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Preface

I have spent by far the greater part of my research career trying to do hy-
drological modelling, in some sense, “properly”. It has been a struggle,
even when trying to model experimental catchments with lots of avail-
able observational data. These academic struggles have been recorded in
a plethora of papers over the last 25 years. I have not, however, been
alone in finding the modelling of the hydrological response of catch-
ments a struggle. Keith Loague, for example, in a well-known series of
papers, has fought gallantly to model the RS experimental catchment at
Chickasha properly using models of ever increasing complexity and data
sets of ever increasing detail. Any hydrologist who has ever tried to ap-
ply a model in earnest is only too aware of some of the problems in-
volved.

Why is the hydrological modelling process so difficult? In part it is a
result of the lack of suitable measurement techniques in hydrology. We
can measure river discharges reasonably well, but the forcing function
that causes those discharges is not as easy to characterize, because of the
spatial and temporal variability of rainfall. Even modem radar rainfall
estimation techniques do not, in most circumstances, give us sufficient
accuracy, while rain gauges only provide a very small sample of the
variability (even in research catchments). To model “properly”, however,
means more than just relating rainfall inputs to discharge outputs, it
means trying to understand the flow pathways of the water within a
catchment. This has long been the aim of both experimental and theoreti-
cal hydrological science, even before the days of digital computers that
now allow the representation of theory as quantitative predictive models.
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The development of predictive models requires understanding and
representing mathematically those flow pathways under the ground sur-
face, where the infiltrating rainfall goes. Here, our measurement tech-
niques are even more inadequate in that they tend to give only very local
information about water storage and potentials. Such measurements have
allowed us to gain valuable qualitative understanding of what happens to
the water as it flows towards the stream channel, or 1s evaporated or tran-
spired back to the atmosphere, but the heterogeneity of soils and rocks is
such that quantitative prediction in any real catchment remains very dif-
ficult.

Hydrology is also concerned with practical water management. Man-
agement requires quantitative estimates of water yields and river flows
under both high and low flow conditions, not only for sites where dis-
charge observations are available, but also for the large number of un-
gauged sites where there are no extant observations. In both cases, man-
agement and decision-making will require model predictions. Despite the
worries of academics about the difficulties of doing modelling properly,
the use of models for practical applications has become a growth indus-
try. Indeed, the pressures for hydrological predictions are increasing as
practical and sustainable water management is required to consider a
wider range of variables than just water. The European Water Frame-
work Directive, for example, will require water management to be car-
ried out to support sustainable aquatic habitats. The resulting hydro-
ecological considerations will require predictions of sediment mobiliza-
tion, water quality and their impacts on important ecological criteria. It is
certain, therefore, that models will be developed to meet these needs, but
what should they look like?

This book presents a variety of new techniques to meet some re-
quirements for future models of both gauged and ungauged catchments,
at least for the prediction of river discharges. The techniques build on
many years of experience in model development, model calibration and
model application of the authors and others. They take some of the tech-
niques, including those developed by Peter Young and myself at Lacas-
ter which can be found in my textbook on rainfall-runoff modelling, in
some novel and interesting directions.



Preface xi

The monograph presents an extensive study into the nature and use of
conceptual rainfall-runoff models at the catchment scale. It consists of
four main chapters, apart from introduction and conclusions. Chapter 2 is
an extensive review of the state of the art of conceptual rainfall-runoff
modelling with its particular problems regarding model identifiability.
This review is followed by a chapter which details typical conceptual
components found in many models and the techniques used to analyse
them. Chapters 4 and 5 are studies into modelling approaches to gauged
and ungauged catchments. Here underlying assumptions are tested and
new approaches are introduced. Examples are the application of multi-
objective techniques and a novel dynamic identifiability analysis ap-
proach.

The methods developed by the authors are presented as a set of tool-
boxes designed to be used by practitioners and students, or in a research
context. In the toolboxes, the authors have also provided a range of un-
certainty estimation techniques. This is something I have long recom-
mended. Indeed a chapter on uncertainty estimation is something that is
not commonly found. Because of my struggles in understanding the
modelling process and my recognition of the difficulties of applying
models to catchments with their own unique and difficult to measure
characteristics, I believe that uncertainty estimation should be an intrinsic
part of any hydrological modelling study. The advantage to the modeller
is that giving a best estimate of the range of possible predictions is good
protection against being wrong!

Of course, it is still possible to be wrong, particularly in estimating
the response of ungauged catchments. This remains the ultimate problem
in scientific hydrology, one that depends on trying to capture the domi-
nant modes of response of a catchment in a parsimonious way and mak-
ing the very best use of the available data to help constrain the uncer-
tainties in such estimation. The techniques for predicting the response of
ungauged catchments presented in this book for the first time are a step
in the right direction.

Keith Beven, Lancaster, 2003



This page intentionally left blank



Contents

ACKNOWIEdZEMENLS ...t vii
PLETACE oottt ix
CONLENLS .....ervitiiiereieecire et esee e siteseneeebe e e b sbssressie st e nesessb e s s e an s sonenanasesbesnnsanes xiii
FLGUTES. ....vvveeeeveierere ettt ettt a st Xvii
721 o) U OO OO PO SOORROI ORI XXV
1. INTOAUCTION ©.oiiiriiieiiieiiiee et sttt st srn et 1
1.1 Rainfall-Runoff Modelling in CONteXt........ccocoviveirrieiiiiiriennsnsenns 1
1.2 Problem ANALYSIS -...v.coeeeieieiire et 4
1.3 Conclusions and Resulting Research Objectives ......oooirceineniniconnencnn, 7
1.4 Organization of MOROZIAPN ....c.ocvvvviiriiciiici e 7
2. Rainfall-Runoff Modelling — A RevVIeW.......ccccocconiiniiniiiinienieeniceinienne e, 9
2 T 4111 o1 13 (14 Te) | O OO OO OO OUPR 9
2.2 The Principle of Parsimony in Hydrological Modelling ..............cccooeenn. 9
2.3 The Rainfall-Runoff Process........cccccooiriiiiicinniiiiicncieinccceiienee 11
2.4  Structural Representation in Parsimonious Models ..o 15
2.4.1 Soil MOIStUre aCCOUNEINE ....covvevecrerririiiieeerisieiercsnisaeseennsrre s e 19
2.4.2 ROULIE .covieiietreeieeie et ettt eae e s et e e e sbenereas 23

2.5 Local Modelling Procedures .........cccooereiininineicciiiiiennciseeee v 25
2.5.1 Model structure SeleCtion.........c.oocivereeiiiieiciesie e 26
2.5.2 Sensitivity analySis vooicveeieeeiicininreeesne e 26
2.5.3 Calibration .cc...eeevievieieieeececeeetecere e b 28
2.5.3.1 Objective FUNCHON ..ooveiviiiiceieee et 29

2.5.3.2 Calibration data...........cccocoeereeeiiinneieecn e 33

2.5.3.3 Adjustment Strategy .....cocccorvverimrimriairriiee e 34

2.5.3.4 Termination Criteria ...c.cccveveeerirerurereieeieseineeeee e 39

2.5.4 Valldation .cco..iveerieiieieitivieee ettt et 40
2.5.5 Prediction — including uncertainty .........c.cccoccoeoieininciccniiiiniannns 41

2.6 Regional Modelling Procedures ..........ccccevmiiiiiimnicinciininccccceeees 44
2.6.1 Catchment and characteristics selection ...........c.ccooccoviniincinnene. 46
2.6.2 Local model structure selection and calibration ............................ 49
2.6.3 Regional model structure selection and calibration ............c......... 49
2.6.4 Flow prediction at an ungauged SHe .......cccooeveeeeeciiincnnice 50
2.6.5 Variations on conventional regional procedures............ccceccveveenn.. 51
2.6.5.1 Integrated procedure ........cccoivvecvviimiinioieinieeeea 51

Xiii



Xiv

Rainfall-Runoff Modelling

2.6.5.2 Sequential procedure .........c.coceeveereieriirinirceeene 52
2.6.5.3 Indirect procedure............ccovvevvoereenreireeieiieeeeeesr e 52
2.7 Summary and ConcluSIONS.......c..cccreieeeirieienierrneie e 52
3. A Toolkit for Rainfall-Runoff Modelling ........c.c.coceverreeninicniniiriiecne 55
RIS I €114 {0 1114 0 1 DO OSSOSO 55
3.2 Rainfall-Runoff Modelling ToolboX ........ccccocoiiinnininiieinrine, 57
32,1 General.......occoveriiieeii s 57
3.2.2 System architeCture ......c.overveeerrnrrerercreeeceieeererceieear e e e 58
3.2.3 Soil moisture accounting modules .......ccoooecveiiiiiiiiiinnn . 60
3.2.4 Routing modules ........cccooceeiimiiiniereerreeee et e 72
3.2.5 Optimization MOAUIES «...ccovvierienieniiiii s 75
3.2.6 Objective fUNCHONS .....ccoerviereriieieie ettt 78
3.2.7 Visual analysis MmOdUIES ......c..cocoeiveiiciriiiiiiiiiic e 84
3.2.8 SUMMATY «..ovieiieiieecit e et e s 85
3.3 Monte Carlo Analysis TOOIDOX .....ccccovvermiiriniiniiiiiiie e, 85
33,1 General.....coeeiieiiie e e 85
3.3.2 System architeCture .....cooieuieneerieiiiircireecr e 86
3.3.3 Parameter sensitivity and identifiability ............ccoooeiininn 86
3.3.4 Model structure suitability..........ccccoeviveirerniviereeieeneec e 90
3.3.5 Prediction UNCETTAINLY ......c.coeeuiiiiiciiiiiceinieriere st ssnaenas 91
3.3.6 SUMMATY .oooveeirrierieeeiceireene ettt ers s e 92
3.4 Application Example — Complexity Versus Identifiability ...................... 93
3.5 Summary and Conclusions.......cocorcrveeeerieniennnii e 96
4. Modelling Gauged Catchments — Local Procedures ............ccocovevecmenennnnnn. 99
4.1 INOAUCTION coevvvieecceecece st et e crt s s ers e s eaaseree b eare s 99
4.2 Identification of Conceptual Rainfall-Runoff Models...............ccoeveuennn. 103
4.2.1 Identification of model StrUCTUTES...........covimveriiiieriinrinniiciiereiiens 105
4.2.2 Identification of parameters.....cc.cvvreriereicrinniriiniesicce e 108
4.3 Evaluation of Conceptual Rainfall-Runoff Models...............c...ccovnnnnen. 112
4.3.1 Evaluation of competing model structures — Multi-objective
performance and identifiability analysis.........coeoiiniiieenis 113
4.3.1.1 Measures of performance and identifiability ................. 113
4.3.1.2 Multi-objective framework..........cccocvvininicinnn, 116
432 Evaluation of individual model structures — Dynamic
identifiability analysis .......cccceceovinmrcrreniiinriine e 120
4.3.2.1 Failure, inference and improved hypotheses ................. 120
4.3.2.2 Dynamic identifiability analysis.........ccccooevnriiinennnns 121
4.3.3 A combined framework of corroboration and rejection............... 125
4.4 Application EXamples ......cccccvvrirrviriiiiiiininenetee e 127

4.4.1 Example | — Multi-objective performance and identifiability
ANALYSIS ...coovevrerereresieesecrene s e 127



Contents XV

4ALL DALA oo e 128

4.4.1.2 Model structure and calibration tools ............ccoeeevevenrnns 128

4.4.1.3 MethodolOgY . .c.ucoviveevierrmrerrieenesececrir e 130

4.4.1.4 Results and diSCUSSION ....cc.ooeererirercriivrriicnieiseeins 132

4.4.2 Example 2 — Dynamic identifiability analysis..........cccoeoreinnnn. 140
44.2.1 Data et s 140

4.4.2.2 Model SITUCIUTE ......ccveruriieeiirieiriecceencereeece e 141

4.4.2.3 Results and diSCUSSION ....cc.eevviviveririereicriireee e 143

4.4.3 Example 3 — Application of the combined framework................ 155
4431 DA et 155

4.4.3.2 Model StruCtuIes .......c.coeeeieririeeereneinn e 155

4.4.3.3 MethodoIOgY....ccccovervierirreieieriiectire ettt 156

4434 Results and diSCUSSION .......cccvervvrrrciriiiinncciiiiiecs 159

4.5 Summary and ConclusSions..........ceeoeevevriereceenirercctest e 166
5. Modelling Ungauged Catchments —~ Regional Procedures..........c..oce.c.e. 169
5.1 INtrOdUCHION......ooieiiinie ettt 169
5.2 The Idea of Regionalization ..........cccoccvieviimicicininiiei s 173
5.3 Problems and Possible Ways Forward ...........ccoooovvieriniiniieinincenne 175
5.3.1 Catchments, their characteristics and clusters ...........cocccoccenenee. 175
5.3.2 Local model.........coveeiriiiiiiieccc s 179
5.3.3 Regional Mmodel ........cocooviiiiieviieericireeeree e 183
5.3.3.1  Univariate regreSSiON ..c.uvrerieeerirererreeeineertineeeeereaeneneas 183

5.3.3.2 ‘Correlated’ TEEIeSSION ......coocvvreeerrivresenrrreiencveercicinins 184

5.3.3.3 Generalized regression — radial basis neural networks..185

5.3.34 Symbolic regression — genetic programming ................ 186

5.3.3.5 Univariate weighted regression ..........oooeeeveiciiniecnnn. 187

5.3.3.6 ConCluSIONS ......c.oeveriuiinieiiirenieei e 188

5.3.4 Regional Procedurt .....ccooiviveicinimiiieies e seens 189
5.3.4.1 Combined procequre...........cccoerurimvreeveiomrreiecereceinenaene 189

5.3.4.2 Sequential Procedure ..........ccocovrrvrreeriereriniereerceneeens 191

5.3.4.3 Updating procegure ..........cocorvverererrrierenrerrereenienenes 191

5.3.4.4 Conclusions .......c.ccvemieerreeinirree s 192

5.3.5 Flow prediction — including uncertainty .........c.ccccoccovevcocrenrencnn. 192
5.3.5.1 Monte Carlo.......cccevoiiririinrecnieeiscerceiee e 193

5.3.5.2 FUZZY 1eZIESSION ...cvmmiiiiieiereeeccreee e 194

5.3.5.3 ConClUSIONS ...coceriiiiiiriniece et 195

5.3.6 Uniqueness Of Place ........c.coeereivverreiiinieencercei e 195

5.4 A Framework for Regionalization..............cceeuvererereeiereorniiieneresinenciees 197
5.5 Application EXample........cccouverriiineininiiicreerctesneee e eie e eeens 199
551 DaAA....cciiiiiirierrcenee ettt 200
5.5.2 Catchment characteristics ......ecveveerereeieiieciereeeececeeereeserens 202



Xvi Rainfall-Runoff Modelling

5.5.4 Regional MOodel ......coveeevrieoiieicieceeeree e 214
5.5.4.1 Variable properties and correlation analysis.................. 214
5.5.42 Effectofusing FHand FL........c.ccocooviiiiininiieienens 222
5.5.4.3 Regional structures and performance criteria................. 223
5.5.4.4 Multiple univariate regression — benchmark.................. 224

5.5.4.5 Multiple weighted univariate regression — considering
1dentifiability .....ooevceeeieiieieceiee e 225
5.5.4.6 Generalized T€gression .........cccocvvveerirerecnieescrriienrcrnes 230
5.5.5 Alternative regional procedure.........c.ccccovvvivvrviiiiccnnininienn 231
5.5.5.1 Sequential procedure ..........cceceereereiiiirinniinircciee e 231
5.5.6 Test catchment performance including flow prediction............... 234
5.5.6.1 Comparison with test catchment...........cccccoreevreinneicens 234
5.5.6.2 Flow prediction.......ccoccocooccviiiniicciniicceeeeens 236
5.6 Summary and ConcluSIONS. .....ccooveciercenieeiiiicciceeeecere et 237
6. Discussion, Conclusions and Recommendations for Future Research.....241
6.1 Discussions and Conclusions ...t 241
6.1.1 GeNeral......ccccooiiiiiicieniies e e s 241
6.1.2 Discussion and conclusions with respect to the toolkit ............... 243
6.1.3 Discussion and conclusions with respect to local modelling....... 243
6.1.4 Discussion and conclusions with respect to regional modelling .246
6.2 Recommendations for Future Research ... 248
6.2.1 Recommendations with respect to the toolkit.........c.cceccevinrennne 248
6.2.2 Recommendations with respect to local modelling..................... 249
6.2.3 Recommendations with respect to regional modelling................ 250
6.3 RESUIME..coneeiiiiciieetereere e e e srs st e seesae s s e s s se e e esa b 251
Appendix A - Some Investigations into Regional Modelling ...........cccc.c..... 253
Appendix B - The Rainfall-Runoff Modelling ToolboxX .............ccccenininnne. 263
Appendix C - The Monte Carlo Analysis ToolboX ...........cccoiviiiiiiniinnnnnn. 265
INOLAEIOM ettt st s re e as 267
BibOZIAphY ...oeoviiiiiiieiieieecr e e 273
INAEX oo e e e 301



Fig.
Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

2.1

2.2

23

24

3.1

32

33

3.4

35

3.6
37

3.8
3.9

3.10

Figures

Schematic presentation of hydrologic processes in a

catchment modified from Becker (1992). ...c.ceovcvevreeevciniennen, 12
Conventional (simplified) procedure for local Rainfall-Runoff
Modelling. ...ccooveviiiriiiiereeceet e 27

The model population from a Monte Carlo simulation plotted
in the 2-dimensional OF space. Fy is the Root Mean Square
Error (RMSE) for the part of the hydrograph classified as low
flow; Fy is the RMSE for the high flow part. The optimum

value for both functions is in the bottom left corner................... 33
Conventional (simplified) procedure for regional Rainfall-
Runoff Modelling. .....c.cocooeiriinincnineccceceee e 47
System architecture of the Rainfall-Runoff Modelling

TOOIDOX ..ottt e 59
Graphical User Interface of the Rainfall-Runoff Modelling
TOOIDOK ceve ittt e e e e 60

Schematic plots of the different moisture accounting modules
available: (a) catchment wetness index (cwi), (b) modified cwi,
(c1) conceptual Penman model structure, (c2) Penman drying
curve, (d) catchment moisture deficit model structure {(cmd),

(e) storage capacity distribution function. .........cccocevencriennnn. 62
Single storage element defined by the size parameter cmax.

The fluxes are actual evapotranspiration aey, rainfall r, and
effective rainfall u,. All at time Step K. «..ooveeervecriniiciiiieenne 64
Pareto distribution of storage capacity. The probability den-

sity function is shown at the top, the distribution function at

the DOtLOML. c..oeiiiiic et e 70
General linear reservoir model. ........coooovvviivivecnnicciee, 74
Conceptual routing components available in the RRMT:

(a) linear; (b) non-linear (example); and (c) leaky catchment
SETUCKUTE. ..oviiiiieeeiiitieren e st eei e e rrere st e e e senmr e e s be s ee e e nenenees 75
Residual analysis plot. ........ccviviiieeeieicec e, 82
Plot showing predictions using two different parameter sets

with an identical model structure. Both realizations yield similar
values of the NSE measure (0.82), but show differences in fit
when the response is analysed closely. ..........ccoeeveenencnicnnen. 84
System architecture of the Monte Carlo Analysis Toolbox. ....... 86

Xvii



Xviii

Fig. 3.11

Fig. 3.12

Fig. 3.13

Fig. 3.14

Fig. 3.15

Fig. 4.1

Fig. 4.2

Fig. 4.3

Rainfall-Runoff Modelling

Cumulative distributions of initial { F(6,) ), ‘behavioural’
(F(6,1 B) ) and ‘non-behavioural’ ( F(8, | B) ) populations for

a sensitive parameter 8, and a (conditionally) insensitive
PATAMELET B, ...ttt R 87
Schematic Regional Sensitivity Analysis plot using the

modified version of Freer et al. (1996). A sensitive parameter

1s shown in the left plot, while the right one shows an

INSENSITIVE ONE. ..ottt ee bttt e e eaeas 88
Example of a well identified and a poorly unidentified

parameter. The top row shows scatter plots of parameter vs.
measure of performance. It has to be considered that these
projections into a single parameter dimension can, however,

hide some of the structure of the response surface (Beven,

1998). The bottom row shows the cumulative distribution of

the best performing 10% of parameter sets and the correspond-
ing gradients within each segment of the parameter range. ........ 91
A hundred day period of Medway streamflow and rainfall
segmented using the scheme modified from Boyle et al. (2000).
The dots indicate time steps classified as driven (black), non-

driven quick (grey), and non-driven slow (white). ..................... 94
Performance versus identifiability plot for the different model
structures investigated. ........cocooviiiicieeneeeee 96

Schematic description of a conceptual model structure show-

ing different internal states s; and parameters ;

(modified from Beck, 1993). .......c.cooveiviiiiierceeeecee e, 100
Hundred days’ extract of six years of daily streamflow data.
Observed flow in black, seven different model realizations in
grey. Inserts show dotty plots for the time constants k(quick)

and k(slow) with respect to the RMSE. The model structure

used consists of a Penman soil moisture accounting component
and a parallel routing component of linear reservoirs with fixed
flow distribution (see application example 2 for details).......... 110
A measure of identifiability can be defined as follows: an

initially uniform distribution is conditioned on some OF, the
resulting dotty plot is shown in the top plots; the top percentile
(e.g. 10%) is selected and plotting the cumulative distribution

of the transformed OF values leads to the middle plots; the
gradient distribution of the cumulative distribution is a measure
of identifiability, see bottom. The plots in the right column

show an identifiable parameter, while the plots in the left column
show a non-identifiable one. .........ccccocovenvcrineiiiiiee e, 117



Fig. 4.4
Fig. 4.5
Fig. 4.6

Fig. 4.7

Fig. 4.8
Fig. 4.9

Fig. 4.10

Fig. 4.11

Fig. 4.12

Fig. 4.13

Figures Xix

Framework for the evaluation of competing rainfall-runoff

MOl SEIUCLUTES. ....eeveereiieeeeierenreeicnce oo rcenbe b s ens 119
Scatter plot showing an identifiability-performance trade-off.

The abbreviations can be found in the Notation Section. ......... 119
Schematic description of the DYNamic Identifiability

Analysis (DYNIA) procedure. ........ocovviviiniiiiicccinicineeene 123

Possible application of the DYNIA approach. Plot (a) shows a
model structure with parameters 0; and 6,, and the states S,

and S,. The structure is shown during four different response
modes. A parameter in plot (a) is shown in black during periods
of identifiability, and in grey during periods where it is less
identifiable. It is shown as a dashed line when DYNIA indi-

cates a failure of the component described by the parameter.

Plots (b) and (c) show (schematic) DYNIA results for the
parameters 0, and 0, respectively, i.e. parameter identifiabi-

lity versus time. A grey area indicates that equally good
parameter values are widely distributed over the feasible range.

A small black area means that good values are clustered in a
specific region of the 1-dimensional parameter space. ............. 125
The proposed modelling framework...........c.coeoenievnncenniicnnann, 126
Possible form of ensemble prediction with different model
structures, which could be implemented using for example the
GLUE approach. ........cceevueveveiriieeiiiinieninenieree et 128
The model structure used in the rainfall-runoff modelling
example. Effective rainfall (ER1(t) and ER2(t)) is produced
depending on the current catchment moisture state described

by the storage capacity distribution function F(c). The parameter
CMAX describes the maximum storage capacity in the catch-
ment. The effective rainfall is distributed with respect to para-
meter ALPHA and either routed through three linear reservoirs
with residence time Kq in series, or a single reservoir with
residence time KS.........ccccovieieviiiniiciniiicceceneee, 129
Hydrograph segmentation into three components based on
different response modes of the catchment system, i.e. ‘driven’
(Qp - dark grey), ‘non-driven quick’ (Qq - light grey) and ‘non-
driven slow’ (Qg - white) flow.....cocrivniiiniiin e, 131
Regional Sensitivity Analysis plots showing the varying
sensitivity of the model parameters when different objective
functions are used. .......coccoeeeieiieneieeeee e 133
The objective functions are rescaled so that the best perform-

ing parameter assumes the highest value and the sum of all

values equals one. Splitting each parameter range subsequently
into 20 bins of equal width and calculating the sum of all



XX

Fig. 4.14

Fig. 4.15

Fig. 4.16

Fig. 4.17

Fig. 4.18
Fig. 4.19

Fig. 4.20

Rainfall-Runoff Modelling

measures in each container leads to the parameter density (D)
distributions ShOWN. ......cocovurirrioeneiecee e, 135
Two-dimensional projections of the three-dimensional object-
tive function space (1* and 2™ row show 500 Pareto solutions
and 5000 parameter sets randomly sampled from a uniform
distribution). The markers correspond to the best points with
respect to FD (A), FQ (B), FS (C), and overall RMSE (D).

The 3™ row shows the normalized parameter space. The grey
lines show the 500 Pareto solutions, the three black lines are
solutions A (FD, solid), B (FQ, dotted), and C (FS, dashed).

The squares indicate the best overall RMSE solution (D) (Fig.

by Douglas P. Boyle, taken from Wagener et al. 2001¢).......... 136
Hydrograph range produced by the 500 Pareto solutions (grey
region), and the output from the best parameter sets for the
different measures on normal (1* row) and on logarithmic scale
(2"d row). The observed time-series is shown as circles (Fig. by
Douglas P. Boyle, taken from Wagener et al. 2001c)............... 137
The two model structures compared in terms of performance

and uncertainty in (identifiability of) their parameters. The left
plot shows the root mean square error values of the two struc-
tures with respect to the different objective functions used. A
smaller value therefore indicates a higher performance. The plot
on the right shows the identifiability of the parameters of the two
structures. A higher value indicates a higher degree of identifia-
bility and therefore reduced uncertainty. The identifiability

value for each parameter is the highest derived from the dif-
ferent objective functions. .............ccocienenernicnenniccceee 139
Data for the Medway at Teston for a six-year period

(10/04/1990 — 14/07/1996). Dashed lines enclose period used

for dynamic analysis. ......c..ccoooiiiiiiiiiiiei e 141
Model structure applied. .......c.ooceeiiiiiiiiine e 142
Dotty plot showing results of the uniform random search using
20000 samples utilizing the whole six-year period available.
Lower values of the Root Mean Squared Error (RMSE)

objective function indicate better performing parameter values.
Only parameter sets producing an RMSE below 1 mmd ! are

The information content of the data over a two-year period

(days 950 to 1750). Graph (a) shows the precipitation input

over the considered period. The remaining plots show the result
for the different parameters (black bars). The grey line is the
streamflow, normalized with respect to its maximum value..... 146



Fig. 421

Fig. 4.22

Fig. 4.23

Fig. 4.24

Fig. 4.25

Fig. 4.26

Figures xxi

Comparison of the information content of a two-year period for
the different parameter values (days 950 to 1750). Only time
steps with an information content above 0.3, with respect to
individual parameters, are shown in the different grey shades. 148
Comparison of the identifiability, defined as the gradients of

the cumulative distribution at different locations of the para-
meter range, of the slow response residence time r¢(s) using

the RMSE, (1) as an overall measure of the performance over

the whole calibration period (continuous line), (2) only

utilizing the residuals at time steps with flow values below 0.5
mmd™! (dotted line), and (3) using residuals with flow values
below 0.5 mmd* and with an information content above 0.15
(dashed 1iNe). .......oovevierieeiieiicre e e 149
Results of the DYNIA procedure for a two-year period (days

950 to 1750). Graph (a) shows the rainfall input over this time.
The remaining graphs show the DYNIA results for the different
parameters. The grey shading indicates the size of the gradient,
with a darker colour for a higher value. The dark grey lines are
the 90% confidence limits derived from the cumulative distri-
bution of support values, while the black line is the streamflow
normalized with respect to its maximum value. ........cc.cccoeeeen. 150
These two plots represent the response surface between the two
parameters of the soil moisture accounting component, the root
constant and the bypass. Both plots are based on a uniform
random search sampling 10000 points, during which the routing
parameters were fixed to well performing values. Both plots
consist of individual dots. The white areas are caused by a lack
of density. The RMSE in the top plot is calculated using the
residuals from the complete time-series, while the bottom plot
uses periods of high information content (see Fig. 4.21), while
avoiding the ambiguity of the bypass parameter identified in

Fig. 4.23. The time-steps used in the selected period are 200 to 375
and 600 to 750. The smallest RMSE values are shown in black
and the values increase by steps of 0.05 mmd™ per contour.....154
Table showing the soil moisture accounting ‘component library’
used in the application example. The components are: (a) catch-
ment wetness index (cwi), (b) simple bucket (buc), (c1) and

(c2) Penman structure (ic1), (d) catchment moisture deficit

(cmd), and probability distribution of soil moisture stores

Segmentation scheme used to derive multiple objective
functions describing the model performance during different
TESPONSE MOAES. .....oovirviniiicrirtisi ettt ereb et nes 158



Xxii

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4.27
4.28
4.29
5.1

52

53
54

5.5
5.6

5.7

5.8

59

5.10

5.11

5.12

Rainfall-Runoff Modelling

Results of the model structure comparison. ..............cocoee....... 160
DYNIA results for pd3-2pll......cccoeivveeeeieiiercieee 162
DYNIA results for pd4-2pll.......c.ccoevvvvivevieiereererereeeeeae 164

The idea of conceptual parameter regionalization. Where & are
catchment characteristics, Q is the streamflow, 8 are model
parameters and I are input time-series. .......co.coceeeeveeerieeerienne 172
Schematic description of a general model structure with
components (parameters) describing the actual evapotranspir-
ation, ACTE, the storage volume, STORE, the split between
quick and slow response, SPLIT, the quick, QUICK, and

slow, SLOW, response residence times. ............ccoeevvevrenenn... 181
Regional modelling framework. ..........ccoceevviieeieivecrirene. 198
Periods covered by the time-series available for the different

CatChmENts. .....ocviiiiiiirci e 201

Comparison of flow duration curves for south-east England...202
Comparison of k(quick), k(slow) and alpha values for the
pd4_2pll, cwi_2pll and cmd_2pll model structures. Values
shown are optimal with respect to the RMSE criterion. ......... 211
Scatter plot showing a model population based on 10000
samples from uniform parameter distributions projected into

a 2-dimensional OF space. The two OFs are the RMSE utiliz-
ing the residuals at time steps during which the observed flow

is respectively above (FH) or below (FL) the mean flow. ...... 212
Variation in optimum parameter values for two different OFs
representing two different modelling purposes. The two OFs

are the RMSE utilizing the residuals at time steps during which
the observed flow is above (FH) or below (FL) the mean flow
respectively. The model structure applied is pd4-2pil. ............ 212
Normality probability plots of available catchment character-
istics. Only AREA appears to be possibly not normally distri-
buted. A log-transformation can be used to change this.
However, AREA is not used in the regression analysis later

I EHE TEXL. .ot 216
Scatter plots for some of the correlations used for the
conventional regression analysis plotted on log-log scale. ......219

Variation of parameter identifiability with catchment. The
catchments are sorted according to increasing BFIHOST

values (Table 5.6). .cccueverreeeriiiriiecieecieeec et e 228
Variation in parameter identifiability with iteration step during
the sequential regionalization procedure. A vertical bar in-
dicates a fixed parameter. ........cocooveeceereeneniere e 232



Fig. 5.13

Fig. 5.14

Fig. 5.15

Figures Xxiii

Changing Nash-Sutcliffe Efficiency during sequential pro-
CEAUTE. ..ottt ene 233
Dotty plot for the test catchment, the Teise @ Stonebridge.
Result based on uniform random sampling with 106000

parameter sets. The best parameter values are indicated by
TECTANGIES. -.oiiireiereiiie ettt ettt 235
Flow prediction for the Teise @ Stonebridge using the different
regionalized parameter values and the local parameter set

which is optimum with respect to the RMSE. The top plot

shows a high flow period on linear scale, while the bottom

plot is a low flow period on a log-transformed scale. .............. 237



This page intentionally left blank



Table 3.1
Table 3.2

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7

Table 5.8

Table 5.9

Table 5.10

Table 5.11

Tables

Some of the objective functions available in the RRMT............ 81
Model structures used. A cross indicates the use of this

particular structural element. .........cocoveeieeeeinrerccreee 95
General catchment characteristics. ......ocoevvvvvireeevereeeeerereenn, 201
Description of catchment characteristics .........ocoe.evviveeverennnane. 203
Detailed catchment characteristics. .......cooevveevevrveeveceerirenenn, 204
Univariate statistical properties of catchment characteristics. ..206
Correlation matrix for catchment characteristics. ..........c.cou...... 206

Nash-Sutcliffe Efficiency calibration results for local model
structure, pd4-2pll. Catchments are sorted according to

BFIHOST VAlUES. ..c.eeoueeiiieriieieneeieecce e 209
Correlation coefficients for local pd4-2pll model parameters
on normal and on log-transformed scale..........c..ccocvirceciimnnne. 215

Correlation coefficients for all variables involved. Three
catchments are excluded from this calculation: (1) Teise@
Stonebridge, because it is kept as a test catchment; (2) Test@
Broadlands, due to the differences in BFIHOST (see text);

and (3) Blackwater @ Ower, because no satisfactory calibration
could be established judged by the visual fit. (The best

parameter values are normally distributed, but show some
outliers. Normality plot not shown.) ... 218
Correlation coefficients for all variables involved. Local model
parameters are optimal with respect to the two OFs FH and FL.
Three catchments are excluded from this calculation: (1)

Teise @Stonebridge, because it is kept as a test catchment;

(2) Test@Broadlands, due to the differences in BFIHOST

(see text); and (3) Blackwater @ Ower, because no satisfactory
calibration could be established. (The best parameter values

are normally distributed, but show individual outliers.

Normality plots are not SHOWNL) ....cocoocvmniiniiniiiiicicciiiienneene, 226
Regional models resulting from the different approaches: (a)
Conventional regression as a benchmark, (b) weighted regression,
and (c) sequential regression. Parameters for which no sensible

relationship could be found are set to their median values. ......229
Comparison of regionalized and locally calibrated parameter
values for the Teise @Stonebridge .........cccovververicnecniircecannn 236

XXV



This page intentionally left blank



Chapter 1

Introduction

I had less difficulty in the discovery of motion of heavenly bodies in
spite of their astonishing distances than in the investigation of the

movement of water before our very eyes.
Galileo Galile1 (1564-1642)

1.1 Rainfall-Runoff Modelling in Context

Rainfall-runoff models (RRMs) are standard tools routinely used today
for hydrological investigations in engineering and environmental science.
They are applied to extend streamflow time-series in space (e.g., Manley,
1978; Sefton and Howarth, 1998; Seibert, 1999b) and time (e.g., Lees
and Wagener, 2000a, 2000b), to evaluate management strategies and/or
catchment response to climate (e.g., Jakeman et al., 1993; Cameron,
2000) and/or land use variability (e.g., Binley et al., 1991; Parkin et al.,
1996), for the calculation of design floods (e.g., Lamb, 2000; Calver et
al., 1999; Cameron et al., 2001), as load models linked to water quality
investigations (e.g., Mroczkowski ez al., 1997), for real-time flood fore-
casting (Kitanidis and Bras, 1980a, 1980b; Moore, 1999) or to provide
boundary conditions for atmospheric circulation models (e.g., Diimenil
and Todini, 1992; Wood et al., 1992).

A vast number of model structures, usually a combination of linear
and non-linear functions, has been developed and implemented into
software since the early 1960s (see Todini, 1988, for a historical review
of rainfall-runoff modelling). It is therefore necessary to classify these
structures and narrow down the range considered in this monograph.
Probably the most commonly applied classification is one that uses three
distinct classes (e.g., Wheater ez al., 1993). These are metric (also called

1
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data-based, empirical or black-box), parametric (also called conceptual,
explicit soil moisture accounting or grey box) and mechanistic (also
called physically based or white box) model structures, though there
might be cases where the classification of a particular model structure is
ambiguous. Any parameter set within a model structure is referred to as a
model in the subsequent text.

Metric models commonly use the available time-series to derive both
the model structure and the corresponding parameter values. They are
therefore purely based on the information retrieved from the data and do
not include any prior knowledge about catchment behaviour and flow
processes, hence the name black box. Among the most currently popular
examples of this type of model are Artificial Neural Networks (ANN,
e.g., Hsu et al., 1995, 2002; Dawson and Wilby, 1998; Drecourt, 1999;
Babovic and Bojkov, 2001) and Transfer Functions (TF, e.g., Young,
1984; Young, 1992). Metric models are usually spatially lumped, i.e.,
they treat the catchment as a single unit. These models rely solely on data
and are therefore, at least in theory, not suitable for the spatial extension
of streamflow records into ungauged catchments. However, data-based
mechanistic models partially overcome this problem by constraining the
degrees of freedom of metric models to those structures that are physi-
cally interpretable, thereby using the hydrologist’s understanding of the
natural system (e.g., Young and Beven, 1994; Lees, 2000; Young, 2001).

Parametric models (O'Connell, 1991) use a storage element as the
main building component. These storages (also called buckets or reser-
voirs) are filled through fluxes such as rainfall, infiltration or percolation,
and emptied through evapotranspiration, runoff, drainage, etc. Parametric
models have a structure that is specified prior to their use. In contrast to
metric models, the structure is defined by the modeller’s understanding
of the hydrological system, and hence such models are also commonly
termed conceptual. However, these models still rely on time-series of
system output, mainly streamflow, to derive the values of their parame-
ters in a calibration procedure. The parameters describe aspects such as
the size of the storage elements or the distribution of flow between them.
A number of processes are usually aggregated (in space and time) into a
single parameter, which can therefore often not be derived directly from
field measurements. Most of these models consider the catchment as a
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single homogeneous unit. However, one not uncommon approach is the
segmentation of a catchment into smaller sub-catchments, the so-called
semi-distributed approach. Although this approach is often used, research
issues related to semi-distributed approaches have only recently been
defined and addressed (e.g., NWS, 2000; Boyle et al., 2001; Khodatalab
et al., 2003). Parametric models make up the vast majority of models
used in practical applications. Their dependence on flow measurements
makes it difficult to apply them to ungauged catchments; however, re-
gionalization approaches, i.e., the attempt to derive statistical relation-
ships between model parameters and catchment characteristics, have
been developed which try to overcome this problem (e.g., Burn and
Boorman, 1992; Abdullah and Lettenmaier, 1997; Sefton and Howarth,
1998). This has been achieved with only limited success so far. Most
models used in this monograph belong to this parametric group.

Combinations of metric and parametric approaches, i.e., so-called hy-
brid metric-conceptual (metric-parametric in the context of this mono-
graph) models by Wheater ez al. (1993), are sometimes applied (Jakeman
and Hornberger, 1993). The idea is to combine the use of observations
(the metric paradigm) to corroborate or reject hypothesized model struc-
tures consisting of hydrological stores (the parametric paradigm). This
approach is related to the data-based mechanistic approach described
earlier.

Mechanistic models (e.g., Freeze and Harlan, 1969; Beven, 1985;
Abbott et al., 1986; Calver, 1988; Beven, 1989; Beven, 2002) are based
on the conservation of mass, momentum and energy. They became prac-
tically applicable in the 1980s, as a result of improvements in computer
power. The hope was that the degree of physical realism on which these
models are based would be sufficient to relate their parameters, such as
soil moisture characteristics and unsaturated zone hydraulic conductivity
functions for subsurface flow or friction coefficients for surface flow, to
physical characteristics of the catchment (Todini, 1988), thus eliminating
the need for model calibration. However, mechanistic models suffer from
extreme data demand, scale-related problems (e.g., the measurement
scales differ from the process and model [parameter] scales), and over-
parameterization (Beven, 1989; Rientjes and Hassanizadeh, 2000). One
consequence is that the model parameters cannot be derived through
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measurements; mechanistic model structures therefore still require cali-
bration, usually of a few key parameters, though applied to a large num-
ber of elements (Calver, 1988; Refsgaard, 1997; Madsen and Jacobsen,
2001). The expectation that these models could be applied to ungauged
catchments has therefore not been fulfilled (Parkin er al, 1996;
Refsgaard and Knutsen, 1996). They are typically rather applied in a way
that is similar to lumped conceptual models (Beven, 1989). Mechanistic
models use a spatial discretization based on grids, hillslopes or some type
of hydrologic response unit. They are therefore particularly appropriate
when a high level of spatial discretization is important, e.g., to estimate
local effects of soil erosion, or surface and groundwater pollution
(Refsgaard and Abbott, 1996). However, if the main interest simply lies
in the estimation of streamflow response at the catchment scale and if
calibration data are available, then parametric models normally perform
usually at least as well and the huge complexity of mechanistic models is
not required (e.g., Loague and Freeze, 1985; Refsgaard and Knutsen,
1996). All models in this monograph are purely applied for streamflow
prediction at the catchment scale. Mechanistic models are therefore not
considered further.

1.2 Problem Analysis

The type of models considered in this monograph can be defined as con-
ceptual. However, the definition applied here, after Wheater et al.
(1993), is wider than the (probably more traditional) one described
above. There is therefore a difference between those models referred to
as conceptual in this monograph, and parametric models as described
earlier. Conceptual models are not limited to parametric (bucket-type)
models here. The conceptual classification rather includes all those mod-
els that conform to two criteria: (1) the structure of these models is speci-
fied prior to any modelling being undertaken, and (2) at least some of the
model parameters do not have a direct physical interpretation, in the
sense of being independently measurable, and have to be estimated
through calibration against observed data.

The task of the modeller is to identify a model, i.e., a parameter set
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within a specific model structure, that is suitable for the given catchment
characteristics, data and modelling purpose (Wagener, 1998). The identi-
fiability process therefore consists of two steps (Sorooshian and Gupta,
1985): the identification (selection) of an appropriate model structure,
and the identification (estimation) of an appropriate parameter set within
this structure. This task is difficult due to a range of uncertainties in-
volved in the modelling process that are also unavoidably propagated
into the model output. These uncertainties stem from different sources
(e.g., Kitanisis and Bras, 1980a; Melching, 1995; Hgybye, 1996; Basti-
das er al., 1999), mainly:

o Data uncertainty, i.e., uncertainty introduced by errors in the

measurement itself or by data pre-processing.

e Model specification uncertainty, i.e., the inability to converge to
a single ‘best’ parameter set (model) using the information pro-
vided by the available data. This is often referred to as the identi-
fiability problem.

o Model structural uncertainty introduced through simplifications
and/or inadequacies in the description of real world processes.

Additionally, one has to keep in mind that even if those uncertainties
could be removed, there would still be some (unmeasurable) randomness
in the natural processes themselves (Melching et al., 1990). This ran-
domness introduces uncertainty that cannot be reduced.

Many researchers have found that they were unable to locate a mean-
ingful global optimum in the feasible parameter space for different model
structures (e.g., Johnston and Pilgrim, 1976; Gan and Burges, 1990; So-
rooshian er al., 1993; Kuczera, 1997), where the feasible space is defined
by the ranges in which possible values of individual parameters can lie. It
was initially thought that this was simply a matter of developing more
powerful automatic search algorithms (e.g., Duan et al., 1992). However,
these are available now (see the comparison studies by Gan and Biftu,
1996; Kuczera, 1997; or Thyer ez al., 1999), but the problem still exists.

Consequently, some researchers abandoned the idea of uniqueness or
point identifiability of a parameter set. They replaced it by an approach
based on interval or regional identifiability of possible parameter sets
(Spear and Hornberger, 1980; Beven and Binley, 1992). Different pa-
rameter sets within such a region yield similar results in terms of a par-
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ticular objective function, often called behavioural parameter sets (Spear
and Hornberger, 1980), thus reflecting the fact that their performance is
consistent with observed behaviour.

The problem of identifiability is further increased when model struc-
tural uncertainties are considered (e.g., Gupta et al., 1998). Due to the
inadequacy of many model structures, one parameter set may be insuffi-
cient to represent the behaviour of the catchment during different re-
sponse modes such as low and high flow periods. A consequence of
these uncertainties in the case where sufficient streamflow data are avail-
able for model calibration (i.e., the gauged catchment case) is that predic-
tions have to be given for every time step as a range instead of single
values (e.g., Beven and Binley, 1992; Uhlenbrock et al., 1999).

The result of this lack of identifiability, with respect to both model
structure and parameters, is especially severe when runoff estimates in’
ungauged catchments are required. Regionalization of model parameters
has long been attempted as a methodology to circumvent the problem of
the absence of calibration data in ungauged catchments (Mainley, 1978;
Sefton et al., 1995; Abdulla and Lettenmaier, 1997; Sefton and Howarth,
1998; Post et al., 1998; Xu and Singh, 1998; Vogel et al., 1999). The
basic idea is to calibrate a specific model structure to as many catch-
ments as possible and to derive statistical relationships between model
parameters and catchment characteristics. These relationships can then
be used in hydrologically similar ungauged catchments to derive parame-
ter estimates. This has been done with some success for event-based
model structures that usually only contain a couple of parameters (e.g.,
NERC, 1975; Dyer et al., 1994). The success for more complex continu-
ous model structures however has been very limited. Continuous model-
ling of ungauged catchments is therefore an unsolved problem.

In summary: The lack of identifiability of model structure and parame-
ters is a major restriction of current conceptual RRM applications. It in-
troduces large uncertainties into model predictions and seriously limits
the possibility of sensible parameter regionalization for the modelling of
ungauged catchments.
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1.3 Conclusions and Resulting Research Objectives

Conclusions drawn so far can be summarized as follows:

Lumped conceptual models perform as well as distributed com-
plex models in cases where calibration data are available and
where the modelling purpose is purely to forecast flow at the
catchment outlet.

Even lumped conceptual models with relatively simple structures
are often hampered by a lack of structural and parameter identi-
fiability.

No completely successful application of these simple continuous
models to ungauged catchments has been reported yet. It is sug-
gested that this is mainly a consequence of lack of identifiability.

The following research objectives result from these initial conclusions:

To build a toolkit for development, application and evaluation of
parsimonious lumped continuous RRMs in line with the state-of-
the-art.

To apply this toolkit to the local modelling of gauged catchments
and improve on existing procedures to evaluate the suitability of
specific and competing model structures and models respectively
in order to reduce the problem of lack of identifiability.

To review the regional application of current conceptual models
to ungauged catchments by means of parameter regionalization
and devise an improved approach considering, amongst other
things, the results of the investigation of local modelling.

1.4 Organization of Monograph

‘The monograph is structured into seven chapters. Each chapter builds on
~ the results and conclusions of the previous chapters. However, the basic
assumptions underlying the work presented here are re-iterated at the
beginning of each chapter. This allows for chapters to be considered to
be ‘stand-alone’.

Chapter 1 is an introductory chapter, giving a short overview of rain-
fall-runoff modelling in the context of this monograph. It also analyses
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the problems to be tackled and defines the objectives to be reached.

Chapter 2 is a review of the state-of-the-art of parsimonious rainfall-
runoff modelling in gauged and ungauged catchments. It contains a defi-
nition of the principle of parsimony and how it can be applied to hydro-
logical modelling, a description of typical structural components of
lumped parsimonious models, and a review of modelling procedures for
gauged and ungauged catchments.

Chapter 3 is a description of a toolkit for development, application
and evaluation of lumped and parsimonious rainfall-runoff models
(Wagener et al., 2002a), which was designed and implemented in the
course of this research.

Chapter 4 analyses conceptual modelling in gauged catchments, here
referred to as local modelling. The current paradigm of RRM calibration
is analysed followed by the introduction of a multi-objective framework
for the evaluation of competing local model structures and models (Wag-
ener ¢t al., 2001). A new approach to the evaluation of individual con-
ceptual model structures and models, i.e., parameter and model structure
combinations, called DYNamic Identifiability Analysis (DYNIA) is pre-
sented (Wagener et al., 2003a). These two approaches are combined in a
procedure for rainfall-runoff model development and application (Wag-
ener et al., 2003b; Wagener and Wheater, 2002).

Chapter 5 is an investigation into the modelling of ungauged catch-
ments, called regional modelling in the context of this monograph. The
chapter analyses the theory behind this approach, various regional model
structures and regional modelling procedures. The results are combined
in a framework for regional modelling.

Chapter 6 concludes the monograph with discussion and conclusions
derived from the research presented here. Recommendations for future
research are made.

Appendix A shows some early investigations into regionalization and
the effects of hydrograph segmentation on parameter sensitivity (Wag-
ener et al., 1999). Appendix B and Appendix C describe briefly how the
two Matlab toolboxes — the Rainfall-Runoff Modelling Toolbox (RRMT)
and the Monte Carlo Analysis Toolbox (MCAT) — can be obtained and
installed.



Chapter 2

Rainfall-Runoff Modelling — A Review

All our knowledge has its origins in our perception.

Leonardo da Vinci (1452-1519)

2.1 Introduction

This chapter presents a review of the nature and use of lumped parsimo-
nious models for the continuous simulation of the rainfall-runoff (RR)
relationship. The description of the hydrological processes occurring in
the catchment is restricted to circumstances similar to those found in the
test catchments used in Chapters 4 and 5, i.e., humid areas. Detailed al-
gorithms of approaches used are given in Chapter 3.

2.2 The Principle of Parsimony in Hydrological Modelling

Different researchers have observed that the number of parameters
required to describe the key behaviour of environmental systems is often
quite low (e.g., Jakeman and Hornberger, 1993; Young et al., 1996). In-
creasing the degree of model complexity, i.e., the number of free pa-
rameters, above a certain level does not result in a significantly improved
model performance in terms of a better reproduction of the catchment
behaviour (e.g., Naef, 1981; Homberger et al., 1985; Refsgaard and
Knutsen, 1996). Instead, the problem arises that many parameter combi-
nations, often widely distributed over their individual feasible ranges,
lead to acceptable model performances (e.g., Spear, 1995; Kuczera and
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Mroczkowski, 1998), an effect sometimes called equifinality (Beven,
2000a, p.244).

It is often possible to analyse the necessity of the model parameters to
reproduce the catchment behaviour and reduce the model complexity to a
(minimally) required level using sensitivity analysis. Wagener et al.
(1999; see Appendix A) reduced the number of free parameters of an
Antecedent Precipitation Index-based model structure from seven to
three to reproduce the (monthly) streamflow behaviour of 23 catchments
in the USA. This resulted in much increased identifiability of the remain-
ing parameters, while the model performance decreased only slightly.

Results from other research efforts in the field of rainfall-runoff mod-
elling suggest that usually up to five or six parameters can be identified
from daily streamflow and rainfall data using traditional single-objective
calibration schemes (e.g., Kirkby, 1975; Hornberger et al., 1985; Whea-
ter et al., 1986; Beven, 1989; Jakeman and Hornberger, 1993; Ye er al.,
1997; Gaume et al., 1998; Perrin et al., 2000). Some researchers have
therefore concluded that only models with no more than half a dozen
parameters are required to describe the behaviour of a catchment with
respect to the production of daily streamflow (e.g., Beven, 1989; Jake-
man and Hornberger, 1993; Beck, 1987). These findings have led to the
investigation of less complex (often termed parsimonious) model struc-
tures that only capture the key response modes of the hydrological sys-
tem (e.g., Homberger et al., 1985; Jakeman and Hornberger, 1993;
Young et al., 1996).

The principle of parsimony requires models to have the simplest pa-
rameterization that can be used to represent the data (Box and Jenkins,
1976). Parsimonious model structures have reduced problems of identifi-
ability since only model parameters justified by the data are kept. The
principle of parsimony, also known as Ockham’s Razor, was advocated
by the Franciscan monk William of Ockham in the early 14" century in
statements such as “plurality should not be posited without necessity,” or
“what can happen through fewer [principles] happens in vain through
more” (Spade, 2000, p.101). The principle can be described as statement
of a cautious theoretical method (Spade, 2000, p.102). The approach of
retaining only necessary components ensures that the model components
used are positively affirmed. However, using this approach in the context
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of RR modelling does not guarantee that all necessary model components
are identified. Careful consideration is therefore required to ensure that
the model does not omit one or more hydrologic processes important for
a particular problem. A model structure that is too simplistic in terms of
the number of processes represented can be unreliable outside the range
of catchment conditions (i.e., climate and land use) on which it was cali-
brated (Kuczera and Mroczkowski, 1998). It is therefore vital to use data
with high information content in order to ensure that the main response
modes are excited during calibration (Gupta and Sorooshian, 1985a;
Yapo et al., 1996). Young et al. (1996) describe how the principle of
Ockham’s razor can be applied to the modelling of environmental sys-
tems using a combination of Monte Carlo techniques, dominant mode
analysis, and data-based mechanistic modelling.

Popper (2000, p.142) advocated the use of simple theories based on
their degree of testability. The justification is that simpler theories apply
more restrictions on how a system is allowed to behave and therefore are
easier to test than complex theories. System behaviour not permitted by
the theory will lead to rejection or modification of the theory. The degree
of testability of a theory is therefore proportional to the amount of behav-
iour prohibited by it (Popper, 2000, p.119). In the context of hydrological
modelling, it is important to consider that the testability of a model struc-
ture will be increased in cases where additional output variables exist
that can be compared to observations, e.g., predictions of groundwater
levels or saturated areas (Nash and Sutcliffe, 1970; Seibert, 1999a). Ad-
ditional information is then available to test potential models, and hence
to reject those that show behaviour that does not conform with observa-
tions.

2.3 The Rainfall-Runoff Process

The hydrological processes occurring in and above a catchment, from the
formation of rainfall to the streamflow that finally leaves the catchment
through a river, are many and complex (Fig. 2.1). The most important of
them, with respect to rainfall-runoff modelling, are briefly described
here. Emphasis is put on processes that occur in humid areas, while snow
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Fig. 2.1 Schematic presentation of hydrologic processes in a catchment modified from
Becker (1992).

formation and melt is omitted since it is of no particular importance for
the test catchments considered later in this monograph.

Precipitation occurs when water condenses around aerosol particles
(such as dust or smoke), driven by the cooling of air masses through up-
ward movement. In humid environments such as the UK, this upward
movement is usually caused by warm moist air being lifted through
colder denser air moving underneath it on a large scale, i.e., frontal pre-
cipitation, but can also be caused by air masses being warmed by heat
originating from the ground surface, i.e., convectional precipitation. The
total amount of precipitation is often referred to as gross precipitation.

A small percentage of the precipitation falls directly onto the stream
network and thus contributes immediately to runoff as channel precipita-
tion.
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Part of the precipitation (approximately 1 to 1.5 mm) is intercepted
by the vegetation canopy, from which much evaporates back into the air,
the so-called interception loss (Ward and Robinson, 2000, p. 72). The
rest forms the net precipitation; it moves down the vegetation as stem-
flow, drips off the leaves, or directly falls to the ground as throughfall.

Most of the intercepted precipitation and part of the water reaching
the ground or even infiltrating into the upper soil layer(s) returns to the
atmosphere through evapotranspiration. This is the combined effect of
evaporation of water directly from soil or open water, and of transpira-
tion by the vegetation. Evaporation involves a change of state, from lig-
uid water to water vapour, which requires an input of energy (latent
heat). This energy is mainly provided by solar radiation.

The remaining net precipitation fills surface depressions, infiltrates
into the soil and sometimes even directly forms surface runoff. Surface
runoff can be caused by an infiltration excess mechanism where the rain-
fall intensity is higher than the infiltration capacity of the soil, or by a
saturation mechanism where the soil is saturated and cannot take up fur-
ther water (Dunne, 1978; Ward and Robinson, 2000, p.239ff.). The for-
mer situation is unlikely to occur on soil with a dense vegetation cover,
which increases the infiltration capacity of the soil considerably at least
for temperate climates. This leaves the latter mechanism as the main
cause for overland flow in humid environments such as the UK. These
saturated (or riparian) areas occur mainly adjacent to streams and on
lower valley slopes. They are dynamic, i.e., they grow during a rainfall
event, and are therefore often referred to as variable (dynamic) contribut-
ing or source areas (Beven, 2000a, p.11). Topography has a dominant
role in controlling these areas (Hornberger et al., 1998, p.209). Saturated
areas form at locations where large upslope areas drain (e.g., conver-
gence of flow at hillslopes or hollows) and where the capacity for
downslope drainage is limited (where the slopes flatten towards the
stream) (Hornberger ez al., 1998, p.211). The surface runoff itself is more
likely to occur in small rivulets than in the often-assumed sheet flow
(Dunne, 1978; Beven, 2000a, p.11).

The subsurface can often be divided into two overlying zones, a zone
of aeration and a saturated zone. The capillary fringe forms the boundary
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between those two zones, while the former can be further subdivided into
a soil and an intermediate zone.

The soil zone is of major importance for runoff processes because
water within it can be divided into storage, throughflow, percolation and
water losses through evapotranspiration. Soil moisture storage is com-
monly simplified as follows: The available water capacity for the vegeta-
tion rooted in the soil zone is the amount between wilting point (WP) and
field capacity (FC). Below WP, the plant is no longer able to overcome
the absorption forces binding the water to the soil, and above FC, the
water will drain from the soil zone due to gravitational forces. The water
taken up will be used by the plant or given back to the atmosphere
through transpiration. Throughflow (also called interflow), lateral flow
through the soil zone, occurs as shallow perched saturated flow in cases
where the lateral hydraulic conductivity is higher than the vertical one,
and a sufficiently high slope is present. Other contributors to through-
flow are the flow through macropores (explained below) or, less likely,
unsaturated flow through the soil profile. Throughflow can be responsi-
ble for up to 85% of the total runoff outside arid and semi-arid areas
(Ward and Robinson, 2000, p.238).

Water percolating from the upper soil enters the intermediate zone
and moves further down to the capillary fringe. The latter is a zone
above the water table in which water is held by capillary forces to fill
most of the soil pores. This (dynamic) zone can extend into the soil zone
in the floodplains of a catchment, while a distinct intermediate zone is
commonly found at the valley flanks.

Below this lies the saturated zone, the groundwater. If the soil or rock
that contains the groundwater is capable of transmission of significant
quantities of water, it is called an aquifer, which may be confined or un-
confined. The former has an overlying less permeable layer, while the
latter’s upper boundary is the water table. Hydrologically, aquifers com-
monly contain confined and unconfined areas as part of one unified sys-
tem (Ward and Robinson, 2000, p. 143). The groundwater table is usu-
ally connected to the river through the river flanks. The above-mentioned
topographic control on water movement can be extended to the subsur-
face if catchment characteristics allow the assumption that the hydraulic
gradient of the saturated zone can be approximated by the local surface
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topographic slope measured with respect to the plan distance (Beven,
2000a, p.188).

Rapid, preferential movement of water in the soil can also occur
through macropores, large openings or voids caused for example by
structural cracks, earthworms or decay of plant roots. This type of flow
can result in water bypassing the upper soil, yielding quick recharge of
groundwater, or adding to the throughflow. Macropore flow tends to
dominate soil water flow processes during, and shortly after, rainfall but
becomes less important than matrix flow during the subsequent period of
redistribution (Ward and Robinson, 2000, p.225).

Channel precipitation, surface runoff and part of the throughflow
form the quick (direct) contribution to runoff, while the remaining
throughflow and the groundwater flow constitute the slow (delayed) con-
tribution to runoff. Direct and delayed runoff together result in the
streamflow measured at the catchment outlet, also referred to as dis-
charge or catchment yield.

Detailed descriptions of hydrological processes can be found in the
textbook by Ward and Robinson (2000) or the texts by Kirkby (1985),
Troendle (1985), or Dunne (1978).

2.4 Structural Representation in Parsimonious Models

The first continuous and lumped (parametric) RR models, developed in
the 1960s and 1970s, were often direct translations of the hydrologist’s
perceptual model (Beven, 2000a, p.6) into mathematical structures. The
idea was to make these model structures, and thus their parameters, as
physically realistic as possible, without consideration of aspects such as
parameter identifiability. The ideal model would specify completely the
properties and processes that occur in all the relevant components of the
basin. The specification would be given in terms of physical parameters
and would involve all the behavioural relationships within the basin
(Dawdy and O'Donnell, 1965). These structures show a high level of
complexity especially with respect to soil moisture processes, i.e., the
mainly vertical fluxes such as infiltration, percolation, etc. Examples of
these structures are the Stanford Watershed Model (16 parameters, Craw-
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ford and Linsley, 1966; or its Fortran version the Kentucky model,;
James, 1973), the Sacramento Soil Moisture Accounting Model (SAC-
SMA, 16 parameters, Burnash, 1995), the Hydrological Simulation
Model (HYSIM, 17 parameters, Manley, 1978), the Monash Model (13
parameters, Porter and McMahon, 1971), and the Nedbgr Afstrgmnings
Model (NAM, 14 parameters, Nielsen and Hansen, 1971). The number of
(free) parameters might vary between different versions of these model
structures.

However, it has become apparent that these model structures can suf-
fer from over-parameterization, i.e., the structures contain more parame-
ters than can be identified in a calibration procedure, especially after the
introduction of automatic optimization procedures to parametric RR
model structure parameter estimation (Dawdy and O'Donnell, 1965).

Ibbitt (1970) and Pickup (1977) report problems of estimating the
true parameters of the Stanford watershed and the Boughton model struc-
ture respectively using autornated procedures and synthetic error free
data. Johnston and Pilgrim (1976) were unable to find a unique best pa-
rameter set (with respect to the sum of squared residuals) for the (9 pa-
rameter) Boughton model structure in two years of work utilizing real
data from an Australian catchment.

These problems have led to comparison studies using model struc-
tures with different levels of complexity in order to identify the levels
actually supported by the information content in hydrological time-series
(e.g., Naef, 1981; Hornberger er al., 1985; Jakeman and Hornberger,
1993; Michaud and Sorooshian, 1994; Gan et al., 1997; Uhlenbrock et
al., 1999; Perrin et al., 2000).

A model comparison study (10 model structures on 6 different
catchments, semi-arid to humid, 1580 to 104000km2) conducted by the
World Meteorological Organization (WMO, 1975) resulted in the gen-
eral conclusion that simple models perform as well as complex ones in
humid catchments, while the selection of a suitable structure for semi-
arid conditions is more critical. Based on the results of this and a second
study (Naef, 1977), Naef (1981) concluded that it could not be proved
that complex models give better results than simple ones. Many struc-
tures, even simple ones, will give good results during average conditions.
However, the studies suggest that all models will perform poorly when it
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comes to forecasting under extreme conditions or during extrapolation.
The assumed reasons are structural shortcomings in all models and the
lack of good quality data.

Hornberger et al. (1985) used a 13-parameter version of Topmodel
(Beven et al., 1995) to model a catchment (5.15km?) in the USA. They
found that parameter sets giving a good performance were widely dis-
tributed in the feasible space. Hornberger ez al. (1985) subsequently de-
veloped a reduced version of the initial, complex model through elimina-
tion of those model components that seem to be less important in the
specific hydrological system under investigation, based on sensitivity
analysis. The lack of identifiability improved considerably when the
model complexity was reduced. The new structure showed an almost
equally good fit compared to the full model structure.

Franchini and Pacciani (1991) compared seven conceptual model
structures (Stanford IV, Sacramento, Tank, APIC, SSARR, Xinanjiang,
Amo) using hourly data from an Italian catchment. All model structures
were split, as far as possible, into a water balance and a routing compo-
nent. An approach was made to unify the routing component (by adopt-
ing the Arno approach) and the method to calculate the potential evapo-
transpiration of all structures. The comparison therefore concentrated on
the water balance component. Franchini and Pachiani’s (1991) summa-
rized result was that significantly different models produced equivalent
results, with calibration times generally proportional to the complexity
(i.e., number of parameters) of their structure.

In contrast to Franchini and Pachiani (1991), Jakeman and Hornber-
ger (1993) studied the identifiability of (linear transfer function) routing
structures (in connection with a non-linear loss function) from rainfall,
temperature and streamflow time-series, using catchments ranging from
0.00049 to 89.6km’ and from semi-arid to humid climates. They con-
cluded that a two-component (parallel) structure with four parameters
was sufficient for routing when modelling at a daily time-scale. One
component could be related to a quick catchment response and one to a
slow catchment response, without further specification of flow paths.
Only one component (two parameters) could be identified if either base-
flow was absent (see also Ye et al., 1997; 1998), i.e., for ephemeral
streams, or the time scale was coarser than daily.
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Investigations by Gan ez al. (1997) showed little difference in per-
formance when applying a range of model structures (6 to 15 free pa-
rameters) to three African and USA catchments (2344, 2480 and 2682
km?). Their result was that it is not the degree of complexity (the number
of parameters), but the type of process description which made a differ-
ence. It was also shown that on the whole, dry catchments are more sen-
sitive to the model structure and harder to model than wet catchments
(Gan et al., 1997). The ability of one model structure (Xinanjiang or
XNJ; Zhao and Liu, 1995) to account for the non-uniform distribution of
runoff producing areas was assumed to be responsible for a better per-
formance in dry catchments.

Uhlenbrock et al. (1999) found that they could achieve good predic-
tions with different parameterizations (i.e., different model structures) of
the HBV model framework (Bergstrom, 1995) applied to a mountainous
German catchment (39.9 km?). All structures showed identifiability prob-
lems with respect to their parameters, and, of more concern, they found it
impossible to refute (known) incorrect representations of the natural sys-
tem based on performance measures.

Perrin (2000; see also Perrin et al., 2000) compared 19 continuous
lumped models operating on a daily time scale on 429 catchments in
France (307), USA (82), Australia (26), the Ivory Coast (10) and Brazil
(4). These catchments varied widely in characteristics such as size (0.1-
50600 km®), mean annual precipitation (300-2300 mm) or baseflow in-
dex (0.1-98.5%). The general conclusion of his research was that com-
plex model structures outperform simple ones in the calibration stage of
a split-sample test, but not during validation on an independent data pe-
riod. He related this lack of robustness to model over-parameterization.

The overall result of these studies is that, when sufficient calibration
data are available, simple structures (commonly) perform as well as
complex ones (at least when combining calibration and simulation per-
formances) under humid (wet) conditions. However, simple models re-
duce the problem of lack of identifiability considerably and three to five
parameters seem sufficient to represent the (daily) streamflow behaviour
of a catchment. A simple routing component, which allows the split into
a quick and a slow contribution, appears sufficient for continuous model-
ling on a daily time-scale.



Rainfall-Runoff Modelling — A Review 19

Structures of this level of complexity are subsequently referred to as
parsimonious. A range of parsimonious structures is available, e.g.,
IHACRES (the Identification of unit Hydrographs And Component flows
from Rainfall, Evaporation and Streamflow data; Jakeman et al., 1990;
Jakeman and Hornberger, 1993), the Probability Distributed Model
(PDM; Moore, 1999), GR3J (the modele du Génie Rural a 3 (4,5) pa-
rameétres Journalier; Edijatno et al., 1999; Perrin, 2000), the Time Area
Topographic Extension (TATE; Calver, 1993; 1996) or the ABCD (Al-
ley, 1984) model structures, though the range of components used in
these structures is limited. The following overview therefore describes
common components, rather than specific model structures.

For this purpose, it is convenient to separate the hydrological proc-
esses occurring in the catchment into two domains, following a sugges-
tion by Becker and Nemec (1987, Fig. 2.1). They segment the catchment
into a domain of mainly vertical fluxes, more related to the water balance
or soil moisture accounting (SMA) part of the model structure, and a
domain of mainly lateral fluxes or flows, more related to the water trans-
port or routing component(s). The SMA component uses rainfall and po-
tential evapotranspiration (PE) or temperature as inputs and separates the
rainfall into losses through actual evapotranspiration (AE), storage, and
the part contributing to runoff, usually referred to as effective rainfall
(ER). A routing or water transport component represents the lateral flows
domain by adding translation effects to the ER to produce streamflow.
Possible approaches to represent these components are described below.
(A detailed mathematical description of selected components can be
found in Chapter 3).

2.4.1 Soil moisture accounting

The oldest approach to estimate runoff from a catchment is probably the
rational formula, dating back to the mid-19™ century. It is an event-
based approach relating rainfall and catchment area to runoff, using a
catchment-specific coefficient. The formula takes the form

0=C-r-A 2.1)
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where Q is the streamflow at the catchment outlet, A is the catchment
area, r is the rainfall, and C is the coefficient (e.g., Chow et al., 1988,
p.496ff.). One assumption in this approach is that C is a time-
independent coefficient. In reality it will depend, among other aspects,
on the antecedent moisture condition in the catchment and is often used
with other implicit assumptions, e.g., to relate rainfall of a given fre-
quency with runoff of the same frequency.

A simple representation of antecedent conditions is the widely used
Antecedent Precipitation Index (API, e.g., Shaw, 1994, p.335),

API, =k-API,_ +r,, (22)

where API, is the index 7 days after an initial starting value. Parameter k
accounts (mainly) for evapotranspiration and drainage losses over time
(typical values lie between 0.85 and 0.98). This equation assumes an ex-
ponential decay and is calculated using daily time-steps. This empirical
approach has been adopted for the calculation of effective rainfall, for
example in the IHACRES model structure (Jakeman et al., 1990; Jake-
man et al., 1994; see Chapter 3).

A more physically realistic representation of the water balance be-
came possible after Penman (1948) and Thornthwaite (1948) developed
methods to estimate actual evapotranspiration from meteorological data
and catchment (vegetation and soil) characteristics (Blackie and Eeles,
1985, p.314). The water balance could now be stated explicitly as

0(t)=r(t)—ae(t)- AS(t) (2.3)
where Q [L] is the streamflow, r [L] is rainfall, ae [L] is the actual
evapotranspiration and 4S5 [L] is the change in moisture storage in the
catchment. This water balance (in explicit or implicit form) is the basis
of most parametric approaches to SMA.

The simplest approach uses a simple store (bucket), representing the
storage capacity of the catchment (e.g., Manabe, 1960). Water is added
through precipitation and lost through evapotranspiration. Effective rain-
fall is produced through overflow of the store. This accounts for the pro-
duction of runoff after large events, when the catchment is sufficiently
wet. It does not account, however, for the fact that the catchment often
drains long into dry periods (Evans and Jakeman, 1998). This can par-
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tially be accounted for through the routing component, but is probably
more realistically addressed through the addition of a bottom outlet to the
store. Evans and Jakeman (1998) apply this approach in their catchment
moisture deficit (cmd) component.

As described earlier, evapotranspiration will occur at a high rate from
the soil while sufficient water is available, but at a much-reduced rate as
soil moisture is depleted. One representation of this is a structure consist-
ing of different stores in a vertical setting, each with a different AE rate
(Calver et al., 1993). Penman (1949) developed a model that can be rep-
resented as a two-layer structure from which evapotranspiration occurs at
potential rate from the top store, while it is reduced to one-twelfth of that
rate for the bottom store. The layers are connected through an overflow
mechanism.

Actual evapotranspiration, based on measurements of temperature or
estimates of PE, is often described using simple empirical functions (e.g.,
as used in IHACRES) or as a functional relationship to the actual soil
moisture content (e.g., PDM, HBV, Penman). This relationship can be
linear (e.g., PDM), linear with thresholds (e.g., Penman, HBV), or quad-
ratic (e.g., PDM).

A quick contribution of rainfall to runoff or to deep percolation, e.g.,
through infiltration excess overland flow or the effect of macropores, is
often present. This effect can be introduced in form of a constant fraction
of rainfall bypassing the soil moisture stores (Penman, 1949; Thorn-
thwaite and Mather, 1955; Alley, 1984; Jolley, 1995, p.402).

However, these quick contributions are dynamic and not constant in
time, as assumed with the bypass approach. This is considered in the Hy-
drologiska Byrans Vattenblanasavdelining (HBV; Bergstrom, 1995; Har-
lin, 1991; Seibert, 1997) model structure, where the production of effec-
tive rainfall is exponentially related to the actual content of a soil mois-
ture component.

A parallel distribution of stores with different capacities can be used
to account for the fact that different areas within a catchment will re-
spond differently to rainfall input. For example, areas in valley bottoms
or adjacent to rivers might become saturated relatively quickly, while
areas higher up the hillslope might never reach saturation and therefore
do not contribute to quick runoff. The idea of a probability distribution of
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storage capacities is described in detail by Moore and Clarke (1981;
Moore, 1985, see Chapter 3), but can also be found in many other model
structures, e.g., PDM (Moore, 1999), Xinanjiang (XNJ, Zhao and Liu,
1995), Variable Infiltration Capacity (VIC; Wood et al., 1992; Abdulla
and Lettenmaier, 1997), and Amo (Diimenil and Todini, 1992). This ap-
proach considers the heterogeneity of the catchment response without
allowing the heterogeneity to be mapped onto specific locations in the
catchment.

This mapping is possible within the Topmodel approach (Beven and
Kirkby, 1979; Beven et al., 1995). Topmodel is based on the earlier de-
scribed topographic control on water transport. It is derived from two
assumptions (Beven, 2000a, p.188ff.): (1) the dynamics of the saturated
zone can be approximated by successive steady-state representations of
the saturated zone on an area g draining to a point on a hillslope; and (2)
the hydraulic gradient of the saturated zone can be approximated by the
local surface topographic slope measured with respect to plan distance
tan /. Using these topographical characteristics in the form of an index
aftan B, and adding a third assumption, with respect to the distribution
of the lateral saturated transmissivity, leads to an index of hydrological
similarity, i.e., a soil/topographic index. This index can be applied to cal-
culate storage deficits at each point in the catchment and therefore to cal-
culate saturated contributing areas. This distributed approach is not con-
sidered further here. Although Topmodel can simply be viewed as a
lumped conceptual model, it is inconsistent with the simplification into
sequential domains as used in the model structures applied in this mono-
graph.

The interception process can be important in order to estimate the
overall water balance. It is therefore sometimes explicitly modelled, even
in simple model structures (e.g., Jakeman et al., 1994). The most com-
mon approach to represent interception is by using an overflow storage,
which usually additionally empties through evapotranspiration at the po-
tential rate (e.g., Moore, 1999). Gross precipitation enters the storage and
the overflow forms the net precipitation which reaches the soil moisture
accounting component of the model structure.
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Another approach was used by Jakeman at el. (1994), who simply
subtracted a constant value from the gross precipitation (1-4 mmd™") for
a forested catchment in the USA (Coweeta, North Carolina).

2.4.2 Routing

The soil moisture accounting component produces that part of the rainfall
that contributes to runoff, usually called effective or excess rainfall. One
or more routing components are typically applied to account for retention
and translation effects that occur when the contributing rainfall moves to
the catchment outlet via different pathways. Even in complex models,
these are often represented by relatively simple structures.

The conceptual element most commonly used to describe this transfer
from effective rainfall to runoff is the conceptual reservoir or conceptual
store. The behaviour of this reservoir can be described by combining a
storage function and a mass balance equation. The storage function de-
scribes the relationship between outflow of the reservoir and the amount
of water stored,

St)=a-Q"(¥) 2.4)

where S(¢) is the storage [L] at time #, Q(¢) is the outflow [LT™] at time ¢,
a is the storage coefficient [L'™™T"], and n is the coefficient of non-
linearity [-].

The main cause of the non-linearity of the relationship between rain-
fall and runoff is the antecedent moisture condition (Beven, 2000a, p.46).
If this can be accounted for in a non-linear SMA component, then it is
often possible to approximate the remaining transfer from effective rain-
fall to streamflow by a linear relationship (e.g., Jakeman and Hornberger,
1993). The reason why this is feasible is that errors in the calculation of
effective rainfall are usually much larger than those related to the as-
sumption of linear routing (Beven, 2000a, p.28). This leads to the most
common form of the conceptual reservoir, the linear reservoir, i.e, n = 1.
In this case, parameter a becomes the residence time T [T], and the out-
flow of the reservoir is directly proportional to the storage. The advan-
tage of the linear reservoir model is its computational efficiency. It can
be shown that the linear reservoir is identical to a first-order discrete-



24 Rainfall-Runoff Modelling

time Transfer Function (TF; Lees, 2000), which can be defined to repre-
sent any combination of linear reservoirs connected in parallel and/or
series, using partial fraction expansion to perform the decomposition
(Young, 1992).

The advantages of the representation of a linear conceptual reservoir
in TF form include the availability of powerful system identification
techniques for optimal parameter estimation, and increased structural
flexibility (Lees, 2000). One system identification technique that has
been successfully used to identify TF models in the context of rainfall-
runoff modelling is the Simple Refined Instrumental Variable technique
(SRIV, e.g., Young, 1985; Jakeman et al., 1990; Young, 1992; Young et
al., 1996).

The number of reservoir elements required is, amongst other things,
dependent upon the modelling time scale selected. A large number of
studies have shown that the most common configuration identified for a
daily time scale when using the SRIV technique, is two reservoirs in par-
allel (e.g., Young, 1992; Jakeman and Hornberger, 1993; Lees, 2000).
This structure is commonly used in rainfall-runoff modelling (Moore,
1999), although the use of the TF approach ensures that a parallel struc-
ture will not be used unless the data support this level of complexity, and
indeed conversely more complex structures are sometimes identified
(Lees and Wagener, 2000a, 2000b). In the common situation where a
parallel structure is objectively identified, the two reservoirs can be con-
sidered to represent a quick and a slow response component. These are
often interpreted as quickflow and baseflow processes, although these
two components aggregate a number of hydrological pathways as de-
scribed earlier (Hornberger et al., 1998; Ward and Robinson, 2000). A
single reservoir is usually sufficient in the case of a coarser discretization
in time (e.g., monthly, Jolley 1995) or when a baseflow component is
absent (e.g., in the case of ephemeral rivers [Jakeman et al., 1994]).
Physical realism of the selected routing structure is an important criterion
if the final aim of the modelling exercise is regional transfer of model
parameters.

If the slow response component is mainly associated with contribu-
tions from groundwater flow, use of a linear approach assumes that the
outflow of the groundwater reservoir is directly proportional to the hy-
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draulic head (Hornberger et al., 1998, p.164-165). Cases where this as-
sumption is valid include confined aquifers with constant thickness
(Darcy's law), and unconfined aquifers where the variation in flow depth
is small, i.e., the impermeable layer is far below the riverbed (Chapman,
1999). However, Wittenberg (1999) found that the behaviour of shallow
groundwater reservoirs might be more realistically represented by a non-
linear reservoitr.

Additional evidence for the need to use non-linear reservoirs is shown
by the fact that in some cases three parallel linear reservoirs are required
to adequately fit the catchment response (Lees and Wagener, 2000b,
2000c¢). In these cases, one store normally is used to represent the quick
response, while the slow response is divided into two stores with differ-
ent residence times. One interpretation of this result is that two inde-
pendent aquifers drain to the river (Wittenberg, 1999). This is often
unlikely, and the use of a non-linear reservoir to represent the slow re-
sponse, in combination with a linear reservoir for the quick response,
may be more reasonable.

It has also been observed that UK chalk aquifers show a non-linear
transmissivity (Arch, 1997). Fissures are the main cause of high hydrau-
lic conductivity of the chalk. These are generally solution features, most
extensively developed near the active zone of water table variation.
However, these fissures become more and more closed with depth due in
part to increasing compression, leading to a decrease in permeability.

The fact that some catchments show sub-surface losses can also be
accounted for through an appropriate routing component. One possibility
is a linear reservoir with different outlets (e.g., Chapman, 1999; Suga-
wara, 1995; Moore, 1999). The outflow from the bottom outlet is the
portion of effective rainfall that does not contribute to streamflow but
accounts for the subsurface losses from the catchment.

2.5 Local Modelling Procedures

Various modelling procedures for the use of conceptual rainfall-runoff
models have been suggested (e.g., Beck, 1981a; Dooge, 1981; Anderson
and Burt, 1985). Local procedures vary with the particular circumstances
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of each case. However, a number of steps can commonly be found in
most modelling procedures when applying a rainfall-runoff model to a
particular catchment: these are model structure selection, sensitivity
analysis, calibration, validation and prediction (Fig. 2.2).

2.5.1 Model structure selection

A model structure appropriate for the envisaged modelling purpose, the
given catchment characteristics and (time-series) data has to be selected
(Wagener, 1998). The modelling purpose defines aspects such as which
hydrological processes need to be considered (e.g., is a simulation of in-
terflow processes required for water resource assessment at a monthly
time-step?) and what modelling time step is required. The available data
enable a certain degree of causality of process description to be used and
allow a particular minimum temporal resolution. The catchment charac-
teristics (and the hydrologist’s perception of the hydrological system) are
important criteria to determine what type of process description is suit-
able. However, subjective criteria such as the availability and experience
with a particular modelling code, i.e.,, a set of mathematical equations
implemented in a piece of software, or the cost to purchase or develop a
code might be of equal importance in the decision making process.

Woolhiser and Brakensiek (1982, p.15) conclude that objective meth-
ods of choosing the best model (structure) have not yet been developed,
so this choice remains a part of the art of hydrological modelling. How-
ever, future modelling tools might include knowledge-based approaches
to support the hydrologist with respect to selecting an appropriate model
structure (Wagener, 1998).

2.5.2 Sensitivity analysis

Sensitivity analysis is an investigation of how sensitive the model output
is to changes in the parameter values. It can also be used to test the influ-
ence of other aspects such as initial or boundary conditions. The analysis
can take place at two different stages within the modelling process.

First, it can be placed before the calibration step to identify the most
important parameters, and therefore model components, with respect to
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Fig. 2.2 Conventional (simplified) procedure for local rainfall-runoff modelling

the model’s performance. Insensitive parameters can then be fixed to a
suitable value to decrease the dimensionality of the calibration problem
(e.g., Mein and Brown, 1978; Gupta and Sorooshian, 1983; Abdulla et
al., 1999; Bastidas et al., 1999). The model performance will often only
decrease marginally when this step of complexity reduction is performed
sensibly, i.e., when parameter interaction is considered (Bastidas et al.,
1999; Wagener et al., 1999; Appendix A). Osidele and Beck (2001) put
this approach into a formal framework of hypothesis testing for model
structure identification.

The second option is to perform a sensitivity analysis after the cali-
bration step to estimate whether the parameters are identified well or
poorly, which is indicated by the response surface slope (Clarke, 1973).
The response surface is the topographic surface defined in the n + -
dimensional space by a criterion of model performance (objective func-
tion), plotted with respect to the n model parameters. Sorooshian and
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Arfi (1982) and Sorooshian and Gupta (1995) describe the use of Taylor
series expansion to approximate the response surface around a best pa-
rameter set to identify the region of indifference, the range in which a
parameter can be changed without effect on the model output.

Possible techniques for pre- or post-calibration sensitivity analysis are
the perturbation, the factorial, the Fourier Amplitude Sensitivity Test
(FAST), or the Regional Sensitivity Analysis (RSA) methods. Bastidas et
al. (1999) provide an overview of these techniques and examine their
usefulness for analysing large-scale hydrological models. The common
weakness of all these approaches is that they assume independence be-
tween parameters, an assumption rarely justified in RR modelling.

The approaches to sensitivity analysis most often applied to RR mod-
els are probably the perturbation and the RSA methods. In the first ap-
proach, individual parameters are perturbed over their feasible range us-
ing a particular step size, while the remaining parameters are kept fixed
at optimal values. The effects of these perturbations on the model output,
e.g., in the form of changes in a particular OF, can then be measured. An
application example of this approach can be found in Rogers et al.
(1985). This approach however assumes that a single best parameter set
can be estimated, an assumption that is questionable for different reasons
as explained below. The RSA approach (examined in detail in Chapter 3
as an option within the Monte Carlo Analysis Toolbox, Wagener et al.,
2002a) in essence splits parameter sets into one group, which results in
model simulations in accordance with observed system behaviour, and a
second group for which this is not the case. Differences in the resulting
two distributions for individual parameters suggest that the model per-
formance is sensitive to changes in this parameter.

2.5.3 Calibration

As noted earlier, one criterion for a model structure to be classified as
conceptual is the requirement that some of its parameters must be esti-
mated through calibration against observed system output. This can be
achieved in a single step in cases where the parameters enter the model
linearly, i.e.,
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Q=0M(I) (2.5)

where Q is the streamflow (or any other system output), & is the pa-
rameter vector, M is the model structure (i.e., a collection of functions
which can be linear or non-linear), and / is the model input (e.g., pre-
cipitation). Solutions can be derived using for example Single Value De-
composition (SVD; Gershenfeld, 1999, p.123).

However, in most RR model structures, the parameters appear inside
the constituent functions, i.e., they enter non-linearly,

Q=M (6,1 (2.6)

The consequence is that an iterative solution is required and it is not pos-
sible to determine with certainty whether the best solution has been
found (Gershenfeld, 1999, p.123).

A large number of calibration procedures to find such a solution in an
iterative fashion have been tested over almost four decades (probably
starting with Dawdy and O'Donnell, 1965). While varying greatly in de-
tail, they generally consist of the following four components:

e objective function,

e calibration data,

e adjustment strategy,
e termination criterion.

2.5.3.1 Objective function

Visual inspection of calculated and observed hydrographs is a very im-
portant tool in any calibration procedure. However, for longer periods of
manual calibration and for automatic calibration in general, one must
specify an aggregated measure of the model performance, a so-called
objective function (also sometimes called loss function). In RR modelling
these are either measures derived from statistics or based on hydrological
aspects of the model performance.

Gershenfeld (1999, p.116) describes how statistical performance
measures can be derived from a Bayesian basis by asking what is the
most likely parameter set &, given the selected model structure m and
state observations d, in other words, the parameter set @ that can be cho-
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sen to maximize the probability p(@1d,m). Using Bayes rule, this task
can be written as

likelihood - prior
max

max p(81d,m)= (2.7)

o evidence

The three components form a likelihood measure, which estimates
how well the model predictions and system observations agree with
(based on a specific error model), prior knowledge on the suitability of
particular parameter values within the selected model structure, and the
evidence that measures how well a particular model structure can repro-
duce the data (considering all possible models, i.e., parameter sets and
model structures).

Assuming (1) that only one model structure is examined, i.e., drop-
ping the conditioning on m; (2) that a prior on the likelihood of the data
set is not considered (only required if different data sets of varying de-
grees of quality are used) and (3) a uniform prior distribution on the
model parameters, leads to a maximum likelihood (ML) approach (Ger-
shenfeld, 1999, p.117),

max p(@id)= max p(d16) (2.8)

Assuming further that (1) the residuals, i.e., the differences between
observed and calculated system output, are independent and identically
distributed (i.i.d.), (2) the residual distribution has a homogeneous vari-
ance, and (3) the residual distribution follows a normal distribution with
mean zero, leads to the simple least squares estimator (SLS; Gershenfeld,
1999, p.118). In RR modelling the SLS most often appears in form of
the root mean squared error (RMSE), which has the advantage of being
in the same units as the observed system output,

RMSE(6) = Z -$,(0)) (2.9)

where §,(8) is the calculated flow at time step ¢ using parameter set &,
while y, is the observed flow at time step ¢. Variable N is the number of
time steps considered for analysis.
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Nash and Sutcliffe (1970) derived a normalized form of this measure,
the Nash-Sutcliffe efficiency (NSE), which allows, for example, com-
parison of a model’s performance over different catchments,

(v, -5, ©®)

=1
N

2.0

=1

z

NSE(6)=1- (2.10)

where y is the mean of the observed flows (Legates and McCabe, 1999).

One problem with these two measures is their use of squared residu-
als which emphasizes the performance during high flow periods (Legates
and McCabe, 1999; Wagener et al., 2002a, 2003b). Sorooshian and
Dracup (1980) remarked that the errors in the actual flow would be het-
eroscedastic under the reasonable assumption that the absolute uncer-
tainty in the rating curve will be highest at the high flow end. They sug-
gested transforming the (input and output) data accordingly using a Box-
Cox transformation. This transformation can be done explicitly, i.e.,
transforming the data before calculating the OF, or implicitly, i.e., as an
integral part of the OF (see equations for both approaches in Chapter 3).
They derived the Heteroscedastic Maximum Likelihood Error (HMLE)
measure, which does the latter. The general result of using the HMLE is
a more balanced performance over the whole hydrograph and a reduced
performance during periods of high flows compared to the RMSE (e.g.,
Yapo et al., 1996; Gupta et al., 1998).

A wide range of statistical and hydrological OFs is available. How-
ever, while different studies have tried to assess the suitability of differ-
ent performance measures (e.g., Martinec and Rango, 1989; Diskin and
Simon, 1977; ASCE, 1993; Gupta et al., 1998), it ultimately remains a
subjective decision of the hydrologist to select one or more measures,
suitable for the task at hand.

Martinec and Rango (1989) and Atkinson (2001) list examples not
purely derived from statistical considerations. They are for example OFs
in the form of deviation of runoff volumes or of the aggregated perform-
ance over different time-scales (annual or seasonal). Another example is
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the use of flow duration curves to judge the quality of the model predic-
tions (see Chapter 5 for example plots).

It has become increasingly apparent that the various OFs emphasize
different aspects of the hydrograph and yield different optimal parameter
sets. This fact demonstrates one of the main problems in RR modelling,
the presence of model structural inadequacies. Despite a different under-
lying assumption, current model structures are not capable of reproduc-
ing all aspects of the hydrograph with a single parameter set (see Yapo et
al., 1996; Gupta et al., 1998; Boyle et al., 2000; Wagener et al., 2001).
The hydrologist must sacrifice the fit to one aspect of the hydrograph in
order to fit another. A significant trade-off is found between the fit to
high and to low flows. Figure 2.3 shows a plot of simulation results from
Monte Carlo sampling (based on uniform distributions) of the parameter
space. The RMSE during high flow periods (Fy) is plotted against the
RMSE during low flow periods (F.), separated by a simple threshold
" flow value (the mean observed flow), for a typical Conceptual RR (CRR)
model (Wagener et al., 2000). A clear trade-off curve between the two
criteria is visible, indicating structural inadequacy. Gupta er al. (1998)
argued from similar observations that the problem of RR model calibra-
tion is inherently multi-objective and that the philosophy of calibration
has to be rethought. This problem is analysed in detail in Chapter 4.

There are also different ways of combining multiple-objectives into a
single value, which then allow the use of a conventional single-objective
optimization algorithm. Seibert (2000) combines two OFs, measuring the
fit to streamflow and groundwater levels, into a single fuzzy measure.
The result is reasonable, but gives sub-optimal performances of the HBV
model structure with respect to both measures. Madsen (2000a, 2000b)
also combines two OFs (the RMSE for flows above and below a speci-
fied threshold). His combination measure uses the Fuclidean distance to
achieve a trade-off between the two OFs. This allows the estimation of
the best parameter set with respect to each OF, i.e., the extremes and all
those values that lie along the trade-off front between them, similar to the
one found in Fig. 2.3. This approach is however less efficient with re-
spect to the number of required function evaluations than the use of a
multi-objective algorithm (Bastidas, 1998; Vrugt ez al., 2003b).
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Fig. 2.3 Model population resulting from a Monte Carlo simulation plotted in the 2-
dimensional OF space. F;, is the RMSE for the part of the hydrograph classified as low
flow; Fy is the RMSE for the high flow part. The optimum value for both functions is in
the bottom left corner.

2.5.3.2 Calibration data

The quality of any calibration procedure is very much dependent on the
quality and quantity of the time-series data used. The quality of the data
is a function of the amount of information (with respect to identifying the
model parameters) and of the noise present. The quantity required seems
to depend on the complexity of the model structure (in terms of number
of parameters which need to be estimated) and on the quality and charac-
teristics of the data. Franchini and Pacciani (1991) found that the re-
quired length of the calibration data was directly related to the number of
parameters to be optimized. Yapo et al. (1996) found that 8 years of data
are required to make the 13 estimated parameters of the Sacramento
model structure independent of the actual period selected, while 3 years
of data are suggested to be sufficient for the 6-parameter IHACRES
model structure (Jakeman et al., 1993). A shorter time-series (minimum
one complete year for continuous modelling) might suffice if it is of high
quality and has a high degree of hydrologic variability. Wet years, re-
quired to activate all parameters (e.g., thresholds), seem to be of particu-
lar importance for the shape of the response surface (Gupta and So-
rooshian, 1983; Sorooshian ez al., 1983).
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2.5.3.3 Adjustment strategy

Initial approaches to find a suitable parameter set used manual, trial-and-
error techniques. This technique has evolved over a long time into very
sophisticated strategies that commonly use a variety of performance
measures and visual comparison of results to guide the search. A very
advanced manual procedure is the one used by the National Weather
Service (NWS) to calibrate the Sacramento Soil Moisture Accounting
(SAC-SMA) model structure (e.g., Brazil, 1988; Boyle et al., 2000). This
procedure uses different levels or stages of calibration. Initial parameter
ranges are derived from experience with catchments similar in geology,
hydrology and climatology. Some of the parameters are then treated as
independent entities and adjusted using only particular periods of the
hydrograph, e.g., slow recessions to derive baseflow-related parameters.
Advanced visualization tools support this process. Complex parameter
interactions are then considered in the final and most difficult stage. Re-
lying on visualization, a range of statistical and hydrological criteria, and
experience, the hydrologist has to find the miost suitable parameter set
that achieves a suitable trade-off in the fit between different periods of
the hydrograph.

While being able to produce excellent results, the manual approach
has a range of serious shortcomings. Boyle et al. (2000), for example,
report that training for users of the SAC-SMA model structure can re-
quire several months and that the calibration of the SAC-SMA to a single
catchment may take several hundred hours of work. Manual calibration
requires comprehensive understanding of the catchment runoff behaviour
and the model structure, and is labour intensive. The termination of the
calibration process is based on the subjective decision of the hydrologist
and therefore so is the result, and it is difficult to transfer the expertise to
another person.

The lack of speed and objectivity in manual calibration led to the intro-
duction of automatic adjustment strategies into RR modelling (Dawdy
and O'Donnell, 1965).

Initial approaches used local schemes. These start at a single point,
i.e., a single parameter set in the feasible parameter space, and follow a
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programmed set of rules to find steps of improvement until a specified
termination criterion is satisfied. The first algorithms that were applied
used only estimates of points on the response surface, i.e., they were di-
rect methods. Popular examples are the downhill simplex (Nelder and
Mead, 1965; Gershenfeld, 1999, p.157ff.), the pattern search (Hooke and
Jeeves, 1961), and the rotating directions method of Rosenbrock (1960).
Potentially more powerful than direct methods are gradient ap-
proaches that also use the first and/or second derivative(s) of the re-
sponse surface (Bard, 1974, p.117). They obtain more information about
the response surface at every iteration step, i.e., the downhill directions at
a particular point are known, and should therefore converge faster (Hen-
drickson er al., 1988). Derivatives can be obtained through numerical
approximation (Hendrickson et al., 1988) and even analytical solutions
are possible (Gupta and Sorooshian, 1985b). Despite threshold parame-
ters usually present in parametric model structures, Gupta and So-
rooshian (1985b) derived analytical derivatives by computing different
derivatives for different modes: one mode if the threshold were not ex-
ceeded and another if it were. Hendrickson et al. (1988) concluded that
gradient methods do not perform better than direct approaches in the
presence of discontinuities and non-smooth response surfaces typically
found in parametric model structures. Moore and Clarke (1981) avoided
discontinuities on the response surface caused by thresholds by using a
probability distribution of storage elements, instead of individual stores.
This allows for the use of a derivative-based optimization approach.
However, as early as 1970, Ibbitt (1970) concluded that the use of lo-
cal approaches is hindered by the presence of multiple response surface
optima. He suggested using random searches to identify promising start-
ing points, a difficult task at that time due to the lack of computer power.
His conclusions were subsequently confirmed by other studies (e.g.,
Johnston and Pilgrim, 1976; Pickup, 1977; Duan et al., 1992).
Approaches to prevent local search procedures from getting stuck at
minor (local) optima include the addition of concepts analogous to mo-
mentum or temperature to the original algorithm. Adding momentum, for
example, to a downhill simplex means adding a fraction of the change of
the previous move to the current move (Gershenfeld, 1999, p.161). This
can help the simplex avoid minor optima, but also reduces the conver-
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gence speed. Simulated annealing (Kirkpatrick ez al., 1983; Thyer et al.,
1999) adds the idea of temperature, to the vertices of a downhill simplex.
The vertices vibrate as a function of the current temperature value; this
vibration decreases in the course of the optimization, therefore avoiding
the problem of getting stuck at local optima in the early stages of the
search.

Sorooshian and Gupta (1995) give a summary of reasons for difficul-
ties in automatic calibration with respect to the response surface of pa-
rametric structures:

o The parameter space contains several regions of attraction, i.e.,
several clusters of numerous local optima (see for example Kuz-
cera, 1997).

® The response surface is non-smooth and often shows discontinui-
ties due to the use of thresholds in the model structure. The same
is true for the first and second derivative of the response surface.

o The different parameters are not equally sensitive and show a
great deal of (often non-linear) interaction.

e The response surface often reveals a non-convex shape around
the global optimum.

These findings led to the investigation of so-called global search
algorithms in RR modelling (e.g., Brazil, 1988; Wang, 1991; Duan et al.,
1992). Global approaches are, among others, pure random sampling
methods, adaptive random methods, and evolutionary methods.

Pure random methods are based on sampling a large number of
points in the parameter space. The most common approach used in RR
modelling, usually as a basis for a detailed uncertainty analysis, is simple
random sampling (e.g., Beven and Binley, 1992; Wagener et al., 2003b).
In this approach, a (usually) pre-selected number of parameter sets are
drawn randomly from prior distributions. Kuczera and Parent (1998)
suggest that for continuous multivariate problems only two prior
distributions can practically be used. These are uniform or multinormal
distributions. However, due to lack of knowledge about the true
distribution, practical problems of implementation (Kuczera and Parent,
1998) and the fact that the parameter distributions are often highly
skewed, uniform distributions are usually assumed (e.g., Beven and
Binley, 1992; Freer et al., 1996; Uhlenbrock et al., 1999). This approach
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is quite inefficient and a large number of points have to be sampled and
evaluated, especially if high parameter interaction produces a response
surface with narrow curving ridges, which can be computationally very
demanding in high-dimensional spaces (e.g., Kuczera and Parent, 1998).
Schemes have been introduced to ensure that sampling covers the whole
search space. Examples are stratified sampling (Press et al., 1992,
p.317ff.), Latin Hypercube Sampling (LHS, McKay et al., 1979) or clus-
tering methods (Ozdamar and Demirhan, 2000), with the latter requiring
a minimum user-specified Euclidean distance between the sampled
points.

These methods however do not make use of any information derived by
sampling the parameter space. In contrast, adaptive random methods are
based on the idea of resampling promising areas in greater detail and
therefore narrowing down the search space to one or more small areas
(e.g., Spear et al., 1994; Schiitze et al., 2002). Examples are the Adaptive
Random Search (ARS, Masri et al., 1980; Pronzato et al., 1984; used
e.g., by Brazil and Krajewski, 1987; Brazil, 1988) and the Controlled
Random Search (CRS, Price, 1987; used e.g., by Klepper et al., 1991)
methods. :

Evolutionary algorithms are probably the most commonly applied
global optimization methods in RR modelling, apart from the Uniform
Random Search (URS). The main approaches found are Genetic Algo-
rithms (GA, Goldberg, 1989) and the Shuffled Complex Evolution Algo-
rithm (SCE, Duan et al., 1992; 1993; 1994; Sorooshian et al., 1993).
These two approaches randomly sample an initial parameter population
(usually based on a uniform prior distribution) and then improve its
members by different evolution schemes.

The GA uses a number of steps that are related to the theory of evolu-
tion to improve a model population. These are usually fitness, reproduc-
tion, crossover and mutation steps (e.g., Gershenfeld, 1999, p.164ff.).
The steps allow the algorithm to be very flexible, but also make it diffi-
cult to find the optimum algorithm parameter settings for a particular
problem. A GA is therefore not a single algorithm, but a generic tool.
Wang (1991) introduced the use of GAs to RR modelling, applying the
method to optimize the Xinanjiang model structure.
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The SCE is probably the currently most popular algorithm for the
calibration of parametric RR model structures. It combines elements of
the earlier-mentioned downhill simplex and CRS, with competitive evo-
lution (Holland, 1975) and the idea of complex shuffling. This algorithm
is outlined in Chapter 3. It has been successfully compared to other algo-
rithms in a range of studies, for example to a multi-start simplex (Gan
and Biftu, 1996; Kuczera, 1997), a downhill simplex (Gan and Biftu,
1996; Abdulla et al., 1999), to simulated annealing (Abdulla et al., 1999;
Thyer et al., 1999); to a multi-start quasi-Newton approach (Kuczera,
1997), and to a GA (Kuczera, 1997). The main reason for its good per-
formance is the use of complexes that share information, thereby ensur-
ing that the search is really global.

These adaptive random search and evolutionary methods are applied
to find a global optimum. In contrast to the pure random search ap-
proaches, they do not produce an estimate of the resulting posterior pa-
rameter distributions, a requirement for an uncertainty analysis. Pure
random search approaches on the other hand can be very inefficient and
require a very large number of sampled points in higher dimensional
spaces (Kuczera and Parent, 1998). The use of a Markov Chain Monte
Carlo (MCMC) approach which adapts to the true posterior distribution
using a random walk (or an independence) chain (e.g., Kuczera and Par-
ent, 1998; Campbell et al., 1999; Bates and Campbell, 2001; Vrugt et al.,
2003a) might be more efficient in those cases. One of these approaches is
the Metropolis algorithm (Metropolis et al., 1953) which uses a random
walk scheme that always accepts better performing parameter sets, but
also accepts worse sets with a particular probability (e.g., Kuczera and
Parent, 1998).

Multi-objective calibration procedures (required when using multiple
OFs due to multiple output variables and/or structural inadequacies, as
mentioned earlier) often utilize population evolution algorithms to esti-
mate the so-called Pareto set. A parameter set is Pareto optimal (also
termed noninferior or nondominated) if improving one OF leads to a re-
duction in performance with respect to at least one of the remaining OFs
(Chankong and Haines, 1993).

Both the GA and the SCE can be adjusted to perform in a multi-
objective mode in order to estimate a Pareto set. Yapo et al. (1998) in-
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troduced a multi-objective modification of the SCE algorithm, called
MOCOM (Multi-Objective Complex Evolution Method). MOCOM is a
general-purpose global optimization algorithm capable of optimizing a
model population simultaneously with respect to different OFs in a single
optimization run. A detailed description and explanation of the method
are given in Yapo et al. (1998) and Bastidas (1998); some details can
also be found in Chapter 4. Liong et al. (2001) and Khu (1998) show
how GAs can be applied in a multi-objective fashion to derive a Pareto
set for RR models. Vrugt er al. (2003b) recently developed a new multi-
objective algorithm which also allows for the consideration of parameter
uncertainty. The algorithm is called Multi-Objective Shuffled Complex
Evolution Metropolis Algorithm (MOSCEM-UA)

It might sometimes be more appropriate to estimate some parameters
independently using manual procedures since they are difficult to cali-
brate in an automatic way. A typical example is the slow response reces-
sion constant k(slow) [T™'] usually present in one form or another in
structures for continuous modelling at a daily discretization which can be
derived from the recession slope, i.e., k(slow) = q.,1/q; (e.g., Boyle et al.,
2000).

2.5.3.4 Termination criteria

Manual calibration is terminated when the hydrologist is satisfied with
the model performance, a subjective decision based on personal judge-
ment. More objective criteria are commonly used to terminate automatic
calibration procedures. These are (Sorooshian and Gupta, 1995): (a)
function convergence, which stops the calibration when the improvement
in the OF value is below a user selected threshold value over a number of
iteration steps; (b) parameter convergence, which analyses whether the
best parameter estimate remains within a (again user selected) fraction of
its feasible range (for adaptive or evolutionary approaches); the search is
terminated if all parameters involved remain in this fraction over a num-
ber of iterations; and (c) maximum number of iterations, a criterion often
used for pure random search approaches. It might also be used as a safety
mechanism to avoid excessive model runs when the two other conver-
gence criteria are not fulfilled.
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Isabel and Villeneuve (1986) emphasize the importance of a strict
function convergence criterion. They found numerous sills when plotting
the number of simulations against the OF values of the currently best
parameter set (see also Pickup, 1977). A threshold value that is too large
can therefore lead to premature convergence of the calibration procedure.

Sorooshian et al. (1983, 1993) suggest parameter convergence as the
most suitable termination criterion. Their research showed that, while OF
values often stabilize relatively quickly, the actual parameter values keep
changing considerably (Sorooshian er al., 1983), indicating strong pa-
rameter interaction.

2.5.4 Validation

A step often included in modelling procedures is validation or verifica-
tion (e.g., Dooge, 1978; Beck, 1981a, Beven, 2000a, p.4). However, the
definitions of what this step actually represents vary considerably (An-
derson and Bates, 2001). Very often, validation is taken to mean testing
the model on a data set independent from the one used for calibrating the
model structure, commonly in the form of a split-sampling test where a
data set is divided into two periods. This is however sometimes consid-
ered a minimum requirement for the suitability of a model (Klemes,
1986).

Kleme§ (1986) proposed a more thorough, hierarchical scheme of
model validation. It contains four stages in which the model’s perform-
ance to predict streamflow is tested: (1) a simple splir sample test as de-
scribed earlier; (2) a proxy-basin test, testing the capability of the model
to predict flow in a hydrologically similar catchment; (3) a differential
split sampling test, where the two data periods selected have different
hydrological characteristics (e.g., a dry and a wet period); and (4) a
proxy-basin differential split sampling test, combining tests (2) and (3).
The idea is to test the ability of a model to perform a specific task, not to
check its hydrological soundness (Klemes, 1986).

Applications of this type of validation using only streamflow (e.g.,
Franchini and Pacciani, 1991; Refsgaard and Knudsen, 1996;
Mroczkowski et al., 1997; Seibert, 1999a) have shown that it is often not
very discriminative since different models or even model structures pass
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when using the same type of data. Mroczkowski et al. (1997) subse-
quently added another stage by testing the performance with respect to
additional output variables (stream chloride and groundwater). In one
case they found that all three variables were required to objectively show
that a model failed the validation.

A slightly different approach is the analysis of the residual properties
(e.g., Beck, 1981a, 1981b), assuming the hydrological model behaves
like a regression model (e.g., Troutman, 1982). The choice of a particular
error model, made implicitly when selecting an OF, often allows analysis
of the residuals in order to establish whether they conform to the assump-
tions made. This can be used to show that a particular error model is (sta-
tistically) more appropriate (Yapo et al., 1996) or that the model did not
extract all available information from the data. The detection of a corre-
lation between residuals and a forcing variable might for example indi-
cate that not all the information in the data is used and another model
component could be identified (Beck, 1981a).

The validation approaches described have, however, a scientific basis
that is dubious if the idea is to show that a particular model is correct.
Oreskes et al. (1994; see also Beven 2002) argue that this idea is ill
posed and should be replaced by mere model evaluation, leading to the
rejection of all those models which are unsuitable. Different hydrologists
have adopted the idea of a more Popperian approach (Popper, 2000) in
order to derive a more scientific basis for hydrological modelling (e.g.,
Wagener et al., 2003b). Popper (2000) suggested scrutinizing theories
(models) using all available means and rejecting those that fail. However,
verification or validation of a theory as the true one is logically not pos-
sible. This topic is discussed in more detail in Chapter 4.

2.5.5 Prediction — including uncertainty

Uncertainty is unfortunately an integral part of any hydrological model-
ling undertaken. It is therefore important to analyse this uncertainty and
its effect on the predicted output variable.

The uncertainty in the modelling process has four major components
(e.g., Kitanidis and Bras, 1980a, 1980b; Melching, 1995; Hgybye, 1996;
Bastidas er al., 1999; MclIntyre et al., 2002):
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Data uncertainty, i.e., errors introduced by the measurement it-
self, by the temporal and spatial discretization of measurements
(e.g., the use of point measurements to estimate areal average
values of a variable) or by data pre-processing;

Model structural uncertainty, i.e., simplifications and/or inade-
quacies in the description of real world processes. The unavoid-
able deficiencies in the model structure often result in the prob-
lem that different parameter sets, (i.e., different models) fit one
mode of system response at the expense of other response modes
that are reproduced less accurately (Gupta et al., 1998);

Model specification uncertainty, i.e., the inability to converge to
a single best model using the information provided by the avail-
able data. This uncertainty results mainly from data and model
structure uncertainties (Melching, 1995) since (a) the calibration
procedure propagates data uncertainty into the model parameters
leading to similar model performance with erroneous data and
parameters as with true data and parameter values (e.g.,
Melching et al., 1991); and (b) characteristics of the model struc-
ture such as thresholds and interacting parameters result in mul-
tiple regions of attraction in the model space and in multiple lo-
cal optima within those regions, making it difficult to identify
the globally optimum model (Duan ez al., 1994).

Uncertainty due to unknown initial conditions, i.e., the states of
the model (e.g., moisture content of stores) are usually unknown
at the beginning of any calibration or simulation period. How-
ever, this uncertainty can often be minimized either by calibrat-
ing the initial conditions or by using a warming-up period, which
allows the internal states to adjust.

Additionally, one has to keep in mind that even if those uncertainties

could be removed, there would still be randomness in the natural proc-
esses themselves (Melching er al., 1990). This randomness introduces
uncertainty that cannot be reduced. It is assumed here that this uncer-
tainty can be associated with data uncertainties if sufficiently long data
records are used.
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Different approaches have been proposed to propagate the uncertainty
present in the different components of the modelling process into the
model predictions (e.g., Keesman, 1989; Melching et al., 1990; Beven
and Binley, 1992; Melching, 1995; Hgybye, 1996; Gupta et al., 1998).

Conventional approaches to estimate prediction uncertainty, such as
first-order analysis, estimate the mean and variance of the predicted vari-
able (e.g., streamflow) by propagating the mean and variance of input or
parameters through the model (Melching, 1995). Hgybye (1998, p.16)
notes that this approach gives accurate predictions of the first two mo-
ments of the output variable in cases where the non-linearity of the
model and/or the uncertainty of the random variables/parameters are
small. However, these assumptions, and the assumption of a multinormal
distribution around all uncertain variables/parameters involved, are often
not suitable for hydrological models, due for example to the presence of
threshold parameters (e.g., Parent and Kuczera, 1998).

Various researchers subsequently introduced methods based on
Monte Carlo sampling that relax the assumptions inherent in the ap-
proaches described above. These examples are more or less based on the
RSA methodology described earlier. Examples are the Generalised Like-
lihood Uncertainty Estimation (GLUE, Beven and Binley, 1992; Freer et
al., 1996), the Monte Carlo Set Membership (MCSM, Keesman, 1989;
Van Straten and Keesman, 1991) and the Prediction Uncertainty (PU,
Klepper et al., 1991) approach. The most popular of these approaches for
RR modelling is probably GLUE (e.g., Uhlenbrock et al., 1999, Lamb et
al., 1998). The use of GLUE to estimate prediction uncertainty is an op-
tion in the Monte Carlo Analysis Toolbox described in Chapter 3 in de-
tail.

However, the methods described above analyse and propagate pa-
rameter uncertainty. Yapo et al. (1996) concluded from their research
“that the factor currently limiting model performance is model (struc-
tural) error”. It is therefore advisable to explicitly address the uncertainty
originating from model structural inadequacies and errors. The nature of
model structural error does not allow the estimation of a probabilistic
structure (e.g., in the construction of an appropriate OF) to describe it,
because the errors are not random in a probabilistic sense (Gupta et al.,
1998). Structural uncertainty does, for example, become visible since
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different parameter sets are required to enable the model to reproduce
different aspects of the hydrograph.

Shamseldin et al. (1997) compared two approaches to combine the
output of different model structures into a single prediction. The methods
investigated were a weighted average (with the normal average as a spe-
cial case) and an ANN approach. The idea was that the performance of a
single model structure might vary with the response mode of the system
modelled, and a combination of different model structures might be more
reliable. However, the results were mixed and gave no clear indication
whether the approach performed generally better than simply using a
single model. The main limitation was that all weights were constant in
time. An approach with time-varying weights, which increase in periods
for which a particular model structure is more suitable, might be more
useful.

See Beck (1987), Melching (1995) and MclIntyre et al. (2002) for a
more detailed description of methods for uncertainty analysis and propa-
gation in hydrological modelling.

2.6 Regional Modelling Procedures

Flow predictions are often required for ungauged catchments, which lack
or have very limited records of flow measurement. This is a common
problem, even in countries with extensive measuring networks such as
the UK with over 1400 gauging stations (Sefton and Howarth, 1998). A
local approach, requiring parameter estimation through calibration
against observed flow, is not applicable in those circumstances and
alternatives have to be found.

The main approaches to estimate conceptual model parameters are
through physical reasoning (e.g., Koren et al., 2000), statistical analysis
(e.g., Jakeman et al., 1992), or a mixture of both. Physical reasoning in
this context means that parameters are derived from catchment proper-
ties, either directly or through empirical equations.

Various authors (e.g., Koren et al., 2000; Duan et al., 2001; Atkinson,
2001) have promoted the idea that conceptual model parameters can,
more or less, be estimated directly from catchment (mainly soil) proper-
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ties. Koren ez al. (2000) suggest a procedure based on this assumption for
the Sacramento model structure used by the National Weather Service in
the USA (the paper by Duan ef al., 2001, contains the same example with
increased detail). The approach by Atkinson (2001) is basically identical
with respect to parameter estimation. However, he uses a much simpler
model structure. The idea of Koren ez al. (2000) is to derive good initial
estimates for a subsequent calibration procedure in gauged catchments,
but also for ungauged catchments and semi-distributed modelling. The
approach has some very appealing elements. However, some of the un-
derlying assumptions will have to be corroborated (or rejected) by future
studies.

The first assumption is that it is possible to derive some catchment-
scale soil properties, such as field capacity (FC) or wilting point (WP).
These values are usually derived from a few point samples analysed at
the laboratory scale (probably by making the additional assumption that
the value for the dominant soil type in the catchment is the correct one).
This makes the use of these values for lumped parameter estimation
questionable since “there is generally no theory that allows the estima-
tion of the effective values within different parts of a heterogeneous flow
domain from a limited number of small scale or laboratory measure-
ments” (Beven et al., 2000).

Secondly, one has to assume that these soil properties are directly
equivalent to lumped conceptual model parameters which are effective
values since they are estimated from the integrated (streamflow) re-
sponse of the catchment, including effects of macropores and the unique
features of the catchment (e.g., the unique combination of soil types pre-
sent).

On the positive side, the approach does not assume that the model pa-
rameters are independent, which the statistical approach usually and in-
correctly does. Again, the actual empirical relationships derived using
the physical reasoning approach will have to be validated in a larger
study comparing a large number of parameter sets derived from soil
properties and from local calibration.

A problem in testing the procedure suggested by Koren et al. (2000)
and Duan et al. (2001) is that the Sacramento model structure is cali-
brated in their studies using a manual procedure (NWS, 2001) which can
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lead to quite different optimum parameter sets depending on the subjec-
tive judgement of the individual hydrologist. An automatic approach,
estimating the Pareto range of the parameters in which the regional pa-
rameters should fall, could be a method to circumvent this problem.
There is of course the question of what OFs should be used for this.

The results presented by Koren et al. (2000) and Duan et al. (2001)
are encouraging, and suggest that there is some potential in this ap-
proach, at least for a relatively complex conceptual structure such as the
Sacramento model that describes the vertical hydrological processes in
quite some detail.

The possibility that parameters of lumped parsimonious model struc-
tures (which usually integrate a range in space and time even more than
complex structures) can be easily related to soil properties seems remote. .
However, assuming that the parameters are at least constants and repre-
sentative of inherent properties of the natural system if not measurable
properties suggests that it could be possible to relate parameters and
properties through statistical inference. This is often called parameter
regionalization (or generalization) and is therefore the approach followed
here. The basic idea is to select a local model structure and subsequently
calibrate it to a large number of catchments that are in some way similar
to the ungauged site for which no streamflow time-series are available. A
statistical relationship between the estimated parameter values and (usu-
ally) various catchment characteristics is then established (the regional
model) and used to predict flow at the new site.

Procedures for parameter regionalization typically contain the follow-
ing steps (Fig. 2.4): (a) selection of catchments and their characteristics;
(b) selection and calibration of the local model structure; (c) selection
and calibration of the regional model structure; and (d) prediction of flow
at the ungauged site.

2.6.1 Catchment and characteristics selection

The chances of success of the regionalization are likely to be higher if
the catchments considered show a high degree of homogeneity with re-
spect to their hydrological behaviour. Initial studies used approaches
such as geographical proximity (e.g., NERC, 1975; Manley, 1978; Mos-
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Fig. 2.4 Conventional procedure for regional rainfall-runoff modelling.

ley, 1987; Vandewiele and Elias, 1995) or residual analysis (NERC,
1975; Tasker, 1982) to delineate groups of homogeneous catchments.
Residual analysis groups together catchments with regression residuals
of similar sign and magnitude. Nathan and McMahon (1990) found that
residual analysis did not cluster catchments that were similar with respect
to their physical characteristics. Location itself is also an insufficient cri-
terion, since geographically close catchments can be very different, for
example with respect to land use or soil type, and catchment characteris-
tics are now commonly included in this type of analysis (e.g., Acreman
and Sinclair, 1986; Burn, 1990; Nathan and McMahon, 1990; Dyer et al.,
1994; Sefton and Howarth, 1998; Burn and Goel, 2000). These are some-
times combined with standardized flow statistics (e.g., Burn, 1990).
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Two main choices must be made in the estimation of homogeneous
groups (Nathan and McMahon, 1990): (a) selection of those catchment
characteristics (or flow statistics) that define a similar hydrological be-
haviour, and (b) selection of a linkage algorithm and a distance measure.
The most popular approach involves the use of multivariate techniques
such as cluster analysis in combination with a Euclidean distance meas-
ure (Acreman and Sinclair, 1986; Dyer et al., 1994, p.46; Burn and Goel,
2000). A region of influence approach was introduced by Burn (1990;
see also Burn and Goel, 2000). He defined a threshold cut-off value for
dissimilarity which defines a particular cluster. Hall and Minns (1999)
applied an ANN (more specifically a Kohonen network) and fuzzy c-
means as an alternative approach.

Nathan and McMahon (1990) provide an overview of the problems
related to the derivation of homogeneous groups using multivariate tech-
niques. First, any group of variables (e.g., catchment characteristics) will
result in clustering, but with different degrees of relevance. Second, the
resulting groups will be a function of the algorithm and distance meas-
ures chosen. And third, depending on the approach used, new catchments
will usually be allocated to a particular group, regardless of how similar
they are.

Visual analysis tools such as Andrew’s curves can be used to verify
the homogeneity of the resulting groups (Nathan and McMahon, 1990;
Dyer et al., 1994) to solve problems two and three. Andrews (1972) de-
veloped plots to project n-dimensional data into a two-dimensional plane.
Dyer et al. (1994) used the variables ¢ (catchment characteristics) to
produce two-dimensional sin/cos curves. The distance between two
curves is proportional to the Euclidean distance metric. Andrew’s curves
are based on the equation

F(i)= % +@, sin(i) + @, cos(i) + @, sin(2i) + @5 cos(2i) +... (2.11)
where i runs between —7 and +7. Similar (n-dimensional) data points will
be indicated by similar curves. :

The first problem, i.e., the variable selection, is however unavoidable
and requires the hydrologist to consider the clustering variables very
carefully.
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2.6.2 Local model structure selection and calibration

It is commonly assumed that a general local model structure exists that
is capable of representing all of the catchments included. However, the
difficulties in establishing a suitable and unique structure and identifying
its parameters have been described in detail above. The lack of identifi-
ability of model parameters has especially been blamed for the lack of
success of past regionalization studies (e.g., Moore and Clarke, 1981;
Wheater et al., 1993). The reasonable success in regionalizing (very sim-
ple) unit hydrograph (UH) model structures for event-based modelling
seems to confirm this (e.g., Nash, 1960; NERC, 1975).

Most model structures currently used for regionalization are therefore
relatively parsimonious. Examples are the already mentioned IHACRES
(Post et al., 1998; Sefton and Howarth, 1998), PDM (Calver et al., 1999;
Lamb and Calver, 2002) and abed (Vogel et al., 1999) model structures.
The selected model structure is calibrated to all included catchments and
a best parameter set is commonly selected in each case.

2.6.3 Regional model structure selection and calibration

Multiple regression is the most commonly found approach to relate pa-
rameter values and catchment characteristics (e.g., Nash, 1960; Herde-
geen and Reich, 1974; Jarboe and Haan, 1974; Ando, 1990; Reimer,
1990; Tung et al., 1997; Sefton and Howarth, 1998), sometimes develop-
ing different regression equations for different clusters (e.g., NERC,
1975). Stepwise regression is usually applied to develop regional models
for the different model parameters. The regression approach is however
usually univariate, i.e., only one parameter is considered at a time, and
parameter interaction is ignored.

Tung et al. (1997) applied multivariate and seemingly unrelated re-
gression analyses to consider the strong correlation between the two pa-
rameters of Nash’s instantaneous unit hydrograph (NIUH) model. They
found that approaches that considered correlation yielded a consistently
better performance than univariate regression when regionalizing the
NIUH parameters using 42 Taiwanese catchments.
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Campbell and Bates (2001) used the Bayesian technique by Campbell
et al. (1999) to derive local posterior parameter populations, and a sub-
sequent linear regression model to derive a regional relationship to
catchment characteristics. The main component is a Markov Chain
Monte Carlo approach (see also Kuczera and Parent, 1998) which sam-
ples from the posterior local parameter distributions to derive regional
parameter estimates. This methodology is applied to regionalize the pa-
rameters of the two parameter event-based RORB model structure
(Laurenson and Mein, 1995). Campbell and Bates (2001) showed that
their approach yields better identified regional parameter estimates than a
traditional regionalization approach, which does not consider local pa-
rameter interaction. However, they failed to show whether their approach
actually provides better predictions of flow events. The possible relaxa-
tion of assumptions of linearity of the regional model and normality of
distributions within this framework has yet to be explored. The approach
also has to be extended to be applicable to more complex model struc-
tures. A fully Bayesian approach is beyond the scope of the work pre-
sented in this monograph.

A range of regional model structures is discussed and applied in
Chapter S.

2.6.4 Flow prediction at an ungauged site

The conventional approach to flow prediction at an ungauged site is the
estimation of a best parameter set using a regional model and deriving a
single prediction (e.g., Sefton and Howarth, 1998; Calver et al., 1999).
This approach is highly questionable, considering the large uncertainties
involved in the local and regional modelling steps. However, the topic of
uncertainty in regionalization has been given very little consideration so
far. Exceptions are the studies by Lamb and Calver (2002) and Yeh ef al.
(1999).

Lamb and Calver (2002) estimated flood frequency distributions for
UK catchments using local and regionalized continuous rainfall-runoff
models. They used a uniform random sampling procedure to estimate the
uncertainty in the local model. For the regional model, they sampled pa-
rameter values from the theoretical (normal) distributions around the re-
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gression estimates. The result was that the resulting uncertainties from
regional and local estimates were often similar in magnitude.

Yeh et al. (1997) estimated uncertainty in regional estimates of the
two NIUH parameters, N and K, and the propagation of this uncertainty
into the UH using two probabilistic point-estimate methods. Sources of
uncertainties considered were the regional (regression) model and its pa-
rameters. They found that the uncertainty involved was too high to be
ignored.

2.6.5 Variations on conventional regional procedures

Recently, several authors have questioned the conventional approach and
attempted to develop improved procedures that address the problem of
lack of identifiability of model parameters.

2.6.5.1 Integrated procedure

Vogel et al. (1999) compared the conventional regionalization approach,
where local and regional model calibration are independent steps, with a
regional calibration strategy that optimizes the local model parameters at
all sites concurrently with the regional (regression) parameters. This re-
sulted in very high performances of the regional models (coefficients of
determination range from 0.90 to 0.99) while the performance for locally
calibrated catchments decreased only slightly, but did not yield an im-
proved simulation at ungauged sites compared to the conventional two-
step approach. The authors did not give reasons for this result, but it is
likely to be related to the fact that different parameter sets often yield
identical performances with respect to a selected OF. There might there-
fore be a certain degree of freedom in estimating a good local parameter
set.

Funke er al. (1999) proposed a somewhat similar procedure which
uses the same effect. They improved the correlation between model pa-
rameters and catchment characteristics considerably by adjusting for out-
liers, using the insensitivity of some parameters with respect to the cho-
sen OF. Two parameters were additionally directly derived from soil
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properties based on hydrological process understanding (similar to Koren
et al., 2000), reducing the number of free parameters from six to four.

The danger with both approaches is that some model parameters
might merely be insensitive to the selected (and possibly inappropriate)
OF. Forcing them to take certain values could lead to regional relation-
ships that are artificially made and do not actually exist.

2.6.5.2 Sequential procedure

Lamb et al. (2000) introduced a sequential procedure to regionalize a
parametric model structure (PDM). The model structure is applied to all
catchments using a uniform random sampling procedure. The most iden-
tifiable parameter is (subjectively) selected and a regional relationship to
catchment characteristics is derived. The parameter is subsequently fixed
to its regional value for all catchments and the procedure is repeated till
all regional models are established. This reduces the number of parame-
ters by one during every iteration step and therefore increases the identi-
fiability of the model structure. This approach is further analysed in
Chapter 5.

2.6.5.3 Indirect procedure

Yu and Yang (2000) used an indirect approach to derive parameter val-
ues at ungauged sites without relating them directly to catchment charac-
teristics for Taiwan. Their procedure consists of two steps: (a) the deriva-
tion of regional models to estimate ten discharges of different ex-
ceedance percentiles of synthetic flow duration curves within a homoge-
neous region as a function of catchment area; and (b) the calibration of
an RR model (HBV) to the flow duration curve. The procedure worked
well for the prediction of low flow regimes in their case, but is only
likely to be useful in countries with limited gauging networks.

2.7 Summary and Conclusions

Two fundamental questions in conceptual rainfall-runoff modelling have
not been successfully answered despite forty years of research efforts:
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e What is the appropriate model structure for a given type of hy-
drological system and a particular modelling task?

e What is the appropriate parameter set within this structure to
characterize the unique response features of a particular catch-
ment?

An extensive literature survey (Chapters 1 and 2) has illuminated the
problems stated above and highlighted some suggestions for potential
ways forward.

Little objective guidance is available for the selection of an appropri-
ate model structure. Comparison studies are often based on a single per-
formance measure, include only a limited range of contestants, and their
results are difficult to generalize. Despite this, some general observations
can be made.

* Simple structures (in terms of number of free parameters) per-
form as well as complex ones for many purposes.

e The number of parameters that are identifiable (at least with re-
spect to a single OF) is between three and five.

e Many model structures have been developed, but only a limited
number of components are used within them.

Local modelling procedures were initially based on the assumption
that hydrological models could be treated in a way similar to regression
models, i.e., simple optimization with respect to a single OF was consid-
ered sufficient. Recent research has questioned the usefulness of this
paradigm and some researchers call for more conceprual modelling ap-
proaches that better recognize the nature of the model structures used.
The lack of parameter identifiability has led some researchers to the con-
clusion that the idea of an optimum parameter set should be abandoned
in favour of a population of acceptable (behavioural) parameter sets or
models. This leads to uncertainty which has to be considered. Addition-
ally, the influence of model structural error appears to be higher than has
been recognized so far. However, no suitable approach to assess this un-
certainty explicitly is currently available.

Some applications of regional procedures for conceptual model pa-
rameter regionalization can be found in the literature, but few analyse the
elements (and possible alternatives) of those procedures in detail. Nor



54 Rainfall-Runoff Modelling

have the presence and influence of uncertainty been appropriately con-
sidered in regionalization.

The following three-step approach has been chosen to address the areas
reviewed above in the following chapters:
e Develop an RR modelling and analysis toolkit to implement and
evaluate different model structures.
e Review and improve existing procedures for local modelling,
i.e., for modelling gauged catchments.
e Review and evaluate the idea of parameter regionalization, i.e.,
regional or ungauged catchment modelling.



Chapter 3

A Toolkit for Rainfall-Runoff Modelling

Test everything. Hold on to the good. Avoid every kind of evil.
1 Thessalonians 5, 21-22

3.1 Introduction

As noted in Chapter 1, RR models are well-established tools that are
widely utilized in engineering practice. The majority of model structures
currently used can be classified as conceptual when the definition of
Wheater et al. (1993) is applied (see Chapter 1 Introduction for details).

It was concluded in Chapter 2 that conceptual model structures suffer
from a number of problems despite their frequent use and development
over several decades. A major constraint is the lack of identifiability:
different combinations of parameters (e.g., Johnston and Pilgrim, 1976;
Beven and Binley, 1992), and sometimes even different model structures
(e.g., Uhlenbrock et al., 1999) yield similar results in terms of a defined
performance measure or objective function (OF). This results in difficul-
ties in interpreting past behaviour of the catchment system, and hence,
difficulties in the propagation of uncertainty into future predictions in the
form of wide confidence limits, i.e., a wide range of possible system be-
haviours (Wheater et al., 1986; Mroczkowski et al., 1997).

The need for model calibration is a major limitation when ungauged
catchments have to be modelled. One possible approach to dealing with
this problem is to regionalize the parameters of a certain model structure
(e.g., Jakeman er al., 1992). Uncertainty in the model parameters or
structure (due to a lack of identifiability) significantly limits the use of

55
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models for this kind of regionalization because it is difficult to establish
sensible statistical relationships (e.g., Moore and Clarke, 1981; Kuczera,
1983; Wheater et al., 1993). A model structure with identifiable parame-
ters (i.e., with a high regionalization potential) is therefore a prerequisite
for successful regionalization.

Possible ways to produce better identified models are: (1) reducing
model complexity to contain only those components, and therefore pa-
rameters, that can be identified from the available data (i.e., parsimoni-
ous modelling, e.g., Jakeman and Hornberger, 1993; Young et al., 1996);
(2) improving use of available information, e.g., using different data pe-
riods to identify different parameters or groups of parameters (e.g.,
Wheater ef al., 1986; Dunne, 1999; Wagener et al., 1999; 2001); and (3)
using additional information, i.e., multi-response data such as water qual-
ity data, groundwater levels, or tracer measurements (e.g., de Grosbois et
al., 1988; Kuczera and Mroczkowski, 1998; Seibert, 1999a). It should be
noted that using additional output variables is unlikely to be particularly
useful in regionalization studies, since multi-response data are not com-
monly available. This approach is therefore not investigated further here;
instead we focus on methods of reducing model complexity and increas-
ing the information that can be retrieved from streamflow measurements.

The RRMT is a toolkit that enables the development, analysis and
comparison of model structures of different levels of complexity using
all available information. It can be used to facilitate the identification of
the appropriate level of complexity that yields a sufficiently high level of
performance, while retaining an acceptable level of parameter uncer-
tainty. The toolkit is described in this chapter and a limited modelling
exercise is presented to illustrate its use. The toolkit is freely available
for non-commercial use and can be downloaded as outlined in Appendi-
ces B and C.
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3.2 Rainfall-Runoff Modelling Toolbox

3.2.1 General

As suggested above, hydrologists seek the development of a model struc-
ture that balances appropriate complexity with model performance and
associated uncertainty. The philosophy is based on the recognition that
no model structure is suitable for all modelling tasks, and that the appro-
priate model structure is a function of: (1) the modelling objectives (e.g.,
required spatial and temporal discretization, relevant response modes to
be simulated), (2) the characteristics of the hydrological system under
investigation (e.g., dominant processes, response times of the system),
and (3) the available data (e.g., possible spatial and temporal discretiza-
tion) (Wagener, 1998).

A number of modelling shells with different levels of complexity can
be found in the literature (Overland and Kleeberg, 1993; Woods and Ib-
bitt, 1993; Leavesley et al., 2002). These systems allow a user to test the
suitability of different model components and to combine them in a
modular fashion. Components can typically be modified or added if none
of the available components fulfils the problem-specific requirements.
The Rainfall-Runoff Modelling Toolbox (RRMT; Wagener et al., 1999;
2002a) has been developed, in particular, to facilitate identification of
parsimonious, lumped model structures with a high level of parameter
identifiability.

The RRMT is a generic modelling framework or shell that facilitates
the implementation of different model structures. It can, therefore, be
considered to represent a modelling concept rather than a specific model
structure. The RRMT is implemented within the MATLAB (Mathworks,
1996) programming environment.

The model structures that can currently be implemented using RRMT
are spatially lumped with low or medium levels of complexity (in terms
of the number of parameters). Such models can be classified as paramet-
ric or hybrid metric-parametric in type (Wheater et al., 1993). The latter
type is related to a systems approach to hydrologic modelling (see exam-
ples in Jakeman et al., 1990; Jakeman and Hornberger, 1993; Sefton and
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Howarth, 1998; Kokkonen and Jakeman, 2001). The aim of this hybrid
approach 1is to use observations (the metric paradigm) and other prior
knowledge to test hypotheses about the structure of component hydro-
logical stores (the parametric paradigm) at the catchment scale (Wheater
etal., 1993).

The lumped approach is often assumed to be only suitable for small
catchments that are relatively homogeneous in terms of soil, vegetation
and geology (Blackie and Eeles, 1985). However, experience with
lumped models has shown that they can actually provide acceptable per-
formance for a wide range of catchment sizes, i.e., the aggregated re-
sponse of a catchment can often be effectively characterized by a spa-
tially aggregated model (e.g., Littlewood and Jakeman, 1992; Jakeman
and Hornberger, 1993; Jolley, 1997; Perrin, 2000). Blackie and Eeles
(1985) suggest that the most important criteria for the suitability of a
lumped approach is not the homogeneity of the catchment characteristics,
but the stability of the catchment system with respect to the spatial distri-
bution of precipitation, vegetation and soil types.

3.2.2 System architecture

The system architecture of the RRMT is based on a modular structure.
The modelling component consists of a moisture accounting module and
a routing module (Fig. 3.1); other available modules include optimiza-
tion, visual analysis, and off-line data processing options. Different ap-
proaches can be used to represent each module, and a set of alternatives
that is broadly representative of the range of current modelling practice is
provided. However, each module (e.g., routing) has a specified input-
output structure, and can therefore easily be replaced by a new or modi-
fied module, as long as it conforms to the prescribed structure.

The function of the moisture accounting module is to transform rain-
fall into effective rainfall, and includes a number of different representa-
tions of evapotranspiration and soil moisture storage. The routing module
simulates the lateral flow processes through various pathways, i.e., over-
land flow, throughflow and groundwater flow (Ward and Robinson,
2000). An underlying simplifying assumption made here is that the rain-
fall-runoff relationship can be represented by a sequential architecture of



A Toolkit for Rainfall-Runoff Modelling 59

OPTIMIZATION
MODULES

VISUAL
ANALYSIS
MODULES

OFF-LINE DATA

] IN
P':A oc[)EUsLSEsG MOISTURE STATUS

Fig. 3.1 System architecture of the Rainfall-Runoff Modelling Toolbox.

soil moisture accounting and routing modules. While variations on this
approach can be found, this assumption is in line with current modelling
practice (e.g., Jakeman and Hornberger, 1993; Moore, 1999). A second
simplifying assumption is that the effective rainfall can be split into frac-
tions that contribute to different flowpaths and that these fractions are
constant in time, rather than being dependent on (for example) catchment
wetness or other factors. The usefulness of this assumption is discussed
in Section 4.4.2 and recommendations for future alternative options are
made in Chapter 7.

A Graphical User Interface (GUI) for the RRMT allows easy access
to the toolbox functions (Fig. 3.2). However, since modelling of a large
number of catchments may be required (e.g., in regionalization studies),
it is also possible to run the model from the MATLAB command line.
The user can write a batch file to load data, change model settings, run a
calibration, and store the results for many different cases. Within the
batch file, all components of the modelling procedure can be varied: the
user can select different routing modules or different OFs for the same
data, or perform simulations for different years of a data time series.
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Fig. 3.2 Graphical User Interface of the Rainfall-Runoff Modelling Toolbox.

3.2.3 Soil moisture accounting modules

The soil moisture accounting (SMA) module partitions the incoming
rainfall into losses (through evapotranspiration and associated storage)
and output from the catchment system (i.e., effective rainfall). An im-
plicit form of the general water balance equation describing this process
is (e.g., Hornberger et al., 1998; Blackie and Eeles, 1985)

dv

—=P- —AET 3.1
dt Qtotal ( )
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where V [L’] is the volume of water stored in the catchment, P [L3T Y is
the precipitation rate, Qo [L*T'] is the rate of surface and subsurface
runoff, and AET [L’T™'] is the rate of actual evapotranspiration. Precipita-
tion combines moisture system input in various forms, e.g. rainfall or
snow. However, because none of the catchments used in this study re-
quired the explicit modelling of snow, only the term rainfall is used in
the following discussion.

The moisture accounting module allows the user to develop and test
models having varying levels of complexity. Approaches currently im-
plemented in the RRMT (Fig. 3.3) range from parametric water balance
structures such as those based on Penman’s drying curve concept (Pen-
man, 1949; for example, see Jolley, 1995) or the catchment moisture
deficit (cmd; Evans and Jakeman, 1998), to metric loss functions such as
the catchment wetness index (cwi, Jakeman et al., 1990; Jakeman and
Hornberger, 1993). These approaches are typical of parsimonious mois-
ture accounting components found in many popular model structures.

The simple cwi loss function is related to the well-known Antecedent
Precipitation Index (API, Fig. 3.2a, b). The proportion of rainfall r, con-
tributing to runoff (i.e., the effective rainfall ;) at every time-step «, is
determined by the cwi, ms, which is calculated as the mean of the in-
dexes for time-steps & and k-1 (an indication of the soil moisture state of
the catchment, ranging from zero to one).

1
u, =5(msk +msk_1)~rk (3.2)

The index ms; is calculated using the equation

]ms el (3.3)

where v is a factor that is adjusted to ensure that the total volume of
modelled effective rainfall equals the total volume of observed stream-
flow. The parameter v is not calibrated but calculated, but is calculated
explicitly from the data. Writing this equation in a slightly different form
provides more insight into the model structure,
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Fig. 3.3 Schematic plots of the different moisture accounting modules available: (a)
catchment wetness index (cwi), (b) modified cwi, (c1) conceptual Penman model struc-

ture, (c2) Penman drying curve, (d) catchment moisture deficit model structure (cmd), (e)
storage capacity distribution function.
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ms ms ms
L= gL (3.4)
y v vT(t,)

Equation 3.4 shows that the modulated system moisture state at time-
step k equals the sum of the rainfall input at time-step k£ and the modu-
lated system state at time-step k-1, minus the depletion by losses to
stream and evapotranspiration described by @) (see Fig. 3.3a).

The depletion is related to temperature (used as a surrogate for poten-
tial evapotranspiration), by the following equation,

7(t,) =7, -expl(refp —t,)mf] (3.5)

where the reference termperature refp is usually fixed to a nominal value
depending on the climate (e.g., refp = 10°C for England and Wales
[Sefton and Howarth, 1999], refp = 20°C for warmer climates [Jakeman
et al., 1994)). The equation contains two parameters that have to be cali-
brated: 7, the time constant of catchment losses at refp, and the tempera-
ture modulation factor mf, which relates a unit change in temperature to
the change in loss rate. Note that the temperature can be replaced by po-
tential evapotranspiration when available (e.g., Niadas, 1999). Also, sub-
stantial performance improvement can sometimes be found when refp is
calibrated rather then fixed.

Modifications of the cwi have been developed to account for specific
hydrologic catchment characteristics. For example, a power transforma-
tion p to ms; has been used successfully in catchments with a very flashy
response, and a threshold / for ms, has been applied, below which no ef-
fective rainfall is produced, to enable the modelling of ephemeral rivers
(Fig. 3.3b; Jakeman et al. 1994; Ye et al., 1997, 1998).

The basic element of many lumped model structures is a single storage
element or bucket (Fig. 3.4; Manabe, 1960), which describes the local
water balance as follows:

u, = max[rk - (c max—s,_, )—— ae, ,0] (3.6)

where r[L] is the rainfall, ¢ max [L] is the size of the storage element or
the storage capacity, s,_,[L] is the initial moisture content, ae [L] is the
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b
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Fig. 3.4 Single storage element defined by the size parameter cmax. The fluxes are actual
evapotranspiration aey, rainfall r, and effective rainfall uy. All at time step k.

actual evapotranspiration and u [L] is the effective rainfall, while k is an
index of the time-step.

The catchment moisture deficit (cmd, Fig. 3.4d) approach used by
Evans and Jakeman (1998; see also Kokkonen and Jakeman, 2001) is
based on a modified version of this simple bucket, described by the fol-
lowing equation of the catchment water balance,

cmd, =cmd,_, —r, +ae, +d, 3.7

where cmd is the catchment moisture deficit, r is the precipitation, ae is
the (actual) evapotranspiration loss, d is the drainage and k is the time-
step.

The drainage d is introduced due to the assumption that there is a cer-
tain amount of runoff to the stream, even when a positive catchment
moisture deficit exists (Evans and Jakeman, 1998). This can, for exam-
ple, take into account the portion of rainfall falling directly on open wa-
ter, or drainage from the soil near to the stream, which can occur even in
periods without rainfall. This phenomenon has already been recognized
by others, as for example stated by Hough et al: (1997, p.23): “Many
experiments have shown that drainage continues into early summer in
some soils even when the soil moisture deficit has become substantial
near the surface.”

The drainage can be calculated as follows:
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Cy
——2cmd, +c¢ or cmd, <c
g, =4, Tt S LS (3.8)

0 for cmd, 2c

where c; is a parameter equal to the maximum drainage that can occur
while a moisture deficit exists and ¢, is the maximum cmd that can occur
before water ceases draining to the stream.

The equation for (actual) evapotranspiration is based on the assump-
tion that the effects of vegetation can be represented by taking the sur-
face resistance into account, which itself can be estimated by creating a
relationship with the available soil moisture (Evans and Jakeman, 1998),

ae, = ¢ t, exp(—c,cmd,) (3.9)

where ¢ is the temperature (can be replaced by pe if available), and ¢,
and c; are scaling parameters.

To make the calculation procedure easier, a simplification as used by
Evans and Jakeman (1998) is also applied here. The term cmdj is re-
placed by [cmd,., — ri] in the equations to calculate evapotranspiration
and drainage.

The effective rainfall can then be calculated as follows,

d, for cmd, 20
=1,

(3.10)
,—cmd, for cmd, <0

The second part of Equation 3.10 (#, =d, —cmd, ) can also be written
as the following, if Equation 3.7 is considered,

u,=d,—cmd, ,+r, —ae, —d, (3.11)

u, =r,—cmd,_ —ae, (3.12)

r

Rainfall (minus the evapotranspiration losses) is therefore used to fill
the soil moisture store and account for evapotranspiration. Surplus rain-
fall is assumed to be effective rainfall.

After each time step, the value for cmd, is checked, and is reset to
zero if negative. If the rainfall in a time-step is larger than the existing
catchment moisture deficit, then the surplus rainfall goes to the stream
and the saturated soil remains. Evaporation and drainage will then cause
the catchment moisture deficit to begin to increase in the next time-step.
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One conceptual water balance component implemented in the RRMT
which uses the idea of a near surface and a deep layer is a version of the
Penman model structure used by Jolley (1995), based on the Penman
drying curve concept (Penman, 1949). The approach assumes that actual
evapotranspiration (ae) occurs at the potential (pe) rate wherever water is
available in the root zone or root-reservoir (Fig. 3.4c1, c¢2). The root zone
is extended by an additional 25mm to account for the effects of capillary
rise. The actual rate decreases to a percentage of the potential rate when
this soil zone is depleted. The parameterization of this is a conceptual
structure with two stores. The size of the upper store is equal to the root
constant plus the aforementioned 25mm, and evapotranspiration from it
takes place at the potential rate as long as it contains water. Values for
the root constant can be selected as a function of vegetation from tables
(e.g., Grindley, 1970). However, treating the root constant as a free pa-
rameter to be identified by calibration can lead to an improvement in
model performance (Sheratt, 1985). The upper store is connected to a
lower store of notional infinite depth (Moore, 1999) via an overflow
mechanism. Actual evapotranspiration continues at a fraction g = 8%
(=1/12) of the potential rate (as suggested by Penman, 1949) from the
lower store, after the upper store is depleted.

The amount of actual evapotranspiration from upper (ae,) and lower
(ae) stores is therefore calculated as follows,

e ,md, <s__
ae, = p ‘ : (3.13)
0 ’mdl =smaxl
e, = gpe—r—s_ ,+md) ,md =s_., 3.14)
o Jmd, <., .

where pe is the potential evapotranspiration, r is the rainfall input, md, is
the moisture deficit in the upper store, and s, is the size of the upper
store, i.e., the root constant plus 25mm.

The effective rainfall u is produced through two mechanisms: (1) a
fraction p (usually 15% according to Moore, 1999) bypasses the soil
water store to represent effects such as rapid groundwater recharge or
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quick runoff response during rainfall, e.g., due to macropores or infiltra-
tion excess overland flow (Jolley, 1995),
{p(r—pe) r> pe
ul =

3.15
0 r < pe G-1)

and (2) saturation excess runoff is produced when both stores are full,
u2 = max|[(1— p)(r — pe) —md, —md, ;0] (3.16)

where md, is the soil moisture deficit of the lower store. Hence the total
effective rainfall u can be calculated as

u=ul+u2 3.17)

The main advantage of the Penman model structure is its parsimony.

The predominantly vertical processes described by the presented
moisture accounting components outlined above imply spatial homoge-
neity of the hydrological response. This assumption is usually not valid
for entire catchments (or often even individual hillslopes), although good
results have been reported in many cases (e.g., Blackie and Eeles, 1985;
Jakeman and Homberger, 1993). A catchment is usually heterogeneous
with respect to geology, soil type, topography and vegetation, and there-
fore with respect to hydrological response. Areas in the close vicinity of
rivers, for example, might be near saturation most of the time while
elsewhere topography and soil type may hardly allow saturation at all,
even after prolonged rainfall.

During rainfall events, increasing portions of the catchment will be-
come saturated and contribute to the generation of quick runoff. A simple
approach to account for such spatial variations is a distribution of func-
tional hydrological responses, i.e., a mathematical function describing
the distribution of storage elements of different sizes. Of course, this is
still a lumped approach since it does not allow for the mapping of those
responses back into the catchment (Beven, 2000a). This distribution
function approach is the basis of the Probability Distributed Model
(PDM, Moore and Clarke, 1981; Moore, 1985; Moore, 1999), ARNO
(Diimenil and Todini, 1992), XinanJiang (Zhao and Liu, 1995), and the
variable infiltration capacity (VIC, Wood et al., 1992) model structures.
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As an illustration, the PDM structure is described in detail here.
Moore and Clarke (1981) developed the PDM model structure with the
following objectives in mind:

e it contains a small number of parameters that allow physical interpre-
tation,

e its simplicity results in identifiable parameters,

e it provides an explicit form for the calculated streamflow given by
the model (i.e., it does not contain thresholds), and

e it supports the application of the body of statistical theory available
for parameter estimation, hypothesis testing, confidence interval cal-
culation, and for incorporating prior or additional information.

For a probability distribution of storage elements, the total volume of
effective rainfall produced in the catchment is the integral response of all
storage elements (Diimenil and Todini, 1992) that can be derived from
the equation for a single element (Fig. 3.3) as follows,

1% 1%
u=—[udA, == [[r—(cmax—c)—ae]da, (3.18)
A% Ay
where A[L?] is the total catchment area and [L?] is the contributing area.
The ratio A./A therefore describes the fraction of the catchment contrib-
uting to runoff production, F(c).

The PDM assumes that the storage elements are distributed according
to the probability density function f (c) that is related to a distribution
function of storage capacity by

£le)=2E ©) (3.19)
dc

Moore (1999, p.154) reported that the most commonly used distribu-
tion of storage capacity for the PDM model structure in the UK is the
Pareto distribution (e.g., Kottegoda and Rosso, 1998, p.456). The distri-
bution function of store capacities for this case becomes

b
F(c)=1—[1— ) , 0< ¢ <cmax (3.20)

c¢max

and the probability density function can be written as
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dF(c) b
dc cmax

flo=

bh-1
(1— ¢ ] ,0<c<cmax (321)
cmax

where the parameter b describes the degree of spatial variability of stor-
age capacity and cmax is the capacity of the largest store. A value of b =
1 means that the capacities are uniformly distributed, while a value of b
= 0 leads to the assumption of a constant capacity throughout the catch-
ment (Fig. 3.5).

The Pareto distribution function can be implemented as follows. The
maximum combined content of all stores s, can be calculated from the
two free parameters, cmax and b,

cmax

A spatially uniform rainfall input filling all the storage elements pro-
duces the following effective rainfall,

ul, = max [rk —cmax+c,_, ,0] (3.23)
[Note: the rainfall input is here assumed to be uniformly distributed over
the catchment. For details on how to apply a spatially distributed input,

please see Jolley (1995)]. .
The remaining net rainfall r can be calculated as (Fig. 3.3e)
ro=ro—u, (3.24)
and the new actual capacity is therefore
Ce=Coyt+1, (3.25)

with the storage content being

c (b+1)
S, =S8 ll —(1 e j J (3.26)
cmax

The additional effective rainfall produced by the stores that are smaller
than cmax is

u2, =maxlr, —(s, —s,_,)0] (3.27)

Finally, s, is updated by subtracting losses due to evapotranspiration
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s, =5, —ae, (3.28)
which leads to the new capacity
1/(b+1)
s
¢, = cmax 1—[1— k ] (3.29)
smax

RRMT currently provides two different options for the calculation of
ae. One sets the actual rate equal to the potential as long as sufficient soil
moisture is available (as used in Wagener et al., 2001), while the other
uses a linear relationship between evapotranspiration and actual soil
moisture deficit. These two approaches can be described mathematically
as follows:

ae, =min [sk , pek] (3.30)
and
bl
ae, = 1—[S—WJ] . pe, (3.31)
smax

The latter relationship is linear for the case b, =1. However a quad-
ratic form is also sometimes assumed, i.e., b, =2 (Moore, 1999, p.153).
For the case of b, = I the equation (3.31) becomes

Sg

ae, = - pe, (3.32)

smax

Note that this formulation assumes that all effective rainfall is pro-
duced through overflow of the storage elements. A simple linear rela-
tionship is then used to split this effective rainfall into a quick and a slow
component, ie., a constant segmentation. A modified formulation can
also be implemented in which recharge to groundwater is computed as a
linear function of the soil moisture content (e.g., Moore, 1999; Lamb,
2000)

Ve =k, o5 (3.34)

where k, is a groundwater recession constant [T'l].
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Further increases in the level of model complexity further can allow
for the mapping of contributing areas back into the catchment, such as
presented in the Topmodel concept and outlined briefly in Chapter 2
(Beven and Kirkby, 1979; Beven et al., 1995).

3.2.4 Routing modules

The moisture accounting component produces that part of the rainfall
that is contributing to runoff, usually called effective or excess rainfall.
One or more routing components are typically applied to simulate reten-
tion and translation processes occurring when the contributing rainfall
moves to the catchment outlet via different pathways. Even in complex
models, these are often represented by relatively simple structures.

The conceptual (or parametric) element most commonly used to de-
scribe this transfer from effective rainfall to runoff is the so-called con-
ceptual reservoir or conceptual store. The behaviour of this reservoir can
be described by combining two equations. A storage function describes
the relationship between outflow of the reservoir and the amount of wa-
ter stored,

s®)=a-q" (1) (3.35)

where s(¢) is the storage {L] at time ¢, g(?) is the outflow [L'T) at time ¢,
a is the storage coefficient [L'™T™], and nl is the coefficient of non-
linearity [-].

Additionally, a mass balance equation describes the rate of change in
storage (ds(?)/dt) as the difference between inflow (u(?) [L'T)) and out-
flow () [L'T)),

s(#) _

o u(t)—q(1) (3.36)

Setting nl = 1 leads to the most widely used form of the conceptual
reservoir, the linear reservoir. In this case the parameter a represents the
residence time T [T}, and the outflow of the reservoir is directly propor-
tional to the storage content. Combining the storage function and the
mass balance equations yields the following model formulation,
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%:%[u(t)—q(t)] (337)

The linear reservoir is functionally identical to the following first-order
discrete-time transfer function (TF) (e.g., Lees, 2000),

b At At
q,=—°_1u,;b0:—T—;a1=1—7 (3.38)

where At is the discretization step size, and z” is the backward shift op-
erator defined as

274, =4, (3.39)

Chow et al. (1988) show how a general form of the TF model can be
derived from a general hydrologic system model (Chow and Kulan-
daiswamy, 1971). The general form of an n"™ order single input single
output (SISO) discrete time-system can be written as

_ B

A(z™)
where S represents a lag element, and A(z"') and B(z'") are the following
polynomials,

U, s (3.40)

H

Az DY =1+az" ++a,z”" (3.41)
and
B(z)=by+b iz +-+b, 2" (3.42)

The TF model structure is described by the triad [n,m+1,8]. This
model can represent any combination of linear reservoirs connected in
parallel and/or series as shown in Fig. 3.6, using partial fraction expan-
sion to perform the decomposition (Young, 1992).

Advantages of the TF representation of a system of linear conceptual
reservoirs include the ability to apply powerful system identification
techniques for optimal parameter estimation, and increased structural
flexibility (Lees, 2000). A system identification technique that has been
successfully used to identify and estimate TF models in the context of
RR modelling is the Simple Refined Instrumental Variable technique
(SRIV, Young, 1992; Young et al., 1996). The TF identification software
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Fig. 3.6 General linear reservoir model.

used in the RRMT is based closely on that available in the CAPTAIN
toolbox (http://www.es.lancs.ac.uk/cres/captain/), which was developed
by Peter Young and colleagues at the University of Lancaster. Details of
the approach can be found in Young (1984), and Young and Jakeman
(1979a, 1979b, 1981).

The conceptual reservoir can also be used in RRMT in its non-linear
form (nl # 1). Linear and non-linear reservoirs can additionally be com-
bined in parallel or serial structures.

The routing components described so far are based on the assumption
that all subsurface runoff drains from the catchment via the stream.
However, part of the runoff might leave some catchments through sub-
surface pathways. A routing component taking this into account (here
called leaky catchment structure) can consist of a linear reservoir with
different outlets (Chapman, 1999; Sugawara, 1995; Moore, 1999). The
outflow from the bottom outlet represents the part of the effective rainfall
not contributing to streamflow (Fig. 3.7c). The leaky catchment structure
can be described in numerical form as follows.

The catchment losses, from the bottom outlet, are

q, =kys (3.43)
where k; [T™'] is a time constant and s[L] is the storage content. The con-

tribution to catchment runoff g[LT"'] is described by
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Fig. 3.7 Conceptual routing components available in the RRMT: (a) linear; (b) non-linear
(example); and (c) leaky catchment structure.

0 Jif s<s,
g=14k,(s-s,) Jf 5, <SS (3.44)
kz(s_sz)+k1(s—s1) Jif s>,

with k; [T'] and k, T being time constants for the different outlets,
and sy [L] and s, [L] as the corresponding thresholds.

3.2.5 Optimization modules

The model structures that can be implemented in the RRMT contain pa-
rameters that typically refer to a collection of aggregated processes.
Therefore they often do not have a direct physical interpretation and can-
not be measured in the field. Instead they can be estimated using a cali-
bration procedure whereby the model parameters are adjusted until sys-
tem and model output show an acceptable level of agreement. The
agreement is typically measured using an objective function (OF), i.e.,
some measure of the aggregated size of the model residuals that repre-
sent the differences between observed and calculated system output, sup-
ported by visual inspection of the calculated time series. The model that
produces the best agreement is commonly assumed to be representative
of the natural system under investigation.
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Most parameters in conceptual rainfall-runoff models define non-
linear model equations; i.e., they enter the model equations in a non-
linear way. The consequence of this is that an iterative search is required
to identify the optimum parameter values (a more detailed discussion
appears in Chapter 2). This can be done using a manual trial-and-error
procedure, an automatic search algorithm, or a combination of both ap-
proaches (Boyle et al., 2000; Hogue et al., 2000). Manual calibration is
time-consuming and difficult to achieve in the presence of parameter
dependence. Automatic calibration algorithms have the potential to re-
duce this problem. Available search algorithms can be separated into lo-
cal and global approaches. Local search algorithms start from an initial
solution, i.e., an initial parameter set, and try to sequentially improve this
solution by repeatedly moving through the parameter space using various
schemes to find the next location. The search is stopped when a termina-
tion criterion, e.g., a specific OF value, is satisfied. Research has shown
that the characteristics of the response surface created by conceptual
rainfall-runoff models are usually not suitable for application of local
optimization methods (Duan et al., 1992), since the presence of multiple
optima often leads to premature convergence of the optimization process
at a local optimum. Global optimization methods, working with parame-
ter or model populations (i.e., parameter set/model structure combina-
tions), have therefore been introduced. Popular approaches include popu-
lation evolution (e.g., Wang, 1991; Duan et al., 1992) and adaptive ran-
dom search methods (e.g., Price, 1987).

The SCE (Duan et al., 1992, 1993, 1994; Sorooshian ef al., 1993;
Hogue et al., 2000) is reputedly the most successful approach with re-
spect to the calibration of hydrological model structures (e.g., Gan and
Biftu, 1996; Kuczera, 1997; Thyer et al., 1999). The general algorithm
contains the following steps:

e A population of models (parameter sets within a selected model
structure) is randomly sampled from the n-dimensional feasible pa-
rameter space.

e The population is divided into complexes, each containing 2n + 1
models.

e FEach complex is evolved independently using a deterministic down-
hill simplex. Models to form the simplex are selected based on a
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probability distribution which favours more promising models (i.e.,
those that produce a better OF value).

e The models of all complexes are mixed again after each complex has
been evolved individually, i.e., a shuffling step has been performed.
This ensures that information is shared and is probably the main fea-
ture that makes the SCE so successful.

e New complexes are formed and the evolution step is repeated. This
iteration continues until a specified termination criterion is satisfied.
Various researchers have found that different parameter sets, often

widely distributed in the feasible parameter space, can lead to similar

model performance with respect to a certain OF (e.g., Johnston and Pil-
grim, 1976; Beven and Binley, 1992). As discussed in greater detail in

Chapter 2, these findings have led some researchers to suggest that the

idea of point identifiability, i.e., a global optimum, is not appropriate in

the presence of errors in data and model structure or limitations in pa-
rameter estimation procedures (e.g., Spear and Hornberger, 1980; Van

Straten and Keesman, 1991; Beven and Binley, 1992). Instead, these re-

searchers advocate the identification of behavioural parameter popula-

tions, e.g., parameter sets that perform better than a certain threshold per-
formance value. All parameter sets that are classified as behavioural are
considered to be possible representations of the natural system under in-
vestigation (Van Straten and Keesman, 1991). Monte-Carlo sampling
procedures (Press et al., 1992) such as importance sampling or Markov

chain sampling (e.g., Kuczera and Parent, 1998) are sometimes used as a

basis for exploring the feasible parameter space in order to identify po-

tential models. However, pure random sampling based on a uniform prior

distribution is most commonly applied (e.g., Beven and Binley, 1992;

Freer et al., 1996). This method assumes no prior knowledge of parame-

ter values other than minimum and maximum values. A drawback of this

sampling approach is its requirement for a large number of model runs.
Gupta et al. (1998) pointed out that in the presence of unavoidable

model structural error, a range of parameter sets — optimal with respect to

different OFs — is required to adequately simulate all response modes of

a natural system. Single parameter sets will favour specific response fea-

tures, €.g., peaks or low flows. This leads to the conclusion that a multi-
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objective optimization problem exists even for single output mode struc-
tures. The implications of this observation are discussed further below.

In those cases where a TF model is selected as the routing compo-
nent, structure identification and parameter estimation is performed using
the SRIV method of system identification (Young, 1992; Young et al.,
1996). Since the TF model is linear, the standard least squares normal
equations can be used to calculate the optimum parameter estimates un-
der a number of assumptions relating to the form of the random inputs to
the system. The TF structure is identified by fitting a large number of
different model structures and the subsequent assessment of the model
performance versus parameter identifiability using an extension of the
Akaike Information Criterion (AIC; Akaike, 1974) termed Young’s In-
formation Criterion (YIC; Young et al., 1996). This statistical assessment
is combined with an assessment of the physical validity of the model in
an approach termed data-based mechanistic modelling (Young, 1992;
Young and Beven, 1994; Young et al., 1996; Lees, 2000). In the RR
modelling case this means that a TF structure is only accepted if the TF
structure can be interpreted in a physical way (Young, 1992), i.e, as a
combination of linear stores in series and/or parallel with parameters de-
scribing aspects such as residence times or fractions of flow contributing
to particular pathways.

In summary, the RRMT contains a version of the SCE and SRIV. A
Monte Carlo sampling procedure is also available. Random sampling
based on uniform prior distribution is usually appropriate for the parsi-
monious models implemented in the RRMT.

3.2.6 Objective functions

The performance of a model is typically judged using an OF, usually in
combination with visual inspection of the calculated hydrograph. OFs
aggregate the model residuals, i.e., the part of the observed flow not re-
produced by the model, which can be calculated as

@)=y, - 5.0 (3.45)
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where 3,(6) is the calculated flow at time-step k using the parameter
set 8, y, is the observed flow at time-step £, and £,(8) is the resulting
residual at time-step k using parameter set 6.

The task is then to minimize or maximize the size of the OF (depend-
ing on definition). A variety of functions are available in the RRMT (Ta-
ble 3.1), which can be used to evaluate different aspects of a model’s
performance.

The most commonly utilized OFs in hydrological modelling are
variations of the Simple Least Squares (SLS) function,

N
SLS(6) =Y £,(6) (3.46)
k=1

where N is the number of flow values available. The SLS function is the
maximum likelihood estimator when the following assumptions about
the residuals cannot be rejected (Troutman, 1985; Yapo et al., 1996; Ger-
shenfeld, 1999): (1) the residuals are independent and identically distrib-
uted (i.i.d.), (2) the residual distribution has homogeneous variance, and
(3) the residuals are normally distributed with zero mean.

The analysis of the characteristics of the residual distribution can also
be an important step in evaluating the suitability of a model structure
(e.g., Beck, 1981a, 1981b; Yapo et al., 1996; Mroczkowski et al., 1997).
“If a fit produces residuals consistent with the random error assumptions,
then the model has extracted all useful information from the data leaving
only noise in the residuals” (Mroczkowski et al., 1997).

Graphical tests can be applied to evaluate the assumptions made about
the characteristics of the residuals (Draper and Smith, 1981; Kuczera,
1983). A number of different plots are available in the RRMT to facili-
tate this evaluation (Fig. 3.8): (1) plotting the residuals versus predicted
and calculated runoff reveals whether the variance of the residuals in-
crease with increasing flow values, i.e., the problem of heteroscedascity;
(2) plots of residuals versus time reveal long term effects (trends) or de-
pendency in time; (3) frequency distribution plots, also showing the
mean, can be used to indicate how close the residual distribution is to a
normal distribution; and (4) calculating (and plotting) the autocorrelation
coefficients allows users to assess the correlation of the residuals in time.
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If the assumption of zero mean cannot be rejected, the autocorrelation
coefficient of the residuals ac is described (Scholz, 1995) as:

iak (0)-£,..(0

ac(t) == —— (3.47)

£.(0)

k=1
where 7is a lag (7= 0,1,2,...,N-1), and ac(7) ranges from minus one to
plus one.
The 95% confidence intervals can be calculated as follows,

1

lac(t) K1.96- — (3.48)

N

Not more than 5% of the residuals should lie outside these limits.

The assumption of no autocorrelation, i.e., independence in time, is
often not satisfied in RR modelling applications. Residuals of small (e.g.,
daily) temporal discretization are usually related over a number of time-
steps. Sorooshian and Dracup (1981), and Kuczera (1983) describe con-
sequences and possible corrective measures if this assumption is vio-
lated.

Another problem often encountered in RR modelling is the fact that
the residual variance increases with increasing flow values; i.e., the as-
sumption of homoscedascity cannot be justified (Sorooshian and Dracup,
1981). In such cases, the variance can be stabilized through transforma-
tion of the simulated and observed flow data, or by the use of a weighted
least-squares OF (Kottegoda and Rosso, 1997).

A Box-Cox transformation (Box and Cox, 1964), which can be writ-
ten in the following form, is a useful transformation in this regard,

A

q" -1
g A)=1{" 2 for A#0 (3.49)

log(q) for A=0

where g is the original flow, g* is the transformed flow and A is the
transformation parameter.
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Table 3.1 Some of the objective functions available in the RRMT.

Objective function  Notation

Equation

Nash-Sutcliffe Effi-

. ] NSE
ciency

Root Mean Square RMSE
Error

Heteroscedastic
Maximum Likelihood HMLE
Estimator’

Bias BIAS

Deviation of Runoff

D
Volumes’ v

RMSE Response

Modes* FD,FQES
RMSE Hor‘zontal FH,FM.FL
Segmentation

RMSE Warming Up FWU
Period

N
Y 0 - 5.0))

NSE©)=1-*
k=

Z(}’k - 5).)2

1

1 & A 2
RMSE(6) =\/—ﬁ2(yk - 5.(0))

1 & N
'ﬁzwk (yk — Yk (9))2
min HMLE = —*= i
0.1 N
e
k=1
I

N

BIAS(6) = (v, — 5:(6))

RMSE of selected time steps
RMSE of selected time steps

RMSE of selected time steps

! Nash and Sutcliffe (1970)

2 Sorooshian and Dracup (1980}, Yapo et al. (1996)

3 ASCE (1993)
4 Boyle e al. (2000)
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Figure 3.8 Residual analysis plots.

Sorooshian and Dracup (1981) use this transformation in their Het-
eroscedastic Maximum Likelihood Estimator (HMLE, Table 3.1, see also
Sorooshian et al., 1993). The parameter A is optimized every time the
OF is calculated. The HMLE is the maximum likelihood estimator when
assumptions (1) and (3) are valid, and the residual distribution has mean
zero and heteroscedastic variance, i.e., the variance is a function of the
flow. The Box-Cox transformation and the use of the HMLE are both
available options in the RRMT.

Gupta (2001) points out that the analysis of the above outlined as-
pects is based on statistical regression analysis. How far these assump-
tions need to be satisfied for a dynamic conceptual model to perform
well may therefore be questionable. For example, the residuals will
commonly be correlated in time in this type of model, but does this viola-
tion matter with respect to the physical realism of the parameter esti-
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mates for any practical purposes? Further research is required to answer
the question of the importance of this type of model testing.

Another problem, already briefly indicated, occurs in terms of selec-
tion of an appropriate OF when automatic search algorithms are applied.
The drawback of single-criterion algorithms is that the calibration result
is fully dependent on one OF (Gupta et al., 1998; Boyle et al., 2000).
This can lead to an overemphasis on a certain aspect of the response,
e.g., peak flows, while neglecting the model performance with regard to
another aspect, e.g., low flows (Fig. 3.9). Hydrological models are typi-
cally not capable of fitting all system response modes with a single pa- '
rameter set due to the presence of structural errors. This can lead to a
calibration result that is not acceptable to hydrologists, thereby limiting
usefulness of automatic calibration (Boyle et al., 2000). A multi-criteria
approach to address this problem is proposed by Gupta ez al. (1998). The
objective is to increase the amount of information retrieved from the
model residuals to (1) find the parameter population necessary to fit all
aspects of the observed output time series, e.g., in a first stage of a hybrid
automatic-manual calibration procedure (Boyle et al., 2000); (2) increase
the identifiability of the model parameters (Wagener et al., 2001); and
(3) assess the suitability of the model structure to represent the natural
system, i.e., to identify model structural insufficiencies (Gupta et al.,
1998; Boyle et al., 2000).

A simple application of multi-objective optimization is the definition
of specific OFs for water resource management. A specific flow range
(e.g., between the minimum environmentally acceptable flow and a
maximum water supply abstraction rate) is often of particular interest.
Specifying an OF measuring the performance of the model in this range
in addition to the traditional measures of performance, can help to assess
the suitability of a model structure for the selected purpose (Lees and
Wagener, 2000a, 2000b). Measures available in the RRMT allow the
calculation of the RMSE above and below user-specified thresholds, and
within a certain flow range (see Table 3.1).

Other multiple objectives that can be selected within RRMT are the
RMSE based on a segmentation scheme modified from Boyle et al.
(2000; see application example in Section 3.4 for details), or the RMSE
for a warming up period to estimate initial conditions, FWU. The RRMT
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allows users to add OFs in a modular way depending on an application’s

requirements.

3.2.7 Visual analysis modules

Various plotting options are available in the RRMT to analyse the data
and the performance of the model. Examples of these plots are: (1) dou-
ble mass plots; (2) observed versus calculated flow scatter diagrams,

both on normal and logarithmic scales; and (3) flow duration and volu-
" metric fit curves, etc. These plots are helpful tools that enable an assess-
ment of model performance from different perspectives.
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Fig. 3.9 Plot showing predictions using two different parameter sets with an identical
model structure. Both realizations yield similar values of the NSE measure (0.82), but
show differences in fit when the response is analysed closely. (Reproduced from Wag-

ener et al., 2002a; with permission of Water Resources Publications LL.C.)
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3.2.8 Summary

In summary, the RRMT is a generic modelling shell that allows the user
to implement, evaluate, and modify lumped, parametric, or hybrid met-
ric-parametric model structures. A variety of moisture accounting and
routing components are provided and the addition of new structural ele-
ments is straightforward. Different data manipulation, optimization, and
visualization options are available to calibrate and evaluate the model.

3.3 Monte Carlo Analysis Toolbox

3.3.1 General

Increasingly important parts of any modelling exercise are the detailed
investigation of model performance in terms of parameter sensitivity and
identifiability, the suitability of a particular model structure, and predic-
tion uncertainty. Understanding model behaviour and performance in-
creases the transparency of the modelling procedure and helps in the as-
sessment of the reliability of modelling results.

The Monte Carlo Analysis Toolbox (MCAT, Wagener et al., 1999;
2002a) includes a number of analysis methods to evaluate the results of
Monte Carlo parameter sampling experiments or model optimization
methods based on population evolution or random techniques. Functions
contained in the MCAT include an extension of the Regional Sensitivity
Analysis (RSA, Spear and Hornberger, 1980; Hornberger and Spear,
1981) proposed by Freer et al. (1996), various components of the Gener-
alized Likelihood Uncertainty Estimation (GLUE) method (Beven and
Binley, 1992; Freer et al., 1996), and options for the use of multiple-
objectives for model assessment (Gupta et al., 1998; Boyle et al., 2000),
response surface plots. It also contains a novel Dynamic Identifiability
Analysis (DYNIA) approach.
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3.3.2 System architecture

The MCAT is a collection of MATLAB (Mathworks, 1996) analysis and
visualization functions integrated through a GUI (Fig. 3.10). It can be
accessed through an interface from the RRMT. Note, however, that the
MCAT is not specifically related to RR modelling and can be used to
analyse the results of any dynamic mathematical model (off-line).

3.3.3 Parameter sensitivity and identifiability

Sensitivity analysis is an approach to evaluating how changes in
model parameters affect the model output variable(s). This information
can be used to identify parameters that are not important for the repro-
duction of the system response and can therefore be subsequently fixed
or removed, reducing the dimensionality of the calibration problem.

A popular sensitivity analysis method that utilizes the results of
Monte Carlo sampling is Regional Sensitivity Analysis (RSA, Spear and
Hornberger, 1980; Hornberger and Spear, 1981), which analyses the sen-
sitivity of the model output to changes in the parameters without refer-
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Fig. 3.10 System architecture of the Monte Carlo Analysis Toolbox.
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ring to a certain point in the parameter space, such as the most likely
value for a specific parameter (Spear, 1993).

The RSA method starts with a Monte Carlo sampling of N points in
the feasible parameter space, drawn from a multivariate uniform distribu-
tion. The sampled parameter population is partitioned into a behavioural
(B) and a non-behavioural (B') group. By behavioural we mean parame-
ter sets that produce a model response (behaviour) similar to the response
of the hydrological system. The division into behavioural and non-
behavioural can, for example, be based on the predicted state of the sys-
tem (e.g., Spear and Hornberger, 1980) or on a measure of performance
(e.g., Hornberger et al., 1985; Beven and Binley, 1992). The comulative
distributions for the two groups (F(6_|B) and F(6, | B)) are com-
puted (Fig. 3.11). A separation between the distribution curves indicates
a statistical difference between the characteristics of the two (behavioural
and non-behavioural) subpopulations. This indicates that the parameter
6, is sensitive, i.e., its value can be strongly correlated with model per-
formance. The significance of the separation can be estimated using sta-
tistical tests such as the Kolmogorov-Smirnov (KS) two-sample test
(Kottegoda and Rosso, 1997), and a heuristic ranking scheme can be in-
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Fig. 3.11 Cumulative distributions of initial (F(0,)), ‘behavioural’ (F(6,}B)) and
‘non-behavioural’ ( F(6, | B)) populations for a sensitive parameter 8,, and a (condi-
tionally) insensitive parameter 6,.
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troduced based on the actual values of the KS measure (Spear and Horn-
berger, 1980).

An unfortunate weakness of this approach is that a lack of separation
between the cumulative distributions of F(6,1B) and F(6,1B) is
only a necessary, and not a sufficient condition for insensitivity of 8,
(Spear, 1993). It can also be caused by strong correlation with other pa-
rameters. Evaluation of the parameter covariance can be used to estimate
whether this is the case (Hornberger and Spear, 1981; Hornberger et al.,
1985). The interaction between two parameters can also be investigated
in the MCAT by plotting their response surface with respect to a particu-
lar OF.

A modification of the RSA approach proposed by Freer et al. (1996)
is implemented in the MCAT to support visual inspection of the sensitiv-
ity of the different parameters with respect to a selected OF (Fig. 3.12).
Freer et al. (1996) split the parameter population, ranked on the basis of
their OF values, into ten groups of equal size and plot the cumulative
distribution of the parameters in each group with respect to the chosen
measure of performance. Differences in form and separation of the re-
sulting curves provide information about parameter sensitivity. Splitting
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Fig. 3.12 Schematic Regional Sensitivity Analysis plot using the modified ver-
sion of Freer et al. (1996). A sensitive parameter is shown in the left plot, while
the right one shows an insensitive one.
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the parameter population into ten groups, instead of merely dividing it
into behavioural and non-behavioural parameter sets as in the original
method, avoids the need to (subjectively) select a threshold value, and
increases the information provided by the analysis.

Variation in performance between the different groups can be visual-
ized using the class plot option in the MCAT. This figure shows the re-
sponse vector calculated with the best performing parameter set in each
of the groups and plots them together with the observed response (if
available).

Parameter sensitivity is a necessary, but not a sufficient requirement
for identifiability, since values of sensitive parameters that produce an
acceptable model performance can still be distributed over a relatively
wide range of the feasible parameter space. A model, i.e., a parameter set
@ within a certain model structure, is termed (globally) identifiable if it is
possible to uniquely determine its location in the parameter space, based
on the model output produced. This requires the parameter set to yield a
unique response vector (Mous, 1993). However, the specific characteris-
tics of parametric RR models (Duan et al., 1994; Gupta et al., 1998), the
often limited information content of the available time-series, and the
restrictions of single value OFs that aggregate the fit to the response vec-
tor into a single value limit the success of parameter identification in
many cases, as described in detail in Chapter 2.

The RSA procedure outlined above has been extended to investigate
the identifiability of a parameter (Wagener et al., 2001). Reducing the
analysis to the cumulative distribution of the best performing group de-
rived from the approach implemented by Freer et al. (1996) allows the
definition of an empirical measure of identifiability for each parameter.
The cumulative distribution of a uniform distribution is a straight line.
Deviations from this straight line indicate regions of higher identifiabil-
ity. Splitting the feasible parameter range into segments and calculating
the gradient of the cumulative distribution in each segment leads to an
indicator of identifiability. Figure 3.13 shows how gradients for a well
identified and a poorly identified parameter are distributed. An example
of the utility of this measure is included as part of the demonstration ap-
plication described in Section 3.4. The identifiability measure can also be
used in a dynamic way to link parameters (and related model compo-
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nents) to system response modes in an objective fashion. This technique
will be introduced in Chapter 4.

3.3.4 Model structure suitability

The problem of model structural error or suitability is an issue of increas-
ing interest in recent research (e.g., Kleissen et al., 1990; Yapo et al.,
1996; Gupta et al, 1998; Boyle et al., 2000). Gupta ez al. (1998) intro-
duced a multi-objective analysis framework to investigate deficiencies in
the model structure, which are reflected in a structure’s inability to
simultaneously reproduce different aspects of the system response with a
single set of parameters. Different parameter combinations are required
to fit different response modes (Boyle et al., 2000) or output variables
(Bastidas, 1998). Defining more than one OF to measure the model per-
formance with respect to different system responses, and analysing the
variation in the resulting parameter populations can be used as an indica-
tor of the degree of structural deficiency present. Multi-objective plots,
i.e., scatter plots of different OFs against each other, are available in the
MCAT to evaluate whether the selected measures of performance re-
trieve similar information from the residuals or whether they are uncorre-
lated. Uncorrelated measures often show a trade-off front, which can be
described by a Pareto set, as shown by Gupta et al. (1998). A parameter
set is termed Pareto optimal if, by changing its parameters, an improve-
ment with respect to one OF results in the degradation with respect to
another OF (Chankong and Haimes, 1993). An estimate of the Pareto set
can be calculated from the available parameter population in the MCAT
and the range of predictions produced by this population can be visual-
ized. It is also possible to plot the values of the best parameter sets as
well as their predictions (albeit not simultaneously) with respect to dif-
ferent OFs on a normalized scale to see the variation associated with the
different measures.
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Fig. 3.13 Example of a well-identified parameter (left column) and a poorly identified
parameter (right column). The top row shows scatter plots of parameter versus measure
of performance. It has to be considered that these projections into a single parameter
dimension can, however, hide some of the structure of the response surface (Beven,
1998). The bottom row shows the cumulative distribution of the best performing 10% of

parameter sets and the corresponding gradients within each segment of the parameter
range.

3.3.5 Prediction uncertainty

Uncertainties in the model parameters are propagated into the model pre-
dictions. A popular method of estimating and propagating this uncer-
tainty is the Generalized Likelihood Uncertainty Estimation (GLUE) ap-
proach (Beven and Binley, 1992; Freer et al., 1996; Beven, 1998). The
underlying assumption of this approach is similar to that of the RSA
methodology described earlier. Because it is not possible to find a global
optimum, only a population of possible (behavioural) parameter sets can
be estimated. The approach starts with a Monte Carlo procedure, sam-
pling a large number of random parameter sets (usually) from uniform
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distributions, assuming only a minimum amount of prior information is
available (upper and lower bounds). A simulation is then performed us-
ing each parameter set and a likelihood measure to evaluate the perform-
ance of each set is calculated. A likelihood measure in the GLUE context
can be any measure of performance so long as better performing models
attain a higher value and the sumn taken over all sampled parameter sets is
unity. The likelihood values of parameter sets below a certain user se-
lected threshold are set to zero, i.e., these are considered to be non-
behavioural. Likelihood values of the retained models are used to weight
the corresponding predictions (Beven, 2000a, p.236). Uncertainty in the
parameter values, and (implicitly) the uncertainty in the data are propa-
gated into the model response in the form of confidence limits at a speci-
fied percentile. Within the MCAT, it is also possible to calculate a cumu-
lative probability distribution and probability density function for a se-
lected variable, e.g., the peak output.

The MCAT also contains a plot that shows the range of predictions
produced by the Pareto set from a multi-objective analysis. This is the
trade-off range caused by the inability of a single parameter set to repro-
duce all response modes. This prediction range is usually narrower than
the one produced by GLUE (see discussion in Chapter 2).

3.3.6 Summary

In summary, the MCAT aims to provide a tool that addresses the emerg-
ing requirement to include detailed investigations of model behaviour,
performance, and prediction uncertainties as an integral part of the mod-
elling process. Options currently available include visualization of the
parameter space (e.g., surface and identifiability plots), various capabili-
ties of the GLUE approach (e.g., prediction uncertainty and extended
RSA approach), and plots to analyse the role of multiple-objectives (in-
cluding the option to calculate the Pareto optimal solution and plot the
response range produced by it). It also allows the estimation of dynamic
parameter identifiability, an approach introduced in Chapter 4.
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3.4 Application Example — Complexity Versus Identifiability

The following application example is presented to illustrate the use of
both toolboxes using data from the River Medway catchment (1256.1
km?), located in southeast England. Almost seven years of daily natural-
ized flows, rainfall, PE and temperature data are available for use in this
modelling exercise.

The Medway catchment is characterized by a mixture of permeable
(chalk) and impermeable (clay) geologies subject to a temperate climate
(annual rainfall of 772 mm and an annual PE of 663 mm over the period
1989-96).

Different response modes are identified using a partitioning scheme
suggested by Boyle et al. (2000) but adapted for this particular catch-
ment. This approach is based on the assumption that the behaviour of the
catchment is different during periods driven by rainfall and periods with-
out rain, (non-driven). Further, the periods classified as non-driven can
be additionally discretized between periods dominated by quick response
and periods dominated by the slow response of the catchment system.
The streamflow hydrograph can therefore be partitioned into three com-
ponents: driven, non-driven quick, and non-driven slow.

The time-steps that correspond to each period are identified through
an analysis of the precipitation data and the time of concentration of the
catchment (Fig. 3.14). Time-steps with rainfall larger than a certain
threshold (e.g., the mean of the square-root of the rainfall), lagged by the
time of concentration of the catchment, are classified as driven, Qp. Of
the remaining (non-driven) time-steps, those with streamflow lower than
a selected threshold (e.g., a third of the mean of the square-root of the
flows) are classified as non-driven-slow, Qs, and the rest are classified as
non-driven-quick, Qq. Model performance during these three periods is
estimated by calculating an OF using the residuals during each period.

The performance of each model structure is evaluated using the Nash-
Sutcliffe Efficiency measure (NSE, Nash and Sutcliffe, 1970, Table 3.1).
However, the NSE criterion favours models that are able to reproduce the
catchment response at high flows (Legates and McCabe, 1999). Im-
provement in performance through increased model complexity, for ex-
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Fig. 3.14 A hundred day period of Medway streamflow and rainfall segmented using a
scheme modified from Boyle et al. (2000). The dots indicate time steps classified as
driven (black), non-driven quick (grey), and non-driven slow (white). (Reproduced from
Wagener et al., 2002a; with permission of Water Resources Publications LLC.)

ample during periods of recession, could therefore go unnoticed. Using
the partitioning scheme introduced above, and calculating the weighted
addition of the NSE for each period can avoid this. Equal weight is given
to each of the periods, assuming that a balanced reproduction of the
whole hydrograph is the objective. The measure of performance is calcu-
lated as follows:

PEF =L NsE, + 1
3 3

1
—NSE, +~3~NSES (3.50)
where NSE, is the performance measure during driven (Qp), non-driven
quick (Qg), and non-driven slow (Qs) periods. A MATLAB implementa-
tion of the SCE approach (Duan et al., 1992) is used to optimize the

model performance with respect to the defined OF, PEF.
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Table 3.2 Model structures used. A cross indicates the use of this particular structural
element.

Model Moisture accounting Routing
Type Structure

B! P2s> BP* L* NL® 1s®*  2p7 3Pt
01 2)° X X X
02 (2) X X X
03 (3) X X X X
04 4) X X X X
05 (5) X X X X
06 (6) X X X X X
07 (7 X X X X

9 Number of parameters.

! Simple bucket emptying at potential rate as long as moisture is available.

2 Penman two store model as described earlier in the text (bypass = 0).

3 Bypass mechanism, i.e., a percentage of the rainfall is directly contributing to runoff.
* Conceptual linear reservoirs.

3 Conceptual non-linear reservoirs.

® Single reservoir.

" Two reservoirs in parallel.

& Three reservoirs in parallel.

The identifiability of the model parameters is investigated using the
empirical measure introduced in Section 3.3.3. A Monte Carlo sampling
procedure (10,000 samples) based on uniform distributions is used to
investigate the feasible parameter space for each model structure. The
maximum identifiability value of each parameter, i.e., the maximum gra-
dient of its cumulative distribution split into bins, is calculated from the
best performing 10% parameter values. The mean of these maximum
identifiability values for each model structure is used as an indicator of
parameter identifiability. The difference in parameter dimension between
the model structures is considered by analysing the stability of the identi-
fiability measure while varying the size of the parameter population used
to calculate it.

The graph shown in Fig. 3.15 depicts measures of performance and
identifiability plotted against model structures. The result suggests that
increased model complexity leads to increased performance while the
identifiability of the model parameters decreases. A trade-off between
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Fig. 3.15 Performance versus identifiability plot for the different model structures inves-
tigated. (Reproduced from Wagener et al., 2002a; with permission of Water Resources
Publications LLC.)

these two features is required if, for example, it is intended that the
model structure be used within a regionalization project. Note that the
decline in performance from model M-6 to model M-7 is caused by the
less suitable slow flow component of model M-7. Further research has
shown that other segmentation schemes are better suited for catchments
in similar climatic regions (see Chapter 4).

3.5 Summary and Conclusions

A toolkit has been implemented that facilitates the development and
analysis of lumped and parsimonious model structures, using state-of-
the-art modelling techniques.

The RRMT allows the implementation of parametric or hybrid met-
ric-parametric model structures. Its major strength is a high degree of
structural flexibility which allows the quick implementation and evalua-
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tion of different model structures to identify the most suitable one(s) for
the circumstances at hand. The option to run the RRMT in batch mode is
particularly attractive for studies that include a range of model structures
or a large number of catchments.

The MCAT enables the detailed investigation of model performance,
parameter sensitivity and identifiability, model structure suitability, and
prediction uncertainty. It is generic and can be applied to the analysis of
any dynamic mathematical model structure. Within the MCAT, a new
empirical identifiability measure has been implemented, based on the
gradient of the cumulative parameter distribution.

A brief application example was used to show how the toolkit can be
applied. Analysis of a variety of model structures with different levels of
complexity showed that the model performance increased with increas-
ing complexity, while parameter identifiability decreased. This demon-
strates that there is a clear trade-off between these two features. The
study used a MO approach, assessing different components of hydro-
graph response, to ensure that any improvement in performance did not
go unnoticed.

The latest version of the toolboxes and full manuals are available
from the website of the Environmental and Water Resource Engineering
Section of the Imperial College London. For details see Appendices B
and C.
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Chapter 4

Modelling Gauged Catchments —
Local Procedures

Imagination is more important than knowledge, because knowledge is
limited.

Albert Einstein (1879-1955)

4.1 Introduction

This introduction builds on the background discussed earlier. The under-
lying issues are restated here for completeness of the argument.

Many if not most rainfall-runoff model structures currently used can
be classified as conceptual, as defined by Wheater ez al. (1993). Concep-
tual rainfall-runoff (CRR) model structures commonly aggregate, in
space and time, the hydrological processes occurring in a catchment, into
a number of key responses represented by storage components (state
variables) and their interactions (fluxes); see Fig. 4.1. The model pa-
rameters describe aspects such as the size of those storage components,
the location of outlets, the distribution of storage volumes, etc. Concep-
tual parameters, therefore, usually refer to a collection of aggregated
processes and may cover a large number of subprocesses that cannot be
represented separately or explicitly (Van Straten and Keesman, 1991).
The underlying assumption, however, is that these parameters are, even
if not measurable properties, at least constants and representative of in-

herent properties of the natural system (Bard, 1974, p.11).

The modeller’s task is the identification of an appropriate CRR model
(or models) for a specific case, with a given modelling objective, catch-
ment characteristics, and data set (Wagener, 1998). Experience shows

99
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Fig. 4.1 Schematic description of a conceptual model structure showing different internal
states s; and parameters 6; (modified from Beck, 1993).

that this identification is a difficult task. Various parameter sets, often
widely distributed within the feasible parameter space (e.g., Duan et al.,
1992; Freer et al., 1996), sometimes even different conceptualizations of
the catchment system (e.g., Uhlenbrock et al., 1999), may yield equally
good results in terms of a predefined objective function (OF). This ambi-
guity has serious impacts on parameter and predictive uncertainty (e.g.,
Beven and Binley, 1992) and therefore limits the applicability of CRR
models, for example for the simulation of land use or climate change
scenarios, or for regionalization studies (Moore and Clarke, 1981; Whea-
ter et al., 1993).

Initially it was thought that this problem would disappear with im-
proved automatic search algorithms capable of locating the global opti-
mum on the response surface (e.g., Duan et al., 1992). However, power-
ful global optimization algorithms are available today, while single-
objective calibration procedures still cannot completely replace manual
calibration. One reason for this is that the resulting hydrographs are often
perceived by the hydrologist to be inferior to those produced through
manual calibration (Gupta et al., 1998; Boyle et al., 2000). It has been
suggested that this is due to the fundamental problem that single-
objective automatic calibration is not sufficiently sophisticated to repli-
cate the several performance criteria implicitly or explicitly used by the
hydrologist in manual calibration. This problem is increased by indica-
tions that, due to structural inadequacies, one parameter set might not
adequately describe all response modes of a hydrological system. There-
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fore, there is a strong argument that the process of identification of dy-
namic, conceptual models has to be rethought (Gupta et al., 1998; Gupta,
2001).

Three reactions to this problem of ambiguity of system description
can be found in the hydrological literature. The first is the increased use
of parsimonious model structures (e.g., Jakeman and Hornberger, 1993;
Young et al., 1996; Wagener et al., 2002a), structures that only contain
those parameters, and therefore model components, that can be identified
from the observed system output. However, the increase in identifiability
is bought at the price of a decrease in the number of processes described
separately by the model. There is therefore a danger of building a model
(structure) that is too simplistic for the anticipated purpose. Such a model
(structure) can be unreliable outside the range of catchment conditions on
which it was calibrated, such as climate and land use, due to the restric-
tion to justifiable components (Kuczera and Mroczkowski, 1998). It is
also particularly important that the data used does have a high informa-
tion content, to ensure that the main response modes are excited during
calibration (Gupta and Sorooshian, 1985; Yapo et al., 1996).

The second reaction is the search for calibration methods that make
better use of the information contained in the available data time-series,
e.g., streamflow and/or groundwater levels. Various research efforts have
shown that the amount of information retrieved using a single OF is suf-
ficient to identify only three to five parameters (e.g., Beven, 1989; Jake-
man and Hornberger, 1993; Gupta, 2001). Most CRR model structures
contain a larger number. More information can become available through
the definition of multiple OFs to increase the discriminative power of the
calibration procedure (e.g., Gupta er al., 1998; Gupta, 2001). These
measures can either retrieve different types of information from a single
time-series, e.g., streamflow (e.g., Wheater et al., 1986; Gupta et al.,
1998; Dunne, 1999; Boyle et al., 2000; Wagener et al., 2001), or de-
scribe the performance of individual models with respect to different
measured variables, e.g., groundwater levels (e.g., Kuczera and
Mroczkowski, 1998; Seibert, 2000), saturated areas (Franks et al., 1998),
or measurements of streamflow salinity (Mroczkowski et al., 1997;
Kuczera and Mroczkowski, 1998). However, the usefulness of additional
data can depend on the adequacy of the model structure investigated.
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Lamb et al. (1998) found that the use of groundwater levels from one or
only a few measurement points as additional output variable(s) helped to
reduce the parameter uncertainty of Topmodel (Beven and Kirkby, 1979;
Beven et al., 1995). The use of many (>100) points, however, led to an
increase in prediction uncertainty indicating structural problems in the
model. Seibert and McDonnell (2002) showed in a different approach
how the parameter space can be constrained when soft data (qualitative
knowledge of the catchment behaviour) is included in the calibration
process. The soft data in their case included information derived through
experimental work about the contribution of new water to runoff and the
restriction of parameter ranges to a desirable range. The result was a
more realistic model, which, however, yielded sub-optimal performances
with respect to many specific OFs, in this case the NSE measure.

Thirdly, some researchers abandoned the idea of a uniquely identifi-
able model in favour of the identification of a model population (e.g.,
Van Straten and Keesman, 1990; Beven and Binley, 1992; Gupta et al.,
1998). This can be a population of models with varying degrees of likeli-
hood that can be representative for the catchment at hand, the idea be-
hind the GLUE approach (Beven and Binley, 1992; Freer et al., 1996).
Or it may be an approach based on the recognition that the calibration of
a rainfall-runoff model is inherently a multi-objective problem, resulting
in a population of non-dominated parameter sets (Goldberg, 1989, p.201)
in the presence of model structural inadequacies (Gupta et al., 1998).

The aim of the research presented here is to increase the amount of
information made available from an output time-series and to guide the
identification of parsimonious model structures, consistent with a given
model application as explained below. Multi-objective approaches are
used for performance and identifiability analysis and a novel dynamic
identifiability analysis (DYNIA) method is used for assumption testing.
These can be integrated into a framework for model corroboration and
rejection. Application examples at the end of this chapter show the use of
these approaches and the framework for different cases.
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4.2 Identification of Conceptual Rainfall-Runoff Models

The purpose of identifiability analysis in CRR modelling is to find the
model structure(s) and corresponding parameter set(s) that are represen-
tative of the catchment under investigation, while considering aspects
such as modelling objectives and available data. This identifiability
analysis can be split into two stages: model structure selection or identi-
fication, and parameter estimation or identification. They may not, how-
ever, be treated as completely separate (Sorooshian and Gupta, 1985),
because in order to evaluate model structures fully, one has to analyse
their performance and behaviour, requiring some form of parameter es-
timation.

Traditional modelling procedures commonly contain, among others,
an additional third step (e.g., Anderson and Burt, 1985; Anderson and
Woessner, 1992). This is a validation or verification step often used to
show that the selected model is an acceptable representation of the
catchment under investigation. This results in the following three steps,
which form the core of the more complete sequence developed in Chap-
ter 2 (Fig. 2.2):

e Selection or development of a model structure and subsequent
computer code to represent the conceptualization of the hydro-
logic system that the hydrologist has conceived for the catch-
ment under study. ‘

e Calibration of the selected model structure, i.e., estimation of the
best parameter set(s) with respect to one or more (often com-
bined) criteria.

¢ Validation or verification of this model by successfully applying
it to a data set not used during the calibration stage.

It is important to stress that the original meanings of the words ‘vali-
dation’ and ‘verification’ are different. Verification is the stronger state-
ment, meaning fo establish the truth, while validation means to establish
legitimacy (Oreskes et al., 1994). In the context of hydrological model-
ling, these terms are often applied synonymously, describing a step used
to justify the chosen model as an acceptable representation of the real
system. An in-depth discussion on this topic can be found in Oreskes
et al. (1994).
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These three steps are similar to the logic of induction often used in
science. This idea of induction is founded on the underlying assumption
that a general statement can be inferred from the results of observations
or experiments, i.e., singular statements (Popper, 2000, p.27). It includes
the assumption that a hypothesis, e.g., a chosen model structure, can be
shown to be correct, i.e.,, a hypothesis can be validated or verified,
through supporting evidence. The steps taken in this traditional scientific
method are usually similar to the following (modified from Magee, 1977,
p-56):

e observation and experiment;

e inductive generalization, i.e., a new hypothesis;

e attempted verification of hypothesis, i.e., proof or disproof of

hypothesis;
e knowledge.

However, the logical error in this approach is, (as Magee, 1977, p.20,
derives from statements by the philosopher Hume), that “no number of
singular observation statements, however large, could logically entail an
unrestrictedly general statement.” In rainfall-runoff modelling this is
equivalent to the statement that, however often a model is capable of re-
producing the response of a particular catchment, it can never be con-
cluded that the true model is found. It could for example be that future
measurements will capture more extreme events, exciting a response not
represented by earlier data and therefore not included in the model. Simi-
larly, the philosopher Popper concluded that no theory or hypothesis
could ever be taken as a final truth. It can only be said that it is corrobo-
rated by every observation so far, and yields better predictions than any
known alternative. It will however, always remain replaceable by a better
theory or may turn out to be false at a later stage (Popper, 2000, p.33).

The idea that a model can be verified (verus, meaning ‘true’ in Latin,
Oreskes et al., 1994) is therefore ill-founded and alternative modelling
frameworks have to be found. One such alternative approach to scientific
investigation in general was suggested by Popper (2000). He realized
that, while no number of correctly predicted observations can lead to the
conclusion that a hypothesis is correct, a single unexplained observation
can lead to the falsification of the hypothesis. Hence, he replaced the
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framework of verification with a framework of falsification, allowing the
testing of a hypothesis.

This framework of falsification as suggested by Popper can be out-
lined as follows (modified from Magee, 1977, p.56):

e the initial problem or question, often resulting from the fact that
an existing hypothesis has failed;
e one (or more) proposed new hypothesis(es);
e deduction of testable propositions from the new hypothesis;
e attempted falsification of the new hypothesis by testing the
propositions;
e preference established between competing hypotheses.
The procedure is repeated as soon as the new hypothesis fails. It is thus
possible to search for the truth, but it is not possible to know when the
truth has been found, a problem which has to be reflected in any scien-
tific method.

Additionally, Beven (2000a, p.304) points out that it is very likely, at
least with the current generation of CRR models, that every model will
fail to reproduce some of the behaviour of a catchment at some stage.
However, even if one knows that a model is inadequate, one often has to
use it due to the lack of alternatives. In many cases, the use of this inade-
quate model will be sufficient for the selected purpose. Or as Wilfried
Trotter put it more generally: “In science the primary duty of ideas is to
be useful and interesting even more than to be ‘true’.” (Beveridge, 1957,
p.41). Mankin ez al. (1977) come to a similar conclusion: “Let us dismiss
the question, ‘Have you proven that your model is valid?’ with a quick
NO. Then let us take up the more rewarding and far more challenging
question: ‘Have you proven that your model is useful for learning more
about the ecosystem?’”

How this general idea of hypothesis falsification can be put into a
framework for CRR modelling is described below.

4.2.1 Identification of model structures

A large number of CRR modelling structures are currently available.
These differ, for example, in the degree of detail described, the manner
in which processes are conceptualized, requirements for input and output
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data, and possible spatial and temporal resolution. Despite these differ-
ences, a number of model structures may appear equally likely for a spe-
cific study, and the selection process often amounts to a subjective deci-
sion by the modeller (Wagener, 1998), since objective decision criteria
are often lacking (Mroczkowski ez al., 1997). It is therefore important to
deduce testable propositions with respect to the assumptions underlying
the model structure, i.e., on how the catchment works, and to find meas-
ures of evaluation that give some objective guidance as to whether a se-
lected structure is suitable or not. Uhlenbrock et al. (1999) have shown
however that it is difficult to achieve this using single-objective Monte
Carlo-based calibration approaches. They were able to derive good per-
formances with respect to the prediction of streamflow, from both sensi-
ble, as well as incorrect conceptualizations of a catchment. Mroczkowski
et al. (1997) encountered similar problems when trying to falsify one of
two possible model structures, including and excluding a groundwater
discharge zone, to represent two paired catchments in Western Australia.
This was impossible for both catchments when only streamflow data
were used. The additional use of stream chloride and groundwater level
measurements allowed at least for the falsification of one of the model
structures for the second catchment which had undergone considerable
land use changes.

Testable propositions about a specific model structure can either be
related to the performance of the model or its components, or they can be
related to its proper functioning.

A test of performance is the assessment of whether or not the model
structure is capable of sufficiently reproducing the observed behaviour of
the natural system, considering the given quality of data. However, an
overall measure of performance, aggregating the residuals over the cali-
bration period and therefore a number of response modes, hides informa-
tion about how well different model components perform. It can be
shown that the use of multiple-objectives for single-output models,
measuring the model’s performance during different response modes,
can give more detailed information and can allow the modeller to link
model performance to individual model components (e.g., Boyle et al.,
2001; Wagener et al., 2001). Additional information will also be avail-
able in cases where the model produces other measurable output vari-
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ables, e.g., groundwater levels or hydro-chemical variables, as mentioned
earlier.

Evaluation of the proper functioning of the model means questioning
the assumptions underlying the model’s structure. Do the model compo-
nents really represent the response modes they are intended to represent?
Is the model structure capable of reproducing the different dominant
modes of behaviour of the catchment with a single parameter set? A
model structure is usually a combination of different hypotheses of the
working of the natural system. If those hypotheses are to be individually
testable, they should be related to individual model components and not
just to the model structure as a whole (Beck, 1987; Beck et al., 1993).

One previously mentioned, underlying assumption of conceptual
modelling is the consideration of model parameters as constant in time,
at least as long as no changes in the catchment occur that would alter the
hydrological response, such as land use changes. Different researchers
(e.g., Beck, 1985; 1987; Gupta et al., 1998; Boyle ez al., 2000; Wagener
et al., 2003a, 2000c) have shown that this assumption can be tested, and
that the failure of a model structure to simulate different response modes
with a single parameter set suggests inadequacies in the functioning of
the model.

Beck used the Extended Kalman Filter (EKF) extensively to recur-
sively estimate model parameters and to utilize the occurrence of pa-
rameter deviation as an indicator of model structural failure (e.g., Beck,
1985; 1987, Stigter et al., 1997). For example, in the identification of a
model of organic waste degradation in a river, changes were identified in
optimum parameter values in time from one location in the parameter
space to another (Beck, 1985). Beck showed that the model hypothesis
had failed; the parameters were changing to compensate for one or more
missing aspects in the model structure. The subsequent step is to draw
inference from the type of failure to develop an improved hypothesis of
the model structure. However, there are limitations to the EKF approach.
Beck (1987) concluded with respect to its use for hypothesis testing that
“the performance of the EKF is not as robust as would be desirable and,
inter alia, is heavily compromised by the need to make more or less arbi-
trary assumptions about the sources of uncertainty affecting the identifi-
cation problem.”
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A trade-off in the capability to simulate different response modes can
occur, as shown by Boyle et al. (2000) for the example of a popular
complex rainfall-runoff model (Sacramento with 13 calibrated parame-
ters; Burnash, 1995): thus, they found it was not possible to reproduce
slow recession periods and the remaining system response modes simul-
taneously. Their multi-objective analysis suggests the cause for this prob-
lem is mainly inadequate representation of the upper soil zone processes.

Approaches to address the problem of model structure identification
in a more objective way are therefore available. However, they are not
without weaknesses, as Beck’s statement about the use of the EKF
showed. These weaknesses need to be addressed to derive approaches
more suitable for the nature of CRR model structures.

4.2.2 Identification of parameters

The second stage in model identification is the estimation of a suitable
parameter set, usually referred to as calibration of the model structure. In
this process, the parameters of a model structure are adjusted until the
observed system output and the model output show acceptable levels of
agreement. Manual calibration does this in a trial-and-error procedure,
often using a variety of measures of performance and visual inspection of
the hydrograph (e.g., Gupta et al., 1998). It can yield good results, but is
time consuming, requires extensive experience with a specific model
structure, and precludes an objective analysis of parameter uncertainty.
Traditional single-criterion automatic calibration on the other hand is fast
and objective, but will produce results that reflect the choice of OF and
may therefore not be acceptable to hydrologists concerned with a number
of aspects of performance (Boyle er al., 2000; Hogue et al., 2000). In
particular, the aggregation of model residuals into an OF leads to the ne-
glect and loss of information about individual response modes, and can
result in a biased performance, fitting a specific aspect of the hydrograph
at the expense of another. It also leads to problems with the identification
of those parameters associated with response modes that do not signifi-
cantly influence the chosen OF (Wagener et al., 2001). For example, se-
lecting an OF that puts more emphasis on fitting peak flows, e.g., the
NSE (Nash and Sutcliffe, 1970), due to its use of squared residual values
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(Legates and McCabe, 1999), often will not allow for the identification
of parameters related to the slow response of a catchment (e.g., Dunne,
1999; Hogue et al., 2000).

An example to demonstrate this problem is briefly presented. It uses a
simple model structure consisting of a Penman two-layer soil moisture
accounting component (Penman, 1949) to produce effective rainfall, and
a linear routing component using two conceptual reservoirs in parallel to
transform it into streamflow (see Chapter 3 for details). A comparison of
hydrographs produced by different parameter sets within the selected
structure, which yield similar OF values, shows that these hydrographs
can be visually different. Figure 4.2 shows a hundred days extract from
six years of daily streamflow data, where the observed time-series (black
line) is plotted with seven different realizations (grey lines), i.e., the
same model structure is used with different parameter sets. The OF used
during calibration is the root mean squared error (RMSE), which can be
defined as follows:

RtsE0)= (L35, -5, (0) @

where ), (9) is the calculated flow at time step k using parameter set 8,
and y, is the corresponding observed flow, while N is the total number
of time steps considered. Each of the models presented yields an RMSE
of 0.60 mmd™" when the complete calibration period (6 years) is consid-
ered. However, the hydrographs produced are clearly visually different.
The added dotty plots of the two residence times of the (linear) routing
component show that while the quick flow residence time, k(quick) is
very well identified, the slow flow residence time, k(slow), is not. This is
consistent with the observation that the main difference between the hy-
drographs can be observed during low flow periods. The effect is due to
the use of squared residuals when calculating the RMSE.

This demonstrates that traditional single-objective optimization
methods often do not have the ability to distinguish between visually dif-
JSerent behaviour (Gupta, 2001). The requirement for a parameter set to
be uniquely locatable within the parameter space, i.e., to be globally
identifiable, is that it yields a unique response vector (Kleissen er al.,
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1990; Mous, 1993). The unique response vector, in this case a calculated
hydrograph, might be achievable, but this uniqueness may be lost if the
residuals are aggregated into a single OF. Such problems cannot be re-
solved through improved search algorithms. They are rather inherent in
the philosophy of the calibration procedure itself.

Clearly, the complex thought processes that lead to successful manual
calibration are very difficult to encapsulate in a single OF. This is illus-
trated by the requirements defined by the US National Weather Service
(NWS) for the manual calibration of the Sacramento model structure
(NWS, 2001):

k(quick)

— observed
~~-- calculated ]

streamflow [mm/d]

=y

1000 =TT A0
time step [d]

Fig. 4.2 Hundred days’ extract of six years of daily streamflow data. Observed flow is in
black, seven different model realizations are in grey. Inserts show dotty plots for the time
constants k(quick) and k(slow) with respect to the Root Mean Squared Error (RMSE).
The model structure used consists of a Penman soil moisture accounting component and a
parallel routing component of linear reservoirs with fixed flow distribution (see applica-
tion example 2 for details). (From Wagener ez al., 2003b; reproduced with permission of
the American Geophysical Union)
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e Proper calibration of a conceptual model should result in pa-
rameters that cause model components to mimic processes they
are designed to represent. This requires the ability to isolate the
effects of each parameter.

¢ Each parameter is designed to represent a specific portion of the
hydrograph under certain moisture conditions.

e (Calibration should concentrate on having each parameter serve
its primary function rather than overall goodness of fit.

It can be seen from these requirements that manual calibration is
more complex than the optimization of a single OF, and that traditional
single-criterion automatic calibration procedures will in general not
achieve comparable results. It is for example often not possible to isolate
the effects of individual parameters and treat them as independent enti-
ties as done in the manual approach described above. Another aspect is
that the goal of single-objective optimization is purely to optimize the
model’s performance with respect to a selected overall goodness of fit
measure which is very different from the third requirement shown above.
This is not to say that traditional individual OFs are not important parts
of any model evaluation. The point is rather that they are not sufficient
and should be complemented by a variety of measures.

Gupta et al. (1998) review this problem in more detail and conclude
that a multi-objective approach to automatic calibration can be success-
ful. Boyle ez al. (2000) show how such a procedure can be applied to
combine the requirements of manual calibration with the advantages of
automatic calibration. A multi-objective algorithm is used to find the
model population necessary to fit all aspects of the hydrograph. The user
can then, if necessary, manually select a parameter set from this popula-
tion to fit the hydrograph in the desired way. However, in the presence of
model structural inadequacies this will lead to a sub-optimal performance
with respect to at least some of the other measures (Boyle et al., 2000;
Seibert and McDonnell, 2002). The resulting trade-off in the ability of
different parameter sets to fit different aspects of the hydrograph usually
leads to a compromise solution (Ehrgott, 2000) in cases where a single
parameter set has to be specified. The procedure of Boyle et al. (2000)
for example, analyses the local behaviour of the model additionally to its
global behaviour (Gupta, 2000). The global behaviour is described
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through OFs such as overall bias or some measure of the overall vari-
ance, e.g., the RMSE. The local behaviour is defined by aspects such as
the timing of the peaks, or performance during quick and slow response
periods (Boyle et al., 2000; 2001).

Recent research into parameter identification has thus moved away
from simply trying to improve search algorithms to taking a closer look
at the assumptions underlying (automatic) calibration approaches (e.g.,
Gupta et al., 1998). This has lead to the use of multi-objective (MO)
automatic techniques which so far have given promising results (Boyle ez
al., 2000; Wagener et al., 2001). Further investigations are required to
make MO optimization a standard method for parameter estimation.
Questions such as the appropriate number and derivation of OFs within
an MO approach must be resolved, and will probably depend on model
structure and catchment characteristics (Gupta, 2001). A method of find-
ing the appropriate model population while considering, for example, the
uncertainty in the individual parameter estimates has been defined by
Vrugt et al. (2003b).

4.3 Evaluation of Conceptual Rainfall-Runoff Models

It was established earlier that the idea of calibration and validation of
CRR models is in principle ill-founded if the goal is to establish a model
as the true representation of a hydrological system. The model identifica-
tion problem is therefore seen here as a process of model evaluation.
Within this process, models and model structures are evaluated with re-
spect to different criteria and those that fail, in whatever way, are re-
jected as possible representations of the catchment under investigation.
This usually results in a population of feasible models or even model
structures that can then be used for a combined prediction, resulting in a
prediction range rather than a single value for each time-step. This
evaluation should be done in at least in three dimensions:
e performance, with respect to reproducing the behaviour of the
system;
® uncertainty in the parameters, which is assumed to be inversely
related to their identifiability; and
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e assumptions, i.e., are any assumptions made during the devel-

opment of the model structure violated?

The smaller the population of models (or even model structures) that
survives this evaluation (i.e., those that are corroborated by it), the better
identifiable is the representation of the natural system in mathematical
form. Approaches to test models with respect to these three criteria are
described below.

4.3.1 Evaluation of competing model structures — Multi-objective per-
formance and identifiability analysis

Multi-objective (MO) approaches can be applied to establish preferences
between competing model structures or even model components, (com-
peting hypotheses), with respect to their performance and identifiability.
An MO approach is advantageous because “the use of multiple objective
criteria for parameter estimation permits more of the information con-
tained in the data set to be used and distributes the importance of the pa-
rameter estimates among more components of the model. Additionally,
the precision of some parameters may be greatly improved without an
adverse impact on other parameters.” (Yan and Haan, 1991).

4.3.1.1 Measures of performance and identifiability

It has been shown that it is advantageous to evaluate the global and the
local behaviour of models to increase the amount of information re-
trieved from the residuals in the context of single output RR models.
Global behaviour is measured by traditional OFs (e.g., the RMSE or the
bias for the whole calibration period), while different OFs must be de-
fined to measure local behaviour. One way of implementing local meas-
ures is by partitioning the continuous output time series into different
response periods. A separate OF can then be specified for each period,
reducing the amount of information lost through aggregation of the re-
siduals, for example by mixing high flow and recession periods.
Partitioning schemes proposed for hydrological time series include
those based on (a) Experience with a specific model structure (e.g., the
Birkenes model structure in the case of Wheater er al., 1986): different
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periods of the streamflow time series are selected based on the model-
ler’s judgement. The intention of Wheater et al. (1986) was to improve
the tdentifiability of insensitive parameters (so-called minor parameters),
with respect to an overall measure. Individual parameters or pairs of pa-
rameters are estimated using a simple grid search to find the best values
for individual OFs. This is done in an iterative and sequential fashion,
beginning with the minor parameters and finishing with the dominant
ones. (b) Hydrological understanding, the separation of different catch-
ment response modes through a segmentation procedure based on the
hydrologist’s perception of the hydrological system (e.g., Harlin, 1991;
Dunne, 1999; Boyle et al., 2000; Wagener et al., 2001). For example,
Boyle et al. (2000) propose hydrograph segmentation into periods driven
by rainfall and periods of drainage. The drainage period is further subdi-
vided into quick and slow drainage by a simple threshold value. (c) Pa-
rameter sensitivity (e.g., Kleissen, 1990; Wagner and Harvey, 1997;
Harvey and Wagner, 2000), where it is assumed that informative periods
are those time-steps during which the model output shows a high sensi-
tivity to changes in the model parameters (Wagner and Harvey, 1997).
Kleissen (1990) developed an optimization procedure whereby only data
segments in which the parameter shows a high degree of first order sensi-
tivity are included in the calibration of that parameter (group), utilising a
local optimization algorithm. (d) Similar characteristics in the data, de-
rived from techniques like cluster analysis (e.g., Boogard et al., 1998) or
wavelet analysis (Gupta, 2001) can be used to group data points or peri-
ods based on their information content. The different clusters could then
be used to define separate OFs.

While these methods help to retrieve more information, they also
show some weaknesses. Approaches (a) and (b) are subjectively based
on the hydrologist’s experience, and therefore not easily applicable to a
wide variety of models and catchments. Approach (c), while objective,
does not recognize the effects of parameter dependencies, and may not
highlight periods that are most informative about the parameters as inde-
pendent entities, i.e., periods where the dependency with respect to other
parameters is low. The sensitivity of the model performance to changes
in the parameter 1s a necessary requirement, but it is not sufficient for the
identifiability of the parameter. Furthermore, if the parameter sensitivity
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is measured locally (e.g., Kleissen, 1990), the result is not guaranteed
over the feasible parameter space. However, Wagner and Harvey (1997)
show this problem can be reduced by implementing a Monte Carlo pro-
cedure where sensitivity for a large number of different parameter com-
binations is assessed using parameter covariance matrices. Approach (d)
is independent of any model structure and links between the results and
the model parameters still need to be established.

There is therefore room to improve the objectivity, applicability and
robustness of approaches to hydrograph disaggregation, with the goal of
improving model structure and parameter identifiability.

The evaluation of the model performance should, if possible, also in-
clude OF:s tailored to fit the specific purpose of the model. An example is
the use of the model to investigate available quantities for abstraction
purposes. Assuming that abstraction can only take place during periods
when the water level is above a minimum environmentally acceptable
flow and below a maximum water supply abstraction rate allows the
definition of a specific OF (Lees and Wagener, 2000). This measure can
aggregate the residuals of the selected period and provide important in-
formation about how a model performs with respect to the anticipated
task. However, it is important to mention that this should never be the
sole evaluation criterion.

How, then, can one estimate the identifiability of the individual pa-
rameters with respect to the different OFs defined? Wagener et al. (2001,
see also Section 3.3.3) define a simple empirical measure of identifiabil-
ity. It is based on the parameter population conditioned by a selected
measure of performance (Fig. 4.3). A uniform random sampling proce-
dure is performed, and resulting OF values are transformed so that the
best performing parameter set is assigned the highest value and all meas-
ures sum to unity (these are termed performance values in Fig. 4.3a). The
best performing 10% of all parameter sets are selected and the cumula-
tive marginal distributions for each parameter are plotted (Fig. 4.3b). A
uniform distribution would plot as a straight line, while a distribution
showing a clear peak will show a steeper line. The stronger the condi-
tioning, the larger the steepness will be. The range of each parameter is
subsequently split into M containers and the gradient of the cumulative
distribution in each container is calculated (Fig. 4.3c). The highest gradi-
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ent occurs where the conditioning of the distribution is strongest, i.e., at
the location of a peak. The amplitude of the gradient is also indicated by
the grey shading of the bar (Fig. 4.3b), with a darker colour indicating a
higher gradient. Other measures of identifiability are possible (e.g.,
Wagener et al., 1999; Appendix A), but this one has proven to be robust
and easy to calculate.

4.3.1.2 Multi-objective framework

The above-described multi-objective performance and identifiability ap-
proaches can be put into an analytical framework to estimate the appro-
priate level of model complexity for a specific case (Fig. 4.4, adapted
from Wagener et al., 2001).

The hydrologist’s perception of a given hydrological system strongly
influences the level of conceptualization that must be translated into the
model structure. The importance of different system response modes, i.e.,
key processes that need to be simulated by the model, however, depends
on the intended modelling purpose. Therefore, the level of model struc-
tural complexity required must be determined through careful considera-
tion of the key processes included in the model structure and the level of
prediction accuracy necessary for the intended modelling purpose.

On the other hand there is the level of structural complexity actually
supported by the information contained within the observed data. It is
defined here simply as the number of parameters, and therefore separate
model components (and possibly processes) that can be identified. Other
aspects of complexity (e.g., Kleissen e al., 1990) such as the number of
model states or interactions between the state variables or the use of non-
linear components instead of linear ones, are not considered here.

An increase in model complexity will often improve the performance.
However, it will also often increase the uncertainty, for example due to
reduction in parameter identifiability caused by enhanced parameter in-
teraction. An example of this trade-off can be seen in Fig. 4.5, where dif-
ferent model structures are compared with respect to performance and
identifiability using data from the Medway at Teston (see Section 4.4.2.1
for details). Four OFs, based on the RMSE and describing different parts
of the hydrograph, are used (see Section 4.4.3). Calculating the arithme-
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Fig. 4.3 A measure of identifiability can be defined as follows: an initially uniform dis-
tribution is conditioned on some OF, the resulting dotty plot is shown in plots (a); the top
percentile (e.g., 10%) is selected and plotting the cumulative distribution of the trans-
formed OF values leads to plots (b); the gradient distribution of the cumulative distribu-
tion is a measure of identifiability (c). The plots in the right column show an identifiable
parameter, while the plots in the left column show a non-identifiable one. (From Wagener
et al., 2001; reproduced with permission of the European Geophysical Society)



118 Rainfall-Runoff Modelling

tic mean of all OFs yields a single aggregated measure of performance
for individual models and a single aggregated measure of identifiability
for individual parameters. The mean of the individual parameter identi
fiability values gives a value for the model as a whole. It can be seen that
some improvement in the optimum direction, L.e., the bottom left corner,
1s possible. However, unavoidably, the best performing model will gen-
eral not be the most identifiable one and vice versa. What trade-off, be-
tween performance and identifiability is acceptable depends on the mod-
elling purpose and the hydrologist’s preference. In a regionalization
study, a more identifiable model with reduced performance might be
adequate, while parameter identifiability might be of less importance for
extension of a single-site record. It must be stressed that Fig. 4.5 is only
qualitative; the location of points will vary with the aggregation scheme
used, and a high performance does not mean that a visually acceptable
hydrograph is produced.

It has already been established (Section 4.2.2) that such a framework
has to use a multi-objective approach to allow for objective analysis. Us-
ing various OFs to represent different system response modes is espe-
cially suitable for comparison studies, since it allows us to attribute the
model performance during different system response modes to different
model components, such as moisture accounting or routing (Wagener et
al., 2001). Using the segmentation approach by Boyle et al. (2000) as
described earlier (Section 3.4), it is possible to establish that a specific
model structure might perform better during driven periods because of a
superior moisture accounting component, while another model structure
containing a more appropriate slow flow routing component could result
in higher performance during non-driven slow periods. A single-
objective framework does not allow comparison of model components
and consequently important information relevant to identifying the most
suitable model structure is lost. Boyle et al. (2001) use the segmentation
approach to evaluate the benefit of spatial distribution of model input
(precipitation), structural components (soil moisture and streamflow
routing computations), and surface characteristics (parameters) with re-
spect to the reproduction of different response modes of the catchment
system.
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This framework will also necessarily be comparative; different mod-
els and usually different model structures will have to be compared to
identify one or more suitable models. The reason is that the level of per-
formance that can be reached is unknown, due to unknown influences of
data error and of natural randomness. Models and model structures that
severely under-perform can be refuted and excluded from further consid-
eration. In cases where all models fail, one must go back and relax the
criteria for under-performance (Beven, 2000a, p.304).

Model structures that produce more than a single output variable
(e.g., groundwater levels or water quality) can be tested with respect to
all of those variables if measurements are available (Gupta et al., 1999;
Bastidas er al., 1999). One could say that the informative (or empirical)
content of these structures is higher and they have, therefore, a higher
degree of testability or falsifiability (Popper, 2000, p.113). However, a
hypothesis (or a model structure, in our case) that has a higher informa-
tion content is also logically less probable, because the more information
a hypothesis contains, the more options there are for it to be false (Pop-
per, 2000, p.119; Magee, 1977, p.36). Multi-output models are beyond
the scope of this monograph though.

4.3.2 Evaluation of individual model structures — Dynamic identifi-
ability analysis

There is an apparent lack of objective procedures to evaluate the suitabil-
ity of an individual conceptual model structure to represent a specific
hydrological system. It has been shown how different and competing
structures can be compared. However, it is also possible to analyse indi-
vidual structures with respect to the third criterion mentioned in Section
4.3, model assumptions.

4.3.2.1 Failure, inference and improved hypotheses

Recently, Gupta et al. (1998; see also Boyle et al., 2000 and Wagener et
al., 2001) showed how a multi-objective approach can be applied to give
an indication of structural inadequacies. The assumption is that a model
should be capable of representing all response modes of a hydrological
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system with a single parameter set. A failure to do so indicates that a
specific model hypothesis is not suitable and should be rejected or re-
placed by a new hypothesis that improves on the old one. This idea has a
basis in some of Beck’s work (e.g., Beck, 1985, 1987) as described ear-
lier in the text. A new approach has been developed based on this as-
sumption, as reported by Wagener et al. (2003a) and presented in the
next section. This methodology analyses the identifiability of parameters
within a selected model structure in a dynamic and objective manner
(considering the assumptions made), which can be used to analyse the
consistency of locations of those parameter values that give a good per-
formance in (parameter) space and in time.

In cases where the variation of parameter optima can be tracked in
time it is sometimes possible to directly relate changes in a particular
parameter to variations in forcing or state variables (examples are shown
in Beven, 2000a, p.93ff.; Bashford et al., 2002). However, in many
cases, the development of improved hypotheses will be more complex
and depend on the capability of the hydrologist. Unfortunately (or maybe
fortunately), there is no logical way to create new ideas; the hydrologist
therefore has to apply his depth of insight and creative imagination to
derive a new hypothesis to replace the old one that has failed.

4.3.2.2 Dynamic identifiability analysis

The dynamic identifiability analysis (DYNIA) is a new approach to lo-
cating periods of high identifiably for individual parameters and to detect
failures of model structures in an objective manner. The proposed meth-
odology draws from elements of RSA (Spear and Hornberger, 1980;
Hornberger and Spear, 1981) and includes aspects of the GLUE ap-
proach (Beven and Binley, 1992; Beven, 1998), wavelet analysis (e.g.,
Gershenfeld, 1999) and the use of Kalman filtering for hypothesis testing
as applied by Beck (1985, 1993).

In the original RSA approach, a model population is sampled from a
uniform distribution. This population is divided into behavioural and
non-behavioural models depending on whether the model produced a
certain response or not (Spear and Hornberger, 1980). Beven and Binley
(1992) extended the approach by conditioning the model population on a



122 Rainfall-Runoff Modelling

likelihood measure, which, in their case could be a transformation of any
measure of performance. These are the building blocks from which a
new method of assessing the identifiability of parameters is created
(Wagener et al., 2003a).

The steps taken in the procedure can be seen in the flow chart in Fig.
4.6. Monte Carlo sampling based on a uniform prior distribution is used
to examine the feasible parameter space. The OF associated with each
parameter set, i.e., each model is transformed into a support measure; all
support measures have the characteristic that they sum to unity and
higher values indicate better performing parameter values. These are
shown here in the form of a dotty plot (Fig. 4.6[a]). The identifiability
measure introduced in Fig. 4.3 is calculated for the best performing pa-
rameter values (e.g., the top 10%). Segmenting the range of each
parameter (e.g., into 20 containers) and calculating the identifiability
measure {gradient) in each container leads to the (schematic) distribution
shown in Fig. 4.6(d). The highest value, indicated by the darkest colour,
marks the location (within the chosen resolution) of greatest identifiabil-
ity of the parameter. This measure of identifiability can be used to com-
pare different model structures in terms of parameter uncertainty, which
can be assumed to be inversely related to identifiability as shown by
Wagener et al. (2001). They calculate the identifiability as a function of
measures of performance for the whole calibration period and for spe-
cific response modes, derived using the segmentation approach of Boyle
et al. (2000) described earlier. It can be shown that the identifiability of
some parameters, and therefore individual model components, is greatly
enhanced by this segmentation (Wagener et al., 2001; see Section 4.4.1).

Calculating parameter identifiability at every time step ¢ using only
the residuals for a number of time steps n before and after the point con-
sidered, i.e., using a moving window or running mean approach, allows
the investigation of the identifiability as a function of time (Fig. 4.6[¢e]).
The gradient distribution plotted at time step ¢ therefore aggregates the
residuals between ¢ - n and ¢ + n, with the window size being 2n + 1. The
number of time steps considered depends upon the length of the period
over which the parameter is influential. For example, investigation of a
slow response linear store residence time parameter requires a wider
moving window than the analysis of a quick response residence time



Modelling Gauged Catchments — Local Procedures 123

(a) Uniformly Sample N points in
feasible parameter space ©

A J

(a) Calculate support {as function
of mean absolute error lel over
moving window period
{(e.g. +/- 10 days)

v

(a) Selecttop (black area)
population (e.g. 10%) and divide
each Cby XCto dPrive ¢

v , 0

{(b) Compute cumulative

distribution F, ofrescaled
supportvalues &

\ A F\Gi

(c) Split @ range into Mcontainers, l
0.

calculate gradient G;,
of F,segments

} (d)

(d) Calculate G;, distribution at
everytime step (i.e. window)

(e) Plotresults
overtime

Fig. 4.6 Schematic description of the DYNamic Identifiability Analysis (DYNIA) proce-
dure.
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parameter. Different window sizes are .commonly tested and the ones
found to be most appropriate are used to analyse individual parameters.
A window size that is too small can lead to the result being largely influ-
enced by errors in the data. However, this is not a problem in cases
where the data quality is very high, as in the case of in-stream tracer ex-
periments (Wagener et al., 2002b). Conversely, if the window size is too
big, periods of noise and periods of information will be mixed and the
information will be blurred.

Results are plotted for each parameter versus time using a colour cod-
ing where a darker colour indicates areas of higher identifiability in pa-
rameter space and time. Care has to be taken when interpreting the
DYNIA results of time steps at the beginning and the end of time-series.
Here the full window size cannot be established and the result is dis-
torted. This is an effect similar to the cone of influence in wavelet analy-
sis (Torrence and Compo, 1998).

While this approach is not intended to evaluate parameter dependen-
cies in detail, the significance of dependencies for the identifiability is
implicit in the univariate marginal distribution, which is structurally rep-
resented by Fig. 4.6(d). A strong dependency during any period would
tend to inhibit the information of a strong univariate peak; the effect of
the involved parameters cannot be singled out. Parameter interdepend-
ence can be estimated in detail by the investigation of the response sur-
face or the variance-covariance matrix (e.g., Wheater et al., 1986; Horn-
berger et al., 1985).

A limitation of the proposed measure of identifiability arises if any
near-optimal parameter values are remote from the identified peak of the
marginal distribution, as the relevance of such values would be dimin-
ished. It is therefore important that a detailed investigation of the dotty
plots be undertaken to verify periods of high identifiability.

DYNIA requires that sensible feasible ranges for each parameter be
defined and that the number of models (i.e., parameter sets) sampled is
sufficient to represent the shape of the response surface. The procedure
can then be applied to separate periods that do and do not contain infor-
mation about specific parameters, and parameter variations can be
tracked in time. Both aspects are shown schematically in Fig. 4.7.
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Fig. 4.7 Possible application of the DYNIA approach. Plot (a) shows a model structure
with parameters 0, and 6,, and the states S, and S,. The structure is shown during four
different response modes. A parameter in plot (a) is shown in black during periods of
identifiability, and in grey during periods where it is less identifiable. It is shown as a
dashed line when DYNIA indicates a failure of the component described by the parame-
ter. Plots (b) and (c) show (schematic) DYNIA results for the parameters 6, and 6, re-
spectively, i.e., parameter identifiability versus time. A grey area indicates that equally
good parameter values are widely distributed over the feasible range. A small black area
means that good values are clustered in a specific region of the 1-dimensional parameter
space.

4.3.3 A combined framework of corroboration and rejection

The multi-objective framework (Wagener et al., 2001) introduced earlier”
can be extended to incorporate the DYNIA approach as an additional
step deriving a framework of corroboration and rejection (Fig. 4.8).
Similar frameworks are for example proposed by Beven (2000a, p.2971f.;
2002), and, more generally, by Oreskes et al. (1994).
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Fig. 4.8 The proposed modelling framework. (From Wagener et al., 2003b; reproduced
with permission of the American Geophysical Union)

The initial steps are similar to those in the multi-objective framework
described earlier. The hydrologist selects or develops model structures
that seem suitable for the given modelling purpose, catchment character-

“istics and data.

One can then apply a multi-objective procedure to establish prefer-
ences between the competing model structures, or structural components.
Under-performing structures or components can be rejected at this stage,
based on their performance and/or uncertainty.

During the next stage, the DYNIA approach can be used to further
analyse the remaining model structures. Additional rejections might be
possible. The suitability of a model structure passing this stage is further
corroborated. A model structure is temporarily accepted when no better
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performing structure can be found and no underlying assumption is vio-
lated.

In the last stage, the parameter space within the remaining model
structures can be analysed to find all those models, i.e., parameter sets,
that are in line with the behaviour of the natural system. It is very likely
that such a procedure will result in a range of acceptable or behavioural
models or even model structures. The appropriate response is to consider
the predictions of all models to derive an ensemble prediction of the sys-
tem’s behaviour. A popular approach to do so is the GLUE approach
(Beven and Binley, 1992); however, other methods to consider or com-
bine the predictions of different models are possible (e.g., Shamseldin et
al., 1997). Within the GLUE approach, a likelihood value is derived for
every model. The models are usually drawn from a uniform distribution.
Basically any measure of performance that can be transformed so that
higher values indicate better models and all measures add up to one, can
be used as a likelihood measure in this approach. The likelihoods are
then used to weight the prediction of every model at every time step. The
cumulative distribution of the weighted streamflow values, even for dif-
ferent models, allows the extraction of percentiles to derive the confi-
dence limits for the predictions. Beven (1998) and Wagener et al. (2000)
discuss various approaches to define a behavioural model population
based on multiple criteria. The likelihoods of different model structures
can, for example, be combined through simple addition. This approach is
shown schematically in Fig. 4.9.

4.4 Application Examples

4.4.1 Example 1 — Multi-objective performance and identifiability
analysis

A simple example is used to demonstrate how the proposed multi-
objective framework can be applied. The data and model structure se-
lected for the case study are described briefly, and examples of possible
applications of the tools for model calibration and evaluation are shown.
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Fig. 4.9 Possible form of ensemble prediction with different model structures which
could be implemented using for example the GLUE approach.

4.4.1.1 Data

The Leaf River catchment (1950 kmz) located north of Collins, Missis-
sippi, USA, which has been extensively investigated (e.g., Brazil and
Hudlow, 1981; Sorooshian er al., 1983), is selected for this study. Forty
consecutive water-years (1948-1988) of data (daily precipitation, stream-
flow, and potential evapotranspiration estimates) are available for this
catchment, representing a wide variety of hydrologic conditions. An 11-
year period (1952-1962 inclusive) is used here.

4.4.1.2 Model structure and calibration tools

A simple model structure with typical conceptual components is chosen
for an example application of the framework. This model consists of a
simple two-parameter SMA component connected with two series of lin-
ear reservoirs (three [identical] for the quick response and a single reser-
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Fig. 4.10 The model structure used in the rainfall-runoff modelling example. Effective
rainfall (ER1(t) and ER2(t)) is produced depending on the current catchment moisture
state described by the storage capacity distribution function F(c). The parameter CMAX
describes the maximum storage capacity. The effective rainfall is distributed by the pa-
rameter ALPHA and either routed through three linear reservoirs with residence time Kq
in series, or a single reservoir with residence time Ks. (From Wagener et al., 2001; repro-
duced with permission of the European Geosciences Union)

voir for the slow response) in parallel as a routing component (Fig. 4.10).
The SMA component is described in detail in Section 3.2.3 (though the
notation of Wagener et al., 2001 is used here) and by Moore (1985,
1999). The component assumes that soil moisture capacity varies across
the catchment and therefore that the proportion of the catchment with
saturated soils varies over time. The spatial variability of soil moisture
capacity is described by the following distribution function:

F(c)=1—(1—c(’) , 0<c(r) < CMAX 4.2)

BEXP
CMAX )

The structure requires the optimization of five parameters: the maximum
storage capacity in the catchment CMAX [L]; the degree of spatial vari-
ability of the soil moisture capacity within the catchment BEXP [-]; the
factor distributing the flow between the two series of reservoirs ALPHA
[-]; and the coefficients of the linear reservoirs Kq [T™'] and Ks [T™].
Actual evapotranspiration is equal to the potential value if sufficient soil
moisture is available; otherwise it is equal to the available soil moisture
content.
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4.4.1.3 Methodology

Traditional automatic calibration schemes use single value objective
functions such as the RMSE (see Eq.on 4.1). In this example, however, a
partitioning scheme suggested by Boyle er al. (2000) to define OFs based
on the different response modes of the hydrological system is utilized.
The approach is based on the reasonable assumption that the behaviour
of the catchment is inherently different during periods driven by rainfall
and periods without rain. Further, the periods immediately following the
cessation of rainfall and dominated by interflow can be distinguished
from the later periods that are dominated by baseflow. The streamflow
hydrograph can, therefore, be partitioned into three components (Fig.
4.11): driven (Qp), non-driven quick (Qg), and non-driven slow (Qs).

Time steps corresponding to each of these components are identified
through an analysis of the precipitation data and the time of concentra-
tion for the catchment. Time steps with non-zero rainfalls, lagged by the
time of concentration for the catchment, are classified as driven. Of the
remaining (non-driven) time steps, those with streamflow lower than a
certain threshold value (e.g., the mean of the logarithms of the flows) are
classified as non-driven slow, and the rest are classified as non-driven
quick. The model performance during these three periods (Qp, Qq, Qs) is
estimated by calculating the RMSE (FD, FQ, FS) separately over each
period.

The primary motivation for partitioning the non-driven flows into a
quick and a slow component is to identify the periods of hydrograph re-
cession or baseflow behaviour from the rest of the non-driven flow. For
the purposes of this study, a simple systematic approach (threshold flow
value) was chosen to identify these periods. The sensitivity of the thresh-
old values to the identification of the recession periods was investigated
prior to the multi-criteria optimization. Several different threshold values
were tested (median of flows, mean of flows, mean of log of flows, etc.)
to determine which value provided the best representation of the reces-
sion flows as determined through visual inspection of the observed hy-
drograph (results not shown here). The mean of the log of the flows pro-
vided the best estimate of the recession periods for this data set. There
are certainly other possibly more accurate methods (e.g., visual inspec-
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Fig. 4.11 Hydrograph segmentation into three components based on different response
modes of the catchment system, i.e., ‘driven’ (QD - dark grey), ‘non-driven quick’ (QQ -
light grey) and ‘non-driven slow’ (Qs - white) flow. (From Wagener et al., 2001; repro-
duced with permission of the European Geophysical Union)

tion, water balance, and groundwater recharge methods) to identify these
recession periods; however, these have to be the subject of future studies.
Presumably, the more accurately the characteristic features of the catch-
ment are identified, the more informative the analysis.

Two calibration methods, uniform random search (URS) and the
multi-objective complex evolution algorithm (MOCOM, Yapo et al,,
1998), were used to explore the parameter space of the model. The URS
method consisted of 5000 parameter sets randomly sampled from the
feasible parameter ranges, based on a uniform distribution. The Pareto
optimal solution space for the three criteria was estimated with 500 solu-
tions using the MOCOM multi-criteria optimization algorithm. In brief,
the MOCOM method involves the initial selection of a population of p
points distributed randomly throughout the s-dimensional feasible pa-
rameter space. In the absence of prior information about the location of
the (Pareto) optimum, a uniform sampling distribution was used. For
each point the multi-objective vector F was computed, and the popula-
tion was ranked and sorted using a Pareto-ranking procedure suggested
by Goldberg (1989), i.e., within the population of a certain rank it was
not possible to find a parameter set that is better than another with re-
spect to all objective functions. Simplexes of s + 1 points were then se-
lected from the population according to a robust rank-based selection
method (Whitley, 1989). A multi-objective extension of the downhill
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simplex method (Nelder and Mead, 1965) was used to evolve each sim-
plex in a multi-objective improvement direction. Iterative application of
the ranking and evolution procedures caused the entire population to
converge towards the Pareto optimum. The procedure terminated auto-
matically when all points in the population become non-dominated, i.e.,
of rank one. Experiments conducted using standard synthetic multi-
objective test problems have shown that the final population provides a
fairly uniform approximation of the Pareto solution space (Yapo et al.,
1998; Bastidas, 1998).

4.4.1.4 Results and discussion

A modification of the RSA approach introduced by Freer et al. (1996)
was used to visually inspect the sensitivity of the different parameters
with respect to the response mode of the system (see Section 3.3.3). This
methodology was introduced originally to identify insensitive parameters
that subsequently would be fixed or eliminated. However, it can also be
used to visualize the link between parameter sensitivity and system re-
sponse modes (Dunne, 1999; Wagener et al., 1999). Freer et al. (1996)
split the parameter population, derived from a URS procedure and
ranked with respect to their OF values, into ten groups of equal size and
plotted the cumulative distribution of the parameters in each group with
respect to the transformed measure of performance. The measures were
transformed so that higher values indicated better models and were di-
vided by their sum so as to add up to unity. An insensitive parameter
would produce a straight line, while differences in form and separation of
the resulting curves indicate parameter sensitivity. Splitting the popula-
tion into ten groups, instead of just two as in the original method,
avoided the selection of a threshold value between behavioural and non-
behavioural parameter sets, and increased the information gained by the
analysis. Figure 4.12 visualizes the results derived for this study with the
shading ranging from light grey (best performing group) to black (worst
performing group). The figure shows the sensitivity of the model pa-
rameters based on the RMSE, first as an overall measure for the whole
calibration period (first row), and subsequently as a measure for the three
different response modes (FD, FQ, FS). The overall RMSE and the FD
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Figure 4.12 Regional Sensitivity Analysis plots showing the varying sensitivity of the
model parameters when using different objective functions. (From Wagener et al., 2001;
reproduced with permission of the European Geosciences Union)

measures show very similar behaviour, indicating that they retrieve simi-
lar information from the observed data.

The curves produced using these two measures are markedly different
from those resulting from the FS measure. The sensitivity of the BEXP
parameter is considerably higher during periods of non-driven slow re-
sponse, i.e., FS. The sensitivity of Kq is relatively high for all measures.
However, the shape of the cumulative curves of this parameter for the FS
measure is different. This indicates that the parameter population condi-
tioned on this measure results in a different distribution than when the
other measures are used. Sensitivity plots for the parameter ALPHA are
similar for all OFs, suggesting that this parameter is equally important
for the correct reproduction of the system behaviour during all response
modes. The same is observed for parameter CMAX.
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Parameter sensitivity is a necessary but not sufficient requirement for
identifiability, since values of a sensitive parameter that produce good
model performance can still be distributed over a relatively wide range of
the feasible parameter space. A simple way to show how parameter iden-
tifiability is increased through the use of different measures is demon-
strated in Fig. 4.13. The parameter populations (derived from the URS)
were transformed as before so that again the OF value of the best
performing parameter was assigned the highest value and all measures
sum to unity. The range of each parameter was then split into M
containers and the sum of all measures in each was calculated. The
results are the densities of the (in this case, initially uniform) parameter
populations conditioned on the different objective functions.

Some variation in the distributions derived through the use of the dif-
ferent measures can be seen. The parameter BEXP shows relatively uni-
form distributions except when being conditioned on FS, where small
values show better performance. The parameter population of Kq on the
other hand shows a very distinct peak for the FQ objective function.
However, higher values of this parameter are favoured when the FS ob-
jective function is used in order to fit the beginning of the recession peri-
ods of the hydrograph better. ALPHA shows relatively similar distribu-
tions for all measures, a result that is in line with the sensitivity analysis
(Fig. 4.12) in which the parameter is sensitive for all objective functions.

Figure 4.13 shows that the use of different measures can lead to an
improvement in judging the performance of a parameter over its range. A
parameter showing little variation using one measure may reveal a dis-
tinct peak in its distribution when using an objective function based on
the residuals from a different response period. This is caused by the vary-
ing importance of different model components (and therefore different
parameters) to reproduce the system behaviour during different response
modes.

A two-dimensional projection of the three-dimensional objective
function space (FD, FQ, FS) gives further insights (Fig. 4.14, first two
rows). Light grey dots indicate the 500 Pareto solutions determined with
the MOCOM algorithm whereas the black dots show the 5000 URS re-
sults. The second row shows the region of the Pareto solution in greater
detail with the best solutions highlighted (A for FD, B for FQ, C for FS,
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Fig. 4.13 The objective functions are rescaled so that the best performing parameter as-
sumes the highest value and the sum of all values equals one. Splitting each parameter
range subsequently into 20 bins of equal width and calculating the sum of all measures in
each container leads to the parameter density (D) distributions shown. (From Wagener et
al., 2001; reproduced with permission of the European Geosciences Union)

D for overall RMSE). These plots clearly illustrate the inability of the
model to simultaneously match all three aspects of the hydrograph, and
reveal that the trade-offs in fitting the three-hydrograph components are
quite significant. However, the trade-off between FD (A) and FQ (B) is
relatively small, as is also indicated by the relatively high degree of cor-
relation of the Monte Carlo results (top left plot). In addition, the best FD
and overall RMSE solutions are very similar with respect to the three
criteria, again indicating that the two measures contain very similar in-
formation about the parameters of this model. The normalized (over the
initial parameter uncertainty range) parameter plot, presented in the bot-
tom row of Fig. 4.14, shows the variability in the parameter values for
the 500 Pareto optimal solutions (indicated by the light grey lines). Each
line on the graph represents one of the parameter sets. Notice that the pa-
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Fig. 4.14 Two-dimensional projections of the three dimensional objective function space
(1% and 2™ row show 500 Pareto solutions and 5000 parameter sets randomly sampled
from a uniform distribution). The markers correspond to the best points with respect to
FD (A), FQ (B), FS (C), and overall RMSE (D). The 3" row shows the normalized pa-
rameter space. The grey lines show the 500 Pareto solutions, the three black lines are
solutions A (FD, solid), B (FQ, dotted), and C (FS, dashed). The squares indicate the best
overall RMSE solution (D) (Figure by Douglas P. Boyle, from Wagener et al., 2001;
reproduced with permission of the European Geosciences Union)
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Fig. 4.15 Hydrograph range produced by the 500 Pareto solutions (grey region), and the

output from the best parameter sets for the different measures on normal (1* row) and on

logarithmic scale (2™ row). The observed time-series is shown as circles. (Figure by

Douglas P. Boyle, from Wagener et al., 2001; reproduced with permission of the Euro-

pean Geosciences Union)

rameter uncertainty has been reduced significantly by the multi-criteria
optimization compared to the initial feasible range, particularly for Kgq.
Also notice that the parameter values for the best FD, FQ, and RMSE so-
lutions are, in general, in a different region of the parameter space than
the best solution for the FS criteria (indicated by the dashed line).

Figure 4.15 presents the mode] output results for a 100-day portion of
the calibration period derived using the results of the calibration with the
MOCOM algorithm. The minimal FD and FQ solutions tend to fit the
peaks better at the expense of over- and underestimating the recessions
respectively. The minimal FQ solution also captures the shape of the fal-
ling limb, corresponding with time steps classified as non-driven quick
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better than the other two solutions. The minimal FS solution on the other
hand fits the long recession limbs of the hydrograph better (see log-scale
plot at bottom), while it often seriously over- or underestimates the
peaks. The model generally has some trouble matching the flows for
days 250 through 270. This could be due to model structural error, the
model’s inability to track the soil moisture in the long dry period preced-
ing these rainfall events. Another possibility is that the precipitation data
during this time period is erroneous, i.e., it may not be representative of
the precipitation rates throughout the catchment.

This simple example demonstrates how the aggregation of the residu-
als over the whole calibration period results in a loss of information relat-
ing to parameter sensitivity and identifiability, model performance, and
model structural insufficiencies. Additional insight is gained from the
hydrograph split performed here.

The advantages of a multi-objective framework based on system re-
sponse modes make it especially suitable for comparison studies since it
allows the modeller to attribute the model performance during different
system response modes to different model components, in this case the
moisture accounting and the routing components. A certain model struc-
ture might perform better during driven periods because of a superior
moisture accounting component, while another model structure contain-
ing a more appropriate slow flow routing component could result in a
higher performance during non-driven slow periods. A single-objective
framework does not allow the comparison of model components and
consequently important information relevant to identifying the most suit-
able model structure is lost.

A second model structure is introduced here to further demonstrate
the advantage of multi-objective comparisons. This structure is a simpli-
fied version of the model described before. A single store with a rainfall
excess mechanism is used as the moisture accounting component, instead
of a distribution of stores as in the first structure. The store is described
by its size, CMAX [L]. The evapotranspiration losses of the store are
again equal to the potential rate as long as soil moisture is available. The
remaining components are identical to the ones in the earlier model
structure shown in Fig. 4.10 and are defined by three parameters, AL-
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PHA [-], Kq [T}, and Ks [T"']. This structure is referred to as the simple
model, while the initial structure is referred to as the complex model in
the remainder of this section.

The results of the comparison are shown in Fig. 4.16. The left graph
shows a comparison in performance between the two structures as de-
rived from the calibration with the MOCOM algorithm. The OFs used
are identical to the ones applied when analysing the individual model
structure earlier in the text. The traditional, overall measure of perform-
ance, RMSE, indicates that the complex model structure is superior to
the simple one. However, when analysing the performance in more detail
one can see that both structures reproduce the non-driven slow periods
(FS) almost equally well. The complex model structure is better able to
fit the driven and non-driven quick periods, with the largest difference
occurring during the driven period. This result shows the additional in-
sight gained by a more detailed analysis. The model structures have iden-
tical components to fit the slow catchment drainage (Qs) and therefore in
this case produce similar results. The fact that this is not the case during
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Fig. 4.16 The two model structures compared in terms of performance and uncertainty in
(identifiability of) their parameters. The left plot shows the root mean square error values
of the two structures with respect to the different objective functions used. A smaller
value therefore indicates a higher performance. The plot on the right shows the identifi-
ability of the parameters of the two structures. A higher value indicates a higher degree of
identifiability and therefore reduced uncertainty. The identifiability value for each pa-
rameter is the highest derived from the different objective functions. (From Wagener et
al., 2001; reproduced with permission of the European Geosciences Union)
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the quick catchment drainage (Qg) can be attributed to the larger impor-
tance of the moisture accounting component in fitting this part of the hy-
drograph, and the fact that it is easier to separate out the slow recession
periods.

The right-hand graph of Fig. 4.16 shows the uncertainty in estimating
the parameters of the two models in terms of their identifiability, using
the measure introduced in Fig. 4.3. The highest identifiability values for
each of the parameters of the complex model are used. Identifiability
values for the simple model parameters are derived in an identical way. It
can be seen that the simple model structure shows an overall higher de-
gree of parameter identifiability. Introducing an additional parameter,
BEXP, reduced identifiability through its interaction with the other pa-
rameters. The increase in model performance is therefore obtained at the
cost of decreasing identifiability, and increasing parameter uncertainty.

The trade-off between improvement in performance and reduction in
identifiability should be considered, among other things, when selecting
a model structure for a specific purpose. The type of analysis shown sup-
ports this type of model selection process.

4.4.2 Example 2 — Dynamic identifiability analysis

4.4.2.1 Data

The river selected for this study is the Lower Medway at Teston (1256.1
km®) located in South Eastern England. Six years of data (10/04/90 —
14/07/96) of daily naturalized flows, precipitation, PE and temperature
are available (Fig. 4.17). The Medway catchment is characterized by a
mixture of permeable (chalk) and impermeable (clay) geologies subject
to a temperate climate with an average annual rainfall of 772 mm and an
average annual PE of 663 mm (1990-1996). Two measures of the Hy-
drology of Soil Types classification (HOST, Boorman et al., 1995; see
Chapter 5) for the UK indicate the response character of the catchment.
These are the Base Flow Index (BFIHOST) and the Standard Percentage
Runoff (SPRHOST), which are 0.439 and 41 .4 respectively.



Modelling Gauged Catchments — Local Procedures 141

T o0
E
=
e
g0 . . .
% 0 500 1000 1500 2000
= A
E 10
55
2
0 500 1000 1500 2000

temp. {°C]
o o8

0 500 1000 1500 2000
time [ days]

Fig. 4.17 Data for the Medway at Teston for a six-year period (10/04/1990 -
14/07/1996). Dashed lines enclose period used for dynamic analysis.

4.4.2.2 Model structure

The structure selected for analysis is a combination of a Penman type
SMA component (Penman, 1949), as used by Jolley (1995), and a paral-
lel routing structure consisting of two linear conceptual reservoirs to rep-
resent quick and slow catchment response (Fig. 4.18). The structural
elements were introduced in Chapter 3, but the details are repeated here
for convenience. The ratio of flow contributing to each of the two routing
reservoirs is fixed. The model structure contains five parameters in total.
The Penman model has two parameters: the size of the near surface store,
defined by a root constant rc plus an additional 25mm to allow for capil-
lary rise (Penman, 1949), and a bypass parameter. The bypass compo-
nent represents phenomena that divert water from the soil moisture store
and lead to rapid groundwater recharge or runoff response during rain-
fall, such as macropore and infiltration excess overland flow (Jolley,



142 Rainfall-Runoff Modelling

AE P

bypass

Fig. 4.18 Model structure applied. (From Wagener et al., 2003a; reproduced with permis-
sion of John Wiley & Sons, Inc.)

1995). 1t applies to the proportion of rainfall that exceeds the potential
evapotranspiration. The near surface store is connected by an overflow
mechanism to the lower store. The size of the lower store is chosen large
enough to ensure that it never empties (Moore, 1999). Additional effec-
tive rainfall is produced when both stores are filled and the lower store
overflows. Evapoiranspiration takes place at the potential rate from the
near surface store. It reduces to 1/12 of the potential rate from the lower
store when the upper store is emptied, as suggested by Penman (1949).
The split of the effective rainfall between quick and slow flow is defined
by the parameter alpha, which is the ratio of flow going toward the quick
response reservoir. The remaining two parameters are the residence times
of the two linear stores rt(q) and rt(s).

This structure was selected because is contains components that can
be found in many CRR model structures, e.g., a two layer soil moisture
accounting component producing effective rainfall (e.g., Greenfield,
1984; Jolley, 1995), and a routing component consisting of two parallel
stores with a fixed flow distribution between them (e.g., Jakeman and
Hornberger, 1993; Sefton and Howarth, 1998; Young and Beven, 1994).
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4.4.2.3 Results and discussion

Traditional Monte Carlo sampling

The result of a conventional Monte Carlo uniform sampling of 20,000
points in the feasible parameter space is shown in the form of dotty plots
in Fig. 4.19. This is used as a benchmark for evaluating the DYNIA re-
sults. The OF used in Fig. 4.19 is the RMSE, in this case using the re-
siduals over the whole six-year period. It can be seen from these plots
that some of the parameters show quite a distinct optimum (e.g., rt(q) or
alpha), while others (in particular rt(s)) reveal equally performing values
over a relatively widespread part of the feasible parameter space.

Information content

The first step in the DYNIA is to separate periods of high and low infor-
mation content with respect to each of the parameters. The information-
rich periods can then be used in various ways, for example linked to spe-
cific response modes of the natural system or used to define parameter
(group) specific OFs.

The information content is calculated using the first two steps of
DYNIA, shown in Fig. 4.6(a) and (b). The cumulative distributions cal-
culated for every time step (Fig. 4.6[b]) can be used to derive confidence
limits for the different parameters. Wide confidence limits suggest that
parameter values associated with equally good performance are distrib-
uted widely over the parameter space; narrow limits suggest that the best
performing parameters are concentrated in a small area of the feasible
range. A transformed measure (one minus the width of the confidence
limits over the parameter range, normalized to run from O to 1) is used
here so that a large value is equal to a high information content for a
given time-step. The time-series of the information measure is plotted for
each of the parameters in Fig. 4.20, together with the streamflow (nor-
malized for display) and the rainfall. It is important to remember that this
plot contains a subjective element through the definition of the initial
feasible parameter space by the modeller.
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Fig. 4.19 Dotty plot showing results of the uniform random search using 20000 samples
utilizing the whole six-year period available. Lower values of the Root Mean Squared
Error (RMSE) objective function indicate better performing parameter values. Only pa-
rameter sets producing an RMSE below 1mmd!' are shown. (From Wagener et al.,
2003a; reproduced with permission of John Wiley & Sons, Inc.)

Figure 4.20(b) shows the information content for the root constant,
rc, derived using a window size of 101 (daily) time steps. It can clearly
be seen that the main information about the root constant emerges toward
the end of long recession periods (dry summers) and in particular during
the wetting up periods. The information values during the remaining time
are relatively small.

The bypass parameter is analysed in Fig. 4.20(c) with a window of 41
time steps. The plot reveals three types of periods where information is
available. The first is for small runoff events after wet winter periods,
e.g., around days 150 and 500; the second is located in summer periods,
e.g., days 175-300 and 550-700; and the third during wetting up phases,
e.g., days 350 and 725.

Information about the quick flow residence time, rt(q) (Fig. 4.20[d],
using a window of 11 time steps), can mainly be found during the quick
recessions after high flow events, while the long recession tails contain
the information about the slow flow residence time, rt(s) (Fig. 4.20[e],
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using a window of 41 time steps). Using larger window sizes for rt(s) did
not improve the result. An attempt at using a regressive variant of the
moving window approach to improve the results for the residence time
parameters, in which only a certain number of time steps up to the time
step itself are considered, was not successful. This is because, especially
when large window sizes are used, periods of high identifiability are
shown after the time steps which actually contain the information.

The analysis of the split parameter alpha (Fig. 4.20[f], using a win-
dow size of 21 time steps) reveals that this parameter becomes identifi-
able after flow events when the response is changing from quick to slow
drainage. Little information about this parameter can be gathered during
periods of long recessions that have only minor runoff events.

The information contained in Fig. 4.20 can also be used to find com-
binations of parameters responsible for the model’s behaviour during
specific response periods. These interacting parameters could then be
grouped for multivariate calibration (e.g., Wheater et al., 1986). A
threshold for the information content value of 0.3 is, somewhat arbitrar-
ily, selected here, and the selected high information content time steps
for the different parameters are shown in Fig. 4.21 (each parameter is
indicated by a different grey shading) together with the normalized
streamflow. From this plot it is easy to see that rt(q) and alpha show high
information contents during similar periods, and therefore during the
same response modes. There is also a considerable overlap between the
relevant periods for the bypass and rt(s) parameters, at least during the
first slow recession phase. However, these similarities do not necessarily
imply parameter interdependence.

The initial Monte Carlo simulation over the whole calibration period
was based on the RMSE. It is clear from Fig. 4.19 that this measure is
not capable of retrieving information to distinguish between the perform-
ances of different values of rt(s), which only become identifiable during
distinctive periods of recession. The RMSE emphasizes performance
during peak flow periods. However, applying a simple threshold to the
data, separating out periods of low flow, can improve identifiability as
demonstrated in Fig. 4.22. The three different lines display the gradient
distributions over the range of rt(s). The gradients are derived using steps
(a) and (b) of the DYNIA procedure (Fig. 4.6), where the feasible range
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Fig. 4.20 The information content of the data over a two-year period (days 950 to 1750).
Graph (a) shows the precipitation input over the considered period. The remaining plots
show the result for the different parameters (black bars). The grey line is the streamflow,
normalized with respect to its maximum value. (From Wagener et al., 2003a; reproduced
with permission of John Wiley & Sons, Inc.)
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Fig. 4.20 (cont.)

is split into ten containers of equal size. These gradient distributions rep-
resent the full data record (full line), and those time steps where the ob-
served flow is below a certain threshold (dotted line), i.e., 0.5 mmd”, in
order to consider only periods of recession. It can be seen that the identi-
fiability is improved. The dashed line shows the result when only time
steps below the selected threshold and with an information content of



148 Rainfall-Runoff Modelling

comparison information content

—— observed flow

root constant

bypass

r{q)

alpha

0 100 200 300 400 500 600 700 800
time step [days]

Fig. 4.21 Comparison of the information content of a two-year period for the different
parameter values (days 950 to 1750). Only time steps with an information content above
0.3, with respect to individual parameters, are shown in the different grey shades. (From
Wagener et al., 2003a; reproduced with permission of John Wiley & Sons, Inc.)

above 0.15 are considered. The additional flow criterion is required since
informative regions can also be found during high flows that show dif-
ferent optima (i.e., very low values) in the parameter space (full line).
This is caused by structural inadequacies in the simple slow flow com-
ponent of the model. The dashed line shows the highest identifiability
values and reveals that the best performing values for rt(s) increase in
magnitude when the influence of high flow periods is removed.

Dynamic identifiability and structural failure

Information content plots only describe where in the time series a pa-
rameter becomes identifiable. They do not give any information about
the location of optima in the parameter space. A different type of plot is
therefore shown in Fig. 4.23, derived by performing the remaining stages
of the DYNIA. The plots visualize the DYNIA results in the parameter-
time space. The values of the identifiability measure values are trans-
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Fig. 4.22 Comparison of identifiability, defined as the gradients of the cumulative distri-
bution at different locations of the parameter range, of the slow response residence time
rt(s) using the RMSE (1) as an overall measure of the performance over the whole cali-
bration period (continuous line); (2) only utilizing the residuals at time steps with flow
values below 0.5mmd™! (dotted line); and (3) using residuals with flow values below
0.5mmd™* and with an information content above 0.15 (dashed line). (From Wagener et
al., 2003a; reproduced with permission of John Wiley & Sons, Inc.)

formed into grey shading, with higher values indicated by a darker col-
our, and plotted against the time axis (see Fig. 4.6[c] and [d]). Addition-
ally the 90% confidence limits (derived from the cumulative distribu-
tions) and the streamflow (normalized with respect to its maximum
value) are shown.

Figure 4.23(b) shows the results for the root constant, rc. It can be
seen that the confidence limits narrow during the wetting up periods after
dry summers. During those periods the parameter clearly strives to
‘higher values. No particular optima are visible during the remaining pe-
riods, indicating that very different values of this parameter yield similar
results in combination with the remaining parameters. There are however
two different optima visible in Fig. 4.23(b), one value of approximately
80 and the other around 120. The optima jumps between those two val-
ues. This indicates that the optimum values will be influenced by the par-
ticular local conditions (in terms of time). For parameter estimation one
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Fig. 4.23 Results of the DYNIA procedure for a two-year period (days 950 to 1750).
Graph (a) shows the rainfall input over this time. The remaining graphs show the DYNIA
results for the different parameters. The grey shading indicates the size of the gradient,
with a darker colour for a higher value. The dark grey lines are the 90% confidence limits
derived from the cumulative distribution of support values, while the black line is the

streamflow normalized with respect to its maximum value. (From Wagener et al., 2003a;
reproduced with permission of John Wiley & Sons, Inc.)
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Fig. 4.23 (cont.)

would have to take an average value over different periods to account for
this effect. This parameter requires the largest window for its analysis.
Investigations so far suggest that this is typical for parameters that de-
scribe the maximum storage capacity.

The bypass parameter has different periods showing a high informa-
tion content as shown in Fig. 4.20(c). In Fig. 4.23(c), one can see that the
parameter jumps between at least two optima. Small values of this pa-
rameter perform better during low flow periods (e.g., around time steps



152 Rainfall-Runoff Modelling

250-300 and 650-700). During .other periods, e.g., around time-steps
150, 550 and 725, larger values of the bypass (0.3 or higher) seem to
provide a better fit to the observed data, albeit with decreased identifi-
ability (lighter grey shading). Small bypass values are required during
summer periods to yield only little runoff during summer storms when
the catchment is dry. High values are needed during storm events after
wet periods and in the wetting up periods. This can explain why the
Monte Carlo simulation results shown in Fig. 4.19, using the RMSE,
provide no clear optimum with respect to this parameter. The RMSE er-
ror measure is biased toward fitting higher flow values and the high iden-
tifiability areas during slow recessions might not be influential enough to
produce a clear peak on the dotty plots. This change in optimum parame-
ter value within the parameter space is an indicator of failure of the
model structure. There is a clear inconsistency in the way the model fits
the observed behaviour of the catchment.

Parameter rt(q) is analysed in Fig. 4.23(d). Clear optima occur at a
value of approximately 3 during the quick recession periods, while there
are no specific peaks during other time steps.

It is at best very difficult to identify suitable values for rt(s) using a
measure like RMSE. As noted above, the residuals of slow flow periods
are often too small to influence the overall performance of a model, as
shown in Fig. 4.19. Figure 4.23(e) however, shows that better performing
values for this parameter lie near to the lower boundary of the feasible
parameter space, especially at time-steps 200-300, which is the longest
recession period contained in the data-set used.

Parameter alpha does not show such a distinct area of identifiability
as for example rc or bypass, apart from a short beginning period within
the warm-up range of the algorithm (Fig. 4.20[f]). There is however
some area of darker grey shading in the period between time steps 400 to
550, which is after the main wet period. The parameter varies roughly
between 0.6 and 0.9 during this period, the range also found in the initial
Monte Carlo analysis (Fig. 4.19). Figure 4.20(f) suggests some variation
of this parameter in time. However, the evidence here is not sufficient to
draw conclusions and further analysis is required.

Two-dimensional response surface plots are used in Fig. 4.24 to ana-
lyse the identifiability and interaction between the soil moisture account-
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ing parameters, i.e., the root constant and the bypass, more closely. The
upper plot shows the result when the RMSE is calculated using the re-
siduals for the complete time-series, while the bottom plot only uses
time-steps with high information content and excludes those that show
ambiguity with respect to the bypass parameter. One can see that the pa-
rameters are much better identified when periods of high noise are not
considered. The optimum values for the root constant are however
slightly smaller than suggested in the DYNIA plots. This emphasizes the
need for a detailed analysis using different methods of visualization with
different degrees of detail.

Inference and areas of possible model structure improvement

The analysis performed using DYNIA indicates different failures of the
model structure with respect to the underlying assumptions. These fail-
ures can be used to suggest areas of improvement. However, while the
identification of a failure is relatively straightforward and objective, the
resulting course of action is not. The analysis of why a failure occurred
and how the model structure can be improved very much depends on the
experience and creativity of the modeller himself. As Beck (1985) points
out, there is no systematic algorithm for changing an inadequate struc-
ture that is equivalent to increasing a polynomial order from n, say, to (n
+ 1), as would be possible for some data-based model structures. The
modeller’s task is to draw inference from the type of failure that has oc-
curred with respect to the hypothesis underlying the specific model com-
ponent in order to develop an improved version.

For example, the structural failure implied by the two distinct regions
of preferred values of rc (Fig. 4.23[b]) could be related to the inflexibility
of this component in fitting the (dynamic) wetting up period at the end of
dry summers. A more adaptable variant of this component might perform
better, for example using a probability distribution of moisture stores in
the catchment (Moore and Clarke, 1981; Moore, 1999).

The analysis also indicates a failure with respect to the bypass pa-
rameter. This parameter shows distinct areas of well-performing values
in different parts of the feasible parameter space, as described earlier.
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Fig. 4.24 These two plots represent the response surface between the two parameters of
the soil moisture accounting component, the root constant and the bypass. Both are based
on a uniform random search sampling 10,000 points, during which the routing parameters
were fixed to well performing values. Both plots consist of individual dots. The white
areas are caused by a lack of density. The RMSE in the top plot is calculated using the
residuals from the complete time-series, while the bottom plot uses periods of high in-
formation content (see Fig. 4.21), while avoiding the ambiguity of the bypass parameter
identified in Figure 4.23. The time-steps used in the selected period are 200 to 375 and
600 to 750. The smallest RMSE values are shown in black and the values increase by
steps of 0.05mmd™ per contour. (From Wagener et al., 2003a; reproduced with permis-
sion of John Wiley & Sons, Inc.)



Modelling Gauged Catchments — Local Procedures 155

Reasons for this could be that the process represented by the parameter is
more complex than assumed, or that different processes, which could be
represented separately, are aggregated into a single component. A possi-
ble improvement would be the replacement of this constant parameter
with a dynamic component, as by making the amount of precipitation
that contributes directly to the effective rainfall dependent on the soil
moisture state of the model. This could account for features such as vari-
able contributing areas, where a larger part of the incoming rainfall con-
tributes directly to the runoff when the catchment is very wet. However,
further analysis is required to establish this.

4.4.3 Example 3 — Application of combined framework

The approaches used in application examples 1 and 2 are combined here
to form part of the framework introduced in Section 4.3.3. A larger num-
ber of structures than used in the other examples are also included here.

4.4.3.1 Data

The river selected for this study is again the Lower Medway at Teston
(1256.1km®) located in South Eastern England; see Section 4.4.2.1 for
details.

4.4.3.2 Model structures

As stated earlier, a large variety of lumped parsimonious model struc-
tures can be found in the literature (e.g., Singh, 1995). However, the
range of components on which these structures are based is relatively
small. Some of the most commonly found components are selected here
in a component library shown in Fig. 4.25. A detailed description of
these components can be found in Chapter 3.
The soil moisture accounting components used are:
e The catchment moisture deficit (cmd, Evans and Jakeman, 1998;
Kokkonen and Jakeman, 2001). A conceptual bucket with a bot-
tom outlet to sustain drainage into the summer periods.
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e The catchment wetness index (cwi, Jakeman and Hornberger,
1993). A metric approach related to the Antecedent Precipitation
Index (API, e.g., Shaw, 1994).

e The probability distributed soil moisture stores (pd3 and pd4,
Moore, 1999). A probability distribution of conceptual buckets
based on a Pareto distribution. Evapotranspiration is either at the
potential rate (pd3), as long as soil moisture is available, or at a
rate declining linearly with soil moisture content (pd4).

e A simple bucket type structure (buc), evaporating at the potential
rate as long as soil moisture is available.

e The Penman storage model (icl, Penman, 1949). A two layered
structure connected by an overflow mechanism. Evapotranspira-
tion occurs at potential rate from the upper layer, similar to the
root zone, and at a reduced rate, 1/12 of PE, from the bottom
layer. An additional bypass mechanism diverts a fraction of the
rainfall from the SMA component to contribute to the effective
rainfall at time-steps where rainfall exceeds PE.

The routing components used are:

e Conceptual reservoirs in various combinations and in linear and

non-linear form (e.g., Wittenberg, 1999).

4.4.3.3 Methodology

Multi-objective (MO) analysis and DYNIA are performed, based on the
results of Monte Carlo sampling procedures. For the MO analysis,
20,000 parameter sets, i.e., models, are randomly sampled from the fea-
sible parameter space for each individual model structure, based on a
uniform distribution.

For each of these models, five OFs are calculated: the overall RMSE
and four OFs derived for different response modes of the catchment. The
segmentation applied is based on an approach by Wagener and Wheater
(2002) which uses the slope of the hydrograph and an additional thresh-
old as segmentation criteria to split the hydrograph into different re-
sponse modes (Fig. 4.26). The slope separates periods when the catch-
ment is wetting up or is driven (Boyle et al., 2000) by rainfall, i.e., posi-
tive hydrograph slope, and when the catchment is draining, i.e., falling
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Fig. 4.25 Table showing the soil moisture accounting ‘component library’ used in the
application example. The components are: (a) catchment wetness index (cwi), (b) simple
bucket (buc), (c1) and (c2) Penman structure (icl), (d) catchment moisture deficit (cmd),
and probability distribution of soil moisture stores (pdX). (From Wagener et al., 2002;
reproduced with permission of the American Geophysical Union)
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Fig. 4.26 Segmentation scheme used to derive multiple objective functions describing the
model performance during different response modes.

hydrograph slope. A threshold is used to separate periods of high and
low flow, i.e., the mean flow during driven and 50% of the mean flow
during drainage periods. Four OFs are therefore derived when the residu-
als during the different periods are aggregated separately using the
RMSE criterion: FDH, driven flow during high flow; FDL, driven flow
during low flow; FQ, quick drainage (high flows); and FS, slow drainage
(low flows). This is a modification of the initial approach by Boyle et al.
(2000), which was based on the analysis of flow and rainfall. However,
the approach presented here has shown to be more suitable for British
catchments as modelled in this example. These OFs are based on the as-
sumption that different processes are dominant during periods of high
and low flow, and during periods of catchment wetting-up and drainage.

The residuals, i.e., the differences between observed and simulated
flows, are calculated and summarized in form of the RMSE (see Equa-
tion 4.1) for each period. The performance and identifiability analysis is
based on these measures.

The resulting parameter populations are used to rank all models or
model structures, with respect to their performance and identifiability,
using the measure introduced earlier. The best model structures are re-
tained and a more thorough analysis using DYNIA is performed. DYNIA
is based on a random sampling procedures using 2500 parameter sets
collected from a uniform distribution. The smaller sample size is due to
computational limitations of the current DYNIA application in the
MATLAB (Mathworks, 1996) environment.
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4.4.3.4 Results and discussion

The main results of the MO analysis as shown in Fig. 4.27 are as follows:

At a general level for the SMA modules (Fig. 4.27, top) the
probability distributions of storage elements (pd3 and pd4) seem
to perform best, followed by the simple bucket (buc), and the
cwi and cmd modules.

The cm1 (i.e., a cmd that always evaporates at the potential rate)
performs much worse than the rest with respect to OFs that
mainly describe periods of high flow, RMSE(total), FDH and
FQ. This is also the case for the cmd module, but is not as pro-
nounced. However, the cmd and cm1 modules do very well dur-
ing low flow periods. This is caused by the bottom outlet of the
bucket, which sustains the production of effective rainfall even
during periods of severe moisture deficits in the SMA module.
The overall result of the performance analysis is that the pd3 and
pd4 SMA modules in combination with 2pll or 2pln routing
modules are superior. The cmd is a useful component when the
modelling purpose demands accurate prediction of low flow pe-
riods and periods of high flows are of minor importance.

A detailed analysis of the routing components shows that the use
of a non-linear conceptual reservoir in parallel with a linear one
(2pln), performs better at the peaks (RMSE(total) and FDH), see
Fig. 4.27(top).

The uncertainty analysis (Fig. 4.27, bottom) however, reveals
that the identifiability of the cmd parameters is very low and the
module is rejected here on this basis. For some applications, this
aspect might be of minor importance.

The pd3 and the pd4 SMA components are retained for further analysis
with the DYNIA approach. Assuming that our interest lies in low flows,
e.g., for water resources purposes, only a linear parallel routing structure
(2pll) is considered. A non-linear component would be advisable for high
flow periods.

The results of the DYNIA are shown in Fig. 4.28 and 4.29 for the
structures pd3-2pll and pd4-2pll. The results reveal some problems with
the pd3 SMA module.
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Fig. 4.27 Results of the model structure comparison. (From Wagener et al., 2003b; re-
produced with permission of the American Geophysical Union)
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Figure 4.28 shows the dynamic identifiability of the five parameters
of the pd3-2pll structure: (1) cmax, the maximum storage capacity; (2) b,
the shape parameter of the Pareto distribution of storage capacities; (3)
k(quick), the residence time of the quick linear reservoir; (4) alpha, the
fraction of flow going through the quick flow component; and (5)
k(slow), the residence time of the slow flow linear reservoir.

The plot for the parameter cmax exposes some ambiguity about its
optimum value. The confidence limits (cfls) narrow into two different
parts of the parameter space, towards low values after wet periods and
towards high values during periods of wetting up, indicating structural
inadequacies within the model structure. Similarly (but much less pro-
nounced), the parameter b shows a slight shift of optimum after the wet
period; the lower cfls go up. This is mainly identifiable during low flow
events (e.g., dark areas just before time step 700). Figure 4.29 shows that
the pd4-2pll structure does not have these problems.

The residence times of the routing component show the expected be-
haviour, i.e., the cfls of k(quick) narrow down on the quick falling limbs
of the hydrograph, while darker areas appear for k(slow) during the long
recessions. The cfls for k(slow) hardly narrow during periods of identifi-
ability, suggesting that the peaks on the response surface are quite small,
and that the difference between values for this parameter is not large.
Values for this parameter are therefore still widespread, since only the
top 10% are selected here. The example of the two residence times also
demonstrates the need for different window sizes. A small size (11 time
steps) is required for k(quick), which has only very local influence, while
a much larger window (81 time steps) is needed to capture the effect of
k(slow). Finally, the parameter alpha is most identifiable during periods
where the split between quick and slow response is occurring. However,
further investigations, which are outside the scope of this example, are
required to explain the behaviour of this parameter. In general, this struc-
ture is too simplistic to reproduce all aspects of the hydrograph with one
parameter set. This is especially reflected in the results for cmax.

The difference between pd3 and pd4 is that, while pd3 always evapo-
rates at the potential rate, pd4 decreases the evapotranspiration with de-
creasing soil moisture content in a linear manner. However, the actual
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Fig. 4.28 DYNIA results for pd3-2pll. (From Wagener et al., 2003b; reproduced with
permission of the American Geophysical Union)
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Fig. 4.28 (cont.)

evapotranspiration rate, ae, is related to the moisture content, s, in the
store distribution without adding an additional (scaling) parameter, i.e.,

Sy
- pe, 4.3)

ae, =
max
where §m.x is the maximum soil moisture content and pe is the potential
evapotranspiration, while & is a time step index.

The effect of this change can be seen in the dynamic results shown in
Fig. 4.29. The ambiguity with respect to cmax is removed and the cfls
only narrow towards larger values indicating a better structure. Also, the
shape parameter b is much better defined.
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It is interesting to remember that the MO performance analysis had
shown that the pd3 component actually performed better. The reason is
that the pd4 component puts an additional constraint on the behaviour of
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Fig. 4.29 DYNIA results for pd4-2pll. (From Wagener et al., 2003b; reproduced with
permission of the American Geophysical Union)

100



Modelling Gauged Catchments — Local Procedures 165

window size: 41 [d)

7

A Wil

100 200 300 400 500 600 700 800
time step [d]

window size: 81 [d]

R, T T

100 200 300 400 500 600 700 800
time step [d}

Fig. 4.29 (cont.)

the catchment system. This results in a less flexible model structure. The
pd3 component can therefore perform better with respect to the different
OFs. However, this is at the expense of a larger variation in parameter
values as shown in the dynamic analysis. This indicates that pd4 is actu-
ally the better SMA component and should be retained, while pd3 should
be rejected.

This result suggests that consistency in a model might be more im-
portant than optimality.
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4.5 Summary and Conclusions

Current concepts underlying local CRR model identification, i.e., the
modelling of gauged catchments, have been analysed in detail. It has
been suggested that the idea of establishing a true model structure is ill-
founded and that it should be replaced by an evaluation of model struc-
tures with respect to

e performance,

e (parametric) uncertainty and

e underlying assumptions (reflecting for example structural inade-
quacy).

Additionally, current automatic methods of parameter identification lack
the complexity of subjective manual techniques and are often too sim-
plistic in their approach.

A multi-objective approach to model structure analysis has subse-
quently been developed to address aspects one and two of the three di-
mensional evaluation described above. Point three is assessed through a
novel dynamic identifiability approach (DYNIA) which analyses how
(initially uniform) parameter distributions are conditioned over different
data periods. A violation of underlying assumptions is found, for exam-
ple, if peaks in the response surface of a particular parameter vary in time
and in (parameter) space. These approaches are combined in a frame-
work of corroboration and rejection more in line with scientific methods
— as propagated by Popper (2000) — than traditional procedures for rain-
fall-runoff modelling.

The following main observations were made in the application exam-
ples in Chapter 4:

e Example 1 led to the conclusions that accepting the multi-
objective nature of model calibration and integrating it into the
modelling process increases the amount of information retrieved
from the model residuals to (1) find the parameter population
necessary to fit all aspects of the observed output time-series (al-
beit separately), (2) increase the identifiability of the model pa-
rameters, and (3) assess the suitability of the model structure to
represent the natural system (i.e., identify model structural insuf-
ficiencies).
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* One approach to derive multiple-objectives for single output
models is the segmentation of the hydrograph. A segmentation
based on the slope of the observed streamflow and additional
thresholds has shown to be effective in separating different re-
sponse modes for catchments in the UK (Chapter 4, examples 1
and 3), while an approach using rainfall to find ‘driven’ periods
is difficult to apply due to the high frequency of rainfall events
(see example in Chapter 3).

e A very distinct difference in optimum parameter sets to fit high
and low flows has been found for all structures analysed in
Chapter 4. This seems to be the main problem in currently avail-
able CRR model structures.

e The identifiability measure introduced in Chapter 3 is a very use-
ful empirical tool to assess individual parameters in an objective
manner without having to make limiting assumptions (examples
1 and 3).

* Applying this identifiability measure in a dynamic fashion leads
to the DYNIA approach, which is of general utility and simple to
implement. It can be applied to: (1) analyse individual model
structures with respect to structural inadequacies; (2) identify
suitable parameters in an approach more in line with sophisti-
cated manual techniques; (3) separate periods of high and low in-
formation content for individual parameters, for example as a
first step in a multi-objective analysis; (4) relate model parame-
ters, and therefore model components, and response modes of
the natural system; (5) investigate data outliers or anomalies; and
(6) analyse the potential of experimental design, e.g., tracer ex-
periments, to identify individual parameters.

Some of the main results of the DYNIA applications in examples two
and three were: (1) For the Penman SMA component (icl): (a) the root
constant is mainly identifiable during wetting up periods; (b) the bypass
parameter is defined by major rainfall events during dry periods; (c) the
optimum bypass values change in time, indicating that a dynamic aspect
is missing in the model structure; and (d) the correlation between root
constant and bypass is reduced considerably if periods of high identifi-
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ability only are considered. (2) For two parallel linear routing compo-
nents (2pll): (a) the quick and slow flow residence times are mainly iden-
tifiable during periods of quick and slow recession; and (b) the split pa-
rameter alpha is most identifiable during the change between quick and
slow flow dominated periods after large runoff events. (3) The probabil-
ity distributed SMA (pd3 and pd4): (a) pd3 (ae at potential rate) performs
better than pd4 (ae linearly dependent on soil moisture content) in a MO
analysis; (b) however, the pd4 module shows more consistent optimum
parameter values in a DYNIA, indicating that it is the better model struc-
ture, i.e., in line with the underlying assumptions.



Chapter 5

Modelling Ungauged Catchments —
Regional Procedures

The art of being wise is the art of knowing what to overlook.
William James (1842-1910)

5.1 Introduction

Rainfall-runoff models are commonly used tools to extrapolate stream-
flow time-series in time and space: in time, for example, to extend avail-
able streamflow records or predict the behaviour of catchments for dif-
ferent climate scenarios, and in space, to predict the response of catch-
ments for which no (or only very short) time-series of streamflow meas-
urements are available. The latter has been achieved with some success
in terms of predicting the response of a catchment to an individual rain-
fall event, using (parametrically) simple models (e.g., NERC, 1975). Un-
til recently the estimation of continuous streamflow time-series has re-
mained an unsolved problem. However, new methods of analysis of
model structure and parameter uncertainty allow the trade-off between
performance and identifiability to be examined. By focusing on model
structures associated with high identifiability, the possibility of relating
model parameters to catchment characteristics has improved.

This chapter develops the review of Chapter 2 further. Chapter 5 is
based on the assumption that many if not most RR model structures cur-
rently used for continuous modelling can be classified as conceptual, if
the classification is based on two criteria (Wheater et al., 1993): (1) the
structure of the models is specified prior to any modelling being under-
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taken, and (2) at least some of the model parameters do not have a direct
physical interpretation in the sense of being independently measurable,
and have to be estimated through calibration against observed data. Cali-
bration is a process of parameter adjustment (automatic or manual), until
catchment and model behaviour show a sufficiently high degree of simi-
larity to satisfy the hydrologist. The similarity is usually judged by one
or more objective functions (OFs) accompanied by visual inspection of
observed and calculated hydrographs.

However, as discussed in Chapter 2, the need for calibration is prob-
lematic if the modelling task requires extrapolation of flow predictions to
a location for which no or only short observed streamflow time-series are
available. Unfortunately this is often the case: even in the UK where
about 1400 gauging stations are in operation, many small catchments
remain ungauged (Sefton and Howarth,1998). Alternative approaches to
derive parameter values are required under those circumstances. Early
attempts have simply used the parameter values derived for neighbouring
catchments where streamflow data are available (a geographical prox-
imity approach; e.g., Mosley, 1981; Vandewiele and Elias, 1995). How-
ever, this seems to be insufficient since even nearby catchments can be
very different with respect to their hydrological behaviour (Post er al.,
1998; Beven, 2000b).

Some authors propose the use of parameter estimates directly derived
from: soil properties such as porosity, field capacity and wilting points
(to derive model storage capacity parameters); percentage forest cover
(evapotranspiration parameters); or hydraulic conductivities and channel
densities (time constants) (e.g., Koren er al., 2001; Atkinson, 2001). The
measurements of soil properties are usually made on a small (laboratory)
scale; this approach assumes that it is possible to derive some effective
catchment-wide values using simple aggregation rules, e.g., average soil
properties when different soil types are present in the catchment. The
approach does not consider the effects of larger scale heterogeneity, for
example due to preferential flowpaths by macropores, or the potential
scale-dependence of effective parameters. It is then assumed that the ef-
fective soil values are equivalent to conceptual model parameters. Con-
ceptual model parameters describe an integrated catchment response
usually aggregating significant heterogeneity (and including the effect of
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preferential flow paths). It seems unlikely that they can be derived easily
from soil properties that do not consider all influences on the flow of wa-
ter through the catchment. However, there is some suggestion that one
might gain reasonable initial parameter ranges (or estimates) that can be
used as a starting point in a calibration procedure (Duan et al., 2001; Ko-
ren et al., 2001). Further fine tuning of these estimates using locally ob-
served flow data is however needed “because the physical information
available to estimate a priori parameters is not adequate to define local
physical properties of individual basins for accurate hydrologic fore-
casts” (Duan et al., 2001). The authors are not aware of any large scale
study so far that compares locally calibrated and measured parameters
for a large number of catchments to statistically corroborate or reject this
approach.

This type of approach is unlikely to yield satisfactory results for the
simple parsimonious structures applied in this monograph. The most
commonly used approach to ungauged modelling, using this model type,
1s to relate model parameters and catchment characteristics in a statistical
manner (e.g., Jakeman et al., 1992; Sefton ez al., 1995; Post et al., 1998;
Sefton and Howarth, 1998), assuming that the uniqueness of each catch-
ment can be captured in its unique combination of characteristics. The
basic methodology is to calibrate a specific model structure, here called
the local model structure, to as many catchments as possible and derive
statistical (regression) relationships between the (local) model parame-
ters and the catchment characteristics. This statistical relationship, here
called the regional model, and the measurable properties of the ungauged
catchment can then be used to derive estimates of the (local) model pa-
rameters (see Fig. 5.1). This procedure is usually referred to as regionali-
zation or spatial generalization (see, for example, Lamb and Calver,
2002).

It is evident from the literature review (Chapter 2) that few studies
have been performed to analyse this type of regional modelling in detail.
While local modelling (particularly the aspect of model calibration) has
been at the centre of research for decades, continuous regional modelling
has only recently become a focus (e.g., Post and Jakeman, 1996; Sefton
and Howarth, 1998; Seibert, 1999b; Lamb et al., 2000). The main reason
for this new interest is the hope that a parsimonious model structure, in
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GAUGED
CATCHMENT 1

UNGAUGED
CATCHMENT*

Fig. 5.1 The idea of conceptual parameter regionalization. Where @ are catchment char-
acteristics, Q is the streamflow, 6 are model parameters and 1 are input time-series.

combination with improved methods of optimization and identifiability
analysis, could yield satisfactory results. A range of parsimonious struc-
tures with identifiable parameters is available today (see Chapter 3),
while older model structures often contain an excess number of parame-
ters which makes the identification of a unique parameter set very diffi-
cult at best (e.g., Johnston and Pilgrim, 1976). However, the regionaliza-
tion studies that can be found in the literature are mainly relatively
straightforward applications without a detailed analysis of the compo-
nents and uncertainties involved (see Chapter 2 for details). Additionally,
the large variety of catchment characteristics used and differences in cli-
mate make it very difficult to compare the results of these studies.

In this chapter both theoretical and applied issues of the regionaliza-
tion of continuous parsimonious CRR models are considered. The first
section reviews the idea of regionalization and the elements involved in a
typical procedure. Alternative components for regionalization are dis-
cussed and a regional modelling framework is suggested. The second
section provides an application example where the suggested framework
is applied to ten catchments in southeast England. The aim of this appli-
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cation is not to provide a comprehensive case study, but rather to test
different possible components within the framework for their suitability.

5.2 The Idea of Regionalization

The objective of each rainfall-runoff modelling exercise is the calcula-
tion of runoff from a catchment as a function of rainfall and various me-
teorological forcing variables, such as temperature and relative humidity.
This can be represented mathematically as follows

Q=M,0,|D+e¢, (5.1)

where Q is the simulated streamflow; [ is a matrix of input variables
(e.g., rainfall and temperature); M, is a given (local) model structure,
6, is a vector of parameters within this structure; and &, is an error
term. The model parameters will usually be estimated through a calibra-
tion exercise in cases where measured time-series of runoff over a suffi-
ciently long period are available. The required length of the time-series
depends, among other things, on the complexity of the model structure
used and the information content of the data. It might range from three
years for a simple structure (Sefton and Howarth, 1998), to up to a dec-
ade for more complex model structures (Yapo et al., 1996). However, in
principle the data set should always be long enough to avoid the problem
of the parameters being representative only of a particular climate se-
quence (Gan and Burges, 1990).

If no runoff data are available for a specific catchment, i.e., if it is un-
gauged, an attempt can be made to calibrate the model structure to a
large number of gauged catchments and to find a functional relationship
between the usually individual conceptual model parameters (dependent
variables) and the catchment characteristics (independent variables), i.e.,
a regional model structure of the following type:

0, =M (0, |D)+¢, (5.2)

where éL is the estimated model parameter at the ungauged site; M , ()
is a functional relation for éL using a set of physiographical and mete-
orological catchment characteristics @, while 6, is a set of regional
model parameters; and &, is an error term. The functional relationship is
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called the regional model structure in the context of this paper. One
model, i.e., (regional) model structure and (regional) parameter combina-
tion is normally derived for each (local) parameter. This means the
model parameters are assumed to be independent.

No generally accepted procedure for regionalization of conceptual,
continuous models currently exists. However, the following steps are
typically found and therefore given here as the basic outline of a region-
alization procedure (see also Fig. 5.1):

(1) Decide which (sub-)set of catchments can be described by a sin-

gle local model structure M, and a single regional model, i.e.,
one structure M, with a specific set of parameters &, . Catch-
ments, which are too different with respect to their dominant hy-
drological processes, might require different local model struc-
tures to represent them in a physically (or conceptually) realistic
manner.

(2) Collect a set of catchment characteristics @ related to the hydro-
logical response of the selected catchments. Examples are size,
shape, drainage density, land use, and soil properties.

(3) Apply the local model structure M, to each of the gauged
catchments and estimate the optimum parameter set (or popula-
tion) 6, for each catchment.

(4) Relate the derived individual parameter values ¢;; and the
catchment characteristics @ using the regional model structure
M, . (Different regional model structures might be necessary for
different local model parameters).

(5) Apply the regional model M, (0,; |®) to estimate each parame-
ter §;; for the ungauged catchment.

(6) Predict flow in the ungauged catchment using parameter set éL .
There are of course variations on this approach, for example the recur-
sive incorporation of information from step 4 in 3 (e.g., Vogel et al.,
1999; Lamb and Calver, 2002). This means that the objective is not just
optimal local performance, but also an optimization of the performance
of the regression relationship. However, this listing contains all of the
relevant components. These components and aspects of regionalization
are discussed in the following section.
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5.3 Problems and Possible Ways Forward

Unfortunately, each of the steps outlined above contains uncertainties
that are unavoidably propagated into the regionalization result (such as
the streamflow prediction at an ungauged site), even if those uncertain-
ties are often ignored in regionalization studies. One can split the uncer-
tainties or problems related to the individual components into two
groups: 1) the problems related to local modelling, i.e., those related to
the selection and calibration of the local model structure to every indi-
vidual catchment, and 2) additional problems due to the need for spatial
extrapolation using a regional model. The main problems are:

e Selection of catchment properties. What are suitable characteris-
tics to describe and cluster (pool) catchments with respect to
their hydrological response? This is an important aspect with re-
spect to both the local and the regional modelling steps.

e Selection of the local model structure. Determine potential in-
adequacies and lack of identifiability with respect to the concep-
tual structure used.

o Identification of the local parameters.

e Selection and identification of the regional model structure and
its parameters. What is the nature of the relationship between
catchment characteristics and model parameters?

e Selection of the regionalization procedure. For example, is the
calibration-objective purely the optimization of the performance
of the local model in each catchment, or is the performance of
the regional model considered?

The problems related to local modelling are only discussed briefly, since
these aspects were treated thoroughly in Chapter 4. The regionalization
or regional modelling problems are analysed in detail.

5.3.1 Catchments, their characteristics and clusters

A large number of catchments with good quality data and characteristics
are required to derive statistically significant relationships in a regionali-
zation study (e.g., Post et al., 1998).
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Since there is no established theory to relate catchment characteristics
and the parameters of conceptual model structures, a trial and error ap-
proach is normally adopted in which a wide range of available character-
istics is considered initially and then reduced, based on statistical analy-
sis and hydrological reasoning (including results of earlier studies). The
correlation between catchment characteristics can be analysed, leading to
rejection of some characteristics (because they contain the same informa-
tion as others) or the combination of characteristics to form new vari-
ables using principal component analysis (Howarth, 1998). However, in
the latter approach there can be difficulties in the loss of a unique physi-
cal association with a given characteristic leading to further difficulties in
explaining the correlation results. This option is therefore not considered
further here.

The catchment characteristics are also very important with respect to
the clustering or pooling of catchments. It is usually assumed that a gen-
eral model structure exists that is capable of representing all catchments
included in the study. Catchments that are too extreme are excluded (e.g.,
Sefton and Howarth, 1998), while the remaining variability is captured
by the individual parameter sets. However, a more general approach
would include a large variety of catchments and identify the dominant
variable(s) (catchment characteristics) that allow the allocation of a par-
ticular catchment to a particular (local) model structure. Since the idea is
to allow selection of different regional models for different clusters of
catchments regardless of geographical location, the term regionalization
is slightly misleading since it implies that only a single geographical re-
gion is considered.

For UK flood design, Robson and Reed (1999) suggest pooling (clus-
tering) catchments for flood frequency analysis based on their hydrologi-
cal similarity. This supercedes an earlier approach based on geographic
regions (NERC, 1975). Catchments within a region can show consider-
able heterogeneity and the earlier approach therefore showed problems
of robustness (Kilsby and O’Connell, 2001). The new methodology sug-
gests description of similarity using three features: size, wetness and soil
properties, represented by the catchment size, AREA [L?], the Standard-
period Average Annual Rainfall, SAAR [L], and the Base Flow Index
from the Hydrology of Soil Types Classification, BFIHOST [-] (see dis-
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cussion below), respectively. It can be noted that the baseflow index de-
fines the proportion of hydrograph classified as baseflow, and is thus an
important descriptor of the hydrograph response which reflects the geo-
logical controls on catchment response. The similarity between catch-
ments is based on the region-of-influence approach introduced by Burn
(1990), and is measured using the Euclidean distance (dist;) in the three-
dimensional space,

2

1 [lnAREA,. ~In AREA, )2 (lnSAAR,. —lnSAARj)

dist, =| -
S 212\ T olin AREA) o(in SA4R)

1
BFIHOST, - BFIHOST; \' |?
o(BFIHOST)

(5.4)

where o is the standard deviation of a variable. The logarithmic trans-
formation In leads to more symmetrical distributions and to the fact that
the distance measure (for AREA and SAAR) is based on ratios, rather
than differences. Halving the weight of AREA increases the influence of
the other two variables. The computed value of the measure has been
found to be approximately 0.5 within a single pooling group (Robson and
Reed, 1999, p. 158).

For the purpose of identifying groups for which a particular model
structure is suitable, a simpler approach than that of Robson and Reed
might suffice. Various studies have shown that a single model structure
can be suitable for a wide range of different catchment sizes (e.g., Lit-
tlewood and Jakeman, 1992; Jakeman and Homberger, 1993). Also, the
climatic variable (SAAR) might be less important for model choice than
a variable describing soil types and geology of the catchment (such as
BFIHOST) if all catchments are located in the same climatic region.
Boxall (2001) and Lee (2001) for example found that BFIHOST was a
dominant characteristic in explaining the hydrological variability of
catchments in the southeast of England, which suggests that a clustering
(pooling) based on this variable is a suitable approach for the purpose of
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local model structure selection in this geographic region. However, other
variables might be more appropriate for other groups of catchments and a
wider range of characteristics should in general be investigated. The idea
is to derive different regional models for different clusters of catchments,
regardless of the geographical location of the catchments included. The
term regionalization is therefore slightly misleading since it implies that
only a single geographical region is considered. Other variables might be
more appropriate for other groups of catchments and a wider range of
characteristics should be investigated.

It is useful to describe the HOST system (Boorman et al., 1995) in
slightly more detail. HOST is a hydrologically based classification of UK
soils using a number of conceptualizations of processes occurring in soil
(or substrate). The conceptualizations are based on three basic settings:
soil over permeable substrate with shallow or deep groundwater, and soil
over shallow slowly permeable substrate. Adding soil properties from
soil profile descriptions (e.g., a peaty top layer) and wetness regimes
(e.g., as indicated by the presence of gleying) leads to eleven models.
Further considering other soil properties and the geology of the substrate
derives twenty-nine HOST classes. The utility of the HOST approach
was validated through estimating measured Base Flow Index (BFI) val-
ues, i.e., a catchment scale hydrological variable, from a regression on
the HOST classes. The regression yielded a coefficient of determination
(Eq. 5.26) of 0.79. An example calculation is given in the application at
the end of this chapter.

There is also the question of how well the available catchment char-
acteristics can describe the hydrological behaviour of a catchment in or-
der to derive regional models for all model parameters. In humid regions,
the behaviour will be dominated by subsurface characteristics, while
most catchment characteristics available refer to the surface. “Essentially
there is much about the subsurface flow domain that will remain un-
knowable, a fortiori, and is revealed only in the response observed at lar-
ger scale, with all the limitations of knowledge that these observations
tmply” (Beven, 2000b).

The variable BFIHOST will be used in this study to cluster catch-
ments, since UK data are utilized in the application example. No other
variables will be investigated further here. One has to estimate then the



Modelling Ungauged Catchments — Regional Procedures 179

range of local model structures required to represent the different clus-
ters. Further research is required to devise more generally applicable
schemes. This was not possible here due to the focus on UK data.

5.3.2 Local model

A model structure capable of representing the response of all catchments
within a particular cluster must be found. The basic assumption underly-
ing current regionalization approaches is that only a relatively simple
model structure with identifiable parameters offers a chance to develop
sensible relationships between its parameters and catchment characteris-
tics (Wheater et al., 1993).

The problem of lack of identifiability of model parameters is one of
the major problems in CRR modelling today and is well documented in
the research literature (e.g., Beven and Binley, 1992; Wagener et al.,
1999; 2001). The bottom line is that there is often an ambiguity about
which parameter values are representative of the catchment under con-
sideration. The result of this is that the statistical regression relationships
(regional models) derived are virtually meaningless if equally acceptable
parameters are widely distributed over their feasible ranges. In most re-
gionalization studies (e.g., Sefton and Howarth, 1998), only the best
value of each parameter, with respect to a specific OF, is selected to cre-
ate relationships with catchment characteristics. However, this selection
can be rather arbitrary due to a lack of parameter identifiability.

This is one reason why simple model structures, which only concen-
trate on the main aspects of the hydrological response of a catchment, are
often used for regionalization. These models contain a small number of
parameters, which are usually identifiable. Statistical relationships to
catchment characteristics can therefore be established with more confi-
dence. However, the structure is also less flexible and fewer processes
are described. Examples are event-based models like Unit Hydrograph
approaches (e.g., Nash, 1960; NERC, 1975; Tung et al., 1997), models
that predict only low flows (e.g., Chang and Boyer, 1977; Nathan and
McMabhon, 1992), or continuous models working on large (e.g., monthly)
time-scales, Vandewiele ef al., 1991; Vandewiele and Elias, 1995).
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The problem increases when continuous models, working with a rela-
tively small discretization in time (daily or less) are to be regionalized.
These models usually have between five and fifteen parameters and
therefore often severe problems of non-uniqueness of parameters. As
noted earlier, it seems that only between three and five parameters are
identifiable using a single OF (Gupta, 2001). However, new approaches
of multi-objective (e.g., Boyle et al., 2000; Wagener et al., 2001) and
dynamic (Wagener et al., 2002b; 2003a) parameter estimation might re-
duce this problem (see Chapter 4 for details). The quality of predictions
made with these simple structures is also often equal or superior to that
of more complex model structures (see Section 2.4).

Typical representatives of parsimonious and relatively general model
structures, capable of continnous modelling at a daily (or even sub-daily)
time-step that are already used for regionalization are the PDM (Calver
et al., 1999; Lamb and Calver, 2002), the [HACRES (Jakeman et al.,
1992: Sefton and Boorman, 1995; Sefton et al., 1997; Post et al., 1998;
Sefton and Howarth, 1998), the TATE (Calver et al., 1999), and the abed
(Vogel et al., 1999; Fernandez et al., 2000) model structures (see Chap-
ter 2 for details).

A schematic representation of a general parsimonious model structure
is given in Fig. 5.2. The following structural components are usually
considered: a component describing losses due to actual evapotranspira-
tion (ACTE), a component describing storage of moisture in the catch-
ment (STORE), and a parallel routing component, with one component
describing the quick response (QUICK) and one describing the slow re-
sponse (SLOW) of the catchment. However, this division is not a strict
division into different pathways, since the quick response is commonly a
combination of surface and sub-surface flows (e.g., Ward and Robinson,
2000, p.236). Commonly, a constant division between the contribution to
the quick and slow response (SPLIT) is applied, while other model struc-
tures relate this division to the actual moisture content, as in some ver-
sions of the PDM model structure. A constant split has the advantage that
it can sometimes be derived a priori from catchment characteristics such
as the baseflow index (e.g., BFIHOST) or the standard percentage runoff
(SPRHOST), as done for example by Young (2002) or Lamb and Calver
(2002).
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QUICK

SLOwW

Fig. 5.2 Schematic description of a general model structure with components (parame-
ters) describing the actual evapotranspiration (ACTE), the storage volume, (STORE), the
split between quick and slow response (SPLIT), and the quick and slow response resi-
dence times.

Another problem is the influence of the choice of OF in combination
with the problem of model structural inadequacies. Different parameter
sets might be optimal depending on the choice of OF. Do they therefore
represent different processes and are they therefore related to different
catchment properties? As mentioned before, CRR mode] structures com-
monly aggregate (in space and time) the hydrological processes occur-
ring in a catchment into a number of key responses, represented by stor-
age components (state variables) and their interactions (fluxes). The
model parameters describe aspects such as the size of those storage com-
ponents, the location of outlets, the distribution of storages within the
catchment, etc. Conceptual parameters, therefore, usually refer to a col-
lection of aggregated processes and they “may cover a large number of
sub-processes that cannot be represented separately or explicitly” (Van
Straten and Keesman, 1991). This is sometimes demonstrated by the fact
that optimization with respect to different OFs can result in different op-
timal values for a single parameter (Wagener et al., 2001, and Chapter
4). Tt might therefore also lead to different regional models.

The choice of an OF can also influence the amount of correlation be-
tween the parameters. The usual assumption in the regional (regression)
model is that all model parameters are uncorrelated. However, this as-
sumption is unlikely to be justified in most CRR models. One reason for
this is that it is very difficult to define an OF that singles out the influ-
ence of a single parameter, i.e., a model component. For example, the
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performance of different residence times measured using the distance
between the observed and calculated hydrographs will depend on the
volume under the hydrograph, which is dependent on the soil moisture
accounting (SMA) model component.

Beven (2000b) mentions that certain parameters only have a meaning
within a particular model structure, even if their name is identical to pa-
rameters in other model structures. Kokkonen and Jakeman (2001) tested
this and found that identical components used in different versions of the
IHACRES model structure can result in different optimal model parame-
ters. They combined a parallel transfer function routing component alter-
natively with a parametric (similar to sma_cmd) and a metric (similar to
sma_cwi) SMA component. They subsequently found that the routing
parameters (i.e., residence times and the constant split between quick and
slow response), were a function of the SMA component selected. Use of
the metric component resulted in higher residence times and a larger con-
tribution to the slow response for 45 different calibration experiments.
Kokkonen and Jakeman (2001) see the explanation in the extra delay
introduced by the parametric component; the main part of the effective
rainfall is produced when the (single) reservoir is overflowing, while the
metric structure produces a more consistent output.

Not only is the appropriate parameter set hard to estimate, recent re-
search has also shown that different model structures can sometimes be
indistinguishable (e.g., Uhlenbrook et al., 1999). This result is related to
an increasing awareness of model structural inadequacies (e.g., Gupta et
al., 1998; Boyle et al. 2000; Wagener et al., 2001; 2003a; b). An inade-
quate model structure will yield unsuitable parameter values and their
relationship with catchment characteristics will, even if statistically suc-
cessful, not be meaningful in any hydrological sense. A physical inter-
pretation of these parameters, and therefore of the regional relationship,
will be of little value. The requirement is, therefore, to derive a physi-
cally realistic representation of the hydrological system under study with
as small a number of parameters as possible to achieve high parameter
identifiability.

Several questions with respect to local models require investigating.
What is the optimum model (or population of models or even model
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structures) for a particular catchment, and therefore also cluster of
catchments? The effect of different OFs on the local parameter estimates
and on the subsequent regional model has to be examined. Another ques-
tion to be asked is to what extent are local parameter estimates dependent
on the choice of structures within a single model?

5.3.3 Regional model

A second model is required to relate the identified parameters to the
catchment characteristics. This is usually a regression model of some
type. Some possible models are described below.

5.3.3.1 Univariate regression

The most common approach adopted is the use of multiple regression
model structures (e.g., Nash, 1960; NERC, 1975; Mimikou and Gordis,
1989; Nathan and McMahon, 1992; Burn and Boorman, 1992; Dyer ef
al., 1994; Sefton and Howarth, 1998; Vogel et al., 1999; etc.).

This structure can be written in matrix form (e.g., Weisberg, 1980,
p41)as

0, =00, +¢&, (5.5)

where 6, is a vector of the model parameter (the dependent variable or
response), ® is a matrix of measured catchment characteristics (the in-
dependent variables or predictors, usually containing a column of 1’s to
estimate the intercept), & is a vector of regression parameters, and ¢ is
an error vector. The ordinary least squares solution 6, of 6, can be es-
timated using

b, =(@"@) @70, (5.6)
(Weisberg, 1980, p.42) where ®7 describes the transpose of the matrix
@ . However, most software packages use more sophisticated approaches
because the least squares solution can have poor numeric properties
(Mathworks, 1993).
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Non-linearity is sometimes included through the transformation of the
dependent or independent variables used in the regional model structure
(e.g., Tung et al., 1997).

However, univariate regression assumes that the dependent variables
(the model parameters) are not correlated, an assumption that is often not
justified, as outlined earlier.

5.3.3.2 ‘Correlated’ regression

An attempt to consider parameter dependencies was made by Tung et al.
(1997) using two approaches called multivariate regression analysis
(MVR) and seemingly unrelated regression (SUR) for the regionalization
of a two-parameter Nash Instantaneous Unit Hydrograph (NIUH) model
structure.

Several correlated dependent variables can be considered simultane-
ously in MVR. However, MVR requires that all dependent variables
(model parameters) be related to exactly the same independent variables
using identical functional relationships.

A more general extension of the MVR is the SUR. Here the func-
tional relationships for the different dependent variables can vary. Tung
et al. (1997) suggest a generalized least squares approach to estimate the
regression parameters while considering the correlation between the de-
pendent variables.

They found that considering the correlation between the NIUH pa-
rameters when deriving the regional equation improved their predictive
capability. However, appropriate software tools (including correlated
regression approaches) were not available. Deriving tools to perform this
type of regression for more complex model structures than the two-
parameter NIUH used by Tung ez al. (1997) is beyond the scope of this
study.

Campbell and Bates (2001) used the Markov Chain Monte Carlo ap-
proach by Campbell et al. (1999) to derive local posterior parameter dis-
tributions for the two parameters of the RORB model structure
(Laurenson and Mein, 1995) for 39 Australian catchments. They subse-
quently simultaneously regionalized the distribution means for the differ-
ent parameters, assuming normality of the posterior distributions and
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using a regression approach similar to the one of Tung et al. (1997).
Campbell and Bates (2001) also included information about the local
parameter covariance matrices into their regression, which reduced the
standard error on the regional parameter estimates.

There is no reason, however, why the relationship between a particu-
lar model parameter and one or more catchment characteristics should be
in a particular pre-supposed form. An approach that does not presuppose
a particular functional relationship could be. advantageous in exploring
this. One such an approach is the Artificial Neural Network (ANN), dis-
cussed below.

5.3.3.3 Generalized regression — radial basis neural networks

An ANN mimics the way biological nervous systems function. It consists
of simple elements that work in parallel and are determined by their con-
nections.

A Generalized Regression Neural Network (GRNN) can be used for
function approximation (Wasserman, 1993). It can approximate a con-
tinuous function to any level of accuracy if enough hidden neurons are
available (Demuth and Beale, 1997, p.209). A GRNN consists of two
layers, a radial basis layer and a second (special) linear layer. The input
to the GRNN (in this case a matrix of catchment characteristics) is com-
bined with weights and biases through linear filters. The GRNN is cali-
brated, i.e., trained, by adjusting weights and biases. The result provides
the input to the hidden layer, the radial basis layer. The activation or
transfer function for a radial basis neuron takes the following form

flx)=e™ 5.7)

where x is the filtered input and f is the activation function (Demuth and
Beale, 1997, p.197). A second layer of filters is then applied to the output
of the hidden layer. An additional layer of activation functions follows
this layer of filters. The activation functions are, in the case of a regres-
sion neural network, of linear form (Gershenfeld, 1999, p.152).

Major disadvantages of most ANNSs are 1) the functional relationship
cannot be stated explicitly and 2) it is difficult to incorporate uncertainty
in the predictions. The first problem means that the ANN remains a black
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box. Additionally, ANNs require a large number of data points to be
trained, but those are often not available in regionalization studies. An-
other emerging technology, symbolic regression, could be used to over-
come this problem.

5.3.3.4 Symbolic regression — genetic programming

Symbolic regression (SR) is a field of genetic programming (GP), which
itself is a type of evolutionary algorithm. In SR, the aim is not just to
identify the parameters of the functional form of the relationship between
dependent and independent variable, but also the functional form itself
(Koza, 1992, 2000). This function is derived together with the required
parameters during the calibration process.

The steps in GP are similar to those in other evolutionary algorithms.
GP is inspired by the Darwinian theory of evolution, in which the sur-
vival and breeding of the fittest members evolves a population. The algo-
rithm starts with the random specification of an initial population, i.e.,
mathematical elements (e.g., logarithmic transformation, subtraction or
multiplication) and parameters: the initialization stage. Some members of
this population are selected to produce offspring. The selection is usually
related to the fitness of the members measured by an OF with better per-
forming members having a higher chance of being selected. These mem-
bers then breed, i.e., new random combinations are formed. The proce-
dure is usually terminated when at least one member of the population
produces a sufficiently high performance.

There are few examples of the use of GP in hydrology (e.g., Drecourt,
1999; Babovic and Bojkow, 2001). GP is computationally demanding
and its use in hydrology is still a research topic on its own. However, GP
offers an interesting alternative to conventional regression and might be
worthy of future exploration.

Whatever regional model structure is adopted, unavoidable uncertain-
ties that arise, for example, from problems in parameter estimation must
be considered and propagated into the flow prediction at the ungauged
site. While standard confidence limits can be derived for the parameters
(and therefore predictions) of a normal regression model, there are also
complementary or alternative approaches such as weighted or fuzzy re-
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gression. Only weighted regression is analysed in this section; other ap-
proaches to considering uncertainty are explained in section 5.3.5.

5.3.3.5 Univariate weighted regression

The identifiability of individual parameters might vary between different
catchments, e.g., a particular model component might be more suitable
for one catchment than another, even if the model structure is generally
suitable for all. Some parameter estimates will therefore be more reliable
than others. It seems sensible to give a higher importance to the more
reliable parameter estimates when deriving a regional model. A measure
of identifiability, based on the slope of the cumulative parameter distri-
bution, was introduced in Chapter 4. This measure can be used as a
weight in a regression model to enhance the influence of better-identified
parameters on the final regional model. This can be written in mathe-
matical form as weighted linear regression (e.g., Weisberg, 1980, p.75f.).
Starting with the regression model introduced in Eq. 5.5,

6, =®b, +¢, (5.8)

the generalized least squares solution is given (in contrast to Eq. 5.6) by

A

6, =@ A'D) ®"A"S, (5.9)

in case of a weighted least squares, where a higher weight indicates a
more precise estimate. The weighting function A can be written as

A= N (5.10)

one can then define an nxn matrix, C, for which C7C=A"". Cis called
the square root of A™'. Subsequently C is
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Jw, ]
C= e ) 0 (5.11)

0 ]

which can be transformed into an ordinary least squares problem by mul-
tiplying both sides of Eq. 5.8 by C, which leads to

Co, =CDO, +C¢, (5.12)
one can then define Z=C0,, W = C® and 6 = Cg,, leading to
Z=W6, +6 (5.13)

with the ordinary least squares solution being
6, =w'w)'wz (5.14)

An ordinary or unweighted least squares problem is therefore obtained
from a weighted least squares problem through transformation of all the
involved variables. Each observation of dependent and independent vari-
ables, and the intercept term (which is a column of ones, added to the
matrix of independent variables) has to be multiplied by the square root
of the weight for that point \/;) . Estimates of the parameters, tests, con-
fidence intervals, and residuals can then be derived using ordinary least
squares as described earlier (Weisberg, 1980, p. 76; Helsel and Hirsch,
1992, p. 281).

Thus, the uncertainty introduced by the varying identifiability of the
local model parameters can be considered using this approach.

5.3.3.6 Conclusions

A range of regional model structures is presented above. Univariate re-
gression is most commonly used and is appealing due to its simplicity. It
also allows for estimates of uncertainty in its parameters and predictions.
Additionally, the use of weighted regression seems to be a promising
way to include local parameter uncertainty.

A seemingly unrelated regression approach allows for the considera-
tion of correlation between the local parameters. This is a desirable char-
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acteristic, and applications of these approaches to simple two parameter
models can be found in the literature. However, the extension of this ap-
proach to more complex model structures is beyond the scope of the re-
search presented in this study.

Emerging technologies such as generalized and symbolic regression
offer interesting alternatives to relax the a priori assumption of a particu-
lar functional relationship between local model parameters and catch-
ment characteristics. However, the use of symbolic regression means
making the second step before the first; other more important issues such
as the problem of local parameter estimation should be addressed first.
The use of a GRNN might be a way to test whether there are underlying
non-linear relationships.

5.3.4 Regional procedure

Some variations on the conventional regionalization procedure have ap-
peared recently in the literature (Funke et al., 1999; Vogel et al., 1999;
Lamb et al., 2000; Yu and Yang, 2000).

The traditional regionalization procedure, as outlined in Sec. 5.2,
separates the calibration of the individual local model structures from the
calibration of the regional model structure. Local parameter sets are se-
lected in such a way that they represent individual catchments as well as
possible, usually based on a single OF. However, as mentioned above,
different parameter sets are often equally acceptable representations of a
single catchment, especially when a single-objective optimization proce-
dure is used. This is one reason that different researchers have used
variations on the traditional regionalization procedure. Another is the
recognition that optimal local model performance may not necessarily
give rise to an optimal regional model. It might therefore be advanta-
geous to consider both local and regional performance simultaneously.

5.3.4.1 Combined procedure

One variation lies in the definition of the overall calibration objective for
the individual local model structures. Vogel ez al. (1999) and Fernandez
et al. (2000) derived an overall OF which combines the performance as-
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sessment of each local model, based on the abcd model structure (see for
example Alley, 1984), with the performance of the regional model struc-
ture in relating catchment characteristics and local model parameters.
“Instead of choosing parameters which minimize the model residuals
alone, our goal is to both minimize the model residuals and maximize the
goodness-of-fit relations between model parameters and basin character-
istics, concurrently” (Vogel et al., 1999). The overall OF to be maxi-
mized can be written as follows,

n 4
maximize lz R,.2 +iz Rjz. (5.15)
nm y 2=

where n is the number of catchments and R? the coefficient of determi-
nation (see Eq. 5.26) for each local model, while p is the number of pa-
rameters and R]g is the coefficient of determination associated with the
regression model explaining each parameter individually. This approach
attempts to select those local parameter combinations that have a good fit
with respect to the regional model. The result of this study is that ex-
tremely good regional relationships can be derived with this method,
while local model performances in the gauged catchments are generally
only slightly inferior to the traditionally derived ones. However, the per-
formance of the local models in the ungauged catchments, with parame-
ters derived from the traditional and the improved regional models, were
similar; no improvement in the regionalized model was found.

A somewhat similar approach was suggested by Funke ez al. (1999)
for a distributed model structure that contains six conceptual parameters.
Parameter sets were found using a global optimization algorithm based
on an NSE OF (Table 3.1). The optimum parameter sets with respect to
streamflow showed no significant correlation with the characteristics of
seven catchments. Sensitivity analysis revealed that considerable varia-
tion in the parameters is possible with only marginal loss of performance.
The authors subsequently related two conceptual parameters to physical
catchment characteristics based on physical reasoning, leaving four pa-
rameters to be estimated. The remaining parameters then showed a
higher correlation to catchment characteristics when the optimization
was repeated. However, in an additional iteration, a new parameter set
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was only accepted if the identified basic regional relationship for the pa-
rameters was not violated. This improved the regression fit further.

The problem with these two approaches can be that, instead of find-
ing the most appropriate value for a particular parameter in a catchment,
one uses its insensitivity with respect to a certain OF to derive a regional
relationship which might be logical, but is not actively supported by the
data.

5.3.4.2 Sequential procedure

Another approach to overcome the problem of lack of identifiability of
local model parameters and to relax the assumption of independence of
the local parameters in the regional models is a sequential regionalization
procedure suggested by Lamb et al. (2000; Lamb and Calver, 2002). This
procedure starts in the traditional way by calibrating the local model
structure to each of the gauged catchments. The parameter with the larg-
est impact on model performance (averaged over all catchments) is then
selected and a regional model derived. This parameter is subsequently set
at the value derived from the regional model for each of the gauged
catchments, while the local calibration (URS) for all catchments is re-
peated and the regional model for the next parameter is derived. This
way, the remaining parameters tend to become more identifiable and the
problem of selecting the optimum local value for the regional analysis is
reduced. The procedure results in a much-improved performance of the
regionalized model in terms of flood frequency estimation compared to
conventional univariate regression. ‘

5.3.4.3 Updating procedure

Another possibility is available in cases where a gauging station has re-
cently been established in a catchment and only a short measurement
series is available. Thiemann et al. (2001) introduced a Bayesian updat-
ing approach that conditions a parameter distribution as new data pro-
gressively become available. Their methodology, termed Bayesian Re-
cursive Estimation (BARE), starts with an initial guess of the region
where good parameter values are located. New data are then used as they
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become available and a one-step-ahead prediction is made. One problem
with this approach is that the parameter sets are (at least initially) de-
pendent on the climatic regime of the period for which data is available.
This can only be avoided if longer time-series are used (e.g., Yapo et al.,
1996). The case study provided by Thiemann ez al. (2001) showed that
the estimates for each parameter ultimately collapsed onto a single point.
Such a point estimate suggests that no uncertainty in the estimated pa-
rameter value is left, a fact that might or might not be appropriate for the
modelling purpose at hand. Research on adjustments to avoid this effect
is currently underway. See the discussion between Beven and Young
(2003) and Gupta et al. (2003) on this issue.

5.3.4.4 Conclusions

The combined approaches suggested by some authors are difficult to jus-
tify in the absence of a theory to support the derived relationships. It
seems more appropriate to improve the identifiability of the local pa-
rameters using MOs, for example.

The approach by Lamb et al. (2000) seems to do this. The dimension-
ality of the calibration problem is stepwise reduced, which should make
the remaining parameters more identifiable. This assumption and the use-
fulness of the sequential procedure are tested in the application example.
The use of an updating technique for a recently gauged catchment is be-
yond the scope of this monograph and will not be investigated here.

5.3.5 Flow prediction — including uncertainty

The remaining step is to use regional models to estimate parameter val-
ues for an ungauged catchment and then run the local model with the
available meteorological forcing data (precipitation and temperature or
PE) to produce an estimate of the runoff hydrograph.

Chapter 4 provided a detailed account of the uncertainties involved in
local modelling. These are of course propagated into the results of any
regionalization and the uncertainties originating from the regional ap-
proach itself have to be added. Despite this, only a few studies have con-
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sidered the implications of uncertainty in the regionalization procedure;
examples are Yeh et al. (1997) and (to some extent) Seibert (1999b).

Yeh et al. (1997) regionalized the two parameters, N and K, of
Nash’s Instantaneous Unit Hydrograph (IUH) model for 42 catchments
in Taiwan (Tung et al., 1997). They considered the uncertainty related to
the two regionalized parameters and their influence on the predicted
TUH. The methods of uncertainty analysis tried by these authors are the
point estimation methods of Rosenblueth (1981), and Harr (1989).
Seibert (1999b) found that acceptable values of some of the parameters
for the HBV model structure are widely distributed over their feasible

.range with respect to the Nash-Sutcliffe efficiency measure. He therefore
replaced the best parameter values with the median values in each group,
which reduced the correlation between catchment characteristics and
some of the parameters. Seibert (1999b) also used a fuzzy criterion to
combine different OFs to reduce the range of feasible values. Both stud-
ies concluded that the uncertainty in any regional procedure is too large
to be ignored.

5.3.5.1 Monte Carlo

One approach in considering uncertainty is to use classical regression
estimates of the uncertainty in the regression (regional) parameters.
Standard analytical expressions are available if the assumption that the
regression residuals are normally distributed with constant variance
holds. Uncertainty in local parameters could additionally be included
using the weighted regression approach described above. A Monte Carlo
approach can then be used to sample from the (normal) regional parame-
ter distributions and produce (normal) local parameter distributions for
the ungauged catchment (assuming there are independent local parame-
ters and that normal distributions are suitable to provide initial esti-
mates). Local parameter values that are outside the feasible range can be
assigned an a priori support of zero. This Monte Carlo approach pro-
duces a flow range for the ungauged catchment instead of a single (point)
prediction for every flow value.
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The value predicted by the regression equation is the distribution
mean. Following Kottegoda and Rosso (1997, p. 362), the sum of
squared errors SS,. can be derived in matrix form,

SS,=6,"0,-0,"6, (5.16)

The error variance is the SS; divided by the degrees of freedom, i.e., the
number of gauged catchments (calibrated parameter values) used n mi-
nus the number of regression parameters, p, to be estimated,

r A
A2 _ eL 01, "QRCDTQL
o° =

n-p

Additionally, the 100( aCFL) confidence limits on the (estimated)

mean response (i, pcan be calculated as follows (Kottegoda and Rosso,
1997, p.381-383):

'u9L|¢ = P"CFI/Z‘/ ¢q) (1)) ¢ (5.18)

where @ is a matrix of catchment properties of the gauged catchments
used to derive the regional model, ¢ is a vector of catchment character-
istics for the new (ungauged) catchment, and ¢ is the ordinate of the stu-
dent t-distribution.

Lamb (Centre of Ecology and Hydrology, Wallingford, UK, personal
communication) and colleagues compared a standard regression uncer-
tainty approach (based on normal distributions) to a new bootstrap
method. They had very mixed results. However, the new approach poten-
tially allows more information about the local parameters to be included
in the analysis and is more general with respect to distributional assump-
tions.

(5.17)

5.3.5.2 Fuzzy regression

Fuzzy Regression (FR) is an alternative approach to standard statistical
approaches. It can be either linear (Savic and Pedrycz, 1991) or non-
linear (Bardossy et al., 1990). Ozelkan and Duckstein (2000) give a list
of cases where FR might be superior to statistical regression: (1) when
statistical regression analysis is not supported due to small sample size,
this is often the case in regionalization studies where the number of
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catchments is often limited (e.g., Magette et al., 1976 (16 catchments);
Servat and Dezetter, 1993 (20); Seibert, 1999b (11), Funke ez al., 1999
(7) etc.); (2) when assumptions about statistical distributions (usually
normal) cannot be justified; (3) when the aptness of the regression model
is poor; or (4) if human judgement is involved.

It is particularly useful when a small number of (possibly inaccurate)
data points precludes classical regression. There are, however, limita-
tions due to its potential sensitivity to data outliers (Ozelkan and Duck-
stein, 2000). Other problems are partly related to this; for example, not
all data points are always considered when the FR parameters are esti-
mated and prediction intervals become wider if more data-are collected.
However, regionalization studies are particularly likely to contain out-
liers as will be shown in the application example in this chapter. Ozelkan
and Duckstein (2000) describe a multi-objective approach to FR to re-
duce some of those problems.

The advantage of FR being suitable even for small sample sizes
seems appealing in the context of this research. However, a much larger
sample (more catchments) has to ultimately be available for a sensible
analysis. Considering also the high likelihood that outliers will be present
in the analysis, the standard regression approach seems more promising
and fuzzy regression is not investigated further.

5.3.5.3 Conclusions

The Monte Carlo approach using standard estimates of uncertainty
around the regional parameter estimates seems to be a suitable first step
in introducing estimates of uncertainty into regional flow predictions. It

will therefore be included in the regional framework suggested in Sec.
54.

5.3.6 Uniqueness of place

There can be little debate about the fact that flow processes in natural
catchments are very complex, and that the heterogeneity of soil and
vegetation and the presence of preferential flowpaths, e.g., macropores,
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create a particular uniqueness for every location. Beven (2000b) dis-
cusses this uniqueness and its effect on modelling practice or philosophy.

The problem of outliers, i.e., unexpected model/catchment behaviour,
is very important in the context of regionalization studies. The task is to
discover the reasons why catchments behave differently. Why does a
certain model structure (Beven, 2000b) after calibration underestimate
flow in one catchment, and overestimate it in another? The uniqueness of
catchments are revealed as model residuals in such cases. This problem
will be demonstrated in the application example in Sec. 5.5.

Seibert (1999b), for example, found a high negative linear correlation
between percentage forest and one of the recession coefficients of the
HBV model structure. However, the second largest coefficient and the
smallest one were derived for catchments of almost identical forest areas
(87% to 84.5%). This example illustrates the importance of analysing the
reliability and therefore the uncertainty related with the regression equa-
tions derived. Another (unaccounted for) catchment attribute seems to
influence the latter catchment, while having little effect on the remaining
ones.

Another example is the study by Funke et al. (1999). They adjust out-
liers, in this case parameter values found for one or two out of seven
catchments that do not fit the general correlation trend, to derive better
regression equations. The adjustment is done by recalibration of the out-
liers using reduced feasible parameter ranges. The new ranges are de-
rived from the results in the remaining catchments. This results in much
improved regional relationships with only limited loss of performance in
individual catchments. However, the result is basically an a priori as-
sumed relationship and any informative value initially attached to the
outliers is lost.

Weisberg (1980, p.114) suggests the following in case an outlier is
perfectly legitimate, e.g., not caused by measurement error or unsuccess-
ful model calibration and nothing exceptional has occurred: “However,
the model for Y for this combination of X-values does not conform to the
line or plane that describes (most of) the cases. This case may then be the
most important in a study, as it could represent new and unexpected in-
formation. The researcher may wish to study the condition of this point
separately. However, a linear model may still be appropriate for the rest
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of the data so that the analysis might often proceed by deleting this case.”
It seems therefore sensible to accept outliers and analyse them closely in
an attempt to explain them, but possibly exclude them from the deriva-
tion of a regional model. This requires accepting that the regional model
might sometimes fail to give a sensible local parameter estimate for a
particular catchment. It is a reasonable approach as long as it is unknown
why a particular (outlier) catchment behaves differently.

The example by Funke ez al. (1999) is closely related to the aspect of
catchment uniqueness which is also reflected in the model parameters.
Every catchment requires a different parameter set to simulate its re-
sponse. These parameters are effective values, integrating the influence
of preferential flow paths, for example, which is not easily measured in
the field. There is also the problem of parameter ambiguity, or model
equifinality (e.g., Beven, 2000b): it is often not possible to discriminate
between competing parameter sets for a particular case.

The uniqueness of catchments has been recognized in this section.
Outliers in regionalization studies are important indicators of this
uniqueness; their role in deriving regional models should therefore be
analysed carefuily.

5.4 A Framework for Regionalization

The regional framework proposed here can be divided into four stages:
catchment selection and analysis, local model selection and application,
regional model development and application, and prediction (Fig. 5.3).
The available catchments should be clustered in such a way that an
individual cluster is represented by a single model structure. This cluster-
ing could, for example, be based on variables that describe the sub-
surface features of the catchment if geology is a dominant feature for
those catchments selected. This variable could be the baseflow index. In
a UK setting, this has the additional advantage that an estimate of the
baseflow index for any ungauged catchment can be derived using the
HOST system — which is then called BFIHOST - as described earlier
(Boorman et al., 1995). Different local model structures may have to be
considered for different clusters. It has to then be ascertained whether the
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Fig. 5.3 Regional modelling framework.

catchment characteristics in each cluster are normally distributed (mainly
for the consideration of uncertainty at a later stage). If not, then a Box-
Cox transformation (Chapter 3) can be applied. The parameter A of this
transformation can either be guessed (the usual approach) or, in a more
objective approach, optimized using the fit of the variables to a straight
line in a normality plot.

At least one suitable local model structure(s) has to be identified for
each cluster in the next stage. This can be done using the local frame-
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work of corroboration and rejection introduced in Chapter 4. The se-
lected model structure(s) can then be calibrated to each catchment using
a Monte Carlo uniform random sampling approach. Again, the assump-
tion of normal distribution should be tested.

The next stage is the identification of a regional univariate regression
model. This includes calculating the empirical identifiability measure
(introduced in Chapter 4) for each local model parameter as an average
value over all catchments and using it as a regression weight to consider
local parameter uncertainty. One can transform the dependent (local pa-
rameters) and/or independent variables (catchment characteristics) to
consider differences in magnitude and non-linearity. This includes a con-
ventional estimate of regression parameter uncertainty. The sequential
approach (suggested by Lamb and Calver, 2000) applied in an objective
way using the identifiability measure is an option at this stage. Three to
five parameters can be identified using a single OF. There is therefore no
need to regionalize only one parameter in every iteration.

The last stage uses random samples of regression parameters from
normal distributions to calculate local parameter values, while giving a
support of zero to local parameter values which lie outside of their feasi-
ble range. Finally, random samples, based on normal distributions, are
drawn from those distributions to produce local parameter sets and apply
them to estimate a flow range in the ungauged catchment.

This framework, and some variations on it, will be examined in the
following application example in order to test its suitability.

5.5 Application Example

The purpose of this relatively small-scale application example is to test
some of the optional techniques discussed above and address some of the
issues raised. Successful techniques can then be included in the frame-
work suggested in Section 5.4 (Fig. 5.3). Additionally, some aspects,
such as parameter identifiability, can better be investigated in a pilot-
scale example.

The disadvantage of a small sample size, as shown here, is that the
resulting regional models might not be very robust. The aim of this study



200 Rainfall-Runoff Modelling

is therefore rather to test methodologies and various aspects that are im-
portant (but largely untested) for this type of statistical regionalization
study. The final regional models should only be seen as indicators.

The structure of the example mirrors the structure of the preceding
review section.

5.5.1 Data

Data for ten catchments located in the southeast of England are available
(Table 5.1). The catchments are predominantly rural and of varying ge-
ologies, consisting mainly of chalk, clay and greensand. They range from
impervious clay catchments, such as the Blackwater@Ower or the
Eden@Penshurst, over more evenly mixed catchments, e.g., Med-
way @Teston, the Teise @Stonebridge or the Upper Medway @Chafford
Weir, to the Test@Broadlands, a highly permeable chalk catchment.

Time-series of (naturalized) flow, precipitation, temperature and po-
tential evapotranspiration (PE) ranging over different periods (Fig. 5.4)
were utilized. All periods lie within the range of 01.01.1989 to
31.12.1996.

Flow duration curves show cumulative frequency of streamflow ver-
sus percentage of time this streamflow is exceeded, usually for daily
flows. Their shape is an indicator of the catchments’ response to rainfall
input. The steeper the flow duration curve, the more variable the re-
sponse (Dingman, 1994, p.14). “An initially steeply sloped curve results
from a very variable discharge, usually from small catchments with little
storage where the stream flow reflects directly the rainfall pattern. Flow
duration curves that have a very flat slope indicate little variation in flow
regime, the resultant of the damping effects of large storage.” (Shaw,
1994, p.295)

Responses of the different catchments can be compared by plotting
their flow duration curves into a single plot after dividing them by the
mean discharge of the river (Linsley ez al., 1949). The result is shown in
Fig. 5.5. The plot shows the flat curves of the baseflow-dominated rivers
such as the Test@Broadlands and the Medina@ShideWeir, while faster
responding catchments like Eden @Penshurst, Medway @Teston or East-
ern Rother@Udiam have much steeper curves. This response character-
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Table 5.1 General catchment characteristics.

River Location AREA! Queun”  Qus” Qi 61-90 Av.
An. Rain-
[km’] [m¥sec] [m¥sec] [m¥sec] fall> [mm]
Blackwater Ower 102.4 0.85 0.154 2.131 836
Eden Penshurst 224.8 1.76 0.232 3.853 742
East. Rother  Udiam 204.7 2.08 0.172 5.312 857
Medway Teston 1261.3  10.56 1.526 23.840 744
Teise Stone Bridge 134.5 1.31 0.202 2.553 810
Up. Medway  Chafford Weir 252.1 2.99 0.533 6.395 830
Eastern Yar Burnthouse 59.6 0.41 0.040 0.846
Medina Shide Weir® 28.5 0.28 0.082 0.502 839
West. Rother  Hardham 360.7 4.96 1.694 9.829 899
Test Broadlands 10359 10.93 5.780 16.560 790

' Data from FEH, 1999, CD.

? Data from http://www.nwl.ac.uk/ih/nrfa.

3 This station was a flume structure at SZ 503 874. It was superseded in 1997 by an ultra-
sonic gauging station at Upper Shide (SZ 5036 8810). The data used in this study were
measured at the old station.
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Fig. 5.4 Periods covered by the time-series available for the different catchments.
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flow duration curves (graphs normalised by dividing by mean discharge)
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Fig. 5.5 Comparison of flow duration curves for the south-east England data set.

istic is also reflected in the baseflow index (BFIHOST, Tables 5.2 and
5.6).

Apart from being defined by the storage characteristics of the catch-
ment, the shape of the flow duration curve is also influenced by topogra-

phy, vegetal cover, land use and precipitation (Linsley et al., 1949,
p-585).

5.5.2 Catchment characteristics

All catchment characteristics are taken from the data CD that accompa-
nies the Flood Estimation Handbook (FEH). These characteristics are
suggested to be particularly suitable to describe a catchment’s hydrologi-
cal behaviour. The FEH catchment characteristics belong to the follow-
ing four groups:
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e Landform descriptors (AREA, LDP, DPLBAR, DPSBAR,
ALTBAR, ASPBAR, ASPVAR)
e Index for attenuation effects attributable to reservoirs and lakes
(FARL)
e Climate and soil descriptors (SAAR, RMED, SPRHOST, BFI-
HOST, SMDBAR, PROPWET)
e Urban and suburban land-cover descriptors (URBEXT 990, UR-
BLOC, URBCONC)
Table 5.2 explains the abbreviations used for the catchment characteris-
tics. The variables for the catchments considered here are listed in Table
5.3 and statistical properties are summarized in Table 5.4.

Some of these catchment characteristics are highly correlated, e.g.,
Baseflow index (BFTIHOST) and standard percentage runoff (SPRHOST)
are both measures of a catchment’s runoff response to rainfall input. It is
therefore necessary to analyse this correlation and reduce the number of

Table 5.2 Description of catchment characteristics (Bayliss, 1999).

Characteristic _ Unit Description

AREA km? Catchment drainage area

LDP km Longest drainage path

BFIHOST - Baseflow index derived using the HOST classification

SPRHOST % Standard percentage runoff derived using the HOST classifica-
tion

FARL - Index of flood attenuation due to reservoirs and lakes

PROPWET - Index of proportion of time that soils are wet

DPLBAR km Index describing catchment size and drainage path configura-
tion

DPSBAR mkm™'  Index of catchment steepness

ASPBAR - Index representing the dominant aspect of catchment slopes

ASPVAR - Index describing the invariability in aspect of catchment
slopes

RMED-1D mm Median annual maximum 1-day rainfall

RMED-2D mm Median annual maximum 2-day rainfall

RMED-1H mm Median annual maximum 1-hour rainfall

SAAR mm 1961-90 standard-period average annual rainfall

SAAR, 7 mm 1941-70 standard-period average annual rainfall

URBEXT,g9 - FEH index of fractional urban extent for 1990

URBCONC - Index of concentration of urban and suburban land cover

URBLOC - Index of location of urban and suburban land cover
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Table 5.3 Detailed catchment characteristics (Source: FEH CD).

River @ Loca- Blackwater @ Eden @ Pen- E Rother @ Medway @ Teise @ Stone
tion Ower shurst Udiam Teston Bridge
AREA 102.38 224.82 204.66 1261.33 134.46
LDP 18.48 3392 3093 65.99 23.68
BFIHOST 0.479 0.425 0.388 0.439 0.443
SPRHOST 342 41.2 444 413 42.6
FARL 0.985 0.925 0.975 0.949 0.905
PROPWET 0.33 0.35 0.35 0.35 0.36
DPLBAR 11.06 20.33 17 36.03 13.45
DPSBAR 444 47.2 92.6 53.6 78.3
ASPBAR 124 136 112 81 57
ASPVAR 0.17 0.11 0.11 0.05 0.1
RMED-1D 35.7 329 36.6 333 35
RMED-2D 46.3 44.1 48.8 443 479
RMED-1H 10.7 114 11.6 11.7 11.8
SAAR 837 742 857 744 812
SAARy 1 867 764 861 755 809
URBEXTge  0.009 0.016 0.008 0.019 0.005
URBCONC! 0.327 0.556 0.508 0.614 -
URBLOC!' 0.875 1.217 0.976 0.965 -

'These variables are not considered further, because their values for Teise @ Stonebridge
are not available.

Table 5.3 (cont.)
River @ Up Med@ East. Yar @ Medina @ W Rother @ Test @ Broad-
Location Chafford Weir Burnthouse  Shide Weir  Hardham  lands
AREA 252.05 59.58 28.54 360.71 1035.93
LDP 29.09 19.49 1141 56.19 69.89
BFIHOST  0.441 0.743 0.753 0.666 0.898
SPRHOST 424 243 23.6 27.4 9.4
FARL 0.938 0.992 0.985 0.973 0.964
PROPWET 0.35 0.33 0.33 0.34 0.34
DPLBAR 14.36 10.68 5.84 30.13 39.97
DPSBAR 82.4 84.6 78.5 729 50.1
ASPBAR 28 6 59 120 176
ASPVAR 0.06 0.06 0.1 0.1 0.15
RMED-ID 3438 33.9 35 394 333
RMED-2D 473 453 46 50.8 43.1
RMED-IH 117 94 9.5 10.4 10.6
SAAR 831 844 839 899 790
SAARy;5 852 910 911 918 818
URBEXT,gy, 0.02 0.017 0.015 0.008 0.01
URBCONC 0.601 0.44 0.342 0.497 0.56
URBLOC 1.231 0.895 0.847 1.16 0.841
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characteristics considered. An alternative approach is the derivation of
principal components (Gershenfeld, 1999, p.136-138). Principal compo-
nent analysis is the transformation of an existing data set into new uncor-
related variables using the covariance matrix of the original data. Sefton
and Howarth (1998) for example use this approach to derive new vari-
ables such as topography and soils/geology from the initial set of catch-
ment characteristics. However, the newly derived variables reduce the
ease with which regional relationships can be interpreted. This approach
is therefore not considered here. However, the correlation analysis and
subsequent reduction of variables has to be treated with caution due to
the small number of catchments available.

Highly (linearly) correlated catchment characteristics (i.e., with
correlation coefficient above 0.7) have been highlighted in Table 5.5.
They are also listed below and a representative variable for each group of
correlated characteristics is selected. Underlined variables have
correlation coefficients equal to or above 0.9. Brackets indicate a
negative coefficient:

e AREA LDP DPLBAR

e BFIHOST (SPRHOST) (RMED-1H)

e FARL (PROPWET) (RMED-1H) SAARy7
e ASPBAR ASPVAR

e RMED-1D RMED-2D SAAR

RMED-1H (BFIHOST)  SPRHOST (FARL)
PROPWET (SAAR4170)

o SAAR RMED-1D RMED-2D SAAR4i70
Consequently:

e DPLBAR is an index that combines catchment size and drainage
path configuration. AREA and LDP can therefore be dropped.

e BFIHOST and SPRHOST are highly correlated, therefore only
BFIHOST is considered for regional modelling. However, both
are kept for clustering purposes.

e A strong correlation between RMED-1D and RMED-2D means
that only the latter is considered further.

e ASPBAR and ASPVAR describe different physical aspects of
the catchment and are therefore both retained even if they are
statistically correlated.
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Table 5.4 Univariate statistical properties of catchment characteristics.
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Characteristic  Mean Median Standard Minimum  Maximum
deviation
AREA 366.5 214.7 426.9 28.5 1261.3
LDP 359 30.0 20.7 114 65.89
BFIHOST 0.568 0.461 0.180 0.388 0.898
SPRHOST 33.08 377 11.5487 9.40 44.40
FARL 0.959 0.969 0.029 0.905 0.992
PROPWET 0.343 0.345 0.011 0.33 0.36
DPLBAR 19.89 15.68 11.59 5.84 39.97
DPSBAR 68.46 75.60 17.78 44.40 92.60
ASPBAR 89.90 96.50 52.79 6.00 176.00
ASPVAR 0.101 0.100 0.038 0.05 0.17
RMED-1D 34.99 34,90 1.94 32.90 39.40
RMED-2D 46.39 46.15 2.36 43.10 50.80
RMED-1H 10.88 11.05 0.91 9.40 11.80
SAAR 819.5 834.0 49.19 742 899
SAAR;70 846.5 856.5 59.03 755 918
URBEXTqog 0.0127 0.0125 0.0053 0.005 0.02
Table 5.5 Correlation matrix for catchment characteristics.
AREA LPD BFI- SPR- FARL PROP- DPLBARDPSBAR
HOST HOST WET
AREA
LPD
BFIHOST
SPRHOST
FARL
PROPWET
DPLBAR
DPSBAR . . .
ASPBAR 0.40 0.55 0.12 -0.27 0.01 0.02 0.06 -0.64
ASPVAR -0.11 -0.02 0.19 -0.34  0.19 -0.28 0.04 -0.49
RMED-1D -0.33 -0.04 -004 005 0.30 -0.11 -0.08 0.39
RMED-2D 046  -0.20 -027 033 0.05 0.16 -0.25 0.60
RMED-1H 0.29 0.27 079 075 076 & o -0.11
SAAR -0.54 -0.31 0.22 -0.18  0.54 -0.38 -0.35 0.61
SAAR419 -0.58 043 0.46 -040 072 -0.67 046  0.55
URBEXT;q [0.20 0.00 -0.03 0.09 0.03 -0.12 -0.03 -0.05
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e SAAR and SAARy are highly correlated. Only SAAR is kept
because all time-series used a start in 1989 or later.

e PROPWET and RMED-1H produce a correlation coefficient of
0.9. Only PROPWET will be kept, since RMED-1H also shows
relatively high correlations with some other characteristics.
PROPWET is also highly correlated with FARL, which is also
consequently dropped.

The catchment characteristics subsequently used for regional analysis

are therefore:

e Landform: DPLBAR, DPSBAR, ASPBAR, ASPVAR.

e Climate and soil: BFIHOST, PROPWET, SAAR, RMED-2D.

e Urban and suburban: URBEXT) .

A more detailed explanation of the selected variables follows.

Landform

Four landform descriptors are kept. They are derived from the Institute of
Hydrology Digital Terrain Model (IHDTM), a regular nodal grid of 50m
x S0m elements (Bayliss, 1999, p.1). These are DPLBAR - the mean of

Table 5.5 (cont.)

ASPBAR ASPVARRMED - RMED - RMED - SAAR  SAAR URBE
1D 2D 1H 4170 XT 1990

AREA
LPD
BFIHOST
SPRHOST
FARL
PROPWET
DPLBAR
DPSBAR
ASPBAR
ASPVAR
RMED-1D
RMED-2D
RMED-1H
SAAR i i -0.42
SAAR 70 -0.31 0.06 0.64 0.54 073
URBEXTyge [|-045 065 -054 -048 -0.08

0.10

-042  -0.18
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the distances between each node on a 50m grid and the catchment outlet
in km (a measure of catchment size and configuration), DPSBAR - the
mean of all inter-nodal slopes for the catchment in mkm™ (a measure of
overall steepness), ASPBAR — the mean direction of all inter-nodal
slopes in the catchment in degrees with north being zero and values in-
creasing clockwise up to 360° (a measure of the dominant aspect of-
catchment slopes), and ASPVAR - a measure of the invariability of
slope directions, of which a value close to zero indicates considerable
variability, while a value close to one indicates that the slopes show a
tendency to face a similar direction.

Climate and soil

Four climate and soil variables are considered: two are related to soil and
two to rainfall characteristics. They are BFIHOST - the baseflow index
derived using the HOST classification (Boorman et al., 1995); PROP-
WET - the proportion of time that the (simulated) soil moisture deficit
(SMD) was below or equal to 6mm during 1961-1990 (soils are at field
capacity if SMD = 0, however the threshold value was introduced to ac-
count for the theoretical nature of the SMD value; Bayliss, 1999, p. 33—
34); SAAR - the standard period (1961-1990) average annual rainfall in
mm supplied by the Meteorological Office on a 1 km grid; and RMED-
2D - the median annual maximum 2-day rainfall in mm, again for a 1 km
grid (Bayliss, 1999, p.27).

Urban and suburban

Only one variable describing the level of urbanization in each catchment
is used, URBEXTq9 — the extent of urban and suburban land cover in
1990. However, all selected catchments available are essentially rural
based on the categories of catchment urbanization given in Bayliss
(1999, p.47). The maximum URBEXT g4, value is only 0.02 as shown in
Table 5.4.

5.5.3 Local model

The local model structures tested are a probability distribution of stores
(pd4), a catchment wetness index (cwi) and a catchment moisture deficit
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(cmd) model structure, all combined with a parallel routing component
consisting of two linear stores (2pll). Details of the model components
are given in Chapter 3. The initial conditions (model moisture states) are
calibrated with some initial parameter estimates before the aciual model
parameters are estimated. The Teise @Stonebridge is excluded from the
regional analysis to be used later as a test catchment.

Local modelling approach

A uniform random sampling procedure was used to derive 10000 pa-
rameter sets for each catchment. The OF applied is the RMSE measure
(Table 3.1, p.81), unless stated otherwise.

Initial local model structure

The first structure that has been applied to all catchments is pd4-2pll.
The structure consists of a probability distribution of soil moisture stores
producing effective rainfall (ER) purely through an overflow mechanism.
The actual evapotranspiration is a linear function of the average soil
moisture content. The ER is divided by a constant split parameter into a
quick and a slow component, and each component is routed through a
linear reservoir. This structure contains five parameters: the maximum
storage capacity cmax, the shape of the Pareto distribution of soil mois-

Table 5.6 RMSE calibration results for local model structure, pd4-2pll. Catchments are
sorted according to BFIHOST values.

No. Catchment RMSE BFIHOST
c01 EasternRother @ Udiam 0.91 0.388
c02 Eden @ Penshurst 0.70 0.425
c03 Medway @ Teston 0.57 0.439
c04 UpperMedway @ ChaffordWeir 0.84 0.441
c05 Teise @ Stonebridge 0.66 0.443
c06 Biackwater @ Ower 0.73 0.479
c07 WesternRother @ Hardham 0.52 0.666
c08 EasternYar @ Burnthouse 0.61 0.743
c09 Medina @ Shide Weir 0.79 0.753
cl0 Test @ Broadlands 0.19 0.898

'Fit improves largely with unreasonable parameter values in this chalk catchment.
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ture capacities b, the split parameter alpha (i.e., percentage quick contri-
bution), and the two residence times, k(quick) and k(slow).

The resulting RMSE (Table 3.1, p.81) values for this model structure
being calibrated to all ten catchments are shown in Table 5.6. However,
the best model (according to RMSE) for the Blackwater@Ower gives an
unsatisfactory result in the way that it largely overpredicts the low flow
periods in order to fit the high flows correctly (and thus yields a poor
volumetric fit). There seems to be a problem with the data, resulting, for
example, in unreasonable values for the parameter describing the split
between quick and slow catchment responses. This catchment is there-
fore excluded from further analysis.

Alternative local model structures and models

Catchment c10, the Test@Broadlands, is a chalk catchment. The calibra-
tion result seems reasonable, with an NSE value of 0.78. However, a dif-
ferent model structure is more appropriate for this type of baseflow-
dominated catchment, which also stands out as a separate cluster due to
its high BFIHOST value. This structure is a combination of the Penman
SMA module and the leaky routing component (see Chapter 3).

The leaky component differs from the one described in Chapter 3 in
the sense that the lower threshold was set to zero. The original module
was initially applied to the Lavant by Drane (2000). The Lavant is a
chalk river located in south-central England. It is ephemeral, with flow
ceasing for about five months a year and a very low runoff yield (12% of
rainfall) (Drane, 2000). The lower threshold in the leaky routing module
was necessary to simulate periods of zero flows, i.e., all runoff contrib-
utes to the catchment losses. The Test@Broadlands showed no ephem-
eral behaviour and the threshold was therefore not required.

On the basis that it represents a different catchment type, catchment
¢10 was not included in any subsequent regional analysis. A further divi-
sion into clusters is not undertaken here due to the small number of
catchments available.

As mentioned earlier, research results (Kokkonen and Jakeman,
2001) suggest that identical components (and therefore parameters) used
within different model structures can have different optimum parameters
This is tested here by applying a metric model structure (cwi-2pll) and an



Modelling Ungauged Catchments — Regional Procedures 211

10 T T T T T T T T
15r h
k"3
o
3 5p e
o
X
25¢ 1
0
400
300 r
H
w 200 E
= A}
100 - 1
[P SORY . )
% P G s
c0 c02 <03 c04 c05 c06 €07 c08 c09
1
0.75F 1
2
& os} 4
o
0.25F b
0 N M M " 1 N

co1 <02 <03 c04 c05 c06 <07 co8 <09
catchment

Fig. 5.6 Comparison of k(quick) [d], k(slow) [d] and alpha [-] values for the pd4-2pll,
cwi-2pll and cmd-2pll model structures. Values shown are optimal with respect to the
RMSE criterion.

additional parametric one (cmd-2pll), and comparing the resulting rout-
ing parameters.

The metric and the second parametric model structures are applied to
all catchments using the same URS approach (10,000 samples) as before,
and the best k(quick), k(slow) and alpha parameters for all structures are
selected based on the RMSE criterion. The variation in optimum values
is shown in Fig. 5.6.

One can see that with respect to the parameter k(quick), all model
structures show a relatively high degree of similarity in optimum values.
However, there seems to be a tendency for cwi to produce higher values.
There are only two catchments, c06 and c09, where pd4 or cmd produce
significantly higher values. Generally this parameter seems to show little
dependency on the SMA module, however. This parameter is usually
well identified. ’

The result for k(slow) is basically a confirmation that it is impossible
to identify this parameter using the overall RMSE as OF. The optimum
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FL

Fig. 5.7 Scatter plot showing a model population based on 10000 samples from uniform
parameter distributions projected into a 2-dimensional OF space. The two OFs are the
RMSE utilizing the residuals at time steps during which the observed flow is respectively
above (FH) or below (FL) the mean flow.

o B i '] — N — A A i
c01 c02 c03 c04 c05 c06 c07 c08 c09
catchment

Fig. 5.8 Variation in optimum parameter values for two different OFs representing two
different modelling purposes. The two OFs are the RMSE utilizing the residuals at time
steps during which the observed flow is above (FH) or below (FL) the mean flow respec-
tively. The model structure applied is pd4-2pll.
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values vary widely and there is little structure (see also Fig. 5.11 and
5.12). The result is not sufficiently reliable to draw any conclusions.

The alpha values for the cwi module are consistently the lowest for
all catchments, i.e., a smaller alpha means a smaller contribution to
quickflow and therefore a larger baseflow component. Alpha values for
cwi also show an even more pronounced trend to decrease with increas-
ing BFIHOST than the values for the other two SMA modules. This con-
firms the result of the study by Kokkonen and Jakeman (2001) with re-
spect to this parameter. Figures 5.11 and 5.12 show that alpha is gener-
ally quite identifiable, which supports the validity of the result.

The probability distributed model structure (pd4-2pli) is selected for
all subsequent analyses given its relatively good performance and parsi-
monious mode] structure; only two SMA parameters are required to be
estimated. Before instigating regional modelling, we first investigate the
effect of the choice of OF. Two very different OFs are applied to test the
dependency of the local, and therefore possibly also the regional, model
on the modelling purpose. Both OFs are based on the RMSE. The first,
FH, assumes that the high flows are of particular importance, e.g., for
flood frequency analysis (Lamb, 2000), while the second, FL, aims at
optimising the reproduction of the catchment’s low flow behaviour, e.g.,
for water resource purposes (Young, 2002). The OFs differ in that FH is
the RMSE using only the residuals at time-steps when the observed flow
is above a certain threshold, while FL only uses those below. The thresh-
old chosen is the mean observed flow in this case. Figure 5.7 shows, for
one example catchment, a pronounced trade-off between those criteria
for the model structure applied here. _

The best parameter sets (based on a URS with 10,000 points) for the
two OFs for all catchments are shown in Fig. 5.8. One can see a consid-
erable variation in values for almost all parameters in most of the catch-
ments. It is therefore likely that the chosen modelling objective will have
considerable influence on any regional analysis, i.e., the derived regional
model.
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5.5.4 Regional model

Some of the possible regional model structures outlined earlier and se-
lected in Section 5.4 are investigated here. The benchmark is a multiple
univariate regression (here called conventional regression), which is the
standard approach in regionalization studies as mentioned earlier.

The starting point is an analysis of the statistical characteristics of the
variables involved and their correlation. This can already give some indi-
cation about what type of functional (regional) relationship might be ap-
propriate. Caution is necessary in the case of this example, due to the
small number of catchments available.

5.5.4.1 Variable properties and correlation analysis

The analysis of individual variables (calibrated model parameters and
catchment characteristics) is a test of assumptions made during the re-
gression analysis, mainly normality. The condition of normality is impor-
tant if inference about the statistical properties of the estimated regres-
sion, e.g., confidence limits, is to be made at a later stage. If all variables
in a regression are normally distributed, the resulting error distribution
will likely also be. Normality plots are usually used to test this aspect.

Such a plot is shown, for all the catchment characteristics available,
at least for the limited sample size represented here, in Fig. 5.9. One can
see that all variables can be considered normal. The variable AREA
might need a transformation due to two outliers, but is not used in any
regional analysis in this section. Similar normality plots are used to ana-
lyse all parameter distributions in this example, but for reasons of space
they are not shown here.

The correlation between variables is most easily tested by calculating
a linear correlation coefficient, in the original and in log-transformed
space (Table 5.7 and 5.8). A rank correlation coefficient can additionally
be used to test for non-linear relationships (e.g., Tung er al., 1997,
Seibert, 1999b). Correlation coefficients and rank correlation coefficients
cannot be compared directly in quantitative terms. However, cases where
the rank correlation coefficient is significantly larger than the linear cor-
relation coefficient can be indicative of a non-linear dependence. A non-
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parametric test, i.e., one that does not assume a particular functional
form, is Spearman’s rank correlation coefficient (e.g., Kottegoda and
Rosso, 1998, p.280-282). In this test, two sets of variables, e.g., x; and y;
(i = 1,2,...,n), are ranked separately such that the highest value of each
variable is assigned a rank of 1 and the lowest a rank of n. The rank coef-
ficient can then be estimated using

6Zn: rd}
_ =l

=1 ninz—li

(5.22)
where rd; is the difference in ranks between x; and y;.

In this context, it is also necessary to look at the correlation between
the model parameters themselves. Sefton and Howarth (1998) for exam-
ple found that the proportion of rainfall contributing to catchment storage
and the time constant of catchment wetness decline were highly corre-
lated (with a linear correlation coefficient of 0.92) and therefore used a
linear regression relationship to derive one from the other. Tung et al.
(1997) found a high correlation between the two Nash Instantaneous Unit
Hydrograph (IUH) parameters N and K, which they later considered
when deriving regional equations.

Table 5.7 Correlation coefficients for local pd4-2pll model parameters on normal and on
log-transformed scale.
(a) Correlation coefficients for local parameters on original scale.

cmax b k(quick) k(slow)
b -0.0080
k(quick) 0.1939 -0.7817
k(slow) 0.0400 -0.1770 -0.2279
alpha -0.6943 -0.5725 0.4557 -0.0594

(b) Correlation coefficients for local parameters on log-transformed scale.

cmax b k(quick) k(slow)
b 0.1560
k(quick) 0.1688 -0.8216
k(slow) -0.1540 -0.1557 -0.1900

alpha -0.6211 -0.6492 0.5837 -0.0465
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Fig. 5.9 Normality probability plots of available catchment characteristics. Only AREA

appears to be possibly not normally distributed. A log-
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In case of the pd4-2pll, a few correlation coefficients suggest some
degree of correlation between the local parameters (Table 5.7). The larg-
est is between b and k(quick) (-0.82 on log and -0.78 on normal scale).
Also, alpha is related to b (and therefore k(quick)) and cmax with corre-
lation coefficients between -0.57 and -0.69. The number of points on
which these correlation coefficients are based is rather small and there-
fore these relationships are probably not very robust. However, one can
see that this analysis should be part of any regionalisation procedure.

The correlation analysis between model parameters and catchment char-
acteristics (Table 5.8) shows encouraging results for three parameters,
but no correlations at the 5% level for cmax and for k(slow). These re-
sults have to be interpreted carefully due to the small sample size of eight
catchments, since the Test@Broadlands could not be described by pd4-
2pll and Teise@Stonebridge is kept apart for testing. Additionally, the
problem of estimating k(slow) using the RMSE was already mentioned.

The only correlation above 0.5 found for parameter cmax is with
URBEXT g9 (Table 5.8). Again, this relationship might be of little im-
portance since all catchments are essentially rural. A combination of sev-
eral variables might therefore be required to explain this parameter in a
regression model. The parameter could also be fixed to the median value
of all calibration results as suggested by Seibert (1999b). A low correla-
tion for this parameter could have been expected since no soil properties
in the form of field capacity, porosity or wilting point were available.
These are more likely to be related to cmax than the variables used here.

A similar lack of correlation for the water balance characteristics of
the ITHACRES model structure was reported by Sefton and Howarth
(1998). Lamb et al. (2000) needed four catchment characteristics in a
regression equation — topographic index, drainage path slope, SAARg; .90,
and urban area — to yield a coefficient of determination of 0.7 for cmax
(using an hourly time-step for flood peak estimation).

A slightly better result is found for the shape parameter b. Three vari-
ables yield correlation coefficients above 0.5 on the original scale and
one is even above 0.6 on log-transformed scale. These are the baseflow
index BFIHOST (original: 0.56, log: 0.58), the index for catchment size
and drainage path configuration DPLBAR (o.: -0.58, 1.: -0.66), and an
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index describing how often the soils are wet PROPWET (o.: -0.60, 1.: -
0.59). However, only the correlation to DPLBAR (on log-scale) is sig-
nificant at the 5% level. The variable PROPWET is unlikely to be very
useful in a regression since it only takes four different values (0.33, 0.34,
0.35 and 0.36) despite the large variation between the catchments.

Table 5.8 Correlation coefficients for all variables involved. Three catchments are ex-
cluded from this calculation: (1) Teise@ Stonebridge, because it is kept as a test catch-
ment; (2) Test@Broadlands, due to the differences in BFIHOST (see text); and (3)
Blackwater@Ower, because no satisfactory calibration could be established judged by
the visual fit. (The best parameter values are normally distributed, but show some out-
liers. Normality plot not shown.)

(a) Correlation coefficients for variables on original scale.

Characteristic cmax b k(quick) k(slow) alpha
BFIHOST 0.4290 0.5595 585 0.3485 w
DPLBAR -0.0415 -0.5807 .1401 0.3370

DPSBAR -0.3597 0.2267 -0.0291
PROPWET -0.3446 -0.5945 0.7407 4618

SAAR -0.1624 0.1765 -0.5874 0.0086 -0.3115
URBEXT 90 0.5689 0.1508 0.1317 0.0159 -0.1781
ASPBAR -0.4091 -0.3404 0.5389 -0.3785 0.4356

ASPVAR -0.4319 0.0905 -0.0504 -0.2857 0.1255

RMED-2D -0.3460 -0.0887 -0.2067 -0.3074 0.0214

*Significant at the 5% level.
**Significant at the 1% level.

(b) Correlation coefficients for variables on log-log-transformed scale.

Characteristic cmax b k(quick) k(slow) alpha
BFIHOST 0.4688 0.5806 -0.6381 0.2815 !@“
DPLBAR -0.0337 -0.6615~ 0.0896 0.5475

DPSBAR -0.3813 0.4472 0.1016 -0.1751
PROPWET -0.3376 -0.5934 . 0.4227

SAAR -0.2029 0.3363 -0.5600 -0.0425 -0.3792
URBEXT g9 0.5912 0.2580 0.1137 -0.0961 -0.0971
ASPBAR -0.4323 -0.3377 0.3830 -0.4016 0.4243
ASPVAR -0.4074 -0.2182 -0.1181 -0.1657 0.0059
RMED-2D -0.3655 0.0490 -0.1755 -0.3073 -0.0197

*Significant at the 5% level.
**Significant at the 1% level.
“This value is just outside the 5% significance level.
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(c) Spearman rank correlation coefficients for variables.
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Characteristic cmax b k(quick) k(slow) alpha
BFIHOST 0.2143 -0.0357 m_
DPLBAR -0.0714 0.6429
DPSBAR -0.2143 -0.0357
PROPWET -0.3661 . .
SAAR -0.2857 0.0357 -0.5000 0.1786 -0.2143
URBEXT gq9 04911 0.4196 0.1875 -0.1339 0.0089
ASPBAR -0.2143 0.6786 -0.2857 0.4643
ASPVAR -0.2054 -0.5446 0.0625 -0.0268 0.2054
RMED-2D -0.4286 0.1071 -0.3571 -0.2500 -0.0714
log-transformed space log-transformed space
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Fig. 5.10 Scatter plots for some of the correlations used for the conventional regression
analysis plotted on log-log scale.
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A value of zero for b is equal to a constant storage capacity over the
catchment, while a value of 1 yields a uniform distribution of storage
capacities. The results suggest higher b values for catchments with a lar-
ger contribution of baseflow, smaller catchment area and drier soils.
However, all correlations are rather low, so a detailed investigation of
this result is not useful at this stage.

The shape of the storage distribution function b is the only parameter
for which the Spearman rank correlation coefficient gives considerably
higher values than the linear correlation coefficients on normal or log-
transformed scale (Table 5.8(c)). The highest rank correlation values are
found with the variables ASPBAR (-0.82), BFIHOST (0.79) and
PROPWET (-0.78). There is also a relatively high value with DPLBAR
(-0.64). The fact that the (non-parametric) rank correlations are higher
than those assuming a linear relationship is indicative of a possible non-
linear relationship. The variable ASPBAR describes the mean aspect of
the catchment. It is calculated as an average from the outflow direction
(bearing) of each nodal point on the IHDTM within a catchment. It is
therefore an indicator of the dominant aspect of catchment slopes. Its
values increase clockwise from zero to 360°, starting from the north. A
negative rank correlation suggests that a south-easterly bearing is related
to a lower b value.

The parameter k(quick) is correlated with a number of characteristics
(Fig. 5.10), BFIHOST (o.: -0.66, 1.: -0.64), DPLBAR (o0.: 0.72, 1.: 0.85),
the mean drainage path slope index DPSBAR (o.: -0.74, 1.: -0.71),
PROPWET (o.: 0.74, 1.: 0.75) and average annual rainfall over a selected
period SAAR (o.: -0.59, 1.: -0.56). The largest correlation is found with
DPLBAR (on log-scale). The variable DPLBAR is the mean drainage
path distance of all nodes of the IHDTM to the catchment outlet. The
result suggests that larger and more elongated catchments drain more
slowly. On the contrary, steeper catchments produce smaller residence
timnes, the mean drainage path slope (DPSBAR) is higher. The correla-
tion with PROPWET is probably of little explanatory value. As noted
above, the values of the catchments used vary between (.33 and 0.36, the
UK wide variation is between 0.20 and 0.85. The catchments tested are
therefore very similar and further analysis is required.
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Sefton and Howarth (1998) related the quick response residence time
(within the IHACRES model structure!) to catchment size and stream-
frequency, but found no improvement when including channel slope. In
the study by Lamb et al. (2000), this parameter showed the highest corre-
lation of the four PDM parameters tested (the fast/slow split was fixed).
They derived it from BFIHOST, stream network centroid, MORECS re-
sidual soil moisture and suburban area.

The slow flow residence time k(slow) does not show any significant
(5% level) correlation with any of the available catchment characteris-
tics. This is not unexpected since this is the least identifiable parameter.
The problem of identifying this parameter (and other parameters related
to the low flow periods for that matter) using an OF based on the com-
plete hydrograph is one of the main reasons why segmentation schemes
were introduced (e.g., Dunne, 1999; Boyle et al., 2000; Wagener et al.,
2001; see also Chapter 4). It seems quite unlikely that a parameter such
as the slow flow residence time can be regionalized based on a calibra-
tion using an OF that emphasises the fit to high flow, such as the RMSE.

Similar results have been reported by other researchers. Lamb et al.
(2000) derive a regional equation to estimate this parameter from BFI-
HOST, soil porosity and underlying geology. However, the coefficient of
determination produced by this model is 0.6 and thus the lowest of their
four regionalized model parameters. Their result is similar to the one by
Sefton and Howarth (1998) who relate a slow flow residence time to dif-
ferent soil variables. The correlation coefficient between regionalized
and locally calibrated values is only 0.37, however.

The fraction of effective rainfall that contributes to the quick re-
sponse, alpha, is highly correlated to two catchment characteristics, the
baseflow index BFIHOST and PROPWET. The first correlation (on
original scale) is negative (o.: -0.91; 1.: -0.96), while the second one is
positive (o.: 0.84; 1.: 0.89). Both are significant at the 1% level. The first
correlation is obvious, while the second indicates that a wet catchment,
probably containing more saturated and therefore contributing areas,
produces a high percentage of quick response. Both correlations seem
sensible which makes the result reassuring. Strangely, wetter catchments
(higher PROPWET values) also produce higher quickflow residence
times. However, concerns regarding PROPWET are outlined above.
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Sefton and Howarth (1998) found the contribution to slow response
(1-alpha) was highly correlated to the percentage aquifer in a catchment
(0.77), a variable not available here. This split parameter is sometimes
assumed to be directly equal to the standard percentage runoff
(SPRHOST) or BFIHOST, e.g., Lamb et al. (1999) and Young (2001).
SPRHOST is highly correlated to BFIHOST as shown earlier (-0.98).
The result found here therefore suggests that fixing this parameter a pri-
ori can be justifiable.

5.5.4.2 Effect of using FH and FL

Using the OFs, FH and FL, leads to some very interesting changes in
parameter—catchment characteristic correlation compared to using the
RMSE.

The maximum storage capacity, which formerly only showed insig-
nificant correlations, becomes correlated at the 5% level to BFIHOST for
FH (0.71), and to ASPVAR (invariability in slope aspect) for FL (-0.70),
both at original scale.

Parameter b is correlated at the 1% level to DPSBAR (o.: 0.84, 1.
0.88) and to SAAR (1.: 0.89) when using FH. The result therefore indi-
cates a larger variation in (model) storage capacities with greater drain-
age path slopes and higher rainfall. No significant correlation at the 5%
level is found for low flows, FL.

The result for the quickflow residence time k(quick) is probably the
most interesting. For FH, this parameter is highly correlated to catchment
size and drainage path configuration (o.: 0.84, significant at the 1%
level). However, for small runoff events during dry periods analysed us-
ing FL, k(quick) is highly correlated to the rainfall characteristics repre-
sented by SAAR (o0.: 0.96, 1.: 0.99) and RMED-2D (0.: 0.92, 1.:0.90).

The parameter k(slow) is also correlated to different variables de-
pending on the OF used. Applying FH, k(slow) is positively correlated to
URBEXT)g9 (0.: 0.87, 1.: 0.91), and negatively to the variability in as-
pect (ASPVAR, o.: -0.77, 1.: -0.75) and RMED-2D (o.: -0.74, 1.. -0.77).
However, the purpose of this parameter within the local model structure
is to fit the long recession periods, which will usually be below the mean
and therefore analysed by FL. The optimum k(slow) values with respect
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to FL show a high correlation to BFIHOST (o.: 0.80, 1.: 0.80) and
PROPWET (o.: -0.83, 1.: -0.79). This result (compared with the lack of
correlation when using RMSE) suggests that a regional model for this
parameter is probably better derived from the local model fit to low flow
periods.

The quickflow contribution alpha shows very similar correlations for
high and low flows with slightly higher correlation values for FH. This is
probably caused by the high identifiability of this parameter at the end of
high flow events (when there is a change between quickflow dominated
and baseflow dominated periods) as demonstrated using the dynamic
analysis in Chapter 4.

5.5.4.3 Regional structures and performance criteria

Different regional model structures are derived based on the results of

the correlation analysis and subsequently compared. All structures as-

sume independence between the dependent and independent variables.
The following functional forms were tested,

0, =0, + 650 + 0,0, +... (5.23)
where 6, is the dependent variable (local model parameter) and ¢, are

the independent variables (catchment characteristics). The regional pa-
rameters are represented by 8g; . The second form is

In(6, )= 0,y + B, In(d, )+ 6, In(g, ) + ... (5.24)
which, on exponentiation, results in
8, =e’oglngln . (5.25)

The values for ¢; cannot be zero in this case. The variable URBEXT is
therefore transformed to (1+URBEXT), in line with the procedure pro-
posed by Houghton-Carr (1999, p. 241).

The regional models based on multiple, weighted and sequential re-
gression are developed using a stepwise procedure where different com-
binations of independent variables were tested until the best model was
found. The statistics calculated to judge the performance of the different
regression models are the RMSE (Table 3.1), the coefficient of determi-
nation (R%); (the amount of variability explained by the regression
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model), the overall F statistic for the regression, and its probability p.
The coefficient of determination can be calculated as follows (Kottegoda
and Rosso, 1998, p. 371)

R2 — SSR
sS,,

(5.26)

“This is the ratio of the sum of squares due to regression (SSg) to the to-
tal sum of squares (SSyy)” (Kottegoda and Rosso, 1998, p.371). These
sums of squares can be derived using (Kottegoda & Rosso, 1998, p. 366)

n 2
5o
A T(DTQ i=1

SS, =6, - (5.27)

and

T ( i=1
SSyy =9L eL ——n~ (528)
where 8, is the vector of observations, » is the number of observations,
@ is a matrix of regressors and éR is a vector of (estimated) regression
parameters.

The coefficient of determination describes how much of the total data
variance can be described by the model (Legates and McCabe, 1999). It
can take values between 0 and 1, with 1 being optimum,

The R? statistic is listed in Table 5.10 together with the regional mod-
els derived. The remaining statistics are not shown.

5.5.4.4 Multiple univariate regression — benchmark

The most obvious regional model is the one for the parameter alpha (R
= 0.91), using BFIHOST as regressor (Table 5.10[a]). This is in accor-
dance with the result of the correlation analysis which showed an ex-
tremely high value for the relationship between alpha and BFTHOST.
Including PROPWET in the regional model leads to a regional parameter
not significantly different from zero.
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The second best regression model is the one for k(quick), which can
be predicted using DPLBAR. However, the performance (R? = 0.72) is
less than for alpha. The scatter plot in Fig. 5.10 (bottom right) suggests
that there is an outlier (the smallest k(quick) value from Medina@
ShideWeir) that might prevent a better correlation between the k(quick)
values and DPSBAR. According to the discussion held before, it might
be sensible to ignore this value during the analysis and accept that this
parameter might not be explainable for some catchments using the avail-
able information (i.e., catchment characteristics). The resulting regional
model, when ignoring the outlier, is

k(quick) =12.5824 - DPSBAR™***" (5.29)

which has a better R? (0.90) than the first equation (0.72) and also the
remaining statistics are better. However, this lack of robustness is proba-
bly again due to the small number of data points.

The parameter b can also be predicted using DPLBAR (and the full
set of catchment characteristics), but with a very low performance (R* =
0.44) and with one regional parameter not significantly different from
zero. Adding BFIHOST to the equation slightly improves the R? value,
but the remaining statistics degrade.

Three catchment characteristics are required to yield a useful model
for cmax, i.e., BFIHOST, DPSBAR and ASPBAR. The performance of
the regional model is reasonable, with an R” value of 0.67. However,
none of the regional parameters is significantly different from zero. Us-
ing the median of all locally calibrated values might be a more reliable
model in this case.

No regional model could be derived for the slow flow residence time
k(slow). The median value of all local k(slow) values is therefore used as
the regional model following Seibert (1999b).

5.5.4.5 Multiple weighted univariate regression — considering identifi-
ability

Figure 5.11 shows the maximum identifiability values (using the measure
introduced in Chapter 4) for the pd4-2pll parameters in all of the 10
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Table 5.9 Correlation coefficients for all variables involved. Local model parameters are
optimal with respect to the two OFs FH and FL. Three catchments are excluded from this
calculation: (1) Teise@Stonebridge, because it is kept as a test catchment; (2)
Test@Broadlands, due to the differences in BFIHOST; and (3) Blackwater@Ower, be-
cause no satisfactory calibration could be established. (The best parameter values are
normally distributed, but show individual outliers. Normality plots are not shown.)

(a) Correlation coefficients for variables on original scale using FH.

Characteristic cmax b k(quick) k(slow) alpha

BFIHOST 0 0.4587 -0.3720 0.0077

DPLBAR -0.0958 -0.4448 -0.0320 0.6997*
DPSBAR -0.3011 -0.2190 -0.3150 -0.5372
PROPWET -0.6178 -0.5246 0.4553 -0.0391

SAAR -0.0421 B o. 1688 -0.5490 -0.6856*
URBEXT 499 0.4675 -0.5602 0.0645 B 0 2369
ASPBAR -0.4263 -0.2797 0.0721

ASPVAR -0.3644 0.1824 -0.5643

RMED-2D -0.2981 0.5290 0.0881

(b) Correlation coefficients for variables on log-transformed scale using FH.

Characteristic cmax b k(quick) k(slow)
BFIHOST 0.5822 0.4824 -0.3659 0.0145
DPLBAR -0.0969 %—-0.0224
DPSBAR -0.3818 -0.1487 -0.3740
PROPWET -0.4457 -0.5536 0.4763 -0.0286
SAAR 01816 R -0.1203 -0.5862
URBEXT, 990 0.5580 -0.5691 0.0235 0.9106%*
ASPBAR -0.3465 -0.4044 0.0715 -0.6192
ASPVAR -0.3799 0.2766 -0.5780

RMED-2D -0.3581 0.6222 0.1427
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Table 5.9 (cont.)

(c) Correlation coefficients for variables on original scale using FL.

Characteristic cmax b k(quick) k(slow) alpha
BFIHOST -0.4734 0.5717 0.4539

DPLBAR 0.3771 -0.5449 -0.0818 -0.4877 0.3237
DPSBAR -0.3582 0.2320 0.6266 0.1819

PROPWET 0.4908 -0.6141 -0.3728

SAAR -0.5314 0.2413 0.9624%*

URBEXT 95 0.6405 -0.0946

ASPBAR -0.2577 -0.1355 0.0638 -0.4891 0.2462
ASPVAR -0.6979* 0.3168 0.3471 -0.0908 -0.1002
RMED-2D -0.4302 0.0052 -0.1501 -0.2391

(d) Correlation coefficients for variables on log-transformed scale using FL.

Characteristic cmax b k(quick) k(slow) alpha
BFIHOST -0.4698 0.5820 0.4745

DPLBAR 0.5300 -0.6777

DPSBAR -0.3622 0.4582

PROPWET 0.5112 -0.6358

SAAR -0.4998 0.4840

URBEXT;g99 0.5738 -0.3080 :

ASPBAR -0.3081 0.0570 -0.0740 -0.5371 0.0196
ASPVAR -0.6749 0.3886 0.3731 0.1246 -0.2115
RMED-2D -0.3841 0.2611 0.9042%* -0.0666 -0.1550

*Significant at the 5% level.
**Significant at the 1% level.

catchments. The catchments are sorted according to increasing BFI-
HOST values, left to right (see Table 5.6 for indices). Some interesting
trends are revealed in this plot.

Parameter b appears to be most identifiable in mixed response catch-
ments, i.e., those with medium BFIHOST values. It is less identifiable
towards the extreme ends where the response is either very flashy (low
BFIHOST value) or very damped.

The identifiability of k(quick) reduces with increasing BFIHOST val-
ues. This seems sensible, because it can be expected that the importance
of the quickflow routing component in reproducing the overall response
(as measured by RMSE) also reduces in a similar way.
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Fig. 5.11 Variation of parameter identifiability with catchment. The catchments are
sorted according to increasing BFTHOST values (Table 5.6).

The remaining two parameters, k(slow) and cmax, do not show any
obvious trend, apart from a general lack of identifiability, in particular
with respect to k(slow).

These differences in identifiability can also be seen as an indication
of the importance of individual components to represent a particular
catchment (within the limitation of using a single OF). The identifiability
values are used as weights in the weighted regression procedure outlined
in Section 5.3.3. The resulting regional models are listed in Table
5.10(b). It can be seen that the performance (measured using R?) of the
regional models for parameters k(quick) and alpha increases from 0.72 to
0.94, and from 0.91 to 0.97, while the performance for the parameters
cmax and b is only slightly reduced (0.67 to 0.63 and 0.44 to 0.43). Ad-
ditionally, it is now possible to derive a regional model for k(slow), but
with very wide confidence limits on the regional parameter.
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Table 5.10 The regional models resulting from the different approaches: (a) Conven-
tional regression as a benchmark, (b) weighted regression, and (c) sequential regression.
Parameters for which no sensible relationship could be found are set to their median val-
ues.

(a) Conventional regression as benchmark.

Local . Lower Regional Upper 2
parameter Regional model CFL*  parameter CFL* R
-128.01 606.57 1341.16
606.57+224.94- BFIHOST -830.3 22494 1280.0
cmax 0.67
-4.982 -1.1711  2.639
-1.1014 0.0250 3.1680 192.944
b 3.1680 - DPLEAR 25368 -1.1014 03340 M
. 0.2034 1.0179 1.5391 2.3270
k(quick)  1.5391 - DPLBAR 0.0590 0.2034 0.3479 0.72
k(slow) 190.43 (median) - - - -
-1.1258 0.2197 0.2893 0.3809
alpha 0.2893 - BFIHOST 15259 -1.1258 0.7257 0.91
*90% Confidence Limits
(b) Weighted regression.
Local . Lower Regional Upper 2
parameter Regional model CFL*  parameter CFL* R
-111.90 610.43 132277
610.43+241.70- BFIHOST -439.47 241.70 922.86
ax .
em —4.39- DPSBAR-1.18- ASPBAR -11.119 -4.3858  2.3474 0.63
-3.5584 -1.1806 1.1972
-0.8399 0.0108 1.4024 181.544
. - DPLBAR
b 14024 - DRLBA 24733 08399 07935 0%
. 0.2050 1.0089 1.5278 2.3131
k(quick)  1.5278 - DPLBAR 0.0593  0.2050 0.3507 0.94
-6.3269 e84 0319  !¥126
k(sl . .
(slow) 02319 - PROPWET 21777 66146 91234 O
alpha 0‘2799_31‘_,”0”—1.1953 0.2130 0.2799 0.3678 0.97

-1.5923 -1.1953  -0.7982

*90% Confidence Limits
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Table 5.10 (cont.)
(c) Sequential regression.
Local . Lower Regional Upper 2
ErameterReglonal model CFL* parameter CFL* R
0.0153 RED 168813
cmax oM ppsaar 0% aspvar 0?7 27490 -0.9686 0.8118 0.48
-1.8439  -0.5217 0.8006
b 0.1624 (median) - - - -

. —0.1899 1.0357 1.7458 2.9435
k(quick) 1.7458 - ASPVAR 03955  -0.1899 0.0157 0.53
k(slow) 197.87 (median) - - - -
alpha 02893 . BFIHOST ~1.1258 0.2197 0.2893 0.3809 091

-1.5259  -1.1258 -0.7257

*90% Confidence Limits

Analysing the conventional and weighted regional models in detail
shows that the models for cmax, k(quick) and alpha are very similar. The
confidence limits for the regional parameters of the cmax model are
smaller, though. The regional model to predict b is different; whether it
performs better in the test catchment will be seen later.

5.5.4.6 Generalized regression

It was already mentioned that the only parameter for which the Spearman
rank correlation coefficient is considerably higher than the linear correla-
tion is b (Table 5.8). This suggests a possible non-linear relationship that
probably cannot be described by the conventional regression model
structures applied here.

A GRNN is therefore used to derive a regional model with respect to
this parameter using ASPBAR, i.e., the dominant aspect of catchment
slopes. The performance of a GRNN cannot be assessed using R” since it
can always provide a perfect fit to the data. The model will have to show
its merit when applied to the test catchment in the next section.
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5.5.5 Alternative regional procedure

Different variations on the traditional procedure were described earlier.
Only the sequential method (Lamb et al., 2000; Lamb and Calver, 2002)
is analysed here since it seems the most promising way to reduce the
problem of lack of identifiability without ignoring the physical (or maybe
better conceptual) relevance of the model parameters.

5.5.5.1 Sequential procedure

At every iteration step, the identifiability of all (free) model parame-
ters is analysed using the identifiability measure introduced in Chapters 3
and 4. The measure is calculated as the average of all maximum identifi-
ability values over all catchments for each of the five parameters. This
way, it is possible to see whether the assumption that the identifiability
of the remaining parameter increases is correct and it allows an objective
selection of the parameters to be regionalized during every iteration (in
contrast to the subjective selection by Lamb er al., 2000). It was hoped
that initially unidentifiable parameters might become identifiable due to
the sequential reduction in model complexity.

Figure 5.12 shows the average identifiability of each of the five pa-
rameters during the five iteration stages. One can easily see that the iden-
tifiability of the remaining parameters increases every time one of the
parameters is fixed. Even k(slow), which initially is not identifiable at
all, ultimately shows clear optima in the various catchments. However,
the improvement in identifiability did not lead to improved regional rela-
tionships for the different parameters (Table 5.10).

The most identifiable parameter after the first iteration is alpha, for
which the regional model is therefore identical to the one derived in the
benchmark regression. This parameter is subsequently fixed to its re-
gional value and another URS with 10,000 samples is executed for all
catchments.

The shape parameter b is fixed following the second iteration. How-
ever, it was not possible to derive a sensible regional relationship to any
of the catchment characteristics available. This parameter is therefore
fixed to its median value of 0.1624.
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Fig. 5.12 Variation in parameter identifiability with iteration step during the sequential
regionalization procedure. A vertical bar indicates a fixed parameter. The most identifi-
able parameter for every iteration is shown as a grey rectangle. The first iteration is
shown at the top, one parameter is fixed during each iteration (from top to bottom).

The next two parameters k(quick) and cmax (after another iteration)
show some correlation with available characteristics, ASPVAR, and
DPSBAR and ASPVAR respectively, but their regional models yield
lower R? values than the benchmark models. Also, the uncertainty for the
intercept of the regional model for cmax is very high.

It appears that the bias, which is introduced every time when one of
the parameters is fixed to its regional value, reduces the chance of find-
ing correlations for the remaining parameters. One reason for this effect
is probably the use of a single OF. Hogue ez al. (2000) show that a local
sequential calibration procedure can be very successful for the Sacra-
mento model structure. They used two OFs, the normal RMSE (empha-
sizing the fit to high flows) and the RMSE of the log-transformed data
(emphasizing low flows). Splitting the model parameters into two
groups, each one better identifiable using one of the two OFs, gave a sat-
isfying calibration result; the overall fit to the hydrograph was good and
not biased towards a particular feature as in single-objective calibration.
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A similar sequential approach utilizing different OFs might be successful
at regional scale.

The variation in flow simulation performance over the iteration steps,
measured using the NSE criterion, is visualized in Fig. 5.13. One can see
that the only significant loss in performance is found for the Me-
dina@ShideWeir after the second iteration during which the shape pa-
rameter b was fixed. The optimum value for this catchment is considera-
bly higher (=0.8) than for the rest. The performance degrades because b
was set to the median value of 0.1624. The other degradation is found
after cmax is fixed (iteration 4). The regional model for this parameter
does not perform well. The remaining small fluctuations in performance
are probably due to sampling errors within the Monte Carlo procedure.

It emerged during this exercise that an identifiability value of about
0.25 is similar to a parameter population that has a (subjectively) clear
optimum; i.e., it can be said that the parameter is identifiable.
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Fig. 5.13 Changing Nash-Sutcliffe Efficiency during sequential procedure.
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5.5.6 Test catchment performance including flow prediction

5.5.6.1 Comparison with test catchment

The first step when analysing an ungauged catchment within the sug-
gested framework is the calculation of the BFIHOST value in order to
add the catchment to a cluster.

Boorman et al. (1995) derived a regional multiple regression model
for the UK to derive BFIHOST values from the fractions of the different
HOST classes present in a catchment. The general model has the follow-
ing form (Boorman et al., 1995, p.32),

BFIHOST = 6,HOST, + 6, HOST, +...+ 0, HOST,

where HOST,...HOST,, are the fractions of each of the HOST classes,
and 6,...0, are the regression parameters.

The appropriate fractions and the regression parameters for a large
number of UK catchments are given in Boorman ez al. (1995, p.33 &
86ff.). The resulting BFTHOST value is 0.416, which is sufficiently close
to the FEH value of 0.443 to suggest that a classification based on this
calculated value is possible. However, including the standard error on the
regression parameters means that the BFIHOST value for this catchment
lies between 0.366 and 0.466.

The local parameters derived using the different regional models are
listed together with the values derived through local calibration in Table
5.11. The corresponding dotty plot can be found in Fig. 5.14.

Prediction of cmax using the conventional and the weighted approach
are surprisingly good, considering the low performance of the regional
model. The value estimated by the sequential approach is considerably
lower.

The variation in b values is not large, reflecting the regional homoge-
neity of this parameter (except for Medina@ShideWeir, all values are
between 0.01 and 0.26). The conventional approach overpredicts this
parameter. The estimate using the GRNN is far too high if the outlier of
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Fig. 5.14 Dotty plot for the test catchment, the Teise @ Stonebridge. Result based on uni-
form random sampling with 10,000 parameter sets. The best parameter values are indi-
cated by rectangles.

Medina@ShideWeir is included. Adding additional variables to ASP-
BAR does not improve the model performance. Using such an ANN
model can therefore only be justified through a sufficient number of suc-
cessful test cases. It is unlikely to be useful within the scope of this
study.

The quickflow residence time k(quick) is rather low for the test catch-
ment. However, an analysis of the corresponding dotty plot (Fig. 5.14)
shows that the density of the distribution top for this parameter is low
and an optimum value might lie slightly higher (~2).

The local k(slow) value is considerably lower than all the regional es-
timates. No significance should be attached to this result due to the local
identifiability problems described earlier.

The result for alpha is very good and therefore consistent with the
quality of the regional models for all approaches.

The Nash-Sutcliffe Efficiency (NSE) values show that different pa-
rameter sets can yield a similar performance with respect to a single OF
in a humid catchment. The performance only degrades for the sequential
parameter set due to the cmax value, fixed at iteration 4, which is too low
to give an optimum performance (Fig. 5.13).
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Table 5.11 Comparison of regionalized and locally calibrated parameter values for the
Teise @Stonebridge.

Approach cmax b k(quick) k(slow) alpha NSE
Local calibration 316.5 0.1246 1.66 92.1 0.724 0.79
Conventional 304.4 0.1810 2.61 1904 0.724 0.78
Weighted 306.5 0.1581 2.60 148.8 0.741 0.78
Sequential 227.2 0.1624 2.70 1979 0.724 0.76
Generalized 0.9128

(0.1319%)

*Excluding the result for Medina@Shide. Result does not improve when using additional
catchment characteristics beyond ASPBAR.

5.5.6.2 Flow prediction

The derived parameter estimates are actually more interesting than the
estimated flow hydrograph from a scientific point of view. It was already
stated that many parameter sets could produce a reasonable flow estimate
in wet environments such as the UK. Analysing the question of how far
the regionalized parameters deviate from those derived by local calibra-
tion has therefore a higher priority. Nevertheless, the performance of the
different regionalized parameter estimates in reproducing the ungauged
catchment response is examnined here.

Additionally, one would like to assess the uncertainty in the predicted
flow values due to the uncertainty in the regionalization procedure.
However, the inference of statistical properties of the derived regional
models is indicative at best due to the small number of catchments avail-
able. Only a point prediction of flow is therefore given here.

The differences in flow prediction are small and similar to the differ-
ences in the parameter values (Fig. 5.15). This result is probably en-
hanced by the fact that the Teise @Stonebridge lies relatively in the mid-
dle of the catchment clustering with respect to BFIHOST. The plot in
Fig. 5.15 shows a high flow period on original scale, while the bottom
plot is a low flow period on log-transformed scale.
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Fig. 5.15 Flow prediction for the Teise @ Stonebridge using the different regionalized
parameter values and the local parameter set that is optimum with respect to the RMSE.
The top plot shows a high flow period on original scale, while the bottom plot is a low
flow period on log-transformed scale.

5.6 Summary and Conclusions

The following observations with respect to regional modelling were
made:

* Many regionalization studies assume that a single general model
structure exists, suitable for all catchments analysed. The varia-
tion in response behaviour between catchments could then be
considered through different parameter sets. This is not necessar-
ily appropriate if the catchments’ characteristics vary considera-
bly. A variable describing the geology of a catchment might be
suitable as a clustering criterion in humid regions. The baseflow
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index (BFIHOST) is suggested for this purpose here. However,
only one catchment is singled out for testing in the application
example in this chapter. A larger number of catchments is re-
quired for further testing of the suggested clustering approach.

A wide range of regional (regression) model structures can be
applied. Weighted regression, using the earlier introduced identi-
fiability measure as a weight, seems a sensible way to include
local parameter uncertainty. It has been shown that the identifi-
ability of individual parameters varies widely between ten differ-
ent catchments in South East England. Giving more importance
to more identifiable parameters using the weighted least squares
regression approach might lead to more robust regional models.
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Uncertainty in flow prediction in the ungauged catchment can be
considered by estimating the standard uncertainty around the re-
gional parameter estimates. A Monte Carlo sampling approach
can then be used to estimate local parameters for the ungauged
catchment. Local parameter values outside the feasible parameter
ranges (e.g., below zero) can be given an a priori likelihood of
Zero.

The limited application example utilizing only ten catchments
showed a very high correlation between the fraction of quick-
flow contribution and the BFIHOST. Quickflow residence time
was highly correlated to an index describing catchment size and
drainage path configuration.

Applying two different OFs (one measuring high flow fit and
one low flow fit) to a single model structure showed that the re-
sulting optimum local parameter values and therefore the result-
ing correlations with catchment characteristics vary widely. For
example, the slow flow residence time of a parallel routing struc-
ture only showed a significant correlation if it was estimated us-
ing the low flow OF. The quick flow residence for high flows
was correlated to topographic catchment features. In contrast, it
was highly correlated to rainfall characteristics when only small
runoff events during dry periods were analysed. Considering the
above-mentioned trade-off between high and low flows, this re-
sult suggests a dependency of the regtonal models on the antici-
pated modelling purpose.

A comparison of different metric and parametric SMA model
components, all connected to identical parallel routing modules,
showed that some parameters seem to be dependent on the model
structure in which they are used. For example, the quickflow
contribution of the metric model structure was always lower or
equal to the other two parametric structures for all ten catch-
ments.

A sequential regionalization procedure was tested in which one
local model parameter was regionalized and then subsequently
set to the regional value while the model was recalibrated to all
catchments. The identifiability of the remaining parameter in-
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creased with every iteration. However, the bias in fit introduced
in this procedure is thought to be the main reason that the re-
gional relationships deteriorated compared to the conventional
approach.

¢ A new framework for regional modelling has been suggested
based on the review in this chapter and the findings of the appli-
cation example.



Chapter 6

Discussion, Conclusions and Recommendations
for Future Research

Il est vain, si I’on plante un chéne, d’espérer s’abriter bientét sous son
feuillage.
Antoine de Saint-Exupéry (1900-1944), Terre des Hommes

6.1 Discussion and Conclusions

6.1.1 General

Two fundamental questions in lumped conceptual rainfall-runoff model-
ling have still not been satisfactorily answered in forty years of research
effort:

e  What is the appropriate model structure for a given (type of) hy-
drological system and a particular modelling task?

e What is the appropriate parameter set within this structure to
characterize the unique response features of a particular catch-
ment?

An extensive literature survey (Chapters 1 and 2) magnified the
above stated problems and highlighted some suggestions for potential
ways forward.

Little objective guidance is available for the selection of an appropri-
ate model structure. Comparison studies are often based on a single per-
formance measure, include only a limited range of contestants (model
structures), and their results are difficult to generalize. However, despite
this, some general observations can be made.

241
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e Simple structures (in terms of number of free parameters) per-
form as well as complex ones for many purposes.

e The number of identifiable parameters, at least with respect to a
single OF, is between three and five.

* Many model structures have been developed, but only a limited
number of components are used within them.

Local modelling procedures (applicable to model gauged catchments)
were initially based on the assumption that hydrological models could be
treated similarly to regression models, i.e., simple optimization with re-
spect to a single OF was considered sufficient. Recent research has ques-
tioned the usefulness of this paradigm and some researchers call for more
conceptual modelling approaches that better recognize the nature of the
model structures used. The lack of parameter identifiability has led some
researchers to the conclusion that the idea of an optimum parameter set
should be abandoned completely in favour of a population of acceptable
parameter sets (or models). This explicitly points to uncertainty which
has to be acknowledged. Additionally, the influence of model structural
error appears to be higher than previously recognized. However, no suit-
able approach to explicitly assess this uncertainty is currently available.

Some applications of regional procedures (applicable to model un-
gauged catchments) for conceptual model parameter estimation can be
found in the literature, but few analyse the elements and possible alterna-
tives of those procedures in detail. Neither have the presence and influ-
ence of uncertainty in regionalization been given appropriate considera-
tion.

A three-step approach has been used to address the three areas reviewed
above:
e Develop a rainfall-runoff modelling and analysis toolkit to im-
plement and evaluate different model structures.
e Review and improve existing procedures for local modelling
(modelling of gauged catchments).
e Review and evaluate the idea of parameter regionalization (re-
gional modelling or modelling of ungauged catchments).
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6.1.2 Discussion and conclusions with respect to the toolkit

A toolkit that facilitates the development and analysis of lumped and
parsimonious model structures has been implemented using state-of-the-
art modelling techniques (Chapter 3).

The RRMT allows the implementation of parametric, or hybrid met-
ric-parametric model structures. Its major advantage is a high degree of
structural flexibility which allows quick implementation and evaluation
of different model structures to identify those suitable for the circum-
stances under consideration. The option to run the RRMT in batch mode
is particularly attractive for studies that include a range of model struc-
tures or a large number of catchments.

The MCAT enables detailed investigation of model performance, pa-
rameter sensitivity and identifiability, model structure suitability, and
prediction uncertainty. It is generic and can be applied to analyse any
dynamic mathematical model structure. Within the MCAT, a new em-
pirical identifiability measure has been implemented, based on the gradi-
ent of the cumulative parameter distribution.

A brief application example has been used to show how the toolkit
can be applied. The application of a variety of model structures with dif-
ferent levels of complexity showed that model performance increased
with increasing complexity, while parameter identifiability decreased.
This demonstrated a clear trade-off between these two features. The
study used an MO approach, assessing different response periods, to en-
sure that any improvement in performance did not go unnoticed.

6.1.3 Discussion and conclusions with respect to local modelling

The current idea of local CRR model identification, i.e., the modelling of
gauged catchments, has been analysed in detail (Chapter 4). It has been
suggested in this monograph that the idea of establishing a ‘true’ model
structure is ill-founded and should be replaced by an evaluation of model
structures with respect to

e performance,

e (parametric) uncertainty, and

e underlying assumptions.
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Current automatic methods of parameter identification also lack the
complexity of subjective manual techniques and are often too simplistic
in their approach. A multi-objective approach to model structure analysis
has been developed to address aspects 1) and 2) of the three-dimensional
evaluation described above. The third point is assessed through a novel
dynamic identifiability approach (DYNIA) which analyses how (initially
uniform) parameter distributions are conditioned over different data peri-
ods. A violation of underlying assumptions occurs if, for example, peaks
in the response surface of a particular parameter vary in time and in pa-
rameter space. These approaches are combined in a framework of cor-
roboration and rejection more in line with scientific methods, as for ex-
ample propagated by Popper (2000), than traditional procedures for rain-
fall-runoff modelling.

The following main observations were made in the application exam-
ples in Chapter 4:

e Example 1 led to the conclusion that accepting the multi-
objective nature of model calibration and integrating it into the
modelling process increases the amount of information retrieved
from the model residuals to (1) find the parameter population
necessary to fit all aspects of the observed output time-series (al-
beit separately), (2) increase the identifiability of the model pa-
rameters, and (3) assess the suitability of the model structure to
represent the natural system (i.e., identify model structural insuf-
ficiencies).

e One approach to derive MOs for single output models is the
segmentation of the hydrograph. A segmentation based on the
slope of the observed streamflow and additional thresholds has
shown to be effective in separating different response modes for
humid catchments (Chapter 4, examples 1 and 3), while an ap-
proach using rainfall to find “driven” periods is difficult to apply
in these areas due to the high frequency of rainfall events (see
example in Chapter 3).

o A distinct difference in optimum parameter sets to fit high and
low flows was found for all structures analysed in Chapter 4.
This seems to be the main problem in currently available CRR
model structures.
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The identifiability measure introduced in Chapter 3 is a useful
empirical tool to assess individual parameters in an objective
manner without having to make limiting assumptions (examples
1 and 3). Using this measure to compare the identifiability of dif-
ferent parameters requires the assumption that their initial feasi-
ble ranges are equally well defined.

Applying this identifiability measure in a dynamic fashion leads
to DYNIA. The approach is of general utility and simple to im-
plement. It can be applied to (1) analyse individual model struc-
tures with respect to structural inadequacies; (2) identify suitable
parameters in an approach more in line with sophisticated man-
ual approaches; (3) separate periods of high and low information
content for individual parameters, for example as a first step in a
multi-objective analysis; (4) relate model parameters, and there-
fore model components, and response modes of the natural sys-
tem; (5) investigate data outliers or anomalies; and (6) analyse
the potential of experimental design, e.g., tracer experiments, to
identify individual parameters.

Some of the main results of the DYNIA applications in examples
2 and 3 were: (1) For the Penman SMA component (icl): a) the
root constant is mainly identifiable during wetting up periods; b)
the bypass parameter is defined by major rainfall events during
dry periods; c) the optimum bypass values change with time, in-
dicating that a dynamic aspect is missing in the model structure;
d) the correlation between root constant and bypass is reduced
considerably if only periods of high identifiability are consid-
ered. (2) For the two parallel linear routing component (2pll): a)
the quick and slow flow residence times are mainly identifiable
during periods of quick and slow recession respectively; and b)
the split parameter alpha is most identifiable during the change
between quick and slow flow dominated periods after large run-
off events. (3) For the probability-distributed SMA (pd3 and
pd4): a) the pd3 (ae at potential rate) performs better than the
pd4 (ae linearly dependent on soil moisture content) in an MO
analysis; b) however, the pd4 module shows more consistent op-
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timum parameter values in a DYNIA, indicating that it is the bet-
ter model structure.

6.1.4 Discussion and conclusions with respect to regional modelling

The following observations with respect to regional modelling were
made during a review of the idea of regionalization and the application of
different approaches in a test case:

Many regionalization studies assume that a single general model
structure exists, suitable for all catchments analysed. The varia-
tion in response behaviour between catchments could then be
considered through different parameter sets. This is not necessar-
ily the case if the catchments vary considerably in hydrological
response. A clustering of catchments (located in southeast Eng-
land) based on the baseflow index (BFIHOST) is suggested to
consider differences in underlying geology that mainly influ-
ences the model structure selection.

A wide range of regional (regression) model structures can be
applied. Weighted regression, using the earlier introduced identi-
fiability measure as a weight, seems a sensible way to include
local parameter uncertainty. It has been shown that the identifi-
ability of individual parameters varies widely between ten differ-
ent catchments in South East England. Giving more importance
to better identifiable parameters using the weighted least squares
regression approach might lead to more robust regional models.
Uncertainty in flow prediction in the ungauged catchment can be
considered by estimating the standard uncertainty around the re-
gional parameter estimates. A Monte Carlo sampling approach
can then be used to estimate local parameter values for the un-
gauged catchment. Local parameter values outside the feasible
parameter ranges (e.g., below zero) can be given an a priori like-
lihood of zero.

The limited application example utilizing only ten catchments
showed a very high correlation between the fraction of quick-
flow contribution and the BFIHOST. Quickflow residence time
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was highly correlated to an index describing catchment size and
drainage path configuration.

Applying two different OFs (one measuring high flow fit and
one low flow fit) to a single model structure showed that the re-
sulting optimum local parameter values and therefore the result-
ing correlations with catchment characteristics vary widely. For
example, the slow flow residence time of a parallel routing struc-
ture only showed a significant correlation if it was estimated us-
ing the low flow objective function. The quick flow residence
time for high flows was correlated with topographic catchment
features. In contrast, it was highly correlated to rainfall charac-
teristics when only small runoff events during dry periods were
analysed. Considering the above-mentioned trade-off between
high and low flows, this result suggests a dependency of the re-
gional models on the anticipated modelling purpose.

A comparison of different metric and parametric SMA model
components, all connected to identical parallel routing modules,
showed that some parameters appear dependent on the model
structure in which they are used. For example, the quickflow
contribution of the metric model structure was always lower or
equal to the other two parametric structures for all ten catch-
ments.

A sequential regionalization procedure was tested in which one
local model parameter was regionalized and then subsequently
set to the regional value while the model was recalibrated to all
catchments. The identifiability of the remaining parameter in-
creased after every iteration. However, the bias in fit introduced
in this procedure is thought to be the main cause of deterioration
of the regional relationships compared to the conventional ap-
proach.

A new framework for regional modelling has been suggested
based on the review in Chapter 5 and the findings of the applica-
tion example.
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6.2 Recommendations for Future Research

6.2.1 Recommendations with respect to the toolkit

The idea of a component library can be taken much further. It is
envisaged that future modelling systems will contain compo-
nents that support the user in finding an appropriate implementa-
tion of his or her perceptual model. A large number of algo-
rithms of varying complexity and varying types of process de-
scription could be made available in a component library. The
user would add information about (1) catchment characteristics,
e.g., the dominant runoff production mechanism might be infil-
tration excess, which excludes all algorithms assuming saturation
excess; (2) available data (complex algorithms might not be ap-
plicable if only measurements of streamflow, precipitation and
temperature are available); (3) the modelling purpose (a very
simple baseflow component might suffice if the purpose is the
modelling of a single event). This could be combined in a
knowledge-based approach to rainfall-runoff modelling as sug-
gested by Wagener (1998). The remaining algorithms could then
be used in an optimization procedure to derive a ranking of
model structures. The process of finding an appropriate model
structure could be implemented in a way analogous to genetic
programming. In genetic programming, not only the model pa-
rameters are optimized, but also their functional relationship, i.e.,
the model structure.

The current structure of the RRMT shows a sequential division
into mainly vertical and mainly horizontal movement of water in
the catchment. The first is represented by the soil moisture ac-
counting (SMA) component, while the second is represented by
the routing (R) component of each model structure. This origi-
nated from an initial desire for a simple structure, with readily
interchangeable components, as for example found in the
IHACRES structure, but has been shown to be of limited flexi-
bility. The effective rainfall produced by the SMA component is
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usually split into a quick and a slow part in the R component.
These are then routed with two different time constants and
combined to an estimate of streamflow. It would be more realis-
tic to split the flow in the SMA component, which would also al-
low the flow generation to be made a function, for example, of
the current moisture state of the model, followed by two separate
routing components such as one for quick and one for slow flow.
This is also possible within the current modelling framework, but
the R component has to be integrated into the SMA component,
a solution which is not very elegant.

The SMA and routing modules in the RRMT and the DYNIA in
the MCAT should be reprogrammed in C/C** or Fortran in order
to increase the simulation speed. The use of larger samples in the
DYNIA procedure is particularly hindered at present by long run
times. However, the identifiability measure used within the
DYNIA approach has proved to be quite robust even when sam-
ples sizes are small.

Semi-distributed modelling has drawn increasing interest in the
last few years. The problem of parameter estimation in this ap-
proach is largely identical to the problem in regionalization. A
semi-distributed version of the toolbox should be developed and
some of the methods developed in this study should be applied.

6.2.2 Recommendations with respect to local modelling

Contrasting response periods are mainly quickflow-dominated
high flow periods and baseflow-dominated low flow periods. A
more physically based segmentation scheme might be useful to
improve the reliability of the approach used to derive multiple
OFs for single output CRR models.

The real power of the DYNIA approach could not be assessed
during this study. While a range of application examples have
shown the great potential of the approach, more research is
needed. Particularly, more and different model structures should
be analysed.
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6.2.3 Recommendations with respect to regional modelling

The regional model structures used in this study treated the local
model parameters as independent entities, following common
practice. This is an assumption that will not be valid in many
cases; parameter dependence is ubiquitous. Multiple-objective
calibration or a sequential regionalization can improve on this.
However, more sophisticated regression techniques, such as
Seemingly Unrelated Regression (SUR, Chapter 5) might be
more sensible. Another option is the adoption of more concep-
tual ideas of model regionalization, such as the fuzzy mapping
approach by Beven (2000b) as described below.

Uncertainty in regionalization, stemming for example from a
lack of local parameter identifiability, needs to be considered in
order to derive results that are useful for decision making. A very
simple (conventional) approach is adopted in this research, in-
cluding assumptions of normality of distributions involved.
These assumptions are unlikely to be fully met in practice. More
flexible approaches are required.

More conceptual (in contrast to statistical or physical) modelling
approaches could allow for both, the consideration of uncertainty
(due to the problem that a unique best model cannot be found)
and the requirements for parameters to be treated as a set. Beven
(2000b) suggests a fuzzy mapping of the landscape space (e.g.,
different unique catchments) into the model space. Intersections
of areas in the model space, i.e., areas of models that are behav-
ioural for different catchments, might give a more realistic pic-
ture of similarities in catchment response behaviour. This is an
interesting approach which merits further investigation.

A basic assumption in conceptual modelling is that the local pa-
rameters have some physical interpretation. It might be possible
to derive relationships with catchment characteristics based on
physical reasoning for some parameters (e.g., Drane, 2000; Ko-
ren et al., 2000). This option has not been explored in this study.
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6.3 Resume

The last five or so years have shown that some of the assumptions under-
lying (particularly parametric) rainfall-runoff modelling are highly ques-
tionable. This has led some researchers to the conclusion that any pro-
gress in this field has to come by first taking a step back and rethinking
the fundamental questions we try to answer and the basic assumptions
we make when attempting to find a solution.

An attempt has been made to analyse the current state of rainfall-
runoff model identification for gauged and ungauged catchments and to
highlight weaknesses and problems. Possible solutions are investigated
and alternative modelling frameworks are suggested. Short application
examples provide promising results for these new approaches. However,
it must be stressed that this work is largely methodological and that more
extensive case studies are required. The introduction of a dynamic ap-
proach to parameter identification has opened a new dimension for
model structural analysis and more research is required to define its po-
tential. If this work inspires the creativity of other researchers to question
earlier accepted paradigms and rethink basic assumptions, ultimately
leading to new and improved methodologies, then its goal has been
reached.
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Appendix A

Some Investigations into Regional Modelling

Introduction

This appendix shows some initial investigations regarding regional
modelling. The presented research shows some ideas which developed
into the methods presented in this monograph.

Regionalization Study

Regionalization is one way to estimate model parameters in catchments
without any measured runoff time series. Developing a model structure
with identifiable parameters is crucial if sensible relationships to catch-
ment characteristics are to be established. A number of model structures
(API-based loss functions and linear conceptual reservoirs) of differing
levels of complexity (with 7, 4 and 3 parameters) are investigated within
the framework of a regionalization study. The toolboxes are used to iden-
tify a model structure that combines good performance with low model
complexity, therefore maximizing parameter identifiability (Fig. A.5a).
Monthly time series data for 23 USA catchments (Fig. A.5b), provided
by the Model Parameter Estimation Experiment (MOPEX), are used for
this purpose.
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REGIONALISATION CATCHMENT
PURPOSE CHARACTERISTICS
{ 7 1

DATA QUALITY
AND QUANTITY

CONCEPTUALISATION

IDENTIFIABILITY

REGIONALISATION
POTENTIAL

PERFORMANCE

Fig. A.1 Developing a suitable model for regionalization.

Water Resowrces Reyjions

Fig. A.2 The locaon of the catchments used in this study.
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| p k

Fig. A.3 Dotty plots comparing parameter identifiability of an initial complex model (a)
and a final, simplified model (b) retaining only identifiable parameters, from the region-
alization example. Note that the performances of simple and complex models are similar.

A simple empirical measure (ID) is introduced to quantify the level of
identifiability of different model structures (see Fig. A.6). High ID val-
ues result for parameters that are distributed over a small part of their
normalised range. The average ID for all parameters gives an indication
of the identifiability of a model (Fig. A.8a and A.8b).
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An identifiable model (Fig. A.8b) with high prediction accuracy (Fig.
A.9) is developed using the flexibility of the RRMT and the analysis
methods available in MCAT (Fig. A.7)."

This example shows how an appropriate model complexity, balancing
identifiability and performance can be found. Further investigation is
required to determine how this increased identifiability influences predic-
tion uncertainty in ungauged catchments.

Confidence Limits

T T T T T T

- Observed
Gy Confidence Limits | |

Runoff [mm/dt]

0 20 40 60 80 100 120 140 160 180
dt [ monthly samples]

Fig. A.4 Plot showing 95% confidence limits, calculated in the Box-Cox transformed
space. The graph is an example taken from the regionalization study.
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Fig. A.S Two-dimensional MCAT plots show the interaction between two parameters.
The top plot shows a poorly identified parameter that was subsequently removed.
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Fig. A.6 Calculation of the identifiability measure ID
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Fig. A.7 ldentifiability comparison between complex and simple model for one example
catchment.

Increase in identifiability per Catchment
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Fig. A.8 Increase in ID for all 23 catchments using the top 5 values.
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Fig. A.9 Model comparison results.

Parameter Sensitivity

Which components of a model structure (Fig. A.10) are active during a
simulation changes depending on the dominant response mode of the
hydrological system. Segmenting the observed system response with re-
spect to the different modes (Fig. A.11) allows the modeller to formulate
different objective functions for every mode. The most sensitive parame-
ters for each mode can be visualized using the extended Regional Sensi-
tivity Analysis described earlier (Fig. A.12).

This additional information can be used in a multi-objective
optimization framework to increase the amount of information that can
be retrieved from the available data. These are preliminary results and a
more detailed investigation is required to find the best way of using this
additional information in the calibration process.
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Fig. A.10 Model structure used: API and two linear reservoirs.
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Fig. A.11 Measured rainfall and segmented synthetic flow used.



262 Rainfall-Runoff Modelling

cum. L{total)
cum. L{total)
cum. L{total)
X
cum. L(total)

20 40 60 50100720140

cum. L(rise}
cum. L(rise)
cum. L(rise)
o
@
cum, L{rise)
o
w

o ol
20 40 80 80 100120140

1 1

cum. L{fally

(=]

Ll
cum. L{fali)
cum. L(fall

©

“«
cum. L{fall)

Ol o
20 40 80 80100120140

5!

cum. L(recession)
5
cum. L{recession)
Likelihood

20 40 60 80 100120140

i3

s

cum. L(recession)
&

cum. L{recession)
o
o

©

0 o

0.860.86 0.9 0.920.940.96
k

Fig. A.12 Visualization of changing sensitivity using extended RSA plots. The parame-
ters are the API decay parameter k, the two residence times (rtq and rt;) and the percent-
age quick flow (%q).
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The Rainfall-Runoff Modelling Toolbox

Introduction

The rainfall-runoff modelling toolbox (RRMT) was used for all simula-
tions throughout this monograph and can be downloaded free of charge
for non-commercial use, i.e. research and teaching. A basic knowledge of
Matlab is assumed. Books introducing Matlab can be found on
http://www.mathworks.com.

The Rainfall-Runoff Modelling Toolbox - RRMT

This toolbox simulates the rainfall-runoff relationship in natural catch-
ments. The objective of the RRMT is to develop and test parsimonious
and lumped, parametric or hybrid metric-parametric model structures
with a high level of parameter identifiability. It is a modelling framework
with a modular structure. It also offers tools for data analysis and ma-
nipulation, parameter uncertainty analysis, plots for residual analysis etc.

Hard- and software requirements

Hardware
¢ Any computer capable of running Matlab version 5.2 or higher
(Mathworks, 1996).
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Software

e Any platform supporting Matlab 5.2 or higher. The RRMT was
developed within a Windows NT environment.

e Matlab version 5.2 or higher. The RRMT was developed using
Matlab 5.2. It might therefore not work properly in older ver-
sions.

e The toolbox is provided as a collection of P-files produced for
different versions of Matlab.

Download

The RRMT and a corresponding user manual can be downloaded from
the web site of the Environmental and Water Resource Engineering
(EWRE) section of the Department of Civil and Environmental Engi-
neering at the Imperial College London (UK) at
http://ewre.cv.ic.ac.uk/software.



Appendix C

The Monte Carlo Analysis Toolbox

Introduction

The Monte Carlo analysis toolbox (MCAT) was used for analysis
throughout this monograph and can be downloaded free of charge for
non-commercial use, i.e. research and teaching. A basic knowledge of
Matlab is assumed. Books introducing Matlab can be found on
http://www.mathworks.com.

The Monte Carlo Analysis Toolbox - MCAT

This toolbox is a collection of analysis and visualization functions inte-
grated through a graphical user interface. It can be used to analyse the
results of Monte Carlo parameter sampling experiments or from popula-
tion evolution approaches. A number of powerful techniques are in-
cluded to investigate the structure, sensitivity, and parameter and output
uncertainty of mathematical models. Although it has been developed
within the context of ongoing hydrological research, all functions can be
used to investigate any (dynamic) mathematical model.

Hard- and software requirements

Hardware

e Any computer capable of running Matlab version 5.2 or higher
(Mathworks, 1996).
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Software
e Any platform supporting Matlab 5.2 or higher. The MCAT was
developed within a Windows NT environment.
e Matlab version 5.2 or higher. The MCAT was developed using
Matlab 5.2, and may not work properly in older versions.
e The toolbox is provided as a collection of P-files produced for
different versions of Matlab.

Download

The MCAT and a corresponding user manual can be downloaded from
the web site of the Environmental and Water Resource Engineering
(EWRE) section of the Department of Civil and Environmental Engi-
neering at the  Imperial College London (UK) at
http://ewre.cv.ic.ac.uk/software. :



Notation

Lowercase Roman symbols

(@)

2pli
2pln

ae

ae;

aey,

aj, b;
alpha

b, b

buc

bypass

cl
c2
c3

c4

percentage quickflow
contribution

1 linear reservoir

2 parallel linear reservoirs

2 parallel reservoirs, one linear
and the other non-linear
storage coefficient

actual evapotranspiration
actual evapotranspiration from
lower store

actual evapotranspiration from
upper store

TF parameters

fraction of effective rainfall
contributing to quick response
degree of spatial variability of
storage capacity (shape
parameter)

evapotranspiration parameter
conceptual bucket element
bypass parameter

actual storage capacity
catchment

evapotranspiration parameter
evapotranspiration parameter
maximum drainage that can
occur whilst a moisture deficit
exists

maximum cmd that can occur
before water ceases draining to

the stream
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cml

cmax

cmd

diS[ij

fle)

HBV

icl

J

k

k
k(quick)
k(slow)
ky,

ki

m

md,
md,

mf

nl

SMA module based on cmd
structure

maximum storage capacity
catchment moisture deficit
drainage

Euclidean distance measure
activation function in ANN
probability density function of
storage capacity

Penman fraction of PE
Hydrologiska Byrins
Vattenblanasavdelining model
structure

index

SMA module based on Penman
(pen) structure

index

time step index

API loss parameter

quickflow residence time
slowflow residence time
groundwater recession constant
reservoir time constant

TF index

moisture deficit in upper store
moisture deficit in lower store
temperature or PE modulation
factor

catchment wetness index
vector length

coefficient of non-linearity

number of parameters
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pdx probability distributed stores
SMA module, x is an index
pen SMA module based on Penman

model structure

q reservoir outflow

r autocorrelation coefficient
r rainfall

r* net-rainfall

rc root constant

rd rank difference

refp reference parameter

s Spearman rank correlation

coefficient

(q) quickflow residence time

rt(s) slowflow residence time

s actual (soil moisture) storage
content

Smax maximum storage content

Simaxi size of upper store

Smax2 size of lower store

t time step

u effective rainfall

=<

volumetric constant

w weight

x filtered input to ANN
}7 calculated flow

y observed flow

7! backward shift operator

Uppercase Roman symbols

A [AREA] total catchment area

A( ), B() TF polynomials

Ac contributing area

ACTE local model parameter describing
the actual evapotranspiration

AET rate of actual evapotranspiration

period

ALPHA

AREA
ASPBAR

ASPVAR

B

B

percentage quickflow
contribution

catchment size

index representing the dominant
aspect of catchment slopes

index describing the invariability
in aspect of catchment slopes
behavioural

non-behavioural

BEXP  shape parameter

BFIHOST base flow index from HOST

BIAS bias

C square root of 3!

C rational formula coefficient

CMAX  maximum storage capacity

DPLBAR index describing catchment size
and drainage path configuration

DV deviation of runoff volumes

ER effective rainfall

F() cumulative distribution function

F(c) distribution function of storage
capacity

FARL index of flood attenuation due to
reservoirs and lakes

FC field capacity

FD RMSE for driven flow period

FD, FQ, FS RMSE for response modes

FDH RMSE for flow periods that are
driven and high

FDL RMSE for flow periods that are

driven and low

FH, FM, FL RMSE for horizontal

FQ

FS

segmentation

RMSE for non-driven quick-flow
period

RMSE for non-driven slow-flow

rainfall



FWU RMSE for warming up period

G gradient distribution

HMLE  heteroscedastic maximum
likelihood estimator

I meteorological forcing variables
(e.g. rainfall)

ID identifiability measure

Kq quickflow reservoir coefficient

Ks slowflow reservoir coefficient

LDP longest drainage path

LR linear reservoir

M model structure

Mo local model structure

Mg regional model structure

N vector length

N, K NIUH parameters

NSE Nash-Sutcliffe efficiency

P, P precipitation

PE potential evapotranspiration

PEF measure of performance

Pi parameter, with i being an index

PROPWET index of proportion of time

that soils are wet

Q streamflow

Qrotat rate of surface and subsurface
runoff

Qo driven flow period

Qq non-driven quick-flow period

Qs non-driven slow-flow period

QUICK  local model parameter describing

t he quick response residence time

R coefficient of determination

RMED-1Dmedian annual maximum 1-day
rainfall

RMED-1Hmedian annual maximum 1-hour

Notation
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RMED-2Dmedian annual maximum 2-day

rainfall

RMSE root mean squared error

S storage

SAAR 1961-90 standard-period average
annual rainfall

SAAR4 70 1941-70 standard-period average
annual rainfall

SLOW  local model parameter describing
the slow response residence time

SLS simple least squares

SPLIT  local model parameter describing

the split of the effective rainfall
into quick and slow response

SPRHOST standard percentage runoff

from HOST

SSe residual sum of squares

STORE local model parameter describing
the storage volume

T residence time

TF transfer function

URBLOC index of location of urban and
suburban land cover

URBTEXT1 FEH index of fractional
urban extend for {990

URS uniform random search

14 volume of water stored in
catchment

w transformed catchment
characteristics matrix in
weighted regression

WP wilting point

z transformed dependent variable

vector in weighted regression
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Lowercase Greek symbols

(24

& cr
5’2

&R

£

N N

<\

percentage quickflow
contribution

percentile

error variance

error (residual) term for regional
model

error (residual) term for local
model

local parameter (vector)

local parameter estirnated by
regional model

regional (regression) parameter
(vector)

estimated mean

Box-Cox transformation
parameter

vector of physiographical and
meteorological catchment
characteristics

standard deviation

transformed error term in
weighted regression

depletion rate through losses to
stream and evapotranspiration
time constant of catchment losses
at RT

bypass parameter

groundwater recharge

TF delay

residual

model parameter set or vector
(Box-Cox) transformation
parameter

lag

support

Uppercase Greek symbols

A weight matrix in weighted
regression

o matrix of physiographical and
meteorological catchment
characteristics

Acronyms

ANN artificial neural network

API antecedent precipitation index

ARS adaptive random search

CRR conceptual rainfall-runoff

CRS controlled random search

DYNIA  dynamic identifiability analysis

EKF extended Kalman filter

FEH Flood Estimation Handbook

FR fuzzy regression

GA genetic algorithm

GLUE  generalised likelihood
uncertainty estimation

GP genetic programming

HOST hydrology of soil types
classification

IHDTM Institute of Hydrology digital
terrain model

LHS latin hypercube sampling

MCAT  Monte Carlo analysis toolbox

MCMC  Markov chain Monte Carlo

MCSM  Monte Carlo set membership

ML maximum likelihood

MO multi-objective

MOCOM multi-objective complex
evolution algorithm

MVR multivariate regression

NERC  natural environment research

coungcil



NIUH

NWS
OF

PU

RR
RRMT
RSA
SCE

SCS-CN

SMA

UH

URS

WMO

wY

Notation

Nash Instantaneous Unit
Hydrograph

National Weather Service
objective function

prediction uncertainty
rainfall-runoff

rainfall-runoff modelling toolbox
regional sensitivity analysis
shuffled complex evolution
algorithm

soil conservation service curve
number

soil moisture accounting

unit hydrograph

uniform random search

World Meteorological
Organisation

water-years
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