.4.1 The spaces L” (v) and L? (v1) are Banach spaces (complete normed
vector spaces) equipped respectively with the norms:

1
IH I, = (EIH ((§)nez) 17)7,  for the general case,
= (E|H ((§&)nen) |P)7 . for the causal case.
The definition of Bernoulli shifts is as in the informal Definition 7.4.1 and applies to
non-causal or causal schemes forelements H € IL”(v) or L? (1) respectively. More-

over condition (7.16) implies with Proposition 7.4.1, a simple sufficient condition
for functions of infinitely many variables to exist in these huge spaces.

Warning about notations. We denote
zl, = (E|Z|f’)% for a random variable Z € IL” (82, A, P),
1
1H 1y = (EIH (Gne) I?) for H € LP (v, BE, R?),

1H 1y = (EIH (e 17)” for H € L2, BE, RY),

These are a bit confusing but they have the advantage of simplicity. Recall that
confusion is avoided once one understands H as a function and Z as a random
variable!

The next subsection also proves that these assumptions are relevant to check
short-range conditions.

A quite simple and elegant proof relies on the previous notions and proves more-
over that there exists a unique element H € LL” () such that a stationary solution
of (7.3) is

Xt = H(fta ft—la gt—Zv . )

Exercise 50 (Fixed-point criterion)

1. Prove again Theorem 7.3.1.
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2. Show that there exists some C > 0 and a sequence of Bernoulli shifts X, ;, =
H,(&,,...,&_y) such that
”Xt - Xn,t”p = Ca".
Hints for Exercise 50.

1. To this end consider the application
@ LPwh) — LP ), H— ®(H)=K,

with K (vg, vy, ...) = M(H (v, v, ...), vg).

Conditions (7.5) and (7.4) allow to prove that prove that K € L’ (v") if H €
L?(v); to prove this use conditionning wrt &y and the triangular inequality.
Below, the fixed point e is considered as an element of IL7:

1 1
KN, =Er|M(H&,...), 601" <Er[M(e, §)|” +allH —el|,.
Nowif H, H' € L?(v") then again conditioning withrespectto &1, &, . . . implies
IK—K'll, <alH— H'|,.

The Banach—Picard fixed point theorem (see Choquet 1973) classically implies
that @ admits a unique fixed point H*.

2. This theorem also implies that the iterates H, = ®" o H, converge to this fixed
point H* of @. In other words X, , = H,(&, &—1,&—2, ...) converge in L? to
the stationary solution of the previous recursion as n 1 oo for each value of 7.
Moreover the convergent rate is geometric:

I1X: — Xenll, = 1H* — Hyll, < Ca",
for suitable constants C > 0 and with a € [0, 1[ from the assumptions.
More generally, the fixed point theorem in the Banach space IL” implies:

Theorem 7.4.1 (Doukhan and Wintenberger 2008) Let B be a Banach space, (E, &)
be a measurable space and let be (£,),cz be an iid E-valued sequence.
Suppose M : BN x E — B, satisfies for some p > 1, and some xo € BY'

| M (xo, Eo)ll, < o0. (7.18)

Suppose also that there exists some sequence a; > 0 (j > 1) such that, for all
x=())j=1y = ()j=1 € B :

IM(y, &) — M(x, &)l = Zajllyj — x;ll. (7.19)

jzl1

a:Zaj<1,

izl
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Then there exists a strictly stationary solution in IL” for the infinite recursion
Xl‘ :M(Xt—laxt—Zﬂ Xt—3v~-'a£l‘)a Vi EZ'

Uniqueness holdsif X, = H(&, &1, ...) for H € LP(EN, E¥N, vy withvt = p®N
for p the distribution of &.

Hint for Theorem7.4.1. Proceed as in Exercise 50 with adequate changes in notations;
since now the model is B-valued and no longer real valued, thus | - | needs to be
replaced by || - ||

Now:

K(vo,v1,...) =M(H(vi,va,..), Ha, v3,...), H(V3, 04, ..), ... 5 vp).

Set K =®(H)and K' = ®(H').
Conditioning wrt £, &, . . ., we may write the above assumption (7.19) with

x= (HE &0 HE G ) H G G i) = oomda ),
y= (B &0 ) H (@ ) H (G i) = 03102

Here x; = H(&41,&42,...),yi = H'(&41,& 42, ...) are random variables and
llx; — yill, = IIH — H'||,, (here again the notation || - ||, may be troublesome since
it admits two different meanings).

Then after de-conditioning:

o0
1K = K'll, < aillxi = yil, =allH — H'l| .
i=0

The special case H' = 0 yields with relation (7.18) and the triangle inequality that
indeed ®(H) € L?(vT).

The assumptions are associated with this proof. The operator @ : L”(v1) —
L? (vT) is contractive.

Example 7.4.2 (Poisson GLM-models) As in Sect.7.3.6 one may consider GLM-
models Y; = P;(\;) with infinite memory.
Setting X, = (¥;, \;), we assume that those models admit an infinite memory:

A =9Xi—1, Xi—2, Xi—3,..0).

Assume that for all x = (x;);>1 with x; = (y;,¢;), and x" = (x});> with x; =
(5 ).



160 7 Non-linear Processes

We obtain:

o0
lg(x') — gl < Y (@} = yjl +bjl€; = ¢;])

j=1

then M (x; Py) = (Py(g(x)), g(x)),and we setagainanormon B = R2as||(u, V)| =
|u] 4 €|\| for some € € R.
Now

o0
1M (x's Po) — M(x: Po)ll, < (1) D (ajly; — il +bj1€; — €;])
j=1

the assumption in Theorem 7.4.1 holds in case there exists 0 < k < 1 such that for
each x, x':

oo oo
A+ (aly; — yil + b1t — ;) <k D llxf = x;l.

j=1 Jj=1

This holds if for each j > 1, (1 +€)a; < k and (1 + €)b; < ke.

e If b; = 0 for each j set € > 0 as small as wanted, then the condition

00
E a_,- <1
j=1

implies contraction.
e If a; = 0 for each j set € > 0 as large as wanted, the condition

00
Z bj <1
j=1

implies contraction.
e In the general case ¢ = 1 implies contraction if

o0

1
Z(aj +0b)) < 7

j=1

Remark 7.4.2 Contrary to the GARCH(1,1)-Poisson case in Equation (7.12), the
proof above does not directly imply that the condition a + b < 1 yields contraction.
In the present memory model of the GARCH(p, ¢g)-type, indeed, ¢ would need to
depend on j € [1, p], which does not make sense.
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Exercise 46 also proves that both the GARCH(1,1) and the ARCH(o0) represen-
tations admit exactly the same contractive properties.

The extension? of Exercise 46 to GARCH( p, ¢) allows to skip the above additional
factor % in the general case p > 2.

Remark 7.4.3 Set M, ((xg,...,x,),v) = M((xg,...,x,,0,...),v). Prove that
there exists a (n 4+ 1)-Markov stationary process with

Xn.t = MH(Xf—l’ 5 ooy Xt—n—l; gl)’

such that

o0
1X; = Xoell, <C > a.
i=n+1

The existence of the (n + 1)-Markov stationary process follows from Theorem
7.4.1. The approximation through Markov models is a special case of Lemma 5.5
in Doukhan and Wintenberger (2008) for the special Orlicz function @ (1) = u”. It
relies on the respective L”-approximations of the functionals on IL” (1) denoted @
in the previous point and where we denote @,, the functional associated with M,,.

Exercise 51 Prove that LARCH(co) models in Sect. 7.2.2 satisfy the assumptions
(7.18) and (7.19) in case
o0
I€oll, D lail < 1.
i=1

Exercise 52 Prove that NLARCH(oco)-models (NL for non-linear)
oo
X =& <ao + Zak(xt—k)> :
k=1
satisfy the assumptions (7.18) and (7.19) in case
o0
I€ll, Y Lipa; < 1.
i=1

Exercise 53 Use the Steutel-van Harn operator (Definition 7.3.2) in order to prove
that INLARCH (o00)-models (IN for INteger)

o0
X = ft <a0 + Zak 0Xt—k> ,

k=1

2Work on progress with Konstantinos Fokianos and Joseph Rynkiewicz.
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satisfy the assumptions (7.18) and (7.19) if the following condition holds:

o0
1€l Y a < 1.
k=1

7.4.2 Couplings

This section discusses ways to couple such Bernoulli shifts. Decorrelation rates
are also deduced. This will allow to derive quantitative laws of large numbers for
expressions of statistical interest. These ideas are widely developed in Chap.9 in
order to understand how to derive limit theorems in distribution. Let (§)xez be
another independent identically distributed sequence, independent of (§x)kez, and
with the same distribution. For n > 0 set £(n) = (£(n)i)rez With

~ o &, if k| <n,
§ne = {5,;, if k| > n.

Then we set N
o’ =E|H (Em) — H ©)]". (7.20)

Definition 7.4.3 Assume that a Bernoulli-shift satisfies lim,, 6,(,p ) — 0 with the above
definition (7.20) then it will be called LL”-dependent.

Remark 7.4.4 Replace &(n) by

~ )&, if |kl #n,
S = {g,g, if |k| = n.

This leads to the fruitful physical measure of dependence by Wei Biao Wu, see Wu
and Rosenblatt (2005).
Here R R
o’ =E|H (Em)) — H 9)|". (7.21)

The two previous proposals are couplings in the sense that they leave unchanged the
marginal distribution of the Bernoulli-shift.
An alternative is to set

/ &, if |kl <n,
§e = {o, if k| > n.

which is essentially the same as fN(n).
In this case set:
S =E[H () - H©|". (7.22)
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This makes it easy to define functions of infinitely many variables as limits of func-
tions of finitely many variables in the Banach space L’ (v") from the fact that
H (£'(n)) is a Cauchy sequence in case

D IHE M) — HE (n = D), < 0.

Remark 7.4.5 We introduced three different coupling conditions (7.20)—(7.22). Sim-
ple relations link them but a simple exercise is useful to understand the situation.

Exercise 54 Set
H(x) = Z a; x;
i=0

then bounds of the previous coupling coefficients are:
Sn =210l Y _ lail.

i>n

&, =2l&ll, Y _ lail,

i>n

n = 2lan| - 1ol -

&)

Convergence of the series is a sufficient condition for the existence of linear processes
while 3:, allows to deal with long-range dependent (LRD) linear series, see Sect.4.3.

Now as an introduction to the weak-dependence conditions in Sect.11.4 (see
Doukhan and Louhichi 1999), we remark that:

Proposition 7.4.2 (Decorrelation) If the stationary process (X,)nez Satisfies
E|Xy|? < oo for p > 2 and is as before dependent as before if H is unbounded or
bounded we have:

[Cov (Xo, Xi)| < 41 Xoll p0k/2)s
< 4|1 H [loo0fi 13-

If the Bernoulli scheme is causal the previous inequalities can be written as:

|Cov (X0, Xi)| < 2[1 Xo!l 0k,
< 2| H |00}

Remark 7.4.6 Such results imply the short-range dependence of the process X in
the sense of Definition 4.3.1, in case the above covariances are summable.

Proof For this, use Holder’s inequality (Proposition A.2.2) after the relation:

Cov (Xg, X;) = Cov (Xo — Xo,, Xi) + Cov (Xo,1, Xi — Xi.1),
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which holds if 2/ < k when setting X, ; = H (£~ (H™®). Recall that £()® denotes the
sequence whose jth element is &_; if |j| < [ and f,’{fj if |j| > [. If the Bernoulli
scheme is causal the relation simplifies since

Cov (X(), Xk) = Cov (X(), Xk — Xk,k)~

Now factors 4 and 2 arise from the fact that covariances are expectations of a product
minus the product of expectations; the same bounds apply to both terms.

Animportant question is the heredity of such properties through instantaneous images

Yie = g(Xi).
Denote the corresponding expressions by dx y and & x, then:

Lemma 7.4.1 Assume that m > 1. Consider a Lipschitz function g : R — R such
that Lipg = L < oo.
Set Y = g(Xy) then:
Oy <L -dpx.

The above study is justified since many statistics write as empirical mean

1 n
; Zg(X,, Xi+l’ ey Xi+d)-
i=1

Some examples follow.

Exercise 55 Kernel density estimators are introduced in Definition 3.3.1. Assume
that (X;),ez is strictly stationary and admits bounded marginal densities for couples
(X0, Xi) uniformly wrt k.

Then the kernel density estimator satisfies for suitable constant ¢ > 0:

. ¢ n—1 %
Varf(x)fn—h<l+k2_]:5,é .

In case the previous series are convergent this is the same bound as for the iid case
(see Theorem 3.3.2).

Hints. One may write
~ ~ 1 &
F) —Ef () = — 3 Un(Xo),
k=1

with Lip U, < ¢/h, hence Proposition 7.4.2 with p = 2 entails with the above
bound:

C .
|Cov (Up(Xo), Upn(Xp))| < 5kZL1p K.
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The case k = 0 corresponds to independence and is already taken into account in
Theorem 3.3.2,
|Cov (Un(Xo0), Un(Xp))| < ch.

On the other hand, it is simple to check from a change of variable that
|Cov (Un(Xo), Un(X))| < ch?,

for some constant ¢ > 0.
With the boundedness of the kernel we obtain:

) 1
|Cov (Up(Xo), Un(X0))| < ch (h_g A h> < chd;.

The last bound comes from Exercise 12.18 for a = % Resuming the bounds yields
the result.

Simple indicators g, (1) = I, <) are the functions designed to derive bounds for
the empirical process.

Indicator functions are the simplest discontinuous functions; they are classes of
functions with only one singularity.

Under an additional concentration condition we are able to fix this problem:

Lemma 7.4.2 If p = 2 and if there exist constants ¢, C > 0 such that on each
interval P(X € [a, b]) < C|b — al, then the process defined by Y, , = Ix,<x)
satisfies:

Sy, <2Q0)F 053,

Proof Consider the continuous function such that:

1, if u<x-—e,
gr.e =1 0, for u > x,
affine, otherwise.
Consider Yy ¢, = gx.c(X,).
Then | | 5
u—v k,
|9, (1) = g (V)] < ,and &y, < -
Moreover
107y, = 0iy,| <2P(Xo € [x — €, x]) < 2C¢".
So
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2
c+2 6k,X

To conclude the proof, set .
P ¢ 2C

Remark 7.4.7 Up to a constant the result remains valid for any function g Lipschitz-
continuous on finitely many intervals.

A control for the cumulative empirical distribution follows:

Exercise 56 Prove that:

1 >\ e
Var F,(x)=0(-], if 0ty .
ar F,(x) <n> i kZZ(; hx < 00

In case ¢ = 1, which hold for X ’s distribution with a bounded density, the condition
is o

Y 6y < oo

k=0
This holds for example in case the marginal law of X admits a bounded density.

Remark 7.4.8 Higher order moment inequalities for such partial sums can also be
derived as in Chap. 12, see Doukhan and Louhichi (1999) and Doukhan et al. (2011).



Chapter 8
Associated Processes

The notion of association, or positive correlation, was naturally introduced in two
different fields: reliability (Esary et al. 1967) and statistical physics (Fortuin et al.
1971) to model a tendency that the coordinates of a vector valued random variable
admit such behaviours. We refer the reader to Newman (1984) for more details.
This notion deserves much attention since it provides a class of random variables
for which independence and orthogonality coincide. Another case for which this
feature holds is the Gaussian case, see Chap. 5. The notion of independence is more
related to o-algebras but in those two cases it is related to the geometric notion of
orthogonality. Those remarks are of interest for modelling dependence as this is the
aim of Chap.9.

8.1 Association

Definition 8.1.1 A random vector X € RP? is associated if, for all measurable func-
tions f, g : R? — R with E|f(X)|?> < oo and E|¢g(X)|> < oo such that f, g are
coordinatewise non-decreasing, we have:

Cov(f(X), g(X)) = 0.

Definition 8.1.2 A random process (X;),cr is associated if the vector (X,),cr is
associated for each finite ' C T.

Remark 8.1.1 Covariances of an associated process are non-negative if this process
is square integrable.

We will present the main inequality (8.1) to prove that weak-dependence conditions
in Chap. 11 are related with association.

© Springer International Publishing AG, part of Springer Nature 2018 167
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Exercise 57 A real random variable is always associated.

Hint for Exercise57. Indeed if X’ is an independent copy of X then calculus proves
that

1
Cov(f(X), 9(X)) = SE(f(X) = FXN (X)) — g(X").

Hence for f, g monotonic this expression is non-negative.
More generally:
Theorem 8.1.1 (Newman 1984) Independent vectors on R? are associated.

Proof A recursion is needed. The simple Exercise 57 considers the case of dimen-
sion 1.

A careful conditioning is needed. For this first derive from Cauchy-Schwartz inequal-
ity that:
Lemma 8.1.1 Let Z = (X, Y) € RP™ and f,g : R?*7 — R be such that f(Z)
and g(Z) € L2

If X, Y are independent vectors then

F(x)=Ef(x,Y)and G(x) =Eg(x,Y) € L? for, a.s., each x € R?.

Exercise 58 Let Z = (X,Y) € R be a random vector. Assume that the vectors
X and Y are independent. Setting U (x) = Cov(f(x, Y), g(x, Y)), prove that:

Cov(f(Z), 9(2)) =EU(x) + Cov(F(X), G(X)).

Hint. From the Cauchy—Schwarz inequality one easily derives that both random
variables F(X), G(X) e L.

End of the proof of Theorem8.1.1. Use Lemma8.1.1 with p = 1 for the recursion.
The decomposition in Exercise 58 ends the proof.

Theorem 8.1.2 (Newman 1984) A limit in distribution of a sequence of associated
vectors is associated.

Proof In the definition of association first restrict to bounded coordinatewise non
decreasing functions f, g, then if X,, — X from boundedness of f, g, f x g we get
Ef(X,) — Ef(X), Eg(X,) - Eg(X) and Ef (X,)g(X,) — Ef(X)g(X).

For M > 0 and for any function f, coordinatewise monotonic,

fu@) = f)AMV (=M)

is again monotonic.
Moreover from the tightness of previous distributions for each € > 0 there is some
M, ng such that
Cov(fu(Xn), fu(Xy)) = —€,  Vn = no.

Combining with the previous relations yields the result.
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8.2 Associated Processes

Definition 8.2.1 A random process (X;);er is associated if for each S C T finite,
the vector (X;);cs is associated.

Remark 8.2.1 Heredity properties of association are very important to handle appli-
cations involving associated processes.

Example 8.2.1 The following examples inherit the association properties:
e Non-decreasing images of associated sequences are associated.
This heredity property admits many consequences:

e For example monotonic images of independent sequences are associated.

e LARCH(o0)-models with non-negative coefficients a; > 0 and inputs £; > 0 are
associated:
o0
X, = (ao + Zajxtfj)gb
j=1

characterize To check this, use a recursion, the point that a linear function
p
(X1, ..., xp) > ijxj,
j=1

with non-negative coefficients b;(=a;¢;) is non-decreasing and the fact that asso-
ciation is stable under limits in distribution.

e Autoregressive process. Solutions of an equation
X;=r(Xi21, ..., thp) +&,

are associated if the function r : R? — R is a coordinatewise non-decreasing
function.

e INAR-models
X, =aoX, 1 +e¢,

are associated.
e More general integer bilinear models

X;=aoX,1+bo(g1Xi1)+ e,
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are associated if ¢, > 0 isiid and integer valued, and if ao and bo are both thinning
operators with non-negative random variables.

Indeed one may write (X, ..., X,) as a monotonic function of independent
sequences (thus it is associated).

e GLM-Poisson models in Example 7.4.2 can be written as
Yl =Pt()\l)7 )\t =g(Yt—17)\t—laYt—23 )\t—Za"-)-

If the function g is coordinatewise non-decreasing then the solution of the above
equation is again an associated process.

8.3 Main Inequality

A new concept is needed

Definition 8.3.1 Let f, f; : R” — R then we set f < fj if both functions f £ f;
are coordinatewise non-decreasing.

Example 8.3.1 Assume that the function f satisfies

Lf) = fOl = ailyr = xi| + -+ +aplyp, = xpl,

for all vectors x = (x1,...,xp), y = (y1,...,¥p) € RV,
Then f < f; if one sets

fl(x) =ax;+--- +apxp~

Proof In order to prove this only work out inequalities by grouping terms invoking
x’sor y’s only:

—ar(yr —x) — - —ap(yp —xp)
=f—=fx)
sai(y—x)+ - +ap(y, —xp).

The previous inequalities apply to vectors x, y such that x; = y; except for only
oneindex 1 <i < p.
The corresponding inequalities exactly write f < fi.
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An essential inequality follows:

Lemma 8.3.1 (Newman 1984) Let X € R? be an associated random vector and
f, g, f1, g1 be measurable functions R? — R then:

|Cov(f(X), g(X))| = Cov(f1(X), g1(X)),

if those function are such that f(X), g(X), fi(X), g1(X) € L>and f < f1, g < gi.

Proof The four covariances

Cov(£(X) +afi(X), g(X) + by (),

are non negative if a, b = —1 or 1, then adding them two by two yields the result.
For this, we consider separately cases

eab = —1,and

eab=1,

which correspond to the couples (a,b) = (—1,1), (1, —1) and (1, 1), (—1, —1),
respectively.

A simple byproduct of the above lemma is with Example 8.3.1 the result:

Theorem 8.3.1 Let (Y, Z) € R* x RY be an associated vector in 2. If for some
constants ay, . .., d,, by, ..., b, > 0, the functions f and g satisfy respectively:

IFO) = FONI <Y ailyi = yil. Vy.y R,

i=1

v
l9(z) = g()I < Y _bjlzj —2jl, Vz.7 eRY,
j=1

then:

u

|Cov(f(Y), g(Z)| < YD aibjCov(Y:, Z)). 8.1)

i=1 j=1

Remark 8.3.1 We derive that for each associated random vector (Y, Z) € R**V in
L2:
¢ Independence
If the vectors Y, Z admit pairwise-orthogonal components then they are stochas-
tically independent as for the Gaussian case.
The fact that the class A of such Lipschitz functions is rich enough to charac-
terize distributions (see Exercise 85) allows to derive the following equality of
distributions
LY, Z)=LY)®L(Z).
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e Quasi-independence

ICov(f(¥), g(Z))] < Lipf -Lipg ) Cov(¥;, Z;)

i=1 j=1
< uvLipf - Lipg max max Cov(Y;, Z;). (8.2)

I<i<u l<j<v

This inequality means that the asymptotic dependence structure of an associated
random vector relies on its second order structure.

Remark 8.3.2 (Bibliographical comments) This inequality in fact led us to the defi-
nition of weak-dependence in Doukhan and Louhichi (1999). It incidentally proves
that x-weak-dependence holds for associated models (see Chap. 11).

I am especially grateful to Alexander Bulinski for discussing those association
concepts in the early 1990s.

The idea of weak dependence was introduced in Sana Louhichi’s PhD thesis in
1996. Pr. Bulinski was a referee for this defence and he successfully developed this
concept in the area of random fields, see Bulinski and Sashkin (2007). The relation
(8.2) yields a convenient definition for quasi-independent random fields.

8.4 Limit Theory

Newman (1984) proved the following elegant and powerful weak invariance princi-
ple.

Theorem 8.4.1 (Newman 1984) Assume that the real valued random process
(X,)nez is stationary, centred and has a finite variance. If the condition

o0
o> = Y Cov(Xy. X,) < o0,

n=—00
holds for the stationary and associated process (X,),cz then

1 [nt]

% Z Xk = n—oo 0W;, inthe Skohorod space D|0, 1],
k=1

where (W,) denotes a standard Brownian motion.

Remark 8.4.1 Note that the condition precisely extends that obtained for the inde-
pendent identically distributed case since it reduces to EX? < oo in this case. The
assumption can thus not be improved. Under dependence the useful Lemma11.5.1
makes use of higher order assumptions. In order to use the assumptions of Theo-
rem 11.5.1 it is hard to avoid moment conditions of higher order.
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Example 8.4.1 Consider a sequence such that a; > 0. As an application, the above
result implies the invariance principle for the associated MA(co) processes

oo
Xe= Y aj&e;.
j=—00
oo
under the conditions E&3 < oo the iid inputs, and Z la;| < oo.
j==00

The general case a; € R follows by considering the two associated MA(oc0)
processes (in)k built with a;’ =a; v0 > 0and aj_ = —(a; A 0) > 0. Note that
Xy = X,f — X, . The convergence in D[0, 1] of the two processes

[nt] [nt]

1 1
Zfn=—=) X!, Z . tH=—) X..
A)ng ()\ﬁ;k

to Gaussian distributions follows. It is also easy to prove that the finite distributions
of this process converge to those of a Brownian motion, under the same IL>-condition.
To proceed consider linear combinations

k
Su =Y Zu(ti),
i=1

and, use the decomposition of partial sums S, as sums of in dependent rvs from
Exercise 62; Remark 2.1.2, using Bardet and Doukhan (2017), entails the existence
of an Orlicz function with ||&y|l, < oo and from linearity this extends to the terms
of the decomposition, hence Lindeberg Lemma?2.1.1 allows to conclude to fdd con-
vergence. The Remark B.2.3 proves the convergence of the sequence of processes
Z¥(t) — Z,; (t) in DO, 1], under J;-topology.

Merlevede et al. (2006); Dedecker et al. (2007) give further results. It is even
proved in Peligrad and Utev (2006) that the Donsker invariance principle holds for
moving averages with summable coefficient sequences and such that the innovations
satisfy a Donsker invariance principle, which is an alternative proof oF the previous
result.!

'Thanks to Florence Merlevede, Francois Roueff, and Wei Biao Wu for fruitful discussions.



Part 111
Dependence

The first chapter in this part begins with the ergodic theorem which asserts that the
strong law of large numbers (SLLN) works for the partial sum process of most of
the previously introduced models.

Assume that § = EX is an unknown parameter for a stationary sequence (X, )<z,
then the ergodic theorem can be written as:

X, = %(X1+"'+Xn)_)n—>oo 0, a.s.

The question of convergence rates in this results is solved in the following depen-
dence types for stationary sequences.

Two additional chapters detail as much as possible more precise asymptotic results
useful for statistical applications.

According to whether they are LRD or SRD, very different asymptotic behaviours
will be seen to occur, including corresponding rates.

- L
n“X,—-0) - Z,
n—o00

For some a = 1/2 or >1/2 according to whether SRD or LRD holds, asymptotic
confidence bounds may now be derived.

Namely, set a confidence level 7 > 0, and then in case there exists z, > 0 with
P(Z<Lz)=1—1:

P (9 € [)_(,1 -z, X, + Z—T]) N

ne

This also yields goodness-of-fit tests for the mean parameter 6.



Chapter 9 ®)
Dependence i

We propose an overview of the notions of dependence in this chapter, good references
are Doukhan et al. (2002b) for long-range dependence, and Doukhan (1994) and
Dedecker et al. (2007) for weak-dependence.

9.1 Ergodic Theorem

The present presentation comes' from Dedecker et al. (2007).

Definition 9.1.1 A transformation 7 : (£2, A) — (£2, A) defined on a probability
space (£2, A, P) is bijective bi-measurable and P-invariant if it is bijective, measur-
able, and if it admits a measurable inverse and moreover P(T (A)) = P(A) for all
Ae A
Note
I={AcA/T(A) =A}

the sub-sigma algebra of .4 containing all the T -invariant events.
This transformation is ergodic if A € 7 implies P(A) =0 or 1.

Remark 9.1.1 (Link to stationary processes) Let X = (X,),ez be a real valued
stationary process defined on the probability space (£2, A, P).

Then the image Py is a probability on the space (R%, B(R%)). The sigma-algebra
B(R%) is generated by elementary events:

A= l_[ Ay, with Ay =R, except for finitely many indices k.
keZ

ISpecial thanks are due to Jéréme Dedecker for the present proof.
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The transformation 7 defined by
T(x); = xiy1, for  x = (xi)iez,

in short Tx = (x;41);ez, satisfies

T (]_[ Ak> =[] A

keZ keZ

It is bijective bi-measurable and P-invariant; it is called the shift operator.
Note J = X~ !(Z) the sigma-algebra image of Z through X.
T is ergodic < {IP’(A) =0orl,VA € j}.
In this case, the process X = (X,,),cz is ergodic.

This means that shift-invariant events are either almost sure, or almost impossible.

Example 9.1.1 (A non-ergodic process) A very simple example of a non-ergodic
process is X, = ( for each ¢ and for a non-constant rv (. Indeed there exists b € R
such that 0 < P(A) < 1if A = (¢ < b). Then this is clear that A € J.
Refining it to
X, =C(C-&, for each t ez,

provides a non-trivial example if (&) is independent identically distributed and inde-

pendent of (, and if ¢ is not a.s. constant.

e In order to prove this, assume that {, > 0 a.s. and P({ = £+1) = %, then A =
N, (X, >0)=(=1) € J,sothat0 < P(A) = 1 < 1, in contradiction with
the ergodicity.

e Moreover the ergodic theorem (Corollary 9.1.3) proves that it is not ergodic in
case only &,, ¢ are both integrable; indeed the empirical mean then converges to
the non-constant rv ¢ - E&.

Many other examples may be found in Kallenberg (1997).

Proposition 9.1.1 Let T be a bijective and bi-measurable P-invariant transforma-
tion.
Let moreover f : (2, A) — (R, Br) be measurable with E f> < oo then:

Rn(f)Z%ZfoTk o ETf

k=1

Proof of Proposition 9.1.1. Consider

1 1
H={Zaix,~/a,~20, x;i € E, Zaizl,IZI},
i=1 i=1
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the convex hull H of E = {f o T* / k € Z}. Let C = H denote the closure in
L%(£2, A, P) of H.

From the orthogonal projection theorem (see e.g. théoreme 3.81, page 124 in
Doukhan and Sifre 2001), there exists a unique f € C with

171> = inf{ligll / g € C}.

If one proves

IRy (F)ll2 = noo 1112

then the proof of the projection theorem implies also

”Rn(f) - ?”2 > n—o0 0.

Moreover

Ry(f)=f+Rua(f)oT.

Hence

— _ — 1 —
IfoT = fla=llfoT = Rus(f) o Tll2+ —ll.fll2 + I1Ru(f) = fll2-

[P-invariance of 7" implies that the first term in the right-hand member of this inequal-
ity becomes || f — R,—1(f)[l2 — O.
Hence

foT =F.

f is Z-measurable.
Since -~
R,(f) — f, in L?

we also deduce L
E'R,(f) > E' f=7.

The fact that EZ R, (f) = EZ f allows to conclude.
In order to prove

IRy ()2 = noo 1112,

consider any convex combination

g= Z ajfoT’ €C, with |glo <|fl>+e
[jl<k



180 9 Dependence
With the invariance of T we derive

IR (Dll2 < llglla < Ifll2 + €.

On the other hand
k .
IR = 9ll2 = | 3 aj(Ru(h) = Raf 0 T
j=—k
k .
< Y ajllRi(f) = Ru(f o T2
j=—k

and using again 7"’s invariance,

k+j

. 1 . .
IRu(f) = Ra(foTHlb =~ 3 (I 0T o+ 11f o T/ ])
i=k+1
)i
< Lyl ©.1)
n

Using the two above inequalities implies:

2jaj
n

k
1Al = ==l ll2 =000 0.

IR, (f =9l < )

ljl<k
Hence -~ _
[ f1l2 = limsup [[R, ()ll2 < I fll2+ €
yielding the result since € > 0 is arbitrary.

Corollary 9.1.1 If we only assume E| f| < oo, then

Ro(f) 25, EX £,

Proof There exists a sequence g, € L2 such that g, — flli = m—oe 0. It is even
possible to assume that g,, € L.
Then

IR.(f) —EXflli < IR (f — g)llt + 1Ru(gm) — EX (g Iy
+ IEX(gn — Hlly
<20f = gnlli + 1Ru(gm) — EX(gu) I1-
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The previous proposition implies

limsup | R, (f) —EX fll1 <20 f = gulli-

The conclusion follows from a limit argument m — oo.

The ergodic theorem is also based upon the next inequality:

Lemma 9.1.1 (Hopf maximal inequality) Let T be a bijective bi-measurable and
P-invariant transformation.
For f € ! set So(f) = 0 and, for k > 1 set:

k

Se(f) = ; foTl,  SK(f)= max Si(f).
Then:

E(foT Ls(p=0) = 0.
Proof of Lemma 9.1.1. If 1| <k <n + 1 then
Si(f) < foT +S/(fHoT.
Moreover if S;(f) > 0 then
Si(f) = max S(f)-

Thus
Sy (D Listp=0) = foTLigt g0+ S () o T Ligr(p)=0)-

This entails
foT Ligtpsop = Sy () = S (f) o T) Ly (f)=0-

Now

Corollary 9.1.2 [f the assumptions in Lemma 9.1.1 hold then

E
H”(supmn(fn > c> i Y
n>1 &

Proof Apply Lemma9.1.1to f —c:

E(f —¢) o Tlist(s—0~0) = 0,
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and
E(fvO E Tlgtir
(f ) Z fO Su(f )>0 Z]P)(S:(f_c)>0)
c c
‘We obtain:
ST =0 =0V max (k(Re(f) = )) = max (Re(/) = ©).
Hence

E(fv0)

c

>P (]rggg (Re(f) —¢) > 0) .

Replacing f by — f one proves analogously:

—(E(f A 0)
c

1<k<

>P(SH(f +o) <0)21P’(max (Re(f) +¢) <0>.

The result follows from summing the previous inequalities and for n — oo. Indeed
lfl=fVvO—fAO0andP(R —c > 0)+P(R +c < 0) =P(|R| > ¢) for each
random variable R.

Theorem 9.1.1 (Ergodic theorem) Let T bijective bi-measurable and P-invariant.
Let f € L' then
Ry(f) =nooo EXf, as.

In case the process is ergodic, then the limit is constant almost-everywhere for any
integrable f.

Proof of Theorem9.1.1.

e Assume first that g is bounded.
If n,m > 1 then

[Ru(9) —E*g| < |Ru(9 — Ru(9)| + |Ry(Ru(9) —E* g)].
Using the same idea as to derive inequality (9.1) we obtain
j 2Jj
1Ry (9) — Ru(go T/l < ~, 19lleo-

Hence

N 1
[R.(9 — Ru(9))| < 9o Y 2j= (m+ Dligloo
nm o n
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Also

IA

sup | R, (R, (9) — E*g)|

n>1

|R,(R,(9) — E*g)

lim sup |Rn (9) — EIg|

IA

, a.s.

With Corollary 9.1.2 we derive
. T 1 I
P llmsup’R,l(g)—E g| >c| < —E|Rm(g)—E g| —>mooo 0.
n C

So
P <1im sup |R,(9) — Eg| = o) =1.

e For the general case, g € LL!, there exists a sequence of bounded functions g,,
which satisfies || f — gmll1 = m—o00 0. Then

|R.(f) —E* f| < IR.(f — )| + |Ru(gm) — E* gu| + [EX (g0 — )]
Hence

limsup |R,(f) —E* f| < sup |R.(f — g)| + [EX (g — )|, as.

We now derive two relations.
1. Markov’s inequality implies EZ (g,, — f) E;m_,oo 0.
Indeed :
E|E” (gn = )| = Zllgn = flh-
2. Let Ay, = sup,-; [R,(f — gn)| then from Lemma 9.1.1:

1
P(Ay > ¢) = 2= gl

The relations 1. and 2. imply
P <1im sup | R, (f) —E* f| > c) =0.

This holds for each ¢ > 0 which implies the result.

In the case of stationary processes this theorem is reformulated with the shift
operator 7.
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Corollary 9.1.3 Let (X,),cz, be a stationary process. If f : R — R is measurable
and E| f(X)| < oo then:

1 n
- § :f o TH(X) oo EY £(X), a.s.and inL'.
n

k=1

Ifnow E f2(X) < oo, then the convergence also holds in 1.2
Proof The only point to notice is that E7 f(X) = IE%X f.

Example 9.1.2 Exercise 68 provides us with a non-ergodic sequence satisfying any-
way a law of large numbers.

Remark 9.1.2 If the process X is ergodic, then:

% Y foT*X) — i Ef(X), ifE|f(X)] < oo.
k=1

Ergodicity may also be omitted if E f%(X) < oo and

% D foTHX) > Ef(X) as.
k=1

— %Z Cov(f(X), f o TF(X)) — 0.
k=1

Moreover, as a partial converse of Theorem 9.1.1, if the above limit is constant every-
where for any integrable function f, then the system is ergodic, see Kallenberg
(1997).

We now derive some examples of ergodic processes.

Example 9.1.3 (Ergodic processes)

e An independent identically distributed sequence is also a stationary and ergodic
sequence. For this, use Kolmogorov 0 — 1’s law.

e Hence Bernoulli schemes are also ergodic. Indeed if X = (X;);¢y is defined from
an independent identically distributed sequence & = (&;);cz and a function H
through Eq. (7.15) then f o T'(X) = f o H o T'(£). Hence, as soon as E| f (X)| <
00, we derive:

| — ‘
;ZfoT‘(X) — Ef(X).

i=1

This is true for bounded measurable functions R in R. This also entails ergodicity
of X.
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e If the relation Cov (f(Xy), f(X,)) — 0asn — oo holds for f € F. This class
of functions indeed generates a dense linear vector subspace of LL!. This relation
implies with the Cesaro lemma that:

1 n
=Y foTHX) >0 Ef(X), in L.
n

k=1

The result still holds for each bounded function from a density argument. Now
Corollary 9.1.3 entails E7 f(X) = E f(X) and the ergodicity follows.

The following examples follow this scheme:

e A Gaussian stationary sequence is ergodic if its covariance satisfies r, — 0 as
n — oo. This condition seems to be necessary since e.g. a constant sequence
X, =& ~ N(0, 1) is not ergodic.

Assume X ~ N(0, 1). If the Hermite expansion of f is

o0
f= ZCka,
k=0

then:

»|»M
:»

Cov (f(Xo), f(Xn) = Z = G(ry).
k=1

The function G(r) defined this way is continuous on [—1, 1] if one sets G(1) =
Ef2(X,) and G(0) = 0. The ergodicity follows.

e Strongly mixing sequences, and all the previous examples of weakly dependent
sequences (see the Definition 11.1.1) are ergodic.

e Alastexample is a stationary associated sequences with lim,,_, o, r,, = 0. To prove
this, use inequality (8.1).

Exercise 59 Let (X,),cz be a stationary and ergodic centred sequence in L2
Then

Fap = Z Xi Xi—p) 9.2)
" |p| k=lpl+1

fits r, = EXoX, without bias, i.e. EF, , = r,, and 7, , — r, a.s. and in L', i.e. it
is consistent.

Solution. For this use the previous result with f(w) = wow,.
Let (£,)nez be stationary and ergodic with E&S < oo.
[o¢]

If |a| < 1then X,, = Zakfn_k is stationary and ergodic and EX(% < 00.
k=0
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Moreover
X,=aX,_1+&, YneZ.

The previous solution is the unique sequence such that this relation holds. It is the
first order auto-regressive process.
Previous arguments imply

n
w2 Xk Xk—1

a= — a
n 2 n—oo E)
i Xi

a.s.

if E§p = 0 and lim,_, oo E&o&, = O for the ergodic sequence ().

Example 9.1.4 Chap.7 includes a wide range of results for which Theorem9.1.1
applies. Essentially the consistency of the empirical process follows from this main
result.

9.2 Range

We provide some ideas yielding definitions for the range of a process. Namely we
advocate to define it according to a possible limit theorem. As this is claimed at the
beginning of Part III, a definition through a limit theorem in distribution allows to
define an asymptotic confidence interval for testing a mean through the simplest fre-
quentist empirical mean. After Theorem9.1.1 it is indeed known that such empirical
estimators do converge under mild assumptions.

The classical definition of the long/short-range dependence for second order
stationary sequences is based on the convergence rates to zero covariances ry =
Cov (X, Xy), more precisely the convergence of the following series is of impor-
tance:

Definition 9.2.1 (IL>-range) In case the series (r;) is absolutely convergent the pro-
cess is short-range dependent (SRD) and if the series diverges the process is long-
range dependent (LRD).

The proof of Proposition 4.3.2 provides an expression of the square of a convergence
rate in IL? in the ergodic theorem under IL>-stationarity:

E(S, —nEXo)” = Var (Z g(xk>> = (n—IkDre.

k=1 lk|<n
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Based on the previous definition the partial sums

n
Se=)_ X,
k=1

admit variances with order n or >> n according to either an SRD or an LRD behaviour.

A phenomenon of very short-range corresponds to gx(0) = O0; in this case
Var S, < n. It is discussed in Giraitis et al. (2012).

More generally consider L;, Ly, L3 slowly varying functions (typically powers
of logarithms) and constants «, /3,y > 0.

Introduce the properties

D rk oo nLi(n), 9.3)

k=—n

Tn ~aseenLa(n), ©4)
N 1

WQ)NHMM/L<KO. 9.5)

One may prove (Taqqu in Doukhan et al. 2002b):

Theorem 9.2.1 (Tauber) Ifthe sequence (ry) is monotonous fork > k, then relations
2
(9.3), (9.4) and (9.5) are equivalent witha = 1 — 3, Ly = ——L,, vy =1—(and

1-p
r 1 1 —
L; = G )sin m( a)L
2 2

This yields a convergence rate in the precise law of large numbers (Ergodic Theo-
rem9.1.1), but if one needs a more accurate approximation for goodness-of-fit tests,
then more information is needed. This definition is quite unsatisfactory because a
user is concerned with the asymptotic behaviour of functionals of a process rather
than its L’>-behaviour.

Orthogonal sequences satisfy Var S, = n'Var X but they do not necessarily admit
an asymptotically Gaussian behaviour:

1-

Exercise 60 Let (£,) be an independent identically distributed sequence with
marginals N (0, 1) and let 7 be a real valued random variable independent of the
sequence (&) then X, = n¢&, is orthogonal so that it is also weakly stationary but it
is not ergodic.

Hint. Since S, /+/n admits the same distribution as n&, this expression is usually not
Gaussian.

The case P(n = 1) = % is special and yields a Gaussian behaviour because of
the symmetry of the Normal distribution.

Another naive definition of the range is based on limit theorems relative to the
partial sums:
Ss=X1+-+ X,
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Distributional range. Let (X,,),cz be a strictly stationary and centred sequence in
L2

1
o If TSn is asymptotically Gaussian then we say it is short-range dependent.
n

Precisely we may suppose that VarS, ~ cn (as n — o0), for some constant
c>0.
Assume that the sequence of processes

1
t— Z,(t) = ———=3S8.;, forte]0,1
() Vars [0, 1]

converges toward a Brownian motion in the Skorohod space D[0, 1] (see Definition
B.2.2).
e If the sequence of processes

1
t— Z,(t) = ———=Sjq, forre]0,]1
(1) VarS,,[t] [0, 1]

does not converge toward a Brownian motion it would be long-range dependent.

An alternative definition omits the fact that X,, € L%:

SRD holds if the previous partial sums process admits a limit with independent
increments, otherwise, if the previous partial sums process admits a limit with depen-
dent increments, then LRD holds.

This nice proposal by Herold Dehling allows to aggregate cases of heavy tail
processes and Lévy processes. Recent works on progress (Doukhan et al. 2017)
prove that this does not always hold, see Sect. 10.6.1. This works tends to distinguish
totally > and distributional LRD.
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Long-range dependent (LRD) phenomena were first exhibited by Hurst for hydrology
purposes. This phenomenon occurs from the superposition of independent sources,
e.g. confluent rivers provide this behaviour (see Fig.4.2). Such aggregation proce-
dures provide this new phenomenon. Hurst (1951) originally determined the opti-
mum dam sizing for the Nile river’s volatile rain and drought conditions observed
over a long period of time. LRD is characterized by slow decorrelation properties
and the behaviour of partial sums’s variances. This phenomenon is discussed above,
see Sects. 4.3 and 4.4. Asymptotic properties of instantaneous functions of Gaussian
processes are provided in Remark 5.2.4. Infinite moving averages models with LRD
properties are provided in Sects. 6.4 and 6.6. We refer the reader to Doukhan et al.
(2002b) for much more.

The present chapter is dedicated to distributional LRD properties. We address
the Gaussian and linear cases as well as the case of functions of such processes
where LRD phenomena occur. Due to the technical difficulties we restrict to the
initial example of Rosenblatt for functions of Gaussian processes. We also describe
additional extensions in a more bibliographical spirit.

The most elementary example is that of Gaussian processes. We follow the presen-
tation in Rosenblatt (1985) who discovered such long-range dependent behaviours in
distribution. He considered models of instantaneous functions of a Gaussian process.

10.1 Gaussian Processes

Let (X,,),cz be a stationary centred Gaussian sequence with rp = EX (2) = 1 and with
covariance
re ~ ck"j, as k — oo,

forc > 0,3 > 0.

© Springer International Publishing AG, part of Springer Nature 2018 189
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Theorem4.2.1 allows to prove that the sequence r;, = (1 + k2)_% is indeed the
sequence of covariances of a stationary Gaussian process. Hence such sequences
exist.

Tauber’s Theorem 9.2.1 implies g(\) ~ |A|*~. Also S, ~ N(0, Var S,) with

k|
Vi = - —
ar S, nE <1 " Tk,
|k|<n
and Var S
ar O(ny)
Z,(t) ~ 0, ——— ).
@ N( Var S, )

e Hence if # > 1, Var S, ~ no? then the sequence is SRD and

1 2
— Var S[m] — to”.
n

Now Z, converges to a Brownian motion with variance

First check that
EZ,)Z,(s) — (s A t)0'2.

Tightness is a consequence of the inequality
E(Zy(t) = Zo())* < Clt —s|, for C= Y |rl,
k=—00

and from the Chentsov LemmaB.2.1.
Indeed for Gaussian processes it is immediate to prove that:

E|Z,(t) = Zy(s)|P = EIN|? [E(Z, (1) — Z,())’]",

foreach p > 2if N ~ N (0, 1).
e If now 3 < 1 the series of covariances diverges

varS, ~n®?  if o~ ck7P.

Hence
Z,(t) = N (0,et*77),
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does not converge to the Brownian motion; indeed contrary to the case of the
Brownian motion the previous variance does not increase linearly with respect
tor.

Now writing that

E(Z, (1) — Zn(5))? = oo |t — s|*H, with H =1—3/2, 5s,t >0

implies that functional convergence holds by using the Chentsov LemmaB.2.1.
Moreover the relation:

E(Z,(5)Z, (1)) = %(EZ,%m +EZ2(s) — E(Z,(t) — Z4(5))?),

demonstrates that the covariance function of Z, converges to cI'y, where Iy
denotes the covariance of the fractional Brownian motion By, see (5.1).

Remark 10.1.1

e For SRD sequences the assumptions of LemmaB.2.1 need p > 2 because a =
p/2. The above-mentioned relations imply that this holds for a Gaussian process
if it holds for p = 2 and for some a > 0.

e The long-range dependent case is more simple since for p = 2 one derives directly
a=2—-—a>1.

10.2 Gaussian Polynomials

Generally assume that the process (X,) is Gaussian, and stationary. Let this process
be standard Gaussian, in the sense that EXy = 0 and Var Xy = 1. Also suppose that
re ~ ck~—% as k — oo, and that the function g is such that IE|g(X0)|2 < Q.

Then one of the following two cases may occur:

e SRD case. Note that:

Var (Z g(Xk)> =0,
k=1

if #-m(g) > 1 and m(g) denote the Hermite rank of g.
In this first case the diagram formula (Sect. 5.2.3) allows to prove the convergence
in distribution, (Breuer and Major 1983):

[nt]

ﬁZg(Xo — oo oW, in DO, 1].
k=1

The result is also proved in a shorter way in Nourdin et al. (2011) by using the
method of fourth order moment from Sect.5.2.5.
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e LRD case. Otherwise, say if 3 - m(g) < 1, then
r (Z g(Xk)> =0 (n2—m(g)ﬂ) .
k=1

Here 1 — M
2

1
>3 and convergence in law still holds

1 . L
|_m@s Zg(xk) — o0 Zr,
nor g

to some non-Gaussian distribution in case the rank is > 1 (Taqqu, 1975, see
Dobrushin and Major 1979).

The technique is involved since, for k > 2, the Laplace transform for the law of X ’6
is not analytic around 0, thus characteristic functions do not determine convergence
to such laws.

The case k = 11is considered in the previous section and the case k = 2 is discussed
in the next one.

10.3 Rosenblatt Process

The previous non-Gaussian asymptotic may be proved elementary “ala main” for the
case m = 2 described in Rosenblatt (1961), see also the nice monograph (Rosenblatt
1985). Set ¥,, = X,% — 1 then the Mehler formula (Lemma5.2.2) implies that the
covariance Cov (Y, Y;) equals 2r,f ~ 2¢%k=2%, The series of these covariances is
divergent in case 3 < % In this case we aim to prove that

n
Up=n""') 1,
k=1

converges toward a non-Gaussian limit.

More explicitly the normalization should be written V28 /n.

Set R, for the covariance matrix of the vector (X, ..., X,), then for ¢ small
enough:

Ee'Vr — Re By (X -

— eftn‘*/ e 2x (R'I 2t 1) x dx
. (7). /detR,

— e / e~ 1Y Un=2t0" " Ry)y dy
. Qm)n/2

— ¢ ™ det™2 (I, — 2tn""'R,) .
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Indeed through a linear change in variable for each symmetric definite positive matrix
A with order n:

[ a——
\ (271')”/2 Jdet(A)

Now denote by (\; ,)1<i<» the eigenvalues (> 0) of the symmetric and non-negative
matrix R, (thus, diagonalizable) then

1 = — 21‘”“3_1)\1',")_1/2
\/det (In — 2tn/5*1Rn) i=1

= exp (—% Zlog (l - 2tnﬂ1/\,~’n)) .

i=1

Use the following analytic expansion (valid for |z| < 1)
log(l—2)+z=— —.

The simple observation that trace(R,,) = n follows from the fact that R,,’s diagonal
elements equal 1. We deduce that

e — exp( 2tn% ! trace R,l = exp ( Z(2mﬁ BYY n) .

Thus:
1< . )
EetUn = exp (-5 i_E 1 {log (1 _ ztn,‘f—l)\iyn) + 2tnd_l}>
l Eoo l(Ztnﬁ_l)k trace R
2 k nl-
k=2
Now:

nkg n n
k _ k(a—])E E e g C
n—ktrace Rn =n cee Vii—iyViy—is Vi =i Vig—i

=1 =l

I S

i=1 lkln_||n
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Hence through the discretization of a multiple integral by Riemann sums we derive:

nkﬁ
— trace RX —, .« cx > 0,

with

! ! 1 1 1
k
ck=c/~--/ g X X = X sdxy - dxy.
0 0 X1 —x2f 1 —xel” e — xalf

For this, simple upper and lower bounds for integrals over cubes with volume n~
allow to derive this convergence; indeed the function to be integrated is locally
monotonic with respect to each coordinate.

More generally (Polya and Szegt 1970) prove the validity of such approximations
for generalized integrals, in the case of functions monotonic around their singularity
as here. Hence for k = 2, one obtains that foreach 1 <i < n,

k

n
2 2 2
0< /\i_’n < E /\j‘n = trace R,
j=2

n n
<ny ri<ny j=0m =om").
j=0 =0

Indeed 2(1 — 3) < 1 since 5 > % and we derive 2|¢|n?~'\;, < 1if |t| < c for
some constant ¢ > 0.

The previous bound proves that the necessary convergences hold make the above-
mentioned calculations rigorous if 7 is large enough.

Hence for each ¢:

1 [} i
tU, k
Ee'™" —,_ o exp (5 kgzz 21)"* - ;> .

Hence this sequence converges in distribution to a non-Gaussian law (this distribution
is therefore called Rosenblatt’s distribution).
Indeed the logarithm of its Laplace transform is not a polynomial with order 2.

Remark 10.3.1 This technique does not extend to polynomials with degree more
than 2 since their Laplace transform is not analytic. Indeed it is easy to prove that if
N ~ N(0, 1) then

o 1 d
]Eexp(t|N|3) = 2/ exp (tx3 — §x2> Al oo, if t>0,
0
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and the method of moments does not apply to prove convergence in law (see
Theorem 12.1.1). Dobrushin and Major (1979) introduced weaker convergences for
sequences of multiple Ito integrals in order to derive “non-central limit theorems”.

10.4 Linear Processes

Consider linear processes with iid inputs such that E¢y = 0 and E&5 = 1,

00
Xn = E Ckgn—ka
k=0

for which ¢; ~_, oo ck™” with % < [ < 1 are easily proved to satisfy

Ty = chz k ~kooo CkIT20 /OO _ds
— 0 (sGs+1)7

(use approximations of an integral by Riemann sums), hence
Var (X; + -+ X,) ~ 'n* 8

and it is possible to prove

[nt]

3—1 £
n' ZXk — oo B (1),
k=1

with convergence in law in the Skorohod space D[0, 1] of right-continuous functions
with limit on the left (cadlag functions, see Definition B.2.2):

Theorem 10.4.1 (Davydov, 1970) Let (X,,) be a linear process. Set
S =X+ -+ X,.
If Var S, = n*" L(n) for a slowly varying function L and 0 < H < 1 then

[nt]
1 L
E Xk —n>o0o Bu(t).
k=1

nf L(n)
Hint. This result also relies on the Lindeberg Theorem2.1.1 and use the following
decomposition in formula (10.3) with v, (a) = a&;.

The end of the chapter is more a sequence of bibliographic comments than a
sequence of formal rigorous results, due to their highly technical proofs.
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10.5 Functions of Linear Processes

A martingale-based technique was introduced in Ho and Hsing (1996) for the exten-
sion of such behaviours as previously considered for the Gaussian case. Conditional
expectations recalled in Definition A.2.2 are essential to define martingales (see
DefinitionB.6.1).

The idea of this section is to give a flavour of results and underlying techniques
but the rigorous proofs should be found in the corresponding literature. Using the
weak uniform reduction principle, (Giraitis and Surgailis 1999) established the same
result for a causal linear process.

Let

00
Xt = Z bsgtfs»
s=0

where ¢ is independent identically distributed and by = L(s)s~(+1D/2,

Theorem 10.5.1 (Causal linear process) Let f(x) be the density of Xo and Bi_»
the fractional Brownian motion with Hurst index H = 1 — «/2. If there exists
constants 6, C > 0 such that

[E (e")] < €1+ u ™,
and if E|&|° < oo then there exists c,, an explicit constant with
n®2 (e, 1) —> o f(X)Bi—aj2(t)

in the Skorohod space D[—o00, +o0] x D[0, 1].

A main tool is uniform control of the approximation of the empirical process by
the partial sums process:

Proposition 10.5.1 (Uniform reduction principle) There exist C,~ > 0 such that
for0 <e < 1:

a_q k
P(- (M= = FOO + f(0)X,)| z €) = ¢
L(n) fig p W= K A
xeR -

Sketch of the proof. Set

Sp(x) =

M n
2

nL(n) (]I{Xzfx} - F(x)+ f(X)X,).

t=1

Then

Var (S, (y) = Sp(x)) = - p(lx, yD)-

nl+y
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where 4 is a finite measure on R. Then a technical chaining argument is used to
derive tightness.

Remark 10.5.1 (Ho and Hsing 1996) extend the expansion of the reduction princi-
ple:

pa/2

n . e r r
Snvp(x) = }’lL(n) <; I[{erx} - F(x) - Z(_l) F( )(X)Yn,r) £

r=0

n

Yn,r = Z 1_[ bj.; gt*jx .

t=1 1<ji<--<j, s=1

Proposition 10.5.2 (Uniform reduction principle) If the density of §y is (p+3)-times
differentiable and if E|&|* < oo,there exist C,~v > 0 such that for 0 < € < 1:

P <sup |8, (x)| > 5) < Cp~(@Nd=pa+yg=2-7
xeR

A preliminary view to the technique of proof.
A calculation of the variance of S, ,(x) is first needed.
Set

14
[ix) = g,z — F) = Y (=1 FO ()Y,

r=0

write the orthogonal decomposition:

fix) —Efi(x) = ZE(ft(X)Ifz—s) — E(fi )1 Fi—-1),

s=1

where F; is the o-field generated by the {{;/ s < t}. Compute the variance of
each term using a Taylor expansion. Note that the F; are increasing so that many
covariances between terms are zero.

It is possible to generalize the previous method to the case of random fields. (X/)
is a linear random field:

X = Z bufH—uv Vi € Zd,

ueZd

where ((,),cz¢ 1s an iid random field with zero mean and variance 1, and b, =
Bo(u/u|)|u|~@*t/2 foru € Z¢,0 < a < d and By is a continuous function on the
sphere.
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1
— d d _ .
Let A, = [1,n]! N Z¢ and F, (x) = — Y Hjx, <y, then:

teA,

Theorem 10.5.2 (Doukhan et al. 2005) If there exist §, C > 0 such that
|E (e™)] < C(A + ul)™,
and if E|&|*+° < oo then
n*?(Fy(x) = F(x)) — ca f(0)Z,

in D[—o00, +00], where Z is a Gaussian random variable.

Remark 10.5.2 Itis remarkable that the limit distribution is extremely simple in this
case, indeed Z does not depend on x.

Recall that the weak dependent case yields much more complicated limit
behaviours, typically the Brownian bridge in which the Holder regularity exponent
satisfies 0 < %

10.6 More LRD Models

This section provides some directions for the extension of LRD to non-linear models.
It contains more bibliographical comments than rigorous statements.

10.6.1 Integer Valued Trawl Models

In Doukhan et al. (2017) we introduce an extension of linear models given by an iid
sequence ()i of copies of a process v : R — R. For our purpose, we shall restrict
to:

e Symmetric Poisson Process: v(u) = P(u) — P’(u) for P, P’ independent homo-
geneous Poisson processes,

o Symmetric Bernoulli Process: v(u) = Wjy<uy — Wjy<uy for U, U’ independent
uniform random variables.

Both processes are centred, and respectively:

Var v(u) = 2u, or 2u(l — u),
Cov (v(u), y(v)) =2 Av), or 2(u Av — uv).

Consider some non-decreasing sequence a; > 0 with @, ~ ck™* (k — 00), for some
l<a<?2.
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Those models are defined as:
o0
X, = Z%,,(aj). (10.1)
i=0

The above conditions ensure existence and stationarity of this model.
Moreover

Cov (Xo, Xz) ~ k'@ (10.2)

Var S, ~ "'n?,

where we again set S, = X| +--- + X,,.

Exercise 61 (Covariances of trawl processes) Assume that the seed + is a unit
Poisson process (or any other square integrable Lévy process with

Cov (v(u), v(v)) =u A v),

and also,

)
X, = Z ’Yn—k(ak)
k=0

Assume moreover that a; is a non-increasing positive sequence such that

[e.¢]

E aj < oQ.

j=0

Then the above process is strictly stationary and in 2.
Moreover if

oo [e.¢]
Ap=) a;, with Y A;=o0,
Jj=k j=0

then:

e Its covariance is Cov (Xo, X,) = A,,.

e Deduce (10.2) for the case of a Poisson seed.

e Prove that an analogue result holds for the case of Bernoulli seeds (which are not
Lévy processes).

Hints. The series is normally convergent in IL? since

Y-k (@)ll2 = llv(a) 2 = /ax
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is a square summable series. Thus independence of the sequence (v;) allows to
conclude.

Stationarity is standard and relies on the fact that the vector valued random vari-
ables (X;11, ..., Xi4¢) are limits in IL? (and thus in probability) of

(X,E’X{, cee X]Ei)@) = F" (& Eon),

obtained by replacing the above infinite series by series for 0 < j < N; their
distribution clearly does not depend on k from the stationarity of inputs (;).
Now

) )
Cov (Xo, X)) = Zak N Qyn = Zak-‘rn = A,
k=0 k=0

Then (10.2) follows easily for the case of Poisson seeds.
For the case of Bernoulli seeds

o0

Cov (X0, Xp) = Y (@ A Gkin — Gkicin)

k=0
o0
= E Afyn —
k=0

A Qjc4n

oo

k=0

= An - Bn = An(l + 0(1))a

with 0 < B, < Aopa, = o(A,) since a; admits a Riemannian decay rate.! Equa-
tion (10.2) again follows in this case.

Equation (10.2) implies that, for H = (3 — «)/2, the centred process S, () =
n~HS,, satisfies

lim Cov (S, (s), S.(1)) = Cov (B (5), B (1)).

However S, () converges in probability to O for each r > 0; for this, the formula
(4.4) entails ES2(1) = O(n“?) =, 0.

In fact the sequence of processes n'! —i S, (t) converges to a symmetric Lévy
stable process with index « in a certain sense; precisely convergence holds in the
M -topology on DJ[0, 1], see in Jakubowski (1997) which is quite weaker that the
usual Ji-topology.

Such unusual behaviours contradict the Dehling definition of LRD since this
model is L2-LRD and it is SRD in the distribution sense of Dehling. Such atypical
behaviours may be seen to happen for high traffic models and (Konstantopoulos and
Lin 1998) first exhibited such behaviours; note that the latter distributional conver-

INote that the same relation a,, = 0(A,) does not hold when a;, admits a geometric decay rate since
in this case tails A, and the first term a,, of a series admit the same order of magnitude.
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gence was proved afterwards in Resnick and Van den Berg (2000). The previous
authors worked with the different shot-noise models.

Exercise 62 is a main tool to prove a suitable limit theory for partial sums since
it proves their decomposition as a sum of independent random variables and may
as well allow the use of the Lindeberg Lemma?2.1.1, to derive alternative Gaussian
behaviours (see again in Doukhan et al. 2017).

Exercise 62 (Decomposition lemma) Let (Xj) be as in (10.1), setting S, = X +
--- 4+ X, then we have

Sn = Xn: Zs,n (103)
§=—00
Zs.n = Z ’Ys(akfs)'
k=1vs

Prove that the random variables (Z; ,);<, are independent.

Hint. This just needs a careful observation of X;: order summed elements wrt to the
index s of the involved seed ~;.

Notice also that the original decomposition in Exercises 91 and 95 again yields a
decomposition of the above variables Z; , as sums of very simple random variables,
for the above Poisson case and for Bernoulli distributed inputs. Those exercises allow
very precise controls of higher order moments of the partial sums which are a main
interest for further ongoing contributions. They yield the following exercise.

Exercise 63 (Symmetric trawl processes) Assume that inputs are either symmetric
Poisson processes or Bernoulli processes (as in Exercises 94 and 96).

Let p > 2 be an even integer, then prove that for | < a < 2, there exists a
constant C, , > 0 such that IES,% ~ Ca,,1n3’a and IES,%p ~ Ca,,,nzl”“ asn — oo if
p>1

Note thatif m = 2p + 1 is odd, a symmetry argument entails ES) = 0.

10.6.2 LARCH-Models

As in Sect.7.2.2 we model the stationary solution of the recursion:

00
X, = (bO + ijxn_j)fl‘l'

Jj=1

This also admits LRD behaviours if the iid sequence (&;) is centred and

[o¢]
EG D b <1,
j=1
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but

o0
Z|bj| = 0.
j=1

More general volatility models
o0
X = 0:&, (7,2 = G(ijxt—j>’
j=1

extend on ARCH(oco)-models (G (x) = by+x?), and asymmetric ARCH(oo)-models
(G(x) = by + (c +x)%).

For deriving LRD properties, again one requires

o o0
Zb?<oo, Z|bj|=oo.
j=1 j=1

See (Giraitis et al. 2012) for details.

10.6.3 Randomly Fractional Differences

Philippe et al. (2008) introduced time-varying fractional filters A(d), B(d) defined
by

Ad)x, =Y ajOx—;.  B)x, = > bi()x,_, (10.4)
i=0 j=0

where d = (d;, t € Z) is a given function of ¢ € Z.

We also set ay(t) = by(t) = 1, and if j > 1:

a;(t) = <d11—1><dr—22+ 1)(0';—334- 2) o (dt—j -l;j _ 1>’

= () (5 () (),

If d, = d is a constant, then A(d) = B(d) = (I — L) is the usual fractional
integration operator (Lx, = x,_; is the backward shift).

Doukhan et al. (2007a) consider the two following processes, for centred inde-
pendent identically distributed inputs ¢,

X = ai0& . XF =) b0k
j=0 =0
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If d, is independent identically distributed and Ed, = d € (0, %) then the asymptotic
behaviour of partial sums of this process is the same as for ARFIMA(O, O, d, 0)
which corresponds to the case of a constant sequence d;.

If ¢, is standard Normal, then

e X, is Gaussian with a variance A(t) = IE(Xt2|D), conditionally wrt D, the sigma-
algebra generated by {d;/ s € Z},

o (A = AXE[(X)H(X: A)], where Hi(x: A) = AkaG), denotes
Hermite polynomials with variance A, fork =0, 1,2, ....

Then the Gaussian limit theory extends with Hermite coefficients replaced by
B = E(ge(A(0)) Q")

for a random variable Q related to the random coefficients d;, Ed, = d and d, admits
a finite range, and

Elh(B&)|* < o0, for some a > 2.

10.6.4 Perturbed Linear Models

Doukhan et al. (2002a) study the empirical process of perturbed linear models:
X, =Y, +V, teZ,
where (Y;) is a long-range dependent causal linear process and
Vi=HE &1,
denotes a short-range dependent perturbation.

Then the perturbation does not modify the behaviour of the empirical process
which thus behaves as for linear LRD processes.

10.6.5 Non-linear Bernoulli-Shift Models

Doukhan, Lang, and Surgailis (unpublished manuscript, 2006) study the partial sums
process of

oo
Xe=HY;: & 600, Yi=) bi&
j=0
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where b; ~ ¢ j41, with d € (0, 1/2), and &, independent identically distributed
innovations, and H is a function of infinitely many variables.
A main goal of the results was to prove that:

There exists a non-Gaussian process X whose partial sums process converges to a
second order Rosenblatt process while the partial sums of X* converge to the
fractional Brownian motion.

The technique extends that of Ho and Hsing (1996); it is based on a martingale
decomposition of the partial sums process.

[nt]
Su(t) =Y (X, —EX,), tel0,1].

s=1
It is possible to give conditions ensuring that, in law:

[nt]
Su() ~h(0) DY,

s=1

hoo(y) = EH(y + Y1, &, &im1s - 0)-

A similar result holds with a second order U -statistic of £ which asymptotic is related
to the Rosenblatt process.
There exists a constant ¢; € R such that if d e]%, 1] and if h/_(0) # O then:

g1 DI0,1] ’
n=918, (1) 2> oo Cahla (0)By (1),

if now d € ]}1, 1] and i, (0) = 0 and A, (0) # O then:

n28,(0) P a0 ZP ).



Chapter 11 ®)
Short-Range Dependence e

This chapter introduces some simple ideas. We investigate conditions on time series
such that the standard limit theorems obtained for independent identically distributed
sequences still hold. After a general introduction to weak-dependence conditions
an example states the fact that the most classical strong-mixing condition from
Rosenblatt (1956) may fail to work, see Andrews (1984).

When dealing with any weak-dependence condition (including strong mixing),
additional decay rates and moment conditions are necessary to ensure CLTs. Decay
rates will be essential to derive asymptotic results. Coupling arguments as proposed
in Sect.7.4.2 are widely used for this.

Finally to make clearer the need for decay rates, we explain how CLTs may be
proved under such assumptions.

The monograph (Dedecker et al. 2007) is used as the reference for weak-
dependence; in this monograph we developed more formal results together with
their proofs. We refer a reader to this monograph for more rigorous results.

11.1 Weak-Dependence
When looking for asymptotic independence it seems natural to consider conditions
from Doukhan and Louhichi (1999):

Definition 11.1.1 Assume that there exist classes of functions

f,g:U]R”—HR,

u>1

and a function ¢ : F x G — R (which depends on f, g and on the numbers of their
arguments u, v) and on a sequence €, |, 0 as r 1 oo.

© Springer International Publishing AG, part of Springer Nature 2018 205
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Fig. 11.1 Asymptotic £
independence ===

A random process (X;),cz is said to be (F, G, ¥, €)-weakly dependent in case

|Cov (f(Xiys ..o Xi) 9(Xy oo u X3))| < &b, v, £, g) (11.1)
for functions f, g belonging respectively to classes F, G, and

<= =h—r=<jg=-=j
Epochs are graphically reported in Fig. 11.1.

The following sections are dedicated to examples of these generic notions. Firstly,
we explicitly consider strong mixing as well as a simple counter-example; secondly
we develop a model-based bootstrap as an example of an application for which
weak-dependence notions in Definition 11.4.1 are a reasonable option.

11.2 Strong Mixing

Strong mixing introduced in Rosenblatt (1956) may be seen as a special case of the
previous weak-dependence situation. Here

F=G=L* and ¢¥@,v, f9)=4flxlgls, € =o.

Examples of strongly mixing processes are given in Doukhan (1994). The sup bound
of such e, satisfying the above inequality is denoted «,; it is also possible to derive:

Q, = sup  [P(ANB)—P(AP(B)|.
A€ o(X;, i<0)
B e a(Xj, j=r)

Indeed the previous inequality extends to (11.1) for non-negative linear combinations
of indicator functions. With a density argument it possible to consider arbitrary non-
negative functions. A factor 4 appears when one allows functions with values in
[—1, 1] since real valued functions are the difference of two non-negative functions.
One may refer to Doukhan (1994) for details and examples.

This strong mixing condition does not hold for some models, e.g.

Xp = %(an +&n) (11.2)
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Fig. 11.2 A non-mixing AR(1)-process, and its autocovariances

where the independent identically distributed inputs (¢,,) admit a Bernoulli distribu-
tion with parameter %

Remark on the simulation of the model (11.2) that this model admits quite chaotic
samples while its covariances admit a fast decay rate, Cov (Xg, X,) = 2" (Fig. 11.2).

Here, X, = %(anl + gn) and é.n ~ 8(1/2)

Proposition 11.2.1 The stationary solution of equation (11.2) exists and is uniform
on the unit interval, moreover it is not strong mixing, more precisely o, > i, forall
r>1

Note. In this case of Eq.(11.2) the process is however weakly dependent under
alternative dependence conditions, see Example 11.4.1. More precisely €, (= 6,) <
2= for r € N, holds under a dependence assumption for which the considered
classes of functions are Lipschitz, see Sect. 11.4 for some more precise statements.

Proof The function x +— %(x + u) maps [0, 1] in a subset of [0, 1]. This implies
that, applying recursively Eq.(11.2), yields

P
1 1
Xp=3 Jerténk 5 Xnp-
k=0



208 11 Short-Range Dependence

Hence if we assume that initial values of the model are in the unit interval, the
remainder termis <2777 — 0.
The stationary solution of the previous equation is

oo
X, = Z 271k, 1 =0,6& 1 ..., inthe numeration basis 2.
k=0

The expansion of a real number in x = O.xjxx3... € [0, 1) in basis 2 is in fact
unique if one adopts the convention that there does not exist an integer p with x; = 1
foreach k > p.

This restriction does not matter much since it leads to a negligible event, with
zero probability.

The marginals of this process are easily proved to be uniformly distributed on
[0, 1]; for example choosing an interval with dyadic extremities makes it evident and
such intervals generate the Borel sigma field of [0, 1].

Now the previous condition can be written in terms of the sigma-algebra generated
by the processes and X,_; is the fractional part of 2X, which implies the inclusion
of sigma algebras generated by marginals of such processes.

More precisely

X0=0,&E61¢8. ..,

and

X, =0, 182 . 606182 ..

the event A = (X < %) can be written as (§y = 0) and P(A) = %
There exists a measurable function such that

X() = fr(X,) and A= fr_l <|:O, %:|) S U(Xr)'

Namely this function is the r-th iterate of x +— frac(2x), in terms of the dyadic
expansion this function consists simply in suppression of the first r terms in X,’s
expansion.

e If r = 1 then

(-

53

1
A= (Xl c [0, —]
4
e If r =2 we easily check that

= (e o] o3 ol o))

e More generally A = B with A, = (X, € I,) where I, is the union of 2" intervals
with dyadic extremities and with the same length 27",
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Thus
ar > sup{A € 0(Xy), B € 0(X,)} = P(AN B,) —P(A)P(B,) = %-

The previous example proves that strong mixing notions are not enough to consider
very reasonable wide classes of statistical models.

11.3 Bootstrapping AR(1)-Models

A main problem for time series is that the exact distributions of many useful func-
tionals are unknown. Such functionals are important since they usually appear as
limits (in distribution) of some convergent sequences of functionals

c
Gr=gt(X1, ..., Xp) 2 kooo I

We considered subsampling in Sect. 4.6 as an easy way to proceed. A common way
to estimate the quantiles of I is due to Efron (1982) and it is known as the bootstrap.
From the previous convergence in distribution the knowledge of quantiles is essen-
tial to determine the property of of goodness-of-fit tests (level and power). They also
yield asymptotic confidence bands. This is important to be able in simulating many
samples
{X1(wi), ..., Xp(wp)}, forl <i<I.

For example, the simple law of large numbers (for independent identically distributed
samples) entails the consistency of the empirical quantiles derived from such resam-
pled processes.
We do not intend to provide an abstract theory for the bootstrap but rather to
explain how to implement it over a very simple example.
First fit the model
Xy =aX,—1 + & (11.3)

Here (&,) is an independent identically distributed and centred sequence with a first
order finite moment.
For |a| < 1 the Eq.(11.3) admits the solution

00
X, = Z akfn—k-
k=0

In order to bootstrap we proceed to the following steps.
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e The estimator @, in Exercise59 is proved to be a.s. convergent by a simple use
of the ergodic theorem. Assume that one observes a sample { X (w), ..., Xy (w)}
(which means that w € £2 is fixed outside of some negligible event) of the station-
ary solution of the AR(1) process (11.3).

e Then let us use the first n data items {X;(w), ..., X, (w)} to estimate @, and from
a.s. convergence we may suppose that N is large enough in order that [a,| < 1 for
n > N /3. We only used the first third of the sample to estimate a,, and this allows
to estimate residuals {; = X; — an;3X;_; for j > 2N/3. R
We just omit one third of the data to assume that the random variables {£;/ j >
2N /3} are almost independent of @y /3, in a sense to be precisely set.

e Now assuming that N = 3n we may consider conditionally centred residuals by

setting
N

-~ ~ .
§j=€j—;Z§k, 2n<j<N.

k=2n+1

e To the end of resampling statistics we simulate independent identically distributed
sequences (&' )i, enxz with uniform distribution on the set {§;/ 2n + 1 < j <
3n}.

e This means that we may simply simulate trajectories of the stationary solution of
(11.3):

X;F,n:a\”X?jnfl_’_fzn’ 1207 neZv
which exists since we may choose n large enough for contraction to hold, since
|a,| < 1 with a high probability.

As a final remark, the previous stationary solutions of (11.3) are shown to be
strongly mixing only in the case when &j’s distribution admits an absolutely contin-
uous part, see Doukhan (1994). This is not the case for the resampled process which
led e.g. Jens Peter Kreiss and Michael Neumann to simply smooth the discrete dis-
tribution v, of & in order to be able to use the necessary asymptotic properties
shown under strong mixing in order to prove the consistency of those techniques.
They simply convolve v, with any probability density to get an absolutely contin-
uous distribution. They just replace & distribution by §; + (o for a small random
variable ¢y independent of £; admitting a density wrt Lebesgue measure (think of
Co ~ N(0, €2)), then the Markov chain obtained is ergodic and strong mixing applies
(see (Doukhan 1994) for details) but it is not clear whether this distribution admits a
real sense wrt bootstrap.
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11.4 Weak-Dependence Conditions

We prove on the simple example of linear processes that an alternative to mixing
defined in Definition 11.1.1 is indeed more adapted to such resampling questions.
In the concept of weak-dependence, note that for some processes we are able to
get fast speed of decay only for very small classes of functions. It is thus natural to
restrict the class of functions f and g which are on some special classes F and G.
Such simple moving average models will help us to introduce suitable weak-
dependence conditions for model-based bootstrap procedures. Weak-dependence
conditions also allow to develop a simple asymptotic theory (see Sect. 11.5).
Return to inequality (11.1), the left-hand side of which will be written for sim-
plicity Cov (f, g) withf = f(X;,..., X;)and g = g(X;,, ..., X;,).
Then we consider a simple linear (infinite moving average) model defined through
an independent identically distributed sequence with finite first order moments

(ft)tezi
X; = Z akft—k-

keZ

The previous series converge in ! in case

oo
&l <oo. and " |a| < oo,

t=—00

and the considered process is then stationary; it corresponds to

H((ui)iez) = ) agiy.

tez

Then the model is said to be causal in case a; = 0 for k < 0 since X, is measurable
with respect to F; = o(&; s < t).

Set
"= aty XV =) ag

|kl<p 0<k<p

then it is simple to check that Xfp ) and X ,(p ) are independent if |t — s| > 2p and
in case r > 2p this also implies that f’ and g’ are independent when setting f' =
FXP LX)y and g = g(X”, ... X'”) and

Cov (f,g) =Cov(f,g—g)+Cov(f -1, g.

Now if the involved functions are both bounded above by 1 then

|Cov (f, g — ¢)| < 2E|g —g'|. [|Cov(f—f' gl <2E|f —f].
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If now those functions are Lipschitz then:

u v
f—f] <Lipf Y 1X, — X", lg—g| <Lipg» IX; —X'"|.

s=1 s=1

We also note that, for all 7, E|X, — X\”| < E|&| Z |ag].
k>p
Using the bound |Cov (U, V)| < 2||U ||« E| V] yields:

Cov (f. g — g)| < 2vE[&] Y lal,
k>p

Cov (f —f'. g)| < 2uE|&] D laxl.
k>p

In the causal case it is simple to check that f and g are independent for g =
g(X\P X,
This implies Cov (f, g) = Cov (f, g — g) and analogously we obtain:

e |Cov (f, g)| < (uLip f + vLip g)e,, if we set
& =2E[&] Y lail,

li|>2r

for non-causal linear processes:

o0

X, = Z ai§n7i~

i=—00

e |Cov (f,g)| < vLipg - ¢, for the causal case, a; = 0 if i < 0, with

& =2E[%] Y lail.

i>r

For the causal case, a; = 0ifi < O:

o)
Xn = Z ai&n—b
i=0

Most of the previous models satisfy the conditions as for Bernoulli schemes. Set
now:

e =2 sup E|H ((§)icz) — H ((€)yi=q)

q>2r

)
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for non-causal Bernouilli shifts X, = H(...,&+1,&,&—1,...). And

& =2 supE |H (&)iev) — H ((£)o=i=q)

q>r

)

for causal Bernouilli shifts X, = H (&, &—1, ...). The sequence (&;);<- is obtained
by setting O for indices with |i| > r. Thene, | 0asr 1 oo, and the following
conditions 1y or 1), apply according to whether the Bernoulli is causal or not.
Doukhan and Louhichi (1999) write such easy conditions in terms of Lipschitz
classes. Some more precise bibliographical comments are given in Remark 8.3.2.
The present chapter is not exhaustive so we will restrict the really general notions
in Definition 11.1.1 to a few cases of weak-dependence.

Definition 11.4.1 Set A the class of functions g : R” — R for some integer v > 1,
with ||gllec < 1 and Lip(g) < oo where:

. lgCxt, .oy x0) — g1y -+ s YOI
Lip(g) = sup
(X1 eees X)) E (Voo Vo) |)C1 - )’1| +---+ |xu - yu|

Some weak-dependence conditions correspond to G = A and, respectively, either
F = A for the non causal case, or

F =Bs ={f : R - R, measurable with || /||~

IA

1}, for the causal case.

Here respectively

Pu, v, f, 9) = Yy(u, v, f, g) = uLip(f) + vLip(g),
= y(u, v, f, g) = vLip(g),
= Y, v, f, g) = uvLip(g)Lip(g),
= Yn(u, v, f, g) = uLip(f) + vLip(g) + uvLip(g).

Then the process (X;);cz is n-weakly dependent (resp. 6, x or A) in case the least
corresponding sequence ¢, given by relation (11.1) converges to 0 as r 1 00; the
respective coefficients will be denoted 7, 6,, k, or A,.

Example 11.4.1 (Dependence decay-rates) To derive limit theorems it will be essen-
tial to know the decay rates of decorrelation as well as the existence of moments.
The following examples aim at filling this important gap.

1For the special case of the previous linear processes, the present bound e, is even sharper than
those considered above for general Bernoulli shifts.
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e Conditions 77 and 6 were checked before to hold for linear causal or non-causal
sequences. They also hold analogously for Bernoulli-shifts under assumptions
(7.20) if they are I.!-weakly dependent (see Definition 7.4.3). Here respectively

0, = 25§1), under a causal condition,
Ny = 25[(:/)2], otherwise.

— Examples of such causal models are Markov stable processes (see Sect.7.3)
satisfy those relations as proved in Theorem7.3.1. Such Markov models (7.3)
indeed satisfy the inequality (7.6). This proves that §, < ca” for some constant
c>0.

— Non homogeneous Markov chains X, = M,;(X;_,&;) extending that in
Remark 7.2.1 are easily proved to satisfy such weak dependence conditions
0, < ca” in case the relations (7.4) and (7.5) are replaced by

sup E[IM,(u, &) — Miw, &)l < a”llu —v|”,
t

sup E[| M, (uo, &) |17 < oo.
t

Such uniform contractive conditions yield weak dependence for general classes
of models. A typical situation is provided by a parametric family of Markov
equations X, = Mg(X,_1, & ); then select the parameter 5 = (3, at each time
turns to the above condition. Bardet and Doukhan (2017) suggest 3, = g;(t/n)
for some regular periodic family of functions g; on [0, 1], such that g,y 7 =
g, with T some known period, see Example 6.6.1. We also derive consistent
estimation of those function.

— Linear and Volterra processes are also weakly dependent and tails of coefficients
allow to bound ¢, in both the causal and the non-causal case.

— In order to consider an explicit example of a chaotic expansion, we consider the
LARCH(oco)-models in Sect.7.2.2. They are solutions of the recursion

00
Xn = bO + Z ijn—j é.n-
j=1

The LL”-valued strictly stationary solution of this recursion is

with:

o0 o0
k
S = by, Z e th Y TR S I S N AU S AT A

L=1 k=1
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Under the condition

o0
B =%, Y Ibi| <1,

=1

itis simple to derive with the independence of all these products that [|S®]|,, <
|bola*. Now set S*L) for the finite sum where each of the indices satisfies

1 <1,...,Ix <L then analogously
oo
IS — SE2, < klbola* "B, BL=ll%l, Y bl
I=L+1

here the factor kK comes from the fact that in order that only the tail of a series
appears, this may occur at any position in the above multiple sums.
Restricting to the case p = 1, we now approximate X, by the following L x K -
dependent sequence

X&EL = Sr(LO) 8D .y SED
then previous calculations prove that for a constant C > 0,
1X, = X, < C(BL +a").

Let L, K > 1 be such that LK < r then this implies that wrt 1)y,

6, =C inf (BL+al).
1<L<r

E.g.if by = 0 for/ > L large enough then , < Car, if B; h decays geometri-

cally to 0, then 6, < Ce=*v", and if B, < ¢cL ™" then §, < ¢/r”, see Doukhan

et al. (2007b).

e Either Gaussian processes or associated random processes (in I.?) are x-weakly
dependent because of Lemma 8.1. Here

K, = max |Cov (X;, X;)l,

|j—ilzr

is the convenient weak-dependence coefficient from inequality (8.1) (in this case
absolute values are useless); this inequality also holds for the Gaussian case as
proved e.g. in Dedecker et al. (2007).

e Now the function 1) allows to combine both difficulties. For example the sum of
one Bernoulli-shift process and of one independent associated process may satisfy
such conditions.
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Remark 11.4.1 (A comparison) Arigorous comparison of the previous strong mixing
conditions and all such weak-dependence is not always possible. «, and 6, are
obtained in inequality (11.1) as the supremum of covariances

|Cov (f(P), g(F))]

for functions of past and future where || || < 1 and where ||g||oc < 1 under mixing

or where moreover Lip g < 1 under weak-dependence. Hence
0, < a,.

Various applications of those notions are considered in our monograph (Dedecker
et al. 2007). It is however simple to note that such properties are stable through
Lipschitz images as an extension of Lemma 7.4.1.
The function
GX1, oy Xy) =X X o X Xy,

associated with moments of sums, is more specifically used in the next chapter, it
is usually unbounded and non-Lipschitz so that truncations will be needed to derive
moment inequalities for partial sums.

The following exercise is a first step to consider the empirical cdf, various gener-
alizations of which may be found in Dedecker et al. (2007).

Exercise 64 (Heredity for indicators under 0-week dependence) Let (X;);cz be a
real valued and #-weakly dependent process. Assume that there exists a constant
C > O such that P(X; € [a, b]) < C(b — a) foreach —o0 < a < b < o0.
Then:

ICov (9(Xo), g(X NI < (14 C)6,.

Proof Set g, the continuous function such that g.(x) = g(x) if x < uandx > u+e,
and define g, as affine on [u, u + €] then Lip g. = 1/e:

|Cov (9(X0), g(X,))I
= |Cov (9(X0), 9(X;) = ge(X:))| + |Cov (9(X0)., g (X))

1
< Ce+ =0, = (1+ CO)/0,.
€
with €2 = 6, Use the elementary bound |Cov (U, V) < 2||U||E|V| in order to
conclude.

Exercise 65 (Heredity under indicators, non causal case) Extend Exercise 64 under
non-causal dependence conditions.
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Hint. For non-causal weak-dependences, use

|Cov (9(X0), (X, )| < [Cov (9(Xo), g(X;) — ge(X,))]
+|Cov (9(X0) — ge(X0)), ge(X,))|
+ |C0V (ge(XO))s ge(Xr))|'

The conclusions follow analogously under «,n and A-weak-dependences, see
(Dedecker et al. 2007) for details.

Exercise 66 (Heredity, couples) Let (U;);cz and (V;);cz be mutually independent
n-weakly dependent sequences. Set W, = (U,, V;), prove that the process (W;),cz
is again n-weakly dependent and moreover that:

nw,r =< Nu.r + nv.r-

Hint. Use Exercise 58 with X = ((U;,...,U;,), (Uj,...,U;)) and ¥ =
((Viy, ..., Vi), (V. ..., V;)). Note that for a function of f (x, y) of two variables,
setting fy(y) = f(x, y) for the partial function yields Lip f, < Lip f for each x.

Remark 11.4.2 The above heredity extends to the other weak-dependence condi-
tions, including strong mixing.

Exercise 67 (Heredity under instantaneous functions) Consider a sequence (X,) ez
of R¥-valued random variables. Let p > 1.
We assume that there exists some constant C > 0 such that

max [ X;], < C.
1<i<k

Let & be a function from R¥ to R such that 4(0) = 0 and for x, yE RF, there exists
ain[1, p[ and ¢ > 0 such that

h(x) — (Y| < clx — yl(x[*" + 1y
We define the sequence (Y),),cz by
Y, = h(X,), n e Z.

Then,

e if (X,,),ez is n-weak dependent, then (Y},),cz is also n-weak dependent, and

b
Ny, =0 <nr’") .




218 11 Short-Range Dependence

e if (X,,),ez is A-weak dependent, then (Y;,),cz also, and

Ay, = O <)\) .

Remark 11.4.3 Refer to Dedecker et al. (2007) for details. The function A (x) = x2
satisfies the previous assumptions with a = 2.

This condition is satisfied by polynomials with degree a. It makes this result useful
for spectral estimation, see Sect.4.4.2.

Proof Let f and g be two real functions as in the above definition.
Denote
xM = (x A M)V (—=M), for xeR.

M M
{ ) P ))_

s ey Xp

Forx = (x1, ..., x¢) € R¥, denote 1) (x) = (x
Assume that (i, j) are as in the definition of weak-dependence, and set

Xi: (Xilv"-vxiu)v and XJ = (X]l”le)

Define the following functions,
F = f0h®u, FM — fO(hO[M)®u, G :goh®v’Ruk SR

and
G(M) =go (h ° tM)®v, RUk ~ R

Then:

|Cov (F(X3), G(Xj))| < |Cov (F(X;), G(X;) — GM(X;))
+ |Cov (F (Xi), G™ (X;))]

<2l fllo EIG(X;) — G™(Xj))|
+ 2llgllee EIF (X3) — F™ (X))
+ |Cov (FM™ (X;), GM (X;j))|.

We also derive from the assumptions on / and from Markov’s inequality that:
E|G(X;) — G (X;)| < Lipg Y Elh(X;) — h(X )]
=1
<2cLipg Z E(|Xj/ “ Oy, \>M)’

=1
<2cvLipgCPM*™P.
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The same holds for F. Moreover

Lip F™ < 2eM* 'Lip f, LipG™ < 2¢M* 'Lipyg,
IFMle < 01 flloes 1G™Nloo < llgllso-

From the definition of weak-dependence of X and the choice of i, j, setting A =
|Cov (F™(X;), GM)(X;))|, we obtain respectively, if M > 1

A = |Cov (F™ (Xy), G™ (X))
<2c(uLip fllglleo + vLip gl f loc) M~y
or,
<2c(uLip £llglloo + vLip g1l £lloc) M*™' A, + 4c?uvLip fLip (9) M2\,

Finally, we obtain respectively, if M > 1:

|Cov(F (Xi), GXX)| < 2c(uLip fllglloo 4+ vLip gll flloc) (M~ "1, +2CP M7P),
or,
< c(uLip f + vLip g + uvLip fLip g)(M** 72\, + M~P).

1 1

Now set, either M =17, "', or M = )\, ", in order to conclude in each case.
11.5 Proving Limit Theorems

There follows a simple way to derive CLTs. The situation chosen is that of stationary
and centred processes. Ergodicity indeed allows to recentre such processes.

Moment inequalities, proved in Chap. 12, yield useful controls for E|S,|” and
a central limit theorem may be derived by using the following simple dependent
Lindeberg inequality.

Lemma 11.5.1 (Dependent Lindeberg (Bardet et al. 2006)) We set f(x) = e/ <'"*>
foreacht € RY.

We consider anintegerk € N*. Let (X;)1<;<k be R?-valued centred random variables
such that:

k
Ae =) EIX [ < oo,
i=l1

Set
k

T(k) — Z |COV (ei<t,X1+---+Xj,1>’ ei<t,Xj>)|.
j=1

Then
Ay < T (k) +6]12]*70 Ay

We denote by < a, b > the scalar product in R?.
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Proof Following the proof of Lemma 2.1.1 we only need to reconsider the bound of
E¢;, for this let arandom variable U j* be independent of all the other random variables
already considered and with the same distribution as U;. Then we decompose:

0j=(Z;+U) —g(Z; +U))+9(Z; +Uj) —g(Z; + V))).

The second term admits the bound provided in Lemma 2.1.1, which can be written
as stated above since for f(x) = e'<"*> one easily derives that ||f(P) loo = [£]7.

Now the first term is the “dependent” one and from the independence of V’s and
the multiplicative properties of the exponential:

|E(9(Z; +Uj) — g(Z; + UD)|
< |EgU+ -+ U;j-(gU;) — g(UN)I
= |Cov (g(Uy +---+Uj_1), g(Up)I.

In case the series of covariances is summable we have already remarked that

Ean ~ o’m, for large values of m.

A, =]E<f (%) —f(UN)),

for enough functions in the class of C3-functions.
Weneed A, — 0asn — oo. For this, the Bernstein blocks technique is sketched.
Consider sequences

The idea is to compute

qg=qn) LK p=ph)Ln, a n?oo.

Then we decompose

Sn
—==U+-+U+V,
N ¢

with

(J=D(p+q)+p
n 1

O o B R D M

i=(j=D(p+q)+1
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In this case the remainder |V ||, — 0 because

V=%qu

uek

is a sum over some set E with cardinality m < g + p = o(n).
Indeed

nVarV < Y [Cov (X, X,)|
u,vekE

= Y ICov (X0, X,

u,vek

[o.¢]
<m Y |Cov(Xo. X;)|-

j==00

If X; and X, are terms within the sums defining U; and Uj for j # j’, then
li’—i| > g.The variables Uy, ..., Uy are thus almost independent and Lemma 11.5.1
may be applied.

To conclude we cite a powerful result adapted to causal cases, see (Rio 2017), its
proof is very different:

Theorem 11.5.1 (Dedecker and Rio 2000) Let (X,).cz be an ergodic stationary
sequence with EX,, = 0, EX% =18etS, =X+ + X,.

Assume that the random series

o0
3 XE (X
n=0

o(Xi/k < 0)), converges in L'

Then the sequence E(X (2) +2X,S,) converges to some o>

Moreover?:

1
— St = nooo OWs, in distribution in D[0, 1].

Jn

In Dedecker and Doukhan (2003) for the case of #-weak-dependence and in Dedecker
et al. (2007), we derive similar CLTs; assumptions needed to replace such abstract
conditions always write in terms of decay rates and moment conditions. We refer the
reader to Merlevede et al. (2006) for a complete review of the literature. Previously
introduced conditions take into account most of the standard models in statistics.

Exercise 68 Consider a sequence of iid random variables (R;);>¢ (with finite mean)
and an independent standard Normal random variable N. Set X; = R; N :

2For the Skorohod space, see Definition B.2.2 and the remark following it.
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Set X, = (X; +---+ X,,)/n then lim,_, o X, = ERy - N a.s.

. Deduce that this sequence is not ergodic in case ERy # 0.

3. If R, follows Rademacher distribution (P(R, = =+£1) = %) prove that
Cov (Xg, X¢) = 0 for all k¥ # ¢ and the sequence is not independent.

4. In this Rademacher case, prove that /n - X, converges in distribution to the
product of two independent standard Normal random variables.

5. Prove that the sequence (X,,), is not ergodic.

N =

Hints for Exercise 68.

1. The first point follows from the strong law of large numbers.

2. The ergodic theorem (Corollary 9.1.3) does not hold because the limit is non-

deterministic, thus we obtained the non-ergodicity.

This point is proved in Exercise 2.

It follows from the CLT.

5. This sequence is never ergodic since conditionally to N it is ergodic and the tail
sigma-field is always the sigma-field generated by N.

W

Example 11.5.1 Exercise 68 yields an orthogonal stationary sequence of Gaussian
random variables such that the law of large numbers holds, but which is not ergodic
and which does not satisfy the CLT. This sequence is thus not a Gaussian process.

Remark 11.5.1 The empirical process
1 n
Zy(x) = Va(F,(0) = F@), B = -3 lixzy,
k=1

is also of interest and one may consider it as above but in this case heredity of weak-
dependence conditions is not ensured directly since the function u + W<y is
not Lipschitz but concentration conditions as in Lemma 7.4.2 allow to work out the
asymptotic properties for such processes. In the remark following Definition B.2.2
we recall a criterion for the convergence of this cumulative distribution. We again
refer to Dedecker et al. (2007) for more details.

Exercise 69 (Subsampling) Consider a sequence of statistics #,, and a function g.
As in (4.9) the index set E,, , admits cardinal N and it is identified to {1, ..., N}.
Then N ~ n —m or N ~ n/m, respectively for overlapping and non-overlapping
schemes and as above,

1 N
Kn(g) = N Zgi,m
i=1

Gim = 9t (Xit1, ..., Xigm)).
Jim = G X mi=1)+15 - - - » X+ 1ym))
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Prove that the variance Var I/(\,, (9) =7 =0 0, for g a bounded function:

e Under strong mixing this is enough to assume lim, o, = 0, and does not rely on
the properties of functions f,,.

e Under 6-weak-dependence, use Lipschitz properties of the functions 7, (set

e Derive a consistency result for the case of the empirical mean, as sketched in
(4.12).

Hint. Classically:
o 1
Var K, (9) < ; ICOV (gons Gian)|-
e In the overlapping and strong mixing case
|Cov (go,m» gim)| < r—m1, (11.4)

(resp. < a,/m41) which does not depend on m for this special mixing case. Hence
Cesaro’s lemma yields the result for this case.

e The cases of weak-dependence are more complex, here Lip g,, < L,,Lip g and:

|C0V (go,mv gi,m)| < mLmLIPQ . 9r7m+17 (115)

in the overlapping scheme (resp. < mL,,Lipg - 6z in the non-overlapping
scheme).
In the overlapping scheme we obtain for some constant:

n—m

Cm .
(14 LaLipg Y~ ICOV (go.m gin)])-
—m i=1

Var K, (g) <

n

e The normalized empirical means write with

m

1
tm(xl,.--,xm)=ﬁ2xi
i=1

then T, = V/m-X,y = tn(X4, ..., X ) converges to some Gaussianrv asm — 00,
C

and Lm = ﬁ
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If g is a Lipschitz function, for the above case of means with overlapping scheme,
the assumptions
1

i0i<oo, lim 22— ¢

S
l’:p A ree n
together imply consistency of subsampling.
This holds for instance if
oo
Zﬁi < 00, lim — =0
n—-oo n

To derive the above inequality for discontinuous functions g = .-, one addi-

1
tional step is necessary and it only needs to replace §; by 6, if marginal distributions
admit a bounded density, use Exercise 64. Finally uniform convergence is proved
asin (4.12).

Remark 11.5.2 Analogously for subsampling kernel density estimators

tm(le ey Xm) =V mh(fmh(x) - ]Efm,h(x))

C
for a fixed x € R, then L,, = ——— and if f denotes the marginal density of X,

ha/mh

1 Xi— X u—x
tnI(XI"‘.’xm):m,Z(K( 7 >_/RK( 7 )f(u)dlzt>

i=1

Data-based recentred statistics are considered if two samples X, ..., X,,, and
X|,..., X, are available, two sets E,, ,, E, , are then built as above and subsam-

pling is provided Ign,n/ (g9) is deduced by repiacing E,.by Ey, U E;n,n’ and t,, by
fzmi

- 1 & X; — X x —x
o X1y oo Xy Xy X)) = —— K(Z —K (= )

A divergent sequence of statistics is also considered in Doukhan et al. (2011)

tm(X1, ..., Xy) = max x;.
I<i<m

Higher order moments are considered in Exercise 84.



Chapter 12 ®)
Moments and Cumulants Geda

This chapter is devoted to moment methods. The use of moments relies on their
importance in deriving asymptotic of several estimators, based on moments and
limit distributions.

Cumulants are linked with spectral or multispectral estimation which are main
tools of time series analysis.

g(\) = Z Cov (Xo, Xz)e .

k=—00

Such functions do not characterize the dependence of non-linear processes; indeed we
have already examples of orthogonal and non-independent sequences. This motivates
the introduction of higher order characteristics.

A multispectral density is defined over C”~! by

o0 o0
g(Az, e, )‘p) = Z L. Z k(Xo, sz’ o ka)efi(kzz\z+n.+kp/\p)_

ky=—00 k,=—00

Remark. The periodogram in Definition 4.4.1 is not enough to deal with non-
Gaussian stationary time series. Indeed:

e As stressed in Exercise 2, the covariances are not enough to prove independence.
In order to test for stochastic independence, higher-order spectral estimators are
thus useful.

e Gaussian laws are characterized by the fact that cumulants with order >2 vanish.
This provides hints to test Gaussianness.
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12.1 Method of Moments

Recall that the method of moments yields limit theorems:

Theorem 12.1.1 (Feller) Suppose that the sequence of real valued random variables
U, is such that

EU? —, 0 EU?,  for each integer p > 0.

If moreover U admits an analytic Laplace transform around 0." Then

L
Up =n-00 U.

Hint. Indeed the analytic continuation theorem implies that U’s distribution is deter-
mined by its moments.

Remark 12.1.1 Cumulant/moment inequalities for partial sums of stationary pro-
cesses are useful.
For the /n-limit theorem indeed, denote:

1 n
Zi=—) X
ﬁ k=1 ‘

It was noted in (4.4) that

o0
Var Z, = 1o00 Z Cov (Xo, Xy),
k=—00
in case the latter series is summable. Such controls of the moments also make more

precise the CLT; for example they may allow to derive convergence rates or large
deviation principles.

12.1.1 Notations

LetY = (Yi,...,Y:) € R¥ be arandom vector with E(|Y;|" + - - - + |Y«|") < oo,
then we set

k
or () =Ee" =Eexp (i Y 1,7))
j=1

m,(Y) =EYl" ...y

IThis holds if there exists & > 0 with Ee®!V! < oo.
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Moreover for p = (py, ..., px) € N*, andt = (t;, ..., 1;) € RF, we set

lpl=p1+---F+pe=r
pl=pil... pi!,
tP =1

In case the previous condition holds for some integer r € N*, the function ¢ +—
log ¢y () admits a Taylor expansion

i1pl
log ¢y (1) = Z 4%(3’)“’ +o(|t]"), as t— 0. (12.1)

Ipl=r

The coefficients ,(Y) are named cumulants of Y with order p € N* and they exist
if |p| <r.

Replace Y by a vector with higher dimension s = |p| with p| repetitions for Y7,
..., Dx repetitions for Y allows to consider p = (1, ..., 1) and we set k1, 1)(¥Y) =
k(Y).

Ifpu={i,....i,} C{l,..., k}set

ku(Y) =6, ..., Y), my(Y)y=m(;, ..., Y;).

u u

Lenov and Shiryaev (1959)’s formulae,? follow from the uniqueness of Taylor expan-
sions (12.1):

k u
k()= (=D""w—Dr Y []m., ). (12.2)
u=1 j=

k u
m¥) =YY []#n,™. (12.3)

u=1 iy ecspty j=1

Previous sums are taken over all the partitions pq, ..., u, of the set {1, ..., k}.

Hint for the proofs of (12.2) and (12.3). The Taylor expansion of the analytic function
s +> log(1 + s) as t — 0 yields®

104
or=1+ Y ’p—,m,mﬂ’ +o(i]),

O<|pl=r

2These formulae are proved for example in Rosenblatt (1985), pp. 33-34.

3The function s — log(1 + s) is analytic for |¢| < 1, and the determination of the logarithm is not
a problem in the domain | — %, %[ of C.
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and
"L (=1t i ,
log gy (1) = ) Yo =mM” | o),

u=1 " O<[pl=r ©°

r (_l)u—l (l'l‘)‘p‘ u -
=> Yo T Imn®+oa,
u=1 u 0<|pl<r p: j=1
pyt+-tpu=p
hence identifying the coefficient corresponding to p = (1, ..., 1) for u-tuples such

that p; + - - - 4+ p, = p; choose r = k to derive relation (12.2).
Indeed then |p| =k, p! = 1 and (i1)? = i*tk.

A combinatoric coefficient u! appears, which corresponds to the number of per-
mutations in a partition.

Use Eq. (A.5) and Exercise 88 to derive:

Exercise 70 If X ~ AN(0, 1) then r,(X, X) = 1 and k,(X, ..., X) = 0O for each
p#2

Exercise 71 If X ~ P()) then x,(X, ..., X) = A for each p € N*.

Exercise 72 Consider the case of compound Poisson processes from Example 4.2.2,
see also Exercise 92.

12.1.2 Combinatorics of Moments

Recall now some notions from Saulis and Statulevicius (1991).

Definition 12.1.1 Centred moments of the random vector ¥ = (Y1,...,Y;) are
defined with E (Yy,...,Y;) = EY;c(Y>,...,Y;) where centred random variable

——
c(Ys, ..., Y)) are recursively identified by setting c(§;) = & =& — E& and

—
&, &—1, - &) =& e, -, 6D
=& (et &) —Be€on, ..., &)
Consider Y, = (Y;) je, as a p-tuple for p C {1, ..., k}.
For example IE & =0, IE n, &) = Cov(n, &),

E (C..€) = E(né) — EQEME) — EmECE) — EEOE(Cn).

Centred moments are a way to generalize covariances. They also quantify the inde-
pendence of the coordinates for a random vector.

The following result explains the nature of cumulants. This provides a represen-
tation in terms of centred moments.
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Theorem 12.1.2 (Saulis and Statulevicius (1991))

k u
RV Y0 =) (D Y NG ) [T E Y,
u=1 m j=1

Lseees Hu

sums are over all the partitions [, ..., i, of the set {1,...,k} and the integers
Nu(pry ooy fhy) € [O, (u—1DI'A [%]'] defined for each partition satisfy

u—1
Nkwy = )" Nyl o) = Y Clu—

H1seees Hu j=1

k
and Y " N(k,u) = (k — 1)!
u=1

Lemma 12.1.1 is a simple consequence of Theorem 12.1.2.

Lemma 12.1.1 Let Yy, ..., Y, € R be centred random variables. For each k > 1
set My = 2"V (k — I)! max;<;<x E|Y;|* then

MM, < Mk+l9 fOV k,l>2, (12.4)
(Y1, ..., Y| < M. (12.5)

Remark 12.1.2 This lemma implies:
[Tl Y| < My g, (12.6)
i=1

Proof of Lemma 12.1.1 The first point follows from the inequality a!b! < (a + b)!

also written (“'bH’ ) =CJ 4 = 1 and the second is deduced from Lemma 12.1.2.

Lemma 12.1.2 For each j, p > 1 and for all the real valued random variables

€ <0i e
leC€js &j—1s - EDNlp <2 max il

1
with [|€]ly = (EI§17) .
Proof of Lemma 12.1.2 Jensen’s inequality (Proposition A.2.1) leads to

le@Dllp = 1&llp + [E& T < 2018,

Set Zj = C(gj, §j—1, ey 51) then Zj = gj(zj—l — EZj_]) and from Holder’s
inequality (Proposition A.2.2)

p p
1EZ-1 18 < NENDANZj-1 17, -
. o
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Using recursion for the pair (g, j — 1) where ¢ = pj/(j — 1) the inequalities of
Minkowski (Corollary A.2.1) and Holder (Proposition A.2.2) yield:

NZill, <0 Zi—illp +NENHIEZ; ]
<20l pillZj=1ll4
-1

<20& N [ax. I1ill5¢—1

< 2/ max ||& |,
<2 max I&1.

withg = p - ,]Tl Now the relation g(j — 1) = pj allows to conclude.

Proof of Lemma 12.1.1 Wereplace max j<; [|Y; ||, by || Yol , for clarity. Lemma 12.1.2

yields |IE Y, < -1 ||Y0||f with [ = Card p.
Indeed write Z = c(Y>, ..., Y;) and define p through the identity % + % =1.
Then:

E (i )| = EXZE< 1500021, <27 1%,

since p(I — 1) =[. Theorem 12.1.2 implies

k

u
BN <Y D NG ) [ 2707 1%l

U=1 [41yeees i=1

k
< Y 2N W)Yol

u=1

k
< 2N IYollf YD NG, w
u=1

=21k — DYk

with n(p) = Card(y). The previous relation ends the proof.

12.2 Dependence and Cumulants

The following lemmas are essentially proved for sequences of real valued random
variables (X,),cz in Doukhan and Ledn (1989).
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12.2.1 More Dependence Coefficients

Consider a stationary real valued sequence (X,),cz. Then consider as in Doukhan
and Louhichi (1999)

Cx,q(r) = {Ezaxq sup |COV (X,1 Xy X ...th)| (12.7)
=< f 5"’5&[
41— zr

Example 12.2.1 Assume that the n-weak-dependence condition (11.1) associated
with the functional v, and with the classes of function 7 = G = A holds.
If ¥; = h(X;) for some Lipschitz function /4 bounded by M, we get

cy.q(r) < M7 'Lip(h)0),.
Setting 1, = E| X', the following coefficients are also useful
Cyxq(r) = max cx(r) - pg—i- (12.8)

Define
Kg(fas oo 1g) = ka1 (Xo, Xppy -5 Xi).

The following decomposition explain the way cumulants behave as covariances.
Precisely this proves that cumulants ko (X, . . ., X, ) are small if for some index
[ the lag k; 1 — k; is large. Here k; < --- < ko and a weak-dependence condition
will be assumed.
This is also a natural extension of an important property of cumulants. A cumulant
vanishes in case it involves a couple of independent vectors.

Definition 12.2.1 Let? = (¢, ..., t,) beany p-tuplein Z”, such thatt; < --- < ¢,
we set r(t) = maxj<; ., (41 — 1), the maximal lag.
Define the other alternative dependence coefficient:

Ep(r)= max |k, (X4, .... X,)]. (12.9)

<<t

r(ty, ..., tp) >r

Lemma 12.2.1 Suppose (X,)necz is a centred and stationary process with finite
moments up to order Q.
Assume that Q > 2. By using the notation in Lemma 12.1.1 we derive

0-2 Q—s+1
rx.0(r) < cx.o(r) + ; Mg, [3} Foxs ().



232 12 Moments and Cumulants

Proof of Lemma 12.2.1 Set
X, =[1x
ien
if n € Z” (n may include repetitions).

Suppose ki < -+ < kg are such that

kiyy—k=r= [max (kgy1 —kg) > 0.
<s<p

Assume that y = {uy, ..., u,} runs over all partitions of {1, ..., Q}.
One of those y;, denoted v, satisfies

VJZ[l,l]ﬂl/ﬂ;ﬁ@ and u?[:[l—l—l,Q]ﬂVu;é(().

From formula (12.3) we obtain withn = {1, ...,1},

KXty -2 Xiy) = Cov (X Xqn) — D D a0 Kk (12.10)
u

with
Kk = l_[ K (k)

i FEVy

where he previous sum extends to all partitions

,U:{,U],...,,uu}, of {lv’Q}

such that
wiNv £@, forsome i€ll,u]

and
i nv ;ﬁ @.

From r (v, (k)) > r(k) it is easy to derive

160,01 = Ky Cardy, (-

This allows to let the size of lags increase.
With Lemma 12.1.1 we obtain

|Mu| = MQ— Cal‘du,,

as in (12.6).
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The following succession of inequalities is easy proved:

6 (Xkys s Xy )| < Cx0(r)
[0/2]
+ D =D Y My Cardy, |Fuw (X))

u=2 JLseees fu
< Cx,o(r)
[0/2]

0-2
+) = 1Y Mo kxs(r) Y1
u=2 s=2

Plseees jon
Card vy =s

= Cx,o(r)
(/2] 0-2
+ = DY = DO Mo (r)

u=2 s=2

0-2 1 0 Q—s+1
+Zﬁ |:Ei| Mo_skx(1).

The inequality

U 1
D =17 < —=Urt,
p+1

u=1

follows from the comparison of a series with an integral.
Remark 12.2.1 Lemma 12.2.1 wites as

0-2
kx,0(r) < cx,o(r) + Z Bo skixs(r).
s=2

Compare the above recursion to Lemmas 12.2.2 and 12.2.3.
Those are combinatoric versions of cumulants and moments bounds.

233
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Then we derive:

kx2(r) < cxa(r),

kx3(r) < cxs3(r),

kx4(r) < cxa(r) + Baokx2(r)
< cx4(r) + Bapcx o (r),

kx5(r) < cxs5(r) + Bs3kx3(r) + Bsakx 2 (r)
< cx5(r) + Bs3cx 3(r) + Bsacx o (r),

kx,6(r) < cx,6(r) + Beakxa(r) + Be3kx,3(r) + Beakx2(r)
< cx.6(r) + Boa (cx.a(r) + Bsacxa(r))
+Bs3cx,3(r) + Bgocx 2(r)
< cx,6(r) + Bsacx,4(r) + Bs3cx,3(r)
+(Bs,2 + B aBap)cx 2 (r).

The Lemma 12.2.1 implies the important Corollary 12.2.1 derived from a recursion
with the previous inequalities.

Corollary 12.2.1 For each Q > 2 there exists a constant Ay > 0 only depending
on Q and such that

kx.o(r) < Ag - o(r).

Remark 12.2.2

e This lemma proves the equivalence between coefficients cx o(r) and Ko (r) up
to universal constants. Precise upper bounds follow from Theorem 12.1.2. For
this, decompose the sums corresponding to centred moments in two terms among
which one explicitly depends on the maximal lag.

Formula (12.10) implies with By ¢ =1,

0
cx.0(r) £ ) Boukixs(r).
s=2

Hence there exists a constant A o With
cx,0(r) < Agry Q(r), K Q(r) = max Ky ("o
’ ’ 2=i=Q
Hence some constants agp, Ag > 0 satisfy

agcx o(r) < Ky o(r) < Agck o(r).
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These coefficients are equivalent up to constants only depending on Q.

e The previous formula (12.10) implies that a camulant

F( Xk oves Xip) = Z Ko .:Cov (Xaw)s Xpw),
a.p

is a linear combination of such covariances with « C {1,...,Il} and 8 C
{{l+1, ..., O} for which coefficients K g i are polynomials of cumulants. For this
replace the Q-tuple (X, ..., Xi,) by (Xi)iey,«) for each partition y in formula
(12.10) and use recursion.

This representation is useful if one knows the covariances. For a given vector
(Xk,» - - - » Xi,), the behaviour of the cumulant is analogous to that of cx 4 (r (k)).
Cumulants admit an advantage with respect to covariances of products: they don’t
need the precise indices for which the maximal lag occurs.

Example 12.2.2 The constants A are not explicit.
Explicit bounds are derived from the previous proof for small values of Q:

kx2(r) = cx2(r)

kx3(r) = cx3(r)

kxa(r) < cxa(r) + 3pacx 2(r)

kxs5(r) < cxs5(r) + 10pacx 3(r) + 10p3cx 2(r)

kx,6(r) < cx,6(r) + 15u2cx,4(r) +20u3cx,3(r)) + 150pu4cx 2(r).

However the previous heavy combinatorics give an advantage to the rough bounds
in Lemma 12.2.1, in order to bound high order cumulants.

12.2.2 Sums of Cumulants

The previous bounds yield
Lemma 12.2.2 Let

Ko =Y .. > |5 (X0 Xy - Xip)| - (12.11)
k

2=0 kQZO

Use the notation (12.8) for each Q > 2. There exists a constant By such that

o0
Ko < Bg Y (r+1%72Cx ().
r=0
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Proof of Lemma 12.2.2 Consider here the partition of the index set
E={k=(ky,....,kg) e N /ky <--- <kp}

as E, = {k € E/ r(k) = r} for r > 0 (according to the size of the maximal lag) and
denote:

Decompose the sums as follows:

ko = (@ — 1! Z | (X0, Xppo .-, Xip)| = (0 = D! Rg.

sz"'SkQ

The previous lemma implies

> |5 (X0, Xiyr -+ Xip)| < AgCard E, - Cy o (r),
keE,

for a constant Ay > 0 and the elementary bound
Card E, < (Q — D(r + D72,

yields the result.

12.2.3 Moments of Sums

Let (X,).cz be a stationary and centred sequence, one expects an asymptotic
behaviour analogous to the CLT for partial sums

1
Jn

The behaviour of moments in L”-norm is important. It may be used to derive almost-
sure behaviours.
The notion of cumulants allows an elementary approach to such expressions.

(X1 4+ X)) — p0 N0, 02).
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Lemma 12.2.3 [f the series (12.11) are summable for each Q < p, set q = [p/2]
then:

P

n q
Yoxi| =D n" (12.12)
j=1 u=1
2q '
with ’YM=Z Z — Kp = Kp,-

... |
v=1 pi+-+pu=p pr: Pu:

Proof Note that ¢ = p/2 for p even, and that g = (p — 1)/2 otherwise.
As in Doukhan and Louhichi (1999) we derive the bound

|E(X1+-~-+X;1)p|=‘ > Eka“ka(
lfk],...,k,,fn

< plA,,
=p > |EXy X

1<ky,... kp<n
Letalso pp = {iy, ..., 1y} C{l,..., ptand k = (ky, ..., k,) set
wk) = (kiy, ..., ki) € NV, (12.13)

To enumerate the terms with their multiplicity it is simpler to consider multi-indices
than partitions.

Cumulants and moments are defined analogously.
As in Doukhan and Le6n (1989) with formula (12.3) and partitions py, .. ., t, of
{1,..., p} withexactly | < u < p elements,

Ap,n = Z Z Z Hﬁ;tj(k)(x)

1<k, ...kp<n u=1 pr,..;pu j=1

ZZ Z H”wﬂx)

u=1l p,ees iy 1<ky, . ckp<n j=1

D o (12.14)

... !
=1 prttp=p Pl Pr

r
Xl_[ Z f@p“(Xk,,...,ka“).

u=1 1=ky,....kp, <n
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Thus:

q

Apul <D 0" > ,p—!ﬁmm. (12.15)
=1

. |
u=1 pit+-+pu=p pl pu. j

Identity (12.14) follows from a change of variable and takes into account the fact
that the number of partitions for {1, ..., p} into u sets with respective cardinalities
D1, - - -, Py 18 a multinomial coefficient.

For A € N one may deduce from the stationarity of X that

Y 1k, (Xiye o Xa)| < nky

ISkl,...,k)\SVl

Cumulants with order 1 always vanish and non zero terms are such that if there exist
u indices p; > 2 then u < ¢q. Indeed py, ..., p, > 2 thus 2u < p. We obtain
(12.15).

Remark 12.2.3 1f there exists C > 0 with k; < C* for each s < p, then due to the
multinomial identity the bound (12.15) simply yields

q
E(X| +---+ X,)"| < p'C? 1300,
[E( Pl<p >

I=j=t=1

12.2.4 Rosenthal’s Inequality

As in Doukhan and Louhichi (1999) we derive a Rosenthal inequality involving
coefficients cx ;(r).
As before:

EX)+-+X)"| < plApa=pl > [EXy Xy, |.

1<ky,...kp,<n

Each term Ty (k = (ki, ..., k,)) in the sum A, , admits a maximal lag r = r(k) =
man(kj+1 — kj) <n,

Ti < cxp(r) + [EXy, - Xp| - [EX,,, -+ Xi, |-
Partition the multi-indices k according to the value of r (k) and the smallest index

| = I(k) such that r (k) = k;+1 — k; = r, for r and [ fixed there exists fewer than
n(r + 1)?=2 such multi-indices.
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We obtain a main recursion which allows to to extend Rosenthal inequalities
(extensions of Lemma 2.2.1 under dependence)

n—1 p—2
Apn < (p=Dn Y (r+ 1P 2ex p(r) + Y AtwAp i (12.16)
r=0 =2

By using such inequalities (Doukhan and Louhichi 1999) prove a Rosenthal type
inequality.

Remark 12.2.4 'We make explicit the above recursions for small exponents.

Denote
n—1

Con =) (r+ 1" Pexn(r), m=>2.
k=0

Iterating the previous relation yields

A2,n < nCZ,n»
A3,n < 2nC3,ns

Ayp <3nCyyp + A3,
<3nCy, + nzcgﬂ,

Asp <4nCs, +2A5,A3,
< SnCS,n + 4n2C2,nC3,m

A6,n < Sncﬁ,n + 2A2,n A4,n + A%,n
< SHCG,n + 2n? (2C32,n + 3C2,nC4,n) + 8n3cg,n'

We denote (for a fixed g)

n—1

C =) (r+ )" ey (r).
k=0

Generally if p = 2g or p = 2q + 1 we obtain

q
Ap,n =< E cj,nn]s
j=1

where ¢; , is a polynomial with respect to the quantities C;?, fori < j.
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Precisely this is a linear combination of expressions
t
l_[Ci(sq,xn)’ with h+-+i=j, q+-+aqa=p
s=1

Hence for cx ,(r) = O(r~9) one deduces the Marcinkiewicz—Zygmund inequality
[ECC 4+ X,)7| = 009,

Rosenthal inequalities yield sharp bounds for centred moments of kernel density
estimators or for the empirical process.

12.3 Dependent Kernel Density Estimation

This section describes all the different items related to kernel density estimation
under dependence extending Sect.3.3. Assume that the marginals of the stationary
process (X,) admit a density f.

Let the kernel K be symmetric compactly supported and Lipschitz and suppose
we have a window sequence /4, | 0 with nh,, — oo and x € R.

Omitting the additional subindex n we set U = (U) jez With

X —x X, —x
U =K |~ —EK | =L .
= () e (B)

Assume that §-weak-dependence holds. It is easy to prove that:

Liph < €277 1. %,

n

l
B tp—x\ Xj—x
h(ll,..~,tl)_jl:[1{](( h, ) EK( hy >},

in case there exists a constant M > 0 such that, for each n > 0, the joint density
Jfa(x, y) of the couple (X, X,,) exists and

if we denote:

[ faCs oo = M. (12.17)

Exercise 73 (Sufficient conditions for (12.17)) Assume that (X,) is a stationary
real valued Markov chain with an absolutely continuous Markov transition kernel
P(x,A) =P(X; € Al Xy = x).
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This means that one may write

P(X, € AlXo =x) =/ p(x,y)dy,
A

for ameasurable function p. Condition (12.17) holdsif || f || < o0© and the transition
probabilities admits a transition with a density with || p|l.c < 00.

Integrating the relation (12.17) yields || f(-)|lco < M and

cup(0) <27 f(x) / " K2(s)ds.

A direct calculation coupled with a weak-dependence inequality yields two distinct
controls of ¢y ,(r) for r > 0, hence:

0,
cu,p(r) <2771 <p - Lip Kh—> A QMR2),

n

there exists a constant C > 0 with

n—1
6,
Cp = Chy, (1 + Z(r +1)P2 (h,, A ;7)) )

k=1

Exercise 74 (Functional AR(1)-model) Let X,, = r(X,—-1) + &, with Lipr < 1,
then if E|&)| < oo, and &, admits a bounded density g wrt Lebesgue measure the
bounds in Exercise 73 hold.

Proof Check that Proposition7.3.2 implies the existence of a stationary distribution
and the relation f(x) = fR p(x,y)f(y)dyimplies with p(x, y) = g(y —r(x)) that
M = [[glloo-

Exercise 75 (NLARCH(1)-models) The model as well as &; are vector valued in R?.
Let
Xp =r(Xy-1) +5(Xp-1)§, with  Lipr +Lip|lsll - [I€oll, <1

(I - I denotes the operator norm of a d x d-matrix), then if &, admits a bounded
density g wrt Lebesgue measure and inf, [|s~'(x)|| > O the bounds in Exercise 73
hold.

Hint. Proposition7.3.2 again implies the existence of a stationary distribution and
the above proof still holds.

The following elementary inequality is often useful when two different bounds of
a quantity are available. In our case, two inequalities appear either from dependence
properties, or from an analytic consideration.
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Exercise 76
unv <uv'"? ifu,v>0 0<a<l. (12.18)

Hint. From the symmetry of u, v’s roles assume that ¥ < v then u < 1 implies
UAND =u = u® - ul—(y <u“. U]_(Y.

As a simple application of the previous inequalities, for p = 2 we obtain the
following result.

Proposition 12.3.1 Assume that 6, < Cr~“ for some a > 3, then

lim nh,Var f(x) = f(x)sz(t)dt.

Proof First cy»(0) ~ h, f(x) / K 2(s) ds and one simply needs to derive that

1 o0
Jim = Zl cua(r) =0,
for some constant and from relation (12.18), we obtain:
Levary < (& an) <niee
hn Cu,2 = ]’l% n| =", r

The assumption a > 3 implies that there exists some o < + such that

3
[e.¢]
E 0 < oo.
r=1

Hence the dependent part of those variances is indeed negligible and the asymptotic
IL2-behaviour of kernel density estimators is the same as under independence.

Exercise 77 Using inequality 6/ h> A h < 0'/3 derived from Exercise 12.18, prove
that Cp, = O (hy) if

o0
>+ 1P, < oo (12.19)
r=0

More generally if p > 2, from recursion and by using assumption (12.19) and
Exercise 77 we get |E(f(x) — Ef(x))?| < C(nh,)?~9. This bound has order

(nhn)’g for even p and (nh,l)’p%l if p is odd.
4
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12.3 Dependent Kernel Density Estimation
Consider now some even integer p > 2. Almost-sure convergence of such estimators
also follows from the Markov inequality and the Borel-Cantelli Lemma B 4.1 in case:

1
< Q.

2 (nhy,)*

n=1

Exercise 78 Derive the uniform a.s. behavior over a compact interval.
Hint. Use Exercise 15.
Those bounds fit with the underlying CLT:

Theorem 12.3.1 (Bardet et al. (2006)) Suppose the assumptions in Proposition
12.3.1 hold then:
Vnhy (F@) = Ef(x) > pmo0 N (0, J(x) / Kz(t)dt> .

Proof Use Lemma 11.5.1 then arguing as in Proposition 12.3.1 allows a tight control

of the dependent terms again (the result is left as an exercise).
1 X —
(%)
hﬂ

with 7z, =
nh,

Let
x¢ = z¢ — Ezg,
s1 = 0and s, = x; + - - - + xy, then we need to prove that

n
A, = Z |C0V (eitSF] s eika)| —n—00 0

k=1
This is done by using the following exercises. Use the notation in Exercise 79.
First from Exercises 80 and 81 together with inequality (12.18), we derive for each

c Or— c
Cue < —(h A h—;) < ;hl b,

0<b<l1:
Now use Exercise 79 to derive:
n k—1
An =< Ck,[
k=1 ¢=1
c n k—1
< Syt 9}1{7%
n k=1 (=
n—1
b
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The last inequality follows from the fact that the identity j = k — £ occurs for fewer
than n couples (k, £).

Now if 6, < Cr~* for some a > 3 then

There exists such b < 1/3 which concludes the proof.

Exercise 79 Set sy = 0 then prove the decomposition

Cov (e'"%1 ') = E Cre,

0<t<k
with Cy ¢ = Cov (' — "1 @™ — 1),
Hint. Remark first that
|COV (elth _ ettx/é,|’ ettxk)| — |COV (ellst _ elth,|’ eltxk _ 1)|

Then Cov (&', /%) = Cov (e’ — 1, ¢/'*), and the decomposition follows from
S0 = 0.
The expression is then derived by considering a telescopic sum.

Exercise 80 Assume that the marginal density f;(u,v) of the random vector
(Xo, X) satisfies C = sup; sup, , fj(u, v) < oo then prove that for some constant
c>0

h
Cre <ct*- —.
n

Hint. Set j = k—{and g;(u, v) = f;(u, v) + f(u) f (v) then there exists a constant
such that g;(u, v) < C for each j, u, v. Then, the relation le’? — 1| < |z| entails:

Cre < PE|x—1x¢] + Elxg_i] - Eloe
1 u—x vV—x
= —/ K K

h2
= E/ [K()K(2)|gj(x —hy,x —hz)dudv

]’l 2
C~—</|K<y>|dy> .
n

This yields the conclusion of this exercise.

gj(u, v)dudv

IA

Exercise 81 Assume now that the #-weak-dependence condition holds (condition
associated with Wy ( f, g) = vLip g|| fllo) and K is a Lipschitz function.
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Then there exists a constant ¢ > 0 such that

. . . 9/{7@
Cio = |Cov (et — !5t e/™)| < cf? . —
nh

Hint. Set (X1, ..., X;) = e/ — ¢/ then

2Kl
1fllo < lelllxelloe < —==

Vnh

g(u) = exp{” <K (u ;x> —EK <X0h_x))}

(and g(X;) = e*), it is simple to check that

and, with

_ lrLipK
T hvnh

Those two bounds entail with the definition of weak-dependence that:

Lipg

Ox—¢

2 .
Cre < 2t7||K|locLip K - pys)

The proof is complete.

Exercise 82 Extend this whole section to the case of associated processes.
Explain precisely how (12.19) should be modified in this case.

Hint. Use inequality (8.1).

Exercise 83 Extend those results to the case of regression estimators (3.5), both
under weakly dependent or under associated frameworks.

Hint. Incase Y is abounded regressor the result does not change too much. Otherwise
a truncation technique may be used.

Remark 12.3.1 Standard extensions are possible for the other weak-dependence con-
ditions as well as under strong mixing.

These exercises are left to the reader.
The case of subsampling is analogous:

Exercise 84 Subsampling from Sect.4.6 may also be considered as in Exercise 69.
Higher-order moments may be bounded (see Doukhan et al. 2011) under weak-
dependence conditions in order to derive almost-sure convergence from the Borel—-
Cantelli LemmaB.4.1 in case some even number p € 2N satisfies

o0

> E(K.(9) — EKu(9))" < 0.

n=1
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Hints. The proof is as for kernel density estimation based on bounds for coefficients
cz.(r)in (12.8) with Z; = g(¢,,(Xi41, - . ., Xi1+n)) in the overlapping scheme.
For h(x) = 1L;<; analogously to Exercise 64, bounds of

cy.r(r) =sup|Cov (h(X;) X -+ X h(X;,), h(Xj,) x -+ X h(X;))],
ij

u+v=npi <---<iy j <--- < j,with j; —i, = r allow to bound higher
order moments.

Set I} = h(X;), If = h(X;)), J1 = h(Xj),... since those functions are
bounded and Liph. = 1/e, using the following inequalities yields e.g. under 7-
weak-dependence:

|Cov (Iy -+ Ly, Jy -+ S| = [Cov U+ Iy, Iy -+ J)]

+2) B - I +2) ElJ, — J]
s=1 =1

u-+v
=< N+ (4 v)e =2(u + v) /1,

€

with €2 = 7,..
Such bounds do not need this last step under strong mixing.
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Appendix A
Probability and Distributions

This appendix is a short introduction to the basic concepts of probability spaces, such
as developed in standard textbooks, refer for example to Kallenberg (1997) and Feller
(1968). It is a notational index rather than a real introductory text on probability; it
is dedicated to readers with some knowledge of probability theory.

Models of time series are based (here) on random inputs for physical reasons.
Thus the appendix recalls some standard facts concerning some useful distributions.
One may refer to Feller (1968) for additional examples.

We provide a short introduction to Gaussian distributions with first the standard
Normal and then its vector valued extension. Such random variables are needed to
define Gaussian processes. Finally ~-distributions are considered; they lead many
explicit calculations.

A.1 Notations

For any space E, a sigma-algebra, g-algebra £ is a subset of P(E), (the set of subsets
of E), such that

e ) c 5,
e VAc&: A €€,
where we denote by A° = E \ A the complementary set of A,
e VA, €& n=123...: Janee.
neN

A measurable space is any couple (E, £), composed of a set and a o-algebra on the
set E. Elements of A are called events.

A probability space (§2, A, P) is a measurable space (§2,.4) equipped with a
probability, that is a function P : A — [0, 1] such that:

e P(¥) =0,
o« P(2) =1,
© Springer International Publishing AG, part of Springer Nature 2018 247
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e VA,Bec A:
ANB=0=P(AUB) =P(A) +P(B),

e VA, e A i=1,2,3...

A C Ay C--- = lim P(A,) = P(A),

o0
where we denote A = U A,.

n=1

Example A.1.1 Examples of measurable spaces (£2, A) follow. We recall here that
one usually needs two measurable spaces; a space of values or realizations (E, A)
and an abstract probability space (£2, .A) which needs a probability function PP.

We list some such simple spaces.

e If 2 is a finite set with n elements then a reasonable choice of sigma-algebra
is A = P(£2) which admits 2" elements as it may be seen from the fact the
application: A +— 14 defined for P(E) on the set of functions from E to {0, 1}
is a bijective function.

e For denumerable finite sets £2 again A = P(£2) is a suitable framework.

e R may be equipped with its Borel o-field, the smallest sigma-algebra containing
all the intervals.

e More generally a topological space §2 is measurable with .4 the smallest o-field
containing all the open sets. This o-field is called the Borel o-field.

e Products of two measurable spaces are still measurable, and here the o-field is
again the smallest containing products A x B with clear notations.

e Infinite products are again possible; for a family of measurable spaces (£2;, A;);e;
the product £2 = [,., £; and A is equipped with the smallest o-field containing
all the events Hiel A; with A; € A; foreachi € I and A; = £2; foreachi ¢ J
with J C I, a finite subset of /.

e Some examples of probability spaces are related to the generation of random
variables. They will be considered in Example A.2.3.

The sigma-algebra A is complete in case A € A, P(A) = 0 and B C A imply
B € A (roughly speaking, it contains the nullsets).

The o-fields considered are usually those obtained from a measurable space
equipped with some measure (often, probability measures); the completed o-field
is the smallest containing both all the events A € A and each set B C A for each
A e Awith P(A) = 0.

We also recall the Landau notations used throughout those notes:
Definition A.1.1 For real valued sequences u,,, v,, the Landau notation v, = O(u,,)

as n — 0o, means that there is some constant C > 0 such that |v,| < Clu,| for
all n.
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Moreover if u,, v, are random, then

e Op(-), means that the random variable C is bounded in probability, this can be

written as
P (U(c < n)) =1.

n>1

O,45.(-) means |v,| < C,|u,| for random variables C, = C,(w) > 0 such that
w-a.s., sup, C,(w) < o0.

OL»(-) means that C = C(w) is bounded in L.?, E|C|? < o0.

v, = O(u,) as n — 0o, means that for a sequence C, > 0 such that lim, C,, = 0,
we have |v,| < C,|u,| for all n.

A.2 Distributions and Random Variables

Let X : 2 — E be an arbitrary function defined on the measurable space (£2, A),
taking values in another measurable space (E, £).
We introduce the probabilist notation:

XeA=X'A)={we R/ XWw) e A}, forall A C E.

A random variable X : £2 — E is a measurable function between these two mea-
surable sets; this means that X ' () C A. In other terms:

VA e : (X e A e A

Note also that o(X) = X~ '(£) is the o-algebra generated by the random variable
X : 2 — E, that mean it is the smallest sub-c-algebra F of .4 which makes the
application X : (2, F) — (E, £) measurable.

Also the image distribution or the law of X is the probability distribution defined as

Px(A) =P(X € A), VA € €.

Let E be any topological space, its Borel sigma algebra £ is the smallest sigma-
algebra containing all the open sets; it also contains intersections of open sets but
also much more complicated sets. In most of the cases E = R will be endowed with
its Borel sigma-algebra, completed when necessary. X’s distribution probability is
also defined through its cumulative distribution function:

F(x) =P(X < x) = Px((—o0, x]), Vx e R.

In some cases E = RY is a finite dimensional vector space but we shall avoid more
complicated situations as much as possible.
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The following exercise is useful in the present setting of time series:

Exercise 85 Let X,Y e R’ be two random variables. If Eg(X) = Eg(Y) for
each Lipschitz function on R4, then the random vectors X and Y admit the same
distribution.

Hint. Approximate indicators of rectangles R by a sequence of Lipschitz functions
such that f(x) = 0 in case the distance of x to R is more than some arbitrary € > 0.
First consider d = 1 and then use the tensor product of such Lipschitz functions
of a real random variable. The derived function admits a Lipschitz coefficient with
order 1/e.

For a column vector v € RY, set v’ the corresponding row vector. We identify such
matrix and vector notations in those notes due to the standard duality in an Euclidean
space.

Definition A.2.1 For E = R? one defines the mean of a random variable X € R?:

EX = [ xPx(dx) € RY,
E

in case the integrals converge.'
We write X € IL” in case E|| X ||” < oo for any norm | - || on R¢.

If p > 1 we shall write || X||, = (E||X||”)%, and it is clear that:
X, =0= X =0,a.s.
Incased = 1,letIL? (82, A, IP) be the space of classes of a.s. equal and IL”-integrable
random variables. This space is then a Banach space; this needs Corollary A.2.1.
Moreover in case X € L2, we define the covariance:
Cov(X) =EXX' —EX(EX)'.
This is a symmetric positive n X n-matrix. In case X = (X, X»), we also write:

Cov(X):(Vaer COV(X],X2)>.

Cov (X1, X») Var X,

Note that if d = 1, then
X>0 = EX>0. (A.1)

and the notation of the variance can be written as

Var X = Cov (X).

10orif they can be defined, as is the case ford = 1 and E = R™ = [0, 4-00). In this case integrals
take values in the space [0, +00].
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An essential result is the following theorem:

Theorem A.2.1 (Markov inequality) Assume that V. > 0 is a real valued non-
negative random variable, then its expectation exists in R = R U {£o0} and:

EV
P(V>u)<—, VYu>0.
u

Proof Set A = (V > u) then using (A.1) we derive:

The result is proved.

Exercise 86 If EX2 < oo prove that there exists a function H : RT — R* such
that lim,_, o, H(x)/x* = oo, EH (] Xo|) < oo.

Hint. For each k > 0 choose a non-decreasing sequence M; > 0 such that

1
E|Xol* Wjxj= ) < R

Set H(x) = kx? for M} < |x| < Mj4 to conclude.

Proposition A.2.1 (Jensen inequality) The Jensen inequality holds for each function
g : C — R convex and continuous on the convex set C C R.
If Z € C a.s. (and if the following expectations are well defined)

Eg(Z) = g (EZ). (A2)

Proof We begin with the case d = 1. In this case we assume that C = (a, b) is an
interval, then g : (a,b) — R is differentiable except possibly on some denumer-
able set.

At each point of C the left and right derivatives exist (at the extremities, only one
of them may be defined).

Moreover, for any x, y, z € C, then if x < y < z, one derives:

g+ <gd(-) =g+ <g' @),
with

g(y £h) —g(y)

"(y£) = i
g(y ) hlf}’)lJr +h

then for each xo € C choose any u € [¢'(xo—), ¢'(xo+)].
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Fig. A.1 Convex function as
supremum of affine
functions

\/\7 X TXN

Then the affine function

J(x) =u(x —xo) + g(xo)
satisfies f < g and f(xo) = g(x9) by convexity.

Thus:
each convex function g is the upper bound of affine functions f < g.

From linearity of integrals f(EZ) = Ef(Z) and f(EZ) < Eg(Z). Now the
relation sup , f(EZ) = g(EZ) allows to conclude.

Ifnow d > 1 then from the most elementary variant of the Hahn—Banach theorem,
the same representation of g holds and the proof is the same, see Fig. A.1.

In the Hilbert case the orthogonal projection provides an elementary way to sep-
arate a point from a disjoint closed convex set: take its orthogonal projection y of
x then the hyperplane with direction x* and containing the middle of the interval
[x, y] is a valuable solution of the Hahn-Banach separation problem.

Remark A.2.1

e This inequality is an equality for each affine function.

e The inequality is strict if g is strictly convex and Z is not a.s. constant. The case
of power functions is investigated in Lemma7.3.1.

e Let B C A be a sub-o algebra of A, a conditional variant of this inequality is’:

EPq(2) > g (EPZ). (A.3)

2For this, a conditional version of the dominated convergence theorem is needed. See
Definition A.2.2.
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Definition A.2.2 Let B C A be a sub-g-algebra of A on a probability space
(22, A, P) and X > 0 be a non-negative random variable on this space.
Then Z = EBX is the B-measurable random variable defined B-a.s. such that

EEEX) 1z =EX 1z, VB eB.

If E|X| < oo decomposing X = X — X~ allows to again define properly the
conditional expectations. This is a linear non-negative operator on L' (£2, A, P).

Remark A.2.2 The equivalent notation is EBX = E(X| B) will be indifferently used
for clarity.

Remark A.2.3 1f EX? < oo then this definition may be rewritten as
EEBX)Y =EXY, VY el*,B5,P).
This operator is also interpreted as the orthogonal projector
L*(2, A, P) - L*(2,B,P) C L*(22, A, P).

The following standard inequality is also important:

Proposition A.2.2 (Holder inequality) Let X| € L™, ..., X, € LP« be real valued
random variables, then:

o1 1
EIX - Xl < Xl Xl i — b — =1,
P1 Pu
Hint. For zy, ..., z, > 0 the convexity of the exponential function implies

1 1
2 < =2y e+ —zh
P1 Pu
Now set z; = |X;[/[ X;ll», to conclude.

A standard application of Proposition A.2.2 implies the important idea of sub-
linearization, which may be transposed in other settings:

Lemma A.2.1 (Sub-linearization)® Let p > 1 and X € LL” satisfies EX = 0 then

1
X, = EXY Y|, =1}, — 4+ —-=1.
X, =sup {EXY/ ||Y], = 1} >t

Hint. The upper bound follows from Proposition A.2.2. The lower bound follows
with the special choice Y = c¢ - sign(X)|X|" withr = p — 1 (so that rg = p), and
¢! = ||X||,”. Hence this Y satisfies || Y[, = 1.Now EXY = cE|X|" = ||X||1,§7p/q =
| X|l, yields the lower bound.

3See Polya and Szego (1970).
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An immediate consequence is:

Corollary A.2.1 (Minkowski inequality) Let p > 1 and X,Y € IL? then
X+ Y, <X, + 1Y,

Remark A.2.4 We refer to the beautiful and comprehensive presentation in Polya
and Szegd (1970) for the above convexity results. Beyond standard Banach spaces
inequalities, their sublinearization technique is a powerful tool.

Definition A.2.3 Let X € R? be a vector valued random variable then its charac-
teristic function is defined as

ox (1) =Ee'"X,  vr e R
The Laplace transform of the law of X is:
Lx(z) =Ee*,  forall z € Dom(Lx) C C%

(Dom(Ly) is the set of such z such that this expression is well defined).
The generating function of any integer valued random variable X is denoted
gx(z) = Ez*.

Remark A.2.5 First, the characteristic function always exists and ¢x (r) = Lx(it).
If 0 is interior to the domain of definition of Ly then this function is analytic
around 0 as well as ¢y.
Exchanging differentiation and integrals is legitimate:

0
—o¢0) =i -EX;.
5100 J
Moreover Fourier integral theory implies that inversion is possible and in this case

¢x determines X'’s distribution.

Simple examples of probability distributions are

e Discrete random variables: there exists a finite or denumerable set S such that
P(X ¢ S)=0.

In case the following series are absolutely convergent we denote

EX =Y x-P(X =x).

xeS

In the case when S C Z the generating function gx (z) = EzX will be preferred to
the Laplace transform and this function is also defined for |z| < 1.
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Example A.2.1 (Discrete distributions)

e The Bernoulli law b(p) with parameter p € [0, 1] is the law of a random variable
with values in {0, 1} with

PX=1)=p, and PX=0)=1-p.
Here gx(z) = pz + 4.

e Binomial law B(n, p) with parameters n € N*, p € [0, 1] is the law of a random
variable with values in {0, 1, ..., n} with

P(X =k = (- pymh

n!
n—k?

The origin of this law is that if Xy, ..., X,, ~ b(p) are independent identically
distributed random variables then

X1+ -+ X, ~ B(n, p).
For this record simply that gx(z) = (pz + ¢)".

e A Poisson distributed random variable X ~ P(\) with parameter \ takes values

in N and
k

A
P(X =k) = Fe—*.

e Absolutely continuous distributions.

Definition A.2.4 We assume here that there exists a measurable function f : E —
R™* such that for each A € &:

Px(A) = /A £ dx

this function is called the density of X distribution.

Remark A.2.6 We also derive that for each function g : E — R, measurable:

Eg(X) =/Eg(x)f(X)dX~

The above relation is also the definition of a density.

Example A.2.2 (Continuous distributions)

e Uniform U|[0, 1]-distribution on the unit interval, it admits a density wrt the
Lebesgue measure f(x) = 1o, 1;(x).
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e Exponential law £(\) with parameter \ admits the density
f@) = e ™™ Mip=g).

e The Normal law A/(0, 1) is the simplest Gaussian law which admits the density

(S

1 2
o=t

More examples of distributions linked with Gaussians as the family of ~-
distributions as considered below.
e The Cauchy distribution is defined with

Clearly the mean of such Cauchy distributed random variables does not exist.

Exercise 87 Let N ~ P()), prove that
PN () = Ee'™ =exp(A(e" — 1)).

Hint. Using exponential expansions yields:

& it\k it\k
on () = Z Ae’) e =MD Z O\e ) =exp(\(e’ —1)).

P k!

A first easy calculation is left to the reader.

Exercise 88 Let N ~ P()), prove that its generating function is for each z € C:
gN(Z) — EZN — e)\(Z—l).
Hint. Standard calculations give:

oo 00 x
av@ =D PN =k = Z /\Z) o

k=0 k=0

The result follows from the expression of the exponential series.
Exercise 89 Let N ~ P(\), prove that:
Var N = ),

E(N — )\ = ),
E(N — M)* = A(1 4+ 3)\).
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Remark A.2.7 In the case of Gaussian random variables Z ~ N '(m, ¢%) for which
centred moments E|Z — EZ|? = o”E|N (0, 1)|” admit the order (Var Z)?/2.

Contrary to the Gaussian case, E(N — EN)? ~EN as EN = )\ | 0, at least for
p =234

Hint for Exercise 89. Set z = ¢''. From Exercise 88 we derive the expression:
Yy () = Eeif (V=X — e/\(e”flfit).

Now it is simple to see that i’E(N — \)? = ,(\f) (0). The first derivatives are deter-

mined through a Taylor expansion around ¢t = 0,

b c d
H=1+at+ 1>+ -1+ —+* *, t—0.
Y (1) +a +2 +6 +24 +o(t") —

Butast — O,

B (in?  an* G 4
Py (1) = exp A( st t 24>+o(t)>

Now the results follow from elementary arithmetic.

Exercise 90 Let P be a unit Poisson process then for each » > 1, and ag > 0 there
exists a constant C, > 0 such that the function defined by 4, (a) = EP” (a) satisfies

a < h,(a) §a+C,a2, if 0<a<ap.
Hint for Exercise 90. First, notice that the Laplace transform of P (a) can be written
as:

$a(t) = Ee'" D = expa(e’ — 1)) = 1 +a(e' = 1) +a’X, (1),

for a function with non-negative analytic expansion such that if # > 0 then:

2, ak2(e! — 1)k 1 :
Nt = ) < h() = (@) 1 —ag(e — 1)),
— . agy
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The coefficients of the analytic expansion of ), are uniformly bounded. Hence
#®(0) = EP*(a) < a + Cya? for each integer k if 0 < a < ao.

For non-integer p consider the integer k = [r], then the Holder inequality
(Proposition A.2.2) with « = 1/((k + 1) — r) and 8 = 1/(r — k) (conjugate expo-
nents) gives,

EP'(a) = E(PY*(a) P*V/P(a))
< (EP“(a)""(EP* ()"’
<a+ (CrV Cry1)a?,

forall0 < a < agp.
The other inequality follows from the inequality n < n”, valid for each n € N.
Hence,
P(a) = P'(a),

which implies 4, (a) > a.

The following very standard models of processes are also used to model integer
valued GLM time series as in (7.12).

They are useful processes in all areas of probability theory.

Definition A.2.5 (Poisson processes) A (homogeneous) unit Poisson process is a
process (P (A))a>o such that:

e P()\) ~ P()) follows a Poisson distribution with parameter \,

e It satisfies moreover that P(\) — P (u) is independent of the sigma-field o (P (v);
v<p)if A > p>0.

e The distribution of P(\) — P(u) is P(A — p) for A > p > 0.

As a consequence we easily get properties of some related distributions.

Exercise 91 (Poisson composite distributions) Let by > by > -+ > by, > b, =
0 and P be a unit Poisson process.

1. Prove that:

D=Pb)+--+ Plby) =Y j(P(b;) = P(bj1)
j=1
2. There exist independent random variables

X\ ~P1—b),.... X ~ Py — bpy1)

with:
D=X+2X,+ - -+mX,,.
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3. Derive:

m

ED = Y jbj—bjp1), VarD =Y j2(b; —bjs).

j=1 j=1

4. Prove that

2

E(D —ED)* <12 Zjbj +4(1 4 3by) Zﬁbj.
j=1 j=1

Hint. Only the fourth order moment needs clarifications.
We need the last point in Exercise 89.
The Abel transform of series will be useful:

D il =k =) (P =G = Db <Y (2j— b <2 jb;.
j=1 j=1 j=1 j=1

For the last inequality, we begin with:

m

> by = i) =Y G = (= Db,
j=1 j=1

<Y @jP =67 +4j—1b; <4 jb;.
j=1

j=1

and recall that h(u) = u(1 + 3u); since the series b; is non-increasing we obtain
h(b; —bjt1) < (bj —bjy1)(1 + 3by).
The result follows from the Rosenthal inequality of order 4 (see Exercise 7).
The successive bounds hold:

E(D—ED)" =3 ij(bj —bjy) | + Zj4h(bj —bjy1)
:1 2 = m
=3 ij(bj —bjy1) | +0+3by) Zj“(bj —biy1)
111 i m =
> ibi | +4043b)Y i,
j=1

j=1

=<

N =

The first terms are the square of variances and the last one results from Exercise 89
and they are sums of moments with order 4.
This ends the proof.
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Exercise 92 (Compound Poisson processes) Let V; > 0 be an iid sequence inde-
pendent of a unit Poisson process. Set

P(1)

N(@) = Z Vi.
i=1

1. Prove that N admits independent and stationary increments.

2. Prove that EN(¢) = tEV and Var N(¢) = tEV?>.

3. Set L;(\) = Ee* for the Laplace transform of a real valued random variable
(in case it is defined), then

Lywy =LppoLy, Lyp(\) =exp@(Ly(A)—1)).

IfP(V, eN)=1then P(N(t) e N) =1,Vt > 0.

Hint.
P(s)
1. Lets >t > 0.First N(s) — N(t) = Z V; is by nature independent of N (¢).
i=P(t)+1

Condition with respect to the process P then N (s) — N(¢) admits the distribution
of the sum of P(s) — P(t) random variables with the same distribution as Vi;
from stationarity of P’s increments P(s) — P(t) ~ P(s — t), hence N admits
independent increments.

2. Condition with respect to P.

. Condition again with respect to P.

4. From independence of Z and P, we use Exercise 88.

W

This allows to derive:
Ly =ELp(tZ)(\) = EeZ€ N = L, (1(e* — ).

This ends the proof.
The following other family of processes admit very different properties.

Exercise 93 (Mixed Poisson process) Let Z > 0 be a random variable independent
of the unit Poisson process (P (t));>0, prove that M () = P(tZ) is again an integer
valued process; compute L ().

Note that the above process does not have independent increments since all its incre-
ments depend on Z.

Remark A.2.8 (Simulation) If a cdf F is one-to-one on its image then for each uni-
form random variable U ~ U][O, 1] the random variable X = F~'(U) admits the
cumulative distribution function F.

This is an easy way to simulate real random variables with marginal distribution.
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The same relation holds for more general cases when defining:

F~'(t) = inf{x € R| F(x) > t}.

Simple examples prove that other possibilities are available:

1.

Assume that X ~ b(p) then F(t) = 1 for t > p then one simulates a b(p)-
distributed random variable by setting X’ = Ijy<p}. Other possibilities are
Ly<py» Liys1—py and Ny-i_p, since 1 — U also admits a U[0, 1]-distribution.
Analogously to Poisson distributed random variables, any integer (or discrete)-
valued random variable may be simulated from a uniform one.

If a random variable admits the discrete support {xo, x1, ...} C R, with:

[o.¢]
PX=x)=pi. Y. pe=1
k=0

then with g9 = 0 and gy = po + --- + px—; for £ > 1, one may define the
following random variable with the same distribution as X by setting:

Y= Zxk Lweiggoemn ~ X (A4)
k=0

This principle also allows to define a random process with integer values from a
random process with uniform marginal distributions, see Exercise 49 for a hint to
this approach. Such models are proved to exist for example in Eq. (11.2).

. For E(\)-distributions, F (1) = 1 — e~, so that

F7't)=—In(1 —1)/X;
again simulations of such exponential random variables give
X =—In(1 =U)/A,

or more accurately
X =—InU)/A.

Exercise 94 (Symmetric Bernoulli process) Let (U, (), be independent random vari-
ables with U ~ U([0, 1]) and P({ = £1) = %

.

Set
Y(x) = ¢ Ly<y)-

Prove that x — ~(x) is a cadlag function on x € [0, 1].

Determine the distribution of y(x), for0 < x < 1.

Prove that (v(b) — v(a))(y(d) —v(c)) =0, as.,ifa <b <c <d.
Compute the mean and the covariance of the process .
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Hints.

1. For each real number u the function x — 1, < is cadlag.
2. Notethat (y(x) =)= =DNWU =1).

This implies P(y(x) = £1) = x/2,for0 <x < land P(y(x) =0) =1 — x.
3. Use the fact that the support of the random variable (v(b) — v(a)) is [a, b].
4. Ev(x) = 0 and by using the above point, Ey(x)y(y) = x A y.

Analogously to Exercise91, we define sums of such symmetric Bernoulli random
variables.

Exercise 95 (Symmetric Bernoulli composite distributions) Let by > by > --- >
by > b1 = 0 and let y be the process defined in Exercise 94.

1. Prove that:

D= Zj(’Y(bj) —7(bj+1).

j=1
2. Prove that, for p € N*:

EDP =E¢P Y jP(b; — bjs).
j=1

3. Prove that ED? = 0 for p odd.
Moreover, if p is even, then prove:

m

ED? =p» j"'bi+ > 0,(j)b;.
j=1

j=1

with Q,(-) a polynomial with degree < p — 2.
4. Letb; = ¢j~“, determine equivalents of the previous moments if o > 0 and as
m — o0.

Hint.

1. Already proved in Exercise91.
2. Use point 3 of Exercise 94 to check that all the rectangular terms in this expression
vanish.
EC¢? = 01is 0 or 1 according to p’s parity. Abel transform allows to conclude.
4. Ifbj = Cj_a, then bj — bj+1 ~ COéj_a_l.
For p even

W

EpP ~ PO -
p—«

if p > o and it is bounded otherwise.
An alternative proof use the previous point.
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Analogously:

Exercise 96 (Symmetric Poisson processes) Extend the bounds of Exercise91 in
case P(-) is replaced by ( P(-) as in Exercises 94 and 95.

Example A.2.3 (Probability spaces) An example of a probability space is £2 =
[0, 1]* endowed with its product o-algebra.
This is the smallest sigma-algebra containing cylinder events

4.

nez

where A, is a Borel set of [0, 1], such that A, # [0, 1] for only finitely many indices
n.

Then a sequence of random variables X, is defined as the n-th coordinate function
X, (w) = w, forall w = (W,)nez.

In this case each of the coordinates X,, admits the uniform distribution , the
Lebesgue measure on [0, 1].

Let now F be the cumulative distribution function of the law v of a real valued
random variable then setting instead X, (w) = F “wyp) give

P(X, € A) = F(A) = v(A) = P(X € A).

One may assign any distribution to these coordinates.

Exercise 97 (Hoeffding lemma)

1. Let Z > 0 be a (a.s.-)non-negative random variable then
oo
EZ :/ P(Z > t)dt.
0
2. Let X, Y € L? be two real valued random variables
Cov (X,Y) = / / (IP’(X >5, Y >1)—P(X >5)P(Y zt))dsdt.
-0 —0o0

Hint.
1. Let z > O then

0]
0

Set A the Lebesgue measure on the line. Without any convergence assumption on
this integral, the Fubini—Tonnelli theorem applies to the non-negative function
(t, w) = L (z@)=n- This allows to conclude.

2. First for X, Y > 0 the same trick as above works and

o0 o0
EXY:/ / P(X >s,Y >t)dsdt.
o Jo
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Write X = XT — X~,and Y = Y™ — Y~ for non-negative random variables
X*, Y*. The formula holds for each of them and

| P(XT =), if s>0
PX = 5) = {1—1@()(- = 1), if 5 <0.
Now for an arbitrary couple of real valued random variables Cov (X, Y) can be

written as a linear combination of four such integrals with respective coefficients
+1.

A.3 Normal Distribution

A standard Normal random variable is a real valued random variable such that N ~
N (0, 1) admits the density

“
St

e z,

1
ox) = Nt

with respect to the Lebesgue measure on R.

Exercise 98 The norming constant, yielding / ¢(x) dx = 1,in this Normal density
R
is indeed /2.

Proof This is checked through the computation of a square as follows:

([ ) = [
=/Td9f 5y

= 2.

To this aim, use a change in variables with polar coordinates
(r,0) — (x,y) = (rcosf,rsinf), R* x [0, 27[— R2.

This is a bijective change of variable which is a homeomorphism from each open
subset Ja, +oox]a, 2m[C Rt x [0, 27| for an arbitrary a €]0, 27[.
It is easy to check that the Jacobian of the previous function

cosf —rsind

T, 6) = sinf rcosf

is simply r.
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Lemma A.3.1 The characteristic function of this Normal distribution is

2

dn(s) =Ee*N =e 7. (A.5)

Proof Indeed the Laplace transform Ly (z) = Ee*" is easy to compute in case z € R:

(x—2)% ﬁ
2

S L Copr D Ly e
LNZ = le¥' = —— e'x_T X = —— ez 2 X =e
V2T /—oo V2T /_oo

with the binomial formula (x — z)?> = x> — 2zx + z° and after a change in variable
X Xx—2z
The application z — Ly (z) is an entire function over C, indeed:

LyG@+h) —Ly@ _ /OC =y e - 1(p()c)dx

h

[e¢]

The Lebesgue dominated convergence theorem proves that L'y (z) = E(N e*N). Use
ehx

< |x| and the integrability of x > %, (x) = |x|e*®lp(x) for it. The latter

relation follows from lim|y|— o0 ¥, (x)er’ /4 = 0.
The principle of analytic continuation implies that this formula remains valid for
each z € C, and in particular we obtain

ol

On(s) = Ly(is) = e

Equation (A.5) may also be rewritten:

2
EeN =7 =1, vz € C. (A.6)

From the analyticity of ¢ over the whole complex plane C, the distribution of a
Normal random variable is given from its characteristic function.

Definition A.3.1 A random variable Y admits the Gaussian law
Y ~ N@m, %),

if it can be written Y = m + oN for m, o € R and for a Normal random variable N.

The density and the characteristic function of such distributions are derived from
linear changes in variable:

2
1 e_(xzu»g) by (6) = eitme_%ngz.

o2 '

fr(y) =
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Fig. A.2 Gaussian white noise of variance 1
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Fig. A.3 Standard normal density
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Fig. A.4 Cumulative distribution function of a N'(10, 2)

Gaussian samples, Gaussian densities and a Normal distribution function are repro-
duced in Figs. A.2, A.3, and A 4.



Appendix A: Probability and Distributions 267

Exercise 99 (Similarity properties of the Normal law)

1. An important property is that if random variables ¥; ~ N (m;, 012.) are indepen-
dent for j = 1, 2, then

Y1+ Yo ~ N(my +my, o7 + 03).

2. A converse of this result is that if Y;, ¥, are independent and have the same
distribution p, if (Y7 + Y»)/ V2~ Y~ 1 admits the same distribution then this
distribution p is centred and Gaussian.

Hints. This property follows from a property of characteristic functions. The char-
acteristic function

K1) = / " e,

[e.¢]

satisfies

k(1) = K2 <L> ,
V2

from independence. To prove that this characterizes Gaussians, it can be proved that
the log-characteristic function is a second degree polynomial.

With this formula, a simple recursion entails that there exists a constant a € R
such that log x(¢) = at® for t = k2" with k, n € Z. A continuity argument allows to
conclude.

A.4 Multivariate Gaussians

Definition A.4.1 A random vector Y € R is Gaussian if the scalar product ¥ - u =
Y'u admits a (real valued) Gaussian distribution for each u € R*.

We begin with the existence of finite dimensional Gaussian random variables. It is a
main step to prove the existence of Gaussian processes.

Lemma A4.1 Le X be a k x k-symmetric positive matrix and let m € RY, then
there exists a Gaussian random variable Y ~ Ny (m, X).

Proof of Lemma A.4.1.1f X is ak x k symmetric positive matrix, then classically, there
exist some orthogonal matrix P'P = I; and a diagonal matrix with non-negative
entries A\; > -+ > A\ > O such that ¥ = P'DP. Then R = P’AP a symmetric
positive definite matrix with R> = X when setting A the diagonal matrix with entries
Az = A =0

For Z = (Z,, ..., Z;)" independent identically distributed standard Normal ran-
dom variables and, following the Definition A.4.1, for each m € RF:

Y=m+ RZ ~ N;y(m, X).
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Recall that if X is definite then \; > 0 then such a square root is in fact unique; to
this aim remark that characteristic spaces coincide.
Some essential features of Gaussian laws follow.

Exercise 100 The law of a Gaussian random variable Y only depends on its mean
and on its covariance matrix.

Hint. For
ueR, ¥ =EY-EY)Y —-EY):

we easily check that
Y -u~N@EY -u,u Xu)

only depends on u, EY, and on X

Another way to check this is to compute the characteristic function and to check
that it is factorized in case cross covariances vanish. The analyticity of character-
istic functions entails they characterize distributions; note that the factorization is
equivalent to independence.

Exercise 101 (Reduction of Gaussian vectors) Let Y be a Gaussian vector, then
prove that ¥ = E(Y —EY)(Y —EY)’, admits a symmetric non-negative square root
R such that ¥ = R2.
Deduce the representation
Y =EY +RZ,

for a random vector Z with iid A/(0, 1)-components.

Hint. X is non-negative symmetric
WXu=Var (Y -u) >0, VueR:

Indeed the above variance is > 0; thus it is diagonalizable in an orthonormal basis
thus there exists an orthogonal matrix §2 and a diagonal matrix D with

> =02'D2 and N2'2 =1I,.

Since X is non-negative, the matrix D admits non-negative diagonal coefficients
(positive if X' is a definite matrix). The non-negative diagonal matrix A with elements
the square roots of those of D satisfies D = A2,
Thus
R=Q'A8,

is a convenient square root (non-negative symmetric) of X'. This solution may be
proved to be unique in case X is definite, because eigen-spaces of R and X coincide
from the fact that those matrices commute.
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In this case Z = R~'(Y — EY) is a Gaussian vector with orthogonal and Nor-
mal N (0, 1) coordinates. The previous remark proves that these components are
independent identically distributed so that Z ~ N (0, I;).

Exercise 102 (Density) Assume that the covariance matrix of Y is invertible, then
its density can be written:

fr(y) = L emsiesn, (A7)

N

Hint. Use achange in variables. If X' is invertible then Y admits the suggested density
on R¥,

Exercise 103 (Characteristic function)
(bY(S) — eis-IEY—%s’Z‘s

Hint. Even for X non-invertible we may write ¥ = EY 4+ RZ. For each s € R* we
obtain:

py(s) = Ee*”
— ezs~lEY]Eets~RZ
— ett~]EYEelZ~RS

_ ei.vIEY—%(Rs)’(Rs)

. s EY—L
The expression ¢y (s) = ¢/*EY~25'5 follows.

Exercise 104 (Conditioning) Let (X, Y) ~ N,4,(0, X) be a Gaussian vector with
covariance matrix written in blocs

1, C

C'B

for some symmetric positive definite matrix B (b x b) and a rectangular matrix C
with order a x b.
Then:
E(Y|X)=C'X.

Hint. Here Z = Y — C'X is orthogonal to X. Hence from the Gaussianity of this
vector, they are independent. The result follows.
An important consequence of the previous items is

Exercise 105 For Gaussian vectors, pairwise orthogonality and independence coin-
cide; provide three proofs of the result.
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Hint.

1. This results from the fact that pairwise orthogonal Gaussian distributions can be
generated from independent Gaussians rvs. Uniqueness implies the conclusion.

2. Alternatively this property may also be derived from the expression of character-
istic functions.

3. Finally a proof based upon densities is also straightforward once one knows about
the expression of a multivariate Gaussian density.

A.5 ~-Distributions

As an example of the previous sections we introduce another important class of
distributions.

Definition A.5.1 The Euler function I" of the first kind is defined over ]0, +oo[ by
the relation

o0
() = / e *x'71dr.
0

Hints. Lett € R. The integral I"(¢) is that of a positive and continuous function over
10, 4-o0l.

This is always a convergent integral at infinity but # > 0 is necessary to ensure
the convergence at the origin.

. . . d .
Integration by parts together with the relation d—x’ = tx'! entails
x

rae+1= /wdi{—e**}x’dt = [(—e*)‘)xf]“’ —t/(—e*x)x”ldx_
0 X 0

Moreover a simple calculation proves that I"(1) = 1.
A recursion using the previous identity entails I" (k) = (k — 1)! for k € N:

Lemma A.5.1 Lett > Othen I'(t + 1) = tI'(t) and I" (k) = (k — 1)! for each
k € N* (with the convention 0! = 1).

Definition A.5.2 Setforb > 0,

p— ba
T I(a)

Ca,b

For a,b > 0, y(a, b) denotes the law with density:
Fap () = cap e P x 7 jxog).

Proof The function f; ; is integrable around infinity in case b > 0 and this integral
converges at 0 if a > 0.
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As a density admits the integral 1, we compare both integrals to get:
oo o0
b =/ e xdx = b*“/ ey 'dy =b™"I (a),
0 0

by using a change of variable y = bx. Thus ¢, ;, = b°/I" (a).
Some simple facts are easily derived:

Lemma A.5.2 Let Z ~ v(a, b) then for m > 0 and f(u) < b:

Ezn = T@tm
"I (a)
b a
Loy(u) = Ee"? = (b_u> .

Proof
cap _ Tla+m

Ca+m,b N bmF(a) '

o0
EZ" = ca,b/ xMe P xdx =
0

We compute the Laplace transform L, ,(u) = Ee"Z of Z.
We first assume that u € R:

o Cab b 4
Lyp(u) = Ca,h/ Wyl gy = 242 = < ) .
0

Ca,b—u b—u

This is an analytic function in case N (u#) < b since integrals defining L, ;(u) are
absolutely convergent because of

|e(u—b)xxa—l| — e(})iu—b)xxu—l.

The same holds for the complex derivative ue®?*x4~!. Analytic continuation
allows to conclude.

Easy consequences of this lemma follow:

Corollary A.5.1 Let Z, Z' be two independent random variables with respective
distributions v(a, b) and ~(a’, b), then

Z+Z ~~(a+d,b).

Proof The previous lemma implies
Ee"P*) = Loy ) Lap(@) = Latap(u)

if Ru < a A d’, then the result follows from uniqueness of Laplace transforms in
case they are analytic on a domain with a non-empty interior.
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We now proceed with an analytic proof of the above result. This proof does not
rely on probabilistic concepts of independence or on arguments of complex analysis.

Exercise 106 An alternative proof of Corollary A.5.1.

e Define Euler’s function of the second kind for a, a’ > 0:

1
B(a,a) :/ w1 —w)* " du.
0

(Prove that the above expression is well defined).
e Prove that fora,a’ > 0:
W T'@r()
Ba,dy = ——.
I'(a+a)

e Prove again Corollary A.5.1 without using the notion of Laplace transform and the
principle of analytical continuation.

Proof If a,a’ > 0, the function

1
B(a,d’) =f u (1 —w)* ' du,
0

is well defined, indeed such integrals converge at origin since ¢ > 0 and at point 1,
it is due to the fact that @’ > 0.

Let g be a continuous and bounded function then for such independent Z ~ v(a, b)
and Z' = v(d’, b) one derives:

Eg(Z+ 7)) = / f 9z + ) fap (@) fu p(2) dzd?
o Jo
= / g(u)du/ Jap (@) fap(u —2)dz
0 0
= Ca,bca’,b/ e g(u) du /u 27—z dz
0 0

o0
= CapCap Bla,a) / u e g(u) du
0

ba+a’B , ’ 00 )
— (a a ) / Ma+a —le—bug(u) dbt
I'@r) Jo

(with z = ut). Then Z + Z’ admiits a y(a + a’, b)-distribution.
Now the normalization constant can be written in two different ways which entails:

ba+a’B(a’ a/) _ ba+a’
@7 @) Ta+a)
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so that B(a,a’) = %.
a a

From the above results we obtain:

Exercise 107 The density of the sum S; of k independent random variables with
exponential distribution £(X) for A > 0 is y(k, \).

Hints. For k = 1, S; ~ £()\) admits a y(1, \)-distribution, then:
Sk ~ vk, A).

The addition formula yields the conclusion.

Exercise 108 Define x?-distribution as the distribution of

Ty = N>+ + NZ,

for independent and normally distributed N (0, 1) random variables Ny, ..., N;.
k1 1
Then the law X;% of Ty is 'y(z §> and F(E) = 7.

Hints. T; = N? is the square of a standard Normal; we compute its density from the
expression of [Eg(7}) for each bounded and continuous function g : R — R:

Eg(T) = Eg(N?)
B / " gaer

oo \/§7T
o dx

= 2/0 g(x2)67X2/2E
oo I . dZ

= [ s g

(use the change of variable z = x? in the above relations).
The density function of 7)’s distribution is

1 1 )
227 le™2 >0,
\/E?T B

2

11
Up to a constant this is the density f%’ 1 ofa 7(5, z)-distribution.
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1
= 1/\/57r and then I” <§> =

1

2

for k > 1 that
) ko1

T](NXkZ’Y 5,5 .

Exercise 109 Let N ~ A(0, 1) and m € N. Then

Since they are both densities, one infers that ¢ 1
/7. Now the addition formulae allow to conclude

This completes the proof.

0, for m =2p 4+ 1, an odd number,
EN" =1 (2p)!

- for m = 2p,

, an even number.
27 p!

Hints. This follows from Lemma A.5.2 since

2Pr (% +
ET]P — (2 - p) ,
r(3)
but this idea needs additional effort. A simpler way to proceed is to use relation (A.5).

Comparing both sides of the expansion of Ee!'V = ¢~ *2 yields

. 1
Eei'N = Z — (it)"EN"
m!

m

ey 1 2 p
-2 (E)

p

Clearly the parity of the characteristic function implies that all odd moments vanish
Now for m = 2p, we obtain:

CEO2 a2
P! @p)!

The result follows from the above identity.




Appendix B
Convergence and Processes

This appendix is a short introduction to the basic concepts of convergence in a
probability space, we refer the reader to Billingsley (1999) for developments and to
Jakubowski (1997) for additional extensions.

B.1 Random Processes

Definition B.1.1 A random process is simply a family of random variables Z =
(Z(1))ser with values in a measurable metric complete space E (endowed with its
Borel o-field) for any arbitrary set T. The law of a random process is a distribution on
the product space (ET, £2T), with £2T the o-algebra generated by cylindric events
[l,er As with A, € € foreacht € T and A, = E except for finitely many such
teT.

Remark B.1.1 Thisc-algebra £®7 is the smallest o-algebra such that Z is measurable
if and only if Z(¢) is an E-valued random variable for each ¢ € T.

Definition B.1.2 Let Z, Z : T — Rberandom processes indexed by some arbitrary
space T. Z is a modification of Z in case for allt € T:

P(Z(t) # Z(t)) = 0.

Remark B.1.2 If T is not denumerable this does not mean that the random variables
Z = (Z(t))er and Z = (Z(t))eT are a.s. equal as random variables in the product
space RT equipped with its Borel o-field B(RT). This o-algebra is again generated
by cylindric events, [ [, A, with A, € B(R) for eachr € T and A, = R except for
finitely many such ¢ € T. But this is the case under a.s. continuity of both random
processes.

© Springer International Publishing AG, part of Springer Nature 2018 275
P. Doukhan, Stochastic Models for Time Series, Mathématiques et Applications 80,
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A simple example showing the difference between both notions needs non-
denumerable sets T. We set T = [0, 1] for simplicity:

Exercise 110 Set Z(#) = 0 for each ¢ and Z(t) = Ly<y,.
These processes are modifications of each other but

P(Z(t) = Z(), Vi e |0, 1]) —0.

Use this example to derive that:
Exercise 111 C[0, 1] ¢ BRI,

The Kolmogorov consistency theorem entails the existence of processes on general
spaces:

Theorem B.1.1 One may define a distribution on a product set ET equipped with
the product corresponding o-algebra in case:

e distribution projections exist on each finite subsets F C T, denote them Pr, then
Py is a distribution on the measurable set (EF, B(ET));
e these finite distributions are coherent in the sense that for F' C F, the projections
satisfy
—1
PF OTrF,F’ = Pp/

where Tp g 2 EF — EF' denotes the projection.

B.2 Convergence in Distribution

‘We consider a sequence of random variables X, and a random variable X with values
in an arbitrary complete separable metric space (E, d).

Definition B.2.1 The sequence X, converges in distribution to X, which we denote

X, —£

n— 00

Xa

if
Eg(X,) = nso0 Eg(X), Vg € C(E).

This definition does not depend on the random variables but only on their distribution
and Px, — Px; wereally define the convergence of probability measures on a metric
space.

Example B.2.1 The first example of a complete metric space used for functional
analysis is C[0, 1] the space of continuous functions [0, 1] — R, endowed with the
norm: || fllec = supp<,<; [/ (@)I.

This space is also separable in the sense that there exists a denumerable dense
subset of C[0, 1], e.g. the set of polynomials with rational coefficients.
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The following lemma in Chentsov (1956), is usually attributed to the two authors
Andrei Kolmogorov and Nikolai N. Chentsov, because of further extensions (see
Billingsley 1999 and van der Vaart and Wellner 1998):

Lemma B.2.1 (Chentsov lemma) If a random process Z : [0, 1] — R satisfies
E|Z(t) — Z(s)|” < C|t — 5],

for some a > 1 then there exists a modification Z of Z such that the trajectories of
Z are almost surely continuous.

Moreover the sequence of processes Z, is tight in C[0, 1], if for some a > 1 and
foralls,t € [0, 1], the following inequality holds:

E|Z,(t) = Zy ()" = Clt — s]°.

Remark B.2.1 In the first point of LemmaB.2.1, the trajectories of Z are even h-
Holder foreach 0 < & < 1 A(a/p); Billingsley (1999) and van der Vaart and Wellner
(1998) provide more complete statements.

Another important metric space follows.

Definition B.2.2 The Skorohod space D[0, 1] is the space of the functions [0, 1] —
R, continuous from the right and admitting a limit on the left at each point ¢ € [0, 1].
For short they are called cadlag functions.

Example B.2.2 Such cadlag functions are:

e Continuous functions are cadlag, C[0, 1] C D[0, 1].

e Indicators are also cadlag, set: x — g,(x) = <, foreacht € [0, 1].

e Combinations of previous examples still get the same properties from the classical
operative properties of right limits and left continuity.

The metric d(f, 9) = || f — glloc = sup, | f(¢) — g(¢)| is natural on the space C[0, 1]
of continuous real valued functions on the interval.

Exercise 112 The indicator function g1 may be approximated by a sequence of
piecewise affine functions f, with Lip f, = n and f,(x) = -1, for [x — =1
but this sequence is not d-Cauchy. Deduce that D[0, 1] is not separable with the
metric d.

Hints. If lim,, d( f,,, g%) = 0 then f, should also have a jump at % for large values of
n. D[O, 1] is not separable with the metric d since d(gs, g;) = 1 if and only if s # ¢.

The non-denumerable set {g;/ s € [0, 1]} is composed of elements pairwise
distant of 1, which allows to conclude.
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Remark B.2.2 (Skorohod metric) Let 'H be the set of monotonic homeomorphisms4
A [0, 1] — [0, 1], then a reasonable metric on DJ[0, 1] is

a(f, 9) =Ainf {d(fok,g)Jr sup IA(I)—II}-
€H t€l0,1]

This metric makes D[0, 1] separable but it is not complete.’ It is simple to prove that
lim 091, 91) = 0.

Thus 6 < d, and for example the function f +— supy,.; f(¢) is a continuous
function on this space (DI[O0, 1], §).

A criterion for the convergence® of the empirical distribution function

1
Jn

of a stationary sequence with uniform marginal distribution is:

Zy(1) = (Fu(1) —1),

e Letd € N*. For each d-tuple 74, ..., t; € [0, 1], the sequence of random vectors
(Z,(t1), ..., Z,(t7)) converges in distribution to some Gaussian random variable
in R4,

e There exist constants a, b, p > 1 and C > 0 such that for each s, ¢t € [0, 1]
E|Z,(t) = Zu(s)I” < C (jt = s|* +n7?)

(see e.g. Dedecker et al. 2007).

Billingsley (1999) and Jakubowski (1997) developed the convergence in this space.

Remark B.2.3 Anyway one interesting feature is that the Jj-convergence of two
sequences of processes Zt = (Z(1))o<i<1 and Z;, = (Z, (t))o<i<1- Set Z,(t) =
ZYM+Z,; (t)and Z(t) = ZT(t) + Z~ (1). If:

° Zj —%,Hoo AR zZ, —%,Hoo Z~, in the J;-Skorohod topology on DI[O0, 1],

e the finite dimensional distributions (Z,(t), ..., Z,(#)) converge in law to
(Z(t1),...,Z()) forall k > 1 and 11, ...,5 € [0, 1], denoted by Z, — r4q
Zt+ 77,

e the jumps of the limits Z* and Z~ are disjoint.

Then Z, ﬁ),,_mo Zt + Z~, in the J;-topology.
This property is evident in case the limits are continuous.

4Le. bijective continuous functions with a continuous inverse.

5See Jakubowski (1997). It is confusing because (Billingsley 1999) modified Skorokhod’s metric
and proved that this modification is complete and separable.

%Note that this result extends of the Chentsov lemmaB.2.1.
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From now on, we shall restrict to the case E = R?. In this case,

Lemma B.2.2 (Tightness) Let X be a rv on RY. For each ¢ > 0 there exists a
compact subset of E such that P(X ¢ K) < e.

Proof Note that 2 = Uf,ozl A, with A, = (|X| < n). Hence from the sequential
continuity of the probability IP there exists n such that P(Aj) < e.
The closed ball with radius » is now a convenient choice K = B(0, n).

Remark B.2.4 This result allows to restrict to a compact set. It is easy to prove
that the previous convergence holds in case the class of continuous and bounded test
functions is replaced by a smaller class of functions.

For example:

The class of uniformly continuous and bounded functions.”

The class of functions C,f with third order continuous and bounded partial deriva-

tives (see Exercise 113 below).

e The sequence X, converges in distribution to X if ¢x, (1) — ¢x(¢) for each
t € R?. Indeed, the Stone-Weierstrass theorem asserts the density of trigonometric
polynomials on the space C(K) of continuous real valued functions on a compact
K C RY, equipped with the uniform norm | g||x = sup, .x 1g(x)|. The Exercise9
presents the special case K = [0, 1].

e If a sequence of characteristic functions converges uniformly on a neighbourhood

of 0 then its limit is also the characteristic function of a law p (Paul Lévy).

Exercise 113 The convergence in distribution Z,, — Z of a sequence of real valued
random variables holds if lim, .-, Eg(Z,) = Eg(Z) for each function g : R — R
in C} with third order continuous and bounded partial derivatives.

Hint. From a convolution approximation with a bounded and indefinitely differen-
tiable function with integral 1 ¢, f. = f * ¢. converges uniformly over compact

subsets to f as € | 0, if one sets ¢ (1) = %gb(%)

Now convolution inherits of ¢’s regularity. Indeed the Lebesgue dominated con-
vergence applies to prove that e.g.

1
S/ 0) = lim o (fola+ ) = f) = f » 6 (w).

The result follows.

B.3 Convergence in Probability

From now, on we shall consider pathwise convergence only.

"The restriction of a continuous function over a compact set is uniformly continuous. Indeed, from
the Heine theorem 2.2.1, a continuous over a compact set is uniformly continuous.
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Definition B.3.1 The sequence X,, converges in probability to X, which we denote

P
Xn oo

Xa

if, for each € > 0O:
lim P(|X,—X|>¢=0.

Lemma B.3.1 Ifa real valued sequence of random variables X, converges in prob-
ability to X, then it converges in distribution.

Proof Assume that convergence in probability holds then from Lemma B.2.2 we may
assume that g is uniformly continuous in the definition of convergence in distribution.
Lete > 0,weset A= (]X, — X| > ¢€). Then:

E(g(X,) — g(X)| = |E(g(X,) — g(X)) T4 + E(g(X,,) — g(X)) L4
< 2llgllecP(A,) + sup |g(x) — g(y)|.

[x—yl<e

Uniform continuity of g yields convergence in law.
An alternative proof makes use of Lévy’s theorem, see Remark B.2.4 for details.

Definition B.3.2 If E|X, — X|” —,_, o 0 we say that the sequence X, converges
to X in 7.

Remark B.3.1 (Relations between convergences)

e Convergence in probability implies convergence in distribution, see LemmaB.3.1.
e Convergence in distribution does not imply convergence in probability.
A dyadic scheme allows to write (0, 1] as the union of the 2" disjoint intervals

Ij,il =]j27na (] + 1)27’1]5 (O S ] < 2’”)5

with the same measure 27",
Itis possible to write [0, 1] = A, | B, where both sets admit the measure A(A,) =
A(B,) = %, by setting e.g.

=1 on—1

A, = U bLj,, B,= U bLj_in.
j=1 j=1

On the probability space ((0, 1], B((0, 1], M), the sequence X,, = 14, follows the
same Bernoulli distribution b(%), it converges in distribution to Xj.
Now the sequence X, does not converge in probability since

1 I 1
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Indeed P(X,, < %) = % cannot converge to %, hence no subsequence of X, may
converge in probability to Xj.

e From the Markov inequality applied to V = | X, — X|? it is immediate that IL.”-
convergence implies convergence in probability.

e However if the random variable Z satisfies E|Z|” = oo and E|Z|? < oo for each
q < p then the sequence X,, = Z/n converges to X = 0 in probability but not in
LP.

Indeed the Markov inequality implies

E|Z]*
P(|Xn| > €) =
n4e4

n—oo 05

for each € > Oin case g € (0, p[.
As an example think of Z with a Cauchy distribution and p = 1.

B.4 Almost-Sure Convergence

Definition B.4.1 The sequence X, converges almost surely to X, which we denote

a.s
Xn iS00

Xa

if there exists an event A with P(A) = 0 such that for each w ¢ A
lim X, (w) = X(w).
n—0oQ

Again the almost-sure (a.s.) convergence implies the convergence in probability.

Definition B.4.2 (Limit superior) For a sequence of events (B),),>0, set
[colNe e}
nlirgo B, = ﬂ U B;.
n=0k=n

Remark B.4.1 Note that

An=UBk, n=1,2,...

k>n

is a decreasing sequence of events.
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Lemma B.4.1 (Borel-Cantelli) If (B,).en is a sequence of events such that

o0
Z P(B,) < 0o then
n=0
P(lim B,) = 0.
n—oo

Exercise 114 If X,, — X in probability then some subsequence of X, also con-
verges a.s.

Hint. From lim,, ., P(Z, > 1) = 0 with Z,, = |X,, — X|, it is possible to extract a
subsequence ¢(m) such that P(Z ) > 1) < 1/m?:

o0
ZP(ZW,) > 1) < 0.

m=1
The result now follows from the Borel-Cantelli lemmaB.4.1.

Exercise 115 Exhibit a sequence of random variable converging to 0in probability
but without any a.s. convergent subsequence.

Hint. In Remark B.3.1 we use a dyadic scheme (/; ,)o<; <o forn =1,2,3, ... hence
the sequence X,, = 14, does not admit any a.s. convergent subsequence.

B.5 Basic Notations in Statistics

Statistical models are the initial objects in a statistical setting. They are defined from
the previous probability framework:

Definition B.5.1 Consider an arbitrary parameter set @. Let (£2, A) be ameasurable
space and (Py)gce then the triplet (2, A, (Py)geo) is a statistical model.

A statistic is a measurable function T : (§2, A) — (E, £) on some measurable
space (E, £).

Remark B.5.1 The parameter 6 is unknown and getting informations concerning it is
the aim of statistics. If the value of the parameter is known 6 = 6y, then the statistical
setting turns back to the probability setting and for any event A € A and any statistic
with values in a vector space (E, £) (say a Banach space for simplicity), then one
denotes by Py, (A) the probability of occurrence of an event and

E%T:f T(W)Pgo(dw).
2

Convergence in distribution is also defined in the underlying probability space once
the value of the parameter is known.
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Remark B.5.2 Parametric settings are associated with @ C R? for some d € N*,
Real valued statistics are associated with (E, £) = (R, B(R)) but function spaces
may also be considered. Finally the parameter 6 is often so obvious that it is not even
mentioned as an index. Definitely it may be the distribution of a time series, or a
marginal probability distribution, or even a probability density of any real parameter
or a regression function.

Definition B.5.2 An estimator 6 of a parameter § € © is unbiased in case
Ef =6, V9co.

More generally

Definition B.5.3 Let g : ® — FE be an arbitrary function, then an estimator of g(6)
is an arbitrary statistic with values in the measurable space (E, £). The estimator of
the parameter g(6) is an unbiased statistic in case

EoT = g(0), Vo € ©.
Definition B.5.4 Let (7,,),>0 be a sequence of statistics with values in a measured
metric space (E, £). The various notions of convergence are introduced conditionally
with respect to the value of the parameter 6.

Associated convergences are usually called consistences and if the true value of
the parameter is 6.

e Consistence in probability holds if
nILH;O d(T, g(6p) = 0, in [Py, -probability, Vb, € ©.
e Almost-sure consistence holds if
’1121010 d(T, g(0p) =0, Py,-as., VO € 6.
e Consistence in " holds if

lim By, (d"(T, g(6p))) =0, Vb € O.

B.6 Basic Notations for Martingales

The notion of martingale is an essential tool to derive limit theorems. Many textbooks
consider this topic, we refer the reader to Hall and Heyde (1980) for a thorough
presentation, a nice volume on the same topic is Duflo (1996). We simply give some
standard basic facts below.
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The main attractive feature of martingales is their extremal properties, as e.g.
PropositionB.6.1.

It allows to derive strong laws of large numbers such as Theorem B.6.1 without
using the Borel-Cantelli lemmaB.4.1.

Definition B.6.1 Let (£2, A, P) be a probability space and F = (F,),cn be a filtra-
tion (monotonic sequence of sub-o-fields of A).
If (X,))nen is an F-adapted sequence of real valued random variables, then:

e (X,)nen 1s a super-martingale if for eachn € N,
E(X, Vv 0) <ocoand E7" X, | > X,,
e (X,)nen, i1s a sub-martingale if for eachn € N,
E(X, A0) > —ocoand E*" X, | < X,
e (X,)nen, 1s a martingale if for each n € N,
E|X,| < oo and EF" X, = X,.

Lemma B.6.1 Let p > 1.

o If (X,)nen, is an F-sub-martingale then the sequence (X, V a),ez, is an F-sub-
martingale for each a € R. Moreover the family (X, V a),<n is uniformly inte-
grable for each N € Z.

o If (X,)nen, is an ¥F-martingale and if E| X, |P < oo foreachn > 0, then (| X,|?)nez
is an F-sub-martingale.

Proposition B.6.1 Let (X,,),cz be an F-sub-martingale, then:

c-P(supX, > ¢) <supEX. (B.1)

Hence, P-a.s., sup, X,, < oo, if sup, EX| < oco.

Theorem B.6.1 Let (X,),>0 be an F-martingale. The following conditions are
equivalent:

1. the sequence X, converges in L' as n — oo,
2. there exists a random variable X € 1" such that X,, = E¥» X for each n,
3. the sequence X, is uniformly integrable.

Then the convergence X,, — X also holds a.s. and X, = E7» X.

Remark B.6.1 A simple sufficient assumption for the above condition 3. to hold is
sup, E|X,|? < oo for some p > 1; it also implies the convergence X, — X in L”.
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Definition B.6.2 The F-adapted sequence of integrable random variables (A,),>]
is a sequence of martingale increments if E*» A, = 0 for each n > 0.

Let F = (F;),>0 be a filtration indexed by N.

e AnyF-martingale (X,),cn is given by an F-adapted integrable sequence (AX},),en+
with E#* AX, .1 = 0forall n > 0, and by a random variable Fy-measurable Xy,
through the relation

n
X, =Xo+ Y AXy.
k=1

e Conversely AX, = X,, — X,,_; define the increments of a given martingale.
Corollary B.6.1 Let (A,),>1 be martingale increments. A martingale (X,) is

definedby Xo =0, and X, = A1+ ---+ A,, ifn > 1.
The convergence of the numerical series

o0
> EA;
n=1

implies both the a.s. and the 1.>-convergence of the martingale (X,,).

Proof If k < I, then EA;A; = EE*A; = 0; thus
EX; =) EA;.
k=1

TheoremB.6.1 allows to conclude.

Definition B.6.3 Let (A,),>1 be F-martingale increments with integrable squares.
The compensator of the martingale

Xp=4A1+---4+4,, Vn>1, and X,=0,

is the process
n
< X >,= Y E(A3|F;-0).
j=1
Notice that X2— < X >, is again an F-martingale.

The following useful Martingale version of the Lindeberg Lemma?2.1.1 is proved in
Hall and Heyde (1980), Corollary 3.1, p. 58:

Theorem B.6.2 (Hall and Heyde 1980) Let F,, = (F,,.;)i>0 be a sequence of (nested)
Siltrations, with F,1; C Fp; for eachi,n > 0.
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Let (A,.1)is0 be a sequence of square integrable ¥, -martingale increments, define
as above a sequence of martingales (X, ;)j=o0 as well as their compensators
(< Xn >j)jz()-

Then:
Xn,n

V< X, >,

if moreover the following Lindeberg condition holds:

L oe N(O, 1),

ZE<A}%,] ]I{‘An,ﬂZE})‘fn,jfl) > n—o00 O, Ve > 0.
j=1



Appendix C
R Scripts Used for the Figures

We? use the open source software R.
R Core Team (2017). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria.
URL https ://www.R-project.org/.

C.1 Chapter 2

Script C.1 R script producing Figure 2.1

normalBinApprox <- function(n, p) {
##
# Accuracy of Gaussian approximation for binomials.
##
# Standardised binomial support
#
xk <= (0:n - n*p)/sqgrt(n*p*(l - p))
#
# Get the probabilities and adjust the heights
#
dist.binom <- dbinom(0:n, n,
delta <- 1/sqgrt(n*p* (1 - p))
result <- dist.binom/delta
#

p)

N(0,1) density function

<- seq (-5, 5, 0.01)
<= dnorm (x)

#
#
X
Yy
#
# Plot the hbar chart
#

P

lot (

8Thanks to Alain Latour, Grenoble.
© Springer International Publishing AG, part of Springer Nature 2018 287
P. Doukhan, Stochastic Models for Time Series, Mathématiques et Applications 80,
https://doi.org/10.1007/978-3-319-76938-7
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xk ,
result,
frame = FALSE,
las = 1,
type = "h",
xlab = expression(italic(x)),
yvlab = "Density",
xlim = (-4, 4),
yvlim = e¢(0, max(y, result))
)
#
# Plot the normal density
#
lines (x, vVv)

abline (h = 0)
}
normalBinApprox (10,
normalBinApprox (100,

3/10)
3/10)

C.2 Chapter 3

Script C.2 R script producing Figure 3.1
set .seed (101)

#
# Simulate N tosses of a fair coin
#
N <- 1000
p <= 0.5
totn <- 1:N
#
# Simulate the Bernoulli deviates and
#
pn <- cumsum(rbinom (N, 1, p))/totn
#
# Plot the graphic
#
plot (
pn,
type = "1",
frame = FALSE,
las = 1,
ylim = e¢(0, 1),
xlab = expression(italic(n)),
vlab = expression(italic(Y/n))

Script C.3 R script producing Figure 3.2
#

data (mtcars)

X <- mtcars$mpg

#

Appendix C: R Scripts Used for the Figures

estimate p
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# Get the empirical cumulative distribution function

#
rep.val <- ecdf (x)
#
# and plot it
#
plot (
rep.val,
cex = 0.4,
main = "",
frame = FALSE,
las = 1,
verticals = TRUE,
xlab = expression(italic(x)),
vliab = expression(italic (hat (F) (x)))
)
#

Script C.4 R script producing Figure 3.3
#
hist (
X,
main = "",
xlab = expression(italic(x)),
freq = FALSE,
las = 1,
)
#

# Get the kernel density estimate and plot

—~same graph

#

d <- density (x)
lines (d)

#

C.3 Chapter 4

Script C.5 R script producing Figure 4.1

#

# Nile flow

#

# From the "datasets" R package.
# R Core Team (2017). R:
—statistical computing.

# R Foundation for Statistical Computing,

# URL https://www.R-project.org/
#
data (Nile)
plot (
Nile,
frame = FALSE,
las = 1 ,
xlab = "Year",

Vienna,

289

it on the \

A language and environment for \

Austria.
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vlab = expression(italic (X[t])),
xlim = (1860, 1980)

Script C.6 R script producing Figure 4.2

data (Nile)

acf (Nile, frame=FALSE, las=1,ci.type = "ma")
pacf (Nile, frame=FALSE, las=1)

C.4 Chapter S

For fractional calculus, we use the R package dvfBM, see Coeurjolly (2009)
https://cran.r-project.org/web/packages/dviBm/dviBm.pdf.

Script C.7 R script producing Figure 5.1
set .seed (101)

n <- 1024
H <- 0.30
#
fBm.sim <- circFBM(n, H, FALSE)
plot (
fBm.sim,
las = 1,
frame = FALSE,
xlab = expression(italic(t)),
vlab = expression(italic (B[H] (t)))

Script C.8 R script producing Figure 5.2

plot (
diff (fBm.sim),
las = 1,
frame = FALSE,
xlab = expression(italic(t)),
vlab = expression(italic (nabla*B[H] (t)))

Script C.9 R script producing Figure 5.3
H <- 0.9
set .seed (101)
fBm.sim <- circFBM(n, H, FALSE)
plot (
fBm.sim,
las = 1,
frame = FALSE,
xlab expression (italic(t)),
vlab = expression(italic (B[H](t)))
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Script C.10 R script producing Figure 5.4

plot (
diff (fBm.sim)*1000,
las = 1,
frame = FALSE,
xlab = expression(italic(t)),
vliab = expression(italic (nabla*B[H](t) %*% 10 ~ 3))

R T N SENTCR R

Script C.11 R script producing Figure 5.5

- 15

x <- seq (-6, 6, 0.05)
v0 <- rep(l, length (x))
vl <= x
v2 <= x ~ 2 -1
v3 <= x ~ 3 - 3*x
vd <- x ~ 4 - 6*x ~ 2 + 3
v5 <= x ~ 5 - 10*x ~ 3 + 15%*x
v6 <= x ~ 6 - 15*x ~ 4 + 45%*x ~ 2
plot (
c(-6, 6),
c(-100, 100),
las = 1,
frame = FALSE,
xlab = expression(italic(x)),
vlab = expression(italic (H[nl] (x))),
type "n"

)

#abline (h=0,v=0, 1lwd=1.25)

1)
2)
3)
4)
5)
6)
7

’

n="

ep("black"

lines (x, y0, 1lty
lines (x vl, lty
lines (x, v2, 1lty
lines (x, vyv3, 1lty
lines (x, v4, 1lty
lines (x, vy5, 1lty
lines (x, y6, 1lty
legend (
"bottomright",
title = "Degree",
legend = paste(
lty = e(1:7),
col = c(r
cex = 0.

C.5 Chapter 6

col

Script C.12 R script producing Figure 6.1
phi <-

theta <-

n

0.6

0.

<- 1000

7

16,

"hlue")

sep =

")

"hblue" ),
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set .seed (101)
ts.sim <- arima.sim(list (

Appendix C: R Scripts Used for the Figures

order = c¢(1, 0, 1),
ar = phi,
ma = theta),
n = n)
plot (
ts.sim,
frame = FALSE,
las = 1 ,
xlab = "Year",
vlab = expression(italic (X[t]))

Script C.13 R script producing Figure 6.2
acf(ts.sim, frame = FALSE,
pacf(ts.sim, frame = FALSE,

Script C.14 R script producing Figure 6.3
require (arfima)

par (mfrow =

set . seed (
d.all <-

c (3,
101)
c(0.01,

2))

seq (0.1, O.

4, O.

las = 1
las =

1), 0.49)

y <-

NULL

(d in d.all) {
substitute (list (~

for
title <-
—))
x <- arfima.sim (1000, model

.0,

.3,

0)

phi =
dfrac =
dint =
)
vy <- cbind(y,
plot (
X,
las = 1,
frame =
main =
xlab =
vliab =

x)

FALSE ,
title,
expression (italic (
expression (italic (

}
colnames (y)
par (mfrow =

<- paste(’'x’,
c(l, 1))

Script C.15 R script producing Figure 6.4

par (mfrow = ¢ (3, 2))

for (i in 1:1length(d.all)) {
d <= d.all[il]
title <- substitute (list (~
-))
x <-

yl, il

1:1length(d.all),

italic (d) ==

= list (

t)),
X(t)))

sep = "")

italic (4d)
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acf.x <- acf(x, plot = FALSE)
plot (

acf.x,

las = 1,

frame = FALSE,

main = title,

xlab = expression (italic(k)),

vlab = expression(italic(r[kl]))

C.6 Chapter 7

Script C.16 R script producing Figure 7.1

n <- 500

b <- 0.75

c <- 0.6

n.forget <- 20

N <- n + n.forget

#

# We simulate a series of n+n.forget
# We eliminate the first '‘'n.forget '’
—get rid

# of the initial values impact

#

x <- rep (NA,N)

e <= rnorm (N)
set .seed (101)
x[1l] <= rnorm (1)
for (i in 2:N) {

x[1i] <= b*x[i - 1] + e[i1 - 11 + ec*x[1i - 1l]l*el[i -

}
#
# Forget the first values...
#

x <= x[-(1l:n.forget)]
plot (
X,
las = 1,
frame = FALSE,
xlab = expression(italic(t)),
vlab = expression(italic (X (t))),
type = "1"
)
acft (
X,
frame = FALSE,
las = 1,
ci.type = "ma",

lag.max = 40

observations.

observations to \

293
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Script C.17 R script producing Figure 7.2

Appendix C: R Scripts Used for the Figures

n+n. forget observations.

‘'‘n. forget '’ observations to \

2*x[1]1 ~ 2

1] ~ 2 + gamma ~ 2*x[t -

alpha <- 0.5
beta <- 0.6
gamma <- 0.7
n <- 1000
n.forget <- 20
N <- n + n.forget
#
# We simulate a series of
# We eliminate the first
—get rid
# of the impact of the initial values
#
set .seed (101)
xi_t <- rnorm(N)
x <= rep (NA, N)
x[1] <- abs(alpha)*xi_t[1]
sigma2_t <- alpha ~ 2 + beta *
x[2] <= sqgrt(sigma2_t)*xi_t[2]
for (t in 3:N) {
sigma2_t <-
alpha ~ 2 + beta ~ 2*x[t -
-2]1 ~
2
x[t] <- sqgrt(sigma2_t)*xi_t[t]
}
t <- 1:N
X <= x[-c¢(l:n.forget) ]
plot (
X,
las = 1,
frame = FALSE,
xlab = expression(italic(t)),
vlab = expression(italic (X (t))),
type = "1"

Script C.18 R script producing Figure 7.3

0.5
0.6
0.7

alpha <-
beta <-
gamma <-
1000
n.forget <- 20
N <- n+n.forget
set.seed (101)

n <-=

xi_t <- rnorm (N)
X <= rep (NA, N)
x[1] <- abs(alpha)*xi_t[1]

sigma2_t <-
sigma2_tl <-
x[2] <-
for (t in 3:N) {
sigma2_t <-

alpha
sigma2_t

~ 2 + beta ~©

2*x[1]1 ~ 2

sqgrt (sigma2_t) *xi_t[2]
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alpha ~ 2 + beta ~ 2*x[t - 1] ~ 2 + gamma ~ 2*sigma2\
—-_t1l
x[t] <- sqgrt(sigma2_t)*xi_t[t]
sigma2_tl <- sigma2_t
}

t <- 1:N

x <= x[-c¢(l:n.forget)]

plot (
X,
las = 1,
frame = FALSE,
xlab = expression(italic(t)),
vlab = expression(italic (X(t))),
type = "1"

Script C.19 R script producing Figure 7.4

#
require (astsa)
plot (
nyse,
main = "",
las = 1,
frame = FALSE,
xlab = expression(italic(k)),
vliab = expression(italic(X[k])),
ylim = e¢(-0.2, 0.1),
type = "1"

Script C.20 R script producing Figure 7.5
set .seed (101)
betal = 0.45
n <= 500
n.forget <- 20
N <- n + n.forget
eps <- rbinom (N, 1, 0.95)
X <= ¢(0,rep (NA,N-1))
for (i in 2:N)
x[1] <= eps[i]1*(1 + betal*x[i - 1])
X <= X[-(1l:n.forget) ]
plot (
X
las = 1,
frame = FALSE,
xlab = expression(italic(t)),
vlab = expression(italic(X(t))),
Ill"

type

acf (

X,

frame

las

=
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"ma",
40

ci.type
lag.max =

Script C.21 R script producing Figure 7.6
set .seed (101)
n <- 200

n.forget <= 20

N <- n + n.forget
zeta <- rnorm(N)
p <- 0.5
X <= c(zetal[l]l, rep(NA, N-1))
for (t in 2:N) {
x[t] <- rbinom(1l, 1, p)*x[t
}
x <= X[-(1l:n.forget) ]
plot (
X,
las = 1,
frame = FALSE,
xlab = expression(italic (t)
vliab = expression(italic (X(
type = "1"
)
acf (
X,
frame = FALSE,
las = 1,
ci.type = "ma",
lag.max = 40
)
#
Script C.22 R script producing Figure 7.7
set .seed (101)
n <- 200
n.forget <- 25
N <- n + n.forget
zeta <- rpois (N + 1, 2)
alpha = 0.5
x <= c(zetal[l], rep(NA, N))
for (t in 2: (N + 1)) {
x[t] <- rbinom(l, x[t - 171,
}
Xx <= X[-(l:(n.forget + 1))]1]
t <- 1l:1length(x)
plot (
X,
las = 1,
frame = FALSE,
xlab = expression(italic(t)
vliab = expression(italic (X(

type = "o",

)
t

Appendix C: R Scripts Used for the Figures

- 1] + zetalt]

)
t))),

alpha) + zetalt]

)) )
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pch = 19,
cex = 0.5

)

acft (
X
frame = FALSE,
las = 1,
ci.type = "ma",
lag.max = 40

Script C.23 R script producing Figure 7.8

set . seed (
n <= 150
d <- 13
lambda0 <
gamma_0 <
gamma_1l <
delta_d <
n. forget

101)

.5
- .25
<= 20

1
- 2
0
0

N <- n + n.forget + d
x <- c¢(rep (0, d), rep(NA, N - d))

lambda <-

for (t in
lambda [
—lambda
x[t] <-
}

x <= tail

c(rep (lambdaO, d), rep (NA,

(d + 1):N) {

t] <- gamma_0 + gamma_1l*x[t

[t - d]
rpois (1, lambdal[t])

(x, n)

t <- l:1length (x)

plot (
X,
las = 1
frame =
xlab =
vlab
type =
pch 1
cex = 0

)

acft (
X,
frame =
las =1
lag.max

’

FALSE ,
expression(italic(t)),
expression(italic (X(t))),
o,

9,

.5

FALSE,

’

+ delta_d*\

297
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C.7 Chapter 11

Script C.24 R script producing Figure 11.2
set .seed (101)

n <= 500

n. forget <- 20

N <- n + n.forget

x <= c¢(0, rep(NA, N - 1)
xi_n <- rbinom (N, 1, 0.5)

for (t in 2:N) {

x[t] <- (x[t - 1] + xi_n[t])/2
}
X <- tail(x, n)
plot (
X,
las = 1,
frame = FALSE,
xlab = expression(italic(t)),
vliab = expression(italic (X(t))),
type = "1"
)
acft (
X,
frame = FALSE,
las = 1,
ci.type = "ma",
lag.max = 40

C.8 Appendix A

Script C.25 R script producing Figure A.1
dconvex <- function (x) {
kl <= 3.863305 + 0.870949¢6
k2 <= 6.797213

(-20*exp (-x))*(x < 2) + (6*(x - 1.25) ~ 2 - 1/710)*(x

—>= 2)
}
convex <- function (x) {
kl <- 3.863305 + 0.870949¢6
k2 <= 6.797213
((20*exp (-x) + kl)*(x < 2) + (2*(x - 1.25) ~ 3 -
-+ k2) *
(x >= 2))
}
x <- seq (0, 4, 0.01)
Yy <= convex (x)
plot (
X,

N

x/10 N\
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)

Y

xlab = expression(italic(x)),
vlab = expression(italic (f(x
lwd = 3,

las = 1,

type = "1",

xaxt = 'n’,

vaxt = 'n’,

xlim = ¢ (0, 4),

ylim = e(0, 24),

frame = FALSE

)
abline(h = 0, v = 0)
x <- seq(0.25, 3.75,
for (x0 in x) {
vy0 <= convex (x0)
m <=- dconvex (x0)
b <- y0 - m*x0
if (x0 == 0.25)
abline (b, m, lwd
abline (b, m, lwd =

0

1.5)
.75)

Script C.26 R script producing Figure A.2

set .seed (101)

mu <= 0

sigma <- 1

x <=- seqg (0, 3, 0.01)

y <= rnorm(x, mu, sigma)

plot (
X
Y
xlab
vlab
ylim c(-3, 3),
las = 1,
type = "1",
frame = FALSE

)
abline (h = 0)

Script C.27 R script producing Figure A.3

mu <- 0
sigma <- 1

expression (italic (t)
expression(italic (x|

x <- seq(mu - 3*sigma,
y <- dnorm(x, mu, sigma)
plot (
X,
Y
xlab = expression(italic (x)
vlab = expression(italic (f(
las = 1,

type = mn]n s

))

)
tl)).,

mu + 3*sigma,

)
x))),

299
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frame = FALSE

)

abline (h = 0)

Script C.28 R script producing Figure A.4

Appendix C: R Scripts Used for the Figures

mu <=- 10
sigma <- 2
X <- seqg(mu - 3*sigma, mu + 3*sigma, 0.01)
y <- pnorm(x, mu, sigma)
plot (
X
Y
xlab = expression(italic(x)),
yvlab = expression(italic (F(x))),
las = 1,
type = "1",
frame = FALSE

)

abline (h = 0)
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Index

Symbols

(82, A), measurable space, 247

(82, A, P), probability space, 247

B-function, Euler, 272

B(n, p), binomial distribution, 5, 12, 14

By (), fBm, 74

D(a,r) = {z € C/|z — a| < r} open disk,
109

D(a,r) = {zinC/ |z — a| < r} open disk,
107

D(a,r) = {z € C/|z — a| < r} open disk,
113

H -self-similarity, 77

W (), Bm, 60, 75

A-method, 139

I'-function, Euler, 270

A, set of Lipschitz functions, 171

B30D - B30D, 276

n weak-dependence, 213, 231

~-distribution, 270

k weak-dependence, 213

A weak-dependence, 213

C, complex numbers, 3

E, expectation, 250

N, non-negative integers, 3

P, probability, 3

R, real numbers, 3

B(n, p), binomial distribution, 255

), real part of a complex number, 271

EBX, E(X|B), conditional expectation, 253

I I, operator norm, 241

— ,f ", o0 COnvergence in distribution, 276

V, maximum, 3

A, minimum, 3

b(p), Bernoulli distribution, 255, 261

C[0, 1], space of continuous functions, 276

N(0, 1), Normal-distribution, 256

O(-), Landau notation, 248

Op(+), 249

Orr(+), 249

Oa,.&(')’ 249

P (M), Poisson, 255

:(+), Landau notation, 248, 257

o-algebra, o-field, 247-249

0 weak-dependence, 213

— fdd finite dimensional convergence, 278
—L” . convergence in L”, 280

n—00°*

— fﬁ 0+ COnvergence in probability, 280

—a7 > almost-sure convergence, 281

b(p), Bernoulli distribution, 207

m-dependent, 149

C’,; (1), Cﬁ, smooth functions on an interval,
9

Var , variance, 250

A

Appell polynomials, 117

Associated, 167

Atom, 13

Autocovariance, 58

Autoregression, 129
integer valued, 147

B

Bernoulli scheme, 155

Bernstein blocks technique, 220
Bootstrap, 69, 206, 209
Borel-Cantelli lemma, 282

Borel sigma-algebra, 249

Brownian motion, 60, 75, 94, 150, 191
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C
Cadlag or cadlag: continue a droite, limite a
gauche, left-continuous with limit on
the right, 277
Causal, 102, 107, 155
Chain, infinite memory, 130
Chaos, 116
discrete, 115
Gaussian, 73
Hermite, 117
Characteristic function, 254, 265
Complete, 248
Concentration condition, 165
Contrast, 30, 31
Convergence
Ji1, 173, 200, 278
M, 200
L7, 280
almost-sure, a.s., 281
in L7, 44
in distribution, 191, 209, 276
in probability, 279
finite dimensional, fdd, 173, 278
uniform in L7, 44
Coupling, 162
Cov, covariance, 250
Covariance, 5, 50, 53, 58, 62, 250
Covariogram, 65, 111
Cumulant, 225, 227, 228, 230, 235

D
Decorrelation, 162, 163
Density, 4, 30, 68, 240, 255, 264
multispectral, 225
spectral, 60, 61, 66
Dependence
long-range, LRD, 60, 189, 198, 203
short-range, SRD, 60, 186, 191
Dependence coefficient
ay, 206, 210, 216
7, 213
K, 213
Kx,q(r), 231
A, 213
0,,213,216
cx,q(r), 231
Distribution
continuous, 13
cumulative, 118, 166, 222
image, 249

Index

E
Empirical
cumulative distribution, 28, 88
mean, 27
process, 222
Ergodic, 27, 178
Estimation, 283
consistent, 104, 139, 140, 185, 186, 283
contrast, 30
empirical, 27, 32, 64, 122, 140, 185
empirical covariance, 58
histogram, 31
kernel, 33, 38, 66, 240
kernel regression, 38
least squares, LSE, 31
maximum likelihood, MLE, 30
Nadaraya—Watson, 39, 40, 44, 47
orthogonal projection, 32
semi-parametric, 45
wavelet, 32
Whittle, 67, 136
spectral, 66, 67, 225
Euler
I" function, 270
B function, 272
Event, 4-6, 177, 208, 247
Expectation, 251
conditional, 253

F
Filtration, nested, 286
Formula
diagram, 92
Hoeffding, 263
Leibniz, 83
Mehler, 86
Fourth moment method, 79, 96
Fractional
Brownian motion, fBm, 74
filter, 202
integration, 202

G
Gaussian

chaos, 78

family, 73

process, 73

vector, 267
Generating function, 254



Index

H
Heat equation, 91
Hermite
expansion, 79
rank, 82, 88, 191
Homeomorphism, 278

1
Identifiable, 31
Independent, 3-6
pairwise, 4
Inequality
Bennett, 24
Bernstein, 24
exponential, 22
Hoeffding, 22
Holder, 230, 253
Hopf maximal, 181
Jensen, 135, 251, 252
Marcinkiewicz—Zygmund, 17, 240
Markov, 251
Minkowski, 254
moment, 17,216
Rosenthal, 17
Iterative random model, 129, 150

K

Kernel, 33, 38, 45, 52, 66, 67, 104, 164
Dirichlet, 66
order p, 33
Markov, 129, 240

L
Landau notation, 63, 248
Laplace transform, 254, 265
Law, 249
v, 270
X3, 273
~v(a, b), 270
Bernoulli, 20, 145, 207, 255
binomial, 255
Cauchy, 256
exponential, 256, 261, 273
Gaussian, 222, 225, 247, 256, 265
Normal, 256
Poisson, 255, 258
Rademacher, 22, 222
uniform, 255, 261
uniform on the interval, U0, 1], 255
Lebesgue measure, \, 84
Leverage, 141
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Limit superior, lim sup, Tim, 281
Lindeberg, 9, 11

dependent, 219

Long-range, periodic, 113

M

Markov chain, 128
Markov chain, stable, 128
Martingale, 284

convergence, 284
sub-, 284
super-, 284

Mean, 102, 104, 147, 186, 250
Measurable space, 247
Metric

Skorohod, 278

Model

AR-ARCH, 131, 132

ARCH asymmetric, 141

ARCH(2), 132

ARFIMA(0, d, 0), 108
ARFIMA(p,d, q), 112

ARMA(p, q), 105

bilinear, 122

branching, 144

GARCH, 150, 152

GARCH(1,1), 133

generalized linear, GLM, 149, 150, 154
INAR, 147, 169

INARCH, 7

INMA(m), integer moving average, 149
LARCH(o0), 127, 169, 201, 214
memory, 120, 128

non-linear AR, 68, 132, 154, 169
selection, 31

switching, 144

tvAR(1), time varying AR(1), 120

Moment, 126, 133, 137, 138, 140, 151, 166,

(0]

205, 225
method, 137, 145

Operator

backward, 103

shift, 103

Steutel-van Harn, 147
thinning, 147

Orlicz norm, 13

P

Periodic, 52
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almost, 52
Periodogram, 65, 225
Polynomial
Appell, 116
Hermite, 80
Jackson, 67
Jacobi, 85
Legendre, 85
orthogonal, 84
Tchebichev, 85
Probability, 247
space, 247
Process
compound Poisson, 57, 260
linear, 101
locally stationary, 113
periodic, 114
Poisson, 112, 129, 150, 258
symmetric Bernoulli, 198, 261
symmetric Poisson, 198, 263
mixed Poisson, 260

R
Random
iterative system, 150
measure, 55, 57
process, 275
variable, 249
Range, 186
Regression, non-parametric, 38
Regression, random design, 38
Resampling, 69, 210

S
Separable, 277
Simulation, 260
Skorohod space, 188, 277
Spectral representation, 57
Stationarity
local, 59, 117, 120
second order, 49

Index

strict, 49, 50, 127, 130, 152, 156, 172,

183, 189

weak, 49, 50, 57, 59, 60, 62, 65, 187

Statistic, 282
Statistical model, 282
Stirling formula, 109
Stochastic volatility model, 132
Strong mixing, 140, 206, 210
Sublinearization, 253
Subsampling, 69, 209, 222, 245
Symmetric

definite, 268

non-negative, 268

T

Theorem
central limit, 12
ergodic, 177
Hahn-Banach, 252
Heine, 22
Herglotz, 54
Kolmogorov, 74, 276
Weierstrass, 20

Trawl, 199

U
Unbiased, 28, 30, 32, 64, 88, 283

v

Volterra expansion, 115, 116, 120, 214

w

Weak-dependence, 163, 167, 172, 205, 206,

211,222,231
Wold decomposition, 65

Y
Yule—Walker equation, 107, 136
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