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Preface

The present volume contains selected contributions given at the 8th International
Workshop on Simulation held at the University of Natural Resources and Life
Sciences, Vienna, Austria, September 21–25, 2015.

The conference was organized by the Center of Experimental Design of the
Institute of Applied Statistics and Computing of the University of Natural
Resources and Life Sciences, Vienna, in collaboration with the Department of
Statistics of the Alpen-Adria University of Klagenfurt, the Department of Statistical
Modelling of Saint Petersburg State University, and INFORMS Simulation Society
(USA). This international conference was devoted to statistical techniques in
stochastic simulation, data collection, and analysis of scientific experiments and
studies representing broad areas of interest. The 1st–6th Workshops took place in
St. Petersburg (Russia) in 1994, 1996, 1998, 2001, 2005, and 2009. The 7th
International Workshop on Simulation took place in Rimini, May 21–24, 2013.

The conference in Vienna was held in memory of Luidmila Kopylova- Melas,
the wife of Viatcheslav Melas who initiated this series of conferences. Luidmila
passed away on September 21, 2013; she worked relentlessly as secretary of the
whole series of our simulation workshops.

The Scientific Program Committee was chaired by Viatcheslav Melas
(St. Petersburg, Russia), Dieter Rasch (Vienna, Austria), and Jürgen Pilz
(Klagenfurt, Austria). We are indebted to the following members of the Scientific
Program Committee for their fruitful help in organizing the sessions and making the
Vienna Workshop a tremendous success: Aleksander Andronov (Latvia), Anthony
Atkinson (UK), Narayanaswamy Balakrishnan (Canada), Russell Barton (USA),
Michel Broniatowski (France), Ekaterina Bulinskaya (Russia), Holger Dette
(Germany), Sergei Ermakov (Russia), Valerii Fedorov (USA), Nancy Flournoy
(USA), Subir Ghosh (USA), Marie Hušková (Czech Republic), Jack Kleijnen (The
Netherlands), Gennady Mikhailov (Russia), Simos Meintanis (Greece), Werner
Müller (Austria), Valery Nevzorov (Russia), Michael Nikulin (France), Jordi
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Ocania (Spain), Ingram Olkin (USA), Fortunato Pesarin (Italy), Luigi Salmaso
(Italy), Rainer Schwabe (Germany), John Stufken (USA), Bruno Tuffin (France),
Dariusz Ucinski (Poland), Henry Wynn (UK).

The Local Organizing Committee was led by Karl Moder (Vienna, Austria). We
are thankful to the following members of this committee for their extremely helpful
and efficient organizational work during the conference: Marianne Mansuri
(Vienna), Beate Simma (Klagenfurt), Bernhard Spangl (Vienna), Gunter Spöck
(Klagenfurt), and Albrecht Gebhardt (Klagenfurt).

The present proceedings volume consists of six parts; the first part contains four
invited papers, and the remaining five parts deal with various applications of
simulations.

The first of the invited papers, presented by Jack P. C. Kleijnen, gives an
overview of the state of the art in the design and analysis of simulation experiments,
with a special emphasis on simulation optimization in operation research. The
second of the invited papers gives a review of simulation usage in the New Zealand
electricity market: G. Zakeri and G. Pritchard demonstrate, in particular, how
optimization of electricity consumption and reserves can be combined in an efficient
way. In the third invited paper, Z. Prášková gives an overview of bootstrap
changepoint testing procedures for dependent data. In the last one of the invited
papers, C. Draxler and K. D. Kubinger review the present state and future chal-
lenges of power and sample size determination in psychometrics.

The contributed twenty-nine papers have been arranged in six parts dealing with
different aspects of simulation in mathematical analysis, stochastic processes, sta-
tistical estimation and testing problems, clinical trials, design of experiments and in
reliability and queueing theory models and applications.

The chapters in Part II (Simulation for Mathematical Modeling and Analysis)
start with a contribution by T. M. Tovstik studying in detail the covariation matrix
of solutions of linear algebraic system equations via the Monte Carlo method. O. N.
Soboleva and E. P. Kurochkina consider large-scale simulation studies of acoustic
waves in random multiscale media. H. S. Bhat, R. A. Madushani, and S. Rawat deal
with parameter inference for stochastic differential equations with density tracking
by quadrature. G. A. Mikhailov, N. V. Tracheva, and S. A. Ukhinov present a new
Monte Carlo algorithm for the evaluation of outgoing polarized radiation.

Simulation models and their analysis for stochastic process applications played
an important role at the 8th IWS. Contributions in this direction are collected in
Part III of the present proceedings volume. E. Ermishkina and E. Yarovaya study
the evolution and simulation of branching random walks. Y. Belopolskaya studies
stochastic models for nonlinear cross-diffusion systems. N. Vollert, M. Ortner, and
J. Pilz report on experiences with the application of tree-structured Gaussian pro-
cess models for optimization in magnetic field shaping problems. The last three
contributions in Part III deal with applications in actuarial science and stochastic
finance: E. Bulinskaya and J. Gusak consider insurance models under incomplete
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information; Ch. Quast et al. model and compare pension systems in Austria, Chile,
Slovakia, and Sweden; A. Andronov and T. Yurkina study the Markowitz portfolio
problem in a particular random environment.

Part IV collects contributed chapters on the use of simulation models for sta-
tistical testing and classification problems. S. Tarima et al. report on the use of signs
of residuals for testing coefficients in quantile regression. B. Darkhovsky and A.
Piryatinska apply their concept of ɛ-complexity (based on Kolmogorov’s notion of
complexity) to the classification of multivariate time series and give an application
to the classification of EEG data. P. Langthaler et al. analyze high-dimensional data
from the spectral density curves of EEG measurements on several channels to
dementia classification of patients. B. Peštová and M. Pešta use simulation studies
to compare ratio and non-ratio test statistics to detect structural changes in panel
data. Finally, D. Rasch and T. Yanagida report on robustness results for the
two-sample triangular sequential t-test against variance heterogeneity.

Part V (Clinical Trials and Design of Experiments) starts with a contribution by
N. Minois et al. on the performance of the Poisson–gamma model for patients’
recruitment in clinical trials when there are pauses in the recruitments procedure.
N. Savy et al. detail their views on principles and good practices for simulated
clinical trials, with a focus on virtual patient generation. D. Rasch et al. report on
the determination of the optimal sample size of subsamples for testing a correlation
coefficient by a sequential triangular test. The last two chapters in Part V deal with
experimental design issues: V. B. Melas and P. V. Shpilev give explicit solutions
for determining T-optimal discriminating designs for trigonometric regression
models. R. Fontana and F. Rapallo perform simulation studies on the combinatorial
structure of D-optimal designs.

In the final Part VI, we have collected five contributions dealing with the role of
simulations for reliability and queueing models. G. Tzavelas and P. Economou
investigate the consequences of model misspecification for biased samples from the
Weibull distribution. D. Kurz, H. Lewitschnig, and J. Pilz give an overview on
recent advances in statistical burn-in modeling for an efficient evaluation of early
life failure probabilities of semiconductor devices. K. E. Samouylov,
Y. V. Gaidamaka, and E. S. Sopin describe a simplified approach to the analysis of
queueing systems with additional randomness due to imperfect knowledge of the
exact amount of resources released by the departure of a customer. V. Rykov and
D. Kozyrev compare analytic and simulation results on the sensitivity of
steady-state probabilities of a cold redundant system to the shapes of life and repair
time distributions of its elements. D. Efrosinin et al. perform a reliability analysis of
an aging unit with a controllable repair facility activation, using a continuous-time
Markov chain model for the process of gradual aging.

It is our great pleasure to thank all authors of invited and contributed chapters for
carefully preparing their manuscripts and submitting them for editorial processing
of the present volume. We are indebted to our reviewers from the Scientific
Program Committee for critical reading and providing constructive comments.
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Finally, we are indebted to the relentless secretarial work and technical help by
Beate Simma and Johannes Winkler from Alpen-Adria University of Klagenfurt
and to Mrs. Veronika Rosteck from Springer International Publishing.

Klagenfurt, Austria Jürgen Pilz
Rostock, Germany Dieter Rasch
Vienna, Austria Viatcheslav B. Melas
St. Petersburg, Russia Karl Moder
September 2017
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Chapter 1
Design and Analysis of Simulation
Experiments

Jack P. C. Kleijnen

Abstract This contribution summarizes the design and analysis of experiments with
computerized simulation models. It focuses on two metamodel (surrogate, emula-
tor) types, namely first-order or second-order polynomial regression, and Kriging
(or Gaussian process). The metamodel type determines the design of the simula-
tion experiment, which determines the input combinations of the simulation model.
Before applying these metamodels, the analysts should screen the many inputs of a
realistic simulation model; this contribution focuses on sequential bifurcation. Opti-
mization of the simulated systemmay use either a sequence of first-order and second-
order polynomials—so-called response surface methodology (RSM)—or Kriging
models fitted through sequential designs—including efficient global optimization
(EGO). Robust optimization accounts for uncertainty in some simulation inputs.

Keywords Robustness and sensitivity · Metamodel · Design · Regression
Kriging

1.1 Introduction

Simulation is used in many scientific disciplines, but we focus on statistics and engi-
neering. Moreover, we focus on stochastic (random) simulation, but parts of our
contribution are also relevant for deterministic simulation. Simulation requires sev-
eral steps; see [17, p. 67]. A crucial step is the design and analysis of the experiments
with the computerized simulation model. This design and analysis are “intertwined”:
selecting an experimental design assumes a metamodel (surrogate, emulator) for the
analysis of the experimental results; e.g., changing a single factor (simulation input
or parameter) at a time assumes a metamodel with non-interacting factors. We focus
on the two most popular metamodel types: low-order polynomial regression and
Kriging.

J. P. C. Kleijnen (B)
Tilburg University, Postbox 90153, Tilburg, Netherlands
e-mail: kleijnen@tilburguniversity.edu

© Springer International Publishing AG, part of Springer Nature 2018
J. Pilz et al. (eds.), Statistics and Simulation, Springer Proceedings
in Mathematics & Statistics 231, https://doi.org/10.1007/978-3-319-76035-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76035-3_1&domain=pdf


4 J. P. C. Kleijnen

Mathematically, ametamodel is an explicit and relatively simple approximation of
the input/output (I/O) function implicitly definedby the underlying simulationmodel.
We define w = fsim(z, r) where w is the random simulation output (response), fsim
the simulation I/O function, z the vector with the values of the k simulation inputs
with the integer k ≥ 1, and r the vector with pseudorandom numbers (PRNs) so r
vanishes in deterministic simulation. Usually, z is standardized, so the resulting d
has elements −1 ≤ d j ≤ 1 ( j = 1, …, k). An input may be qualitative. If a qualitative
input has more than two values (levels), then special care is needed; see [12, pp.
69–71].

We define y = fmeta(x)+ ewhere y is themetamodel output, x the vector with (say)
q metamodel inputs (explanatory variables), e the approximation (fitting) error; an
example of fmeta is a second-order polynomial in d j ( j = 1,…, k) so x has the compo-
nents d j , d jd j ′ with j ≤ j ′, and the constant 1. Actually, a polynomial of any order is
a linear regression (meta)model. Another type of metamodel is Kriging—or Gaus-
sian process (GP)—metamodels, which are also explicit—but more complicated—
models of d j . Altogether, fmeta is explicit and much simpler than fsim. We call fmeta

“adequate” or “valid” if E(e) = 0.
We focus on simulation for sensitivity analysis (SA) and optimization of the under-

lying real system. Furthermore, we focus on global (not local) SA; e.g., in screening
and Kriging, we use global metamodels (see Sects. 1.4 and 1.5). Nevertheless, we
use local SA in response surface methodology (RSM) for optimization.

We base our survey on our book [12], which includes many Web site addresses
for software and hundreds of additional references, and on our article [14]. However,
compared with [14], our survey is half the length, corrects a mathematical error,
and assumes familiarity with basic statistical design concepts (e.g., resolution and
CCD) and basic operations research (OR) concepts (e.g., M/M/1); also see the more
complicated queueing model in [23].

1.2 Basic Linear Regression and Designs

We define basic symbols and terminology used in the next sections, starting with
linear regression (meta)models y = Xβ + e where y denotes the n-dimensional
vector with the dependent (explained) variable with n denoting the number of dif-
ferent simulated input combinations; X = (xi;g) is the n × q matrix of independent
(explanatory) regression variables with xi;g the value of xg in combination i (i = 1,
…, n; g = 1, …, q), so row i ofX is xi = (xi;1, . . . , xi;q); β is the q-dimensional vec-
tor with regression parameters; e is the n-dimensional vector with residuals, so e =
E(y) − E(w)withw denoting the n-dimensional vector withwi = fsim(zi , ri )where
zi denotes combination i of the k original simulation inputs that are determined by
the n × k design matrix D =(di; j ), and ri denotes the vector with PRNs used in
combination i ; row i of D is di ; x is a simple function of the original z or the
standardized d.
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We focus on a special case of linear regression, namely a second-order polynomial
with k simulation inputs: y = β0 +

∑k
j=1 β j x j +

∑k
j=1

∑k
j ′≥ j β j; j ′x j x j ′+ e with the

intercept β0, the k first-order effects β j ( j = 1, …, k), the k(k − 1)/2 two-factor
interactions (cross products) β j; j ′ ( j < j ′), and the k purely quadratic effects β j; j .
This metamodel is nonlinear in x, but it is linear in β; engineers call this metamodel
nonlinear, whereas statisticians call it linear.

We assume that interactions among three or more inputs are unimportant; such
interactions are hard to interpret. Of course, we should check this assumption; i.e.,
we should “validate” the estimated metamodel.

The least squares (LS) estimator ofβ is β̂ = (X′X)−1X′w.Ifdi—which determines
xi—is simulated mi times and mi is a constant m, then we may replace w by w with
the n elements wi =

∑m
r=1 wi;r/m so X is indeed an n × q matrix. Usually, m > 1 in

random simulation. If mi is not a constant, then xi is repeated mi times within X, so
X has

∑n
i=1 mi rows and q columns.

Actually, β̂ is identical to the maximum likelihood estimator (MLE) if e is white
noise; i.e., ei is normally, independently, and identically distributed (NIID) with
zero mean and constant variance σ 2

e . If the metamodel is valid, then σ 2
e = σ 2

w where
σ 2
w denotes the variance of w. The white-noise assumption implies that β̂ has the

covariance matrix �
β̂
= (X′X)−1σ 2

w. Because σ 2
w is unknown, we estimate σ 2

w = σ 2
e

through the mean squared residuals MSR = (̂y − w)′(̂y − w)/(n − q) where ŷ =
Xβ̂

′
and n − q > 0, which gives �̂

β̂
.

To derive confidence intervals (CIs) and tests for the individual elements of β̂,
we use the estimated standard deviations s(β̂g) that are the square roots of s2(β̂g)

(estimate of Var(β̂g)) on the main diagonal of �̂
β̂
. This gives the following t-statistic

with n − q degrees of freedom: tn−q = (β̂g − βg)/s(β̂g) with g = 1, . . . , q.

To select a specific design matrix D with di in a given experimental area, we
minimize Var(β̂g); i.e., we select an orthogonal X. Usually, design of experiments
(DOE) assumes that the z j are standardized (scaled) such that−1≤ di; j ≤ 1. If z j has
only twovalues in the experimentwithn input combinations, then this standardization
uses di; j = (zi; j − z j )/[(Hj − L j )/2] (i = 1, …, n; j = 1, …, k) where L j denotes
the lower value of z j in the experiment, Hj the higher value, z j the average value
of z j in a balanced experiment with z j observed at L j in n/2 combinations. If X is
orthogonal, then X′X = nI so �

β̂
= (nI)−1σ 2

w = Iσ 2
w/n. Hence the q estimators in β̂

are statistically independent and have the same variance. So, the s2(β̂g) are constant,
and we can rank xg using either β̂g or tn−q with βg = 0 so tn−q = β̂g/s(β̂g).

Now we discuss designs of different resolution (R); e.g., R-III means “resolution
III”. Initially, we assume mi = 1 (i = 1, …, n). A R-III or Plackett–Burman (P–B)
design gives unbiased estimators of β j ( j = 1, …, k) if a first-order polynomial is
a valid metamodel. A subclass are fractional factorial two-level 2k−p

I I I designs with
integer p such that 0≤ p < k and n = 2k−p ≥ 1 + k. In a R-III design, n is a multiple
of 4; e.g., 8 ≤ k ≤ 11 implies n = 12. If n > k + 1, then we ignore some columns of
D. If n = k + 1, then D is saturated; the MSR is then undefined. To compute MSR,
we may then add one or more combinations; e.g., either combinations from the 2k
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design excluding the combinations in the original saturated D or the combination
at the center of the experimental area where d j = 0 if d j is quantitative, and d j is
randomly selected as −1 or 1 if d j is qualitative with two values.

A R-IV design gives unbiased estimators of β j in a first-order polynomial if
two-factor interactions are nonzero but “higher-order” effects are zero: xi = (1,
di;1, . . . , di;k, di;1di;2, . . . , di;k−1di;k). To construct a R-IV design, we apply the
foldover theorem; i.e., we augment a R-III design D with its mirror design −D. A
R-IV design does not enable unbiased estimators of all the individual two-factor
interactions; e.g., k = 7 implies n = 27−4 × 2 = 16 so n < q = 1 + 7 + 21 = 29;
consequently, X′X is singular, so the LS estimator does not exist.

A R-V design enables LS estimation of β j , β j; j ′ with j ′ > j , and β0 if all
other effects (including β j; j ) are zero. Unfortunately, 2k−p

V designs imply n � q.
Rechtschaffner designs include saturated R-V designs, but they are not orthogonal;
see [12, p. 62].

A central composite design (CCD) enables LS estimation of all the effects in a
second-order polynomial if all higher-order effects are zero. A CCD consists of (i)
a R-V design; (ii) the central combination (say) 0′

k ; (iii) the 2k axial combinations,
which form a star design; see [12, p. 63–66]. CCDs have non-orthogonalX, and n �
q.

1.3 Assumptions Versus Practice

The classic statistical assumptions stipulate a single type of simulation output and
white noise. A practical simulation model, however, may give multivariate output,
and the univariate output wi (i= 1, …, n) may be non-normal with heterogeneous
variances; wi and wi ′ (i , i ′= 1, …, n) are correlated if the simulation uses common
random numbers (CRN); E(e) may be nonzero. In this section, we examine: (a)
How realistic are the classic assumptions? (b) How can we test these assumptions?
(c) Can we transform the simulation’s I/O data such that the assumptions hold for
the transformed data? (d) Which other statistical methods can we apply?

Multivariate Simulation Output

We assume that for r -variate simulation output with r ≥ 1, we use r univariate linear
regression metamodels, and these metamodels are polynomials of the same order
(e.g., second-order):

y(l) = Xβ(l)+e(l) with l = 1, . . . r (1.1)

where the various symbols are defined analogously to the univariate model (e.g., y(l)

is the dependent variable corresponding with simulation output of type l); the e(l)

have variances thatmay varywith l, and e(l)
i and e(l ′)

i (l ′ =1,…, r ) are not independent.
However, [21] proves that LS per output still gives the best linear unbiased estimator
(BLUE): β̂(l) = (X′X)−1X′w(l).We can easily obtain CIs and tests for the elements in
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β̂(l), using the classic formulas. We do not know any general designs for multivariate
output; also see [11].

Non-normality

The normality assumption often holds asymptotically: if the simulation run is “long,”
then the sample average of the autocorrelated observations is “nearly” normal. Esti-
mated quantiles, however, may be very non-normal. The t-statistic is quite insensitive
to non-normality, whereas the F-statistic is not. It seems prudent to test the normality
assumption as follows.

Wemay use various residual plots and goodness-of-fit statistics (e.g., a chi-square
statistic). A basic assumption of these statistics is that the observations are identically
and independently distributed (IID). We may, therefore, obtain “many” (say, 100)
replications for a specific input combination (e.g., the base scenario) if the simulation
is not computationally expensive; otherwise, these statistical tests lack power and
the plots are too rough.

Actually, the white noise assumption concerns e, not w. Given mi ≥ 1 (i = 1,
…, n) replications, we obtain wi =

∑mi
r=1wi;r/mi and êi = ŷi − wi . For simplicity

of presentation, we assume mi = m. If wi;r has a constant variance σ 2
w, then wi also

has a constant variance σ 2
w = σ 2

w/m. Even if wi is independent of wi ′ with i �= i ′ (no
CRN), then

�ê= [I − X(X′X)−1X′]σ 2
w, (1.2)

so êi does not have constant variance, and êi and êi ′ are correlated. This complicates
the interpretation of the popular plot with estimated residuals.

We may apply normalizing transformations; e.g., log(w) may be more normally
distributed than w. Unfortunately, the metamodel now explains the behavior of the
transformed output (not the original output); see [12, p. 93] and [15].

Another transformation is jackknifing, which may (i) give CIs for non-normal
observations, or (ii) reduce bias of a given estimator. Suppose we want CIs for the
q elements of β, for non-normal w. For simplicity, we assume mi = m > 1. The
original LS estimator is β̂; jackknifing deletes replication r for each combination i ,
so

β̂−r = (X′X)−1X′w−r (r = 1, . . . ,m) (1.3)

wherew−r = (wi;−r )withwi;−r denoting the average of them − 1 simulation outputs
excluding the output of replication r . Let us focus on βq (last element of β). The
pseudovalue is

Jr = mβ̂q − (m − 1)β̂q;−r . (1.4)

In this example, both β̂q and β̂q;−r are unbiased, so the m pseudovalues also remain
unbiased. In general, however, possible bias is reduced by the jackknife point esti-
mator J = ∑m

r=1 Jr/m; an example of a biased estimator is (1.7). Jackknifing gives
a CI, treating the Jr as if they were NIID. So if tm−1;1−α/2 denotes the 1 − α/2 quan-
tile of the tm−1-distribution and σ̂ 2

J
denotes

∑m
r=1(Jr − J )2/[m(m − 1)], then the

two-sided symmetric (1 − α) CI for βq is J − tm−1;1−α/2σ̂J < βq < J +
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tm−1;1−α/2σ̂J . Many applications of jackknifing in simulation are given in [8] and
[12, p. 95].

Another statistical method that does not assume normality is distribution-free
bootstrapping; also see [25]. This bootstrappingmay be used not only for non-normal
distributions, but also for nonstandard statistics. We distinguish between the original
w and the bootstrapped w∗ with the usual superscript ∗ for bootstrapped observations.
Standard bootstrapping assumes that thew observations are IID; indeed,wi;1,…,wi;m
are IID because the m replications use non-overlapping PRN streams. We resample
with replacement from the m original IID observations wi;r such that the original
sample size remains m; we apply this resampling to each simulated combination,
obtaining w∗

i;1, …, w∗
i;m . This gives w

∗ = (w∗
i ), so

β̂∗ = (X′X)−1X′w∗.

To reduce samplingvariation, bootstrapping repeats this resampling B times; a typical
value for this bootstrap sample size B is 100 or 1,000. This B gives β̂∗

b with b = 1,
…, B. The percentile method gives a non-symmetric two-sided (1 − α) CI:

P(β̂∗
q;(Bα/2) < βq < β̂∗

q;(B[1−α/2])) = 1 − α (1.5)

where β̂∗
q;(Bα/2) denotes theα/2 quantile of the empirical density function (EDF) of β̂∗

q
obtained through the order statistics denoted by the subscript (·) where (for simplic-
ity) we assume that Bα/2 is integer; an analogous definition holds for β̂∗

q;(B[1−α/2]).
We shall also mention bootstrapped CIs for quantiles, R2, and cross-validation.

Heterogeneous Variances of Simulation Outputs

In practice, Var(wi ) changes as the input combination i changes. Unfortunately,
Var(wi ) is unknown; so if mi > 1, then we compute s2i =

∑mi
r=1(wi;r − wi )

2/(mi −
1).This s2i itself has high variance (e.g., if wi;r is normally distributed with Var(wi;r )
= σ 2

i , then Var(s2i ) = 2σ 4
i /mi ). To compare n estimators s2i , we may apply various

tests; see [12, p. 101].
The transformation log(w) may be used not only to obtain Gaussian output but

also to obtain constant variances. Actually, this transformation is a special case of
the normalizing Box–Cox power transformation; see [12, p. 93]. Anyhow, we prefer
to accept variance heterogeneity, and to adapt our analysis, as follows.

If E(e) = 0, then β̂ is still unbiased. However, �
β̂
then becomes

�
β̂

= (X′X)−1X′�wX(X′X)−1 (1.6)

where mi = m so �w is the diagonal matrix with elements σ 2
i /m.

Alternatively, we might switch from LS to weighted LS (WLS), which gives β̃.
In practice, however, Var(wi ) is estimated, and using s2i in WLS gives estimated

WLS (EWLS), which gives the nonlinear estimator ̂̃β. Obviously, ̂̃β is non-normally
distributed and may be biased, so it is difficult to derive exact CIs. Above, we have
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already discussed a simple solution, jackknifing; in jackknifed EWLS (JEWLS) with
mi = m and without CRN, we proceed analogously to (1.3):

̂̃β−r = (X�̂−1
w;−rX)−1X′�̂−1

w;−rw−r (r = 1, . . . ,m) (1.7)

where w−r is the vector with the n averages of the m − 1 replications after deleting
replication r , and �̂w;−r is the diagonal matrix with s2i;−r computed from the same

m − 1 replications. Using ̂̃β and ̂̃β−r , we compute the pseudovalues that give the
desired CI.

The DOE literature ignores designs for heterogeneous output variances. We pro-
pose two-stage designs withmi such that the resulting V âr(wi ) = s2i /mi (i = 1,…, n)
are approximately constant; see [12, p. 105–106]. Actually, these designs use classic
designs with an appropriate relative number of replications m̂i/m̂i ′ . To select abso-
lute numbers m̂, we recommend [17, p. 505]’s rule-of-thumb with a user-specified
relative estimation error ree:

m̂ = min

⎡

⎣r ≥ m :
tr−1;1−α/2

√
s2i (m)/ i

|w(m)| ≤ ree
1 + ree

⎤

⎦ . (1.8)

We shall return to the selection of mi , in Sect. 1.5.

Common Random Numbers

CRN are meant to compare the outputs of different simulation input combinations
while all other “circumstances” are the same. CRN are the default in software for
discrete event simulation. Ifmi =m, then we can arrange wi;r (i = 1, …, n; r = 1, …,
m) into a matrix W = (wi;r ) = (w1, …, wm) with wr = (w1;r , …, wn;r )′. CRN create
correlation between wi;r and wi ′;r . Two different replications use non-overlapping
PRN streams, so wi;r and wi;r ′ with r �= r ′ are independent; i.e., wr and wr ′ are
independent. The final goal of CRN is to reduce Var(β̂g) and Var(ŷ); actually,
CRN increase Var(β̂0). CRN implementation in MATLAB is discussed in [15].

If we use CRN and LS, then �
β̂
is given by (1.6) but now �w is not diagonal.

�̂w is singular if m ≤ n; else we may compute CIs for β̂ j from tm−1. An alternative
method requires only m > 1:

β̂r = (X′X)−1X′wr (r = 1, . . . ,m)

where wr has n elements that are correlated because of CRN and may have differ-
ent variances. Furthermore, β̂r has q elements β̂g;r with variance σ 2(β̂g;r ) for any
r . These β̂g;r give β̂g =

∑m
r=1β̂g;r/m and s2(β̂g) =

∑m
r=1(β̂g;r − β̂g)

2/[m(m − 1)],
which give tm−1 = (β̂g − βg)/s(β̂g)with g = 1, . . . , q.We cannot apply this alterna-
tivewhen estimating a quantile.We then recommend distribution-free bootstrapping;
see [12, pp. 99, 110] and [16].
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Validation of Metamodels

To test whether E(e) = 0, we may use (i) coefficients of determination; (ii) cross-
validation. We explain (i) and (ii) next.

(i) R2 is defined as

R2 =
∑n

i=1(ŷi − w)2

∑n
i=1(wi − w)2

= 1 −
∑n

i=1(ŷi − wi )
2

∑n
i=1(wi − w)2

(1.9)

where w =
∑n

i=1wi/n and mi ≥ 1. If n = q, then R2 = 1 even if êi �= 0. If n > q
and q increases, then R2 increases, whatever the size of |̂ei | is. Because of possible
overfitting when q increases, we adjust R2:

R2
adj = 1 − n − 1

n − q
(1 − R2). (1.10)

Critical values for R2 or R2
adj are unknown, because these statistics do not have classic

distributions. So we may use bootstrapping; see [12, p. 114].
(ii) Leave-one-out cross-validation may be defined as follows. For ease of pre-

sentation, we suppose that X has n rows: if mi = m ≥ 1, then we replace w by w
in the LS estimator. Now we delete I/O combination i to obtain (X−i ,w−i ), which
gives

β̂−i = (X′
−iX−i )

−1X′
−iw−i (i = 1, . . . , n). (1.11)

This gives ŷ−i = x′
i β̂−i . We may “eyeball” the scatterplot with (wi , ŷ−i ) and decide

whether E(e) = 0. If mi = m > 1, then [12, pp. 115–120] uses the Studentized
prediction error t (i)m−1 = (wi − ŷi )/[s2(wi ) + s2(ŷ−i )]1/2.

We may be interested not only in the predictive performance of the metamodel,
but also in its explanatory performance; i.e., do the n estimates β̂−i in (1.11) remain
stable?

Related to cross-validation are several diagnostic statistics; most popular is the
prediction sum of squares (PRESS)

∑n
i=1(ŷ−i − wi )

2/n]1/2. Regression software
uses a shortcut to avoid the n recomputations in cross-validation. We may apply
bootstrapping to estimate the distribution of these validation statistics; see [3].

If ê is big, then we may consider various transformations. We may replace y and
x j by log(y) and log(x j ) ( j = 1,…, k) so that the first-order polynomial approximates
relative changes through elasticity coefficients. If we assume that fsim is monotonic,
then we may replace w and x j by their ranks: rank regression. In the preceding
subsections, we considered transformations that makew nearly normal with constant
variance; unfortunately, different goals of a transformation may conflict with each
other.

In Sect. 1.2, we discussed designs for low-order polynomials. If such a design does
not give a validmetamodel, thenwe do not recommend routinely adding higher-order
terms: these terms are hard to interpret.However, if the goal is not to betterunderstand
the simulation model but to better predict its output, then we may add higher-order
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terms; e.g., a 2k design enables the estimation of the interactions among two or more
inputs. In the discussion of (1.10), we have already mentioned the danger of overfit-
ting. Adding more explanatory variables is called stepwise regression; eliminating
nonsignificant variables is called backwards elimination.

1.4 Factor Screening: Sequential Bifurcation

Screening means searching for the really important simulation inputs among the
many inputs that can be varied in a simulation experiment. Sparsitymeans that only
a few inputs among these many inputs are important. Indeed, the Pareto principle
or 20–80 rule states that only “a few” inputs (20%) are important; e.g., [12, p. 136]
presents two examples, with 281 and 92 inputs, respectively; screening finds only 15
and 11 inputs to be important.

There are several types of screening designs; see [12, pp. 137–139] and [29]. We
focus on designs that treat the simulation model as a black box: only the I/O of the
simulation model is observed. We focus on sequential bifurcation (SB), because SB
is very efficient and effective if its assumptions are satisfied. SB selects the next input
combination after analyzing the preceding I/O data, so SB is indeed sequential. SB
is customized; i.e., SB accounts for the specific simulation model.

To explain the basic SB idea, we assume deterministic simulation and a valid first-
order polynomial metamodel so β j; j ′ = 0 with j ≤ j ′. Let γ j denote the first-order
effect of z j (original scale). SB assumes that the sign of γ j is known so that we can
define the low and high bounds L j and Hj of z j such that γ j ≥ 0. Hence, we may
rank the inputs such that the most important input has max j γ j ; the least important
input has min j γ j ↓ 0. Changing z j from L j to Hj makes w change by (Hj − L j )γ j

= 2β j ; also see [12, pp. 41–44] . SB calls z j important if 2β j ≥ cw where the users
specify the threshold cw (≥ 0).

In step 1, SB aggregates all k inputs into a single group and checks whether or not
that group has an important effect. Let w(Lk) denote w with zk = Lk = (L1, . . . , Lk)

′
where zk = (z1, . . . , zk)′; likewise, w(Hk) denotes w with zk = Hk = (H1, . . . , Hk)

′.
So, SB obtains w(Lk) and w(Hk). If ∃ j : β j > 0, then w(Lk) < w(Hk). It may
happen that ∀ j : β j < cw/2, but w(Hk)− w(Lk) > cw; SB will discover this “false
importance” in its next steps.

Assume that at least one input is important, sow(Hk)− w(Lk) > cw. Then in step
2, SB splits the input group into two subgroups: bifurcation. Let k1 and k2 denote
the size of subgroup 1 and subgroup 2 (so k1 + k2 = k). Then SB obtains w(Hk1). If
w(Hk1) − w(Lk) < cw, then none of the individual inputs in subgroup 1 is important
so SB eliminates this subgroup from further experimentation. If w(Hk) − w(Hk1) ≥
cw, then one or more individual inputs in subgroup 2 may be important.

In each following step, SB splits important subgroups into smaller subgroups and
eliminates unimportant subgroups. SB may find both subgroups to be important,
so SB further experiments with two important subgroups in parallel. Obviously,
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these steps give smaller subgroups; in the final steps, SB identifies and estimates all
individual inputs that are not in eliminated (unimportant) subgroups.

Assuming β j ≥ 0 ensures that the β j within an input group do not cancel each
other. In practice, the users often do know the signs of β j . Nevertheless, if in a
specific case it is hard to specify the signs of a few specific inputs, then we should
not group these inputs with the other inputs (with known signs). We should treat
these inputs individually and investigate these inputs not through SB but through a
classic design. This seems safer than assuming a negligible probability of cancelation
within a subgroup.

The efficiency of SB improves if the individual inputs are labeled such that inputs
are placed in increasing order of importance. Such labeling implies that the impor-
tant inputs are clustered; i.e., these inputs are members of the same subgroup. The
efficiency further improves when placing “similar” inputs within the same subgroup;
e.g., place all “transportation” inputs in the same subgroup.Anyhow, splitting a group
into subgroups of equal size is not necessarily optimal. Practical examples of SB are
given in [12, pp. 136–172].

After explaining the basics of SB, we now assume random simulation and a
second-order polynomial. Moreover, if β j = 0, then β j; j ′ = 0 ( j ≤ j ′): heredity
assumption. SB then applies the foldover principle (see Sect. 1.2); i.e., SB also sim-
ulates the mirror input of the original input, to estimate β j unbiased by β j; j ′ . In
random simulation, SB may obtain a fixed m (number of replications) and use the
tm−1-statistic for a one-sided test of β j > 0. Or SB obtains a random m and uses
[28]’s sequential probability ratio test (SPRT) with user-selected thresholds cwU and
cwI to classify inputs with 2β j ≤ cwU as unimportant, inputs with 2β j ≥ cwI as
important, and remaining inputs as intermediate; see [12, pp. 154–159]. In practice,
simulation models havemultiple response types; see the multiresponse SB (MSB) in
[12, pp.159–172]. Note that SPRTs for testing two means (instead of group effects
in SB) are given in [15].

1.5 Kriging Metamodels and Their Designs

Kriging metamodels are fitted to simulation I/O data obtained for the global experi-
mental areas instead of the local areas in RSM.

Ordinary Kriging in Deterministic Simulation

In this subsection, we focus on ordinary Kriging (OK), which is popular in deter-
ministic simulation. OK assumes

y(x) = μ + M(x) (1.12)

whereμ is the constant mean E[y(x)] andM(x) is a stationaryGPwith zeromean. A
GP has covariances that depend only on the distance between the input combinations
x and x′. We call M(x) the extrinsic noise, to distinguish it from the intrinsic noise
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in stochastic simulation. Let X denote the n × k matrix with the n combinations xi
(i = 1, …, n); in the preceding sections, we used D, but the Kriging literature uses
X. Kriging software standardizes zi to obtain xi and also standardizes the simulation
output w; for publications and Web sites see [12, p. 190].

OKuses the best linear unbiased predictor (BLUP) ŷ(x0) for the new combination
x0:

ŷ(x0) = ∑n
i=1λiwi = λ′w. (1.13)

Such an “unbiased” predictor implies that if x0 = xi , then ŷ is an exact interpolator:
ŷ(xi ) = w(xi ). This “best” predictor minimizes the mean squared error (MSE);
because ŷ is unbiased, the MSE equals the variance Var[̂y(x0)]. Altogether, the
optimal weight vector is

λ′
o=[σM(x0)+1

1 − 1′�−1
M σ (x0)

1′�−1
M 1

]′�−1
M (1.14)

where�M = (cov(yi , yi ′)) denotes the n × nmatrix with the covariances between the
metamodel’s “old” outputs yi , and σM(x0) = (cov(yi , y0)) denotes the n-dimensional
vectorwith the covariances between yi and the newoutput y0. Theweightλi decreases
with the distance between x0 and xi , so λ is not a constant vector (unlike β in
regression). Substitution of λo into (1.13) gives

ŷ(x0) = μ + σM(x0)
′�−1

M (w−μ1) (1.15)

where 1 denotes an n-dimensional vector with all elements equal to 1. Obviously,
ŷ(x0) in (1.15) varies with σM(x0), whereas μ, �M , and w remain fixed.

The gradient ∇(ŷ) follows from (1.15); see [19, Eq.2.18]. We should not confuse
∇(ŷ) and ∇(w); sometimes we can indeed estimate ∇(w) and use ∇̂(w) to estimate
a better OK model; see [12, pp. 183–184].

Defining τ 2 = Var(y) implies

MSE [̂y(x0)] = τ 2 − σM(x0)′�−1
M σM(x0) + [1 − 1′�−1

M σM(x0)]2
1′�−1

M 1
. (1.16)

This implies Var[̂y(x0)] = 0 if x0 = xi . So, Var[̂y(x0)] has n local minima.
Var[̂y(x0)] has local maxima at x0 approximately halfway between old input com-
binations. Kriging gives bad extrapolations compared with interpolations (linear
regression gives minimal Var[̂y(x0)] when x0 = 0).

Obviously, (1.14) shows that λo is a function of �M and σM(x0) or – switching
to correlations Ω = τ−2�M and ρ(x0) = τ−2σM(x0). There are several types of
correlation functions, but most popular is the Gaussian correlation function:

ρ(h) =
k∏

j=1
exp

(−θ j h
2
j

) = exp (−
k∑

j=1

θ j h
2
j ) (1.17)
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with distance vector h = (h j ) where h j =
∣
∣xg; j − xg′; j

∣
∣ and g, g′ = 0, 1, …, n. This

ρ(h) implies that λo assigns larger weights for xi closer to x0. Standardization of the
inputs affects h.

When estimating theKriging parametersψ = (μ, τ 2, θ ′)′ with θ = (θ j ), theMLE is
most popular; yet LS (L2 norm), cross-validation, and the L1 norm are also used; see
[13]. The estimation of ψ is challenging: different values may result from different
software packages or from initializing the samepackagewith different startingvalues.
Anyhow, we denote the estimator of ψ by ψ̂ . Plugging ψ̂ into (1.15) gives ŷ(x0, ψ̂).
This ŷ(x0, ψ̂) is a nonlinear predictor. In practice, we simply plug ψ̂ into (1.16) to
obtain MSE[̂y(x0, ψ̂)]; moreover, we ignore possible bias of ŷ(x0) so s2{ŷ(x0)} =
MSE[̂y(x0, ψ̂)]. To compute a CI, we use ŷ(x0, ψ̂), s2{ŷ(x0)}, and zα/2 (α/2 quantile
of standard normal):

P[w(x0) ∈ [̂y(x0, ψ̂) ± zα/2s{ŷ(x0)}] = 1 − α. (1.18)

Universal Kriging (UK) replaces μ in (1.12) by a low-order polynomial. UK
requires the estimation of additional parameters, besides β0 = μ; this may explain
why UK often has a higher MSE than OK has.

Designs for Deterministic Simulation

There are several design types for Kriging in deterministic simulation; e.g., [12, p.
198] mentions orthogonal array, uniform, maximum entropy, minimax, maximin,
integrated mean squared prediction error, and “optimal” designs. However, the most
popular design uses Latin hypercube sampling (LHS). LHS assumes that an adequate
metamodel is more complicated than a low-order polynomial; LHS does not assume
a specific type of metamodel (e.g., an OK model), but focuses on the input space
formed by x j (standardized simulation inputs). LHS results in an n × k matrix X.
There is no strict mathematical relationship between n and k, whereas DOEmay use
n = 2k−p. Nevertheless, if LHS keeps n “small” and k is “large,” then “space filling”
LHS covers the input space so sparsely that E(e) �= 0. A rule-of-thumb for LHS in
Kriging is n = 10k; see [18].

Mathematically, LHSdivides the range of x j intonmutually exclusive and exhaus-
tive intervals of equal probability. The LHS design is non-collapsing: if an input turns
out to be unimportant, then each remaining input still has one observation per inter-
val. We conjecture that the estimation of the correlation function may benefit from
this non-collapsing property. Unfortunately, projections of x onto more than one
dimension may give “bad’ designs, so there are maximin LHS, nearly orthogonal,
and sliced LHS designs.

Instead of LHSwith its single-shot design, wemay use sequential designs that are
application-driven or customized; i.e., they account for fsim. In general, sequential
procedures require fewer observations than fixed-sample procedures do, because we
learn about the behavior of the underlying system as we experiment with this system
and collect data (also see Sect. 1.4 on SB). Kriging, however, requires extra computer
time if it re-estimates ψ when new I/O data become available.
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We may use sequential Kriging designs for either SA (so the whole experi-
mental area is interesting) or optimization (only the optimum is interesting); see
[12, pp. 203–206] In a sequential design, we start with a pilot experiment with
n0 combinations of the k inputs selected through LHS and obtain the correspond-
ing simulation I/O data. Next we fit a Kriging model to these data. Then we may
consider—but not yet simulate—Xcand which denotes a larger matrix with candidate
combinations selected through LHS and find the “winning” candidate. In SA, this
winner has maxx s2{ŷ(x)} with x ∈ Xcand . Next we use the winner as the input to
be simulated, which gives additional I/O data. We re-fit the Kriging model to the
augmented I/O data (usually re-estimating ψ). We stop if either the Kriging model
satisfies a given goal or the computer budget is exhausted. Altogether, the design
selects relatively few combinations in subareas with an approximately linear fsim.

Stochastic Kriging for Random Simulation

Stochastic Kriging (SK) was developed in [1], adding the intrinsic noise term
εr (xi ) for replication r at combination xi to (1.12), which —after averaging over
replications—gives

y(xi ) = μ + M(xi ) + ε(xi ) (1.19)

where εr (x) ∈ N (0,Var[εr (x)]) and εr (x) is independent of M(x). Obviously,
mi replications without CRN make �ε diagonal with main diagonal elements
Var[ε(xi )]/mi ; CRN and mi = m give �ε = �ε/m.

To estimate Var[ε(xi )], SKmay use s2i . Alternatively, SKmay use another Kriging
model for Var[ε(xi )] (besides the Kriging model for E[yr (xi )]), which may give less
volatile estimates. Because s2i is not normally distributed, the GP is only a rough
approximation. We might also replace s2i by log(s2i ) in the Kriging model; also
see [10].

SK replaces �M in OK by �M + �ε and w by w, giving ŷ(x0, ψ̂) and s2{ŷ(x0)};
see [1, Eq.25]. SK for a quantile (instead of an average) is discussed in [12, p. 208].

In our discussion of (1.18), we have alreadymentioned the problems caused by the
randomness of ψ̂ . If mi � 1, then we may solve this problem through distribution-
free bootstrapping; see [12, p. 209].

Usually SK employs the same designs as OK or UK do for deterministic sim-
ulation. So, SK often uses single-shot LHS. In random simulation, however, we
also need to select mi . Above, we discussed the analogous problem in regression
metamodeling; a simple rule-of-thumb is (1.8).

In sequential designs for SA, we may select x that gives maxx s2{ŷ(x)}. In SK,
we may find this x through distribution-free bootstrapping. This design selects more
input values in subdomains with highly nonlinear estimated I/O functions.

More Kriging: Monotonic Kriging, and Global SA

Sometimes we know that fsim is monotonic (e.g., if the traffic rate increases, then
the mean waiting time increases); see Sect. 1.4. The Kriging predictor ŷ, however,
may be wiggling if the sample size n is small. To make ŷ monotonic, we may apply
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distribution-free bootstrappingwith acceptance/rejection explained in [12, pp. 212–
216]; also see [20, 26].

So far we focused on ŷ, but we may also measure how sensitive ŷ—and w if ŷ
is a valid predictor—are to the individual inputs and their interactions—assuming
that z has a prespecified distribution. We may then apply functional analysis of vari-
ance (FANOVA), which decomposes σ 2

w into fractions corresponding with individual
inputs or sets of inputs; see [12, pp. 216–218].

Risk Analysis

In FANOVA, we assume a given distribution for d so w becomes random (even
in deterministic simulation), and in risk analysis (RA)—also called uncertainty
analysis—wemaywish to estimate P(w > c1)with a given threshold value c1. RA is
applied in nuclear engineering, finance, water management, etc. P(w > c1) may be
very small—sow > c1 is called a rare event—butmay have disastrous consequences.
The uncertainty about the exact values of d is called subjective or epistemic, whereas
the “intrinsic” uncertainty in stochastic simulation is called objective or aleatory.

SA and RA address different questions, namely “Which are the most important
inputs in the simulation model?” and “What is the probability of a given (disastrous)
event happening?”. So, SA may identify those inputs for which the distribution in
RA needs further refinement. RA and SA are also detailed in [4].

Methodologically, we propose the following method for RA aimed at estimating
P(w > c1). We use a Monte Carlo method to sample d from its given distribution.
Next we use this d as input into the simulation model.We run this model to transform
d intow: propagation of uncertainty about the input. We repeat these steps n times to
obtain the EDF of w. Finally, we use this EDF to estimate P(w > c1). This method
is also known as nested simulation; see [8].

In expensive simulation, we do not run n simulation runs, but we run itsmetamodel
n times.Wemay better estimate the true P(w > c1) through inexpensive sampling of
many values from the metamodel, which is estimated from relatively few I/O values
obtained from the expensive simulation model.

Uncertainty in simulation models including RA and SA is also studied by the
British community Managing uncertainty in complex models (MUCM) and the
French research group GdR MASCOT-NUM. For example, [6] uses Kriging to esti-
mate the excursion set —which is the set of inputs that give an output that exceeds
a given threshold—and quantifies uncertainties in this estimate; a sequential design
may reduce this uncertainty. The volume of the excursion set is related to the fail-
ure probability P(w > c1). ([16] uses a first-order polynomial to estimate which
combinations of uncertain inputs form the frontier that separates acceptable and
unacceptable outputs; both aleatory and epistemic uncertainty are included).

RA is related to the Bayesian approach that assumes the parameters of the simula-
tion model to be unknown with a given prior distribution. After obtaining simulation
I/O data, this approach uses the Bayes theorem to compute the posterior distribution
of the simulation output. Bayesian model averaging and Bayesian melding formally
account—not only for the uncertainty of the input parameters—but also for the
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uncertainty in the form of the (simulation) model itself. In practice, however, classi-
cal frequentist RA has been applied more often than Bayesian RA; also see [24].

1.6 Simulation Optimization

Optimization of real-world systems is an important issue, especially in engineered
systems as opposed to social systems Furthermore, the uncertainty in z may be
important, so robust optimization is important.

The simplest optimization has no constraints for z j ( j = 1, …, k) or w(l) (l =
1, …, r ), has no uncertain z j , and concerns the expected value of a single output,
E(w). Obviously, E(w) = p if P(w = 1) = p and P(w = 0) = 1 − p. However, E(w)

excludes quantiles and the mode of the output distribution. Furthermore, the simplest
optimization assumes continuous d j .

There are so many optimization methods that we do not try to summarize these
methods. Instead, we focus on optimization using metamodels, especially linear
regression and Kriging. Metamodel-based optimization is relatively common and
RSM is the most popular metamodel-based method, while Kriging is popular in
theoretical publications; see [9]. Because we focus on expensive simulations, it is
impractical to apply optimization methods such as evolutionary algorithms (EA).

A single simulation run may be computationally inexpensive—but there are
extremely many input combinations. Furthermore, most simulation models have
many inputs, which leads to the curse of dimensionality. Moreover, a single run may
be expensive if we wish to estimate the steady-state mean of a queueing system
with a high traffic rate. Finally, if we wish to estimate a rare event, then we may
need extremely long simulation runs (unless we succeed in applying importance
sampling).

Linear Regression for Optimization: RSM

RSM treats the simulationmodel as a black box. RSM is sequential: it uses a sequence
of local experiments that is meant to lead to the optimum input combination. RSM
has gained a good track record; see [12, p. 244], [17, pp. 656–679], and [22].

We assume that RSM is applied only after the important inputs and their exper-
imental area have been identified; i.e., before RSM starts, we may need screening
(see Sect. 1.4). However, RSM and screening are integrated in [5].

Methodologically, the goal of RSM is to minimize E(w|z). To initialize RSM,
we select a starting point; e.g., z is the combination currently used in practice. In the
neighborhood of this point, we fit a first-order polynomial, assuming white noise;
however, RSM allows Var(w) to change in a next step. Unfortunately, there are no
general guidelines for determining the appropriate size of the local area in each step
([5], however, selects this size through a so-called trust region). To fit this polynomial,
we use a R-III design. In the next steps, we locally fit first-order polynomials. In each
of these steps, we use the gradient implied by the polynomial fitted in that step:
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∇(ŷ) = γ̂−0 where −0 means that the intercept γ̂0 is removed from the (k + 1)-
dimensional vector with the estimated regression parameters γ̂ . This ∇(ŷ) estimates
the steepest-descent direction. We take a step in this direction, trying intuitively
selected values for the step size. After a number of such steps,wwill increase (instead
of decrease) because the latest local first-order polynomial becomes inadequate.
When this happens, we simulate the combinations of the R-III design—but now
we center this design around the best combination found so far. To quantify the
adequacy of the local polynomial, we may compute R2. Intuitively, a first-order
polynomial correspondswith a plane and cannot adequately represent a valley bottom
(“mirrored” hill top) when searching to minimize E(w|z). So, now we fit a second-
order polynomial, using a CCD. Next we use the derivatives of this polynomial to
estimate the optimum y(̂xo). We may also apply canonical analysis to examine the
shape of the optimal subregion: is it a unique minimum, a saddle point, or a ridge
with stationary points? If time permits, then we may try to escape from a possible
local minimum and restart the search from a different initial local area.

We should not eliminate inputs with nonsignificant effects in a local first-order
polynomial: these inputs may become significant in a next local area. The selection
ofmi is a moot issue (as we saw above). A higher-order polynomial is more accurate
(lower bias) than a lower-order polynomial is, but may have higher variance so its
MSE increases; moreover, a higher-order polynomial requires higher n.

A scale-independent steepest-descent direction accounting for �γ̂ (covariance
matrix of γ̂ ) is discussed in [12, pp. 252–253]. Experimental results suggest that this
direction performs better than the classic steepest-descent direction.

In practice, simulation models havemultiple responses types. The RSM literature
offers several approaches for such situations; see [11]. We focus on generalized RSM
(GRSM) for the following constrained nonlinear random optimization problem:

minz E(w(1)|z)
E(w(l ′)|z) ≥ cl ′ (l ′ = 2, . . . , r) (1.20)

L j ≤ z j ≤ Hj with j = 1, . . . , k.

GRSM combines RSM and interior point methods from mathematical programming
(MP), avoiding creeping along the boundary of the feasible area that is determined
by the constraints on the random outputs and the deterministic inputs. So, GRSM
moves faster to the optimum than steepest-descent does; moreover, GRSM is scale-
independent; see [12, pp. 253–258].

Obviously, it is uncertain whether the optimum estimated by GRSM is close to
the true optimum. The first-order necessary optimality conditions are known as the
Karush–Kuhn–Tucker (KKT) conditions. These conditions may be tested through
parametric bootstrapping; see [12, pp. 259–266].

Kriging for Optimization

Efficient global optimization (EGO) is a well-known sequential method that uses
Kriging; it balances local and global search (exploitation and exploration). To select
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a new (standardized) combination x0, EGO estimates the maximum of the expected
improvement (EI), comparing ŷ(x0) and—in minimization—mini w(xi ) with i = 1,
…, n. We saw below (1.16) that s2{ŷ(x0)} increases as x0 moves away from xi . So,
EI reaches its maximum if either ŷ(x0) is much smaller than mini w(xi ) or s2{ŷ(x0)}
is relatively large so ŷ(x0) is relatively uncertain. We present only basic EGO for
deterministic simulation, but there are many more EGO variants. (Kriging may also
be applied to estimate the optimum in non-sequential optimization; see [27].)

In EGO we start with a pilot sample, typically selected through LHS. To the
resulting simulation I/O data (X,w), we fit a Kriging metamodel y(x) Ṅext we find
fmin = min1≤i≤n w(xi ). This gives

EI(x0) = E [max ( fmin − ŷ(x0), 0)] . (1.21)

A closed-form expression for the estimator of EI is

ÊI(x0) = ( fmin − ŷ(x0)) Φ

(
fmin − ŷ(x0)
s{ŷ(x0)}

)

+ s{ŷ(x0)}φ
(

fmin − ŷ(x0)
s{ŷ(x0)}

)

(1.22)

where Φ and φ denote the cumulative and the density functions of the standard
normal variate. Using (1.22), we find the estimate of x0 that maximizes ÊI(x0); we
denote this estimate by x̂opt . (To find x̂opt , we should apply a global optimizer, because
a local optimizer is undesirable as s{ŷ(xi )} = 0 so EI(xi ) = 0; alternatively, we may
use a set of candidate points selected through a large LHS design.) Next we run the
simulation with this x̂opt and obtain w(̂xopt ). Then we fit a new Kriging model to the
augmented I/O data ([10] presents methods for avoiding re-estimation of the Kriging
parameters). We update n and return to (1.22)—until we satisfy a stopping criterion;
e.g., ÊI(̂xopt ) is “close” to zero.

For the constrained nonlinear random optimization problem already formalized
in (1.20), we may use a variant of EGO. However, [12, pp. 269–272] summa-
rizes a heuristic called Kriging and integer MP (KrIMP) for solving the problem
in (1.20) with additional constraints on z. These additional constraints are neces-
sary if z includes resources such as the number of employees. Altogether, (1.20) is
augmented with s constraints fg(z) ≥ cg (g = 1, . . . , s) and the constraint z j ∈ N
( j = 1, . . . , k) where N denotes the set of nonnegative integers. KrIMP uses (i)
sequentialized DOE to specify the next combination, like EGO does; (ii) Kriging
to analyze the resulting I/O data and obtain explicit functions for E(w(l)|z) (l = 1,
…, r ), like EGO does; (iii) integer nonlinear programming (INLP) to estimate the
optimal solution from these explicit Kriging models, unlike EGO. Experiments com-
paring KrIMP and the popular OptQuest software suggest that KrIMP requires fewer
simulated combinations and gives better estimated optima.
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Robust Optimization

Robust optimization (RO) is crucial in today’s uncertainworld. The optimumsolution
for the decision variables—that we may estimate through RSM, EGO, or KrIMP—
may turn out to be inferior when ignoring uncertainties in the non-controllable envi-
ronmental variables; i.e., these uncertainties create a risk (also see RA).

Originally, Taguchi emphasized that some inputs of a manufactured product are
under complete control of the engineers, whereas other inputs are not. In simula-
tion, the estimated optimal input combination ẑopt may be completely wrong when
ignoring uncertainties in some inputs. Taguchians, therefore, distinguish between
(i) controllable (decision) variables and (ii) non-controllable (environmental, noise)
variables. We denote the number of controllable inputs by kC and the number of
non-controllable inputs by kNC, so kC + kNC = k (obviously, the simulation analysts
control all k inputs). For ease of presentation, we label the k inputs such that the first
kC simulated inputs are controllable and the next kNCinputs are non-controllable. We
denote the vector with the kC controllable inputs by zC and the vector with the kNC
non-controllable inputs by zNC.

Taguchians assume a single output (say) w, focusing on its mean μw and its
variance caused by zNC so σ 2(w|zC) > 0. They combine these two outputs into a
scalar loss function such as the signal-to-noise or mean-to-variance ratio μw/σ 2

w
where σ 2

w stands for σ 2(w|zC); see [22, pp. 486–488]. We, however, prefer to use μw

and σw separately so that we can use constrained optimization; unlike σ 2
w, σw has the

same scale as μw has. So, given a threshold cσ for σw, we try to solve

minzC E(w|zC) such that σ(w|zC) ≤ cσ . (1.23)

Constrained optimization is also discussed in [22, p. 492].
TheTaguchianworldview is successful in production engineering, but statisticians

criticize the statistical methods. Moreover—compared with real-life experiments—
simulation experiments have more inputs, more input values, and more input com-
binations. The Taguchian worldview may be combined with the statisticians’ RSM;
see [22, pp. 502–506]. Whereas [22] assumes that the univariate elements of the
multivariate zNC are independent with a common variance, we assume a general
�NC (covariance matrix of zNC). Whereas [22] superimposes contour plots for the
estimates E(w|zC) and σ 2(w|zC) to estimate the optimal zC, we use MP. This MP,
however, requires specification of cσ in (1.23). Unfortunately, users may find it hard
to select a specific value for cσ ; so we may try different cσ values and estimate the
corresponding Pareto-optimal efficiency frontier. To estimate the variability of this
frontier caused by the estimation of E(w|zC) andσ(w|zC), wemay use bootstrapping.
Instead of RSM, [7] uses Kriging to estimate the robust optimum.

Finally, we summarize Ben-Tal et al.’s RO; see [2]. If MP ignores the uncertainty
in the coefficients of the MP model, then the resulting nominal solution may easily
violate the constraints in the given model. Therefore, RO may give a slightly worse
value for the goal variable, but RO increases the probability of satisfying the con-
straints; i.e., a robust solution is “immune” to variations of the variables within the
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uncertainty set U . Recently, [30] derived a specific U for p where p denotes the
unknown density function of zNC that is compatible with given historical data on
zNC. This type of RO develops a computationally tractable robust counterpart of the
original problem. Compared with the output of the nominal solution in MP, RO may
give better worst-case and average outputs.

Acknowledgements I thank the editors for inviting me to write a contribution for this book and
W. Shi (Hubei University of Economics, Wuhan, China) for commenting on Sect. 1.4.
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Chapter 2
A Review of Simulation Usage
in the New Zealand Electricity
Market

Golbon Zakeri and Geoff Pritchard

Abstract In this chapter, we outline and review the application of simulation on
the generation offer and consumption bids for the New Zealand electricity market
(NZEM). We start by describing the operation of the NZEM with a particular focus
on how electricity prices are calculated for each time period. The complexity of this
mechanism, in conjunctionwith uncertainty surrounding factors such as consumption
levels, motivates the use of simulation.Wewill then discuss simulation–optimization
methods for optimal offer strategies of a generator, for a particular time period, in the
NZEM.We conclude by extending our ideas and techniques to consumption bids and
interruptible load reserve offers for major consumers of electricity including large
manufacturers such as the steel mill.

Keywords Electricity markets · Price simulation · Demand response

2.1 Introduction to Wholesale Electricity Markets

Electricity markets have become prevalent around the world in the past two to
three decades. The first example of privatization of an electric power system took
place in Chile in the early 1980s. The idea behind the Chilean model was to bring
rationality and transparency to the operations of the power system that would
ultimately be reflected in power prices. Other rationales for the eventuation of
electricity markets include better reliability and signalling appropriate levels of
investment in infrastructure in the energy sector through proper pricing of this
commodity. England–Wales, New Zealand, Australia, the Nord Pool, Spain and the
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Pennsylvania–Jersey–Maryland (PJM) markets are amongst the oldest electricity
markets with an abundance of available data.

2.1.1 Pricing of Electricity

Arguably, proper pricing of electricity is the corner stone of the electricity market
paradigm. This is a key for signalling scarcity, and it is the market signal that would
drive investment decisions. While in most commodity markets the price of a good
is determined through supply and demand, in the case of electricity, the physical
constraints governing an electricity system also impact prices. Electricity is not a
storable commodity. It is injected into a transmission grid at certain nodes of that
transmission grid often referred to as grid injection points (GIPs) and flows through
the grid complying with physical constraints. Electricity is withdrawn at grid exit
points (GXPs) and delivered to consumers. Due to the physical constraints on the flow
of electricity, in all electricity markets, the dispatch of the generation of electricity
is left to an independent system operator (ISO). In most electricity markets, an
additional function of the ISO is to determine the price of electricity at different
nodes of the transmission network.

Typically in a wholesale electricity market, for each period of the day, each gener-
ator offers in generation quantities for each of its plants (possibly located at different
GIPs), at certain prices. In its most general form, the generation offers are sup-
ply functions (also known as offer curves) denoted p = S(q), where S(q) is the
marginal price of producing quantity q. In all electricity markets, S(q) is required to
be a monotone increasing function. It is important to note that these supply functions
are offered by a deadline well ahead of the pertaining (market) time period; therefore,
participants do not know other generator offers or a complete picture for demand.

These supply offers are collected by the ISO. The ISO estimates the demand (in the
case of inflexible demands), over that period. The ISO then solves a side constrained
network optimization problem where the objective is to minimize the total cost of
production of electricity. The constraints of this optimization problem reflect that
demand must be met at every node of the network and that physical flow constraints
such as transmission line capacities and Kirchhoff’s laws must be complied with.
Often reactive power modelling is left out of the ISO’s dispatch problem, and the
problem is in fact a direct current equivalent load flowmodel [17, 24]. When flexible
demand is offered into the market, in the form of a demand-side bid, the objective of
the ISO’s optimization problem becomes welfare maximization, producing system
optimal amounts of generation and consumption for a time period.

A general model for the ISO’s economic dispatch problem (EDP) in its simple
cost-minimizing form is formulated below.
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EDP: minimize
∑

i

∑
m∈O (i)

∫ qm
0 Cm(x)dx

s.t. gi (y) + ∑
m∈O (i) qm = Di , i ∈ N , [πi ]

qm ∈ Qm, m ∈ O(i), i ∈ N ,

y ∈ Y.

(2.1)

We use i as the index for the nodes in the transmission grid. We use m as the index
for the generators, and O(i) indicates the set of all generators located at node i .
Generator m can supply quantity qm , and the demand at node i is denoted by Di .
Qm indicates the capacity of generator m. Here the components of vector x measure
the dispatch of each generator, and the components of the vector y measure the flow
of power in each transmission line. We denote the flow in the directed line from i
to k by yik , where by convention we assume i < k. (A negative value of yik denotes
flow in the direction from k to i .) It is required that this vector lie in the set Y , which
means that each component satisfies the thermal limits on each line and satisfies loop
flow constraints that are required by Kirchhoff’s Law. The function gi (y) defines the
amount of power arriving at node i for a given choice of y. This notation enables
different loss functions to be modelled. For example, if there are no line losses, then
we obtain

gi (y) =
∑

k<i

yki −
∑

k>i

yik .

With quadratic losses, we obtain

gi (y) =
∑

k<i

yki −
∑

k>i

yik −
∑

k<i

1

2
rki y

2
ki −

∑

k>i

1

2
rik y

2
ik .

The price of electricity is determined as the shadow price πi of the node balance
constraints above that indicate demand must be met at all nodes. This price is the
system cost of meeting one more unit of demand at node i . This method of deter-
mining the electricity price is sometimes referred to as locational marginal pricing
(LMP). New Zealand and the PJM market in the USA are examples of electricity
markets with LMP. It is worth noting that some wholesale electricity markets oper-
ate by assuming that demand and supply are located at the same node, and trading
takes place in that one node. This means that a single price of electricity is arrived
at. Nevertheless, in order to ensure that the demand is met at all nodes and that the
flow complies with physical constraints, a balancing market would follow in real
time where the residuals of the single node market are traded. The UK wholesale
electricity market is an example of a single node market.

2.2 The New Zealand Electricity Market

Following a transition from a centralized system, to a deregulated electricity mar-
ket, an immediate natural question for a generator is what supply offer function will
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optimize their returns. In a strictly monitored market such as the PJM, there is not
much room for a generator to exercise market power. In such a market, the marginal
cost of generation of electricity is relatively well known. Much of the supply is pro-
cured from thermal plants (e.g. gas and coal) with known cost of fuel or nuclear plants
with a minimal marginal cost of generation. Here, it is relatively simple for a market
monitor to observe the supply offers and question any offers that are significantly
above the marginal cost of production.

Not all electricity markets are strictly monitored however. Markets such as Nord
Pool and the New Zealand market are dominated by hydroelectric generation. While
one can argue that inflows into hydro-lakes are free, there is an opportunity cost
attached to using the water now or saving it for a future period. This is particularly
important as the inflows are uncertain and dry periods can have disastrous conse-
quences for the electricity system. This opportunity cost is referred to as the value of
water. When all market participants are risk neutral, this value can be found by solv-
ing a large-scale stochastic program that minimizes the expected cost of production
of electricity, using various generation sources in a coordinated fashion, over a long
time horizon (e.g. a year that is divided into 52weeks; see e.g. [18, 20]). In a real
market, however, generators face various risks and it is not possible to ascertain their
level of risk. Even if this information were available, it would not always be possible
to solve an equivalent centralized problem to obtain the value of water [19, 23].
Hence, the New Zealand market was designed not to be a strictly regulated market.
The question therefore remains, how can a generator offer supplies into thismarket so
as to maximize their profits. The answer to this question, and a very similar question
for the demand side, utilizes simulation intensely and is the topic of the remainder
of the chapter.

2.2.1 The Need for Simulation: Pricing in the NZEM

While it would be highly desirable to obtain a simple analytical answer to the ques-
tion of optimizing generation offers, this is not possible due to the nature of price
determination. As laid out in Sect. 2.1.1, the nodal price of electricity is the value of
the optimal shadow prices for the demand constraints. There is no explicit analytical
form for these prices, which are clearly affected endogenously, as the firm varies
their supply offer. The best way to tackle the problem of offer optimization over an
electricity market is to simulate the ISO’s problem and obtain prices. It is fortunate
that the Electricity Authority (EA), who exercise oversight over theNZEM, hasmade
publicly available an accurate replica of the market clearing optimization problem
that is solved in New Zealand in every half hour time period. This replica is referred
to as the vectorized Scheduling, Pricing and Dispatch (vSPD) that is available from
the EA’s web site.1

1See http://www.emi.ea.govt.nz/.

http://www.emi.ea.govt.nz/
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The market clearing side constrained network optimization vSPD contains over
250 nodes(GIPs and GXPs) and over 450 arcs (that form the backbone transmis-
sion network for New Zealand). The database for vSPD contains historical offer and
demand information dating back to 2000. The generator offers for New Zealand are
in the form of five step, step functions, where each step is referred to as a tranche.
Each historical tranche of each offer is available, indicating the quantity and price
pair that comprise that tranche, for each generator. Furthermore, the database con-
tains information on the thermal capacity of the transmission lines, availability of
generation units, demand data and various other necessary information for replicating
any historical period. This is a rich and ideal set-up for simulation.

Another feature of the NZEM is the co-optimization of energy and reserve. Elec-
tricitymarkets need to be robust to failure. To that end, reserve generation is procured
for every electricity market. In New Zealand, the procurement of reserves takes place
in conjunctionwith procurement of energy. There are a number of constraints relating
energy and reserves. We mention this feature of the NZEM here for completeness;
however, we will refrain from dwelling on this point for the sake of simplicity. We
will return to this point in Sect. 2.4 when we discuss consumption and reserve offer
strategies for a major consumer of electricity.

2.3 Optimal Offers for Generation

We start this section by formulating an analytical description of the generator opti-
mization problem under uncertainty. We will lay out a simulation–optimization
approach for this problem which has been in use by generators over the NZEM.
Under a number of strong assumptions, the problem of generator offer optimization
can be solved analytically. Our setting is a realistic electricity market where such
strong assumptions are not justified. However to place the problem in context and
gain some intuition, we start with this analytically tractable case.

2.3.1 A Simplified Problem

The problemof bid–offer optimizationwas first approached byKlemperer andMeyer
[14] who were interested in modelling an oligopoly facing uncertain demand, where
eachfirmbids a supply function as its strategy.This is in contrast to previousmodels in
the economics literature where firmswere restricted to strategize over their quantities
only (Cournot models) or their prices only (Bertrand models) and allows a firm to
adapt better to an uncertain environment. Green and Newbery address the same
question but in the context of the British spot market [13].

To begin, let us assume that there are only twogenerators supplying themarket (i.e.
we are dealing with a duopoly) and suppose that the offer curve of the competitor is
given by q = S(p). Let us also assume that the demand curve is given by q = D(p),
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that is themarket will absorb quantity q if the price is p. For their analysis, Klemperer
and Meyer use the concept of the residual demand curve faced by the generator.
Consider the curve given by q = D(p) − S(p). This determines what quantity must
be offered into the market if we desire the price to be p based on the demand curve
and the competitor’s offer strategy. Note that this approach makes the simplified
assumption that all transactions occur at a single node. The inverse of this curve
describes how the price is influenced by the quantity we offer and is referred to as
the residual demand curve. With this information at hand, it is now easy to optimize
the profits of the generator in question (see Fig. 2.1).

Recall that Klemperer and Meyer point out that supply functions allow a firm
to adapt better to an uncertain environment. If there are multiple possible residual
demand curves that a generator may face, the supply function response may allow
selecting a point on each of these residual demand curves that would optimize the
generator’s profit given that that residual demand curve has realized. This is referred
to as a strong supply function response (see Fig. 2.2). A number of papers construct
the residual demand curve by simulating the (single node) market and explicitly
building the supply function response; see e.g. [9, 10]. In [9], the residual demand
curve takes on a step function form and the authors develop a nonlinear integer
programming model of the generator’s revenue optimization problem. They develop
a combined coordinate search, branch and bound method to solve this problem.
Torre et al. exploit the nature of the previous problem to develop a more efficient
solution method in [10].

In a sequence of papers, Anderson and Philpott have also addressed the profit
maximization problem of a price-maker generator under various assumptions. In [3],
they assume that a price-maker generator knows its competitors’ offer curves, but is
faced with uncertain demand. They first establish the existence of a strong supply
function response, for such a generator, that would be optimal for any realization of
the uncertain demand. This strong supply function response is guaranteed to exist
when the generation costs of the generator in question are increasing and convex,

Fig. 2.1 Optimal point for a
generator to get dispatched
along a residual demand
curve
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and the competitor offers are log-concave. They discuss a procedure where the true
aggregate offer stack of the competitors is approximated by a log-concave function.
Note that this (aggregate) offer stack would be a step function in almost all real-
world electricity markets. They construct a strong supply function response Sg , for
the generator in question. Subsequently, they approximate Sg in order to comply
with market rules. Finally, they provide bounds on the performance of such an offer
strategy.

In [2], Anderson and Philpott generalize their model by allowing uncertainty not
only in the demand but also allow the competitor offers to be unknown. They intro-
duce the concept of a market distribution function ψ(q, p) pertaining to a specific
generator at a specific transmission node. They define ψ(q, p) to be the probability
of not being fully dispatched if the generator submits a quantity q at price p. Let
R(q, p) denote the or profit that the generator makes if it is dispatched q at a clear-
ing price of p. They demonstrate that if the generator submits the curve s, and the
pertinent market distribution function ψ is continuous then the expected profit of the
company is given by

V (s) =
∫

s
R(q, p)dψ(q, p).

They proceed to provide conditions that guarantee (local) optimality of an offer
stack s that would maximize V (s). To address the question of estimating the market
distribution function see [4, 22].

2.3.2 Using Simulation for the General Problem

The work described thus far only deals with generators that are located at a single
node of the market or alternatively assumes that the wholesale market is a single
node market. As noted in Sect. 2.1 however, most wholesale electricity markets use
locational marginal pricing where the price of electricity is different from node to

Fig. 2.2 Building a strong
supply function response
from a distribution of
residual demand curves
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node. To capture the effects of the transmission network, a generator must look at the
variations in the prices from the dispatch problem EDP as a function of how it offers
into themarket. The revenue optimization problem is nowposed as a bilevel program,
or amathematical programwith equilibrium constraints (MPEC) and becomes a non-
convex optimization problem.

maximize R(x, π)

s.t. (x, π) ∈ arg min
∑

i

∑
m∈O (i)

∫ qm
0 Cm(x)dx

s.t. gi (y) + ∑
m∈O (i) qm = Di , i ∈ N ,

qm ∈ Qm, m ∈ O(i), i ∈ N ,

y ∈ Y.

Here x denotes the vector of quantities dispatched at each node if the generator
offered at that node (or is 0 if the generator in question does not own generation
at a particular node), and π is the vector of electricity prices. Note that the inner
optimization problem, namely the economic dispatch problem EDP can be replaced
with its necessary and sufficient conditions for optimality as it is a convex problem
(see e.g. Chap. 4 of [5]). In this case, the reformulation is referred to as an MPEC
[16]. Furthermore, as described in Sect. 2.1, the offers submitted to the market are
for a (near) future period. In particular, over the NZEM, generator offers are “locked
in” two hours ahead of each time period. Therefore, generators have at best prob-
abilistic knowledge of demand and competitor offers. The amount of randomness
depends on what the generator (plant owner) is assumed to know before submitting
the offer curve. Competing generators’ offer curves may be modelled stochastically
(if unknown) or deterministically (if known). A realistic problem is likely to contain
some of each: the availability of another power plant owned by the same firm is prob-
ably known, while the availability of a wind farm is likely to be unknown. submitted
very close to the time of production. We will assume that the sizes of loads require a
stochastic model. The model may also include stochastic transmission line outages.

Pritchard considers this stochastic version of the above MPEC in [21]. An algo-
rithm is developed where first the market is simulated under varying (quantity, price)
offers of the generator in question. The market clearing prices faced by this generator
are recorded, and a global optimization is performed that determines the best supply
function offer resulting in optimal expected profits for our generator.Wewill proceed
with detailing the steps.

We begin by subdividing the q − p plane containing the offer stack, with a finite
rectangular grid by considering a range of price and quantities, each subdivided into
intervals. For examples, a price range may be from a $1.00 to $1000.00 with finer
step sizes for likely prices (tens to few hundred dollars) and coarser steps further
out in the range. This will restrict the class of admissible supply functions to those
which follow the edges of this grid. Then there are only finitelymany admissible offer
stacks, each consisting of a finite sequence of horizontal or vertical line segments
that are grid edges. Note that for any grid edge e, being dispatched on edge e is
independent of which other edges have been included in the offer stack. Therefore,
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Fig. 2.3 A grid for building an optimal offer stack based on edge values using simulation

the expected payoff from any offer stack can be computed by adding the expected
payoffs from the edges comprising this offer stack.

Let V (e) denote the value of including edge e in the offer stack. To estimate
V (e) by simulation, we start with n randomly (and independently) chosen scenarios
{ω1, . . . , ωn}, where each “scenario” is a realization of the random elements of the
problem (e.g. competitors’ offer curves, loads, outages, etc.). Such scenarios may be
extrapolated from historical information ormay be based on richer ensemble forecast
information. For each scenario ωi and each edge e, we can compute the payoff Vi (e)
if ωi results in a point of dispatch along e (i.e. when the offer curve includes e), or 0
if no such dispatch occurs. We can now approximate V (e) by V̂ (e) = 1

n

∑n
i=1 Vi (e).

Note that V̂ (e) is a consistent unbiased estimator of V (e). Figure2.3 illustrates a
(q, p) grid with along with frequency of dispatch attached to each edge.

To build the optimal offer stack resulting in the optimal expected profits for the
generator, we can utilize dynamic programming. Due to the monotonicity constraint
on any admissible offer stack, once at a vertex k of the grid, we must choose to con-
tinue right or up from that point. Therefore, the maximum expected payoff attached
to a vertex k is given by

W (k) = max(Wr (k),Wu(k)).
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where

Wr (k) =
{−∞ if k is on q = qmax

V (er (k)) + W (νr (k)) otherwise.

In the above equation, νr (k) is the vertex adjacent to k on the right and er (k) is the
edge joining these vertices. Wu(k) has an analogous description involving the edge
and the neighbour above k. Given that V ((qmax , pmax )) = 0, we can start at the upper
right-hand corner of the (q, p) grid and utilize a Bellman recursion to determine the
optimal generator stack.

2.4 Bid Optimization for Large Consumers of Electricity

Similar to generators, large consumers in an electricity market, who are exposed
to spot market prices, are often able to influence the clearing price through their
decisions. These users, often large industrial sites or potentially aggregated blocks
of residential or commercial users who wish to actively participate in the electricity
market, can carefully choose their consumption level to influence price. There is a
large amount of uncertainty associated with this problem, especially for participants
who bid in the co-optimized ancillary service markets. For the same reasons as out-
lined above in the generation case, the problem of choosing an optimal consumption
level, with an associated optimal reserve offer, is too broad to undertake analytically.
As an alternative, numerical simulations can be used to approach this problem. A
methodology to tackle this problem numerically was presented by Cleland et al. in
[8]. This methodology is similar to what has already been presented for the genera-
tion case; however, it has nuances stemming from the co-optimization of energy and
reserve. We present a concise detailed version here.

2.4.1 Reserve Co-optimization

Modern markets often incorporate the provision of ancillary services (AS) into the
market dispatch problem. These ancillary services such as primary, secondary and
tertiary contingency reserve or regulating reserve [11, 12] are often procured dif-
ferently throughout the world. New Zealand has fully co-optimized primary and
secondary contingency reserve via separate markets [1]. In Spain, for example, sec-
ondary reserve is procured for both contingency and regulation purposes, but primary
reserve is a non-remunerated mandatory service [15]. In New Zealand, consumers
are capable of participating in the AS markets through the provision of IL, for which
they are paid the spot market reserve price for the FIR (primary) and SIR (secondary)
markets. This benefits the consumer (industrial site) directly through additional rev-
enue. But also indirectly, as the provision of IL capable reserve may release spinning
reserve plant back to the energy market which may alleviate constraints.
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The NZEM operates under N − 1 reserve requirements, and sufficient reserve is
procured to secure against the largest risk setter in each ofNewZealand’s two islands.
In theory, this prevents under scheduling of reserve, in practice it can have a notable
effect upon energy prices. When a risk setting asset (generator or transmission) is the
marginal energy unit, the cost of securing the output from this unit (the reserve price)
is incorporated into the energy price. For a marginal generator, the final energy price
π is thus linked to the marginal energy, pe, and marginal reserve, pr , offer prices.
We illustrate this through a very simple example. Let x1 and x2 and xr represent the
system dispatches from firms 1, 2 and reserve, respectively. Similarly, let p1, p2 and
pr denote the offered prices of energy and reserve by the firms, and q1, q2 and qr
the quantities available at the respective price. The small dispatch problem, meeting
demand d in a single node network, is formulated as

min p1x1 + p2x2 + pr xr (2.2)

s/t x1 + x2 = d [π ]
xr ≥ x1 [λr1]
xr ≥ x2 [λr2]

xi ≤ qi i ∈ {1, 2, r}
xi ≥ 0 i. ∈ {1, 2, r}

When c1 + r < c2, and d < q1, meeting a marginal unit of demand will require
procurement of an extra unit of energy. Hence, π = p1 + pr ; this is easily verified
by writing the KKT conditions.

If the marginal generator is transmitted from a neighbouring reserve zone (in New
Zealand, these are differentiated by the twomajor island land masses), then the nodal
energy prices become linked via the marginal reserve price in Eq.2.3.

π2 = π1 + pr,2 (2.3)

where π1 and π2 denote the locational marginal prices in nodes 1 and 2, respectively.
The above two examples are very simple illustrations of the interaction of energy

and reserve prices. In reality, not only does reserve have to be covered for each of
the North and South islands of New Zealand, energy and reserve are also restricted
through constraints that express physical limitations such as ramp rate of a tur-
bine in the event of an emergency shortage where reserves are called upon. The
joint optimization of consumption and reserve offers is therefore a significant chal-
lenge theoretically. However, it may be approached numerically through simulations.
Large consumers are an inviting target for this approach due to the convergence of
means (manned control rooms, real-time prices, advanced metering) and motive
(profit maximization), which is often missing from smaller consumers. These con-
sumers thus satisfy many of the conditions which are a requirement for demand
elasticity [6].
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2.4.2 Optimization of Consumption and Reserves

We start by determining the consumption levels for our major consumer. These are
naturally derived from the plant operation modes. In order to compute consumer
profits, a utility figure for electricity consumption in a designated period may be
necessary; note that this figure is inputted by the user, and they are free to experiment
with a range of utilities. As the operational decisions for the plant are made ahead of
time, the energy offers and other consumption quantities for the period in question
are uncertain. Therefore, we need to consider a distribution. To address this, the user
will input a base scenario. This can be a scenario derived from historical offers, e.g.
the equivalent period on the previous day or a period closely matched to hydrology
or demand conditions. We develop a “rest of New Zealand” set of scenarios that are
generated from randomly scaled versions of demand (in nodes other than the one in
question) for the base scenario. In particular, we can use a log-normal distribution
for each island and the number of these scenarios can be chosen by the user.

For each demand level, corresponding to a plant operational mode, a distribution
of energy prices at the consumer (site) node is determined. The site can then use
this information to determine, under uncertainty, their optimal operating level. This
can be done in expectation, or with any risk measure, as the distribution of prices
attached to each consumption level is provided. Prices are used as they represent the
only source of permitted variability in the site profitability calculation. A graph of
the price distributions, found using simulation, is presented in Fig. 2.4.

As observed in Sect. 2.4.1, there may be a significant interaction between the
market clearing price of electricity and the offered reserve prices. To take full account
of this and determine a combined optimal consumption and reserve offer, we require
a grid containing all admissible reserve supply stacks for the site. In other words,
the quantity, price plane of possible offers, is subdivided into a finite grid consisting
of rectangular cells, identical to what was presented for the generator offer case.
This simplifies our problem as admissible offer stacks are those which follow the
edges of the cells. we now output energy (and reserve) price distributions attached to
each level of consumption. However this time, the price distribution attached to each
consumption level is derived from the optimal reserve offer for the corresponding
consumption level, for the period. For each consumption level (drawn from plant
operationmode), we simulate differentmarket scenarios using vSPD, as before. Each
simulation will record the point of dispatch on any admissible reserve offer stack
confined to our reserve grid. This is effectively done by tracing out the intersections
of the “reserve residual demand” on the grid (as outlined in Sect. 2.3). We are now
in a position to find an optimal reserve offer stack, for this consumption level using
dynamic programming. The states of this DP are the vertices of the reserve grid.
It is clear that the value to go attached to the top right corner of the reserve grid
is zero (no reserves above our max quantity and max price will be procured). We
solve the DP using backward recursion. The actions for this DP amount to amending
a vertical (moving up) or a horizontal (moving right) segment to the reserve offer
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stack constructed thus far. Our choices are limited to up and right moves as the stack
must be increasing.

The overall approach separates the co-optimization problem into three sequential
steps. The influence of each consumption level on energy and reserve prices under
uncertainty is determined in phase one. In the second phase, the optimal reserve offer
stack attached to each consumption level is determined using the dynamic program-
ming, very similar to the case for generator offers. Lastly, the optimal consumption
level with its associated reserve offer stack is determined through a repetition of
phase one, with the optimal reserve offer level in place. Cleland et al. have reported
on the effectiveness of this methodology under various performance measures on
experiments that span 13months of data. The results are outlined in [7].

2.5 Conclusions

Pricing of electricity is a complex process that relies on solving a large-side con-
strained network optimization problem for every time period of every market. Many
decisions, such as offer strategies for generators and consumption bids for major
users of electricity, ought to be made based on a good understanding of electricity

Fig. 2.4 Distribution of market clearing prices found through simulation
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prices.We laid out in this chapter, twomajor applications of simulation–optimization
over a deregulated electricity market. These applications have been developed and
are in use in the NZEM.
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Chapter 3
Power and Sample Size Considerations
in Psychometrics

Clemens Draxler and Klaus D. Kubinger

Abstract An overview and discussion of the latest developments regarding power
and sample size determination for statistical tests of assumptions of psychometric
models are given. Theoretical as well as computational issues and simulation tech-
niques, respectively, are considered. The treatment of the topic includes maximum
likelihood and least squares procedures applied in the framework of generalized lin-
ear (mixed) models. Numerical examples and comparisons of the procedures to be
introduced are quoted.

Keywords Psychometrics · Power and sample size · Conditional maximum
likelihood · Rasch model · Conditional tests · Analysis of variance

3.1 Introduction

Thedevelopment and the application of psychometricmodels including techniques of
estimation of model parameters and statistical tests of model assumptions have expe-
rienced a rapid growth in recent decades. Classical frequentist as well as Bayesian
approaches to statistical inference have been treated and applied extensively in psy-
chometric literature. An overview is given by, for example, Rao and Sinharay [21].
Strangely, power and sample size considerations in the classical (frequentist) sense
have been neglected for a long time. Reasonsmay be the influence of nuisance param-
eters on the precision of inferential statements about the parameters of interest and
the difficulty of predetermining a reasonable level of precision (e.g., the deviation
from the hypothesis to be tested or the length of a confidence interval) which depends
on the practical context.
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This summary chapter refers to these issues and their related problems. It reviews
and discusses the latest advancements concerning power and sample size planning in
psychometrics developed by [5–7] on the one hand and by [11, 12, 30] on the other
hand. The treatment refers to generalized linear models [1, 14, 15] and the exponen-
tial family of probability distributions (e.g., [4]). It is concerned with both maximum
likelihood and least squares approaches. Statistical tests derived from asymptotic
theory are considered as well as so-called exact tests based on discrete probabil-
ity distributions. Results quoted are either derived analytically or from numerical
procedures. The focus lies on the Rasch model [8, 23].

3.2 Power and Sample Size in a Conditional Maximum
Likelihood Framework

Draxler and Alexandrowicz [6] treat questions of sample size computations within
the scope of the conditionalmaximum likelihood (CML) approach [3] and refer to the
trinity of Wald [27], score [20, 24], and likelihood ratio tests [16, 28]. Let f ( y, θ , τ )
denote a probability distribution (density or mass function) of the random vector Y
of the natural exponential family indexed by the parameter vectors θ and τ taking
values in natural parameter spaces � and T. The vector θ is treated as the parameter
of interest and τ as a nuisance parameter vector. Denote by T(Y) a vector-valued suf-
ficient statistic for τ with probability distribution g(t, θ , τ ). Consider the sequence of
independent randomvectorsY1, . . . ,Yn , a sample of n independent observations, and
their sufficient statistics T(Y1), . . . ,T(Yn) with respective distributions f ( yi , θ , τ i )

and g(t i , θ , τ i ), for i = 1, . . . , n. Given T(Y i ) = t(yi ), the conditional probability
distribution h( yi , θ | T i = t i ) = f (·)/g(·), g(·) > 0, does not depend on τ i ∀ i so
that one obtains by

L(θ) =
n∑

i=1

log[h( yi , θ | T i = t i )] (3.1)

the logarithm of the conditional likelihood as a function of the parameter of interest
θ only and by

θ̂ = arg max
θ ∈ �

L(θ) (3.2)

the CML estimate. The properties of the CML estimator are established by [3, 18] by
proving a number of convergence theorems. Its asymptotic distribution ismultivariate
normal with mean vector θ and covariance matrix �(θ) = I(θ)−1, where the Fisher
information matrix is obtained by

I(θ) = −E

[
∂2L(θ)

∂θ∂θ ′

]
. (3.3)
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The latter is assumed to be positive definite. The presupposed regularity conditions
generally hold for the exponential family except the following very mild condition.
Roughly speaking, toomany too large absolute values in the sequence of the nuisance
parameters have to be excluded for the CML estimator to be (weakly) consistent. In
a practical context, one will mostly be safe to assume this condition to be satisfied.
Further considerations regarding power and sample size computations depend on the
asymptotic properties of the CML estimator.

The precision of inferential statements about θ and thus also power and sample
size of tests of hypotheses regarding θ obviously depend on the covariance of the
estimator θ̂ . To attain a desired level of precision, the rate of decrease of Cov(θ̂ ) or
equivalently the rate of increase of the Fisher informationwith increasing sample size
nmust be known. Unfortunately, this is not the case since the information depends on
the unknown distributions of the sequence of sufficient statistics T1, . . . , Tn which
themselves depend on the sequence of the unknown nuisance parameters τ 1,…,τ n .
It is an obvious consequence of the assumption that the Ys need not be identically
distributed. By rewriting the information matrix as

I(θ) = −E

[
∂2L(θ)

∂θ∂θ ′

]
= −

n∑

i=1

E

{
∂2 log[h( yi , θ | T i = t i )]

∂θ∂θ ′

}
(3.4)

it can be seen that the information depends on the observed sequence of the sufficient
statistics T1 = t1, . . . , Tn = tn . Since the summands on the right-hand side of (3.4),
the separate pieces of information, need not be equal given different observed values
of the sufficient statistics, the total information in the sample does not only depend on
the total number of observations n but on the particular sequence T1 = t1, . . . , Tn =
tn observed. This is a problem for planning the power and sample size in experiments
(before the data have been collected) since theTs are randomand it cannot be planned
(deterministically) which values to be observed. As a consequence [6], introduce an
additional assumption on the nuisance parameters so that a common distribution for
the Ts is obtainedwhich, besides, has another advantage. By choosing an appropriate
distribution, it may be avoided to observe too many too large absolute values of
the nuisance parameters meeting the requirements for the CML estimator θ̂ to be
consistent. Let the sequence of nuisance parameters be independent and identically
distributed with probability density function ϕ(τ ) = ϕ(τ 1) = · · · = ϕ(τ n) so that

g(t, θ) =
∫

g(t1, θ , τ 1)ϕ(τ 1)dτ 1 = · · · =
∫

g(tn, θ , τ n)ϕ(τ n)dτ n. (3.5)

It follows for the information matrix

I(θ) = −n
∫

E

{
∂2 log[h( yi , θ | T i = t i )]

∂θ∂θ ′

}
g(t, θ)dt = nH(θ), (3.6)
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where the matrix H(θ ) denotes the integral in (3.6) times −1. Hence, given the
assumption (3.5) and given θ , the information matrix (3.6) and Cov(θ̂ ) are simple
(one to one) functions of the sample size n.

Consider testing a class of linear hypotheses given by Jθ = c, with c as a vector
of constants and J as the Jacobian matrix of the transformation φ(θ). The latter
is assumed to be a vector-valued continuously differentiable function with lower
dimensionality than θ . As is well known, the three test statistics of the trinity of
testing procedures under consideration will be asymptotically equivalent if Jθ = c is
true, with common asymptotic distribution given by the central χ2 with df= rank(J).
If Jθ = c does not hold asymptotic equivalence and a common distribution will only
be obtained under an additional technical assumption of a sequence of alternative
hypotheses (or contiguous alternative). This is a rather general result quoted bymany
authors. For details, the reader is referred to [6] and the references quoted therein. For
computational purposes of planning the sample size, a deviation from the hypothesis
to be tested must be chosen depending on practical considerations concerning the
consequences of the error of the second kind of the statistical test. Provided the
predetermined deviation is not too far from Jθ = c, the distributions of the test
statistics are well approximated by the non-central χ2 density with df = rank(J) and
non-centrality parameter λ as a (quadratic) function of the chosen deviation and the
sample size n (e.g., [1, 9, 10]. For the CML case and the Rasch model, results of
a Monte Carlo analysis quoted by [6] hint at quite satisfying approximations of the
distributions of the test statistics by the non-central χ2 family for different levels of
deviations chosen from a range of particular interest in practice. Poor approximations
have only been observed in cases where the chosen deviation is tremendously large
and thus unrealistic in practice. Regarding the likelihood ratio test statistic, a more
extensive Monte Carlo analysis with very detailed results is provided by [2].

Let θ = θ1 be a vector defining a deviation from the hypothesis to be tested so
that Jθ1 �= c and denote by λ0 the particular value of the non-centrality parameter
of the χ2 distribution with df = rank(J) for which the β quantile equals the value
of the 1 − α quantile of the central χ2 (with the same degrees of freedom), where α

and β are the probabilities for the errors of the first and second kind of the statistical
test. The sample size of the tests can be determined by replacing all random quan-
tities (functions of the observations) in the expressions of the test statistics by their
expectations evaluated at θ = θ1. Then, the expectations of the test statistics are set
equal to the expectation of the non-central χ2 distribution with df = rank(J) and
non-centrality parameter λ0. Given θ = θ1 and the assumption on the distributions
of the sufficient statistics given by (3.5), the expectations of all three test statistics are
one-dimensional functions of the sample size n so that the (three) equality restric-
tions simply have to be solved according to n. In all three cases, explicit solutions
exist. Exemplarily, for the Wald test statistic W , one obtains

E
{
χ2 [df = rank(J), λ0]

} = E [W (θ1)] (3.7)
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λ0 + rank(J) = (Jθ1 − c)′
[
J ′n−1H(θ1)

−1 J
]−1

(Jθ1 − c) + rank(J) (3.8)

n = ceil

{
λ0

(Jθ1 − c)′
[
J ′H(θ1)−1 J

]−1
(Jθ1 − c)

}
. (3.9)

Regarding score and likelihood ratio tests, the sample size is determined on the same
lines but the derivation of their expectations is slightly more complicated. For details,
one is referred to [6].

3.3 Power of Pseudo-Exact or Conditional Tests
of Assumptions of the Rasch Model

The following considerations are restricted to the Rasch model and are based on
a Markov Chain Monte Carlo (MCMC) approach developed by [25]. Draxler and
Zessin [7] discuss the power function of conditional or pseudo-exact tests which
may be viewed as generalizations (multivariate and more general covariances) of
Fisher’s well-known exact test. The exact discrete probability distributions under the
hypothesis to be tested and under a given deviation and the power function of the
tests, respectively, are well approximated using the cited MCMC technique.

The Rasch model determines the discrete probability distributions of a number of
persons indexed by i = 1, . . . , n to a number of items indexed by j = 1, . . . , k. Let
Yi j ∈ {0, 1} be the binary response of person i to item j and consider a n × k matrix
with entries given by the binary responses of every person to every item. Given
the observed values of all row sums R1 = r1, . . . , Rn = rn and all column sums
C1 = c1, . . . ,Ck = ck , the conditional probability distribution of all free Bernoulli
variables (binary responses) is discrete uniform and simply obtained by the recip-
rocal number of (possible) matrices not violating the given row and column sums
of the observed matrix. The exact distribution of any suitable test statistic under the
hypothesis to be tested can easily be derived from this conditional distribution. A
number of practically interesting examples are quoted by [19]. The conditional dis-
tribution of a test statistic under a given deviation from the hypothesis to be tested
and the power of the respective conditional test may also be derived from the uni-
form distribution as shown by [7]. Counting the total exact number of matrices with
fixed row and column sums is a complicated problem in realistic cases with the usual
numbers of persons and items. Thus, for computational purposes, the exact distribu-
tions and exact power may be sufficiently approximated by random sampling from
the uniform distribution of matrices with given row and column sums which is well
accomplished by the application of a MCMC approach suggested by [25].

A general expression of the power function of conditional tests may be derived as
follows. Consider a generalization of the Raschmodel determining the discrete prob-
ability distribution of the binary response Yi j . Denote it by P(Yi j = yi j | X = x),
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with X as a (random) vector of covariates or a vector of any responses (of any per-
sons to any items) other than Yi j on which Yi j may depend. The distribution P(·) is
indexed by a parameter vector η, and it is assumed that the logit of P(·) is linear in η.
Restricting the parameter space of η so that the Rasch model is obtained as a special
case yields the hypothesis to be tested. Given X = x and η, all binary responses are
assumed to be independent so that their joint probability distribution is obtained by
the product over all persons and items. Let	 denote the sample space which consists
of all n × k matrices with given row and column sums. Then, it follows for the joint
conditional distribution

P(Y = y | X = x, R1 = r1, . . . , Rn = rn,C1 = c1, . . . ,Ck = ck) =
n∏

i=1

k∏
j=1

P(Yi j = yi j | X = x)

∑
	

n∏
i=1

k∏
j=1

P(Yi j = yi j | X = x)

,

(3.10)

where Y consists of all free Bernoulli variables (binary responses). Let C ⊆ 	 be the
critical region with size α of the conditional test of the hypothesis of any restriction
of the parameter space of η yielding the Rasch model. The power function β(η) of
this test is then easily obtained by summation of (3.10) over all elements in C.

The denominator on the right-hand side of (3.10) is a normalizing constant. The
summation has to be taken over the complete set 	. In practice, for computational
purposes, a random sample of matrices from 	 is drawn so that the summation has
only to be taken over all matrices drawn. For this purpose, for instance, the R package
Rasch Sampler [26] may be used. The conditional distribution of Y , the size α of
the critical region C, and the power function of the test can be approximated in this
way. The critical region C will be most powerful at level α if it is chosen according
to the fundamental lemma of [17]. Thus, it has to be composed of those 100α% of
matrices from 	 yielding the largest values of (3.10).

An example of the parameterization of the general model which is of particular
interest in practice assumes the Rasch model to hold conditionally on an additional
covariate. For simplicity, consider a fixed (not random) binary covariate xi ∈ {0, 1},
for instance sex. Then,

P(Yi j = yi j | xi ) = exp
[
yi j (θi + β j + δ j xi )

]

1 + exp(θi + β j + δ j xi )
. (3.11)

Factorization of the product of (3.11) over all persons and items immediately shows
that the statistics Ri = ∑

j Yi j ,C j = ∑
i Yi j and Tj = ∑

i Yi j xi are sufficient for the
parameters θi , β j , and δ j so that for the joint conditional distribution of the T s one
obtains
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P(T = t | x1, . . . , xn, R1 = r1, . . . , Rn = rn,C1 = c1, . . . ,Ck = ck) =
∑
T
exp

(
k∑
j=1

t jδ j

)

∑
	

exp

(
k∑
j=1

t jδ j

) ,(3.12)

with T ′ = (T 1, . . . , Tk−1). Note that one of the T s is not free. The summation in
the numerator of the right side of (3.12) has to be taken over the subset T ⊆ 	

consisting of those matrices contained in 	 which satisfy T = t. The parameters
θi ∈ R and β j ∈ R are person and item parameters which are treated as nuisance
by conditioning on the observed values of their sufficient statistics, and δ j ∈ R is
characterizing a violation of the assumption of the Rasch model of independence
of the items of the covariate. Thus, δ j is the conditional effect of item j given
the covariate. For identifiability reasons, let δk = 0 or

∑
δ j = 0. Note that in this

example, the θ parameters (person parameters) are nuisance parameters. This is
inconsistent with the notation introduced. This is only for a notational convenience
in psychometric literature (e.g., [8]).

A second example concerns a conditional test of the assumption of local indepen-
dence of the responses of a person to the items. Consider the following model

P(Yi2 = yi2 | Yi1 = yi1) ∝ exp [yi2(θi + β2 + ϑyi1)] (3.13)

which introduces local dependence of item 2 on item 1. The probability distributions
of the binary responses of all persons to all other items (except item 2) are assumed
to be given by the Rasch model. Unlike the previous example, in this case, the
joint conditional distribution of all free binary responses and the power function of
the conditional test of ϑ = 0 is not only a function of the parameter of interest ϑ

characterizing a violation of the assumption of local independence (of item 2 on item
1) but of all parameters (since the row and column sums of thematrix of responses are
not sufficient for the person and item parameters). In practice, it seems to be rather
difficult to choose reasonable values for all parameters of the model, in particular for
the person parameters, so that the power can be computed.

Finally, a numerical example from [7] shall be presented but using different seeds
for the pseudo-random number generator (so that the results will not be identical).
It refers to the model given by (3.11) and (3.12), respectively, and is concerned with
power computations of the conditional test of the hypothesis that all δs are equal
to 0 with size α = 0.05. Consider n = 100 persons and k = 15 items. The column
sums of the observed matrix of binary responses are between 4 and 97. The row
sums have large frequencies for values in the middle of the possible range and low
frequencies for values near 0 and 15. For one half of the total number of respondents,
the covariate takes the value 1, and for the other half, it is 0. Item 9 is chosen as the
only deviating item, where item 9 is an item with a given column sum of 53 which
is roughly in the middle of the possible range of values. The power is computed for
different values of δ9 deviating from 0. The R Package Rasch Sampler is used to
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Fig. 3.1 Summaries of power computations of conditional tests of the hypothesis that all δs in
(3.11) and (3.12), respectively, equal 0 considered as a function of δ9 (deviation of item 9)

sample from 	. For every chosen δ9 value, 8000 matrices are drawn, and for each
matrix, its conditional probability is computed using (3.12). The critical region C
is chosen to consist of the 5% of matrices (400 matrices) with the largest values of
(3.12). The power is computed by summation of the conditional probabilities over
all matrices in C. This procedure is replicated 100 times to observe the precision of
the approximation of the exact power. Figure3.1 shows summaries of the results.

3.4 Linear Models and Least Squares Approach

Starting traditionally, one has to realize that most statistical tests of assumptions of
the Raschmodel apply test statistics which are (asymptotically)χ2 distributed. These
test statistics’ degrees of freedom do not depend on the sample size but only on the
number of parameters estimated. In the following, an approach is discussed where
the number of degrees of freedom does depend on the sample size so that it can be
used for power and sample size considerations. Kubinger, Rasch, and Yanagida [11,
12, 30] aimed for some F-distributed test statistic within the framework of analysis
of variance. In general, such an approach provides a variety of procedures for power
and sample size planning, whether there are one- ormulti-way designs, whether there
is the case of models with fixed or random effects or a mixed model, and whether
the factors are crossed, nested, or mixed classified.

Since the Rasch model is a generalized linear model with logit link function,
the idea of testing assumptions of the model within the framework of analysis of
variance (linear models with identity link) may sound strange at first sight, but sur-
prisingly, it works pretty well. Consider a three-way analysis of variance of the kind
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(A � B) × C , with A as a fixed factor characterizing a covariate associated with
the persons, for instance the persons′ sex, C as another fixed factor with levels given
by the different items and B as a random factor with levels given by the persons
(which are assumed to be drawn randomly from the population). The latter is nested
within the levels of A. Hence, linear effects of the factors on the expectations of
Bernoulli variables (the binary responses of persons to items) are assumed. Of inter-
est is the hypothesis that there is no interaction effect A × C . It is tested using a F
test statistic obtained by dividing the mean of squares of the interaction A × C by
the mean of squares of the interaction B × C within A. Roughly speaking, provid-
ing the number of levels of A is restricted to two, this approach may be viewed as
equivalent to considering the logit model given by (3.11) and testing the hypothesis
that all δs (conditional effect parameters or the interaction of the covariate and the
items) equal 0.

It is obvious that the probability distribution of the test statistic introduced cannot
be assumed to belong to a known family of distributions, like F , since the distribu-
tions of the binary responses of persons to items cannot be of the class of normal
distributions. Rasch, Rusch, Simeckova, Kubinger,Moder, and Simecek [22] provide
results of a simulation study obtaining actual type I risks sometimes far exceeding
the nominal level (up to five times as high). Thus, power and sample size com-
putations have been based on numerical procedures approximating the probability
distributions of the test statistic under the hypothesis to be tested as well as under a
given deviation. In doing so, Kubinger, Rasch, and Yanagida [11] showed that their
approach will only work if no main effect of A exists. Strictly speaking, the nominal
type I risk of the statistical test of the hypothesis of no interaction A × C holds as
long as no main effect of A is assumed; otherwise, the type I risk will be far too high.

3.5 Numerical Examples and Comparisons

In the following, a few numerical examples are quoted comparing the power of
the χ2 tests with the F test introduced. The size of the tests is predetermined as
α = 0.05 (nominal type I risk). The hypothesis to be tested assumes equality of the
item parameters of the Rasch model between two groups of persons. The number
of persons is chosen to be 300 in each of both groups, and the person parameters
are drawn from the standard normal distribution. The number of items is chosen as
k = 15. Under the hypothesis to be tested, it is assumed that the item parameters are
given by −3.5, −3, −2.5, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, and 3.5 in
both groups (equality of item parameters between the groups).

The following scenarios of deviations from this hypothesis are considered. In
each case, two items are considered as deviating items. The respective columns in
Tables3.1 and 3.2 quote the absolute deviations of the two deviating items from the
respective values assumed under the hypothesis to be tested within both groups of
persons. For example, referring to the first row and first column of Table3.1, the
parameter of item 7 is 0.1 smaller than the value under the hypothesis to be tested (so
that it equals −0.6), whereas the parameter of item 9 is 0.1 larger (so that it equals
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0.6) in the first group of persons. In the second group, the deviations are exactly the
other way round (deviations of reversed sign). Thus, the absolute differences of the
item parameters of the two items between the two groups are both 0.2 (symmetrically
around the value assumed under the hypothesis to be tested).

The power for the Wald test is computed using the relations given by (3.7)–(3.9),
where the distribution of each τ (which corresponds to the person parameter in
the Rasch model) is assumed to be the standard normal. The common distribution
g(t, θ) of the sufficient statistics for the τ s is obtained using numerical integration
(Gauss–Hermite). The power of the F tests is computed using simulation procedures
provided by the R package pwrRasch [29]. The number of simulation runs (number
of replications) is chosen to be 3600. Tables3.1 and 3.2 show the results for all
considered scenarios of deviations.

Table 3.1 Power computations for Wald and F tests referring to scenarios with deviating items 7
and 9 as well as 5 and 11

Abs. deviation
of items 7 and
9

Wald test F test Abs. deviation
of items 5 and
11

Wald test F test

0.1 0.12 0.18 (0.07) 0.1 0.1 0.12 (0.06)

0.15 0.24 0.38 (0.07) 0.15 0.18 0.23 (0.06)

0.2 0.44 0.63 (0.07) 0.2 0.31 0.39 (0.06)

0.25 0.68 0.84 (0.06) 0.25 0.5 0.59 (0.06)

0.3 0.86 0.95 (0.07) 0.3 0.69 0.78 (0.07)

0.35 0.96 0.99 (0.07) 0.35 0.85 0.91 (0.06)

0.4 1 1 (0.06) 0.4 0.94 0.97 (0.06)

0.45 1 1 (0.06) 0.45 0.98 0.99 (0.07)

Note. The observed level of the type I risk of the F tests is quoted in parenthesis

Table 3.2 Power computations for Wald and F tests referring to scenarios with deviating items 3
and 13 as well as 1 and 15

Abs. deviation
of items 3 and
13

Wald test F test Abs. deviation
of items 1 and
15

Wald test F test

0.1 0.08 0.08 (0.06) 0.1 0.06 0.07 (0.06)

0.15 0.11 0.1 (0.07) 0.15 0.06 0.07 (0.06)

0.2 0.18 0.13 (0.06) 0.2 0.07 0.07 (0.06)

0.25 0.27 0.2 (0.07) 0.25 0.09 0.08 (0.06)

0.3 0.4 0.28 (0.07) 0.3 0.11 0.09 (0.06)

0.35 0.54 0.39 (0.07) 0.35 0.13 0.11 (0.07)

0.4 0.68 0.52 (0.07) 0.4 0.16 0.12 (0.06)

0.45 0.8 0.66 (0.07) 0.45 0.2 0.14 (0.06)

0.5 0.89 0.8 (0.07) 0.5 0.24 0.17 (0.07)

0.55 0.95 0.89 (0.06) 0.55 0.29 0.2 (0.06)

Note. The observed level of the type I risk of the F tests is quoted in parenthesis
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Themain implication of the results is to be expected from theory andmay be stated
as follows. In terms of power, the F test performs better than theWald test in the cases
shown in Table3.1, whereas its performance is worse in the cases shown in Table3.2.
Table3.1 refers to examples in which the parameter values of the two deviating
items are approximately in the middle of the assumed range of values matching the
(assumed) mean of the distribution of person parameters. Consequently, the majority
of expectations of the binary responses of persons to the respective deviating items
are around 0.5, and for an expectation in a close interval around 0.5, the dependence
on the assumed factors is close to linearity as is assumed in the linear modeling
framework of analysis of variance. On the contrary, Table3.2 refers to scenarios
assuming the expectations of the binary responses to both deviating items to be
farther from 0.5 and thus closer to the natural boundaries 0 and 1 so that the assumed
linear dependence (of the expectation on the factors) is more inappropriate.

It must also be remarked that the F test seems to be biased, but the bias seems
to be small. At least, this is what can be observed in the examples considered. In all
scenarios, the observed type I risk is slightly larger than the nominal one as is seen
by the values in parenthesis in both tables.

3.6 Discussion

In the analysis of psychometric data, one is usually confronted with nuisance param-
eters influencing the precision of inferential statements about parameters of inter-
est. One way of eliminating the effect of nuisance parameters is conditioning on
the observed values of their sufficient statistics and pursuing the well-known CML
approach, respectively, which is, for instance, applicable for the class of Rasch mod-
els. When the data and in particular the sufficient statistics (as functions of the data)
have already been observed, such an approach allows for estimating the parameters
of interest and testing hypotheses about them. It is even possible to compute the
power of statistical tests post hoc. Before observing the data, like in cases the sample
size of an experiment is to be planned in advance, the CML approach is obviously
not applicable without additional assumptions on the nuisance parameters and their
sufficient statistics as discussed by [6]. Thus, one may argue that in this case CML
as well as the consideration of conditional tests described in Sect. 3.3 is not suitable
solutions of the problem of the influence of nuisance parameters.

Developing this thought further, one may arrive at another common approach of
dealing with nuisance parameters termed as marginal maximum likelihood which is
widely used for psychometric models. This approach assumes a probability distribu-
tion for the nuisance parameters since in most applications the nuisance parameters
are treated as random variables anyway (since they are assumed to be drawn ran-
domly from the population). Maydeu-Olivares and Montano [13] used the marginal
maximum likelihood framework to develop procedures for power and sample size
computations for a few particular statistical tests of assumptions of psychometric
models.
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Another point worth discussing is the problem of predetermining a deviation from
the hypothesis to be tested in practice (for the computation of power and sample
size, respectively). In most applications, not only one but multiple parameters are
of interest and the practical meaning of a deviation from the parameter value to be
tested usually differs from one parameter to the other and depends on the practical
context as well. A suitable contribution on this topic is provided by [5] describing a
three-step procedure facilitating the evaluation of the practical meaning of deviations
from the hypothesis to be tested.

An essential difference between the conditional tests based on discrete probability
distributions and all other approaches described in this summary chapter is that the
conditional tests are one-sided. Hence, the power of these tests is expected to be
considerably larger so that comparisons with the χ2 and F tests (in terms of power)
do not make much sense. From the practical point of view, one-sided tests may be
less suitable in the context of psychometric modeling since one is usually interested
in the question whether model assumptions hold or not. The directions or signs of
deviations from the parameter values to be tested do not play an important role.

Finally, some comments on the utility of the F test shall be discussed. Power
computations depend on Monte Carlo procedures. On the one hand, it is nice to have
an R package providing the necessary numerical procedures for the approximation
of the power of the tests. On the other hand, the computation of the power with
the R package pwrRasch is restricted to tests of hypotheses of the following type.
Regarding every single parameter of interest, exactly one value has to be chosen.
That is, the item parameters have to be chosen for both groups of persons and under
the hypothesis to be tested they are chosen so that they are equal between both
groups (like it is described in the first two paragraphs of Sect. 3.5). Such a hypothesis
is usually not the hypothesis one is interested in. Of interest is the hypothesis that
the differences between the item parameters equal 0. The problem is that the power
of the test does not only depend on the difference of an item parameter between
the groups but also on the level on which this difference is assumed (whether it is
an easy or difficult item that possibly differs between two groups) and, again, the
latter is usually not of interest in an application and it will hardly ever be possible
to reasonably predetermine it. Furthermore, the procedure is restricted to the Rasch
model and to the question of group differences. Tests of other important assumptions
of the model like local independence and equal item discriminations are excluded.
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Chapter 4
Bootstrap Change Point Testing for
Dependent Data

Zuzana Prášková

Abstract Critical values of change point tests in location and regression models
are usually based on limit distribution of the respective test statistics under the null
hypothesis. However, the limit distribution is very often a functional of some Gaus-
sian processes depending on unknown quantities that cannot be easily estimated. In
many situations, convergence to the asymptotic distribution is rather slow and the
asymptotic critical values are not well applicable in small and moderate samples. It
has appeared that resamplingmethods provide reasonable approximations for critical
values of test statistics for detection changes in location and regressionmodels. In this
chapter dependent wild bootstrap procedure for testing changes in linear model with
weakly dependent regressors and errors will be proposed and its validity verified.
More specifically, the concept of L p-m-approximability will be used.

Keywords Change point · Regression models · Weak dependence
Dependent wild bootstrap

4.1 Introduction

Consider model

Yi = xT
i β + xT

i δn I {i > k∗} + εi , i = 1, . . . , n, (4.1)

where 1 < k∗ ≤ n is an unknown change point, xi = (xi1, . . . , xid)
T are regressors,

β = (β1, . . . , βd)
T , δn = (δ1n, . . . , δdn)

T are unknown parameters, and εi are ran-
dom errors.

Wewant to test the null hypothesis: H0 : k∗ = n against the alternative H1 : k∗<n.

Typical test statistics for solving the above problem are CUSUM-type test statistics
that are based on functionals of cumulative sums of estimated residuals. An example
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of such statistic is

Tn(h) = sup
0<t<1

{ 1

nh2(t)
ST

�(n+1)t�Σ̂
−1
n S�(n+1)t�

}
(4.2)

where

Sk =
k∑

i=1

xi ε̂i =
k∑

i=1

xi (yi − xT
i β̂n), k = 1, . . . , n,

are cumulative sums of weighted least-squares residuals ε̂i = yi − xT
i β̂n, β̂n is the

least-squares estimator (LSE) of the parameter β, Σ̂n is an estimator of the long-run
variance matrix

Σ = lim
n→∞Var

(
1√
n

n∑
i=1

xiεi

)
, (4.3)

and finally, h is a positive weight function defined on (0, 1). It can be shown that
under quite general conditions discussed below the asymptotic distribution of this
statistic under the null hypothesis is the same as the distribution of

sup
0<t<1

{ d∑
j=1

B2
j (t)/h2(t)

}

where {B j (t), t ∈ [0, ]} are independent Brownian bridges. The distribution of the
limiting statistics is known only for the identity function h, otherwise it should be
simulated.

An alternative to the limiting distribution can be bootstrap. It is known that boot-
strap procedures provide reasonable approximations for the critical values of test
statistics constructed to detect changes in location and linear regression models with
independent observations (see, e.g., Antoch et al. [2], Antoch and Hušková [1, 14],
Hušková [13], Hušková and Picek [17]). What concerns dependent observations,
Kirch [20] considered a location model with errors supposed to be a linear process
and developed the distribution of the test based on the block random permutations of
LSE-residuals. Hušková and Kirch [15, 16] considered location model with strong
mixing errors and circular block bootstrap based on LSE-residuals, Hušková et al.
[19], studied regression and pair bootstrap in a change point problem for an autore-
gressive process with i.i.d. innovations. We do not deal here with sequential proce-
dures. For references concerning bootstrap in sequential procedures for change point
detection, see, e.g., survey papers Horváth and Rice [12], Hušková and Prášková [18]
or Kirch [21] respectively. Recently, Sharipov et al. [24] considered block-wise boot-
strap for testing change in the mean or in the marginal distribution in a Hilbert space
valued random sequences that are near epoch dependent. Bucchia and Wendler [6]
used wild dependent bootstrap for testing a change in the mean of ρ-mixing Hilbert
space valued random fields. Here we will consider regression model where both the
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regressors and errors are dependent and develop amodification of the wild dependent
bootstrap procedure to approximate critical values of test statistic of type (4.2).

The chapter is further organized as follows. In the next section we formulate
assumptions on the regressors and errors under which the asymptotic distribution of
test statistic (4.2) holds true and summarize known results. Then we propose a wild
bootstrap method and discuss its consistency. In the last section we provide some
results of a numerical study.

In the sequel, we will use the following notation: ‖·‖ will denote the Euclidean
norm of a vector or a matrix, and for a vector-valued random variable X we denote
‖X‖p = (

E‖X‖p
)1/p

, p ≥ 1, the L p-norm of X . We also assume that random
variables under consideration are defined on a general probability space (Ω,A , P).

4.2 Procedures with Weakly Dependent Regressors and
Errors

In this section we consider model (4.1) that satisfies the following assumptions.
Assumptions on the Regressors

(A.1) For any i ∈ Z, xi = h(ξ i , ξ i−1, . . .), where h is a measurable d-dimensional
function, {ξ i : i ∈ Z} is a sequence of i.i.d. random vectors (of dimension d1,
say) and E‖xi‖4+Δ < ∞ for some Δ > 0; Exi xT

i = C is a positive definite
matrix for all i ∈ Z.

(A.2) For all i ∈ Z,
∞∑

m=1

‖xi − x(m)
i ‖2+Δ < ∞

where
x(m)

i = h(ξ i , ξ i−1, . . . , ξ i−m+1, ξ
(m)
i−m, ξ

(m)
i−m−1, . . .),

ξ
(m)
i−m, ξ

(m)
i−m−1, . . . are i.i.d. with the same distribution as ξ 0 and independent

of {ξ i },
(A.3) {xi }, {εi } are independent sequences.
Assumptions on the Errors

(B.1) For any i ∈ Z, εi = g(ζ i , ζ i−1, . . .), where g is a measurable function, {ζ i :
i ∈ Z} is a sequence of i.i.d. random vectors (of dimension r1, say) and Eεi =
0,E|εi |4+Δ < ∞ for some Δ > 0.

(B.2) For all i ∈ Z,
∞∑

m=1

|εi − ε
(m)
i |2 < ∞

where
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ε
(m)
i = g(ζ i , ζ i−1, . . . , ζ i−m+1, ζ

(m)
i−m, ζ

(m)
i−m−1, . . .),

ζ
(m)
i−m, ζ

(m)
i−m−1, . . . are i.i.d., independent of {ζ i }, with the same distribution as

ζ 0.

Remark 1 Assumptions (A.1) and (B.1) say that the regressors and errors are one-
sided Bernoulli shifts (see, e.g., Billingsley [5]) that represent a type of causal depen-
dence, possibly non-linear, which is very often used in time series and econometrics.
Assumptions (A.2) and (B.2) follow the concept of L p-m-approximability and are
motivated by the work of Hörmann and Kokoszka [10] and Berkes et al. [3]. The
main idea of this concept is to approximate a sequence {Xn, n ∈ Z} (say) by an
m-dependent process {X (m)

n , n ∈ Z} such that for every n the sequence {X (m)
n } con-

verges to Xn sufficiently fast as m → ∞, and then obtain the limiting behaviour
of the original process from the corresponding results for m-dependent sequences.
This type of weak dependence include linear processes with i.i.d. innovations, NED
processes (near epoch dependence) over i.i.d., non-linear sequences generated from
i.i.d. innovations, augmented GARCH sequences and many others (see works by
Hörmann and Kokoszka [10] and Berkes et al. [3] in which also relations to the
strong mixing property and other types of weak dependence are discussed. Using
m-dependent approximations alsomotivated us to consider dependent wild bootstrap
procedure, see Sect. 4.3.

Remark 2 Let us note that the sequences {xi : i ∈ Z} and {εi : i ∈ Z} are strictly sta-
tionary and ergodic, and xi and x

(m)
i are equally distributed for every i ∈ Z.Similarly,

εi and ε
(m)
i are equally distributed for every i ∈ Z. Moreover, under Assumptions

(A.1)–(A.3) and (B.1)–(B.2), according to Lemma 2.1 and Theorem 4.2 in Hörmann
and Kokoszka [10], {xiεi : i ∈ Z} is a centered L p-m-approximable sequence, and
the infinite sum in (4.3) converges (coordinate-wise) absolutely.

We will use the weight function

h(t) = [t (1 − t)]γ , 0 ≤ γ <
1

2
, t ∈ (0, 1) (4.4)

that is sensitive w.r.t. contiguous alternatives (Csörgő and Horváth, [8], Chap.3).
We could allow for more general weight functions h discussed in this reference but
in order to avoid technicalities we confine ourselves to functions h as in (4.4). Now
we summarize known results on asymptotic distribution of test statistic (4.2).

Theorem 1 Let us consider model (4.1) and suppose that Assumptions (A.1)–(A.3)
and (B.1)–(B.2) are satisfied. Let the long-run variance Σ as defined in (4.3) be
positive definite and Σ̂n be an estimator of Σ such that, as n → ∞,

Σ̂n − Σ = op(1). (4.5)

If we assume that h(t) satisfies (4.4) then, under H0, as n → ∞,

http://dx.doi.org/10.1007/978-3-319-76035-3_3
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Tn(h)
D−→ sup

0<t<1

{ d∑
j=1

B2
j (t)/h2(t)

}
(4.6)

where {B j (t), t ∈ [0, 1]}, j = 1, . . . , d, are independent Brownian bridges and
D−→

denotes the convergence in distribution.

Proof The proof follows as a special case of Theorem 2.1 in Prášková and Chochola
[22] where general M− estimators are used. �

Large values of the statistic Tn(h) indicate that the null hypothesis is violated.
In the next we will consider kernel estimators of Σ defined by

Σ̂n =
∑

|k|≤q(n)

ω(k/q(n))Γ̂ k (4.7)

where

Γ̂ k =
{

1
n

∑n−k
j=1 x j xT

j+k ε̂ j ε̂ j+k, k ≥ 0

Γ̂
T
−k, k < 0

(4.8)

and ω is a kernel function that be specified below.

Theorem 2 Let Assumptions (A.1)–(A.3) and (B.1)–(B.2) be satisfied. Let Σ̂n be the
estimator of Σ as given in (4.7) with kernel that satisfies the assumptions

(i) ω(0) = 1,
(ii) ω is a symmetric and Lipschitz function,
(iii) ω has a bounded support,
(iv) the Fourier transform of ω is also Lipschitz and integrable.

Let q(n) → ∞ and q(n)/n1/2 → 0 as n → ∞. Then, under H0,

Σ̂n = Σ + op(1). (4.9)

Proof See Theorem 2.2 in Prášková and Chochola [22]. �

It can be shown that the Bartlett kernel

ω(x) = (1 − |x |)I {|x | ≤ 1} (4.10)

satisfies conditions of Theorem 2. In the next we will consider estimators with this
kernel.

Theorem 3 Let us consider model (4.1) with δn = δn−1/2, δ �= 0 and k∗
n = �nτ� ,

0 < τ < 1. Let Assumptions (A.1)–(A.3) and (B.1)–(B.2) be satisfied and Σ be pos-
itive definite. Let Σ̂n be a kernel estimator of Σ that satisfies Theorem 2. Then, as
n → ∞,
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Tn(h)
D−→ sup

0<t<1

{
(B(t) + s(t, τ ))T (B(t) + s(t, τ ))/h2(t)

}
(4.11)

where h(t) is given in (4.4) and B(t) = (B j (t), j = 1, . . . , d)T , {B j (t), t ∈ [0, 1]}
are independent Brownian bridges, and

s(t, τ ) = f (t, τ )Σ−1/2Cδ

with

f (t, τ ) =
{

t (1 − τ), 0 < t ≤ τ < 1,

τ (1 − t), 0 < τ ≤ t < 1.

Proof The proof is a modification of the proof of Theorem 3 in Prášková and Cho-
chola [22]. �

4.3 Dependent Wild Bootstrap

The dependent wild bootstrap (Shao, [23], also dependent multiplier bootstrap,
Bücher and Kojadinovic [7]) generalizes the wild bootstrap byWu [25] to dependent
observations with the aim to mimic their dependency structure. Here we propose
using the wild bootstrap to CUSUM statistics and their functionals as given in (4.2).

First notice that under H0, the cumulative sums Sk can be written in the form

Sk =
k∑

i=1

xi ε̂i =
k∑

i=1

xiεi − CkC−1
n

n∑
i=1

xiεi , Ck =
k∑

i=1

xi xT
i . (4.12)

For given observations yi , xi , i = 1, . . . , n, we propose to replace dependent errors
εi in Sk by bootstrap errors ε∗

i defined by ε∗
i = ε̂i Zi , where ε̂i are the LSE residuals

and Zi = Zi,n are random variables that satisfy the conditions below. We get the
bootstrap cumulative sums S∗

k . To obtain a bootstrap statistic T ∗
n (h) we also need to

find a proper bootstrap estimator of the long-run variance Σ .

Assumptions on Bootstrap Errors

(C.1) For every n ∈ N, {Zi,n : i ∈ N} is strictly stationary and independent of xi ,

εi , i = 1, . . . , n.

(C.2) EZi,n = 0 and supn E|Zin|2+ν < ∞ for a ν > 0.
(C.3) VarZi,n = 1,Cov(Zi,n, Z j,n) = ω((i − j)/qn), i, j = 1, . . . , n,

n = 1, 2, . . . , where ω(0) = 1, ω(x) = 0, |x | > 1.
(C.4) Zi,n are qn - dependent, such that qn → ∞ as n → ∞ and qn = o(nΔ/(2+Δ)).

Obviously, ε∗
i = ε∗

i,n also depends on n. With the superscript ∗ we will further
denote probability andmoments related to bootstrap, i.e., conditionally on xi , εi , i =
1, . . . , n. Then we have
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E∗ε∗
i = Êεi Zi,n|(xi , εi , i = 1, . . . , n) = 0, Cov∗

(ε∗
t , εs

∗) = ε̂t ε̂sω((t − s)/qn))

(4.13)
Next theorem gives us properties of bootstrap variance estimators.

Theorem 4 Let Σ be as given in (4.3). Let Σ̂n be the estimator of Σ defined in (4.7)
with Bartlett kernel (4.10). Denote

Σ∗
n =Var∗ 1√

n

n∑
i=1

xiεi Zi,n (4.14)

Σ̂
∗
n =Var∗ 1√

n

n∑
i=1

xi ε̂i Zi,n (4.15)

and
Σ̃n =

∑
|k|≤q(n)

ω(k/q(n))Γ̃ k (4.16)

where

Γ̃ k =
{

1
n

∑n−k
j=1 x j xT

j+kε jε j+k, k ≥ 0

Γ̃
T
−k, k < 0.

(4.17)

Then, under Assumptions (A.1)–(A.3), (B.1)–(B.2), (C.1)–(C.4), with ω given by
(4.10) and qn = q(n), as n → ∞,

Σ∗
n =Σ̃n (4.18)

Σ̂
∗
n =Σ̂n (4.19)

Σ∗
n =Σ + op(1) (4.20)

Σ̂
∗
n =Σ + Op(qnn−1/2) + op(1). (4.21)

Proof The assertions (4.18) and (4.19) follow from (4.13) by direct computations.
Assertion (4.20) is a consequence of the fact that {xiεi } is L p-m-approximable (see
Remark 2) and Theorem 16.6 in [11], (4.21) follows from (4.19) and the proof of
Theorem 2.2 in [22]. �

Remark 3 Convergence in (4.21) holds both under the null hypothesis and the con-
tiguous alternatives considered in Theorem 3.

The bootstrap statistic is

T ∗
n (h) = max

1≤k≤n

1

nh2(k/n)
S∗T

k Σ̂
∗−1
n S∗

k (4.22)

Now, let us consider the bootstrap version of the cumulative sums Sk . From (4.12),
if we replace errors εi by their bootstrap counterparts ε∗

i we get, under H0
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S∗
k =

k∑
i=1

xi ε
∗
i − CkC−1

n

n∑
i=1

xi ε
∗
i

=
k∑

i=1

xi εi Zi,n − CkC−1
n

n∑
i=1

xi εi Zi,n +
[

k∑
i=1

xi xT
i Zi,n − CkC−1

n

n∑
i=1

xi xT
i Zi,n

]
(β̂ − β)

(4.23)

where β̂ is the LSE of β. Under H1 the expression for S∗
k is more complicated. The

following theoremwhich is a kind of conditional functional central limit theoremwith
respect to probability measure P∗, i.e., conditionally on given xi , εi , i = 1 . . . , n, is
a crucial step in proving the consistency of the bootstrap procedure.

Theorem 5 Let Assumptions (A.1)–(A.3), (B.1)–(B.2), (C.1)–(C.4) hold true and
assume also that, as n → ∞,

Σ̃n → Σ almost surely [P] (4.24)

and Σ is finite and positive definite. Consider process

Y n(t) = 1√
n
Σ

∗− 1
2

n

�nt�∑
i=1

xiεi Zi,n, t ∈ [0, 1]. (4.25)

Then, as n → ∞,

{Y n(t), t ∈ [0, 1]} ∗⇒ {W d(t), t ∈ [0, 1]} almost surely [P] (4.26)

where {W d(t), t ∈ [0, 1]} is a standard d-dimensional Wiener process on [0, 1] and
∗⇒ means the weak convergence with respect to P∗.

Proof We will start with a one-dimensional process {λTY n(t), t ∈ [0, 1]} for any
vector λ such that λT λ = 1. To make the proof more readable, let us introduce the
following notation: Put

V n = 1√
n
Σ

∗− 1
2

n , n = 1, 2, . . . (4.27)

H i,n = V nxiεi Zi,n, i = 1, 2, . . . , n = 1, 2, . . . (4.28)

hi,n = λT H i,n, λT λ = 1, (4.29)

ci,n = |λT V nxiεi | (4.30)

Consider σ−fieldsF k
j,n = σ {Z j,n, Z j+1,n, . . . , Z j+k,n}, j, k = 1, . . . , n = 1, . . . It

can be shown that given xi , εi the array {hi,n} is near epoch dependent (NED) with
respect to {Zi,n} (for a definition see, e.g., Chap. 17 in [9]). Indeed, due to Assump-
tions C.1–C.4, we have
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E∗‖hi,n‖2 ≤ ‖λT V n‖2‖xiεi‖2 < ∞

which holds almost surely [P] due to the remaining assumptions of the theorem.
Further,

‖hi,n − E∗hi,n|F i+m
i−m,n‖2 = [E∗|hi,n − E∗hi,n|F i+m

i−m,n|2]1/2 = 0 ≤ cinψm (4.31)

which holds for any sequence of nonnegative numbers ψk ↘ 0 and ci,n > 0. Thus
we can put ci,n = |λT V nxiεi |. Since {Zi,n} is supposed to be qn-dependent and
thus strong mixing of any size, we can apply Theorem 29.6 in [9] to the array
{hi,n} and prove that conditionally on xi , εi , i = 1, . . . , n, the univariate process
{λTY n(t), t ∈ [0, 1]} converges weakly to a standardWiener process {Wt , t ∈ [0, 1]}
almost surely [P]. For this we need to verify that conditions (a)–(f) in Theorem 29.6
in [9] with kn(t) = �nt� are satisfied almost surely [P].

Condition (a) holds true since

E∗hi,n = λT V nxiεiE∗ Zi,n = λT V nxiεiEZi,n = 0

almost surely [P]. Coefficients ψk can be chosen such that ψk = 1
kγ for γ > γ0 = 1.

Moreover, we can assume that {Zi,n} is strong mixing of size −r
r−2 with r > 2. Then

the assumption (c) is satisfied. For assumption (b) we have

sup
n

sup
i

‖hi,n/ci,n‖r = sup
n

sup
i

[E∗|Zi,n|r ]1/r = sup
n

[E|Zi,n|r ]1/r < ∞

for any r > 2 which follows from Assumptions (C.1)–(C.2). For condition (d) we
have

1

a

�n(t+a)�∑
i=�nt�+1

c2i,n ≤ ‖λT Σ∗
n‖2

1

n
· 1

a

�n(t+a)�∑
i=�nt�+1

‖xiεi‖2. (4.32)

Sequences {xi } and {εi } are strictly stationary and ergodic which follows from
Assumptions (A.1), (A.3) and (B.1) and so is {‖xiεi‖2}. Hence, as n → ∞,

1

n

n∑
i=1

‖xiεi‖2 → M almost surely [P]

where M = E‖xiεi‖2 < ∞. From here,

1

n
· 1

a

�n(t+a)�∑
i=�nt�+1

‖xiεi‖2 = 1

a

[
1

n

�n(t+a)�∑
i=1

(‖xiεi‖2 − M) − 1

n

�nt�∑
i=1

(‖xiεi‖2 − M)

]

+ 1

an
M(�n(t + a)� − �nt�) → M
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which holds uniformly in t and a as n → ∞ and almost surely [P]. Since we assume
(4.24), we can conclude that on a set of probability 1

sup
t∈[0,1],a∈(0,1−t)

lim sup
n→∞

1

a

�n(t+a)�∑
i=�nt�

c2i,n < ∞

which is condition (d) of Theorem 29.6 in [9]. What concerns condition (f), we have

E∗
(�nt�∑

i=1

hi,n

)2

=E∗
(

λT V n

�nt�∑
i=1

xiεi Zi,n

)2

= λT V nVar
∗
(�nt�∑

i=1

xiεi Zi,n

)
V nλ

=λT Σ∗−1/2
n Var∗

(
1

�nt�
�nt�∑
i=1

xiεi Zi,n

)
Σ∗−1/2

n λ
�nt�

n

=λT Σ∗−1/2
n Σ∗

�nt�Σ
∗−1/2
n λ

�nt�
n

→ t

almost surely [P] due to (4.18) and (4.24). Hence, condition (f) is verified. With the
choice γ0 = 1 in assumption (c), assumption (e) can be omitted, see a remark on
p. 482 in [9].

Thus, we have verified conditions of Theorem 29.6 in [9] and we can conclude
that, as n → ∞
{

λT 1√
n
Σ

∗− 1
2

n

�nt�∑
i=1

xiεi Zi,n, t ∈ [0, 1]
}

P∗⇒ {W (t), t ∈ [0, 1]} almost surely [P]
(4.33)

for any vector λ, λT λ = 1. Now, according to the Cramér–Wold device and Theo-
rems 29.16 and 26.23 in [9], we get

{Y n(t), t ∈ [0, 1]} ∗⇒ {W d(t), t ∈ [0, 1]} almost surely [P]. (4.34)

�

Remark 4 Condition (4.24) of almost sure convergence of the Bartlett estimator
of the long-run variance matrix Σ needs some stronger conditions like cumulant
assumptions and additional conditions on the kernel bandwidth qn. For a univariate
case and four-order stationary sequence the result was obtained byBerkes et al. [4]. In
our casewe shouldmodify conditions (A.2) and (B.2) to L4-m-approximable random
variables, consider a component-wise cumulant equivalent condition like (16.23) in
[11] and choose kernel function with the bandwidth of order O(n/(log n)4) but we
will not go into details.

Since the stationarity and ergodicity of {xi } imply
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sup
0≤t≤1

(C�nt�C−1
n − t Id) → 0 almost surely [P] (4.35)

where Id is the unit matrix, we immediately get

{Y n(t) − C�nt�C−1
n Y n(1), t ∈ [0, 1]} ∗⇒ {Bd(t), t ∈ [0, 1]} almost surely [P]

(4.36)
where {Bd(t), t ∈ [0, 1]} is a standard d−dimensional Brownian bridge. The con-
sistency of the method will be proved if we show that

T ∗
n (h)

D ∗→ sup
t∈[0,1]

d∑
j=1

B2
j (t)/h2(t) (4.37)

almost surely [P] (or in probability). For simplicity, wewill further consider h(t) = 1,
only. We also need the following result.

Theorem 6 Under assumptions of Theorem 5, as n → ∞,

max
1≤k≤n

∥∥∥∥∥
k∑

i=1

V nxi xT
i (β̂ − β)Zi,n

∥∥∥∥∥
P∗→ 0 almost surely [P] (4.38)

where V n is defined in (4.27).

Proof It can be shown that given xi , εi , i = 1 . . . n, for any λ such that λT λ = 1, the
array {λT V nxi xT

i (β̂ − β)Zi,n} is an L2 mixingal (for a definition, see, e.g., Chap. 16
in [9]) with respect to the filtrationF j,n = σ {Z j,n, Z j−1,n . . . }where we can choose
ci,n = |λT V nxi xT

i (β̂ − β)| and

ψk =
{
1, k ≤ qn
1
k , k > qn.

(4.39)

With this choice ofψk, it can be easily shown that condition (16.41) in [9] is satisfied.
Then, according to Corollary 16.10 in [9],

E∗
(
max
1≤k≤n

k∑
i=1

λT V nxi xT
i (β̂ − β)Zi,n

)2

≤ K
n∑

i=1

c2i,n (4.40)

for a positive constant K . Further, when we use (4.27),

n∑
i=1

c2i,n ≤ λT Σ∗−1
n λ(β̂ − β)T 1

n

n∑
i=1

(xi xT
i )(xi xT

i )(β̂ − β). (4.41)
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Table 4.1 Asymptotic, simulated and dependent wild bootstrap quantiles of distribution of (4.2),
xi = (1, ξi ), ξi ∼ N (0, 1), εi ∼ AR(1) with the parameter ρ, n = 250

Quantiles δ 90% 95% 99%

Asymptotic 2.1080 2.5036 3.3621

ρ = 0.3

Simulated (0, 0) 2.0604 2.4139 3.2456

Bootstrap (0, 0) 1.9363 2.2329 2.8990

(0.25, 0.25) 2.0088 2.3140 2.9731

(0.5, 0.5) 2.2187 2.5736 3.2827

ρ = 0.5

Simulated (0, 0) 2.2670 2.6534 3.4631

Bootstrap (0, 0) 1.9858 2.3059 2.9615

(0.25, 0.25) 2.0862 2.4022 3.0988

(0.5, 0.5) 2.2436 2.5788 3.2634

From the stationarity and ergodicity of {xi } and Assumption (A.1) we get that
1
n

∑n
i=1(xi xT

i )(xi xT
i ) = O(1) almost surely [P] and from assumption (4.24)

λT Σ∗−1
n λ = O(1) almost surely [P]. Next, (β̂ − β) = o(1) almost surely [P], which

again follows from the ergodicity and stationarity and Assumption (B.1). The latter
results hold true both under the null hypothesis and conditions of Theorem 3. Hence,
we can conclude that the right-hand side of (4.40) converges to 0 almost surely [P].
We conclude the proof by using the Markov inequality. �

Using this result and (4.35) we get

max
1≤k≤n

∥∥∥∥∥V n

(
k∑

i=1

xi xT
i Zi,n − CkC−1

n

n∑
i=1

xi xT
i Zi,n

)
(β̂ − β)

∥∥∥∥∥
P∗→ 0 almost surely [P]

(4.42)
and combining it with (4.36) and (4.23) we get

sup
0≤t≤1

1

n
S∗T

�nt�Σ
∗−1
n S∗

�nt�
D ∗→ sup

0≤t≤1

d∑
j=1

B2
j (t) almost surely [P]. (4.43)

Since
E∗‖Σ∗

n − Σ̂
∗
n‖ = ‖Σ∗

n − Σ̂
∗
n‖ → 0

in P-probability due to Theorem4,we can replaceΣ∗
n by Σ̂

∗
n in (4.43) fromwhichwe

conclude that (4.37) holds in probability. This gives the consistency of the method.
We have proved this asymptotic result under the null hypothesis but the result (4.37)
is true under local alternatives considered in Theorem 3. The proofs are more com-
plicated and not presented here.
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Table 4.2 Asymptotic, simulated and dependent wild bootstrap quantiles of distribution of (4.2),
xi ∼ N2(0, V ), εi ∼ AR(1) with the parameter ρ, n = 250.

Quantiles δ 90% 95% 99%

Asymptotic 2.1080 2.5036 3.3621

ρ = 0.3

Simulated (0, 0) 1.8955 2.1969 2.8832

Bootstrap (0, 0) 1.9189 2.2235 2.8514

(0.25, 0.25) 2.0152 2.3279 2.9737

(0.5, 0.5) 2.3812 2.7713 3.5455

ρ = 0.5

Simulated (0, 0) 1.8979 2.2323 2.9130

Bootstrap (0, 0) 1.8041 2.0885 2.6841

(0.25, 0.25) 1.9858 2.2880 2.9200

(0.5, 0.5) 2.3111 2.6815 3.4183

Table 4.3 Empirical level of rejection of H0 based on asymptotic and bootstrap critical values,
nominal level α = 0.05, xi = (1, ξi ), ξi ∼ N (0, 1), εi ∼ AR(1) with the parameter ρ, n = 250

Asymptotic Bootstrap

ρ = 0.3 ρ = 0.3

δ (0,0) 0.0458 δ (0,0) 0.0732

(0.25,0.25) 0.3892 (0.25,0.25) 0.4644

(0.5,0.5) 0.9638 (0.5,0.5) 0.9550

ρ = 0.5 ρ = 0.5

δ (0,0) 0.0716 δ (0,0) 0.0834

(0.25,0.25) 0.3316 (0.25,0.25) 0.3654

(0.5,0.5) 0.8840 (0.5,0.5) 0.8688

Table 4.4 DWB: Empirical level of rejection of H0 based on asymptotic and bootstrap critical
values, nominal level α = 0.05, xi =∼ N2(0, V ), εi ∼ AR(1) with the parameter ρ, n = 250

Asymptotic Bootstrap

ρ = 0.3 ρ = 0.3

δ (0,0) 0.0306 δ (0,0) 0.0484

(0.25,0.25) 0.8440 (0.25,0.25) 0.8742

(0.5,0.5) 1.0000 (0.5,0.5) 1.0000

ρ = 0.5 ρ = 0.5

δ (0,0) 0.0238 δ (0,0) 0.0690

(0.25,0.25) 0.7538 (0.25,0.25) 0.8238

(0.5,0.5) 1.0000 (0.5,0.5) 0.9996
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4.4 Simulations

In this section we present results of a short simulation study. In the simulation exper-
iment we have simulated model (4.1) both under the null hypothesis (δ = 0) and
alternatives (δ �= 0) for various values of vector δ. For regressors we have chosen
either the vectors xi = (1, ξi )

T with ξi ∼ N (0, 1) or the vectors xi ∼ N2(0, V ),
with the variance matrix

V =
(
5/4, 1
1, 5/4

)
.

The errors εi were generated as an AR(1) process with the autoregressive parameter
ρ and standard normal innovations, and vector β was chosen to be β = (1, 1)T . The
bootstrap variables were generated to satisfy a moving average MA(q − 1) process,

Zi = Zi,n = (ηi + · · · + ηi−q)/
√

q

with ηi to be i.i.d. random variables distributed asN (0, 1) and q = qn was an integer
between n1/4 and n1/3. Size of sample was either n = 100, 250, 625. Test statistic
(4.2) was computed for function h(t) = 1. Quantiles of the asymptotic distribution
were taken from [22] and compared with empirical quantiles computed by 5, 000
Monte Carlo experiments and with quantiles obtained by dependent wild bootstrap
procedure based on 500 bootstrap samples and for 500 repetitions, see Tables4.1,
4.2 where the results for n = 250 are presented. It can be seen that the bootstrap
quantiles are close to the true (based on Monte Carlo method) values in almost all
cases. It Tables4.3, 4.4 we compare the power of the asymptotic and bootstrap test
which demonstrate that dependent wild bootstrap performs well. Change point k∗
was chosen to be k∗ = �n/2� and we used 5,000 Monte Carlo experiments. Sample
size n = 250 used here can be considered mild due to computational complexity
necessary to estimate the long-run variance matrix.
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Chapter 5
The Covariation Matrix of Solution of a
Linear Algebraic System by the Monte
Carlo Method

Tatiana M. Tovstik

Abstract A linear algebraic system is solved by theMonte Carlomethod generating
a vector stochastic series. The expectation of a stochastic series coincides with the
Neumann series presenting the solution of a linear algebraic system. An analytical
form of the covariation matrix of this series is obtained, and this matrix is used
to estimate the exactness of the system solution. The sufficient conditions for the
boundedness of the covariation matrix are found. From these conditions, it follows
the stochastic stability of the algorithm using the Monte Carlo method. The number
of iterations is found, which provides for the given exactness of solution with the
large enough probability. The numerical examples for systems of the order 3 and of
the order 100 are presented.

Keywords Linear algebraic system · Monte Carlo method
Covariation matrix of solution

5.1 Introduction

In [1], a solution of a linear algebraic system is build by the Monte Carlo method
in combination with ideas of simulation of Gibbs’s fields [2], the corresponding
algorithm being given. In the present chapter, which continues the studies of [1],
an analytical form of the covariation matrix of a stochastic vector solution series is
obtained. This matrix is used to estimate the exactness of the approximate solution.
Sufficient conditions for the boundedness of the covariation matrix are found.

As a rule, using the Monte Carlo method for solving a linear algebraic system
involves the calculation of one component vector solution or of a scalar product of
the vector solution and a given vector [3]. Following [4, 5], in the present chapter the
entire vector solution is estimated. In [4, 5], the Monte Carlo algorithms are given
allowing one to put forward a solution under restrictions more weak than those for
the standard Monte Carlo method.
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In [6], the Monte Carlo algorithm is presented to simulate a random vector. The
expectationof the successive approximation coincideswith the corresponding results,
as obtained by Zeidel’s method.

5.2 The Monte Carlo Method of Solution

Let
X = A · X + f, (5.1)

be a system of linear algebraic equations, whereA = [ Ai j ] i, j=1,n is a square matrix,
and X = (x1, . . . , xn)T and f = ( f1, . . . , fn)T are n-vectors.

We assume that ‖A‖m ‖A‖l < 1, where

‖A‖ = ‖A‖m = max
1≤i≤n

n∑

k=1

|Aik | < 1, ‖A‖l = max
1≤ j≤n

n∑

k=1

|Akj |

are the m- and l-norms of a matrix A, respectively.
If ‖A‖m < 1, then the solution X̄ of Eq. (5.1) may be represented as the Neumann

series

X̄ =
∞∑

k=0

Ak · f, (5.2)

where f is a vector of initial approximation.
We introduce the stochastic series

ζ̂ = ζ (0) + ζ (1) + · · · + ζ (m) + . . . (5.3)

in which ζ (0) = f , and the successive vectors ζ (m), m = 1, 2, . . . , are simulated so
that Eζ (m) = Am · f . We also introduce the stochastic matrix P connected with the
matrix A:

P = [ pi j ], pi j = |Ai j |/
n∑

k=1

|Aik | ≥ 0, 1 ≤ i, j ≤ n. (5.4)

It is clear that pi j > 0 if Ai j �= 0, and
∑n

j=1 pi j = 1, 1 ≤ i ≤ n.
We successively simulate the vectors ζ (m), m ≥ 1 by as follows. Given each m

and for all i (i = 1, . . . , n), we accidentally choose a number im according to the
distribution

1 2 . . . n
pi1 pi2 . . . pin



5 The Covariation Matrix of Solution of a Linear Algebraic System … 73

Next, we find the components of the vector ζ (m),

ζ
(m)
i = Aiim

piim
ζ

(m−1)
im

, (5.5)

and obtain the components ζ̂i in the series (5.3),

ζ̂i = fi +
∞∑

m=1

Aiim

piim
· · · Ai2i1

pi2i1
fi1 . (5.6)

From Eq. (5.5) with given ζ (m−1), it follows that the conditional expectation ζ
(m)
i

is equal

E(ζ
(m)
i |ζ (m−1)) =

n∑

j=1

Ai jζ
(m−1)
j .

Therefore, E(ζ (m)) = A · E(ζ (m−1)). We have E(ζ (0)) = ζ (0) = f , and hence
E(ζ (m)) = Am · f , m = 1, 2, . . . The Neumann series converges; therefore, E(ζ̂ ) =
X̄.

It is possible to estimate the solution of system (5.1) in the form (5.2) by an
averaging N samples of the random vectors

ζ̂ M = f +
M∑

m=1

ζ (m), (5.7)

namely

X̄ ≈ ¯̂
ζ MN = 1

N

N∑

s=1

(ζ̂ M)s, (5.8)

where (ζ̂ M)s is the sth sample.
Let R = [ Ri j ] be the covariation matrix of the random vector ζ̂ (see (5.3)):

R = E
(
(ζ̂ − Eζ̂ ) · (ζ̂ − Eζ̂ )T

)
. (5.9)

The variance Dζ
(m)
i of the i th component of the vector ζ (m) is as follows:

Dζ
(m)
i = d(m)

i =
∑′ A2

i im

piim

A2
im im−1

pimim−1

· · · A
2
i2i1

pi2i1
f 2i1 −

(∑′
Aiim Aimim−1 · · · Ai2i1 fi1

)2
.

(5.10)
Introduce designations Throughout the symbol

∑′, we denote a summation which
is carried out for all indexes with sub-indexes ik, j� in the range 1 ≤ ik, j� ≤ n. For
example, in (5.10)
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∑′ =
n∑

i1,i2,...,im=1

. (5.11)

Throughout the symbol
∑′

G , we denote a summation for all indexes with sub-indexes
at which the additional restriction G is imposed.

We next consider the nth order diagonal matrices D(m) and D with entries

d(m)
i = (

D(m)
)
i i and di =

∞∑

m=1

d(m)
i , (5.12)

respectively.
For any matrix C = [Ci j ], we write (C)i j = Ci j .
The symbol {C} will denote the diagonal matrix with entries coinciding with the

diagonal entries of a matrix C.

We shall consider the following matrices

Ā =
∞∑

m=1

Am, B = [ Bi j ] = [ A2
i j ],

H(1) =
∞∑

m=1

Am · D · (Am)T , H(t) =
∞∑

m=1

Am · {H(t − 1)} · (Am)T , t = 2, 3 . . .

H̃ =
∞∑

t=1

(−1)t+1H(t), (5.13)

where T denotes transposition.
We shall also need the following matrix norms:

d = ‖D‖ = max
i

di , μ = ‖A‖m, ν = ‖A‖l , β = μ · ν, γ = ‖B‖. (5.14)

5.3 Sufficient Conditions for the Convergence
of the Series H̃

The norm of a diagonal matrix D with entries (5.12) is as given by d = ‖D‖ =
maxi

(
(Z̄)i − ∑∞

m=1((A
m · f)i )2

)
. Here, Z̄ = ∑∞

m=0 χm · g is the Neumann series
for the system of linear algebraic equations Z = χ · Z + g with the matrix χ =
[ χi j ] = [ A2

i j/pi j ] and the vector g with components gi = f 2i . If the entries of the

matrix P are given by Eq. (5.4), then ‖χ‖ = ‖A‖2 < 1, and the series Z̄ converges.
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Therefore, the boundedness of the normD is secured by the convergence of the series∑∞
m=1(A

m · f)2, which follows from the convergence of series (5.2).

Remark 1 If the entries of the matrix P differ from (5.4), then additionally the con-
dition ‖χ‖ < 1 is to be fulfilled.

Sufficient conditions for the series (5.13) to converge are given in the following.

Theorem 5.1 If the norms of matrices A and B satisfy the inequalities

μ = ‖A‖m < 1, β = ‖A‖m · ‖A‖l < 1, γ + μ2 = ‖B‖ + ‖A‖2 < 1, (5.15)

then the series (5.13) converges and the norm of the matrix H̃ is bounded,

‖H̃‖ ≤ d
β

1 − β

γ

1 − γ − μ2
. (5.16)

Proof We estimate the norm of the matrix H(1) = ∑∞
m=1 A

m · D · (Am)T . In the
notation (5.14), if β < 1, then

‖H(1)‖ ≤
∞∑

k=1

(‖A‖)k‖D‖m(‖AT ‖)k = d
∞∑

k=1

βk = d
β

1 − β
.

Let D(t) = {H(t)} be the diagonal matrix with entries di (t) = {H(t)}i . We con-
sider its norm ‖D(t)‖m = maxi |di (t)|. The diagonal matrix {H(1)} reads as

{H(1)} = {A · D · AT } + {A2 · D · (A2)T } + . . .

It is easy to verify that {A · D · AT }i = ∑n
k=1 A

2
ikdk , and, as a result,

di (1) =
∞∑

t=1

n∑

k=1

((At )ik)
2dk = (5.17)

n∑

k=1

A2
ikdk +

∞∑

t=2

∑′
Ai j1 A j1, j2 · · · A jt−2 jt−1

∑′
Aii1 Ai1,i2 · · · Ait−2it−1

n∑

k=1

A jt−1k Ait−1kdk .

We have | ∑n
k=1 A jt−1k Ait−1kdk | ≤ dγ , and hence, |di (1)| ≤ dγ (1 + ∑∞

t=2 μ2(t−1)),
the norm of matrix {H(1)} satisfies the inequality ‖{H(1)}‖=‖D(1)‖ ≤ dγ /(1 −
μ2). Next, we have H(t) = ∑∞

t=1 A
m · D(t − 1) · (Am)T at t ≥ 2, and hence,

‖D(t)‖ = ‖{H(t)}‖ ≤ ‖D(t − 1)‖ γ

1−μ2 = d
(

γ

1−μ2

)t
,

‖H(t)‖ ≤ ‖D(t − 1)‖ β

1−β
≤ dβ

1−β

(
γ

1−μ2

)t
.
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Now it is possible to estimate the norm of the matrix H̃ under the assumption that
γ /(1 − μ2) < 1. Namely,

‖H̃‖ ≤
∞∑

t=1

‖H(t)‖ ≤ dβ

1 − β

∞∑

t=1

(
γ

1 − μ2

)t

= dβ

1 − β

γ

1 − γ − μ2
.

Therefore, if the norms of the matrices A and B satisfy inequalities (5.15), then
according to inequality (5.16) the norm of the matrix H̃ is bounded. �

From (5.17), it follows that di (1) ≥ 0, and the algorithm for calculation di (t) gives
that di (t) ≥ 0 for t ≥ 1, i = 1, . . . n, and therefore, ‖D(t)‖ = maxi di (t).

5.4 The Covariation Matrix R of the Vector ζ̂

We denote the covariation of components ζ
(m)
i and ζ

(s)
j of the vectors ζ (m) and ζ (s) as:

K (m,s)
i j = Cov(ζ (m)

i , ζ
(s)
j ). Now the variance Rii of the i th component of the vector

ζ̂ in Eq. (5.9) and the covariation Ri j of its components ζ̂i and ζ̂ j read as

Rii = E
( ∞∑

m=1

ζ
(m)
i

)2 −
(
E

∞∑

m=1

ζ
(m)
i

)2 =
∞∑

m=1

d(m)
i + 2

∞∑

m=1

∞∑

s=1

K (m,m+s)
i i ,

Ri j =
∞∑

m=1

K (m,m)
i j +

∞∑

m=1

∞∑

s=1

K (m,m+s)
i j +

∞∑

m=1

∞∑

s=1

K (m+s,m)
i j , i �= j,

(5.18)

In [1], the following formulas for the covariations K (m,s)
i j inEq. (5.18) are obtained:

K (m,m)
i i = d(m)

i , K (m,m+s)
i i = K (m+s,m)

i i =
∑′

Aiim+s · · · Aim+2im+1 J
(m)
im+1i

,

K (m,m)
i j =

n∑

im , jm=1

Aiim A j jm J
(m−1)
im jm

, i �= j,

K (m,m+s)
i j = K (m+s,m)

j i =
∑′

A j jm+s · · · A jm+2 jm+1 J
(m)
jm+1i

, i �= j.

(5.19)

Here,

J (1)
i2, j2

= δi2, j2d
(1)
i2

,

J (m)
jm+1im+1

= δ jm+1,im+1d
(m)
jm+1

+
m−2∑

�=0

∑′ �∏

t=0

(1 − δ jm+1−t ,im+1−t )A jm+1−t jm−t Aim+1−t im−t δ jm−t ,im−t d
(m−t−1)
jm−t

,

(5.20)

where m > 1, δi, j is the Kronecker delta.
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Theorem 5.2 The components of the covariation matrix R = [ Ri j ] of the vector ζ̂

in Eq. (5.6), which estimates the solution of system (5.1), are as follows:

Rii = di + 2(Ā)i i di − 2(Ā)i i (H̃)i i + 2(Ā · H̃)i i . (5.21)

Ri j = (H̃)i j + (Ā)i j d j + (Ā) j i di − (Ā)i j (H̃) j j − (Ā) j i (H̃)i i + (Ā · H̃)i j + (Ā · H̃) j i .

(5.22)

For the boundedness of the covariations Ri j it is necessary that the norms of the
matrices A and B satisfy the first two inequalities (5.15) (see Theorem 5.1), and it is
sufficient that all inequalities (5.15) be fulfilled.

Proof To prove the theorem, we calculate the sums of series on the right of
Eqs. (5.18)–(5.20) and find the explicit expressions for Rii and Ri j . At first, we
prove the equality (5.21). The components

ζ
(m)
i = Aiim

piim
· · · Ai2i1

pi2i1
fi1 , ζ

(s+m)
i = Ai jm+s

pi jm+s

· · · A jm+1 jm

p jm+1 jm

· · · A j2 j1

p j2 j1

f j1 , s ≥ 1,

(5.23)
depend on the random states i1, . . . , im and j1, . . . , jm+s .

If jm+1 �= i and i� �= j� for all �, 1 ≤ � ≤ m, then the components ζ
(m)
i and ζ

(s+m)
i

are independent and their covariation is zero:

Cov((ζ (m)
i , ζ

(s+m)
i ) | jm+1 �= i, i� �= j�, 1 ≤ � ≤ m) = 0.

We introduce the expansion

K (m,m+s)
i i =

m∑

k=1

J (i,m, s, k) (5.24)

and study three cases k = m, k = m − 1, and 1 ≤ k ≤ m − 2 as follows

k = m : J (i,m, s,m) = Cov
(
(ζ

(m)
i , ζ

(s+m)
i )

∣∣∣ jm+1 = i
)

=
∑′

Ai jm+s A jm+s jm+s−1 · · · A jm+2i d
(m)
i , (5.25)

k = m − 1 : J (i,m, s,m − 1) =
∑′

G(m−1)

I (i,m, s,m − 1) =

Cov
(
(ζ

(m)
i , ζ

(s+m)
i )

∣∣∣ jm+1 �= i, jm = im
)

, (5.26)

with G(m − 1) = { jm+1 �= i} (see the Definition 1 for
∑′ and

∑′
G(m−1) with the

restriction G(m − 1)),
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1 ≤ k ≤ m − 2 : J (i,m, s, k) =
∑′

G(k)

I (i,m, s, k) =

Cov
(
(ζ

(m)
i , ζ

(s+m)
i )

∣∣∣ ik+1= jk+1, jm+1 �= i, i� �= j�, m≥�≥k+2
) (5.27)

with G(k) = { jm+1 �= i, j� �= i�, k + 2 ≤ � ≤ m}.
In Eqs. (5.26) and (5.27) (for k ≤ m − 1)

I (i,m, s, k) = Ai jm+s A jm+s jm+s−1 · · · A jm+1 jm · · · A jk+2 jk+1 Aiim Aimim−1 · · · Aik+2 jk+1d
(k)
jk+1

.

Equation (5.25) can be written as

J (i,m, s,m) = (As)i i d
(m)
i . (5.28)

Summation the both sides of Eq. (5.28) in s and m according to Eq. (5.18) gives

∞∑

s=1

∞∑

m=1

J (i,m, s,m) = (Ā)i i di , (5.29)

where Ā is given in Eq. (5.13).
The remaining summands in Eq. (5.24) according Eqs. (5.26), (5.27) for 1 ≤ k ≤

m − 1 have the form:

J (i,m, s, k) =
∑′

G(k)

I (i,m, s, k). (5.30)

Now we analyse the summation area on the right of Eq. (5.30). Let Ω be the
summation area without any restrictions on the summation indexes

∑
Ω = ∑′ (see

(5.11) in the Definition 1 of
∑′).

We denote by Ωm+1 the summation area with one restriction jm+1 = i , namely∑′
Ωm+1

= ∑′
jm+1=i , then G(m − 1) = Ωm+1 = Ω − Ωm+1.

We denote by Ωr and Ωr the summation areas

∑

Ωr

′ =
∑

jr=ir

′
,

∑

Ωr

′ =
∑

jr �=ir

′
, Ω = Ωr + Ωr .

In these designations for 1 ≤ k ≤ m − 1

G(k) =
m+1⋂

r=k+2

Ωr = Ω +
m−k∑

t=1

(−1)t S(t),

S(t) =
K (t)⋃

�=1

Ω t,�, Ω t,� =
t⋂

j=1

Ωr�
j
, K (t) = C t

m−k .

(5.31)
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Here S(t) is the range of summation consisting of the union of all intersections of t
separate areas Ω j , k + 2 ≤ j ≤ m + 1. The range S(t) appears if m > t + 1. It is
possible to choose t numbers from m − k by K (t) = C t

m−k variants. We enumerate
them and let the �th variant be r �

j , 1 ≤ � ≤ K (t). Without loss of generality, we
assume that r �

1 < r �
2 < · · · < r �

t .

Remark 2 Delivering Eq. (5.31), we many times use the well-known relation: Let
U be a persistent reliable event, and let events V1 ∈ U , V2 ∈ U , then V 1V 2 = U −
V1 − V2 + V1V2.

We write S(t) as the sum of two areas S(t) = S(t)′ + S(t)′′, where the S(t)′′ does
not contain Ωm+1. We have

S(t)′ = Ωm+1

K ′⋃

�=1

t−1⋂

j=1

Ωr�
j
, K ′ = C t−1

m−k−1, k + 2 ≤ r �
j ≤ m,

S(t)′′ =
K ′′⋃

�=1

t⋂

j=1

Ωr�
j
, K ′′ = C t

m−k−1, k + 2 ≤ r �
j ≤ m.

(5.32)

It is possible tofind the sum(5.28) byusing summations in the rangesΩr according
to the right-hand side of Eq. (5.31).

Let us find the sums of values I (i,m, s, k) in the ranges Ω and Ωr and denote
them short as I = I (i,m, s, k).

We have at the summation in the range Ω

∑

Ω

I =
∑′

I = (As+m−k · D(k) · A(m−k)T )i i ,

∞∑

s=1

∞∑

m=2

m−1∑

k=1

∑

Ω

I =
∞∑

s=1

∞∑

k=1

∞∑

m=k+1

∑

Ω

I =
∞∑

j=1

(Ā · A j · D · A jT )i i = (Ā · H(1))i i .

The summation in the range Ωm+1 is carried out under the restriction jm+1 = i .
Changing jm+1 by i we get

∑′
Ωm+1

I =
∑′

Ai jm+s · · · A jm+2i Ai jm A jm jm−1 · · · A jk+2 jk+1 Aiim Aimim−1 · · · Aik+2 jk+1d
(k)
jk+1

=
(As)i i (Am−k · D(k) · A(m−k)T )i i .

The further summation in s,m, k according to Eq. (5.13) gives

∞∑

s=1

∞∑

m=2

m−1∑

k=1

∑

Ωm+1

′
I = (Ā)i i (H(1))i i .

The summation in the range Ωr with k + 2 ≤ r ≤ m and m ≥ 3 gives
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∑

Ωr

′
I =

∑′
Ai jm+s · · · A jk+2 jk+1 Aiim Aimim−1 · · · Air+1 jr A jr ir−1 · · · Aik+2 jk+1d

(k)
jk+1

=

(As · Am−r+1 · {Ar−k−1 · D(k) · A(r−k−1)T } · A(m−r+1)T )i i .

After changing the order of summation, we get

∞∑

s=1

∞∑

m=3

m−1∑

k=1

m∑

r=k+2

∑

Ωr

′
I =

∞∑

k=1

∞∑

p=1

∞∑

j=1

(Ā · Ap · {A j · D(k) · A jT } · ApT )i i = (Ā · H(2))i i .

If k + 2 ≤ r1 < r2 ≤ m, then the summation of values I (i,m, s, k) in the range
Ω12 = Ωr1

⋂
Ωr2 gives

∑

Ω12

′
I =(As ·Am−r2+1 ·{Ar2−r1 · {Ar1−k−1 ·D(k) ·A(r1−k−1)T }·A(r2−r1)T }·A(m−r2+1)T)i i ,

and, if k + 2 ≤ r1 ≤ m, the summation in the range Ωr1

⋂
Ωrm+1 gives

∑

Ωr1

⋂
Ωm+1

′ I = (As)i i
(
Am−r1+1 · {Ar1−k−1 · D(k) · A(r1−k−1)T } · A(m−r1+1)T

)
i i

.

Therefore,
∑ ′

S(2) I corresponds to the relation

∑

S(2)

′
I =

m−k−1∑

j1=1

(As)i i
(
A j1 · {Am−k− j1 · D(k) · A(m−k− j1)T } · A j1T

)
i i +

L1∑

j1=1

L2∑

j2=1

(
As · A j1 · {A j2 · {Am−k− j1− j2 · D(k) · A(m−k− j1− j2)T } · A j2T } · A j1T

)
i i .

with L1 = m − k − 2, L2 = m − k − j1 − 1.
For the following summations in s,m, k, we obtain

∞∑

s=1

∞∑

m=4

m−1∑

k=1

∑

S(2)

′ I = (Ā)i i (H(2))i i + (Ā · H(3))i i .

Remark 3 All the summations of values I (i,m, s, k) in the ranges consisting of any
intersections of Ωr , k + 2 ≤ r ≤ m + 1 lead to expressions, in which between each
bold braces there is a matrix A at least in the first power.

The cases t = 1 and t = 2 with one or two restrictions are already examined. In
the general case t > 2 we find, at first,

∑′
S(t)′′ I, where S(t)′′ is given by Eq. (5.32),

in which the numbers r �
j are ordered k + 2 ≤ r �

1 < r �
2 < · · · < r �

t ≤ m. We have
S(t)′′ = ⋂t

j=1 Ω�
r j , and further,
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∑

S(t)′′

′
I =

(
AsAm−r�

t +1{Ar�
t −r�

t−1{· · ·{Ar�
1−k−1D(k)A(r�

1−k−1)T }· · ·}A(r�
t −r�

t−1)T }A(m−r�
t +1)T

)

i i
,

∞∑

s=1

∞∑

m=t+2

m−1∑

k=1

∑

S(t)′′

′
I = (Ā · H(t + 1))i i , t ≥ 2.

Taking into account Eqs. (5.31) and (5.32), we conclude that

∞∑

s=1

∞∑

m=t+2

m−1∑

k=1

∑

S(t)

′
I = (Ā)i i · H(t)i i + (Ā · H(t + 1))i i , t ≥ 2. (5.33)

The covariations Rii according Eq. (5.18) contain the value di (see Eq. (5.12)),
the summand (Ā)i i di (see Eq. (5.29)), and a summation in t with due account of the
alternation of signs in Eqs. (5.31), (5.33)

Rii = di + 2
(
Ā

)
i i di + 2

(
Ā

)
i i

( ∞∑

t=1

(−1)tH(t)
)

i i
+ 2

(
Ā ·

∞∑

t=1

(−1)t+1H(t)
)

i i
.

(5.34)
In the notation (5.13) Eq. (5.34) coincides with Eq. (5.21).

Nowwe calculate the cross-covariations Ri j . The covariation K (m,m+s)
i j is equal to

the covariation of random values (5.23) and ζ
(s+m)
j = A j jm+s

p j jm+s
· · · A jm+1 jm

p jm+1 im
· · · A j2 j1

p j2 j1
f j1 .

The covariation K (m,m+s)
i j can be calculated by the third formula in (5.19). The

summation of K (m,m+s)
i j in m and s gives

∞∑

s=1

∞∑

m=1

K (m,m+s)
i j = (Ā) j i di − (Ā) j i (H̃)i i + (Ā · H̃) j i . (5.35)

From Eq. (5.19), it follows K (m,m+s)
i j = K (m+s,m)

j i ; therefore,

∞∑

s=1

∞∑

m=1

K (m+s,m)
i j = (Ā)i j d j − (Ā)i j (H̃) j j + (Ā · H̃)i j .

To finish calculation Ri j by Eq. (5.18), it is necessary to find K (m,m)
i j = K (m,m)

j i .

With m = 1, the covariation K (1,1)
i j = 0, and with m ≥ 2, we have
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K (m,m)
j i =

∑′
A j jm Ai jm d

(m−1)
jm

+
m−2∑

k=1

∑′

G1(k)

A j jm A jm jm−1 · · · A jk+2 jk+1 Aiim Aimim−1 · · · Aik+2 jk+1d
(k)
jk+1

(5.36)

with the restriction (see Definition 1) G1(k) = {i� �= j�, k + 2 ≤ � ≤ m}.
Thewayof calculation K (m,m)

j i byEq. (5.36) is the same as the calculation K (m,m+s)
i i

by Eqs. (5.27), (5.28). But here s = 0, and therefore, S(t) = S(t)′′ for the range of
summation, and as a result in Eq. (5.35), the first two summands are absent, and in
the third summand, the matrix Ā is to be replaced by the unit matrix. Finally,

∞∑

m=1

K (m,m)
j i = (H̃) j i . (5.37)

Taking into account Eqs. (5.35) and (5.37), and using the symmetry of the matrix
H̃, we verify that Eq. (5.17) leads to Eq. (5.22). This proves Theorem 2. �

5.5 Estimate of the Number of Iterations M

To solve Eq. (5.1) by the Monte Carlo method, the stochastic series (5.3) is con-
structed. By using Theorems 1 and 2, the stochastic properties of this series are
investigated in the case of the infinite number of summands. Now we study the ran-
dom value (5.7), which contains the (M + 1) first summands. Here, M is the number
of iterations. Also, we consider the average value (5.8) as a result of N imitation
averaging.

The expectation E(ζ̂ M) coincides with the corresponding partial sum of the Neu-
mann series. It is important to estimate M . In [7], for ‖A‖m = μ the estimate

|Xi − E(ζ̂ M
i )| ≤ μM+1

1 − μ
‖f‖, X (0)

i = fi , i = 1, . . . , n (5.38)

is obtained. We set σi (M) =
√
D(ζ̂ M

i ), 1 ≤ i ≤ n, σ (M) = maxi σi (M).

Now, according to the central limit theorem [8] with probability α close to 1 (for
example, α = 0.95 for xα = 1.96), the inequality (5.38) leads to an estimate

∣∣∣∣∣∣
1

N

N∑

s=1

ζM
i (s) − Xi

∣∣∣∣∣∣
≤ σ(M)(xα + h)√

N
, 1 ≤ i ≤ n, with

σ(M)h√
N

≈ μ(M+1)

1 − μ
‖f‖.

(5.39)
The number M of iterations for the given h ≈ 1 is to be chosen from Eq. (5.39).

The value σ(M) is unknown. If the norms of the matrix A and the vector f are
less than 1, then σ(M) ≈ O(1).
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5.6 Numerical Examples

Example 1 Let the matrix A and the vector f in the system (5.1) be

A =
⎛

⎝
0.5 −0.3 0.1

−0.25 0.3 −0.3
0.2 −0.2 0.4

⎞

⎠ , f =
⎛

⎝
0.4

−0.5
0.6

⎞

⎠ .

The norms of matrices are μ = ‖A‖m = 0.9, ν = ‖A‖l = 0.95, γ = ‖B‖ =
0.15, therefore the conditions of Theorem 5.1 are fulfiled.

The covariation matrixR with the components (5.21) and (5.22) is as follows (see
Theorem 5.2):

R =
⎛

⎝
2.01701 −1.11503 1.01365

−1.11503 1.29587 −0.61386
1.01365 −0.61386 0.96000

⎞

⎠ .

The exact solution of system (5.1) is given by X = (1.44329,−0.52062,
1.65464)T .

Here, we give the maximal absolute differences between the exact solutionX and

its sampling estimation ¯̂
ζMN, and also the differences between the components of

the matrix R and the components of the sampling covariation matrix R̂MN :

N = 106, M = 80 : maxi |Xi − ¯̂
ζMN
i | ≤ 0.00059, maxi j |R̂MN

i j − Ri j | ≤ 0.00383,

N = 108, M = 80 : maxi |Xi − ¯̂
ζMN
i | ≤ 0.00016, maxi j |R̂MN

i j − Ri j | ≤ 0.00024.

The errors decrease simultaneously as the number N of imitations increases.

Example 2 Consider system (5.1) of dimension n = 100. We form the vector f and
the matrix A by simulating random numbers uniformly distributed in (0, 1). We
change a sign at some components of matrix A. Next, we transform the components
of vector f and matrix A, so that the norms (5.14) are as follows:

μ = 0.9, ν = 1.0155, γ = 0.0118, ‖f‖ = 0.9951.

The results of simulation with N = 106, M = 80 are given by

max
i

|Xi − ¯̂
ζ MN
i | ≤ 0.0024, max

i j
|R̂MN

i j − Ri j | ≤ 0.0054.

These examples support the correctness of the formulas obtained above.
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5.7 Conclusions

An algorithm for approximate solution of a system of linear algebraic equations by
the Monte Carlo method in combination with the ideas of Gibbs and Metropolis
of fields simulation is presented. The explicit expressions for components of the
covariation matrix of a stochastic vector are obtained to estimate the solution of
the system. The sufficient conditions, for which the components of the covariation
matrix are finite, are found. The obtained relations allow us to find the variance of
the inner product of the vector solution and the given vector.

Acknowledgements The work is supported by Russian Foundation of Basic Researches, grant
14.01.00271a.
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Chapter 6
Large-Scale Simulation of Acoustic
Waves in Random Multiscale Media

Olga N. Soboleva and Ekaterina P. Kurochkina

Abstract The effective coefficients in the problem of the acoustic wave propaga-
tion have been calculated for a multiscale 3D medium by using a subgrid modeling
approach. The density and the elastic stiffness have been represented by the Kol-
mogorov multiplicative cascades with a log-normal probability distribution. The
wavelength is assumed to be large as compared with the scale of heterogeneities of
the medium. We consider the regime in which the waves propagate over a distance
of the typical wavelength in source. If a medium is assumed to satisfy the improved
Kolmogorov similarity hypothesis, the term for the effective coefficient of the elas-
tic stiffness coincides with the Landau-Lifshitz-Matheron formula. The theoretical
results are compared with the results of a direct 3D numerical simulation.

Keywords Propagation of acoustic waves · Subgrid modeling
Multiplicative cascades

6.1 Introduction

The numerical solution of the wave propagation problem in amediumwith variations
of parameters on all the scales requires high computer costs. The small-scale hetero-
geneities are taken into account with the help of effective parameters or additional
terms in wave equations like the Frenkel–Biot models [1]. There are three different
wave propagation regimes (waves in a smoothly varying body, coda waves, and a
homogenized part of a wave field) depending on the ratio of wave field characteristic
scale to the one of the heterogeneities. It is very difficult to find a clear spatial scale
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delimitation, to catch wave field properties in each of these regimes. The two-scale
homogenization approaches are well known in the solid mechanics community. An
example of a two-scale approach for the dynamic case can be found in [2, 3]. The
spatial geometry of small-scale heterogeneities is not exactly known. It is customary
to assume these parameters to be random fields. However, it is difficult to measure
higher-order statistical moments for the geophysical parameters. At best, only the
mean values and the second-order correlation functions are known. Hence, effective
solutions cannot be constructed using only the conventional perturbation theory with
a high accuracy. In [4], the analytical results are discussed and proved in detail for
the waves propagation in randomly layered media. The authors obtain the analytical
results and illustrate themwith numerical simulations for three regimes of separation
of scales of the wave propagation in a 1D case. It has been shown that the irregularity
of elastic parameters, density, permeability, porosity increases as the scale of mea-
surements decreases for some natural media [5, 6]. Many natural media are “scale
regular” in the sense that they can be described by multifractals and hierarchical
cascade models with non-Gaussian distributions [6]. In this chapter, using this fact
we apply the subgrid modeling method to hierarchical cascade models of media with
non-Gaussian distributions of parameters. We study propagation of acoustic waves
in the media, in which heterogeneities are represented by the spatial distribution
of the local acoustic parameters that have essential variations of all scales from a
finite interval at each spatial point. The density of a medium and its elastic stiff-
ness is approximated by a multiplicative cascade with log-normal joint probability
distribution functions. The wavelength essentially exceeds a maximum scale of het-
erogeneity. If a medium is assumed to satisfy the improved Kolmogorov similarity
hypothesis [7], the effective coefficients coincidewith the Landau-Lifshitz-Matheron
formula. The derived formulas for 3Dmedia are verified by the direct numericalmod-
eling. For numerical testing, we consider the regime, in which the wave propagates
over a distance that is of the same order as the typical wavelength of a source.

6.2 The Model and Governing Equation

The propagation of acoustic waves in a heterogeneous medium is described by the
equation

ρ (x)
∂2u (x, t)

∂t2
− ∂

∂xi

(
λ (x)

∂

∂xi
u (x, t)

)
= F(x, t), (6.1)

where x is the vector of spatial coordinates, F(x, t) is the source with the dominant
frequency ω0 and the pulse width ω1. The wavelength is assumed to be large as
compared with the maximum scale of the heterogeneities L . For the approximation
of the coefficients ρ(x), λ (x), we use the approach described in [8]. Let, for example,
the field λ (x) be known. This means that the field is measured on a small scale
l0 at each point x, λl0 (x) = λ (x). Following Kolmogorov [7], let us consider a
dimensionless fieldψ , which is equal to the ratio of two fields obtained by smoothing
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the field λ (x)l0 at two different scales l, l ′. Let λl (x) denotes the parameter λl0 (x)
smoothed at the scale l. Then ψ(x, l, l ′) = λ(x)l ′/λ(x)l , l ′ < l. Expanding the field
ψ to a power series in (l − l ′) and retaining first-order terms of the series, at l ′ → l,
we obtain the equation ∂ ln λl (x)

∂ ln l = ϕ(x, l), where ϕ(x, l ′) = (∂ψ(x, l ′, l ′y)/∂y) |y=1.
The small-scale fluctuations of the field ϕ are observed only in the interval (l0, L).
The solution of the equation is

λl0(x) = λ0 exp

(
−
∫ L

l0

ϕ(x, l1)
dl1
l1

)
, (6.2)

where λ0 is the constant. The field ϕ determines the statistical properties of the elastic
stiffness. According to the central limit theorem for sums of independent random
variables if the variance of ϕ(x, l) is finite, the integral in (6.2) tends to a field with
a normal distribution as the ratio L/ l0 increases. It is assumed that the field ϕ(x, l)
is statistically homogeneous with a normal distribution. The density coefficient ρ(x)
is constructed by analogy with the elastic stiffness coefficient:

ρl0(x) = ρ0 exp

(
−
∫ L

l0

χ(x, l1)
dl1
l1

)
. (6.3)

The fluctuations of the fields ϕ(x, l), χ(x, l) are considered to be statistically inde-
pendent on two different scales:

< ϕ(x, l)ϕ(y, l ′) > − < ϕ(x, l) >< ϕ(y, l ′) >= Φϕϕ(x − y, l, l ′)δ
(
ln l − ln l ′

)
,

< ϕ(x, l)χ(y, l ′) > − < ϕ(x, l) >< χ(y, l ′) >= Φϕχ(x − y, l, l ′)δ
(
ln l − ln l ′

)
,

where 〈〉means statistical averaging. To derive subgrid formulas to calculate effective
coefficients, this assumption may be ignored. However, this assumption is impor-
tant for the numerical simulation of the field ρ, λ. If the fields are statistically
invariant to the scale transform, the following equality is valid for any positive K :
Φϕϕ(x − y, l) = Φϕϕ(K (x − y) , Kl), Φχχ(x − y, l) = Φχχ(K (x − y) , Kl). For
simplicity, we use the same notation Φ in the right side. When x = y, the functions
Φϕϕ , Φχχ are equal to the constants Φ

ϕϕ
0 , Φχχ

0 , Φϕχ

0 . The estimation of correlation
functions from (6.2), (6.3) have been obtained in [8], for r < L:

< λl0(x)λl0(x + r) >� C (r/L)−Φ
ϕϕ
0 ,

where C = λ2
0 (L/ l0)

−2〈ϕ〉 e−Φ
ϕϕ
0 γ , γ = 0.57722 is the Euler constant. For r � L ,

we have < λl0(x)λl0(x + r) >→ λ2
0.

Further, we consider the correlation functionsΦϕϕ ,Φϕχ ,Φχχ as rapidly decreas-
ing functions with correlation radii that are much smaller than the wavelength. The
double correlation radii determine the length of correlated fluctuations of parame-
ters. In order to take into account the fluctuations of the parameters, one must have a
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measurement scale to be three times less than the minimum correlation radius. The
parameters ρ, λ are cross-correlated

6.3 Subgrid Modeling

The density and the elastic stiffness ρ(x) = ρl0(x), λ (x) = λl0 (x) are divided into
two components with respect to the scale l. The large-scale (ongrid) components
λ (x, l), ρ (x, l) are obtained, respectively, by the statistical averaging over all
ϕ(x, l1) and χ(x, l1)with l0 < l1 < l, l − l0 = dl, where dl is small. The small-scale
(subgrid) components are equal to ρ ′(x) = ρ(x) − ρ(x, l), λ′(x) = λ(x) − λ(x, l).
Applying (6.2), (6.3) yields the formulas:

ρ(x, l) = ρ0 exp

[
−
∫ L

l
χ(x, l1)

dl1
l1

] 〈
exp

[
−
∫ l

l0

χ(x, l1)
dl1
l1

]〉
,

λ(x, l) = λ0 exp

[
−
∫ L

l
ϕ(x, l1)

dl1
l1

] 〈
exp

[
−
∫ l

l0

ϕ(x, l1)
dl1
l1

]〉
. (6.4)

From formulas (6.4) with second order of accuracy in dl/ l follows

ρ(x, l) = ρl (x), λ(x, l) �
[
1 − 〈ϕ〉 dl

l
+ 1

2
Φϕϕ (0, l)

dl

l

]
λl (x)

〈
λ′ (x) λ′ (x′)〉 � Φϕϕ

(
x − x′, l

)
λ (x, l)2

dl

l
,
〈
ρ′ (x) ρ′ (x′)〉 � Φχχ

(
x − x′, l

)
ρ (x, l)2

dl

l
,

〈
ρ′ (x) λ′ (x′)〉 � Φχϕ

(
x − x′, l

)
ρ (x, l) λ (x, l)

dl

l
. (6.5)

Let us consider the temporal Fourier transform of Eq. (6.1)

ω2ρ (x) u (ω, x) + ∂

∂xi

(
λ (x)

∂

∂xi
u (ω, x)

)
= −F (ω, x) . (6.6)

The large-scale (ongrid) component of the displacement u (ω, x,l) is obtained by
averaging the solutions to Eq. (6.6), in which the large-scale components of the
density ρ (x, l) and the elastic stiffness λ(x, l) are fixed and the small components
ρ ′(x), λ′(x) are random variables. The subgrid component of the displacement is
equal to u′ (ω, x) = u (ω, x) − u (ω, x, l). Substituting the relations for u (ω, x) and
ρ (x), λ(x) into Eq. (6.6) and averaging over small-scale components, we have

ω2ρ (x, l) u (ω, x, l) + ω2
〈
ρ ′ (x) u′ (x)

〉+ ∂

∂xi

(
λ (x, l)

∂

∂xi
u (ω, x, l)

)

+ ∂

∂xi

〈
λ′ (x)

∂

∂xi
u′ (x)

〉
= −F (ω, x) . (6.7)
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The subgrid terms S1 = ω2
〈
ρ ′ (x) u′ (x)

〉
, S2 =

〈
λ′ (x) ∂

∂xi
u′ (x)

〉
in Eq. (6.7) are

unknown. These terms cannot be neglected without preliminary estimation. The
form of these terms in (6.7) determines a subgrid model. The subgrid terms are esti-
mated using perturbation theory. Subtracting Eq. (6.7) from Eq. (6.6) and taking into
account only the first-order terms, the reduced equation for the subgrid displacement
u′ (x) is given by

ω2ρ (x, l) u′ (x) + λ (x, l)
∂2u′ (x)

∂x2i
= −ω2ρ′ (x) u (ω, x, l) − ∂

∂xi
λ′ (x) ∂u (ω, x, l)

∂xi
.

(6.8)
The variable u (ω, x, l) in the right-hand side of (6.8) is assumed to be known. For the
fields, inwhich a small variation in the scale causes significant fluctuations of the field
as it is (this is typical of fractal fields) possible to consider λ (x, l), ρ (x, l), u (x, l)
and their derivatives varying slower than λ (x)′, ρ (x)′, u′ and their derivatives. If the
first derivatives ∂

∂x j
u′ (ω, x) and ∂

∂x j
u (ω, x, l) are of the same order, the subgrid term〈

λ′ (x) ∂
∂x j

u′ (ω, x)
〉
is small as compared to

(
λ (x, l) ∂

∂x j
u (ω, x, l)

)
because λ′ (x)

is small. Then, it is the well-solvable problem with smooth coefficients. The solution
of Eq. (6.8) takes the form

u′ (x) = 1

λ (x, l)

∫ ∞

−∞
G (r)

(
∂

∂x ′
j
λ′ (x′) ∂u

(
ω, x′, l

)
∂x ′

j
+ ω2ρ′ (x′) u (ω, x′, l

))
dx′, (6.9)

where r = ∣∣x − x′∣∣,G (r) is theGreen function of Eq. (6.8) if the coefficients λ (x, l),
ρ (x, l) are assumed to be constants in according to the method of “frozen coeffi-
cients.” Substituting this solution in the subgrid terms gives

S1 =
〈

ω2ρ′ (x)
λ (x, l)

∫ ∞

−∞
G (r)

(
∂

∂x ′
j
λ′ (x′) ∂

∂x ′
j
u
(
ω, x′, l

)+ ω2ρ′ (x′) u (ω, x′, l
))

dx′
〉

S2 =
〈
λ′ (x)

∂

∂xi

1

λ (x, l)

∫ ∞

−∞
G (r)

(
∂

∂x ′
j
λ′ (x′) ∂

∂x ′
j
u
(
ω, x′, l

)+ ω2ρ′ (x′) u (ω, x′, l
))

dx′
〉

.

(6.10)

Again, treating the terms with lower derivatives of the large-scale field u (x, l),
λ (x, l), ρ (x, l) as constants in the integrand and taking into account ∂

∂xi
r = − ∂

∂x ′
i
r ,

using (6.5) one can write down

S1 =
∞∫

−∞
G (r)

∂

∂x ′
j

Φχϕ
(
x − x′, l

)
dx′ dl

l
ω2ρ (x, l)

∂

∂x j
u
(
ω, x′, l

)

+ω2ρ (x, l)
λ (x, l)

∞∫
−∞

G (r)Φχχ
(
x − x′, l

)
dx′ dl

l
ω2ρ (x, l) u (ω, x, l)
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S2 =
∞∫

−∞

∂2G (r)

∂x ′
i∂x

′
j

Φϕϕ
(
x − x′, l

)
dx′ dl

l
λ (x, l)

∂

∂x ′
j

u (ω, x, l)

−
∞∫

−∞

∂G (r)

∂x ′
i

Φχϕ
(
x − x′, l

)
dx′ dl

l
ω2ρ (x, l) u (ω, x, l) (6.11)

In isotropic media, the correlation functions depend only on r = ∣∣x − x′∣∣. These
functions and the Green function are the even functions, but the partial derivatives
of G, Φ with respect to xi or x j are the odd functions. Hence, the integrals on
the first and last lines of (6.11) are equal to zero. For i = j , we apply the formula
∂2G(r)
∂2x ′

i
= − 1

D

(
ω2ρ(x,l)
λ(x,l) G (r, l) + δ

(
x − x′)), where D is the dimension of space. If

i 	= j , the integrals in (6.11) are equal to zero. Now, we come to:

S1 = −ω2ρ (x, l)
λ (x, l)

∞∫
−∞

G(r)Φχχ (r, l) dx′ dl
l

ω2ρ (x, l) u (ω, x, l) ,

S2 = − 1

D

ω2ρ (x, l)
λ (x, l)

∞∫
−∞

G (r, l) Φϕϕ (r, l) dx′ dl
l

λ (x, l)
∂

∂x ′
i

u (ω, x, l)

− 1

D
Φϕϕ (0, l)

dl

l
λ (x, l)

∂

∂x ′
i

u (ω, x, l) . (6.12)

The correlation radii of ρ, λ are much smaller than the wavelength, since the
maximum scale of inhomogeneities L much smaller than the wavelength. So, the
integrals in (6.12) are of second order in L . If the following inequalities hold,
Φϕϕ (0, l) L2ω2ρ (x, l) /λ (x, l) 
 1,Φχχ (0, l) L2ω2

1ρ (x, l) /λ (x, l) 
 1, the inte-
gral terms in (6.12) may be discarded. Hence, obtain

ω2
〈
ρ ′u′〉 � 0,

〈
λ′ (x)

∂

∂xi
u′ (x)

〉
� − 1

D
Φϕϕ (0, l)

dl

l
λ (x, l)

∂

∂x ′
i

u (ω, x, l) .

(6.13)

Substituting the formulas from (6.5) and (6.13) in the ongrid Eq. (6.7) gives

ω2ρ (x, l) u (ω, x, l) + ∂

∂xi

[
λl0 exp

(
−
∫ L

l
ϕ(x, l1)

dl1
l1

)
∂

∂xi
u (ω, x, l)

]
= −F (ω, x) ,

(6.14)

where λl0 satisfies the equation with the second order of accuracy in (dl/ l)

λ0l =
(
1 − 〈ϕ〉 dl

l
+ D − 2

2D
Φϕϕ (0, l)

dl

l

)
λ0.
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As dl → 0, the effective equation for λ0l , ρ0l becomes

ρ0l = ρ0,
d ln λ0l

d ln l
= D − 2

2D
Φϕϕ (0, l) − 〈ϕ〉 , λ0l0 = λ0. (6.15)

In the scale-invariant media, the solution of equation (6.15) has a simple form and
coincides with the Landau-Lifshitz-Matheron formula:

ρ0l = ρ0, λ0l = λ0

(
l

l0

) D−2
2D Φ

ϕϕ
0 −〈ϕ〉

= KG exp

(
D − 2

2D
∗ σ 2

0

)
, (6.16)

where KG = λ0 exp (−〈ϕ〉 (ln l − ln l0)) is the geometrical mean of λl (x), σ 2
0 =

Φ
ϕϕ
0 ln (l/ l0). By virtue of formulas (6.15) in isotropic case, the form of the correla-

tion functions has no effect on the effective coefficients.

6.3.1 The Anisotropic Case

In the anisotropic case, the study of the problem in question requires the knowledge
of the form of correlation functions. To determine the form of correlation functions,
one must measure the physical parameter at a large number of points and in different
intervals. Such regular measurements are time-consuming and expensive and seldom
available in scientific papers. One of the main difficulties in solving geophysical
tasks is to extract an undisturbed core. Nevertheless, correlation functions of some
parameters are obtained, for example, in the paper [4]. To get an idea of the influence
of the formof correlation functions on the effective coefficients for thewave equation,
some correlation functions for 3D are considered in the case, when the coefficient
λ is isotropic at any point, but the correlation function of the field λ is anisotropic.
Real geophysical media have often anisotropy of such a kind because of the layering.
Such a medium is composed of many isotropic blocks close to a parallelepiped with
a random λ. The mass density is constant, and the medium is stratified so that λ by
the coordinates x1, x3 has the correlation radius greater than the correlation radius
by the coordinate x2. Let us assume l1 = α1l to be the scale by the coordinates x1, x3,
l2 = α2l is the scale by the coordinate x2, α1 < α2. The same scales by the coordinate
x1, x3 are assumed to avoid cumbersome calculations and numerical calculations of
elliptic integrals for the 3D correlation functions. We calculate effective coefficients
from (6.11) for the two correlation functions and constant mass density:
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Φ
ϕϕ
1

(
x − x′,l

) = Φ
ϕϕ
0 e

[
− α21

l2

(
(x ′

1−x1)
2+( x ′

3−x3)
2
)
− α22

l2 (x ′
2−x2)

2
]
, (6.17)

Φ
ϕϕ
2

(
x − x′,l

) = Φ
ϕϕ
0 f1 × f2 × f3 (6.18)

fi =
⎛
⎝2l sin

(
αiπ(xi−x ′

i)
2l

)
αiπ

(
xi − x ′

i

)
⎞
⎠

2

, i = 1, 3, f2 =
⎛
⎝2l sin

(
α2π(x2−x ′

2)
2l

)
α2π

(
x2 − x ′

2

)
⎞
⎠

2

.

Additionally, we consider the widely used approximation of the correlation function:

Φ
ϕϕ
3

(
x − x′,l

) =
{

Φ
ϕϕ
0 (l) , αi

∣∣xi − x ′
i

∣∣ ≤ l,
0, αi

∣∣xi − x ′
i

∣∣ > l
. (6.19)

In this case, the expression for the effective coefficients, which correctly describes
the expectation of the displacement, takes the following form:

d ln λim
0l

d ln l
= Φ

ϕϕ
0

2
+ ηm1 − 〈ϕ〉 , i = 1, 3,

d ln λ2m
0l

d ln l
= Φ

ϕϕ
0

2
+ ηm2 − 〈ϕ〉 , (6.20)

whereλi
0l(x) is the effective coefficient inEq. (6.1), andm is number of the correlation

function. The coefficients η are given by For α2 < α1, we have

η11 = −1

2
Φ

ϕϕ
0

α2
1(

α2
1 − α2

2

)
⎛
⎝ α2√

α2
1 − α2

2

arctan

√
α2
1 − α2

2

α2
2

− α2
2

α2
1

⎞
⎠ , i = 1, 3

η12 = −Φ
ϕϕ
0

α2
1

α2
1 − α2

2

⎡
⎣1 − α2√

α2
1 − α2

2

arctan

(√
α2
1 − α2

2

α2
2

)⎤
⎦ , i = 2 (6.21)

For α2 > α1:

η11 = 1

2

α2
1(

α2
2 − α2

1

)Φϕϕ
0

⎛
⎝ α2

2
√

α2
2 − α2

1

ln
α2 +

√
α2
2 − α2

1

α2 −
√

α2
2 − α2

1

− α2
2

α2
1

⎞
⎠ , i = 1, 3,

η12 = α2
1(

α2
2 − α2

1

)Φϕϕ
0

⎡
⎣1 − α2

2
√

α2
2 − α2

1

ln
α2 +

√
α2
2 − α2

1

α2 −
√

α2
2 − α2

1

⎤
⎦ , i = 2. (6.22)

The coefficient η22 is equal to
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Table 6.1 Comparison of coefficients ηm1 for different correlation functions Φ
ϕϕ
m

α1
α2

0.01 0.05 0.1 0.25 1.0 4.0 10 20 100

η11 0.500 0.497 0.489 0.462 0.333 0.148 0.069 0.037 0.008

η21 0.500 0.498 0.493 0.470 0.333 0.130 0.057 0.029 0.006

η31 0.500 0.499 0.496 0.481 0.333 0.110 0.045 0.025 0.004

η22 = Φ
ϕϕ
0

[
1 − πα2

2α1
(I11 + I12) + α2

α1
(I21 + I22)

]
, ψ∗ = arctan

(
α1

α2

)
,

I11 = 1

3

(
sinψ∗

2 cos2 ψ∗ + 1

2
ln

∣∣∣∣tan
(

π

4
+ ψ∗

2

)∣∣∣∣
)

, I12 = α2
1

3α3
2

(
cosψ∗

2 sin2 ψ∗ − 1

2
ln

∣∣∣∣tan
(

ψ∗

2

)∣∣∣∣
)

,

I21 = − α1

6α2
+ 1

3

ψ∗∫
0

arctan

(
1

cosψ

)
dψ

cos3 ψ
+ 1

6

ψ∗∫
0

ln

(
1 + 1

cos2 ψ

)
dψ,

I22 = − α1

6α2
+ α3

1

3α3
2

π/2∫
ψ∗

arctan

(
α1

α2 sinψ

)
dψ

cos3 ψ
+ 1

6

π/2∫
ψ∗

ln

(
1 + α2

1

α2
2 sin

2 ψ

)
dψ.

the coefficients η31, η32 are equal to

η31 = −2Φϕϕ
0 arctan

(
α2/

(√
2α2

1 + α2
2

))
/π

η32 = −2Φϕϕ
0 arctan

(
α2
1/

(
α2

√
2α2

1 + α2
2

))
/π.

Table6.1 shows the degree of a difference between the coefficients for the correlation
functions,Φϕϕ

0 = 1. It is easy to see that the results of calculations for all the formulas
are quite close to each other, except for the interval, where the coefficients ηmi

are small and where is important only the order of magnitude. Hence, effective
coefficients depend on the ratio between the correlation radii along the coordinate
axes and slightly depend on the form of the correlation functions.

It is easy to see that the results of calculations for all the formulas are quite close
to each other, except for the interval, where the coefficients ηmi are small and where
is important only the order of magnitude. Hence, effective coefficients depend on the
ratio between the correlation radii along the coordinate axes and slightly depend on
the form of the correlation functions.

6.4 Numerical Verification of the Above Obtained Formulas

We have carried out the numerical simulation of the 3D problem by solving Eq. (6.1),
using the finite-difference method with second-order discretization with a respect to
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Fig. 6.1 Geometry of the domain of integration in cross section x1 = 128h. The arrow shows the
main direction of wave propagation, and stars show location of wave sources

temporal and the spatial variables. We used 512 × 1024 × 512 grids (where x2 is
the main direction of wave propagation). The domain of integration is separated into
three subdomains.

In the subdomains 0 < x1 ≤ 512h, 0 < x2 ≤ 450h, 0 < x3 ≤ 512h and 0 <

x1 ≤ 512h, 962 h < x2 ≤ 1024h, 0 < x3 ≤ 512h, the coefficients ρ, λ are equal
to ρ = ρ0 = 2000 kg/m3, λ = λ0 = 1.8 ∗ 1010Pa. On the plane boundaries x1 × x2
at x3 = 0, x1 × x2 at x3 = 512h and x2 × x3 at x1 = 0, x2 × x3, x1 = 512h, the
partial derivatives ∂u (t, x) /∂x2 are equal to zero; on the plane boundary x1 × x3 at
x2 = 1024h, the displacement u is equal to zero. In the subdomain 0 < x1 ≤ 512h,
450 h < x2 ≤ 962h, 0 < x3 ≤ 512h, the spatial distributions of ρ, λ are simulated
by the multiplicative cascades (6.2), (6.3), in which the integrals are approximated
by the sums. Figure 6.1 shows geometry of the domain of integration in cross section
x1 = 128h. The arrow shows the main direction of wave propagation, and stars show
location of wave sources. The following pulse wave source is used for numerical sim-
ulation:

f (t) = (
1 − 2π2 (t0 − t)2

)
exp

(−π2 (t0 − t)2
)
,

where t0 = 0.8, the dominant frequency is 1Hz. In Fig. 6.2, 6.3, the averaged numer-
ical solution are compared with the solution of the effective equation and the
solution obtained with the mean value of the coefficients ρ, λ. in the subdomain
0 < x1 ≤ 512h, 450 h < x2 < 962h, 0 < x3 ≤ 512h. Line 1 is the result obtained
for ρ = ρ0, λ = λ0; line 2 is the result obtained by the effective equation; line 3 is
the result of numerical modeling with λ calculated by formula (6.2), ρ = ρ0; line 4
is the result of numerical modeling for ρ and λ calculated by formulas (6.2), (6.3)
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Fig. 6.2 Average of the displacement, the wave propagates along the axis x3, t = 3.1s

with the coefficient of correlation ν = 0.9 In the first graph of Fig.6.2: the isotropic
case for the three scales l j = 8 h, 16 h, 32 h; Φ

ϕϕ
0 = 0.3, ϕ0 = 0.15. In the second

graph, the anisotropic case for the two scales 1/64, 1/32 of the wavelength along
the axes x1, x2, 1/16, 1/8 of the wavelength along the axes x3 with Φ

ϕϕ
0 = 0.45,

ϕ0 = 0.225. In Fig. 6.3: the anisotropic case for the two scales 1/16, 1/8 of the
wavelength along the axes x1, x2, 1/64, 1/32 of the wavelength along the axes x3. In
the first graph of Fig.6.3, the parametersΦ

ϕϕ
0 , ϕ0 are equal to 0.45, 0.225, in the sec-

ond graph Φ
ϕϕ
0 = 0.6, ϕ0 = 0.3. We combine the spatial averaging over the planes

(x1, x2) for each value of x3 with ensemble averaging. The results were averaged
over 45 realizations.
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Fig. 6.3 Average of the displacement, the wave propagates along the axis x3, t = 3.1s

6.5 Conclusion

We have presented the effective coefficients for the wave equation if its parameters
are described by extremely irregular small-scale fields that are close to multifractals.
The multifractals can be obtained if a minimum scale l0 in formulas (6.2), (6.3) tends
to zero. The proof of multifractality of cascades is given in [9, 10]. The derivatives of
these coefficients grow rapidly and become hugewith the increasing number of layers
in cascades. Hence, to solve equations numerically is very difficult. This may not
be possible for modern computers. The coefficients smoothing algorithm is needed
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for such media. The smoothing algorithm is proposed. To approximate the medium,
we started from the modified Kolmogorov theory in terms of the ratios of smoothed
fields. As aminimum scale is not equal to zero and any singularities are absent, we use
only the theory of differential equations and the theory of stochastic processes. The
theoretical approach does not require an exact scale invariance of the medium. It has
been shown that the small-scale heterogeneities affect the acoustic wave propagation
in the first order of the scale of heterogeneities. Since the wavelength is much larger
than the scale of variations of the medium, the wave cannot probe the small scales
efficiently. The fluctuations of the medium tend to be averaged by low sensitivity of
the wave at these scales and effective coefficients do not depend on the form of the
correlation functions. The numerical testing was carried out at the scales for which
the problem can be numerically solved. The wave propagates over a distance that is
of the same order as the typical wavelength of a source. The numerical verification
illustrates the efficiency of the approach proposed.

The numerical testing illustrates the efficiency of the approach proposed when
the scales of heterogeneities are much less than the size of the wavelength.
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Chapter 7
Parameter Inference for Stochastic
Differential Equations with Density
Tracking by Quadrature

Harish S. Bhat, R. W. M. A. Madushani and Shagun Rawat

Abstract We derive and experimentally test an algorithm for maximum likelihood
estimation of parameters in stochastic differential equations (SDEs). Our innovation
is to efficiently compute the transition densities that form the log likelihood and its
gradient, and to then couple these computations with quasi-Newton optimization
methods to obtain maximum likelihood estimates. We compute transition densities
by applying quadrature to the Chapman–Kolmogorov equation associated with a
time discretization of the original SDE. To study the properties of our algorithm,
we run a series of tests involving both linear and nonlinear SDE. We show that our
algorithm is capable of accurate inference, and that its performance depends in a
logical way on problem and algorithm parameters.

Keywords Stochastic differential equations · Parameter inference
Maximum likelihood estimation

7.1 Introduction

Consider the stochastic differential equation (SDE)

dXt = f (Xt ; θ)dt + g(Xt ; θ)dWt (7.1)

where Xt is a scalar stochastic process, θ ∈ R
N is a vector of parameters and Wt is

standard Brownian motion. Here f and g are referred to, respectively, as the drift
and diffusion functions. Suppose we have collected data x = x0, x1, . . . , xM . Each
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x j is a vector of ν samples of Xt j . In this chapter, we take t j = jΔt for some fixed
Δt > 0. Based on this data, we would like to infer θ .

One way to carry out this inference is through numerical maximization of the
likelihood function. For the actual SDE, the exact likelihood p(x|θ) can only be
computed in very special cases, i.e. when we can solve analytically for the transi-
tion density of (7.1). Therefore, prior work has focused on approximating the exact
likelihood, through analytical and/or numerical methods.

For a thorough review of past work on this problem, see [9, 10, 16]. Here we focus
on past work that is particularly helpful to understand our approach. Consider the
transition density pXt j+1

(x j+1|Xt j = x j , θ) of a process that evolves according to the
SDE (7.1), starting from Xt j = x j and ending at Xt j+1 = x j+1. Let p(x, t) denote the
density function of Xt . Then, one approach to approximating the transition density
is to numerically solve the forward Kolmogorov (or Fokker–Planck) equation with
the initial condition p(x, 0) = δ(x − x j ) up to time T = t j+1 − t j = Δt .

Our approach is similar in that we also numerically track the density p(x, t)with-
out sampling. However, instead of numerically solving a partial differential equation,
we track the density by applying quadrature to the Chapman–Kolmogorov equation
associated with a time discretization of the SDE (7.1).We describe this density track-
ing by quadrature (DTQ) method in Sect. 7.2. Note that in [3], we have established
conditions under which the densities computed by DTQ converge in L1 to the true
density of the SDE, as temporal and spatial grid spacings tend to zero.

Other methods similar to ours are those of [14, 15]. In these methods, one also
starts with the Chapman–Kolmogorov equation for the Euler–Maruyama scheme
applied to (7.1). However, instead of evaluating the resulting integrals by determin-
istic quadrature, Pedersen and Santa-Clara evaluate the integrals by Monte Carlo
methods. These methods involve generating numerical sample paths of the SDE at
times in between the observation times. This approach is problematic unless one
generates sample paths conditional on both the initial condition Xt j = x j and the
final condition Xt j+1 = x j+1.

The work of [1] shares our goal of computing an accurate approximation of
the exact transition density and resulting likelihood function. Instead of applying
quadrature, Aït-Sahalia expands the transition density in a Gram–Charlier series and
then computes the expansion coefficients up to a certain order.

In the present chapter, we are primarily interested in developing properties of our
algorithm, to establish a set of examples in which the algorithm succeeds.We reserve
for future work a detailed comparison of our algorithm against existing approaches
for inference in stochastic differential equation models.

The chapter is structured as follows: in Sect. 7.2, we give detailed derivations of
temporally and spatially discretized versions of the log likelihood and its gradient.We
carry out the derivations for the cases where the data consists of either one ormultiple
sample path(s). After deriving the algorithms, we conduct numerical tests to study
their performance when both model and algorithm parameters are varied. The results
of these tests are described in Sect. 7.3. In Sect. 7.4, we discuss the implications of
these results and how they will inform future work.
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7.2 Methods

We begin by deriving our method and algorithm in the case where x represents a
scalar time series. This corresponds to the case where ν = 1, and the data consists
of only one time-discretized sample path of (7.1). Subsequently, we show how to
generalize this derivation to the case where there are ν > 1 sample paths.

Derivation for One Sample Path. Fix h, the internal time step, to be a small
fraction of Δt , i.e. h = Δt/F where F ∈ Z and F ≥ 2. Let {Z j } denote an i.i.d.
family of Gaussian random variables with mean 0 and variance 1. Then, the Euler–
Maruyama discretization of (7.1) is

˜X j+1/F = ˜X j + f (˜X j ; θ)h + g(˜X j ; θ)h1/2Z j+1/F . (7.2)

When the index j is an integer, the randomvariable ˜X j is intended to approximate Xt j .
When the index j is not an integer, ˜X j represents a random variable that interpolates
in time between the random variables that have been sampled to give us our data.
We are now in a position to compute the likelihood. Let us specify our notation. If
A1, . . . , AN is a collection of random variables, then pA1,...,AN (z1, . . . , zN ) denotes
the joint probability density function of A1, . . . , AN . Conditional densities will be
denoted similarly. Then the likelihood we seek to compute, the quantity we wrote as
p(x|θ) above, can be more accurately written as pXtM ,...,Xt0

(xM , . . . , x0|θ). First, let
us use the fact that the SDE (7.1) is an Ito diffusion and therefore satisfies the strong
Markov property [8]. This enables us to define the log likelihood:

L (θ) = log pXtM ,...,Xt0
(xM , . . . , x0|θ) =

M−1
∑

j=0

log pXt j+1
(x j+1|Xt j = x j , θ). (7.3)

On the right-hand side,wehaveomitted the term log pX0(x0|θ).Under the assumption
that x0 is independent of θ , this term equals log pX0(x0) and therefore plays no role
in maximizing L (θ). Now we introduce our first approximation: pXt j

≈ p
˜X j
. The

idea is to approximate the density of Xt j by the density of ˜X j . We can do the same for
conditional densities, i.e. pXt j+1

(x j+1|Xt j = x j , θ) ≈ p
˜X j+1

(x j+1|˜X j = x j , θ). Con-
vergence theory for the Euler–Maruyama method indicates that this approximation
incurs an O(h) error in the L1 norm—see [2]. With this approximation,

log pXtM ,...,Xt0
(xM , . . . , x0|θ) ≈

M−1
∑

j=0

log p
˜X j+1

(x j+1|˜X j = x j , θ).

Now we can use the density tracking by quadrature (DTQ) method to evaluate each
transition density in the sum: the idea is to use quadrature to gradually evolve the
density forward from time t j to time t j+1. To begin the derivation, we introduce
interpolating random variables and then apply the Markov property recursively:
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p
˜X j+1

(x j+1|˜X j = x j , θ) =
∫

x j+(F−1)/F

· · ·
∫

x j+1/F

dx j+(F−1)/F · · · dx j+1/F
︸ ︷︷ ︸

dx

p
˜X j+1,˜X j+(F−1)/F ,...,˜X j+1/F

(x j+1, x j+(F−1)/F , . . . , x j+1/F |˜X j = x j , θ)

=
∫

· · ·
∫

dx
F

∏

i=1

p
˜X j+i/F

(x j+i/F |˜X j+(i−1)/F = x j+(i−1)/F , θ) (7.4)

The last equation is the Chapman–Kolmogorov equation for the Markov chain given
by (7.2). Now let Gh

θ (x, y) be the probability density function of a Gaussian random
variable with mean y + f (y; θ)h and variance g(y; θ)2h, evaluated at x . Then the
crucial observation is that, for each i ∈ {1, . . . , F},

p
˜X j+i/F

(x j+i/F |˜X j+(i−1)/F = x j+(i−1)/F , θ) = Gh
θ (x j+i/F , x j+(i−1)/F ). (7.5)

This follows from (7.2). With this observation, (7.4) simplifies to:

p
˜X j+1

(x j+1|˜X j = x j , θ) =
∫

x j+(F−1)/F

Gh
θ (x j+1, x j+(F−1)/F )

∫

x j+(F−2)/F

· · ·
⎡

⎢

⎣

∫

x j+1/F

Gh
θ (x j+2/F , x j+1/F )Gh

θ (x j+1/F , x j )dx j+1/F

⎤

⎥

⎦
dx j+2/F · · · dx j+(F−1)/F

(7.6)

Our next approximation is to evaluate the integrals by quadrature. We introduce the
spatial grid spacing k > 0.Wewill use superscripts to denote spatial grid locations, so
that, for instance, xaj+1 = ak for all a ∈ Z. Then, repeatedly applying the trapezoidal
rule on the real line, we obtain

p
˜X j+1

(x j+1|˜X j = x j , θ) ≈ k
∑

aF−1

Gh
θ (x j+1, x

aF−1

j+(F−1)/F )

k
∑

aF−2

Gh
θ (x

aF−1

j+(F−1)/F , xaF−2

j+(F−2)/F ) · · · k
∑

a1

Gh
θ (x

a2
j+2/F , xa1j+1/F )Gh

θ (x
a1
j+1/F , x j )

In practice, we evaluate these sums on a finite subset of Z; this is justified by the
Gaussian decay of each Gh

θ . We think of kGh
θ (x

a2
j+2/F , xa1j+1/F ) as the (a2, a1) ele-

ment of a matrix K . In this way, the above formula reduces to repeated matrix-vector
multiplication. Specifically, let us define the a1th element of the vector p̂ j+1/F by
p̂a1j+1/F = Gh

θ (x
a1
j+1/F , x j ). Then, multiplication by thematrix K corresponds to step-

ping forward in time by h; i.e. p̂ j+2/F = K p̂ j+1/F and p̂ j+(F−1)/F = K F−2 p̂ j+1/F .
Finally, noting that x j+1 is a known data point, let us define the aF−1th element of
the vector ΓF−1 by Γ

aF−1
F−1 = kGh

θ (x j+1, x
aF−1

j+(F−1)/F ). Then we have
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p
˜X j+1

(x j+1|˜X j = x j , θ) ≈ [

ΓF−1
]T

K F−2 p̂ j+1/F , (7.7)

where T denotes transpose. We insert this computation into (7.3) to obtain

L (θ) ≈
M−1
∑

j=0

log
[

ΓF−1
]T

K F−2 p̂ j+1/F . (7.8)

Gradient. Next, we compute the gradient of the log likelihood with respect to θ .
This gradient is important for numerical optimization. We start with

∂

∂θ�

L (θ) = ∂

∂θ�

log pXtM ,...,Xt0
(xM , . . . , x0|θ)

≈
M−1
∑

j=0

1

p
˜X j+1

(x j+1|˜X j = x j , θ)

∂

∂θ�

p
˜X j+1

(x j+1|˜X j = x j , θ). (7.9)

The remaining derivative looks like this:

∂

∂θ�

p
˜X j+1

(x j+1|˜X j = x j , θ)

=
∫

x j+(F−1)/F

· · ·
∫

x j+1/F

F−1
∑

r=0

{

∂

∂θ�

p
˜X j+(r+1)/F

(x j+(r+1)/F |˜X j+r/F = x j+r/F , θ)

∏

s �=r
s=0,...,F−1

p
˜X j+(s+1)/F

(x j+(s+1)/F |˜X j+s/F = x j+s/F , θ)

}

dx j+(F−1)/F · · · dx j+1/F

Let us derive an algorithm to compute this quantity. First, we peel off the r = F − 1
term in the sum to write:

∂

∂θ�

p
˜X j+1

(x j+1|˜X j = x j , θ)

=
∫

x j+(F−1)/F

· · ·
∫

x j+1/F

{

∂

∂θ�

p
˜X j+1

(x j+1|˜X j+(F−1)/F = x j+(F−1)/F , θ)

∏

s=0,...,F−2

p
˜X j+(s+1)/F

(x j+(s+1)/F |˜X j+s/F = x j+s/F , θ)

}

+
[

p
˜X j+1

(x j+1|˜X j+(F−1)/F = x j+(F−1)/F , θ)

×
F−2
∑

r=0

(

∂

∂θ�

p
˜X j+(r+1)/F

(x j+(r+1)/F |˜X j+r/F = x j+r/F , θ)
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∏

s �=r
s=0,...,F−2

p
˜X j+(s+1)/F

(x j+(s+1)/F |˜X j+s/F = x j+s/F , θ)

)]

dx j+(F−1)/F · · · dx j+1/F

Again, we can use the definition ofG together with the crucial observation described
above to simplify the above expression to:

∂

∂θ�

p
˜X j+1

(x j+1|˜X j = x j , θ)

=
∫

x j+(F−1)/F

· · ·
∫

x j+1/F

{

∂

∂θ�

Gh
θ (x j+1, x j+(F−1)/F )

∏

s=0,...,F−2

Gh
θ (x j+(s+1)/F , x j+s/F )

}

+
[

Gh
θ (x j+1, x j+(F−1)/F )

F−2
∑

r=0

(

∂

∂θ�

Gh
θ (x j+(r+1)/F , x j+r/F )

∏

s �=r
s=0,...,F−2

Gh
θ (x j+(s+1)/F , x j+s/F )

)]

dx j+(F−1)/F · · · dx j+1/F

We discretize in space, again using the trapezoidal rule repeatedly:

∂

∂θ�

p
˜X j+1

(x j+1|˜X j = x j , θ)

≈ kF−1
∑

aF−1

· · ·
∑

a1

{

∂

∂θ�

Gh
θ (x j+1, x

aF−1

j+(F−1)/F )
∏

s=0,...,F−2

Gh
θ (x

as+1

j+(s+1)/F , xasj+s/F )

}

+
[

Gh
θ (x j+1, x

aF−1

j+(F−1)/F )

F−2
∑

r=0

(

∂

∂θ�

Gh
θ (x

ar+1

j+(r+1)/F , xarj+r/F )
∏

s �=r
s=0,...,F−2

Gh
θ (x

as+1

j+(s+1)/F , xasj+s/F )

)]

In the above expression and in what follows, any instance of xa0j should be interpreted
as simply x j . Now let us push all summations over a1, . . . , aF2 inside to obtain

∂

∂θ�

p
˜X j+1

(x j+1|˜X j = x j , θ) ≈ k
∑

aF−1

{

∂

∂θ�

Gh
θ (x j+1, x

aF−1

j+(F−1)/F )

(

kF−2
∑

aF−2

· · ·
∑

a1

∏

s=0,...,F−2

Gh
θ (x

as+1

j+(s+1)/F , xasj+s/F )

)}

+
[

Gh
θ (x j+1, x

aF−1

j+(F−1)/F )kF−2
∑

aF−2

· · ·
∑

a1

F−2
∑

r=0

(

∂

∂θ�

Gh
θ (x

ar+1

j+(r+1)/F , xarj+r/F )

∏

s �=r
s=0,...,F−2

Gh
θ (x

as+1

j+(s+1)/F , xasj+s/F )

)]
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Now note that by our previous definitions, we have that

kF−2
∑

aF−2

· · ·
∑

a1

∏

s=0,...,F−2

Gh
θ (x

as+1

j+(s+1)/F , xasj+s/F ) = K F−2 p̂ j+1/F = p̂ j+(F−1)/F .

Analogously, let us define the aF−1th element of the vector q̂ j+(F−1)/F,� by

q̂aF−1

j+(F−1)/F,� = kF−2
∑

aF−2

· · ·
∑

a1

F−2
∑

r=0

(

∂

∂θ�

Gh
θ (x

ar+1

j+(r+1)/F , xarj+r/F )
∏

s �=r
s=0,...,F−2

Gh
θ (x

as+1

j+(s+1)/F , xasj+s/F )

)

. (7.10)

Let Γ
aF−1
F−1,� = k

∂

∂θ�

Gh
θ (x j+1, x

aF−1

j+(F−1)/F ) define the aF−1th element of the vector

ΓF−1,�. Using this together with our old definition of ΓF−1, we have

∂

∂θ�

p
˜X j+1

(x j+1|˜X j = x j , θ) ≈ [

ΓF−1,�
]T

p̂ j+(F−1)/F + [

ΓF−1
]T

q̂ j+(F−1)/F,�.

Now let Kar+1,ar
� = k

∂

∂θ�

Gh
θ (x

ar+1

j+(r+1)/F , xarj+r/F ) define the (ar+1, ar ) element of the

matrix K�. Then, let us return to (7.10). Peeling off the r = F − 2 term,

q̂ j+(F−1)/F,� = K� p̂ j+(F−2)/F + Kq̂ j+(F−2)/F,�,

where q̂ j+(F−2)/F,� is defined analogously to q̂ j+(F−1)/F,�, simply decrementing F by
1 on the right-hand side. It is clear that after a finite number of such manipulations,
we will reach the r = 0 term. In this case, the product term will be empty (and hence
equal 1), leaving us with only the derivative with respect to θ� of Gh

θ (x
a1
j+1/F , x j ). In

this way, we may derive the following algorithm:

1. We begin with q̂a1
j+1/F,� = ∂

∂θ�

Gh
θ (x

a1
j+1/F , x j ).

2. We then iteratively define, for r = 1, . . . , F − 2,

q̂ j+(r+1)/F,� = K� p̂ j+r/F + Kq̂ j+r/F,�. (7.11)

3. We finish with:

∂

∂θ�

p
˜X j+1

(x j+1|˜X j = x j , θ) ≈ [

ΓF−1,�
]T

p̂ j+(F−1)/F + [

ΓF−1
]T

q̂ j+(F−1)/F,�.
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Combining this with (7.7) and (7.9), we obtain

∂

∂θ�

L (θ) ≈
M−1
∑

j=0

[

ΓF−1,�
]T

p̂ j+(F−1)/F + [

ΓF−1
]T

q̂ j+(F−1)/F,�
[

ΓF−1
]T

K F−2 p̂ j+1/F

. (7.12)

Derivation for Many Sample Paths. We revisit (7.6) and write

p
˜X j+1/F

(x j+1/F |˜X j = x j , θ) = Gh
θ (x j+1/F , x j ) =

∫

y

Gh
θ (x j+1/F , y)δ(y − x j ) dy.

(7.13)
The term on the right-hand side can be interpreted as evolving the initial density
p

˜X j
(y) = δ(y − x j ) forward by h units of time. We note that conditioning on ˜X j =

x j on the left-hand side leads to a Dirac delta initial density on the right-hand side.
This will be an important ingredient in the algorithm that follows.

Now let us reinterpret x = x0, x1, . . . , xM as a sequence of vector-valued obser-
vations. For each s = 1, 2, . . . , ν, the sequence xs0, x

s
1, . . . , x

s
M is a scalar time series.

With these changes, the derivation of the log likelihood from (7.3) to (7.4) holdswith-
out any changes. The only real change is that (7.5) only holds for i ∈ {2, . . . , F}.
When i = 1, the quantity that must be computed is:

p
˜X j+1/F

(x j+1/F |˜X j = x j , θ), (7.14)

where we have many samples {xsj }νs=1 of the random variable ˜X j . When ν > 1, these
samples can be used to estimate the density of ˜X j as follows:

p
˜X j

(y) ≈ 1

ν

ν
∑

r=1

δ(y − xsj ). (7.15)

This approximation is a density estimate that corresponds to the spatial derivative of
the empirical cumulative distribution function of the samples. By logic analogous to
(7.13) and the above discussion, we can then evaluate (7.14) by

p
˜X j+1/F

(x j+1/F |˜X j = x j , θ) =
∫

y

Gh
θ (x j+1/F , y)p

˜X j
(y)dy ≈ 1

ν

ν
∑

r=1

Gh
θ (x j+1/F , xsj ).

(7.16)
Wemake the approximation (7.15) so that the density along each sample path evolves
with the same initial condition. Without such an approximation, the calculation (7.8)
would have to be repeated ν times.

The calculation of the likelihood proceeds as in (7.4)withGh
θ (x j+1/F , x j ) replaced

by (7.16). We now redefine p̂ j+1/F such that its a1th element is (7.16) evaluated at
x j+1/F = xa1j+1/F . We redefine ΓF−1 to be a matrix whose (aF , aF−1) entry is given

by Γ
aF ,aF−1
F−1 = kGh

θ (x
aF
j+1, x

aF1
j+(F−1)/F ). With these definitions, (7.7) becomes
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p
˜X j+1

(x j+1|˜X j = x j , θ) ≈
ν

∏

aF=1

(

[

ΓF−1
]T

K F−2 p̂ j+1/F

)

aF
, (7.17)

where (w)s denotes the sth component of the vector w. Similarly, (7.8) becomes

L (θ) ≈
M−1
∑

j=0

ν
∑

aF=1

log
(

[

ΓF−1
]T

K F−2 p̂ j+1/F

)

aF
. (7.18)

Gradient. The derivation of the gradient of L (θ) proceeds just as before with
Gh

θ (x j+1/F , x j ) replaced by (7.16). The only changes required in the algorithm are,

first, to redefine q̂a1
j+1/F,� = 1

ν

ν
∑

r=1

∂

∂θ�

Gh
θ (x j+1/F , xsj ), and second, to redefineΓF−1,�

as a matrix whose (aF , aF−1) entry is Γ
aF ,aF−1
F−1,� = k

∂

∂θ�

Gh
θ (x

aF
j+1, x

aF−1

j+(F−1)/F ). With

these changes, the gradient becomes

∂

∂θ�

L (θ) ≈
M−1
∑

j=0

ν
∑

aF=1

(

[

ΓF−1,�
]T

p̂ j+(F−1)/F + [

ΓF−1
]T

q̂ j+(F−1)/F,�

)

aF
(

[

ΓF−1
]T

K F−2 p̂ j+1/F

)

aF

, (7.19)

where q̂ is computed using (7.11) just as before.
Inference. The procedure for carrying out inference is now straightforward. We

use the algorithms derived above to compute the objective function, J (θ) = −L (θ)

and its gradient. We pass J and its gradient to a numerical optimization package,
NLopt [11].We specify an initial condition and instruct NLopt to use one of its meth-
ods (typically the low-storage BFGS algorithm [12, 13]) to numerically minimize J .
We use θ̂ to denote the minimizer of J (θ); θ̂ is our maximum likelihood estimate of
θ . All implementations are coded in R. We call algorithms from NLopt using nloptr
[18].

7.3 Results

We now present numerical tests of our algorithm in three cases. For each case, we
generate multiple sample paths using a specified SDE with known parameters. We
use θ to denote the true parameter vector. Using the data thus generated, we then use
our method to produce θ̂ , our maximum likelihood estimate of the parameter vector.
In the first two scenarios, the SDE we use for generating data coincides with the
SDE used for inference. In the third scenario, we use a generic polynomial SDE for
inference—this SDE includes as a special case the SDE used for generating data.
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Table 7.1 Results for Case 1. Using either 300 or 100 sample paths produced by Euler–Maruyama
simulation with time step ξ = 10−4, we study the effect of reducing h, the internal DTQ time step

Estimated θ̂ Iterations h Paths RMS error

(1.020, 0, 1.404) 31 0.05 300 0.6597

(1.041, 0, 1.430) 30 0.02 300 0.6916

(1.048, 0, 1.438) 34 0.01 300 0.7028

(1.052, 0, 1.443) 34 0.005 300 0.7084

(1.054, 0, 1.445) 35 0.002 300 0.7119

(0.671, 0, 1.143) 31 0.01 100 0.2238

(0.673, 0, 1.146) 28 0.005 100 0.2264

(0.674, 0, 1.147) 26 0.002 100 0.2284

To test the performance of the algorithm, we generate the data using the Euler–
Maruyama approximation of the SDE. We step forward in time, starting from t0 to
a final time point T > 0. We use a step size of ξ , where ξ = 10−4 unless specified
otherwise. We retain the samples only at times t = mΔt from m = 0 to m = M ,
where MΔt = T . For consistency during comparisons, we set t0 = 0, T = 25, and
Δt = 1.

Case 1: Linear SDE (Ornstein–Uhlenbeck process). We consider the SDE for
the Ornstein–Uhlenbeck process with linear drift and constant diffusion terms.

dXt = θ1(θ2 − Xt )dt + θ3dWt (7.20)

For the first set of experiments, the true parameter vector is θ = (0.5, 0, 1). We start
the optimizer with an initial condition θ0 = (1, 2, 0.5). We study how well we are
able to infer the parameters as a function of DTQ’s internal time step h and the
number of sample paths. For this set of experiments, the spatial grid spacing k is
set to k = h0.75. In Table7.1, we summarize this information together with the RMS
(root-mean-square) error between the estimated and true parameter values. This is
equivalent to the 2-norm error, ‖θ − θ̂‖2. We also record the number of iterations
required for the optimizer to converge to the minimizer of the objective function, the
negative log likelihood.

The method is not as sensitive to h as one might expect. Instead, what we find
is that the error decreases when we decrease the number of sample paths. When we
use only 100 sample paths, we obtain a qualitatively reasonable solution for all three
components of θ , with θ2 in particular identified up to machine precision.

To explore whether the above findings were peculiar to the way we generated
the data, we conducted another series of tests starting with a true parameter vector
of θ = (0.5, 0.9, 1). The results are displayed in Table7.2. This time, when we use
the Euler–Maruyama method to generate data, we use an internal time step of ξ =
10−6, retaining all other parameters described above. For the inference, we give the
optimizer an initial guess of θ0 = (1, 0.5, 0.5). We again set the spatial grid spacing
to k = h0.75 and record the RMS error.
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Table 7.2 Results for Case 1. Using either 300 or 100 sample paths produced by Euler–Maruyama
simulation with time step ξ = 10−6, we study the effect of reducing h, DTQ’s internal time step

Estimated θ̂ Iterations h Paths RMS error

(0.361, 0.968, 0.836) 39 0.050 50 0.2254

(0.362, 0.968, 0.839) 46 0.020 50 0.2226

(0.362, 0.968, 0.840) 42 0.010 50 0.2219

(0.362, 0.968, 0.841) 28 0.005 50 0.2212

(0.463, 0.885, 0.966) 45 0.050 300 0.05244

(0.466, 0.886, 0.973) 22 0.020 300 0.04561

(0.467, 0.886, 0.975) 22 0.010 300 0.04370

(0.468, 0.886, 0.976) 26 0.005 300 0.04237

(0.468, 0.886, 0.976) 20 0.002 300 0.04237

The results from Table7.2 show that if we increase the number of sample paths
from 50 to 300, the error decreases dramatically. This leads us to our view that, for
the present version of DTQ, the quality of the data is important. When we decrease
the Euler–Maruyama time step from ξ = 10−4 to ξ = 10−6, we gain roughly one
extra decimal place of accuracy in the sample paths. This leads DTQ towards higher-
quality estimates of the parameters in the Ornstein–Uhlenbeck model (7.20).

The performance ofDTQshould increase as the number of sample paths increases.
In this regard, we believe the results from Table7.1 are an artefact of how the data
was generated. We will see confirmation of this in the results below on a nonlinear
SDE model.

Additionally, we note that Table7.2 confirms that DTQ’s results are relatively
insensitive to decreasing h, the internal time step of DTQ. Note that the data set
we use for the experiments is collected at intervals of Δt = 1. We have found, in
practice, that the choice h = Δt/20 is sufficient for inference. This is consistent with
the results of [14], who chooses h ≈ Δt/25.

Case 2: Nonlinear SDE (Double Well Potential). As our second example, we
consider the following SDE with a nonlinear drift and constant diffusion term:

dXt = θ1Xt (θ2 − X2
t )dt + θ3dWt (7.21)

In Table7.3, we show the results of an initial set of tests. In these tests, we vary both
the true parameter vector θ and the initial guess θ0 that is given to the optimizer. For
these tests, the data consists of 100 sample paths and the DTQ grid spacing is given
by k = h0.75. Note that even when θ0 is far from θ , the estimated parameters θ̂ are
close to θ . This trend holds for different values of θ . In fact, DTQ’s RMS errors are
quite low for all tests involving the nonlinear model (7.21).

Next, in Table7.4, we study the effect of decreasing DTQ’s internal time step, h,
when all other problem/algorithm parameters are kept fixed. For these tests, we set
θ = (1, 4, 0.5), θ0 = (2, 2, 1), and k = h0.75. The data consists of 100 sample paths.
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Table 7.3 Results for Case 2. We study a collection of problems involving different true θ values
and different initial guesses θ0

True θ Initial θ0 Estimated θ̂ Iterations h RMS Error

(0.2, 1, 0.5) (1, 1, 1) (0.162, 0.886, 0.488) 37 0.05 0.06901

(0.4, 1, 0.5) (1, 1, 1) (0.629, 1.023, 0.618) 24 0.05 0.14965

(1, 4, 0.5) (0.5, 0.5, 0.5) (0.928, 3.990, 0.467) 50 0.01 0.04568

(1, 4, 0.5) (2, 2, 1) (0.925, 3.990, 0.430) 48 0.01 0.05935

(1, 4, 0.5) (8, 8, 2) (0.928, 3.990, 0.467) 47 0.01 0.04571

Table 7.4 Results for Case 2. We study the effect of decreasing h, keeping all other parameters
fixed

Estimated θ̂ Iterations h RMS error

(0.925046, 3.990012, 0.430020) 37 0.05 0.05948

(0.925311, 3.990029, 0.430068) 48 0.01 0.05935

(0.926930, 3.990418, 0.471400) 48 0.005 0.04563

(0.925808, 3.990464, 0.473724) 41 0.002 0.04577

(0.925433, 3.990480, 0.474493) 31 0.001 0.04583

The results show that it is possible to slightly reduce the RMS error by decreasing
h, the internal time step. Based on these results, we see that there is no disadvantage
incurred by using our method with h = 0.05; at this internal time step, the method
runs very quickly in R.

In Table7.5, we run a series of tests where each test is repeated twice, once with
the spatial grid spacing set to k = h0.75 and again with k = h. For these tests, we
generate data with θ = (1, 4, 0.5). If we examine the first two rows of Table7.5, what
we see is that decreasing the spatial grid spacing has a significant, beneficial effect on
the RMS error. What has happened here is that we have given the optimizer an initial
guess where the third element of θ0 is 0.1, a relatively small value. If we go back
to the SDE (7.21), we see that this third element of θ0 corresponds to the diffusion
coefficient. When the diffusion coefficient is small, the Gaussian kernel Gh

θ becomes
very narrow. This necessitates a finer spatial grid in order to resolve the kernel well
enough to perform accurate quadrature. For the final four rows of Table7.5, the third
element of θ0 is 1 and we do not observe as significant a reduction in RMS error
when we refine the spatial grid.

Finally, in Table7.6, we study the effect of increasing the number of Euler–
Maruyama sample paths in the data set that we feed into the inference algorithm.
We keep all other algorithm and problem parameters fixed, with θ = (1, 4, 0.5),
θ0 = (2, 2, 1), h = 0.01 and k = h0.75. The results show a steady improvement in
the estimated θ̂ as the number of sample paths increase. The last row of Table7.6
contains our best result for this inference problem with an RMS error less than 0.01.
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Table 7.5 Results for Case 2. We compare spatial grid laws k = h0.75 and k = h

Initial θ0 Estimated θ̂ Iterations k Paths RMS error

(0.5, 0.5, 0.1) (0.100, 4.024, 0.100) 39 h0.75 100 0.5688

(0.5, 0.5, 0.1) (1.035, 3.993, 0.499) 43 h 100 0.0205

(2, 2, 1) (0.925, 3.990, 0.430) 48 h0.75 100 0.0593

(2, 2, 1) (0.955, 3.995, 0.481) 35 h 100 0.0283

(2, 2, 1) (1.035, 3.993, 0.499) 75 h0.75 300 0.0206

(2, 2, 1) (1.022, 4.008, 0.497) 32 h 300 0.0138

Table 7.6 Results for Case 2. We examine the effect of increasing the number of sample paths in
the data set, keeping all other parameters fixed

Estimated θ̂ Iterations Paths RMS error

(0.776, 4.060, 0.424) 100 2 0.1408

(0.899, 3.992, 0.510) 27 10 0.0583

(0.833, 4.018, 0.440) 35 50 0.1030

(0.925, 3.990, 0.430) 48 100 0.0593

(0.901, 4.007, 0.464) 33 200 0.0609

(1.035, 3.993, 0.499) 75 300 0.0206

(1.107, 3.994, 0.513) 43 400 0.0624

(0.988, 3.999, 0.489) 33 1000 0.0094

Case 3:Generic PolynomialDrift andDiffusionFunctions. For our third exam-
ple, we reuse (7.21) to generate simulated data, but we use a more general model for
the drift function, a generic cubic polynomial. In other words, for the purposes of
inference, we use the SDE model

dXt = (θ0 + θ1Xt + θ2X
2
t + θ3X

3
t )dt + θ4dWt . (7.22)

We infer the parameters θ = (θ0, θ1, θ2, θ3, θ4) in the SDE (7.22) from the observa-
tions generated using the SDE (7.21) to see if we recover the correct form of the drift
function. Ideally, DTQ will infer that θ0 and θ2 in (7.22) are zero.

In Table7.7, we display our results for three values of h, the internal time step.
We generate our data by simulating 100 sample paths of (7.21) with θ1 = 0.2, θ2 = 4
and θ3 = 0.4. Note that in terms of the inference model (7.22), this corresponds to
θ = (0, 0.8, 0,−0.2, 0.4). For the initial guess, we use θ0 = (0, 0, 0, 0, 0.5). In this
particular set of tests, instead of using the BFGS algorithm described above, we use
NLopt’s method of moving asymptotes (MMA) algorithm [17].

Overall, DTQ correctly identifies the qualitative form of the model. That is, we
find that the first and third components of θ̂ are close to zero, and the remaining
components of θ̂ are also close to their true values.
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Table 7.7 Results for Case 3. We perform inference using model (7.22), which has a higher-
dimensional parameter space than (7.21), the model used to generate the data

Estimated θ̂ Iterations h RMS error

(0.014, 0.619, −0.003, −0.154, 0.357) 69 0.005 0.0859

(0.014, 0.867, −0.003, −0.217, 0.424) 57 0.002 0.0334

(0.012, 0.766, −0.003, −0.192, 0.408) 89 0.001 0.0168

7.4 Discussion and Conclusion

In this chapter, we have both derived and experimentally studied a new algorithm
for parameter inference in stochastic differential equation models. The crux of the
algorithm is to use quadrature to compute the transition densities required for the
both the log likelihood function and its gradient.

The results in Sect. 7.3 clearly demonstrate several conditions under which DTQ
performswell. In particular,wefind empirical evidence justifying the approximations
made in Sect. 7.2—especially (7.15) and (7.16), which have not been justified in prior
theoretical work. Once the internal time step h is sufficiently small, further reduction
of h does not significantly improve the quality of the inferred θ̂ .Wedofind that certain
algorithm parameters, such as the spatial grid spacing k, do need to be adjusted to
handle scenarios such as very small diffusion coefficients.

We have seen that the primary challenge to be addressed is that the present version
of DTQ, in order to produce highly accurate results, requires high-quality data. In
future work, we will continue ongoing efforts to overcome this obstacle, including
an adjoint method to evaluate the gradient ∇θL (θ) [4] and measurement models
that enable filtering of noisy observations [6]. Other improvements to the method
we seek to explore include implementing core parts of the algorithm in C++ [5],
allowing for time-dependent drift and diffusion coefficients [7], and also allowing
for data that is not equispaced in time [6].
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Chapter 8
New Monte Carlo Algorithm for
Evaluation of Outgoing Polarized
Radiation

Gennady A. Mikhailov, Natalya V. Tracheva and Sergey A. Ukhinov

Abstract This chapter is devoted to the discussion of a distinctive Monte Carlo
method for evaluation of angular distribution of outgoing polarized radiation. The
algorithm in consideration is based on the modification of N. N. Chentsov method
for unknown probability density evaluation via the orthonormal polynomial expan-
sion. A polarization was introduced into a mathematical model of radiation transfer
with use of four-dimensional vector of Stokes parameters. Corresponding weighted
Monte Carlo algorithm was constructed. Using this method and precise computer
simulation, the angular distribution of outgoing radiation was investigated. Special
attention was given to the value of polarization impact in the mathematical model of
radiation. Algorithm in consideration allows us precisely estimate even a small effect
of polarization as well as a deviation of the calculated angular distribution from the
Lambertian one.

Keywords Statistical modeling · Radiation transfer · Polarization
Stokes vector · Orthogonal expansion · Jacobi polynomials

8.1 Introduction

The measuring and modelling of the angular distribution of outgoing and backscat-
tered radiation are of a great importance to characterizing the properties of the
medium and have been used in many study areas. It is well known that Monte Carlo
method can be very efficient in case of the problems which are reducible to eval-
uation of not very large series of functionals. Thus, the method of N. N. Chentsov
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(see, e.g., [1]) of randomized orthogonal expansion for estimating of an unknown
probability density is particularly useful in application to the problem of angular
distribution of outgoing polarized radiation evaluation. This method is based on the
decomposition of desired probability density in terms of a system of a standard
function that is orthonormal with weight. Note that coefficients of expansion are
mathematical expectations of weighted random values of that standard functions.

In this chapter, we consider modification of N. N. Chentsov method based on
effective factorization of desired probability density. This modification can essen-
tially reduce the number of expansion terms in the case of evaluation of an angular
distribution of scattered by media radiation. Thus, we can efficiently compare den-
sities of probability for varied problem settings.

Using this modification, we reveal the significant effect of polarization on the
angular distribution mentioned above. Moreover, we managed to evaluate numeri-
cally a deviation of this angular distribution from the Lambertian one.

8.2 Mathematical Model of Polarized Light Propagation
and the Problem Statement

Let us consider polarized radiation transfer in the scattering and absorbing medium.
In order to include polarization in the mathematical radiative model, we use the
widespread and convenient method that was proposed by Stokes in 1852 [2]. Four
parameters with the dimension of intensity are introduced in the radiation model. In
different combination, they determine collectionwise the intensity, degree of polar-
ization, polarization plane, and degree of ellipticity of radiation. In what follows,
we consider the corresponding components of the Stokes vector function of light
intensity:

Φ(r, ω) = (
Φ(1)(r, ω),Φ(2)(r, ω),Φ(3)(r, ω),Φ(4)(r, ω)

)T
.

Here, r is a point of R3 space, and ω = (a, b, c) is a unit direction vector aligned
with the run of the particle (a2 + b2 + c2 = 1).

Consider stationary integro-differential vector equation of polarized radiation
transfer:

ω∇Φ(r, ω) + σ(r)Φ(r, ω) =
∫

Ω
σs(r)P(ω′, ω, r)Φ(r, ω′) dω′ + I0(r, ω). (8.1)

Here, Φ(r, ω) is the vector function of radiation intensity at r point in ω direction;
σs is the scattering coefficient, σ = σs + σc is the extinction coefficient, σc is the
absorbtion coefficient;

P(ω′, ω, r) = L(π − i2)R(ω′, ω, r)L(−i1),
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R(ω′, ω, r) is the scattering phase matrix, L(i) is the rotation matrix:

L(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 0
0 cos 2i sin 2i 0
0 − sin 2i cos 2i 0
0 0 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

i1 is the angle between the plane ω′, s and the scattering plane ω′, ω; i2 is the angle
between the scattering plane ω′, ω and the plane ω, s; and s is a vector of the local
spherical system of coordinates [3]; I0 is the vector function of radiation source
distribution density.

For an anisotropicmedium, all 16 components of the scatteringmatrix R(ω′, ω, r)
are generally different. For an isotropic medium, the scattering matrix simplifies to

R(ω′, ω, r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r11 r12 0 0
r21 r22 0 0
0 0 r33 r34
0 0 −r43 r44

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ri j ≡ ri j (μ, r).

If the scattering particles are homogeneous spheres, then r11 = r22, r12 = r21, r33 =
r44, r34 = r43. The matrix R is normalized so that

1∫

−1
r11(μ) dμ = 1.

To solve the scalar analog of Eq. (8.1) we construct aMarkov chain of “collisions”
separated by “free paths” which have inhomogeneous exponential distribution with
coefficientσ(r), r ∈ R3.We assume thatσ ≡ σc > 0 outside themedium, in order to
normalize the free path distribution. The distribution of a direction ω after scattering
is determined by an indicatrix w(ω′, ω) = 1

2π g(ω
′ω) (see, e.g., [3]). We simulate

the trajectory of this chain with a computer and calculate statistical estimations
for desired functionals. Note that in the scalar model, Φ(2)(r, ω) = Φ(3)(r, ω) =
Φ(4)(r, ω) = 0 (see, e.g., [3]). To take into account polarization, we associate with
each particle the Stokes vector Φ(r, ω) and the scattering indicatrix is replaced by
the scattering matrix.

New photon’s direction ω after scattering is defined by the scattering angle θ and
the azimuthal angle ϕ. The cosine μ of the angle θ is simulated according to the r11,
i.e., according to the scattering phase function. The angle ϕ ∈ (0, 2π) is assumed
to be isotropic and is equal to that between the planes ω′, s and ω,ω′ measured
counterclockwise when viewed against the incident rayω′. Thus, the azimuthal angle
is equal to i1. After the new direction was chosen, i1 and i2 can be found using
spherical trigonometry formulas.

The procedure for updating the Stokes vector after scattering includes the
formulas
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Φ(1)(r, ω) = r11 · Φ(1)(r, ω′) + r12 · A,

Φ(2)(r, ω) = (r21Φ
(1)(r, ω′) + Ar22) cos 2i2−

− (r33B − r34V (r, ω′)) sin 2i2,

Φ(3)(r, ω) = (r21Φ
(1)(r, ω′) + Ar22) sin 2i2+

+ (r33B − r34V (r, ω′)) cos 2i2,

Φ(4)(r, ω) = r43B + r44Φ
(4)(r, ω′),

where

A = Φ(2)(r, ω′) cos 2i1 − Φ(3)(r, ω′) sin 2i1,

B = Φ(2)(r, ω′) sin 2i1 + Φ(3)(r, ω′) cos 2i1.

The simplest phenomenological Markov model of polarized radiative transfer
arises when the medium is assumed to be isotropic. The only difference from the
standard scalarmodel is that the scattering phase function is replacedwith a scattering
matrix, which transforms the Stokes vector associated with a given photon at a
scattering point [3].

Simulation of random trajectories of a physical process of radiation transfer is
a direct Monte Carlo simulation without weights. Variances of Monte Carlo esti-
mates, in this case, are finite. However, introducing Stokes vector includes adding
matrix weight into the radiation transfer model. In this concern, we use general
matrix-weighted algorithms for solving systems of integral equations in the theory
of radiation with polarization transfer, which were constructed and preliminarily
studied in (see, [4]).

For definiteness, we consider transport of particles through a plane layer 0 < z <

H from a source located on the boundary z = 0 and directed along Oz axis.
Of practical importance is the numerical study of the intensity Φ(μ, H) of

transmitted radiation, where μ = ωz . It is known (see, e.g., [3]) that Φ(μ, H) =
F(μ, H)/2πμ; moreover, in the scalar case, F(μ, H) is the distribution density of
the particles escaping from the layer with respect to cosine μ. We use the notations

PH =
1∫

0

F(x, H) dx, f (x) ≡ f (x, H) = P−1
H F(x, H), ϕ(x) = f (x)/x .

This chapter is devoted to the numerical investigation of the angular distribution
of the intensity of transmitted radiation, i.e., the function

f (x, H)/x, 0 < x < 1,

in order to analyze the variation of this function under the growth of H and under the
introduction of polarization in the mathematical radiation model as specified above.
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8.3 A Modification of N. N. Chentsov Method for an
Unknown Probability Density Evaluation in
Application to the Problem of Evaluation of an Angular
Distribution of the Radiation Scattered by Media

The method of an unknown probability density f (x) evaluation, suggested by
Chentsov [1], is based on the expansion in terms of the system of functions ψi (x),
orthonormal with weight p(x):

f (x) =
∞∑

n=0

aiψi (x),

+∞∫

−∞
p(x)ψi (x)ψ j (x) dx =

{
1, i = j
0, i �= j,

(8.2)

with

ai =
+∞∫

−∞
p(x)ψi (x) f (x) dx = E

[
p(ξ)ψi (ξ)

]
, (8.3)

where ξ - is a random variable distributed with the density f (x).
This relation gives us opportunity to statistically evaluate coefficients ai . In other

words, we can obtain orthonormal randomized expansion of the density f (x) using
the sample of ξ values.

For this purpose,we use suggested byMikhailov [5]modification of this algorithm
based on the following representation of the function f (x)

f (x) = p(x)
∞∑

i=0

aiψi (x), ai =
+∞∫

−∞
f (x)ψi (x) dx = Eψi (ξ).

It is well known (see, e.g., [6]) that for a large H and a weak absorption of
particles in the medium, the density f (x) is close to the Lambert density f0(x) = 2x .
Therefore, since ϕ(x) = f (x)/x , it is expedient to set p(x) = x .

For a system ψi (x) of orthonormal over interval (0, 1) with weight x functions,
let us consider a special case of the Jacobi polynomials P (α,β)

n (y), orthogonal with
weight (1 − y)α(1 + y)β over (−1, 1) (see, e.g., [7]). Setting α = 0, β = 1, making
the change of variables y = 2x − 1, and the normalization of polynomials give us
the following explicit form for functions ψi (x):

ψi (x) = √
2i + 2

i∑

k=0

(−1)k (2 i + 1 − k)!
(i − k)! k! (i + 1 − k)! x

i−k .
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We use the following notation: N is the size of a sample of random trajectories
of particles, and NH is a random number of particles that have reached the boundary
z = H .

According to the (8.2) equality, a random estimate of the function is constructed
as the following

ϕ(x, H) ≈
n∑

i=0

aiψi (x) = ϕn(x) ≈ ϕ̃n(x) =
n∑

i=0

αiψi (x),

where αi =
NH∑

j=0

Q jψi (μ j )/

NH∑

j=0

Q j and Q j is the weight of a j th particle, escaping

from the layer in the direction μ j (i.e., the first component of the Stokes vector).

In scalar case, we can, evidently, get αi = N−1
H

NH∑

j=0

ψi (μ j ).

Moreover, apparently, the following expressions hold true (see [8]):

Eαi = ai + O(N−1),

and

Eϕ̃n(x) = ϕn(x) + O(N−1) and

1∫

0

x ϕ̃n(x) dx =
1∫

0

xα0ψ0(x) dx =
1∫

0

2x dx = 1.

According to [8] variance Dαi asymptotically with N → ∞ equals to

Dαi = 1

N

DN ξi − 2
EN ξi

EN ξP
covN (ξP , ξi ) +

( EN ξi

EN ξP

)2
DN ξP

(EN ξP)2
+ o(N−1),

where

EN ξP = 1

N

NH∑

j=0

Q j , DN ξP = 1

N

NH∑

j=0

Q2
j − (EN ξP)2,

EN ξi = 1

N

NH∑

j=0

Q jψi (μ j ), DN ξi = 1

N

NH∑

j=0

(Q jψi (μ j ))
2 − (EN ξi )

2,

covN (ξP , ξi ) = 1

N

NH∑

j=0

Q2
jψi (μ j ) − EN ξP EN ξi .
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Here, by characters EN , DN , covN , the statistical estimations of corresponding

moments are denoted, and ξP = Q, ξi = Qψi (μ), EξP = PH , Eξi =
1∫

0

F(μ, H)

ψi (μ) dμ holds true.

8.4 Numerical Results and Discussion

In our numerical calculations, we use the well-knownmatrix ofmolecular (Rayleigh)
scattering (see, e.g., [3]) and the matrix of aerosol scattering, calculated according
to the Mie theory for an aerosol medium with the following parameters (see, e.g.,
[9]): The refractive index of particles is n = 1.331−i1.3 × 10−4 (water); the size

distribution of particles is lognormalwith density f (r) = 1

r
exp(− 1

2σ 2
g

ln2(
r

rg
)), r ∈

(0, 10mkm), rg = 0.12mkm, σg = 0.5; and the radiation wave length is 0.65 mkm.
The mean cosine of the scattering angle for that matrix of scattering is μ0 = 0.7292.

The influence of polarization on the integral flow PH of radiation transmitted
through a layer and on the expansion coefficients ai in (8.3) was numerically investi-
gated. Precise calculations, with 1010 trajectories simulated, showed that, for layers
of optical thickness between H = 2 and H = 20, the influence of polarization on
PH increases with the increase of the layer thickness.

Tables8.1 and 8.2 show statistically significant estimates of the relative (with
respect to PH in casewithout polarization) differences of fluxesΔPH with andwithout
account of polarization, as well as their standard deviations σN (ΔPH ). As shown, the
impact of the polarization on the integral flux equals to 0.03% for aerosol media and
to 4.3% for molecular media, depending on the layer thickness.

Tables8.3 and 8.4 give the values of the relative difference Δαi of estimates of
the coefficients αi with and without account of polarization, as well as estimates of
the corresponding standard deviations σN (Δαi ). For the layer H = 20, the influence
of the polarization on the coefficients αi turned out to be statistically insignificant in
consequence of insufficient size of sample.

Tables8.5 and 8.6 give statistically significant estimates of the coefficients ai for
H = 2, 5, 10. Since these estimates rapidly decrease and the relative error of the

Table 8.1 Polarization effect on flux PH . Aerosol scattering

H ΔPH σN (ΔPH ) PH

2 −8.3 × 10−5 5.4 × 10−7 0.69596

5 1.3 × 10−4 1.7 × 10−6 0.60416

10 2.5 × 10−4 4.8 × 10−6 0.41314

20 2.9 × 10−4 1.6 × 10−5 0.25008
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Table 8.2 Polarization effect on flux PH . Molecular scattering

H ΔPH σN (ΔPH ) PH

1 −0.0010257 8.8 × 10−6 0.29165

2 −0.0022453 1.9 × 10−5 0.34846

3 −0.0028396 5.2 × 10−5 0.32906

5 −0.0021608 4.3 × 10−4 0.25557

10 0.0426098 8.1 × 10−3 0.14755

Table 8.3 Polarization effect on coefficients αi (α0 ≡ a0 = √
2). Aerosol scattering

i H = 2 H = 5 H = 10

Δαi σN (Δαi ) Δαi σN (Δαi ) Δαi σN (Δαi )

1 8.5 × 10−3 4.1 × 10−5 7.9 × 10−3 9.4 × 10−5 2.0 × 10−3 2.3 × 10−4

2 5.8 × 10−3 9.8 × 10−5 3.6 × 10−2 9.0 × 10−4 2.3 × 10−2 6.8 × 10−3

3 −1.3 × 10−3 1.7 × 10−4 5.3 × 10−3 1.1 × 10−3 5.7 × 10−3 1.6 × 10−2

Table 8.4 Polarization effect on coefficients αi (α0 ≡ a0 = √
2). Molecular scattering

i H = 2 H = 3 H = 5

Δαi σN (Δαi ) Δαi σN (Δαi ) Δαi σN (Δαi )

1 0.46 9.4 × 10−4 0.17 1.2 × 10−3 0.05 9.1 × 10−3

2 0.40 2.3 × 10−3 0.42 6.6 × 10−3 0.37 0.13

3 −0.22 1.4 × 10−2 4.52 1.48 2.33 3.02

4 −0.28 6.9 × 10−2 −0.39 0.27 0.69 2.45

Table 8.5 The expansion coefficients αi without account of polarization. Aerosol scattering

H 2 5 10

α0 1.4142 1.4142 1.4142

α1 0.5302 0.3287 0.2841

α2 0.2380 0.0355 −0.0097

α3 0.1402 0.0302 0.0041

α4 0.0638 0.0120 −6.0 × 10−4

α5 0.0334 0.0065 6.8 × 10−4

α6 0.0181 0.0029 −1.3 × 10−4

α7 0.0103 0.0018 1.7 × 10−4

α8 0.0052 8.0 × 10−4 6.0 × 10−5

α9 0.0024 4.5 × 10−4 8.5 × 10−5
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Table 8.6 Expansion coefficients αi without account of polarization. Molecular scattering

H 1 2 3 5 10

α0 1.4142 1.4142 1.4142 1.4142 1.4142

α1 −0.0322 0.1258 0.1996 0.2533 0.2681

α2 −0.0334 −0.0498 −0.0352 −0.0135 −0.0045

α3 0.0273 0.0081 −1.6 × 10−4 −7.4 × 10−4 0.0016

α4 −0.0083 0.0016 9.2 × 10−4 −8.5 × 10−4 −7.9 × 10−4

α5 2.1 × 10−4 4.5 × 10−4 6.8 × 10−4 5.1 × 10−4 2.7 × 10−4

α6 1.2 × 10−3 4.2 × 10−4 −1.3 × 10−4 −1.4 × 10−4 −1.4 × 10−4

α7 −6.7 × 10−4 1.6 × 10−4 1.7 × 10−4 8.6 × 10−5 1.4 × 10−4

α8 6.2 × 10−5 −4.8 × 10−5 6.0 × 10−5 −6.6 × 10−5 −5.3 × 10−5

α9 1.9 × 10−4 2.9 × 10−5 8.5 × 10−5 5.8 × 10−5 1.1 × 10−5

Table 8.7 Error Δ̄n = ‖ϕ̃n − ϕ̃9‖2 estimation. Aerosol scattering

H 2 5 10 20

Δ̄0 0.36 0.11 0.08 0.08

Δ̄1 8.2 × 10−2 2.4 × 10−3 1.1 × 10−4 1.4 × 10−4

Δ̄2 2.5 × 10−2 1.1 × 10−3 1.8 × 10−5 1.2 × 10−5

Δ̄3 5.7 × 10−3 1.9 × 10−4 8.9 × 10−7 1.4 × 10−6

Δ̄4 1.6 × 10−3 5.5 × 10−5 5.2 × 10−7 2.8 × 10−7

Δ̄5 4.7 × 10−4 1.2 × 10−5 5.8 × 10−8 7.8 × 10−8

Table 8.8 Error Δ̄n = ‖ϕ̃n − ϕ̃9‖2 estimation. Molecular scattering

H 2 3 5 10

Δ̄0 0.02 0.04 0.06 0.07

Δ̄1 2.5 × 10−3 1.2 × 10−3 1.8 × 10−4 2.4 × 10−5

Δ̄2 6.9 × 10−5 1.3 × 10−6 1.6 × 10−6 3.3 × 10−6

Δ̄3 3.3 × 10−6 1.3 × 10−6 1.0 × 10−6 7.4 × 10−7

Δ̄4 7.7 × 10−7 4.1 × 10−7 2.9 × 10−7 1.2 × 10−7

Δ̄5 2.0 × 10−7 2.1 × 10−7 3.5×10−8 4.3 × 10−8

estimates Δαi with respect to i rapidly increases, we used only α0, α1, α2, and α3

for the analysis of the influence of polarization on the function ϕ.

For same reason, to construct estimators Δ̄n of mean square errors (with weight x)
‖ϕ̃n − ϕ‖2, n = 0, . . . , 5 without polarization, an approximation ϕ ≈ ϕ̃9 was used.
Tables8.7 and8.8 show that values Δ̄n , aswell as valuesαi with polarization, decrease
approximately in geometric progression.

The obtained numerical results witness that radiation, escaping the layer, differs
from Lambert radiation, for which ai = 0 when i > 0, that is shown in Fig. 8.1.
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Fig. 8.1 Estimate of the
angular distribution density
of the radiation going out the
optically thick layer
(τ = 20) compared to the
Lambertian one

Estimates of the corresponding standard deviations are the elements of the first
row in Tables8.7 and 8.8. The maximum difference in the intensity of the radiation
for H = 10 and H = 20 is attained at x = 0 and amount to about 64%. In case, when
we take into account only the coefficients α0 and α1, this difference equals to 57%.

Analytical and numerical study performed in [4] showed that if photons areweakly
absorbed, then the variance of the estimate of the intensity of polarized radiation may
be infinite. In our work, we ensured the finiteness of variance by constraining the first
component of the Stokes vector, which had virtually no effect on the final estimates.

8.5 Conclusion

In this work, a modification of N. N. Chentsov method for the unknown probabil-
ity density evaluation via the orthonormal randomized polynomial expansion was
constructed and discussed in application to the problems of atmospheric optics.

Suggested method was used to analyze the angular characteristics of scattered by
media radiation in cases when polarization effect was ignored (scalar theory) and
was taken into account (vector case).

Results from this study show that polarization has a statistically significant impact
on the integral flux PH of the radiation passed through the layer and on the coefficients
of expansion αi of the function of angular distribution of this radiation. Moreover,
calculations show that polarization effect increases with the increase of the layer
thickness.

The above-presented results show that the absolute values of estimates of coeffi-
cients αi are rapidly decreasing. It gives us opportunity to use less (to be exact, two)
terms of expansion in the density of distribution analysis.
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Obtained numerical results show, as well, that going out of the layer radiation
differs from the Lambertian one. Difference between these two types of radiation as
great as 64% was observed for the angular radiation distribution in case of H = 20.
It was observed that it grows with a decrease in optical thicknesses of the layer.

Note that suggestedmethod is particularly suitable for detailed analysis of various
radiation characteristics. Certain other polarized radiation parameters are planning
on to be studied with proposed method. Specifically, the degree of polarization is
one of the subjects of high priority.

Finally, we should mention that besides parallelization possibility of the proposed
Monte Carlo algorithm, it allows us to calculate various function expansions simulta-
neously on the same trajectories with the wide range of the layer optical thicknesses
at the same time.
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Chapter 9
Simulation of Stochastic Processes with
Generation and Transport of Particles

Ekaterina Ermishkina and Elena Yarovaya

Abstract In modeling of a cell population evolution, the key characteristics are
the existence of several sources where cells can proliferate their copies or die, and
migrationof cells over an environment.Oneof the study aims is to obtain the threshold
value of a parameterwhich separates different types of the cell proliferation process at
the sources. Continuous-time branching random walks on multidimensional lattices
with a few sources of branching can be used for modeling of a cell population
dynamics. For example, active growth of the cancer cellular population in the frame
of branching random walk models may be explained by the excess of the threshold
value. Branching random walks is an appropriate tool to describe such processes in
terms of generation and transport of particles. The effect of phase transitions on the
asymptotic behavior of a particle population in the frame of branching randomwalks
was studied analytically in detail by many authors. Simulation of branching random
walks is applied for numerical estimation of a threshold value of the parameter on
limited time intervals. Obtained results are used to define strategies that may delay a
cell population progression to some extent. The work may be treated as the first step
to the simulation of branching random walks. We assume that the process started by
the initial particle which walks on the lattice until it reaches one of the sources where
its behavior changes, and new copies may appear. All particles behave independently
of each other and of their history. We present an approach to simulation of the mean
number of particles over the lattice and in every point of the lattice. Simulation of the
process is based on a well-known algorithm of queue data structures and the Monte
Carlo method.
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9.1 Introduction

The processes with generation and transport of particles on a d-dimensional lattice
Zd , d ≥ 1, are usually called branching random walks (BRWs). It is convenient to
describe such processes in terms of birth, death, and walks of particles on Zd . Recent
investigations, see, e.g., [12], have demonstrated that continuous-time BRWs on Zd

give an important example of stochastic processes whose evolution depends on the
structure of an environment and the spatial dynamics.

We assume that the structure of an environment is defined by the offspring repro-
duction law at a finite number of particle generation centers situated on Zd and
called branching sources. The spatial dynamics of particles is considered under dif-
ferent assumptions about underlying random walks: simple symmetric, symmetric,
or non-symmetric.

Continuous-time BRWs on Zd with a few centers of branching, introduced in
[11], can be used, e.g., for modeling of a cell population dynamics. In modeling of
a cell population evolution, the key characteristic is the existence of one or several
sources where cells can proliferate their copies or die, and migration of cells over an
environment. Based on such characteristics, we can apply a continuous-time BRW
to study the evolution of a cell population with migration and division of cells.
Probabilistic approach to study proliferation and migration dichotomy in tumor cell
invasion based on models of random walks or branching processes is used by many
authors, see, e.g., [4, 7] and bibliography therein. Self-reproducibility of the cancer
cells is a specific feature of such systems. In virtue of it, a branching process may
represent tumor cell proliferation at the source. The environment where the transport
of cells takes place is a multidimensional lattice, e.g., Z3. The points of the lattice
are compartments. The migration of cancer tumor cells is described by a random
walk on this lattice, and the processes of metastasis are described by BRWs with
several sources. Cancer cells are assumed to be found at every compartment, but
proliferation takes place only at the sources. One of the main problems is to estimate
a threshold value of model parameter which separates different types of the cell
proliferation process at the sources and above which cell proliferation has active
growth. For example, simulation of the tumorigenesis can be roughly determined in
terms of a cell population evolution by the following rules:

• the underlying random walks is simple,
• at themoment τ1 of the first reaction in a source, the cell is duplicated P → P + P ,
where both copies independently start moving from the point x(τ1) with the same
law,

• intensities of the sources are equal.

In the frame of BRW models, the exponential growth of the cellular population
may occur when the intensity of the source β surpasses the critical value βc, see [10],
so the situation of weakly supercritical BRWs for which β ↓ βc considered in [13]
has a keen interest for the study of cell evolution. The effect of phase transitions on
the asymptotic behavior of a particle population in BRWs was studied analytically
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in detail by many authors, see, e.g., [1, 8, 9, 12] and the bibliography therein. We
assume that the initial particle walks on the lattice until it reaches the source where
its behavior changes. Newborn particles behave independently of each other and of
their history

In the present work, simulation of BRWs is applied for numerical estimation of a
threshold value of the parameter on limited time intervals. Obtained results are used
to define strategies that may delay a particle population progression to some extent.

The work may be treated as the first step to the simulation of BRWs. We present
an approach to simulation of the mean number of particles over the lattice and at
every lattice point. Simulation of the process is based on queue data structures, see,
e.g., [2], and the Monte Carlo method described, e.g., in [5]. This approach allows to
simulate BRWs with sources of different intensities and random walks with jumps
not only to neighbor lattice points.

The structure of the chapter is as follows: In Sect. 9.2, the evolution of particle
system in BRWs is carried out in accordance with the four rules used for constructing
the algorithm for the BRW simulation. Some necessary theoretical results for an
interpretation of the simulation are given.

In Sect. 9.3, the algorithm of the simulation is introduced. The results of the sim-
ulation are presented for a simple symmetric BRW with one source of branching. In
a simple symmetric BRW, a particle can move only to one of 2d neighbor points on
d-dimensional lattice with equal intensities, see for detail [9]. As it was explained
above, this case is important to study the cell evolution dynamics. Then, the simu-
lation is extended to the case of a few sources of equal intensities, and the effect of
space configuration of the sources on the behavior of themean numbers of particles is
demonstrated, see analytical investigations of the model in [13, 14]. In conclusion,
a more general BRWs with a finite number of sources of different intensities and
random walks with jumps not only to neighbor lattice points with finite variance of
jumps considered in [12] are simulated.

9.2 Evolution of Branching RandomWalks

An informal description of BRWs on Zd , d ≥ 1, is rather simple. The population
of individuals is initiated at time t = 0 by a single particle at a point x ∈ Zd . Being
outside of the sources, the particle performs a continuous-time random walk on Zd

until reaching one of the sources. At a source, it spends an exponentially distributed
time and then either jumps to a point y ∈ Zd (distinct from the source) or dies
producing just before the death a randomnumber of offsprings. The newborn particles
behave independently and stochastically in the same way as the parent individual.

We will be mainly interested in describing the evolution of particles on Zd

in terms of the local number of particles n(t, x, y) at a point y ∈ Zd and the
total number n(t, x) = ∑

y∈Zd n(t, x, y) over the lattice; their moments mk(t, x, y)
:= Exnk(t, x, y) and mk(t, x) := Exnk(t, x), k ∈ N, where Ex denotes the
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mathematical expectation under the conditions n(0, x, y) = δy(x) or n(0, x) ≡ 1,
respectively.

Now,we describe the evolution of particles in BRWswith a few branching sources
in more detail. In [1, 8, 9], the models of a BRW with the single source were
introduced and thoroughly investigated. In the present work, we will be interested in
themodeling of amore general situation, when under consideration a BRWmay have
‘branching sources’ {z1, . . . , zr }, several points {y1, . . . , ym} at which the symmetry
of walk may be broken, and several points {x1, . . . , xk} at which both branching and
‘non-symmetric walk’ may happen. It will be supposed that the sets {xi }, {y j }, and
{zs} are pairwise non-intersecting, see for detail [11, 12].

The evolution of a particle in such a BRW is performed in accordance with the
following four rules:

1. Being outside of the set {xi } ∪ {y j } ∪ {zs}, say at a point x , the particle may
perform a random walk specified by an infinite matrix A = (a(x, y))x,y∈Zd of
transition intensities: a(x, y) ≥ 0 for x �= y, a(x, x) < 0; a(x, y) = a(y, x) =
a(0, y − x) = a(y − x) and

∑
z a(z) = 0.More precisely, in this case the particle

stays at the point x a random time distributed in accordance with the exponential
law with parameter |a(0, 0)| and then jumps to a point y �= x with the probability
a(x, y)/|a(0, 0)|;

2. Being at some point x ∈ {y j }, say at a point x = y j , the particle also performs a
random walk. But this time symmetry of the walk is assumed to be broken by a
factor 1 + χ j , χ j > −1, which changes the y j th row {a(y j , y)}y∈Zd of the matrix
of the transition intensities in the following way: {(1 + χk)a(y j , y)}y∈Zd .
In this case, the time which the particle spends at the point x = y j is distributed
in accordance with the exponential law given by parameter (1 + χ j )|a(0, 0)|, and
then, the particle jumps to a point y �= y j with the probability a(y j , y)/|a(0, 0)|.
In fact, this case differs from the case 1 only by the distribution of time which the
particle spends at the point x = y j . Since in this case the behavior at the point
x = y j does not obey the symmetric walk law, the points x ∈ {y j } are called in
[11, 12] pseudo-sources;

3. Being at a point x ∈ {zs}, say at a point x = zs , the particle performs a symmetric
randomwalk or branching. The branching in this case is performed in accordance
with the Bienayme–Galton–Watson process specified by the infinitesimal gen-
eration function fs(u) := ∑∞

n=0 bs,nu
n , where bs,n ≥ 0 for n �= 1, bs,1 < 0, and∑

n bs,n = 0.We assume that βs,r := f (r)
s (1) < ∞, r ∈ N, and denote βs := βs,1.

So, in this case the behavior of the particle is assumed as follows: First, it
stays at the point x a random time distributed in accordance with the expo-
nential law e(a(0,0)+bs,1)t and then either jumps to a point y �= x with the prob-
ability a(x, y)/|a(0, 0) + bs,1| or generates n �= 1 offsprings with the probability
bs,n/|a(0, 0) + bs,1|. Notice that in the case n = 0 the particle is ‘died’;

4. The last case is when the particle is positioned at a point x = xi ∈ {xi }. This
case is the combination of the cases 2 and 3. Here, the particle may jump to
a point y �= x with the intensity which is factored by 1 + ζi with ζi > −1, as
in the case 2, or performs branching, as in the case 3. The branching obeys
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the Bienayme–Galton–Watson process with the infinitesimal generation function
f̄i (u) := ∑∞

n=0 b̄i,nu
n , where b̄i,n ≥ 0 for n �= 1, b̄i,1 < 0 and

∑
n b̄i,n = 0. We

assume that ηi,r := f̄ (r)
i (1) < ∞, r ∈ N, and denote ηi := ηi,1.

More precisely, we will assume that the particle first spends at the point x = xi a
random time distributed in accordancewith the exponential law determined by the
parameter |(1 + ζi )a(0, 0) + b̄i,1|, and then, it either jumps to a point y �= x = xi
with the probability

(1 + ζi )a(xi , y)

|(1 + ζi )a(0, 0) + b̄i,1|
,

or generates n �= 1 offsprings with the probability

b̄s,n
|(1 + ζi )a(0, 0) + b̄i,1|

.

A description of the BRWwith several sources and pseudo-sources, given above,
is convenient for numericalmodelingwhich in theoretical investigation of the process
the following ‘infinitesimal’ description in terms of evolution equations in Banach
spaces is preferable.

As was shown, e.g., in [11, 12], the evolution of transition probabilities in this
case can be also described by the following differential equations

dp

dt
= A p +

k∑

i=1

ζi�xiA p +
m∑

j=1

χ j�y jA p, p(0) = δy, (9.1)

where A : lq(Zd) → lq(Zd), q ∈ [1,∞], is the symmetric operator generated by
the matrix A of transition intensities and acting by the formula

(A u)(z) :=
∑

z′∈Zd

a(z − z′)u(z′),

�x = δxδ
T
x , δx = δx (·) denotes the column vector on the lattice which is equal to 1

at the point x and to zero at the other points. At the same time, the mean numbers of
particles m1(t) = m1(t, ·, y) at point y ∈ Zd satisfy

dm1

dt
= H m1, m1(0) = δy, (9.2)

where

H = A +
(

r∑

s=1

βs�zs

)

+
(

k∑

i=1

ζi�xiA +
k∑

i=1

ηi�xi

)

+
⎛

⎝
m∑

j=1

χ j�y jA

⎞

⎠ .

(9.3)
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In (9.2), (9.3), the linear operator A describes the symmetric walk outside of
sources (case 1 in the above description). The second term in (9.3) corresponds to
the branching sources where the walk is symmetric (case 2 in the above description),
while the third term corresponds to the branching sources where the symmetry of
walk is broken (case 3 in the above description). At last, the fourth term corresponds
to the points (pseudo-sources) where the symmetry of walk is broken but there are
no branching (case 4 in the above description).

Asymptotic behavior of solutions of Eq. (9.2) is determined by the spectrum of
linear operators in the right-hand sides of the corresponding equations [3]. A detailed
spectral analysis of the operator Y has been carried out in [11, 12].

The presence of leading positive eigenvalues in the spectrum of the evolutionary
operator implies an exponential growth of the number of particles at arbitrary lattice
point, as well as on the entire lattice. Therefore, the previous studies, see, e.g., [1,
8, 9] and bibliography therein, were usually limited to finding only the leading
eigenvalue. At the same time for the spatiotemporal analysis considered, e.g., in [6],
the information about whether the positive eigenvalue is unique, or if it is not unique
then how it is located with respect to other eigenvalues, can be significant in the
analysis of the behavior of BRWs. In connection with this, it was found [13, 14]
that the number of positive eigenvalues of the discrete spectrum of the evolutionary
operator and their multiplicity depends not only on the intensity of the sources but
also on the spatial configuration of the sources.

In the BRWs with finitely many sources of equal intensity β := β1 = β1,1 stud-
ied in [13, 14], there arise multipoint perturbations of the symmetric random walk
operator A , which have the form

Hβ = A + β

N∑

i=1

�xi , (9.4)

where xi ∈ Zd . The perturbation β
∑N

i=1 �xi of the operator A can result in the
appearance of positive eigenvalues of the operatorHβ , the number of positive eigen-
values of which does not exceed N (the number of terms in the sum) counting
multiplicity.

As was shown, e.g., in [1, 9], the evolution of m1(t, x, y) and m1(t, x) for a
symmetric BRW with the one branching source generated by operator (9.4) in the
form

Hβ = A + β�x1 (9.5)

dramatically changes when the parameter β traverses some value βc called critical,
where βc = (−φ(θ))−1 and φ(θ) = ∑

z∈Zd a(z)ei(z,θ , θ ∈ [−π, π ]d .
In a case of a finite variance of random walk jumps, i.e., if

∑
z∈Zd a(z)|z|2 < ∞,

where | · | is the Euclidean norm of a vector z, then βc = 0 for d = 1 and d = 2,
and βc > 0 for d ≥ 3. The exhaustive classification of the limit behavior (up to a
scalar factor) of the local mean number of particles at the source u(t) and the total
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mean number of particles v(t) is represented in Table9.1, where λ is the positive
eigenvalue of the operator (9.5). Note that for the situation of simple random walk
the operatorA has the form of difference Laplacian: κΔ, with a diffusion parameter
κ, see, e.g., [6].

9.3 Simulation of Branching RandomWalks

Description 1–4 from Sect. 9.2 is well suited for algorithm design.

9.3.1 Algorithm

We will describe the state of a BRW under simulation as a set of triplets (x, t1, t2).
Each of triplets corresponds to a single particle staying at the point x ∈ Zd on the
time interval [t1, t2) getting at the point x at the moment t1 and ‘performing the
evolution’ at the moment t2. By the ‘evolution,’ we mean either a jump to another
point or birth of offsprings, or death of the particle. During the simulation, the triplet
under consideration will be removed from the list of triplets and be replaced by one
or several new triplets corresponding to a new state of the particle system arising as
a result of the given ‘evolution.’

Initialization. First, we choose the finite sets of points {xi }ki=1, {y j }mj=1 and {zs}rs=1
and specify all the necessary quantities determining the matrix of transition inten-
sities A and the infinitesimal generating functions fs(u) with s = 1, 2, . . . , r and
f̄i (u) with i = 1, 2, . . . , k. Fix also the quantities χ j > −1, ζi > −1 and calculate
βs = βs,1 = f ′

s (1) and ηi = ηi,1 = f̄ ′
i (1) for the corresponding sets of indices i, j, s.

We also specify the length of the interval [0, TMAX ] on which simulation will be con-
ducted.

At last, we fix an ‘initial point’ x where, at the initial time t = t1 = 0, stays a
single particle. Then, with the help of a random number generator, we calculate the
time t2 in accordance with the distribution law and placement of the point x , see
cases 1–4 in Sect. 9.2. So, we get the ‘initial’ triplet (x, t1, t2).

Step of algorithm.At this step, we have a set of triplets (x, t1, t2) ‘waiting’ for their
processing. We choose an arbitrary triplet X = (x, t1, t2) from this set and calculate
the ‘evolution’ of the corresponding particle at the moment t = t2 in accordance with
the placement of the point x , see cases 1–4 above. As a result, we obtain either a new
particle at a point y �= x or a set of new particles (offsprings) at the point x .

For the position xnew of each newly generated particle we first determine a ‘non-
complete’ triplet (xnew, t1,new, ·) where t1,new = t2. Then, with the help of a random
number generator, we calculate time t2,new until which the particle will stay at the
point xnew, in accordance with the corresponding distribution law and placement of
the point x , see cases 1–4.

Finally, we add all newly generated triplets (xnew, t1,new, t2,new) to the list of all
triplets in the system, whereas the triplet X is removed from the list.
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Termination. The algorithm stops when all the t1 values for all the triplets in the
system exceed the specified time interval TMAX .

Collecting of data. After the termination of the algorithm, following the Monte
Carlo method, we repeat simulation with the same parameters (but with different
runs of a random number generators) several times to collect needed number of data
samples (simulations) which would be sufficient for statistical data treatment. After
collection of all the data, we start evaluation of the characteristics of the BRW under
consideration.

9.3.2 Implementation

Our algorithm is naturally randomized as its behavior is determined by both the
input BRW characteristics and the values produced by random number generators.
We assume that we have at our disposal a random number generator and we use two
types of randomnumber generatorswhichproducevalues according to an exponential
distribution and to a discrete distribution. The random number generator

DISCR((a1,w1), . . . , (an,wn)), wi ≥ 0, i = 1, 2 . . . , n,

produces a value ai with the probability P(ai ) = wi∑n
k=1 wk

, and the random number
generator

EXP(a), a > 0,

returns a floating point value according to the exponential distribution with
parameter a.

As was said, the particle can perform a random walk or branching that we will
process in two consecutive steps: First, we choose a type of evolution, and then, we
emulate chosen an action. The behavior of the functions that have coordinates x of
processed particle as the argument depends on whether the point x belongs to one of
the sets {xi }, {y j }, or {zs} or does not belong to any of them.

TYPE_OF_EVOLUTION(x)
if x ∈ {zs} then

return DISCR
((

“walk”, a(x,y)
|a(0,0)+bs,1|

)
,
(
“branching”, |bs,1|

a(x,y)|a(0,0)+bs,1|
))

else if x ∈ {xi } then
return DISCR

((
“walk”, (1+ζi )a(xi ,y)

|(1+ζi )a(0,0)+b̄i,1|
)

,
(
“branching”, |b̄i,1|

|(1+ζi )a(0,0)+b̄i,1|
))

else
return “walk”

end if

The probability with which a particle jumps from the point x to a point y, under
the condition of jumping, is equal to a(x, y)/|a(0, 0)| = a(0, y − x)/|a(0, 0)| for
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all lattice points. So we can determine the function JUMP(x) that returns the point
at which the particle jumps from the point x :

JUMP(x)

return x + DISCR
({(

y, a(0,y)
|a(0,0)|

) ∣
∣
∣ y ∈ Zd , y �= 0

})
,

where we assume that the points x and y are summarized as appropriate vectors.
In the case of branching (i.e., when x ∈ {zs} ∪ {xi }), we obtain the number of

offsprings, generated by a particle at the point x , by calling the following function:

OFFSPRINGS_NUMBER(x)
if x = zs ∈ {zs} then

return DISCR({(n, bs,n) | n �= 1})
else if x = xi ∈ {xi } then

return DISCR({(n, b̄s,n) | n �= 1})
end if

For any new triplet (x, t1, ·), the moment of ‘evolution’ t2 is obtained as a sum of
t1 and the sojourn time spending by the particle at the point x .

SOJOURN_TIME(x)
if x = y j ∈ {y j } then

return EXP((1 + χ j )|a(0, 0)|)
else if x = zs ∈ {zs} then

return EXP(|(a(0, 0) + bs,1)|)
else if x = xi ∈ {xi } then

return EXP(|(1 + ζi )a(0, 0) + b̄i,1|)
else

return EXP(|a(0, 0)|)
end if

We define the system state as a set of all triplets Q = {q = (x, t1, t2)}. We use
queue data type for Q realization as it supports required operation: add element,
demonstrate that some element belongs to the collection, and erase it from collection.
Initially, the system state consists of only one particle located at the point x ∈ Zd . The
simulation of one BRW realization on the time interval [0, TMAX ] looks as follows:
Q = {(x, 0,SOJOURN_TIME(x))}
while Q �= ∅ do

q = (x, t1, t2) ∈ Q
Q = Q \ {q}
if t2 > TMAX then

break
end if
if TYPE_OF_EVOLUTION(x) = “walk” then

y = JUMP(x)
q ′ = (y, t2, t2 + SOJOURN_TIME(y))
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Q = Q ∪ {q ′}
MEMORIZE_DATA(q ′)

else
for i = 1 to OFFSPRI NGS_NUMBER(x) do

q ′ = (x, t2, t2 + SOJOURN_TIME(x))
Q = Q ∪ {q ′}
MEMORIZE_DATA(q ′)

end for
end if

end while

The function MEMORIZE_DATA collects data for its further processing (e.g., to
evaluate the total and the local number of particles). To obtain statistically significant
data, the algorithm of BRWmodelingmust be called ITERATION_NUMBER times,
where ITERATION_NUMBER is chosen from statistical considerations. It may be
convenient to divide the given time interval [0; TMAX ] into K equal smaller parts
and to memorize not the exact time t but the order number of smaller interval that
contains time t .

9.3.3 Results of Simulation

For demonstrating the proposed algorithm, we considered three types of models: The
first one is in which there is only one source located at zero, the second one is in
which there are three sources of equal intensities located at the vertices of a simplex,
and the third one is the model which has two sources of non-equal intensities. All
the simulations presented in this section were made with the number of the Monte
Carlo trials equal to 1000.

As it wasmentioned in Sect. 9.1, the tumorogenesis, the process inwhich a cell can
be duplicated,may be treated as a kind of simple symmetricBRWswith the branching
sources of the type {zs}, whose infinitesimal generating functions are the same, that is
fs(u) = −βu + βu2, where the parameter β = f ′

1(1) varies. We simulated a BRW
on Z3 with only one source of the type {zs} located at the lattice point z1 = (0, 0, 0).
The matrix A of transition intensities with the elements a(x, y) = 1

2 for |x − y| = 1,
a(x, x) = −d, and a(x, y) = 0 in other cases generates the difference Laplacian of
the form 1

2Δ. We put TMAX = 1000. Figure9.1 illustrates, for different values of the
parameter β, the behavior of the total number of particles m1(t, 0). As is seen from
these plots, under the given conditions, the critical value is as follows: βc ≈ 1.978.
The plots are in a good agreement with the theoretical results presented in Table9.1.

In Fig. 9.2, the local mean number of particles m1(t, 0, 0) is plotted for the same
situation. Again, the related plots are in a good agreement with the theoretical results,
see Table9.1. The simulation results in Figs. 9.1 and 9.2 demonstrate that a minor
excess of β ≈ 2.040 over βc ≈ 1.978 leads to a significant distinction in behavior of
m1(t, 0), or m1(t, 0, 0), from their behavior in the case β = βc.
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Fig. 9.1 Total number of particles for BRW on Z3 with one source for different values of β

Table 9.1 Limit behavior of the local and total mean number of particles for one source

Branching process at
the source

Random walk Branching random
walk

u(t) v(t)

Supercritical β > 0 Recurrent d = 1, 2,
βc = 0

Supercritical β > βc eλt eλt

Supercritical β > 0 Transient d ≥ 3,
βc > 0

Supercritical β > βc eλt eλt

Supercritical β > 0 Transient d = 3,
βc > 0

Critical β = βc 1/
√
t

√
t

Supercritical β > 0 Transient d = 4,
βc > 0

Critical β = βc 1/ ln t t/ ln t

Supercritical β > 0 Transient d ≥ 5,
βc > 0

Critical β = βc 1 t

Supercritical β > 0 Transient d ≥ 3,
βc > 0

Subcritical
βc > β > 0

t−d/2 1

Critical β = 0 Recurrent d = 1,
βc = 0

Critical β = βc 1/
√
t 1

Critical β = 0 Recurrent d = 2,
βc = 0

Critical β = βc 1/t 1

Critical β = 0 Transient d ≥ 3,
βc > 0

Subcritical
βc > β = 0

t−d/2 1

Subcritical β < 0 Recurrent d = 1,
βc = 0

Subcritical β < βc t−3/2 1/
√
t

Subcritical β < 0 Recurrent d = 2,
βc = 0

Subcritical β < βc (t ln2 t)−1 1/ ln t

Subcritical β < 0 Transient d ≥ 3,
βc > 0

Subcritical β < βc t−d/2 1
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Fig. 9.2 Local number of particles at a source for BRW on Z3 with one source for different values
of β
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(a) Total number of particles
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(b) Local number of particles
in sources

Fig. 9.3 BRW on Z3 with three sources with equal intensity 1.97839 at the points (10, 0, 0),
(0, 10, 0), and (0, 0, 10)

After that, we simulated the BRW on Z3 for the case of three branching
sources of the type {zs}rs=1 located at the points z1 = (10, 0, 0), z2 = (0, 10, 0) and
z3 = (0, 0, 10). The infinitesimal generating function fs(u)with s = 1, 2, 3 for every
source is of the form fs(u) = 0.4 − (0.4 + β + 0.2)u + βu2 + 0.2u3, i.e. every par-
ticle can die without offsprings or reproduce two or three offsprings. The matrix of
transition intensities A in this case is the same as before, and TMAX = 1000. The
results of simulation for m1(t, z1) are represented in Fig. 9.3a, and for m1(t, z1, z1),
m1(t, z1, z2), m1(t, z1, z3) the corresponding results are represented in Fig. 9.3b.

We also simulated the similar system which differs from the previous one only by
the location of the sources: z1 = (100, 0, 0), z2 = (0, 100, 0), and z3 = (0, 0, 100)
in order to compare the behavior of these two systems.

Figures9.3 and 9.4 show that increasing of the distance between the vertices of the
simplex located onZd , d ≥ 3, leads to decreasing of the rate of growth of themean of
total and local numbers of particles. For example, Fig. 9.4 shows that the behavior of
the local number of particles in one of the sources is exactly the same as the behavior
of the local number of particles in Fig. 9.5, while in the remaining two sources the
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(a) Total number of particles
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(b) Local number of particles
in sources

Fig. 9.4 BRW on Z3 with three sources with equal intensity 1.97839 at the points (100, 0, 0),
(0, 100, 0), and (0, 0, 100)
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(b) Local number of particles
in source

Fig. 9.5 BRW on Z3 with one source of intensity 1.97839

local number of particles is identically zero. This effect is explained by the transient
property of a random walk on Zd , d ≥ 3, and confirms the fact that the particles,
within a finite time, do not have time to reach distant sources. Thus, the behavior of
themean number of particles is determined by the intensity of the source, at which the
particle can get during the specified time. So, in this case when the distance between
the vertices of the simplex grows, the total mean number of particles behaves similar
to the case of single source with equal infinitesimal generating function presented
in Fig. 9.5. From Fig. 9.4, it is seen that BRW did not reach any sources except the
initial point, so it can be treated as a system with one source.

Finally, we simulated the BRW on Z2 with the matrix of transition intensities
A and two branching sources located at the points z1 = (0, 0) and z2 = (1, 1) with
the different infinitesimal generating functions fz1(u) = 0.75(u2 − u) and fz2(u) =
0.5(1 − u). In this case, TMAX = 8000. In Fig. 9.6, one may observe the exponen-
tial growth of both the total m1(t, z1) and local numbers of particles m1(t, z1, z1)
and m1(t, z1, z2) at the sources. However, the number of particles m1(t, z1, z1)
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Fig. 9.6 BRW on Z2 with two sources of different intensities at the points z1 = (0, 0) and z2 =
(1, 1)

substantially differs from m1(t, z1, z2). Since the rate of growth of the curves in
Fig. 9.6 is lower than in Figs. 9.1, 9.2, 9.3, 9.4, and 9.5, it is much harder to evaluate,
on short time intervals, the behavior of the particle system.

The simulation results demonstrate that, in the frame of BRWs, the influence of
phase transitions,with respect to the parameters ofBRWs, on the asymptotic behavior
of the mean numbers of a particle population may be observed on limited time
intervals. Obtained results may be potentially used to define strategies for choosing
the parameters of a BRW which allow to obtain a ‘desired’ behavior of the system.
In particular, these results can be used to define strategies to delay a cell population
progression to some extent.
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Chapter 10
Stochastic Models for Nonlinear
Cross-Diffusion Systems

Yana Belopolskaya

Abstract Under a priori assumptions concerning existence and uniqueness of the
Cauchy problem solution for a system of quasilinear parabolic equations with cross-
diffusion, we treat the PDE system as an analogue of systems of forwardKolmogorov
equations for some unknown stochastic processes and derive expressions for their
generators. This allows to construct a stochastic representation of the required solu-
tion.We prove that introducing stochastic test functionwe can check that the stochas-
tic system gives rise to the required generalized solution of the original PDE system.
Next, we derive a closed stochastic system which can be treated as a stochastic
counterpart of the Cauchy problem for a parabolic system with cross-diffusion.

Keywords Stochastic flow · Cross-diffusion · PDE generalized solution
Probabilistic representation

10.1 Probabilistic Approach to Generalized Solutions
of Nonlinear Parabolic Systems

Parabolic systemswith self-diffusion and cross-diffusion terms arise asmathematical
model of various physical, chemical, and biological phenomena. In particular, many
biological problems can be written as reaction–diffusion systems

∂u

∂t
= div(F(u)∇u) + f (u), x ∈ Rd , t > 0,

where u = (u1, . . . , ud1) ∈ Rd1 and um,m = 1, . . . , d1, are typem particle densities.
Here

[F(u)∇u]mi =
d∑

j=1

d1∑

l=1

Fml
i j (u)∇ j u

l
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is a particle flux, and f (u) ∈ Rd1 is a reaction term. In the case when the tensor Fml
i j

is diagonal in upper indices and moreover Fml
i j ≡ Fi j > 0, the probabilistic approach

to constructing generalized solutions of the above Cauchy problem was developed
in papers [1, 2] based on the Kunita theory of stochastic flows [3–5]. Unfortunately,
one cannot apply these results immediately to a nondiagonal case. Here, we show
how one can overcome the obstacles arising in the latter case.

For the sakeof simplicity,we specify our construction to the casediv[F(u)∇u]m =
Δ(umg(u)), m = 1, 2 which corresponds to a model of population dynamics sug-
gested by Shigesada, Kawasaki, Teramoto [6], provided g(u) = u1 + u2.

Consider the Cauchy problem

∂um

∂t
= Δ(um[u1 + u2]) + cmu u

m, um(0, x) = um0 (x), m = 1, 2, (10.1)

where
cmu = cm − cm1u

1 − cm2u
2.

This systemwas investigated in a number of papers (see [7, 8] and references there)
where existence and uniqueness theorems were established and some properties of
generalized solutions were studied.

Our aim is to construct a probabilistic representation of a generalized solution
to the Cauchy problem in terms of averages over trajectories of some diffusion
processes.

Note that probabilistic approach to nonlinear PDEs and systems as a rule consists
of three steps. At the first step under an a priori assumption that there exists a unique
required solution of the Cauchy problem for the original PDE, one has to construct
stochastic processeswhich allow to derive a stochastic representation of this solution.
At the second step, one needs to obtain a closed systemof stochastic relations to define
stochastic processes that take part in the construction of the constructed probabilistic
representation. At the final third step, one has to verify that solution of the stochastic
system exists and possesses properties that allow to construct the required solution
of the original Cauchy problem.

Below, we give constructions that implement the first two steps. The third step
will be studied elsewhere.

A probabilistic background of parabolic systems with cross-diffusion is justified
for example by the fact that one can formally derive such a system from a master
equation for a random walk on a lattice in the diffusion limit with transition rates
which depend linearly on the species densities [9]. They can be also deduced as
the limit equations of an interacting particle system modeled by stochastic differ-
ential equations with interaction forces which depend linearly on the corresponding
stochastic processes [10, 11].

We propose here an alternative construction of a probabilistic counterpart to this
system. Actually, we construct stochastic processes such that a generalized solution
of (10.1) admits a stochastic representation via averaging over trajectories of these
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processes. To this end, we derive a closed system of stochastic equations which
describes these processes.

Let us start with a definition of a generalized solution to (10.1). To this end, we
need a number of functional spaces.

Denote by Hk the set of all real functions h defined on Rd such that h and all
distributional derivatives ∇αh of order |α| = ∑k

j=1 α j ≤ k, where k = 0, 1, 2, . . .,
belong to L2(Rd). It is a Hilbert space with the norm

‖h‖k =
⎛

⎝
∑

|α|≤k

∫

Rd

‖∇αh(x)‖2dx
⎞

⎠

1
2

.

We denote by H−k the dual space with the norm ‖u‖−k = sup‖h‖k≤1|〈〈u, h〉〉|, where
〈〈u, h〉〉 = ∫

Rd u(x)h(x)dx . We use this notation for a scalar product in Hk as well.
Let Ck(Rd) denote the space of k times differentiable functions and Ck

0 (R
d) be

the space of k differentiable functions with compact supports.

Definition 10.1 A pair of functions um, m = 1, 2 is called a generalized solution
of (10.1) if it has the following properties:

(i) u1, u2 ∈ L∞((0,∞); L∞(Rd)) and u1, u2 ≥ 0 a.e. in (0,∞) × Rd ;
(ii) um ∈ L2

loc((0,∞) × Rd), ∇um ∈ L2
loc((0,∞) × Rd);

(iii) for any test function h ∈ C∞
0 (Rd).

∫

Rd

[um(t, x) − um0 (x)]h(x)dx +
∫ t

0

∫

Rd

〈∇[um[u1(θ, x) + u2(θ, x)]],∇h(x)〉dxdθ

(10.2)

=
∫ t

0

∫

Rd

um(θ, x)[cm − cm1u1(θ, x) − cm2u2(θ, x)]h(x)dxdθ,

where 〈y, g〉 = ∑d
i=1 yi gi is the inner product in Rd .

To shed light to the structure of a stochastic process which should be associated
with (10.1), we use an alternative though equivalent [12] definition of a generalized
solution to this problem. To this end, we choose time-dependent test function h ∈
C∞
0 ([0,∞) × Rd) and set ∇kh(x) = ∂h(x)

∂xk
,Δh(x) = ∑d

k=1
∂2h(x)
∂x2k

and

〈〈um(t), h(t)〉〉 =
∫

Rd

um(t, x)h(t, x)dx .

Definition 10.2 A pair of functions u1, u2 is called a generalized solution of (10.1)
if it has the following properties:

(i) u1, u2 ∈ L∞
loc([0,∞); L∞(Rd)) and u1, u2 ≥ 0 a.e. in (0,∞) × Rd ;
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(ii) ∇um ∈ L2
loc((0,∞) × Rd);

(iii) for any test function h ∈ C∞
0 ([0,∞) × Rd) with compact support

∫ ∞

0
〈〈um(θ), [∂h(θ)

∂θ
+ [u1(θ) + u2(θ)]Δh(θ)]〉〉dθ (10.3)

+
∫ ∞
0

〈〈um(θ), [cm − cm1u
1(θ) − cm2u

2(θ)]h(θ)〉〉dθ = −〈〈um0 , h(0)〉〉, m = 1, 2.

Set

1

2
M2

u (x) = u1(t, x) + u2(t, x), cmu (x) = cm − cm1u
1(t, x) − cm2u

2(t, x)

and consider the Cauchy problem for a parabolic equation

∂hm(s, y)

∂s
+ 1

2
M2
u (y)Δhm(s, y) + cmu hm(s, y) = 0, hm(t) = hm ∈ C2(Rd ), 0 ≤ s ≤ t.

(10.4)
Assume that um(θ, y) is a given bounded function twice differentiable in y ∈ Rd .
Then, one can construct a probabilistic representation of the solution to the Cauchy
problem (2). To this end, we consider a Wiener process w(t) ∈ Rd defined on a
given probability space (Ω,F , P) and a couple of stochastic differential equations
(SDEs)

dξ(θ) = Mu(ξ(θ))dw(θ), ξ(s) = y, 0 ≤ s ≤ θ ≤ t, (10.5)

dηm(θ) = cmu (ξ(θ))ηm(θ)dθ, ηm(s) = 1, (10.6)

If we assume that there exists a solution u = (u1, u2) to (10.1) such that um,m =
1, 2, are strictly positive, bounded, and twice differentiable in spatial argument, then
we can deduce from the general theory [12] that the functions

hm(s, y) = E[ηm(t)h(ξs,y(t))], 0 ≤ s ≤ θ ≤ t, (10.7)

are classical solutions of the Cauchy problem (2.5) for m = 1, 2; and hence, (10.7)
defines a probabilistic representation of the classical solution to (2.5).

We construct a probabilistic representation of a regular generalized solution
um(t, x),m = 1, 2 of (10.1) assuming that the solution um(t, x) exists and unique.
To derive the stochastic representation of um(t, x), we have to modify (10.6) and
apply some results from the Kunita stochastic flow theory.

http://dx.doi.org/10.1007/978-3-319-76035-3_2
http://dx.doi.org/10.1007/978-3-319-76035-3_2
http://dx.doi.org/10.1007/978-3-319-76035-3_2
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10.2 Probabilistic Counterpart of a Parabolic System

To construct a probabilistic counterpart of the Cauchy problem (10.1) keeping in
mind a priory assumptions of the previous section about existence and uniqueness
of its regular generalized solution, we recall some notions and notations from the
stochastic flow theory.

Assume as above that there exists a strictly positive twice differentiable gener-
alized solution u(t, x) of the problem (10.1) and consider a stochastic process ξ(t)
satisfying the SDE

dξ(θ) = Mu(ξ(θ))dw(θ), ξ(0) = y (10.8)

and its time reversal ξ̂ (θ) satisfying the SDE

d ξ̂ (θ) = [Mu∇Mu](ξ̂ (θ))dθ + Mu(ξ̂ (θ))dw̃(θ), ξ̂ (0) = x (10.9)

with Mu(x) = √
2[u1(t, x) + u2(t, x)] and w̃(θ) = w(t − θ) − w(t) for a fixed

t > θ .
Under the stated above a priori assumption, we can prove that there exists a unique

solution ξ(t) to (10.8) and its time reversal ξ̂ (θ) satisfies the stochastic integral
equation

ξ̂0,x (θ) = x −
∫ t

θ

[Mu∇Mu](ξ̂0,x (τ ))dτ −
∫ t

θ

Mu(ξ̂0,x (τ ))dw̃(τ ), (10.10)

where 0 ≤ θ ≤ τ ≤ t . Set ξ̂t,x (θ) = ψθ,t (x). Since the solution ξ(θ) of (10.8) is
Fθ - measurable, then ψθ,t ∈ F t−θ , where F t = σ {w̃(s); 0 ≤ s ≤ t} ∨ N and N
are the null sets ofF . In addition under the above a priori assumptions, the mapping
ψ0,θ : x �→ ξ̂0,θ (x) is differentiable.

Denote by Jt ≡ J0,t = ∇φ0,y(t) the Jacobian matrix of the map φ0,t : Rd → Rd .
One can easily check that under the above a priori assumptions Jθ exists and satisfies
the linear stochastic equation

dJθ = J0,θ 〈∇Mu(ξ0,y(θ)), dw(θ)〉, J0,0 = I. (10.11)

Since J0,θ Ĵ0,θ = I , we deduce by the Ito formula that Ĵ0,θ satisfies the SDE

dĴ0,θ = Ĵ0,θ‖∇Mu(ξ0,x (θ))‖2dθ − Ĵ0,θ 〈∇Mu(ξ0,x (θ)), dw(θ)〉, Ĵ0,0 = I.
(10.12)

Set J0,t (ω) = det J0,t (ω) and note that

J0,t (ω) ≡ J (t) > 0 and J0,0(ω)) = 1.

Lemma 10.1 Let J(t) = J0,t be a Jacobian matrix of the map y → φ0,t (y), where
ξ0,y(t) = φ0,t (y) is a solution to (10.8). Then the Jacobian J (θ) = det J0,θ satisfies
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the equation
d J (θ) = J (θ)〈∇Mu, dw(t)〉, J (0) = 1. (10.13)

Proof Recall that given a deterministic nondegenerate matrix G(θ) one can check
that its determinant det G satisfies an ODE

ddet G(θ) = det G(θ)Tr [G−1(θ)dG(θ)].

Since the stochastic matrix J0,t satisfying (10.11) is invertible and the determinant
of a matrix is a multilinear function of matrix rows, we apply the Ito formula and
observe that it satisfies the SDE

d J (θ) = J (θ)Tr(Ĵ(θ)dJ(θ)), J (0) = 1.

which due to (10.12) yields (10.13). Recall that for a linear map Ito’s formula for a
stochastic differential coincides with the transformation law of a vector field since
the correction term vanishes. �

Denote by

M m
u h = 1

2
[Mu]2Δh + cmu h (10.14)

which is a dual operator to the operator L m = Δ[um[u1 + u2]] + cmu u
m .

Consider a stochastic process γ m(θ) = ηm(θ)h(ξ(θ))J (θ) where ξ(θ) and J (θ)

satisfy (10.5) and (10.11), respectively, and the process ηm(θ) satisfies the following
linear SDE

dηm(θ) = c̃mu (ξ(θ))ηm(θ)dθ + Cm
u (ξ(θ)ηm(θ)dw(θ), ηm(0) = 1 (10.15)

with coefficients c̃mu and Cm
u to be specified in the lemma below.

Lemma 10.2 Let coefficients c̃mu and C̃m
u have the form

c̃mu (ξ(θ)) = cmu (ξ(θ)) − 〈∇Mu(ξ(θ)),∇Mu(ξ(θ))〉, Cm
u (ξ(θ)) = −∇Mu(ξ(θ)).

(10.16)
Then, the processes γ m(θ) = ηm(θ)h(ξ0,y(θ))J (θ),m = 1, 2, have stochastic
differentials of the form

dγ m(θ) =
[
1

2
M2

uΔh + cmu h

]
(ξ0,y(θ))ηm(θ)J (θ)dθ (10.17)

+Mu∇h(ξ0,y(θ))ηm(θ)J (θ)dw(θ).

Proof We apply the Ito formula to evaluate dγ m(t)

dγ m(θ) = d[ηm(θ)h(ξ(θ))Jq(θ)] = d[ηm(θ)]h(ξ(θ))J (θ)+ηm(θ)d[h(ξ(θ))]J (θ)
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+ ηm(θ)h(ξ(θ))d J (θ) + d[ηm(θ)]d[h(ξ(θ))]J (θ)

+ ηm(θ)d[h(ξ(θ))]d J (θ) + d[ηq(θ)]h(ξ(θ))d J (θ).

Taking into account the expressions for dξ(t), d J (t), and dηm(t) from (10.5),
(10.13), and (10.15), we deduce

dγ m(θ) = {c̃mu h + 1

2
M2

uΔh + 〈Cm
u , M∇h〉 + 〈∇Mu, Mu∇h〉}(ξ(θ))ηm(θ)J (θ)dθ

+〈Cm
u , h∇Mu〉](ξ(θ))ηm(θ)J (θ)dθ + {Cm

u h + ∇[Muh]}(ξ(θ))ηm(θ)J (θ)dw(θ).

Setting
Cm
u (ξ(θ)) = −∇Mu(ξ(θ))

and
c̃mu (ξ(θ)) = cmu (ξ(θ)) + 〈∇Mu(ξ(θ)),∇Mu(ξ(θ))〉

we get

dγ m(θ) =
[
cmu (ξ(θ))h(ξ(θ)) + 1

2
M2

u (ξ(θ))Δh(ξ(θ))

]
ηm(θ)J (θ)dθ

+M(ξ(θ))∇h(ξ(θ))ηm(θ)J (θ)dw(θ).

�

Now, we can prove the following assertion.

Theorem 10.1 Let a couple (u1, u2) be a generalized solution of (10.1). Then func-
tions um admit probabilistic representations of the form

um(t) = E[ζm(t) ◦ ψ0,t ], m = 1, 2,

where ψ0,t (x) = ξ̂0,x (t) satisfies (10.9),

ζm(t) = exp

{∫ t

0
nmu (φ0,θ )dθ +

∫ t

0
〈Cm

u (φ0,θ ), dw(θ)〉
}
um0 ,

nmu = c̃mu − 1
2‖∇Mu‖2, c̃mu = cmu + ‖∇Mu‖2 ∈ R,

ζm(t) ◦ ψ0,t = η̂m(t)um0 ◦ ψ0,t ,

where η̂m(t)= exp
{∫ t

0 n
m
u (ψθ,t )dθ + ∫ t

0 〈Cm
u (ψθ,t ), dw(θ)〉

}
andcoefficients cmu ,Cm

u

have the form (10.16).
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Proof Let φ0,t (y) = ξ0,y(t) be a solution to (10.5). Recall that under the assumption
that um(t) are bounded differentiable functions the existence of φ0,t is justified by
classical results of SDE theory as well as smooth dependence of ξ0,y(t) on the initial
value y. Hence,ψ0,t does exist as well. This allows to define a random process ζm(t)
by the following relation [4]
∫

Rd
ζm ◦ ψ0,t (x)h(x)dx =

∫

Rd
um0 (y)ηm(t)h ◦ φ0,t (y)J (t)dy =

∫

Rd
um0 (y)γm(t, y)dy.

(10.18)
One can easily check that

∫

Rd

∫ t

0
um0 (y)dγ m

y (θ)dy =
∫

Rd

um0 (y)γ m
y (t)dy −

∫

Rd

um0 (y)h(y)dy (10.19)

=
∫

Rd

η̂(t)u0(ξ̂ (t))h(x)dx −
∫

Rd

u0(x)h(x)dx .

On the other hand from (10.17), we deduce

E

[∫

Rd

∫ t

0
um0 (y)dγm(θ)dy

]
= E

[∫ t

0

∫

Rd
um0 (y)d

[
ηm(θ)h(ξ0,y(θ))J (ξ0,y(θ))

]
dy

]

(10.20)

= E

[∫ t

0

∫

Rd

um0 (y[M m
u ]h(ξ0,y(θ))ηm(θ)J (θ))dydθ

]
.

As a result, we get the equality

E

[∫

Rd

um0 (y)γ q
y (t)dy

]
−

∫

Rd

um0 (y)h(y)dy (10.21)

= E

[∫ t

0

∫

Rd

um0 (y)[M m
u ]h(ξ0,y(θ))ηm(θ)J (θ)dydθ

]
.

By the change of variables ξ0,y(θ) = x due to stochastic Fubini theorem, we deduce
from (10.17)

E

[∫

Rd

∫ t

0
um0 (y)dγ m

y (θ)dy

]
= E

[∫ t

0

∫

Rd

[η̂m(θ)um0 (ξ̂0,x (θ))]M m
u h(x)dxdθ

]

(10.22)

=
∫ t

0

∫

Rd

E[η̂m(θ)um0 (ξ̂0,x (θ))]M m
u h(x)dxdθ

=
∫ t

0

∫

Rd

L m
u E[η̂m(θ)um0 (ξ̂0,x (θ))]h(x)dxdθ.

Hence from (10.18)–(10.22), we derive that vm(t, x)=E[η̂m(θ)um0 (ξ̂0,x (θ))]
satisfy
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∫

Rd

vm(t, x)h(x)dx −
∫

Rd

um0 (x)h(x)dx =
∫ t

0

∫

Rd

L m
u vm(θ, x)h(x)dxdθ

which results due to assumed above uniqueness of a solution to (10.1) that vm(t, x) =
um(t, x) and hence

um(t, x) = E[η̂m(t)um0 (ξ̂0,x (t))].

10.3 Stochastic Counterpart of the Cauchy Problem
for a System with Cross-Diffusion

In the previous section, we have derived a stochastic representation of a generalized
solution of the Cauchy problem

∂um

∂t
= Δ[um[u1 + u2]] + cmu u

m, um(0, x) = u0m(x), m = 1, 2. (10.23)

provided such solution exists.
In this section, our aim is to obtain a closed system of stochastic equations which

can be treated as a stochastic counterpart of (10.23). To this end, it is not enough
to have a stochastic representation of the solution um to (10.23) itself since coef-
ficients of SDEs for ξ̂ (θ) and η̂m(θ) depend on ∇um . Hence, we need stochastic
representations for spatial derivatives of um(t, x).

Consider a system of SDEs

dξ0,y(θ) = Mu(ξ0,y(θ))dw(θ), ξ0,y(0) = y,

dηm(θ) = c̃mu (ξ0,y(θ))ηm(θ)dθ + Cm
u (ξ0,y(θ))ηm(θ)dw(θ), ηm(0) = 1,

d ξ̂0,x (θ) = [Mu∇Mu](ξ̂0,x (θ))dθ + Mu(ξ̂0,x (θ))dw̃(θ), ξ̂0,x (0) = x, (10.24)

dη̂m(θ) = c̃mu (ξ̂0,x (θ))η̂m(θ)dθ + Cm
u (ξ̂0,x (θ))η̂m(θ)dw(θ), (10.25)

η̂m(0) = 1, m = 1, 2,

um(t, x) = E[η̂m(t)um0 (ξ̂0,x (t))]. (10.26)

To make the system (10.24)–(10.26) closed, we need extra relations for functions
vmi (t, x) = ∇i um(t, x), i = 1, . . . , d, since coefficients of (10.24) and (10.25) depend
on ∇um .

To derive these relations, we need some additional speculations based on results
from [12]. By formal differentiation of the system

∂um

∂t
= Δ[um(u1 + u2)] + cmu u

m, um(0, x) = um0 (x), m = 1, 2. (10.27)
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we get a PDE for vmi = ∇i um

∂vmi
∂t

= Δ{vmi (u1 + u2) + um(v1 + v2)} + um∇i c
m(u) + cm(u)vmi , vmi (0, x) = ∇i u

m
0 (x).

(10.28)
In a similar way from

∂h

∂θ
+ (u1 + u2)Δh + cm(u)h = 0, h(t, y) = h(y), (10.29)

we get a PDE for gi = ∇i h

∂gi
∂θ

+(u1+u2)Δgi+(v1i +v2i )divg+∇i c
m(u)h+cm(u)gi = 0, gi (0, y) = ∇i h(y).

(10.30)
In addition note that we can construct a stochastic representation of the solution to
(10.30) in the form

Gm(θ, y) = E[βm(t)G0(ξθ,y(t))],

whereG(t, y) =
(

h(t, y)
∇h(t, y)

)
and stochastic processes ξ(τ ) andβm

ik(τ ) satisfy SDEs

dξ(τ ) =
√
2[u1(τ, ξ(τ )) + u2(τ, ξ(τ ))]dw(τ ), ξ(θ) = y, 0 ≤ θ ≤ τ ≤ t,

dβm(τ ) = nmu (ξ(t))β(τ)dτ + Nm
u (ξ(τ ))βm(τ )dw(τ ).

Here, βm(t) = (βm
1 (t), β2(t)) ∈ R2 ⊕ (Rd ⊗ R2), βm

1 = ∇ηm(t), βm
2 (t) = J(t) ⊗

ηm(t)

βm(τ ) =
( ∇ηm(τ )

J(τ ) ⊗ ηm(τ )

)
, nmu =

(
cmu ∇cmu
0 0 ⊕ cmu

)
, Nm

u =
(
0 0

0 [v1+v2]δ√
2(u1+u2)

⊕ 0

)
,

where δ is the Kronecker delta and c ⊕ a = a ⊗ I + I ⊗ c is an operator acting in

R2⊗Rd , (c⊕a)(η⊗J) = cη⊗J+η⊗aJ.Thus forG0(y) = Gm(0, y) =
(

h(y)
∇h(y)

)
,

we obtain for a solution Gm(θ, y) of (10.29)–(10.30) an expression of the form

Gm(θ, y) = E

[(
ηm(t) 0

∇ηm(t) ηm(t) ⊗ Jm(t)

)(
h(ξθ,y(t))

∇h(ξθ,y(t))

)]

=
(

E[ηm(t)h(ξθ,y(t))]
E[∇ηm(t)h(ξθ,y(t)) + ηm(t)∇h(ξθ,y(t))Jm(t)]

)
.
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To deduce the stochastic representation for the function g j = ∇ j h, we note that
given the PDE system (10.29)–(10.30) we can derive its stochastic representation as
follows. Let us rewrite the system (10.27), (10.28) in the form

∂

∂t

(
um

vm

)
= Z m

(
um vm

)
, m = 1, 2. (10.31)

where

Z m

(
um

vm

)
= Δ

[(
u1 + u2 0
v1 + v2 u1 + u2

) (
um

vm

)]
+

(
cm11 0
cm21 c

m
22

) (
um

vm

)
.

Consider aswell a dual systemderived from (10.31) as follows. Integrate over Rd a
product of (10.31) and a vector test function (h, g)∗, where g j = ∇ j h, j = 1, . . . , d.
As a result, we obtain a system of the form

〈〈(
um

vm

)[
∂

∂t

(
h
g

)
+ Qm

(
h
g

)]〉〉
= 0, (10.32)

where

Qm

(
h
g

)
=

(
u1 + u2 0
v1 + v2 u1 + u2

)
Δ

(
h
g

)
+

(
cm11 0
cm21 c

m
22

)(
h
g

)
.

Here and below, we denote by

〈〈(
um

vmi

) (
h
gi

)〉〉
=

( ∫
Rd um(x)h(x)dx∫
Rd vmi (x)gi (x)dx

)
.

In the sequel, we take into account the relation [v1 + v2]Δh = [v1 + v2]divg that
allows to construct a proper stochastic representation of the backward Cauchy prob-
lem

∂

∂θ

(
h
g

)
+ Qm

(
h
g

)
= 0,

(
h(t)
g(t)

)
=

(
h0
g0

)
, 0 ≤ θ ≤ t (10.33)

based on results of [14]. To this end, we take into consideration the equality [v1 +
v2]Δh = [v1 + v2]divg that allows to construct a stochastic representation for a
solution to (10.33). Along with (10.24), we consider a stochastic equation of the
form

dηm(θ) = [c̃m]∗(ξ(θ))ηm(θ)dθ + [C̃m]∗(ξ(θ))(ηm(θ), dw(θ)), ηm(s) = γ m

(10.34)

with respect to the two component process ηm(θ) =
(

ηm
1 (θ)

ηm
2 (θ)

)
with coefficients c̃m

and Cm to be chosen below. Let ζm(t) maps γ m to ηm(θ), that is
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ζm(θ) =
(

ζm
11(θ) 0

ζm
21(θ) ζm

22(θ)

)
.

To simplify notation, we omit index m and define a stochastic test function

κ(θ) =
(

κ1(θ)

κ2(θ)

)
=

(
ζ11(θ) 0
ζ21(θ) ζ22(θ)

)(
h(ξ(θ))

g(ξ(θ))

)
J (θ), (10.35)

where J (θ) is a Jacobian of the stochastic transformation y → ξs,y(θ). The stochastic

differential of the process κ(θ) has the form dκ(θ) =
(
dκ1(θ)

dκ2(θ)

)
with

dκ1(θ) = [c̃11h + 1

2
M2

uΔh + 〈C11, [Mu∇h + ∇Muh](ξ(θ))〉ζ11(θ)J (θ)]dθ

+〈Mu∇h(ξ(θ)),∇Mu〉ζ11(θ)J (θ)dθ + 〈N1(ξ(θ)), dw(θ)〉,

dκ i
2(θ) =

[
[c̃21h + Mu∇Mudivg](ξ(θ))ζ i

21(θ) + ζ22(θ)[c̃22gi + 1

2
M2

uΔgi ](ξ(θ))

]

J (θ)dθ +{C21ζ
i
21(θ)[Mu∇h +∇Muh](ξ(θ))+C22ζ22(θ)[Mu∇gi + gi∇Mu](ξ(θ))

+ζ i
21(θ)Mu〈∇h,∇Mu〉(ξ(θ)) + ζ22(θ)Mu〈∇gi ,∇Mu〉(ξ(θ))}J (θ)dθ

+〈[N21(ξ(θ))ζ i
21(θ) + Ni

22(ξ(θ))ζ22(θ)], dw(θ)〉J (θ).

Let us specify coefficients c̃m and Cm . As it was done in the previous section, we
choose

Cm
11 = −∇Mu, c̃m11 = cmu + ‖∇Mu‖2. (10.36)

Next, we choose

Cm
21 = −∇Mu,C

m
22 = (v1 + v2)δ

Mu
− ∇Mu, (10.37)

[c̃m21]i = ∇i c
m
u + ‖∇Mu‖2, c̃m22 = cmu + ‖∇Mu‖2. (10.38)

We do not specify for the moment Nm
1 and Nm

2 since they do not take part in the
probabilistic representation of um and vm . Next, we proceed as in the previous section.

To get a closed counterpart of the system (10.1) in addition to Theorem 10.1, we
state the following assertion.

Theorem 10.2 Under assumptions of Theorem 10.1 both the functions um(t, x)
admit stochastic representations (10.30) and functions (um, vmj = ∇ j um) admit
stochastic representations
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(
um(t, x)

∇i um(t, x)

)
= E

[(
ζ̂m
11(t) 0

ζ̂m
21(t) ζ̂m

22(θ)

) (
um0 (ξ̂0,x (t))
vmi (ξ̂0,x (t))

)]
. (10.39)

Proof To verify the last assertion of the theorem, we note that we have the following
matrix relations

〈〈∫ t

0

(
um0
vmi0

) (
dκm

1 (θ)

dκm
2 (θ)

)〉〉
=

〈〈(
um0
vmi0

) (
dκm

1 (t)
dκm

2 (t)

)〉〉

−
〈〈(

um0
vmi0

) (
dκm

1 (0)
dκm

2 (0)

)〉〉
.

On the other hand from (10.35), we deduce

E

[〈〈∫ t

0

(
um0
vmi0

)(
dκ1(θ)

dκ2(θ)

)〉〉]

= E

[∫ t

0

〈〈(
um0
vmi0

)
d

[(
ζm
11(θ) 0

ζm
21(θ) ζm

22(θ)

) (
h(ξ0,·(θ))

g(ξ0,·(θ))

)
J (θ)

]〉〉]

= E

[∫ t

0

〈〈(
um0
vmi0

) (
ζm
11(θ) 0

ζm
21(θ) ζm

22(θ)

)
Qm

(
h(ξ0,·(θ)

g(ξ0,·(θ))

)
J (θ)

〉〉
dθ

]
.

By the change of variables ξ0,y(θ) = x applying stochastic Fubini theorem, we get

E

[〈〈∫ t

0

(
um0
vmi0

)
,

(
dκ1(θ)

dκ2(θ)

)〉〉]

= E

[∫ t

0

〈〈(
ζ̂m
11(θ) 0

ζ̂m
21(θ) ζ̂m

22(θ)

)(
um0 (ξ̂0,·(θ))

vmi0(ξ̂0,·(θ))

)
Qm

(
h
g

)〉〉
dθ

]

=
∫ t

0

〈〈
E

[(
ζ̂m
11(θ) 0

ζ̂m
21(θ) ζ̂m

22(θ)

)(
um0 (ξ̂0,·(θ))

vmi0(ξ̂0,·(θ))

)]
Qm

(
h
g

)〉〉
dθ

=
∫ t

0

〈〈
Z mE

[(
ζ̂m
11(θ) 0

ζ̂m
21(θ) ζ̂m

22(θ)

) (
um0 (ξ̂0,·(θ))

vmi0(ξ̂0,·(θ))

)] (
h
g

)〉〉
dθ.

Hence, we derive that the functions

(
λm(t, x)

∇λm(t, x)

)
= E

[(
ζ̂m
11(θ) 0

ζ̂m
21(θ) ζ̂m

22(θ)

)(
um0 (ξ̂0,x (θ))

vmi0(ξ̂0,x (θ))

)]



158 Y. Belopolskaya

satisfy integral identities

〈〈(
λm(t)

∇λm(t)

) (
h
g

)〉〉
−

〈〈(
λm(0)

∇λm(0)

)(
h
g

)〉〉

=
〈〈
Qm

(
λm(t)

∇λm(t)

)(
h
g

)〉〉

which yields due to the assumed uniqueness of a solution to (10.1) that

(
λm(t, x)

∇λm(t, x)

)
=

(
um(t, x)

∇um(t, x)

)

and hence

(
um(t, x)

∇um(t, x)

)
= E

[(
ζ̂m
11(t) 0

ζ̂m
21(t) ζ̂m

22(t)

) (
um0 (ξ̂0,x (t))
vmi0(ξ̂0,x (t))

)]
.

As a result, we deduce from the last equalities that (10.31) holds and in addition

∇umi (t, x) = E[ζ̂21(t)um0 (ξ̂0,x (t)) + ζ̂m
22(t)v

m
i0(ξ̂0,x (t))].

Remark 10.1 We have proved that under a priori assumption that there exists unique
regular solution of the Cauchy problem (10.1) there exists a stochastic representation
of this solution and moreover we derive a closed system of stochastic equations that
can be considered without reference to this a priori assumption. Namely, we have
shown that the system (10.24), (10.34) and (10.39)with coefficients given by (10.36)–
(10.38) is a closed stochastic systemwhich canbe considered independently of (10.1).

At the next step starting with the system (10.24), (10.34) and (10.39) having
the form

d ξ̂0,x (θ) = [Mu∇Mu](ξ̂0,x (θ))dθ + Mu(ξ̂0,x (θ))dw̃(θ), ξ̂0,x (0) = x,

d ζ̂m(θ) = c̃mu (ξ̂ (θ))ζ̂m(θ)dθ + Cm
u (ξ̂ (θ)ζ̂m(θ)dw(θ), ζ̂m(0) = I

with coefficients c̃m,Cm given by (10.36)–(10.38) and

(
um(t, x)

∇um(t, x)

)
= E

[(
ζ̂m
11(θ) 0

ζ̂m
21(θ) ζ̂m

22(θ)

) (
um0 (ξ̂0,x (θ))

vm0 (ξ̂0,x (θ))

)]

we will formulate conditions to ensure that the functions um(t, x) defined by the last
relation exist and give the required generalized solution of the problem (10.1). This
will be done in the forthcoming chapter.
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Chapter 11
Benefits and Application of Tree
Structures in Gaussian Process Models to
Optimize Magnetic Field Shaping
Problems

Natalie Vollert, Michael Ortner and Jürgen Pilz

Abstract Recent years have witnessed the development of powerful numerical
methods to emulate realistic physical systems and their integration into the indus-
trial product development process. Today, finite element simulations have become a
standard tool to help with the design of technical products. However, when it comes
to multivariate optimization, the computation power requirements of such tools can
often not be met when working with classical algorithms. As a result, a lot of atten-
tion is currently given to the design of computer experiments approach. One goal of
this work is the development of a sophisticated optimization process for simulation
based models. Within many possible choices, Gaussian process models are most
widely used as modeling approach for the simulation data. However, these models
are strongly based on stationary assumptions that are often not satisfied in the under-
lying system. In this work, treedGaussian processmodels are investigated for dealing
with non-stationarities and compared to the usual modeling approach. The method
is developed for and applied to the specific physical problem of the optimization of
1D magnetic linear position detection.

Keywords Gaussian process surrogates · Non-stationarity · Simulation data
Tree models

11.1 Introduction

Gaussian process (GP) models have been widely used as emulators for time-
consuming computer models, where the most common approach is adopted from
spatial statistics and named Kriging [13]. This refers to a linear model with a
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systematic departure realized as a stationary Gaussian random function. A major
problemwith this approach is the strong assumption of stationarity and homoscedas-
ticity of the GPs, which is firstly difficult to verify and secondly often not valid. An
efficient way to deal with this problem is to partition the input parameter space into
regions and to fit individual, stationary GPs in each region. This method is referred
to as treed Gaussian process modeling [6].

It is the ultimate goal of this work to develop an emulator based on GPs to model
and optimize realistic physical systems using FEM data. This is done in the context
ofmagnetic linear position detectionwhere themagnetic field of a permanent magnet
is emulated in the magneto-static limit. In such systems, a magnet moves relative to
a magnetic sensor and the state of the magnet is determined from the field that is
seen by the sensor. The advantages are wear-free measurements, high resolutions,
low power requirements, and an excellent robustness against temperature and dirt
with multiple applications in modern industries, e.g., in the detection of shifting
shafts, flexible arm mechanisms, gearboxes or lift systems, [16]. To improve the
signal stability while retaining cost-effectiveness, it is proposed in [9] to shape the
magnetic field at the sensor by designing a compound magnet. However, even when
dealing with a small number of constituents, the compound features multiple degrees
of freedom which makes the modeling and optimization process difficult.

This work is intended to be a preliminary study for emphasizing advantages and
also possible disadvantages of the treed GP models in comparison to the usual GPs.
Thus, emulators of the magnetic field are constructed and investigated for both mod-
eling approaches. To that end, the sample points for the construction of the models
are generated from an analytical description for the magnetic field. Furthermore, at
this early stage, the compound consists only of a single rectangular magnet, consid-
erably reducing the number of parameters to better understand the potential and the
difficulties of this method.

11.2 Magnetic Linear Position Detection

Magnetic position and orientation detection systems play an important role in mod-
ern industrial applications. Their features include contact-free measurement, low
power requirements, and high resolutions combined with an excellent robustness
against oil, grease, and dirt without the need for airtight seals or other environmental
contamination control in harsh environments. Long life times up to decades and cost-
effectiveness are especially interesting for the cost-driven automotive sector where
magnetic sensors are increasingly used for gear shift detection, gas pedals, speed
sensors, and many other applications.

State-of-the-art magnetic linear position detection systems feature a magnet that
moves relative to a magnetic sensor which detects the magnetic field to determine
the position of the magnet; see Fig. 11.1a. The magnetic field is generally not a
linear function of the position of the magnet but typically features an even and an
odd component; see Fig. 11.1b. It can be a sensitive task to find a bijective map that
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Fig. 11.1 a shows a sketch of a linear position detection system. A rectangular magnet with
magnetizationM oriented in the z-direction moves along the stroke s ∈ [−S, S] in x-direction and
generates a magnetic field with components Bx and Bz . The sensor is positioned on the positive
z-axis at a distance Δ from the magnet called the airgap. b shows the magnetic field components
detected by the sensor as a function of the position of the magnet for a typical setup with a cubical
magnet with side length 10mm, a remanence field of one Tesla and an airgap of 5mm

relates the magnetic field to the position of the magnet. Distinction is essentially
made between 1D and 2D magnetic position detection systems, where the former
picks up both components of the magnetic field applying a 2D sensor, while the latter
just detects the odd component with a simple 1D probe. For 1D position sensing,
the linear range of the odd field component about the origin is used; see Fig. 11.1b.
When compared to their 2D counterparts, 1D systems have a lot of shortcomings
like small measurement ranges and an even smaller linear region as well as airgap
instability. Despite these critical disadvantages, 1D systems are still used in modern
industrial applications, solely due to their cost-effectiveness, as 1D sensors are much
cheaper than 2D ones.

It is proposed in [9] to improve 1Dmagnetic position detection systems by design-
ing a compoundmagnet which features a highly linear odd field component Bx along
a given stroke while minimizing the magnet volume at the same time to reduce
costs. The multiple shape parameters of the compound make the optimization a very
time-consuming process when calculating the magnetic field by FEM means. In the
following sections, a design of computer experiments approach is developed.

11.3 Gaussian Process Models

The statistical approach for computer experiments consists of two parts—
experimental design and modeling. The designing refers to finding a set Dn of n
points in the experimental domain T that optimally represents the entire domain;
for further information, see [1, 5, 14, 15]. Then, data is collected based on the
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optimal designDn and the relationshipbetween the input variablesxi = (x1, . . . , xs)T ,
i = 1, . . . , n, and the output is modeled.

11.3.1 Kriging Setup

Among many different modeling approaches (see, e.g., [5]), especially Gaussian
process models, also called Kriging models, are of main interest for computer exper-
iments. Here, the response Y (x) is treated as a realization of a stochastic process,
i.e.,

Y (x) = μ(x) + Z(x), (11.1)

where μ(x) is the trend function and Z(x) is a primarily stationary Gaussian process
with zero mean. There are different types of Kriging based on the definition of the
trend function. The most general form is known as universal Kriging, where the
trend function is specified by μ(x) = f(x)Tβ, i.e., as a regression model. Here, the
function vector f is fixed, and the parameter vector β needs to be estimated. The
ordinary Kriging approach defines a slightly simpler model, which has an unknown
but constant trend, i.e., μ(x) = μ. The covariance matrix of the Gaussian process
Z(x) is given by

Cov(Z(xi), Z(xj)) = σ 2R(xi, xj), (11.2)

where R(xi, xj) = Corr(Z(xi), Z(xj)) is a given correlation function, scaled by the
process variance σ 2 and xi, xj ∈ Dn .Most of the time, it is assumed that the stochastic
process is stationary, i.e., R(xi, xj) = R(xi − xj) = R(h). Among many possible
correlation functions (see [11]), the Matérn class is of great importance and is given
by

R(h) = 21−ν

Γ (ν)

(√
2νh

θ

)ν

Kν

(√
2νh

θ

)
, (11.3)

where Γ is the gamma function, Kν is a modified Bessel function, h = |xi − x j |,
and ν, θ are positive parameters. The sample paths of a GP with the Matérn corre-
lation function are �ν − 1� times differentiable. Note, that, in general, the product
correlation rule is used for multivariate input variables in computer experiments, i.e.,

R(xi, xj) =
s∏

k=1
R j (xik − x jk), see [3]. Usually, the parameters β, σ 2, ν, and θ are

unknown and hence need to be estimated, e.g., by maximum likelihood estimation
(MLE); see [5] for further details. When the parameters are specified, the model can
be used to make predictions Y (x0) at untried points x0 /∈ Dn . Let x1, . . . , xn ∈ Dn be
the set of design points and yD = (y(x1), . . . , y(xn))T the corresponding data, then
a linear predictor of y(x0) is given by
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Ŷ (x0) = λT (x0)yD. (11.4)

Among all linear predictors, the best linear unbiased predictor (BLUP) is a common
choice for prediction at untried points. This predictor minimizes the mean squared
error (MSE)

MSE
(
Ŷ (x0)

)
= E

(
λT yD − Ŷ (x0)

)2
, (11.5)

with respect to λ under the unbiased-constraint

E
(
λTYD

) = E (Y (x0)) . (11.6)

Solving this optimization problem defines the BLUP as

Ŷ (x0) = fT β̂ + kK−1
D (yD − F β̂), (11.7)

where f = ( f1(x0), . . . , fk(x0))T , KD = σ 2RD , k = (R(x1, x0), . . . , R(xn, x0)), β̂
is the least squares estimator of β and F the design matrix, [13].

11.3.2 The Curse of Stationarity

A lot of research has been done concerning GPs and complex computer code mod-
eling with a lot of examples and case studies where this approach was successfully
demonstrated; see, e.g., [3]. Nevertheless, it has also been shown that especially
the strong assumption of stationarity of the process can lead to problems, as many
physical models exhibit a clear non-stationary behavior. To deal with this problem,
non-stationary correlation functions can be used; see [10]; however, fitting fully
non-stationary models quickly becomes difficult and computationally intractable.
Another approach uses treed Gaussian process models (TGP); see, e.g., [6]. Here,
the main idea is to divide the parameter space by making binary splits on single
variables, i.e., a tree partition and fitting an independent GP model in each leaf; see
Fig. 11.2.

This method has the advantage of a comparatively simple modeling of non-
stationarity and an easier covariance matrix inversion as a result of data reduction in
each leaf. It is also more likely that the trend functions in each leaf can be assumed
to be simple functions or even just constants without losing information, making
parameter estimation easier and reducing the risk of over-fitting. Furthermore, the
partitioning yields perfect conditions for multi-core computing, which may further
reduce computation time.
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Fig. 11.2 Tree partitioning:
division of the input space by
binary splits. The two splits
result in three leafs, i.e.,
three data sets—for GP1, all
data points with x1 ≤ c1 are
used, GP2 contains all data
points with x1 > c1 and
x2 ≤ c2, and GP3 includes
the remaining data.
An independent GP model is
fitted in each of the three
leafs

11.4 Case Study: Magnetic Field Shaping

In this section, different GP models are tested to describe the odd component Bx

of the magnetic field along the stroke s ∈[−10, 10] mm of a rectangular magnet
with sides 2a, 2b, and 2c aligned in x-,y-, and z-direction and a magnetization of
M = (0, 0, x). In this first case study, the magnet volume V and side a are fixed to
known, and realistic values and boundaries are given for the other parameters; see
Table11.1. The resulting GP model is then used to find the optimal values for c and
x where the deviation of Bx along the stroke from a linear function with a slope of
one millitesla per millimeter is minimal.

A CL2-optimal latin hypercube design (see [5]) with n = 50 points for the param-
eters c and x with respective ten regularly spaced points along the stroke s is used
to generate the data, a total of 500 points (c,x ,s), of the final design. It is important
to notice that the FEM simulation environment would always model the magnetic
field along the entire stroke providing an arbitrary number of sample points for s and
thus limiting the number of evaluations only for the parameters c and x . Without loss
of generality, the data is generated using an analytical description of the magnetic

Table 11.1 Assumptions and
constraints for the involved
parameters

Parameter Constraints

Δ 5 mm

V 500 mm3

a 12 mm

b V
8ac mm

c [0.1, 50] mm

x [100, 1000] mT

s [−10, 10] mm
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field for ideal permanent magnets for testing the validity of the GP model, see [2].
A constant trend function and Matérn correlation function with ν = 3

2 are assumed
for the GP models, and the DIviding RECTangles (DIRECT) algorithm is used for
global optimization; see [7, 8]. The algorithms are implemented in R, making use
of the packages DiceKriging, DiceDesign, nloptr ([4, 7, 12]).

It is known that for the parameter c, the stationarity assumption does not hold.
For small values of c, the magnetic field varies strongly, while it is quite flat for
larger values; see Fig. 11.3. Therefore, several GP models are investigated based on
different splits for c and compared due to their ability to obtain the optimal values for
c and x , which can be determined from the analytical model to be c = 10.264815 and
x = 997.9207. The results are summarized in Table11.2 and represented graphically
in Fig. 11.4.

It can be seen from Table11.2 and Fig. 11.4 that the TGP approach can really
yield improvements and give an almost perfect fit despite the stationarity assumption,
especially when using two splits on c. However, solutions can also get worse by bad
splitting, where especially the last and extreme case in Table11.2, i.e., when the
border is drawn almost directly at the optimal value, emphasizes one of the major

Fig. 11.3 Influence of the
parameter c on the magnetic
field Bx . The red point refers
to the optimal value for c
based on optimization of the
analytical function, and the
two red lines divide c into the
parts used in the trees. The
x-axis refers to the interval
[0.1, 50] mapped onto [0, 1]

Table 11.2 Different GP models, based on the splits defined by c border and the related optimized
parameter values

c border c value x value

none 9.443181 977.7832

15.07 9.614540 970.3704

2.595 ∧ 15.07 10.196923 996.9839

10.264 ≈ copt 8.416667 845.2808
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Fig. 11.4 The left-hand figures show real versus predicted outputs for 5000 arbitrary parameter
combinations. The right-hand figures show the optimization solution based on the analytical equa-
tion and the models. The dashed line refers to the solution where the parameters obtained by the
model with two splits are inserted into the analytical equation and the red line refers to a line with
slope one in all pictures

drawbacks of treed structures. In this case, the estimated optimal values for c and x
are far from being an acceptable solution. The reason for this lies in inaccuracies near
the borders that occur due to the natural behavior of treed processes: at the border two
processes, with probably completely different structures, melt together. This means
that unless there is an sample point directly at the border, the two processes may
not even meet at the same point leading to discontinuities. Assuming that there are
enough border sample points, there remains the problem that differentiability of the
process at the border will be never guaranteed, but rather very unlikely; see Fig. 11.5.
However, the assumption of differentiability is crucial for many physical systems and
hence should be also held in belonging models.
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Fig. 11.5 It is shown how
the magnetic field Bx
changes along the parameter
c. The red dotted line refers
to the border which at the
same time is the solution for
the optimal c. The processes
do melt together at the same
point because there is a
sample point directly at the
border, however, the
undesirable bend, and hence
non-differentiability, is
obvious

11.5 Conclusion and Outlook

It has been shown that treed Gaussian process models can be a powerful tool for the
design of computer experiments, but great care must be taken with respect to the
partitioning of the tree. Especially, predictions near borders can exhibit large errors
and bad functional attributes. For optimization, it is crucial to grant good fitting of
the GPmodel, especially near the optimum. However, it can never be guaranteed that
the optimum is not located near or even directly at a border. Thus, actual research is
strongly concerned with the construction of border processes that yield at least once
continuously differentiable borders. Furthermore, also systematic and reasonable
partitioning is currently under investigation, which should be achieved using an
adapted genetic algorithm. From a physical point of view, more complex compound
magnets with considerably more parameters will be implemented based on realistic,
noisy FEM data to improve real-world magnetic linear position detection systems
moving beyond the analytic description.
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Chapter 12
Insurance Models Under Incomplete
Information

Ekaterina Bulinskaya and Julia Gusak

Abstract The aim of the chapter is optimization of insurance company performance
under incomplete information. To this end, we consider the periodic-review model
with capital injections and reinsurance studied by the authors in their previous paper
for the case of known claim distribution. We investigate the stability of the one-step
and multi-step model in terms of the Kantorovich metric. These results are used for
obtaining almost optimal policies based on the empirical distributions of underlying
processes.

Keywords Incomplete information · Periodic-review insurance model
Reinsurance · Capital injections · Optimization · Stability
12.1 Introduction

The primary goal of any insurer is redistribution of risks and indemnification of
policyholders. This explains the popularity of reliability approach in actuarial sci-
ences, that is, thorough analysis of ruin probability. Being a corporation insurance
company has a secondary but very important goal, namely dividends payment to the
shareholders. So, the alternative cost approach was started by De Finetti in 1957 (see
[9]).

Thus, there arose the new research directions in actuarial sciences specific for
modern period. They include, along with dividends payments (see, e.g., [1, 2, 11,
15]), reinsurance and investment problems (see, e.g., [4, 8, 13]). Hence, the treatment
of complexmodels (see, e.g., [6]) and consideration of new classes of processes, such
as martingales, diffusion, Lévy processes, or generalized renewal ones (see [7]), is
needed. It turned out as well that discrete-time models sometimes are more realistic
since reinsurance treaties have usually one-year duration, dividends are also paid
at the end of financial year (see, e.g., [17]). Several types of objective functions
and various methods are used to implement the stochastic models optimization (see,
e.g., [19, 22]). It is also important to mention investigation of systems asymptotic
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behavior and their stability with respect to parameters fluctuation and perturbation of
underlying processes (see, e.g. [3, 5, 25]). Furthermore, in practice neither the exact
values of parameters nor the processes distributions are known. Thus, it is important
to study the systems behavior under incomplete information. If there is no a priori
information at all it may be useful to employ the empirical processes.

The chapter is organized as follows. In Sect. 12.2, we gather some auxiliary
results. The results concerning convergence in distribution in L1 are transferred to
Appendix. Section12.3 contains a brief description of themodel treated in the chapter
(Sect. 12.3.1). Further parts of Sect. 12.3 are devoted to stability of the model under
consideration. The case of unknown claim distribution is considered in Sect. 12.4.
Finally, Sect. 12.5 presents conclusion and further research directions.

12.2 Preliminary Results

To investigate stability of themodel, it is necessary to evaluate the difference between
the objective functions calculated for two distributions close in some metric. For this
purpose, we have chosen Kantorovich or Wasserstein L1 metric.

12.2.1 Kantorovich or Wasserstein L1 Metric

We begin by recalling the following definition given, e.g., in [23], see also [20].

Definition 12.1 For random variables (r.v.’s) X and Y defined on some probability
space (Ω,F , P) and possessing finite expectations, it is possible to define their
distance on the base of Kantorovich metric in the following way

κ(X, Y ) =
∫ +∞

−∞
|F(t) − G(t)|dt,

where F and G are the distribution functions (d.f.’s) of X and Y , respectively.

This metric coincides (see, e.g., [12] or [23]) with Wasserstein L1 metric defined
as d1(F, G) = inf E |X − Y | where infimum is taken over all jointly distributed X
and Y having marginal d.f.’s F and G. It is supposed that both d.f.’s belong to C1

consisting of all F such that
∫ +∞
−∞ |x | d F(x) < ∞.

Lemma 12.1 The following statements are valid.
1. Let F−1(t) = inf{x : F(x) ≥ t}, then d1(F, G) = ∫ 1

0 |F−1(t) − G−1(t)| dt.
2. (C1, d1) is a complete metric space.

3. For a sequence {Fn}n≥1 from C1 one has d1(Fn, F) → 0 if and only if Fn
d→

F and
∫ +∞
−∞ |x | d Fn(x) → ∫ +∞

−∞ |x | d F(x), as n → ∞. Here
d→ denotes, as usual,

convergence in distribution.
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The proof can be found in [12].
We are going to use also the notion of Lipschitz function.

Definition 12.2 A function f mapping a metric space (S1, ρS1) into a metric
space (S2, ρS2) is called Lipschitz if there exists a constant C ≥ 0 such that
ρS2

(
f (s ′), f (s ′′)

) ≤ CρS1(s
′, s ′′) for any s ′, s ′′ ∈ S1, here ρS1 , ρS2 denote metrics

in the corresponding spaces.

Now we can formulate

Lemma 12.2 Let X, Y be nonnegative r.v.’s possessing finite expected values and
κ(X, Y ) = ρ. Assume also that g : R+ → R+ is a non-decreasing Lipschitz function.
Then κ(g(X), g(Y )) ≤ Cρ where C is the Lipschitz constant.

Proof The distribution function of the random variable g(X) can be calculated in a
following way

Fg(X)(t) = P{g(X) ≤ t} = P{X ≤ g−1(t)} = FX
(
g−1(t)

)
,

where g−1(t) is defined as in Lemma 12.1. Similarly, one can write Fg(Y )(t) =
FY

(
g−1(t)

)
.

Since g is a non-decreasing Lipschitz function, we get the following sequence of
equalities and inequalities

κ(g(X), g(Y )) =
∫

R+
|Fg(X)(t) − Fg(Y )(t)|dt =

∫
g−1(R+)

|FX (s) − FY (s)|dg(s)

=
∫

g−1(R+)

|FX (s) − FY (s)|g′(s)ds ≤ C
∫

g−1(R+)

|FX (s) − FY (s)|ds

≤ C
∫

R+
|FX (s) − FY (s)|ds = Cρ.

In the first line, we have used the definition of Kantorovich metric and change of
variables t = g(s). As usually, g−1(R+) is preimage of R+. Then the properties of
Lipschitz functions are employed. �

The next result enables us to estimate the difference between infimums of two
functions.

Lemma 12.3 Let functions f1(z), f2(z) be such that | f1(z) − f2(z)| < δ for some
δ > 0 and any z > 0. Then | inf z>0 f1(z) − inf z>0 f2(z)| < δ.

Proof Put Mi = inf z>0 fi (z), i = 1, 2. According to definition of infimum, for any
ε > 0, there exists z1(ε) such that f1(z1(ε)) < M1 + ε. Therefore, f2(z1(ε)) ≤
f1(z1(ε)) + δ < M1 + ε + δ implying M2 ≤ f2(z1(ε)) < M1 + ε + δ.

Letting ε → 0 one gets immediately M2 ≤ M1 + δ. In a similar way, one estab-
lishes M1 ≤ M2 + δ, thus obtaining the desired result |M1 − M2| < δ. �
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12.2.2 Distance Between Empirical Functions

First of all we would like to establish that if the difference between two d.f.’s is small
in the Kantorovich metric the same is true for the corresponding empirical functions.
Thus, let {Xi = Xi (ω)}n

i=1 be a sample of size n from the population of r.v.’s with d.f.
F . The empirical d.f. is given by Fn(ω, t) = n−1 ∑n

i=1 I {Xi ≤ t}, where ω ∈ Ω and
I {A} is indicator of the set A. Suppose there exists another sample Y1, . . . , Yn from
the population of random variables with distribution function, say, G. The empirical
distribution function for this sample is denoted by Gn(ω, t). Note that we are going
to assume further on the samples to consist of independent identically distributed
(i.i.d.) r.v.’s.

Proposition 12.1 Let κ(F, G) = ρ, then P(κ(Fn,Gn) > ρ) → 0 as n → ∞.

Proof Obviously,
∫ +∞
−∞ |Fn(ω, t) − Gn(ω, t)|dt does not exceed

∫ +∞

−∞
|Fn(ω, t) − F(t)|dt +

∫ +∞

−∞
|Gn(ω, t) − G(t)|dt +

∫ +∞

−∞
|F(t) − G(t)|dt,

therefore we get P (κ(Fn,Gn) > ε + ρ) is less than

P
(
κ(Fn, F) >

ε

2

)
+ P

(
κ(Gn, G)|dt >

ε

2

)
+ P (κ(F, G) > ρ) . (12.1)

The last term in (12.1) is equal to 0, since we assumed ρ = ∫ +∞
−∞ |F(t) − G(t)|dt .

Two first terms tend to 0 as n → ∞ for any ε > 0 due to convergence almost surely
(a.s.) of empirical function to theoretical one in Kantorovich metric (see, e.g., [10]).
Thus, we get the desired result. �

Remark 12.1 Since κ(Fn, F) and κ(Gn, G) tend to zero a.s., as n → ∞, the state-
ment of Proposition 12.1 can be rewritten as follows: lim supn→∞ κ(Fn,Gn) ≤ ρ

if κ(F, G) ≤ ρ.

12.2.3 Convergence in Distribution for a Fixed t

Suppose for simplicity that two samples are independent. For each fixed t ∈ R the
difference Hn(ω, t) =: Fn(ω, t) − Gn(ω, t) is a real-valued function of the random
vector (X1, Y1, . . . , Xn, Yn) defined on a probability space (Ω,F , P), namely

Hn(ω, t) = 1

n

n∑
i=1

I {Xi ≤ t} − 1

n

n∑
i=1

I {Yi ≤ t} = 1

n

n∑
i=1

ζi (t), (12.2)

where ζi (t) = I {Xi ≤ t} − I {Yi ≤ t}, i = 1, n, are i.i.d. r.v.’s. Recall that
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Eζi (t) = E I {Xi ≤ t} − E I {Yi ≤ t} = F(t) − G(t),

Varζi (t) = VarI {Xi ≤ t} + VarI {Yi ≤ t} = F(t) + G(t) − (F2(t) + G2(t)).

Since Varζi (t) < ∞, the central limit theorem for i.i.d. r.v.’s gives
∑n

i=1 ζi (t) − n (F(t) − G(t))√
F(t) + G(t) − (F2(t) + G2(t))

√
n

d→ N (0, 1),

where N (0, 1) is a standard normal variable. In other words,

√
n

Hn(ω, t) − (F(t) − G(t))√
F(t) + G(t) − (F2(t) + G2(t))

d→ N (0, 1).

According to properties of convergence in distribution, we get immediately the fol-
lowing result.

Proposition 12.2 For any t ∈ R

√
n |Hn(ω, t) − (F(t) − G(t))| d→

√
F(t) + G(t) − (F2(t) + G2(t))|N (0, 1)|.

12.3 Stability of Insurance Model

Weare going to study the stability of the periodic-reviewmodel of insurance company
performance with capital injections and reinsurance introduced in [8].

12.3.1 Model Description

Let u be the initial surplus of insurance company. It is supposed that the surplus at the
beginning of each period has to be maintained above some level a > 0. Denote by ξn

the aggregate claim during the nth period. The sequence {ξn} is assumed to consist of
i.i.d. r.v.’s with a known d.f. F possessing a density and a finitemean γ . The company
concludes at the end of each period the stop-loss reinsurance treaty. If the retention
level is denoted by z > 0, then c(z) = lγ − m

∫ +∞
z F(t) dt is the insurer premium

(net of reinsurance). Here we supposed that the insurer and reinsurer premiums are
calculated on the base of expected value principle, and l and m are the corresponding
safety coefficients. As usual F(t) = 1 − F(t).

It is necessary to choose the sequence of retention levels minimizing the total
discounted injections during n periods.

One-period minimal capital injections are defined as follows

h1(u) := inf
z>0

EJ (u, z), where J (u, z) = (min(ξ, z) − (u − a) − c(z))+ .
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For the n-step model, n ≥ 1, the company surplus U (n) at time n is given by the
relation

U (n) = max(U (n − 1) + c(z) − min(ξ, z), a), U (0) = u.

It was also proved in [8] that the minimal expected discounted costs hn(u) injected
in company during n years satisfy the following Bellman equation

hn(u) = inf
z>0

(EJ (u, z) + αEhn−1(max(u + c(z) − min(ξ, z), a))), h0(u) = 0,

(12.3)
where 0 < α < 1 is the discount factor.

Put hn(u, z) := EJ (u, z) + αEhn−1(max(u + c(z) − min(ξ, z), a)) for n ≥ 1. It
was established that infimum of the function hn(u, z) is achieved for some z > 0 and
function hn(u) determined by (12.3) is continuous in u.

12.3.2 One-Step Model

We are going to add the label X to all functions depending on ξ if ξ ∼ law(X).
Putting Δ1 := supu>a |h1X (u) − h1Y (u)| we prove the following result.

Theorem 12.1 Let X, Y be nonnegative r.v.’s possessing finite expectations, more-
over, κ(X, Y ) = ρ. Then

Δ1 ≤ (1 + l + m)ρ

where l and m are the safety loading coefficients of insurer and reinsurer premiums,
respectively. Both premiums are calculated according to expected value principle
and 1 < l < m.

Proof Begin by estimating |EJX (u, z) − EJY (u, z)|. Setting
CX := −(u − a) − lEX + mE(X − z)+, CY := −(u − a) − lEY + mE(Y − z)+,

it is possible to write

|EJX (u, z) − EJY (u, z)| = |E (min(X, z) + CX )+ − E (min(Y, z) + CY )+ |
≤ |E (min(X, z) + CX )+ − E (min(X, z) + CY )+ |︸ ︷︷ ︸

δ1(u,z)

+ |E (min(X, z) + CY )+ − E (min(Y, z) + CY )+ |︸ ︷︷ ︸
δ2(u,z)

.

Now we estimate separately δ1(u, z) and δ2(u, z).
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δ1(u, z) ≤ E| (min(X, z) + CX )+ − (min(X, z) + CY )+ | ≤ |CX − CY | ≤ (l + m)ρ.

Applying Lemma 12.2 to r.v.’s X , Y and function g(x) = (min(x, z) + CY )+, we
get

δ2(u, z) = |Eg(X) − Eg(Y )| =
∣∣∣∣
∫

R+
F g(X)(t)dt −

∫
R+

F g(Y )(t)dt

∣∣∣∣
≤

∫
R+

|Fg(X)(t) − Fg(Y )(t)|dt = κ(g(X), g(Y )) ≤ ρ,

due to g′(x) ≤ 1. Hence using Lemma 12.3 and just obtained estimates for δ1(u, z)
and δ2(u, z), it is easy to establish the desired result

Δ1 ≤ sup
u

|EJX (u, z) − EJY (u, z)| ≤ (1 + l + m)ρ.

�

12.3.3 Multi-step Model

Now we can prove the following result.

Lemma 12.4 Function hn(u) defined by (12.3) is non-increasing in u.

Proof Since h0(u) ≡ 0 the statement of lemma is valid for n = 0. Due to the
fact that max(u + c(z) − min(ξ, z), a) is non-decreasing in u, we easily see that
hn−1(max(u + c(z) − min(ξ, z), a)) and its expectation are non-increasing in u if
we assume hn−1(u) to be non-increasing. Furthermore, J (u, z) = (min(ξ, z) − (u −
a) − c(z))+ does not increase in u; hence, the same is true for EJ (u, z). Summing
these results we conclude that EJ (u, z) + Ehn−1 (max(u + c(z) − min(ξ, z), a)) is
non-increasing in u for any fixed z. It follows immediately that hn(u) is also non-
increasing in u, as infimum in z of previous expression. So, we proved the desired
result by means of mathematical induction. �

In the next lemma, we estimate the continuity modulus of function hn(u).

Lemma 12.5 For each n ≥ 0 and any u ≥ a, Δu ≥ 0 the following inequality is
valid

|hn(u + Δu) − hn(u)| ≤ CnΔu,

where Cn = (1 − αn)(1 − α)−1.

Proof Weuse themathematical induction and beginwith n = 0. Since h0(u) ≡ 0 it is
clear that |h0(u + Δu) − h0(u)| = 0. Hence, one has C0 = 0 = (1 − α0)(1 − α)−1.

Now assume that inequality |hn−1(u + Δu) − hn−1(u)| ≤ Cn−1Δu is already
established. Due to
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|J (u + Δu, z) − J (u, z)|
= | (min(ξ, z) − (u + Δu − a) − c(z))+ − (min(ξ, z) − (u − a) − c(z))+ | ≤ Δu

it follows immediately that |EJ (u + Δu) − EJ (u, z)| ≤ Δu.
Combining the induction assumption and obvious inequality

|max(u + Δu + c(z) − min(ξ, z), a) − max(u + c(z) − min(ξ, z), a)| ≤ Δu,

we get

|Ehn−1(max(u + Δu + c(z) − min(ξ, z), a)) − Ehn−1(max(u + c(z) − min(ξ, z), a))|
≤ Cn−1Δu.

Taking into account that Cn−1 = (1 − αn−1)(1 − α)−1 we can write

|hn(u + Δu, z) − hn(u, z)| ≤ (1 + αCn−1)Δu = CnΔu.

Application of Lemma 12.3 with f1(z) = hn(u + Δu, z) and f2(z) = hn(u, z) leads
us to the desired result ending the proof. �

Denote by hnX (u) and hnY (u) the minimal injected capital during n years if the claim
distribution coincideswith law(X) and law(Y ), respectively.Our aim is to investigate
|hnX (u) − hnY (u)| under assumption κ(X, Y ) = ρ. We put Δn = supu>a |hnX (u) −
hnY (u)| to formulate the following result.

Theorem 12.2 Let X, Y be nonnegative random variables having finite means and
κ(X, Y ) = ρ. Then

Δn ≤
(

n−1∑
i=0

αi Cn−i

)
(1 + l + m)ρ,

here 0 < α < 1 is the discount factor, 1 < l < m are the safety loadings of insurer
and reinsurer and Ck, k ≤ n, were defined in Lemma 12.5.

Proof We begin by estimation of |hnX (u, z) − hnY (u, z)|. Since

(u − a) + lEX − mE(X − z)+ = −CX , (u − a) + lEY − mE(Y − z)+ = −CY ,

one can write

max(u + c(z) − min(X, z), a) = a − (CX + min(X, z))−,

max(u + c(z) − min(Y, z), a) = a − (CY + min(Y, z))−,

where (CX + min(X, z))− = min{0, CX + min(X, z)}.
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Hence, it is possible to get the following expression

|hnX (u, z) − hnY (u, z)| ≤ |EJX (u, z) − EJY (u, z)|︸ ︷︷ ︸
δ1n (u,z)

+α
∣∣Ehn−1X

(
a − (CX + min(X, z))−

) − Ehn−1Y

(
a − (CY + min(Y, z))−

)∣∣ .
The first summand in right-hand side of the last inequality is estimated in the one-step
model as follows

δ1n (u, z) ≤ (1 + l + m)ρ.

The second summand can be bounded by the sum of three terms.

∣∣Ehn−1X

(
a − (CX + min(X, z))−

) − Ehn−1Y

(
a − (CY + min(Y, z))−

)∣∣
≤ ∣∣Ehn−1X

(
a − (CX + min(X, z))−

) − Ehn−1Y

(
a − (CX + min(X, z))−

)∣∣︸ ︷︷ ︸
δ2n (u,z)

+ ∣∣Ehn−1Y

(
a − (CX + min(X, z))−

) − Ehn−1Y

(
a − (CX + min(Y, z))−

)∣∣︸ ︷︷ ︸
δ3n (u,z)

+ ∣∣Ehn−1Y

(
a − (CX + min(Y, z))−

) − Ehn−1Y

(
a − (CY + min(Y, z))−

)∣∣︸ ︷︷ ︸
δ4n (u,z)

According to definition of Δn−1 for any u ≥ a, we have
∣∣hn−1X (u) − hn−1Y (u)

∣∣ ≤
Δn−1, therefore

δ2n (u, z) ≤ Δn−1

∫
R

d FX (t) = Δn−1.

Using Lemma 12.2 for g(x) = hn−1Y

(
a − (CY + min(x, z))−

)
, one can write

δ3n (u, z) ≤ Cn−1ρ.

To apply Lemma 12.2, it is necessary to verify that g(x) is non-decreasing. This fact
clearly follows from Lemma 12.4 due to the form of g(x).

As follows from Lemma 12.5, for any u ≥ a one can use inequality |hn−1Y (u +
Δu) − hn−1Y (u)| ≤ Cn−1Δu to get

δ4n (u, z) ≤ Cn−1|CX − CY | ≤ Cn−1(l + m)ρ.

Combining the obtained results one gets

|hnX (u, z) − hnY (u, z)| ≤ (1 + l + m)ρ + α (Δn−1 + Cn−1(1 + l + m)ρ)

= Δ1 + αCn−1Δ1 + αΔn−1 = CnΔ1 + αΔn−1,
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whence it follows

Δn ≤ sup
u

|hnX (u, z) − hnY (u, z)| ≤ CnΔ1 + αΔn−1.

Since C1 = 1 one gets immediately from the previous formula

Δn ≤ CnΔ1 + αΔn−1 ≤ (Cn + αCn−1)Δ1 + α2Δn−2

. . . ≤
n−2∑
i=0

αi Cn−iΔ1 + αn−1Δ1 =
(

n−1∑
i=0

αi Cn−i

)
(1 + l + m)ρ.

�

Remark 12.2 Letting n tend to infinity it is not difficult to establish that upper bound
of Δn tends to (1 − α)−2(1 + l + m)ρ. In fact,

n−1∑
i=0

αi Cn−i =
n−1∑
i=0

αi (1 − αn−i )

1 − α
= 1

1 − α

n−1∑
i=0

αi − 1

1 − α
nαn =

= 1

1 − α

(
1 − αn−1

1 − α
− nαn

)
→ 1

(1 − α)2
,

as n → ∞ and 0 < α < 1.
This result shows that the difference between the objective functions diminishes

as the distance ρ between the claim distributions decreases. Thus, we have proved
the stability of the model under consideration with respect to claim distribution
perturbations.

The discount factor α describes the effect of reducing the value of money over
time. Hence, it is natural that for α close to 1 the difference is larger than for small
values of α.

12.4 Incomplete Information

Up to now,we assumed the claimdistribution F per year to be known. In this case, it is
possible to find the analytical solution of optimization problem. However in practice,
the theoretical d.f. is usually unknown. It is understandable that for calculations the
empirical d.f. Fn (n is the sample size) is taken instead of the theoretical one, since
Fn(t) → F(t) a.s. as n → ∞.

For illustration, we formulate the result from [8] concerning one-step case and
show what one can obtain if F is unknown. We need to introduce in addition to
c(z) defined in Sect. 12.3.1 the functions r(z) = ∫ +∞

z F(x) dx , k(z) = z + mr(z)
and g(z) = k(z) − lγ , that is, c(z) = lγ − mr(z) and g(z) = z − c(z). Moreover,
we put z∗ = F−1(1 − m−1).
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There exist three sets D1 = {m > l > γ −1k(z∗)}, D2 = {γ −1k(z∗) ≥ l > γ −1z∗}
and D3 = {γ −1z∗ ≥ l > 1}. It is obvious that g(z∗) < 0 in D1, g(z∗) ≥ 0 in D2 ∪ D3

and z∗ − c(∞) ≥ 0 in D3. Put also u∗ = a + z∗ − lγ and u∗
1 = a + k(z∗) − lγ =

a + g(z∗). Moreover, it was established that inequalities a > u∗
1, u∗ < a ≤ u∗

1 and
a ≤ u∗ are equivalent to the relations (l, m) ∈ D1, (l, m) ∈ D2 and (l, m) ∈ D3,
respectively.

Recall that the optimal policy depends on system parameters l and m as follows.

Theorem 12.3 ([8]) 1. If (l, m) ∈ D1, then h1(u) = 0 for all u ≥ a. The optimal
retention level z1(u) = z∗.
2. If (l, m) ∈ D2, then h1(u) = 0 for u ≥ u∗

1. The optimal retention level z1(u) = z∗.
For u ∈ [a, u∗

1), the function z1(u) is the unique solution, for a fixed u, of the equation
u − a + c(z) = z∗.
3. If (l, m) ∈ D3, then for u > u∗ the results coincide with those of part 2, whereas
for u ∈ [a, u∗] it is optimal to use no reinsurance, that is, to take z1(u) = ∞.

We have reproduced only parts of Theorems 1, 2, and 3 proved in [8] pertaining to
our investigation.

Denote by z∗(n), u∗(n), u∗
1(n), and γ (n) parameters z∗, u∗, u∗

1, and γ calculated
using the empirical d.f. Fn instead of theoretical one.

Corollary 12.1 For fixed a, l, and m the following relations take place a.s., as
n → ∞,

z∗(n) → z∗, u∗(n) → u∗, u∗
1(n) → u∗

1.

Proof It iswell known that convergence in distribution is equivalent to convergence in

quantile. That is, if Fn
d→ F , then F−1

n
d→ F−1 (quantiles converge in the continuity

points of the limit function F−1(t), 0 < t < 1), see [23]. Moreover, as follows from
part 3 of Lemma 12.1, convergence in Kantorovich metric implies convergence in
distribution, as well as convergence of expected values, and vice versa. If we take
Fn = Fn , then, according to [23], d1(Fn, F) → 0 a.s., as n → ∞. Hence, it is clear
immediately that z∗(n) = F−1

n (1 − m−1) → F−1(1 − m−1) = z∗ a.s., as n → ∞.
Since u∗(n) = a + z∗ − lγ (n), parameters a and l are fixed, whereas |γ (n) −

γ | ≤ d1(Fn, F) → 0 a.s., as n → ∞, the second statement of corollary is also valid.
Turning to the last statement of corollary, we can write |r(z∗(n)) − r(z∗)| ≤

d1(Fn, F) + |z∗(n) − z∗|. Hence, one easily gets

|u∗
1(n) − u∗

1| ≤ (m + l)d1(Fn, F) + (m + 1)|z∗(n) − z∗| → 0, a.s.

ending the proof. �

Remark 12.3 Since z1(u) is equal either to z∗ or to c−1(z∗ + a − u) for (l, m) ∈
D1 ∪ D2 it follows immediately from Corollary 12.1 that optimal retention level
calculated using empirical d.f. converges a.s. to theoretical one, as the sample size
tends to infinity. For the set D3, there exists also the possibility of no reinsurance.
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Fig. 12.1 Sets Di for
exponential distribution

The boundary between D3 and D2 is given by the curve l = ϕ1(m) where
ϕ1(m) = γ −1F−1(1 − m−1), whereas the boundary between D2 and D1 is deter-
mined by ϕ2(m) = ϕ1(m) + mγ −1r(z∗). Thus, if we denote by ϕ

(n)
i (m), i = 1, 2,

the corresponding functions calculated on the base of empirical d.f., it is obvious that
ϕ

(n)
i (m) → ϕi (m) a.s., as n → ∞. So it is possible to specify entirely the “empirical”

optimal policy for given parameters l,m, a, and u.Moreover, for a given initial capital
u one can choose a providing zero additional costs entailed by capital injection.

The form of the sets Di , i = 1, 2, 3, is depicted by Fig. 12.1 for exponential claim
distribution.

It is also interesting tomention that for uniform, aswell as, exponential distribution
the boundaries ϕi (m), i = 1, 2, do not depend on distribution parameters.

12.5 Conclusion and Further Research Directions

In this chapter, only the case of no a priori information about the claim distribution
was treated for one-step model. The multi-step case is the next step. However to deal
with it, we need to prove at first the existence of the so-called asymptotically opti-
mal stationary policy. Then it will be possible to construct empirical asymptotically
optimal policy, in other words, to propose a policy based on empirical distribution
giving the same long-run injection cost per period as the above-mentioned station-
ary policy. These results will be published elsewhere. We plan also to carry out the
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sensitivity analysis as proposed in [18, 21, 24] for finding out the most important
scalar parameters. Such analysis was already performed in [5] for two risk models.

12.6 Appendix

Here we prove some results concerning convergence in distribution in L1 we plan to
use in further investigation of two samples case.

Recall that (X1, Y1), (X2, Y2), . . . is a sequence of independent random vectors
defined on a probability space (Ω,F , P) taking values in R2. Moreover, introduced
in the previous Sect. 12.2.3 random variables ζi (t) for a fixed t can take values
from the set {−1, 0, 1}. Hence, values of Hn(t, ω) for a fixed n belong to the set
{in−1 : i = −n, n} for any t , whereas mapping Hn(t, .) : Ω → R is measurable.
Thus, the process Hn(t, ω) for a fixed n is jointly measurable in (t, ω), that is, it is
B(R) × F -measurable. As usually, B(R) is the Borel σ -algebra in R.

Theorem 12.4 Let X, Xi , i ∈ N , be i.i.d. r.v.’s with d.f. F and let Y, Yi , i ∈ N , be
also i.i.d. r.v.’s but with d.f. G. Put

η(t) := (I {X > t} − P(X > t)) − (I {Y > t} − P(Y > t)) , −∞ < t < ∞,

whereas ηi , i ∈ N, are the processes obtained by substitution of Xi instead of X
and Yi instead of Y in the last expression. Then

(a) The processes
∑n

i=1 ηi/
√

n = √
n(Fn − Gn − (F − G)) converge in distribu-

tion in L1(R) to the process B1(F(t)) + B2(G(t)), t ∈ R, where B1 and B2 are
two independent Brownian bridges, if and only if

∫ +∞

−∞

√
F(t)(1 − F(t)) + G(t)(1 − G(t)) dt < ∞. (12.4)

(b) (1) If the condition (12.4) is valid the sequence

∣∣∣∣∣∣

∣∣∣∣∣∣
n∑

i=1

ηi /
√

n

∣∣∣∣∣∣

∣∣∣∣∣∣
L1

= √
n

∫ +∞
−∞

|Fn(ω, t) − Gn(ω, t) − (F(t) − G(t))| dt, n ∈ N ,

is stochastically bounded.

(2) If the sequence
∣∣∣∣∑n

i=1 ηi/
√

n
∣∣∣∣

L1
is stochastically bounded, then

sup
n

E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

(I {ηi > t} − P(ηi > t))/
√

n

∣∣∣∣∣
∣∣∣∣∣

L1

< ∞.
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Proof According to [14] for any random element η(t) from L1(R) such that∫ ||η||L1d Pη < ∞ and
∫

ηd Pη = 0 condition
∫ +∞
−∞

√
E(η(t))2dt < ∞ is equivalent

to weak convergence of the measures generated by
∑n

i=1 ηi (t)/
√

n to a Gaussian
measure on L1(R). First, we show that this condition has the form (12.4) in our case.

Putting X̃(t) = I {X > t} − P(X > t), Ỹ (t) = I {Y > t} − P(Y > t), for s, t ∈
R, we have, due to independence of X and Y combined with E X̃(t) = EỸ (t) = 0,

cov(η(s), η(t)) = E(X̃(s) − Ỹ (s))(X̃(t) − Ỹ (t)) = E X̃(s)X̃(t) + EỸ (s)Ỹ (t)

= min(F(t), F(s)) − F(t)F(s) + min(G(t), G(s)) − G(t)G(s).

Hence, according to the central limit theorem for Rk , k ∈ N , one has

(η(t1), . . . , η(tk))
d→ (B1(F(t1)) + B2(G(t1)), . . . , B1(F(tk)) + B2(G(tk)))

for any sequence t1, . . . , tk with ti ∈ R, i = 1, k. Using the result from [16], we
see that processes

∑n
i=1 ηi (t)/

√
n converge to the process B1(F(t)) + B2(G(t)) in

L1(R) as n → ∞. Thus paragraph (a) of the theorem and sufficiency of paragraph
(b) are established.

Statement of paragraph (b2) is the immediate consequence of the proof of part
(b) of Theorem 2.1 in [10]. �
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Chapter 13
Comparison and Modelling of Pension
Systems

Christian Quast, Luboš Střelec, Rastislav Potocký, Jozef KiseǏák
and Milan Stehlík

Abstract The purpose of this work is a comparison of pension systems of the
selected countries—the pension systems and reforms of Austria, the Czech Repub-
lic, Slovakia, Sweden, Poland, and Chile will be our subjects of interest. Firstly, we
focus on a short historical overview of the development and classification of pension
systems in general. Consequently, the main part of this chapter deals with different
scenarios, which should show whether the systems would be stable in the future.
For these purposes, we developed utility in Mathematica. We tested normality of
salary samples from Slovakia by robust tests for normality and computed pensions
in several scenarios.
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13.1 Introduction

Pension systems are a rather new invention, in the history of humanity. In former
tribal societies and high cultures (as ancient Egypt, ancientRome, and ancientChina),
therewas also no real need for such systems. First, the populationswere rather young,
not many old people in comparison with the whole population and secondly one
can doubt that such systems could be established and maintained by such ancient
cultures. The first care system for elderly people besides the own family was the
so-called Knappschaften, which was kind of social miners insurances. The next big
step toward a widespread social security and pension system was initiated by the
Bismarck’s social reform. As a starting point, one can refer to the so-called Kaiser-
liche Botschaft (of November the 17th 1881). In the following years, the German
Reichstag enacted several different social laws. The law for the pension insurance,
the so-called Invaliditts- und Alterssicherung 1889 (Gesetzliche Rentenversicherung
= GRV), became effective on January 1, 1891.

Generally, there are three so-called pillars or tiers, which define pension systems.
These pillars or tiers are used by OECD. For more you can see classification of
the pension system of the analyzed countries (see Table13.1). One must say that
these two terms sometimes are used synonymously. The first tier is mandatory and
redistributive. The goal of this tier is to prevent people from old-age poverty. This
first tier is divided into three main types. Basic schemes pay kind of flat-rate benefits
where an additional retirement income does not change the entitlement.

The aim of this chapter is to simulate the stability of pension system. For this
purpose, we focus on three pension systems—Austrian, Slovakian, and Swedish
pension systems. We illustrate this problem at a pay-as-you-go pillar studied by [5]
and [6]. Therein, the probability of oversizing the limiting value of pillar is studied
under normality (see [6] p. 241) and for the light-tailed claims (therein pp. 241–243).
Reference [6] considered the Cramer–Lundberg model in the case of a homogeneous
portfoliowith the attention focused on ruin probability for it under both light or heavy
tails. They illustrated such situation in the setup of oversizing of the limiting value

Table 13.1 Classification of the pension systems of the analyzed countries

Taxonomy of selected pension systems

First tier Second tier

Public Public Private

Resource-
tested

Basic Minimum Type Type

Austria DB

Czech Republic Yes Yes DB

Chile Yes Yes DC

Poland Yes NDC DC

Slovak Republic Yes Points DC

Sweden Yes NDC DC
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of the fund for the pay-as-yo-go pillar in Slovakia (see also [5]). Reference [4] gives
further consequences for insurance. We continue in research of sequence of papers
[1, 7].

13.2 Comparison of Pension Systems in Analyzed
Countries

13.2.1 Austrian Pension System

The Austrian pension system consists of three different pillars. The main pillar is a
public pay-as-you-go system. The former “Abfertigung,” the Austrian form of the
severance pay, was expanded to the “Abfertigung Neu.” It is entirely funded by the
employers. In a major pension reform in the early 2000s, a voluntary pension tier was
established. The so-called Geförderte Staatliche Zukunftsvorsorge systematically is
a state-aided funding principle.

According to the OECD taxonomy, the Austrian pay-as-you-go system is a
defined-benefit public schema. There is also a so-called income-tested top-up for
low-income pensions (Ausgleichszulage). The normal pension age is 65 for men
and 60 for women. However, one must say that Austria has one of the lowest real
retirement age of all OECD countries. On average, the Austrians retire at 58.1 (old
age and disability pension combined). A factor that will stress the Austrian pension
system for many years to come is the long transition period of the harmonization
of women’s pension age. Not until 2033, the retirement age of women will reach
equality. The conditions to receive pension payments are the following. One has to
pay 180 months of contributions within the last 30years, or 300months during the
complete working career. There is an exception to this rule. Since 2005, it is possi-
ble to receive pension payments with only 7years of contribution, if the remaining
insurance period of 8 years can be reached, by child-raising periods.

13.2.2 Chilean Pension System

In 1980, Chile replaced its pay-as-you-go public pension system with a system of
individual accounts, the Chilean model. It is based on three tiers. The first tier is a
poverty prevention tier, the second is an individual accounts tier, and the third is a
voluntary saving tier. Next, I will describe the tiers in more detail.

First Tier

For all people who are older than 65years and pass means test and lived in Chile
for at least 20years, and who did not contribute to individual accounts the state pays
a basic pension of 75000 pesos, about 154$ per month (wage indexed started from
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2008). There is also a second form of state-paid pension, the Pension Solidarity
Complement (PSC). It is paid for people who contributed to individual accounts and
pass means test. The amount and the calculation of the PSC depend on the height of
the pension of the individual accounts tier.

Second Tier

The second tier is themajor pension tier inChile. It is amandatory individual accounts
system. Each employee contributes 10% of his/her wage or salary earnings into indi-
vidual accounts. The contribution into the system is capped up to 67.4 UF (unidades
de formento, a Chilean term which is used in many purposes, including pension con-
tributions. In 2012, one UF equals about $22.46). The employers directly forward the
contribution to a so-called AFP (Administradora de Fondos de Pensiones, these are
private managed pension funds). Each employee chooses his/her desired AFP. An
important point in the Chilean Pension System is that the employers generally do not
contribute to the individual accounts, they only have to contribute to a survivor and
disability insurance for their employees, and therefore they have to pay about 1.49%
of the employees wage. Concerning the AFPs, one can say that during the time the
employee can switch them at any time. But have to pay a certain fee for that. There
are 5 AFPs, Funds A to E, which have different levels of risk and potential return. All
AFPsmust adhere to the rules drawn up by the government. The pension is calculated
based on the accumulated assets. Age and gender are taken into account. There is
the possibility of early retirement, if the pension equals at least 80% of the Pension
Solidarity Complement. The assets accumulated can be withdrawn in four different
ways. Also for funeral expenses, 15 UFs are reserved from the account balance.

Third Tier

This is a voluntary system. Workers can contribute to saving products which are
authorized by the Chilean government, such as voluntary savings accounts managed
byAFPs,mutual funds, and other savings products. Contributorsmay pay up to 50UF
permonth to this pension tier. There is also the possibility to transfer savings accounts
to the individual accounts, to increase future monthly pension annuity. Contributors
receive certain tax preferences for this kind of payments. The government also tried to
encourage employers with tax incentives, to contribute to voluntary savings accounts
for their employees.

13.2.3 Slovakian Pension System

Due to the fact that Slovakia was not an independent state until January 1, 1993,
apart from a short period between 1939 and 1945, a historical summary makes no
real sense. Since the pension reform of 2005, the Slovakian pension system consists
of a reformed PAYG (Pay-as-you-go) state pension system and a funded pension
system, which is divided into a mandatory personal pension tier and a voluntary
pension tier.
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Since the pension reform of 2005, people entering the labor market and all self-
employed have to participate in the new reformed system. It consists of a social
insurance public pension pillar and a funded pension pillar. People younger than
52 who already paid into the former pension system can choose if they also want
to enter the mandatory private saving tier. The legal retirement age is 62 years for
men and as of 2015 also for women. People gain eligibility after at least 10years of
contribution. The height of the pension benefits is calculated according to a point
formula. Each contributor earns annual pension points (ratio of individual earnings
to economy-wide average earnings). The sum of the pension points over the career
multiplied by the pension point value is the pension entitlement. A point is worth
8.9955 Euro (2009) and indexed to average earnings. Pension payments are indexed
to the arithmetic average of earnings growth and inflation.

There is no minimum pension, however a minimum pension base that is equal
to the minimum wage of 295.5 Euro. In the new system, an incentive mechanism
is established. The pension payments are increased by 0.5 percent for each 30-day
period worked beyond retirement age. On the other hand, the pension is reduced the
same percentage for each 30-day periodworked less the retirement age.Nevertheless,
there are three conditions necessary for receiving early retirement payments. Not
before the age of 60, the fifteen-year contribution and the minimum pension have to
be higher than 223.2 Euro.

13.2.4 Swedish Pension System

Sweden had one of the most generous pension systems in the world. Due to financial
difficulties during the eighties, Sweden decided to overcome the former pension sys-
tem, which was a combination of a flat-rate basic pension and an earnings-related,
contribution-financed, defined-benefit pension system.Within only a few years, Swe-
den changed its pension system considerable. It is now a multi-pillar system, which
in its present design is considered as one of the most stable and reliable in the world.
In the following, we will describe this new system. The Swedish pension system can
be divided into three different pillars. The most important part is the national pension
system. It accounts for about 3/4 of the pension payments and consists of three tiers.
Further, there exists an occupational pillar, which accounts for about a fifth of the
payments. Finally, there is also a voluntary fund-based pillar and it accounts only for
5% of the payments.

The Swedish national pension system is based on three tiers. In the following
classification, labeling starts with 0. The tier zero is a guaranteed pension. The first
tier is the so-called income pension, a pension system meanly based on a pay-as-
you-go scheme. The last tier of the national pension system is a fund-based premium
pension (bonus-pension). For people who were born before 1938, there applies the
old ATP system. For persons born between 1938 and 1953, there applies a mixture
of the old and the new reformed system.
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Table 13.2 Income values converted in EUR, 2000–2010

Year Austria Sweden Slovakia Czech Republic

2000 1.987,42 2.076,96 379,41 480,73

2001 2.002,92 2.177,46 410,44 522,87

2002 2.034,92 2.266,79 448,48 564,55

2003 2.064,33 2.344,95 476,83 597,50

2004 2.091,67 2.411,95 525,29 635,17

2005 2.142,00 2.467,78 573,39 667,10

2006 2.208,33 2.523,62 622,75 710,82

2007 2.288,17 2.557,12 668,72 762,13

2008 2.354,58 2.713,45 723,03 821,59

2009 2.378,08 2.802,78 744,50 848,93

2010 2.392,92 2.847,44 769,00 867,84

N 11 11 11 11

μ 2.176,85 2.471,85 576,53 679,93

σ 154,78 249,65 138,84 133,52

13.3 Dissimilarity of Income Levels

Due to the fact that incomes and wages are the basis of future pensions, we give a
short overview of the different income levels of the above countries and check them
according to their statistical similarity. In the following table, the income values are
converted in EUR (Table13.2).

13.4 Modeling of Pension Systems

Here, we continue in research based on [5]. This approach originally deals with
the Slovakian pension system. Their fear is based on assumption that the 1st pension
pillar, so-called a pay-as-you-go system, is not sufficient to cover the liabilities of the
future pensioners, because the number of contributors in relation to the pensioners
worsens, so this fear is comprehensible. Therein is considered a closed group of
Slovakian people, all aged 50 in the year 1998, and interest is in the estimation of the
total claim amount for this group in the year 2010 when the members are supposed
to retire. For this purpose, they also assume a linear relationship between the salary
St and pension Pt at time t .
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Therefore, [5] is interested in estimation of the probabilities P
(∑N

k=1 Xk > C
)
,

where Xi are individual monthly claims of the members of the above-mentioned
group andC is a critical (limiting) value of the fund representing the amount the fund
has gathered from the contributions of the active members or from other sources.
It is possible to consider N as a constant or a random variable as it was treated in
[5, 8]. In [6], the case that N is a random variable was considered. Then following
[5], it is quite natural to choose a binomial model for N , namely N ∼ bi(n, p) with
n = 130000 and p representing the probability of surviving a 50-year person from
the group to the age 62 years. Note that such probabilities are regularly published by
Slovak Statistical Office (see [9]). Then, one is looking for the largest C such that
P(

∑N
k=1 Xk > C) = p with p given in advance, e.g., 0.1 or 0.05.

Typically, it is possible to model salaries as normal variables in short terms and
lognormal at long terms. In [5] is used the normal distribution which led to the
following upper bound

p̄ = 1 − Φ

(
C/(kNt ) − μ

σ

)
. (13.1)

Here, Φ is cdf of standardized normal distribution, C is a critical level as given
above, μ and σ 2 are parameters of normal distribution of salaries, k = Pt

St
, and Nt is

the number of claims.
Consequently, we will simulate the example given in the mentioned paper [5] and

we will also show other settings based on estimated Austrian and Swedish numbers.
For the implementation of the model, in the following designated as simply tool, we
used the mathematical programming language Mathematica Version 8.0.

At the beginning, we will reconstruct the example of the paper [5]. Therefore, we
need the average maximum Slovakian salaries from 1998 to 2002, which are shown
in the following table (note that this data was used for testing for normality in the
paper [10]):

As it is mentioned above, typically it is possible to model salaries as normal
variables in short terms and lognormal at long terms. In [5] is used the normal
distribution which led to the upper bound in Eq. (13.1). In the case of Table13.3,
we have μ̂ = 29396.4 and σ̂ = 3903.35. Therefore, the first screenshot of the tool
is shown in Figs. 13.1 and 13.2, which show the development of (13.1), given Nt =
130000 and k ∈ (0.5, 0.67) and C ∈ (15 ∗ 106, 29 ∗ 108).

Table 13.3 Slovakian Salaries (Slovakian Koruna), 1998–2002

Year 1998 1999 2000 2001 2002

Salary 24233 26862 30021 31825 34041



194 C. Quast et al.

Fig. 13.1 Slovakian wages

We also implement the same model for the minimum wages (for reasons of sim-
plification we assume Nt = 130000). Next, Table13.4 presents average Slovakian
minimum and maximum wages and Figs. 13.3 and 13.4 show the different develop-
ment of the ruin probability whenwe use average Slovakianminimum andmaximum
wages.

FromFig. 13.4,we can see that if all Slovaks onlywould receiveminimumaverage
wage, there would not be any problems with future pension payments at all. The ruin
probability is practically zero. On the other hand, if ever Slovak would earn the
maximum average wage the ruin probabilities are very high (pink surface) many
different settings.

Alternatively, we want to show the situation of Austrian incomes. In addition, the
Austrian incomeswegot fromStatistikAustria source—seeTable13.5.Aswe can see
from this table, theAustrianwagesmoved slower than the Slovakian ones. Therefore,
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Fig. 13.2 Slovakian wages with active sliders

Fig. 13.5 shows the basic model with the Austrian situation, given the wages from
Table13.5 and the following starting settings: Nt = 75500 and k ∈ (0.5, 0.67) and
C ∈ (10 ∗ 108, 20 ∗ 108).

Finally, we also show the development of p (ruin probability) for the Swedish
incomes—data are also presented in Table13.5. Consequently, Fig. 13.6 shows the
basic model with the Swedish situation, given the wages from Table13.5 and the
following starting settings: Nt = 124000 and k ∈ (0.5, 0.67) and C ∈ (6 ∗ 109, 3 ∗
1010).
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Table 13.4 Monthly mean brutto salary in Slovakia (EUR), 1992–2013 [9]

Year Max. salary
group

Min. salary
group

Year Max. salary
group

Min. salary
group

1992 255.6 138.3 2003 1148.1 294.7

1993 329.4 152.6 2004 1315.6 314.8

1994 386.4 172.6 2005 1418.1 339.9

1995 451.2 199.2 2006 1511.6 364.9

1996 645.9 210.8 2007 1609.4 398.2

1997 827.4 187.9 2008 1705.1 431.5

1998 807.7 206.9 2009 1728.9 474.9

1999 895.4 214 2010 1790 491

2000 1000.7 226.1 2011 1835 503

2001 1060.8 242.1 2012 1923 521

2002 1134.7 284.4 2013 1934 532

Fig. 13.3 Slovakian wages—minimum average wages 1998–2007
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Fig. 13.4 Slovakian wages – maximum average wages 1997–2007

Table 13.5 Austrian average salaries (Euro) and Swedish average salaries (1000 Swedish krona),
1998–2007

Year Austria Sweden Year Austria Sweden

1998 22857 182.0 2003 24772 222.7

1999 23311 190.7 2004 25100 227.9

2000 23849 200.9 2005 26500 234.7

2001 24035 210.5 2006 27458 242.0

2002 24419 217.4 2007 28262 251.9

13.5 Calculated Gini Coefficients and Lorenz Curves

This chapter concentrates on the wage distribution. Therefore, the earnings distribu-
tions of the different countries are shown. Concrete the deciles, out of this a measure
for evenly distribution is calculated, namely the Gini coefficient. The Lorenz curve is
linked with the Gini coefficient. These measures are calculated with the R-Package
ineq.
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Fig. 13.5 Austrian wages

13.5.1 Calculation of Gini Coefficient

The below-mentioned table consists of the available income distribution. The data are
mainly from ILO, the International Labor Organization. This leads to a more or less
unified data set. Only for Sweden, there is no suitable data, so the Gini coefficient is
calculated based on data from Eurostat. We considered another income distribution
for Austria and form data of Statistik Austria. The reason for that is that the first
decile of the Austrian income data of ILO looks unreasonably low. Also, the ratio of
last and first decile (83.3) is unreasonably high. This is typically a characteristic of
low-income and developing countries. In contrast to the ILO data, the data provided
by Statistics Austria are based on annual wages (Table13.6).
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Fig. 13.6 Sweden wages

13.5.2 Lorenz Curves

In this section, Lorenz curves for all countries are shown. Therefore, Fig. 13.7 shows
the Lorenz curves of all considered countries, i.e., for Austria, Chile, the Czech
Republic, Poland, Slovakia, and Sweden.

13.6 Impact of Interest Rates on Pensions

Here, we study the influence of interest rates on pensions (see [13]). Generally, there
are three main points that lead to low fund returns.

• High fund management fees.
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Table 13.6 Countries and theirmeanmonthly earnings of employees by decile (local currency/most
recently of data) and the Gini coefficient

Decile Austria Austria Chile Czech
Rep.

Poland Slovakia Sweden

EUR/2011 EUR/2012 CLP/2011 CZK/2013 PLN/2010 EUR/2013 SEK/2013

Decile1 87 2400 89805 11972 1350 386 122709

Decile2 407 7309 167754 1660.5 469 155295

Decile3 920 13232 191513 2010.9 554 182202

Decile4 1412 19031 217659 2360.7 637 206667

Decile5 1854 24540 256606 22557 2719.6 718 229912

Decile6 2269 29700 305286 3104.2 815 253738

Decile7 2688 35327 375511 3564.2 934 280526

Decile8 3218 43215 475303 4144.4 1106 316268

Decile9 4079 57736 657366 41600 5073.2 1452 373978

Decile10 7247 1534495 9440.2

Gini
coefficient

0.438 0.367 0.43 0.259 0.314 0.224 0.181

Fig. 13.7 Comparison of
Lorenz curves

• Fund mismanagement.
• Lower than expected interest rates.

In [13] the following scenario based on the Slovakian data from Table 13.4 was
considered. In this table the monthly mean gross salary is shown for both rich and
poormales whowere 45 years old in 1993 (max. andmin. salary) andwho invested in
a fund with a certain interest rate until 2009. The authors assumed a contribution rate
u = 0.09, and fix interest rates of r ∈ {0.005, 0.01, 0.02}, and additionally a non-fix
interest function r(t) = 0.05exp(−t/10), whereas t is the calendar year 1993.

With this parameters and the following equation of equivalence, they calculated
the pension height and the replacement rate:
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Table 13.7 Estimation of pension at age 62 for 45year old male, r(t) = 0.05exp(−t/10)

Distribution r v Pmax Pmin

Weibull 0.005 0.27154 3056.08 842.3

γ̂ = 0.033 0.01 0.30135 3298.08 913.12

β̂ = 1.548 0.02 0.36914 3827.27 1069.53

r(t) 0.24407 2292.01 620.108

Gamma 0.005 0.21724 3056.07 842.3

γ̂ = 0.084 0.01 0.2437 3298.09 913.12

β̂ = 2.297 0.02 0.3039 3827.27 1069.54

r(t) 0.19283 2179.2 589.59

Logistic 0.005 0.41675 3056.08 842.3

μ̂ = 27.35 0.01 0.46088 3298.08 913.13

σ̂ = 9.948 0.02 0.56116 3827.27 1069.53

r(t) 0.37605 2331 630.657

Makeham 0.005 0.158 3855.45 1021.24

0.01 0.1344 3310.29 872.22

0.02 0.1193 3062.15 804.8

r(t) 0.1085 2400.89 649.566

17∑
t=1

0.95 × 0.09 × Xt+1992 × (1 + rt )
17−t

t p45 =

=
∞∑
t=0

0.95 × v × P × (1 + rt )
−t

t p62.

Here, the left-hand side (LHS) and right-hand side (RHS) mean the following.
LHS: Left side sums up contributions during working life (45–62). Parameter of
the LHS: 0.95 is a constant which discounts the contribution by 5% (normally the
fund fee). The constant 0.09 = u is the contribution rate, Xt+1992 is the salary in
year t + 1992 (see table), rt is the interest rate in year t , and t p45 stands for the
probability a person aged x = 45 survive the next t years. These probabilities were
modeled with different distributions that generally fit mortality rates quite well.

RHS:Right side is life annuity of the surviving pensioner, v stands for replacement
rate, and P is the pension.

The equation was then solved and resulted in the following results for different
mortality distributions and interest rates (Table13.7).

Out of this concrete numbers of the replacement rate and the pension height, the
chapter also concluded the following. The more realistic non-fix interest rates lead to
the lowest pension and replacement rate. And maybe the most important conclusion
is that for the poorer males the expected pensions are too low in comparison with
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Table 13.8 Expected value of pension at age 62 for 45years old male with fixed v for two groups
salary

σ E[Pmax ] Std. err. E[Pmin] Std. err.

f (t) = 0.05 exp

(
− t

10

)
0.001 3704.093 1.303 998.555 0.353

0.01 3786.651 13.267 1016.706 3.657

0.05 6982.14 119.479 1966.152 35.305

Table 13.9 Expected value of pension at age 62 for 45years old male with fixed v for two groups
salary

σ E[Pmax ] Std. err. E[Pmin] Std. err.

f (t) = 0.02 +
0.05 exp

(
− t

10

)
cos t

0.001 3287.102 1.100 851.710 0.284

0.01 3357.465 11.183 871.762 2.929

0.05 6087.512 106.88 1570.891 27.392

minimal pension of 250 Euros guaranteed in the first pension pillar. So consequently
they should rather stay in the 1st pension pillar (see [13]).

13.6.1 Computation of Pension Under Stochastic Interest
Rates: An Example

Now consider that paths of interest rate are given by the process

rt = f (t) + σ Wt ,

where f ∈ C[t0,∞) (Figs. 13.8 and 13.9).
Obviously, rt is normally distributed with E[rt ] = f (t) and Var[rt ] = σ 2 t. The

number of replications was 104 (Tables13.8 and 13.9).

13.7 Testing for Normality – RT Class Tests

The general RT class is based on robustification of the classical Jarque-Bera test.
The general RT class test statistic is defined by [11] for the purpose of robust testing
for normality against Pareto tails and more analyzed in [12].

For the example purposes, we consider some classical non-robust tests of nor-
mality with higher power against the broad scale of alternative distributions—the
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Fig. 13.8 Ten paths of rt with monotonic expectation

Fig. 13.9 Ten paths of rt with oscillatory expectation

Shapiro–Wilk test (SW) as the most popular omnibus test of normality for a general
use, the Jarque-Bera test (JB) as the most widely adopted omnibus test of normality
in finance and related fields, and the Anderson-Darling test (AD) and the Lilliefors
test (LT) as the most famous tests of normality based on the empirical distribution
function – accompanied with several new tests for normality based on robust char-
acteristics, in particular, the medcouple test (MC-LR) introduced by [2], the robust
Jarque-Bera test (RJB) introduced by [3], and the selected robust tests from the RT
class, namely MMRT1, MMRT2, TTRT1 and TTRT2 – for more details of these RT
class tests see [12]. We also suppose the data set of max. and min. salary group for
Slovakia presented in Table13.4.
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Table 13.10 Test statistics and p values of analyzed normality tests for Slovakian data of max. and
min. salary group

Max. salary Min. salary

Statistic p-value Statistic p-value

AD 0.333 0.487 0.708 0.055

J B 1.248 0.303 1.955 0.135

LT 0.119 0.630 0.160 0.191

RJ B 1.024 0.354 1.320 0.256

SW 0.945 0.305 0.897 0.038

MCLR 1.198 0.591 5.525 0.039

MMRT1 1.118 0.417 2.642 0.119

MMRT2 1.137 0.421 2.836 0.092

T T RT1 2.367 0.427 4.874 0.200

T T RT2 1.013 0.504 2.014 0.258

Based on results presented in Table13.10, we can conclude that the hypothesis of
normality of analyzed data sets is not rejected by the majority of tests for normality,
at 5% significance level. Only Shapiro–Wilk test rejects the hypothesis of normality
in the case of minimum salary data, at 5% significance level. We can also see higher
robustness of the TTRT1, TTRT2, MC-LR, and RJB tests in comparison with the
classical normality tests such as the classical Jarque-Bera test, Shapiro-Wilk test, etc.

13.8 Summary

As conclusion, we can say that there are a few basic pension system concepts, which
are combined in different ways. Consequently, each pension system of the three
countries is unique. From our simulation study, we can see that in the future each
country would face difficulties financing their pension system, because of the rising
of the old dependency rate.

For proper pension system management, one should at least use two different
approaches. Namely, ruin probability and a kind of income distribution measure,
and their suitable data representation (curves, indices) ROC-shaped curves have
similarities to probability distribution of the ruin, so we can use the indices of the
ROC curve on it. For the income distribution point of view, we used the Lorenz
curves and Gini coefficients.

In a society, a certain level of financial balancing iswishful. Therefore and because
of the 80:20 rule (∼20% of fund owners, hold∼80% of the fund assets), the wealthy
should invest in private pension fund. The so generated taxes could be redistributed
to the poorer in the pension system.
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Chapter 14
Markowitz Problem for a Case
of Random Environment Existence

Alexander Andronov and Tatjana Jurkina

Abstract Classical Markowitz model considers n assets with R1, R2, . . . , Rn ran-
dom profitability and r1, r2, . . . , rn relevant average, σ 2

1 , σ 2
2 , . . . , σ 2

n variances, and
σμ,v, μ, v = 1, . . . , n covariance. The portfolio is built of these assets, by using
weighting coefficients ω1, ω2, . . . , ωn , where ωμ is the share of asset cost μ in
the whole portfolio value. The profitability of such portfolio is a random value
F(ω) = ω1R1 + ω2R2 + . . . + ωn Rn . The cumulative hazard of the portfolio at pre-
assigned value of average profitability r∗ can be measured by dispersion DF(ω). It
is necessary to determine weighting coefficients by such a way, that minimizes dis-
persion DF(ω) given assigned value of r∗. A more general supposition considered
in this chapter: It is supposed that a random environment exists. The last is described
by a continuous-time irreducible Markov chain with k states and known matrix of
transition intensities λ = (λi, j )k×k . The reward rate depends on a state of the random
environment. For this case, the parameters of Markowitz model are derived.

Keywords Markov chain · Continuous time · Markovic problem

14.1 Introduction

One of the classical problems of the portfolio theory is the portfolio determination
problemwith theminimal variance and given average risk r∗, which is formulated by
Markowitz in 1952 [6–8]. There are n assets with R1, R2, . . . , Rn random profitabil-
ity and r1, r2, . . . , rn corresponding averages, σ 2

1 , σ 2
2 , . . . , σ 2

n variances, and σμ,v,
μ, v = 1, . . . , n covariance. Note, that σμ,μ = σ 2

μ.
The portfolio is built of these assets, by using ω1, ω2, . . . , ωn weighting coeffi-

cients, where ωμ is the share of the μ asset cost in the whole portfolio cost. Let
ω = (ω1, ω2, . . . , ωn) is the corresponding vector. The profitability of such portfolio
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is a random variable

F(ω) = ω1R1 + ω2R2 + . . . + ωn Rn.

The average and the variance of the portfolio are:

EF(ω) = ω1r1 + ω2r2 + . . . + ωnrn,

DF(ω) =
n∑

μ=1

n∑

v=1

ωμωvσμ,v =
n∑

μ=1

n∑

v �=μ

ωμωvσμ,v +
n∑

μ=1

ω2
μσ 2

μ.

The cumulative risk of the portfolio with pre-assigned value of average profitabil-
ity r∗ can be measured by variance DF(ω), which positive value of square root is
the standard deviation of the profitability.

Markowitz problem is formulated like this:

To minimize dispersion

DF(ω) =
n∑

μ=1

n∑

v �=μ

ωμωvσμ,v +
n∑

μ=1

ω2
μσμ,μ (14.1)

under constraints

EF(ω) = ω1r1 + ω2r2 + . . . + ωnrn = r∗,

ω1 + ω2 + . . . + ωn = 1, ωμ ≥ 0, μ = 1, 2, . . . , n. (14.2)

Classical solution of Markowitz problem is the following. The Lagrange multi-
pliers are introduced and Lagrangian is compiled:

L(ω) =
n∑

μ=1

n∑

v �=μ

ωμωvσμ,v +
n∑

μ=1

ω2
μσ 2

μ−

− (ω1r1 + ω2r2 + . . . + ωnrn − r∗)λ − (ω1 + ω2 + . . . + ωn − 1)γ.

With the purpose of Lagrangian minimization should be take partial derivatives
on ω1, ω2, . . . , ωn , λ and γ , and equate ones to zero. As a result, we have a system
of n + 2 equations relatively unknowns ω1, ω2, . . . , ωn , λ, and γ :

∂

∂ωμ

L(ω) =
n∑

v �=μ

ωvσμ,v + 2ωμσ 2
μ − λrμ − γ = 0, μ = 1, 2, . . . , n,
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∂

∂λ
L(ω) = r ∗ −(ω1r1 + ω2r2 + . . . + ωnrn) = 0, (14.3)

∂

∂γ
L(ω) = 1 − (ω1 + ω2 + . . . + ωn) = 0.

This system is a linear one and has a simple solution. Let us rewrite one in
a matrix form. We denote (n + 2)-dimensional vector of the unknowns as x =
(ω1, ω2, . . . , ωn, λ, γ )T , (n + 2)-dimensional vector of free terms as β = (0, 0, . . . ,
0, r∗, 1)T , and the elements of the matrix A of conditions

Aμ,μ = 2σ 2
μ, μ = 1, 2, . . . , n;

Aμ,v = σμ,v, μ, v = 1, 2, . . . , n, v �= μ; Aμ,n+1 = −rμ; Aμ,n+2 = −1; (14.4)

An+1,v = rv, v = 1, 2, . . . , n; An+1,n+1 = An+1,n+2 = 0;

An+2,v = 1, v = 1, 2, . . . , n; An+2,n+1 = An+2,n+2 = 0.

Now, we can rewrite the system equations as

Ax = β. (14.5)

The solution is the following:

x = A−1β, (14.6)

where A−1 means the inverse matrix for A.
Now, the question arises: How variances σ 2

1 , σ 2
2 , . . . , σ 2

n and covariances σμ,v,
μ, v = 1, . . . , n, can be determined? These values can be obtained naturally if to
consider a random environment initially. Namely, a rewards increment is a constant
for each state of the random environment, but different for various states. A ran-
domness of resulting reward arises because a sojourn time in each state is a random
variable.

Further, a more general supposition will be accepted: For each state of the random
environment, reward increasing is a random vector with normal distribution. For this
case, formulas for the parameters of Markowitz model are derived.

The chapter is organized as follows. Sects. 14.2 and 14.3 contain a description and
needed results about the random environment. The last is gotten as finite irreducible
continuous-time Markov chain. The main results are presented in Sect. 14.4. The
numerical example is considered in Sect. 14.5. The Conclusion ends the exposition.
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14.2 Random Environment

Random environment is described by a continuous-time Markov chain X (t), t > 0,
with k states 1, 2, . . . , k, and matrix of transition intensities λ = (λi, j )k×k [4, 9].
Let �i denote total transition intensity for the state i : �i = ∑k

j=1 λi, j , and � =
(�1,�2, . . . , �k)

T .
Let Pi, j (t) = P{X (t) = j |X (0) = i} be transition probability of Markov chain

X (t), and P(t) = (Pi, j (t))k×k be the corresponding matrix. If all eigenvalues of
matrix A = λ − � are different, then probabilities P(t) = (Pi, j (t))k×k can be repre-
sented simply. Let χi and νi , i = 1, . . . , k, be the eigenvalue and the corresponding
eigenvector of A, χ = (χ1, . . . , χk)

T , ν = (ν1, . . . , νk) be the matrix of the eigen-
vectors and ν̄ = ν−1 = (ν̄T

1 , . . . , ν̄T
k )T be the corresponding inverse matrix (here, ν̄η

is the ηth row of ν̄). Then [1–3]

P(t) = exp(t A) = νdiag(exp(χ t))ν−1 =
k∑

i=1

νi exp(tχi )ν̄i . (14.7)

Now, we suppose that reward Rμ(t) of the μth asset during time t depends on a
state of the random environment and is accumulated. At beginning, we suppose that
an increasing of Rμ during time u < t in the state i is constant ρ(i)

μ u. Now, the got-
ten rewards during time t are dependent random variables R1(t), R2(t), . . . , Rn(t),
because all assets operate in the same random environment. Further, we suppose that
the rewards increasing are random variables. For both cases, we must calculate con-
stant parameters r1, r2, . . . , rn , σ 2

1 , σ 2
2 , . . . , σ 2

n , σμ,v, μ, v = 1, . . . , n of Markovitz
problem. It can be made if there are known means, variances, and covariances of
sojourn times of the random environment in the various states during time t .

14.3 Analysis of Sojourn Time for the Random
Environment

This analysis can be performed by standard methods of continuous-time Markov
chain theory. Let Tj (t) be sojourn time of the random environment in the states
j during time t , T (t) = (T1(t), T2(t), . . . , Tk(t)). We begin with average sojourn
times during time t in various states of the random environment, if initial state
is i : τi, j (t) = E(Tj |X (0) = i), j = 1, . . . , k. The corresponding vector τi (t) =
(τi,1(t), τi,2(t), . . . , τi,k(t)) can be calculated by the known formula: If Pi (t) is the
i th row of matrix (14.7), then

τi (t) =
t∫

0

Pi (u)du =
t∫

0

k∑

ζ=1

νi,ζ exp(χζu)ν̄ζdu =
k∑

ζ=1

νi,ζ ν̄ζ

t∫

0

exp(χζu)du.
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There exists unique zero eigenvector among all eigenvalues, let it has number
one: χ1 = 0. Then

τi (t) = νi,1v̄1t −
k∑

ζ=2

νi,ζ
1

χζ

(1 − exp(tχζ ))v̄ζ . (14.8)

For the mixed second moment of the sojourn time in the states j, j∗ = 1, . . . , k
on the interval (0, t) we have

E(Tj (t)Tj∗(t)|X (0) = i) =

=
t∫

0

Pi, j (u)E(Tj∗(t − u)|X (0) = j)du +
t∫

0

Pi, j∗(u)E(Tj (t − u)|X (0) = j∗)du. (14.9)

Now, we can calculate the covariance C (i)
j, j∗(t) of sojourn times in the j th and

j∗th states during time t for the initial state i :

C (i)
j, j∗(t) = E(Tj (t)Tj∗(t)|X (0) = i) − τi, j (t)τi, j∗(t). (14.10)

Let C (i)(t) = (C (i)
j, j∗(t)) be the covariance matrix for initial state i .

14.4 Calculation of Parameters of Markowitz Problem

Such parameters are r1, r2, . . . , rn , σ 2
1 , σ 2

2 , . . . , σ 2
n , σμ,v, μ, v = 1, . . . , n. We sup-

pose that operation time t and the initial state i of the random environment are known
and are the same for all assets. If rewards increment for fixed time and the same state
of the random environment X are constant, then for initial state i

rμ =
k∑

j=1

ρ( j)
μ τi, j (t),

σμ,v =
k∑

j=1

k∑

j∗=1

ρ( j)
μ C (i)

j, j∗(t)ρ
( j∗)
v .

Now, we are able to realize Markovic model.
Further, the more general problemwill be considered. We suppose that increasing

R(t + u) − R(t) of reward R(t) = (R1(t), . . . , Rn(t))T during time u in the state i
is a normal distributed randommultivariate variable Z (i)u = (Z (i)

1 , . . . , Z (i)
n )T u with

a mean uρ(i) = u(ρ
(i)
1 , . . . , ρ(i)

n )T and covariance matrix uC (i) = u(c(i)
μ,v)n×n . These
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increasing values for various states of the random environment are independent and
are additive. Let Zμ = (Z (1)

μ , . . . , Z (k)
μ ), Z = (ZT

1 , . . . , ZT
n )T = (Z (i)

μ )n×k .
Let T (t) = (T (1)(t), . . . , T (k)(t)) be a vector of the sojourn time for different

states of random environment during time t . Then

R(t) =
⎛

⎝
R1(t)
. . .

Rn(t)

⎞

⎠ = ZT (t)T = (ZT
1 , . . . , ZT

n )T

⎛

⎝
T1(t)
. . .

Tk(t)

⎞

⎠ .

Because vectors T = (T1, . . . , Tk) and Zμ = (Z (1)
μ , . . . , Z (k)

μ ), μ = 1, . . . , n are
independent, then

E(R(t)) = E

⎛

⎝

⎛

⎝
R1(t)
. . .

Rn(t)

⎞

⎠

⎞

⎠ = E(Z)E(T (t)T ) = E((ZT
1 , . . . , ZT

n )T )E

⎛

⎝

⎛

⎝
T1(t)
. . .

Tk(t)

⎞

⎠

⎞

⎠ .

Let us calculate the corresponding covariance matrix:

Cov(R(t)) = E[(R(t) − E(R(t)))(R(t) − E(R(t)))T ] =
= E

[
(ZT (t)T − E(Z)E(T (t)T ))(ZT (t)T − E(Z)E(T (t)T ))T

] =
= E

[
ZT (t)T T (t)ZT

] − E(Z)E(T (t))T E(T (t))E(Z)T =
= E

[
ZE(T (t)T T (t))ZT

] − E(Z)E(T (t))T E(T (t))E(Z)T .

But

E
[
(Z − E(Z))E(T (t)T T (t))(Z − E(Z))T

] =
= E

[
ZE(T (t)T T (t))ZT

] − E(Z)E(T (t))T T (t))E(Z)T ,

therefore,

Cov(R(t)) = E
[
(Z − E(Z))E(T (t)T T (t))(Z − E(Z))T

] + E(Z)Cov(T (t))E(Z)T .

Let W (t) = E(T (t)T T (t)). We must calculate the square matrix

M = (Mμ,v) = E
[
(Z − E(Z))W (t)(Z − E(Z))T

]
.

We have:

Mμ,v = E
(
(Zμ − E(Zμ))W (t)(Zν − E(Zν))

T
) =

= E

( k∑

i=1

k∑

j=1

(Z (i)
μ − E(Z (i)

μ ))Wi, j (t)(Z
( j)
v − E(Z ( j)

v ))

)
=
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=
k∑

i=1

k∑

j=1

Wi, j (t)E((Z (i)
μ − E(Z (i)

μ ))(Z ( j)
v − E(Z ( j)

v ))) =

=
k∑

i=1

k∑

j=1, j �=i

Wi, j (t)E((Z (i)
μ − E(Z (i)

μ ))(Z ( j)
v − E(Z ( j)

v ))) +

+
k∑

i=1

Wi,i (t)E((Z (i)
μ − E(Z (i)

μ ))(Z (i)
v − E(Z (i)

v ))) =

=
k∑

i=1

Wi,i (t)E((Z (i)
μ − E(Z (i)

μ ))(Z (i)
v − E(Z (i)

v ))) =
k∑

i=1

Wi,i (t)c
(i)
μ,v.

Finally, we get

Cov(R(t)) =
k∑

i=1

E(T (t)T T (t))i,iC
(i) + E(Z)Cov(T (t))E(Z)T .

If Z = z is constant matrix, then C (i) = 0, E(Z) = z and the usual expression
arises:

Cov(R(t)) = Cov(ZT (t)T ) = zCov(T (t))zT = E(Z)Cov(T (t))E(Z)T .

14.5 Numerical Example

Our example supposes the following initial data. The random environment has three
states: k = 3. Transition intensities between states of the random environment are
the following:

λ =
⎛

⎝
0 0.2 0.3
0.4 0 0.1
0.2 0 0

⎞

⎠ .

The number of considered assets n = 5 with the following values per unit sojourn
time in the i th states: the mean reward ρ(i) = (ρ

(i)
1 , . . . , ρ(i)

n ) and the covariance
matrix C (i) = (c(i)

μ,v)n×n . Corresponding matrices are the following:

ρ = (ρ(1) ρ(2) ρ(3)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(1)
1 ρ

(2)
1 ρ

(3)
1

ρ
(1)
2 ρ

(2)
2 ρ

(3)
2

ρ
(1)
3 ρ

(2)
3 ρ

(3)
3

ρ
(1)
4 ρ

(2)
4 ρ

(3)
4

ρ
(1)
5 ρ

(2)
5 ρ

(3)
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

1 2 3
1 1 1
1 0 3
2 1 0
3 2 1

⎞

⎟⎟⎟⎟⎠
.
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C (1) = C (3) =

⎛

⎜⎜⎜⎜⎝

1 −0.3 0 0 0.3
−0.3 1 0 0 −0.5
0 0 1 0 0
0 0 0 1 0
0.3 −0.5 0 0 1

⎞

⎟⎟⎟⎟⎠
, C (2) =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
.

Now, we present gotten results for time t = 15 and given average risk r∗ = 20.
The vectors (r1, . . . , rn)T of mean rewards for different assets and initial states X (0)
are the following:

E(R(15)|X (0) = 1) =

⎛

⎜⎜⎜⎜⎝

31.23
15

27.07
13.77
28.77

⎞

⎟⎟⎟⎟⎠
, E(R(15)|X (0) = 2) =

⎛

⎜⎜⎜⎜⎝

31.56
15

24.18
13.45
28.45

⎞

⎟⎟⎟⎟⎠
,

E(R(15)|X (0) = 3) =

⎛

⎜⎜⎜⎜⎝

35.09
15

32.21
9.91
24.91

⎞

⎟⎟⎟⎟⎠
.

The covariance matrices (σμ,ν) of rewards for different activities and initial states
X (0) are the following:

Cov(R(15)|X (0) = 1) =

⎛

⎜⎜⎜⎜⎝

156.70 −32.08 50.59 −39.44 −7.36
−32.08 117.26 0 0 −53.47
50.59 0 202.99 −50.59 −50.59

−39.44 0 −50.59 156.70 39.44
−7.36 −53.47 −50.59 39.44 156.70

⎞

⎟⎟⎟⎟⎠
,

Cov(R(15)|X (0) = 2) =

⎛

⎜⎜⎜⎜⎝

143.37 −26.01 46.40 −35.27 −9.26
−26.01 108.09 0 0 −45.35
46.40 0 196.75 −46.40 −46.40

−35.27 0 −46.40 143.37 35.27
−9.26 −43.35 −46.40 35.27 143.37

⎞

⎟⎟⎟⎟⎠
,

Cov(R(15)|X (0) = 3) =

⎛

⎜⎜⎜⎜⎝

170.39 −37.818 48.72 −38.08 −0.268
−37.81 132.12 0 0 −63.02
48.72 0 208.46 −48.72 −48.72

−38.08 0 −48.72 170.39 38.08
−0.268 −63.02 −48.72 38.08 170.39

⎞

⎟⎟⎟⎟⎠
.
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Table 14.1 Convergence of the simulated rewards to the true expectation

N 5 50 100 500 1000 10000 50000

1 21.290 19.815 19.653 20.065 20.142 19.996 19.990

2 18.839 19.740 19.507 20.065 20.137 19.986 20.019

3 22.470 19.652 19.800 20.133 20.116 19.976 19.985

About system of linear equations (14.5), the vector of coefficients β = (0 0 0 0
0 20 1)T and the matrix of restrictions (for X(0) = 1 only):

A(X (0) = 2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

286.73 −26.01 46.40 −35.27 −9.26 −31.56 −1
−26.01 216.19 0 0 −43.35 −15 −1
46.40 0 393.49 −46.40 −46.40 −24.18 −1

−35.27 0 −46.40 286.73 35.27 −13.45 −1
−9.26 −43.35 −46.402 35.27 286.73 −28.45 −1
31.56 15 24.18 13.45 28.45 0 0
1 1 1 1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Optimal solutions for different initial states are the following:

x(X (0) = 1) = (0.119 0.359 0.119 0.262 0.141 − 3.216 121.036)T ,

x(X (0) = 2) = (0.125 0.335 0.136 0.250 0.153 − 2.369 98.067)T ,

x(X (0) = 3) = (0.122 0.328 0.113 0.248 0.190 − 2.248 103.936)T .

The five first elements of the vector x correspond to optimal solution ω∗ =
(ω∗

1, ω
∗
2, ω∗

3, ω
∗
4, ω

∗
5).

The simulation study has been performed to verify these formulas. Let us present
gotten results for initial state of the random environment X (0) = 0. Table14.1 con-
tains simulated average rewards for different numbers N of the runs. The second,
the third, and the fourth rows of the table present three various realizations of the
considered process.We see how the average rewards converge to the true expectation
r∗ = 20.

It allows us to conclude that the gotten solution satisfies given constraint with
respect to r∗.

Minimal values of the variances of the profitable (14.1) are the following:

D(F(ω∗)|X (0) = 1) = ω∗(X (0) = 1)T Cov(R(t)|X (0) = 1)ω∗(X (0) = 1) = 22.713,

D(F(ω∗)|X (0) = 2) = ω∗(X (0) = 2)T Cov(R(t)|X (0) = 2)ω∗(X (0) = 2) = 20.336,

D(F(ω∗)|X (0) = 3) = ω∗(X (0) = 3)T Cov(R(t)|X (0) = 3)ω∗(X (0) = 3) = 22.974.
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It is interesting to compare these results with results when we consider mis-
takenly that rewards per unit time for all states of random environment are not
random variables: Ones are constants ρ(i) = (ρ

(i)
1 , . . . , ρ(i)

n )T and all covariances
C (i) = (c(i)

μ,v)n×n equal zero. In this case, optimal solutions for different initial states
are the following:

x(X (0) = 1) = (0.145 0.649 0.036 8.328 × 10−3 0.162 0.403 − 6.046)T ,

x(X (0) = 2) = (0.157 0.654 0.022 3.049 × 10−3 0.163 0.377 − 5.659)T ,

x(X (0) = 3) = (0.142 0.670 0.042 1.438 × 10−3 0.144 0.363 − 5.448)T .

In this case, the following values of the variances have place:

D(F(ω∗)|X (0) = 1) = ω∗(X (0) = 1)T Cov(R(t)|X (0) = 1)ω∗(X (0) = 1) = 39.364,

D(F(ω∗)|X (0) = 2) = ω∗(X (0) = 2)T Cov(R(t)|X (0) = 2)ω∗(X (0) = 2) = 38.599,

D(F(ω∗)|X (0) = 3) = ω∗(X (0) = 3)T Cov(R(t)|X (0) = 3)ω∗(X (0) = 3) = 47.351.

We see that a difference is essential.

14.6 Conclusion

Classical portfolio model of Markowitz has been considered for a case when the
random environment exists. It is shown that it changes optimal portfolio essentially.
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Chapter 15
Signs of Residuals for Testing
Coefficients in Quantile Regression

Sergey Tarima, Peter Tarassenko, Bonifride Tuyishimire,
Rodney Sparapani, Lisa Rein and John Meurer

Abstract We introduce a family of tests for regression coefficients based on signs
of quantile regression residuals. In our approach, we first fit a quantile regression
for the model where an independent variable of interest is not included in the set
of model predictors (the null model). Then signs of residuals of this null model
are tested for association with the predictor of interest. This conditionally exact
testing procedure is applicable for randomized studies. Further, we extend this testing
procedure to observational datawhen co-linearity between the variable of interest and
other model predictors is possible. In the presence of possible co-linearity, tests for
conditional association controlling for other model predictors are used. Monte Carlo
simulation studies show superior performance of the introduced tests over several
other widely available testing procedures. These simulations explore situations when
normality of regression coefficients is not met. An illustrative example shows the use
of the proposed tests for investigating associations of hypertension with quantiles of
hemoglobin A1C change.
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15.1 Introduction

Quantile regression has been widely used in various applied disciplines since 1978
[1] and generally testing hypotheses about regression coefficients plays the key role
in answering subject area research questions. Statistical inference for quantile regres-
sion is thoroughly covered in [2].

Hypothesis testing in quantile regression traditionally relies on asymptotic nor-
mality of the estimates of regression coefficients, or on computationally intensive
resampling procedures.

In this manuscript, we show via simulation examples that there are situations
where the large sample properties are not yet applicable to testing regression coef-
ficients. To resolve these testing difficulties, we suggest to test conditional indepen-
dence between the variable of interest and signs of model residuals.

Section15.2 reviews hypothesis testing procedures available for quantile regres-
sion. A new approach to hypothesis testing is introduced in Sect. 15.3. This approach
is compared with the methods implemented in the R package quantreg in Sect. 15.4.
An illustrative example on associationswith upper and lower quantiles of hemoglobin
A1C change is presented in Sect. 15.5. A brief summary concludes the chapter.

15.2 Quantile Regression and Hypothesis Testing

The quantile regression model can be expressed in terms of random variables as

Y = Xβ + ε, (15.1)

where Y = (Y1, . . . ,Yn)
T is a column of continuous responses, X is a fixed n ×

(p + 1) design matrix with elements Xi j where the first column identically equal

to 1 (X0 ≡ 1), β = (
β0, . . . , βp

)T
is a column of regression coefficients, and ε =

(ε1, . . . , εn) is a vector of independent continuous random variables. The index i is
used to enumerate independent experimental units (subjects), i = 1, . . . , n, and j
enumerates regression coefficients, j = 0, . . . , p. The columns of X are denoted by
X j and Xi · are its rows. The distributions of εi , Fi (u) = Pr (εi < u), are not known
but εi share the same quantile, Fi (0) = τ , ∀i .

Following [2] quantile regression coefficients can be estimated by minimizing∑n
i=1 ρτ (yi ), where ρτ is a weighted loss function.
The first and most common estimating procedure for quantile regression is based

on the LAD loss function

ρ(L AD)
τ (y) = y(τ − I (y < 0)) = |y| · |τ − I (y < 0)|,

which is implemented in the R package “quantreg”. The sign based loss function
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ρ(SB)
τ (y) = sgn(y)(τ − I (y < 0)) = |τ − I (y < 0)|,

where sgn(u) = {−1, u<0; 1, u>0} was suggested for quantile regression in [3].
The loss functions, ρ(L AD)

τ (y) and ρ(SB)
τ (y), rely on the sameweights, |τ − I (y <

0)|, but the LAD uses the actual values of residuals, y, whereas the SB uses only
sgn(y).

Alternative approachesmodifyρ(L AD)
τ (y)with kernel or nearest neighbor smooth-

ing, or add a penalty term [4].

For a chosen ρτ (·), the minimum of
∑n

i=1 ρτ (yi ) is reached at β̂ =
(
β̂0, . . . , β̂p

)
,

and under certain regularity conditions
√
n

(
β̂ − β

)
convergences to a zero-mean

normal variate. For an i.i.d. case, Fi (·) ≡ F(·),
√
n

(
β̂ − β

)
→ Np+1

(
0,

τ (1 − τ)

f 2(0)
D−1

)

in distribution, where f (u) = F ′(u) and D = limn→∞ 1
n

∑n
i=1 X

T
i ·Xi ·. More gener-

ally, √
n

(
β̂ − β

)
→ Np+1

(
0, τ (1 − τ)U−1DU−1

)

in distribution, where U = limn→∞ 1
n

∑n
i=1 fi (0)XT

i ·Xi ·.
The asymptotic normality of β̂ is the most popular approach to make statistical

inference. In thequantregpackage, there aremultiplemethods for estimating standard
errors (SE) of the components β̂. The group of asymptotic methods in Table15.1
summarizes estimating procedures for SEs available in the R package “quantreg”.

In addition, Table15.1 lists a rank-based approach, where the confidence interval
is produced by inverting a rank test, see [13], the sign based method, where the SB
criterion is resampled under the null [3], and a nonparametric bootstrap method [7].

We modify the originally proposed SB criterion [3] and resample the test statistic

TSB = sgn
(
ε̂
)T

Z1
(
ZT
1 Z1

)−1
ZT
1 sgn

(
ε̂
)
,

where
Z1 =

(
I − R

(
RTR

)−1
RT

)
X1

is a column of model residuals after fitting the ordinary least squares regression,
X1 on X2, . . . ,Xp, R = (

X0,X2, . . . ,Xp
)
, and ε̂ is a column of quantile regression

residuals fitted under H0 : β1 = 0. The test statistic TSB has a similar structure to the
sign-based criterion [3] with the design matrix X substituted by Z1 and all weights
set to one.

Resampling under H0 produces the P-value for testing H0. Under H0, the
distribution of sgn

(
ε̂
)
isBernoulliwith P

(
sgn

(
ε̂
) = −1

) = τ and P
(
sgn

(
ε̂
)=1

) =
1 − τ . The Z1 can be resampled from an assumed and estimated parametric
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Table 15.1 Inference methods for hypothesis testing

Group Short description Citation

Asymptotic The asymptotic covariance
matrix under the i.i.d.
assumption

[1]

Asymptotic A Huber sandwich estimate of
the covariance matrix

[5]

Asymptotic Kernel estimates of f (0), f (·)
is the density of εi

[6]

Asymptotic (bootstrap SE) Nonparametric bootstrap [7]

Asymptotic (bootstrap SE) A bootstrap procedure [8]

Asymptotic (bootstrap SE) Monte Carlo marginal
bootstrap (MCMB)

[9], [10]

Asymptotic (bootstrap SE) A generalized bootstrap [11]

Asymptotic (bootstrap SE) A Wild bootstrap [12]

Rank-based Rank based confidence
intervals

[13]

Sign-based Resampling of the SB criterion
under H0

[3]

Bootstrap Nonparametric bootstrap
(NPboot)

[7]

distribution, or from an empirical distribution. For a fixed design matrix X, Z1 stays
constant.

In Sect. 15.3, a new approach to testing H0 is considered. The conditional inde-
pendence testing

sgn (ε) ⊥ X1

∣∣∣X2, . . . ,Xp

is considered instead. The SB test is a conditional independence test under the
assumption that

(
X1,X2, . . . ,Xp

)
came from a p-dimensional normal distribution.

15.3 Methods

Without loss of generality, we consider testing H0 : β1 = 0, a scalar or a vector
of possibly multidimensional X1. From the conditional independence sgn(ε̂) ⊥
X1

∣
∣X2, . . . ,Xp the null on β1 immediately follows.
If a researcher investigates the effect of covariate X1 on τ th-level quantile con-

trolling for other variables, we first fit a quantile regression model under H0:

Yi = β0 + β2Xi2 + · · · + βp Xip + εi .
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Then we estimate ε̂i = Yi − Ŷi , where Ŷi = β̂0 + β̂2Xi2 + · · · + β̂p Xip. Here Ŷi is
an estimate of τ -level quantile conditional on Xi j ( j = 2, . . . , p). To differentiate
model residuals calculated by different estimating procedures a superscript is added.
The residuals obtained by the LAD criterion are denoted as ε̂(L AD) and ε̂(SB) are
used with the SB criterion. Since asymptotic properties of the SB and LAD quantile
regressions are the same and SB is very computationally intensive, the simulation
studies reported in Tables15.2 and 15.3 rely on LAD residuals only.

The conditional independence sgn(ε̂) ⊥ X1

∣∣X2, . . . ,Xp can be tested in multiple
ways but in this manuscript we focus only on two.

The first method is LADLR, which refers to testing conditional independence via
the logistic regression model when the residuals are modeled by

Pr
(
sgn

(
ε̂(L AD)

) = 1
) = exp

(
α0 + α1X1 + · · · + αpXp

)

1 + exp
(
α0 + α1X1 + · · · + αpXp

) .

The conditional independence in this case leads to H0 : α1 = 0. The model parame-
ters are estimated by the vector α̂ = (

α̂0, . . . , α̂p
)
, the maximum likelihood estima-

tors of the vector of unknown logistic regression parameter α = (
α0, . . . , αp

)
and

the asymptotic normality of the regression coefficients is used for testing H0.
The second method (SB) is the SB test based on resampling TSB where ε̂ are LAD

residuals.

15.4 Simulations

To compare the conditional independence testing versus previously available meth-
ods, we performed several simulation experiments with 10, 000 repetitions under the
null and 2, 000 under each alternative.

15.4.1 Conditional Independence Tests Versus Tests Relying
on Asymptotic Normality, n = 100

We performed 144 Monte-Carlo simulation experiments and summarized the results
in 36 tables (supplementary data, available from the corresponding author on a sep-
arate request). Each table aggregated results of four simulation experiments (one
under H0 and three under alternatives). For every experiment, the outcome Y was
either normal, N (μ, σ 2), or log-normal, LN (μ, σ 2), with μ = β0 + β1X1 + β2X2,
β0 = 0, β2 = 1, σ = 2, and β1 takes values 0 (the null), and 0.5, 1, 1.5 (three alter-
natives).

For the experiments where X1 was considered to be a continuous variable,
(X1, X2)were generated from a bivariate normalwith zeromean (EX1 = EX2 = 0),
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unit variances (Var (X1) = Var (X2) = 1), and the correlation Corr (X1, X2) = ρ

taking values 0, 0.4, and 0.8. To consider a dichotomous version the variable of
interest X1, a new variable Xd

1 (=1, if X1 > 0; =0 otherwise) was considered instead.
This categorization makes the correlation between X2 and Xd

1 not equal to ρ; rather,
the parameter ρ becomes the point biserial correlation between Xd

1 and X2. In addi-
tion, the use of Xd

1 leads to μ = β0 + β1Xd
1 + β2X2. Simulations considered three

quantiles: 0.1, 0.5, 0.9 at n = 100.
Thus, two distributions (normal and lognormal), two types of the variable

of interest X1 (continuous) or Xd
1 (categorical), three different correlation struc-

tures, ρ ∈ {0, 0.4, 0.8}, three quantiles, τ ∈ {0.1, 0.5, 0.9}, and four values for β1

(0, 0.5, 1, 1.5) generated 144 simulation experiments.
The general conclusion after reviewing these 36 Tables is two-fold: (1) in

Gaussian scenarios, asymptotic methods show similar power properties when com-
pared with methods based on testing for conditional independence, but (2) if the
assumption of normality is violated and the central limit theorem is not yet applica-
ble, the asymptoticmethods fail whereasmethods based on conditional independence
continue to show reasonable control of type 1 error as well as demonstrating adequate
power.

Among the fifteen hypothesis testing approaches investigated through 144 exper-
iments, we left only four promising tests for further simulations: LADLR, SB,
MCMB, and NPboot.

The experiments at n = 100 allowed us to exclude from further consideration the
testing procedures with inferior operational characteristics. We excluded as inferior
the procedures relying on asymptotic properties (see Table15.1) with the exception
ofMCMB. These procedures showed unacceptable control for type I error and power
for lognormal simulation studies. The rank based procedure also showed inadequate
type I error control and was excluded from further consideration.

The MCMB procedure was not suitable for small sample sizes and it often results
in errors when n = 100. Similarly, nonparametric bootstrap was also known to have
issues with small samples. This is why we decided to investigate these two using
larger than n = 100 samples.

15.4.2 Conditional Independence Tests Versus Bootstrap
Tests, n = 200

Then, in the competitive group, we left LADLR, SB, MCMB, and NPboot.
In simulations reported in Table15.2, we investigated at n = 200 more “difficult”

scenarios formost testing procedures: loglinearmodel (an example of a non-Gaussian
case), highly correlated predictors (co-linearity) and both binary and continuous form
of a predictor of interest.

Table15.2 shows that LADLR and SB have similar performance, but LADLR
shows a slightly better type I error control. The LADLR is easy to implement, since
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Table 15.2 Statistical Power. Datawere generated from a lognormal distributionwithμ = β1Xd
1 +

X2 and σ = 2, Xd
1 = I (X1 > 0), X1 and X2 are correlated standard normals with ρ = 0.8. Under

the null (β1 = 0) 10, 000 simulations were performed and 2000 under each alternative

LADLR SB MCMB NPboot β1 τ

0.0637 0.0703 0.0408 0.0301 0.00 0.1

0.1795 0.1935 0.1290 0.1125 0.50 0.1

0.4595 0.4755 0.3355 0.3600 1.00 0.1

0.7485 0.7680 0.6050 0.6690 1.50 0.1

0.0584 0.0620 0.0550 0.0390 0.00 0.5

0.3150 0.3185 0.2695 0.2635 0.50 0.5

0.6820 0.6795 0.6345 0.6400 1.00 0.5

0.9315 0.9350 0.9070 0.9180 1.50 0.5

0.0538 0.0564 0.0752 0.0567 0.00 0.9

0.1550 0.1570 0.2260 0.2090 0.50 0.9

0.3300 0.3390 0.4690 0.4555 1.00 0.9

0.5230 0.5245 0.7325 0.7145 1.50 0.9

all we need is to run a logistic regressionmodel on quantile regression residuals fitted
under H0, whereas SB needs resamples from the distribution of residuals under the
null. The MCMB procedure showed less stable type I error control, but this MCMB
bootstrap is also used by “quantreg” for estimating standard errors and thus relies on
asymptotic normality. The NPboot showed the best performance for upper quantile
modeling but was overly conservative which comes with lower power for modeling
lower quantiles.

15.4.3 Conditional Independence Tests Versus Bootstrap
Tests, n = 300, Five Predictor Case

Table15.3 reports 72 simulation experiments defined by the continuous and cate-
gorical predictor of interest (Xd

1 or X1), τ ∈ {0.2, 0.5, 0.8}, ρ ∈ {0, 0.4, 0.8}, and
θ ∈ {0, 0.5, 1.0, 1.5}.

In these simulation experiments (X1, X2, . . . , X5) were generated from a five
dimensional normal distribution with zero mean and an exchangeable covariance
matrix. The exchangeable covariance matrix was defined by unit variances and the
correlation ρ. The categorical predictor of interest was defined by Xd

1 = I (X1 > 0).
The Y for continuous predictor of interest were generated from a lognormal

distribution with μ = θX1 + X2 + .. + X5 and σ = 2, and for the categorical case
μ = θXd

1 + X2 + .. + X5.
A careful inspection of the results clearly shows that the LADLR was the pre-

ferred choice. LADLR outperformed SB for the categorical predictor of interest and



226 S. Tarima et al.

Table 15.3 Statistical power

Categorical (Xd
1 ) Continuous (X1)

LADLR MCMB SB NPboot LADLR MCMB SB NPboot θ τ ρ

0.0490 0.0361 0.0860 0.0187 0.0490 0.0338 0.0517 0.0217 0.0 0.2 0.0

0.2350 0.1835 0.2765 0.1470 0.7155 0.5850 0.7205 0.5640 0.5 0.2 0.0

0.7325 0.5900 0.6920 0.5575 0.9990 0.9820 0.9990 0.9855 1.0 0.2 0.0

0.9690 0.9090 0.9375 0.9130 1.0000 0.9985 1.0000 0.9990 1.5 0.2 0.0

0.0558 0.0390 0.0525 0.0257 0.0509 0.0398 0.0521 0.0236 0.0 0.5 0.0

0.2605 0.1840 0.2440 0.1600 0.7390 0.6555 0.7420 0.6325 0.5 0.5 0.0

0.7430 0.6505 0.7020 0.6235 0.9995 0.9935 0.9995 0.9935 1.0 0.5 0.0

0.9755 0.9395 0.9655 0.9440 1.0000 1.0000 1.0000 1.0000 1.5 0.5 0.0

0.0462 0.0326 0.0321 0.0229 0.0458 0.0366 0.0478 0.0213 0.0 0.8 0.0

0.1505 0.0895 0.1115 0.0860 0.4560 0.3825 0.4595 0.3440 0.5 0.8 0.0

0.4740 0.2935 0.3875 0.3325 0.9425 0.8835 0.9430 0.8830 1.0 0.8 0.0

0.7830 0.5825 0.6960 0.6615 0.9990 0.9910 0.9990 0.9875 1.5 0.8 0.0

0.0659 0.0323 0.0879 0.0190 0.0503 0.0350 0.0529 0.0186 0.0 0.2 0.4

0.2395 0.1380 0.2545 0.1085 0.4520 0.3135 0.4550 0.2745 0.5 0.2 0.4

0.6420 0.4740 0.6130 0.4295 0.9420 0.8410 0.9430 0.8110 1.0 0.2 0.4

0.9245 0.8120 0.8985 0.7835 0.9965 0.9665 0.9960 0.9385 1.5 0.2 0.4

0.0515 0.0312 0.0486 0.0226 0.0522 0.0365 0.0541 0.0206 0.0 0.5 0.4

0.1910 0.1085 0.1635 0.1105 0.3775 0.2785 0.3785 0.2345 0.5 0.5 0.4

0.5420 0.3615 0.5025 0.3840 0.8760 0.7555 0.8765 0.7490 1.0 0.5 0.4

0.8395 0.6480 0.8015 0.6845 0.9820 0.9420 0.9825 0.9300 1.5 0.5 0.4

0.0253 0.0172 0.0159 0.0158 0.0463 0.0302 0.0478 0.0171 0.0 0.8 0.4

0.0580 0.0405 0.0325 0.0520 0.1580 0.1015 0.1610 0.0700 0.5 0.8 0.4

0.1605 0.1220 0.0925 0.1450 0.4755 0.3000 0.4810 0.2690 1.0 0.8 0.4

0.2625 0.2645 0.1730 0.2830 0.7430 0.5305 0.7420 0.4570 1.5 0.8 0.4

0.1083 0.0313 0.1116 0.0171 0.0475 0.0271 0.0496 0.0139 0.0 0.2 0.8

0.2910 0.1130 0.2825 0.0835 0.1735 0.1030 0.1730 0.0740 0.5 0.2 0.8

0.6250 0.3405 0.6150 0.2730 0.4800 0.3165 0.4895 0.2485 1.0 0.2 0.8

0.8695 0.6040 0.8570 0.5490 0.7550 0.5445 0.7585 0.4540 1.5 0.2 0.8

0.1055 0.1262 0.0334 0.0716 0.0481 0.0328 0.0493 0.0191 0.0 0.5 0.8

0.2465 0.2935 0.1155 0.1875 0.1175 0.0700 0.1190 0.0495 0.5 0.5 0.8

0.4265 0.4600 0.2730 0.3380 0.2995 0.1890 0.3020 0.1505 1.0 0.5 0.8

0.6065 0.6285 0.4880 0.4885 0.4920 0.3085 0.4920 0.2365 1.5 0.5 0.8

0.0490 0.3740 0.0002 0.1211 0.0474 0.0260 0.0475 0.0147 0.0 0.8 0.8

0.0600 0.4905 0.0000 0.1635 0.0705 0.0350 0.0725 0.0185 0.5 0.8 0.8

0.0875 0.5805 0.0010 0.2010 0.1325 0.0580 0.1340 0.0380 1.0 0.8 0.8

0.1090 0.6580 0.0005 0.2435 0.2070 0.0780 0.2085 0.0435 1.5 0.8 0.8
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was better than the nonparametric bootstrap. The most problematic scenario for all
four considered methods was highly collinear predictors and the categorized version
of X1.

15.5 Illustrative Example

To illustrate the practical use of testing for conditional independence we extracted
a deidentified sample of 10, 000 primarily type 2 Diabetes Mellitus (DM) patients
from a large databank of medical records of mainly Milwaukee metro area residents.
Following our inclusion criteria these 10, 000 DM patients had at least one year of
follow up as defined by their billing data. Further we limited our attention to subjects
with two sequential Hemoglobin A1C (A1C) assessments 3 to 12 months apart and
the initial A1C at 7 or higher. Thus, the sample size decreased to 2460.

A1C measures severity of Diabetes and is the key measure physicians and their
patients focus on [14]. A1C below 7 is often the goal of diabetes management [15],
but a goal which is difficult to achieve [16]. Thus, instead of focusing on this goal
we investigate the change in A1C.

The mean and median A1C changes in our data are −0.4 and −0.3, but these
two characteristics only describe central tendency and do not capture all spectrum
of 	A1C responses. To expand our scope, we also look at 0.2-level quantile = −1.1
(the best 20%) and 0.8-level quantile = 0.5 (the worst 20%).

To target our research interest, we will investigate associations between 	A1C
and hypertension (a prevalent and costly comorbidity) controlling for effects of other
factors. Since age is often associated with hypertension as well as with A1C dynam-
ics, we investigate the effect of hypertension separately for two age groups (< 65
and 65+). To be able to compare our models in a side by side manner we included
predictors significant in one quantile regression model in the sets of predictors for
the other two models. Table15.4 reports the three quantile regression models. The
MCMB bootstrap was used to calculate standard errors.

P-values for significance of hypertension for each age group were calculated by
three different methods (LADLR, MCMB, and NPboot). Table15.5 shows that the
conclusion may be different. Nonparametric bootstrap never showed significance
which is consistent with our simulations where NPboot was overly conservative.
MCMB on the other hand was somewhat closer to LADLR and found the same
significance with the exception of τ = 0.8. Since colinearity for large samples is not
an issue and the simulation studies ensured us that LADLR has better operational
characteristics we rely on LADLR.
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Table 15.4 Three quantile regression models. Regression coefficients (EST) reported along with
standard errors (SE) estimated by MCMB method

VARIABLE τ = 0.2
EST(SE)

τ = 0.5
EST(SE)

τ = 0.8
EST(SE)

Intercept −1.139(0.186) −0.256(0.215) 0.791(0.351)

Age >= 65,
Hypertension = Y

−0.671(0.427) −0.802(0.315) −0.507(0.341)

Age < 65,
Hypertension = Y

−0.345(0.153) −0.215(0.122) −0.15(0.227)

Age > = 65 0.403(0.41) 0.344(0.316) −0.174(0.356)

Time b/w A1C tests
(per 1 year)

0.68(0.367) 0.524(0.303) 0.98(0.46)

Baseline A1C −0.965(0.05) −0.582(0.07) −0.277(0.084)

Current insulin = Yes 0.196(0.15) 0.556(0.128) 0.293(0.197)

Ordered insulin = Yes 0.676(0.163) 0.36(0.145) 0.588(0.268)

Annual charges (up to
$380)

0.152(0.172) 0.282(0.139) 0.338(0.213)

Annual charges
($381–$1294)

0.293(0.165) −0.1(0.185) −0.281(0.271)

Annual charges
($1295–$4584)

−0.042(0.188) −0.209(0.183) −0.187(0.266)

Table 15.5 Table of p-values for variables of interest

LADLR MCMB NPboot τ

Age <65, Hypertension = Yes 0.0052 0.0112 0.1382 0.2

0.1026 0.0745 0.1360 0.5

0.3237 0.4852 0.1446 0.8

Age ≥65, Hypertension = Yes 0.2698 0.0595 0.1380 0.2

0.0179 0.0112 0.1368 0.5

0.0285 0.2599 0.1364 0.8

15.5.1 Implementation

The implementation of the proposed approach is easy, andbelow,we showanartificial
example for regression coefficient testing in 0.8 quantile modeling. Suppose in the
dataset “d”, the variable “y” is the study outcome and “x1” is the variable of interest.
The control variables in this dataset are “x2”, “x3”, “x4”. The R code for this artificial
example starts with fitting the quantile regression model under the null. Then, signs
of residuals are calculated and saved into “a”. Finally, the conditional association
between “a” and “x1” is tested via the logistic regression model.
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library(quantreg)

attach(d)

fit <- rq(y ˜ x2 + x3 + x4, tau=0.8)

a<- 1*(o > predict(fit))

f0 <- glm(a ˜ x2 + x3 + x4, family=binomial)

f1 <- glm(a ˜ x1 + x2 + x3 + x4, family=binomial)

anova(f1,f0)$table$pvalue

15.6 Summary

In this manuscript, we suggest an alternative way of hypothesis testing for quantile
regression. Our approach relies on testing for conditional association between the
signs of residuals of quantile regression and the variable of interest. Testing for
conditional independence is conceptually different from the array of widely available
asymptotic methods and bootstrap. Asymptotic properties are often not applicable,
especially if the underlying distribution is skewed, or when the sample sizes are not
large enough. As shown in our simulation experiments, conditional independence
based hypothesis testing has substantially better control for type I error and power.

Simulation experiments also show that the performance of these new methods is
similar to nonparametric bootstrap. The bootstrap however is very computationally
intensive and reliable estimation of P-values, especially reaching significance at
lower cutoffs (say, 0.01), require large number of resamples. Bootstrap does not
always work well for smaller sample sizes showing discreteness and multimodality
of the bootstrap distribution. Conditional independence testing has no such issues.

We considered a few methods for conditional independence testing, some are
applicable only for randomized studies, others work well for observational studies.
One of the easiest to implement was the logistic regression model fitted on signs
of residuals of quantile regression under the null hypothesis, where the signs were
the binary outcome. These models do not require any resampling. Some resampling
was required for calculating P-values of the sign-based test statistic suggested in [3],
which resampled from the Bernoulli distribution and was substantially faster than
the nonparametric bootstrap.

The illustrative example showed that association between hypertension and the
0.8 level quantile of A1C change would be missed for older adults if we rely on
asymptotic properties of regression coefficients or on nonparametric bootstrap.

Overall, we conclude that conditional independence testing is superior to others
considered in this chapter and is applicable for a wide range of scenarios.
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Chapter 16
Classification of Multivariate Time Series
of Arbitrary Nature Based on the
ε-Complexity Theory

Boris Darkhovsky and Alexandra Piryatinska

Abstract The problem of classification of relatively short multivariate time series
generated by different mechanisms (stochastic, deterministic or mixed) is consid-
ered. We generalize our theory of the ε-complexity, which was developed for scalar
continuous functions, to the case of vector-valued functions from Hölder class. The
methodology for classification of multivariate time series based on the ε-complexity
parameters is proposed. The results on classification of simulated data and real data
(EEG records of alcoholic and control groups) are provided.

Keywords Multivariate time series · Classification · Epsilon-complexity

16.1 Introduction

Classification of multivariate time series is an important problem in numerous appli-
cations (e.g. applications in medicine, biology, finance). At the present time, a large
number of different classifiers (see e.g. [4]) are available in the literature, which
allow to separate multi-dimensional data into classes with a good accuracy, if the
characteristic features of the data are well selected. However, success in solving of
this problem strongly depends on how well the features were selected. In our opin-
ion, the features selection problem is the essential step in classification procedure.
Currently, the creation of the feature space in case of time series is based on a priori
information about data generation mechanisms. If such information is available to
researchers (e.g. it is known that the time series is a stationary random process), then
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the characteristics of the observed processes (such as spectral characteristics) can be
chosen as features for the classification problem.

However, prior information on data generatingmechanism is not always available.
A typical example is the EEG signal which according to most experts is among the
most complex physical signals. Currently, there are no generally accepted models
of its generation. Modern EEGs record brain signals for several dozens of channels
simultaneously; i.e. we are dealingwith amultivariate time series. It is clear that all of
the components of a series are interconnected. However, it is not clear in advance how
to select features which are useful in classification of different states of the brain.
Usage of standard statistical procedures (e.g. spectrum estimation, the correlation
dimension) is not fully justified in that case, since, as we know (see e.g. [9]) the EEG
signal is a non-stationary process.

For financial time series some biological problems and etc. the situation is sim-
ilar, there are no established models of the observed processes. This circumstance
significantly complicates the selection of features for solving classification problems.

The question arises whether it is possible to find such characteristics of a multi-
variate time series, which on the one hand would not depend on the mechanism of
its generating, and on the other hand would enable us to select features for further
classification.

We believe that the ε-complexity of a continuous function which was proposed
in our paper [2] is such a characteristic. This concept is in line with the general idea
of Kolmogorov on “complexity of an object”. His idea can be expressed as follows:
A “complex” object requires a lot of information for its reconstruction and, for a
“simple” object, little information is needed, and “complexity” of an object should
be measured by the length of its shortest description [6, 7].

In our paper ([2]), the theory of the ε-complexity of continuous functions defined
on a compact set in finite-dimensional space was developed. It was shown that the
ε-complexity of “almost all” functions satisfying Hölder conditions are effectively
characterized by pairs of real numbers, which we call the ε-complexity parameters
(or coefficients).

For analysis of multivariate time series, we need to extend our theory into the
case of continuous vector-functions fromHölder class. Therefore, in this chapter, we
generalize the concept of the ε-complexity to that case and obtain an effective char-
acterization of the ε-complexity for continuous vector-functions. This fact enables
us to propose new features for classification of multivariate time series which does
not use any prior information on data generating mechanisms.

The chapter is organized as follows. In Sect. 16.2, we provide a definition of the
ε-complexity of continuous vector-functions and give the theoretical results which
are the consequence of the general theory. In Sect. 16.3, we present our classification
methodology. In Sect. 16.4, we provide the results of simulations and application of
our methodology for classification of EEG signals into two groups: alcoholic and
control.
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16.2 Theoretical Results

In this section, we provide necessary results from the general theory of the
ε-complexity and generalize them to the case of vector-functions from Hölder class.

16.2.1 The ε-Complexity of Continuous Vector-Functions

Let us consider a continuous vector-function x(t) = (x1(t), . . . , xd(t)), t ∈ [0, 1].
Let Ri

def= max
t∈[0,1] |xi (t)|, i ∈ I

def= {1, . . . , d}. We will assume that min
i∈I

Ri > 0. Sup-

pose that the values of the i th component xi (·), i ∈ I of the function x(·) are known
only at points of a uniform grid with spacing h, and let F be a family of approxi-
mation methods.

Let x̂i (·) be an estimate of the i th component of vector-function x(·) based on its
values at the grid points by one of the methods from family F .

Definition 16.1 The function xi (·) is called F -nontrivial (correspondingly, totally
nontrivial), if it can not be recovered with arbitrary small error by methods F
(respectively, by any enumerable collection of methods) for any h > 0. The vector-
function x(·) is called F -nontrivial (correspondingly, totally nontrivial) if all its
components are F -nontrivial (respectively, totally nontrivial).

Denote by Ĩ
def= {i ∈ I : xi (·) isF − nontrivial function}. Put

δFi (h) = inf
x̂i (·)∈F

sup
t∈[0,1]

|xi (t) − x̂i (t)|, i ∈ I.

The function δFi (h) is called absolute recovery error of component xi (·) by methods
F . Put (∀ε ≥ 0)

h∗
x (ε,F ) =

⎧
⎨

⎩

inf{h ≤ 1 : ∑

i∈ Ĩ

δFi (h)

Ri
> ε}, if Ĩ �= ∅

1, in opposite case
(1)

We call δFi (h)

Ri
the related recovery error of component xi (·) by methods F .

Definition 16.2 The number

Sx (ε,F ) = − log h∗
x (ε,F )

is called the (ε,F )-complexity of an individual continuous vector-function x(·).
This definition is a generalization of the main definition from [2] where it was given
for scalar functions. Thus, the (ε,F )-complexity of a vector-function is the logarithm
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of the minimum number of function values required for its recovery by methods
from family F with a relative error no more than epsilon. In other words, it is “the
shortest” description of the vector-function. Therefore, our definition is in line with
Kolmogorov’s idea mentioned in the introduction.

Let T be a set of totally nontrivial vector-functions satisfying the Hölder condi-
tion, which means that for any (t, s) ∈ [0, 1] × [0, 1]

∑

i∈I

|xi (t) − xi (s)| ≤ L|t − s|p, L > 0, p > 0.

Due to the fact that the considered vector-functions have finite number of compo-
nents, it is possible (as in the scalar case) to show that T is everywhere dense in the
set of vector-functions satisfying Hölder conditions. In other words, “almost any”
Hölder vector-function is totally nontrivial, i.e. has totally nontrivial components.

The theorem below immediately follows from the general theory (see, [2]) in
case the vector-function x(·) has a finite number of components and all components
satisfy Hölder conditions.

Theorem 16.1 For any vector-function x(·) from a dense subset of T , and any
(sufficiently small) r > 0, γ > 0, there exist α > 0, � > 0, A, B, |B| ≥ b (x(·)) >

0, family of approximation methods F ∗, functions θ(ε), ξ(ε) and set M ⊂ [α, α +
�], with the Lebegue measureμ(M) > � − r , such that on the set M for allF ⊇ F ∗
the following relations hold

Sx (ε,F ) = A + B log ε + θ(ε) log ε + ξ(ε), sup
ε∈M

max (|θ(ε)|, |ξ(ε)|) ≤ γ

(16.1)

Let us now consider functions from Hölder class and start with a scalar function.
It is known that a scalar function x(t), t ∈ [0, 1] belongs to Ck,p class, if it can be
represented as follows:

x(t + h) = x(t) + x ′(t)h + · · · + 1

k! x (k)(t)hk + r(t, h)hk

where max
t∈[0,1] |r(t, h)| ≤ Lh p, 0 < p ≤ 1, L > 0.

It is clear that a function of a C0,p class is just a continuous function satisfying
Hölder condition, and all derivatives of functions from Ck,p class up to kth order sat-
isfy Hölder conditions (which for derivatives up to (k − 1)th order become Lipschitz
conditions).

Let x(t), t ∈ [0, 1] be a function from Ck,p. We will say that the vector-function

z(t)
def= (

x(t), x ′(t), . . . , x (k)(t)
)

is conjugated to x(t), and we state a problem of
estimation of vector-functions z(t) based on its values at a uniform grid by methods
from the family F (i.e. described above problem).

By definition of Ck,p class, z(t) is a continuous vector-function such that all its
components satisfying Hölder conditions. Therefore, for vector-function z(t), one
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can use the Definition 16.2 and Theorem 16.1 to obtain the analogy of the Theorem
16.1 for scalar function of Ck,p class using its conjugate vector-function.

Now we consider the vector-function x(t) = (x1(t), . . . , xd(t)) , t ∈ [0, 1] and
assume that each xi (t) (i = 1, . . . , d) belongs to Cki ,pi class. Then, taking into
account the above statement for the scalar function of Ck,p class, we can reduce
the problem of function reconstruction x(t) based on its values on a uniform grid to
the problem of reconstruction of “expanded” vector-function x̃(t), where to each
component xi (t) we assign its ki derivatives. It is easy to see that dimension of that
vector-function is equal (d + ∑

i
ki ). Therefore, the problem of reconstruction of the

vector-function x(t) based on its values at uniform grid is reduced to the problem of
reconstructionof an expended vector-function

(
x1(t), x ′

1(t), . . . , x (k1)
1 (t), x2(t), x ′

2(t), . . . ,

x (k2)(t), . . . , xd (t), x ′
d (t), . . . , x (kd )

d (t)
)
, and we can use given earlier in this section argu-

ments to obtain an analogue of Theorem 16.1.

16.2.2 The ε-Complexity of a Continuous Function Given
on a Uniform Grid

In modern applications, we mostly deal with vector-functions known only on the
discrete set of values (i.e. with a finite set of samples). We assume that these sets
of values are restrictions of continuous vector-functions (respectively, the vector-
functions whose components are functions from Cki ,pi classes (i = 1, . . . , d)) at
some uniform grid on the unit interval. Let us show how the definition of (ε,F )-
complexity should be extended to this case.We will start from the continuous vector-
function.

Let an F nontrivial continuous vector-function x(t) is given by its n values (i.e.
by n vectors inRd ). Consider the following procedure. Chose 0 < S < 1 and discard
[(1 − S)n] values of the sample (here [a] denotes an integer part of a). Then, we
reconstruct the values of the vector-function in the discarded points using the retained
points and family of approximation methodsF and find the best approximation (i.e.
approximation with the smallest relative error).

Let us consider the value h∗
x (ε,F ) which was introduced in (1) and assume that

[h∗
x(ε,F )n] � 1. If the unit interval has n values of continuous vector-function,

then the interval of length h∗
x (ε,F ) contains [h∗

x (ε,F )n] values, and therefore, the
number of vector-function values sufficient to reconstruct it with the absolute error
not larger then ε is equal n∗ = [

n/[h∗
x (ε,F )n]].

Similarly, to the case of continuous argument, we give the following definition:

Definition 16.3 The value

Sn(x(·), ε,F ) = log
n

[h∗
x(ε,F )n] (16.2)
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is called the (ε,F )-complexity of an individual continuous vector-function x(·),
which is given by a discrete set of values on the uniform grid.

It follows from the Definition 16.3 that the (ε,F )-complexity of an individual
continuous vector-function x(·), which is given by a discrete set of values can be
measured as a logarithm of the fraction of function values needed to recover the
components of the vector-function with a sum (by components) of relative errors not
larger than ε.

The theorem below follows from Theorem 16.1, Definition 16.3 and obvious rela-
tionship of (ε,F )-complexity of continuous vector-functions and vector-functions
given by the discrete set of values (as in [2]).

Theorem 16.2 For any vector-function x(·) from some dense subset of T , given
by its n values on a uniform grid, and for any (sufficiently small) κ > 0, δ > 0,
and n ≥ n0(x(·)) there exist a family of approximation methods F ∗, numbers 0 <

α (n, x(·)) < β (n, x(·)) < 1, A (n, x(·)) , B (n, x(·)) with |B(·)| ≥ c (n, x(·)) for
some constant c (n, x(·)) > 0, functionsρ(S), ζ(S), and a set M ⊂ Q = [α(·), β(·)],
μ(M) > μ(Q) − δ such that, under the family of approximationF ⊇ F ∗ for S ∈ M
the following relationships hold

log ε = A + B log S + ρ(S) log S + ζ(S), sup
S∈M

max (|ρ(S)|, |ζ(S)|) ≤ κ.

(16.3)

It follows from the above theorem that in case of sufficiently rich family of approx-
imation methods F and sufficiently large sample size n, for vector-functions sat-
isfying the Hölder condition and defined by their n values on a uniform grid the
(ε,F )-complexity is characterized by a pair of real numbers (A, B). Namely,

log ε ≈ A + B log S (16.4)

where the meaning of ≈ is clear from the Theorem 16.2.
Let us consider the case of vector-functions which for each i th component is

given by their values on a uniform grid and belongs to Cki ,pi class (i = 1, . . . , d).
The definition of the (ε,F )-complexity for such vector-function can be obtained by
application of the Definition 16.3 to the conjugate (or “extended”) vector-function
(see previous section). Thus, instead of the derivatives, we use appropriate differ-
ences; for example, instead of the first derivative, the difference x(t + 1) − x(t),
t = 1, . . . , n − 1 is used. For sufficiently high-sampling rate, the differences are
approximately equal to the corresponding derivatives multiplied by the length of the
sampling interval. Since (ε,F ) -complexity of the function remains unchanged
when it is multiplied by a constant, we assume that the (ε,F )-complexity of
“extended” vector-function will be close to the corresponding value of continu-
ous vector-function. This suggests that for vector-functions, i th component of which
belongs to the Cki ,pi class, and given by its values on a uniform grid, using “exten-
sion” with the inclusion of the relevant differences the relationship (16.4) holds.
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Parameters A, B in relationship (16.4) are new features of the time series that are
proposed to be used for the classification of the “short” time series, e.g. “short” EEG-
recordings. These features are independent from the data generating mechanism and
are model-free.

16.3 Classification Methodology

In this section, wewill describe ourmethodology for the classification ofmultivariate
time series. This methodology contains two steps, the first step is an estimation of
the ε-complexity parameters for the time series and transformed time series. These
parameters will be used as features for classification algorithms. The second step is
the utilization of well-known classifiers such as random forest [1] and support vector
machine (see e.g. [4]).

Let us assume that our multivariate time series is a restriction of a continuous
vector-function x(t) = (x1(t), . . . , xd(t)) , t ∈ [a, b] at the uniform grid.

Step 1. Algorithm for estimation of the ε-complexity parameters.

1. Normalize each component of the multivariate time series xi (t), i.e. replace our
original components of the multivariate time series by xi (t)/maxt (|xi (t)|).

2. Select S, the fraction of the remaining points as follows: S1 = 50%, S2 = 33%,
S3 = 29%, S4 = 25%, S5 = 22.5%, S6 = 20%.

3. For each fixed S and for each component of the multivariate time series, discard
the values of the functions at points which are placed uniformly, or almost uni-
formly, according to the following scheme: Let x1

i , x2
i ,x

3
i , . . . , xn

i be the values
of a function on a grid.

a. S1 = 50%: Values of x2
i , x4

i , . . . , x2 j
i , . . . ; or x1

i , x3
i , . . . , x2 j+1

i , . . . ; are dis-
carded. Notice we have two different ways to discard function values;

b. S2 = 33%:Values of x1
i , x4

i , x7
i , x10

i , . . . ; or x2
i , x5

i , x8
i , x11

i , . . . ;or x3
i , x6

i , x9
i ,

x12
i , . . . ; are discarded. We have three different placements of discarded val-
ues;

c. The procedures are similar in the case S3 = 29%, S4 = 25%, S5 = 22.5%
and S6 = 20%.

4. For each Sk and for each of those placements, we consider all possible reconstruc-
tions of the function by piece-wise polynomials up to fourth degree and select the
one which provides the minimal error of reconstruction. Record this value of the
minimal error.

5. For the same Sk , we consider other placements of the retained points and repeat
the procedure. Record the obtained minimal errors.

6. Then, we take a mean of the recorded errors calculated over all placements for
each component of multivariate time series.

7. Take the sum of the mean errors over all component. It is our estimate of εk in
the case of Sk .
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8. Repeat the procedure for k = 1, . . . , 6.
9. Consider points (log(Sk), log(εk)) and find the best linear fit

log ε ≈ A + B log S (16.5)

using the least squares method.

Step 2. Classification. In the next step, we use the calculated ε-complexity coeffi-
cients aswell as ε-complexity coefficients of first, second, third and fourth differences
as an input to the supervised classifiers such as random forest and support vector
machine. The employment of differences corresponds to the analysis of derivatives
of the multivariate time series. Since, a priori, we did not know the features of the
time series which are useful for classification, we propose to test the different combi-
nations of the ε-complexity coefficients of the original series and the series of finite
differences to find the best set of features for classification process.

The results will be evaluated using the Out-Of-Bag (OOB) [1] error in case of the
random forest and k-fold cross-validation procedure (see, e.g. [3, 5]) in both cases
to be able to compare the performance of two classifiers.

16.4 Results of Classification Methodology for Simulated
and EEG data

16.4.1 Simulation Results

Let us first illustrate the performance of the algorithm for estimation of ε-complexity
coefficients and dependence (16.4) on the simulated data.

Example 1. We simulated a multivariate time series with the following compo-
nents:

• ARMA(3,2):
(
1 − ∑2

i=1 φi Li
)

Xt =
(
1 − ∑2

i=1 θ i Li
)

εt , r = 1, . . . , 4, Lk Xt = Xt−k .

where φ = (−0.1,−0.3, 0.1), θ = (−0.2, 0.1); Here and below, Lk Xt = Xt−k

is the shift operator, εt standard gaussian white noise.
• ARMA(3,2) where φ = (0.4, 0.3, 0.4), θ = (0.5, 0.4);
• FARIMA: (1 + φ1L − φ2L2)(1 − L)0.35Xt = (1 + θ1L + θ2L2)εt .

where φ = (0.2,−0.40), θ = (0.4, 0.2);
• Logistic map: x(t) = ax(t − 1) (1 − x(t − 1)), where a = 3.98;
• Quadratic map: x(t) = x2(t − 1) − 2;

• Mackey-Glass equation: dx
dt = a

x(t − 13)

1 + x(t − 13)c
− bx , where a = 0.1, b = 0.2,

c = 9.7.

Notice that the first three components are stochastic processes and the last three
components are trajectories of the chaotic deterministic processes.
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Fig. 16.1 Example of affine dependance of multivariate time series (top left) and its first (top right),
second (bottom left) and third (bottom right) differences

We apply the above algorithm to this multivariate time series as well as to mul-
tivariate time series which are formed from the first, second and third differences
of each component of original time series. In our simulations, we choose n = 200
points. The typical examples of such simulation are presented in Fig. 1. The circles
correspond to the values (log(Si ), log(εi )), and the straight line is the fitted regres-
sion line whose coefficients are ε-complexity coefficients of the original time series,
first difference, second difference and third differences (top left, top right, bottom
left, bottom right correspondingly). One can observed the dependence (16.4) holds
well for these cases (Fig. 16.1).

Example 2 Now we will demonstrate the efficiency of our methodology to the
simulated data. For it, we simulate two groups of multivariate time series. Both
groups of time series have the same types of underline processes as in Example 1
but two different sets of coefficients. The components of vector-processes and their
coefficients are listed below.

• ARMA(3,2) coefficients. Group 1: φ = (−0.1, 0.3, 0.1), θ = (0.2, 0.1);
Group 2: φ = (0.5,−0.7, 0.9), θ = (0.5, 0.6);
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Fig. 16.2 Simulation results. Examples of the multivariate time series from Group 1 (left), from
group 2 (middle). Plot of ε-complexity coefficients (A, B) for two groups, red circles correspond
to group 1 and black crosses correspond to group 2 (right)

• ARMA(3,2) process coefficients. Group 1: φ = (0.4, 0.3, 0.4), θ = (0.1,−0.5);
Group 2: φ = (−0.2,−0.3,−0.8), θ = (0.2, 0.1)

• FARIMA process with coefficients Group 1: φ = (0.1,−0.5); θ = (0.6, 0.01);
d = 0.35; Group 2: φ = (0.2,−0.4); θ = (0.4, 0.02); d = 0.35;

• Logistic map: with coefficients Group 1: α = 3.98, Group 2: α = 3.87.
• Quadratic map. The same components for both groups.
• Mackey Glass equation: with coefficients Group 1: a = 0.1, b = 0.2, c = 9.7
Group 2: a = 0.14, b = 0.19, c = 9.6

We simulate 500 replications for each group of the above multivariate time series
with six components. To get some variability in the processes, the Gaussian noise
with zero mean and s.d.=0.005 is added to each coefficient. Then their ε-complexity
coefficients (A, B) are estimated. Figure16.2 gives examples of multivariate time
series generated by above processes for group one (left plot) and group two (middle
plot). The right plot of Fig. 16.2 shows the ε-complexity coefficients (A, B) for
all simulated time series. The red circles correspond to group one and black crosses
correspond to group two. One can see that we got a perfect separation in this example.
In this case, both classification algorithmsgive 100%accuracy on the cross-validation
(Fig. 16.2).

16.4.2 Application to the Classification of the EEG-data

Now we will demonstrate our methodology on the EEG-data with two groups of
subjects. The data came from a large study which was performed at the Neurody-
namics Laboratory, State University of New York Health Center. The purpose of that
study was to examine EEG correlates of genetic predisposition to alcoholism. Data
contains measurements from 64 electrodes placed on subject’s scalps which were
sampled at 256Hz (3.9-msec epoch) for 1 s. The data are publicly available at https://
archive.ics.uci.edu/ml/datasets/EEG+Database.

https://archive.ics.uci.edu/ml/datasets/EEG+Database
https://archive.ics.uci.edu/ml/datasets/EEG+Database
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Table 16.1 (Results for the Random Forest (RF) and Support Vector Machine (SVM) classifiers)

Accuracy (in %) FP (in %) FN (in %)

RF OOB 87.18 12.0 13.6

RF 95% CI (86.0,88.0) (10.4, 13.0) (12.6,15.7)

RF test set 86.3% 9.2 16.8

SVM 10 f 87.2 8.9% 16.7.0%

SVM 95% CI (86.7,87.9) (8.0, 9.7) (15.6,17.4)

SVM test 84.3% 9.7% 18.8%

There were two groups of subjects: alcoholic and control. Each subject was
exposed to either a single stimulus (S1 or S2) or to two stimuli (S1 and S2) which
were pictures of objects chosen from the 1980 Snodgrass and Vanderwart picture set
([8]).

In this chapter, we provide only an example of our approach. Two data sets were
analysed (in database they are called: training data and validation data sets). Each of
them contains data from 20 subjects, 10 alcoholics and 10 controls. For each of the
subject, 10 runs are given for each type of stimuli (in total, we got 600 EEG records
for each data set, 300 records for each group). 1

At first, we consider a training data set.We estimated the ε-complexity coefficients
(Ai , Bi ) for the original time series and ε-complexity coefficients of first, second,
third and fourth differences (ADki , B Dki ) (k = 1, 2, 3, 4, i = 1, . . . , 600). Each
combination of the set of the ε-complexity coefficients we feed into supervised
classifiers such random forest (RF) and support vector machine (SVM). Then, we
performed 10-fold cross-validation to select the best combination of the features.
This step is performed using R project software and package “RandomForest” for
the random forest classifier and package “e1071” for the SVM. We also perform 10-
fold cross-validation using the “cart” package. We found that (Ai , Bi , AD2i , B D2i )

(complexity coefficients of original time series and their second differences) give the
best result on 10-fold cross-validation, and we decided to use this set of the features.

The results for the OOB and the 10-fold cross-validation for random forest and
SVM classifiers are presented in Table16.1. In this table, we provide the accuracy of
these classifiers and the percentage of false negative and false positive cases. False
positive cases are the cases in which we classify the subjects from control groups
as subject from alcoholic group, and false negative cases are the cases in which
we classify a subject from alcoholic group as a subject from control group. To get
95% bootstrap confidence intervals (CI), we performed 10,000 replications of our
experiments using random re-sampling of the data. We also trained our classifiers
on training set and validate results on the test set. These results are also presented in
the table below.

1We thank Henri Begleiter of the Neurodynamics Laboratory at the State University of New York
Health Center in Brooklyn for this data set.
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16.5 Conclusions

In this chapter, we proposed the methodology for separation of multivariate time
series into two groups without any information on data generating mechanism. This
methodology is basedon the concept of ε-complexity of a continuous vector-function.
Here, we extended our definition of ε-complexity of a continuous function to the case
of vector-function. This definition is consistent with the idea of the Kolmogorov
complexity of objects.

Our numerical experiments and results on EEG data analysis suggest that the
proposed methodology can be widely used.
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Chapter 17
EEG, Nonparametric Multivariate
Statistics, and Dementia Classification

Patrick Langthaler, Yvonne Höller, Zuzana Hübnerová, Vítězslav Veselý
and Arne C. Bathke

Abstract We are considering the problem of performing statistical inference with
functions as independent or dependent variables. Specifically, we will work with
the spectral density curves of electroencephalographic (EEG) measurements. These
represent the distribution of the energy in the brain on different frequencies and
therefore provide important information on the electric activity of the brain. We have
data of 315 patients with various forms of dementia. For each individual patient, we
have one measurement on each of 17 EEG channels. We will look at three different
methods to reduce the high dimensionality of the observed functions: 1. Modeling
the functions as linear combinations of parametric functions, 2. The method of rela-
tive power (i.e., integration over prespecified intervals, e.g., the classical frequency
bands), and 3. A method using random projections. The quantities that these meth-
ods return can then be analyzed using multivariate inference, for example, using the
R package npmv (Ellis et al., J Stat Softw 76(1): 1–18, 2017, [4]). We include a
simulation study comparing the first two methods with each other and consider the
advantages and shortcomings of each method. We conclude with a short summary
of when which method may be used.
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17.1 Introduction

Drawing statistical inference from data where the variables of interest are functions
instead of vectors or scalars can be problematic. In this contribution, we chose the
strategy of reducing the functions’ dimensionality to a fixed finite number of vari-
ables, which are then amenable to more traditional statistical analysis. For most of
the chapter, we will treat the quantities derived from the functions as the dependent
variables and the diagnostic group as the independent variable. We will give one
example of the functions as the independent variables in Sects. 17.2.4 and 17.2.5.

For multivariate testing, we will use the R package npmv [4], which provides a
well-validated approach to nonparametric multivariate data analysis.

We present three methods for reducing the functional responses to a vector of
variables:

1. Modeling the functions as a linear combination of simple functions which can be
completely determined by six parameters.

2. Using so-called relative power on certain intervals, which is calculated by inte-
grating the functions over the intervals and dividing by the total integral.

3. Using random projections into a lower-dimensional subspace. This is done using
the R package RPEnsemble [2].

The first method can be seen as an additive regression model in which each patient
yields a single functional observation, and the estimated parameters are then com-
pared between different diagnostic groups. To our knowledge, this kind of modeling
of spectral density curves has never been used before.

The second method has in some variation been used in quantitative EEG research
for a long time (e.g., [11]) and has established itself as a standard method. Among
clinicians and neuroscientists, it is known as analysis of the power in the classical
frequency bands, which are commonly termed delta, theta, alpha, beta, and gamma.

The mathematical basis for the third method is the Johnson–Lindenstrauss
Lemma [7]. We are using the R package RPEnsemble [1, 2] for implementation.
As far as we are aware, random projections are not commonly used in neurological
research of this kind.

17.1.1 Notation

Our data consists of observations (functions) from 315 patients. We had the two
factors:
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• Diagnostic Group, consisting of the levels Alzheimer’s, Mild Cognitive Impair-
ment (MCI), Subjective Cognitive Complaint (SCC), Depression with Cognitive
Impairment (DCI), and No Diagnosis.

• EEG Channel consisting of the levels C3, C4, Cz, F3, F4, F7, F8, Fz, O1, O2,
P3, P4, Pz, T3, T4, T5, and T6. The letters represent different areas of the brain
(C = Central, F = Frontal, O = Occipital, P = Parietal, and T = Temporal).
The digits (and the z) specify the location in more detail. Even numbers refer to
the right hemisphere of the brain, odd numbers to the left hemisphere. A z means
central, that is, in the lateral center of the head. The positions do conform with the
10–20 system for standardized acquisition.

Each patient belongs to exactly one diagnostic group, and each patient is measured
exactly once on each of the 17 channels. We excluded patients belonging to the No
Diagnosis group. This way we obtained 243 patients with complete records. Each
observation is given as a series of points (xi , yi ), where the xi , i ∈ {1, . . . , N } are
the same for every observation and the xi are equidistant. In our dataset, the xi

represented 211 different, equidistant frequencies between 0 and 41H z on which the
power (i.e., the square of the signal strength at that frequency) was measured. The
yi correspond to these measured values. So the point (xi , yi ) for a specific patient
means that at frequency xi , the power of yi was measured. Technically, more indices
could be used for the patient number and level of the between and within-subject
factor. For notational convenience, we omit those indices here.

17.2 Method: Modeling the Data as Realizations
of Parameterized Functions

This method interprets each observation as a function of a small number of parame-
ters. Reasonable estimates for the parameters can be found, for example, with a least
squares procedure.Multivariate analysis can then be performed on these coefficients.

17.2.1 Normalizing

In order to make our parameters only correspond to the shape of the functions and
not to the total integral, we will standardize them. This also has the advantage of
needing one less parameter as we will see later on. Let y∗

1 , . . . , y∗
N be the observed

values. We then approximate the integral of a function by

I := xN − x1
N

N∑

i=1

y∗
i . (17.1)
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Note that this is just the closed Newton–Cotes formula of degree 1. We then set
yi := y∗

i
I for i ∈ {1, . . . , N }. Then the pairs (xi , yi ) define the standardized curve.

17.2.2 Estimation of Parameters

In order to estimate the parameters from a given standardized curve, we model it as
the sum of integrable functions. Let f1(θ1; x), . . . , f p(θp; x) be integrable func-
tions, such that for all i = 1, . . . , p: θi ∈ R

ki for some ki ∈ N. Then we define
θ := (θ1, . . . , θp) ∈ R

∑p
i=1 ki and

f (θ; x) :=
p−1∑

i=1

ai · fi (θi ; x) + (1 −
p−1∑

i=1

ai ) · f p(θp; x) (17.2)

We further request that
∫ xN

x1
fi (θi ; x)dx = 1 ∀θi ∈ R

ki and
∫ xN

x1
f (θ; x)dx = 1

∀θ ∈ R

∑p
i=1 ki . This, in combination with the standardization, allows us to write 1 −∑p−1

i=1 ai instead of ap. In order to estimate the parameters a1, . . . , ap−1 as well as
θ1,1, . . . θ1,k1 , . . . , θp,1, . . . θp,kp , we minimize the following sum of squares:

SSQ =
N∑

i=1

( f (θ; xi ) − yi )
2 (17.3)

with respect to those parameters. Only in special cases can we find a closed analytical
expression for the values of the parameters that minimize SSQ. Usually we have to
resort to numerical methods.

17.2.2.1 Using Weight Functions

Sometimes, certain regions of the domain of the function to be estimated might be
more important than others. For example, if they correspond with a hypothesis that
we want to test. In this case, we can use a weight function

w : R −→ [0, ∞)

and minimize

SSQ∗ =
N∑

i=1

( f (θ; xi ) − yi )
2 · w(xi ) (17.4)
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instead. When choosing w(xi ) = 1 ∀i we get Eq. (17.3). In order to make the mod-

els comparable, one has to make sure that
∑N

i=1 w(xi ) = c for some constant c.

Restricting the Range of Parameters

Ifwe have a theoreticallymotivated desire for a number of our parameters to bewithin
a certain subset of R, we can modify SSQ in such a way that estimated parameters
falling out of their respective ranges are penalized. If, for example, we want the
parameters to satisfy θ j, k ∈ A j, k , we can minimize

SSQ∗ =
N∑

i=1

( f (θ; xi ) − yi )
2 +

p∑

j=1

k j∑

k=1

c j g(d(θ j, k, A j, k)) (17.5)

Here g is the loss function, for example, g(x) = |x | or g(x) = x2. Furthermore,
d(x, A) := inf y∈A d(x, y) where d is some metric, usually the euclidean metric.
The c j are smoothing parameters that scale the loss function.

17.2.3 Applying This Method

When looking at the power spectral density curves of our dataset, we can see two
major features that all of them have in common:

• A general decline of power with increasing frequency.
• A peak somewhere between approximately 5 and 15 Hz (the so-called dominant
rhythm, or peak frequency, linked to individual alpha frequency or brain rate).

The first feature can be modeled well by a function of the form

f1(λ; x) = x−λ

∫ x211
x6

x−λdx
(17.6)

where λ determines the rate of decline. The peak we decided to model with

f2(μ, σ ; x) =
1√
2πσ 2

e− (x−μ)2

2σ2

∫ x211
x6

1√
2πσ 2

e− (x−μ)2

2σ2 dx
(17.7)

which is the scaled probability density function of a normal distribution. μ tells us
the position of the peak on the x-axis, whereas σ describes the breadth of the peak. It
was important to us to model the peak in such a way as to identify its position, since
we conjectured that it changed with age and even more with pathological aging [6].
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Fig. 17.1 Examples of the two function model

When applying this model we can see that it is often not satisfactory as can be
seen in Fig. 17.1.

Therefore, we added a third function:

f3(ncp; x) =
e− 1

2 (x+ncp)

2
3
2

∑∞
j=0

x
3
2 + j−1ncp j

22 j �( 3
2 + j) j !

∫ x211
x6

e− 1
2 (x+ncp)

2
3
2

∑∞
j=0

x
3
2 + j−1

λ j

22 j �( 3
2 + j) j ! dx

(17.8)

which is the scaled probability density function of a noncentral chi-squared distri-
bution with 3 degrees of freedom.

The final model looks like this:

f (a, b, λ, μ, σ, ncp; x) = a f1(λ; x) + (1 − a − b) f2(μ, σ ; x) + b f3(ncp; x)

(17.9)
Examples can be seen in Fig. 17.2.

Overall, we have the parameters a, b, λ, μ, σ , and ncp. In order to test for differ-
ences between groups, we used the package npmv with the parameters as dependent
variables and diagnostic group as independent variable.

Note: We removed the first 5 observation points for each observation. This was
done because the very first observation point at 0Hz is meaningless, while for very
low frequencies (we chose ≈1Hz as cutoff) the measurements are unreliable. We
did this for every method.
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Fig. 17.2 Examples of the three function model

17.2.4 Hierarchical Clustering of the Channels Within Each
Diagnostic Group

We also performed an agglomerative hierarchical clustering of the different EEG
channels within each diagnostic group. Each EEG channel was represented by the
six-dimensional vector (a, b, λ, μ, σ, ncp). Parameter σ was log transformed to
obtain less skewed sample. Obtained dendrograms based on the Mahalanobis dis-
tance of the clusters can be seen in Fig. 17.3. The clusters suggest that one may use
one of the two symmetrical measurements (left/right hemisphere of the brain) which
are typically highly correlated. This is advantageous because it reduces the numerical
dimension of responses without loss of information.

17.2.5 Multicategorical Response Model of Diagnostic
Groups

Amulticategorical response model [5] with diagnostic groups as dependent variable
and all channels parameters as independent variables can be also applied. In our case,
the model had full column rank design matrix of size 729× 309. It should be noted
that the usual Newton–Rhapson method leading to iterative weighted least squares
method did not converge and trust region algorithm [3]must have been used to find the
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Fig. 17.3 Hierarchical clustering dendrograms of the EEG channels. The vertical distances rep-
resent the Mahalanobis distances between the six-dimensional means of the two corresponding
clusters

maximum likelihood estimates of the unknown parameters of the multicategorical
response model. Using a stepwise procedure, significant parameters and channels
with respect to prediction of the probability of having considered types of dementia
could have been identified. Note that the choice of neglected channels differed from
the approach in Sect. 17.2.4 since they reflect the dependence of the probabilities of
the diagnostic groups on the channel parameters.

When the channels’ interactions are taken into account in the multicategori-
cal response model, a strong rank deficiency in the design matrix is encountered.
Similarly to [12], we considered a sparse parameter estimation technique based on
BPA4—a four-stepmodificationof theBasis PursuitAlgorithm [10].Wewere search-
ing for the sparse parameter estimates in model for the whole sample as well as a
limited sample of patients with either Alzheimer’s disease or Mild Cognitive Impair-
ment (as in Sect. 17.4.1).

17.3 Method: Simplification by Integration

Another often used method for analyzing power spectral density curves (e.g., [11]) is
to compare the relative power of certain intervals. By relative power over the interval
[a, b] for some integrable function h, we mean

∫ b
a h(x)dx

∫ xn

x1
h(x)dx

. (17.10)

Some studies also use the absolute power, which is just the numerator in expression
(17.10), or ratios of different relative/absolute powers. Since we have no analytical



17 EEG, Nonparametric Multivariate Statistics, and Dementia Classification 251

expression for the power spectral density curves (this is what we want to estimate),
we can approximate this expression via numerical integration, similar to Eq. (17.1).
The following intervals are often used in EEG research:

• delta (0–4Hz)
• theta (4–8Hz)
• alpha (8–13Hz)
• beta (13–30Hz)
• gamma (more than 30Hz).

17.3.1 Applying This Method

Since we needed 6 parameters for the previous method, we decided to use 6 intervals
for this method in order to get a fair comparison. Since the frequencies we measured
were only 0.195Hz apart, we decided to simply use the neighboring frequencies of
an interval for numeric integration, instead of interpolating the exact frequencies.
We, therefore, used the following frequencies:

• delta (0–3.91Hz)
• theta (3.91–8.01Hz)
• lower alpha (8.01–10.16Hz)
• higher alpha (10.16–13.09Hz)
• beta (13.09–30.08Hz)
• gamma (30.08–41.03Hz).

The two subdivisions of the alpha range are motivated by the finding that these
ranges react differently to specific cognitive tasks [8]. In order to test for differences
between groups, we used the package npmv [4], using the six relative power values
as dependent variables and diagnostic groups as independent variable.

17.4 Method: Projecting into a Subspace

This method is built around the R package RPEnsemble [2]. Details on the math-
ematical theory can be read in [1]. The basic idea behind the package is the so-
called Johnson–Lindenstrauss Lemma [1]. This lemma states that for x1, · · · , xn ∈
R

p, ε ∈ (0, 1) and d >
8 log(n)

ε2
, there exists a linear map f : R

p → R
d such that

(1 − ε)||xi − x j ||2 ≤ || f (xi ) − f (x j )||2 ≤ (1 + ε)||xi − x j ||2, (17.11)

for all i, j = 1, · · · , n. Since this map nearly preserves pairwise distances, clas-
sification problems can be solved equivalently in R

d instead of Rp and multivari-
ate inference can be done on the coordinates of f (xi ), i = 1, · · · , n instead of
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xi , i = 1, · · · , n. The package attempts to find this map via randomly generat-
ing projections and then choosing the projection which works best for classify-
ing (i.e., has the most correct classifications) a test set using Linear Discriminant
Analysis, Quadratic Discriminant Analysis, a K-Nearest Neighbors method, or other
classification methods.

A limitation of this method is that the package only provides methods for data
in which the factor variable (in our case diagnostic group) has exactly two levels.
Another potential limitation is the fact that the values provided by the package (i.e.,
the coordinates of the observed values in the low-dimensional space) are linear com-
binations of some of the original coordinates. Therefore, they may not be easy to
interpret and the results may not be replicable when choosing different x-values on
which the functions are measured.

17.4.1 Applying This Method

Usually one splits the data into a training and test set for this method. When using
it to test for differences between the groups, however, we used the whole dataset
as training set. We modified the function RPChoose from the package RPEnsemble
in order to return the projection matrix used. We then applied the matrix onto the
observations and tested for differences in the resulting coordinates using the package
npmv [4].

Since RPEnsemble only works for group factors with a factor level of two, we
decided to limit our sample to patients with either Alzheimer’s disease or Mild
Cognitive Impairment, since we expected to see the most interesting differences
between these two groups, out of all two-group combinations.

17.5 Simulation Study

We decided to do a simulation study to compare the two methods, modeling the
data as parametric functions and simplification by integration, that is, the first and
second method described in this chapter. We chose to restrict the simulation study to
these two methods since they both can be implemented such that they have the same
number of parameters, namely six. The number of parameters that the data can be
reduced to via the method projecting into a subspace depends on the sample size via
the formula in the Johnson–Lindenstrauss Lemma. The larger the sample size, the
larger the number of parameters required. Even if we chose a very small sample size
of 5 per group, resulting in 10 overall observations, and set the maximum value for ε

to 1, we still had d > 18.42. Thus, we would have to project into a 19-dimensional
subspace at the very least, which makes this method incomparable with the other
two.
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Fig. 17.4 Example of a shift effect. Original normalized curve is black and shifted curve is red

We generated our data for simulation as follows: We limited our whole data to
observations of the biggest diagnostic group (Depression with Cognitive Impair-
ment) and one channel (F4) in order to acquire a homogeneous sample. These 69
observations were the pool from which we drew. For each constellation of a sample
size, a certain effect, and one of the two methods, we then drew two random samples
with the given sample size out of the pool.We always left the first sample unchanged,
applied an effect to the second sample and then extracted the parameter estimates.
The actual testing was done with the ANOVA-type test provided by the R package
npmv [4].

There were two kinds of effects that we applied to the second sample: A Shift
Effect and an Additive Triangle Effect. For a shift effect, we shifted each observation
by a certain number of grid points to the right and the new values that would appear
on the left would be held constant at the leftmost value of the original observation. So
shifting the observation {(x1, y1), (x2, y2), (x3, y3), . . . , (xN , yN )} to the right by 3
grid pointswill result in the observation {(x1, y1), (x1, y1), (x1.y1), (x1, y1), (x2, y2),
(x3, y3), . . . , (xN−4, yN−4), (xN−3, yN−3)}. This canbe seengraphically inFig. 17.4a.
Since the first method (modeling the data as parametric functions) requires the inte-
gral to be 1, we normalized the shifted observations again after shifting. An example
of this can be seen in Fig. 17.4b. This of course did not only introduce a horizontal
effect but also a vertical one.

An Additive Triangle Effect was created by adding a triangle function to all obser-
vations in the second sample. Such a function can be seen in Fig. 17.5. The base of
the triangle was always the whole domain of the functional observations (i.e., the
interval [0, 41.0156]), and the x-coordinate of the peak was always exactly the grid
point in the middle, i.e., 20.5078. So the strength of the effect was solely determined
by the height of the peak. In order for effect sizes to be comparable betweenmethods,
we normalized the observations for both methods before adding the triangle func-
tion and then normalized again for the method of modeling the data by parametric
functions. An example of a normalized curve with an added triangle function can be
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(b) Added Triangle with normalization
afterwards

Fig. 17.6 Example of an Additive Triangle Effect. Original normalized curve is black and curve
with triangle effect is red

seen in Fig. 17.6a, and the same curve after being normalized again can be seen in
Fig. 17.6b.

We looked at three different shifting effects: 10, 15 and 20, which corresponded
to 1.9531Hz, 2.93Hz, and 3.9063Hz, respectively.

For the additive triangle effect, we chose the three heights: 0.01, 0.02, and 0.03.
For each combination of sample size, effect, and method, we ran 1000 simulation

runs. We originally planned for 10000 but decided that this would take up too much
computational time. For example, the simulation for sample size 20, shift effect of
10 and the method of modeling the observations as parametric curves took about
142mins. The relative frequencies of p-values smaller than 0.05 out of all 1000
p-values can be seen in Table17.1.

Generally speaking,weobserved an increase in power bothwith increasing sample
size and effect size. For sample sizes smaller than 20, both methods were conserva-
tive. Most of the time, the integration (relative power) method actually outperformed
the parameterized function modeling approach.
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Table 17.1 Results of the simulation study

Effect

No
Effect

Shift Triangle

10 15 20 0.01 0.02 0.03

Sample size 5 Parameterized
functions

0.031 0.05 0.285 0.592 0.057 0.156 0.275

Integration 0.027 0.117 0.144 0.196 0.102 0.354 0.661

10 Parameterized
functions

0.038 0.15 0.714 0.986 0.146 0.524 0.791

Integration 0.044 0.442 0.688 0.838 0.291 0.847 0.991

20 Parameterized
functions

0.048 0.386 0.992 1 0.356 0.935 1

Integration 0.052 0.949 0.999 1 0.636 0.999 1

Fig. 17.7 Example of fit
achieved by the first method
for a shifted observation
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There is an important caveat regarding both methods: Differences in the extracted
parameters might not increase as differences in the curves themselves increase. For
example, it is entirely possible that a shift by a certain amount does not change the
relative value of the integral at all, giving the relative power method no additional
power above the type 1 error rate for that particular scenario. This was also a problem
for the function modeling method. In the shift scenario, for example, it was often not
the peak that was modeled by the mean of the normal density component, but the
constant part that had been shifted in. An example can be seen in Fig. 17.7. While
in this scenario the parameters do differ as a result of the effect, the parameters
cannot be interpreted as before. Indeed, the mean of the normal distribution might
not correspond to the peak in the alpha range. It is, therefore, also possible for the
first method to imagine a scenario where a certain possibly large effect might not
lead to any significant change in the extracted parameter estimates.
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17.6 Conclusion

We considered three methods for reducing functional EEG responses to a finite-
dimensional response vector, in order to use multivariate statistical inference meth-
ods. While the integration (relative power) approach is commonly used in EEG
research concerning pathological aging, the other two methods to our knowledge are
not used. Our interest in analyzing alternatives to the relative power approach comes
from the fact that it is not known whether the traditional frequency bands provide an
optimal partition of the whole frequency domain. For example, it is often assumed
that pathological aging is associated with a shift of the peak frequency from the alpha
range to the theta range [9]. However, the shift might also take place within the alpha
range, not changing the relative power of the alpha interval significantly. Moreover,
the normal aging process is also associated with a slight shift of the peak, further
complicating the matter [9].

Which method to use depends on the specific problem. Modeling the response
functions as linear combinations of certain base functions emphasizes the shape of
the function, whereas the relative power approach emphasizes the distribution of
the area under the curve on different intervals. The random projection method does
not offer as much dimensionality reduction as the other two. Our simulation study
suggests that the first twomethods can be used to pick up differences between groups,
even though it seems as if the secondmethod has an edge over the first. It still remains
as a problem that the parameter estimates in the functional modeling approach do
not capture the entire information about the observed curves. Very different curves
can yield rather similar estimates, rendering any statistical test powerless to reveal
the differences.
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Chapter 18
Change Point in Panel Data with Small
Fixed Panel Size: Ratio and Non-ratio
Test Statistics

Barbora Peštová and Michal Pešta

Abstract The main goal is to develop and, consequently, compare stochastic meth-
ods for detectingwhether a structural change in panel data occurred at some unknown
time or not. Panel data of our interest consist of a moderate or relatively large number
of panels, while the panels contain a small number of observations. Testing proce-
dures to detect a possible common change in means of the panels are established.
Ratio and non-ratio type test statistics are considered. Their asymptotic distributions
under the no change null hypothesis are derived. Moreover, we prove the consistency
of the tests under the alternative. The advantage of the ratio statistics compared to
the non-ratio ones is that the variance of the observations neither has to be known nor
estimated. A simulation study reveals that the proposed ratio statistic outperforms the
non-ratio one by keeping the significance level under the null, mainly when stronger
dependence within the panel is present. However, the non-ratio statistic incorrectly
rejects the null in the simulations more often than it should, which yields higher
power compared to the ratio statistic.

Keywords Change point · Panel data · Change in mean · Hypothesis testing
Structural change · Ratio type statistics

18.1 Introduction

The problem of an unknown common change in means of the panels is studied here,
where the panel data consist of N panels and each panel contains T observations

B. Peštová
Department of Medical Informatics and Biostatistics, Institute of Computer
Science, The Czech Academy of Sciences, Pod Vodárenskou věží 271/2,
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over time. Various values of the change are possible for each panel at some unknown
common time τ = 1, . . . , N . The panels are considered to be independent, but this
restriction can beweakened. In spite of that, observations within the panel are usually
not independent. It is supposed that a common unknown dependence structure is
present over the panels.

Tests for change point detection in the panel data have been proposed only in
case when the panel size T is sufficiently large; i.e., T increases overall limits from
an asymptotic point of view, cf. [4] or [7]. However, the change point estimation
has already been studied for finite T not depending on the number of panels N ;
see [2] or [12]. The remaining task is to develop testing procedures to decide whether
a common change point is present or not in the panels, while taking into account that
the length T of each observation regime is fixed and can be relatively small.

The chapter is structured as follows: Sect. 18.2 introduces a change point model
for panel data together with stochastic assumptions. Ratio and non-ratio type test
statistics for the change point detection are proposed in Sect. 18.3. The asymptotic
behavior of the considered test statistics is derived in Sect. 18.4, which covers the
main theoretical contribution. Section18.5 contains a simulation study that compares
the test based on the ratio statistic against the non-ratio type test. It numerically
emphasizes the advantages and disadvantages of the proposed procedure. Proofs are
given in the Appendix.

18.2 Panel Change Point Model

Let us consider the panel change point model

Yi,t = μi + δi I {t > τ } + σεi,t , 1 ≤ i ≤ N , 1 ≤ t ≤ T ; (18.1)

where I {·} is an indicator function, σ > 0 is an unknown variance-scaling parameter,
and T is fixed, not depending on N . The possible common change point time is
denoted by τ ∈ {1, . . . , T }. A situation where τ = T corresponds to no change in
means of the panels. The means μi are panel-individual. The amount of the break
in mean, which can also differ for every panel and may depend on N , is denoted
by δi . Furthermore, it is assumed that the sequences of panel disturbances {εi,t }t are
independent and within each panel the errors form aweakly stationary sequence with
a common correlation structure. This can be formalized in the following assumption.

Assumption A1 The vectors [εi,1, . . . , εi,T ]� from a probability space

ρt = Corr
(
εi,s, εi,s+t

) = Cov
(
εi,s, εi,s+t

)
, ∀s ∈ {1, . . . , T − t},

which is independent of the lag s, the cumulative autocorrelation function
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r(t) = Var
t∑

s=1

εi,s =
∑

|s|<t

(t − |s|)ρs,

and the shifted cumulative correlation function

R(t, v) = Cov

(
t∑

s=1

εi,s,

v∑

u=t+1

εi,u

)

=
t∑

s=1

v∑

u=t+1

ρu−s, t < v

for all i = 1, . . . , N and t, v = 1, . . . , T .

The sequence {εi,t }Tt=1 can be viewed as a part of a weakly stationary process.
Note that the dependent errors within each panel do not necessarily need to be linear
processes. For example, GARCH processes as error sequences are allowed as well.
The assumption of independent panels can indeed be relaxed, but it would make
the setup much more complex. Consequently, probabilistic tools for dependent data
need to be used (e.g., suitable versions of the central limit theorem). Nevertheless,
assuming that the claim amounts for different insurance companies are indepen-
dent is reasonable. Moreover, the assumption of a common homoscedastic variance
parameter σ can be generalized by introducing weights wi,t , which are supposed
to be known. Being particular in actuarial practice, it would mean to normalize the
total claim amount by the premium received, since bigger insurance companies are
expected to have higher variability in total claim amounts paid.

The aim is to test the null hypothesis of no change in the means

H0 : τ = T

against the alternative that at least one panel has a change in mean

H1 : τ < T and ∃i ∈ {1, . . . , N } : δi �= 0.

18.3 Ratio Versus Non-ratio Test Statistic

Detection of change point in panel data can be considered as a structural stability
issue in high-dimensional time series. References [3, 8] discuss the analysis of panel
data with possible change points in case of stationary and non-stationary (random
walk) errors. We propose a ratio type statistic to test H0 against H1, because this type
of statistic does not require estimation of the nuisance parameter for the variance.
Generally, this is due to the fact that the variance parameter simply cancels out from
the nominator and denominator of the statistic. A competitive and traditional way
for testing the change in panel means could be a usage of non-ratio (CUSUM) type
statistics, for example a maximum or minimum of properly standardized or modified
sums. For surveys on ratio type test statistics, we refer to [5, 6, 10].
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Our particular panel change point non-ratio test statistic is

CN (T ) = 1√
N

max
t=1,...,T−1

∣
∣∣∣∣

N∑

i=1

t∑

s=1

(
Yi,s − 	Yi,T

)
∣
∣∣∣∣
,

which is going to be compared with the ratio test statistics

RN (T ) = max
t=2,...,T−2

maxs=1,...,t

∣∣∣
∑N

i=1

∑s
r=1

(
Yi,r − 	Yi,t

)∣∣∣

maxs=t,...,T−1

∣∣∣
∑N

i=1

∑T
r=s+1

(
Yi,r − Ỹi,t

)∣∣∣
,

where 	Yi,t is the average of the first t observations in panel i and Ỹi,t is the average
of the last T − t observations in panel i , i.e.,

	Yi,t = 1

t

t∑

s=1

Yi,s and Ỹi,t = 1

T − t

T∑

s=t+1

Yi,s .

The latter ratio statistic has already been elaborated in [11]. It will be demonstrated
by simulations that RN (T ) keeps the theoretical significance level, while CN (T )

does not.

18.4 Asymptotic Results

Firstly, we derive the behavior of the test statistics under the null hypothesis of no
change.

Theorem 1 (Under Null) Under hypothesis H0 and Assumption A1

CN (T )
D−−−→

N→∞ σ max
t=1,...,T−1

∣∣∣∣Xt − t

T
XT

∣∣∣∣

and

RN (T )
D−−−→

N→∞ max
t=2,...,T−2

maxs=1,...,t

∣∣Xs − s
t Xt

∣∣

maxs=t,...,T−1

∣∣Zs − T−s
T−t Zt

∣∣ ,

where Zt := XT − Xt and [X1, . . . , XT ]� is a multivariate normal random vector
with zero mean and covariance matrix Λ = {λt,v}T,T

t,v=1 such that

λt,t = r(t) and λt,v = r(t) + R(t, v), t < v.

For testing purposes, it is necessary to estimate variance nuisance parameter σ as
well as covariance matrix Λ in case of the test based on CN (T ). Although in case of
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RN (T ), its limiting distribution does not depend on the variance parameter σ , but
it depends on the unknown correlation structure of the panel change point model.
The way of the variance parameter and covariance structure estimation is shown
in Sect. 18.4.1. Note that in case of independent observations within the panel, the
covariance matrix Λ is simplified such that r(t) = t and R(t, v) = 0.

Next, we show how the test statistics behave under the alternative.

Assumption A2 limN→∞ 1√
N

∣∣∣
∑N

i=1 δi

∣∣∣ = ∞.

Theorem 2 (Under Alternative) If τ ≤ T − 3, then under Assumptions A1, A2 and
alternative H1

CN (T )
P−−−→

N→∞ ∞ and RN (T )
P−−−→

N→∞ ∞. (18.2)

Note that δi ≡ δi (N ) may depend on N . Assumption A2 is satisfied, for instance,
if 0 < δ ≤ δi ∀i (a common lower change point threshold) and δ

√
N → ∞, N →

∞. Another suitable example of δi s for the condition in Assumption A2 can be
0 < δi = K N−1/2+η for some K > 0 and η > 0. Or δi = Ciα−1

√
N may be used

as well, where α ≥ 0 and C > 0. The assumption τ ≤ T − 3 means that there are
at least three observations in the panel after the change point. It is also possible
to redefine the test statistic by interchanging the nominator and the denominator
of RN (T ). Afterward, Theorem 2 for the modified test statistic would require three
observations before the change point, i.e., τ ≥ 3.Note that the assertion of Theorem2
for non-ratio statistic CN (T ) can be weakened by omitting τ ≤ T − 3.

Theorem 2 says that in presence of a structural change in the panel means, the
test statistics explode above all bounds. Hence, the procedures are consistent and the
asymptotic distributions from Theorem 1 can be used to construct the tests.

18.4.1 Estimation of the Covariance Structure

The estimation of the covariancematrixΛ fromTheorem 1 requires panels as vectors
with elements having commonmean (i.e., without a jump). Therefore, it is necessary
to construct an estimate for a possible change point. A consistent estimate of the
change point τ in the panel data is proposed in [12] as

τ̂N := arg min
t=2,...,T

1

w(t)

N∑

i=1

t∑

s=1

(Yi,s − 	Yi,t )2, (18.3)

where {w(t)}Tt=2 is a sequence of weights specified in [12]. However, any other
estimate of τ that is consistent, i.e., limN→∞ ¶[̂τN = τ ] = 1, can be used instead of
τ̂N from (18.3).

Since the panels are considered to be independent and the number of panels
may be sufficiently large, one can estimate the correlation structure of the errors
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[ε1,1, . . . , ε1,T ]� empirically. We base the errors’ estimates on residuals

êi,t :=
{
Yi,t − 	Yi,̂τN , t ≤ τ̂N ,

Yi,t − Ỹi,̂τN , t > τ̂N .
(18.4)

Then, the empirical version of the autocorrelation function is

ρ̂t := 1

σ̂ 2NT

N∑

i=1

T−t∑

s=1

êi,s êi,s+t .

Consequently, the kernel estimation of the cumulative autocorrelation function and
shifted cumulative correlation function is adopted in lines with [1]:

r̂(t) =
∑

|s|<t

(t − |s|)κ
( s
h

)
ρ̂s,

R̂(t, v) =
t∑

s=1

v∑

u=t+1

κ

(
u − s

h

)
ρ̂u−s, t < v;

where h > 0 stands for the window size and κ belongs to a class of kernels

{
κ(·) : R → [−1, 1] ∣∣ κ(0) = 1, κ(x) = κ(−x), ∀x,

∫ +∞

−∞
κ2(x)dx < ∞,

κ(·) is continuous at 0 and at all but a finite number of other points
}
.

Finally, the variance parameter σ for the limiting distribution of CN (T ) from
Theorem 1 can also be estimated by σ̂ 2 := 1

NT

∑N
i=1

∑T
s=1 ê

2
i,s .

18.5 Simulations

A simulation experiment was performed to study the finite sample properties of the
test statistics for a common change in panel means. In particular, the interest lies in
the empirical sizes of the proposed tests, i.e., tests based on ratio test statisticRN (T )

and non-ratio test statistic CN (T ), under the null hypothesis and in the empirical
rejection rate (power) under the alternative. Random samples of panel data (5000
each time) are generated from the panel change point model (18.1). The panel size
is set to T = 10 and T = 25 in order to demonstrate the performance of the testing
approaches in case of small and intermediate panel length. The number of panels
considered is N = 50 and N = 200.

The correlation structure within each panel is modeled via random vectors gen-
erated from iid, AR(1), and GARCH(1,1) sequences. The considered AR(1) process
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Table 18.1 Empirical size (1−specificity) of the test under H0 for test statistics and

using the asymptotic critical values, considering a significance level of 5%,weight function
w(t) = t2, and smoothing window width h = 2

T N Innovations IID AR(1) GARCH(1,1)

10 50 N(0, 1) 0.052 0.066 0.067 0.176 0.054 0.065

t5 0.049 0.075 0.068 0.178 0.054 0.071

Centered χ2
3 0.051 0.076 0.063 0.179 0.055 0.072

200 N(0, 1) 0.050 0.067 0.061 0.175 0.050 0.062

t5 0.052 0.073 0.065 0.179 0.052 0.063

Centered χ2
3 0.055 0.075 0.069 0.177 0.052 0.061

25 50 N(0, 1) 0.054 0.060 0.068 0.220 0.053 0.055

t5 0.052 0.055 0.068 0.210 0.054 0.057

Centered χ2
3 0.054 0.057 0.059 0.212 0.053 0.059

200 N(0, 1) 0.051 0.061 0.070 0.199 0.049 0.061

t5 0.047 0.059 0.069 0.187 0.048 0.054

Centered χ2
3 0.045 0.060 0.060 0.191 0.047 0.059

has coefficient φ = 0.3. In case of GARCH(1,1) process, we use coefficients α0 = 1,
α1 = 0.1, and β1 = 0.2, which according to [9, Example 1] gives a strictly stationary
process. In all three sequences, the innovations are obtained as iid random variables
from a standard normalN(0, 1), student t5, or centered χ2

3 distribution. Let us remark
that a random variable X from the centered χ2

3 distribution means that X + 3 has
a χ2 distribution with three degrees of freedom. Simulation scenarios are produced
as all possible combinations of the above-mentioned settings.

When using the asymptotic distributions from Theorem 1, the variance parameter
and the covariance matrix are estimated as proposed in Sect. 18.4.1 using the Parzen
kernel

κP(x) =
⎧
⎨

⎩

1 − 6x2 + 6|x |3, 0 ≤ |x | ≤ 1/2;
2(1 − |x |)3, 1/2 ≤ |x | ≤ 1;
0, otherwise.

The Bartlett (triangular) window was tried as well yielding similar results than the
Parzen one.

Several values of the smoothing window width h are tried from the interval [2, 5],
and all of them work fine providing comparable results. To simulate the asymptotic
distributions of the test statistics, 2000 multivariate random vectors are generated
using the pre-estimated variance parameter and covariance matrix. To access the
theoretical results under H0 numerically, Table18.1 provides the empirical size (one
minus specificity) of the asymptotic tests based on RN (T ) and CN (T ), where the
significance level is α = 5%.
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On one hand, it may be seen that the approach based on ratio type statisticRN (T )

gives the test size close to theoretical value 0.05. As expected, the best results are
achieved in case of independence within the panel, because there is no information
overlap between two consecutive observations. The precision of not rejecting the
null is increasing as the number of panels is getting higher and the panel is getting
longer as well. On the other hand, the test sizes from non-ratio type statistic CN (T )

are higher than the theoretical value of 0.05, especially when stronger dependence
within the panel is considered. This means that the non-ratio test rejects the null
hypothesis more frequently and, hence, incorrectly.

The performance of both testing procedures under H1 in terms of the empirical
rejection rates is shown in Table18.2, where the change point is set to τ = �T/2� and
the change sizes δi are independently uniform on [1, 3] in 33, 66% or in all panels.

One can conclude that the power of both tests increases as the panel size and the
number of panels increase, which is straightforward and expected. Moreover, higher
power is obtained when a larger portion of panels is subject to have a change inmean.
The test power dropswhen switching from independent observationswithin the panel
to dependent ones. Innovations with heavier tails (i.e., t5) yield smaller power than
innovations with lighter tails. Asymmetric error distribution (i.e., centered χ2

3 ) gives
smaller power than the standard normal distribution of errors. The other considered
symmetric error distribution (i.e., t5) yields only slightly higher power in most of
the cases than the asymmetric centered χ2

3 distribution. Generally, ratio type statistic
RN (T ) provides lower power than non-ratio type statistic CN (T ) in all scenarios.
However, this is among other things due to the fact that the CN (T )-based test rejects
the null more often than it should.

Finally, an early change point is discussed very briefly. We stay with standard
normal innovations, iid observations within the panel, the size of changes δi being
independently uniform on [1, 3] in all panels, and the change point is τ = 3 in case
of T = 10 and τ = 5 for T = 25. The empirical sensitivities of both tests for small
values of τ are shown in Table18.3.

When the change point is not in the middle of the panel, the power of the test
generally falls down. The source of such decrease is that the left or right part of the
panel possesses less observations with constant mean, which leads to a decrease of
precision in the correlation estimation.

18.6 Conclusions

In this chapter, we consider the change point problem in panel data with fixed panel
size. Occurrence of common breaks in panel means is tested. We compare the ratio
and the non-ratio type test statistic from a theoretical point of view and by simu-
lations as well. The asymptotic properties of both test statistics are derived. Under
the null hypothesis of no change, the test statistics weakly converges to functionals
of the multivariate normal random vector with zero mean and covariance structure
depending on the intra-panel covariances. The asymptotic distribution of the non-
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Table 18.2 Empirical sensitivity (power) of the test under H1 for test statistics and

using the asymptotic critical values, considering a significance level of 5%,weight function
w(t) = t2, and smoothing window width h = 2

H1(%) T N Innovations IID AR(1) GARCH(1, 1)

33 10 50 N(0, 1) 0.235 1.000 0.256 0.999 0.193 1.000

t5 0.174 0.999 0.202 0.996 0.201 0.999

Centered χ2
3 0.175 0.999 0.210 0.995 0.204 0.999

200 N(0, 1) 0.453 1.000 0.486 1.000 0.387 1.000

t5 0.360 1.000 0.393 1.000 0.389 1.000

Centered χ2
3 0.349 1.000 0.360 1.000 0.362 1.000

25 50 N(0, 1) 0.376 1.000 0.394 0.992 0.312 1.000

t5 0.294 1.000 0.301 0.993 0.312 1.000

Centered χ2
3 0.291 1.000 0.295 0.991 0.310 1.000

200 N(0, 1) 0.685 1.000 0.699 0.995 0.584 1.000

t5 0.561 1.000 0.565 1.000 0.590 1.000

Centered χ2
3 0.526 1.000 0.555 1.000 0.579 1.000

66 10 50 N(0, 1) 0.450 1.000 0.491 1.000 0.386 1.000

t5 0.360 1.000 0.377 1.000 0.390 1.000

Centered χ2
3 0.366 1.000 0.403 1.000 0.388 1.000

200 N(0, 1) 0.774 1.000 0.807 1.000 0.677 1.000

t5 0.642 1.000 0.692 1.000 0.688 1.000

Centered χ2
3 0.639 1.000 0.682 1.000 0.675 1.000

25 50 N(0, 1) 0.688 1.000 0.694 1.000 0.581 1.000

t5 0.558 1.000 0.570 1.000 0.594 1.000

Centered χ2
3 0.534 1.000 0.530 1.000 0.569 1.000

200 N(0, 1) 0.951 1.000 0.959 1.000 0.905 1.000

t5 0.874 1.000 0.888 1.000 0.906 1.000

Centered χ2
3 0.835 1.000 0.860 1.000 0.901 1.000

100 10 50 N(0, 1) 0.641 1.000 0.667 1.000 0.563 1.000

t5 0.519 1.000 0.547 1.000 0.546 1.000

Centered χ2
3 0.529 1.000 0.568 1.000 0.548 1.000

200 N(0, 1) 0.928 1.000 0.945 1.000 0.868 1.000

t5 0.844 1.000 0.869 1.000 0.872 1.000

Centered χ2
3 0.843 1.000 0.881 1.000 0.873 1.000

25 50 N(0, 1) 0.873 1.000 0.884 1.000 0.792 1.000

t5 0.760 1.000 0.771 1.000 0.789 1.000

Centered χ2
3 0.737 1.000 0.749 1.000 0.758 1.000

200 N(0, 1) 0.997 1.000 0.997 1.000 0.985 1.000

t5 0.977 1.000 0.982 1.000 0.986 1.000

Centered χ2
3 0.964 1.000 0.967 1.000 0.965 1.000
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Table 18.3 Empirical sensitivity of the test for small values of τ under H1 for test statistics

and using the asymptotic critical values, considering a significance level of 5%, weight
function w(t) = t2, and smoothing window width h = 2

T τ N H1, iid, N(0, 1) T τ N H1, iid, N(0, 1)

10 3 50 0.551 1.000 25 5 50 0.629 1.000

200 0.867 1.000 200 0.927 1.000

ratio statistic depends also on the unknown variance parameter. In spite of that, the
asymptotic distribution of the ratio statistic is free of this nuisance parameter. As
shown in the chapter, the variance parameter and the covariances can be estimated
and, consequently, used for testingwhether a change inmeans occurred or not. This is
indeed feasible, because both test statistics under the alternative converge to infinity
in probability. Furthermore, the whole stochastic theory behind requires relatively
simple assumptions, which are not too restrictive.

A simulation study illustrates that even for small panel size, the investigated
approach based on ratio statistic RN (T ) works fine. It keeps the significance level
under the null, while various simulation scenarios are considered. Besides that, the
power of this test is reasonably high. The procedure based on non-ratio (CUSUM)
statistic CN (T ) does not firmly keep the theoretical significance level. Even though
the power for test based on the non-ratio statistic is higher than in case for the
ratio statistic, the non-ratio type test should not be used for small fixed panel lengths,
because of the demonstrated imperfection of not keeping the significance level under
the null.

18.7 Appendix: Proofs

Proof (of Theorem 1) Let us define

UN (t) := 1

σ
√
N

N∑

i=1

t∑

s=1

(Yi,s − μi ).

Using the multivariate Lindeberg–Lévy CLT for a sequence of T -dimensional iid
random vectors {[∑1

s=1 εi,s, . . . ,
∑T

s=1 εi,s]�}i∈N, we have under H0

[UN (1), . . . ,UN (T )]� D−−−→
N→∞ [X1, . . . , XT ]�,

since Var [∑1
s=1 ε1,s, . . . ,

∑T
s=1 ε1,s]� = Λ. Indeed, the t th diagonal element of the

covariance matrix Λ is Var
∑t

s=1 ε1,s = r(t) and the upper off-diagonal element on
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position (t, v) is

Cov

(
t∑

s=1

ε1,s,

v∑

u=1

ε1,u

)

= Var
t∑

s=1

ε1,s + Cov

(
t∑

s=1

ε1,s,

v∑

u=t+1

ε1,u

)

= r(t) + R(t, v), t < v.

Moreover, let us define the reverse analogue to UN (t), i.e.,

VN (t) := 1

σ
√
N

N∑

i=1

T∑

s=t+1

(Yi,s − μi ) = UN (T ) −UN (t).

Hence,

UN (s) − s

t
UN (t) = 1

σ
√
N

N∑

i=1

{
s∑

r=1

[
(
Yi,r − μi

)− 1

t

t∑

v=1

(
Yi,v − μi

)
]}

= 1

σ
√
N

N∑

i=1

s∑

r=1

(
Yi,r − 	Yi,t

)

and, consequently,

VN (s) − T − s

T − t
VN (t) = 1

σ
√
N

N∑

i=1

⎧
⎨

⎩

T∑

r=s+1

⎡

⎣
(
Yi,r − μi

)− 1

T − t

T∑

v=t+1

(
Yi,v − μi

)
⎤

⎦

⎫
⎬

⎭

= 1

σ
√
N

N∑

i=1

T∑

r=s+1

(
Yi,r − Ỹi,t

)
.

Using the Cramér–Wold device, we end up with

max
t=1,...,T−1

∣
∣∣∣UN (t) − t

T
UN (T )

∣
∣∣∣

D−−−→
N→∞ max

t=1,...,T−1

∣
∣∣∣Xt − t

T
XT

∣
∣∣∣

and

max
t=2,...,T−2

maxs=1,...,t

∣∣UN (s) − s
t UN (t)

∣∣

maxs=t,...,T−1

∣
∣VN (s) − T−s

T−t VN (t)
∣
∣

D−−−→
N→∞ max

t=2,...,T−2

maxs=1,...,t

∣
∣Xs − s

t Xt

∣
∣

maxs=t,...,T−1

∣∣(XT − Xs) − T−s
T−t (XT − Xt )

∣∣ .

��
Proof (of Theorem 2) Considering CN (T ), we have under alternative H1 that
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1

σ
√
N

∣
∣∣
∣
∣

N∑

i=1

τ∑

s=1

(
Yi,s − 	Yi,T

)
∣
∣∣
∣
∣

= 1

σ
√
N

∣
∣∣
∣
∣

N∑

i=1

τ∑

s=1

(

μi + σεi,s − 1

T

T∑

v=1

(μi + σεi,v) − 1

T
δi

)∣∣∣
∣
∣

= 1√
N

∣∣
∣
∣
∣

N∑

i=1

τ∑

s=1

(
εi,s −	εi,T

)− τ

σT

N∑

i=1

δi

∣∣
∣
∣
∣
= OP(1) + τ

σT
√
N

∣∣
∣
∣
∣

N∑

i=1

δi

∣∣
∣
∣
∣

P−→ ∞, N → ∞,

where	εi,T = 1
τ

∑T
v=1 εi,v.

In case of RN (T ), let t = τ + 1. Then under alternative H1, it holds that

1

σ
√
N

max
s=1,...,τ+1

∣∣∣∣∣

N∑

i=1

s∑

r=1

(
Yi,r − 	Yi,τ+1

)
∣∣∣∣∣
≥ 1

σ
√
N

∣∣∣∣∣

N∑

i=1

τ∑

r=1

(
Yi,r − 	Yi,τ+1

)
∣∣∣∣∣

= 1

σ
√
N

∣∣∣∣
∣

N∑

i=1

τ∑

r=1

(

μi + σεi,r − 1

τ + 1

τ+1∑

v=1

(μi + σεi,v) − 1

τ + 1
δi

)∣∣∣∣
∣

= 1√
N

∣∣
∣∣∣

N∑

i=1

τ∑

r=1

(
εi,r −	εi,τ+1

)− τ

σ (τ + 1)

N∑

i=1

δi

∣∣
∣∣∣

= OP(1) + τ

σ (τ + 1)
√
N

∣∣∣∣∣

N∑

i=1

δi

∣∣∣∣∣
P−→ ∞, N → ∞,

where	εi,τ+1 = 1
τ+1

∑τ+1
v=1 εi,v.

Since there is no change after τ + 1 and τ ≤ T − 3, then by Theorem 1 we obtain

1

σ
√
N

max
s=τ+1,...,T−1

∣∣
∣∣
∣

N∑

i=1

T∑

r=s+1

(
Yi,r − Ỹi,τ+1

)
∣∣
∣∣
∣

D−−−−→
N→∞ max

s=τ+1,...,T−1

∣
∣∣
∣Zs − T − s

T − τ
Zτ+1

∣
∣∣
∣ .

��
Acknowledgements The authorswould like to thank an anonymous referee for the suggestions that
improved this chapter. Institutional support to Barbora Peštová was provided by RVO:67985807.
The research of Michal Pešta was supported by the Czech Science Foundation project “DYME—
Dynamic Models in Economics” No. P402/12/G097.

References

1. Andrews, D.W.K.: Heteroskedasticity and autocorrelation consistent covariance matrix esti-
mation. Econometrica 59(3), 817–858 (1991)

2. Bai, J.: Common breaks in means and variances for panel data. J. Econom. 157(1), 78–92
(2010)



18 Change Point in Panel Data with Small Fixed Panel Size … 271

3. Bai, J., Carrion-I-Silvestre, J.L.: Structural changes, common stochastic trends, and unit roots
in panel data. Rev. Econ. Stud. 76(2), 471–501 (2009)

4. Chan, J., Horváth, L., Hušková, M.: Change-point detection in panel data. J. Stat. Plan. Infer.
143(5), 955–970 (2013)
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Chapter 19
How Robust Is the Two-Sample
Triangular Sequential T-Test Against
Variance Heterogeneity?

Dieter Rasch and Takuya Yanagida

Abstract Reference (Rasch, Kubinger andModer (2011b). Stat. Pap. 52, 219–231.)
[4] showed that in case that nothing is known about the two variances it is better to use
the approximate Welch test instead of the two-sample t-test for comparing means of
two continuous distributions with existing first two moments. An analogue approach
for the triangular sequential t test is not possible because it is based on the first
two derivatives of the underlying likelihood functions. Extensive simulations have
been done and are reported in this chapter. It is shown that the two-sample triangular
sequential t test in most interesting cases holds the type I and type II risks when
variances are unequal.

Keywords Comparing expectations · t test · Welch test · Triangular sequential
t-test · Unequal variances

19.1 Comparing Two Means of Continuous Distributions

More details about the tests below and their robustness against non-normality can be
found in Rasch and Schott [6] or [5].

We restrict ourselves to location parameters of two independent samples from two
continuous distributions with existing first two moments. For testing the equality of
means of those distributions [2] showed by simulation experiments that tests based
on normal assumptions can be applied even if the distribution are skewed or have
considerable kurtosis. Scale parameters however are sensitive against deviations from
normality. The authors defined robustness as follows:
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Definition 1 Let dα
1 be a confidence estimation based on an experimental design

Vn of size n concerning a parameter θ of a class G of distributions with (nom-
inal) confidence coefficient 1 − αact (0 < αnom < 1) in G. For an element h ∈
H ⊃ G of a class H of distributions which contains G, we denote by 1 − αact

the actual confidence coefficient of dα . Then, we call dα(1 − ε) robust in H

if
max

h∈H |αnom − αact | ≤ ε.

Due to the fact that a test for testing a null hypothesis H0 : θ = θ0 can be per-
formed by accepting H0 if θ0 is inside the confidence interval and reject it otherwise;
Definition 1 includes the robustness of a test concerning the significance level αnom .

Reference [2] used for G the family of univariate normal (N (μ, σ 2)−) distribu-
tions and for H the Fleishman system of distributions.

Definition 2 A distribution belongs to the Fleishman system [1] if its first four
moments exist and if it is the distribution of the transform

y = a + bx + cx2 + dx3

where x is a standard normal random variable (with mean 0 and variance 1).
By a proper choice of the coefficient a, b, c and d the random variable y will have

any quadruple of first four moments (μ, σ 2, γ1), γ2). By γ1 and γ2, we denote the
skewness (standardized thirdmoment) and the kurtosis (standardized fourthmoment)
of anydistribution respectively. For instance, anynormal distribution (i.e. any element
ofG) with meanμ and variance σ 2 can be represented as a member of the Fleishman
system by choosing a = μ, b = σ and c = d = 0. This shows that we really have
H ⊃ G as demanded in Definition1.

It is known that all probability and empirical distributions (with existing fourth-
order moment) fulfil the inequality

γ2 ≥ −2 (g2 ≥ g21 − 2)

Here g1 and g2 are estimates of γ1 and γ2, respectively.
The equality sign defines a parabola in the (γ1, γ2)-plane {(g1, g2)-plane}.
In Fig. 19.1, the position of the (g1, g2)-values calculated for the 144 characters

from agricultural data in that parabola are shown (weakly printed). The six (γ1, γ2)-
values used by [2] are shown as bold. As it can be seen these values cover the range of
empirical values quite good (due to symmetry negative skewness was not regarded).
[2] used in Definition1 the value ∈= 0.1 so that a test with a nominal risk αnom =
0.05 is considered as 90%-robust as long as 0.04 ≤ αact ≤ 0.06.

All tests below have been found to be at least 90%-robust.

Therefore in the following, we exemplify everything for expectations of normal
distributions.

We independently sample n1 and n2 observations, respectively, from each of
two continuous distributions (population 1 and 2) with existing fourth moment
having potentially different expectations μ1 and μ2. That is, the null hypothesis
is H0 : μ1 = μ2.

1Random variables are boldt print.
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Fig. 19.1 Values of empirical skewness g1 and kurtosis g2 of 144 characters in a (γ1, γ2)-plane,
by the parameters (γ1, γ2) of the six distributions of the Fleishman system used by [2]

The one-sided alternative hypothesis is then HA : μ1 > μ2, or that is to say HA :
δ = μ1 − μ2 > 0.

The two-sided alternative hypothesis is then HA : μ1 �= μ2, or that is to say HA :
δ = μ1 − μ2 �= 0.

Given that the null hypothesis is true, for anyα-test, the value of the power function
is equal to α for all sample sizes n1 and n2. Given that the alternative hypothesis
is true, the value of the power function depends on the actual value of δ and the
sample sizes n1 and n2. Thus, when we try for a certain type II risk of, for instance
β = 0.10, we must fix the δ as well. In the following, we restrict ourselves to normal
distributions because there is a wide range of distributions with considerable values
of skewness and kurtosis parameters where the tests based on normality assumptions
work well [2].
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19.1.1 The Two-Sample T Test

Assuming that

• both distributions are normal and
• they have common variances σ 2 = σ 2

2 = σ 2

the two-sample t-test based on the test statistic

t = y1 − y2
s

√
n1n2

n1 + n2
(19.1)

with

s =

n1∑
i=1

(y1i − y1)
2 +

n2∑
i=1

(y2i − y2)

n1 + n2 − 2
(19.2)

is the most powerful unbiased test for all α. The test statistic (19.1) is non-centrally
t-distributed with n1 + n2 − 2 degrees of freedom. Under the null hypothesis, (19.1)
is (centrally) t-distributed.

19.1.2 The Welch Test

If the assumption of equal variances is either not fulfilled or it is not known if it is
fulfilled an approximate t-test is used. The distribution of

t∗ = y1 − y2 − (μ1 − μ2)√
s21
n1

+ s22
n2

, s2k = 1

nk − 1

∑nk

i=1
(yik − yk)

2, k = 1, 2

was derived by [11] from this stems the name Welch-test.
To test
H0 : μ1 = μ2, σ

2
1 , σ 2

2 arbitrary
against
a)
HA : μ1 > μ2, σ

2
1 , σ 2

2 arbitrary
or b)
HA : μ1 �= μ2, σ

2
1 , σ 2

2 arbitrary,
we use the statistic

t∗ = y1 − y2√
s21
n1

+ s22
n2

, (19.3)

and reject H0 if
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(a) t∗ exceeds the (1 − α)-quantile or
(b) |t∗| exceeds the (1 − α

2 )-quantile of the central t-distribution with

(c) f ∗ =
(

s21
n1

+ s22
n2

)2

s41
n21(n1−1)

+ s42
n21(n1−1)

degrees of freedom, respectively.

Reference [4] showed that in case that nothing is known about the two variances
it is better to use always the approximate Welch test instead of the two-sample t test.
Also, pretesting the hypothesis of equality of variances and to continue with the t test
in case of acceptation and with the Welch-test in case of rejection is not preferable.

To determine the sizes of the two samples the approximate formulae

n1 ≈ ⌈σ1(σ1 + σ2)

δ2
[{t ( f ∗; P) + t ( f ∗; 1 − β)}]2⌉ and n2

⌈σ2σ1

n 1

⌉
(19.4)

can be used by putting P = 1 − α in the one-sided and P = 1 − α/2 in the two-
sided case. A rough estimation of the unknown variances can be obtained using the
anticipated range of the character in question (the difference ofmaximal andminimal
outcome) in the two distribution, respectively, divided by six, and the result may be
used as an estimate for σ1 and σ2 respectively.

19.1.3 The Sequential Triangular T-Test

The first paper on sequential analysis (or design) was written during World War II
by Abraham Wald. Namely Wald, A. [8] Sequential Analysis of Statistical Data;
Theory Statist. Res. Group Rep. 75, Columbia University. The first easy accessible
publication was [9] and the first book [10]. Wald developed the so-called probability
ratio test what is now called the likelihood ratio test, a term we will use in future.
In triangular designs, the continuation region is closed and in triangular form. It is
based on an asymptotic test described in Rasch and schott [6] and in Sect. 5.4 in [3]
where also some of the theory of sequential tests can be found. Triangular tests have
been developed by Whitehead (1992) [12] and [7].

By the triangular sequential test, we test in the one-sided case
H0 : μ1 = μ2, σ

2
1 = σ 2

2 = σ 2 arbitrary
against
HA : μ1 > μ2, σ

2
1 = σ 2

2 = σ 2 arbitrary
Putting θ = μ1−μ2

σ
= δ

σ
, we calculate from the n1 and n2 observations the

maximum-likelihood-estimate (non-random) s2 obtained from (19.2).
Then, we calculate

zn = n1n2
n1 + n2

y1 − y2
s

, νn = n1n2
n1 + n2

z2n
2(n1 + n2)

. (19.5)



278 D. Rasch and T. Yanagida

and accept H0 , if zn ≤ a + bνn . The triangle is defined by the two lines a + bνn and
−a + 3bνn If zn leaves this triangle for zn ≤ −a + 3bνn or meets the boundaries,
HA is accepted. The two constants a and b have to be chosen as follows:

a = 1

θ

(
1 + z1−β

z1−α

)
ln

(
1 + 1

2α

)
(19.6)

b = θ1

2
(
1 + z1−β

z1−α

) (19.7)

with the P-quantiles zP of the standard normal distribution.
The two boundary lines meet in the point (νmax; zmax) = (

a
b ; 2a

)
.

If just this point is met, then accept HA. This point defines the maximum sample
size. It is larger than the size needed for the fixed sample size problem with the same
precision, but the latter is larger than the average sample size of the triangular test.

Unfortunately, there exists no Welch-type approach for the sequential triangular
test. It is the aim of this chapter to investigate the behaviour of the test above if
variances are unequal.

19.2 The Robustness of the Two-Sample Triangular
Sequential Test Against Variance Heterogeneity
a Simulation Study

Because the two variances are unknown, we at first assume that sample 1 stems
from the distribution with the larger variance. Then, we can proceed as follows: the
anticipated range of the character in question (the difference ofmaximal andminimal
outcome) has to be divided by six, and the result may be used as an estimate for σ1.
Now we use in the simulation experiment θ = μ1−μ2

σ1
with θ = 0, 2, 0.4, 0.6, 0.8,

and 1.0. All simulation conditions were investigated with the nominal risks αnom =
0.05;βnom = 0.1 and 0.2. Data were simulated in R version 3.2.3 (R Core Team,
2015) based on a normal distribution with σ1 = 10 and σ2 ranging 1 to 10 with an
increment of 1.

In sum, 100,000 runs were conducted using the R packages seqtest [13] for each
simulation condition. By N f ix we denote the sum of the two sample sizes and from
(19.4). Some of our results are shown below: In the Tables19.1, 19.2, 19.3, 19.4, 19.5,
19.6, 19.7, 19.8, 19.9, and 19.10 αact and βact are the relative frequencies of wrongly
rejecting or accepting the null hypothesis in the 100,000 runs, respectively. ASN is
the average sample number (in both samples) over all runs and N f ix is the size of
both samples needed when using the fixed sample Welch test; thus, N f ix = n1 + n2
with values on the r.h.s from (19.4). In Tables19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7,
19.8, 19.9, and 19.10 the simulation results are given.
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Table 19.1 Simulation results for βnom = 0.1 and θ = 0.2

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.050 0.050 0.050 0.048 0.049 0.049 0.050 0.049 0.049 0.050

βact 0.007 0.008 0.010 0.015 0.019 0.028 0.039 0.054 0.074 0.097

ASN ||ν1 466.492 465.976 466.870 465.106 466.145 465.311 464.990 464.544 465.676 465.525

ASN |ν2 368.015 373.852 383.785 397.452 413.209 433.397 452.942 474.224 495.472 516.542

N f ix 260 310 364 421 484 550 620 696 775 860

Table 19.2 Simulation results for βnom = 0.1 and θ = 0.4

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.052 0.051 0.051 0.049 0.051 0.049 0.048 0.048 0.049 0.049

βact 0.007 0.008 0.010 0.013 0.019 0.026 0.037 0.052 0.069 0.092

ASN |ν1 118.470 118.608 118.338 118.156 118.687 118.242 118.344 118.178 118.416 118.824

ASN |ν2 94.185 95.975 98.642 102.348 106.394 111.171 116.718 121.891 127.249 132.071

N f ix 67 79 92 107 123 139 156 176 195 216

Table 19.3 Simulation results for βnom = 0.1 and θ = 0.6

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.055 0.054 0.054 0.051 0.050 0.050 0.048 0.050 0.049 0.048

βact 0.007 0.008 0.010 0.012 0.018 0.025 0.036 0.049 0.069 0.091

ASN |ν1 53.183 53.395 53.418 53.426 53.359 53.514 53.532 53.438 53.752 53.762

ASN |ν2 43.512 44.398 45.564 47.219 49.253 51.345 53.731 55.989 58.435 60.884

N f ix 30 36 42 49 55 64 71 79 89 98

Table 19.4 Simulation results for βnom = 0.1 and θ = 0.8

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.061 0.061 0.059 0.055 0.054 0.052 0.052 0.050 0.051 0.050

βact 0.006 0.007 0.009 0.012 0.016 0.024 0.033 0.048 0.066 0.086

ASN |ν1 30.340 30.482 30.590 30.558 30.737 30.790 30.816 30.845 30.792 30.832

ASN |ν2 25.754 26.156 26.900 27.865 28.994 30.242 31.463 32.930 34.219 35.361

N f ix 18 21 24 28 33 36 40 46 51 56
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Table 19.5 Simulation results for βnom = 0.1 and θ = 1.0

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact t 0.071 0.068 0.065 0.060 0.057 0.054 0.053 0.052 0.052 0.052

βact 0.006 0.007 0.008 0.012 0.015 0.020 0.030 0.046 0.058 0.081

ASN |μ1 19.725 19.834 19.856 20.007 20.079 20.191 20.201 20.150 20.197 20.211

ASN |μ2 17.578 17.929 18.295 18.905 19.456 20.492 21.238 21.984 22.745 23.807

N f ix 9 14 16 19 22 24 27 30 34 36

Table 19.6 Simulation results for βnom = 0.2 and θ = 0.2

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.049 0.050 0.049 0.050 0.049 0.049 0.050 0.048 0.049 0.049

βact 0.031 0.034 0.040 0.050 0.063 0.081 0.104 0.130 0.159 0.194

ASN |μ1 337.641 337.645 336.633 337.074 337.077 336.947 337.236 337.682 336.342 337.323

ASN |μ2 318.856 323.103 330.800 340.625 352.361 365.580 379.303 392.092 403.067 414.979

N f ix 189 224 263 305 349 398 448 504 560 620

Table 19.7 Simulation results for βnom = 0.2 and θ = 0.4

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.054 0.052 0.051 0.052 0.050 0.050 0.048 0.049 0.049 0.049

βact 0.028 0.033 0.038 0.048 0.060 0.077 0.099 0.126 0.154 0.189

ASN |μ1 85.923 85.786 85.891 85.615 85.922 85.982 86.089 86.221 86.068 85.927

ASN |μ2 81.530 82.890 85.169 87.907 91.047 93.957 97.617 100.947 104.048 107.083

N f ix 48 57 67 78 88 100 115 127 142 158

Table 19.8 Simulation results for βnom = 0.2 and θ = 0.6

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.059 0.058 0.055 0.055 0.052 0.050 0.049 0.049 0.049 0.049

βact 0.027 0.031 0.035 0.044 0.057 0.073 0.095 0.120 0.150 0.182

ASN |μ1 38.599 38.655 38.833 38.926 39.071 39.079 39.062 39.060 39.128 39.212

ASN |μ2 37.663 38.286 39.262 40.589 41.988 43.528 45.100 46.643 47.986 49.283

N f ix 23 26 31 36 40 46 52 57 64 72
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Table 19.9 Simulation results for βnom = 0.2 and θ = 0.8

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.068 0.065 0.063 0.058 0.056 0.054 0.053 0.052 0.051 0.051

βact 0.025 0.030 0.035 0.043 0.054 0.072 0.090 0.115 0.142 0.174

ASN |μ1 22.174 22.189 22.351 22.336 22.527 22.521 22.614 22.619 22.607 22.565

ASN |μ2 22.299 22.631 23.272 23.988 24.792 25.675 26.513 27.43 28.226 28.860

N f ix 14 16 18 21 24 27 30 34 38 42

Table 19.10 Simulation results for βnom = 0.2 and θ = 1.0

H0 : μ1 ≥ μ2 versus HA : μ1 < μ2

σ1 10 10 10 10 10 10 10 10 10 10

σ2 1 2 3 4 5 6 7 8 9 10

αact 0.078 0.072 0.068 0.063 0.061 0.057 0.056 0.054 0.053 0.054

βact 0.022 0.025 0.031 0.039 0.049 0.065 0.084 0.111 0.133 0.168

ASN |μ1 14.472 14.623 14.658 14.768 14.832 14.877 14.879 14.923 14.911 14.892

ASN |μ2 15.287 15.429 15.863 16.226 16.623 17.388 17.979 18.478 18.927 19.318

N f ix 14 16 18 21 24 27 30 34 38 42

19.3 Discussion

As it can be seen from the tables, the empirical first-kind risk αact is approximately
equal to the nominal one or the test at least 90%-robust if θ ≤ 0.7. If θ > 0.7, the
test is only applicable if σ2

σ1
> 0.5. The empirical second-kind risk βact is small if

the variances are unequal and monotonically increasing with increasing variance
in the second sample reaching approximately the nominal second-kind risk if both
variances are equal. The average sample numbers ASN |μ1 and ASN |μ2 at μ1 and
μ2, respectively, are for σ2 < 4 larger than the size of the Welch test, for σ2 = 4
approximately equal to the size of the Welch test and for larger σ2 smaller than the
size of the Welch test (Table19.9).

Summarizing we may say that the use of the two-sample triangular sequential

test holds both nominal risks as long as σ 2
1

σ 2
2

> 10 The empirical second-kind risk βact

is very small for small values of σ2 on cost of a high average sample size. But if
nothing is known about the actual value of σ2, there is no improvement possible by
using a larger nominal second-kind risk. We finally can recommend the use of the

two-sample triangular sequential test even if variances possibly are unequal but σ 2
1

σ 2
2

is expected to be smaller than 10.
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Chapter 20
Performances of Poisson–Gamma Model
for Patients’ Recruitment in Clinical
Trials When There Are Pauses in
Recruitment or When the Number of
Centres is Small
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Valérie Lauwers-Cances, Sandrine Andrieu and Nicolas Savy

Abstract Topredict the duration of a clinical trial is a question of paramount interest.
To date, the more elaborated model is the so-called Poisson–gamma model intro-
duced by Anisimov and Fedorov in 2007. Theoretical performances of this model are
asymptotic and have been established under assumptions especially on the recruit-
ment rates by centre which are assumed to be constant in time. In order to evaluate
the practical use of this model, ranges of validity have to be assessed. By means of
simulation studies, authors investigate, on the one hand, the impact of the number
of centres involved, of the average recruitment rate, of the duration of recruitment
and of the interim time of analysis on the expected duration of the trial and, on the
other hand, two strategies of estimation of the trial duration accounting for breaks
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in recruitment (period during which centres do not recruit) which are compared and
discussed. These investigations yield to guidelines on the use of Poisson–gamma
processes to model recruitment dynamics regarding these issues.

Keywords Clinical trials · Recruitment time · Bayesian statistics · Cox processes

20.1 Introduction

In order to get marketing authorization, a new product has to succeed in clinical
trials. A clinical trial is based on statistical considerations in order to show the
product efficiency, taking into account the variability of the environment. It is a well-
known fact that the power of the statistical test involved is linked to the number of
patients one deals with. If an inadequate number of enrolled patients is used, the
study may fail to reject the null hypothesis due to lack of power. The number of
patients to include, usually called necessary sample size, is thus a fixed parameter
of the trial. Its computation is now standard in trial protocols and mandatory for
most of the publications. It is a surprising fact that, on the one side, much effort
has been devoted in computing the necessary sample size for clinical trials, while
on the other side, relatively little attention is focused on improving the prediction
of the recruitment process. Indeed, till now, most of techniques used by pharmaceu-
tical companies are based on deterministic models and various ad hoc techniques.
“Patient recruitment and retention remains until now more of an art rather than a
science” [15].

The problem of predicting patients’ recruitment and evaluating the recruitment
duration in clinical trials is of paramount interest for planning trials because of sci-
entific, economic and ethical reasons. Ethical concern because it is not satisfactory
to continue a study in vain. Economical concern because a clinical trial is an expen-
sive study in itself and, as the duration of the trial is included in the duration of the
exclusive right to exploit the drug, a delay generates an enormous loss of incomes.
And scientific concern because new drugs are increasingly developed and approved
by regulatory agencies, and when accrual rates are too low, there may be new infor-
mation available during the enrolment period such as the results of other trials or a
change in the understanding of the underlying biology. For these reasons, stopping or
continuing a trial is a decisionwith huge consequences and to develop some objective
tools, based on scientific criteria, would be useful to decide.

Few authors have considered the problem of patients’ recruitment modelling. The
reader can refer to [9] for a systematic review of the existing models. As far as we
know, the pioneer work is one of [14] where an estimation of the study duration
is proposed as a function of inclusion duration and based on data from previous
clinical trials. Let us cite [11] for a model of recruitment by Poisson processes. In
[16], a model for multicentric trial based on Poisson process is introduced. However,
Poisson processes depend on only one parameter, the enrolment rate, and [10] have
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noticed that the use of the historic mean is too simple. It is thus necessary to take
into consideration variability in the rate.

Poisson–gamma model introduced in [7] assumes that the patients arrive at dif-
ferent centres according to Poisson processes with the rates viewed as independent
gamma-distributed random variables. The procedure of parameters estimation at
interim stage using empirical Bayesian techniques has been suggested in [7]. The
model has been validated using data from a large number of real trials [3]. The
Poisson–gamma model was developed further for predicting recruitment process at
initial and interim stages [1], to account for the situations when the centres opening
dates may not be known and assumed to be uniformly distributed in some intervals
[2, 12], some centres can be closed or open in the future [6]. Finally, sensitivity
analyses to errors in parameters’ estimation can be found in [12]. Poisson-gamma
model can be used as a basis for developing techniques for the analysis of the effect
of centre stratification on randomization [4], for predictive event modelling [5], for
predicting randomization process [6] and for management of dropout.

The Poisson–gamma approach on patients recruitment modelling is now popu-
lar, but two questions of paramount interest emerge. First, for which values of the
recruitment parameters (number of centres, average recruitment rate for each cen-
tre, duration of the trial, interim time of analysis), the model is relevant? Second,
is the assumption on the rate, which is assumed constant in time, realistic. These
questions are investigated in this chapter by means of simulation studies. The first
question is easy to investigate by varying the parameters of the model. The second is
much more difficult. A particular setting, of practical interest is to consider breaks in
recruitment. A break is defined as a period during which a centre does not recruit any
patient (holidays, weekend,..). These information are observed and can be collected,
but, in practice, it is a huge and complicated work. Two strategies of estimation of
recruitment duration are proposed in this chapter accounting or not breaks. These
strategies are compared in terms of bias in estimation and in terms of predictive
performances. These investigations allow us to deal with the question: Is it really
useful to enrich the model in order to take into account breaks in recruitments? These
results are deepened in [13] where a third strategy of analysis is considered along
with a comparison of the strategies.

The chapter is organized as follows. Section20.2 describes the Poisson–gamma
model, the estimation procedure is given, and the computation of the expected dura-
tion of the trial is discussed. Section20.3 explains the strategy used to take into
account breaks in the recruitment model. The data generation procedures of the two
simulation studies which are the keystone of our results are explained in Sect. 20.4.
The results are presented and discussed in Sect. 20.5. Finally, the chapter ends with
a concluding Sect. 20.6 where a few recommendations are proposed.
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20.2 The Poisson–Gamma Model Without Breaks
in Recruitment

This section presents the standard Poisson–gamma model as formulated in [8]. Con-
sider a multicentric clinical trial where C centres are involved to recruit n patients.
Denote ui the opening date of the i th centre which is assumed to be observed. The
recruitment process of centre i is denoted {Ni (t), t ≥ ui } and is modelled by a Pois-
son process of rate λi . The global inclusion process is N = ∑C

i=1 Ni . The parameter
of interest is the stopping time:

T =
{

inf
t≥0

: N (t) = n

}

.

In the sequel, we consider, for any i , λi as a random variable which is gamma
distributed with parameters (α, β) whose probability density function is as follows:

pα,β(x) = κe−βx xα−11{x>0},

where κ is a normalizing constant.

20.2.1 Estimation

In most setting, parameters (α, β) are unknown. To estimate these parameters, an
empirical Bayesian strategy may be used. Fix an interim time of analysis t1. Data
collected on [0, t1] are used to calibrate the model. For any centre i , denote τ1,i =
(t1 − ui ) ∨ 0 the duration of activity up to t1 of centre i and k1,i = Ni (t1) the number
of patients recruited by centre i up to t1. Notice that {(τ1,i , k1,i ) , i = 1, . . . ,C} are
observed data.

Theorem 20.1 ([8])Maximum likelihood estimation (α̂, β̂) of the parameters (α, β)
is obtained by maximization of the function:

MΓ
C (α, β) = α ln(β) − lnΓ (α) + 1

C

C∑

i=1

[
lnΓ (α + k1,i ) − (α + k1,i ) ln(β + τ1,i )

]
.

20.2.2 Prediction

Theorem 20.2 ([8]) Consider λ̂1,i a random variable of distribution Γ (α̂ + k1,i ,
β̂ + τ1,i ). The so-called forward rate knowing {Ni (t1) = k1,i } in centre i is the func-
tion defined as
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t → λ̂1,i .1{max(t1,ui )≤t)}. (20.1)

Given, n1 = ∑C
i=1 k1,i , the predictive recruitment process N expresses, for any t > t1

as:

N (t) = n1 + N̄1(t), where N̄1(t) =
C∑

i=1

N̄1,i (t),

and N̄1,i is a Cox process whose rate is given by (20.1) and starting at time t1.

20.2.3 Expected Duration

Consider n̄1 = n − n1, the number of patients remaining to recruit after t1 and the
remaining inclusion time T̄ = {

inf t≥0 : N̄1(t) = n̄1
}
.

Theorem 20.3 ([6, 8]) Denote Λ̂1 = ∑C
i=1 λ̂1,i .

• Assume that all the centres are initiated at time 0 (ui = 0, for any i). Then T̄ is
γ (n̄1, Λ̂1)-distributed.

• Assume that all the centres are initiated at the same time (ui = u > 0, for

any i). Denote τ1 = (t1 − u) ∨ 0. Then, T̄ is PVI
(
n̄1, α̂C + n1, β̂ + τ1

)
dis-

tributed where PVI (n, a, b) denotes the Pearson VI distribution whose probability
density function is:

pn,a,b(x) = 1

B(n, a)

xn−1ba

(x + b)n+a
,

where B(a, b) = ∫ 1
0 xa−1(1 − x)b−1dx is the beta function.

• In practice, the τ1,i ’s may be different. The distribution of T̄ can be approximated

for large n by a PVI
(
n̄1, Â1, B̂1

)
distribution with

Â1 =
(∑C

i=1 m̂1,i

)2

∑C
i=1 v̂1,i

, B̂1 =
∑C

i=1 m̂1,i
∑C

i=1 v̂1,i
where m̂1,i = α̂ + k1,i

β̂ + τ1,i
, v̂1,i = α̂ + k1,i

(β̂ + τ1,i )2
.

As a consequence of Theorem 20.2, the expression of the expected duration of
the trial is as follows:

E [T ] =
{
t1 + n̄1

B̂1

Â1−1
if Â1 > 1

+∞ if 0 < Â1 ≤ 1.
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20.3 The Poisson–Gamma Model with Breaks
in Recruitment

Assume that the recruitment process of centre i stops at sometimes denoted bi, j for
a period denoted di, j . As in previous section, fix an interim time of analysis t1. Data
collected on [0, t1]will be used to calibrate the model. For centre i , the data collected
are, the number of patients recruited by centre i up to t1 denoted k1,i , the number
of breaks up to t1: j1,i = inf

{
j : bi, j < t1, and bi, j + di, j ≥ t1

}
, (b1,i, j , j =

1, . . . , , j1,i ) and (d1,i, j , j = 1, . . . , , j1,i ) the breaks times and durations up to t1.
The duration of activity up to t1 is thus given by

τ1,i =
⎛

⎝t1 − ui −
j1,i∑

j=1

d1,i, j

⎞

⎠ ∨ 0.

The recruitment process for centre i , still denoted Ni , is a non-homogeneous Cox
process of intensity governed by λi which is γ (α, β) distributed. Indeed, the rate for
centre i is time dependent and expresses by:

t → A(λi , t) = λi 1{t /∈D1,i } 1{t>ui } , (20.2)

with D1,i is the set of time t such that there exists j ∈ {1, 2, . . . , j1,i } verifying
t ≥ b1,i, j and t ≤ b1,i, j + d1,i, j .

20.3.1 Estimation

The following theorem ensures that (α, β) are estimated following the same strategy
as in Sect. 20.2. Only the definition of τ1,i differs.

Theorem 20.4 ([13]) Maximum likelihood estimation (α̂, β̂) of the parameters
(α, β) are obtained by maximization of the function:

MΓ
C (α, β) = α ln(β) − lnΓ (α) + 1

C

C∑

i=1

[
lnΓ (α + k1,i ) − (α + k1,i ) ln(β + τ1,i )

]
.

20.3.2 Prediction

When considering breaks, the difficulty comes from theCox process N modelling the
recruitment which is non-homogeneous because of potential breaks in the dynamic.
To overpass this difficulty, consider Ñ a homogeneous Cox process, starting at t1, of
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Fig. 20.1 Processes involved in the prediction of T

intensity given by

t →
C∑

i=1

λ̂1,i 1{t≥t1}.

Processes N and Ñ have the same intensities, but the first one allows breaks, while
the second one does not (see Fig. 20.1).

Consider T = {
inf t≥0 : N (t) = n

}
the “true” duration of the clinical trial and

T̃ =
{
inf t≥0 : Ñ (t) = n

}
. Obviously T̃ ≤ T . In Fig. 20.1, the duration (A) is the

remaining time of the study if there were no breaks after t1 while the duration (B)
explains as the estimated cumulated breaks duration.

20.3.3 Expected Duration

The expected duration cannot be estimated directly but, noticing thatE[T ] = E[T̃ ] +
E[T − T̃ ], an estimation can be proposed, since E[T̃ ] is related to a homogeneous
Cox process thus Theorem 20.3 gives us an estimation ofE[T̃ ] and, assuming that the
cumulated breaks duration is proportional to the duration of the follow up,E[T − T̃ ]
can be estimated by:

BC1 = E[T̃ ]
∑C

i=1(t1 − ui )

C∑

i=1

j1,i∑

j=1

d1,i, j . (20.3)

The simulation study of Sect. 20.4.2 aims to quantify the bias when E[T − T̃ ] is
estimated by BC1.
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20.4 Data Generation Procedures for Simulation Studies

20.4.1 Sensitivity of the Model to Its Parameters

Poisson–gamma model depends on parameter θ = (C, α, T, t1), C the number of
centres, (α, β) the parameters of the gamma distribution, T the duration of the trial
and t1 the interim timeof analysis. Sensitivity of themodel to the parameter is assessed
bymeans of a simulation study. Simulation run r consists in choosing a configuration
θr with C ∈ {1, 2, ..., 30}, α ∈ {1, 1.025, 1.050, . . . , 3.5}, T ∈ {50, 100, 150} and
t1 ∈ {T/2, 2T/3}. For such a range of parameters, β is usually observed in practice
to be fixed to 2. These values have been chosen in coherence with literacy [7] and in
such a way that the error of prediction is large enough to be observed. This yields to
R = 18000 simulation runs. The data generation procedure splits in two steps:

Step 1: Consider a Poisson–gamma process involving C centres and (α, β) the
parameters of the gamma distribution.

1. Generate a global recruitment process {Nr (t), 0 ≤ t ≤ 2T }. The value 2T is
sufficiently large for having a solution at next step.

2. Identify T r
0 the first time verifying Nr (T r

0 ) = Nr where Nr = αTC/β is the
average number of patients to be recruited.

Step 2: Given the interim time t1.

1. The parameters (α, β) of the Poisson–gamma model are estimated applying
Theorem 20.1 from data collected on [0, t1].

2. The expected duration for the recruitment to reach Nr patients (T r
1 ) is computed

through the application of Theorem 20.2 at interim time t1.

The performance of the model at interim time t1 is measured by means of the
absolute error defined by:

Eθr = |T r
1 − T r

0 |. (20.4)

20.4.2 Impact of Breaks on Recruitment Modelling

In order to evaluate the performance of the model when breaks in the recruitment
occur, a simulation study is performed.Consider amulticentric trial involvingC = 60
centres. We aim to recruit n = 720 patients in 365days. In order to investigate dif-
ferent approaches of the breaks dynamic, different scenarios are proposed. Scenarios
differ by the breaks generation procedure (times of breaks and durations of breaks).
The scenarios are as follows:

• Scenario 1: Exponential generation. The instants and durations of breaks are
generated according to exponential distributions. The breaks times are exponen-
tially distributed of intensity 1

60 , and this means a break appears on average every
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60days. The breaks durations are exponentially distributed of intensity 1
14 , and

this means the average breaks duration is 14days.
• Scenario 2:Multinomial generation. The instants of breaks are generated accord-
ing to an exponential distribution of parameter 1

60 , meanwhile the durations are
generated according to a multinomial distribution. Five levels of duration (2, 4,
8, 16 and 32days) are involved. The corresponding probability vector is built in
such a way that it ensures that the total durations for each level are the same, (the
breaks of 2days happen twice more than the one of 4days for instance).

• Scenario 3: Deterministic generation. The instants and durations of the breaks
are generated by hand: two days by week for weekends, and one week every two
months for holidays.

Recruitment dynamics are generated involving breaks, themselves generated
according to the scenarios defined above. Whole the dynamic is known thus the
true duration denoted T0 of the trial is known. The study consists in considering the
data collected on [0, t1] and to make use of the results of Sects. 20.2 and 20.3 to
estimate the duration of the trial. In order to answer to the question “Is it useful to
collect the information about breaks?”, two strategies of analysis of the dataset are
considered:

• Strategy 1: not taking into account the breaks. The breaks times and durations
are not collected. The parameters of the Poisson–gamma model for recruitment
are estimated following results of Sect. 20.2. The expected duration is denoted T1
and is computed by means of Theorem 20.3.

• Strategy 2: taking into account all the breaks. The breaks times and durations
are collected. This allow us to make use of the estimation of the trial duration as
explained in Sect. 20.3.3. The expected duration is denoted T2.

For a sake of simplicity, all centres are initiated at t = 0 (ui = 0 for all i). The
data generation procedure splits in two steps:

Step 1: The generation of R = 1000 recruitment processes
{
Nr (t), 0 ≤ t ≤ T r

0

}
,

1 ≤ r ≤ R, where T r
0 denotes the first time verifying Nr (t) = 720.

1. Generate the breaks according to the scenario 1, 2 and 3 considered for a period
of 730days. The duration of 730days is arbitrary and chosen in order to be sure
to catch the true duration of the trial.

2. Generate the rates according to a Γ (2, 60.8) distribution. The parameters
(2, 60.8) of the gammadistribution are the one chosen by [7] to ensure a realistic
recruitment dynamic.

3. Consider the modified rate function as defined in Eq. (20.2).
4. Generate the recruitment process up to 730days.
5. Identify T r

0 and shrink the recruitment process to [0, T r
0 ].

Step 2: Given an interim time t1 = 182days. For each simulation run r = 1, . . . , R
and each strategy s = 1, 2,

1. Estimate parameters (αr
s , β

r
s ) of the gamma distribution applying Theorem 20.1

for s = 1 or Theorem 20.4 for s = 2 from data collected on [0, t1].
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2. Compute the expected duration of the trial T r
s through the application of

Theorem 20.2 for s = 1 or following strategies explained in Sect. 20.3.3 for
s = 2.

The performances of the model at interim time t1 are measured by means of the
absolute error defined by:

Es,s ′ = 1

R

R∑

r=1

|T r
s − T r

s ′ |, for s = 0, 1, 2, s ′ = 0, 1, 2 and s 	= s ′. (20.5)

20.5 Results and Discussion

20.5.1 Sensitivity of the Model to Its Parameters

The results of the simulation study performed as detailed in Sect. 20.4.1 are illustrated
by Fig. 20.2. Each sub-figure corresponds to fixed values of T and t1 and is the plot
of the 3000 simulation runs varying with the value of C in abscissa and α/2, the
average rate, in ordinate. For each value of (C, α) correspond a black dot, if the
absolute error Eθr defined by (20.4) is greater than 0.05 × T which corresponds to
a relative error in prediction greater than a threshold of 5%. Notice that an error of
5% corresponds to a few days and is very small in practice. This value has been
chosen because for larger values, the Poisson–gamma is so powerful that there are
a too small number of black dots. Each row of Fig. 20.2 corresponds to a value of
T (50weeks on top, 100weeks in the middle and 150weeks on the bottom), while
each column corresponds to a value of t1 (T/2 on the left and 2T/3 on the right).

Comparing the two columns of graphs, Fig. 20.2 illustrates that the model in more
relevant when the interim time is late and quantifies the benefit. Comparing the rows,
the same phenomenon is observable. Larger the duration of recruitment is, lesser
the error of prediction is. Both these results are consistent with the model since the
volume of information collected up to the interim time t1 increases with the duration
of the trial and with the interim time.

The role of C and α can be identified on each graph. The error decreases with C
whatever the value of α and decreases with α whatever the value ofC . It is important
to notice that this effect is more pronounced for the number of centres which appears
to be the most important parameter. If C is large, the model is relevant even for small
value of α, but for small value of α, the model is less relevant whatever the value of
C . For ending, notice that the minimal value C = 20 stated in [7] can be diminished
if the average rate is large enough or if the interim time is late.
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Fig. 20.2 Performance of Poisson–gamma model, black dot corresponds to a configuration for
which the absolute error is larger than 0.05 × T (in abscissa, the number of centres and in ordinate
the average rate). First (respectively, second and third) row corresponds to a trial duration of 50
(respectively, 100 and 150) weeks. First (respectively, second) column corresponds to a interim
analysis at time T/2 (respectively, 2T/3)

20.5.2 Impact of Breaks on Recruitment Modelling

For each scenario, the mean duration (over the simulation runs) of the simulated
recruitment dynamic together with its 95% confidence interval (the 25th and 975th
values of the sorted sample) is identified. For strategy p (p = 1, 2), the expected trial
duration and its 95% confidence interval are computed. For strategy p, the bias is
assessed by the average (over r ) of the absolute errors between the expected durations
(T r

p ) and the true value (T
r
0 ) of the trial duration, E0,p defined by (20.5). The value of

E0,p, its 95% confidence interval and the parameter is denoted S0,p, the proportion
of overestimation is defined as the number of runs for which the expected duration
computed by means of strategy p (T r

p ) is greater than the true duration (T r
0 ) are

computed. The results are collected in Table20.1.
Table20.1 illustrates that, whatever the scenario, the strategy of analysis yields to

very good results ensuring its efficiency. Indeed, the mean values of the real duration
are very close to the mean duration estimated by the different strategies. This result
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Table 20.1 Average duration (in days) as a function of the strategy togetherwith its 95% confidence
intervals. Absolute error between expected duration and true duration (E0,p) as a function of the
strategy together with its 95% confidence interval and the proportion of overestimation (S0,p)

Scenario 1 Scenario 2 Scenario 3

Real duration Mean 384.37 337.92 369.17

CI (95%) [351,415] [303,373] [343,398]

Strategy 1 Mean 381.92 337.80 367.95

CI (95%) [340,431] [304,374] [330,412]

E0,p 13.81 9.78 11.04

CI (95%) [2,13] [0,29] [1,32]

S0,p 0.41 0.44 0.44

Strategy 2 Mean 374.66 336.41 356.94

CI (95%) [336,421] [303,372] [321,398]

E0,p 15.42 9.88 14.88

CI (95%) [1,40] [1,29] [1,38]

S0,p 0.27 0.40 0.16

is confirmed by the values of E0,p and highlights by the width of the confidence
intervals of E0,p. These results are enriched by Figs. 20.3 and 20.4. Figure20.3 is the
regression plot of the expected duration as a function of the true duration for each
scenario and each strategy and allows the evaluation of the predictive efficiency by
comparing regression line with y = x . Figure20.4 is the plot of the empirical density
curves for each strategy completed by one of the true durations.

Figure20.3 advocates for predictive efficiency since there are no significant differ-
ences between regression line and y = x (F-statistics p values are always lesser than
0.01, and there is no significant auto-correlation, and homoscedasticity and normal
distribution for the residuals are observable from ad hoc graphs not presented here).

For any scenario, the three strategies underevaluate the trial duration. This impor-
tant fact is observed considering the values of S0,p and Fig. 20.4. In [13], histograms
of the distributions of the durations of the trial estimated by each strategy are plot-
ted and are unimodal, symmetric and exhibit a shift to the left comparing with the
one of the real duration which confirms this phenomenon. The underestimation of
the strategies can be observed in Fig. 20.4 (shift of the densities to the left) and in
Fig. 20.3 (the regression lines are above y = x). The strategies are thus moderately
biased.

Whatever the strategy and the scenario, the model involved yields to relevant
results. Results are more or less the same for Scenarios 1 and 3 and a bit better for
Scenario 2 dealing with the multinomial breaks. Finally, it is easily seen regarding
plots of Fig. 20.4 that the histogram which is closest to the real durations is always
the one of Strategy 1. That is confirmed by the regression plots for which the corre-
sponding line is closest to line y = x .
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Fig. 20.3 Each row corresponds to a scenario and is the scatter plots of the expected trial duration
estimated by Strategy 1 on the left and Strategy 2 on the right as a function of the true trial duration
together with the regression line (dotted line) and the line y = x (solid line)

Fig. 20.4 Empirical densities of the distribution of T0 (solid line), of T1 (dashed line) and of T2
(dotted line): on the top, Scenario 1 on the left, Scenario 2 on the right and Scenario 3 on the bottom
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20.6 Conclusions

The first simulation study allows us to state that the Poisson–gamma model is sensi-
tive to the parameters of the model, especially C and t1. The parameters are deeply
linked, and for small values of parameters, it is not easy to see if a given configuration
may lead to a setting for which Poisson–gamma model performs well.

The second simulation study states that the role of the breaks in recruitment is
reallymoderate. Indeed, first, simulations illustrate that there is a relevant strategy for
accounting for the break with a moderate bias, and second, the strategy consisting
in not wondering with the breaks and to make use of a standard Poisson–gamma
process appears to be the better strategy among these investigated.

To conclude, one suggests to perform simulation study for each recruitment design
in order to be sure that themodelwill performoptimally, and tonot collect information
on breaks in recruitment. The powerful Poisson–gammamodel will balance the delay
due to breaks by an underestimation of the rate. These results are deepened in [13]. A
third strategy of analysis considering only large breaks is investigated. The strategies
are compared, and Strategy 1 (not accounting for breaks) appears to be the best way
to deal with the breaks concern.
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Chapter 21
Simulated Clinical Trials: Principle,
Good Practices, and Focus on Virtual
Patients Generation

Nicolas Savy, Stéphanie Savy, Sandrine Andrieu and Sébastien Marque

Abstract It is a well-known fact that clinical trials is a challenging process essen-
tially for financial, ethical, and scientific concern. For twenty years, simulated clinical
trials (SCT for short) has been introduced in the drug development. It becomes more
and more popular mainly due to pharmaceutical companies which aim to optimize
their clinical trials (duration and expenses) and the regulatory agencies which con-
sider simulations as an alternative tool to reduce safety issues. The whole simulation
plan is based on virtual patients generation. The natural idea to do so is to perform
Monte Carlo simulations from the joined distribution of the covariates. This method
is named Discrete Method. This is trivial when the parameters of the distribution are
known, but, in practice, data available come from historical databases. A prelimi-
nary estimation step is necessary. For DiscreteMethod that step may be not effective,
especially when there are a lot of covariates mixing continuous and categorical ones.
In this chapter, simulation studies illustrate that the so-called Continuous Method
may be a good alternative to the discrete one, especially when marginal distributions
are moderately bi-modal.
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21.1 Introduction

Clinical trials is a challenging process for financial, ethical, and scientific concern.
For twenty years, simulated clinical trials (SCT for short) has been introduced in drug
development. Themain idea is to summarize the available information on the patients,
the drug of interest and the trial design in order to build a stochastic model. They are
used to model biological systems and pharmacology of treatments’ action on those
systems. They also allow in silico identification of weaknesses in the design of a trial,
adjustment of the procedures before the initiation of a trial while reducing logistics
barriers. The aim of simulation strategy is to make rational decisions with regard
to optimizing the development plan of a new compound (see [11] and references
therein). It has been shown that it leads to increase the likelihood of achieving the
objectives of study and patient safety, to reduce the duration of the study and protocol
deviations as well as avoiding inconclusive situations [4].

While introducing simulations in clinical research seems to be natural in drug
development, the literature reviews actually show small impact and use. This has
been pointed out in the state of the art [6] on the period before 2000 and confirmed
in the reviews [5] on the period 2000–2010 and the review authors has made on the
period 2010–2015. Authors explain that paradox arguing a reporting bias, as such
investigations are often performed by pharmaceutical companies and not necessary
published for industrial confidentiality concerns. Furthermore, they wonder whether
such investigations are done with respect to the good practices stated in [2]. It is
important to highlight that regulatory agencies now stimulates the use of simulation
in drug development.

The main property of SCT which makes its setting up really versatile is modular-
ity. A SCT is constructed from sub-models which can be developed independently
and may be clustered in three main groups: execution models, input/output models,
and covariate distribution models. That third module is fundamental. It allocates the
covariates values for each (virtual) patient. These values are used to calibrate most
of the other modules. The natural idea is to perform Monte Carlo simulation from
the joined distribution. When the parameters of the distribution are known, the, usu-
ally named, Discrete Method is exact. When these parameters are estimated from a
historical database—which is the case in practice—Discrete Method is less effec-
tive, especially when there is a large number of covariates mixing continuous and
categorical ones. The so-called Continuous Method introduced in [11] to generate
database directly from the population parameters may be a good alternative.

The chapter is organized as follows: Sect. 21.2 is devoted to the main steps of the
construction of a simulated clinical trial togetherwith themain ideas of the guidelines
given in [2]. Section21.3 focuses on the virtual patients generation. Discrete Method
and Continuous Method are detailed. Section21.4 is devoted to a simulation study
which aims to assess and to compare the performances of these two methods to
generate data sets preserving the marginal distributions and the correlation structure
of the underlying historical database.
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Fig. 21.1 Example of design’s scheme for a Simulated Clinical Trial

21.2 Main Steps of the Setting Up of a SCT: Principe -
Guidelines

For a rational use of SCT, [2] proposes guidances established on threemethodological
pillars. Clarity: The report of the simulation should be understandable in terms of
scope and conclusions by intended users. Completeness: Assumptions, methods,
and results have to be described with enough details in order to be reproduced by an
independent team. Parsimony: Complexity of the model and simulations procedure
has to be no more numerous that necessary. Figure21.1 is an example of what may
be the simulation design’s scheme of a SCT.

A SCT is composed of a sequence of sub-models:

• Covariate distributionmodel (Virtual Patients Generator). A dataset of virtual
patients’ covariates is stochastically generated. This database has to be consistent
with the protocol we aim to investigate. This step involves essentiallyMonte Carlo
generation (see, for instance, [9, 10] for details) taking into account correlations
between the different covariates.

• Execution models. The design is modified taking into account adverse events
which may happen during the trial. Deviation to protocol, compliance failure,
dropout are typical examples of such side effects which can be integrated into
models. The model may be enriched for instance including patients recruitment
models [1, 8] in order to investigate the duration of the trial. Execution model (II)
differs from Execution model (I) because it depends on the outcomes.

• Input–Output Model. Virtual patients database and executive models allow to
construct the outcome values by means of input/output model (PK–PD techniques
[3] or disease progression model [7]).
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21.3 Covariate Distribution Modelling

In what follows, Ck denotes the kth covariate (k varies from 1 to K ) and cki denotes
the values of that covariate of the i th patient (i varies from 1 to n). For a sake of
notational simplicity, ci denotes the vector of patient i covariates’ values. Covariate
C may be continuous (denoted cC) or categorical (denoted dC). Throughout that
section, continuous covariates are assumed to be normally distributed but it can be
any other distribution up to a change of variable.

If the joint distribution of the covariates, denoted f(C1,...,CK ) for simplicity, is
known, the strategy is nothing but a Monte Carlo generation of data. To be meaning-
ful, the data generation has to rely on available information on the covariates. That
information may come from the literature (called bibliographical data) or from an
existing database (called historical database). Dealing with bibliographical data, the
covariates distributions parameters are parameters of the population while dealing
with historical data, these parameters are estimations of population parameters. Bib-
liographical data are more relevant but, most of the time, only marginal distributions
are easy to obtain. The better we can do is often to assume covariates as independent
that is not satisfactory. From historical database, whole the correlation structure may
be estimated but the question of how to estimate parameters with enough precision
raises. In what follows, the question of reconstruction of a database (D) is to be
understood in the sense on how to generate a database with marginal distributions
and the correlation structure close to the one of (D).

21.3.1 How to Generate Virtual Patients Given
Bibliographical Data?

21.3.1.1 Discrete Method

Discrete Method is an exact method to reconstruct a database. The idea is to split
continuous variables and discrete variables by conditioning, writing, with notational
abuse: f(C1,...,CK ) = f((cC1,...,cCL )|(dCL+1,...,dCK )) × f(dCL+1,...,dCK ). The simulation of a
database of size n consists in performing n times the algorithm

• Draw a configuration from the multinomial distribution,
• Given this configuration, draw the remaining values from the multinormal distri-
bution.

This method is obviously the better we can expect. Notice that the problem can be
split into groups of independent covariates.
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21.3.1.2 Continuous Method

The idea is to consider all the covariates N (µ,Σ)-distributed. The simulation of a
database of size n consists in drawing n values (u1i , . . . , u

K
i )i=1,...,n from the multi-

normal distributionN (µ,Σ).

• For a continuous covariate cck = uk for k = 1, . . . , L
• For a categorical covariate withM modalities dCk , onemakes use of the, so-called,
critical values

⎧
⎪⎨

⎪⎩

CrV k
m = μk + Σk,kφ

−1(
∑m

i=1 pi ), 1 ≤ m ≤ M − 1

CrV k
M = +∞

CrV k
0 = −∞

where (pm; 1 ≤ m ≤ M) are the proportions of each modality of the categorical
covariate, μk andΣk,k are the parameters of the normal distribution, φ denotes the
cumulative function of standard normal distribution.
Finally, dck = m if and only if CrV k

m−1 < uki ≤ CrV k
m .

21.3.2 How to Generate Virtual Patients Given a Historical
Database?

Comparison of Discrete and Continuous Methods given bibliographical data has
been investigated in [11] assuming continuous covariates normally distributed. Here,
attention is paid on the performances of these techniques on a closer to practice
setting, when a historical database is given. The aim of the machinery is to generate
a realistic copy of this historical database (the marginal distributions coincides and
the correlation structure between covariates is preserved). Dealing with a historical
database, an additional estimation of the parameters step is needed. For the Discrete
Method that step consists in

• Fit the distribution of (dCL+1, . . . ,d CK ) by estimating the proportion of each
modality,

• Fit the distribution of f((cC1,...,cCL )|(dCL+1,...,dCK )), estimating the mean vector and
variance–covariance matrix for each configuration (dCL+1, . . . ,d CK ).

For the Continuous Method, the estimation step consists in fitting a multinormal
distribution for whole the covariates.

The Discrete Method yields two problems: first, this technique needs a lot of
estimations and, for situations where there are a lot of categorical covariates, thus a
lot of modalities for the vector of covariates, the estimation of the parameters of the
continuous covariates is poor because of a small number of data for several modali-
ties. These questions make the Continuous Method more appealing. Meanwhile, the
Continuous Method is not able to catch multi-modal distributions.
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Example 21.1 Given a historical database with 500 patients involving 5 continuous
covariates of interest and 3 categorical covariates with, respectively, 2, 3, and 4
modalities. Discrete Method necessitates 23 estimations for the proportions of each
of the 24 configurations and 24 × 20 = 480 estimations to estimate the 24 means
vector and variance–covariancematrices of each conditional distribution. Thus, there
are 503 parameters to estimate. Moreover, there are, on average, 500

23 � 22 values
available to estimate the multinormal distribution parameters.

21.4 Simulation Study

In order to investigate the performances of theContinuousMethod as an alternative to
theDiscreteMethod, a simulation study is performed. A “toymodel”, close to the one
used in [11], is considered. The population consists of three variables (X,Y, Z). X is
a categorical variablewith twomodalities (1 and 2)Bernoulli distributed of parameter
π ,Y is a randomvariable log-normally distributed conditionally to X and Z a random
variable normally distributed conditionally to X . These conditional distributions are
correlated. The aim is to investigate the impact on ContinuousMethod performances
of parameters π , μ, and ρ. π is the proportions of each modality of the categorical
variable. μ is the conditional to X = 1 mean. As the conditional expectation given
X = 2 is fixed (equal to 90) and as the coefficients of variation are fixed equal to
0.3 whatever the scenario, the difference between conditional means yields to bi-
modality in the distribution of Y . Finally, ρ is the coefficient of correlation between
the conditional distributions of Y and Z . Note that ρ(Y,Z)|X=1 and ρ(Y,Z)|X=2 are
assumed to be equal.

The algorithm follows the steps:

1. Fix parameters of the population. These scenarios differ from parameters π,μ

and ρ. 27 scenarios are considered taking π ∈ {0.1, 0.25, 0.5}, μ ∈ {10, 50, 90},
andρ ∈ {0, 0.5, 0.9}. The values of the parameters for each scenario are presented
in Table21.1.

2. Build theHistorical Database. To generate a database from this population (His-
torical database), a Monte Carlo simulation is performed. First generate values x
of X and then generate values of (Y, Z) given X = x . Details on the procedure
to generate these values are relegated to Appendix 1.

3. Build the Generated Databases. Make use of the Discrete (resp. Continuous)
Method to generate 1000 databases. The choice of 1000 databases is usual, it
allows to have a precise idea of the performances of the method and it is not too
large for computational issue.

4. Assess of the performance to reconstruct a parameter. Consider θ a parame-
ter of interest in the population and denotes θ̂H its estimation from the historical
database. For each simulation run r (r = 1, . . . , 1000), denote θ̂ D

r (resp. θ̂C
r ) its

estimation from the r th-generated database by means of the Discrete (resp. Con-
tinuous) Method. In order to evaluate the performances of method J = C or D,
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Table 21.1 Values of the parameters defining the different scenarios investigated. Expectation and
variance–covariance matrix of (Y, Z) are computed by means of formulas detailed in Appendix 2

Scenario Parameters of conditionals Parameters of marginals

π μ ρ μY CVY μZ CVZ ρY,Z

1 0.10 10 0.0 82 0.43 100 0.30 0.00

2 0.10 10 0.5 82 0.43 100 0.30 0.35

3 0.10 10 0.9 82 0.43 100 0.30 0.63

4 0.10 50 0.0 86 0.33 100 0.30 0.00

5 0.10 50 0.5 86 0.33 100 0.30 0.45

6 0.10 50 0.9 86 0.33 100 0.30 0.81

7 0.10 90 0.0 90 0.30 100 0.30 0.00

8 0.10 90 0.5 90 0.30 100 0.30 0.50

9 0.10 90 0.9 90 0.30 100 0.30 0.90

10 0.25 10 0.0 82 0.43 100 0.30 0.00

11 0.25 10 0.5 82 0.43 100 0.30 0.35

12 0.25 10 0.9 82 0.43 100 0.30 0.63

13 0.25 50 0.0 86 0.33 100 0.30 0.00

14 0.25 50 0.5 86 0.33 100 0.30 0.45

15 0.25 50 0.9 86 0.33 100 0.30 0.81

16 0.25 90 0.0 90 0.30 100 0.30 0.00

17 0.25 90 0.5 90 0.30 100 0.30 0.50

18 0.25 90 0.9 90 0.30 100 0.30 0.90

19 0.50 10 0.0 82 0.43 100 0.30 0.00

20 0.50 10 0.5 82 0.43 100 0.30 0.35

21 0.50 10 0.9 82 0.43 100 0.30 0.63

22 0.50 50 0.0 86 0.33 100 0.30 0.00

23 0.50 50 0.5 86 0.33 100 0.30 0.45

24 0.50 50 0.9 86 0.33 100 0.30 0.81

25 0.50 90 0.0 90 0.30 100 0.30 0.00

26 0.50 90 0.5 90 0.30 100 0.30 0.50

27 0.50 90 0.9 90 0.30 100 0.30 0.90

the error between generated database and population (resp. historical database)
denoted EPJ (θ) = θ̂ J

r − θ and EHJ (θ) = θ̂ J
r − θ̂H are computed. As 1000 simu-

lation runs are performed for each scenario, the performance ofmethod J = C, D
for strategy I = H, P is thus measured by EIJ (θ) = 1

1000

∑1000
r=1 EIJr (θ), and its

95% confidence interval, denoted CI95%(EIJ (θ)), i.e. the 25th and 975th value of
the sorted sample {EIJ(r)(θ), r = 1, . . . , 1000}. The performance of method J to
reconstruct parameter θ is thus assessed by verifying if 0 ∈ CI95%(EIJ (θ)).
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Remark 21.1 It is usual to measure an error by means of relative error defined as
θ̂ J
G−θ

θ
, but here we prefer to use error defined above because, first, we have not

observed difference in the results, second, the confidence intervals are, for a few
parameters close to 0, very large and finally the comparisons with several parameters
are not possible (for instance correlation coefficient equal to 0).

21.5 Results and Discussion

21.5.1 Comparison with Population Parameters

It is readily seen that for J = C, D, EPJ (θ) = EHJ (θ) + (θ̂H − θ). The difference
between the reconstruction of a parameter of the population and the reconstruction of
the estimation of that parameter fromdata of the historical database is thus nothing but
the difference θ̂H − θ . This term can be seen as a biaswhich comes from the sampling
of the historical database. θ̂H may be far from θ especially when the proportion of
X = 1 is small andmay lead to a poor reconstruction of parameters. This ismagnified
for settings of highly correlated scenarios. For instance, for Scenario 7, only 68% of
the parameters of the population have been reconstructed by Discrete Method and
80% by the Continuous Method. The weakness of the performances comes from the
conditional to X = 2 expectation of Y which is 90 for the population and estimated
to 87.92 from historical database. These artefacts may lead to situation for which
the results are better for Population rather than from Historical database. It is thus of
none interest to consider EPJ (θ) whatever the method.

21.5.2 Comparison with Historical Database Parameters

21.5.2.1 Performances of Discrete Method

For the Discrete Method, all the parameters of the historical database are recon-
structed. This is not surprising since reconstructed reduces, in this setting, to verify
that the estimation of a parameter is in its 95% confidence interval. The perfor-
mances of the Discrete Method decreases with the number of covariates. In our
simple setting, the Discrete Method will play the role of standard method to assess
the performances of the Continuous Method. Indeed the concept of reconstruction
(0 ∈ CI95%) depends on the width of the CI95%. Figures21.2 and 21.3 plot CI95% as a
function of the scenario and illustrate this phenomenon. The shape of the confidence
intervals for Discrete Method (crosses and dotted lines) will serve as reference and
will be compared to the one for ContinuousMethod (dots and plain lines). Moreover,
these graphs allow us to conclude if a parameter is considered to be reconstructed
because its value is very close to 0 or because the CI95% is large. In order to shorten
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Fig. 21.2 Mean errors and the error bars (95% confidence intervals) in the reconstruction, from
the historical database as a function of the scenarios, of the proportion of modality 1. Crosses and
dotted lines correspond to Discrete Method and dots and plain lines to Continuous Method

the analysis, these graphs are plotted only for parameters π (Fig. 21.2), the condi-
tional expectations of Y and the expectation of Y and the conditional coefficient of
correlation and the coefficient of correlation (Fig. 21.3).

Keeping in mind the construction of confidence intervals for a proportion, for a
mean and for a coefficient of correlation the shape of the confidence intervals for
Discrete Method are coherent: the width of the confidence interval for the proportion
of X = 1 depends on the proportion and of the sample size. It is thus natural to
observe that thewidth of the CI95% increases with the proportion of X = 1 the sample
size being fixed to 1000. The width of the confidence interval of the conditional to
X = 1 expectations of Y depends on the conditional to X = 1 standard deviation and
sample size. The simulation scheme fixed the values of the coefficient of variation
and thus this standard deviation depends on the mean. Obviously, the width of the
CI95% increases with the conditional to X = 1 expectation and with the proportion of
X = 1. The width of the confidence interval of the conditional to X = 1 coefficient
of correlation between Y and Z depends on the parameter itself and of the sample
size.

21.5.2.2 Performances of Continuous Method

The results for the Continuous Method are collected in Table21.2 (the number of
scenario for which the parameter is reconstructed as a function of the parameters of
interest) and Table21.3 (the number of parameters reconstructed by the Continuous
Method as a function of the scenario).

Table21.3 indicates that for 48% of the scenarios investigated, more than 75% of
the parameters are reconstructed and this proportion increases to 85% considering
scenarios where 50% of the parameters are reconstructed. Table21.2 indicates that
only a few parameters are not reconstructed for most of the scenarios. These param-
eters are the ones of the conditional to X = 1 and conditional to X = 2 distributions
of Y , as a matter of fact, the marginal distribution of Y together with the coefficients
of correlation of Y and Z conditional or not.
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Table 21.2 The second row is the number of scenarios (over 27 scenarios) forwhich the estimations,
from data of historical database, of the parameters of the first row are reconstructed

Binomial π

27

Conditional to
X = 1

μY |X=1 CVY |X=1 μZ |X=1 CVZ |X=1 ρY,Z |X=1

9 13 26 21 18

Conditional to
X = 2

μY |X=2 CVY |X=2 μZ |X=2 CVZ |X=2 ρY,Z |X=2

18 9 27 27 15

Marginal μY CVY μZ CVZ ρY,Z

19 14 27 27 19

Table 21.3 The second row is the number of parameters (over 16 parameters investigated) for
which the estimations, from data of historical database, of the parameters of scenario of the first
row are reconstructed

π = 0.10 1 2 3 4 5 6 7 8 9

10 7 6 14 14 10 15 15 16

π = 0.25 10 11 12 13 14 15 16 17 18

8 7 7 11 13 10 15 16 16

π = 0.50 19 20 21 22 23 24 25 26 27

12 8 8 11 11 9 16 16 15

Table 21.4 Proportion (in%) of parameters reconstructed fromHistorical Database by Continuous
Method as a function of the input parameter of the different scenario

Factor π = μ = ρ =
0.10 0.25 0.50 10 50 90 0.0 0.5 0.9

Proportion 74.3 71.5 73.6 50.7 71.5 97.2 77.8 74.3 66.4

In order to investigate which modifications yield to main change, Table21.4,
which presents the cumulated proportions of parameters reconstructed as a function
of the level of each parameter varying in the simulation scheme, is constructed and
indicates that the parameter of major impact on the reconstruction is the conditional
expectationμY |X=1. It is not surprising as the difference betweenμY |X=1 andμY |X=2

generates bi-modality which is not caught by the Continuous Method. It is important
to notice that the proportion π is of low impact on the reconstruction. Finally, the
conditional correlation yields to poor reconstruction only when fixed to 0.9, situation
of high correlation. These results are confirmed by results of Table21.3. In fact, the
scenarios for which parameters are often reconstructed (greater than 91% of the
parameters) are these with no bi-modality (μY |X=1 = μY |X=2 = 90). Scenarios with
moderate bi-modality (μY |X=1 = 50 and μY |X=2 = 90) appear with more than 50%
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of parameters reconstructed and even more than 68% avoiding highly correlated
situations. Notice that the results are better when the proportion of X = 1 is low.

Considering dots and plain line of Figs. 21.2 and 21.3, the results are deepened
accounting for the width of the corresponding CI95%. Notice that the explanations of
the shape of the interval of confidence are the same as the ones given for the Discrete
Method. However, as, for many scenarios, there are bias in the reconstruction, the
observed behaviour may differ. The proportion of X = 1 is perfectly reconstructed,
there is no difference with the Discrete Method (Fig. 21.2).

For the expectation of Y , the situation is very different for scenarios with high
and moderate bi-modality. Figure21.3A.a illustrates that the reconstruction is biased
but the width of the CI95% are more or less the same as for Discrete Method.
Figure21.3A.b shows that the results for the conditional to X = 2 expectation is sub-
stantially modified for scenarios with high bi-modality. Most of the time, this param-
eter is not reconstructed. Finally, Fig. 21.3A.b insures that the behaviour is smoothed
considering the marginal and the parameter is reconstructed except for highly bi-
modal setting. The coefficients of correlation are well reconstructed. Regarding
Fig. 21.3B.a, the scenarios for which these parameters are not reconstructed are those
corresponding to high and moderate correlation together with a moderate or high bi-
modality. Notice that for scenarios 6-15-24, the error is small but the parameters are
not reconstructed because the width of the CI95% is very small due to very high cor-
relation. Regarding Fig. 21.3B.b, we observe that the width of the CI95% are smaller
than on Fig. 21.3B.a for most settings. This is observed for scenario where the sample
size involved for the conditional to X = 1 is smaller than for X = 2 (π �= 0.50). As
a consequence, the parameter is not reconstructed for some new scenarios. Finally,
Fig. 21.3B.c the bias is less important, the widths of the CI95% are more or less the
same as the ones on Fig. 21.3B.b.

21.6 Conclusions

Discrete Method is an exact reconstruction of the conditional distributions and is the
bettermethod to reconstruct a database given historical data. However, the simulation
study highlights the role of the proportion of eachmodality of the categorical variable.
This point is of paramount interest because it justifies that Discrete Method will be
of little interest in situation where there are a lot of categorical variables.

Simulation study illustrates that Continuous Method yields to really good results,
especially when the bi-modality is moderate. What is of paramount interest is that
this result remains true even when the proportion of observed values for amodality of
a categorical variable is small. In fact, for practical use, Discrete Method is difficult
to use when categorical distribution has a large number of modality. The proportion
of several modalities become small and the number of observations by modalities
may be too small for yielding to relevant reconstruction. In this setting, Continuous
Method is a really relevant alternative. Notice that both methods can be used in
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the same simulation plan. In fact, variables of interest can be split into groups of
independent variables and different methods can be used for different groups.

Acknowledgements This research has received the help from IRESP during the call for proposals
launched in 2012 as a part of French “Cancer Plan 2009–2013”.

Appendix 1

For i = 1, 2, μY
i and σ Y

i (resp. μZ
i and σ Z

i ) denote the expectation and the standard
deviation of (Y |X = i) (resp. (Z |X = i)) distribution, ρi denotes the coefficient of
correlation between (Y |X = i) and (Z |X = i), and π denotes the probability that
X = 1. The relationships between conditional andmarginal expectations areE [Y ] =
π.μY

1 + (1 − π).μY
2 and E [Z ] = π.μZ

1 + (1 − π).μZ
2 . The relationships between

conditional and marginal variances are:

V [Y ] = E [V [Y |X ]] + V [E [Y |X ]],
V [Y ] = π(σY

1 )2 + (1 − π)(σY
2 )2 +

(
π(μY

1 )2 + (1 − π)(μY
2 )2 − (πμY

1 + (1 − π)μY
2 )2

)
,

V [Z ] = π(σ Z
1 )2 + (1 − π)(σ Z

2 )2 +
(
π(μZ

1 )2 + (1 − π)(μZ
2 )2 − (πμZ

1 + (1 − π)μZ
2 )2

)
.

The relationships between conditional covariances and covariance are:

cov [Y, Z ] = πσY
1 σ Z

1 ρ1 + (1 − π)σY
2 σ Z

2 ρ2 +
(
πμY

1 μZ
1 + (1 − π)μY

2 μZ
2 − E [Y ]E [Z ]

)
.

Appendix 2

Consider Y a random variable log-normally-distributed with expectation (resp. stan-
dard deviation) denoted μY (resp. σY ), Z a random variableN (μZ , σZ ) distributed,
and ρY,Z the coefficient of correlation. In order to generate the random vector (Y, Z),
consider Y = exp(U ) and (U, Z) a Gaussian vector where U is N (μU , σU ) dis-
tributed and ρU,Z denotes the coefficient of correlation. The parameters of (U, Z)

and these of (Y, Z) are linked by the relationships:

μY = E [Y ] = E
[
exp(U )

] = exp

(

μU + σ 2
U

2

)

σ 2
Y = V [Y ] = E

[
exp(2U )

] − (E
[
exp(U )

]
)2 = exp(σ 2

U − 1) exp
(
2μU + σ 2

U

)

An application of Stein’s Lemma with g(x) = exp(x) we have:

ρY,Z = cov [Y, Z ] = cov
[
eU , Z

] = E
[
exp(U )

]
cov [U, Z ] = μYρU,Z
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After some algebra, this yields to the following parametrization:

μU = ln(μY ) − 1

2
ln

(

1 + σ 2
Y

(μY )2

)

, σ 2
U = ln

(

1 + σ 2
Y

(μY )2

)

and ρU,Z = ρY,Z

μY
.
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Chapter 22
Determination of the Optimal Size
of Subsamples for Testing a Correlation
Coefficient by a Sequential Triangular
Test

Dieter Rasch, Takuya Yanagida, Klaus D. Kubinger
and Berthold Schneider

Abstract Schneider, Rasch, Kubinger and Yanagida [8] (Schneider, Rasch,
Kubinger and Yanagida [8]. Stat. Pap. 56, 689 600) suggested a sequential trian-
gular test for testing a correlation coefficient (see also Rasch, Yanagida, Kubinger,
and Schneider [6]). In contrast to other sequential (triangular) tests, it is not possible
to decide after each additional sampled research unit whether

(a) the null-hypothesis is to accept or
(b) to reject or
(c) to sample further units.

For the calculation of the correlation coefficient and to use Fisher’s transformation,
step-by-step k ≥ 4 units are needed at once. In the present chapter, we improve the
test proposed by Rasch, Yanagida, Kubinger and Schneider (2014) by determining
which number k of subsampled research units is minimal (optimal), in order to hold
the type-I-risk, given a specific type-II-risk and a specific effect size δ = ρ1 − ρ0.
Selected results are presented. For parameters not included irrespective tables, the
reader may use a R package called seqtest for own simulations.
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22.1 Introduction

The most effective strategy within statistics, that is sequential testing, has not
been established for testing the composite null-hypothesis H0 : 0 < ρ ≤ ρ0, before
Schneider, Rasch, Kubinger and Yanagida [8]. Beyond the first concepts of sequen-
tial testing by Wald [9], a special group of sequential tests with a maximal number
of research units needed are the sequential triangular tests. Such tests go back to
Whitehead [10] and Schneider [7]. They have a fundamental advantage as their aver-
age sample size is quite smaller than that one of the corresponding tests with fixed
sample size. Of course, a sequential test is in general appropriate only, if the time of
sampling has no effect on the interesting character but the data are actually sampled
step by step.

Given the distribution of a two-dimensional quantitative vector of random vari-
ables (x, y)1 is normal, so that the finite secondmoments σ 2

x , σ 2
y and σxy , and the cor-

relation coefficient ρ = σxy/(σxσy) exist. Then the null-hypothesis H0 : 0 < ρ ≤ ρ0

should be tested against the alternative hypothesis H1 : 0 < ρ0 ≤ ρ ≤ ρ1 with a type-
I-risk α, i.e. the probability of wrongly rejecting H0 and a type-II-risk β, i.e. the
probability of wrongly accepting H0 (in particular as long as δ ≥ ρ1 − ρ0 with a ρ1

to be fixed in advance). The method of the test was first described in Schneider et al
[8] and will be only summarized. A more detailed description of sequential testing
in general and especially of sequential triangular tests is given in Rasch and Schott
[5] and Rasch, Kubinger and Yanagida [3].

In sequential analysis after each single observation or after each group of observa-
tions, a decision is made between (a) accept H0, (b) reject H0 or (c) continue with the
next observation. But in the case of the correlation coefficient, we must have at least
two observations and this calculated correlation coefficient is our “observation”. The
first question is, how many pairs k of values (x, y) we should use to calculate an
observed value r (the sample correlation coefficient) to come as soon as possible to
an end of the test we call this value of k optimal. Schneider et al [8] gave very rough
intervals for the number of pairs, and it is the aim of the present chapter to improve
this.

The empirical correlation coefficient r = sxy
(sx sy)

based on k observations (x, y)(i =
1, . . . , k), i.e. realizations of (x, y), allows an estimationof theparameterρ(sxy, s2x , s

2
y)

are the empirical covariance and variances, respectively. When using r as a test
statistic, we refer to the fact that the distribution of r , i.e. the corresponding random
variable, was derived by R.A. Fisher [1] under the assumption of a bivariate normal
distribution of (x, y). He showed that the distribution of r then only depends on k
and ρ. Later, Fisher [2] suggested the transformed value z = ln 1+r

1−r as a test statistic
and showed that the distribution of the corresponding random variable z = ln

(
1+r
1−r

)

is approximately normal with expectation Ez = ln
(
1+r
1−r

)
even if k is rather small.

The statistic z can be used to test the hypothesis H0 : ρ ≤ ρ0 against the one-sided
(we restrict on this) alternative hypothesis H1 : ρ > ρ0 (respectively H0 : ρ ≥ ρ0

against H1 : ρ < ρ0) for data with a fixed sample size k. H0 : ρ ≤ ρ0 is rejected
with error probability α, if z ≥ ξ(ρ0) + z1−α · 2√

k−3
(respectively for H0 : ρ ≥ ρ0,
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if z ≥ ξ(ρ0) − z1−α · 2√
k−3

); z1−α is the (1 − α)-quantile of the standard normal
distribution).

22.2 Method

The decision in a sequential triangular test is based on some statistic which is calcu-
lated at each step of sampling data. The values of this statistic is shown on a Cartesian
coordinate system as the ordinate and the steps or sample sizes, respectively, at the
abscissa. The result is a sequential path. As presented in the following, there is some
continuation area—a triangle, anchored at the origin of the step axis. As long as the
statistic’s values lie within that triangle, more data have to be sampled. When the
path touches or exceeds any borderline of the triangle, data sampling is completed
and due to which borderline is concerned, either the null-hypothesis is accepted or
rejected. Taken into account that one borderline is determined in such a way that the
null-hypothesis is wrongly rejected only with probability α, the type-I-risk; the other
borderline is determined so that the null-hypothesis is wrongly accepted only with
probability β at most, the type-II-risk.

In details, some cumulative ascertained ancillary values Zm and Vm are calculated
for the actual values ym . The values Zm correspond to the ordinate and the values Vm

to the abscissa. For a one-sided alternative hypothesis, two straight lines are defined in
dependenceon type-I and type-II risk (and, of course, in dependenceon the practically
relevantminimal difference δ = ρ1 − ρ0 with respect to the hypothesized parameter).
They create the talked about triangle which is open to the left side. Both the lines
intersect each other at Vmax that value corresponds to the maximal sample size nmax

of the sequential triangular test which will be needed. As long as the sequence of
the Zm values remains within this triangle, sequential testing and data sampling,
respectively, must be continued. In the case of a two-sided alternative hypothesis,
there are two triangles, one for each of the two sides of the alternative hypothesis.
Then the two-sided alternative hypothesis is to reject if the path touches or leaves
one of the two triangles and enters the area of the null-hypothesis. For all this, we
only have to use α

2 instead of α for each side of the two-sided alternative hypothesis.
Both triangles are open towards the left side and end at the same point of the abscissa
on the right side.

As a triangular test must be based on a statistic with expectation 0, given the
null-hypothesis, we transform Fishers statistic z = ln

(
1+r
1−r

)
into the standardized

variable

z∗ = [z − ξ(ρ0)]
√
k − 3

2
=

[
z − ln

(
1 + ρ0

1 − ρ0

)
− ρ0

k − 1

] √
k − 3

2
(22.1)

which is (for not too small values of k) approximate normally distributed with
variance 1 and the expectation:
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θ = E(z∗) = [ξ(ρ) − ξ(ρ0)]

√
k − 3

2
=

[
ln

1 + ρ

1 − ρ
− ln

1 + ρ0

1 − ρ0
+ ρ − ρ0

k − 1

] √
k − 3

2

(22.2)

θ =
[
ln

1 + ρ1

1 − ρ1
− ln

1 + ρ0

1 − ρ0
+ ρ1 − ρ0

k − 1

] √
k − 3

2
(22.3)

The difference δ = ρ1 − ρ0 is the practical relevant difference which should be
detected with the power 1 − β.

From each subsample j , we now calculate the sample correlation coefficient r j as

well as its transformed value z j = ln 1+r j

1−r j
and z∗

j =
[
z j − ln

(
1+ρ j

1−ρ0

)
− ρ0

k−1

] √
k−3
2

( j = 1, 2, . . . ,m).
Now the sequential path is defined by points (Vm, Zm) for m = 1, 2, . . . up to the

maximum of V below or exactly at the point where a terminal decision can be done.
The continuation region is a triangle whose three sides depend on α, β and θ1 via

a =
(
1 + z1−β

z1−α

)
ln

(
1
2α

)

θ1
(22.4)

and

b = θ1

2
(
1 + z1−β

z1−α

) (22.5)

with the P-quantiles z p of the standard normal distribution. That is, one side of the
triangle lies between−a and a on the ordinate of the (V, Z) plane (V = 0). The two
other borderlines are defined by the lines L1 : Z = a + cV and L2 : Z = −a + 3cV ,
which intersect at

(
Vmax = a

c
, Zmax = 2a

)
. (22.6)

The maximum total sample size is of course k · Vmax. If θ = θ1 > θ we get a > 0
and c > 0, and if θ1 < θ we get a < 0 and c < 0.
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Table 22.1 A typical result from Schneider et al. [8] for ρ0 = 0.5 and ρ1 = 0.6 with αnominal =
0.05 and βnominal = 0.2

k 12 16 20 50

αactual 0.096 0.074 0.064 0.037

βactual 0.082 0.105 0.123 0.147

The decision rule now is: continue sampling as long as −a + 3cVm < Zm <

a + cVm if θ1 > θ or a + 3cVm > Zm > a + acVm if θ1 < θ . Given θ1 > θ , accept
H1 in the case Zm reaches or exceeds L1 and accept H0 in the case Zm reaches or
underruns L2. If the point Vmax = a

c , Zmax = 2a is reached, H1 is to accept.
A typical result of Schneider et al. [8] is given in Table22.1.
From this table, we can conclude that we have to choose k between 20 and 50 in

order to obtain an actual value of α near to 0.05; but we do not know, which k is
really optimal.

Furthermore, we now realize that the actual value of the type-II-risk was too
small. That is, we have to look for an alternative nominal type-II-risk so that the
corresponding actual type-II-risk lies below (nevertheless as near as possible) to the
nominal one. In our example in Table22.1, it should be below 0.2 but as near as
possible to 0.2.

22.3 Simulation Study

In a simulation study

(a) we determined the optimal size of subsamples (kopt ), where the actual type-I-risk
(αact ) is below but as close as possible to the nominal type-I-risk (αnom) and

(b) we determined the optimal nominal type-II-risk (βopt ), where the corresponding
actual type-II-risk (βact)) is below but as close as possible to the nominal type-
II-risk (βnom).

Starting from k = 4, the size of the subsample was systematically increased with
an increment of 1 for each parameter combination until the actual type-I-risk (αact )

fell below the nominal type-I-risk (αnom). This optimal size of subsample (kopt ) was
found in the next step to determine the optimal nominal type-II-risk (βopt ). That is,
the nominal type-II-risk (βnom) was systematically increased with an increment of
0.005 until the actual type-II-risk (βact)) fell below the nominal type-II-risk (αnom).

Paths (Z , V )were generated by bivariate normally distributed random numbers x
and ywithmeansμx = μy = 0, variancesσ 2

x = σ 2
y = 1, and a correlation coefficient

σxy = ρ. By the seqtest package version 0.1-0 [11] simulations can be performed for
any αnom, βnom and δ = ρ1 − ρ0. We present here results for nominal risks αnom =
0.05 and 0.01, βnom 0.01 and 0.2, values of ρ0 ranging 0.1 to 0.9 with an increment
of 0.1, and δ = ρ1 − ρ0 = 0.05, 0.10, 0.15, and 0.20.
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For each parameter combination, 100 000 runs (paths) were generated. As criteria,
we calculated

(a) the relative frequency of wrongly accepting H1, given ρ = ρ0, which is an esti-
mate of the actual type-I-risk (αact ),

(b) the relative frequency of keeping H0, given ρ = ρ1 which is an estimate of the
actual type-II-risk (βact ).

(c) the average number of sample pairs (x, y), i.e. average sample number (ASN),
is the mean number of sample pairs over all 100 000 paths runs of the simulation
study.

Results of the simulation study are shown in Table22.2 (for αnom = 0.05) and
Table22.3 (for αnom = 0.01). We found that the optimal size of the subsample (kopt )
decreases with increasing δ = ρ1 − ρ0, that kopt is smaller for βnom = 0.2 than for
βnom = 0.1 and that kopt is smaller for αnom = 0.05 than for αnom = 0.01. As for

Table 22.2 Optimal values of k and βnom (use) for α = 0.05

Given values of the test problem Optimal values

ρ0 ρ1 β k βopt ASN |ρ1
0.1 0.15 0.1 14 0.110 2320

0.2 10 0.220 1975

0.20 0.1 7 0.135 683

0.2 6 0.255 591

0.25 0.1 5 0.160 373

0.2 5 0.275 302

0.30 0.1 5 0.160 211

0.2 5 0.270 173

0.2 0.25 0.1 16 0.110 2116

0.2 14 0.220 1719

0.30 0.1 10 0.120 571

0.2 8 0.240 483

0.35 0.1 7 0.135 280

0.2 6 0.265 239

0.40 0.1 5 0.175 185

0.2 5 0.285 153

0.3 0.35 0.1 18 0.115 1840

0.2 16 0.220 1505

0.40 0.1 11 0.120 492

0.2 10 0.230 406

0.45 0.1 8 0.135 231

0.2 7 0.255 195

0.50 0.1 6 0.160 141

0.2 5 0.300 128

(continued)
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Table 22.2 (continued)

Given values of the test problem Optimal values

ρ0 ρ1 β k βopt ASN |ρ1
0.4 0.45 0.1 17 0.115 1564

0.2 16 0.225 1259

0.50 0.1 11 0.125 408

0.2 10 0.240 334

0.55 0.1 8 0.140 190

0.2 7 0.260 160

0.60 0.1 7 0.150 107

0.2 6 0.275 94

0.5 0.55 0.1 17 0.120 1220

0.2 16 0.230 984

0.60 0.1 11 0.130 315

0.2 9 0.250 264

0.65 0.1 8 0.145 144

0.2 7 0.265 123

0.70 0.1 6 0.175 84

0.2 6 0.285 70

0.6 0.65 0.1 16 0.120 884

0.2 15 0.230 715

0.70 0.1 10 0.140 223

0.2 9 0.255 185

0.75 0.1 8 0.150 98

0.2 7 0.270 84

0.80 0.1 6 0.170 98

0.2 5 0.325 51

0.7 0.75 0.1 15 0.130 543

0.2 13 0.240 450

0.80 0.1 9 0.145 136

0.2 8 0.265 114

0.85 0.1 6 0.185 60

0.2 6 0.295 50

0.90 0.1 5 0.215 31

0.2 4 0.320 27

0.8 0.85 0.1 11 0.140 268

0.2 11 0.250 219

0.90 0.1 7 0.170 61

0.2 6 0.305 54

0.95 0.1 4 0.220 23

0.2 4 0.325 20

0.9 0.95 0.1 7 0.175 66

0.2 7 0.285 56
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Table 22.3 Optimal values of k and βnom (use) for α = 0.01

Given values of the test problem Optimal values

ρ0 ρ1 β k βopt ASN |ρ1
0.1 0.15 0.1 14 0.0110 3713

0.2 12 0.0220 3218

0.20 0.1 9 0.120 1022

0.2 8 0.235 896

0.25 0.1 5 0.175 591

0.2 5 0.290 507

0.30 0.1 5 0.170 334

0.2 5 0.285 287

0.2 0.25 0.1 19 0.110 3380

0.2 16 0.215 2877

0.30 0.1 11 0.125 903

0.2 8 0.245 814

0.35 0.1 7 0.140 442

0.2 6 0.275 401

0.40 0.1 6 0.155 264

0.2 6 0.265 227

0.3 0.35 0.1 22 0.110 2920

0.2 17 0.220 2520

0.40 0.1 11 0.125 778

0.2 10 0.235 678

0.45 0.1 10 0.125 349

0.2 9 0.240 304

0.50 0.1 7 0.145 211

0.2 6 0.280 192

0.4 0.45 0.1 20 0.120 2477

0.2 19 0.225 2083

0.50 0.1 12 0.130 642

0.2 11 0.235 552

0.55 0.1 9 0.135 291

0.2 8 0.255 255

0.60 0.1 7 0.150 169

0.2 6 0.285 155

0.5 0.55 0.1 19 0.115 1947

0.2 16 0.230 1668

0.60 0.1 12 0.125 495

0.2 10 0.245 434

0.65 0.1 9 0.140 219

0.2 8 0.255 195

0.70 0.1 7 0.155 125

0.2 7 0.270 108

(continued)
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Table 22.3 (continued)

Given values of the test problem Optimal values

ρ0 ρ1 β k βopt ASN |ρ1
0.6 0.65 0.1 19 0.120 1382

0.2 16 0.230 1196

0.70 0.1 11 0.135 347

0.2 10 0.250 303

0.75 0.1 8 0.150 153

0.2 8 0.260 132

0.80 0.1 6 0.180 86

0.2 5 0.340 83

0.7 0.75 0.1 18 0.120 860

0.2 15 0.235 743

0.80 0.1 10 0.140 208

0.2 9 0.260 183

0.85 0.1 7 0.165 88

0.2 6 0.30 82

0.90 0.1 5 0.220 48

0.2 5 0.330 42

0.8 0.85 0.1 13 0.135 413

0.2 12 0.245 360

0.90 0.1 7 0.175 95

0.2 7 0.285 83

0.95 0.1 5 0.220 35

0.2 5 0.330 31

0.9 0.95 0.1 8 0.185 436

0.2 7 0.340 378

the optimal nominal type-II-risk (βopt ), the difference βopt − βnom is larger with
increasing ρ0 and increasing δ = ρ1 − ρ0.

In order to determine the optimal size of subsamples (kopt)) and the optimal
nominal type-II-risk (βopt ) for parameter combination not included in Tables22.2
and 22.3, the reader may use the R package seqtest for own simulations.

22.4 The R-Program and an Example

The sequential triangular test for testing a correlation coefficient is implemented in
the R package seqtest [11], which is available on The Comprehensive R Archive
Network (CRAN) [6] and can be installed via command line
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install.packages("seqtest").

This package offers a simulation function to determine the optimal size of subsam-
ples (kopt ) and the optimal nominal type-II-risk (βopt ) for a user-specified parameter
combination. In the following example, we determine kopt and βopt for H0 : ρ0 ≤ 0.3
and H1 : ρ1 > 0.3 with δ = 0.25 and αnom = 0.01 and βnom = 0.05.

After installing the package, it is loaded using

library(seqtest)

In the first step, we determine the optimal size of subsamples (kopt ). We type

sim.seqtest.cor(rho.sim = 0.3, k = seq(4, 10, by = 1), rho = 0.3,
alternative = "greater", delta = 0.25, alpha = 0.05, beta = 0.05,
runs = 10000)

That is, we apply the function sim.seqtest.corr() using the first argument
rho.sim to specify the simulated correlation coefficient ρ and the arguments k to
specify a sequence for k, i.e. from 4 to 10 by increment of 1, for which the simulation
is conducted. With the argument alternative ="greater", we state that the
alternative hypothesis is one-sided and the arguments delta, alpha and beta are used
to specify ρ, αnom and βnom . Last, we specify 10000 runs using argument runs for
each simulation condition.
As a results, we obtain:

Statistical Simulation for the Sequential Triangular Test

H0: rho <= 0.3 versus H1: rho > 0.3

Nominal type-I-risk (alpha): 0.05
Nominal type-II-risk (beta): 0.05
Practical relevant effect (delta): 0.25

Simulated data based on rho: 0.3
Simulation runs: 10000

Estimated empirical type-I-risk (alpha):
k = 4: 0.057
k = 5: 0.054
k = 6: 0.048
k = 7: 0.043
k = 8: 0.042
k = 9: 0.040
k = 10: 0.039

[output shortend]
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Simulation results indicate that k = 6 is the optimal value, where αact is below
but close to αnom .

In the next step, we determine the optimal nominal type-II-risk βopt based on the
optimal size of subsamples kopt = 6. We type

sim.seqtest.cor(rho.sim = 0.55, k = 6, rho = 0.3,
alternative = "greater",
delta = 0.25, alpha = 0.05,
beta = seq(0.05, 0.10, by = 0.01), runs = 10000)

That is, again we apply the function sim.seqtest.cor() and specify the
argument k = 6 for kopt = 6, which was determined in the previous step. This time,
we specify rho.sim = 0.55 to simulate the H1 condition and use the argument
beta to specify a sequence for βnom , i.e. from 0.05 to 0.10 by increment of 0.01,
for which the simulation is conducted. As a result, we obtain:

Statistical Simulation for the Sequential Triangular Test

H0: rho <= 0.3 versus H1: rho > 0.3

Nominal type-I-risk (alpha): 0.05
Practical relevant effect (delta): 0.25
n in each subsample (k): 6

Simulated data based on rho: 0.55
Simulation runs: 10000

Estimated empirical type-II-risk (beta):
Nominal beta = 0.05: 0.022
Nominal beta = 0.06: 0.029
Nominal beta = 0.07: 0.038
Nominal beta = 0.08: 0.046
Nominal beta = 0.09: 0.044
Nominal beta = 0.10: 0.057

[output shortend]
Simulation results indicate that βnom = 0.10 is the optimal value, where βact is

below but close to βnom .
The optimal values kopt and βopt determined by the simulation function are used

for the sequential triangular test for testing a correlation coefficient. Let us assume
that the first correlation coefficient calculated from a sample of 6 pairs is r1 = 0.75.
We type

seq.obj <- seqtest.cor(0.75, k = 6, rho = 0.3,
alternative = "greater",
delta = 0.25, alpha = 0.05, beta = 0.10,
plot = TRUE)
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That is, we apply the function seqtest.corr(), using the first argument
to specify the sampled correlation coefficient 0.75. We specify ρ0, δ and α using
arguments rho, delta and alpha and specify kopt and βopt using function k
and beta. With the argument alternative ="greater", we state that the
alternative hypothesis is one-sided and with plot = TRUE, we request a plot for
the results. The result is assigned to the object seq.obj. As a result, we obtain:

Sequential triangular test for the product-moment correlation
coefficient

H0: rho <= 0.3 versus H1: rho.1 > 0.3
alpha: 0.05 beta: 0.1 delta: 0.25 k: 6

Step 1
V.m: 1.000 Z.m: 1.097
Continuation range | V.m: [-6.597, 7.247]

Test not finished, continue by adding data via
update()

Current sample size for 1 correlation coefficient:
1 x 6 = 6

Results show that the test statistic Zm is within the continuation range conditioned
on Vm . Hence, no final decision is achievable and for that reason, we continue our
study. Next, let us assume we sampled r2 = 0.83, r3 = 0.86, r4 = 0.79, r5 = 0.81
and r6 = 0.80 from k = 6 pairs each.

We type

update(seq.obj, x = c(0.83, 0.86, 0.79, 0.81, 0.80))

That is, we apply the function update() to update results in the seq.obj object.
As a result, we obtain:

Sequential triangular test for Pearson’s correlation coefficient

H0: rho.0 <= 0.3 versus H1: rho.1 > 0.3
alpha: 0.05 beta: 0.10 delta: 0.25 k: 6

Step 2
V.m: 2.000 Z.m: 2.567
Continuation range | V.m: [-6.109, 7.409]

Step 3
V.m: 3.000 Z.m: 4.219
Continuation range | V.m: [-5.622, 7.572]

Step 4
V.m: 4.000 Z.m: 5.487
Continuation range | V.m: [-5.134, 7.734]
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Fig. 22.1 Graph of the triangle of the example with corner points (0; −7.08), (0; 7.08), and
(43.60; 14.20), the arbitrarily sampled steps of k = 6 data pairs included leading to r1 = 0.75, r2 =
0.83, r3 = 0.86, r4 = 0.79, r5 = 0.81, r6 = 0.80; the point (V1 = 1, Z1 = 1.097), (V2 = 2, Z2 =
2.567), (V3 = 3, Z3 = 4.219), (V4 = 4, Z4 = 5.487), (V5 = 5, Z5 = 6.851) and (V6 = 6, Z6 =
8.166) represented by the circle by six connected circles

Step 5
V.m: 5.000 Z.m: 6.851
Continuation range | V.m: [[-4.647, 7.897]

Step 6
V.m: 6.000 Z.m: 8.166
Continuation range | V.m: [-4.159, 8.059]

Test finished: Accept alternative hypothesis (H1)
Final sample size for 5 correlation coefficients:

6 x 6 = 36

Results show that the cumulated test statistic Zm leaves the continuation range
conditioned on Vm at Step 6. Hence, the test is finished and the alternative hypothesis
is to be accepted (Fig. 22.1).

22.5 Discussion

Let us show by an example how good the improvement with the proposed new
approach can be. We consider Table22.1 in Schneider et al. (2014) and look at the
row for ρ0 = .5, ρ1 = .0.7. and α = 0.05. We find there the result:



328 D. Rasch et al.

β2 = 0.2
k 12 16

αact 0.53 0.42
βact 0.114 0.13

ASN |ρ1 62.1 62.3
n f i x 65 65

From this table, we do not knowwhich k between 12 and 16 we have to choose. In
Table22.2, we find an optimal k = 13 andβ(opt) = 0.285. This leads to an ASN |ρ1 =
54 and this means a mean subsample size of 54

13 = 4.15. When the readers uses the
R-program given, they are able to determine an optimal solution for any parameter
configuration.
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Chapter 23
Explicit T -optimal Designs for
Trigonometric Regression Models

Viatcheslav B. Melas and Petr V. Shpilev

Abstract This chapter devotes to the problem of constructing T -optimal discrimi-
nating designs for Fourier regression models which differ by at most three trigono-
metric functions. Here we develop the results obtained in a paper (Dette, Melas
and Shpilev (2015). T -optimal discriminating designs for Fourier regression mod-
els. 1–17) [11] and give a few its generalizations. We consider in detail the case of
discriminating between two models where the order of the larger one equals two. For
this case, we provide explicit solutions and investigate the dependence of the locally
T -optimal discriminating designs on the parameters of the larger model. The results
obtained in the chapter can also be applied in classical approximation theory.

Keywords T -optimal design · Model discrimination · Linear optimality criteria
Trigonometric models

23.1 Introduction

This chapter addresses the discriminating design problem for regressionmodelswhen
the primary outcome is continuous, and it is not known a priori which model is an
appropriate one to use. Such problems are common for applied regression analysis;
[see, for example, [2, 4, 6]]. In this situation, one of the possible ways is to consider
a class of feasible models to which we believe an adequate model for fitting the
data belongs. The focal point is how to design the experiment to choose the most
appropriate model from within this class. There are two different approaches to this
problem in the literature. The first one [14, 15, 25] consists in considering two nested
models, i.e., such as those for which the model with a smaller number of parameters
can be obtained from another model by setting specific values for the parameters.
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The experimenter is interested in finding efficient design which allows to identify an
appropriate model and, at the same time, estimate these parameters most precisely.
Since its advent, this approach was developed by numerous authors (see [5, 7–9,
13, 23, 24, 26, 31] among others). The alternative approach was presented in the
fundamental paper of [3] who introduced the T -optimality criterion for discriminat-
ing between two competing regression models. Since its introduction, the problem
of determining T-optimal designs has been considered by numerous authors [see
[1, 4, 12, 27, 28] or [29, 30] among others]. T-optimal designs are usually used to
discriminate between homoscedastic models with normal errors [2, 4, 6, 14]. For
discriminating nonlinear models, only numerical results are possible; [19] investi-
gated optimal designs maximizing the weighted average of two T-criterion functions,
and [20] constructed T -optimal designs for Michaelis–Menten-like models. The
T-optimal design problem is essentially a minimax problem, and, except for very
simple models, the corresponding optimal designs are not easy to find and have to
be determined numerically. For this reason, the analytical solutions for models with
a large number of parameters are very useful not only in terms of application but
also as a tool for testing numerical optimization methods. In recent papers, [10, 11]
some explicit solutions of the T -optimal design problem for discriminating between
two polynomial regression models [10] and for two Fourier regression models [11]
were obtained, but to our best knowledge, no other analytical solutions are available
in the literature.

In the present chapter,we consider the problemof constructing T -optimal discrim-
ination designs for Fourier regression models which are widely used in applications
to describe periodic phenomena. Typical subject areas include engineering [see, e.g.,
[21]], medicine [see, e.g., [17]], and biology [18].

Discriminating designs in sense of [14, 15, 25] have been investigated by [5, 31]
among others, but only one paper [11] was devoted to the problem of constructing
T -optimal designs for Fourier regressionmodels in the literature so far. In the present
work, we provide some further results on this issue. In Sect. 23.2, we introduce the
problem and present some basic notions. In Sect. 23.3, we give a short review of
the main results obtained in the paper [11]. In the last section, we provide a few
theoretical results and give some explicit solutions for discriminating between two
trigonometric models where the largest one has the order m = 2.

23.2 T -optimal Discriminating Designs

Consider the classical regression model

y = η(x) + ε (23.2.1)

where the explanatory variable x varies in the design space X , and observations
at different locations, say x and x ′, are assumed to be uncorrelated with the same
variance. In (23.2.1), the quantity ε denotes a random variable with mean 0 and
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variance σ 2, and η(x) is a functionwhich is called regression function in the literature
[see, e.g., [22]].

We assume that the experimenter has two parametric models for this function in
mind, that is

η1(x, θ1) and η2(x, θ2). (23.2.2)

And the first goal of the experiment is to discriminate between these two models. In
order to find “good” designs for discriminating between the models η1 and η2, we
consider approximate designs, as suggested by [16], which are probability measures
on the design space X with finite support. The support points, say x1, . . . , xs , of
an (approximate) design ξ give the locations where observations are taken, while
the weights define the corresponding relative proportions of total observations to
be taken at these points. If the design ξ has masses ωi > 0 at the different points
xi (i = 1, . . . , k) and N observations can bemade by the experimenter, the quantities
ωi N are rounded to integers, say ni , satisfying

∑s
i=1 ni = N , and the experimenter

takes ni observations at each location xi (i = 1, . . . , k).
T-optimal design is the design which maximizes the minimal deviation between

the model η2 and the class of models defined by η1, that is,

ξ ∗ = argmax
ξ

∫

χ

(
η2(x, θ2) − η1(x, θ̂1)

)2
ξ(dx)

where the parameter θ̂1 minimizes the expression

θ̂1 = argmin
θ1

∫

χ

(η2(x, θ2) − η1(x, θ1))
2 ξ(dx)

In present work, we consider the regression functions η1(x, θ1) and η2(x, θ2) given
by

η1(x, θ1) = q0 +
k1∑

i=1

q2i−1 sin(i x) +
k2∑

i=1

q2i cos(i x) (23.2.3)

and

η2(x, θ2) = q̃0 +
k1∑

i=1

q̃2i−1 sin(i x) +
k2∑

i=1

q̃2i cos(i x) (23.2.4)

+
m∑

i=k1+1

b2(i−k1)−1 sin(i x) +
m∑

i=k2+1

b2(i−k2) cos(i x),

where
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θ1 = (q0, q2, . . . , q2k2 , q1, . . . , q2k1−1)

θ2 = (q̃0, . . . , q̃2k2 , q̃1, . . . , q̃2k−1, b2, . . . , b2m, b1, . . . , b2m−1)

are the parameter vectors in model η1 and η2, respectively.
We assume that the design space is given by the interval χ = [0, 2π ] and denote

the difference η2(x, θ2) − η1(x, θ1) by

η(x, q, b) = q0 +
k1∑

i=1

q2i−1 sin(i x) +
k2∑

i=1

q2i cos(i x)+

+
m∑

i=k1+1

b2(i−k1)−1 sin(i x) +
m∑

i=k2+1

b2(i−k2) cos(i x),

(23.2.5)

where q = (q0, q1, . . . , q2k1−1, q2, . . . , q2k2), qi = q̃i − qi and b = (b1, b3, . . . ,
b2(m−k1)−1, b2, b4, . . . , b2(m−k2))

T denote the vector of “additional” parameters in
the model (23.2.4). With these notations, we can rewrite the T-optimality criterion
as follows

T (ξ, b) = min
q

∫

χ

η(x, q, b)2ξ(dx), χ = [0, 2π ],

ξ ∗ = argmax
ξ

T (ξ, b)

As pointed out in the introduction, the explicit determination of T -optimal dis-
criminating designs is a very challenging problem. The complexity of the problem
depends on the dimension of the vector b. In the next section, we give a short review
of the main results obtained in the paper [11].

23.3 Explicit Solutions

In this section, we consider some explicit T -optimal discriminating designs for
Fourier regression models obtained in the paper [11] for the models (23.2.3) and
(23.2.4), where

k1 = k2 = m − 1, (23.3.1)

k1 = m − 1, k2 = m − 2, (23.3.2)

k1 = m − 2, k2 = m − 1. (23.3.3)
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23.3.1 Discriminating Designs for k1 = k2 = m − 1

Theorem 23.1 Consider the Fourier regression models (23.2.3) and (23.2.4) with
k1 = k2 = m − 1. Let b1, b2 �= 0, then the design

ξ ∗ =
(

1
m arctan( 1b )

1
m arctan( 1b ) + π

m . . . 1
m arctan( 1b ) + (2m−1)π

m
1
2m

1
2m . . . 1

2m

)

(23.3.4)

is a T -optimal discriminating design, where b = b2/b1.

Corollary 23.1 Consider the Fourier regression models (23.2.3) and (23.2.4) with
k1 = k2 = m − 1. If b1 = 0, then the design

ξ ∗ =
(

0 π
m . . . (2m−1)π

m
1
2m

1
2m . . . 1

2m

)

is a T -optimal discriminating design. If b2 = 0, then the design

ξ ∗ =
(

π
2m

3π
2m . . . (4m−1)π

2m
1
2m

1
2m . . . 1

2m

)

is a T -optimal discriminating design.

23.3.2 Discriminating Designs for k1 = m − 1, k2 = m − 2

If k1 = m − 1, k2 = m − 2, the function η in (23.2.5) has the representation

η(x, q, b) = q0 +
m−1∑

i=1

q2i−1 sin(i x) +
m−2∑

i=1

q2i cos(i x)+
+b0 cos((m − 1)x) + b1 sin(mx) + b2 cos(mx).

(23.3.5)

Define support and weights points as follows

x∗
i (b) = arccos

(
−

(
1 + 1

2m|b|
)
cos

( (m − i + 1)π

m

)
− 1

2m|b|
)
, (23.3.6)

ω∗
i = 1

m
cos2

( (i − 1)π

2m

)
, i = 1, . . . ,m. (23.3.7)

Theorem 23.2 gives an explicit solution of the T -optimal design problem in the case
b1 = 0, b2 �= 0.
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Theorem 23.2 Consider the difference between two Fourier regression models
(23.3.5) with b0 = 1, b1 = 0, b2 �= 0.

(a) If b2 ≥ 1
2m cot2

(
π
2m

)
, then the design

ξ ∗
1 =

(
x∗
1 (b2) . . . x∗

m(b2) 2π − x∗
m(b2) . . . 2π − x∗

2 (b2)
ω∗
1 . . . ω∗

m ω∗
m . . . ω∗

2

)

(23.3.8)

is a T -discriminating optimal design, where the support points and weights are
defined in (23.3.6) and (23.3.7), respectively.

(b) If b2 ≤ − 1
2m cot2

(
π
2m

)
, then the design

ξ ∗
2 =

(
π − x∗

m(b2) . . . π − x∗
1 (b2) π + x∗

2 (b2) . . . π + x∗
m(b2)

ω∗
m . . . ω∗

1 ω∗
2 . . . ω∗

m

)

,(23.3.9)

is a T -discriminating optimal design, where the support points and weights are
defined in (23.3.6) and (23.3.7), respectively.

Thenext theoremconsiders the caseb1 �= 0, b2 = 0,which is substantially harder.
Here, the locally T -optimal discriminating designs are determined explicitly only for
the case m is odd, where m is the degree of the Fourier regression model.

Theorem 23.3 Consider the difference between two Fourier regression models
(23.3.5) with b0 = 1, b1 �= 0, b2 = 0, where m is odd. For 
 = 1, 2 let t (ξ
)

i and ω
(ξ
)

i ,
denote the support points and weights of the designs ξ1 and ξ2 defined in (23.3.8)
and (23.3.9) of Theorem 23.2, and define

t (
)i = t (ξ
)

i + π

2
mod 2π; 
 = 1, 2.

(a) If b1 ≥ 1
2m cot2

(
π
2m

)
, then the design

ξ̃ ∗
1 =

(
t (1)1 . . . t (1)2m−1

ω
(ξ1)
1 . . . ω

(ξ1)
2m−1

)

is a T -optimal discriminating design.
(b) If b1 ≤ − 1

2m cot2
(

π
2m

)
, then the design

ξ̃ ∗
2 =

(
t (2)1 . . . t (2)2m−1

ω
(ξ2)
1 . . . ω

(ξ2)
2m−1

)

is a T -optimal discriminating design.
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23.3.3 Discriminating Designs for k1 = m − 2, k2 = m − 1

If k1 = m − 2, k2 = m − 1, the function η in (23.2.5) has the representation

η(x, q, b) = q0 +
m−2∑

i=1

q2i−1 sin(i x) +
m−1∑

i=1

q2i cos(i x)+
+b0 sin((m − 1)x) + b1 sin(mx) + b2 cos(mx).

(23.3.10)

Theorem 23.4 Consider the difference between two Fourier regression models
(23.3.10) with b0 = 1, b1 = 0, b2 �= 0, where m is even. For 
 = 1, 2 let t (ξ
)

i and

ω
(ξ
)

i , denote the support points and weights of the designs ξ1 and ξ2 defined in
(23.3.8) and (23.3.9) of Theorem 23.2, and define

t (
)i = t (ξ
)

i + 3π

2
mod 2π; 
 = 1, 2.

(a) If b2 ≥ 1
2m cot2

(
π
2m

)
, then the design

ξ̃ ∗
1 =

(
t (1)1 . . . t (1)2m−1

ω
(ξ1)
1 . . . ω

(ξ1)
2m−1

)

is a T -optimal discriminating design.
(b) If b2 ≤ − 1

2m cot2
(

π
2m

)
, then the design

ξ̃ ∗
2 =

(
t (2)1 . . . t (2)2m−1

ω
(ξ2)
1 . . . ω

(ξ2)
2m−1

)

is a T -optimal discriminating design.

As was mentioned before, all results in this section were obtained in the paper
[11]; see this paper for more details.

In general, the solution of the locally T -optimal design problem depends in a
complicated way on the parameters b, and the number of support points of the T -
optimal discriminating design changes if the vector b is located in different areas of
the spaceR2. In the following section, we give some explicit solutions for the Fourier
regression model of second order (m = 2).

23.4 Explicit Solution. Case M = 2

In this section, we consider the problem of constructing T-optimal designs for special
case m=2. The theoretical results obtained in this section follow from the properties
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of trigonometric functions. If m = 2 and k1 = 1, k2 = 0, the function η in (23.2.5)
has the representation

η(x, q, b) = q0 + q1 sin(x) + cos(x) + b1 sin(2x) + b2 cos(2x). (23.4.11)

The number of T -optimal designs’ support points equals 2 or 3 and depends onwhich
area a point (b1, b2) belongs to.

Note that according to the equivalence theorem for T -optimality (see, e.g., [11]),
support points of any optimal design ξ are extremums of some function ψ∗ which is
satisfied to certain conditions. Such function is often called an extremal function for
the design ξ .

The following theorem provides explicit T-optimal designs for the difference
between two models (23.4.11).

Theorem 23.5 Consider the function η(x, q, b) (23.4.11). Let b∗
2(b1) : [0,∞) →

[0,∞) be a function such that for any point (b1, b2) the following conditions hold
true

#supp(ξ ∗) =
{
2, |b2| ≤ b∗

2(|b1|),
3, |b2| > b∗

2(|b1|), (23.4.12)

where #supp(ξ ∗) is the number of support points of a T-optimal design ξ ∗ for
η(x, q, b). Then, if −b∗

2(b1) < b2 ≤ b∗
2(b1)

ξ ∗ =
(
x∗ π − x∗
1
2

1
2

)

, x∗ = arcsin

⎛

⎝
−1 +

√
32b21 + 1

8b1

⎞

⎠ , b1 ∈ [0,∞)

is the T-optimal design for η(x, q, b).

Proof The optimality of the design ξ ∗ follows from the equivalence theorem and can
be checked by direct construction of the corresponding extremal function. According
to this theorem, the design ξ is a T -optimal if and only if there exists a vector θ∗
and a positive constant h such that the function ψ∗(x) = η(x, θ∗, b) (see (23.2.5))
satisfies the following conditions

(i) |ψ∗(x)| ≤ h, for all x ∈ [0, 2π ],
(ii) |ψ∗(xi )| = h, for all i = 1, 2, . . . , n,
(iii) The support points and weights satisfy the conditions

n∑

i=1

ψ∗(xi )
∂η(xi , θ, b)

∂θ j
ωi

∣
∣
∣
θ=θ∗

= 0, j = 0, . . . , k1 + k2. (23.4.13)

Let us consider as an extremal function ψ∗(x) for the design ξ ∗ the following one
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ψ∗(x) =
b2(−32b21 +

√
32b21 + 1 − 1)

(16b21)
+

+
b2(−1 +

√
32b21 + 1) sin(x)

2b1
+ cos(t) + b1 sin(2x) + b2 cos(2x)

Direct calculations show that this function satisfies the conditions (i) − (i i i) with

h =
3 +

√
32b21 + 1

32

√
√
√
√32b21 + 2

√
32b21 + 1 − 2

b21

�

Example 23.1 Suppose thatm = 2, b1 = 1, b2 = 0.2 and k1=1, k2=0, then it follows
from Theorem 23.5 that the design

Fig. 23.1 Extremal functionψ∗ for the T -optimal discriminating design for the difference between
two models (23.4.11) (b1 = 1, b2 = 0.2)
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ξ ∗ =
(
0.635 2.507

1
2

1
2

)

is a T -optimal discriminating design for the difference between twomodels (23.4.11).
The extremal function ψ∗ for this design is depicted in Fig. 23.1.

Theorem 23.6 Let b1 ∈ [0,∞]. The function b∗
2(b1) defined in the previous theorem

can be represented in explicit form

b∗
2(b1) = 2b1(−2b1 cos(2t) + sin(t))

cos(t)
√
32b21 + 1 − 4b1 sin(2t) − cos(t)

, t = 2π + arctan (z) ,

where

z =
64b31

√

8192b61 + 12288b41 + 576b21 + (96b21 − 3)
√

(32b21 + 1)3 + (576b21 + 3)
√
32b21 + 1

(√
(32b21 + 1)3 + 96b21 + 3

√
32b21 + 1 + 4

)√

16b21 +
√
32b21 + 1 − 1

(

−8b21 +
√
32b21 + 1 − 1

)

The statement of the Theorem 23.6 can be checked by direct calculations.

Remark 23.1 It follows from the Theorems 23.5 and 23.6 that

lim
b1=∞ b∗

2(b1) =
√
2

4
, lim

b1=0
ξ ∗ =

(
0 π
1
2

1
2

)

and lim
b1=∞ ξ ∗ =

(
π
4

3π
4

1
2

1
2

)

.

For our next result, we need to define the notion of equivalence between two
models.

Definition 23.1 We say that a function η1(x, q̂, b1) (see (23.2.5)) is equivalent to a
function η2(x, q, b2)

(
η1(x, q̂, b1) ∼ η2(x, q, b2)

)
if for any fixed vectors q̂ and b1

there exist vectors q∗ and b
∗
2 such that η1(x, q̂, b1) − η2(x, q

∗, b∗
2) ≡ 0.

Theorem 23.7 For any m and k1 = m − 1, k2 = m − 2 suppose that a design

ξ̃ =
(
x1 . . . xn
ω1 . . . ωn

)

is a T-optimal for the difference between two models (23.2.5):

η1(x, q̂, |b|) = q̂0 +
m−1∑

i=1

q̂2i−1 sin(i x) +
m−2∑

i=1

q̂2i cos(i x) +

+|b0| cos((m − 1)x) + |b1| sin(mx) + |b2| cos(mx)

then any design ζ which is a T-optimal for



23 Explicit T -optimal Designs for Trigonometric Regression Models 339

η2(x, q, b) = q0 +
m−1∑

i=1

q2i−1 sin(i x) +
m−2∑

i=1

q2i cos(i x) +

+b0 cos((m − 1)x) + b1 sin(mx) + b2 cos(mx)

can be obtained from the design ξ̃ by one of 3 transformation xi → −xi , xi →
π + xi or xi → π − xi , i = 1, . . . , n.

Proof Note that without loss of generality, we can assume that b0 ≡ 1 or 0. Indeed,
if b0 �= 0, the T -optimal design ζ depends only on values of the parameters b1, b2,
since we can divide all coefficients by b0. Suppose that b1 = p1|b1| and b2 = p2|b2|,
p1, p2 = ±1. Then it follows from the properties of trigonometric functions that

⎧
⎨

⎩

if p1 = −1, p2 = 1 then η1(−x, q̂, |b|) ∼ η2(x, q, b),
if p1 = 1, p2 = −1 then (−1)m−1η1(π − x, q̂, |b|) ∼ η2(x, q, b),
if p1 = −1, p2 = −1 then (−1)m−1η1(π + x, q̂, |b|) ∼ η2(x, q, b).

�

Corollary 23.2 If k1 = m − 2, k2 = m − 1 and a design ξ̃ is a T-optimal for the
function η1(x, q̂, |b|) (23.2.5) then any design ζ which is a T-optimal for η2(x, q, b)
can be obtained from the design ξ̃ one of 3 transformation xi → −xi , xi → π +
xi or xi → π − xi , i = 1, . . . , n where xi -th are the support points of the design ξ̃ .

Theorem 23.8 Let m is even. Denote by η1(x, q, b) the difference between two
models (23.2.5) for k1 = m − 1, k2 = m − 2:

η1(x, q̂, b) = q̂0 +
m−1∑

i=1

q̂2i−1 sin(i x) +
m−2∑

i=1

q̂2i cos(i x) +

+b0 cos((m − 1)x) + b1 sin(mx) + b2 cos(mx)

and by η2(x, q, b) the difference between two models (23.2.5) for k1 = m − 2, k2 =
m − 1:

η2(x, q, b) = q0 +
m−2∑

i=1

q2i−1 sin(i x) +
m−1∑

i=1

q2i cos(i x) +

+b0 sin((m − 1)x) + b1 sin(mx) + b2 cos(mx).

Suppose that a design

ξ̃1 =
(
x1 . . . xn
ω1 . . . ωn

)

is a T-optimal for η1(x, q, b) Then a design
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ξ̃2 =
(
x1 − π/2 . . . xn − π/2

ω1 . . . ωn

)

is a T-optimal for η2(x, q, b).

Proof It follows from the properties of trigonometric functions that (−1)m−1η2(x −
π/2, q, b) ∼ η1(x, q̂, b). �

Theorem 23.9 Let m is odd. Denote by η1(x, q, b1) the difference between two
models (23.2.5) for k1 = m − 1, k2 = m − 2:

η1(x, q̂, b1) = q̂0 +
m−1∑

i=1

q̂2i−1 sin(i x) +
m−2∑

i=1

q̂2i cos(i x) +

+b0 cos((m − 1)x) + b1 sin(mx) + b2 cos(mx)

and by η2(x, q, b2) the difference between two models (23.2.5) for k1 = m − 1, k2 =
m − 2:

η2(x, q, b2) = q0 +
m−1∑

i=1

q2i−1 sin(i x) +
m−2∑

i=1

q2i cos(i x) +

+b0 cos((m − 1)x) + b2 sin(mx) + b1 cos(mx).

Suppose that a design

ξ̃1 =
(
x1 . . . xn
ω1 . . . ωn

)

is a T-optimal for η1(x, q, b1) Then a design

ξ̃2 =
(

π/2 − x1 . . . π/2 − xn
ω1 . . . ωn

)

is a T-optimal for η2(x, q, b2).

Proof It follows from the properties of trigonometric functions that (−1)
m−1
2 η2

(π/2 − x, q, b2) ∼ η1(x, q̂, b1). �

Corollary 23.3 The Theorems 23.3 and 23.4 directly follow from the Theorems 23.7,
23.8 and 23.9.

Corollary 23.4 For m = 2, k1 = 1, k2 = 0 and −b∗
2(b1) < b2 ≤ b∗

2(b1) a design

ξ ∗ =
(

π + x∗
1 2π − x∗

1
1
2

1
2

)

, x∗
1 = arcsin

⎛

⎝
−1 +

√
32b21 + 1

8|b1|

⎞

⎠ , b1 ∈ (−∞, 0]
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is a T-optimal design for the function η(x, q, b) (23.2.5).

Corollary 23.5 Suppose that m = 2, k1 = 0, k2 = 1 and b1 ∈ (−∞,∞). Then

• if 0 ≤ b2 ≤ b∗
2(b1) a design

ξ ∗
1 =

(
π/2 − x∗

1 3π/2 + x∗
1

1
2

1
2

)

, x∗
1 = arcsin

⎛

⎝
−1 +

√
32b21 + 1

8|b1|

⎞

⎠

is a T-optimal design for the function η(x, q, b) (23.2.5);
• if −b∗

2(b1) ≤ b2 ≤ 0 a design

ξ ∗
2 =

(
π/2 + x∗

1 3π/2 − x∗
1

1
2

1
2

)

, x∗
1 = arcsin

⎛

⎝
−1 +

√
32b21 + 1

8|b1|

⎞

⎠

is a T-optimal design for the function η(x, q, b) (23.2.5).

Form = 2, the Theorem23.5 and theCorollaries 23.4 and 23.5 provide a complete
solution of the problem of constructing T-optimal designs with two support points.
Note that T-optimal designs with 3 support points can also be found explicitly, but
the corresponding expressions are too large to be represented here. For the partic-
ular cases: k1 = 1, k2 = 0, b1 = 0, b2 �= 0 and k1 = 0, k2 = 1, b1 = 0, b2 �= 0,
T-optimal designs with 3 support points are constructed in the Theorems 23.2 and
23.4.
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Chapter 24
Simulations on the Combinatorial
Structure of D-Optimal Designs

Roberto Fontana and Fabio Rapallo

Abstract In this work, we present the results of several simulations on main-effect
factorial designs. The goal of such simulations is to investigate the connections
between the D-optimality of a design and its geometric structure. By means of a
combinatorial object, namely the circuit basis of the model matrix, we show that
it is possible to define a simple index that exhibits strong connections with the
D-optimality.

Keywords Algebraic statistics · Circuits · Design of experiments
Fractional factorial designs · Optimal designs

24.1 Introduction

Many experimental situations call for standard designs, such as fractional factorials.
However in many situations, standard designs are not available, for example, when
not all combinations of the factor levels are feasible or resource limitations restrict
the number of experiments that can be performed. In these nonstandard situations,
D-optimal designs are often used [8].

In the recent work [3], saturated fractions, which are designs where the number
of points is equal to the number of estimable parameters of the model, have been
characterized through the circuits of the model matrix. The key point of such theory
is the identification of a fraction with a {0, 1}-valued multiway contingency table
where the points belonging to the fraction are denoted with 1 and the points outside
the fraction are denoted with 0. Under this kind of representations, it is possible to
study some properties of the design by using combinatorial objects derived from
the model matrix. In particular, a circuit is a special element of the kernel of an
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integer-valuedmatrix.Wewill recall the definition and the basic properties of circuits
in the next section. The structure of saturated D-optimal designs in connection with
the circuits has been studied in [4].

Since the circuits yield major information on the D-optimality of saturated frac-
tions, in this work we perform a simulation study for investigating the geometric
structure of non-saturated D-optimal designs in connection with their circuits. We
limit our analysis to main-effect models, and we present some test cases dealing with
both symmetric and asymmetric designs. From these examples, we argue that there
are strong connections between the D-optimality and the circuits. We use Proc
Optex of SAS/QC [13] for generating D-optimal designs and 4ti2 [1] for gener-
ating circuits.

Proc Optex searches for optimal experimental designs in the following way.
The user specifies an efficiency criterion, a set of candidate design points, a model
and the size of the design to be found, and the procedure generates a subset of
the candidate set so that the terms in the model can be estimated as efficiently as
possible. There are several algorithms for searching for D-optimal designs. They
have a common structure. They start from an initial design, randomly generated or
user specified, and move, in a finite number of steps, to a better design. All of the
search algorithms are based on adding points to the growing design and deleting
points from a design that is too big. Main references to optimal designs include [2,
5, 10, 12, 14, 16].

4ti2 is a symbolic software which computes the circuits of a given integer-
valued matrix. The use of software for Combinatorics and Computer Algebra inside
statistical simulations usually leads to limitations in the size of the problems. The
algorithms become actually unfeasible when the number of the design points grows,
and our problem does not make exception. Therefore, we will restrict to small-sized
examples.

It is worth noting that despite these computational limitations, we are able to
consider a variety of examples, including both binary and multilevel designs, with
an example of mixed-level design.

The chapter is organized as follows. In Sect. 27.1, we briefly describe the results
of [3] and, in particular, how saturated designs can be characterized in terms of the
circuits of the relevantmodelmatrix. In Sect. 27.2,we recall somemajor results on the
D-optimality of saturated fractions and we introduce our simulation study for main-
effect models. In Sect. 27.3, we present and discuss the results of our simulations,
while in Sect. 24.5, we give some concluding remarks and some pointers to future
work.

24.2 Circuits, Saturated Designs, and D-optimality

In this section, we recall the definition of circuits and we review their applications
to Design of Experiments. A full account on circuits including some applications to
Statistics is available in [9].

http://dx.doi.org/10.1007/978-3-319-76035-3_27
http://dx.doi.org/10.1007/978-3-319-76035-3_27
http://dx.doi.org/10.1007/978-3-319-76035-3_27
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Given a model matrix X on a full factorial design D with K design points, an
integer vector f is in the kernel of Xt if and only if Xt f = 0. We denote by A the
transpose of X . Moreover, we denote by supp( f ) the support of the integer vector
f , i.e., the set of indices j such that f j �= 0. Finally, the indicator vector of f is the
binary vector ( f j �= 0), where (·) is the indicator function. An integer vector f is a
circuit of A if and only if:

(a) f ∈ ker(A);
(b) there is no other integer vector g ∈ ker(A) such that supp(g) ⊂ supp( f ) and

supp(g) �= supp( f ).

The set of all circuits of A is denoted by CA = { f1, . . . , fL} and is named as the
circuit basis of A. It is known that CA is always finite. The set CA can be computed
through specific software. In our examples, we have used 4ti2 [1]. Notice thatCA is
a special basis of ker(A) as vector space, and therefore, the circuit basis is computed
from the model matrix on the full factorial design D . Thus, the circuit basis CA

depends only on the model, but not on the fraction. This remark is particularly useful
when we use this theory in the definition of algorithms for finding optimal designs,
since the computation of the circuit basis can be performed once for each model
matrix, independently of the particular fraction.

To show explicitly the circuits on a practical example, consider the 24 design with
main effects. The matrix A = Xt for the full factorial design is

A =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

,

where each column represents a design point (indexed lexically from left to right)
and each row represents a model parameter. Note that other choices of the model
matrix are possible, but they lead to the same ker(A) as vector space, and therefore,
they generate the same set of circuits. Running the function circuits on 4ti2,
we obtain 1, 348 circuits that can be grouped into the following 8 types:

• 100 circuits (with support on 4 points) of the form:

f1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1,−1, 1, 0, 0) ;

• 160 circuits (with support on 5 points) of the form:

f2 = (0, 0, 0, 0, 1, 0,−2, 1, 0,−1, 1, 0, 0, 0, 0, 0) ;

• 432 circuits (with support on 6 points) of the form:

f3 = (0, 0, 0, 0, 0, 0, 1,−1,−1, 0, 0, 1, 0, 1, 0,−1) ;
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• 384 circuits (with support on 6 points) of the form:

f4 = (0, 0, 0, 0, 0, 0, 2,−2,−1, 0, 0, 1, 0, 1,−1, 0) ;

• 96 circuits (with support on 6 points) of the form:

f5 = (0, 0, 0, 1,−2, 0, 1, 0, 1, 0, 0,−2, 0, 1, 0, 0) ;

• 96 circuits (with support on 6 points) of the form:

f6 = (0, 0, 0, 1,−1, 0, 0, 0,−1, 0, 0, 0, 0, 2, 2,−3) ;

• 16 circuits (with support on 6 points) of the form:

f7 = (0, 0, 0, 1,−1, 0, 0, 0,−1, 0, 0, 0, 3,−1,−1, 0) ;

• 64 circuits (with support on 6 points) of the form:

f8 = (0, 0, 0, 1, 0,−2, 1, 0, 2, 0,−3, 0, 0, 0, 0, 1) .

Note that the situation is a bit less complicated if we consider only the cardinality of
the supports and we discard the values of each entry. In fact, we have 100 circuits
with support on 4 points, 160 circuits with support on 5 points, and 1, 088 circuits
with support on 6 points.

The connection between saturated fractions and circuits is given in the following
theorem, to be found in [3]. Remember that saturated fractions are fractions with the
minimal number of points p = rank(A) such that all the p independent parameters
are estimable.

Theorem 24.1 A fraction F ⊂ D with p design points is a saturated fraction if
and only if it does not contain any of the supports {supp( f1), . . . , supp( fL)} of the
circuits of A = Xt .

In light of the theorem above, it is natural to investigate how the geometry of a
fraction determines its optimality. For saturated fractions, some experiments have
been presented in [4], where the problem of finding D-optimal saturated fractions is
translated into an optimization problem using two different objective functions. In
words, such objective functions consider the cardinality of the intersection between
a fraction and each circuit, and for each circuit, they count how many points are
needed to complete the circuit. We will recall some results in that direction in the
next section.
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24.3 Design of the Simulation Study

In this section, we show how fractions generated by the procedure Proc Optex
can be classified according to their geometrical structure and their D-optimality.

To measure the D-optimality of a fraction F , we use the D-efficiency; see [13].
The determinant of the information matrix is DF = det(XT

F XF ), where XF is the
model matrix restricted to the fraction points. The D-efficiency ofF is then defined
as

EF = 100

(
1

#F
D1/#F

F

)

where #F is the number of points of F .
To analyze the position of the design points with respect to the supports of the

circuits, let us give some definitions. LetCA = (ci j , i = 1, . . . , L , j = 1, . . . , K ) be
the matrix, whose rows contain the values of the indicator functions of the circuits
f1, . . . , fL , ci j = ( fi j �= 0), i = 1, . . . , L , j = 1, . . . , K and YF = ((yF )1, . . . ,

(yF )K ) be the K -dimensional column vector that contains the unknown values of
the indicator function of the points of F , and let b = (b1, . . . , bL) be the column
vector defined by bi = #supp( fi ), i = 1, . . . , L .

For each circuit fi , i = 1, . . . , L , we consider the cardinality (bF )i of the inter-
section between its support supp( fi ) and the fraction F :

(bF )i = 〈supp( fi ),YF 〉 .

For each fraction F , these value form the vector bF = ((bF )1, . . . , (bF )L)).
In the case of saturated fractions, in [4] the geometry of a fraction F has been

summarized through its indicator function Y by means of the objective functions

g2(F ) =
L∑

i=1

(b − bF )2i and g3(F ) = max(bF ) .

In the examples illustrated in [4] concerning saturated fractions, the D-optimality
is reached when the values of g2 and g3 are maximal. This seems to suggest that
D-optimal fractions correspond to fractions as close as possible to the circuits.

When analyzing fractions with an arbitrary number of points (not necessarily
saturated), the objective functions g2 and g3 defined above have a less clear meaning.
In fact, for saturated fractions the vector (b − bF ) is strictly positive in view of
Theorem 24.1, while this property does not hold in general. Another issue which
makes the interpretation of g2 and g3 not easy to understand is the fact that there are
circuits with different cardinalities.

To overcome the difficulties mentioned above, we have considered here only a
subset of the circuits, namely the circuits with support on 4 points. It is known, see
[6], that 4 is the minimal cardinality of the circuits for the main-effect models. In the
combinatorial theory of contingency tables, such simple circuits are known as basic
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moves and have several interesting properties; see [6, 11]. In particular, under mild
conditions, the basic moves preserve the connectivity of the fiber of a contingency
tablewithout the use of aMarkov basis, and nevertheless their number is dramatically
smaller than the cardinality of the whole circuit basis. For instance, in the 25 design
with main effects there are 353, 616 circuits, but only 720 of them are basic moves.
We denote with C A the set of the basic moves in CA and with L its cardinality.

When considering only the basic moves in C A, we can consider only a sub-vector
bF = ((bF )1, . . . , (bF )L) of bF using only the basic moves in C A. Note that by
construction, the vector bF has elements in {0, 1, 2, 3, 4}. To analyze a fraction, we
then consider:

• the table of counts of bF ;
• the mean and the variance of bF :

m(bF ) = 1

L

L∑
i=1

(bF )i and var(bF ) = 1

L

L∑
i=1

(bF )2i − m(bF )2 .

We have considered the main-effect model for 4 different designs and with dif-
ferent numbers of design points. More precisely, we have considered the 24 design,
the 25 design, the 33 design, and the 2 × 3 × 4 design. For each design, we have
considered fractions with k = p, p + 1, p + 2, p + 3 design points, where p is the
cardinality of a saturated design or, equivalently, the number of parameters of the
model. In all cases, we have analyzed 500 fractions generated by the Proc Optex.

24.4 Results

24.4.1 First Scenario. Design 24

Let us consider first the 24 design. The model matrix X of the full design has 16 rows
and 5 columns, the number of estimable parameters. The matrix X has rank 5, and
therefore, we analyze fractions with k = 5, 6, 7, 8 points. For this design, the circuit
basis has been presented in Sect. 24.2, and it consists of 1, 348 elements with 100
basic moves. The remaining 1, 248 circuits have support on 5 or 6 points.

We generated 500 fractions with Proc Optex for each of the design sizes
k = 5, 6, 7, 8, and for each fractionF , we computed the intersections with the 100
basic moves in C A, obtaining the vectors bF . We have classified the table of counts
of bF , together with its mean and variance, with respect to the D-optimality, and the
results are reported in Table24.1.

The first row of Table24.1 says that all the 500 fractionswith 5 points generated by
Proc Optex have a common behavior in terms of intersections with the circuits,
namely each fraction has null intersection with 15 circuits and intersection on 1 point
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Table 24.1 Tables of counts ofbF , themeansm(bF ), the variances var(bF ), and the D-optimality
for the 24 design

#F Table(bF ) m(bF ) var(bF ) EF n

0 1 2 3 4

k = 5 15 45 40 0 0 1.25 0.49 94.09 500

k = 6 9 39 45 7 0 1.5 0.57 91.98 500

k = 7 6 22 66 3 3 1.75 0.55 93.93 500

k = 8 3 18 58 18 3 2 0.60 94.41 117

6 0 88 0 6 2 0.48 100.00 383

with 45 circuits, on 2 points with 40 circuits, while no intersection on 3 and 4 points
occurs.

In particular, for all the fractions sizes we see that for a given value of EF , all the
fractions have exactly the same vector bF . In all the remaining scenarios, we will
observe that, for a given value of EF all the fractions have just few possible values
of bF . This confirms once more the connection between D-optimality and circuits.

For k = 8 points, Proc Optex provides 117 fractions with EF = 94.41 and
387 fractionswith EF = 100 (these latter ones are resolution III orthogonal designs).
Both groups of designs have the same mean value of bF (equal to 2) but different
variances (0.60 and 0.48). The designs with the highest value of EF have the lowest
variance, that is, 0.48.

24.4.2 Second Scenario. Design 25

We analyze now the 25 design. The model matrix X of the full design has 32 rows
and 6 columns, the number of estimable parameters. The matrix X has rank 6, and
therefore, we analyze fractions with k = 6, 7, 8, 9 points. For this design, the circuit
basis has 353, 616 elements, but there are only 720 basic moves.

We generated 500 fractions with Proc Optex for each of the sample sizes
k = 6, 7, 8, 9, and the results of the simulation study are reported in Table24.2.

For all the fraction sizes that we have considered in this scenario, Proc Optex
provides groups of designs with different values of the D-optimality criterion. We
observe that for each fraction size the mean of bF is constant while the variances of
bF decrease as EF increase. For k = 6 (i.e., for saturated fractions), the minimum
variance corresponds to two different values of D-efficiency, but in any case the
maximal D-efficiency is attainedwhen the variance reaches theminimum.Moreover,
note that often the D-optimal fractions contain the support of some basicmove, while
the fractions not containing the support of basic moves have smaller values of D-
efficiency. In this scenario, this holds for k = 7 and 8 points.
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Table 24.2 Tables of counts ofbF , themeansm(bF ), the variances var(bF ), and the D-optimality
for the 25 design

#F Table(bF ) m(bF ) var(bF ) EF n

0 1 2 3 4

k = 6 300 300 120 0 0 0.75 0.52 83.99 13

289 342 96 2 0 0.75 0.47 83.99 97

282 336 102 0 0 0.75 0.47 90.48 390

k = 7 249 321 141 9 0 0.88 0.58 83.87 12

238 342 132 8 0 0.88 0.54 88.18 20

230 353 135 1 1 0.88 0.51 90.71 468

k = 8 194 348 162 16 0 1 0.58 90.86 35

191 344 182 0 3 1 0.56 95.32 182

186 352 180 0 2 1 0.53 100.00 283

k = 9 157 335 212 13 3 1.12 0.61 95.10 82

155 339 209 15 2 1.12 0.60 97.58 418

Remark 24.1 Notice that the mean m(bF ) is constant for a fixed design and a fixed
number of design points, due to the properties of the circuit basis. In fact, with a
symmetry argument it is easy to show that each point of the full factorial design D
belongs to the same number of basic moves, i.e., to 4L/#D . Thus, when computing
the mean m(bF ), each design point in F appears 4L/#D times, and therefore, the
following formula holds:

m(bF ) = 4#F

#D
.

This result suggests that the algorithm for searching for D-optimal designs could
be improved if also the variances were taken into account.

24.4.3 Third Scenario. Design 33

We consider a multilevel design, namely the 33 design. The model matrix X of the
full design has 27 rows and 7 columns, the number of estimable parameters. The
matrix X has rank 7, and therefore, we analyze fractions with k = 7, 8, 9, 10 points.
For this design, the circuit basis has 73, 071 elements, 243 of which are basic moves.

We generated 500 fractions with Proc Optex for each of the sample sizes
k = 7, 8, 9, 10, and the results of the simulation study are reported in Table24.3.

As in the previous scenarios for each fraction size, all the designs have the same
mean of bF while the best designs have the lowest variances of bF .
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Table 24.3 Tables of counts ofbF , themeansm(bF ), the variances var(bF ), and the D-optimality
for the 33 design

#F Table(bF ) m(bF ) var(bF ) EF n

0 1 2 3 4

k = 7 54 126 63 0 0 1.04 0.48 54.44 500

k = 8 48 108 81 6 0 1.19 0.60 52.59 19

40 122 77 4 0 1.19 0.51 55.72 185

39 120 84 0 0 1.19 0.47 56.67 296

k = 9 29 112 94 8 0 1.33 0.53 57.95 192

27 108 108 0 0 1.33 0.44 62.45 308

k = 10 21 96 114 12 0 1.48 0.52 61.02 500

Table 24.4 Tables of counts ofbF , themeansm(bF ), the variances var(bF ), and the D-optimality
for the 2 × 3 × 4 design

#F Table(bF ) m(bF ) var(bF ) EF n

0 1 2 3 4

k = 7 30 86 57 1 0 1.17 0.50 48.48 500

k = 8 20 80 70 4 0 1.33 0.50 51.71 332

21 76 76 0 1 1.33 0.50 51.71 168

k = 9 14 68 84 7 1 1.50 0.53 52.80 246

14 69 81 10 0 1.50 0.53 52.80 254

k = 10 8 60 88 18 0 1.67 0.52 54.25 157

9 56 94 14 1 1.67 0.52 54.25 286

11 48 106 6 3 1.67 0.52 54.25 57

24.4.4 Fourth Scenario. Design 2× 3× 4

The last scenario concerns an asymmetric design, the 2 × 3 × 4 design. The model
matrix X of the full design has 24 rows and 7 columns, the number of estimable
parameters. The matrix X has rank 7, and therefore, we analyze fractions with k =
7, 8, 9, 10 points. For this design, the circuit basis has 13, 470 elements, 174 of which
are basic moves.

The results of this scenario, displayed in Table24.4, reinforce the connection
between D-optimality and the variance of bF . Except for the case of saturated
fractions, for each fraction size we obtain several groups of designs with different
bF but equalmeansm(bF ), equal variances var(bF ), and equal D-efficiencies EF .
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24.5 Concluding Remarks

The simulations discussed in the previous sections for various designs show that the
cardinalities of the intersections between a fraction and the basic moves are able to
predict the D-optimality of the fraction. In particular, as low is the variance of such
cardinalities as high is the D-efficiency of the fraction, at least for the simple-effect
models analyzed here.

These results are encouraging and suggest to analyze such connection in a more
general framework, in order to characterize D-optimal fractions following threemain
directions: First, to study the behavior of the D-optimality in terms of the intersection
with the basic moves also for models with interactions and to find connections with
other known notions in the model-free context, such as uniformity and discrepancy;
see [7, 15]; second, to characterize the basic moves in order to extend our study to
large-sized designs; finally, to implement the criterion based on the basic moves in
statistical software to improve the existing algorithm for finding D-optimal designs.
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Chapter 25
On the Consequences of Model
Misspecification for Biased Samples from
the Weibull Distribution

George Tzavelas and Polychronis Economou

Abstract Model misspecification is common in practice specially when the sam-
pling mechanism is not known. A sized-biased sample arises in case where the prob-
ability of a unit of the population to be chosen in a sample is proportional to some
nonnegative weight function w(x) of its size x . In this chapter, we study the model
misspecification results when a sized-biased sample from the Weibull distribution
is treated as a random one as well as when a random sample is treated as biased.
Special attention is paid on the misspecification effects on the parameter estimation
and on some of the most important characteristics of the distribution, such as the
mean, the median, and the variance. It is proven that when we treat a biased sam-
ple as a random one, the parameters are overestimated and in the opposite case are
underestimated. Simulation results verify the theoretical findings for small as well
as for large samples.

Keywords Weighted distributions · Misspecification · r-size biased sampling
Parameter estimation

25.1 Introduction

A biased sample arises when the individuals of a population do not have the same
probability of being selected during the sampling process. If the probability of a pop-
ulation unit to be selected in a sample is proportional to some nonnegative weight
function w(x) of its size x , the observed sample is refereed as a size-biased sam-
ple. Under such a biased sampling scheme, the observed size-biased sample from a
random variable X with probability density function (pdf) f (x; θ) (θ ∈ Θ where Θ
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is an open interval in R
s with s ≥ 1) can be interpreted as a random sample from a

population with pdf given by

fw(x; θ) = w(x)

E [w(X)]
f (x; θ). (25.1)

The above weighted pdf is well defined provided that E [w(X)] < ∞.
The most common weight function is the power function w(x) = xr where r ≥ 0

is known, which results to a size-biased sample. In this case, the fw(x; θ) is also
denoted as fr (x; θ). For r = 1, 2, we obtain a length and an area-biased sample,
respectively. Biased sampling is a common phenomenon in practice. Reference [7]
gives many examples from various areas where weighted sampling appears rather
naturally. Reference [1] considers biased sampling in his study concerning the life
length of electron tubes in a system. Reference [6] detects biasness in their sample
concerning the strength of SiC fiber and [2] studies and applies the weightedWeibull
distribution to forestry data.

If the weight function w(x) is known, the pdf (25.1) can be used in order to
estimate the parameter θ of the parent distribution. Unfortunately, in several cases,
the used sampling mechanism is not known or even ignored and as a result there
is an eminent danger of handling a biased sample as a random one and vice versa.
This model misspecification problem may have serious influence not only on the
parametric inference but also on the estimation of the characteristic of the distribution
such as the mean, the variance, and the median.

In order to clarify the previous statement, let us examine the model misspeci-
fication effects of the biasness on various statistical features such as the mean, the
variance, and the median in a data set concerning the duration of strikes occurring
in USA.

Reference [4] quoted a sample (Table25.1) of strike lengths (in days) occurring
on expiration or reopening of a contract with major issue the wage changes. All
strikes reported by [4] began in June of each year for a 9year period (1968–1976)
in US large manufacturing industries (with 1,000 or more workers). Reference [4]
reported that sampling only the strikes beginning in June (or in any other time frame)
will produce a length-biased sample and analyzed these data assuming a Weibull
distribution. To our view, this is not true. The probability of a strike starting in June
to be observed is 30/365, which is independent and obviously not proportional to
their duration. Of course, one may expect some biasness in the sample under the
additional assumption of homogeneity of occurrence of strikes through the year. In
order to clarify this statement, let us assume for a moment that we sample only the

Table 25.1 Strike duration (in days)

1 2 2 2 3 3 3 3 4 5 7 8 9 9 10 11 12 12 13 14 15 17 19

21 21 22 23 25 26 27 27 28 29 32 33 35 37 38 41 42 43 44 49 52 61 72

Plus twelve observations censored at duration 80days



25 On the Consequences of Model Misspecification for Biased … 359

Table 25.2 The estimated parameters and the corresponding statistical features for the strikes
duration using a Weibull (first row) and a length biased Weibull distribution (second row)

Log-likelihood Shape Scale Mean St.Dev. Median

w(x) = 1 −218.178 0.86713 42.2940 45.4571 52.5925 27.715

w(x) = x −217.787 0.35358 1.00430 4.87697 19.0095 0.3562

strikes that include at least one day in June. Then, the probability P of a strike of k
days of duration to be observed is

P =
{

30+(k−1)
365 = 29

365 + 1
365k, 1 ≤ k ≤ 365 − 29

1, k > 336.
(25.2)

which is a linear function of k and not proportional to that. In any case, this sampling
mechanism clearly raises some serious questions on the nature of the data.

In order to examine the significance of the sampling scheme at the parametric
inference, we will treat the sample of Table25.1 as a length biased as [4] suggested,
and as a random one, as the actually usedmethod suggests, under the assumption that
the parent distribution of the strike duration is a Weibull distribution. The estimates
and the corresponding estimated statistical features of the estimated distributions are
reported in Table25.2. From the results, it is clear that adopting the two different
assumptions for the used sampling mechanism results in two different estimated
distributions for the duration of the strikes with significantly different statistical
features. For example, assuming that the data consists a random sample, we get an
estimation of the mean duration of the strikes about 45.46days, while under the
assumption of a length-biased sample, we get an estimation of the mean duration
of only 4.88days. These differences are so large that potentially can lead to policy
changes or even to changes in business plans.

From the above discussion on the way, the sample was obtained, and from the
results of Table25.2, it is clear that the study of the model misspecification effects on
the parameter estimation as well as on the main statistical features of the population
is of major importance. In the present chapter, the aforementioned misspecification
effects are studied when the population distribution is the Weibull and the data is
complete (data without censoring).

In what follows the next set up is adopted: A sample X = (X1, X2, . . . , Xn) is

drawn from a population with pdf f0(x;β, γ ) = γ

β

(
x
β

)γ−1
exp

[
−

(
x
β

)γ ]
, x > 0,

i.e., from aWeibull distribution where γ and β are the shape and the scale parameter,
respectively. If the sample is random, then Xi ∼ f0(xi ; θ), and if it is biased with
weight w(x) = xr , r > 0, then Xi ∼ fr (xi ; θ) with

fr (x, β, γ ) = xr

E0(Xr )

γ

β

(
x

β

)γ−1

exp

[
−

(
x

β

)γ ]
(25.3)
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where E0(Xr ) is the expectation of Xr with respect to f0.We assume ignorance of the
true underline sampling method, and we study the consequences on the estimation of
θ and on the main statistical features such as the mean, the variance, and the median.

In terms of the notation, we write Er (·) and E0(·) for the expectation with respect
to fr and f0, respectively, Ψ (x) is the logarithmic derivative of the Gamma function
Γ (x). Additionally, the notation 0/r is used for the case inwhich the f0 is adopted for
analyzing the data of a biased sample (i.e., Xi ∼ fr (xi ; θ)). Conversely, the notation
r/0 model is used for the case in which a random data is analyzed using falsely the
fr distribution instead the f0.
The rest of the chapter is organized as follows. In Sect. 25.2, we give some prelim-

inary results. In Sect. 25.3, we study the misspecification effects on the parametric
estimation of the model, and in Sect. 25.4, the effects on estimation of some charac-
teristics of the distribution. In Sect. 25.5, we support our findings with a simulation
study, and we conclude with a discussion in Sect. 25.6.

25.2 Preliminary Results

The mth moment of the Weibull distribution is given by E0(Xm) = βmΓ (1 + m
γ
),

while themth moment with respect to fr is given by Er (Xm) = βm
Γ

(
r+m

γ
+1

)

Γ
(

r
γ
+1

) , r ≥ 0.

Themajor difference in the shape of f0 and fr is that while the f0 is positively skewed
for γ > 1 and it has the shape of reversed J for γ ≤ 1, the fr is always positively
skewed if r + γ ≥ 1 which implies that if r ≥ 1 (which holds almost always in
practice) the fr is always positively skewed for every γ .

Using the transformation u = (x/β)γ , the following two useful relations can be
proved

Er

[
log

(
X

β

)]
= 1

γ
Ψ

(
r

γ
+ 1

)
(25.4)

Er

[(
X

β

)γ

log

(
X

β

)]
= 1

γ

(
r

γ
+ 1

)
Ψ

(
r

γ
+ 1

)
+ 1

γ
. (25.5)

The maximum likelihood estimators (MLEs) β̂n and γ̂n of β and γ are obtained
from the following system of equations

∂ log fr (x;β, γ, r)

∂β
= 0 (25.6)

∂ log fr (x;β, γ, r)

∂γ
= 0 (25.7)
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where r ≥ 0. The aforementioned equations can be expressed equivalently as

− r

β
− γ

β
+ γ

β

1

n

n∑
i=1

(
xi
β

)γ

= 0 (25.8)

r

γ 2
Ψ

(
r

γ
+ 1

)
+ 1

γ
+ 1

n

n∑
i=1

log

(
xi
β

)
− 1

n

n∑
i=1

(
xi
β

)γ

log

(
xi
β

)
= 0. (25.9)

25.3 Model Misspecification Effects on the Parameter
Estimation

25.3.1 The 0/r Case

In this section, the case in which the f0 is adopted for analyzing the data of a biased
sample with weight function w(x) = xr , r > 0 is considered. Under this scenario,
the estimations of the parameters (β, γ ) are obtained using the system of equations
(25.8) and (25.9) for r = 0.

In other words, the estimators (β̂n, γ̂n) of (β, γ ) are obtained as a solution of the
system

−γ

β
+ γ

β

1

n

n∑
i=1

(
x

β

)γ

= 0 (25.10)

1

γ
+ 1

n

n∑
i=1

log

(
xi
β

)
− 1

n

n∑
i=1

(
x

β

)γ

log

(
xi
β

)
= 0. (25.11)

Such estimators based on a wrong log-likelihood (because the sample follows the
fr pdf and not the f0) are called quasi–maximum–likelihood estimator (QMLE) [9]
and are not always consistent estimators of (β, γ ). In order to prove that the QMLE
(β̂n, γ̂n) is not a consistent estimator for r > 0, let us assume that (β̂n, γ̂n) converges
in probability to (β, γ ) with respect to the true model fr . By letting n → ∞, the
system of equations (25.10) and (25.11) is written as follows

γ

β
+ γ

β
Er

[(
X

β

)γ ]
= 0 (25.12)

1

γ
+ Er

[
log

(
x

β

)]
− Er

[(
X

β

)γ

log

(
X

β

)]
= 0. (25.13)

By using relations (25.4) and (25.5), the above equations can be written as − r
β

= 0

and r
γ 2 Ψ

(
r
γ

+ 1
)

= 0, respectively, which are satisfied only for r = 0.
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Fig. 25.1 The γ ∗ against γ plot (left graph) and β∗/β against γ plot (right graph) for different
values of r (r = 1 dashed lines, r = 2 solid lines) for the 0/r and r/0 cases

So, the QMLEs (β̂n, γ̂n) do not converge (under the correct model fr ) in proba-
bility to the true parameters but rather to another set of values denoted as (β∗, γ ∗).
For a proof that such a limit exists see [3] and [10]. Here, we presented the relation
between (β∗, γ ∗) and the true parameters (β, γ ).

The values (β∗, γ ∗) satisfy the system (25.12), (25.13) from which the following
equations are obtained

β∗ =
(

Γ (
r+γ ∗

γ
+ 1)

Γ ( r
γ

+ 1)

) 1
γ ∗

β (25.14)

γ ∗

γ

(
Ψ

(
r + γ ∗

γ
+ 1

)
− Ψ

(
r

γ
+ 1

))
= 1. (25.15)

Unfortunately, Eq. (25.15) can be solved with respect to γ ∗ only numerically.
However, some interesting conclusions can be conducted by plotting the γ ∗ against
γ for different values of r . Dashed and solid lines above the diagonal line in the
left graph of Fig. 25.1 show the relation between the γ ∗ and γ for r = 1 and r = 2,
respectively, for the 0/r model. It is also worth noticing that the relation between γ ∗
and γ is almost linear for γ > 1.

Regarding the relation between β∗ and β, relation (25.14) can be written as

β∗/β = λr (γ ) where λr (γ ) =
(

Γ (
r+γ ∗

γ
+1)

Γ ( r
γ
+1)

) 1
γ ∗

and γ ∗ is obtained from (25.15).

Dashed and solid lines above the horizontal dotted line in the right graph of
Fig. 25.1 present the graphs of β∗/β in terms of γ for r = 1 and r = 2, respectively,
for the 0/r model. It is worth mentioning that for large values of γ , the difference
between β∗ and β is not significant. In fact from (25.14) and (25.15), we can prove
that lim β∗/β → 1 and lim γ ∗/γ → 1, respectively, for γ → ∞.
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25.3.2 The r/0 case

In this scenario, the QMLEs of the parameters (β, γ ) are obtained using the system
of equations (25.8) and (25.9) for some known fixed r > 0 instead of the correct
r = 0.

Following similar arguments with the previous case, it can be proved that the
QMLEs (β̂n, γ̂n) converge in probability to (β∗, γ ∗) under the correct model f0.
These values satisfy the following relations

β∗

β
=

⎛
⎝Γ

(
γ ∗
γ

+ 1
)

r
γ ∗ + 1

⎞
⎠

1
γ ∗

= Λγ ∗,r (γ ) (25.16)

r

γ ∗2 Ψ

(
r

γ ∗ + 1

)
+ 1

γ ∗ − r

γ ∗2

{
log

(
r

γ ∗ + 1

)
− logΓ

(
γ ∗

γ
+ 1

)
−

}

−C

γ
− 1

γ
Ψ

(
γ ∗

γ
+ 1

) (
r

γ ∗ + 1

)
= 0

(25.17)

whereC is the Euler’s constant. Dashed and solid lines below the diagonal line in the
left graph of Fig. 25.1 show the relation between the γ ∗ and γ for r = 1 and r = 2
respectively for the r/0 model. Dashed and solid lines below the horizontal dotted
line in the right graph of Fig. 25.1 present the graphs of β∗/β in terms of γ for r = 1
and r = 2, respectively, for the r/0 model. From the plots, it is clear that in this
case, both the parameters tent to be underestimated by the corresponding QMLEs.
The underestimation is more severe for γ close to zero and increases as r increases.
Again, as in the 0/r case, the effect on the shape parameter vanishes as its value
increases.

25.4 Model Misspecification Effects on the Characteristics
of the Distribution

The misspecification effects on the estimation of the characteristics of the Weibull
distribution such as the mean, the variance, and the median are studied in terms of
the ratio

Characteristic of the Weibull distribution based on the limit of the QMLEs

Characteristic of the true Weibull distribution.
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(a)

(c)

(b)

Fig. 25.2 The plots for the ratio of a the mean, b the median, and c the variance against γ (r = 1
dashed lines, r = 2 solid lines) for the 0/r and r/0 cases

25.4.1 For the Mean

For the mean, we rely on the ratio Rm(γ, r) = E0(X |γ ∗,β∗)
E0(X |γ,β)

which is given by

Rm(γ, r) = E0(X |γ ∗, β∗)
E0(X |γ, β)

= �γ ∗,r (γ )
Γ ( 1

γ ∗ + 1)

Γ ( 1
γ

+ 1)
, r > 0 (25.18)

where �γ ∗,r (γ ) equals to λγ ∗,r (γ ) for the 0/r case and to Λγ ∗,r for the r/0 case.
Concerning the misspecification effects on the mean, we can see from the plot in

Fig. 25.2a that for the 0/r case, the mean is overestimated (lines above the horizontal
dotted line), while for the r/0 case is underestimated (lines below the horizontal
dotted line). We can prove in either case that the ratio of the means converges to 1
as γ → ∞. Also, the misspecification effects increase as r increases.

25.4.2 For the Median

The median of the Weibull distribution is given by the relation M0(β, γ ) =
β∗(log 2)1/γ . Thus, for the study of the misspecification effects on the median, we
rely on the ratios
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RM(γ, r) = M0(γ
∗, β∗)

M0(γ, β)
= �γ ∗,r (γ )(log 2)

1
γ ∗ − 1

γ , r > 0. (25.19)

The misspecification effects on the median are similar to that on the mean (see
Fig. 25.2b). In other words, for the 0/r case, the mean is overestimated, while for the
r/0 case is underestimated. In either case, the ratio of the means converges to 1 as
γ → ∞. Also, the misspecification effects increase as r increases.

25.4.3 For the Variance

For the variance, we consider the ratios

Rv(γ, r) = Var0(X |γ ∗, β∗)
Var0(X |γ, β)

= λ2
γ ∗,r (γ )

Γ ( 1
γ ∗ + 1) − Γ 2( 1

γ ∗ + 1)

Γ ( 2
γ

+ 1) − Γ 2( 1
γ

+ 1)
, r > 0

(25.20)

Compared to the mean and the median, the behavior of the ratio of the variances
is different (see Fig. 25.2c). For the 0/r case, the variance is overestimated for small
values of γ and underestimated for large γ while for the r/0 case, it behaves in the
opposite direction.

25.5 Simulation Study

A simulation study was carried out in order to investigate firstly how quickly the
QMLEs converge to their limit and secondly what are the model misspecification
effects on the estimation of the distribution’s characteristics for finite sample sizes.
More specifically, initially, the 0/r case was studied by generating 1,000 biased
samples from theWeibull distribution using the weight functionw(x) = xr for r = 1
and r = 2, for each combination of sample size n = 50, 100, 200, 500 and value of
the parameters γ = 0.5, 1, 2 and β = 0.25, 1, 4. For each sample, the QMLE of
(β, γ ) was obtained and the ratio

Characteristic of the Weibull distribution based on the QMLEs (with finite sample)

Characteristic of the correct Weibull distribution

was calculated for the mean, the median, and the variance.
The results from the simulation study for r = 1 and r = 2 are presented in

Tables25.3 and 25.4. At the second column, the sample size is given. At the next
two columns, under the term “correct mode,” the means (based on the 10,000 biased
samples) of the MLEs of the parameters using the correct model are given. At the
next two columns, under the term “incorrect model” the means of the QMLEs of
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Table 25.3 Misspecification results with the help of simulated samples for the 0/r case with r =1

Sample
size

True model Incorrect model Ratios

γ β QMLE γ QMLE β Rm(γ, r) RM(γ, r) Rv(γ, r)

r = 1 50 0.52322 0.31186 0.94864 2.88383 5.97415 16.25720 8.71987

100 0.51114 0.28012 0.93210 2.87611 5.97690 16.13130 8.63727

200 0.50611 0.26628 0.92504 2.87293 5.97585 16.07980 8.55800

500 0.50147 0.25484 0.91896 2.87154 5.98301 16.03850 8.57581

∞ 0.50000 0.25000 0.91639 2.86886 5.97913 16.01110 8.53428

50 0.52554 1.25883 0.95149 11.46920 5.93201 16.18180 8.55198

100 0.51124 1.12230 0.93230 11.52370 5.98525 16.16050 8.64771

200 0.50558 1.06295 0.92454 11.51040 5.98760 16.10220 8.60627

500 0.50236 1.02529 0.91997 11.48150 5.97697 16.03890 8.53796

∞ 0.50000 1.00000 0.91639 11.47550 5.97913 16.01110 8.53428

50 0.52136 4.92823 0.94644 46.13760 5.98179 16.24000 8.79691

100 0.51018 4.44521 0.93116 45.95070 5.97053 16.10240 8.62590

200 0.50554 4.23705 0.92451 45.92150 5.97154 16.06040 8.55675

500 0.50235 4.10483 0.91989 45.97730 5.98437 16.05570 8.56479

∞ 0.50000 4.00000 0.91639 45.90180 5.97913 16.01110 8.53428

50 1.04095 0.25915 1.53143 0.55425 2.00326 2.51235 1.85697

100 1.02034 0.25491 1.50690 0.55490 2.00602 2.50826 1.87699

200 1.00896 0.25188 1.49374 0.55453 2.00519 2.50239 1.88834

500 1.00407 0.25094 1.48754 0.55471 2.00581 2.50148 1.89154

∞ 1.00000 0.25000 1.48245 0.55478 2.00621 2.50023 1.89618

50 1.03547 1.03015 1.52581 2.21814 2.00511 2.51140 1.87299

100 1.01850 1.01787 1.50546 2.22119 2.00774 2.50941 1.88501

200 1.00958 1.00824 1.49440 2.21789 2.00486 2.50243 1.88583

500 1.00338 1.00323 1.48658 2.21962 2.00669 2.50199 1.89536

∞ 1.00000 1.00000 1.48245 2.21910 2.00621 2.50023 1.89618

50 1.03896 4.14331 1.52921 8.88442 2.00738 2.51603 1.87092

100 1.02021 4.07044 1.50696 8.86822 2.00385 2.50518 1.87577

200 1.00818 4.02556 1.49283 8.86981 2.00470 2.50134 1.88863

500 1.00321 4.00893 1.48634 8.87201 2.00527 2.50006 1.89330

∞ 1.00000 4.00000 1.48245 8.87641 2.00621 2.50023 1.89618

50 2.06734 0.25108 2.60678 0.31749 1.27367 1.32346 1.03683

100 2.03581 0.25085 2.57240 0.31791 1.27449 1.32369 1.04804

200 2.01551 0.25014 2.54997 0.31776 1.27339 1.32185 1.05569

500 2.00743 0.25009 2.54110 0.31788 1.27361 1.32193 1.05857

∞ 2.00000 0.25000 2.53295 0.31802 1.27398 1.32208 1.06244

50 2.06501 1.00326 2.60471 1.26908 1.27278 1.32243 1.03667

100 2.03225 1.00086 2.56867 1.26963 1.27244 1.32128 1.04781

200 2.01699 1.00182 2.55182 1.27232 1.27470 1.32330 1.05669

(continued)
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Table 25.3 (continued)

Sample
size

True model Incorrect model Ratios

γ β QMLE γ QMLE β Rm(γ, r) RM(γ, r) Rv(γ, r)

500 2.00582 1.00015 2.53958 1.27169 1.27378 1.32200 1.06001

∞ 2.00000 1.00000 2.53295 1.27207 1.27398 1.32208 1.06244

50 2.07562 4.02485 2.61538 5.08174 1.27429 1.32453 1.03252

100 2.03237 4.00874 2.56876 5.08487 1.27403 1.32294 1.05047

200 2.01629 4.00633 2.55100 5.08892 1.27460 1.32314 1.05723

500 2.00779 4.00253 2.54148 5.08702 1.27387 1.32221 1.05871

∞ 2.00000 4.00000 2.53295 5.08829 1.27398 1.32208 1.06244

Table 25.4 Misspecification results with the help of simulated samples for the 0/r case with r = 2

Sample
size

True model Incorrect model Ratios

γ β QMLE
γ

QMLE β Rm(γ, r) RM(γ, r) Rv(γ, r)

r = 2 50 0.52364 0.36217 1.22749 7.99282 15.05510 49.19440 32.64330

100 0.51236 0.30632 1.20789 7.98389 15.04710 48.98880 32.44280

200 0.50581 0.27730 1.19601 7.99064 15.07150 48.92660 32.56740

500 0.50327 0.26343 1.19049 7.98358 15.06190 48.83680 32.49770

∞ 0.50000 0.25000 1.18502 7.98352 15.06910 48.78450 32.58330

50 0.52534 1.47027 1.22914 31.94050 15.03000 49.18260 32.28410

100 0.51314 1.23603 1.20872 31.95260 15.05310 49.02450 32.42670

200 0.50816 1.13267 1.19894 31.89720 15.03260 48.86050 32.27910

500 0.50226 1.04336 1.18978 31.93270 15.06350 48.82520 32.54370

∞ 0.50000 1.00000 1.18502 31.93410 15.06910 48.78450 32.58330

50 0.52579 5.91667 1.23000 128.46300 15.10930 49.46120 32.59830

100 0.51200 4.90082 1.20679 128.02000 15.08400 49.08000 32.66070

200 0.50610 4.45930 1.19661 127.83700 15.06910 48.92740 32.54830

500 0.50275 4.19070 1.19032 127.68200 15.05600 48.81300 32.48530

∞ 0.50000 4.00000 1.18502 127.73600 15.06910 48.78450 32.58330

50 1.04889 0.26901 1.90018 0.84758 3.01446 4.02463 2.83288

100 1.02045 0.25795 1.86198 0.84704 3.01181 4.01046 2.87551

200 1.01139 0.25469 1.84887 0.84727 3.01184 4.00814 2.88308

500 1.00439 0.25176 1.83924 0.84691 3.01028 4.00347 2.89103

∞ 1.00000 0.25000 1.83277 0.84689 3.01002 4.00138 2.89802

50 1.04262 1.06350 1.89299 3.38339 3.00842 4.01392 2.83525

100 1.02332 1.03636 1.86488 3.38579 3.00935 4.00903 2.86063

200 1.01214 1.01982 1.84986 3.38767 3.01051 4.00694 2.87725

500 1.00525 1.00836 1.84028 3.38677 3.00945 4.00288 2.88677

(continued)
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Table 25.4 (continued)

Sample
size

True model Incorrect model Ratios

γ β QMLE
γ

QMLE β Rm(γ, r) RM(γ, r) Rv(γ, r)

∞ 1.00000 1.00000 1.83277 3.38754 3.01002 4.00138 2.89802

50 1.05086 4.31406 1.90317 13.53610 3.00852 4.01884 2.80812

100 1.02193 4.14178 1.86427 13.56300 3.01376 4.01472 2.87064

200 1.01121 4.06533 1.84860 13.52660 3.00523 3.99928 2.87066

500 1.00429 4.02760 1.83910 13.55190 3.01061 4.00382 2.89226

∞ 1.00000 4.00000 1.83277 13.55020 3.01002 4.00138 2.89802

50 2.07618 0.25247 3.05663 0.37173 1.49983 1.58221 1.08032

100 2.03589 0.25121 3.00937 0.37218 1.50044 1.58212 1.09676

200 2.01758 0.25066 2.98684 0.37245 1.50095 1.58228 1.10530

500 2.00490 0.25000 2.97126 0.37229 1.49992 1.58090 1.10955

∞ 2.00000 0.25000 2.96490 0.37242 1.50025 1.58121 1.11128

50 2.08226 1.01127 3.06330 1.48686 1.49993 1.58248 1.07782

100 2.03895 1.00583 3.01247 1.48903 1.50083 1.58263 1.09570

200 2.02102 1.00394 2.99023 1.49001 1.50124 1.58273 1.10338

500 2.00792 1.00152 2.97464 1.48997 1.50080 1.58197 1.10860

∞ 2.00000 1.00000 2.96490 1.48966 1.50025 1.58121 1.11128

50 2.07759 4.04607 3.05911 5.95738 1.50235 1.58485 1.08388

100 2.03652 4.01918 3.00974 5.95405 1.50025 1.58192 1.09654

200 2.01594 4.00721 2.98466 5.95732 1.50043 1.58165 1.10596

500 2.00795 4.00515 2.97460 5.95874 1.50052 1.58166 1.10839

∞ 2.00000 4.00000 2.96490 5.95866 1.50025 1.58121 1.11128

γ and β and at the next three columns under the term “Ratios” the ratios Rm(γ, r),
RM(γ, r) and Rv(γ, r) are presented. For comparison purposes, for every combi-
nation of the parameters, there is a line indicated with “∞,” in which the true values
of the parameters β and γ of the Weibull distribution and the limits of QMLEs,
Rm(γ, r), RM(γ, r), and Rv(γ, r) are presented. Simulation results verify that also
for small samples, the QMLEs overestimate the parameters. The same holds also
for the mean, the median, and the variance. We observe that the QMLEs converge
slower to the limit compared to the the MLEs. The misspecification effects on the
mean, the median, and the variance decrease as γ increases, and they are not affected
by the β. The effects are more severe as r increases.

A similar procedure was carried out and for the r/0 case. The results were similar
with those of the 0/r . More specifically, the QMLEs underestimates the parameters
as well as the mean and the median. The misspecification effects on the mean, the
median, and the variance decrease as γ increases. The effects are more severe as r
increases. The tables are not presented here, but they are available from the authors
upon request.
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25.6 Conclusions

As [5] claim, model misspecification is unavoidable in practice. Therefore, this phe-
nomenonmust be studied extensively. Reference [8] examines condition underwhich
the QMLE is a consistent estimator. In this chapter, the inconsistency of the QMLEs
was proved and the model misspecification effects on the estimation of the popula-
tion mean, median, and variance were studied when a biased sample is treated as a
random one and vice-versa. We have focused on the length (r = 1) and area (r = 2)
biased sampling cases. It turns out that for the 0/r, r = 1, 2 case, i.e., when a length
or an area-biased sample is treated as a random one, then all the parameters are
overestimated. For the r/0, r = 1, 2 case, the population parameters are underesti-
mated. In both cases, the misspecification results are more severe for the area-biased
sampling (r = 2) compared to the length-biased sampling (r = 1).
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Chapter 26
An Overview on Recent Advances
in Statistical Burn-In Modeling for
Semiconductor Devices

Daniel Kurz, Horst Lewitschnig and Jürgen Pilz

Abstract In semiconductormanufacturing, the early life of the produceddevices can
be simulated by means of burn-in. In this way, early failures are screened out before
delivery. To reduce the efforts associated with burn-in, the failure probability p in the
early life of the devices is evaluated using a burn-in study. Classically, this is done by
computing the exact Clopper–Pearson upper bound for p. In this chapter, we provide
an overview on a series of new statistical models, which are capable of considering
further available information (e.g., differently reliable chip areas)within theClopper–
Pearson estimator for p. These models help semiconductor manufacturers to more
efficiently evaluate the early life failure probabilities of their products and therefore
reduce the efforts associated with burn-in studies of new technologies.

Keywords Area scaling · Binomial distribution · Burn-in
Power semiconductors · Sampling

26.1 Introduction

Power semiconductors are used in many safety-critical applications like cars, planes,
trains. For that reason, it is of particular importance to ensure high reliability of
semiconductor devices by screening out weak devices before delivery.

The failure rate λ of semiconductor devices (over time) can be described by the
bathtub curve, see Fig. 26.1 [22]. In other words, at the beginning of the lifetime, the
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Fig. 26.1 Bathtub curve describing the failure rate λ of semiconductor devices over time

devices are assumed to have an increased failure rate, which decreases over time.
This life phase is typically referred to as the early life.

Semiconductormanufacturers aim at reducing the failure rate of the devices before
delivery. One efficient method to do so is burn-in (BI), see, e.g., [1, 6–10]. The
purpose of BI is to simulate the early life of the produced devices before delivery.
This is done by operating the devices under accelerated voltage and temperature
stress conditions for a certain period of time (BI time). In this way, early failures
(i.e., devices, which fail in the early life) can be detected and weeded out.

In general, one can distinguish between two concepts of performing BI: 100% BI
and BI study. 100%BImeans that always all produced devices are burnt. In this case,
the efforts of BI are lowered by successively reducing the BI time, typically, based
on the lifetime distribution of early failures, see, e.g., [18, 19, 23].

In contrast to that, in a BI study, only a random sample of produced devices
is burnt. Furthermore, the burnt devices are physically investigated for BI relevant
failures (e.g., metalization residues, particles in oxide, random defects). Based on
the number of failures, the failure probability of the devices in the early life can be
assessed at a certain confidence level (CL). If the early life failure probability can
be shown to be below the predefined ppm-target, BI can be released for the current
product under test. In this chapter, we focus on BI studies.

From a statistical point of view, the random number of early failures X observed
in a BI study can be modeled using a binomial distribution, i.e., X ∼ Bi(n, p) with
n denoting the number of burnt devices and p being the early life failure probability
of a single device. Given k failures out of n devices (“k/n”), an (1 − α)-upper bound
for p can then be derived using the classical Clopper–Pearson (CP) approach [5],
which is still widely in use, see, e.g., [2, 20, 21]. More precisely, the CP upper bound
p̂ is the solution of

FX (k; n, p̂ ) = α, (26.1)

where FX denotes the cumulative distribution function of X . Notice that the CP
upper bound is exact, i.e., has coverage probability P( p̂ > p) ≥ 1 − α for all n,
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p and α. Moreover, it holds that FX (k; n, p̂ ) = 1 − FZ ( p̂; k + 1, n − k) with Z ∼
Be(k + 1, n − k) and thus p̂ = F−1

Z (1 − α; k + 1, n − k), see, e.g., [12].
In semiconductor manufacturing, however, one typically has further available

information to be considered with regard to the estimation of p. These information
can result from

• countermeasures implemented in the production process,
• synergies between different chip technologies,
• multiple reference products with different chip sizes, or
• differently reliable chip areas, like logic and DMOS.

For each of these cases, we built an estimation model for p, see [12–16]. These
models extend (26.1) in order to take into account the additional information.

In this chapter, we provide an overview on the basic steps for running the new
models. Moreover, we illustrate how these models can help semiconductor manu-
facturers to reduce the efforts associated with BI studies and, therefore to speed up
the release of BI. Last but not least, we discuss combinations of the models, which
are of practical relevance whenever several additional information are available.

26.2 Countermeasure Model

In general, a BI study with zero failures out of n devices is required to release the BI.
In this way, the required sample size can be derived by solving FX (0; n, ptarget ) = α

with respect to n, where ptarget denotes the ppm-target.
Whenever failures occur in the BI study, countermeasures (CMs) (e.g., ink out,

optical inspections, process and design measures) are implemented in the production
process in order to avoid these failures. Subsequently, the BI study is restarted. In
general, this procedure is repeated as long as zero failures are observed, which,
clearly, involves increased BI efforts.

Semiconductor manufacturers, however, typically have prior knowledge on the
effectivenesses of the implemented CMs regarding the avoidance of early failures.
These prior knowledge can now be considered within the assessment of an upper
bound for p using the CM model as covered in [12, 17]. In particular, we

1. infer lower bounds from the prior distributions of the CMeffectivenesses (in order
to avoid an overestimation of the effectivenesses with a high certainty),

2. assess probabilities ξ j that j failures would have occurred if the CMs would have
been introduced already before the BI study on the basis of the Poisson binomial
distribution and

3. compute the (1 − α)-upper bound for p after the introduction of the CMs solving

k
∑

j=0

ξ j · FX ( j; n, p̂ ) = α (26.2)
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Table 26.1 90%-upper bounds for p and additional sample sizes according to CM model for BI
study with k = 1 failure out of n = 100k devices and different CM effectivenesses

CM 0% 25% 50% 75% 100%

p̂ at 90% CL 38.90 ppm 36.14 ppm 32.72 ppm 28.39 ppm 23.03 ppm

nadd 69k 57k 42.2k 23.4k 0k

with respect to p̂, see [12].

In this way, the (reduced) early life failure probability of the devices after the
implementation of CMs can be assessed without restarting the BI study. Moreover,
the additional sample size nadd (with zero failures) for reaching the ppm-target can
be essentially lower than n. This is illustrated in Table26.1 showing p̂ at 90% CL
and nadd for a BI study with k = 1 failure out of n = 100k devices and different CM
effectivenesses. The computations were done using [17].

26.3 Synergies Model

In semiconductor manufacturing, there are several chip technologies. Classically, BI
studies for different technologies are treated separately from each other with regard
to the estimation of early life failure probabilities.

Nevertheless, it often occurs that different chip technologies exhibit synergies
among each other, basically due to technology variants and further developments
of technologies. In the context of BI studies, this means that certain subsets of the
current technology under test (e.g., logic, DMOS, package) might have been already
investigated in the course of BI studies of related technologies. These additional
information can now be considered with regard to the estimation of p using the
model presented in [16]. More precisely, we

1. collect all available information for the subsets of the current product under test
(i.e., ki failures out of ni items on subset i),

2. derive probabilities φ j that n devices with j failures are randomly assembled
from ni items with ki failures of subset i (n = mini ni ) and

3. obtain the (1 − α)-upper bound for p using (26.2) with φ j instead of ξ j , see [16].

In this way, we are led to a more efficient estimation of the failure probability of the
devices in their early life. Moreover, in the case of failures, this model can help us
to avoid a restart of BI studies.

To illustrate this, let us again assume k = 1 failure out of n = 100k devices in
a BI study. Further suppose that the failure is on a subset, which has already been
tested nadd1 times with zero failures in a former BI study. For the remaining subsets,
however, we do not have additional data. Thus, in total, we have 1/(n + nadd1 ) for
the failed subset and 0/n for the “rest.” In Table26.2, we then summarize 90%-
upper bounds for p for different values of nadd1 . Moreover, we report the additionally
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Table 26.2 90%-upper bounds for p and additional sample sizes according to synergies model for
BI study with k = 1 failure out of n = 100k devices and different values for nadd1

nadd1 0k 100k 200k 300k 400k

p̂ at 90% CL 38.90 ppm 32.72 ppm 29.95 ppm 28.39 ppm 27.39 ppm

nadd 69k 48.3k 35.4k 27.3k 22k

required sample sizes nadd (with zero failures) in the BI study, which have been
computed using [11]. One can see that for larger nadd1 , nadd is essentially lower than
n = 100k and, therefore, a restart of the BI study is not necessary anymore.

26.4 Model for Multiple Reference Products

For each chip technology, there are several products, which typically only differ with
respect to their chip sizes. In general, a BI study is performed for only one of these
products. The failure probability p′ of some follower product is then obtained by
means of area scaling. Classically, this is done assuming a serial system of equally
reliable areas for a chip. Hence,

p̂′ = 1 − (1 − p̂ )A
′/A, (26.3)

where A [mm2] and A′ [mm2] refer to the sizes of the reference and follower product.
Clearly, p̂′ > p̂ if A′ > A and vice versa. Thus, if A′ > A (A′ < A) more (less) than
n devices with zero failures have to be burnt in order to reach the ppm-target for the
follower product.

Nevertheless, it can also happen that BI studies are performed on multiple refer-
ence products. In this case, the information from all reference products can be taken
into account with regard to the estimation of the early life failure probabilities of
follower products, see [14]. To be more concrete, we

1. scale the number of failures for each reference product down to the greatest
common size (GCS) of the reference products (this leads to probabilities φ jGCS to
have jGCS failures out of nGCS items of size AGCS [mm2]),

2. estimate the (1 − α)-upper bound for pGCS using [14]

∑

jGCS

φ jGCS · FXGCS

(

jGCS; nGCS, p̂GCS
) = α (26.4)

with XGCS ∼ Bi(nGCS, pGCS) and
3. compute p̂′ using p̂GCS and AGCS instead of p̂ and A in (26.3).

This model contributes to an earlier release of BI for follower products. This can
be seen from the following example. Let us assume two reference products with chip
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Table 26.3 90%-upper bounds for p′ and additional sample sizes inBI study of the second reference
product (nadd,2) according to the model for multiple reference products

A′ 6mm2 8mm2 10mm2 12mm2 14mm2

p̂′ at 90% CL 15.56 ppm 20.75 ppm 25.93 ppm 31.12 ppm 36.31 ppm

nadd,2 0k 0k 19k 52.8k 86.6k

sizes A1 = 5 mm2 and A2 = 10 mm2. Let us further suppose that the BI study of the
first reference product has been successful, i.e., zero failures out of 100k devices,
while in the BI study of the second, larger reference product a failure has occurred.
Table26.3 then shows the 90%-upper bounds for p′ for different follower products,
which have been computed using [11]. Moreover, the additionally required sample
sizes (with zero failures) in the BI study of the larger reference product to reach the
ppm-target for the follower products are provided. One can see that, although there
is a failure in the BI study of the second reference product, BI can be released for
the first two follower products. Furthermore, even in case of equally sized or slightly
larger follower products, just a reduced number of additional devices in BI (with
zero failures) are necessary to prove the ppm-target.

26.5 Separate Area Scaling Model

In the classical area scaling (CAS), see (26.3), one assumes that each chip area (e.g.,
logic, DMOS, chip edge) has an equal failure probability per mm2. Nevertheless, for
reasons of different production and testing conditions (e.g., different test coverage),
this assumption must not necessarily be confirmed by the numbers of failures on the
subsets. For instance, when considering two subsets, it might happen that the larger
number of failures occur on the smaller subset, which provides evidence against the
validity of the CAS. In such cases, the failure probabilities of the subsets have to be
scaled separately from each other using the separate area scaling (SAS) model as
introduced in [15]. In this model, we

1. check for a significant evidence of differently reliable subsets taking into account
the numbers of subset failures as well as the sizes of the subsets,

2. in case that we find a significant evidence, we then adapt the failure probabilities
of the subsets according to the observed failures without changing p̂ and

3. scale the subset failure probabilities separately from each other, i.e., compute the
failure probability of follower products using [15]

p̂′ = 1 −
m

∏

i=1

(1 − p̂i )
A′
i/Ai , (26.5)
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Table 26.4 90%-upper bounds for p′ for different sizes of second subset on follower product
according to CAS and SAS

A′
2 2mm2 4mm2 6mm2 8mm2 10mm2

p̂′
CAS at 90%

CL
23.34 ppm 33.71 ppm 44.08 ppm 54.46 ppm 64.83 ppm

p̂′
SAS at 90%

CL
31.06 ppm 36.28 ppm 41.51 ppm 46.74 ppm 51.96 ppm

where p̂i denotes the estimated failure probability of subset i and Ai and A′
i are

the sizes of the i-th subset on the reference and follower product, i = 1, . . . ,m.

In this way, we are led to a more accurate estimation of early life failure probabili-
ties of follower products. To illustrate this, let us again assume a BI study with k = 1
failure out of n = 100k devices. Furthermore, we suppose that the reference product
can be partitioned into two subsets (e.g. logic and DMOS) with sizes A1 = 2.5 mm2

and A2 = 5 mm2, while the failure is located on subset one (i.e., the smaller subset).
This provides significant evidence against an equal failure probability per mm2 for
the subsets. When now considering a follower product, which only differs from the
reference product with respect to the size of the second subset, we can compute p̂′ at
90%CL according to the CAS and the SAS for different sizes A′

2 [mm2]. Using [11],
we obtain the results in Table26.4. One can see that for A′

2 > A2 (A′
2 < A2), the

SAS correctly provides lower (larger) ppm-values than the CAS, which is basically
because the CAS overestimates (underestimates) p′ in case of differently reliable
subsets, see [15].

26.6 Model Combinations

Basically, several combinations of the models discussed in Sects. 26.2–26.5 are pos-
sible, see Fig. 26.2. From a practical point of view, however, the most important
combinations are

• the CM model with the synergies model whenever we have failures on different
subsets and the failures are tackled by CMs,

• the CM model with the model for multiple reference products whenever we have
failures on differently sized reference products, which are tackled by CMs, and

• the CM model with the SAS model in order to accurately handle failures on
differently reliable chip subsets after the introduction of CMs.

Thefirst two combinations just require an adaption of the probabilitiesφ j in Sect. 26.3
and φ jGCS in Sect. 26.4 to φCM

j and φCM
jGCS

, see [14, 16]. For the third combination,
however, we have to adapt the “check” for differently reliable subsets as well as the
estimation of the subset failure probabilities to consider the effectivenesses of the
CMs, see [15].
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Fig. 26.2 Illustration of possible model combinations

Table 26.5 90%-upper bounds for p and additional sample sizes according to CM model in com-
bination with synergies model for BI study with k = 1 failure out of n = 100k devices

CM
∖

nadd1 0k 100k 200k 300k 400k

0% 38.90 ppm 32.72 ppm 29.95 ppm 28.39 ppm 27.39 ppm

69k 48.3k 35.4k 27.3k 22k

25% 36.14 ppm 30.68 ppm 28.39 ppm 27.14 ppm 26.36 ppm

57k 37.7k 26.8k 20.3k 16.3k

50% 32.72 ppm 28.39 ppm 26.71 ppm 25.82 ppm 25.28 ppm

42.2k 25.7k 17.7k 13.4k 10.7k

75% 28.39 ppm 25.82 ppm 24.91 ppm 24.45 ppm 24.17 ppm

23.4k 12.9k 8.7k 6.5k 5.2k

100% 23.03 ppm 23.03 ppm 23.03 ppm 23.03 ppm 23.03 ppm

0k 0k 0k 0k 0k

To illustrate the benefit of combining the CM model with the remaining models,
let us again consider the example in Sect. 26.3, in which we assumed a BI study
with k = 1 failure on a subset that has been already tested with zero failures in
the BI study of a related technology. However, let us now additionally suppose that
the observed failure is tackled by a CM. In this way, we can update the results in
Table26.2 considering the CM’s effectiveness. The updated results (which can again
be computed using [11]) are shown in Table26.5. One can see that by considering
synergies in combination with CMs the additionally required sample size in the BI
study can be further reduced.

26.7 Summary and Outlook

In this chapter, an overview on a series of new statistical models for calculating
early life failure probabilities of semiconductor devices has been provided. These
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models are capable of considering further available information within the classical
Clopper–Pearson estimator for a binomial proportion. In particular, we reported on

• a model for estimating the failure probability of semiconductor devices in their
early life after the introductionof countermeasures in the productionprocess (coun-
termeasure model),

• amodel that takes advantage of synergies between different chip technologies with
regard to the failure probability estimation (synergies model),

• a model which accurately combines burn-in studies on differently sized reference
products with regard to the assessment of early life failure probabilities of follower
products (model for multiple reference products) and

• a model which allows us to scale differently reliable chip subsets separately from
each other (separate area scaling model).

These models (and combinations among them) were shown to provide improved
estimates of early life failure probabilities of reference and follower products. In this
way, the proposed models help semiconductor manufacturers to reduce the efforts
associated with the demonstration of ppm-targets for new products or technologies.

To provide a look into the future, we aim at further taking into account the life-
time of early failures when calculating ppm-values of semiconductor devices. This
will further improve the estimation of early life failure probabilities. In particular,
however, this will essentially increase the flexibility with regard to the practical
application of burn-in studies for new products and technologies.
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Chapter 27
Simplified Analysis of Queueing Systems
with Random Requirements

Konstantin E. Samouylov, Yuliya V. Gaidamaka and Eduard S. Sopin

Abstract In this work, a simplification approach for analysis of queueing systems
with random requirements is proposed. The main point of the approach is to keep
track of only total amount of occupied system resources. Therefore, we cannot know
the exact amount of resources released by the departure of a customer, so we assume
it a random variable with conditional cumulative distribution function depending
on only number of customers in the system and total occupied resources at the
moment just before the departure. In the chapter, we briefly describe the queuing
systemwith random requirements, the simplificationmethod and show that in case of
Poisson arrival process simplified system has exactly the same stationary probability
distribution as the original one.

Keywords Queuing system · Limited resources · Probabilistic characteristics
Insensitivity

27.1 Introduction

Weconsider the queuing systems, inwhich resources are required to serve customers.
Random variables related to the resource requirements can follow either discrete or
continuous distribution. Arriving customers are lost if the system does not have free
resources needed for their service. As at the end of the service held resources should
be released, such systems can be called as occupy-and-release systems. The random
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process that describes their behavior has to keep track of the amount of resources
occupied by each customer. This differs occupy-and-release systems from classical
supply-and-demand inventories [1, 2] and significantly complicates the stochastic
processes describing its behavior.

In [3], a simplification for the occupy-and-release queueing systems with general
arrival and service processes has been proposed. Instead of tracking the amount
of resources occupied by each customer, the simplified model considers only the
number of customers and the total amount of occupied resources. Simplified system
functions similarly to the original, except that the amounts of resources, released at
the end of the service, may be different from those which have been occupied at the
beginning of the service. Amount of resources released at the customer departure is
random and has specially selected probability distribution.

First results obtained by simulations indicated that the stationary characteristics of
the original and simplifiedmodels are very close to each other [3, 4]. So, the studywas
carried out to obtain the characteristics of the simplified systems in analytical form
and compare it with the results for the initial systems. Multi-server queueing system
with Poisson arrival process, exponential service times, and random requirements
was studied in [5]. In [6], the expressions for the stationary probability distribution
have been obtained for the simplified version of the system. It was established that
the simplification of the said systems offers exact results for stationary distribution
of the total amount of occupied resources. It follows from results on multi-server
loss system with random requirements and generally distributed service times that
stationary joint distribution of the number of customers and the amount of occupied
resources is independent of the service time distribution function, but only on its first
moment [7, 8]. In [9], it was proved also for the simplified system.

In this chapter, we study stationary joint distribution of the number of customers
and the amount of occupied resources in the simplified multi-server loss system with
general service-time andmulti-item resource requirements. Thiswork is an extension
of the development in [6, 9].

27.2 Original Queueing System M/M/N with Random
Requirements

Consider a multi-server queuing system with N ≤ ∞ servers and M ≤ ∞ types of
resources. Arrival process is Poisson with the rate λ. The service times are indepen-
dent of each other, independent of the arrival process, and exponentially distributed
with the rate μ (Fig. 27.1).

The system operates as follows.

1. Each customer requires a certain amount of resources of several types.
2. If upon the arrival of a customer, the remaining free resources are insufficient to

serve it, and the customer is considered lost.
3. As soon as the service of a customer begins, the total amount of occupied resources

is increased by the amount of resources allocated to this customer.
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Fig. 27.1 N-server queuing
system with losses with total
amount of resources given by
the vector R

4. Upon the departure of a customer, the total amount of occupied resources is
decreased by the amount of resources allocated to this customer.

Denote byR = (R1, . . . , RM) the total amount of resources and by r j the amount
of resources required for customer j . We assume that the random vectors r j are inde-
pendent of the arrival and service processes, mutually independent, and identically
distributed with a cumulative distribution function (CDF) F(x).

The system state at the time instant t can be described by a semi-Markov process
X (t) = (ξ(t), γ (t)) [10], where ξ(t) is the number of customers in the system, and
γ (t) = (γ 1(t), γ 2(t), . . . , γ ξ(t)(t)), where γ i (t) is the vector of resources occupied
by ith customer. Customers at service are assigned a number according to their
residual service time in the decreasing order; that is, a customer with the longest
residual service time is assigned the number 1. Upon the arrival of a new customer,
all the customers are renumbered.

The process X (t) is the jump process with transitions at time instants ti of
arrivals and departures. Consider an interval (ti−1, ti ), when it is in a state X (t) =
(k, c1, . . . , ck). The length of this interval is exponentially distributedwith parameter
λ + kμ. At the end of this interval, with probability λ

λ+kμ , new customer arrives, and

with probability kμ
λ+kμ , a customer leaves the system. Hence, if ti is a departure time,

then at this instant the random process X (t) jumps from the state (k, c1, . . . , ck) to
the state (k − 1, c1, . . . , ck−1).

If ti is the arrival time, then the process X (t) can move to several different states.
Let us denote c as the amount of resources required by the customer arriving at the
time ti and d as the total amount of occupied resources just before customer’s arriving
at time ti , i.e., d = c1 + c2 + · · · + ck . Since residual service times and service time
of arriving customer are independent and equally distributed arriving customer can
get any of k + 1 internal numbers. If upon arrival there are less than N customers
in the system and c + d ≤ R, then a customer is accepted and the process X (t)
with equal probabilities will jump from the state (k, c1, c2, . . . , ck) to one of the
state (k + 1, c, c1, c2, . . . , ck), (k + 1, c1, c, c2, . . . , ck), (k + 1, c1, c2, . . . , ck, c).
Otherwise state of the process X (t) at time ti does not changes.
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Consider the stationary probability distribution of the process X (t),

p0 = lim
t→∞ P{ξ(t) = 0},

Pk(x1, x2, . . . , xk) = lim
t→∞ P{ξ(t) = k; γ 1(t) ≤ x1, γ 2(t) ≤ x2, . . . , γ k(t) ≤ xk}.

The above state transitions for our system unambiguously define the transition
kernel of the process X (t) [10] and lead to the system of equations for the stationary
distribution:

λF(R)p0 = μP1(R); (27.1)

λ
∫

0≤y1≤x1

F(R − y1)P1(dy1) + μP1(x1) = λF(x1)p0+

+2μ
∫

0 ≤ y1 ≤ x1
0 ≤ y2 ≤ R − y1

P2(dy1, dy2), 0 ≤ x1 ≤ R; (27.2)

λ

∫

0 ≤ yi ≤ xi , i = 1, 2, . . . , k
y1 + . . . + yk ≤ R

F(R − y1 − y2 − . . . − yk)Pk(dy1, dy2, . . . , dyk)+

+ kμPk(x1, x2, . . . , xk) = λ

k

k∑

i=1

Pk−1(x1, . . . , xi−1, xi+1, . . . , xk)F(xi )+

+ (k + 1)μ
∫

0 ≤ yi ≤ xi , i = 1, 2, . . . , k
0 ≤ yk+1 ≤ R − y1 − . . . − yk

Pk+1(dy1, . . . , dyk , dyk+1), x1, x2, . . . , xk ≥ 0,

∑k

i=1
xi ≤ R, 1 < k < N ; (27.3)

NμPN (x1, x2, . . . , xN ) = λ

N

N∑

i=1

PN−1(x1, . . . , xi−1, xi+1, . . . , xN )F(xi ),

x1, x2, . . . , xN ≥ 0,
∑N

i=1 xi ≤ R. (27.4)

It can be easily verified by substitution that solution to the system of Eqs. (27.1)–
(27.4) with a normalization condition

p0 +
N∑

k=1

∫

x1, x2, . . . , xk ≥ 0
x1 + x2 + . . . + xk ≤ R

Pk(dx1, dx2, . . . , dxk) = 1,
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can be written as

p0 =
(

1 +
N∑

k=1

F (k)(R)
ρk

k!

)−1

, (27.5)

Pk(x1, x2, . . . , xk) = p0F(x1)F(x2) . . . F(xk)
ρk

k! , (27.6)

x1, x2, . . . , xk ≥ 0,
∑k

i=1 xi ≤ R, 1 ≤ k ≤ N .

Here, ρ = λ/μ, and F (k)(x) is the k-fold convolution of the CDF F(x).

Let δ(t) = ∑ξ(t)
i=1 γ i (t) be the vector of total amount of resources occupied at

time t . It follows from (27.6) the following expression for the stationary distribution
of the process Y (t) = (ξ(t); δ(t)),

Qk(x) = lim
t→∞ P{ξ(t) = k; δ(t) ≤ x} = p0F

(k)(x)
ρk

k! , 0 ≤ x ≤ R, 1 ≤ k ≤ N .

(27.7)
Therefore, blocking probability can be calculated by

B = 1 − p0

N−1∑

k=0

F (k+1)(R)
ρk

k! , (27.8)

and the vector of the mean volume of occupied resources is given by

b = p0

N∑

k=1

bk
ρk

k! , bk =
∫

0≤x≤R

xF (k)(dx). (27.9)

There are two important particular cases, namely continuous and discrete. If the
CDF F(x) has the probability density function (PDF) f (x), then the CDF F (k)(x)
also has the PDF f (k)(x), and therefore, there exist PDF pk(x1, x2, . . . , xk) and PDF
qk(x) of stationary distributions Pk(x1, x2, . . . , xk) and Qk(x).

Let resources required by a customer be discrete random vectors with probability
distribution π(x) and values from the set Z = {z1, z2, . . . , zK }, i.e.,

π(x) =
{

πi , x = zi ,
0, x /∈ Z.

(27.10)

Then, k-fold convolution of π(x) is given by

π(k)(x) =
∑

n1, . . . , nK ∈ N
n1 + · · · + nK = k

n1z1 + · · · + nK zK = x

K∏

i=1

π
ni
i , (27.11)

where N is the set of integers.
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27.3 Simplified Queueing System M/M/N with Random
Requirements

Generally speaking, the processY (t) = (ξ(t), δ(t)) is notMarkovprocess, because at
the departure time resources occupied by the customer should be released in amounts
equal to the amount of resources occupied upon arrival. The simplified system is
similar to the original system in all aspects, except for the rule 4 stated previously.
The release of the occupied resources upon a customer departure follows next rule.

4*. At departure time ti , the vector of occupied resources is decreased by a random
vector νi . Given the number of customers k and the amount of occupied resources
y, the random vector νi is independent of the previous system behavior and has the
CDF Fk(x|y) given by

Fk(x|y) = P(rk ≤ x|r1 + r2 + . . . + rk = y).

Here, ri , i = 1, 2, . . ., are mutually independent random vectors with CDF F(x).
Note that in the case of the fixed amount of the required resources, i.e., when ri = c
are the same constant vector for all i = 1, 2, . . ., the simplified model is identical to
the original one.

Note that F1(x|y) is CDFof constant vector y and for k > 1 conditional probability
Fk(x|y) is a solution of Eq. (27.12), in which left and right sides are equal to the
probability P{r1 + . . . + rk−1 ≤ x, r1 + . . . + rk ≤ R}:

∫

0 ≤ z ≤ y ≤ R
y − z ≤ x

Fk(dz|y)F (k)(dy) =
∫

0≤y≤x

F(R − y)F (k−1)(dy), 0 ≤ x ≤ R.

(27.12)
Let ξ ∗(t) be the number of customers and δ∗(t) be the vector of occupied resources

in the simplified system. ProcessY ∗(t) = (ξ ∗(t), δ∗(t)) is semi-Markov process [10],
and its stationary distribution

q∗
0 = lim

t→∞ P{ξ ∗(t) = 0}, Q∗
k(x) = lim

t→∞ P{ξ ∗(t) = k; δ∗(t) ≤ x}, 1 ≤ k ≤ N ,

satisfies the following equilibrium equations:

λF(R)q∗
0 = μQ∗

1(R); (27.13)

λ
∫

0≤y≤x
F(R − y)Q∗

1(dy) + μQ∗
1(x) = λF(x)q∗

0+

+2μ
∫

0 ≤ z ≤ y ≤ R
y − z ≤ x

(F2(dz|y)Q∗
2(dy)), 0 ≤ x ≤ R; (27.14)
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λ
∫

0≤y≤x
F(R − y)Q∗

k (dy) + kμQ∗
k (x) = λ

∫

0≤y≤x
F(x − y)Q∗

k−1(dy)+

+(k + 1)μ
∫

0 ≤ z ≤ y ≤ R
y − z ≤ x

Fk+1(dz|y)Q∗
k+1(dy)), 0 ≤ x ≤ R, 1 < k < N ;

(27.15)

λ

∫

0≤y≤x

F(R − y)Q∗
N (dy) = λ

∫

0≤y≤x

F(x − y)Q∗
N−1(dy), 0 ≤ x ≤ R. (27.16)

By substituting q∗
0 = p0 and Q∗

k(x) = Qk(x), given by (27.5) and (27.7), and
using equality (27.12), it easy to check that p0 and Qk(x) are solutions of
Eqs. (27.13)–(27.16). In other words, stationary distributions of total amount of occu-
pied resources in the original and simplified systems are the same.

27.4 Insensitivity Property of the Simplified Queueing
System

Now, we consider simplified queueing system with general CDF B(x) of the service
times with finite mean and show that formulas (27.5) and (27.7) still valid. We
follow the idea of the proof in [11] and show that the joint stationary distribution
of the number of customers and the amount of occupied resources in simplified
system depends on the service time distribution only through its mean. Behavior
of the system can be described by Markov process (ξ(t), δ(t),β(t)), where β(t) =(
β1(t), β2(t), . . . , βξ(t)(t)

)
is vector of elapsed service times of each customer. Let

us denote Pt probability distribution at time t and P0 initial distribution at t = 0.
Assume that distribution P0 is symmetric on subspace {ξ(t) = k, δ(t) ≤ x} about
variables τ1, τ2, . . . τk , then Pt is also symmetric on {ξ(t) = k, δ(t) ≤ x}.

Lemma. For any distribution P0, distribution Pt has k-dimensional PDF
Qk(x, τ1, ..., τk; t) at (ξ(t) = k, δ(t) < x, τ1, τ2, . . . τk; t) if t > max(τ1, τ2, . . . τk),
and

Qk(x, τ1, τ2, . . . τk; t) ≤ λk F (k)(x)
k∏

i=1

[1 − B(τi )] , 1 ≤ k ≤ N . (27.17)

Proof Following inequalities hold true

P {ξ(t) = k, δ(t) < x, τi < βi (t) < τi + Δi , 1 ≤ i ≤ k} = P(A) ≤

≤ F (k)(x)
k∏

i=1

[1 − B(τi )][1 − e−λΔi ] ≤ λk F (k)(x)
k∏

i=1

[1 − B(τi )]Δi ,

since 1 − e−λΔi ≤ λΔi , and for occurrence of the event A, customers have to
arrive at time intervals (t − (τi + Δi ), t − τi ), i = 1, 2, . . . , k, with service times at
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least τi , i = 1, 2, . . . , k, and total amount of occupied resources by arrived customers
does not exceed x. Thus, PDF existence and inequality (27.17) are proved. �

Transition probabilities in time interval Δt have the following form:

Q0 (0; t + Δt) = Q0 (0; t) (1 − λF(R)Δt)+
R∫

0

∞∫

0

Q1 (dx, τ1; t) B (τ1 + Δt) − B (τ1)

1 − B (τ1)
dτ1 + o(Δt); (27.18)

Qk(x, τ1, . . . , τk; t + Δt) = (k + 1)
k∏

j=1

1 − B
(
τ j

)

1 − B
(
τ j − Δt

) ·

·
∫

x≤y≤R

(1 − Fk(y − x|y))
∞∫

0

[

Qk+1(dy, τ1 − Δt, . . . , τk − Δt, τk+1; t)

B
(
τk+1 + Δt

) − B
(
τk+1

)

1 − B
(
τk+1

)

]

dτk+1+ (27.19)

+
∫

0≤y≤x

Qk(dy, τ1 − Δt, . . . , τk − Δt; t) (1 − λF(R − y)Δt) ·
k∏

j=1

1 − B
(
τ j

)

1 − B
(
τ j − Δt

) ;

QN (x, τ1, . . . , τk; t + Δt) = QN (x, τ1 − Δt, . . . , τk − Δt; t)
N∏

j=1

1 − B
(
τ j

)

1 − B
(
τ j − Δt

) .

(27.20)

Let us denote Q∗
k(x, τ1, τ2, . . . τk; t) = Qk (x,τ1,τ2,...τk ;t)

[1−B(τ1)][1−B(τ2)]...[1−B(τk )]
. Assume exis-

tence of partial derivatives ∂Q∗
k

∂t ,
∂Q∗

k
∂τi

, 1 ≤ i ≤ k, 0 ≤ k ≤ N , then using (27.18)–
(27.20) we obtain following differential equations:

∂Q∗
0(0)
∂t

+ λQ∗
0(0)F(R) =

∫

0≤x≤R

∞∫

0

Q∗
1(dx, τ1; t)dB(τ1), (27.21)

∂Q∗
k(x)
∂t

+ ∂Q∗
k(x)

∂τ1
+ . . . + ∂Q∗

k(x)
∂τk

+ λ

∫

0≤y≤x

Q∗
k(dy, τ1, . . . , τk; t)F(R − y) =

= (k + 1)
∫

x≤y≤R
(1 − Fk(y − x|y))

∞∫

0
Q∗

k+1(dy, τ1, . . . , τk+1; t)dB(τk+1),

(27.22)

∂Q∗
N (x)
∂t

+ ∂Q∗
N (x)

∂τ1
+ . . . + ∂Q∗

N (x)
∂τk

= 0, (27.23)
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with boundary condition

λ

∫

0≤y≤x

F(x − y)Q∗
k(dy, τ1, τ2, . . . , τk; t) = (k + 1)Q∗

k+1(x, τ1, . . . , τk, 0; t),

0 ≤ k ≤ N − 1. (27.24)

We can make sure by substitution that stationary solution of system of Eqs. (27.21)–
(27.23) with boundary condition (27.24) is

Q∗
k(x, τ1, τ2, . . . , τk) = Q∗

0(0)
λk

k! F
(k)(x), (27.25)

Q∗
0(0) =

(

1 +
N∑

k=1

λk

k! F
(k)(R)

)−1

. (27.26)

Thus, we proved the following theorem.

Theorem 1 If service time distribution with CDF B(x) have finite mean b > 0, then
stationary probability distribution of random process (ξ(t), δ(t), β(t)) is given by

Qk(x, τ1, τ2, . . . , τk) = lim
t→∞ P{ξ(t) = k; δ(t) ≤ x;β1(t) < τ1, . . . , βk(t) < τk} =

= q0F
(k)(x)

ρk

k! [1 − B(τ1)] . . . [1 − B(τk)] , 0 ≤ x ≤ R, 0 < k ≤ N ,

where ρ = λb and q0 is given by formula (27.26).

In particular, it follows that stationary probability distribution of random process
(ξ(t), δ(t)) is also determined by formulas (27.5) and (27.7) as in case of exponential
service time distribution. Hence, it is insensitive to service-time CDF.

27.5 Conclusion

Method of simplification was proposed as an easy to use approximate method and
its scope is not clear yet. In this chapter, we presented results on the stationary
distribution of the multi-server loss system with generally distributed service times
and multi-item resource requirements. It was proved that stationary joint distribu-
tion of the number of customers and the amount of occupied resources depends on
the service time distribution only through its mean. It would be interesting to ana-
lyze applicability of the simplification method to the analysis of complex queueing
systems with random requirements.
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Chapter 28
On Sensitivity of Steady-State
Probabilities of a Cold Redundant
System to the Shapes of Life and Repair
Time Distributions of Its Elements

Vladimir Rykov and Dmitry Kozyrev

Abstract The problem of sensitivity of a redundant system’s reliability
characteristics to shapes of their input distributions is considered. In Efrosinin and
Rykov, Information Technologies and Mathematical Modelling, 2014, [1] an ana-
lytical form for dependence of a two-unit cold standby redundant system reliability
characteristics on life and repair time input distributions was obtained and investi-
gated for the case of exponential distribution of one of the time lengths. In the current
chapter this study is extended with the help of simulation method to a general case
of both non-exponential distributions. Comparison of analytic and simulation results
was carried out.

Keywords System reliability · Steady state probabilities · Sensitivity
Mathematical modeling and simulation · Redundant systems

28.1 Introduction

Stability of behavior of different systems and sensitivity of their characteristics to the
changes in initial states or exterior factors are among the key problems in all natural
sciences. For stochastic systems stability often means insensitivity or low sensitivity
of their output characteristics to the shape of some input distributions. One of the
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earliest results concerning insensitivity of systems’ characteristics to the shape of
service time distribution has been obtained by B. Sevast’yanov [2], who proved the
insensitivity of Erlang formulas to the shape of service time distribution with fixed
mean value for loss queueing systems with Poisson input flow.

In [3] I. Kovalenko found the necessary and sufficient condition for insensitivity of
stationary reliability characteristics of redundant restorable systemswith exponential
life time distribution and general repair time distribution to the shape of the latter.
This condition consists in sufficient amount of repairing units, i.e. in possibility of
immediate start of repair for any failed element. The sufficiency of this condition
for the case of general life and repair time distributions has been found in [4] with
the help of multi-dimensional alternative processes theory. However, in the case of
limited possibilities for restoration these results do not hold, as it was shown, for
example, in [5] with the help of additional variable method.

On the other hand, as it follows from investigations by B.V. Gnedenko and A.D.
Solov’ev [6–8] under “quick” restoration the sensitivity of reliability characteristics
to the shape of distributions of life and repair times of their elements will be van-
ishingly small. In papers [1, 9] the problem of sensitivity of system’s steady state
reliability characteristics to the shape of life and repair time distributions of its ele-
ments has been considered for the simple case of a cold double redundant system
when one of the input distributions (either of life or repair time lengths) is expo-
nential. For these models explicit expressions for both stationary and non-stationary
probabilities have been obtained which show their evident dependence on the non-
exponential distributions in the form of their Laplace–Stiltjes transforms. However
the numerical investigations show that this dependence becomes vanishingly small
under “quick” restoration.

In the chapter we extend these studies with the help of simulation method to a
general case of cold double redundant system with general distributions of both life
and repair time lengths of elements.

The chapter is organized as follows. In Sect. 28.2we set the problem and introduce
the notations. In Sect. 28.3wework out the closed-form analytical expressions for the
steady-state probabilities of a cold standby redundant system with one repair server
in two major particular cases when one of the input distributions is non-exponential.
These explicit formulas are used in subsequent section for numerical analysis. In the
last section the general discrete-event simulation model is described by the means of
the flowchart and the pseudocode with comments, the results of simulation modeling
are presented and comparison of analytic and simulation results is carried out. The
chapter ends with conclusion and some problems description.

28.2 Problem Set and Notations

Consider a cold standby restorable system with one repair unit and generally dis-
tributed life and repair time lengths. Throughout the chapter we will use a general-
ization of Kendall’s notation [10] for queueing systems. In this notation the symbols
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〈GIn|GI |m〉 stand for a closed system, i.e. a system where the flow of customers
is generated by a finite number n of sources that is shown by index in the first
position. Symbol GI means “General Independent” and in the first position of this
notation it denotes the general distribution of independent life times of the elements
of the system and in the second one — the general distribution of their independent
repair times. These symbols can be substituted byM for exponential (exp(·)), Erlang
E(·, ·), Gnedenko-Weibull (GW (·, ·)) with appropriate parameters or any other sym-
bol describing the distribution of life and/or repair time. Finally, the last factor m
denotes the number of repair units in the system. In the current chapter we consider
a simple cold double redundant model, namely 〈GI2|GI |1〉 and compare its steady
state probabilities (SSP) under different distributions.

The cumulative distribution functions (CDF) of the random life time A and random
repair time B are denoted respectively by A(x) and B(x). We suppose the existence
of the corresponding probability density functions (PDF), which are denoted by
a(x) = A′(x) and b(x) = B ′(x). The mean time between failures, the mean service
(repair) time, the failure and repair hazard functions are denoted as follows:

a =
∫ ∞

0
(1 − A(x))dx, and b =

∫ ∞

0
(1 − B(x))dx .

and

α(x) = a(x)

1 − A(x)
, and β(x) = b(x)

1 − B(x)
.

Define also themoment-generating functions (m.g.f.) of life A and repair B times, the
Laplace–Stiltjes transforms (LST) of their distributions by the following expressions:

ã(s) =
∫ ∞

0
e−sxa(x)dx and b̃(s) =

∫ ∞

0
e−sxb(x)dx, Re[s] ≥ 0.

In order to compare the simulation results with the numerical results obtained ana-
lytically, we first recall the analytical results for models 〈M2|GI |1〉 and 〈GI2|M |1〉
from [1, 9, 11].

28.3 Analytical Results for the Models 〈M2|GI|1〈
and 〈GI2|M|1〉

28.3.1 Two-Unit Cold Standby 〈M2|GI|1〉 System

Consider a two-unit cold standby redundant system 〈M2|GI |1〉with one repair server.
The elements of the system (units) have exponentially distributed times to failurewith
parameter α and general repair time distribution B(t). Denote by
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{Z(t)}t≥0 = {N (t), X (t)}t≥0 (28.1)

a two-dimensional stochastic process, where the first component N (t) stands for
the number of failed elements at time t and the second one stands for the elapsed
repair time of the unit at time t . The process {Z(t)}t≥0 is obviously Markovian one
with the state space E = {0, (n, x) : n ∈ {1, 2}, x ∈ R+}. Define the following state
probability density functions (p.d.f’.s):

(1) π0(t) = P{N (t) = 0} — the probability of a “good” (non-failure) state of both
units at time t .

(2) πn(t; x)dx = P{N (t) = n; x < X (t) ≤ x + dx} — the joint probability that
at time t there are n failed units and the elapsed repair time of the failed unit
(that is being repaired) takes a value between x and x + dx ,n = 1, 2.

By considering transitions of the process {Z(t)}t≥0 between time t and t + Δt
and letting Δt → 0, in [1, 9] the system of Kolmogorov forward partial differential
equations for probability π0(t) and p.d.f’.s πn(t; x) in domain n = 0, 1, 2 and x > 0
has been obtained. Because the process {Z(t)}t≥0 is a Harris one with a positive atom
in zero state, the steady state probabilities

π0 = lim
t→∞ π)(t), πn(x) = lim

t→∞ πn(t; x) (n = 1, 2)

exist and satisfy to the appropriate system of ordinary differential equations (see also
[1, 9]). Moreover, the closed form solution that has been obtained in these papers
are presented in the theorem below, where ρ = E[A]

E[B] .

Theorem 28.1 Steady state probabilities of the system 〈M2|GI |1〉 are:

π0 = ρb̃(α)

1 + ρb̃(α)
,

π1(x) = ρα

1 + ρb̃(α)
e−αx (1 − B(x)),

π2(x) = ρα

1 + ρb̃(α)

(
1 − e−αx

)
(1 − B(x)).

The macro-state probabilities π0, πn = ∫
πi (x)dx (n = 1, 2) are obtained by

integration.

Corollary 28.1 Macro-state probabilities are:

π0 = ρb̃(α)

1 + ρb̃(α)
, π1 = ρ(1 − b̃(α))

1 + ρb̃(α)
, π2 = 1 − ρ(1 − b̃(α))

1 + ρb̃(α)
. (28.2)
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28.3.2 Two-Unit Cold Standby 〈GI2|M|1〉 System

Consider now a similar system with generally distributed life time of the unit and
exponentially distributed repair time. Denote by {Z(t)}t≥0 the analogous stochastic
process (28.1), where the first component is the same as before, and the second one
denotes the elapsed operating time of the working unit. Define the state probabilities
as follows:

(1) πn(t; x)dx = P{N (t) = n, x < X (t) ≤ x + dx} — the joint probability that
at time t there are n failed units and the elapsed operating time of the functioning
one takes a value between x and x + dx ,n = 0, 1.

(2) π2(t) = P{N (t) = 2} — the probability of the “bad” state (complete system
failure state) at time t .

Also as before in [1, 9] a system ofKolmogorov forward partial differential equations
for these probabilities in domain n = 0, 1, 2 and x > 0 together with boundary,
normalizing and initial conditions has been found. Moreover, using Harris property
of the process and the presence of a positive atom in state zero for the steady state
probabilities appropriate systemof usual differential equations has been done in these
previous papers.

These equations admit an analytical solution, presented in the following Theo-
rem 28.2, which after integration over variable x gives the solution for macro-state
probabilities, given in Corollary 28.2.

Theorem 28.2 Steady state probabilities of the system 〈GI2|M |1〉 are:

π0(x) = β

ρ + ã(β)
(1 − e−βx )(1 − A(x)),

π1(x) = β

ρ + ã(β)
e−βx (1 − A(x)),

π2 = ã(β)

ρ + ã(β)
.

Corollary 28.2 In steady-state mode the macro-state probabilities πn = lim
t→∞

P{N (t) = n} are given by

π0 = ρ − (1 − ã(β))

ρ + ã(β)
, π1 = 1 − ã(β)

ρ + ã(β)
, π2 = ã(β)

ρ + ã(β)
. (28.3)

28.4 Simulation Results

In this section we consider a two-unit cold standby restorable system 〈GI2|GI |1〉
with one repair server and general distributions of both life and repair times. Define
the states of the system as follows:
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Fig. 28.1 Flowchart of the
discrete-event simulation
model

BEGIN

Declaring and ini alizing variables and arrays

First event (failure) genera on

Checking stop condi on
(t>T)

Determine the next event

System state change

Simula on clock update

t=T

Return simula on results

END

yes

no

Collect sta s cs

• state 0: one (main) unit is working, the other (duplicating) one is in reserve;
• state 1: one unit has failed and is being repaired, the other one is working;
• state 2: both units have failed (one is being repaired and the other one is waiting
for his turn to be repaired).

28.4.1 General Simulation Model

We perform the simulation using the discrete event modeling method. We consider
the functioning of the system being modeled as a sequence of operations being
performed across entities (events). The simulation model is specified graphically as
a process flowchart (see Fig. 28.1).

In order to ensure the precise understanding and reproducibility of the simulation
model, we present an algorithm for a simulation process which is represented in the
form of pseudocode (see Fig. 28.2). For those readers who are interested in repro-
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ducing the simulation results the source code of the simulation model is available
free of charge upon request via e-mail: kozyrevdv@gmail.com.

In the algorithm according to ergodic theorem the estimates π̂n of SSP πn are
calculated as

π̂n = time spent by process in state n during modeling time T

modeling time T
. (28.4)

28.4.2 Comparison of Analytical Solution and Simulation
Results for 〈GI2|GI|1〉

In this section we show that under ‘quick’ restoration the steady-state probabilities
become insensitive to the shape of distributions of life and repair time of system’s ele-
ments. As a model parameter we consider the value ρ = E[A]

E[B] = restoration rate
failure rate , which

can be interpreted as a relative rate of system recovery [12, 13]. It will be shown that
as ρ → ∞ the sensitivity of the model to shapes of input distributions becomes neg-
ligible. Distributions that we’ve used in our experiments include, but are not limited
to the following ones: Exponential (Exp(α)), Erlang (E(k, α)), Gnedenko-Weibull
(GW) and Pareto (P). The simulation time has been chosen equal to T = 10000.

Table28.1 contains both the analytical and simulation values of the steady-state
probabilityπ2 of system failure for different cases of life timeCDF (GI (1)) and repair
time CDF (GI (2)).

It can be seen from the table that the results of exact analytical calculation (where
possible) and simulation results have close agreement. For illustrative purposes we

Table 28.1 System steady-state failure probability π2 for the 〈GI2|GI |1〉 model

GI (1) GI (2) Exp( 1
EB ) E( 2

EB ) GW ( 2
EB , 1

2 ) P (k, k
(k−1)EB )

Simul. Theor. Simul. Theor. Simul. Theor. Simul. Theor.

Exp( 1
E A ) ρ = 1 0.33021 0.33333 0.30742 0.30769 0.39018 0.39602 0.26981 0.26985

ρ = 10 0.00921 0.00901 0.00684 0.00698 0.01966 0.02036 0.00479 0.00486

ρ = 100 0.00013 0.0001 0.00011 0.00007 0.00025 0.00029 0.00005 0.00005

E( 2
E A ) ρ = 1 0.30443 0.30769 0.27304 – 0.37735 – 0.21328 –

ρ = 10 0.00256 0.00277 0.00149 – 0.01224 – 0.00062 –

ρ = 100 0 0 0.00001 – 0.00001 – 0 –

GW ( 2
E A , 1

2 ) ρ = 1 0.39613 0.39602 0.38346 – 0.42290 – 0.37061 –

ρ = 10 0.03335 0.03037 0.03092 – 0.04222 – 0.02772 –

ρ = 100 0.00195 0.00116 0.00157 – 0.00269 – 0.00140 –

P (k, k
(k−1)E A ) ρ = 1 0.26532 0.26985 0.21292 – 0.35937 – 0.04505 –

ρ = 10 0 0.00001 0 – 0.00487 – 0 –

ρ = 100 0 0 0 – 0 – 0 –
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Fig. 28.2 Pseudocode for the simulation process of 〈GI2|GI |1〉 model
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Fig. 28.3 Simulation values of π2 versus ρ (averaged values based on 200 replications)

conduct this comparison graphically at Fig. 28.3, where results of simulation are
represented for different distributions GI (1), GI (2) and different values of ρ. In all
cases the parameters of distributions have been chosen so that the value of E[B]
remained fixed (E[B] = 5) and the mean time to failure of an element would ascend
E[A] = ρE[B] according to the values of ρ which are indicated on the horizontal
axis of both figures. Instead of parameters of distributions the coefficient of variation
c (the ratio of the standard deviation to the mean) is indicated in parentheses in the
legends of Fig. 28.3. All simulation plots of the upper figure have been built for the
case of distributions with c < 1 (except for Erlang) and the lower figure contains
plots for the case c > 1.
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Fig. 28.4 Analytical values of π2 versus ρ

Figure28.3 depicts the plots of the steady-state probability π2 of system failure
versus the model parameter ρ for 5 different special cases of the 〈GI2|GI |1〉 model.
As it can be seen from the figure, the differences between both simulation and analyt-
ical curves become indistinguishable very quickly. Even at relatively small values of
ρ the probability of system failure π2 is already very close to zero for all cases. The
observed behavior is fairly expected, as it was proved by B.V. Gnedenko and A.D.
Solov’ev [7, 8]. What is more important and interesting — is that we can assess the
rate of convergence of π2 with the means of quantiles for the given probability level.
For this reason we’ve plotted the analytical curves of the steady-state probability π2

of system failure versus the model parameter ρ for all considered particular cases
(see Fig. 28.4).

The upper of the two figures of Fig. 28.4 represents the analytical results of calcu-
lation of π2 for models with different (see the legend) distributions of repair time and
with exponentially distributed life time of system’s elements. The displayed results
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show very good asymptotic insensitivity of the probability of system failure π2 under
ρ → ∞ to the shapes of repair time distributions.

The lower figure represents analogous results, where analytical curves of π2 are
drawn for models with exponentially distributed repair time and non-exponential life
time distributions of system’s elements. The displayed results also show very good
asymptotic insensitivity of the probability of system failure, what can be clearly seen
from the proximity of the corresponding curves. For instance near ρ = 20 all the
curves are almost indistinguishable.

The represented above results of experiments show that the sensitivity of the
steady-state probabilities of the model gets vanishingly small as ρ increases.

28.5 Conclusion

The sensitivity problem of the steady-state probabilities of a cold standby redundant
system 〈GI2|GI |1〉 to the shape of distributions of life and repair times of its ele-
ments is considered. In spite of the fact that the obtained closed-form expressions
for these probabilities show evident dependence of these probabilities on the shape
of input distributions, the simulation experiments prove that this sensitivity becomes
negligible under “quick” recovery. Nevertheless, as may be inferred from Fig.28.4,
the same given probability level (π2 = 0.01) for different distributions is reached at
quite different values of ρ.
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Chapter 29
Reliability Analysis of an Aging Unit with
a Controllable Repair Facility Activation

Dmitry Efrosinin, Janos Sztrik, Mais Farkhadov and Natalia Stepanova

Abstract The chapter utilizes the continuous-time Markov chain for modeling the
processes of the gradual aging with maintenance on a finite discrete set of an inter-
mediate failure states. The transitions occur according to the birth-and-death pro-
cess, and the unit fails completely after visiting the last available state. The unit
of a multiple and single use is studied. The switching of the repair facility is per-
formed by a hysteresis control policy with two threshold levels for switching on/off
the repair server. We provide the expressions for the stationary and non-stationary
performance and reliability characteristics, solution of optimization problems, and
sensitivity analysis of the reliability function.

Keywords Reliability function · Aging unit · Sensitivity analysis
Markov chain · Average reward

29.1 Introduction

The most technical units are continuously in operation and are subject to the gradual
aging, degradation, or deterioration. These processes always lead to the reduction
in performance and reliability and hence must be exhaustively analyzed. Markov
chains are widely adopted for modeling of aging processes with maintenance repair.
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An excellent review and contribution of the earlier papers can be found in [3, 5, 8].
The multi-state reliability models were elaborated for the aging and degradation
models with gradual failures; see, for example, [2, 6, 7].

The aging process is assumed to be observable or some measure parameter can
be associated with a process, for example, signal of acoustic emission, measures of
the gravimetric analysis, and electromagnetic flaw detection. The hysteresis policy
(N1, N2) specifies the switching rule for the repair facility. This policy is well known
in the production–inventory problems and can find also applications in maintenance
of an aging unit. Here, thresholds stand for the number of the passed aging states. The
defined control policy can be used in a corrosion process of a unit with protective
covering, in a damage process due to the fatigue crack growth, in a wear process
of a tool of machine tools, in a wear of plane bearing, in a process of discharge
of an external load, and so on. Two types of mathematical models are of interest.
In first case, the aging unit is assumed to be of a multiple use when in a complete
failure state the unit can be repaired and becomes so good as a new one. In this case,
stationary characteristics are evaluated and the cost function is derived as the average
reward per unit of time. In second case, the aging unit operates till the first visit of
the complete failure state. The expressions for the time-dependent performance and
reliability characteristics are derived in terms of the Laplace transform. The cost
function can be represented in this case as a total average reward during a life time.

The accumulation process of the aging states can be treated as an arrival stream
of the customers at the finite-population queueing system with removable server and
increasing arrival rate. TheMarkov typemodels are of interest.Although the system is
Markovian one, only few papers deal with a removable server under (N1, N2)-policy
in queueswith finite population, so in contrast, performance and reliability analysis of
the systemwith hysteresis policy combinedwith the finite-population queues is a new
task. We derive the useful formula for computing the stationary probabilities, time-
dependent state probabilities, the probability density function of the remaining life
time, the reliability function, the mean time to failure. Additionally, a new reliability
metric such as the number of switching of the repair facility is introduced as well. A
cost model is derived to determine the optimal threshold policy at the average cost
per unit of time for the multiple usage case and the total average cost per life time
for the single usage model. Hence, the results obtained in this chapter differ from
those presented in other research and they can be adopted for a wide variety of the
Markov models with threshold-based control policies.

29.2 The Model Description

Assume that the aging process starts from some initial state and ends in a complete
failure state. Before this process comes to the complete failure state, it goes through a
number L > 0 of discrete intermediate failure states where the unit remains capable
to work although with a lower efficiency. The intermediate aging states will be
divided into two groups: the states, where the repair facility is deactivated and the
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transition to the previous aging state (recovering) is not possible, and the states with
operational repair facility, where the transitions to the neighboring states take place in
both directions. The switching between the groups occurs according to the hysteresis
control policy f = (N1, N2), where 0 ≤ N1 < N2 < L < ∞. The control principle
can be easily explained as follows. The first group of states includes a starting state
up to the aging state N2 − 1, where the transitions will be associated with a pure
birth process. The further aging is accompanied by the transition to another group of
states associated with a birth-and-death process. The aging process can either stay in
this group until the unit will be repaired up to the state N1 + 1 or reach the complete
failure state, where the unit can be completely repaired or not.

Let D(t) ∈ {0, 1} denote the state of the server at time t , 0 and 1 means that the
server is switched off and on, and N (t) denote the number of customers in the system
at time t . The system states at time t are described by the continuous-time Markov
chain which will refer to as Markov process,

{X (t)}t≥0 = {D(t), N (t)}t≥0 (29.1)

with a state space

E = {x = (0, n); 0 ≤ n ≤ N2 − 1, (1, n); N1 + 1 ≤ n ≤ L} (29.2)

and infinitesimal matrix Λ = [λxy]x,y∈E ,λx = −λxx = ∑
y �=x λxy , where λxy =

λxy( f ) depends on the switching hysteresis policy f = (N1, N2).

29.3 Stationary Probabilities and Average Reward

According to above description, {X (t)}t≥0 is an irreducible Markov process where

π = (π(0,0), π(0,1) . . . , π(0,N2−1), π(1,N1+1), π(1,N1+2), . . . , π(1,L))

is a stationary probability row vector for the policy f = (N1, N2). The system of
balance equations is of the form,

(n + 1)λπ(0,n) = nλπ(0,n−1), 0 ≤ n ≤ N2 − 1, n �= N1, (29.3)

(N1 + 1)λπ(0,N1) = N1λπ(0,N1−1) + μπ(1,N1+1),

((N2 + 1)λ + μ)π(1,N1+1) = μπ(1,N1+2),

((n + 1)λ + μ)π(1,n) = nλπ(1,n−1) + μπ(1,n+1), N1 + 2 ≤ n ≤ L − 1, n �= N2,

((N2 + 1)λ + μ)π(1,N2) = N2λ(π(1,N2−1) + π(0,N2−1)) + μπ(1,N2+1),

μπ(1,L) = (L − 1)λπ(1,L−1).
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Since the set E is finite, π exists and satisfies the system πΛ = 0, πe = 1. Define
the following cost structure:

c1—the reward per unit of time for each remaining failure state if server is off,
c2—the reward per unit of time for each remaining failure state if server is on,
(n + 1) c3—fixed costs per switching on of the repair facility at aging state n,
n c4—fixed costs per switching off of the repair facility at aging state n,
c5—the repair costs per unit of time in a complete failure state x = (1, L).

Now we can formulate optimization problem: Find an optimal policy f ∗ =
(N ∗

1 , N ∗
2 ) to maximize the average reward per unit of time

g f =
∑

x∈E
c(x, f )π f

x , where

c(x, f ) = c(x) −
∑

y �=x

λxy( f )cxy( f ) − immediate cost in state x under policy f,

c(x) = c1

N2−1∑

n=0

(L − n)1{x=(0,n)} + c2

L−1∑

n=N1+1

(L − n)1{x=(1,n)}−

reward per unit of timewhen the process is in state x ∈ E,
∑

y �=x

λxy( f )cxy( f ) = (N1 + 1)c3μ1{x=(1,N1+1)} + N 2
2 c4λ1{x=(0,N2−1)} + c51{x=(1,L)}−

fixed cost incurred each time when the process jumps from x to y.

Denote by

Cl
n =

l∏

k=n

τk, τN1+1 = μ

(N1 + 2)λ + μ
,

τk = μ

(k + 1)λ + μ − kλτk−1
, N1 + 2 ≤ k ≤ L − 1, k �= N2,

τN2 = μ

(N2 + 1)λ + μ − N2λτN2−1 − μCN2−1
N1+1

.

Theorem 1 The average reward per unit of time has the form

g(N1, N2) = c1

N2−1∑

n=0

(L − n)π(0,n) + c2

L−1∑

n=N1+1

(L − n)π(1,n) (29.4)

− ((N1 + 1)c3μπ(1,N1+1) + (N2 − 1)N2c4λπ(0,N2−1) + c5π(1,L)),

where πx , x ∈ E, satisfy the explicit expressions,
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π(1,L) =
[
1 + μ

λ
CL−1

N1+1

N2−1∑

n=N1

n∏

i=N1

1

i + 1
+

L−1∑

n=N1+1

CL−1
n

]−1
,

π(0,n) = μ

λ
CL−1

N1+1

n∏

i=N1

1

i + 1
π(1,L), N1 ≤ n ≤ N2 − 1,

π(1,n) = CL−1
n π(1,L), N1 + 1 ≤ n ≤ L − 1.

Proof The statement follows by solving recursively the system of balance equa-
tions for the stationary state probabilities taking into account that for transient states
π(0,n) = 0,0 ≤ n ≤ N1 − 1.

Our aim is to find the optimal policy f ∗ = (N ∗
1 , N ∗

2 ) such that

g( f ∗) = min
f

g( f ), (29.5)

subject to f = (N1, N2), 0 ≤ N1 < N2 < L .

It is also possible to formulate an optimization problem with the aim to find the joint
optimal value ( f ∗, μ∗). Mathematically, it can be described by

g( f ∗, μ∗) = min
f,μ

g( f, μ) (29.6)

subject to 0 ≤ N1 < N2 < L , 0 < μ < μU ,

where μU is predefined upper bound. The function g is nonlinear and quite complex
in order to solve the optimization problem analytically. To find a discrete optimal
vector f ∗ for the fixed parameters, a direct searchmethod can be applied. For the joint
values ( f ∗, μ∗), a method for numerical solution of the cost optimization problem
can be used. It uses the principles of the a quasi-Newtonmethod; see, for example, [1].

29.4 Reliability Analysis During the Life Time

Assume that at time t = 0, the system starts from initial state x = (0, 0) and the
complete failure state (1, L) will be the absorbing one. Denote by T the life time
of the system or the time to absorption, i.e., T = inf{t : X (t) = (1, L)}. Here we
analyze the system during the time T . The transient Markov process X̂(t), which
describes the system states at time t , has the same state space E and almost the same
infinitesimal matrix Λ as (29.1) with one exception that in latter case there is no
transition from (1, L) to (1, L − 1). For the time-dependent state probabilities

π(0,n)(t) = P[X (t) = (0, n), t < T ], 0 ≤ n ≤ N2 − 1

π(1,n)(t) = P[X (t) = (1, n), t < T ], N1 + 1 ≤ n ≤ L ,
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referring the state transition rate diagram we can write down the correspond-
ing Kolmogorov differential equations (KDEs), π ′(t) = π(t)Λ with initial con-
dition π(0,0)(0) = 1,πx (0) = 0, x �= (0, 0). Applying the Laplace transforms (LT)
π̃(d,n)(s) = ∫ ∞

0 e−stπ(d,n)(t)dt , Re[s] > 0, we get the system of equations, which
can be rewritten in matrix form

π̃(s)Λ(s) = π(0), (29.7)

where π̃(s) = (π̃(0,0)(s), . . . , π̃(0,N2−1)(s), π̃(1,N1+1)(s), . . . , π̃(1,L)(s)), Λ(s) =
s I − Λ is a (L + N2 − N1) × (L + N2 − N1) matrix, I is the identity matrix of the
appropriate size, π(0) = (1, 0, . . . , 0)—initial probability vector. It can be shown
that for the Markov process {X̂(t)}t≥0 with an absorption the total average reward is
equal to

g f =
∑

x∈E
c(x, f )

∫ T

0
πx (u)du =

∑

x∈E
c(x, f )π̃x (0).

Denote by

Bl
n(s) =

l∏

k=n

ρk(s), ρ0(s) = 1

s + λ
, ρk(s) = kλ

s + (k + 1)λ
,

Cl
n(s) =

l∏

k=n

τk(s), τN1(s) = μ

s + (N1 + 1)λ
, τN1+1(s) = μ

s + (N1 + 2)λ + μ
,

τN2(s) = μ

s + (N2 + 1)λ + μ − N2λτN2−1(s) − N2λB
N2−1
N1+1 (s)C

N2−1
N1

(s)
,

τk(s) = μ

s + (k + 1)λ + μ − kλτk−1(s)
, N1 + 2 ≤ k ≤ L − 1, k �= N2,

νN2(s) = N2λB
N2−1
0 (s)

s + (N2 + 1)λ + μ − N2λτN2−1(s) − N2λB
N2−1
N1+1 (s)C

N2−1
N1

(s)
,

νk(s) = kλνk−1(s)

s + (k + 1)λ + μ − kλτk−1(s)
, N2 + 1 ≤ k ≤ L − 1,

νL(s) = LλνL−1(s)

s − LλτL−1(s)
.

Theorem 2 The total average reward during the time T has the form

g(N1, N2) = c1

N2−1∑

n=0

(L − n)π̃(0,n)(0) + c2

L−1∑

n=N1+1

(L − n)π̃(1,n)(0) (29.8)

− (c3μπ̃(1,N1+1)(0) + c4N2λπ̃(0,N2−1)(0)), where
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π̃(0,n)(s) = Bn
0 (s), 0 ≤ n ≤ N1 − 1,

π̃(0,n)(s) = Bn
0 (s) + τN1(s)B

n
N1+1(s)π̃(1,N1+1)(s), N1 ≤ n ≤ N2 − 1,

π̃(1,n)(s) =
L−N2∑

i=0

CN2+i−1
n (s)νN2+i (s), N1 + 1 ≤ n ≤ N2 − 1,

π̃(1,n)(s) =
L−n∑

i=0

Cn+i−1
n (s)νn+i (s), N2 ≤ n ≤ L

is a solution of the system of KDEs in terms of the LT.

Proof The statement follows by solving recursively the system of KDEs in terms of
the LT.

Denote by
Tyx—time spent in x ∈ E starting from y,
Ty = ∑

x∈E Tyx—time to absorption from y (residual life time).
For the initial distribution π(0) over E , define a ratio of means distribution by

px =
∑

y∈E
πy(0)E[Tyx ]

∑

y∈E
πy(0)E[Ty] =

∑

y∈E

∞∫

0
πy(0)pyx (t)dt

∑

y∈E

∞∫

0
πy(0)(1 − py(1,L)(t))dt

,

where pyx (t) is a transition probability from state y to state x in time t of the absorbing
Markov chain {X̂(t)}t≥0.

Remark 1 The reward function g(N1, N2) can be evaluated with respect to the ratio
of means distribution p(d,n) depending on π(0),

p(d,n) = π̃(d,n)(0)
N2−1∑

n=0
π̃(0,n)(0) +

L−1∑

n=N1+1
π̃(1,n)(0)

.

In this case, the optimal policy (N1, N2) can differ from that which minimizes the
total reward.

29.5 Reliability Function and Evaluation Methods

The system reliability function is defined by

R(t) = P[T > t] = 1 − π(1,L)(t), t ≥ 0. (29.9)
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If R̃(s) = ∫ ∞
0 e−st R(t)dt , Re[s] > 0, then it follows

R̃(s) = 1

s
− π̃(1,L)(s). (29.10)

Method 1—Direct Solution of the KDE.

The LT π̃(1,L)(s) can be calculated from the system of KDE,

π̃(1,L)(s) = νL(s).

The inversion of the Laplace transform completes the evaluation.

Method 2—Solution of the System of KDE Using Cramer’s Rule.
The LT π̃(1,L)(s) can be evaluated also by solving the system

π̃(s)(s I − Λ) = π(0),

π(0) = (1, 0, . . . , 0)

using the Cramer’s rule

π̃(1,L)(s) = |ΛL+N2−N1(s)|
|Λ(s)| , where

|Λ(s)|—the determinant of the matrix Λ(s),
|ΛL+N2−N1(s)|—the determinant obtained by replacing the (L + N2 − N1)th raw of
Λ(s) by the initial vector π(0).

Theorem 3 The determinants |ΛL+N2−N1(s)| and |Λ(s)| are of the form

|ΛL+N2−N1(s)| = (−1)LλL L!|ΔN1+2,N2+1(s)|, (29.11)

|Λ(s)| = s
N1∏

i=1

(s + iλ)
[ N2∏

i=N1+1

(s + iλ)|ΔN1+2,L(s)| (29.12)

+ N2!(λ μ)N2−N1

N1! |ΔN2+2,L(s)|
]
, where

|Δk,l(s)| =
l∏

i=k

ai
[
1 +

	 l−k+1
2 
∑

r=1

∑

i0,...,ir−1∈Sr (2,l−k+1)

r∏

j=0

μbk+i j−2

ak+i j−2ak+i j−1

]
,

Sr (2, n) =
{

{2, . . . , n} n ≥ 2, r = 1,

{(i1, . . . , ir ) : i j ∈ {2, . . . , n}, i j − i j−1 ≥ 2}, n ≥ 4, 2 ≤ r ≤ ⌊
n
2

⌋
,

al = (s + lλ + μ), bl = −lλ, Δk,l(s)—tridiagonal matrix with upper, main and
lower diagonals given by (bk, . . . , bl−1), (ak, . . . , al), (−μ, . . . ,−μ).
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Proof The result can be easily obtained using the definition of the tridiagonal matrix
and its properties, |Δk,l(s)| = al |Δk,l−1(s)| + bl−1μ|Δk,l−2(s)|, |Δk,k−1(s)| = 1,
|Δk,k−2(s)| = 0. Solving this difference equation as proposed in [4], we get the
explicit expression for the determinant |Δk,l(s)|.
Theorem 4 The reliability function R(t) satisfies the relation

R(t) = −
l∑

k=1

Ale
−sk t +

m∑

k=1

e−Re[sl+k ]t
[
Bk cos(Im[sl+k]t) (29.13)

+ Ck − Bk Re[sl+k]
Im[sl+k] sin(Im[sl+k]t)

]
, t ≥ 0, where

A0 = s|ΛL+N2−N1(0)|
|Λ(s)|

∣
∣
∣
s=0

= 1, (29.14)

An = (s + sn)|ΛL+N2−N1(−sn)|
|Λ(s)|

∣
∣
∣
s=−sn

, 1 ≤ n ≤ l,

Bnsl+n + Cn =
(s + (sl+n + s̄l+n)s + sl+n s̄l+n)|ΛL+N2−N1(−sl+n)|

|Λ(s)|
∣
∣
∣
s=−sl+n

, 1 ≤ n ≤ m,

sn = nλ,1 ≤ n ≤ N1, sn = nλ + μ, N2 + 2 ≤ n ≤ L and other eigenvalues are the
solutions of |Δ(s)| = 0.

Proof The determinant |Λ(s)| can be factorized,

|Λ(s)| = s
l∏

k=1

(s + sk)
m∏

k=1

(s2 + (sl+k + s̄l+k)s + sl+k s̄l+k),

where s0 = 0 and s1, s2, . . . , sl are the possible l real distinct eigenvalues, and
(sl+1, s̄l+1),(sl+2, s̄l+2),. . ., (sl+m, s̄l+m) are the m pairs of distinct conjugate com-
plex eigenvalues obtained from

|Λ(s)| = |Λ − s I | = 0

Due to the partial fraction expansion,

π̃(1,L)(s) =
l∑

k=0

Ak

s + sk
+

m∑

k=1

Bks + Ck

s2 + (sl+k + s̄l+k)s + sl+k s̄l+k
.

The constants Ak , 0 ≤ k ≤ l, are the real numbers, which by equating the coefficients
can be obtained in form (29.14). Note that A0 = limt→∞ π(1,L)(t) = 1. Togetherwith
(29.9), the inverse LT implies the explicit relation (29.13).
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Method 3—The Remaining Life Time.
Denote by
T(d,n) = T |X (0) = (d, n)—the remaining life time given (d, n) ∈ E ,

rx (t) = P[Tx∈[t,t+dt)]
dt —probability density function,

r̃x (s) = ∫ ∞
0 e−st rx (t)dt—LT of the density function rx (t).

The LT R̃(s) can be evaluated by

R̃(s) = 1

s

[
1 − r̃(0,0)(s)

]
. (29.15)

Note that π̃(1,L)(s) = Lλ
s π̃(1,L−1)(s). It follows then that

r̃(0,0)(s) = Lλπ̃(1,L−1)(s).

The conditional LT r̃x (s) can be evaluated directly as well. Define

Bl
n(s) =

l∏

k=n

ρk(s), ρk(s) = kλ

s + kλ
,

Cl
n(s) =

l∏

k=n

τk(s), τN1+1(s) = (N1 + 2)λ

s + (N1 + 2)λ + μ
, νN1+1(s) = μBN2

N1+1(s)

s + (N1 + 2)λ + μ
,

τk(s) = (k + 1)λ

s + (k + 1)λ + μ − μτk−1(s)
, N1 + 2 ≤ k ≤ L − 1, k �= N2 − 1,

νk(s) = μνk−1(s)

s + (k + 1)λ + μ − μτk−1(s)
, N1 + 2 ≤ k ≤ N2 − 2,

τN2−1(s) = N2λ + μνN2−2(s)

s + N2λ + μ − μτN2−2(s)
.

Theorem 5 The LTs r̃x (s), x ∈ E, are obtained by

r̃(0,n)(s) = BN2
n+1(s)C

L−1
N2

(s), 0 ≤ n ≤ N2 − 1, (29.16)

r̃(1,n)(s) = CL−1
N2

(s)
N2−n−1∑

i=0

Cn+i−1
n (s)νn+i (s), N1 + 1 ≤ n ≤ N2 − 2,

r̃(1,n)(s) = CL−1
n (s), N2 − 1 ≤ n ≤ L − 1.

Proof Due to the Markov property rx (t) = ∑
y �=x λxye−λx t ∗ ry(t), hence

r̃x(s) =
∑

y �=x

λxy

s + λx
r̃y(s), x ∈ E \ {(1, L)},

r̃(1,L)(s) = 1.
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Recursively solving the last system, we get the statement.

Corollary 1 The mean time to failure (MTTF) is obtained as

E[T ] =
∫ ∞

0
R(t)dt = lim

s→0
R̃(s) = − d

ds
sπ̃(1,L)(s)

∣
∣
∣
∣
s=0

= − d

ds
r̃(0,0)(s)

∣
∣
∣
∣
s=0

=
l∑

k=1

Ak

sk
+

m∑

k=1

Ck

sl+k s̄l+k
.

Theorem 6 The mean time to failure (MTTF) is obtained as

E[T ] = 1

λ

N2∑

i=1

1

i
+

L−N2−1∑

i=0

CN2+i−1
N2

νN2+i , where (29.17)

Cl
n =

l∏

k=n

τk , τN1+1 = (N1 + 2)λ

(N1 + 2)λ + μ
, νN1+1 = μ

(N1 + 2)λ + μ
, ξN1+1 = νN1+1

N2∑

i=N1+1

1

i
,

τk = (k + 1)λ

(k + 1)λ + μ − μτk−1
, νk = μνk−1

(k + 1)λ + μ − μτk−1
, N1 + 2 ≤ k ≤ L − 2, k �= N2,

ξk = μξk−1

(k + 1)λ + μ − μτk−1
, N1 + 1 ≤ k ≤ N2 − 1, (29.18)

τN2 = (N2 + 1)λ

(N2 + 1)λ + μ − μ(τN2−1 + νN2−1)
, νN2 = μξN2−1

(N2 + 1)λ + μ − μ(τN2−1 + νN2−1)
,

νL−1 = 1 + μνL−2

Lλ + μ − μτL−2
.

Proof r̄x = E[Tx ] can be calculated by

r̄x = 1

λx

[
1 +

∑

y �=x

λxy

λx
r̄y

]
, (29.19)

which follows by differentiating the expressions for r̃x (s) in point s = 0.

Nowwe derive the distribution of the number of switches of the repair facility during
the life time. Denote by
K—the number of switches (loops) of the repair facility left up to absorption
time T ,
ψ(d,n)(k) = P[K = k|X (0) = (d, n)]—the probability density function (PDF),
ψ̃(d,n)(z) = ∑∞

k=1 z
kψ(d,n)(k), |z| < 1—the generating function (GF).

The study of this descriptor complements the reliability analysis providing a type of
a discrete counterpart of the length of T .

Theorem 7 The GF ψ̃x (z), x ∈ E, satisfies the system for r̃x (s) for s = 0, but the
service rate μ in numerator of νN1+1(s) is replaced by zμ.
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ψ̃(0,n)(z) = zCL−1
N2

(z), 0 ≤ n ≤ N2 − 1, (29.20)

ψ̃(1,n)(z) = CL−1
N2

(z)
N2−n−1∑

i=0

Cn+i−1
n (z)νn+i (z), N1 + 1 ≤ n ≤ N2 − 2,

ψ̃(1,n)(z) = CL−1
n (z), N2 − 1 ≤ n ≤ L − 1, where

Cl
n(z) =

N2−1∏

k=n

τk1{l≤N2−2}
l∏

k=i+1

τk(z)1{i>N2−2}, (29.21)

τN1+1 = (N1 + 2)λ

(N1 + 2)λ + μ
, νN1+1(z) = zμ

(N1 + 2)λ + μ
,

τk = (k + 1)λ

(k + 1)λ + μ − μτk−1
, νk(z) = μνk−1(z)

(k + 1)λ + μ − μτk−1
, N1 + 2 ≤ k ≤ N2 − 2,

τN2−1(z) = N2λ + μνN2−2(z)

N2λ + μ − μτN2−2(z)
, τk(z) = (k + 1)λ

(k + 1)λ + μ − μτk−1(z)
, N2 ≤ k ≤ L − 1.

Proof Due to the Markov property

ψx (k) =
∑

y �=x
y �=(1,N2)

λxy

λx
ψy(k)1{x �=(0,N2−1)} + N2λ

λx
ψ(1,N2)(k − 1)1{x=(0,N2−1)},

or in terms of the generating function

ψ̃x (z) =
∑

y �=x
y �=(1,N2)

λxy

λx
ψ̃y(z)1{x �=(0,N2−1)} + zN2λ

λx
ψ̃(1,N2)(z)1{x=(0,N2−1)}. (29.22)

Recursively solving the last system leads to the required result.

The distribution ψx (k) is then determined by differentiation of the GF,

ψx (k) = 1

k!
dk

dzk
ψ̃x (z)

∣
∣
∣
∣
z=0

.

Theorem 8 The mean number of switches E[K ] of the repair facility can be calcu-
lated by

E[K ] = 1 +
L−N2−1∑

i=0

CN2+i−1
N2

νN2+i , where (29.23)
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Fig. 29.1 Function R(t) versus λ (a) and μ (b)
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Fig. 29.2 Sensitivity of R(t) versus λ (a) and μ (b)

Cl
n =

l∏

k=n

τk , τN1+1 = (N1 + 2)λ

(N1 + 2)λ + μ
, νN1+1 = μ

(N1 + 2)λ + μ
, (29.24)

τk = (k + 1)λ

(k + 1)λ + μ − μτk−1
, νk = μνk−1

(k + 1)λ + μ − μτk−1
, N1 + 2 ≤ k ≤ L − 1, k �= N2,

τN2 = (N2 + 1)λ

(N2 + 1)λ + μ − μτN2−1 − νN2−1
, νN2 = μνN2−1

(N2 + 1)λ + μ − μτN2−1 − νN2−1
,

Proof The conditional moments of the number of switches are calculated by

ψ̄x = d

dz
ψ̃x (z)

∣
∣
∣
∣
z=1

.

Obviously E[K ] = ψ̄(0,0). The last value can be obtained from the system

ψ̄x =
∑

y �=x
y �=(1,N2)

λxy

λx
ψ̄y1{x �=(0,N2−1)} + N2λ

λx
(ψ̄(1,N2) + 1)1{x=(0,N2−1)}

obtained by differentiating of (29.22) over z at point z = 1.
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29.6 Sensitivity Analysis

Here we perform a sensitivity analysis for changes in the reliability function R(t)
together with changes of specific values of system parameters, for example, failure
intensity λ and repair intensities μ. We differentiate the expression (29.13) and get

∂R(t)

∂λ
= −∂π(1,L)(t)

∂λ
,

∂R(t)

∂μ
= −∂π(1,L)(t)

∂μ
.

All examples are calculated for the optimal hysteresis policy (N1, N2), which max-
imizes the total average reward g during the life time. For the inversion of the LPs,
a numerical method is used. Further we fix L = 10, c1 = 0.5, c2 = 0.1, c3 = c4 =
1.5, and consider two cases:

1. λ is varied from 0.5 to 2.5 with a lag 0.5 and μ = 2.5,

E[T ] = {6.01; 3.14; 2.22; 1.64; 1.42},
(N1, N2) = {(7, 9); (5, 6); (1, 4); (2, 3); (0, 2)}

2. μ is varied from 0.5 to 2.5 with lag 0.5 and λ = 0.5,

E[T ] = {5.88; 5.97; 5.92; 6.10; 6.01},
(N1, N2) = {(3, 9); (7, 8); (8, 9); (7, 8); (7, 9)}.

Figures 29.1, 29.2 and 29.3 illustrate the function R(t) with derivatives as well as
the discrete distribution function Ψ (k) = ∑k

i=1 ψ(i). It is observed that the reliabil-
ity function is more sensitive to parameter changing in case λ < μ, otherwise the
sensitivity almost vanishes. Interesting observations have been made also for the
distribution function Ψ (k) of the number of switches K (Fig. 29.3).
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