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Fragmentation of Young Massive
Clusters: A Hybrid Monte Carlo
Simulation Study

Abisa Sinha

Abstract To study the hierarchical fragmentation procedure inYoungMassiveClus-
ters, a stochastic model has been developed. Binary fragments along with individual
stars are primarily studied in this work. Stellar masses for individual stars have been
generated from the univariate truncated Pareto distribution and the stellar masses for
binary stars have been generated from the truncated bi-variate Skew Normal Distri-
bution using the Hamiltonian Monte Carlo method. The above distribution is used
by observing the fitted bi-variate distribution of masses of all type of binary stars
viz. visual binaries, spectroscopic binaries and eclipsing binaries. The resulting mass
spectrum computed at different projected distances are observed under opacity lim-
ited fragmentation procedure and they display signature of mass segregation along
the core to radius, whereas degree of segregation becomes reduced due to inclusion
of all type of binary fragments in comparison to inclusion of eclipsing binaries only.

Keywords Initial mass function · Binary stars · Bivariate skew normal
Hybrid Monte Carlo

1 Introduction

The Initial Mass Function (IMF) of fragmented masses of molecular clouds under-
going gravitational collapse is of fundamental interest in many fields of astronomy
and astrophysics. First observed by Salpeter (1955), the IMF is a power-law of
the form ξ = dN

d logm ∝ m� , where m is the mass of a star and N is the number of
stars in the mass range logm and (logm + d logm). His work favored an exponent
of � ∼ −1.35 for 0.4M� ≤ m ≤ 10M�. Kroupa et al. (1993) found � ∼ −1.3 (i.e.
α ∼ 2.3) above half a solar mass, but introduced α ∼ 1.3 between 0.08M� − 0.5M�
and α ∼ 0.3 below 0.08M� by proposing the IMF to be of segmented power-law
form, where α = 1 − � in linear mass units of the form dN

dm ∝ m−α . More modern
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2 A. Sinha

IMFs (segmented power-laws) appeared in the literature in recent years (e.g. Chabrier
(2003)), but here our main intention was to find how the observed mass distribution
depends on the slope of the fundamental IMF. Also, we have studied the effect of
mass segregation in YoungMassive Clusters (YMC) as a result of inclusion of binary
fragments. Milone et al. (2012) have investigated the behavior of binary fraction for
the Globular Clusters (GC) of Milky Way and have found that mass segregation is
smaller than the field binaries. We have modeled the random fragmentation scenario
together with line of sight effect as proposed by Chattopadhyay et al. (2011, 2016).
Stars are generally born as binary or multiple systems and their binary nature is visi-
ble only for a small percentage. Chattopadhyay et al. (2016) have studied the binary
fragments for eclipsing binary stars only. Here, we have tried to include all types of
binary stars viz. visual binaries (consists of two stars, usually of different brightness
and observed visually), spectroscopic binaries (consisting of a pair of stars where
the spectral lines in the light emitted from each star shifts first towards the blue, then
towards the red, as each moves first towards the observer, and then away from the
observer, during its motion about their common center of mass, with the period of
their common orbit and observed by periodic changes in spectral lines) and eclipsing
binaries (consisting of stars in which the orbit plane of the two stars lies so nearly
in the line of sight of the observer that the components undergo mutual eclipses
and observed only by studying their respective Light Curves and Velocity Curves).
Several authors have studied the masses, mass ratios of these binary stars (Tokovinin
2014; Kouwenhoven et al. 2007).

The percentage of binary contribution to the final form of fragments is of consid-
erable debate. Over the past few years, several authors have considered the binary
fragments in a coventional way (Abt 1983 for B stars; Duquennoy andMayor ( 1991)
for G dwarfs; Fischer and Marcy (1992) for M dwarfs; Kouwenhoven et al. 2007
for A and B stars; Goodwin et al. (2007) and references therein). Similar observa-
tions were noted for nearby and associated clusters (Duchéne 1999; Duchéne et al.
2007). Binary fractions of distant clusters were not observed previously because of
observational limitations ofmeasuring devices. Fortunately, by some alternative tech-
nique, some authors have become able to calculate the binary fraction. For example,
by studying the morphology of colour-magnitude diagram, Romani and Weinberg
(1991) determined the observed binary fractions in M92 and M30 at ≤9% and 4%
respectively. Rubenstein and Bailyn (1997) investigated binary fraction of stars in
the range 15.8 mag < V < 28.4 mag in 13.5Gyr old Galactic GC, NGC6752 as 15–
38% inside the inner core, falling to 16% at larger radii with a power-law mass ratio
distribution. Ballazzin et al. (2002) estimated the binary fraction in NGC288 for stars
20 mag < V < 23 mag (∼0.54–0.77 M�) as 8–38% inside cluster half mass radius.
Zaho and Bailyn (2005) found 6–22% of main sequence binaries for M3 within core
radius whereas Cool and Bolten (2002) derived a binary fraction of 3% for Galactic
GC, NGC6397. Romani and Weinberg (1991) and Hurley et al. (2007) estimated a
binary fraction 5.1 ± 1.0% within the inner region of NGC6397. All the clusters are
dynamically evolved systems and are expected to significantly alter the initial binary
population. Hu et al. (2010) have studied the young star cluster NGC1818 in LMC
(age∼15–25Myr) and derived a binary fraction as high as 55%. Chattopadhyay et al.
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(2016) has considered the contribution of binary fragments as close as 50%, while
considering the rest as single stars. Malkov and Zinnecker (2001) have even claimed
that the contribution of binary fragments is as close to 100%.

In the present work, we have considered random fragmentation of YMCs and
have taken the binary contribution to be of 80% of the total fragments whereas 20%
constitutes single stars. We have simulated 80% of binary stars from the truncated
Bi-variate Skew Normal Distribution by Hybrid Monte Carlo method and the rest
20% of single stars from truncated Pareto distribution, truncated at minimum and
maximum masses. The pattern of the bi-variate distribution is investigated and fitted
to an appropriate form. In Sect. 2 we have discussed the data set, Sect. 3 gives the
form of bivariate distribution, Sect. 4 gives the simulation procedures and Sect. 5
gives the results and discussions.

2 Data Set of Binary Stars

We have used a data-set of 2096 binary stars comprising of visual binaries, spectro-
scopic binaries and eclipsing binaries, among which 1875 sets of masses are taken
from Tokovinin (2014) constituting only those binary stars which may be observed
through telescope (viz. visual binaries, spectroscopic binaries), 78 sets of masses
taken from Kouwenhoven et al. (2007) (also constituting visually observable stars)
and the rest 143 sets of masses of eclipsing binaries (observed from their light-
curves and velocity-curves) from Chattopadhyay et al. (2016). The method used to
calculate binary masses from their observed mass-ratios as in Tokovinin (2014) and
Kouwenhoven et al. (2007) has been found compatible for use (Fig. 3).

3 Bi-variate Distribution

3.1 Distribution Fit

Initially, we displayed the data of binary masses, in a bi-variate plot (Bivariate his-
togram (Fig. 1)) which displays a positive skewed pattern. The above data set is then
fitted to bi-variate skew normal distribution of the form:

fZ1,Z2(z1, z2) = 2φ2(z − ξ ;�)�(α′ω−1(z − ξ)) (1)

where z1, z2 are the random variables representing the masses of binary starsm1,m2

respectively, fZ1,Z2(z1, z2) is the probability density function and z1, z2 are particular
values of Z1, Z2 respectively. Here ξ = [

ξ1 ξ2
]′
is the location parameter, � is the

correlation matrix (technically known as scale parameter) and α = [
α1 α2

]′
is the

shape parameter which needs to be estimated.
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We estimate the parameters by the help of Maximum Likelihood Estimation
(MLE) by using the E-M Algorithm (Lachos et al. 2014) as follows: Let y denote
the observed data and s denote the missing data. Let yc= (y, s) be y augmented
with s. We denote as lc(θ | yc), ∀θ ∈ 
, (here θ = (ξ,�, α)) the complete data log
likelihood function and as Q(θ | θ̂ ) = E[lc(θ | yc) | y, θ̂ ], the expected data log-
likelihood function. The Expectation and Maximization steps are respectively:

• E-step: Q(θ | θ(r)) is computed as a function of θ .
• M-step: Q(r+1) is obtained confirming that Q(θ(r+1) | θ(r)) = max

θ∈

Q(θ | θ(r)).

By applying the above algorithm, the MLEs of the parameters came out to be:

ξ = [
1.463 0.851

]′

� =
[
2.6628 0.5909
0.5909 1.9085

]

α = [
0.9076 0.9922

]′

(2)

Based on the above parameters, we proceed henceforth in fitting the data to our
proposed distribution.

3.2 Goodness of Fit Test

The goodness of fit test is based on the Moment Generating Function (MGF) of the
bi-variate skew normal distribution as proposed by Meintanis et al. (2010), given as:

M(t) = 2exp[1
2
(t21 + 2ωt1t

2
2 )]�(α1t1 + α2t2) (3)

when ω is the co-rrelation parameter and α = [
α1 α2

]′
is the shape parameter. We

know the MGF of any bivariate random vector X = [
X1 X2

]′
with t = [

t1 t2
]′ ∈ R

2

is defined by:

M(t1, t2) = E(et
′X)

Putting ϑ = (α1, α2, ω) in Eq. (3) and making the transformation X = ˆ�−1(Z − ξ̂ )

in our original variable (Eq.1), the test statistic is (Meintanis et al. 2010):

Tn,W (ϑ̂) = n
∫

R2
D2

n(t1, t2; ϑ̂)W (t1, t2)dt1dt2 (4)

We reject the null hypothesis for large values of Tn,W (ϑ̂), where

D2
n(t1, t2; ϑ̂) = α2

∂Mn(t1, t2)

∂t1
− α1

∂Mn(t1, t2)

∂t2
− [(α2 − ωα1)t1 − (α1 − ωα2)t2]Mn(t1, t2)
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withW being theweight function,W (t1, t2) = W (t) satisfying 0 <
∫
R2 W (t)dt < ∞

and

Mn(t1, t2) = 1

n

n∑

j=1

et1X1 j+t2X2 j

with X j = [
X1 j X2 j

]′
, j = 1, 2, . . . n are independent copies ofX. Our null hypoth-

esis is
H◦ : X ∼ BV SN (ϑ)

against general alternatives. Using the weight function W (t) = e−at2 , a > 0 and
satisfying a ≥ 2 (Gradshteyn and Ryzhik 1994), Tn,W (ϑ̂) can be remodeled as:

Tn,W (ϑ̂) = π

a
n(α̂2n X̄1 − α̂1n X̄2)

2 + O(a−1),

O(a−1) → ∞ as a → 0.Wewill declare the test statistic to be significant at nominal
levelα if Tn,W (ϑ̂) exceeds the (1 − α)100% level of significance. The p-valuemay be
obtained from P∗(T ∗

n,W (ϑ̂) > Tn,W (ϑ̂)), [∗ denotes that Tn,W (ϑ̂) is computed from

bootstrap sample]. To obtain Tn,W (ϑ̂), we proceed as follows:

• First, we collect samples, say 5000 from a bivariate skew normal distribution by
the method as stated in Sect. 3.1 and using the MLEs of the parameters, as given
in Eq.2 and then standardize the data set.

• We repeat the above procedure for B = 100 bootstrap samples from BV SN (ϑ̂),
estimate the respective location, scale and shape parameters and then standardize
the data.

• For each bootstrap sample, we compute ϑ̂∗
n = (α1, α2, ω) and the corresponding

value of T ∗
n,W (ϑ̂∗).

The result of our test is displayed in Table1. So, we accept the null hypothesis at
both 1% and 5% level of significance for a = 3 and conclude that the simulated data
fits well to BV SN (ϑ).

We henceforth proceed towards simulation from BV SN (ξ,�, α) for binary stars.
In our previous work (Chattopadhyay et al. 2016), we have considered the value of
efficiency factor ε (the ratio of stellar masses to the total mass of the parent cloud)

Table 1 Test of bivariate skew normality for the observed data-set for B = 100 bootstrap samples
and 5000 Monte Carlo samples from BVSN (ϑ)

Tn,W (ϑ̂) α (1 − α)100% p-value a

63.05 0.05 95 0.0129 2.5

0.01 99

91.27 0.05 95 0.3512 3

0.01 99
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Fig. 1 Bivariate histogram
of the Logarithm of Masses
of Observed Binary stars.
Masses m1 and m2 are in M�

Fig. 2 Bivariate histogram
of the logarithm of masses of
simulated binary stars.
Masses m1 and m2 are in M�
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as 0.5 (Lada et al. 1984; Elmegreen and Clemens 1985; Verschueren 1990). In the
present work, we have retained the same choices of m f , ε and have included our
estimated parameters (vide Eq.2). A bi-variate histogram of the simulated values
along with that for the observed ones are displayed in Figs. 1 and 2 respectively.

4 Fragmentation and Mass Distribution

Hierarchical fragmentation of molecular cloud in YMCs and in other external galax-
ies and the final form of initial mass function have been a considerable matter of
discussion during the last few decades. Random fragmentation of YMCs using a
Monte Carlo simulation have been considered by Chattopadhyay et al. (2011). In
their model, number of fragments, mass of the fragments and time between suc-
cessive fragmentation are all considered as random variables. In our previous work,
we have considered fragment masses simulated from bi-variate Gumbel Exponential
distribution for binary stars and from Truncated Pareto Distribution for single stars.
We simulated 50% of the total stellar mass of the parent cloud as binary stars and
the rest half for single stars. In the present work, we simulate 80% of the total stellar
masses of the parent cloud as binary stars and the rest as single stars. As pointed out
earlier, here we are considering all binary types (i.e. visual, spectroscopic, resolvable
and eclipsing binaries) and are simulating the binary pairs from our fitted distribu-
tion i.e. Skew Normal Distribution, whereas the single stars from Truncated Pareto
distribution (Sect. 3.2).

4.1 Simulation of Binary Stars

Since our data directed us to bi-variate skew normal distribution, we draw ran-
dom samples from the same distribution using Hamiltonian Dynamics (Neal 2012).
This method, also known as Hamiltonian Monte Carlo method or the hybrid Monte
Carlo simulation which uses the leap-frog scheme for simulating random numbers.

With the choice of parameters as in Eq.2, we proceed as follows: We use Hamil-
tonian dynamics as a proposal function for a Markov chain in order to explore the
target (canonical) density p(x) defined by U (x) more efficiently. Introducing the
auxiliary variable p, more commonly known as kinetic energy function, defined as
K (P) ∼ p′p

2 , the Hamiltonian function H(x,p) is given as:

H(x,p) = − logU (x) + p′p
2

where ∂U (x)
∂xi

is the gradient function and− logU (x) is the log-likelihood to gradient.
We take p to be a zero-mean bivariate Gaussian distribution with unit variance.
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Startingwith an initial state [x◦, p◦], we simulate randomnumbers usingHamiltonian
dynamics for a short time using the Leap-Frog method. If t be our t-th iteration step
then to draw M random samples from the target density, the steps are:

• Set t = 0.
• Generate an initial position state x (◦).
• Repeat until t = M .
Set t = t + 1
Sample a new initial momentum variable from the momentum canonical distribu-
tion p◦ ∼ p(P). Set x◦ = x (t−1). Run Leap-frog algorithm starting at [x◦, p◦] for
L steps and step-size δ to obtain the proposed states [x∗, p∗].

• Calculate the Metropolis acceptance probability:

α = min[1, e(−U (x∗)+U (x◦)−K (p∗)+K (p◦))] (5)

• Drawa randomnumber u fromU (0, 1). Ifu ≤ α, accept the proposed state position
x∗ and set the newstate in theMarkov chain x (t) = x∗. Else set x (t) = x (t−1). Return
to Step 3.

We choose p ∼ BV N (0, I ), M = number of samples required such that the total
sum is ≤ 0.8m f , L = 50, δ = 0.25.

4.2 Simulation of Single Stars

The method of generating random samples from the Truncated Power Law distribu-
tion is as follows (Chattopadhyay et al. 2015, 2016): The segmented power law is of
the form:

ξI MF (m) = dN

dm
= { Am−α1; mmin < m ≤ mc

Bm−α2; mc < m ≤ mmax
(6)

when A and B are solved to make:

Â = B̂mα1−α2
c

B̂ = [mα1−α2
c
1−α1

(m1−α1
c − m1−α1

min ) + 1
1−α2

(m1−α2
max − m1−α2

c )]−1
(7)

The values ofmmin ,mmax ,mc, α1 and α2 are taken from Chattopadhyay et al. (2011),
and the random numbers are generated using the inverse transformation method
for pseudo-random number sampling i.e. for generating random samples from the
probability distribution given its cumulative distribution function (c.d.f), i.e. we get
m-masses as

F1(m) = F(m)−F(mmin)

F(mc)−F(mmin)
= u1

F2(m) = F(m)−F(mc)

F(mmax )−F(mc)
= u2
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Table 2 Initial values of parameters for simulation of binary fragments obtained through Hybrid
Monte Carlo method with a L = 50 Leap-frog steps and stepsize δ = 0.25

Name m f ε ξ̂1 ξ̂2 �̂11 �̂12 �̂22 α̂1 α̂2

NGC330 105.8 0.5 1.463 0.851 2.6628 0.5909 1.9085 0.9076 0.9922

M31Vdb0 105 0.5 1.463 0.851 2.6628 0.5909 1.9085 0.9076 0.9922

M31B2570 105 0.5 1.463 0.851 2.6628 0.5909 1.9085 0.9076 0.9922

LMCNGC2164 105.2 0.5 1.463 0.851 2.6628 0.5909 1.9085 0.9076 0.9922

LMCNGC2214 105.4 0.5 1.463 0.851 2.6628 0.5909 1.9085 0.9076 0.9922

NGC4038S23 105.4 0.5 1.463 0.851 2.6628 0.5909 1.9085 0.9076 0.9922

NGC4038S15 105.6 0.5 1.463 0.851 2.6628 0.5909 1.9085 0.9076 0.9922

NGC4038S21 106.0 0.5 1.463 0.851 2.6628 0.5909 1.9085 0.9076 0.9922

Note—m f is the mass of the parent cloud, ε is the efficiency

Solving for m, we get:

m = [u1(m1−α1
c − m1−α1

min ) + m1−α1
min ] 1

1−α1 ; mmin < m ≤ mc

m = [u2(m1−α2
max − m1−α2

c ) + m1−α2
c ] 1

1−α2 ; mc < m ≤ mmax

(8)

when u1, u2 ∼ U (0, 1). Thus when u1 = 0, m = mmin and when u1 = 1, m = mc.
Similarly, for mc < m ≤ mmax . We simulate from F1(m) as long as the total stellar
mass of the embedded cluster is equal to 0.02 times the efficient mass of the parent
cloud and then simulate the rest 0.18 part from F2(m).

Combining the total number of stellar masses obtained as binary fragments and
single stars, we form the segmented power law and obtain the critical masses, the
slopes for different segments as well as errors (Fig. 3). The result is displayed in
Table4 and slopes for M31 Vdb0.

Fig. 3 Segmented
power-law fit at b = 1pc for
M31Vdb0, with simulated
values (asterisk). m is in M�
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Table 3 Initial values of parameters for simulation of individual fragments
Name m f b mmax logmc mmin ≤ m ≤ mc mc ≤ m ≤ mmax

� α � α

(M�) (pc) (M�) (M�) (M�) (M�)
NGC 330 105.8 1 132.41 ±

8.87
−0.61 ±
0.02

1.10 ± 0.19 −0.10 −1.20 ±
0.19

2.20

2 −0.60 ±
0.021

1.12 ± 0.05 −0.12 −1.49 ±
0.02

2.49

12 −0.64 ±
0.082

1.32 ± 0.14 −0.32 −1.73 ±
0.28

2.73

M31 Vdb0 105 1 139.85 ±
12.23

−0.66 ±
0.05

1.28 ± 0.27 −0.28 −1.15 ±
0.02

2.15

2 −0.61 ±
0.035

1.12 ±
0.021

−0.12 −1.33 ±
0.06

2.33

12 −0.58 ±
0.17

1.33 ±
0.082

−0.33 −1.43 ±
0.39

2.43

M31 B2570 105 1 138.28 ±
15.6

−0.58 ±
0.028

1.07 ± 0.31 −0.07 −1.28 ±
0.58

2.28

2 −0.57 ±
0.061

1.02 ± 0.06 −0.02 −1.53 ±
0.12

2.53

12 −0.59 ±
0.091

1.28 ± 0.11 −0.28 −1.77 ±
0.092

2.77

LMC
NGC2164

105.2 1 141.08 ±
8.02

−0.64 ±
0.015

1.04 ± 0.62 −0.04 −1.13 ±
0.34

2.13

2 −0.58 ±
0.028

1.25 ±
0.032

−0.25 −1.25 ±
0.051

2.25

12 −0.60 ±
0.053

1.05 ±
0.091

−0.05 −1.27 ±
0.348

2.27

LMC
NGC2214

105.4 1 140.33 ±
3.44

−0.63 ±
0.018

1.30 ± 0.33 −0.30 −1.12 ±
0.33

2.12

2 −0.60 ±
0.028

1.01 ± 0.05 −0.01 −1.28 ±
0.02

2.28

12 −0.64 ±
0.082

1.18 ±
0.032

−0.18 −1.55 ±
0.27

2.55

NGC
4038S23

105.4 1 123.01 ±
13.8

−0.59 ±
0.036

1.08 ± 0.25 −0.08 −1.12 ±
0.29

2.12

2 −0.63 ±
0.011

1.25 ± 0.06 −0.25 −1.43 ±
0.05

2.43

12 −0.57 ±
0.071

1.06 ±
0.091

−0.06 −1.62 ±
0.29

2.62

NGC
4038S15

105.6 1 113.88 ±
21.38

−0.56 ±
0.18

1.12 ± 0.36 −0.12 −1.37 ±
0.19

2.37

2 −0.58 ±
0.062

1.15 ±
0.017

−0.15 −1.57 ±
0.046

2.57

12 −0.60 ±
0.087

1.18 ± 0.15 −0.18 −1.69 ±
0.47

2.69

NGC
4038S21

106.0 1 133.37 ±
11.06

−0.64 ±
0.061

1.06 ± 0.51 −0.06 −1.04 ±
0.15

2.04

2 −0.62 ±
0.028

1.24 ± 0.04 −0.24 −1.49 ±
0.15

2.49

12 −0.61 ±
0.092

1.27 ± 0.17 −0.27 −1.49 ±
0.102

2.49

Note—Col. 1 represents the name of the galaxy, Col. 2 (m f ) gives the mass of YMC in that galaxy,
Col. 3 (b) is the distance from the cloud center, Cols. 4, 5, 6, 7 show maximum mass(mmax ),
logarithm of the critical mass (mc) and slopes (� and α) of the initial mass functions in low mass
and high mass regimes as a result of random fragmentation
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Table 4 Segmented Power-law fits to the simulated fragments as a result of random fragmentation
of YMCs including binary fraction constituting 80% of the total active mass of the cloud (viz. εm f )

Name m f b mmin ≤ m ≤ mc mc ≤ m ≤ mmax

� α � α

(M�) (pc) (M�) (M�)

NGC 330 105.8 1 1.13 ± 0.06 −0.13 −1.72 ± 0.13 2.72

2 1.19 ± 0.07 −0.19 −1.91 ± 0.13 2.91

12 1.22 ± 0.04 −0.22 −2.12 ± 0.08 3.22

M31 Vdb0 105 1 1.09 ± 0.24 −0.09 −1.498 ± 0.04 2.498

2 1.17 ± 0.05 −0.17 −1.686 ± 0.16 2.686

12 1.27 ± 0.14 −0.27 −1.801 ± 0.13 2.801

M31 B2570 105 1 1.13 ± 0.08 −0.13 −1.76 ± 0.18 2.76

2 1.21 ± 0.92 −0.21 −1.83 ± 0.08 2.83

12 1.29 ± 0.11 −0.29 −1.885 ± 0.29 2.885

LMC
NGC2164

105.2 1 1.17 ± 0.14 −0.17 −1.79 ± 0.11 2.79

2 1.24 ± 0.18 −0.24 −1.95 ± 0.168 2.95

12 1.29 ± 0.25 −0.29 −2.01 ± 0.24 3.01

LMC
NGC2214

105.4 1 1.212 ± 0.05 −0.212 −1.69 ± 0.36 2.69

2 1.25 ± 0.21 −0.25 −1.85 ± 0.207 2.85

12 1.27 ± 0.11 −0.27 −2.17 ± 0.44 3.17

NGC 4038S23 105.4 1 1.208 ± 0.22 −0.208 −1.85 ± 0.23 2.85

2 1.27 ± 0.17 −0.27 −1.98 ± 0.39 2.98

12 1.301 ± 0.28 −0.301 −2.11 ± 0.301 3.11

NGC 4038S15 105.6 1 1.19 ± 0.27 −0.19 −1.892 ± 0.32 2.892

2 1.29 ± 0.14 −0.29 −2.12 ± 0.50 3.12

12 1.311 ± 0.22 −0.311 −2.17 ± 0.35 3.17

NGC 4038S21 106.0 1 1.181 ± 0.11 −0.181 −2.08 ± 0.32 3.08

2 1.31 ± 0.28 −0.28 −2.13 ± 0.35 3.13

12 1.35 ± 0.205 −0.35 −2.27 ± 0.29 3.27

5 Result and Discussion

5.1 Initial Values of the Parameters

For fragmentation of YMCswe have used theYMCs in external galaxies (Zwart et al.
2010) whose masses varies from 105M� − 106M�. In our present work, we have
used efficiency value as ε = 0.5. The minimum (mmin), maximum (mmax ), critical
masses (mc) of the fragments and the indices of α (viz. α1, α2) are chosen from
Table2 of Chattopadhyay et al. (2011), in case of individual fragments. For bivariate
simulation, the binary pairs have the computed mass regimes using Eqs. 1 and 2.
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The projected distances from the cloud center are chosen as 1parsec, 2parsec and
12parsec respectively (Table3).

5.2 Resulting Mass Spectrum

The resulting mass spectra generated using Eqs. 1, 2 and 8 are fitted by segmented
power laws in different mass regimes and are shown in Table4 along with the corre-
sponding errors. The errors are computed by running each simulation for a number of
times. It is clear from Table4 that the mass spectrum are getting steeper in all zones
compared to previous cases (Chattopadhyay et al. 2011, 2016). Also, it is observed
that the number of high-mass stars gets reduced considerably, even less than what we
got in our previous work (Chattopadhyay et al. 2016). It might be due to the cause
that sufficient binaries were not observed previously, not withstanding the fact that
if the low-mass limit is below the detectability limit, we have unseen components
(brown dwarfs) in orbit around the field stars (Malkov and Zinnecker 2001). It is
also observed that short periods with large mass ratios could preferably appear in
multiple systems (Tokovinin 2014). As a result most binaries in multiple system
were observed as single stars. The resultant mass spectrum, in our case, have more
intermediate mass stars in comparison to low-mass and high-mass fragments, which
is quite conformable to physical observation since when one single star is braked
into a binary pair the presence of intermediate mass-stars and low-mass stars (brown
dwarfs) is expected. Our result is confirmed by Halbwachs et al. (2003), Kobulnicky
and Fryer (2007), Delfosse et al. (2004) and many other authors who have carried
out similar studies in this area.

Table4 also reflects the presence of mass segregation along the line of sight as
we move from core to radius (i.e. as b changes from 1parsec to 12parsec). Mass
segregation is generally associatedwith the gradual equipartition of energy via stellar
encounters in old globular clusters as well as young massive clusters (Spitzer 1987;
Hillenbrand andHartmann1998). Themass segregation reflects the following causes:

• Due to inclusion of binary fragments covering 80% of the total stellar mass, the
innermost binaries segregate towards the core leaving a minimum in the radial
binary frequency distribution that marches outward with time (Geller et al. 2008).
Dynamical mass segregation is observed to proceed more rapidly at the core, on
the order of a few crossing times (de Grijs et al. 2002a).

• Since stellar mass black holes eject one another from the system within a few
relaxation times, so eventually these systems fully develop the amount of mass
segregation observed in runs starting from Miller and Scalo IMF. As a result the
low mass stars contribute very little to the overall luminosity in many cases, and
thus the total luminosity will be very little similar to that of the brighter member
(Gill et al. 2008). Hence, presence of low-luminosity stars in the envelope are
suspected as a result of mass segregation.
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Hence the steepness of the IMF is interpretated as resulting from the correction of
unresolved binaries (Sagar and Richtler 1991) that were considered as single massive
stars. Also, presence of brown dwarfs are suspected at the envelope.
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A Study on DNA Sequence of Rice Using
Scoring Matrix Method and ANOVA
Technique

Anamika Dutta and Kishore K. Das

Abstract In this paper, 12 accession numbers of rice has been used. The accession
numbers have been taken from the article Cho et al. where it has already been used
for other studies. The accession number for DNA, i.e., A, C, G and T along with
the gap character (–) have been converted into alignment matrix with 5 rows and
7473 columns. The alignment has been done using ClustalX software. The 7473
columns have been alienated into 5 parts with different dimensions. Later for each
part scoring has been done separately. Highest scores from all the 5 parts have
been noted down. To minimize the data, the common regions between these 5 parts
have been taken into consideration. Later one way ANOVA (Huck and McLean in
Psychological Bulletin, 82(4), 511–518,1975; Mukhopadhyay in Applied statistics.
Books and Allied (P) Ltd., Kolkata, 2011) has been constructed and conclusions are
drawn accordingly.

Keywords Scoring matrix ·Alignment matrix ·Weight matrix ·One way ANOVA

1 Introduction

The field of protein has a great name in the area of research. Rice is the main grain
harvested in India; consequently, the FASTA formats of 12 accession number of
rice have been selected for our study. The accession numbers comprise have been
collected from an article Cho et al. where it has already been used for other purpose
study. For scoring the matrices, alignment and weight matrix (Hertz and Stormo
1999; Shu et al. 2012) have been used. Alignment has been done using ClustalX
software. The Accession Numbers for rice (Cho et al. 2000) are:
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D17586, D16221, M36469, D78609, X58877, Z11920, D14000, L37528,
X07515, U12171, U33175 and D30794

The main objectives of this paper are:

(a) To split the entire data into parts using alignment and weight matrix.
(b) Scoring the split parts and applying ANOVA one way technique.

2 Description of Data

2.1 Source of Data

The FASTA format of the accession numbers have been collected from NCBI using
nucleotide as database. By means of ClustalX software and multiple sequence align-
ment the DNA sequence of the accession number have been precised. The arrange-
ment and counting of the DNA sequences have been done using R software with the
help of “sequinr” package.

At this moment, let us explain what is known as multiple sequence alignment.
Multiple sequence alignment is defined as an alignment of similar sequences. The
main criterion of multiple sequence alignment is that there should be more than two
sequences or a minimum of three sequences however they may not be of same length
(Wallace et al. 2005; Pei 2008).

2.2 Arrangement of Data

The 12 accession numbers have been transformed into alignment matrix with 5 rows
and 7473 columns. Consequently, 7473 columns have been divided into 5 parts. Let
us explain how the alignment has been done.

The sequences have been written one after another in a horizontal manner. Sub-
sequently, we have placed 12 accession numbers in order. Consequently, a matrix
with 12 rows and 7473 columns has been formed. Subsequently from each col-
umn we have written vertically how persistently A, C, G, T and gap character
(–) have been repeated. Hence 5 rows have been formed with 7473 columns.
Later than the entire 7473 columns have been separated into small matrices with
dimensions m�5 and n�8, 16, 24, 32 and 40 respectively. Thereafter 5 matrices
with dimensions 5×8, 5×16, 5×24, 5×32 and 5×40 have been constructed.
Subsequently, we have found the scores for each dimension for the entire 7473
columns.
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3 Methodology

Using the above method we have found the alignment for 12 sequences of rice, with
5 rows and 7473 columns. Let us explain how we can find the score of the above
matrix.

The score of the DNA alignment matrix has been found using the formula (Hertz
and Stormo 1999; Shu et al. 2012):

ln

(
ni, j + pi

)
/(N + 1)

pi

Where

ni,j = The letter i is observed at position j of its alignment.
pi = It is the priori probability of letter i.
N = It is the total number of sequences

Later, ANOVA one way technique has been applied to test the significance dif-
ference between the DNA varieties.

4 Results and Discussion

Using the formula of alignment matrix, we have found the weights of entire 7473
columns. Subsequently the entire region has been partitioned into small matrices
with dimensions 5×8, 5×16, 5×24, 5×32 and 5×40. Partitioning the matrices
we have found 943 matrices of dimensions 5×8, 467 matrices of dimensions 5×
16, 311 matrices of dimensions 5×24, 233 matrices of dimensions 5×32 and 186
matrices of dimensions 5×40.Next the highest scores formatrices of each dimension
have been found individually. Only the regions of highest scores for each dimension
have been selected for our study. The method of intersection has been introduced to
reduce the dimension of the data concerned.

Between thefivehighest scoringmatrices, the common regionswithin thematrices
have been pointed out. There exists a common region between the dimension of 5×8
and 5×16 matrices and the common region is of dimension 5×8. Also the common
region between 5×32 and 5×40 matrices and the common region is of dimensions
5×24. There is no region common with 5×24 matrix, so it has been dropped from
the study.

The significance of A, C, G, T and gap character (–) for the two common regions
have been studied using one way ANOVA technique (Huck and McLean 1975;
Mukhopadhyay 2011).
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The first common region is:

DNA VARIETY OBSERVATION
⎡

⎢⎢⎢⎢⎢
⎣

- 1 0 0 0 0 0 0 0
A 1 4 2 2 5 0 3 4
C 6 1 1 3 1 10 5 1
G 3 7 6 6 5 0 2 7
T 1 0 3 1 1 2 2 0

⎤

⎥⎥⎥⎥⎥
⎦

The null hypothesis to be tested is:

H0 There is no significant difference between the DNA varieties

Against the alternative hypothesis,

H1 There is significant difference between the DNA varieties

The ANOVA table is as follows (Table 1):
From the aboveANOVA table, we have seen that the observed value of F is greater

than the tabulated value of F at 5% level of significance. Hence the variance ratio is
significant and we have reason to reject the null hypothesis which infers that possibly
there is significant difference between the DNA varieties.

As the result is found to be significant, which means that at least one of the DNA
Variety groups differ from the otherDNAVariety group. Hence, we shall find the Post
Hoc Tests of multiple comparisons using the method of Fisher’s Least Significance
Difference (LSD) test.

The formula for Least Significance Difference is (Williams and Abdi 2010):

LSD � tν,α

√

MSW

(
1

SI
+

1

SJ

)

Where t is the critical value from the t-distribution table; MSW is mean square
within obtained from the ANOVA table; S is the number of scores used to calculate
means and ν is the error df.

Let us construct the following table showing the multiple comparisons using LSD
(Table 2):

Post Hoc Test has been analysed using PASW Statistics 18.

Table 1 ANOVA table for dimension 5×8

Source df SS MS F (obs) F (tab) (5%)

DNA variety 4 97.350 24.338 5.669 2.641

Within
Groups

35 150.250 4.293 – –

Total 39 247.600 – – –
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Table 2 Post hoc analysis test of multiple comparisons using LSD

(I) Data variation (J) Data variation Mean
difference
(I − J)

Sig.

– A −2.500a 0.021

C −3.375a 0.002

G −4.375a 0.000

T −1.125 0.285

A – 2.500a 0.021

C −0.875 0.404

G −1.875 0.079

T 1.375 0.193

C – 3.375a 0.002

A 0.875 0.404

G −1.000 0.341

T 2.250a 0.037

G – 4.375a 0.000

A 1.875 0.079

C 1.000 0.341

T 3.250a 0.003

T – 1.125 0.285

A −1.375 0.193

C −2.250a 0.037

G −3.250a 0.003

a �The mean difference is significant at the 0.05 level

It can be seen from the above table that the pairs (Gap Character, A); (Gap Char-
acter, C); (Gap Character, G); (C, T) and (G, T) differ significantly at 5% level of
significance. We have the reason to reject the null hypothesis and infer that there
exists significant difference between the pairs (Gap Character, A); (Gap Character,
C); (Gap Character, G); (C, T) and (G, T). And the other pairs are not significant.

Similarly, we have tried for the significance of A, C, G, T and gap character (–)
for the second common region which has 24 columns.

The null hypothesis to be tested is:

H0: There is no significant difference between the DNA varieties.

Against the alternative hypothesis:

H1: There is significant difference between the DNA varieties.

The ANOVA table for the second common region is as follows (Table 3):
Similarly, from the above ANOVA table, we have seen that the observed value

of F is greater than the tabulated value of F at 5% level of significance. Hence the
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Table 3 ANOVA table for dimension 5×24

Source df SS MS F (obs) F (tab) 5%

DNA variety 4 150.133 37.533 8.165 2.451

Error 115 528.667 4.597

Total 119 678.800

variance ratio is significant and we have reason to reject the null hypothesis which
infers that possibly there is significant difference between DNA varieties.

Here also the result is found to be significant, which means that at least one of
the DNA Variety groups differs from the other DNA Variety group. Again we shall
construct the table for multiple comparisons using LSD.

As we know, the formula for Least Significance Difference is (Williams and Abdi
2010):

LSD � tν,α

√

MSW

(
1

SI
+

1

SJ

)

Where t is the critical value from the t-distribution table; MSW is mean square
within obtained from the ANOVA table; S is the number of scores used to calculate
means and ν is the error df (Table 4).

It can be seen from the above table that the pairs (Gap Character, A); (Gap Char-
acter, C); (Gap Character, G) and (Gap Charcter, T) differ significantly at 5% level
of significance. We have the reason to reject the null hypothesis and infer that there
exists significant difference between the pairs (Gap Character, A); (Gap Character,
C); (GapCharacter, G) and (GapCharacter, T). And the other pairs are not significant.

5 Conclusion

Using alignment matrix and weight matrix the entire region have been divided small
parts. In this paper, we have tried to study the significance of two common regions
which are of 5×8 and 5×24 dimension using ANOVA one way method. And we
got significant difference between the DNA varieties of rice for both the matrices.
Hence there exist significant difference between A, C, G, T and Gap Character (–).
After that we have performed pair wise comparison between the DNA varieties
using the critical difference method for both the samples. From the first sample, the
pairs (Gap Character, A); (Gap Character, C); (Gap Character, G); (C, T) and (G,
T) are significant. And from the second sample, the pairs (Gap Character, A); (Gap
Character, C); (Gap Character, G) and (Gap Character, T) are significant and rest all
pairs from both the samples are not significant.

Applying ANOVA technique and Post Hoc analysis test, it can be seen that in the
first sample where there are 5 rows and 8 columns we got 5 pairs to be significant.
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Table 4 Post hoc analysis test of multiple comparisons using LSD

(I) Data variation (J) Data variation Mean difference (I −
J)

Sig.

– A −2.583a 0.000

C −3.167a 0.000

G −2.667a 0.000

T −2.542a 0.000

A – 2.583a 0.000

C −0.583 0.348

G −0.083 0.893

T 0.042 0.946

C – 3.167a 0.000

A 0.583 0.348

G 0.500 0.421

T 0.625 0.315

G – 2.667a 0.000

A 0.083 0.893

C −0.500 0.421

T 0.125 0.840

T – 2.542a 0.000

A −0.042 0.946

C −0.625 0.315

G −0.125 0.840

a �The mean difference is significant at the 0.05 level

In the second sample where there are 5 rows and 24 columns we got 4 pairs to be
significant and all the 4 pairs are attached with the Gap Character (–) which doesn’t
has much value in our study. All other pairs of DNA’s in the second sample are not
significant. Here it concludes that the more we increase the dimension of our matrix,
the pairs of DNA’s will be not significant. Hence we may conclude that the pairs of
DNA’s with dimension 5×7473 will definitely be not significant.

Acknowledgements The author Miss. Anamika Dutta thank to Department of Science and Tech-
nology (DST), India for providing financial assistance for carrying out this work as an INSPIRE
Fellow. Also we thank the reviewer for their thorough review and highly appreciate the comments
and suggestions which substantially contributed to improving the class of the paper.

Appendix

The alignment of matrix (Hertz and Stormo 1999) has been shown with an example.
Let us take some DNA sequences of different length say:
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A – A C G T T C C
A C A C G T A C A
G C A A G A T – C
A C A C G T T C C

Gap character (–) come to view when ClustalX software is used. It happens due
to multiple sequence alignment.

The above alignment has been created by ClustalX software. Now from the above
DNA sequences, the alignment matrix can be formed which has been shown below:

⎡

⎢⎢⎢⎢⎢
⎣

- 0 1 0 0 0 0 0 1 0
A 3 0 4 1 0 1 1 0 1
C 0 3 0 3 0 0 0 3 3
G 1 0 0 0 4 0 0 0 0
T 0 0 0 0 0 3 3 0 0

⎤

⎥⎥⎥⎥⎥
⎦

Weight matrix using for the above example is given by:

⎡

⎢⎢⎢⎢
⎢
⎣

- −3.912 −1.040 −3.912 −3.912 −3.912 −3.912 −3.912 −1.040 −3.912
A 0.759 −1.609 1.023 −0.168 −1.609 −0.168 −0.168 −1.609 −0.168
C −1.609 0.702 −1.609 0.702 −1.609 −1.609 −1.609 0.702 0.702
G 0.488 −1.609 −1.609 −1.609 1.777 −1.609 −1.609 −1.609 −1.609
T −1.609 −1.609 −1.609 −1.609 −1.609 1.374 1.374 −1.609 −1.609

⎤

⎥⎥⎥⎥
⎥
⎦

The highest weights of the above weight matrix are:
[
0.759 0.702 1.023 0.702 1.777 1.374 1.374 0.702 0.702

]

Hence the score of the above matrix is:

0.759 + 0.702 + 1.023 + 0.702 + 1.777 + 1.374 + 1.374 + 0.702 + 0.702 � 9.115

This was a counter example of alignment and weight matrix.
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Regressions Involving Circular
Variables: An Overview

Sungsu Kim and Ashis SenGupta

Abstract The last 40 years have seen a vigorous development of regression analysis
involving circular data. A large body of results and techniques is now disseminated
throughout the literature. In this paper, we provide a review of the literature on
regressions involving circular variables that will be useful as a unified and up-to-
date account of these methods for practical use. Examples and theoretical details
are referred to corresponding papers herein, and omitted in our paper. Some of
future topics of interest are also provided. Bayesian and non-parametric regression
models involving a circular variable(s) are not included in this paper and will appear
elsewhere.

Keywords Circular-circular regression · Circular-linear regression · Multiple
circular regression · Linear-circular regression · Asymmetric generalized von
Mises distribution

1 Introduction

Circular variables refer to random variables that are periodic in nature. Two main
types of circular measurements are those of direction and time/day/ week/month. The
early roots of circular data analysis reach back at least as far as the mid-18th Cen-
tury. In 1767, the Reverend Jon Mitchell FRS analysed angular separations between
stars. Circular variable analyses have appeared in numerous subject areas as diverse
as Molecular/Structural Biology, Ecology, Econometrics, Environmental Sciences,
Geography,Geology,Meteorology,Medicine,Oceanography, Physics, andEngineer-
ing. For example, geologists use circular variables to study paleocurrents in order to
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make inference about the direction of river flow in the past, and to study pole-reversal
and continental drift (Fisher and Powell 1989). Typical of the problems of interest to
biological scientists are those of bird navigation (Schmidt-Koenig 1963) and general
orientations selected by particular creatures in response to experimental variation of
their natural habitat (Stephens 1969; Wehner and Strasser 1985).

The problemof extracting practical information fromcircular datawould appear to
be tantalisingly close to the same problem for linear data, especially for concentrated
data sets. Approximate linearity of a small arc would seem to justify application of
linear methods and so make special treatment of circular data largely unnecessary.
While linear approximations may solve ad hoc data analysis problems, they are
not suitable for routine data processing. For example, it is easy to check that the
usual arithmetic mean can not estimate the reference or circular mean direction for
a sample of three points 359, 1◦ and 3◦, which is called the crossover problem. Our
readers can refer to various statistical methods developed for circular variables in
Jammalamadaka and SenGupta (2001).

The last 40 years have seen a vigorous development of regression analysis involv-
ing a circular variable(s). A large body of results and techniques is now disseminated
throughout the literature. This paper aims to present a unified and up-to-date account
of theses methods for practical use. Applications in regression involving a circular
variable(s) are ubiquitous in various disciplines. The Gould’s (1969) paper is consid-
ered to be the earliest appearance of a regression with a circular response variable.
He introduced a multiple regression model with a circular response variable and
linear independent variables, which was fitted by the maximum likelihood (ML)
estimation. Later, a number of papers argued that the model in Gould (1969) pro-
duces non-unique ML estimates (Johnson and Wehrly 1978; Fisher and Lee 1992).
In Johnson and Wehrly (1978), a multiple regression model was presented as an
improvement upon the Gould’s model, using a completely specified cdf of a lin-
ear independent variable. Following this work, Lund (1999) presented a multiple
regression model with a circular response and a combination of linear and circular
predictors. Lund (1999) showed that the least circular distance estimators (LCDEs)
are the same as ML estimates when the circular dependent variable is assumed to
follow a von Mises distribution. Regression with a circular predictor and a linear
response variables appeared in Mardia and Sutton (1978) and SenGupta and Kim
(2016).

A regression involving both response and predictor as circular variables was dis-
cussed in Sarma and Jammalamadaka (1993), Downs and Mardia (2002), and Sen-
Gupta and Kim (2016). In Sarma and Jammalamadaka (1993), a circular regression
model is translated into a linear regression model where sine and cosine functions
of dependent circular variable were regressed on an analogous set of trigonomet-
ric functions of independent circular variable. Downs and Mardia (2002) used the
tangent-tangent mean direction link, where the range of circular variables is shrunk
from 2π to π by using the half tangent function in order to avoid issues resulting
from many to one mappings. SenGupta and Kim (2016) extended the Downs and
Mardia (2002) model by introducing an intercept parameter to add flexibility.
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Amultiple circular regressionhavingmore thanone circular and/or linear indepen-
dent variables appeared in Gould (1969), Johnson andWehrly (1978), Fisher and Lee
1992, Sarma and Jammalamadaka (1993), Lund (1999), SenGupta and Ugwuowo
(2006), andKim and SenGupta (2016). Twomultivariatemultiple regressions involv-
ing circular response variables and circular independent variables were suggested in
Kim and SenGupta (2016). Inverse regressions involving a circular variable(s) were
discussed in SenGupta et al. (2013) and Kim and SenGupta (2016).

Circular distributions encountered in practice are usually asymmetric (SenGupta
and Ugwuowo 2006). In fact, this case is also addressed in linear statistical anal-
ysis (Arnold and Beaver 2000). As alternatives to the circular normal distribution,
asymmetric circular distributions applied in regression involving a circular response
variable appeared in Pewsey (2000), Abe and Pewsey (2011), SenGupta et al. (2013),
and Kim and SenGupta (2016).

In this paper, we will use the following notation for circular regression: we write
a dependent variable first then followed by an independent variable(s). In the cases
where a model was proposed to model more than one independent variable, they are
listed without an order. For example, a circular-circular regression refers to having
both circular dependent and circular independent variables; a circular-linear regres-
sion to having a circular response and linear predictor variables; and a circular-
circular-circular regression to having a circular dependent and two circular indepen-
dent variables. In our review, we used the same notations appeared in the original
references. Throughout the paper, angles are measured in radians and assume values
in the interval (0, 2π].

2 Circular-Linear Regression Models

Let (x, θ) be a cylindrical random variable. Johnson and Wehrly (1978) introduced
an alternative to the Gould’s approach (1969), which avoids the drawbacks in his
model. Their model, based on the conditional distribution of one of their proposed
angular-linear distributions is given by

θ = μ + 2πF(x) + ε,

where ε follows a centered von Mises distribution, and f (x) is completed specified
with cdf F .

Kim and SenGupta (2015) proposed the following link function for mean direc-
tion:

μθ|x = μθ + 2 arctan(α + βx),

which was employed in the problem of inverse circular-linear regression in their
paper.
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3 Circular-Circular Regression Models

Let (φ, θ) be a bivariate circular random variable. As one of the earliest models
appeared in the literature, Sarma and Jammalamadaka (1993) proposed the following
link functions for mean direction, using trigonometric polynomials of degree m:

cos(μθ|φ) =
m∑

k=0

(Ak cos(kφ) + Bk sin(kφ))

sin(μθ|φ) =
m∑

k=0

(Ck cos(kφ) + Dk sin(kφ)),

for a suitable choice of m.
Downs and Mardia (2002) proposed the following link function for mean dire-

crion:

μθ|φ = μθ + 2 arctan

{
β tan

(
φ − μφ

2

)}
. (1)

Note that arctangent has double solutions in [0, 2π), but by restricting to half-angles,
an one-to-one mapping between θ and φ is found, provided that β is not equal to
zero.

As an extension toDowns andMardia (2002), SenGupta andKim (2016) proposed
the following link function for mean direction:

μθ|φ = μθ + 2 arctan

{
α + β tan

(
φ − μφ

2

)}
. (2)

Using the link function inDowns andMardia (2002), it is assumed that the conditional
mean direction value of θ is its unconditional mean direction μθ, i.e. μθ|φ = μθ, when
the value of φ is its unconditional mean direction μφ. However, this is not always
obviously appropriate and therefore, needs not to be generally assumed. Thenα has a
roll of adding the rotation from μθ, by the amount of 2 arctan(α), when conditioning
on φ = μφ.

4 Linear-Circular Regression Models

Let (θ, x) be a cylindrical random variable. As one of the earliest models appeared
in the literature, Mardia and Sutton (1978) proposed the following model:

E(x |θ) = b0 + b1 cos θ + b2 sin θ, V (x |θ) = σ2(1 − ρ2),
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where b0 = μ − b1 cosμ0 − b2 sin μ0, b1 = σκ
1
2 ρ1 and b2 = σκ

1
2 ρ2. The parameters

μ, μ0, κ, ρ1, ρ2 and σ are from the cylindrical distribution proposed in their paper.
The second order model which is a natural extension of theMardia and Sutton (1978)
first order model was presented in Anderson-Cook (2000).

Kim and SenGupta (2015) proposed the following link function for mean:

μx |θ = α + β cos(θ′ − μθ′),

where θ′ = θ+π
2 . The model was employed in the problem of inverse linear-circular

regression in their paper.

5 Multivariate Multiple Circular Regression Models

The following regression model was proposed by Gould (1969):

θ = μ0 +
k∑

j=1

β j x j + ε,

where θ is a circular response variable, x j ’s are linear predictor variables, and ε
follows a circular distribution. His model was criticized for having infinitely many
equally large peaks in the likelihood function.

Fisher and Lee (1992) also proposed the following link function for mean direc-
tion, as an alternative to the Gould’s model (1969):

μ = μ0 + g(β′x),

where g(x) = 2 tan−1(sgn(x)|x |λ) andλ can be estimated from the data, analogously
to the estimation of Box-Cox transformation. When the covariate lie in a bounded
region, the following link function was suggested:

μ = μ0 + 2πg(x),

where g(x) is a member of some flexible parametric family of k−dimensional dis-
tribution.

Combining two models proposed in Fisher and Lee (1992) and Sarma and Jam-
malamadaka (1993), Lund (1999) proposed the following link function for mean
direction:

μ = g1(φ,β1) + g2(β
′
2x),
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where

g1(φ,β1) =
m∑

k=0

(Ak cos(kφ) + Bk sin(kφ))

g2(β
′
2x) = 2 arctan(β′

2x).

However, it should be noted that g1(φ,β1) does not map the unit circle onto the unit
circle.

In Johnson and Wehrly (1978), a multivariate linear-linear-circular regression
model was proposed based on their joint distribution of (θ1, . . . , θp, x1, . . . , xq),
where each linear response component xi , i = 1, . . . , r(< q), has the followingmean
link:

xi = ν0 +
q∑

i=r+1

νi xi +
q∑

i=r+1

p∑

j=1

k∑

n=1

(
γi jk cos(kθ j ) + δi jk sin(kθ j )

)
,

the best Fourier series of nth degreewas used for the individual θ’s. Theirmultivariate
model is considered as an extension of the model for cylindrical variables proposed
in Mardia and Sutton (1978).

SenGupta and Ugwuowo (2006) proposed the following linear-linear-circular
models.

Yi = M +
k∑

j=1

β j x ji + A cosω(ti − φ) + εi ,

where Y is the linear response variable, M is the mean level, β j s are the regression
coefficients, x j ’s are the linear independent variables, A is the amplitude, ω is the
angular frequency, t is the circular independent variable (usually time) subject to a
certain period T , φ is the acrophase and εi is the random error component. When the
peaks and troughs do not follow each other, it implies that there is a skew and they
proposed the following non-linear model:

Yi = M +
k∑

j=1

β j x ji + A cos(ψi + μ sinψ) + εi ,

where ψ = ωti − φ and μ is the parameter of skewness. When the oscillations are
sharply peaked or flat-topped, they proposed

Yi = M +
k∑

j=1

β j x ji + A cos(ψi + ν cosψ) + εi ,

where ν is the parameter of kurtosis.
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Kim and SenGupta (2016) proposed the following circular-circular-circular arct-
angent link functions:

tan

(
θ − μθ

2

)
= α + β1 tan

(
φ1 − μφ1

2

)
+ β2 tan

(
φ2 − μφ2

2

)

tan

(
θ − μθ

2

)
= α + β1 sin

(
φ1 − μφ1

2

)
+ β2 sin

(
φ2 − μφ2

2

)
.

A guideline for choosing between two models was given in their paper. Two multi-
variate multiple regressions involving circular variables were suggested in Kim and
SenGupta (2016) as an extension to the multiple circular models in the same paper.

6 Asymmetric Circular Probability Distributions

Circular data encountered in practice are usually asymmetric (SenGupta and
Ugwuowo 2006). In fact, this case is also addressed in linear statistical analysis
(Arnold and Beaver 2000). As alternatives to the circular normal (CN) distribution,
asymmetric circular distributions applied in regression involving a circular response
variable appeared in Pewsey (2000), Abe and Pewsey (2011), SenGupta et al. (2013),
and Kim and SenGupta (2016).

Umbach and Jammalamadaka (2009) discussed a method of introducing asym-
metry into any symmetric circular model and developed general classes of non-
symmetric circular distributions, which included a resulting variation of the classical
von Mises distribution. Pewsey (2000) presented the wrapped skew normal distri-
bution by wrapping the skew normal distribution (Azzalini 1985) on the unit circle,
where he proposed the method of moment for estimating the parameters. Abe and
Pewsey (2011) proposed the sine-skewed family of circular distributions, which is a
special case of the construction due to Umbach and Jammalamadaka (2009). Then,
the sine-skewed Jones-Pewsey distribution is introduced as a particularly flexible
model of this type. Kim and SenGupta (2012) proposed an asymmetric circular dis-
tribution called the asymmetric generalized von Mises (AGvM) distribution, which
is flexible to model asymmetric or bimodal circular data. The density of AGvM is
shown here:

f�(θ) = exp [κ1 cos(θ − μ) + κ2 sin 2{θ − (μ − δ)}]∫ π

−π exp [κ1 cos(θ − μ) + κ2 sin 2{θ − (μ − δ)}] dθ
,

where μ ∈ (0.2π] is a location parameter, δ ∈ [0, 2π), κ1 ∈ R and κ2 ∈ R are shape
parameters, related to concentration and skewness, respectively.

Asymmetric distributions can occur in situations when the observed variables
represent a sample that has been truncated with respect to some hidden or available
covariable (Arnold and Beaver 2000), where the underlying joint distribution is
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symmetric. Kim (2009) applied the hidden truncation method to symmetric circular
bivariate distributions, such as the generalized circular normal conditional density,
the wrapped bivariate normal density and the wrapped bivariate cauchy density.

7 Future Interesting Topics in Directional Regression
Models

Directional data refer to measurements in a smooth manifold. Although regression
analysis and applications involving spherical variables have appeared in the literature,
spherical-circular, spherical-linear and circular-spherical regressions are not found
in the literature at our best knowledge. With numerous possible applications of these
models in various disciplines, we think that developing statistical models of such is
highly in demand.
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On Construction of Prediction Interval
for Weibull Distribution

Ramesh M. Mirajkar and Bhausaheb G. Kore

Abstract In this article we have proposed the simple method of construction of an
exact Prediction Interval (PI) for a single future observation from Weibull distribu-
tion. The method is based on a proposed simple pivotal statistic, assuming that the
Weibull shape parameter is known. A simulation study is carried out by MATLAB,
R 2012a. A simulation based comparison reveals that the proposed PI has small-
est expected lengths for smaller shape parameter and percentage coverage is round
about 95% than the existing ones for all sample sizes. Furthermore, it is computa-
tionally much simpler than most existing methods, which is an added advantage for
non-statistical users. Application of the proposed PI to real data set is presented.

Keywords Coverage probability · Expected length · Prediction interval
Weibull distribution

1 Introduction

The Weibull distribution is widely used for modeling variability in almost all disci-
plines, and more effectively in reliability analysis, environmental sciences and water
resource management among others. The probability density function of a Weibull
random variable X is,

f (x ; a, b) � b

a

( x
a

)b−1
exp

[
−

( x
a

)b
]
, x > 0, a > 0, b > 0,

� 0, otherwise.
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Where ‘a’ and ‘b’ are scale and shape parameters of the Weibull distribution
respectively. For b < 1 (> 1) the hazard function of the Weibull distribution is
decreasing (increasing) and is constant for b � 1, which corresponds to the well-
known exponential distribution. This being a scale-shape family, the distribution of
(X − a)b is parameter free, namely, the standard exponential distribution.

In this work we attempt to develop a prediction interval (PI) for a single future
observation from aWeibull distribution. Let X1, X2,…, Xn be a random sample from
a Weibull (a, b) distribution, where initially we assume the shape parameter ‘b’ is to
be known. Let X(n) be the nth order statistics, i.e. the largest among Xi’s and let X
denotes a future independent observation from the same distribution. The proposedPI
are based on the fact that the statistic (X/X(n))b is distribution free, as a consequence
of Weibull being a scale-shape family. This PI is compared on the basis of expected
length and expected coverage probability of PI with other existing methods. The
study reveals that the proposed method outperforms the existing methods.

Section 2 gives the review of existing methods in the literature for PI for a future
single observation from a Weibull distribution. In Sect. 3 we develop the proposed
PI for known shape parameter. Section 4 presents details of the comparison among
these methods based on a simulation study. Section 5 illustrates the methods to real
data sets. Concluding remarks are summarized in Sect. 6.

2 Existing Methods

In this sectionwe take review of the existingmethods in the literature of PI for a future
observation from a Weibull distribution. There are three methods of construction of
PI for a single future observation from Weibull distribution such as;

(1) Fertig et al. (FMM) (1980) have proposed the pivotal quantity (based on the
fact that the extreme value distribution is a location-scale family) the statistic,
Q � (ū − w)/d̄ for constructing prediction limits for the smallest of a set of k
future observations from aWeibull or extreme-value distribution, where ū and d̄
are best linear invariant estimators (BLIE). For k�1, (1−α) 100% PI given by
[L, U] for a future observation z from a Weibull distribution as,

[L , U ] � [
exp

(
ū − Q1−α/2d̄

)
, exp

(
ū − Qα/2d̄

)]
, (1)

where Qα is the 100 α th percentile of the distribution of the statistic Q.
(2) Engelhardt and Bain (EBM) (1982) have proposed a statistic T � (u∗ −w)/d∗

for construction of prediction limits for the smallest of a set of k future obser-
vations from a Weibull or extreme-value distribution where u∗ and d∗ are best
linear unbiased estimators (BLUE) or simplified BLUE’s of the location param-
eter u� log(a) and the scale parameter d�1/b of the type-I extreme value dis-
tribution (for minimum) respectively, and w is a future observation from the
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same extreme value distribution. For k�1, (1− α)100% PI given by [L, U] for
a future observation z from a Weibull distribution as,

[L , U ] � [
exp

(
ū − T1−α/2d∗), exp

(
ū − Tα/2d∗)] (2)

(3) Yang et al. (YSXM) (2003) have suggested a PI for single future observation
by using Box-Cox transformation. Using normal distribution based PI on C and
transforming back to Weibull, the resultant PI for a Weibull future observation
z is given by

{
1 + λ

(
c̄ tn−1,1−α/2 sc

√
1 + 1/n

)}1/λ
(3)

where c̄ and sc are sample mean and standard deviation of the transformed
vector C using Box-Cox transformation on x and tm,α is the αth quantile of
students t distribution with m degrees of freedom. When the shape parameter
‘b’ is unknown, one can replace the parameter, in (3) by λ̂ � 0.2654 b̂, where b̂
is m.l.e. of ‘b’.

3 The Proposed Prediction Interval (PI)

3.1 PI for Known Shape Parameter

Let X1, X2, …,Xn be an observed random sample from a W(a, b) distribution. We
assume that the shape parameter ‘b’ is known. Let X (n) � max{X1, X2, . . . ,Xn}
and let Y denote an independent future observation from the same population. Then
as mentioned above, as a consequence of shape-scale property of the Weibull dis-

tribution, the statistic T �
(

Y
X (n)

)b̂
is free from any parameters and hence is a pivot

quantity.We further note that T has the same distribution as that of Z/W(n), where Z is
an independent future observation andW(n) is the nth order statistics based on a stan-
dard exponential distribution. Noting that Z and W(n) are independently distributed

with densities fZ (z) � e−z, z > 0 and fw(n) � n
[
1 − e−w

]n−1
e−w, w > 0.

Then the distribution function of T � Z
W(n)

is given by

FT (t) � P[T ≤ t] � P

[
Z

W(n)
≤ t

]
� P

[
W(n)

Z
≥ 1

t

]

�
∞∫

0

P

[
W(n) >

Z

t
/Z � z

]
e−zdz
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�
∞∫

0

{
1 − [

1 − e−z/t
]n}

e−zdz

� 1 − t β(t, n + 1)

Equating this to α and solving for ‘t’ this leads to the expression for the αth
quantile of the distribution of T given by

tα β(tα, n + 1) � 1 − α

It follows that P

[
tα <

(
Y
X (n)

)b
< t1−α

]
� 1 − α

giving a (1 − α) 100% PI for a future observation Y to be

(L , U ) �
(
t1/bα X (n), t1/b1−αX (n)

)
(4)

3.2 PI for Unknown Shape Parameter

In practice the shape parameter ‘b’ is unknown and has to be replaced by an appro-
priate estimator, such that b̂, the m.l.e. Note that the (1 − α)100% PI for a single
future observation from Weibull (a, b) is given by

(
L
∧

, U
∧)

�
{(

t1/b̂α X (n), t1/b̂1−αX (n)

)}
(5)

4 Comparison Among the Methods

We have developed MATLAB for computation of all the above PI’s for a future
Weibull observation. We compare the above mentioned four methods with respect
to the expected lengths and coverage probabilities based on a simulation study.

4.1 Simulation Study

The comparison of the methods is attempted based on the simulated coverage proba-
bilities and expected lengths of PI, for various fixed sample sizes n and α �0.05. For
the values of the scale parameter a �1, 5, 10 and shape parameter b �0.5, 1, 3.5, 5
and for each of the fixed sample sizes n �6, 10, 15, 20, 30; 5000 simulated samples
are generated fromWeibull (a, b) distribution. For each of these 5000 samples, lower
and upper prediction limits, namely, Li and Ui, i�1, 2, …, 5000; for each of the four
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methods given in Eqs. 1–3 and 4 are obtained. Finally, the simulated expected lengths
of PI obtained by averaging the 5000 quantities (Ui − Li ); i�1, 2,…, 5000 and the
expected coverage which is proportion of the intervals that covered the simulated
single future observation from the same Weibull (a, b) are computed.

4.2 Results of Simulation Study

Table below shows the percentage simulated coverage probabilities and expected
lengths for 95% PI for all four above mentioned methods, for sample sizes n=6, 10,
15, 20, 30.

The following prominent facts are clearly visible from the above Tables

1. When the shape parameter is unknown, for all sample sizes, proposed method
has excellent coverage probabilities and uniformly outperform the FMM, EBM
and YSX method.

2. The proposed method has uniformly smaller expected lengths than FMM, EBM
and YSX method when shape parameter is small and hence exhibits the best
performance.

3. Percentage coverage of proposed method is round about 95% as compared to
other methods.

4. FMM and EBM have equivalent performance, for all sample sizes.
5. For all sample sizes, coverage of YSXM is more than 95%.

5 Application

In this section we analyze a real data set extracted fromYadav et al. (2010) represent-
ing inter-occurrence times between successive earthquakes (in days) that occurred in
Northeast India and adjoining region of magnitude M>7.0 which are listed below:
7872.0, 6029.0, 4545.45, 4200.54, 1258.10, 2237.34, 1889.50, 2697.91, 4652.16,
1055.64, 320.93, 1113.00, 460.81, 854.58, 2512.38, 5593.21, 4452.44, 882.60, and
1648.27.

Application of the Kolmogorov-Smirnov test to above data set for fitting Weibull
distribution gave p-value 0.762 indicating that Weibull distribution is a good model
for the above data set. Here the m.l.e.’s of scale and shape parameter based on first
18 observations are â � 3190.6 and b̂ � 1.3 respectively.

The 95% PIs and their length using the above four methods based on the first 18
observations are as follows.

We conclude that the next earthquake is expected to occur in the duration of
07th Oct. 1991 to 19th Sep. 2015. Here we note that the actual earthquake (19th
observation) has occurred on 11th July 1995, which falls within each interval.
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Table 6 Computation of PI Method 95% PI Length of PI

Proposed method [264.6, 7861.4] 7596.7

FMM [197.9, 8955.8] 8757.9

EBM [208.3 8433.9] 8225.5

YSXM [115.7, 9578.4] 9462.6

6 Conclusion

From Tables 1, 2, 3, 4 and 5 we come across that the proposed method gives smaller
expected lengthwhen shape parameter is small, for all sample sizes.We conclude that
the proposed PI method has uniformly better performance than the existing known
methods such as FMM, EBM, and YSXM. Proposed method is based on pivotal
approach which avoids complicated and lengthy calculations which finds in known
methods. From real data set we observed that the earthquake event has occurred in
the expected length (Table 6).

Acknowledgements Authors are highly grateful to the learned referee for his valuable suggestions
to improve the quality of this paper.

References

Engelhardt, M., & Bain, L. J. (1982). On prediction limits for samples from a Weibull or extreme-
value distribution. Technometrics, 24, 147–150.

Fertig, K.W.,Meyer, M. E., &Mann, N. R. (1980). On constructing prediction intervals for samples
from a Weibull or extreme value distribution. Technometrics, 22, 567–573.

Yadav, R. B., Tripati, J. N., Rastogi, B. K., Das, M. C., & Chopra, (2010). Probabilistic assessment
of earthquake recurrence in northeast india and adjoining region. Pure and Applied Geophysics,
167, 1331–1342.

Yang, Z. L., See, S. P., &Xie,M. (2003). Transformation approaches for the construction ofWeibull
prediction interval. Computational Statistics and Data Analysis, 43, 357–368.



Combining High-Dimensional
Classification and Multiple Hypotheses
Testing For the Analysis of Big Data
in Genetics

Thorsten Dickhaus

Abstract We present the so-called COMBI method for evaluating genome-wide
association studies which we have developed in prior work. In contrast to traditional
locus-by-locus analyses, COMBI is a multivariate procedure which takes dependen-
cies between different genomic loci into account. This is done by combiningmethods
frommachine learning and multiple testing. In a first stage of data analysis, a support
vector machine (which is an inherently multivariate classification method) is trained.
In a second stage, only the genomic positions with the largest contributions to the
resulting classification rule are explicitly tested for association with the phenotype of
interest, yielding a drastic dimension reduction. The thresholding of the association
p-values for the selected positions is performed bymeans of a resampling procedure.
Some remarks on the performance and on software implementations of COMBI are
made.

Keywords COMBI method · Genome-wide association studies
Machine learning · p-value · Statistical genetics · Support vector machine

1 Introduction and Motivation

In genetic association studies, associations between a (potentially very large) set of
genetic markers and a phenotype of interest are analyzed. For concreteness, we con-
sider here only binary phenotypes (e.g., disease indicators), although our approach
can straightforwardly be extended to categorical phenotypes with more than two
categories. This setup results in a particular multiple test problem which has several
challenging aspects, for instance the high dimensionality of the statistical parameter
and the discreteness of the statistical model; cf. Chap. 9 of Dickhaus (2014) and the
references therein for further details. Assuming that m bi-allelic single nucleotide
polymorphisms (SNPs, corresponding to genomic loci) are simultaneously under
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Table 1 Schematic representation of data for an association test problem at genetic locus j , where
the two possible alleles are denoted by A( j)

1 and A( j)
2 .

Genotype A( j)
1 A( j)

1 A( j)
1 A( j)

2 A( j)
2 A( j)

2

∑

Cases x ( j)
11 x ( j)

12 x ( j)
13 n1.

Controls x ( j)
21 x ( j)

22 x ( j)
23 n2.

Absolute count n.1
( j) n.2

( j) n.3
( j) N

consideration and a case-control study design with n1. cases and n2. controls is at
hand, the statistical task is to analyze m contingency tables simultaneously, where
the data for one particular locus 1 ≤ j ≤ m can be summarized as in Table1, with
N = n1. + n2. denoting the total sample size.

One standard way to proceed with the data analysis is to compute for every locus
1 ≤ j ≤ m the chi-square statistic

Q( j)
assoc(x

( j)) =
2∑

r=1

3∑

c=1

(x ( j)
rc − e( j)

rc )2

e( j)
rc

(1)

for association, where r runs over the rows and c over the columns of the contin-
gency table x( j) pertaining to locus j . In (1), the numbers e( j)

rc = nr.n
( j)
.c /N denote the

expected cell counts under the null hypothesis that the genotype at locus j is not asso-
ciated with the binary phenotype of interest, conditionally to the marginal counts n1.,
n2., n.1

( j), n.2
( j), and n.3

( j). Large values of Q( j)
assoc indicate evidence against this null

hypothesis of no association. A corresponding (asymptotic) p-value p( j)
assoc is given

by p( j)
assoc(x( j)) = 1 − Fχ2

2
(Q( j)

assoc(x( j))), and the multiple test can be constructed by

thresholding the p-values (p( j)
assoc(x( j)) : 1 ≤ j ≤ m), where the threshold is chosen

according to an appropriate multiplicity correction, in the simplest case the Bonfer-
roni correction.

The major drawback of this “locus-by-locus” analysis is that interactions (i.e.,
dependencies) between different genomic loci are not taken into account, although
such dependencies are known to exist due to the biological mechanism of inheritance
and other biological factors. For example, the concept of linkage disequilibrium (LD)
quantifies the strength of the (bivariate) linear dependencies of the loci (cf., e.g.,
Dickhaus et al. (2015), Stange et al. (2016), and the references therein). Thus, it
is near at hand to design multivariate statistical procedures which incorporate the
dependencies. For example, methods based on the “effective number of tests” (cf.
Dickhaus and Stange (2013) and the references therein) explicitly exploit LD to relax
the multiplicity correction.
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2 Proposed Methodology

In Mieth et al. (2016), we proposed a novel methodology, termed “COMBI”, which
is an implicitly multivariate method for identifying significant SNP-phenotype asso-
ciations in genome-wide association studies. The main idea behind COMBI is a
two-step algorithm consisting of (i) a machine learning and SNP selection step that
reduces the number of candidate SNPs by selecting only a small subset of the most
predictive SNPs (the size of which can be controlled by the user), and (ii) a statistical
testing step where only the SNPs selected in step (i) are tested for association with
the phenotype.

In the first step, a support vector machine (SVM, which is an inherently multi-
variate classification method) with an appropriately designed kernel is trained. Per
autosome, only the k genomic loci with largest (absolute) SVM weights are carried
over to step (ii) of COMBI, and their p-values for association are computed in the
usual manner, as described in Sect. 1. All other loci are not considered in step (ii) of
COMBI, which technically means that their association p-values are set to one with-
out explicit computation. The thresholding of the p-values computed in step (ii) is a
delicate issue, because the same data are used in both steps of the COMBI method.
Therefore, the chi-square distribution is prone not to be a valid (asymptotic) null
distribution for the p-values anymore. In Mieth et al. (2016), we developed a fully
data-driven resampling algorithm to determine appropriate thresholds. Furthermore,
we discussed appropriate choices for the tuning parameter k.

3 Summary of Results

Wehave compared theCOMBImethodwith several other state-of-the-artmethods for
evaluating genetic association studies. On simulated data, COMBI exhibited a very
good performance in terms of type I and type II errors.Detailed results can be found in
Mieth et al. (2016). Furthermore, we developed a validation pipeline for the analysis
of real genome-wide association studies. Namely, we evaluated historical studies
and checked whether SNPs which are declared to have a statistically significant
association with the phenotype of interest only by the COMBI method have been
detected in later, typically larger (with respect to the sample size) “validation” studies.
We could demonstrate that this is the case for most of these SNPs, in particular when
taking the study by The Wellcome Trust Case Control Consortium (2007) as the
historical study and utilizing the GWAS catalog (an established reference database)
for finding appropriate validation studies.
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4 Implementation and Software

The COMBI method is implemented in Matlab/Octave, R and Java as a part of the
GWASpi toolbox 2.0 (https://bitbucket.org/gwas_combi/gwaspi/).
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The Quantile-Based Skew Logistic
Distribution with Applications

Tapan Kumar Chakrabarty and Dreamlee Sharma

Abstract In this paper, a modified form of the quantile based skew logistic dis-
tribution of Van Staden and King (Stat Probab Lett, 96:109–116, 2015) originally
introduced by Gilchrist (Statistical modelling with quantile functions. CRC Press,
2000) has been studied. Some classical and quantile based properties of the distri-
bution have been obtained. L-moments and L-ratios of the distribution have been
obtained in closed form. The nature of L-Skewness and L-kurtosis of the distribution
have been studied in detail. A brief study on the order statistics of the distribution has
been done. The estimation of parameters of the proposed model is approached by the
methods of matching L-moments estimation. Finally, we apply the proposed model
to real datasets and compare the fit with the quantile based skew logistic distribution
of Van Staden and King (Stat Probab Lett, 96:109–116, 2015).

Keywords Flattened skew logistic distribution · Quantile function · L-moment
Asymptotic variance · Order statistics

1 Introduction

The logistic distribution finds an important place in the literature of continuous
symmetric distributions due to its simplicity and wide applications. Various asym-
metric generalizations of the logistic distribution have been proposed in the literature
(Nadarajah 2009; Asgharzadeh et al. 2013; Wahed and Ali 2001)
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Recently, Van Staden and King (2015) used a quantile based approach to define
a skew logistic distribution, written hereafter as SLDQB, which was originally intro-
duced by Gilchrist (2000). The quantile function of SLDQB is defined by

QSLD(p) = α + β [(1 − δ)ln(p) − δln(1 − p)] (1)

where α is the location parameter, β is the scale parameter and 0 ≤ δ ≤ 1 is a
skewness parameter that controls the tail shape of the distribution. The distribution
has been fitted successfully to the concentration of polychlorinated biphenyl (PCB)
in yolk lipids of pelican eggs (Thas 2010). In practical life, there may be skewed
data that have a lower peak than the distribution in (1) in which case the SLDQB

may not provide a very acceptable fit. Hence we introduce another quantile-based
distribution ideal for fitting skewed data with flatter peak than the distribution in (1).
The quantile function of the proposed distribution is obtained by adding a multiple
κ ≥ 0, of uniform (0, 1) quantile function to QSLD of (1) as,

Q(p) = α + β [(1 − δ)ln(p) − δln(1 − p)] + κp (2)

where κ ≥ 0 is a parameter regulating the flatness of the peak of the distribution.
Hence we name it as the flattened skew logistic distribution (FSLD) which is pre-
sented in Definition 1.

In this paper, we shall study the properties and applications of this modified
quantile distribution. The support of the distribution is (Q(0), Q(1)) = (−∞,∞).
Like many other quantile based distributions such as Tukey’s lambda distribution
(Tukey 1960) and its generalizations (Ramberg and Schmeiser 1972, 1974; Ramberg
1975; Freimer et al. 1988), the Davies distribution (Gilchrist 2000; Hankin and Lee
2006), the Govindarajulu Distribution (Govindarajulu 1977; Nair et al. 2012) and the
quantile-based skew logistic distribution and generalized skew logistic distribution
(Gilchrist 2000; Van Staden and King 2015; Balakrishnan and So 2015), closed form
expressions for either the cumulative distribution function or the probability density
function for the distribution do not exist except for the special case when κ = 0
and δ = 1

2 . For recent studies on the use of quantile based functions, the readers are
referred to Aljarrah et al. (2014); Balakrishnan and So (2015); Midhu et al. (2013,
2014); Thomas et al. (2015) and Sankaran et al. (2016).

Definition 1 A real-valued random variable X is said to have a quantile-based flat-
tened skew logistic distribution, denoted by X ∼ FSLDQB(α,β, δ,κ) if its quantile
function is given by

Q(p) = α + β [(1 − δ)ln(p) − δln(1 − p)] + κp

where α is the location parameter, β > 0 is the scale parameter, 0 ≤ δ ≤ 1 is a
skewness parameter, and κ ≥ 0 is a parameter regulating the flatness of the peak of
the distribution.
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Fig. 1 Density plots of FSLD

2 Special Cases

1. For κ = 0, the FSLD is the quantile based skew logistic distribution, Q(p) =
α + β [(1 − δ)ln(p) − δln(1 − p)]

2. For α = 0, β = 2, δ = 1
2 and κ = 0, the FSLD is a standard logistic distribution,

Q(p) = ln
(

p
1−p

)

3. For δ = 1
2 and κ = 0, the FSLD is a location scale based logistic distribution,

Q(p) = α + β
2 ln

(
p

1−p

)

4. For α = 0, δ = 1 and κ = 0 the FSLD is an exponential distribution, Q(p) =
−βln(1 − p)

5. For α = 0, δ = 0 and κ = 0 the FSLD is a reflected exponential distribution,
Q(p) = βln(p)

3 Shape of the Distribution

The FSLD has a rich varieties of shapes. Figure1 shows plots of possible shapes of
FSLD.

The possible shapes of FSLD(α,β, δ,κ) are discussed below:-

(1) The FSLD(0,β, 1, 0) has an exponential shape.
(2) The FSLD(0,β, 0, 0) has a reflected exponential shape.
(3) The FSLD(0, 2, 0.5, 0) has a symmetric standard logistic shape.
(4) The FSLD(α,β, 0.5, 0) has a symmetric logistic shape.
(5) The FSLD(α,β, δ,κ = 0) has a skewed shape.
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(6) The FSLD(α,β, 0.5,κ > 0) has a flattened logistic shape.
(7) The FSLD(α,β, δ < 0.5,κ > 0) has a flattened negatively skewed shape.
(8) The FSLD(α,β, δ > 0.5,κ > 0) has a flattened positively skewed shape.
(9) The FSLD(α,β, δ < 0.5,κ = 0) has a negatively skewed j shaped curve.

(10) The FSLD(α,β, δ > 0.5,κ = 0) has a positively skewed inverted j shaped
curve.

4 Properties

4.1 Quantile Density Function

Theorem 1 The quantile density function (q(p)) of the flattened skew logistic dis-
tribution is

q(p) = β

[
1 − δ

p
+ δ

(1 − p)

]
+ κ (1)

Proof Since, q(p) = d
dp Q(p), the proof follows. �

4.2 Density Quantile Function

Theorem 2 The density quantile function or the p-p.d.f. of the flattened skew logistic
distribution is

f p(p) = p(1 − p)

β(1 − δ + p(2δ − 1)) + κp(1 − p)
(2)

Proof The proof follows from the definition of p-p.d.f., f p(p) = 1
q(p) . �

4.3 Moments

Theorem 3 If X ∼ FSLD(α,β, δ,κ), then the mean (μ) and variance (Var(X))
of X are respectively given by

μ = α + β(2δ − 1) + κ

2
(3)

Var(X) = β2(1 − 4δ(1 − δ)) + κ

2

(
β + κ

6

)
+ β2 π2

3
δ(1 − δ) (4)
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where as the 3rd and 4th order central moments of FSLD are respectively

μ3 = 2β3[−1 + 2δ{3 − 2δ(3 − 2δ)}] + βκ

4
(2δ − 1)

(κ

3
+ 3β

)
− 6β3δζ(3)[1 − δ(3 − 2δ)]

μ4 = 9β4[1 − 8δ{1 − δ(3 − 2δ(2 − δ))}] + 9β3κ

[
1

2
− 2δ(1 − δ)

]
+ 2

9
β2κ2[5 − 11δ(1 − δ)]+

κ3

2

(
β

3
+ κ

40

)
+ β4δπ4

5

[
4

3
− δ

{
13

3
− 3δ(2 − δ)

}]
+ 2β4δπ2[1 − δ{5 − 4δ(2 − δ)}]

+ β2κπ2
(
β + κ

6

)
δ(1 − δ)

(5)

where ζ() is the Reimann’s zeta function.

Proof The proof is given in the Appendix. �

4.4 Quartiles

Theorem 4 The quartiles of the FSLD are respectively given by

Lower Quartile,LQ = Q(0.25) = α − β ln(3)δ − βln(4)(1 − 2δ) + 1

4
κ

Median,M = Q(0.5) = α − βln(2)(1 − 2δ) + κ

2

Upper Quartile,U Q = Q(0.75) = α + β ln(3)(1 − δ) − βln(4)(1 − 2δ) + 3

4
κ

Corollary 4.1 The inter quartile range, IQR is given by

I QR = UQ − LQ = βln(3) + κ

2

Corollary 4.2 The identification quantile function of the distribution is

I Q(p) = β(1 − δ)ln(p) − βδln(1 − p) + κ
(
p − 1

2

) + βln(2)(1 − 2δ)

2βln(3) + κ

4.5 Reflection of FSLD

Theorem 5 If X is a FSLD with parameters α,β, δ and κ, then the reflection of X
is a FSLD with parameters −(α + κ),β, t = 1 − δ and κ
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4.6 L-Moments

Theorem 6 If X ∼ FSLD(α,β, δ,κ), then the rth order L-moment is given by

λr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α − β(1 − 2δ) + κ
2 , if r = 1

β
2 + κ

6 , if r = 2

β(2δ − 1)r mod 2

r(r − 1)
, if r = 3, 4, 5, ...

(6)

and the rth order L-moment ratio is given by

τr = 6β(2δ − 1)r mod 2

r(r − 1)(3β + κ)
, r = 3, 4, 5, ... (7)

Proof The proof is given in the Appendix. �

Corollary 6.1 The first 4 L-moments of FSLD are

λ1 = α − β(1 − 2δ) + κ

2

λ2 = β

2
+ κ

6

λ3 = β

6
(2δ − 1)

λ4 = β

12

(8)

Corollary 6.2 TheL-coefficient of variation, L-skewness andL-kurtosis of theFSLD
are,

τ2 = 3β + κ

3(2α − 2β(1 − 2δ) + κ)

τ3 = β(2δ − 1)

3β + κ

τ4 = β

2(3β + κ)

Since 0 ≤ δ ≤ 1 and κ ≥ 0, the L-skewness of the FSLD lies between − 1
3 and 1

3 .
Figure2 gives plot of L-skewness against δ and κ. It can be seen that for δ < 0.5,
the FSLD has negative L-skewness, for δ > 0.5, the FSLD has positive L-skewness
and for δ = 0.5, the FSLD has no L-skewness, this corresponds to the black line at
y = 0 in Fig. 2.
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L−skewness against β for κ=6.67 and different δ
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Fig. 2 Plot of L-skewness against β and κ for different values of δ

L−kurtosis of FSLD against β for different values of κ
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Fig. 3 Plot of L-kurtosis for different values of β and κ

Also, it is clear that with increase in β, the L-skewness of FSLD increases for
δ > 1

2 where as it decreases for δ < 1
2 . While for increase in κ, the L-skewness of

FSLD decreases for δ > 1
2 where as it increases for δ < 1

2 .
Since for κ = 0 the FSLD has a fixed L-kurtosis of 1

6 , the L-kurtosis of FSLD
can never exceed 1

6 . Also, from Corollary 6.2 it is clear that τ4 > 0 since β �= 0.
Hence, 0 < τ4 ≤ 1

6 . Figure3 gives plots of L-kurtosis of the flattened skew logistic
distribution for increasing values of β and κ.

The black continuous line is the line where the y-axis is 1
6 . It can be seen that

L-kurtosis of FSLD always lie below this line. The figure clearly indicates that L-
kurtosis of FSLD increases with increase in β and decreases with increases in κ.
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5 Random Number Generation

We can simulate a random sample of size n using the quantile function of the FSLD
as defined in (2). Let U be a uniform (U (0, 1)) r.v. and let Q(p), 0 ≤ p ≤ 1 be the
quantile function of the FSLD, then by uniform transformation rule, (Gilchrist 2000)
the variable X , where x = Q(u), has a distribution with quantile function Q(p).
Thus, by using the uniform transformation rule, a random sample of size n can be
easily simulated from the FSLD by generating a random sample of the same size
from a U (0, 1) distribution.

6 Order Statistics

The order statistics are random variables that satisfy X(1:n) ≤ X(2:n) ≤ ... ≤ X(n:n).
For a detailed study on order statistics one can refer to Arnold et al. (1992), Bal-
akrishnan and Rao (1998a, b) and Reiss (1989). Sample ordered values play a major
role in modelling with quantile defined distributions.

Theorem 7 If X1:n, X2:n, ..., Xr :n denotes the order statistics in a random sample
of size n from the FSLD, then the quantile function of the smallest, r th and largest
order statistics are respectively given by (1).

Q(1)(p) = α + β(1 − δ)ln

⎡
⎣1 − (1 − p)

1

n

⎤
⎦ − βδ

n
ln(1 − p) + κ

⎡
⎣1 − (1 − p)

1

n

⎤
⎦

Q(r)(p) = α + β(1 − δ)ln
[
I−1
p (r, n − r + 1)

]
− βδ ln

[
1 − I−1

p (r, n − r + 1)
]

+ κI−1
p (r, n − r + 1)

Q(n)(p) = α + β(1 − δ)

n
ln(p) − βδln

⎡
⎣1 − p

1

n

⎤
⎦ + κp

1

n

(1)

where, I−1
p (r, n − r + 1) is the inverse of the regularized incomplete beta function.

Proof The proof follows from the expressions of quantile functions of smallest, r th
and largest order statistics (Gilchrist 2000) given in Eq.2

Q(1)(p) = Q

⎛
⎝1 − (1 − p)

1

n

⎞
⎠

Q(r)(p) = Q
[
I−1
p (r, n − r + 1)

]

Q(n)(p) = Q

⎛
⎝p

1

n

⎞
⎠

(2)

�
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Theorem 8 Let Xr :n denotes the rth order statistic in a random sample of size n
from the FSLD, then the expectation of X(r :n) can be expressed in a closed form
expression given in (3)

E(Xr :n ) = α + κr

n + 1
+ β

B(r, c)

⎡
⎣(1 − δ)

c−1∑

j=0

(−1) j+1

(r + j)2

(
c − 1

j

)
− δ

r−1∑

j=0

(−1) j+1

(c + j)2

(
r − 1

j

)⎤
⎦ (3)

where, c = n − r + 1.

Proof The proof is given in the Appendix. �

Corollary 8.1 The expectation of the smallest and largest order statistics are respec-
tively given by

E(X1:n) = α + κ

n + 1
+ βδ

n
+ βn(1 − δ)

n−1∑
j=0

(−1) j+1

( j + 1)2

(
n − 1

j

)

and

E(Xn:n) = α + κn

n + 1
− β(1 − δ)

n
− βδn

n−1∑
j=0

(−1) j+1

( j + 1)2

(
n − 1

j

)

7 Inference and Goodness of Fit

7.1 Inference

In the literature, there are various methods for the estimation of parameters for quan-
tile based distributions, viz., method of minimum absolute deviation, method of least
squares, method of maximum likelihood estimation (MLE) and method of matching
L-moments estimation (Gilchrist 2000). The method of matching L-moments esti-
mation (MLM) gives more robust estimates as compared to the traditional moments.
With small and moderate samples the method of matching L-moments is more effi-
cient than MLE. Moreover, closed form expression of the density function of the
FSLD doesn’t exist, hence the method of matching L-moments estimation is more
appealing. The L-moments of the distribution have been obtained earlier so the
parameters of the distribution canbe estimatedby themethodofmatchingL-moments
estimation. Hence to obtain the estimates of α,β, δ, and κ, the first four L-moments,
λ1,λ2,λ3 and λ4 of the distribution have been matched with the corresponding sam-
ple L-moments, l1, l2, l3 and l4.
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Theorem 9 Let X ∼ FSLD(α,β, δ,κ)and let l1, l2, ..., ln be the sampleL-moments
of a sample of size n, then the matching L-moments estimates ofα,β, δ and κ is given
by,

α̂ = l1 − 3(l2 + 2l3 − 6l4)

β̂ = 12l4

δ̂ = l3
4l4

+ 1

2
κ̂ = 6(l2 − 6l4)

(1)

with asymptotic variance-covariance matrix given by

n var

⎛
⎜⎜⎝

α̂

β̂

δ̂
κ̂

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24
θ31 θ32 θ33 θ34
θ41 θ42 θ43 θ44

⎞
⎟⎟⎠ (2)

where

θ11 = β2

35
[8δ(2626 − 2731δ) + 1153] + 2κ

21

[
1

5
(299β + 67κ) − 29βδ

]
− 200

3
β2π2δ(1 − δ)

θ22 = 4

7

[
2β2 {398δ(1 − δ) + 9} + κ

5
(9β + κ)

]
− 48β2π2δ(1 − δ)

θ33 = 1

7

[
1

5
{δ(2927 − 18847δ) + 27} + 3184δ3(2 − δ)

]

+ κ

β

[
1

2

(
κ

5β
+ 9

14

)
− 8δ

35
(1 − δ)

(
3 + κ

β

)]
+ 3π2δ[16δ2(δ − 2) + 19δ − 3]

θ44 = 1

21

[
20β2{83δ(1 − δ) + 2} + κ

3

(
19β + 23

4
κ

)]
− 25

3
β2π2δ(1 − δ)

θ12 = θ21 = 2β2

7
(61 + 1961δ − 1996δ2) + κ

7

[
3κ + β

5
(74 − 19δ)

]
− 60β2π2δ(1 − δ)

θ13 = θ31 = β

7

[
1

5

(
267

2
+ 11246δ − 31431δ2 + 3992δ3

)]

θ14 = θ41 = 2

7
β2[2δ(415δ − 408) − 27] − 1

63
βκ

(
143

2
− 29δ

)
− 23

84
κ2 + 25β2π2δ(1 − δ)

θ23 = θ32 = β

7
[15 + 2δ{781 − 796δ(3 − 2δ)}] + κ

7
(1 − 2δ)

(
3 + 4

5
κ

)
− 24βδπ2{1 − δ(3 − 2δ)}

θ24 = θ42 = β2

7

[
−29 − 3992

3
(1 − δ)

]
− κ

7

(
43

10
β + κ

)
+ 20β2π2δ(1 − δ)

θ34 = θ43 = β

7

[
1996

3
δ2(3 − 2δ) − 1951

3
δ − 15

2

]
− κ

14

(
229

60
+ κ

β

)
(1 − 2δ) + 10βδπ2[1 − δ(3 − 2δ)]

(3)

Proof The proof is included in the Appendix. �
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Corollary 9.1 The asymptotic standard errors of the estimates are

σα =
{
1

n

[
β2

35
[8δ(2626 − 2731δ) + 1153] + 2κ

21

[
1

5
(299β + 67κ) − 29βδ

]

−200

3
β2π2δ(1 − δ)

]}1

2

σβ =
{
1

n

[
4

7

[
2β2 {398δ(1 − δ) + 9} + κ

5
(9β + κ)

]
− 48β2π2δ(1 − δ)

]}1

2

σδ =
{
1

n

[
1

7

[
1

5
{δ(2927 − 18847δ) + 27} + 3184δ3(2 − δ)

]
+ 3π2δ[16δ2(δ − 2) + 19δ − 3]

+κ

β

[
1

2

(
κ

5β
+ 9

14

)
− 8δ

35
(1 − δ)

(
3 + κ

β

)]]}1

2

σκ =
{
1

n

[
1

21

[
20β2{83δ(1 − δ) + 2} + κ

3

(
19β + 23

4
κ

)]
− 25

3
β2π2δ(1 − δ)

]}1

2

7.2 Goodness of Fit Test

In the literature, there are several methods of validation for quantile based distribu-
tions. The well-known density probability plot and Q-Q plot of the validation data
against the corresponding fitted values give an idea of the visual goodness of fit of the
model. Few other methods includes residual plot, unit exponential spacing control
chart, chi-square goodness of fit test and uniformity test (Gilchrist 2000). We shall
be testing the model validation using uniformity test and also the density probability
plot and Q-Q plot as a means of visual validation.

7.2.1 Uniformity test

Let Q̂(p) be the quantile function of the FSLDfitted to a set of data x1, x2, ...xn by the
method of matching L-moments. Using this information we can derive numerically
a corresponding set of p(r); r = 1, 2, 3, ..., n such that Q̂(p(r)) ≈ x(r). If the model
is valid, these will be a set of ordered variables from a uniform distribution (Gilchrist
2000). We can therefore test the validity of the model by testing the uniformity of
the distribution of p. There are a variety of such tests. In this article, we shall be
using the Kolmogorov Smirnov (Dn), Anderson Darling (An) and Cramér vonMises
(Wn) goodness of fit tests (Thas 2010) and obtain the asymptotic and bootstrap p-
values of these tests. Thas (2010) has shown that since a distribution can be equally
characterized by either its quantile function, distribution function or characteristic
function, comparing them based on any of these functions are equivalent. We can
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thus use tests based on empirical distribution function, viz., (Dn), (An) and (Wn)

to test the goodness of fit of the FSLD. Let q̂(p( j)) be the fitted quantile density
function. The algorithm to find p(r) (Gilchrist 2000) is given below.

Algorithm 1 Algorithm to determine p(r)

1: Set initial p(r)’s say p0(1), p0(2), ..., p0(n)

2: Iterate for j ,

p j+1 = p j + x(i) − Q̂(p( j))

q̂(p( j))

p j+1 = 0.0000001 if p j < 0

p j+1 = 0.9999999 if p j > 1

until |Q̂(p( j)) − x(i)| is a very small quantity.
3: Repeat iterations for all i = 1, 2, 3, ...., n.

8 Data Fitting

8.1 Simulation Study

It has been discussed under Sect. 5 that a random sample of size n can be generated
from a FSLD using its quantile function. Let θ = (α,β, δ,κ)′ denote the vector of
parameters of FSLD. Random samples of size n = 100, 1000, 3000, 5000, 8000 and
10000 have been generated from the FSLD with known values of θ. The generated
datasets have been fitted by the method of matching L-moments as discussed in
Sect. 7.1 and the asymptotic standard errors of the estimates for all the datasets have
been obtained. The goodness of fit test is performed using the procedure discussed in
Sect. 7.2. Table 1 shows the L-moment estimator of θ and the corresponding standard
error of estimates and goodness of fit (GOF) results for a few simulated data.

Table 1 shows that as the sample size n increases, the estimates obtained by the
method of L-moments are closer to the true value with smaller standard error. The
standard errors of estimates obtained for each samples are plotted against sample
size n. Figure4 shows the plot of asymptotic standard errors for increasing sample
size.

Figure4 shows decreasing trends for the asymptotic standard errors with increas-
ing sample size for all the drawn samples which is expected for the asymptotic
behavior of the standard error. Also, the GOF tests performed gives a very accept-
able p-value, so that for all the simulated samples the FSLD gives a very good fit by
the method of matching L-moments and the GOF tests used. Hence the method of
L-moment estimation and GOF tests described can be practically used to fit some
real life data.
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Fig. 4 Standard Error of α̂, β̂, δ̂ and κ̂ for increasing sample size

8.2 Application to Real Life Data

We show the utility of the model in practical situations by applying it to real data
sets. The first data represent the strength data measured in GPA, for single carbon
fibers and impregnated 1,000-carbon fiber tows (CARBON data). The dataset has
been taken from Gupta and Kundu (2010) originally considered by Bader and Priest
(1982). The second dataset has been taken from the R-package ‘sn’ and it gives the
percentage of alcohol in wine (ALCOHOL data). The datasets have been fitted to
the FSLD and SLDQB by the method of matching L-moments. The results obtained
is summarized in Table2.

It can be seen that L-kurtosis of both the datasets are same as the L-kurtosis
of the FSLD where as the SLDQB has a fixed L-kurtosis of 0.166667. The good-
ness of fit tests are performed for both FSLD and SLDQB by the method discussed
in Sect. 7.2. The bootstrap p-values have been determined from 10000 parametric
bootstrap samples. Table3 gives the results obtained from these tests.
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Table 2 Parameter estimates of FSLD and their corresponding standard error

Data used Estimates Estimated
value

Standard
error of
estimates

L-Kurtosis
of data

L-Kurtosis
of fitted
FSLD

L-Kurtosis
of SLDQB

Strength of
Carbon fibre

α̂ 2.398117 0.2394746 0.09969171 0.09969171 0.166667

β̂ 0.417986 0.1636575

δ̂ 0.7870514 0.1319874

κ̂ 0.8424351 0.08067969

Percentage of
alcohol in wine

α̂ 11.99657 0.2202775 0.04310323 0.04310323 0.166667

β̂ 0.2418097 0.08685792

δ̂ 0.4261055 0.1711473

κ̂ 2.079578 0.05863612

Table 3 Goodness-of-fit statistics and their corresponding asymptotic and bootstrap p-values

Data used Model used Test used Statistic Asymptotic
p-value

Bootstrap
p-value

Strength of Carbon fibre FSLD Dn 0.0613 0.9717 0.9593

An 0.2111 0.9871 0.9886

Wn 0.0356 0.9555 0.9566

SLDQB Dn 0.0913 0.6704 0.6384

An 0.4524 0.795 0.7928

Wn 0.0818 0.6834 0.6873

Percentage of alcohol
in wine

FSLD Dn 0.0349 0.9816 0.9768

An 0.195 0.9917 0.9924

Wn 0.0252 0.9893 0.9896

SLDQB Dn 0.0829 0.1733 0.1667

An 1.7062 0.1341 0.1367

Wn 0.2779 0.1562 0.1524

The p-values of all the tests indicates that FSLD gives a much better fit to both
the data as compared to the SLDQB. This is further confirmed by the density plot
and Q-Q plot for the fitted FSLD depicted in Figs. 5 and 6 which is indicative of a
visually good fit of the FSLD to both the data. Hence it can be said that FSLD is a
better candidate than the SLDQB for skewed data with a flat peak.
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Fig. 5 Histogram of the CARBON data with the p.d.f. of fitted FSLD and the Q-Q plot of the fitted
FSLD
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Fig. 6 Histogram of the ALCOHOL data with the p.d.f. of fitted FSLD and the Q-Q plot of the
fitted FSLD

9 Conclusion

A new quantile based distribution ideal for fitting skewed data with a flat peak has
been proposed and its various distributional properties (classical and quantile-based)
have been derived. Closed form expression of the moments, L-moments and order
statistics of the distribution and their corresponding expectations have been derived.
The nature of L-kurtosis and L-skewness of the distribution have been studied in
detail. The method for simulating random sample from FSLD has been discussed.
The estimation of parameters is approached by the method of matching L-moments
and the standard error of estimates have been derived.Using simulated data it has been
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shown that the method can provide reasonably good estimates of the parameters with
smaller standard deviations of the estimates for increased sample size. Applications
based on real life data shows a good fit based on some well known goodness of fit
methods. Hence this distribution is ideal for any skewed data with a flat peak.
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Appendix

1. Proof of Theorem3:

Proof If X has a quantile distribution Q(p), then the mean (μ), variance (Var(X )),
third and fourth order central moments (μ3 and μ4 respectively) of X in terms of
quantile function, Q(p) are respectively defined as

μ =
∫ 1

0
Q(p)dp (1)

Var(X) =
∫ 1

0
[Q(p) − μ]2dp (2)

μ3 =
∫ 1

0
[Q(p) − μ]3dp (3)

μ4 =
∫ 1

0
[Q(p) − μ]4dp (4)

Simplifying these expressions using results (ξ(i, j) and (ν(i, j)) given in (5) and (6),
the proof follows.
ξ(i, j) is defined as

ξ(i, j) =
∫ 1

0
lni (p)ln j (1 − p)dp

= ∂i+ j

∂ui∂v j
B(u + 1, v + 1)

∣∣∣∣
u=v=0

; i, j = 1, 2, 3, 4, .... (5)

The expression is simplified using Leibnitz rule, and ν(i, j) is obtained from expres-
sion (2.6.3.2) in Prudnikov et al. (1986),
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ν(i, j) =
∫ 1

0
pi ln j (p)dp

= (−1) j
j !

(i + 1) j+1
; i, j = 1, 2, 3, 4, ... (6)

�

2. Proof of Theorem6:

Lemma 1 The L-moments λr , r = 1, 2, ... of a real-valued random variable X exist
if and only if X has finite mean (Hosking 1990) and the rth order L-moment of X
can be written in terms of quantile function as

λr =
∫ 1

0
P∗
r−1(p)Q(p)dp

where,

P∗
r (p) =

r∑
l=0

(−1)r+l

(
r

l

)(
r + l

l

)
pl (7)

is the rth order shifted Legendre polynomial. .

Proof Since the FSLD has a finite mean defined in (3), its L-moments exist. λ1 is
the mean as defined in (3) and needs no further proof.

Since,
∫ 1
0 P∗

r−1(p)dp = 0 for r > 1 & P∗
r−1(p) = (−1)r−1P∗

r−1(1 − p)

∴ λr =
∫ 1

0
(α + β(1 − δ)ln(p) − βδln(1 − p) + κp) P∗

r−1(p)dp

= β(2δ − 1)r mod 2
∫ 1

0
(−ln(p))P∗

r−1(p)dp + κ

∫ 1

0
pP∗

r−1(p)dp

Now, using the representation of (−ln(p)) in terms of shifted Legendre polynomial
and after substantial simplification using the orthogonality relation we get,

∫ 1

0
(−ln(p))P∗

r−1(p)dp = (−1)r−1

r(r − 1)

and

∫ 1

0
pP∗

r−1(p)dp =

⎧
⎪⎨
⎪⎩

1
2 , r = 1
1
6 , r = 2

0 , r > 2
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Using these results and simplifying we get the r th order L-moment of FSLD as given
in (6).

The r th order L-moment ratio is defined as

τr = λr

λ2
, r = 3, 4, 5, ...

Hence using the expression for r th order L-moment in the definition of L-moment
ratio, we get the result given in (7). �

3. Proof of Theorem8

Proof The expectation of r th order statistics in terms of the quantile function
(Gilchrist 2000) is given by

E(Xr :n) = 1

B(r, n − r + 1)

∫ 1

0
Q(p)pr−1(1 − p)n−r dp (8)

Thus, for a ordered sample from FSLD,

E(Xr :n) = 1

B(r, n − r + 1)

∫ 1

0
[α + β(1 − δ) ln(p) − βδ ln(1 − p) + κp] pr−1(1 − p)n−r dp

= α + κr

n + 1
+ β

B(r, n − r + 1)

[
(1 − δ)

∫ 1

0
ln(p)pr−1(1 − p)n−r dp

−δ

∫ 1

0
ln(p)(1 − p)r−1 pn−r dp

]
(9)

Equation (9) is simplified using expression (2.6.5.3) in Prudnikov et al. (1986) and
the final result in (3) is obtained. �

4. Proof of Theorem9:

Proof The first part of the proof is straight forward and so can be easily proved by
equalizing the sample L-moments l1, l2, l3 and l4 with the corresponding L-moments
of the FSLD given in Theorem6. �

Lemma 2 Let X be a real-valued random variable with cumulative distribution
function F, quantile density function q(p), L-moments λr and finite variance. Let
lr , r = 1, 2, ...,m be sample L-moments calculated from a random sample of size n
drawn from the distribution of X. Let θ̂ be the L-moment estimator of θ. Using the
asymptotic sampling distribution for lr (Hosking 1986, 1990), Van Staden (2013) and
Van Staden and King (2015) have shown that as n → ∞, n1/2(θ̂r − θr ) converge in
distribution to the multivariate normal distribution N (0,�), where the elements
�rs(r, s = 1, 2, ...,m) of � = G�G

′
are given by
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�rs =
m∑

u=1

m∑
v=1

Gru�uvGsv (10)

with

Grs = ∂θr

∂λs
(11)

So that using Lemma2 the asymptotic variance covariance matrix of L-moments
estimator θ̂ of θ is given by

nVar(θ̂) = n� = nG�G ′ (12)

where

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂α

∂λ1

∂α

∂λ2

∂α

∂λ3

∂α

∂λ4

∂β

∂λ1

∂β

∂λ2

∂β

∂λ3

∂β

∂λ4

∂δ

∂λ1

∂δ

∂λ2

∂δ

∂λ3

∂δ

∂λ4

∂κ

∂λ1

∂κ

∂λ2

∂κ

∂λ3

∂κ

∂λ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and � is a symmetric matrix given by

� =

⎛
⎜⎜⎝

λ11 λ12 λ13 λ14

λ21 λ22 λ23 λ24

λ31 λ32 λ33 λ34

λ41 λ42 λ43 λ44

⎞
⎟⎟⎠

with the (r, s)th (r, s = 1, 2, 3, 4) element as

λrs = lim
n→∞

=
∫ 1

0

∫ v

0

[
P∗
r−1(u)P∗

s−1(v) + P∗
s−1(u)P∗

r−1(v)
]
u(1 − v)q(u)q(v)dudv (13)

where P∗
r (p) is the r th shifted Legendre polynomial as defined in (7).

After simplification we get,

G =

⎛
⎜⎜⎝

1 −3 −6 18
0 0 0 12
0 0 3

β
6(1−2δ)

β

0 1 0 −6

⎞
⎟⎟⎠
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Now, Van Staden and King (2015) has obtained �(i, j) using expressions (4.291.4)
and (4.293.8) in Gradshteyn and Ryzhik (2007) as,

�(i, j) =

⎧⎪⎨
⎪⎩

π2

6
− ∑i−1

m=1

1

m2
, j = −1

1
j+1 (ψ( j + 2) − ψ(1)) − ∑i−1

m=1
1

m(m+ j+1) , j > −1
(14)

for i = 2, 3, 4, ..., where ψ(i) is the digamma function. Hence, using the result from
(13) and (14) and simplifying we obtain the elements of the matrix � as

λ11 = β2[1 − 4δ(1 − δ)] + κ

2

(
β + κ

6

)
+ 1

3
β2π2δ(1 − δ)

λ22 = β2

3
[1 + 8δ(1 − δ)] − κ

18

(
β − κ

10

)
− 1

3
β2π2δ(1 − δ)

λ33 = β2

15
[2β2 − 53δ(1 − δ)] + κ

30

(
β

2
+ κ

7

)
+ 1

3
β2π2δ(1 − δ)

λ44 = β2

7

[
1

2
+ 199

9
δ(1 − δ)

]
+ κ

70

(
β

2
+ κ

9

)
− 1

3
β2π2δ(1 − δ)

λ12 = λ21 = β

(
β

2
+ κ

9

)
(2δ − 1)

λ13 = λ31 = β2

3

[
1

2
− 11δ(1 − δ)

]
− κ

12

(
β

2
+ κ

5

)
+ 1

3
β2π2δ(1 − δ)

λ14 = λ41 = β

12

(
β − κ

10

)
(2δ − 1)

λ23 = λ32 = β

6

(
β + κ

60

)
(2δ − 1)

λ24 = λ42 = β2

3

[
1

4
+ 28

3
δ(1 − δ)

]
− κ

60

(
β

2
+ κ

7

)
− 1

3
β2π2δ(1 − δ)

λ34 = λ43 = β

12

(
β + κ

35

)
(2δ − 1)

The final result in (2) is obtained by multiplying the matrix G with � and then
with G ′. �
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A Note on Monte-Carlo Jackknife:
McJack and Big Data

Jiming Jiang

Abstract This short note explains how Big Data computing issues can occur even
when the data size is not large compared to what a computer scientist may call Big
Data, in obtaining measures of uncertainty using a Monte-Carlo jackknife method.

Keywords Big data · Jackknife ·Measure of uncertainty ·Monte-Carlo

Resampling methods have played fundamental roles in statistical inference. As data
are usually considered as samples from a population, rather than the population itself,
any attempt in learning about the population through the data must take into account
uncertainty in making the inference. In many complex problems the uncertainty
measure is not easy to obtain. In such cases, resamplingmethods such as the jackknife
and the bootstrap often have advantages. Our interest here is particularly in statistical
inference post-model selection. Jiang et al. (2016) proposed aMonte-Carlo jackknife
method, called McJack, for such settings.

Suppose that a quantity of interest, say, mean squared prediction errors (MSPE),
is associated with a vector,ψ , of parameters. Let b(ψ) denote the quantity of interest.
Suppose that the observations are divided into m independent clusters. Jiang et al.
(2002) showed that, under assumptions,

b(̂ψ) − m − 1

m

m
∑

j=1

{b(̂ψ− j ) − b(̂ψ)} (1)

is a second-order unbiased estimator of b(ψ). Here ̂ψ− j is the M-estimator of ψ

(Jiang et al. 2002) obtained without cluster j .
Computationally, a key condition for the jackknife to work is that one knows how

to compute b(ψ) given ψ ; in other words, the function b(·) is known. In light of this,
Jiang et al. (2002) assumes that b(·) has an analytic expression. Jiang et al. (2016)
extended (1) to cases where b(·) does not have an analytic expression. In the latter
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case, the computation is done via Monte-Carlo simulation, provided that one knows
how to compute b(ψ) if data can be generated repeated under ψ .

The above result on the second-order unbiasedness of McJack is a statistical
theory, not a computational one. First, the condition is quite tough to meet, compu-
tationally. For example, in analysis of a big energy data (Kim et al. 2015), a main
characteristic of interest is peak energy usage, which is expressed as a non-linear
mixed effect. In the context of estimation, or prediction, of mixed effects, a standard
measure of uncertainty is the MSPE. The well-known Prasad-Rao method of MSPE
estimation (e.g., Jiang and Lahiri 2006) does not apply to the current non-linear
mixed effects; thus, as an alternative, resampling methods are considered.

More specifically,McJackwas proposed for estimating a smooth, monotone func-
tion of the MSPE. TheMcJack estimator can be expressed in the form of (1) but with
assistance ofMonte-Carlo simulation.Namely, a difficulty for (1) is thatbi (·)does not
have an analytic form. Jiang et al. (2016) proposes to approximate the bi (·) function
via Monte-Carlo simulation. It is shown that the Monte-Carlo sample size, K , needs
to be of higher order than m2 in order to achieve the second-order unbiasedness. For
the energy data, m is about 100,000, which is the number of different M-estimators,
ψ̂− j , plus ψ̂ , that one needs to compute. Given the M-estimators, one needs to eval-
uate each of the 100,000 terms in the summation in

∑m
j=1{bi (ψ̂− j ) − bi (ψ̂)}, via

the Monte-Carlo simulation of size K , which, by any conservative estimate, would
require, in all, at least 1020 repeated computations of the non-linear mixed effects,
which themselves do not have analytic expressions. With the size of the data, and
our current computational resources, it would take months to complete the MSPE
estimation. If, furthermore, one intends to evaluate the empirical performance of the
aboveMSPE estimation procedure, the total computing time can easily be multiplied
by a thousand! In fact, in the latter case, even ifm is much smaller than for the energy
data, say, a few thousands, the amount of computation is still quite formidable!

In a way, we have created a Big Data problem ourselves. Of course, with a much
more advancedhigh-speed computer, such a problemwould no longer be challenging,
but one cannot just wait, and hope that one day the dream of the high-speed computer
comes true (it will, on some day, of course). Plus, not everyone has access to such
a high-speed computer, even if it exists. There is something we can do by making
McJack more efficient. For example, if the original sample size is relatively small,
there is no need to use a very large Monte-Carlo sample size, because the statistical
(chance) error is going to dominate anyway. On the other hand, for large or huge
sample size, such as in a Big Data situation, one likely has to entertain an even larger
Monte-Carlo sample size. Is it still necessary to insist the second-order unbiasedness?
These questions lead to some important and interesting research topics regarding
computational efficiency of McJack. What needs to be solved is an optimization
problem in terms of balances between statistical precision and computational cost.
In the literature of statistics, computer science, and computational mathematics, such
results are relatively rare. It would take a combined skills from these fields to solve
the problem.
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A Review of Exoplanets Detection
Methods

G. Jogesh Babu

Abstract A brief introduction to the discovery of planets outside the solar system is
presented. Statistical challenges in the analysis of noisyExoplanets data are indicated,
with emphasis on NASA’s Kepler mission.

Keywords ARMA · ARFIMA · Kepler mission · Pulsar timing method · Radial
velocity method · Transits

1 Introduction

Major advances in our understanding of our planetary system used to occur on
century-long timescales. TheCopernican heliocentricmodel first proposed that Earth
orbited around the Sun, and the Earth came to be considered a planet in 1543; Galileo
first observed the moons of Jupiter in 1609, and Uranus was discovered by William
Herschel on 13 March 1781. The planet Neptune was first predicted mathematically
by Urbain Le Verrier, and the astronomer Johann Gottfried Galle confirmed it on the
night of 23 September 1846 by using his observations at the Berlin Observatory.

But philosophers and scientists continued to ask the question: Do other stars have
their own solar systems and, if so, do they resemble our system? In the mid–1800s,
parallax measurement confirmed that the stars are like our Sun. But despite mil-
lennia of speculation, there was no evidence they had their own planetary systems
until 1995 when a ‘hot Jupiter’ was unexpectedly found orbiting 51 Peg with a
period of 3days. This led to a revolution in astronomy: a rush to improve preci-
sion of instruments, races to discover more ‘exoplanets’—the nickname for planets
in other solar systems orbiting other stars—by different means, and the beginning
of characterization of their atmospheres, interiors and interactions. Thousands of
(mostly young) astronomers dove into the field, telescopes changed purposes, major
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resources were diverted from other projects, and almost every prize was awarded
to leading researchers. This is an exciting time when we are starting to be able to
answer the longstanding questions about exoplanets.

The particular quest for other worlds like our Earth has been rejuvenated by the
intense excitement and popular interest surrounding the discovery of hundreds of
planets orbiting other stars. There is now a clear evidence for substantial numbers
of three types of exoplanets: (a) gas giant Jupiters sometimes very close to the host
star; (b) rocky Super-Earths in short period orbits (exoplanets with a mass higher
than the Earth’s, but substantially below the mass of the Solar System’s smaller gas
giants Uranus and Neptune); (c) ice giants in long period orbits.

The Extrasolar Planets Encyclopedia http://exoplanet.eu/, NASA Exoplanet
Archive http://exoplanetarchive.ipac.caltech.edu/, and New Worlds Atlas https://
exoplanets.nasa.gov/newworldsatlas/ track the day-by-day increase in new discover-
ies. These websites provide information on the characteristics of the planets as well
as those of the stars they orbit. The challenge now is to find planets like Earth: 0.5–2
radius of the Earth, especially those in theHabitable Zone (the range of orbits around
a star within which a planetary surface can support liquid water on the surface of the
planet necessary for the support of life).

It is estimated that our galaxy hasmore than 100 billion stars, andmany of themare
likely to have planets orbiting them.However, extremely tiny number of these planets
can be ‘seen’ by direct observation. As planets do not emit any electromagnetic
radiation of their own, direct observation of them are beyond the reach of current
technology. We can only infer their existence by indirect methods. Light emitted by
stars mask the presence of planets orbiting them. Even the reflected light from their
host star is only a tiny fraction and not detectable due to enormous distances of these
stars from the Earth. For example, a planet orbiting the nearest star Proxima Centauri
would be 7,000 times more distant than ‘Pluto’.

2 Methods of Exoplanet Detection

Earth has 10−7 the mass and 10−4 the surface area of the Sun and the nearest stars are
106 times more distant than the Sun. Detecting planets is thus exceedingly difficult
by any method: gravitational pull changing the host star’s radial velocity; periodic
eclipses of a tiny portion of the starlight; direct imaging in telescopes; or gravitational
lensing effects involving stars that fortuitously lie along the line-of-sight. But as the
precision of instruments improved, it was recognized that a major impediment to
discovery is that the stars themselves show temporal variability, both in brightness
and in radial velocity. The causes are readily seen in the Sun—dark sunspots that
come and go with the Sun’s ∼30day rotation; stochastic occurrences of short-lived
prominences and flares; seething motions on the surface due to convection, but were
found to have greater amplitude on a large fraction of stars.

The most important efforts are photometric surveys (where the brightness of 105–
108 stars are monitored with great precision to find periodic planetary transits) and

http://exoplanet.eu/
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spectroscopic surveys (where the spectra of 101–102 stars are monitored with great
precision to find periodic radial velocity variations). Efforts use both ground-based
telescopes (typical costs $1–10 million) and space–based telescopes (typical costs
$0.1–1 billion). A particularly important project is NASA’s Kepler mission that made
∼70,000 extremely precise evenly-spaced photometric observations of ∼200,000
stars every∼29min during 2009–2013, resulting in the discovery of several thousand
probable planetary systems by the Kepler Team.

Some of the exoplanet detection methods are briefly described below.

2.1 Doppler Shift/Radial Velocity Method

As a planet orbits a star, the star also moves in a small orbit around their common
center ofmass.Anexoplanet orbiting a star thus produces periodic changes in position
and velocity of the star. The radial velocity (RV) method for planet detection is based
on the detection of variations in the velocity of the central star, due to the changing
direction and the gravitational pull from an (unseen) exoplanet as it orbits the star.
When the star moves towards us, its spectrum is blue-shifted, while it is red-shifted
when it moves away from us. By regularly looking at the spectrum of a star—and
so, measuring its Doppler velocity—one can see if it moves periodically due to the
influence of a companion. The RV method has successfully detected hundreds of
mostly-Jupiter-mass exoplanets since 1995.

Empirical detection using a generalized Fourier transform, known as the Lomb-
Scargle periodogram, can sometimes be effective for discovering planets from
irregularly spaced RV time series. But for more complex multi-planet systems,
high-dimensional Bayesian statistical modeling of the RV data is effective because
the shape of the variations must satisfy deterministic Newtonian laws, and prior
probability distributions over a space of orbital parameters are based on physical
considerations. Markov chain Monte Carlo (MCMC) methods are used in its imple-
mentation. Until ∼2012, the radial-velocity method was by far the most productive
technique used by planet hunters. The method is distance independent in theory, but
requires high signal-to-noise ratios to achieve high precision, and so is generally only
used for relatively nearby stars. RV method is also known as Doppler spectroscopy.

2.2 Pulsar Timing Method

A pulsar is a highly magnetized rapidly rotating neutron star that emits a beam of
electromagnetic radiation, like beacon from a light house. Pulsars emit radio waves
extremely regularly as they rotate. The radiation is detected on Earth as precisely
timed pulses that are more accurate than an atomic clock so that slight anomalies in
the timing of its observed radio pulses due to an orbiting planet can be tracked.
Alexsander Wolszczan (Penn State) and Dale Frail (National Radio Astronomy
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Observatory in Socorro, New Mexico) used this Pulsar Timing method to detect
the first confirmed exoplanet in 1992. Pulsars are so rare that very few exoplanets
have been detected by this method. This method was not originally designed for
the detection of planets, but is so sensitive that it is capable of detecting planets far
smaller than any other known method can, down to less than one tenth the mass of
Earth.

The main drawback of the pulsar-timing method is that pulsars occur only after a
very massive star explodes (supernova), so these post-supernova planets have little
to do with ordinary planets that form simultaneously with the star formation.

2.3 Direct Imaging Method

Planets are extremely faint light sources compared to stars, emitting in the infrared
band and reflecting starlight in the visible band. This faint light tends to be lost in the
glare from their parent star. So in general, it is very difficult to detect and resolve them
directly from their host star. Planets orbiting far enough from stars can be resolved in
the best telescopes, even though they reflect very little starlight. The images are made
at infrared where the planet is brighter than it is at visible wavelengths. Coronagraphs

Fig. 1 Planet detection methods that have been proved successful. NASA Exoplanet Archive



A Review of Exoplanets Detection Methods 83

are used to block light from the star while leaving the planet visible. Only a few cases
are detectable. This method is most effective when (Fig. 1):

• the star system is relatively near to the Sun
• the planet is especially large (considerably larger than Jupiter)
• the planet is widely separated from its parent star
• the planet is young and massive so that it emits more intense infrared radiation.

In 2004 the European Southern Observatory’s Very Large Telescope (VLT) array
in Chile, which operates at visible and infrared wavebands detected a planet by this
method. The planet is several times more massive than Jupiter, and have an orbital
radius grater than 40Astronomical Units (AU). OneAU is themean distance between
the Earth and the Sun. The recently commissioned Gemini Planet Finder instrument
is expected to significantly increase the number of directly imaged planets. However,
currently, this method is limited to giant planets at large distances from their host
stars. Direct imaging method can be used to measure the planet’s orbit.

2.4 Gravitational Microlensing Method

This was the first method capable of detecting planets of Earth-like mass around
ordinary main sequence stars and is most sensitive to detect planets around 1–10 AU
away from Sun-like stars. This method derives from one of the insights of Albert
Einstein’s theory of general relativity: gravity bends space-time. The method was
proposed in 1991 to look for binary companions to stars and used to detect exoplanets
in 1992. Successes with the method dates back to 2002, when a group of Polish
astronomers developed a workable technique. During one month, they found several
possible planets, though limitations in the observations prevented clear confirmation.
First microlensing and imaging planets were discovered in 2004. Since then, several
confirmed extrasolar planets have been detected using microlensing.

This method has some disadvantages. Lensing cannot be repeated because the
chance alignment never occurs again. Only a few cases are seen despite extensive
monitoring of millions of stars. The detected planets will tend to be several kilo-
parsecs away, so follow-up observations with other methods are usually impossible.
A parsec is the distance from the Sun to an astronomical object that has a parallax
angle of one arc-second; the nearest stars are roughly 1 parsec (2.06 × 105 AU or
3.25 light years) away.

2.5 Transit Method

When a planet crosses (transits) in front of its parent star’s disk, then the observed
visual brightness of the star drops a small amount. The amount the star dims depends
on the relative sizes of the star and the planet. Most transits depths are <0.1%.
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The transit method relies upon carefully monitoring the brightness of a star. In
order to measure the mass of a planet, and rule out other phenomena that can mimic
the presence of a planet transiting a star, candidate transiting planets are followed
up with the radial velocity method of detecting extrasolar planets. For example, in
the case of planet HD 209458, the star dims 1.7%. Recall that Venus Transit of Sun
occurred on June 5, 2012. The next transit of Venus that can be observed from the
Earth occurs after a little over 100 years. The first transiting planet was discovered
in 2002.

There are two major disadvantages for this method. Planetary transits are only
observable for planets whose orbits happen to be perfectly aligned from the Earth’s
vantage point. About 10% of planets with small orbits have such alignment, and
the fraction decreases for planets with larger orbits. For a planet orbiting a Sun-
sized star at 1 AU, the chance of a random alignment producing a transit is 0.47%.
Additional astronomical observations are necessary to reduce false positive rates due
to non-planetary signals.

While the method cannot guarantee that any particular star is not a host to planets,
by scanning large areas of the sky containing thousands or evenhundreds of thousands
of stars at once, transit surveys can find extrasolar planets at a rate that exceeds that of
the radial-velocity method. This premise led to the launch of Kepler Space Telescope
by NASA on March 7, 2009 to scan a large patch of the sky to discover Earth-like
planets orbiting other stars in our galaxy.

3 NASA’s Kepler Mission

The Kepler mission is named after the 17th century German mathematician and
astronomer Johannes Kepler, best known for his laws of planetary motion and a
contemporary of Galileo Galilei. The Kepler satellite was designed to monitor a
patch of our galaxy for planetary systems. One of the aims is to detect Earth-size
planets in orbits around their host stars that are likely to support life, and estimate
the fraction of stars in our galaxy that host such planets. Kepler is designed to stare
at hundreds of thousands of stars continuously to monitor for any dips in the light
for possible transits by planets. The mission has already established that our solar
system is vastly different from the many planetary systems with multiple planets in
the Galaxy.

During its four-year prime mission from 2009 to 2013, the Kepler space telescope
simultaneously and continuouslymeasured the brightness ofmore than 150,000 stars,
looking for the telltale periodic dimming that would indicate the presence of an
orbiting planet. From these dimmings, or transits, and information about the parent
star, researchers could determine a planet’s size (radius), the time it takes to orbit its
star (period), and the amount of energy received from the host star. By folding the
light curves so that transits of each planet line up, one can measure the transit depth
and duration, providing information about the size and orbits of these planets. All
Kepler data is public as of October 2012.
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The Kepler team reports ∼3000 highly-probable planets, of which a few (most
larger than Earth) are in Habitable Zones. On July 14, 2012, one of the spacecraft’s
four reaction wheels used for pointing the spacecraft stopped functioning, and then,
on May 11, 2013, a second reaction wheel failed, disabling the collection of science
data. In May 2014, the Kepler spacecraft began a new mission, K2, utilizing the
remaining good reaction wheels to observe parts of the sky along the ecliptic plane,
the orbital path of the Earth about the Sun where the familiar constellations of the
zodiac lie. This new mission provides scientists with an opportunity to search for
even more exoplanets. The spacecraft continues to collect data in its new mission.
Though the Kepler mission was initially planned for a life of 3.5years, it lasted more
than 7 years and still continuing. Since Kepler launched in 2009, 21 planets less than
twice the size of Earth have been discovered in the habitable zones of their stars.

As of March 30, 2017, the number of exoplanets confirmed is 3472, of which
2331 were from Kepler mission and community. Also 581 multi-planet systems
were discovered by various methods. As ofMarch 23, 2017, the number of exoplanet
candidates (likely discovery, but still needs to be verified) were put at 4,496 by the
Kepler project. K2 mission confirmed 147 exoplanets out of 520 K2 candidates.

4 Statistical Methods

Statistical analysis is essential to every type of exoplanet detection (except perhaps
microlensing) as the planetary signal is only a tiny fraction (10−3–10−9) of the stellar
signal and is often overwhelmed by uninteresting instrumental or stellar effects.
Concerted efforts at developing advanced statistical methods for exoplanet discovery
goes back to at least 2006, when the first semester long astrostatistics program was
organized by the author at Statistical and Applied Mathematical Sciences Institute
in Research Triangle Park, North Carolina.

Bayesian methodology was used for RV and transit photometry, strongly inter-
acting RV systems, and microlensing data, since 2006. Bayesian statistics for Kepler
data for triple star and multi-planet systems have been used since 2011. Since 2014
Hierarchical Bayesian modeling for exoplanet populations have been in use.

Statistical extrapolation to estimate the planets missing fromKepler’s survey (e.g.
misaligned orbits, brightness dip too weak to detect) give a spectacular inference:
Most stars have multi-planet systems. Very few Earth like planets are directly dis-
covered with Kepler, mainly due to the short duration of the observations (4 years),
and extrapolation to exoplanets of small mass and large orbits are quite uncertain.
Estimates of the fraction of stars with an Earth-like planet in the Habitable Zone
range from∼22% (Petigura et al., PNAS 2013) to<5% (Forman-Mackey et al., ApJ
2014). The latter estimate is based on hierarchical Bayesian modeling that incorpo-
rates observational uncertainties and detection efficiency.

Many stars are magnetically active (starspots, flares, etc.) which produce radial
velocity and photometric variations that prevent faint planetary signals from being
efficiently detected. Recent collaboration by astronomers and statisticians started
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investigating whether autoregressive moving average (ARMA) modeling of stellar
variations can improve sensitivity to transits in Kepler light curves. ARMA mod-
els can also assist in reducing False Positives: sometimes the eye can see repeated
patterns in a light curve, or a peak appears in a noisy periodogram, due only to
autoregressive processes and noise, but it may turn out that we are sampling many
cycles of a periodic variation.

A periodogram calculates the significance of different frequencies in time-series
data to identify any intrinsic periodic signals. The Lomb-Scargle periodogram (Scar-
gle, ApJ 1982) is similar to the Fourier Transform, but is optimized for unevenly
time-sampled data. Other periodograms, such as the Box Least-Squares algorithm
(Kovacs et al., A&A 2002), are adapted for different shapes in periodic signals.
Unevenly sampled data is particularly common in astronomy, where the target might
rise and set over several nights, or spacecraft observations stop to download the
data. Many different frequencies and candidate periodic signals are evaluated. The
statistical significance of each frequency is difficult to complete in the presence of
autoregressive noise, irregular observations, and non-sinusoidal shapes. Many vari-
ations of autoregressive modeling that is common in econometrics, such as ARIMA
and ARFIMA, can be useful in analyzing the Kepler light-curves.

5 Conclusions

The discovery of exoplanets has a confused history. Several premature exoplanet
claims were made during 1855–1991, often due to inadequate statistical evaluation.
Astronomers learned that they should be more careful in their analysis. The first
exoplanet discoveries built on simplistic statistics and strong paranoia were made
in 1989, 1992, and 1995. Since the mid-1990s, a scientific revolution has occurred.
There was rapid progress with RV and frequentist methods with less paranoia in
late 1990s to early 2000s. But astronomers started worrying about correlated noise
in 2006. Serious population analyses of Kepler data started around 2010. It is still
difficult to detect the smallest planets, or to decide whether 3 or 4 planets orbit a star.

An exoplanet, a potentially habitable planet orbiting ProximaCentauri, a star clos-
est to our Sun that sits just 4.24 light-years awaywas reported on24August 2016.This
was found by radial velocity methods. Even though the planet’s signal was detected
earlier, it required a nightly follow-up campaign to produce a convincing dataset. By
its nature, the exoplanet data is noisy. The data together with host star’s own activity
may create a false conclusion of a non-existent planet signature. Without digging
deeper, few astronomers monitoring Alpha Centauri B, prematurely announced the
discovery of Earth-mass planet in 2012, but subsequent studies repudiated the claim.

Most stars host orbiting planetary systems, and a fewpercent are calculated to have
Earth-like planets in Earth-like orbits. This implies there are hundreds of millions or
billions of Earths in the Milky Way Galaxy. However, these are statistical inferences
frommuch sparser datasets where planetary signals are 10−4–10−6 times the host star
signal and are detected in only a tiny fraction of stars.Massive surveyswith extremely
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accurate measurements, accompanied by careful statistical analysis, are needed to
detect exoplanets and make inferences about their cosmic population. Uninteresting
variations of the host star mask the tiny effects of the orbiting planet. Autoregressive
modeling, Gaussian Processes regression, wavelet analyses, and other techniques are
tapped to mitigate these effects so new planets can be discovered.
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A Connection Between the Observed Best
Prediction and the Fence Model Selection
Method

Thuan Nguyen and Jiming Jiang

Abstract Following our presentation at the Platinum Jubilee on “Observed Best
Prediction (OBP) for Small Area Counts”, we discuss a connection between OBP
and predictive model selection using the fence methods.

Keywords Fence methods · Observed best prediction
Predictive model selection · Small area estimation

1 Introduction

The fence methods (Jiang et al. 2008; Jiang 2014; Jiang and Nguyen 2015) is a
recently developed class of strategies for model selection. The methods fit particu-
larly well in non-conventional and complex model selection problems with practical
considerations. The idea involves a procedure to isolate a subgroup ofwhat are known
as correct models, of which the optimal model is a member. This is accomplished
by constructing a statistical fence, or barrier, to carefully eliminate incorrect models.
Once the fence is constructed, the optimal model is selected from amongst those
within the fence according to a criterion which can be made flexible. In particular,
the criterion of optimality can incorporate consideration of practical interest, thus
making model selection a real life practice.

The fence is typically constructed via an inequality such that a candidate model,
M , is in the fence if

Q(M) − Q(M∗) ≤ c, (1)
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where Q(·) is a measure of lack-of-fit,M∗ is a baselinemodel that minimizes Q, such
as a full model in many cases, and c is a tuning constant that can be chosen adaptively
(e.g., Jiang 2014, Sect. 2). A feature of flexibility of the fence is in the choice of Q.
In particular, if prediction is of primary interest, such as in small area estimation
(SAE; e.g., Jiang and Lahiri 2006), Q may be chosen by taking into account the
objective of prediction. Note that the standard measures of lack-of-fit, such as the
negative log-likelihood, and the residual sum of squares, are estimation-based rather
than prediction-based.

Recently, Jiang et al. (2011) proposed a new method for SAE, known as the
observed best prediction (OBP). A main feature of the OBP is that it is more robust,
in terms of predictive performance, to model misspecification compared to the tra-
ditional empirical best linear unbiased prediction (EBLUP; e.g., Rao and Molina
2015). Chen et al. (2015) extended OBP to Poisson mixed models for count data. In
this short note, we describe a general approach to deriving a predictive measure of
lack-of-fit that is motivated by OBP.

Let us first consider a general problem of linear mixed model (LMM) prediction
(e.g., Robinson 1991; Jiang 2007, Sect. 2.3). The assumed model is

y = Xβ + Zv + e, (2)

where X, Z are known matrices; β is a vector of fixed effects; v, e are vectors of
random effects and errors, respectively, such that v ∼ N (0,G), e ∼ N (0, �), and
v, e are uncorrelated. An important issue for model-based statistical inference is the
possibility of model misspecification. To take the latter into account, suppose that
the true underlying model is

y = μ + Zv + e, (3)

where μ = E(y). Here, E represents expectation with respect to the true distribution
of y, which may be unknown but is not model-dependent. So, ifμ = Xβ for some β,
the model is correctly specified; otherwise, the model is misspecified. Our interest
is prediction of a vector of mixed effects that can be expressed as

θ = F ′μ + R′v, (4)

where F, R are known matrices.
A special case of the above general LMM is the Fay-Herriot model (Fay and

Herriot 1979). The model was introduced to estimate the per-capita income of small
places with population size less than 1,000:

yi = x ′
iβ + vi + ei , i = 1, . . . ,m,

where xi is a vector of known covariates, β is a vector of unknown regression
coefficients, vi ’s are area-specific random effects and ei ’s are sampling errors. It
is assumed that vi ’s, ei ’s are independent with vi ∼ N (0, A) and ei ∼ N (0, Di ). The
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variance A is unknown, but the sampling variances Di ’s are assumed known. The
assumed model can be expressed as (2) with X = (x ′

i )1≤i≤m , Z = Im , G = AIm
and � = diag(D1, . . . , Dm). The problem of interest is estimation of the small
area means. Let μi = E(yi ). Then, the small area means can be expressed as
θi = E(yi |vi ) = μi + vi , under the true underlying model (3). Here, again, E rep-
resents the true conditional expectation rather than conditional expectation under
the assumed model. Thus, the quantity of interest can be expressed as (4) with
θ = (θi )1≤i≤m , and F = R = Im .

For simplicity, assume that both G and � are known. Then, under the assumed
model, the best predictor (BP) of θ , in the sense ofminimummean squared prediction
error (MSPE), is the conditional expectation,

EM(θ |y) = F ′μ + R′EM(v|y)
= F ′Xβ + R′GZ ′V−1(y − Xβ), (5)

where V = � + ZGZ ′ and β is the true vector of fixed effects (e.g., Jiang 2007,
p. 75). The EM in (5) denotes conditional expectation under the assumed model,
(2), rather than the true model (3). Although model (2) may be subject to model
misspecification, it is usually (much) simpler and utilizes the available covariates,
X . On the other hand, even if model (3) is correct, or close to be correct, it is too broad
to be useful; furthermore, it does not make use of any of the available covariates,
which is often practically unacceptable. For these reasons, the assumed model, (2),
is always the one of main interest. In other words, one cannot abandon the assumed
model; all one could do is to try to do the best under the assumed model, that is, to
find the best way to estimate the parameters, in this case β, under the assumedmodel.
The question then is: What is the role that the true model, (3), plays in this business?
The answer is that the true model can help to determine the best way to estimate the
parameters so that it is more robust to model misspecification. More specifically, the
true model is used in evaluating the predictive performance of the BP, (5), to make
sure that the evaluation is fair and not model-dependent. This is why, intuitively,
the resulting estimator of β is more robust to model misspecification (Jiang et al.
2011). The idea introduced here is particularly important when dealing with model
selection, because, obviously, the measure of lack-of-fit has to be objective, or “fair”,
to all of the candidate models.

To derive the best estimator of β, write B = R′GZ ′V−1 and � = F ′ − B. Let
θ̃ denote the right side of (5), where β is understood as a parameter vector to be
determined. The predictive performance of θ̃ is typically measured by the MSPE,
defined as MSPE(θ̃) = E(|θ̃ − θ |2). Here, again, E denotes expectation under the
true model. It can be shown (Jiang et al. 2011) that the MSPE can be expressed,
alternatively, as

MSPE(θ̃) = E{(y − Xβ)′�′�(y − Xβ) + · · · }, (6)
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where · · · does not depend on β. Here comes another key point: Unlike E(|θ̃ − θ |2),
the expression inside the expectation on the right side of (6) involves a function of
the observed data and β (and nothing else), and something unrelated to β. Therefore,
it is natural to estimate β by minimizing the expression inside the expectation on the
right side of (6), which is equivalent to minimizing the expression without · · · . This
leads to what we call the best predictive estimator, or BPE, of β, given by

β̂BPE = (X ′�′�X)−1X ′�′�y, (7)

assuming that �′� is nonsingular and X is full rank. As a comparison, the ML
estimator (MLE) of β, under the assumed model, is given by

β̂MLE = (X ′V−1X)−1X ′V−1y, (8)

assuming nonsingularity of V . See Jiang et al. (2011) for discussion on the difference
between the BPE and MLE in the case of Fay-Herriot model. When the β in the BP
is substituted by the BPE, the result is called the observed best predictor, or OBP
(Jiang et al. 2011). The latter authors showed that the OBP generally outperforms
the EBLUP when the underlying model is misspecified.

To develop a fence method that takes into account the particular interest of mixed
model prediction, we can define the measure of lack-of-fit, Q(M), as the minimizer,
over β, of the expression without · · · inside the expectation on the right side of
(6). Clearly, this measure is designed specifically for the mixed model prediction
problem. Also, when it comes to model selection, it is important that the measure
of lack-of-fit is “fair” to every candidate model. The above measure Q(M) has this
feature, because the expectation in (6) is under an objective true model. Once we
have the measure Q, we can use it in (1) for the fence.

The assumption thatG and� are known can be relaxed, to some extent, especially
for G. In fact, it can be shown that essentially the same derivation as the above
goes through, and the resulting measure of lack-of-fit, Q(M), is the minimizer of
(y − Xβ)′�′�(y − Xβ) − 2tr(�′�), over the parameters assuming that� is known.

We now consider another situation. In many cases, the data for the response
variables are counts (e.g., Münnich et al. 2009). For simplicity, suppose that the
responses are counts, denoted by yi , and that, in addition, a vector of covariates, xi ,
is also available. The model of interest assumes that, given the random effects, vi , yi
has a Poisson distribution with mean μi , such that

log(μi ) = x ′
iβ + vi . (9)

The BP of μi , under the assumed model, can be expressed as

EM,ψ (μi |y) = gi (ψ, yi ), (10)

where EM,ψ denotes conditional expectation under the assumed model, M , and
parameter vector, ψ , under M , and gi (·, ·) is a known function which does not have
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an analytic expression. Nevertheless, the g function can be evaluated numerically
fairly easily. Following a similar idea, we evaluate the performance of the BP under
a broader model, which states that, conditioning on μi , yi is Poisson(μi ), but the
expression (9) is not assumed. In other words, under the broader model, the μi ’s are
completely unspecified. Write μ = (μi )1≤i≤m , and μ̃ = (μ̃i )1≤i≤m , where μ̃i is the
right side of (10) when ψ is considered as an unknown parameter vector. Consider

MSPE = E(|μ̃ − μ|2)
=

m∑

i=1

E{gi (ψ, yi ) − μi }2

= E

{
m∑

i=1

g2i (ψ, yi )

}
− 2

m∑

i=1

E{gi (ψ, yi )μi } +
m∑

i=1

E(μ2
i )

= I1 − 2I2 + I3, (11)

where E denotes expectation under the broader model. Note that I3 does not involve
ψ , even though it may be completely unknown. It can be shown that

E{gi (ψ, yi )μi } =
∞∑

k=0

gi (ψ, k)(k + 1)E{1(yi=k+1)}, (12)

where 1A is the indicator of even A (= 1 if A occurs, and 0 otherwise). Thus, if we
define gi (ψ,−1) = 0, we have

E{gi (ψ, yi )μi } = E

{ ∞∑

k=0

gi (ψ, k)(k + 1)1(yi=k+1)

}
= E{gi (ψ, yi − 1)yi },

MSPE = E

{
m∑

i=1

g2i (ψ, yi ) − 2
m∑

i=1

gi (ψ, yi − 1)yi + · · ·
}

, (13)

where · · · does not depend on ψ . A predictive measure of lack-of-fit, Q(M), is the
expression inside the expectation in (13), but without + · · · , minimized with respect
to ψ .
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A New Approximation to the True
Randomization-Based Design Effect

Siegfried Gabler, Matthias Ganninger and Partha Lahiri

Abstract It is generally difficult or even impossible to obtain a closed-form
randomization-based true design effect formula for a nonlinear estimator under a
complex sample design. A model that captures different salient features of the sam-
ple design is often used to approximate the randomization-based true design effect.
Our simulation results show that the usual model-based design effect for the sam-
ple mean could significantly differ from the randomization-based true design effect
for different replications of the finite population, even when different replicates of
the finite population are generated by the same model used to derive the model-
based design effect formula. We propose a newmodel-assisted design effect formula
obtained from an appropriate model-based design effect formula when we replace
the model intra-cluster correlation by an ANOVA “estimator” if observations for all
units of the finite population were available. For one-stage cluster sampling with
equal cluster size, we examine the accuracy of the new model-assisted design effect
formula analytically and by a Monte carlo simulation. This new model-assisted
design effect tracks the true randomization-based design effect much better than
the corresponding model-based design effect formulae and the approximation to the
true randomization-based design effect proposed by Kish (1965). The main advan-
tage of the new model-assisted design effect is that it can be readily extended to
more complex estimators and/or complex designs where the Kish’s approximation is
unavailable. Our proposed model-assisted design effect is generally much closer to
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the randomization-based design effect formula than the corresponding model-based
design effect, even when model used to obtain the model-based design effect holds
for the finite population.

Keywords Design effects · Model-based · Design-based · Intra-class correlation

1 Introduction

In large scale sample surveys, inferences are usually based on the standard random-
ization principle in survey sampling for estimating characteristics of large popula-
tions. Under such an approach, responses are treated as fixed and the randomness is
assumed to solely come from the probability mechanism that generates the sample.
For example, in simple random sampling (SRS), the sample mean ȳ is unbiased
under the sample design. The randomization-based variance of ȳ is given by

VarSRS(ȳ) = (1 − f )
S2

n
,

where n, N , f = n
N , and S

2 denote the sample size, population size, sampling frac-
tion, and finite population element variancewith divisor N − 1, respectively. Usually
f is negligible and can be dropped from the formula. The sample mean ȳ remains an
unbiased estimator of the populationmean Ȳ under the usual randomization approach
if the sample design is epsem, i.e. each sampling unit of the finite population has the
same chance f of being selected. However, VarSRS(ȳ) usually underestimates the
true randomization variance of ȳ under a cluster sample design, denoted by VarC(ȳ).
To account for this underestimation, Kish (1965) proposed the following variance
inflation factor, commonly known as the design effect:

DeffR = VarC(ȳ)

VarSRS(ȳ)
. (1)

There are several potential uses of design effects. First, design effects are routinely
used in determining sample size of a complex survey from the knowledge of sample
size requirement for aSRSdesign. For this use, in the absenceof anydirect surveydata
on the response variables, historical and similar survey data are used in conjunction
with the available information on different design features such as average cluster
size, number of clusters, etc. (see European Social Survey 2011; Häder et al. 2003).
Second possible use of design effects is in the variance computation from complex
surveys (see Lohr 1999, p. 241) in situations where standard variance estimation
techniques cannot be applied due to unavailability of appropriate software, especially
in developing countries, or due to the time restriction to compute variance estimates
for a large number of statistics by sophisticated variance estimation software or
unavailability of actual cluster identifiers to protect the confidentiality of survey
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respondents.Design effects are also conveniently used in adjusting standard statistical
procedures in order to make them appropriate for complex survey data (e.g. Rao and
Scott 1981).

For a complex sample design, it is generally difficult or even impossible to obtain
a closed-form formula for DeffR. A model that captures different salient features
of the sample design is generally used to approximate DeffR. Since DeffR is used
in randomization-based inference, it is important to assess the accuracy of the usual
model-based design effect approximations. In Sect. 2, we examine the accuracy of the
usual model-based approximation analytically and by a Monte Carlo study for one-
stage cluster samplingwith equal cluster size.Weargue that the standardmodel-based
approximation to the true randomization-based design could be subject to substantial
error, depending on the realization of the finite population from the assumed model.
We then suggest a new model-assisted design effect formula, which works much
better than the corresponding model-based approximation or the well-known Kish’s
approximation. In Sect. 3, we compare the newmodel-assisted design effect with the
corresponding model-based design effect for the ratio mean in the context of one-
stage cluster sampling with unequal cluster sizes. We notice that, for a fixed finite
population, the accuracy of the model-based approximation depends on the variation
of the cluster sizes and the choice of the model. In Sect. 4, we provide a formula
for our model-assisted design effect for a general sample design. Finally, in Sect. 5,
we make some concluding remarks. Throughout the paper, we use the subscripts R,
M and MA to denote randomization-based, model-based and model-assisted design
effects, respectively.

2 One-Stage Cluster Sampling: The Case of Equal Cluster
Size

Let yi j denote the value of a characteristic of interest for the j th unit in the i th cluster
(i = 1, . . . , N ; j = 1, . . . ,M). Define Yi = ∑M

j=1 yi j , the i th cluster total, Ȳi = Yi
M ,

the i th cluster mean, Y = ∑N
i=1 MȲi , the finite population total, and Ȳ = Y

MN , the
finite population mean.

Consider estimation of the finite population mean using one-stage cluster sam-
pling, where n clusters, each of equal size M , are drawn by SRS. In this case, the
sample mean ȳ =

∑
i∈s Yi
nM remains unbiased for the population mean Ȳ under the

sampling design. The randomization-based true design effect is given by

DeffR = NM−1
M(N−1) [1 + (M − 1)ρK]

= DeffK + O(N−1),
(2)

where

DeffK = 1 + (M − 1)ρK, (3)
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design effect formula given in Kish (1965), and

ρK =
1
N

N∑

i=1

1
M(M−1)

M∑

j �= j ′
(yi j − Ȳ )(yi j ′ − Ȳ )

1
NM

N∑

i=1

M∑

j=1
(yi j − Ȳ )2

, (4)

the finite population intra-cluster correlation (see Kish 1965, p. 171). Since NM −
1 > M(N − 1), DeffK underestimates DeffR, but the order of underestimation is
O(N−1).

Define the following sum of squares in the ANOVA table for the finite population:

SSB =
N∑

i=1

M(Ȳi − Ȳ )2, between cluster sum of squares, (5)

SSW =
N∑

i=1

M∑

j=1

(yi j − Ȳi )
2, within cluster sum of squares, (6)

SST =
N∑

i=1

M∑

j=1

(yi j − Ȳ )2, total sum of squares. (7)

It is easy to see (Lohr 1999, p. 139) that

ρK = 1 − M

M − 1

SSW

SST
= 1

M − 1

(

M
SSB

SST
− 1

)

. (8)

Let d fb = N − 1 and d fw = N (M − 1) be the degrees of freedom associated
with SSB and SSW , respectively. Let MSB = SSB

d fb
, the between mean square, and

MSW = SSW
d fw

the within mean square.
It is generally difficult or even impossible to derive exact randomization-based

design effect formulae for complex estimators and/or complex sample designs. In
this section, we propose a new formula motivated from a model that is used to obtain
the model-based design effect formula. Let MC and MSRS be two different models
that capture salient features of the one-stage cluster sampling and SRS, respectively.
For example, Gabler et al. (1999) used the following models:

• MSRS: All the sample observations are uncorrelated with equal variance σ2.
• MC : All the sample observations have the same variance σ2. However, only the
observations from different clusters are uncorrelated; observations within the same
cluster are equally correlated, common correlation being ρ.
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The following alternative design effect definition was considered in Gabler et al.
(1999):

DeffM = VarMC (ȳ)

VarMSRS (ȳ)= 1 + (M − 1)ρ.
(9)

where VarMC (ȳ) and VarMSRS (ȳ) are the variances of ȳ under models MC and MSRS ,
respectively. Skinner (1989) provided an alternative definition of a model-based
design effect as

DeffSkinner = VarMC (ȳ)

EMC

[
SST

nM(NM − 1)

] .

and showed that DeffSkinner ≈ 1 + (M − 1)ρ.
The formulas of DeffK and DeffM , respectively, may lead one to erroneously

conclude that ρ and ρK are identical. It is interesting to note that if model MC of
Skinner et al. (1989) holds for the finite population, we have

EMC [ρK] ≈ ρ,

for large N .

Proof From (8) we have

ρK = M

M − 1

SSB

SST
− 1

M − 1
.

Using Taylor series expansion

EMC [ρK] ≈ M

M − 1

EMC [SSB]
EMC [SST ] − 1

M − 1
. (10)

Using Lemma of Ghosh and Lahiri (1987), we have

EMC [SSB] = (N − 1)[1 + (M − 1)ρ]σ2,

EMC [SSW ] = N (M − 1)(1 − ρ)σ2.

Thus, the right hand side of (10) reduces to

ρ − [1 + (M − 1)ρ](1 − ρ)

M(N − 1) + (M − 1)(1 − ρ)
≈ ρ.

This completes the proof. ��
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Remark: Suppose that y-values are normally distributed, under model MC . We
can find an interval (L ,U ) such that P [ρK ∈ (L ,U )] = 1 − α as

P

⎛

⎜
⎜
⎝

L + 1

M − 1
N − 1

N (M − 1)
(1 − L)

≤ F ≤
U + 1

M − 1
N − 1

N (M − 1)
(1 −U )

⎞

⎟
⎟
⎠ = 1 − α,

where F = MSB

MSW
has a F distribution with degrees of freedom N − 1, N (M − 1).

The above result can be used to construct a 100 · (1 − α)% confidence interval for
DeffR-DeffM.

We also note the following relationship:

EMC [VarC(ȳ)]
EMSRS [VarSRS(ȳ)]

= DeffM .

Proof Noting that

ȳ = 1

nM

∑

i∈s
Yi = 1

n

∑

i∈s
Ȳi ,

we have

VarC(ȳ) = (1 − f )

n

1

N − 1

N∑

i=1

(Ȳi − Ȳ )2 = (1 − f )

n

SSB

M(N − 1)
,

and

VarSRS(ȳ) = 1 − f

nM

SST

MN − 1
.

The result now follows from Lemma of Ghosh and Lahiri (1987) and algebra. ��
The standard ANOVA estimator of ρ is given by

ρMA =
SSB

N − 1
− SSW

N (M − 1)
SSB

N − 1
+ SSW

N

= MSB − MSW

MSB + (M − 1)MSW
= F − 1

F + M − 1
. (11)

It is easy to check that ρMA is a consistent estimator of ρ, under model MC , for
large N . Moreover,

ρK ≤ ρMA, (12)
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which implies

DeffK = 1 + (M − 1)ρK ≤ NM − 1

M(N − 1)
(1 + (M − 1)ρK) = DeffR

≤ NM − 1

M(N − 1)
(1 + (M − 1)ρMA) = DeffMA,

(13)

that is, DeffMA is a more conservative design effect formula than DeffK or DeffR.

Proof For SSB = 0 or SSW = 0, but not both, we have ρK = ρMA. If SSB > 0 and
SSW > 0, then

f (α) = SSB − α
M−1 SSW

SSB + αSSW
. (14)

Note that f (α) is a monotonically decreasing function in α since

f ′(α) = − M

M − 1

SSB · SSW
(SSB + αSSW )2

< 0, (15)

for positive SSW and SSB. Since

f (1) = ρK (16)

and

f

(
N − 1

N

)

= ρMA,

we have ρK < ρMA. ��

2.1 Simulation

We compare ρK, ρMA and different design effects formulae using a Monte Carlo
simulation study. For this, N × M realizations, y, of a random variable, Y are gen-
erated for selected combinations of N (number of clusters), M (cluster size) and
intra-class correlation ρ using a common mean model (Valliant et al. 2000, p. 249).
The data generating process is replicated 10 000 times to generate different statistics
of interest for each combination of N , M and ρ.

The simulation results are displayed in Table1. In the table, ρ̄K and ρ̄MA represent
averages of ρK and ρMA over the 10 000 replications, respectively; P and P∗ denote
percentages of cases with ρK < ρ and ρMA < ρ, respectively. It is clear that the mean
of ρMA always is greater than that of ρK, which is in line with inequality (12), and is
closer to the true value of ρ than ρK is. This is especially true when N is small and
M is large.
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Table 1 Results from the simulation study–equal cluster size

Case ρ N M P P∗ ρ̄K ρ̄MA DeffR DeffK DeffMA DeffM

1 0.20 100 10 0.54 0.51 0.20 0.20 2.80 2.77 2.82 2.80

2 0.20 10 100 0.65 0.56 0.18 0.19 20.64 18.59 22.40 20.80

3 0.10 100 10 0.54 0.51 0.10 0.10 1.90 1.88 1.91 1.90

4 0.10 10 100 0.65 0.56 0.09 0.10 10.86 9.78 11.91 10.90

5 0.04 100 10 0.55 0.52 0.04 0.04 1.36 1.35 1.37 1.36

6 0.04 10 100 0.65 0.56 0.03 0.04 4.92 4.43 5.43 4.96

This effect is also seen in the percentage of cases with ρK < ρ, denoted by P ,
and ρMA < ρ, denoted by P∗, respectively. The boxplots (a) to (d) of Fig. 1 illustrate
this behavior graphically. In Fig. 1, we see that both, ρK and ρMA, vary considerably
around the model parameter ρ implying that the model-based design effect could
be very different from the randomization-based design effect. Both, ρK and ρMA,
however, underestimate ρ on the average.

Tables2, 3 and 4 display the values of DeffK, DeffMA and DeffM for selected
quantiles of the 10 000 realizations of DeffR. One can see that DeffMA is very close
to DeffR. In contrast, DeffM could substantially deviate from DeffR. The boxplots
given in Fig. 2 highlight the above graphically.

It is obvious that the differences DeffR-DeffK and DeffR-DeffMA are much smaller
than DeffR-DeffM. Due to scaling, differences between DeffR-DeffK and DeffR-
DeffMA cannot be seen in this plot. For this reason, we omit DeffR-DeffM in boxplots
given in Fig. 3. Again, we can see that DeffMA is much closer to DeffR than DeffK.

In accordancewith Eq. (13), we see from the above plots that the differenceDeffR-
DeffMA is always negative whereas the difference DeffR-DeffK is always positive.

Let us now consider a contamination case. In this case, the followingmodel holds:

• MC∗ : All the observations are normally distributed and have the same variance σ2.
The observations from different clusters are uncorrelated; observations within the
same cluster are equally correlated, common correlation being ρ, ρ ∼ U(�, τ 2).

Note that we contaminate the MC model by drawing ρ in each cluster from a
uniform distribution.

To present a concrete example, a population with N = 8; M = 10 is given, where
the ρ values in the eight clusters are realized as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.
In the following, we assume, however, the model MC with parameter ρ = ρ̄ = 0.45.
The sample is of size nM = 40 with n = 4 clusters being drawn at the first stage.
Table5 provides an overview of the results.

In order to obtain the expected value and variance of DeffR, we use Taylor series
expansion and get

E[DeffR] ≈ NM − 1

N − 1

EρEMC∗ [SSB|ρ]
EρEMC∗ [SST |ρ] . (17)
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Fig. 1 Boxplots of the simulated distribution of ρK and ρMA for selected cases (the dashed line
indicates the respective model parameter ρ)
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Table 2 Values of DeffK, DeffMA and DeffM for selected quantiles of 10000 realizations for
DeffR—Cases 1 and 2: ρ = 0.20

Case 1 (N = 10; M = 100) Case 2 (N = 100; M = 10)

DeffR DeffK DeffMA DeffM DeffR DeffK DeffMA DeffM

Min. 1.6341 1.6194 1.6479 2.8000 1.6728 1.5070 1.8556 20.8000

Q25 2.5903 2.5670 2.6097 2.8000 14.9458 13.4647 16.3617 20.8000

Median 2.7949 2.7697 2.8152 2.8000 20.0671 18.0785 21.8578 20.8000

Q75 3.0037 2.9766 3.0249 2.8000 25.7044 23.1571 27.8440 20.8000

Max. 4.1352 4.0980 4.1598 2.8000 57.7633 52.0390 60.6732 20.8000

Table 3 Values of DeffK, DeffMA and DeffM for selected quantiles of 10000 realizations for
DeffR—Cases 3 and 4: ρ = 0.10

Case 3 (N = 10; M = 100) Case 4 (N = 100; M = 10)

DeffR DeffK DeffMA DeffM DeffR DeffK DeffMA DeffM

Min. 1.0845 1.0747 1.0943 1.9000 1.0269 0.9251 1.1398 10.9000

Q25 1.7390 1.7233 1.7535 1.9000 7.4565 6.7176 8.2236 10.9000

Median 1.8927 1.8756 1.9082 1.9000 10.3491 9.3235 11.3811 10.9000

Q75 2.0455 2.0271 2.0620 1.9000 13.6309 12.2801 14.9416 10.9000

Max. 2.8414 2.8158 2.8620 1.9000 32.7768 29.5286 35.2617 10.9000

Table 4 Values of DeffK, DeffMA and DeffM for selected quantiles of 10000 realizations for
DeffR—Cases 5 and 6: ρ = 0.04

Case 5 (N = 10; M = 100) Case 6 (N = 100; M = 10)

DeffR DeffK DeffMA DeffM DeffR DeffK DeffMA DeffM

Min. 0.7454 0.7387 0.7524 1.3600 0.4060 0.3657 0.4509 4.9600

Q25 1.2340 1.2228 1.2449 1.3600 3.2956 2.9690 3.6498 4.9600

Median 1.3518 1.3397 1.3637 1.3600 4.6072 4.1506 5.0956 4.9600

Q75 1.4769 1.4636 1.4896 1.3600 6.2124 5.5967 6.8600 4.9600

Max. 2.0683 2.0497 2.0849 1.3600 15.9701 14.3875 17.4653 4.9600

After some algebraic transformations, we obtain

E[SSB] = EρEMC∗ [SSB|ρ] = (N − 1) (1 + (M − 1)�)σ2,

E[SSW ] = EρEMC∗ [SSW |ρ] = N (M − 1) (1 − �)σ2,

E[SST ] = EρEMC∗ [SST |ρ] = (NM − 1 − (M − 1)�)σ2,

and thus

E[DeffR] ≈ 1 + (M − 1)�

1 − M − 1

NM − 1
�

≈ 1 + (M − 1)�.
(18)
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Fig. 2 Boxplots of the differences DeffR-DeffK, DeffR-DeffMA and DeffR-DeffM for Case 1

Again, using Taylor series expansion, the variance of DeffR can be computed by

Var[DeffR] ≈
(
NM − 1

N − 1

)2
[
EρEMC∗ [SSB2|ρ]
EρEMC∗ [SST 2|ρ] −

(
EρEMC∗ [SSB2|ρ]
EρEMC∗ [SST |ρ]

)2
]

.

(19)
Define x = 1 + (M − 1)�. Assuming normality under modelMC∗ and after some

algebra, we get the following results

E[SSB] = (N − 1)xσ2,

E[SST ] = (NM − x)σ2,

E[SSB2] =
(
3(M − 1)2(N − 1)2

N
τ 2 + (N 2 − 1)x2

)

σ4,

E[SST 2] =
[
N 2M2(2 + (M − 1)N )

(M − 1)N
+

(M − 1)2
(
2N 2(2M − 1) − 3(M − 1)(2N − 1)

)

(M − 1)N
τ 2−

2MN 2(M + 1)

(M − 1)N
x + N (2MN − M + 1)

(M − 1)N
x2

]

σ4,

(20)
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Fig. 3 Boxplots of the differences DeffR-DeffK and DeffR-DeffMA for selected cases

Table 5 Values of ρMA and Deff for the sample mean

Case ρ DeffR DeffM DeffK DeffMA

1 0.45 3.4151 5.0500 3.0260 3.7412

which lead to

Var[DeffR] ≈
(
NM − 1

N − 1

)2
[
E[SSB2]
E[SST 2] −

(
E[SSB]
E[SST ]

)2
]

. (21)

As the number of clusters N increases, we get Var[DeffR] → 0.
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3 One-Stage Cluster Sampling: The Case of Unequal
Cluster Sizes

Define Yi , Ȳi , Y , and Ȳ as in Sect. 2 with M replaced by Mi , denoting the cluster
size in the i th cluster. As before, first consider simple random sampling of n clusters.
Consider the sample mean ȳ =

∑
i∈s Yi∑
i∈s Mi

as an estimator of Ȳ . Note that ȳ is now
a ratio estimator and no longer unbiased under the randomization approach. The
derivation of an exact formula of DeffR is difficult due to the nonlinear nature of the
ratio estimator.

Although, in the randomization approach, ȳ is a ratio of two random variables, in
the model-based framework it is a simple linear estimator. Thus, the calculation of
DeffM is straightforward and is given by

DeffM = 1 + (M̄ws − 1)ρ,

where

M̄ws =
∑

i∈s M
2
i∑

i∈s Mi

is a weighted average of the cluster sizes in the sample with weights proportional to
the cluster sizes.

We get the following model-assisted design effect formula if we replace ρ in the
model-based design effect formula by the following ANOVA “estimator” of ρ if all
observations in the finite population were available:

DeffMA = N (M0 − 1)

(N − 1)M0

(
1 + [

M̄ws − 1
]
ρMA

)
,

where M0 = ∑N
i=1 Mi and ρMA is given by

ρMA = MSB − MSW

MSB +
(
M0 − M̄w

N − 1
− 1

)

MSW

,
(22)

with

MSB =
∑N

i Mi
(
Ȳi − ȳ

)2

N − 1
, MSW =

∑N
i

∑Mi
i=1

(
yi j − Ȳi

)2

M0 − N
, M̄w =

∑N
i M2

i
∑N

i Mi

.

Let us now consider a non-epsem one-stage cluster sampling. Let wi = π−1
i be

the sampling weight for all units in the i th cluster, where πi denotes the inclusion
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probability if the i th cluster (i ∈ s). Thus, we consider the following ratio estimator
to estimate the population mean:

ˆ̄Y =
∑

i∈s

Mi∑

j=1
wi yi j

∑

i∈s

Mi∑

j=1
wi

=
∑

i∈s
wi

Mi∑

j=1
yi j

∑

i∈s
wi Mi

.

In this case, an appropriate model-based design effect formula under the models
MC and Msrs is given by:

DeffM = DeffP × DeffC (23)

where

DeffP =
∑

i∈s
Mi

∑

i∈s
w2

i Mi

(
∑

i∈s
wi Mi

)2 , DeffC = 1 + (M̄s − 1)ρ, M̄s =
∑

i∈s
w2

i M
2
i

∑

i∈s
w2

i Mi
.

Proof Let ȳ be the unweighted sample mean of size
∑

i∈s Mi . Then we have

DeffM = VarMC (
ˆ̄Y )

VarMSRS (ȳ)

=
∑

i∈s
Mi

∑

i∈s
w2

i Mi (1 + (Mi − 1)ρ)

(
∑

i∈s
wi Mi

)2

=
∑

i∈s
Mi

∑

i∈s
w2

i Mi

(
∑

i∈s
wi Mi

)2 ·
⎡

⎢
⎣1 +

⎛

⎜
⎝

∑

i∈s
w2

i M
2
i

∑

i∈s
w2

i Mi
− 1

⎞

⎟
⎠ ρ

⎤

⎥
⎦ .

��
This is similar to the formula proposed by Kish (1965). Note that for the epsem

case DeffP = 1. Gabler et al. (1999) justified the Kish’s formula as a model-based
design effect. They interpreted ρ as the model intra-cluster correlation under a model
proposed by Skinner et al. (1989) and provided alternative formulas for the average
cluster size M̄ . See Lynn and Gabler (2005) for a comparison of different average
cluster size formulas. They concluded that the choice of a particular formula does
make a difference.
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We obtain a model-assisted design effect formula from (23) when we replace ρ
by ρMA defined in (22).

4 The General Case

Let si denote the i th ultimate cluster (Kalton 1983, p. 35) in the sample s. Further,
let yik and wik denote the value of the characteristic of interest and the associated
survey weight for the kth unit in the i th ultimate cluster of size mi (i = 1, . . . , n;
k ∈ si ). In this case the population mean Ȳ is estimated by

ˆ̄Y =

n∑

i=1

∑

k∈si
wik yik

n∑

i=1

∑

k∈si
wik

.

We assume model MC on the ultimate cluster. Then, using algebra similar to
Sect. 3, the model-based design effect is obtained as

DeffM = DeffP × DeffC

where

DeffP =

(
n∑

i=1
mi

) (
n∑

i=1

∑

k∈si
w2

ik

)

(
n∑

i=1

∑

k∈si
wik

)2 , DeffC = 1 +

⎛

⎜
⎜
⎜
⎝

n∑

i=1
mi

∑

k∈si
w2

ik

n∑

i=1

∑

k∈si
w2

ik

− 1

⎞

⎟
⎟
⎟
⎠

ρ.

To obtain a model-assisted design effect, we simply replace ρ by (22), where
the cluster needs to be interpreted as ultimate cluster. Furthermore, Mi must be
replaced by mi in the formula for M̄w and N is the number of ultimate clusters in
the population.

5 Discussion

It is difficult or even impossible to derive a simple closed-form formula for
randomization-based design effect due to the complexity in the sample design or
nonlinearity of the estimator. In this paper, we have demonstrated that standard
model-based approximations to the randomization-based design effect may not per-
form well in certain situations. To circumvent the problem, we have proposed a new
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model-assisted approach that provides a better approximation to the randomization-
based design effect than the corresponding model-based design effect formula. Our
approach is quite flexible to handle complex designs and nonlinear estimators. Our
focus has been on the evaluation of the new model-assisted design effect formula
rather than its estimation from a sample survey data. We will address the estimation
of design effect in a future paper.
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Confounded Factorial Design with
Partial Balance and Orthogonal
Sub-Factorial Structure

Madhura Mandal and Premadhis Das

Abstract In this paper, the contrasts belonging to any effect are divided into a
number of subsets and factorial designs are proposed such that these subsets (called
sub-effects) are orthogonally estimated with balance. Such designs have been called
‘partially balanced design with orthogonal sub-factorial structure’. These designs are
important in the sense that these allow more flexibility in the choice of the designs
retaining desirable properties such as orthogonality and partial balance and also
provide more insight into the nature of the contrasts belonging to any factorial effect.

Keywords Factorial design · Partial balance · Orthogonal sub-factorial structure
Generalised extended group divisible design

1 Introduction

Let F1, F2, . . . , Fm bem factorswith s1, s2, . . . , sm levels respectively. Thev =
m∏

i=1

si

level combinations ( j1, j2, . . . , jm), 0 ≤ ji ≤ si − 1, 1 ≤ i ≤ m are considered as
v treatments and the treatment effect at this level combination is given by t (j) =
t ( j1, j2, . . . , jm), 0 ≤ ji ≤ si − 1, 1 ≤ i ≤ m.

The vector tv×1 defined as

t = [. . . t ( j1, j2, . . . , jm) . . .]′ (1)

where ( j1, j2, . . . , jm) are arranged lexicographically, is known as the vector of
treatment effects.
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A treatment contrast is defined as

π =
∑

j1

∑

j2

. . .
∑

jm

l( j1 j2 . . . jm)t ( j1, j2 . . . , jm) (2)

where l( j1, j2, . . . , jm)’s are real numbers, not all zero, such that

∑

j1

∑

j2

. . .
∑

jm

l( j1 j2 . . . jm) = 0. (3)

A treatment contrast is said to belong to the g-factor interaction Fi1Fi2 . . . Fig ,
1 ≤ i1 < · · · < ig ≤ m, 1 ≤ g ≤ m if

(i) l( j1, j2, . . . , jm) depends only on ji1 , ji2 , . . . , jig and
(i i) the sum of l( j1, j2, . . . , jm) on any of the arguments ji1 , ji2 , . . . , jig is zero.

If g = 1, the 1-factor interactions are called main effects. In all there are
c(m, 1) + c(m, 2) + · · · + c(m,m) = 2m − 1 interactions. The interactions are also

called factorial effects. It follows that there are
g∏

j=1

(si j − 1) independent contrasts

belonging to the g-factor interaction Fi1Fi2 . . . Fig . The number of independent con-
trasts belonging to an interaction is called the degrees of freedom (d.f.) carried by the
interaction. There is an one-to-one correspondence between the (2m − 1) factorial
effects and the (2m − 1) non-null binary vectors

� = (10 . . . 0, 01 . . . 0, . . . , 11 . . . 1). (4)

Any factorial effect can be denoted by

Fx = Fx1
1 Fx2

2 . . . Fxm
m (5)

where x = (x1, x2, . . . , xm) and x ∈ �.
The d.f. carried by the factorial effect Fx is given by

α(x) =
m∏

i=1

(si − 1)xi . (6)

Letπ1 = l′1t andπ2 = l′2t be two contrasts belonging to the factorial effect Fx, x ∈
�. Then these contrasts are said to orthonormal contrasts if l′1l1 = l′2l2 = 1, l′1l2 = 0.

We shall consider here only orthonormal contrasts belonging to any factorial
effect.



Confounded Factorial Design with Partial Balance … 113

Let us define the following matrices

Pxi
i = Pi if xi = 1

= 1′
i√
si

if xi = 0

}
; 1 ≤ i ≤ n (7)

such that

�O =
(

1i ′√
si

Pi

)
(8)

is an si × si orthogonal matrix, 1′
i = si × 1 vector containing 1’s only. Note that the

set of
m∏

i=1

(si − 1)xi = α(x) orthonormal contrasts belonging to the factorial effect Fx

is given by (Px1
1 ⊗ Px2

2 ⊗ · · · ⊗ Pxm
m )t = Pxt where⊗ denotes the Kronecker Product

of matrices. The set is denoted by the interaction itself i.e.

Fx = Pxt, x ∈ �. (9)

Let d be a design with b blocks of sizes k1, k2, . . . , kb. The v =
m∏

i=1

si level com-

binations are randomly allocated to the plots of the design d such that the i th level
combination is replicated ri times, 1 ≤ i ≤ v. We assume that the design d is con-
nected (we shall work here with connected designs only) so that all the (v − 1)
contrasts are estimable. The best linear unbiased estimator (BLUE) of Fx is given
by Pxt̂, where t̂ is any solution of the reduced normal equation

Ct = Q (10)

where C = R − NK−δN′, R = Diag(r1, r2, . . . , rv), K = Diag(k1, k2, . . . , kb),
N = (nih)= incidence matrix of d and Q is the vector of adjusted treatment totals.

Definition 1 The design d is said to be balanced with OFS (Orthogonal Factorial
Structure) if

Cov(F̂x, F̂y) = 0 ∀ x 	= y ∈ � (11)

Disp(F̂x) = σ2ρ(x)Iα(x) x ∈ � (12)

where F̂x = Pxt̂, Iα(x) = identity matrix of order α(x), ρ(x) is a positive constant
depending on x and σ2 is the error variance.

Characterizations of balanced designs with OFS under different situations are
considered in Nair and Rao (1948), Shah (1958, 1960), Kurkjian and Zelen (1963),
Kshirsagar (1966) and Gupta (1983). A comprehensive discussion can be found in
Gupta and Mukerjee (1989).
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It is to be noted that, for balance, the BLUEs of all theα(x) orthonormal treatment
contrasts belonging to Fx are required to have the same variance σ2ρ(x), x ∈ �. The
requirement is restrictive and we can bring in some flexibility, if we can divide the
α(x) contrasts belonging to Fx, x ∈ �, into a number of subsets and can propose
designs which allow orthogonal estimation of these sets of contrasts with the same
variance maintaining orthogonality of the BLUEs of these subsets.

Definition 2 (Partially Balanced Design (PBD) with Orthogonal Sub-Factorial
Structure(OSFS)) Let the α(x) orthonormal contrasts belonging to Fx be divided
into p(x) sub-sets Fx

1 , Fx
2 , . . . , Fx

p(x), x ∈ � such that

Cov(F̂x
i , F̂y

j ) = 0, if x 	= y, or i 	= j if x = y; Disp(F̂x
i ) = σ2ρi (x)Iαi (x)

}

(13)
where F̂x

i is the BLUE of Fx
i , ρi (x) is a positive real number and αi (x) is the number

of orthonormal contrasts belonging to Fi (x), i = 1, 2, . . . , p(x), x ∈ �. Then the
factorial design is called Partially Balanced Design (PBD) with Orthogonal Sub-
Factorial Structure (OSFS).

[Fx
i ] may be called sub-effects of Fx. Partially Balanced Design (PBD) with

Orthogonal Sub-Factorial Structure (OSFS) is considered in Das and Chatterjee
(1999) where the orthonormal contrasts belonging to Fx are divided into subsets
by grouping the levels of each factor into a number of subsets and considering the
between group and within group contrasts. Also in Das (2003) another kind of PBD
with OSFS is considered when si ’s are all equal to s, which is a prime or prime power.
Here the pencilwise division (cf Bose 1947) of the contrasts belonging to Fx, x ∈ �

is considered. In this chapter, we shall consider the orthonormal contrast vectors in
the rows of Pi in (7) as the orthonormal vectors obtained from orthogonal polynomi-
als (cf. Fisher and Yates Table 1943) and accordingly introduce a division among the
contrasts belonging to Fx, x ∈ �, when each si is an even integer. With such divi-
sion of the factorial effects into subfactorial effects, we shall characterize partially
balanced designs where these sub-factorial effects are orthogonally estimable.

2 Division of the Factorial Effects When Each si is an Even
Number, 1 ≤ i ≤ m

Let s be an even positive integer, such that s = 2p, p being any positive integer.
Also let, Ds×s be the orthogonal matrix obtained from the s orthogonal polynomials
defined over s arguments 0, 1, 2, . . . , s − 1 (cf. Fisher and Yates Table 1943). We
write D as

D = (ξ(0), ξ(1), . . . , ξ(s − 1)) (14)

where
ξ′(α) = (d0(α), d1(α), . . . , ds−1(α)), (15)
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d j (α) is the normalized value of the αth degree orthogonal polynomial defined
over the argument j, j = 0, 1, 2, . . . , (s − 1). It follows from the properties of the
elements of D that

d j (0) = 1, d j (α) = (−1)αds−1− j (α), and
s−1∑

j=0

d j (α)d j (α
′) = 0 (16)

for 0 ≤ j ≤ (s − 1), 0 ≤ α 	= α′ ≤ (s − 1). From (16) it follows that

d j (α) = −ds−1− j (α) if α = odd,
d j (α) = ds−1− j (α) if α = even.

}
(17)

Also from (16) and (17) it follows that

p−1∑

j=0

d j (α)d j (α
′) = 0 if α = odd, α′ = even or α = even, α′ = odd

= 1
2 otherwise.

⎫
⎪⎬

⎪⎭
(18)

Define a p × 1 vector ξ∗(α) from ξ(α) as

ξ∗′
(α) = (d0(α), d1(α), . . . , dp−1(α)) (19)

and also a p × (p − 1) matrix A as

A = (ξ∗(2), ξ∗(4), . . . , ξ∗(2p − 2)) =

⎛

⎜⎜⎜⎜⎜⎝

d0(2) d0(4) . . . d0(2p − 2)
d1(2) d1(4) . . . d1(2p − 2)

...
...

...
...

dp−1(2) dp−1(4) . . . dp−1(2p − 2)

⎞

⎟⎟⎟⎟⎟⎠
.

(20)

From (19) and (20) it easily follows thatA∗ = 1√
2

(
1p√
p ,

√
2A

)
is a p × p orthog-

onal matrix where 1p is a p × 1 vector with all elements unity. Similarly, considering
the values corresponding to the oddorder polynomials over thefirst s

2 = p arguments,
we define a p × p matrix B as

B =

⎛

⎜⎜⎜⎝

d0(1) d0(3) . . . d0(2p − 1)
d0(1) d1(3) . . . d1(2p − 1)

...
...

...
...

dp−1(1) dp−1(3) . . . dp−1(2p − 1)

⎞

⎟⎟⎟⎠ . (21)

Again from (18) it follows that
√
2B is a p × p orthogonal matrix. So by rear-

ranging the arguments as (0, 1, . . . , p − 1, 2p − 1, 2p − 2, . . . , p) and the orders
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of the polynomials as (0, 2, . . . , 2p − 2, 1, 3, . . . , 2p − 1), the orthogonal matrix D
can be transformed to another orthogonal matrix Ō∗ as

Ō∗ = 1√
2

( 1p√
p

√
2A

√
2B

1p√
p

√
2A −√

2B

)
(22)

where 1 p is the p × 1 vector with all elements unity. From (20) it follows that the
orthogonal matrix Ō∗ can be written as the Khatri-Rao product (see Rao (1974, p.
30) where it is termed as new product) of two matrices. For ready reference, the
definition is given below.

Definition 3 Suppose there are two partitioned matrices A and B, each with the
same number of partitions as

A = (A1,A2, . . . ,Ak) and B = (B1,B2, . . . ,Bk).

Then Khatri-Rao product of A and B denoted as A ∗ B is defined as

A ∗ B = (A1 ⊗ B1,A2 ⊗ B2, . . . ,Ak ⊗ Bk) (23)

where ⊗ denotes the Kronecker product (see Rao 1974, p. 29).

From (22) and (23) it follows that Ō∗ can be expressed as

Ō∗ =
(
1 1 1
1 1 −1

)
∗

(
1p√
2p

A B
)

(24)

where ∗ denotes the Khatri-Rao product. Again, Ō∗ being an orthogonal matrix, it
follows from (24) that

Ō∗Ō′∗ =
(
A∗ B
A∗ −B

) (
A∗′

A∗′

B′ −B′

)
=

(
A∗A∗′ + BB′ A∗A∗′ − BB′
A∗A∗′ − BB′ A∗A∗′ + BB′

)

where A∗ =
(

1p√
2p

A
)
. As Ō∗ is an orthogonal matrix, then

A∗A∗′ + BB′ = Ip, A∗A∗′ − BB′ = 0 (25)

⇒ A∗A∗′ = 1

2
Ip and BB′ = 1

2
Ip. (26)

Equation (26) also alternatively implies that
√
2A∗ and

√
2B are orthogonalmatri-

ces. From (26) it also follows that
(

1p√
2p

A
) (

1p√
2p

A
)′ = 1

2 Ip
i.e.

AA′ = (Ip − Jp

p
)
1

2
(27)

where Jp = p × p matrix with all elements unity.
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Let us consider a s1 × s2 × · · · × sm factorial set-up where each of the si ’s is even.
Let for a positive integer pi , si = 2pi ∀ i = 1, 2, . . . ,m and we define the following
matrices

Pxi
i =

⎧
⎪⎨

⎪⎩

1′
i0√
si

if xi = 0

Pie = P1
i if xi = 1

Pi0 = P2
i if xi = 2

1 ≤ i ≤ m (28)

where 1′
i0 = 1 × si matrix with all elements unity,

Pie =

⎛

⎜⎜⎜⎝

ξ′(2)
ξ′(4)

...

ξ′(2pi − 2)

⎞

⎟⎟⎟⎠ (29)

is a (pi − 1) × 2pi matrix with row vectors corresponding to the even order orthog-
onal polynomials (α 	= 0),

and

Pi0 =

⎛

⎜⎜⎜⎝

ξ′(1)
ξ′(3)

...

ξ′(2pi − 1)

⎞

⎟⎟⎟⎠ (30)

is a pi × 2pi matrix with row vectors corresponding to the odd order orthogonal
polynomials.

It is to be noted from (19), (20) and (28) that

P1
i = Pie = (A′

i ,A
′
i ) (31)

and
P2
i = Pi0 = (B′

i ,−B′
i ). (32)

We define the following set of all non-null ternary vectors

�∗ = (10 . . . 0, 20 . . . 0, . . . , 22 . . . 2). (33)

For each x ∈ �∗, we define a sub-factorial effect Fx = Fx1
1 Fx2

2 . . . Fxm
m , xi =

0, 1, 2, 1 ≤ i ≤ m in the following manner

Fx = (Px1
1 ⊗ Px2

2 ⊗ · · · ⊗ Pxm
m )t (34)

where Pxi
i is given by (28).
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We define

αi (xi ) =

⎧
⎪⎨

⎪⎩

1 i f xi = 0

(pi − 1) i f xi = 1

pi i f xi = 2

(35)

It is seen that Fx contains

α(x) = (α1(x1)α2(x2) . . . αm(xm)) (36)

orthonormal contrasts, where xi = 0, 1, 2; 1 ≤ i ≤ m.
Note that [Fx|x ∈ �∗] are sub-effects of the factorial effect [Fx|x ∈ �] defined

in (9) because Pi in (8) is partitioned as

Pi =
(
Pie
Pio

)
, 1 ≤ i ≤ m. (37)

Definition 4 Let a factorial design d(v =
∏m

i=1
si , b, k1, k2 . . . , kb, r1, r2, . . . , rv)

denote a connected block design which allows estimation of the sub-factorial effects
{Fx|x ∈ �∗} defined in (34) such that

Cov(F̂x, F̂y) = 0 ∀ x 	= y ∈ �∗, Disp(F̂x) = σ2ρ∗(x)Iα(x), x ∈ �∗ (38)

where si = 2pi , i = 1, 2, . . . ,m, and ρ∗(x) is a positive constant, then d is called a
partially balanced design(PBD) with orthogonal sub-factorial structure (OSFS).

3 Characterization of PBD with OSFS

With respect to the Sub-Effects defined in (34), let v =
m∏

i=1

si where si = 2pi , 1 ≤
i ≤ m level combinations be experimented in a connected block design with b blocks
of sizes k1, k2, . . . , kb such that the i th level combination occurs ri , 1 ≤ i ≤ v times.
Let N = (nih) be the incidence matrix of the designs, where nih(≥ 0) indicates the
number of times the i th level combination occurs in the hth block, h = 1, 2, . . . , b.
The observations are assumed to follow the usual intrablockmodelwith no (treatment
× block) interaction and are independent and homoscedastic. The reduced normal
equations for the treatment vector t is given in (10).

For xi = 0, 1, 2, let us define the following matrices

Mxi
i = P

x ′
i

i P
xi
i (39)

where Pxi
i are given by (28)–(32).
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Therefore from (26), (27), and (39) we get

M0
i = P0

i
′
P0
i =

(
1i√
2pi
1i√
2pi

) (
1′
i√
2pi

1′
i√
2pi

)
= 1

2

(
Ji
pi

Ji
pi

Ji
pi

Ji
pi

)
(40)

M1
i = P1

i
′
P1
i =

(
A
A

) (
A′ A′ ) = 1

2

(
Ii − Ji

pi
Ii − Ji

pi
Ii − Ji

pi
Ii − Ji

pi

)
(41)

M2
i = P2

i
′
P2
i =

(
B

−B′

) (
B′ −B′ ) = 1

2

(
Ii −Ii

−Ii Ii

)
(42)

where Ii = pi × pi identity matrix and Ji = pi × pi matrix with all elements unity.
Now we prove the following theorem

Theorem 1 A factorial design d(v, b, r1, r2, . . . , rv, k1, k2, . . . , kb) involvingm fac-
tors F1, F2, . . . , Fm is partially balanced withOSFSwith respect to the partition (34)
if and only if its C-matrix is given by

C =
∑

x1,...,xm
x∈�∗

ρ(x1 . . . xm)(Mx1
1 ⊗ Mx2

2 ⊗ · · · ⊗ Mxm
m ) (43)

where ρ(x1, x2, . . . , xm) is a real number and Mxi
i ’s are given by (40)–(42).

Proof ‘If’ part: Let C be as in (43). Then for any y ∈ �∗, defined in (33)

PyC =
∑

x∈�∗
ρ(x)(Py1

1 Mx1
1 ⊗ Py2

2 Mx2
2 ⊗ · · · ⊗ Pym

m Mxm
m ).

From the definitions of Pyi
i and Mxi

i given in (28) and (40)–(42) respectively, we
get
for (xi , yi ) = (0, 0) that

Pyi
i M

xi
i =

(
1′
i√
2pi

1′
i√
2pi

)
1
2

(
Ji
pi

Ji
pi

Ji
pi

Ji
pi

)
=

(
1′
i√
2pi

1′
i√
2pi

)
= P0

i .

Again for (xi , yi ) = (1, 1),

Pyi
i M

xi
i = (

A′ A′ ) 1
2

(
Ip − Jp

p Ip − Jp

p

Ip − Jp

p Ip − Jp

p

)
= (

A′ A′ ) = P1
i .

Similarly for any yi = 0, 1, 2 and xi = 0, 1, 2 we can prove that

Pyi
i M

xi
i = Pyi

i , if xi = yi ;= 0 otherwise, 1 ≤ i ≤ m. (44)

“if yi = xi ;= 0 if yi 	= xi", then continue with “1 ≤ i ≤ m”.
So

Pyi
i M

yi
i P

yi
i

′ = Iαi (yi ), 1 ≤ i ≤ m. (45)

where αi (yi ) is 1 or (pi − 1) or pi when yi = 0, 1 or 2 respectively, 1 ≤ i ≤ m.



120 M. Mandal and P. Das

Again, for yi = 0, 1, 2 and zi = 0, 1, 2, 1 ≤ i ≤ m we have

Pyi
i M

yi
i P

zi
i

′ = Pyi
i P

zi
i

′ = Iαi (yi ) if yi = zi ; = 0 otherwise, ∀i. (46)

Therefore, from (46)

PyMyPz ′ =
{
Iα(y) if y = z ∈ �∗

0 if y 	= z ∈ �∗ (47)

where α( y) = α1( y1)α2( y2) . . . αm( ym).
So from (43), (44) and (47) it follows that for all x, y belonging to �∗

PyCPz′ =
{
0 if y 	= z

ρ( y)Iα( y) if y = z.
(48)

Following the same lines of proof of Lemma 3.1.3(b) of Gupta and Mukerjee
(1989), it can be proved using (48) that ρ(y) > 0 ∀ y ∈ �∗. Therefore from (43) and
(44), it follows that

PyC = ρ(y)Py (i)
⇒ Py = ρ(y)−1PyC (i i)

⇒ Pyt̂ = ρ(y)−1PyCt̂ (i i i)
⇒ Pyt̂ = F̂y = PyQ

ρ(y) . (iv)

⎫
⎪⎪⎬

⎪⎪⎭
(49)

Equation (49) follows from the normal equations (10) and it gives the BLUE for
the factorial sub-effect Fy = Pyt, y ∈ �∗. It is known that

Disp(Q) = σ2C (50)

where σ2 is the error variance. Therefore, for any two sub-effects Fy and Fz, y, z ∈
�∗ it follows from (48) and (49) that

Cov(F̂y, F̂z) = Cov(Pyt̂,Pzt̂) = [ρ(y)ρ(z)]−1Cov(PyQ,PzQ)

= [ρ(y)ρ(z)]−1σ2PyCPz′

= 0 if y 	= z ∈ �∗. (51)

Equation (51) implies that d has orthogonal sub-factorial structure (OSFS). Again
from (48), (49), (50), (51) it follows that

Disp(F̂y) = Disp(Pyt̂) = σ2[ρ2(y)]−1
(PyCPy ′) = σ2

ρ( y) Iα( y) ∀ y ∈ �∗. (52)

Therefore, (52) implies that the BLUE of each of α(y), orthonormal contrasts
belonging Fy, y ∈ �∗, has equal variance. So the design d is partially balanced with
respect to partition [Fy], y ∈ �∗.
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‘Only If’ part: Let us define a matrix P(v−1)×v as

P = (
P10...0′ P20...0′ . . . P22...2′ )′ = (Py|y ∈ �∗). (53)

See that

(
1′

v√
v

P

)
is a v × v orthogonalmatrix, where 1′

v = (1, 1, . . . , 1)1×v . There-

fore it follows that

(
1v√
v
P′

) (
1′

v√
v

P

)
= Iv ⇒ Jv

v
+ P′P = Iv ⇒ P′P = Iv − Jv

v

where Jv = v × v matrix with all element unity and Iv = v × v identity matrix.
Again, since C has all row and column sums zero and P ′P = Iv − Jv

v
it follows

that
P′PC = CP′P = C. (54)

AsC is positive semi-definite of rank (v − 1) it canbe easily proved that (following
the lines of proof of Lemma 3.1.3(a) of Gupta andMukerjee 1989) (PCP′)(v−1)×(v−1)

is positive definite. Therefore from (54), we can write that

(PCP′)P = PC
⇒ P = (PCP′)−1PC

⇒ Pt̂ = (PCP′)−1PQ

⇒ Disp(Pt̂) = σ2(PCP′)−1. (55)

Now
Pt̂ = (. . .Pxt̂ . . . |x ∈ �∗) = (. . . F̂x . . . |x ∈ �∗). (56)

Therefore
Disp(Pt̂) = Disp

(
. . . F̂x . . .

)′ = σ2(PCP′)−1. (57)

So for OSFS, we must have Cov(F̂x, F̂z) = 0 ∀x 	= z ∈ �∗ and hence (PCP′)−1

must be a block diagonal matrix i.e.

σ2(PCP′)−1 = Diag(. . .Disp(F̂x) . . . |x ∈ �∗) = Diag(. . . σ2Dx . . . |x ∈ �∗)
(58)

where Disp(F̂x) = σ2Dx, x ∈ �∗.
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Again for partial balance, Dx must be proportional to Iα(x), x ∈ �∗ i.e. for dx >

0 ∀ x ∈ �∗
σ2(PCP′)−1 = Diag(. . . σ2d−1

x Iα(x)|x ∈ �∗) (59)

⇒ PCP′ = Diag(. . . dxIα(x) . . . |x ∈ �∗)
⇒ P′PCP′P = P′Diag(. . . dxIα(x) . . .)P
⇒ C =

∑

x∈�∗
d(x)Px ′Px (as P′PCP′P = C)

=
∑

x∈�∗
d(x)Mx.

Thus the ‘only if’ part is proved. �
For i = 1, 2, . . . ,m, let us define the following matrices

Zxi
i =

(
Jpi Jpi
Jpi Jpi

)
if xi = 0 or

(
Ipi 0
0 Ipi

)
if xi = 1, or

(
0 Ipi
Ipi 0

)
if xi = 2.

(60)
We see from (40)–(42) and (60) that

M0
i = Z0

i

2pi
, M1

i = 1

2
[(Z1

i + Z2
i ) − Z0

i

pi
], M2

i = 1

2
[Z1

i − Z2
i ]. (61)

Conversely,

Z0
i = 2piM0

i , Z1
i = M0

i + M1
i + M2

i , Z2
i = (M0

i + M1
i ) − M2

i . (62)

So from Theorem 1, (61) and (62) we get the following theorem.

Theorem 2 A factorial design d is partially balanced with OSFS if and only if

C =
∑

(x1,x2,...,xm )∈�∗∗
h(x1, x2, . . . , xm)(Zx1

1 ⊗ Zx2
2 ⊗ · · · ⊗ Zxm

m ) (63)

where h(x1, x2, . . . , xm) are real numbers and �∗∗ = �∗ ∪ (0, 0, . . . , 0).

Proof ‘Only if’ part From Theorem 1 it is known that d is partially balanced with
OSFS only if

C =
∑

(x1,x2,...,xm )∈�∗
ρ(x1, x2, . . . , xm)(Mx1

1 ⊗ Mx2
2 ⊗ · · · ⊗ Mxm

m ).

Now by replacing Mxi
i by Zxi

i ’s from (61) we get the relation (63). So the ‘only
if’ part is proved.
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‘If’ part We suppose that the relation (63) is given. Then by replacing the Mxi
i ’s by

Zxi
i ’s from (62) we can get the following equation

C =
∑

(x1,x2,...,xm )∈�∗∗
h(x1, x2, . . . , xm)(Mx1

1 ⊗ Mx2
2 ⊗ · · · ⊗ Mxm

m )

= h(0, 0, . . . 0)(M0
1 ⊗ M0

2 ⊗ · · · ⊗ M0
m)+∑

(x1,x2,...,xm )∈�∗
h(x1, x2, . . . xm)(Mx1

1 ⊗ Mx2
2 ⊗ · · · ⊗ Mxm

m ).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(64)

Now for every (y1, y2, . . . ym) ∈ �∗
(My1

1 ⊗ · · · ⊗ Mym
m )(M0

1 ⊗ · · · ⊗ M0
m) = 0

and also
(M0

1 ⊗ · · · ⊗ M0
m)(M0

1 ⊗ · · · ⊗ M0
m) = (M0

1 ⊗ · · · ⊗ M0
m) 	= 0.

Again C(M0
1 ⊗ · · · ⊗ M0

m)=0 as the row sums of C are zeros. So by post-
multiplying (64) by (M0

1 ⊗ · · · ⊗ M0
m) we get

C(M0
1 ⊗ · · · ⊗ M0

m) = h(0, 0, . . . , 0)(M0
1 ⊗ · · · ⊗ M0

m)

⇒ h(0, 0, . . . , 0) = 0.

}
(65)

So C takes the form

C =
∑

(x1,x2,...,xm )∈�∗
h(x1, x2, . . . , xm)(Mx1

1 ⊗ · · · ⊗ Mxm
m ). (66)

Therefore, from Theorem 1, it follows that d has partial balance with OSFS. �
Let us define, for xi = 0, 1, 1 ≤ i ≤ m

Zxi
i =

{
Ii0 if xi = 0

Ji0 if xi = 1
(67)

where Ii0 = si × si identity matrix, Ji0 = si × si matrix with all elements unity.
Then if the C-matrix of a design has the structure

C =
∑

(x1,x2,...,xm )∈�∗
h(x1, x2, . . . , xm)(Zx1

1 ⊗ . . .Zxm
m ) (68)

thenC is said to have property A (cf. Gupta andMukerjee 1989), where h(x1, x2, . . .
xm)s are real numbers and Zxi

i s are as in (67).
Zxi
i s considered in (60) are of more general nature than those given in Gupta and

Mukerjee (1989) and have three alternative forms depending on the values of xi . If
a C-matrix has the structure of (63), we define that the C-matrix has ‘generalized A’
property. So, the Theorem 2 can be alternatively stated as

Theorem 3 A factorial design d is partially balanced with OSFS with respect to the
partition (34) if and only if its C-matrix has ‘generalised A’ property.
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Let us consider a binary, equi-replicate and proper design d. Then its C-matrix is
given by

C = rIv − NN′

k
⇒ NN′ = k(rIv − C). (69)

If d has property ‘generalized A’ then from (69) it follows that NN′ has property
‘generalized A’ as

Iv = Z0
1 ⊗ Z0

2 ⊗ · · · ⊗ Z0
m .

So from Theorem 3 and above discussion we get the following result.

Theorem 4 A binary, proper and equi-replicate design d is partially balanced with
orthogonal sub-factorial structure with respect to the partition (34) if and only if the
NN′ matrix has ’generalized A’ property.

4 Combinatorial Characterization of Partially Balanced
Design with Orthogonal Sub-Factorial Structure

We divide the 2pi levels of the factor Fi , into pi groups each containing 2 levels
where

Gi1 = (0, 2pi − 1), Gi2 = (1, 2pi − 2), . . . ,Gipi = (pi − 1, pi ), 1 ≤ i ≤ m.

(70)

We define a group-divisible association scheme (cf. Raghavarao 1971) among the
2pi levels of Fi as: if any two treatments belong to the same group, they are first
associates; otherwise they are second associates.

We have considered the 2pi levels in the order as Gi = (0, 1, . . . , pi − 1, 2pi −
1, 2pi − 2, . . . , pi ), which can alternatively be written as Gi = (00, 01, . . . , 0pi −
1; 10, 11, . . . , 1pi − 1) = (G1

i ,G
2
i ), (say); 1 ≤ i ≤ m.

The groups of levels of (70) can be written as

Gi1 = (00, 10), Gi2 = (01, 11), . . . ,Gipi = (0pi − 1, 1pi − 1). (71)

With these new notations of the levels the association scheme(a.s) over the levels
of Fi can be reformulated as
(i) level (i, j) and level (i ′, j ′) are 0th associate if (i = i ′, j = j ′); (i i) level (i, j)
and level (i ′, j ′) are 1st associate if (i 	= i ′, j = j ′); (i i i) level (i, j) and level (i ′, j ′)
are 2nd associate otherwise.

Therefore, the association matrices can be represented as

B0
i =

(
Ii 0i
0i Ii

)
, (72)
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B1
i =

(
0i Ii
Ii 0i

)
, (73)

B2
i =

(
Ji − Ii Ji − Ii
Ji − Ii Ji − Ii

)
(74)

where
0i , Ji and Ii are respectively pi × pi null, sum and identity matrices.
Now we prove the following result.

Result 1 [Zxi
i ] are linear combinations of [Bxi

i ] and conversely, xi = 0, 1, 2; 1 ≤
i ≤ m.

Proof From (60) and (72)–(74) we see that

Z0
i = B0

i + B1
i + B2

i ; Z1
i = B0

i , Z2
i = B1

i ; 1 ≤ i ≤ m. (75)

Again,

B0
i = Z1

i , B1
i = Z2

i , B2
i = Z0

i − (Z1
i + Z2

i ); 1 ≤ i ≤ m. (76)

�
We now define a PBIB association scheme called ‘generalized extended group

divisible’ (GEGD) association scheme between the v =
∏m

i=1
si level combinations

of the m factors F1, F2, . . . , Fm .

Definition 5 Consider any two treatment combinations t = [(i1, j1), (i2, j2), . . . ,
(im, jm)] and t ′ = [(i ′1, j ′1), (i ′2, j ′2), . . . , (i ′m, j ′m)], iu, i ′u = 0, 1 and ju, j ′u =
0, 1, . . . , pu − 1, 1 ≤ u ≤ m. Then t and t ′ are defined to be x = (x1, x2, . . . , xm)th

associate where xu is given by

xu =
⎧
⎨

⎩

0 if iu = i ′u, ju = j ′u
1 if iu 	= i ′u, ju = j ′u
2 if iu = i ′u, ju 	= j ′u or iu 	= i ′u, ju 	= j ′u

1 ≤ u ≤ m. (77)

The above defines a PBIB association schemewith all possible (3m − 1) associate
classes. Nair and Rao (1948) and Shah (1958, 1960) used a (2m − 1)-class associa-
tion scheme for combinatorial characterization of balanced design with OFS for 2m

experiment. Hinkelman and Kempthorne (1963) called such scheme as ‘extended
group divisible’ (EGD) association scheme and Paik and Federer (1973) called such
scheme as ‘binary number association scheme’. In this scheme two treatment com-
binations ( j1, j2, . . . , jm) and ( j ′1, j ′2, . . . , j ′m), 0 ≤ ji , j ′i ≤ si − 1, i = 1, 2, . . . ,m
are said to be y = (y1, y2, . . . ym)th associate where

yu =
{
0 if ju = j ′u
1 if ju 	= j ′u

1 ≤ u ≤ m.
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It can be proved that the 2m association matrices (including the (00 . . . 0)th asso-
ciation matrices) of the EGD association scheme are given by (Gupta (1988); see
also Gupta and Mukerjee (1989))

B∗y = B∗y1
1 ⊗ B∗y2

2 ⊗ · · · ⊗ B∗ym
m (78)

where

B∗yi
i =

{
Ii0 if yi = 0

(Ji0 − Ii0) if yi = 1
(79)

and
Ii0 = si × si identity matrix
Ji0 = si × si matrix with all elements unity.
Note that [B∗yi

i ] are the associationmatrices of theBIB association scheme defined
over the si levels of the i th factor Fi , 1 ≤ i ≤ m.

It can be verified that the (3m − 1) association matrices of the association scheme
defined in (77) can be written as

Bx = Bx1
1 ⊗ Bx2

2 ⊗ · · · ⊗ Bxm
m (80)

where [Bxi
i ] are given by (72)–(74) and are association matrices of a GD association

scheme. Note that this association scheme is a generalization of the EGD association
scheme in the same way as GD association scheme is a generalization of BIB asso-
ciation scheme in the one-factor case. This scheme reduces to the EGD association
scheme if 1th and 2th associations of the levels of Fi are coaleased to a single asso-
ciation, 1 ≤ i ≤ m. For this, we call such association scheme as ‘generalized EGD’
(GEGD) association scheme.

Now we consider PBIBDs based on the GEGD association scheme introduced in
Definition 5where any two treatments which are x th associate, occur together inλ(x)
blocks, x ∈ �∗. So if Nv×b is the incidence matrix and r is the common replication
number, then obviously, for the GEGDD we have

NN′ = rIv +
∑

x∈�∗
λ(x)Bx. (81)

We have seen that [Eqs. (75) and (76)] that {Bxi
i }s can be expressed in terms of

[Zxi
i ] and conversely i.e.NN

′ in (81) has ‘generalized A property’. Conversely ifNN′
has generalised A property, then it can be expressed as the NN′ matrix of a GEGD
design given in (81). So we get the following theorem.

Theorem 5 A binary, proper and equi-replicate design d is partially balanced with
orthogonal sub-factorial structure with respect to the partition (34) if and only if it
is a GEGDD.
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Using (81) the C-matrix of a GEGD design can be written as

C = rIv − NN′

k
= rIv − rIv

k
−

∑

x∈�∗
λ(x)Bx = r(k − 1)

k
Iv −

∑

x∈�∗
λ(x)Bx. (82)

Let Py = (Py1
1 ⊗ Py2

2 ⊗ · · · ⊗ Pym
m ), where [Pyi

i ], 1 ≤ i ≤ m are given by (28).
Then

PyCPy′ = r(k − 1)

k
Iα(y) −

∑

x∈�∗
λ(x)PyBxPy′

. (83)

Now taking {Bxi
i }s from (72)–(74) and {Pyi

i }s from (28) we compute Pyi
i B

xi
i P

y′
i

i for
different values of yi s and xi s. For example

(i) if yi = 0, xi = 0, then

P0
i B

0
i P

0′
i =

(
1′
i√
2pi

1′
i√
2pi

) (
Ii 0i
0i Ii

)( 1′
i√
2pi
1′
i√
2pi

)
= 1 = 1.Iαi (0);

(ii) if yi = 1, xi = 2, then

P1
i B

2
i P

1′
i = (

A′
i A

′
i

) (
Ji − Ii Ji − Ii
Ji − Ii Ji − Ii

)(
Ai

Ai

)
= (−2)Ipi−1 = (−2)Iαi (1).

In this way, we construct the following table.
where αi (0) = 1,αi (1) = pi − 1,αi (2) = pi ; 1 ≤ i ≤ m.

Therefore, from the entries of Table1 we can write PyBxPy′
, x, y ∈ �∗, as

PyBxPy′ = ⊗m
i=1P

yi
i B

xi
i P

yi ′
i = [

m∏

i=1

ui (yi , xi )]Iα(y) (84)

Table 1 Computation of

Pyi
i Bxi

i P
y′
i

i ; yi , xi =
0, 1, 2; 1 ≤ i ≤ m

yi xi P yi
i Bxi

i P
y′
i

i

0 0 1.Iαi (0) = ui (0, 0)I(αi (0))

0 1 1.Iαi (0) = ui (0, 1)I(αi (0))

0 2 2.(pi − 1)Iαi (0) = ui (0, 2)I(αi (0))

1 0 1.Iαi (1) = ui (1, 0)Iαi (1)

1 1 1.Iαi (1) = ui (1, 1)Iαi (1)

1 2 (−2)Iαi (1) = ui (1, 2)Iαi (1)

2 0 1.Iαi (2) = ui (2, 0)Iαi (2)

2 1 1.Iαi (2) = ui (2, 1)Iαi (2)

2 2 0.Iαi (2) = ui (2, 2)Iαi (2)
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PyCPy′ = r(k−1)
k Iα(y) − 1

k

∑

x∈�∗
λ(x)[

m∏

i=1

u(yi , xi )]Iα(y)

= [ r(k−1)
k − 1

k

∑

x∈�∗
λ(x)(

m∏

i=1

u(yi , xi ))]Iα( y).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(85)

where α(y) = α1(y1)α2(y2) . . . αm(ym) and ui (yi , xi )s are given in Table1
So comparing (48) and (85) we have, for y ∈ �∗

ρ(y) = r(k − 1)

k
−

∑

x∈�∗
λ(x)[

m∏

i=1

u(yi , xi )]. (86)

Again from (52), we can write for a connected GEGD that

DispGEGD(F̂y) = Disp(Pyt̂) = σ2 Iα(y)

ρ(y)
, y ∈ �∗. (87)

Also, on the other hand, if a randomized complete block designwith r replications
were used, then we would have

Disp(RBD)(F̂y) = σ2 Iα(y)

r
. (88)

So from (87), (88) we get the efficiency of GEGDwith respect to the sub-factorial
effect Fy, y ∈ �∗ as

ε(y) = ρ(y)
r

(89)

where ρ(y) is given by (86).

Example 1 Let there be two factors F1 and F2 with s1 = 4, s2 = 6. The 4 × 6 = 24
treatment combinations arewritten as [( j1, j2), j1 = 0, 1, 2, 3; j2 = 0, 1, 2, 3, 4, 5].
The 16 blocks are shown below. The level combinations are arranged as

Blocks
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16

00 00 01 02 30 30 31 32 00 00 01 02 10 10 11 12
01 04 05 05 31 34 35 35 01 04 05 05 11 14 15 15
02 03 03 04 32 33 33 34 02 03 03 04 12 13 13 14
10 10 11 12 20 20 21 22 20 20 21 22 30 30 31 32
11 14 15 15 21 24 25 25 21 24 25 25 31 34 35 35
12 13 13 14 22 23 23 24 22 23 23 24 32 33 33 34
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(0, 1, 3, 2) � (0, 1, 2, 5, 4, 3)= (00, 01, 02, 05, 04, 03, |10, 11, 12, 15, 14, 13, |30,
31, 32, 35, 34, 33, |20, 21, 22, 25, 24, 23), where � denotes a direct product.

The incidence matrix of the design is given by

00
01
02
05
04
03
10
11
12
15
14
13
30
31
32
35
34
33
20
21
22
25
24
23

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1
0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The incidence matrix N can be expressed as N = N1 ⊗ N2 where N1 and N2 are
given respectively by

N1 =

Levels
0
1
3
2

⎛

⎜⎜⎝

1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0

⎞

⎟⎟⎠ N2 =

Levels
0
1
2
5
4
3

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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It follows that NN′ = N1N′
1 ⊗ N2N′

2 =

⎛

⎜⎜⎝

2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

⎞

⎟⎟⎠ ⊗

⎛

⎜⎜⎜⎜⎜⎜⎝

2 1 1 0 1 1
1 2 1 1 0 1
1 1 2 1 1 0
0 1 1 2 1 1
1 0 1 1 2 1
1 1 0 1 1 2

⎞

⎟⎟⎟⎟⎟⎟⎠

= (2B0
1 + 0B1

1 + 1B2
1) ⊗ (2B0

2 + 0B1
2 + 1B2

2) = 4B00 + 2B02 + 2B20 + 1B22

(90)
where Bxi

i s are given by (72)–(74), xi = 0, 1, 2; i = 1, 2.
It follows that r = 4,λ(02) = λ(20) = 2,λ(22) = 1 and λ(x1, x2) = 0

for (x1, x2) = (01, 10, 11, 12, 21). From (86) the ρ’s are given by

ρ(10) = r(k−1)
k − 1

k [λ(20)(u1(12)u2(00)) + λ(02)(u1(10)u2(02)) + λ(22)(u1(12)u2(02))] = 4

ρ(20) = r(k−1)
k − 1

k [λ(20)(u1(22)u2(00)) + λ(02)(u1(20)u2(02)) + λ(22)(u1(22)u2(02))] = 2

ρ(11) = r(k−1)
k − 1

k [λ(20)(u1(12)u2(10)) + λ(02)(u1(10)u2(12)) + λ(22)(u1(12)u2(12))] = 4

ρ(12) = 20
6 − 1

6 [λ(20)u1(12)u2(20) + λ(02)u1(10)u2(22) + λ(22)u1(12)u2(22)] =4

ρ(21) = 20
6 − 1

6 [λ(20)u1(22)u2(10) + λ(02)u1(20)u2(12) + λ(22)u1(22)u2(12)] =4

ρ(22) = 20
6 − 1

6 [λ(20)u1(22)u2(22) + λ(02)u1(20)u2(22) + λ(22)u1(22)u2(22)]= 10
3

ρ(02) = 20
6 − 1

6 [λ(20)u1(02)u2(20) + λ(02)u1(00)u2(22) + λ(22)u1(02)u2(22)]= 16
6

ρ(01) = 20
6 − 1

6 [λ(20)u1(02)u2(10) + λ(02)u1(00)u2(12) + λ(22)u1(02)u2(12)]=4
Again from (86)
ε(F10) = ε(10) = 1, ε(20) = 1

2 , ε(11) = 1, ε(12) = 1, ε(21) = 1, ε(22) = 5
6 ,

ε(02) = 2
3 , ε(01) = 1.

Remark 1 The partially balanced design with orthogonal sub-factorial structure
derived here have some apparent similarity with the designs proposed in Das and
Chatterjee (1999). The coefficient vectors of the contrasts belonging to the sub-
factorial effects in Das and Chatterjee (1999) are obtained by introducing groups
among the levels of the factors and within-group and between-group contrasts are
considered there. The within-group contrasts defined there do not involve the effects
of all the levels of the factors; they only involve the effects of the levels contained
in the relevant groups. But here the contrasts are chosen differently involving the
effects of all the levels. So here the effect contrasts give more insight into the expla-
nation of the factorial effects. Also here, as the coefficient vectors are chosen from
the values of orthogonal polynomials, so they are helpful in understanding the linear,
quadratic, cubic etc. effects of the factorial effects. Moreover the derivations here
are more elegant and the results come in more neat form as the contrasts are divided
into different groups using the properties of the orthonormal vectors obtained from
orthogonal polynomials.

Remark 2 The advantages of factorial designs with partial balance and orthogonal
sub-factorial structure are discussed in Sect. 1 (Introduction). Also the works done in
this direction are mentioned therein (viz. Das and Chatterjee 1999 and Das 2003). In
Das and Chatterjee (1999) the treatment contrasts representing factorial effects are



Confounded Factorial Design with Partial Balance … 131

divided by introducing groups among the levels of the factors while the pencilwise
division of the effect contrasts of Bose (1947) is used in Das (2003). There are scopes
of other kind of divisions of the effect contrasts and introduction of partially balanced
factorial designs accordingly. There is scope for unification also. In particular, it
may be interesting to investigate if other PBIB association matrices may be used to
construct such designs in the binary, proper and equireplicate case.
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Beyond the Bayes Factor, A New
Bayesian Paradigm for Handling
Hypothesis Testing

Christian P. Robert

Abstract This note is a discussion on the perceived shortcomings of the classical
Bayesian approach to testing, and an alternative approach advanced by Kamary et al.
(Testing hypotheses via a mixture estimation model, 2014) as a solution to this
quintessential inference problem.

Keywords Testing of hypotheses · Bayesian inference · Bayes factor
Evidence · Decision theory · Consistency · Mixtures of distributions

1 Introduction

Testing hypotheses is undoubtedly a central issue for Statistics and in particular for
Bayesian analysis. From the early days of the discipline (Stigler 1986), there has
been proposals and divisions as how to conduct the evaluation of hypotheses and
the subsequent decisions, including withing the Bayesian framework. One cannot
consider that the current state of the field has reached a stationary stage, even though
the default Bayesian solution remains the Bayes factor, as exemplified by the applied
literature. As discussed below, this solution is however constrained by its adherence
to an artificial decision framework, as set by J. Neyman and E. Pearson in the 1930s.
We argue in Kamary et al. (2014) that time is ripe for a paradigm shift about testing
and that an alternative based on a mixture encompassing model can be defended as
a generic solution to this quintessential inference problem.
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2 Limitations of the Bayes Factor

The Bayes factor is indeed at the core of the standard approach to Bayesian testing
and model selection. (Although one may consider both problems as fundamentally
different, we will treat them here as one single problem, based on the argument that
the selection of one of two possible choices must be followed with further inference
on the selected side, which thus operates as a newmodel.) As proposed and defended
by Jeffreys (1939), this procedure is defined as the ratio of integrated likelihoods.
Given two models

M1 : x ∼ f1(x |θ1) , θ1 ∈ �1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ �2 ,

to be compared, with respective priors

θ1 ∼ π1(θ1) and θ2 ∼ π2(θ2) ,

the respective marginal likelihoods

m1(x) =
∫

�1

f1(x |θ1) π1(θ1) dθ1 and m2(x) =
∫

�2

f2(x |θ2) π1(θ2) dθ2

are compared through the Bayes factor

B12 = m1(x)

m2(x)
.

Since this construction is equivalent to the derivation of the posterior probability that
the model is M1 or M2, there is nothing to criticise at this stage. However, the use
of the Bayes factor as a decision tool is more debatable. If one follows the Neyman-
Pearson formalism, the Bayes factor is to be compared to a bound that summarises
both the prior weights put on both models and the penalties put upon the wrong
choice of each model. Depending on those quantities, the bound can be anything
between zero and infinity. A major difficulty with this formalism is that the bound
is impossible to determine in all practical settings, hereby making the formalism
impossible to implement. If instead one follows Jeffreys (1939) and proceeds from
his scale on the strength of evidence, taking a value of one as the boundary between
both models, this bound amounts to specific choices in the first perspective, while
lacking in calibration, the scales proposed by Jeffreys being qualitative and failing to
provide the uncertainty behind the decision of chosing one model versus the other.1

Furthermore, exploiting the Bayes factor B12 as a qualitative measure of how
strongly the data support one model versus the other often has the undesirable effect

1This criticism is actually much more about the approach to aim for a model selection free of a loss
function, than about the Bayes factor per se, which, once more, appears as a natural transform of
the posterior probabilities of the model.
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of turning it into a p-value. Indeed, it is quite simple to turnB12 into a probability

p12 = B12

1 + B12

by assuming the “natural” division of prior weights, (1/2, 1/2), and to fail to calibrate
this probability p12 by considering it naturally scales against the (0, 1) interval,
just as a classical p-value would do. As discussed by Fraser (2011), there is no
(mathematical) reason to treat this probability as producing a frequentist degree of
confidence, at least for a finite sample size (Lindley 1961; Welch and Peers 1963),
and there is no Bayesian equivalent to the frequentist property that the p-value
should be uniformly distributed under the null hypothesis (in the simplest cases).2

Among other points raised in Robert (2016), let me point out two more issues: one
is the long-lasting impact of the prior density on the numerical value of the marginal
likelihood, meaning the choice of the prior distribution on the parameter of a given
model determines this numerical value by its tail behaviour3 and another is the lack
of mathematical justification in using improper priors (DeGroot 1982) since their
lack of normalisation renders them inappropriate in most testing situations, leading
to many alternative if ad hoc solutions, where data is either used twice or split in
learning-testing partitions that are not altogether consistent.

3 Estimating a Mixture Model

An alternative to testing via Bayes factors has been proposed in Kamary et al. (2014),
namely by a reformulation of both the problem and its resolution into a framework
that accounts for uncertainty and returns a posterior distribution instead of a single
number (like the Bayes factor) or a decision. As shown in Kamary et al. (2014), this
new approach offers a convergent and naturally interpretable solution to the testing
problem.

The core idea to this alternative approach is to work through a representation
of the testing problem as a two-component mixture estimation problem, when the
mixture weights are formally equal to 0 or 1. This encompassing model can then be
estimated as any other mixture model. The motivation for this approach follows from
the consistency results of Rousseau and Mengersen (2011) on overfitted mixtures,
that is, mixture models where the data is generated from a mixture distribution with
a lesser components.

Hence, given two models under comparison,

M0 : x ∼ f0(x |θ0) , θ0 ∈ �0 and M1 : x ∼ f1(x |θ1) , θ1 ∈ �0 ,

2The need for recalibrating Bayesian posterior probabilities towards a relative scale is actually
overlooked in the literature.
3This difficulty is actually compatible with the consistency property of the Bayes factor.
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an encompassing mixture model is

Mα : x ∼ α f0(x |θ0) + (1 − α) f1(x |θ1) , (1)

where the mixture weight 0 ≤ α ≤ 1 is introduced in addition to the original param-
eters of the model. This means that inference proceeds as if each term in the original
iid sample behind the test or the model comparison is considered as being generated
from Mα . While this artificial model encompasses both M0 and M1 as two special
cases, namely when α = 0 and α = 1, respectively, a standard Bayesian analysis
of this mixture model leads to an estimate of the weight α, relying on an equally
artificial prior distribution π(α)with support the entire (0, 1) interval. For simplicity
reasons, we use a Beta Be(a0, a0) distribution.

As a result of thismodelling, aBayesian processingof themodel returns a posterior
distribution on the weight α as well as on the other parameters of the mixture (1).
The proposal is to use the posterior on α as the basis for deciding (and calibrating
the evidence) in favour of one model versus the other. For instance, when the mass
of this posterior is primarily concentrated near zero, the data supports more strongly
M1 than M0. Clearly, this alternative paradigm no longer returns a value in the
binary set {0, 1} as a more traditional testing strategy would do. Instead, the decision
or the evidence need be based on the entire distribution. Therefore, our mixture
representation moves away from making a hard choice between both models (or
hypotheses) or even from computing a posterior probability ofM0 orM1. Inference
within this mixture representation thus bypasses the difficulties with the original
Neyman-Pearson framework, as it prevents from incorporating the decision within
the statistical analysis. It ends up as a more genuine approach to testing, while not
expanding on the total number of parameters of the model. Further arguments can
be found in Kamary et al. (2014), including consistency.

From a practical perspective–in the sense of the approach being used for solving
real life problems—, the implementation of this principle does not induce major
computational difficulties since mixtures are rather straightforward to estimate (Lee
et al. 2009). The major shift stands with analysing the posterior distribution on the
weight α. Shying away from p-values and equivalents, we advocate calibrating the
concentration of this distribution near the boundaries, 0 and 1, in absolute terms
if this is possible, but also relative to the corresponding concentration of a similar
posterior distribution associated with pseudo-data simulated from each model.

4 Conclusion

While the above is but an introduction to this perspective on testing, we are cur-
rently working on extensions to non-iid data, multiple testing, and non-parametric
alternatives. Early criticisms have foscussed on the slow convergence of the posterior
distribution (and of the posterior median) of α to one of the boundaries, as well as the
dependence of the outcome on the prior on this weight: Such criticisms only apply to
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a frequentist interpretation of probabilities, i.e., to a comparison of the posterior dis-
tribution with a Uniform distribution and to a Uniform scaling of probabilities on the
unit interval. We argue that, instead, the dependence on the prior is a natural feature
of Bayesian analysis, which means that the impact of the data on the distribution of
the mixture weight need be assessed relative to the prior distribution and calibrated
against pre-posteriors, that is, posteriors derived from pseudo-samples generated by
the prior predictive for the mixture and for each model under comparison. We gen-
uinely think that moving away from the rudimentary binary decision framework can
only contribute to make testing better informed and in fine help to overcome the
current testing crisis (Wasserstein and Lazar 2016).

Acknowledgements I amquite grateful to theDepartment of Statistics of theUniversity of Calcutta
both for its kind invitation at the 75th (Platinum) anniversary of its creation and for itswarmwelcome.
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No Calculation When Observation
Can Be Made

Tommy Wright

Abstract For a long time, when data were needed by a nation, a census was often
carried out in an attempt to make measurements on every household or every person
in that nation. The move from conducting a census to conducting a sample survey
where only a subset of households or persons was measured was met with opposi-
tion. Sampling requires that weights be calculated and applied to the observations in
the sample, while observations of all units in a census do not require such calcula-
tion. Wanting to preserve censuses, the opposition to sampling was best expressed
in the translated firm phrase, “No calculation when observation can be made”. With
advances in probability sampling theory and applications, this resistance movement
eventually failed. Societies have become more complex and people more mobile;
data collection costs have risen; and the public’s response rates to government sam-
ple surveys continue to fall, though not as sharply as with non-government sample
surveys. Other sources of data (e.g., administrative records, big data, commercial
data) to measure human behavior and condition are being investigated for increased
use in production of official statistics. Though there are technical concerns (e.g.,
representativeness, data quality, privacy), other features of big data (e.g., relatively
inexpensive; largely digital measurement; minimize respondent burden; lot of data;
rich, complex, diverse, flexible) and the growing demand for data gathering and
managing tools suggest a very useful source of data. However, with big data and the
implicit promise of observation of everything, there is a risk that users may move
to question the need for sampling or statistical calculation. Indeed, the new phrase
might be “No statistical calculationwhen big data observation can bemade”, a phrase
lacking scientific merit. In this paper, we take a brief look at the move from censuses
to samples. Specifically, we (i) highlight Kiaer (1895, 1897) nonrandom representa-
tive method which laid seeds for the current use of survey sampling methodology to
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make measurements for official statistics; (ii) highlight Neyman’s 1934 contribution
with stratified random sampling and optimal sample allocation to achieve represen-
tativeness, (iii) note some recent developments (Wright 2012, 2014, 2016, 2017)
to improve Neyman’s optimal allocation, and (iv) offer some personal observations
looking forward.

Keywords Censuses · Sample surveys · Alternative data sources
Official statistics

1 Introduction

For use in connectionwith the general and complete information thatwould be known
from a full census, Kiaer (1895, 1897) presents a nonrandom purposive “represen-
tative method” for sampling from a finite population to provide “...more penetrating,
more detailed, and more specialized surveys...” Kiaer did not use probability in his
selection.

Many viewKiaer’smethod as laying seeds for the use of current samplingmethods
in producing official social and economic statistics.Kiaer attempted to select a sample
that had distributions on some variables thatwere similar to the distributions observed
from a census for the same variables. There seems to be evidence that he calculated
weights to help improve the sample’s representativeness (Kiaer 1897). Kiaer had
few early followers and much opposition, one of his strongest critics, saying (a
translation), “...no calculation when observation can be made.”

With clarity and elegant style, Neyman (1934) brought probability to this rep-
resentative method using stratified random sampling. Among several noteworthy
statistical contributions in his paper, Neyman presents details for an optimal alloca-
tion of the fixed sample size among the various strata to minimize sampling variance.
However, there are concerns with Neyman’s result: (i) it does not give integer solu-
tions; (ii) rounding does not always give minimum variance, and (iii) it permits a
sample size in a stratum that exceeds the stratum size, which is not feasible. The
conservative approach of always rounding up can be costly, especially when there
are many strata as often occurs with samples of businesses.

Wright (2012) improves on Neyman’s result with a simple derivation obtaining
exact results that always yield integer sample size allocations while minimizing
sampling variance. Wright (2014, 2016, 2017) generalizes and extends his results
when there are mixed constraints on sample sizes for each stratum, desired precision
constraints, and cost constraints.

In Sect. 2, we discuss and illustrate Kiaer’s method. In Sect. 3, we highlight Ney-
man’s result for optimal sample allocation and note some of its defficiencies. In
Sect. 4, we note some exact optimal sample allocation results of Wright. In Sects. 5
and 6, we conclude by making personal observations and comments about some
current challenges in data collection and by calling on the translated phrase “...no
calculation when observation can be made” to muse about current world-wide con-
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siderations of using data from alternative non-probability sources (e.g., big data) to
produce official statistics.

2 Kiaer’s Contribution: Representative Method

Though there are earlier examples of the selection of samples to produce official
statistics (e.g., in 1802, Laplace used sampling in combination with administra-
tive records on the number of births to estimate the number of persons in France
for Napoleon (Cochran 1997)), many trace the seeds of current survey sampling
methodology to Anders Nicolai Kiaer (1838–1919) who served as the first Director
of the Norwegian Central Bureau of Statistics (1877–1913). Bellhouse (1988) says,
“Kiaer’s contribution was to provide a framework under which sampling became a
reasonable activity...”. Prior to Kiaer, most government statistics were produced by
censuses.At theBerne International Statistical InstituteMeeting (1895),Kiaer argues
that a partial investigation (i.e., a sample) could provide useful information based
on what he called the “representative method”, which aimed to produce a sample
which was a “miniature of the population”. Characteristics of Kiaer’s representative
method include:

(i) Conduct in connection with a census.
(ii) Obtain more penetrating, more detailed and specialized data which would be

impractical to collect from all units.
(iii) Spread the sample out or distribute it over the entire population.

To actually implement his representative method for a sample in the context of a
census, Kiaer would (Bellhouse 1988), without use of probability or randomization,
(1) select the sample at various stages, e.g., districts, then towns/cities, then parts of
towns/cities, then streets, then houses, then families, and finally individuals; (2) select
large sample sizes at each stage; and (3) spread the sample out so that distributions of
variables for the samplewouldmatch the observed distributions of the same variables
from the census. For example, if he needed more sailors in a certain geographical
area for the sample, he would put more sailors in the sample from that area using the
observed census results.

Kiaer (1897) discusses some details of selection of the sample for the survey
on Personal Income and Property in Norway conducted in direct connection with
the general census of population in 1891. In 128 selected rural local government
districts and 23 selected towns and cities from 1891 Census forms, a sample of the
male population was needed to study in more detail using variables not measured
in the census. Kiaer believed that “...these districts have a sufficient geographic
distribution [spread] over the whole country...[to] at least approximately provide
a correct representation of the whole country.” Those males to be included in the
sample were those (1) who in 1890 reached the ages of 17, 22, 27, 32, 37, etc. at
5year intervals, and (2) those whose surname started with certain letters (in rural
areas and smaller towns, he selected males whose surnames start with A, B, L, M,
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Table 1 Compares sample distribution by occupations with 1891 census distribution

1891 Census Representative sample

I. Rural districts

Farmers 21.3 20.7

Sons of farmers employed on
family farm

9.4 8.4

Fishermen 8.2 7.4

Servants 4.4 4.9

Other farm workers 5.2 4.4

Factory workers 4.3 5.6

Tenants 5.7 5.5

II. Urban districts

Craftsmen 7.0 6.8

Workers employed in craft 16.8 18.1

Factory workers 11.5 13.1

Sailors, deck-hands, etc. 8.4 7.6

Ship’s officers 4.8 4.6

Businessmen, shipowners,
factory owners

6.6 7.0

Employees in trade and
commerce

5.9 5.4

Public employees and civil
servants

4.6 4.8

or N while in the nine largest towns, he selected males whose surnames start with L,
M, or N).

The total number of representative forms for males in the sample was:

From 128 Rural Districts and Small Towns 7, 164
From 23 Towns and Cities 4, 262
TOTAL 11, 426

The resulting sample contained 1.54% and 3.1% of total males population in all rural
and urban districts, respectively. So Kiaer prepared tables for the whole country
by calculating double weights for rural districts. In Kiaer’s translated words, “In
preparing the tables for the whole country the figures for the rural districts have been
given double weight” (Kiaer 1897). The calculation of these weights for the sample
are not needed with a census.

To check the representative nature of his sample, some examples of compar-
ing sample distributions with observed census distributions are given in Tables1, 2
and 3 (Kiaer 1897).

Kiaer (1897) states, “...the crux of the problem, namely whether we are justified
in trusting the accuracy of the results from representative surveys in cases where no
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Table 2 Compares distributions by Age (15+ Years) and marital status of males (Towns)
Males in Towns [137,589 Males in 1891 Census] Males in Towns [4262 Males in Sample]

Age Un-
married

Married Wid-
owers

Total Age Un-
married

Married Wid-
owers

Total

15–20 15.6 – – 15.7 17 15.5 0.0 – 15.5

20–25 11.5 1.6 – 13.1 22 11.6 1.6 – 13.2

25–30 6.1 5.6 – 11.7 27 5.9 6.8 – 12.8

30–35 2.9 7.9 0.2 11.0 32 3.0 7.9 0.2 11.1

35–40 1.5 8.1 0.3 9.9 37 1.34 8.2 0.2 9.8

40–50 1.7 13.3 0.8 15.8 42,47 1.74 13.1 0.6 15.5

50–60 1.0 9.0 1.1 11.1 52,57 1.2 8.55 0.8 10.6

60+ 0.9 7.8 3.0 11.7 62+ 0.9 8.2 2.3 11.5

Total 41.2 53.3 5.5 100.0 Total 41.2 54.35 4.2 100.0

Table 3 Compares distributions by age (15+ Years) and marital status of males (Rural Districts)
Males in rural districts [459,267 Males in 1891 Census] Males in rural districts [7164 Males in Sample]

Age Un-married Married Wid-
owers

Total Age Un-
married

Married Wid-
owers

Total

15–20 15.3 – – 15.4 17 15.6 0.1 – 15.8

20–25 9.8 1.2 – 11.0 22 10.1 1.4 – 11.5

25–30 5.45 4.05 0.1 9.6 27 6.3 4.16 0.1 10.6

30–35 2.74 6.1 0.15 9.0 32 2.74 6.7 0.3 9.75

35–40 1.6 6.7 0.23 8.6 37 1.3 6.96 0.2 8.5

40–50 1.85 12.3 0.62 14.8 42,47 1.6 12.5 0.6 14.8

50–60 1.3 10.3 1.0 12.6 52,57 1.1 10.5 1.0 12.6

60+ 1.4 13.0 4.4 19.0 62+ 1.1 11.5 4.1 16.6

Total 39.44 53.65 6.5 100.0 Total 39.84 53.72 6.3 100.15

other information is available, when it is evident that the sample results agree at points
where they might be compared with those from complete counts... In my opinion,
there is a high degree of likelihood that information derived from representative
returns has the same degree of accuracy when it comes to new fields for which the
return provide information, as the fields where sample results can be checked in the
manner mentioned...”.

Kiaer received great opposition, the strongest from von Mayr (1895, Bavarian
statistician) saying that partial surveys were of limited value to only the area studied;
that partial surveys could never replace complete statistical surveys; and “Il faut rester
ferme et dire: pas de calcul là où l’observation peut être faite”. [Translation: “No
calculationwhen observation can bemade!”] The oppositionwas international (Beth-
lehem 2009): Bodio (Italian statistician) supported von Mayr’s criticism; Rauchberg
(Austrian statistician) said that further discussion of the matter was unnecessary!
Milliet (Swiss statistician) demanded that incomplete (sample) surveys should not
be granted a status equal to censuses.

Kiaer continued to argue for his “representative method”. Bellhouse (1988) notes
some developments: randomization is proposed for use in sample selection (1903);
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Bowley presents a central limit theorem for random sampling (1906); Bowley uses
systematically chosen sample of houses to study poverty inReading, England (1912);
and Bowley provides a theoretical monograph on random selection and purposive
selection (Kiaer’s representative method) in 1926. Henceforth, we use “purposive
selection” to mean the same as “Kiaer’s representative method”. In addition to sev-
eral other ideas, the monograph contains a development of stratified sampling with
proportional allocation and a theoretical development of purposive selection through
correlation between control variables and the variable of interest.

A noted failure of purposive selection by the Italians (1928–1929) created new
reservations about Kiaer’s method (Kruskal and Mosteller 1980). Corrado Gini and
Luigi Galvani describe the selection of a sample from the 1921 Italian Census where
the sample was “balanced” on seven important variables andmade a purposive selec-
tion of 29 out of 214 administrative units in Italy. The resulting sample showed wide
discrepancies with the census counts on other variables (Wright 2001).

Based on the work of a commission to study the application of the representative
method, the 1925 International Statistical Institute’s meeting in Rome adopts a res-
olution which gives acceptance to certain methods both by random selection and by
purposive selection.

3 Neyman’s Contribution: Optimal Allocation

Neyman (1934) discusses the desire to have a “representativemethod”when sampling
from a finite population; specifically, he considers the “...two different aspects of the
representative method...(1) the method of random sampling and (2) the method of
purposive selection.” Neyman argues in favor of stratified random sampling. Under
stratified random sampling, a simple random sample is selected independently from
each stratum.

In addition to the use of stratification, Neyman addressed the question of how to
allocate fixed n optimally among the H strata. Neyman (1934) shows the allocation
of fixed n that minimizes Var(T̂Y ) is

nh =
(

NhSh
H∑
i=1

Ni Si

)
n h = 1, 2, 3, ..., H, (1)

subject to the constraint n =
H∑

h=1

nh , where Nh is the number of units in stratum

h, Sh is the standard deviation of the Y values of the Nh units in stratum h, nh is
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the number of sample units from stratum h, ȳh is the sample mean for stratum h,

and Var(T̂Y ) is the design-based sampling variance of the estimator T̂Y =
H∑

h=1

Nh ȳh

of the population total for the N =
H∑

h=1

Nh units. (NOTE: Tschuprow (1923) had

obtained the result in (1) over a decade earlier.) Because the nh in (1) are almost
never positive integers, the nh need to be rounded in just about every case.

4 Exact Optimal Sample Allocation

Wright (2012) gives an example to illustrate that rounding does not guarantee mini-
mum sampling variance. Supporting what is known,Wright (2016) gives an example
illustrating that the optimal nh can sometimes exceed Nh . Is it possible to get an exact
allocation of fixed n that minimizes Var(T̂Y ) where all nh are positive integers and

n =
H∑

h=1

nh? In Algorithm I, Wright (2012) shows that the answer is yes.

Exact Optimal Allocation Algorithm I [nh ≥ 1] (Wright, 2012)
Step 1: First, assign one unit to be selected for the sample from each stratum.
Step 2: Assume N1S1 ≥ N2S2 ≥ · · · ≥ NH SH and compute the array of priority values:

Stratum 1
N1S1√
1 · 2

N1S1√
2 · 3

N1S1√
3 · 4 · · ·

...

Stratum h
Nh Sh√
1 · 2

NhSh√
2 · 3

NhSh√
3 · 4 · · ·

...

Stratum H
NH SH√
1 · 2

NH SH√
2 · 3

NH SH√
3 · 4 · · ·

Step 3: Pick the n − H largest priority values from the above array in Step 2 along with the
associated strata. Each stratum is allocated an additional sample unit each time one
of its priority values is among the n − H largest values.

Subsequently, Wright (2016) has observed that the key to Algorithm I and many
other algorithms is the observation that the sampling variance has a very simple
decomposition which we give below for the case H = 3.
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Var(T̂Y ) =
3∑

h=1

Nh(Nh − 1)S2h

−N 2
1 S

2
1

1 · 2 − N 2
1 S

2
1

2 · 3 − N 2
1 S

2
1

3 · 4 − · · · − N 2
1 S

2
1

(n1 − 1)(n1)

−N 2
2 S

2
2

1 · 2 − N 2
2 S

2
2

2 · 3 − N 2
2 S

2
2

3 · 4 − · · · − N 2
2 S

2
2

(n2 − 1)(n2)

−N 2
3 S

2
3

1 · 2 − N 2
3 S

2
3

2 · 3 − N 2
3 S

2
3

3 · 4 − · · · − N 2
3 S

2
3

(n3 − 1)(n3)

(2)

where
3∑

h=1

Nh(Nh − 1)S2h is the sampling variance Var(T̂Y ) when nh = 1 for each

h. Each subtraction in Eq. (2) shows how much
3∑

h=1

Nh(Nh − 1)S2h decreases each

time we increase the sample size in each stratum by one additional unit until we have
n = n1 + n2 + n3. The quantities being subtracted are the square of the priority
values that appear in the array of Algorithm 1.

In addition to determining optimal nh for fixed n, we may add additional con-
straints on nh such as

ah ≤ nh ≤ bh (3)

where ah and bh are any reals such that 1 ≤ ah ≤ bh ≤ Nh to obtain an Algorithm 3
(Wright 2014, 2017). He also obtains an Algorithm 4 which gives optimal allocation
when n is not given but precision requirements are. It is clear how one can obtain
yet other algorithms by combining Algorithms 3 and 4 for optimal results (Wright
2016, 2017). Extensions when there are costs and a fixed budget are also possible.

So, what might the future hold for representativeness and official statistics?

5 Representativeness and Official Statistics

National statistical agencies have a long history of collecting and providing official
statistics to inform those who make decisions as they govern. As behavior of units
in populations change, there are unending questions about what the measurements
should be and how they should be made. We mention six personal thoughts for
consideration, in no particular order, which do not necessarily reflect views of the U.
S. Bureau of the Census.
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5.1 Pressure Mounting for Change in Data Collection
Methods

The pressures on statistical agencies for change are real, and key reasons include: (1)
increasingly complex society more challenging to measure with current methodol-
ogy, (2) rising costs in data collection and limited budgets, and (3) growing concerns
about privacy and confidentiality.

Relative to societal structures in the first part of the twenty-first century, societal
structures in Kiaer’s Norway at the last part of the nineteenth century were much less
complex. Measurement of the 1890s Norwegian population was labor-intensive and
100%fieldwork. Life inNorway involved: farming, fishing, carpentry, animal power,
factories, sailing, handmade tools, etc. Life today is characterized by instant com-
munications (smart phones, email, twitter, air travel), automobiles, driverless cars,
instant information (google), “viv”, the Internet of Things, increased life expectancy,
etc. Measurement methods and what is being measured will change.

5.2 Rising Nonresponse (Unit/Item) to Censuses and Sample
Surveys

Current methods of data collection permit increases in nonresponse to government
sample surveys, though not nearly as high as in nongovernment efforts. Unfortu-
nately, the data collection effort of government statistical agencies (e.g., in the United
States) is an activity in which potential respondents are reluctant to engage. Given
this reluctance and the fact that almost all government sample surveys are not manda-
tory, it is surprising that the response rates are as high as they are. Also, it is worth
noting who is paid and who is not paid in the sample survey (also census) model.
Table4 makes it clear.

The most important participant in the data collection enterprise, the respondent,
is the one not receiving monetary payment in most sample surveys. To be sure, this
is by no means a call to pay respondents, but it is certainly worth noting. There is a
need to let a nation’s people know the value of such data in determining the outcomes
of their daily lives.

5.3 Limited Future for Periodic Censuses Every 5 or 10Years

The current periodic national censuses around the world will likely be replaced with
continuous updating of listings of units in the target population or sampling frame.
Availability of data from several sources (government and private) will help make
this possible.
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Table 4 Who is paid in the data collection enterprise?

Participant Paid?

Planner Yes

Developer/Maintainer of sampling frame Yes

Designer of questionnaire/Data collection instrument Yes

Designer/Selector of sample Yes

Data collector Yes

Data processor (Editing) Yes

Data analyzer Yes

Producer of data products Yes

Reviewer of data products Yes

Data disseminator Yes

Respondent No

5.4 Increasing Use of Administrative Records

Administrative records are records that governments maintain to help administer
government programs. These programs can be extensive with varying objectives:
improve employment; improve health; provide food against hunger; improve trans-
portation; come from tax collection records; improve job training; improve educa-
tion; improve living condition; decrease crime; improve communications; provide
social security benefits; provide birth/death records; medical records, etc. Advan-
tages of administrative records include that they are available, cheap, and can be
used to improve statistical model construction. Well designed sample surveys can
help calibrate administrative records to underlying truth. Disadvantages include qual-
ity variability, lack of uniformity (time period, definitions,...), lack of coverage of the
entire population, representativeness doubt; challenges linking them, and the public’s
concerns about privacy and confidentiality.

5.5 From Censuses to Sample Surveys to Big Data

A nation measures its people’s behavior and condition: Who they are. How they
live. Where they live. What they do. What they produce. Big data can help provide
rough indicators of behavior or condition (at lower levels of geography; for smaller
subpopulations; more frequent data releases; often captured digitally,...), but there
are limitations. Sources of big data include
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•Google Searches •Cell Phone Usage •Credit Card Purchases
•Other Purchases (e.g., Groceries) •Tweets •Bank Accounts
•Credit Reports •Utility Records •Travel Tickets
•Hospital/Medical Records •Medical Purchases •Insurance Claims
•Tax Records •Property Taxes •Migration Records
•Housing Sales •Drivers’ Licenses •Real Estate Listings
•Facebook •Monitoring by Cameras ...

These data exist naturally, and in many cases, they are available as by-products of
some primary activity other than data gathering.

Assume a well-defined target population about which we want to know (or esti-
mate) some characteristic(s). At a very high level and building from Kish (1979),
Table5 compares data from three different sources [censuses, sample surveys, big
data (could include administrative records)] relative to various criteria, where “*”
indicates a potential advantage for a source over another. Clearly the contents of
Table5 are debatable, and one can cite examples to contradict every line of Table5.

To view Table5, we assume there exists a defined target population about which
one wants to know the value of some population characteristic which is unknown.
This is the primary objective we have in mind when using the various criteria in
comparing results from a census, a sample, or big data.

Hence a carefully executed censuswith excellent coverage of the target population
or awell-designed and controlled probability sample that permits statistical inference
about the target population have the advantage in terms of the “representativeness”
criterion over using results from big data in many applications where representation
of the results is too often in doubt. On the other hand, the “high frequency” criterion
gives the advantage to results from big data over results from either a census or a
sample. Typically, the data collection and data processing associated with a census or
sample permit release of official results that are often monthly, quarterly, or annual;
in the case of a census, the release of results is typically every five or ten years.
Depending on the specific application, releases of results from big data can be daily,
or more frequent.

To illustrate our thoughts on the two criteria “representativeness” and “high fre-
quency”, we consider the unemployment rate of persons in the labor force of the
United States. We only consider a sample compared to the use of big data. Each
month, a national representative probability sample of approximately 70,000 house-
holds is contacted to determine the unemployment status of each person in the labor
force. Theofficial unemployment rate is released eachmonthwith ameasure of uncer-
tainty. That is, the sample permits valid statistical inferences. Alternately, investiga-
tors have released estimates of an unemployment rate based on counting the number
of google searches of certain expressions relative to the total number of google
searches. The expressions in the google searches include: unemployment benefits,
unemployment office, unemployment claim, unemployment compensation, unem-
ployment insurance, apply for unemployment, applying for unemployment, filing
for unemployment, unemployment online, unemployment office location, unem-
ployment eligibility, uninsured benefits, and unemployment benefit. It is difficult
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Table 5 Comparison of censuses, sample surveys, and big data

Criterion Census Sample Big data

Representativeness * * –

Measures of uncertainty * * –

Rich, complex, diverse, flexible – * *

High quality – * –

Relatively inexpensive – * *

Timely, seasonal – * *

Inclusive (Large and Complete) * – –

Credible, P.R. * – –

Units asked to report data * * –

Units not asked to report data – – *

Explicit/Implicit consent obtained * * –

Lot of data – – *

High frequency – – *

Supplementary/Complementary – * *

Minimize respondent burden – * *

to determine the quality of the google searches; how many are made by persons not
in the labor force; how many persons make more than one search; is each search
actually made by someone who is unemployed; etc. So we are unsure about the rep-
resentativeness of the big data results. However, it is easy to see that the use of big
data as described permits monthly, weekly, daily, hourly,... estimates of unemploy-
ment rate with relatively little effort. Hence the big data has the potential for high
frequency releases because there is the potential for high frequency of data capture.

Rather than taking one source among the three (census, sample, big data), we see
that all three can work together (Kish 1979; Capps and Wright 2013).

5.6 With “Data Science” and “Data Analytics”, One Can
Sense a Move Towards Measuring Everything,
Everywhere, All the Time

With big data, one can also sense a growing potential for users to ignore concern
about uncertainty, variability, and data properties (representativeness, how obtained,
quality, etc.). Indeed, there is a risk for the birth of a movement that one need not
worry about statistical structure in gathering data as long as there is a lot of data. It
brings to mind the phrase

No Calculation When Observation Can Be Made,
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but now it might come in the form

No Statistical Calculation When Big Data Observation Can Be Made

which is a near quote once made by a senior science administrator several decades
ago when referring to the analysis of massive data sets collected by astronomers.

Technology is bringing strong streams of billions of pieces of data. Three exam-
ples help make this point, where the focus is on managing existing data rather than
collecting it.

Example 1 TheBillion Prices Project (bpp.mit.edu/page/2/) is an academic initiative
that uses prices collected (webscraping) from online retailers around the world on a
daily basis to conduct economic research. Data sets (bpp.mit.edu/data.sets) provide
prices with coverage into many countries around the world! For the United States,
TheBillion Prices Project frequently produces a visual comparison of its dailyOnline
Price Index (based on scraped data from online retailers) with themonthlyConsumer
Price Index (based on a probability sample) produced by the U. S. Bureau of Labor
Statistics.

Example 2 JP Morgan Chase and Co launched the JP Morgan Chase and Co Insti-
tute (https://www.jpmorganchase.com/corporate/institute/institute.htm) on May 21,
2015 as a global think tank that will deliver data, analyses, and expert insights
designed to address global economic challenges. Data in the following report come
from the credit and debit card transactions (over 12 billion) of the nearly 50 million
JPMorgan Chase customers and provide profiles of local consumer commerce data
for 15 cities in the United States over a 34month period. The front cover of the report,
Profiles of Local Consumer Commerce (December 2015) highlights that the contents
are based on “Insights from 12 Billion Transactions”! Page 9 of the report presents a
visual that compares a time series based on its retail sales data (JPMCI-LCC) with a
time series based on retail sales (MRTS) produced by the U. S. Bureau of the Census
(based on a probability sample). The front cover of another report, How Falling Gas
Prices Fuel the Consumer highlights that its contents are based on “Evidence from
25 Million People”! Both reports are found on the Institute’s website.

Example 3 Uber is launching the Uber Movement Project which will provide data
based on its billions of rides, initially for four (e.g., Washington, D.C.) cities around
the world. The public website will provide data showing the time it takes to travel
between neighborhoods in various cities (https://www.wired.com/2017/01/uber-movement-

traffic-data-tool).

In the first two examples, the huge size of the available data seems to minimize any
need or desire by some to present statistical uncertainty measures and discussions
which often come in technical appendices. Additionally and in both cases, the quality
and credibility of the product from big data seems to also come by comparing with
similar statistical products that are based on well-established and highly regarded
government sample surveys. This practice seems similar to Kiaer’s construction of
samples that have distributions similar to the distributions from credible censuses.

https://www.jpmorganchase.com/corporate/institute/institute.htm
https://www.wired.com/2017/01/uber-movement-traffic-data-tool
https://www.wired.com/2017/01/uber-movement-traffic-data-tool
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Kiaer argued that results from his samples were valid because on some variables they
matched census results and hence it is reasonable to assume they are valid for other
variables of interest that are not available from the census. Thus, one may be led
to assume big data results are valid because on some measures, they match results
from well-established government sample surveys, not to mention the huge amount
of data. How would one measure uncertainty in the big data results in the absence of
the results from government sample surveys for comparison?

6 Concluding Remarks

We see evidence for probability sampling and big data being used together to improve
representativeness and official statistics. For example, Capps and Wright (2013) call
for use of big data to supply variables for modeling in small area estimation. Where
one has a disadvantage, the other may offer an advantage. The greatest advantage of
probability sampling is the greatest disadvantage of big data; representativeness. The
greatest disadvantage of probability sampling is that of the nonresponse that results
when questions are asked; there is no asking with big data because the measurements
are mostly already available as a secondary consequence from respondents who
almost unknowingly provide thesemeasurementswhile receiving someother primary
benefit.

The move from censuses to sample surveys was initially resisted with the phrase
“No calculation when observation can be made”. Big data offers new opportunities
for those who collect and provide data. Technological advances will lead to more
big data and some may be tempted by the amount of data to move from sample
surveys to big data with the phrase “No statistical calculation when big data obser-
vation can be made”. Such a move would lack scientific merit and should be resisted
because we are limited in making statements about how good the results are and
there seems to be no measures of uncertainty for these results. Though not perfect,
survey sampling methodology, the current variant of Kiaer’s representative method,
is grounded in over a century of successful theoretical and practical development
and successful application. In addition to having learned much about controlling and
decreasing sampling error, much has been gained in understanding and compensating
for nonsampling error over this time period, as well.

Probability theory helped bring good measures of uncertainty to Kiaer’s repre-
sentative method leading to probability sampling and current practice. If we measure
everything, everywhere, all the time, as seems to be the ultimate goal with big data,
will there be need for measures of uncertainty for the data products? The answer is
yes.
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Even if one could measure everything, everywhere, all the time, it would be
impossible to digest it all (in detail) and some sort of data reductionwould be required.
That is, one would need to take a sample. As Stephan (1948) notes, “All scientific
observation whether statistical or not is based on sampling.” Thus there are two
options:

Option 1: Measure everything, everywhere, all the time, and then select a sample from the
measurements.

Option 2: Select a sample, and then measure everything for the sample units, everywhere for the
sample units, and measure the sample units all the time.
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Design Weighted Quadratic Inference
Function Estimators of Superpopulation
Parameters

Sumanta Adhya, Debanjan Bhattacharjee and Tathagata Banerjee

Abstract Using information from multiple surveys to produce better pooled esti-
mators is an active research area in recent days. Multiple surveys from same target
population is common in many socioeconomic and health surveys. Often all the
surveys do not contain same set of variables. Here we consider a standard situation
where responses are known for all the samples frommultiple surveys but the same set
of covariates (or auxiliary variables) is not observed in all the samples. Moreover, in
our case we consider a finite population set up where samples are drawn from multi-
ple finite populations using same or different probability sampling designs. Here the
problem is to estimate the parameters (or superpopulation parameters) of underlying
regression model. We propose quadratic inference function estimator by combining
information related to the underlying model from different samples through design
weighted estimating functions (or score functions). We did a small simulation study
for comprehensive understanding of our approach.

Keywords Model-design based approach · Multiple surveys · Superpopulation
Quadratic inference function

1 Introduction

Drawing inference on super population parameters by combining data from different
surveys is of considerable recent interest (Citro 2014; Kim and Rao 2012; Gelman
et al. 1998) to the survey practitioners. For an up to date and comprehensive review of
the methods, we refer to Lohr and Raghunathan (2016). The central idea behind any
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suchmethod is to use information fromdifferent sources effectively for enhancing the
efficiency of the estimators. In this paper, we propose a method for combining data
based on quadratic inference function (QIF) (Lindsay and Qu 2003) in the context
of linear regression analysis. To the best of our knowledge, use of QIF has not been
considered before in the survey sampling literature.

For the methodological development in this paper, we consider model-design-
based randomization approach to inference discussed in Roberts and Binder (2009),
Graubard and Korn (2002), and Godambe and Thompson (1986). Specifically, we
consider two finite populations P1 = {(yi , x1i , x2i ) : i ∈ U1} and P2 = {(yi , x1i ) :
i ∈ U2} of sizes N1 and N2, respectively, where U1 and U2 are index sets of the
population units in P1 and P2, respectively. Notice that P1 and P2 can be considered
as random samples from a superpopulation. We assume:

(i) The study variables in each finite population are independent realizations of
the random variables (y, x1, x2), where x1 and x2 are exogenous, and y is a
continuous endogenous variable. Also, given x1 and x2, y is generated by a
linear regression model y = β0 + β1x1 + β2x2 + ε, where ε is the error term
independent of x1 and x2, and has mean 0 and variance σ 2. However, in P2

observations on x2 are missing.
(ii) A probability sample is selected fromeach resulting finite population using either

the same or different sampling designs.

The above theoretical set-up may represent an important practical situation that
often arises in survey sampling. Suppose in a survey with a relatively small sample
size, the data are collected on a comprehensive set of exogenous variables; whereas
in a different survey from the same populationwith a considerably larger sample size,
the data are collected on a smaller subset of the same set of exogenous variables. The
problem is to combine these independent samples effectively to get a better estimator.

Clearly, the problem stated above may be considered as a missing data problem
where for someunits in the bigger sample the data ononeormore exogenous variables
aremissing.Multiple imputation is anoftenusedmethod (Rendall et al. 2013;Gelman
et al. 1998; Rubin 1986) in such situation, but how does it tide over the omitted
variable bias is not quite clear. On the other contrary, the QIF based methodology
that we propose here, recognizes and takes into account the omitted variable bias
explicitly. Although the proposed methodology is applicable for combining data
from any number of surveys in the set-up described above, we restrict our discussion
to two surveys simply for ease of exposition.

The paper is organized as follows. In Sect. 2, we briefly discuss the estimation
methodology based on QIF in a general setting, keeping in view the context of our
application. In Sect. 3, we propose design-weighted QIF estimators of the regression
coefficients using data from multiple surveys. Our methodology explicitly takes
into account the omitted variable bias. In Sect. 4, we report the results of a limited
simulation study. As expected, the simulation results show that the design-weighted
QIF estimators based on the combined sample are substantially more efficient than
the standard least squares estimators based on the sample with more covariates.
Concluding remarks are given in Sect. 5.
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2 Quadratic Inference Function

In this section we briefly introduce QIF based estimation methodology in a gen-
eral setting. Supposeb(x, θ) = (b1(x, θ), b2(x, θ), ..., bq(x, θ))T is a q-dimensional
vector of distinct score functions, where θ = (θ1, θ2, ..., θp)

T is a p-dimensional
vector of parameters. The score functions are also called estimating functions and
moment conditions in statistics and economics literature, respectively. Application
of QIF based estimation methodology makes sense only if q is greater than p.

Suppose Fθ is the semi- parametric model defined by the parameter θ and the
score equations

EFb(X, θ) = 0, (1)

such that if a distribution F ∈ Fθ , then (1) is satisfied and vice versa. On the other
hand, if the true F /∈ Fθ , and EFb(X, θ) = δ(θ) �= 0, where δ(θ) is said to represent
the vector of discrepancy between the model and the true distribution F .

The quadratic distance function (QDF) between the true distribution F and the
semi-parametric model Fθ as determined through the basic scores is then defined as

d(F,Fθ ) = δ(θ)T�−1
θ δ(θ), (2)

where �θ = Var(b(X, θ)). For an arbitrary F , the value of θ for which the basic
scores are closest to mean 0 is then given by

θ(F) = argminθ d(F,Fθ ). (3)

For making data based inference on θ , the QDF in (3) needs to be replaced by its
empirical analogue, called quadratic inference function. Suppose X1, X2, ..., Xn are
independently and identically distributed random variables following the distribu-
tion F , then a natural estimator of EFb(X, θ) = δ(θ) is b̄(θ) = n−1 ∑n

i=1 b(Xi , θ).
Suppose further, �̂ is a suitably chosen estimator of Var(b̄(θ)), the QIF is then given
by

Q(θ) = b̄(θ)T �̂−1b̄(θ). (4)

The choice of �̂−1 is an important issue. We refer to Lindsay and Qu (2003) for a
detailed discussion on it. The QIF estimator of is given by

θ̂ = argminθ Q(θ). (5)

If F ∈ Fθ , θ̂ is consistent for the true value of θ , otherwise it is consistent for the
nonparametric functional θ(F) (cf.(3)). For a discussion on the optimum properties
of θ̂ , we refer to Lindsay and Qu (2003).
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3 Design-Weighted QIF Estimator

Let us now consider the estimation of the regression parameter β = (β0, β1, β2)
T of

the superpopulation model introduced in Sect. 1. First, we introduce some important
notations. Suppose S1 = {(yi , xi1, xi2) : i ∈ I1 ⊂ U1} and S2 = {(yi , xi1, xi2) : i ∈
I2 ⊂ U2} represent the probability samples of sizes n1(< N1) and n2(< N2) drawn
from the populationsP1 andP2 using sampling designs p1(.) and p2(.), respectively,
where I1 and I2 are index sets of selected sample units.

As stated at the outset, we adopt the model-design based randomization approach
(Roberts and Binder 2009) to the estimation of the superpopulation parameters. Like
Chen and Sitter (1999), we propose a two-step design weighted QIF estimator of
β that could be used for complex surveys. First, we define QIF of β, say, QU (β),
assumingP1 andP2 to be known.At the second step,we estimate QU (β) by replacing
the population based entities with its design-based estimators based on the samples.
We denote it by Q̃U (β). Finally, the estimator of β is obtained byminimizing Q̃U (β)

with respect to β. We now describe the two steps in detail.
Assuming P1 to be known, and represents a random sample from the superpopu-

lation, the basic score vector for β is given by:

b1(y, x,β) = (Y − β0 − β1x1 − β2x2)x, (6)

where x = (1, x1, x2)T . Also, the assumed regression model of y given x1 and x2
entails Eβb1(Y,X,β) = 0. However, for P2, the basic score function for β(1) =
(β0, β1)

T is given by:

b∗
2(y, x

(1),β(1)) = (Y − β0 − β1x1)x(1), (7)

where β(1) = (β0, β1)
T and x(1) = (1, x1)T . But omitted variable bias leads to

Eβb∗
2(Y,X(1)β(1)) = δ(β2), where δ(β2) = (0, β2σ12)

T , and σ12 = Cov(x1, x2).
Assuming σ12 to be known for the time being, we define a modified score function
for β that explicitly takes into account the omitted variable bias as follows:

b2(y, x(1),β) = (y − β0 − β1x1)x(1) − δ(β2). (8)

Thus, by definition, we have Eβb2(Y,X(1),β) = 0. The population version of QIF
are thus based on the basic score functions given by (6) and (8).

Let us define b̄1(β) = N−1
1

∑
i∈U1

b1(yi , xi ,β), b̄2(β) = N−1
2

∑
i∈U2

b2(yi ,

x(1)
i ,β), and b̄(β) = (b̄1(β), b̄2(β))T . Let �̂1β , �̂2β , and �̂β be suitable finite popu-
lation based estimators ofVar(b1(Y,X,β)) = �1β ,Var(b2(Y,X(1),β)) = �2β and
Var(b(Y,X,β)) = �β , respectively,whereb(y, x,β) = (b1(y, x,β),b2(y, x(1),β))T .

Then the first-step QIF of β is given by

QU (β) = W1b̄1(β)T �̂−1
1β b̄1(β) + W2b̄2(β)T �̂−1

2β b̄2(β), (9)
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where, Wk = NkN−1, k = 1, 2, and N = N1 + N2.

Let us now define the second step QIF, Q̃U (β), an estimator of QU (β), based
on the samples S1 and S2. Suppose πik = Pk(i ∈ Ik |i ∈ Uk)(> 0) denotes the
inclusion probability of the i − th unit of the k−th population in the sample
Sk , where Pk(.) is the probability measure corresponding to the sampling design
pk(.) for i = 1, 2, ..., Nk, k = 1, 2. The design weights are then given by dik =

π−1
ik∑

i∈Sk π−1
ik
, for i ∈ Ik, k = 1, 2. Defining, b̃i1(β) = b1(yi , xi ,β) for i ∈ I1, b̃i2(β) =

b1(yi , x
(1)
i ,β) for i ∈ I2, b̃1(β) = ∑

i∈I1 di1b̃i1(β), b̃2(β) = ∑
i∈I2 di2b̃i2(β), and

�̃kβ = ∑
i∈Ik dik (̃bik(β) − b̃k(β))(̃bik(β) − b̃k(β))T for k = 1, 2, we obtain

Q̃U (β) = W1b̃1(β)T �̃−1
1β b̃1(β) + W2b̃2(β)T �̃−1

2β b̃2(β). (10)

The design-weighted QIF estimator of β is then given by

β̂ = argminβ Q̃(β). (11)

Notice that throughout the development we assume σ12 to be known. It may be a
reasonable assumption if the information on x1 and x2 are available at the population
level while the values of (y, x1, x2) are known for the sample only. In this case, the
design-weighted QIF estimators lead to a huge improvement over the standard least
squares estimators. In case, it is not known, we plug in its estimate from the sample
in Q̃U (β). The latter also shows some improvement as is evident from the numerical
studies reported in the next section.

4 Numerical Studies

We present the results of a limited simulation study comparing the performances of
design-weighted quadratic inference function estimator (QIFE) with that of design-
weighted least square estimator (LSE).

Suppose the covariate vector (x1, x2)T has a bivariate normal distribution with
mean vector (0, 0)T and covariance matrix �(2 × 2). Given (x1, x2), y has a nor-
mal distribution with mean 1 + 0.5x1 + 0.25x2 and variance 0.25. We consider two
superpopulation models M1 and M2 corresponding to two choices of�, say,�1 and
�2, respectively, where

�1 =
(
0.5 0.5
0.5 1.0

)

and
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�1 =
(

0.5 0.14
0.14 1.0

)

.

Notice that for model M1 the correlation coefficient between x1 and x2 is 0.7 while
for M2, it is 0.2.

Following are the steps of the simulation study:
Step 1: We generate finite populations U1 and U2 of sizes N1 and N2 using the

above superpopulation model. First, we randomly generate a value of x = (x1, x2)T ,
and then generate a value of y given x using the conditional distribution of y given
x. The finite populations U1 and U2 then comprise N1 and N2 such observations
on (y, x1, x2) generated independently. Next, by simple random sampling without
replacement (SRSWOR), we select L samples of sizes n1(= f1N1) and n2(= f2N2)

fromU1 andU2, respectively,where f1 and f2 are the sampling fractions. The selected
samples from U1 and U2 are denoted by S(l)

1 and S(l)
2 , l = 1, 2, ..., L respectively.

Step 2: Based on S1 we compute usual design-weighted LSE of β. Also based on
S1 and S2, we compute design-weighted QIFE from (11).

Step 3: We repeat the Step 1 R times. At the r -th (r = 1, 2, ..., R) replication, let
the populations generated be U (r)

1 and U (r)
2 . For each r , the selected samples from

U (r)
1 and U (r)

2 are denoted by S(rl)
1 and S(rl)

2 , l = 1, 2, ..., L , respectively. For each r
and l, following Step 2, we compute the LSE and QIFE of β j , j = 0, 1, 2, say, β̂(rl)

j (LS)

and β̂
(rl)
j (QI F), respectively.

Step 4: For each estimator of β j , say, β̂
(rl)
j (a generic notation) we compute the

relative bias (RB) ([(RL)−1 ∑
r,l β̂

(rl)
j − β j ]/|β j |) and relative root mean squared

error (RRMSE) (
√

(RL)−1
∑

r,l(β̂
(rl)
j − β j )2/|β j |).

For our simulation study, we consider (N1, N2): (1000, 2000), (1000, 5000),
R = L = 100 and f1 = f2 = 0.10. In Table1, we report the RRMSE values for the
LSE’s and QIFE’s of β j , j = 0, 1, 2. The RB values are not shown. However, it
has been observed that for n1 = 100, n2 = 500, i.e., when the second sample size
is relatively large compared to the first, the relative biases of both the estimators
are comparable. For n1 = 100, n2 = 200 the relative bias of QIFE is slightly higher
than LSE. This is expected as LSE is unbiased while QIFE is not. What is interesting
to observe, that with increase in the relative magnitude of N2 compared to N1,
the performances of QIFE’s of β j , j = 0, 1 improve over the LSE’s substantially.
Also the improvement is more if the correlation between x1 and x2 increases. The
performances of QIFE and LSE of β2 are more or less same.

5 Concluding Remarks

In this article we propose quadratic inference function estimator of the superpopula-
tion parameters using information from multiple samples from the same superpop-
ulation that incorporates the design weights. For illustrative purpose, in this paper,
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Table 1 RRMSE of the least
squares (LS) and quadratic
inference function (QIF)
estimators of the
superpopulation parameters
for models M1 and M2

Regression
coefficient

Model M1 Model M2

LSE QIFE LSE QIFE

N1 = 1000 N2 = 2000

β0 502 316 507 313

β1 2004 1810 1470 1051

β2 2845 2902 2063 2092

N1 = 1000 N2 = 5000

β0 507 223 511 226

β1 2046 1712 1485 928

β2 2827 2898 2113 2147

we have considered linear regression superpopulation model. Our design-adjusted
QIF estimator is appealing in the sense that it can be applied for complex survey
designs. The simulation study shows encouraging results in situations where size of
the sample containing observations on subset of covariates is very high. In future we
plan to investigate the asymptotic properties of the proposed QIF estimator under
complex survey designs.
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Detecting a Fake Coin of a Known Type

Jyotirmoy Sarkar and Bikas K. Sinha

Abstract We are given c ≥ 2 coins which are otherwise identical, except that there
may be exactly (or at most) one fake coin among them which is known to be slightly
lighter than the other genuine coins. Using only a two-pan weighing balance, we
weigh subsets of coins sequentially in order to identify the counterfeit coin (or declare
that all coins are genuine) using the fewest weighings on average. We find a formula
for the smallest expected number of weighings, and another formula which deter-
mines an optimal number of coins to place on each pan during the first (and hence
during each successive) weighing.

Keywords Numerical algorithm · Recursive relation
Single counterfeit coin problem · Sequential weighing design

1 The Known Type Fake Coin Problem

The celebrated single counterfeit coin problem (SCCP), with many variations, has
appeared in manymathematical magazines andmathematical quiz articles beginning
with Dyson (1946). See also Levitin and Levitin (2011),Martelli andGannon (1997),
Ward (1996), Smith (1947). For a history of the problem, we refer the reader to
Guy and Nowakowski (1995) and the references therein. An amusing verse, which
solves the simultaneous weighing design to detect at most one counterfeit coin of an
unknown type from among 12 coins and declare its type (whether lighter or heavier
than a genuine coin) or declare that all coins are genuine, is found in Descartes
(1950), wherein Cedric Smith writes under the pseudonym Blanche Descartes:
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F AM NOT LICKED
MA DO LIKE
ME TO FIND
FAKE COIN

The first line names the 12 coins with distinct letters, and each of the next three lines
gives the first four coins to be placed on the left pan, and the next four on the right
pan (and the rest are to be set aside). These weighings are declared simultaneously
at the outset. A general solution and a geometric visualization of the simultaneous
weighing design that solves the SCCP of an unknown type when there are c ≥ 3
coins is given in Sarkar and Sinha (2016).

The focus of this paper is to discover sequential weighing designs that minimize
the expected number of weighings needed to detect a single fake coin of a known
type from among c ≥ 2 coins, or to declare that all coins are genuine. The precise
statement of the problem is given below. Here, sequential weighing means that the
result(s) of the previous weighing(s) is (are) available to determine which coins to
place on each pan during the next weighing.

Version 1 (One Lighter Fake Coin): There are c ≥ 2 otherwise identical coins, except that
one of these coins is counterfeit, and it is known to be slightly lighter than the genuine coins.
Which sequential weighing design minimizes the expected number of weighings needed
to identify the fake coin with a two-pan balance scale without using any known weight
measures?

This problem is symmetric to the problem in which it is known that the counterfeit
coin is heavier than a genuine coin (except that the heavier fake coin will be in the
lower pan).

1.1 A Motivating Example that Seeks Optimal Sequential
Weighing Designs

Let us borrow fromSarkar andSinha (2016) two unsolved problems.Wewill describe
in Sect. 2.2 the partial solutions given in Sarkar and Sinha (2016), but at present let
them serve asmotivating examples. Later in this paperwewill solve them completely.

A consignment of 10,000 identical pills are to be put in 100 bottles each containing
100 pills. While the 100th bottle is being filled, one extra pill is found. The clerk can
take one of two actions: (1) Report that one of the previous 99 bottles is missing a pill;
(2) Simply place the extra pill in the last bottle and not report the discovery. In this
second case, had the supervisor intentionally placed an extra pill in the consignment
to test the clerk, she would know one of the 100 bottles contains 101 pills. In either
case, the supervisor can recount and correct the mistake, if any. However, if a large
two-pan balance is available, then instead of recounting pills, she can weigh the
bottles. How can we minimize the expected number of weighings needed to identify



Detecting a Fake Coin of a Known Type 165

the offending bottle? Note that in case (1), the offending bottle is lighter among 99
bottles; and in case (2), it is heavier among 100 bottles.

2 Identifying the Lighter Fake Coin

If c = 1, there is no need to weigh any coin as the given coin must be the fake lighter
coin. To document the identification of the fake coin of a known type from among
c ≥ 2 coins we proceed as follows: First, we give explicit weighing designs for small
values of c up to 9; and provide some useful commentaries on these designs. For
instance, (i) the designs for c = 3, 9 easily generalize to the case of c = 3w; (ii) there
are multiple designs for c = 6; and (iii) the minimum expected number of weighings
for 2, 3, . . . , 9 exhibit non-monotonicity in c. Next, we develop a recursive relation,
which we utilize to construct a numerical algorithm that determines how many coins
(which we denote by n1(c)) should be placed on each pan during the first weighing
in order to minimize the expected number of weighings needed to identify the lighter
fake coin from among c coins. We show that for some values of c a multiplicity of
choices for n1(c) are possible, each attaining the same minimum expected number
of weighings (which we denote byw(c)). Finally, we present an analytic formula for
w(c), and another analytic formula for determining one particular value of n1(c).

2.1 Finding the Lighter Fake Coin from Among 2 ≤ c ≤ 9
Coins

As Sarkar and Sinha (2016) explain, the SCCP involving c = 2, 3 coins is easily
solved in one weighing by placing one coin on each pan (an setting aside the third
coin, if c = 3). Also, the case of c = 9 is solved by splitting the coins into three equal
groups of three coins each, identifying which group contains the lighter coin in one
weighing, and then identifying which member of the lighter group is the lighter coin
during the second weighing. This strategy is called the “method of trisection.” We
leave it to the reader(s) to verify that three trials suffice to identify the single lighter
fake coin from among 27 coins.

In general, the “method of trisection” works perfectly for c = 3k coins, one of
which is lighter, requiring exactly k weighings to detect the lighter fake coin. But
when we start with c coins, not a power of 3, then the exact number of weighing
required to identify the fake coin depends randomly on the position occupied by the
fake coin. If 3k−1 < c ≤ 3k , then at most k weighings suffice to identify the fake
lighter coin. This is justified by the following argument: Let us extend “trisection”
to mean breaking up c coins into three group of sizes as close to one another as pos-
sible. Then by mathematical induction it is easily seen that the “method of extended
trisection” provides a solution to the problem of detection of the lighter fake coin in
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at most k weighings. That is, two weighings suffice to detect the single fake lighter
coin from among 4–9 coins. Likewise, it takes at most 3 weighings to detect a fake
lighter coin from among 10–27 coins; etc.

Using the method of extended trisection, we can see that exactly k weighings
are needed to detect the single fake lighter coin from among c = 3k − 1 coins. But
when 3k−1 < c < 3k − 1, the number of weighings needed to identify the lighter
fake coin may be random. Therefore, a natural question is which weighing strategy
minimizes the expected number of weighings? Here, we assume that the lighter fake
coin is equally likely to be in any position to begin with. We call a weighing design
optimal if it minimizes the expected number of weighings needed to identify the
lighter fake coin from among c ≥ 2 coins. We are interested in finding all optimal
weighing designs.

For instance, suppose that we are given 4 coins with one fake lighter coin among
them. If we place one coin on each pan and leave two coins aside, then the pans may
balance or not. If they balance, then the fake coin is among the two coins set aside;
and we need another weighing to detect the fake coin out of these two candidate
coins. On the other hand, if the pans do not balance, then we have already detected
the fake lighter coin—it is on the higher pan. Assuming that the fake coin is equally
likely to be any one of the candidate coins, the chance of the pans balancing or not
are respectively 1/2 each. Hence, the expected number of weighings to detect the
lighter fake coin from among the initial c = 4 coins is (1/2) ∗ 2 + (1/2) ∗ 1 = 1.5.
Is this the smallest possible expected number of weighings?

Let us see what would happen if we implemented another weighing design in
which we place two coins on each pan during the first weighing. Surely for this
second weighing design, the fake coin will be among the two coins on the higher
pan. Thereafter, a second weighing is necessary to identify the lighter fake coin from
among these two candidate coins. Hence, this second weighing design necessarily
requires two weighings. Indeed, since these are the only two weighing designs for
c = 4, it follows that (i) oneweighing is not guaranteed to detect the lighter fake coin,
and (ii) the first weighing design (putting n1(4) = 1 coin on each pan as suggested
by the “method of extended trisection”), minimizes the expected number of weigh-
ings to detect the lighter fake coin. The minimum expected number of weighings is
w(4) = 1.5.

Likewise, if we are given 5 coins with one lighter fake coin among them, we
have two possible weighing designs—put one coin or two coins on each pan (leaving
aside 3 coins or 1 coin, respectively). For the first weighing design, the pans balance
with probability 3/5, and a second weighing identifies the lighter fake coin from
among the three coins set aside; and the pans do not balance with probability 2/5,
and the higher pan contains the lighter fake coin. Therefore, the expected number
of weighing is (3/5) ∗ 2 + (2/5) ∗ 1 = 1.6. For the second weighing design, which
puts two coins on each pan, the probability that the pans balance is 1/5, in which case
the single coin set aside is the lighter fake coin; and the probability that the pans do
not balance is 4/5, in which case the higher pan contains the lighter fake coin, which
can be detected in a second weighing. Therefore, the expected number of weighing
is (1/5) ∗ 1 + (4/5) ∗ 2 = 1.8. Hence, the optimal weighing design for c = 5 coins
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puts n1(5) = 1 coin on each pan and sets aside 3 coins, and w(5) = 1.6. Note that
this optimal weighing design is not obtained by the “method of extended trisection.”
What method is it then? We will answer it in Remark 1 at the end of Sect. 2.

Continuing on to the case of c = 6 coins, we notice that there are multiple optimal
weighing designs. In fact, each of the three possible number of coins on each pan
during the first weighing leads to the same expected number of weighings, namely
w(6) = 2.00. (i) Ifweput one coin on eachpan, then the pans balancewith probability
4/6, the lighter fake coin is among the 4 coins set aside, and can be identified with
expected number of weighings 1.5; and the pans do not balance with probability
2/6, and the lighter fake coin is already identified on the higher pan. So the expected
number of weighings is (4/6) ∗ (1 + 1.5) + (2/6) ∗ 1 = 2.0. Moreover, the number
of weighings is random taking values 1, 2 or 3 with probabilities 1/3 each. (ii) If we
put two coins on each pan (as the method of trisection suggests), then the lighter fake
coin is among the 2 coins set aside if the pans balance; or it is among the two coins on
the higher pan if the pans do not balance. In either case, the lighter fake coin can be
identified during a second weighing. So for this weighing design exactly 2 weighings
are needed. (iii) If we put three coins on each pan, then the lighter fake coin is on the
higher pan, and it can be identified during a second weighing. Again, for this third
design also exactly 2 weighings are needed. Thus, the case of c = 6 coins exhibits a
multiplicity of solutions to the optimal design; that is, n1(6) ∈ {1, 2, 3}.

Next, if we are given c = 7 coins, the eventual expected number of weigh-
ings, if we put one or two or three coins on each pan during the first weighing
and follow up with optimal choices during the successive weighings, are seen to
be (2/7) ∗ 1 + (5/7)(1 + 1.6) = 15/7, 2 and (6/7) ∗ 2 + (1/7) ∗ 1 = 13/7, respec-
tively. Therefore, the optimal weighing design places n1(7) = 3 coins on each pan
and sets aside only one coin. Again, this optimal design is not what the method of
extended trisection suggests. Surprisingly, the minimum expected number of weigh-
ings w(7) = 13/7 for the case of c = 7 coins is smaller than the minimum expected
number of weighings for the case of 6 coins! That is, w(c) is not monotonic in c.

If c = 8 coins are given with one lighter fake coin among them, then the method
of extended trisection shows that exactly two weighing are needed to identify the
lighter fake. In fact, by mathematical induction, we can see that the single lighter
fake coin among c = 3k − 1 coins can be identified using exactly w(3k − 1) = k
weighings.

2.2 Partial Solution to the Pill Counting Problem

Let us return to the pill counting problem borrowed from Sarkar and Sinha (2016)
and stated in Sect. 1.1.

In Scenario (1) (one lighter bottle among 99 bottles), at most five sequential
weighings will suffice to identify the lighter bottle, since 34 < 99 < 35. In Sarkar
and Sinha (2016), suggested a weighing design; and demonstrated that the actual
number of weighings is either 4 or 5 with probabilities 7/11 and 4/11 respectively.
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Hence, the expected number of weighings is 4 + 4/11. Thereafter, they considered
an alternative weighing design, which takes on average 4 + 3/11 weighings, Hence,
the alternative design is slightly better than the first weighing design. Figure1 depicts
this second sequential design and shows the computation of the expected number of
weighings.

In Sarkar and Sinha (2016), invited the reader to discover, if possible, another
weighing design that requires a lower expected number of weighings to detect the
lighter bottle from among 99 bottles, or prove that this second weighing design
attains the minimum expected number of weighings. In this paper we resolve the
issue, proving that the weighing design of Fig. 1 is indeed an optimal weighing
design that minimizes the expected number of weighings. In fact, we show in Sect. 3
that there are 148 distinct optimal designs each attaining the same expected number
of weighings.

Next, in Scenario (2) (one heavier bottle among 100 bottles), in order to identify
the heavier bottle, surely a sequential weighing design involving five weighings
suffices. As in the design shown in Fig. 1, we first weigh 27 bottles on each pan,
leaving 46 bottles aside. There is a .54 chance the suspected heavier bottle will be
in a pool of 27 bottles and a .46 chance it will be in the pool of 46 bottles. In the
former case, exactly 3 more weighings are needed to identify the heavier bottle from
among the suspected pool of 27 = 33 bottles. In the latter case, during the second
weighing, we place 9 bottles in each pan, leaving 28 aside. Again, if the pans balance
(that is the heavier bottle is in the pool of 28 bottles left aside, which happens with
probability 28/46), we weigh 9, 3 and 1 coin on each pan during the next three
weighings, thereby needing on average of 3 + 1/14 more weighings to detect the
heavier bottle out of 28; and if the pans do not balance during the second weighing
(which happens with probability 18/46) we need only two more weighings to sort
through the 9 = 32 suspected bottles! Hence, the expected number of weighings
to identify the heavier bottle from among 46 bottles is 1 + (28/46) ∗ (3 + 1/14) +

Fig. 1 A proposed weighing design for c = 99, and its expected number of weighings
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Fig. 2 A proposed weighing design for c = 100, and its expected number of weighings

(18/46) ∗ 2 = 3 + 30/46. Finally, the expected number of weighings to identify the
heavier bottle from among the original 100 bottles is 1 + (.54) ∗ 3 + (.46) ∗ (3 +
30/46) = 4.30. Figure2 depicts this sequential design and shows the computation
of expected number of weighings.

Again, Sarkar and Sinha (2016), invited the reader to discover, if possible, another
weighing design that requires a lower expected number of weighings to detect the
heavier bottle from among 100 bottles, or prove the optimality of the above weighing
design. In this paper, we resolve the issue by proving the optimality of the weighing
design shown in Fig. 2. Furthermore, in Sect. 3 we show that there are 583 optimal
designs each of which requires an average of 4.30 weighings to detect the heavier
bottle from among 100 bottles.

2.3 A Recursive Relation and a Numerical Algorithm

In the previous Subsection we have directly evaluated

{w(c) : 1 ≤ c ≤ 9} = {0, 1, 1, 1.5, 1.6, 2, 13/7, 2, 2}

and

{n1(c) : 1 ≤ c ≤ 9} = {0, 1, 1, 1, 1, {1, 2, 3}, 3, 3, 3}

Observe the non-monotonicity in w(c) since w(7) < w(6), and multiplicity of solu-
tions (shown within braces) for c = 6. Furthermore, in the previous Subsection we
proved by mathematical induction that w(3k) = k using the method of trisection,
and w(3k − 1) = k using the method of extended trisection.
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Table 1 The minimum expected number of weighings to detect a single lighter fake coin among
c coins

> round(ENW, 4)
[1] 0.0000 1.0000 1.0000 1.5000 1.6000 2.0000 1.8571 2.0000 2.0000 2.2000

[11] 2.2727 2.5000 2.4615 2.5714 2.6000 2.7500 2.7059 2.7778 2.7895 2.9000
[21] 2.8571 2.9091 2.9130 3.0000 2.9600 3.0000 3.0000 3.0714 3.1034 3.2000
[31] 3.1935 3.2500 3.2727 3.3529 3.3429 3.3889 3.4054 3.4737 3.4615 3.5000
[41] 3.5122 3.5714 3.5581 3.5909 3.6000 3.6522 3.6383 3.6667 3.6735 3.7200
[51] 3.7059 3.7308 3.7358 3.7778 3.7636 3.7857 3.7895 3.8276 3.8136 3.8333
[61] 3.8361 3.8710 3.8571 3.8750 3.8769 3.9091 3.8955 3.9118 3.9130 3.9429
[71] 3.9296 3.9444 3.9452 3.9730 3.9600 3.9737 3.9740 4.0000 3.9873 4.0000
[81] 4.0000 4.0244 4.0361 4.0714 4.0706 4.0930 4.1034 4.1364 4.1348 4.1556
[91] 4.1648 4.1957 4.1935 4.2128 4.2211 4.2500 4.2474 4.2653 4.2727 4.3000

[101] 4.2970 4.3137 4.3204 4.3462 4.3429 4.3585 4.3645 4.3889 4.3853 4.4000

In general, for any c ≥ 2, by considering each of the possible number of coins to
be placed on each pan during the first weighing, we obtain the following recursive
relation:

w(c) = min
1≤ j≤�c/2�

{
1 + 2 j

c
∗ w( j) +

(
1 − 2 j

c

)
∗ w(c − 2 j)

}
(1)

wherewehavedefinedw(0) = 0.Thereafter,weobtainanoptimaldesignbyplacing
on each pan during the first weighing

n1(c) = argmin1≤ j≤�c/2�

{
1 + 2 j

c
∗ w( j) +

(
1 − 2 j

c

)
∗ w(c − 2 j)

}

= argmin1≤ j≤�c/2�{2 j ∗ w( j) + (c − 2 j) ∗ w(c − 2 j)} (2)

coins; and then following up with either (i) an optimal design for the c − 2 j coins
set aside if the pans balance (which happens with probability 1 − 2 j/c) during the
first weighing, or (ii) an optimal design for the j coins on the higher pan if the pans
do not balance (with probability 2 j/c) during the first weighing. Since there can be
multiple solutions to (2), we use the phrase “an optimal design,” rather than “the
optimal design.”

Defining w( j; c) = 1 + [2 j ∗ w( j) + (c − 2 j) ∗ w(c − 2 j)]/c, we see that
w(c) = min1≤ j≤�c/2� w( j; c).

The R codes, given in the Appendix, implement the numerical algorithm to eval-
uate w(c) and to obtain all possible values of n1(c). We show in Table1 the values
of w(c), and in Table2 all choices of n1(c) for 1 ≤ c ≤ 110.
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Table 2 The number of coins to put on each pan during the first weighing to minimize the expected
number of weighings, showing multiple answers within braces and the number of repetitions of the
same set of answers within parentheses

[1] 0 1(4) {1-3} 3(5) {3-5} {3,5}(3) {3-5,7} {5,7}(3) {5,7-9}
[21] {7,9}(3) {7-9} 9(5) {9-11} {9,11}(3) {9-11,13} {9,11,13}(3)
[38] {9-11,13-15} {9,11,13,15}(3) {9-11,13-15,17} {9,11,13,15,17}(3)
[46] {9-11,13-15,17-19} {11,13,15,17,19}(3) {11,13-15,17-19,21}
[51] {13,15,17,19,21}(3) {13-15,17-19,21-23} {15,17,19,21,23}(3)
[58] {15,17-19,21-23,25} {17,19,21,23,25}(3) {17-19,21-23,25-27}
[63] {19,21,23,25,27}(3) {19,21-23,25-27} {21,23,25,27}(3)
[70] {21-23,25-27} {23,25,27}(3) {23,25-27} {25,27}(3) {25-27}
[79] 27(5) {27-29} {27,29}(3) {27-29,31} {27,29,31}(3)
[92] {27-29,31-33} {27,29,31,33}(3) {27-29,31-33,35}
[97] {27,29,31,33,35}(3) {27-29,31-33,35-37} {27,29,31,33,35,37}(3)

[104] {27-29,31-33,35-37,39} {27,29,31,33,35,37,39}(3)
[108] {27-29,31-33,35-37,39-41} {27,29,31,33,35,37,39,41}(3)

Let us make a couple of observations on {n1(c)}: (1) For 3k − 2 ≤ c ≤ 3k + 2 with
k ≥ 1, there is a unique n1(c) = k, (except for c = 1, in which case n1(1) = 0). (2) If
c is odd, none of the optimal designs ever place an even number of coins on each pan.
We leave it to the reader to discover other interesting patterns among the solutions
{n1(c)}.

Returning to the motivating problem of bottling pills, we note that an optimal
weighing design for c = 99 allows for multiple choices of n1(99); namely, 27, 29,
31, 33, 35. Each choice, followed by any optimal design for the suspected pool,
leads to the same minimum expected number of weighings w(99) = 4 + 3/11.
Likewise, n1(100) is any one element of {27, 28, 29, 31, 32, 33, 35, 36, 37}. Each
of these choices, followed by some optimal design on the suspected pool, will attain
the same minimum expected number of weighings w(100) = 4.30. Also, we have
w(101) = 4.297030 < 4.30 = w(100).

Next, we make the following observations on {w(c)} based on the computed
values of w(c) for 1 ≤ c ≤ 110. These observations can be proved by mathematical
induction on k.

1. For k ≥ 1, we have w(3k) = k and w(3k − 1) = k. These are seen by placing
3k−1 coins in each pan and setting aside 3k−1 or 3k−1 − 1 coins. Thereafter, use
w(2) = 1 = w(3), and apply mathematical induction.

2. w(c) is non-monotonic in c. In fact, w(c) = w(c − 1) if c = 3k for some k ≥ 0;
w(c) < w(c − 1) if c = 3k + 4m for some k ≥ 1, and for somem ≥ 1; otherwise,
w(c) > w(c − 1).

3. For k ≥ 1, we have w(3k − 2) = k − 1/(3k − 2). This is seen by placing 3k−1

coins in each pan and setting aside 3k−1 − 2 coins. Thereafter, use w(1) = 1 −
1/1 = 0, w(7) = 2 − 1/7 = 13/7, and apply mathematical induction.
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4. For k ≥ 2, we have w(3k − 3) = k. This is seen by placing 3k−1 coins in each
pan and setting aside 3k−1 − 3 coins. Thereafter, use w(6) = 2, and apply math-
ematical induction.

5. For k ≥ 0, we have w(3k + 1) = k + 2/(3k + 1). This is seen by placing 3k−1

coins in each pan and setting aside 3k−1 + 1 coins. Thereafter, use w(2) = 1 =
0 + 2/2, w(4) = 1.5 = 1 + 2/4, and apply mathematical induction.

We conclude the paper by proving a general formula for determining an optimal
number n1(c) of coins to be placed on each pan during the first weighing (there are,
of course, other optimal choices for n1(c)), and a formula for w(c), the minimum
expected number of weighings needed to identify the lighter coin out of c coins.
First, we define a special function on integers and note some of its properties:

Definition 1 Define a function on all integers as follows: g(0) = 0, g(1) = 2,
g(2) = 3, g(3) = 6; and extend this definition to all integers using g(4l + r) =
6l + g(r) for all integers l and r ∈ {0, 1, 2, 3}. For instance, g(4) = g(4 + 0) = 6 +
g(0) = 6, g(5) = g(4 + 1) = 6 + g(1) = 8, . . .; and also g(−1) = g(−4 + 3) =
−6 + g(3) = 0, g(−2) = g(−4 + 2) = −6 + g(2) = −3, . . ..

More directly, we can define for all integers x ,

g(x) =

⎧⎪⎨
⎪⎩
3x/2 if x = 0 (mod 2)

(3x + 1)/2 if x = 1 (mod 4)

(3x + 3)/2 if x = 3 (mod 4)

Note the following properties of the g(·) function: (P0) g(·) is non-decreasing;
(P1) 2 ≤ g(x) − g(x − 2) ≤ 4, (P2) g(x) − g(x − 4) = 6, and (P3) g(2x + y) ≤
2g(x) + g(y); with equality if and only if x is even. The verifications of P0, P1 and
P2 are straight-forward. To verify P3, we ask the reader to evaluate g(2x + y) and
2g(x) + g(y) (usingDefinition 1) for all combinations of values of x, y ∈ {0, 1, 2, 3}.
Theorem 1 Assume that the lighter fake coin is equally likely to appear in any c
positions. Suppose that 3k ≤ c < 3k+1. Let us write c = 3k + 12h + 4i + r where
k = �log3 c�, h = �(c − 3k)/12� ∈ {0, 1, . . . , �3k−1/2�}, i = �(c − 3k − 12h)/4� ∈
{0, 1, 2}, and r = (c − 3k) (mod 4) ∈ {0, 1, 2, 3}. Then, n1(1) = 0, n1(2) = 1 and
for c ≥ 3, one choice of optimal number of coins to be placed on each pan during
the first weighing is given by

n1(c) = 3k−1 + 4h + 2i (3)

and, using the special function defined in Definition 1, the minimum expected number
of weighings needed to identify the lighter coin out of c ≥ 1 coins is given by

w(c) = k + [18h + 6i + g(r)]/c (4)
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Proof We prove results (3) and (4) usingmathematical induction (the strong version)
on c. For the base cases, we note that

c k l r n1(c) w(c) using (4) ENW[c]
1 = 30 + 4 ∗ 0 + 0 0 0 0 0 w(1) = 0 + [6 ∗ 0 + g(0)]/1 = 0 0.0000
2 = 30 + 4 ∗ 0 + 1 0 0 1 1 w(2) = 0 + [6 ∗ 0 + g(1)]/2 = 1 1.0000
3 = 31 + 4 ∗ 0 + 0 1 0 0 1 w(3) = 1 + [6 ∗ 0 + g(0)]/3 = 1 1.0000
4 = 31 + 4 ∗ 0 + 1 1 0 1 1 w(4) = 1 + [6 ∗ 0 + g(1)]/4 = 1.5 1.5000
5 = 31 + 4 ∗ 0 + 2 1 0 2 1 w(5) = 1 + [6 ∗ 0 + g(2)]/5 = 1.6 1.6000
6 = 31 + 4 ∗ 0 + 3 1 0 3 1 w(6) = 1 + [6 ∗ 0 + g(3)]/6 = 2 2.0000
7 = 31 + 4 ∗ 1 + 0 1 1 0 3 w(7) = 1 + [6 ∗ 1 + g(0)]/7 = 13/7 1.8571
8 = 31 + 4 ∗ 1 + 1 1 1 1 3 w(8) = 1 + [6 ∗ 1 + g(1)]/8 = 2 2.0000
9 = 32 + 4 ∗ 0 + 0 2 0 0 3 w(9) = 2 + [6 ∗ 0 + g(0)]/9 = 2 2.0000

Thus, we note that (3) and (4) hold for 1 ≤ c ≤ 9. Also note that for c = 3k , we
can use either the decomposition 3k = 3k−1 + 4 ∗ �3k−1/2� + 2 or 3k + 4 ∗ 0 + 0,
and get the same value of w(3k) = k. Suppose now that (3) and (4) hold for all
values of c in the set {1, 2, . . . ,m − 1} where 3k ≤ m − 1 < 3k+1. Next, let c =
m = 3k + 12h + 4i + r . We shall show that (3) and (4) hold for 3k < c = m ≤ 3k+1

by proving the following two lemmas:

Lemma 1 If we place during the first weighing j∗ = 3k−1 + 4h + 2i coins on each
pan and set aside the remaining s∗ = m − 2 j∗ = 3k−1 + 4h + r coins (and there-
after follow-up with an optimal weighing design for s∗ < m coins or j∗ < m coins
according as the pans balance or do not balance), then the expected number of
weighings to identify the fake lighter coin is indeed as given on the right hand side
of (4).

Lemma 2 If we place during the first weighing 1 ≤ j ≤ �m/2� coin(s) on each pan
and set aside the remaining s = m − 2 j coins (and thereafter follow-up with an
optimal weighing design for s coins or j coins according as the pans balance or do
not balance), then the expected number of weighings to identify the fake lighter coin
is at least as big as the expression on the right hand side of (4).

Proof of Lemma 1. Since j∗ = 3k−1 + 4h + 2i < m, by the strong induction
hypothesis, if i is even, then writing 2i = 4i/2, we have

w( j∗) = (k − 1) + [6(h + i/2)]/j∗ = (k − 1) + [6h + 3i]/j∗

and if i is odd, then writing 2i = 4(i − 1)/2 + 2, we still have

w( j∗) = (k − 1) + [6h + 6(i − 1)/2 + g(2)]/j∗ = (k − 1) + [6h + 3i]/j∗
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since g(2) = 3.Recall thatm = 3k + 12h + 4i + r . Hence, s∗ = m − 2 j∗ = 3k−1 +
4h + r < m. So, by the strong induction hypothesis, we have

w(s∗) = (k − 1) + [6h + g(r)]/s∗

Therefore, using (1) and the strong induction hypothesis, we have

w( j∗;m) = 1 + [2 j∗ w( j∗) + s∗ w(s∗)]/m
= 1 + [2 { j∗ (k − 1) + 6h + 3i} + {s∗ (k − 1) + 6h + g(r)}]/m
= 1 + (k − 1) + [18h + 6i + g(r)]/m = k + [18h + 6i + g(r)]/m

which agrees with the right hand side of (4). This completes the proof of Lemma 1.
In particular, Lemma 1 implies that

w(m) = min
1≤ j≤m/2

w( j;m) ≤ w( j∗;m) = k + [18h + 6i + g(r)]/m

To show the opposite inequality, we need Lemma 2.

Proof of Lemma 2.We decompose the proof of Lemma 2 into five cases according
as the value (or range of values) of j .

Case 1 (3k−1 ≤ j ≤ 3k). Then 3k−1 ≤ s ≤ 3k .Wewrite j = 3k−1 + 12h̄ + 4ī + r̄
and s = 3k−1 + 12h̃ + 4ĩ + r̃ . Thenm = 2 j + s = 3k + 12(2h̄ + h̃) + 4(2ī + ĩ) +
(2r̄ + r̃). Using (1) and the strong induction hypothesis, we have

m w( j;m) = m + 2 j w( j) + s w(s)

= m + 2 { j (k − 1) + 18h̄ + 6ī + g(r̄)} + s (k − 1) + 18h̃ + 6ĩ + g(r̃)

= m + m(k − 1) + 18(2h̄ + h̃) + 6(2ī + ĩ) + [2 g(r̄) + g(r̃)]
= mk + 18[2h̄ + h̃] + 6[2ī + ĩ] + [2 g(r̄) + g(r̃)]
≥ mk + 18[2h̄ + h̃] + 6[2ī + ĩ] + g(2 r̄ + r̃)

= m w( j∗;m)

The last inequality above follows from property P3 of the g(·) function.
Thus, no other j (in the range 3k−1 ≤ j ≤ 3k) achieves a lower expected number of

weighings than achieved by j∗, though some may achieve the same expectation. The
next four cases establish that for values of j below 3k−1 and above 3k the expectation
is strictly higher.

Case 2 ( j = 3k−1 − 1). Then 3k−1 + 2 ≤ s. We write s = 3k−1 + 12h̃ + 4ĩ + r̃ .
Using property P1 of the g(·) function, we have
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m w( j;m) = m + 2 j w( j) + s w(s)

= m + 2 j (k − 1) + s (k − 1) + 18h̃ + 6ĩ + g(r̃)

> m + 2 ( j + 1) (k − 1) + (s − 2) (k − 1) + 18h̃ + 6ĩ + g(r̃ − 2)

= m + 2 ( j + 1) w( j + 1) + (s − 2) w(s) = m w( j + 1;m)

Hence, instead of placing j coins on each pan and setting aside s coins, it is “better”
to place j + 1 coins on each pan and set aside s − 2 coins. Here, a weighing design
is better if it has a lower expected number of weighings necessary to identify the
single fake lighter coin.

Case 3 ( j ≤ 3k−1 − 2). Then 3k−1 + 4 ≤ s. Then instead of placing j coins on
each pan and setting aside s coins, it is better to place j + 2 coins on each pan
and set aside s − 4 coins. This is because w( j;m) > w( j + 2;m) iff s w(s) −
(s − 4) w(s − 4) > 2{( j + 2) w( j + 2) − j w( j)}, which holds true since

2 {( j + 2) w( j + 2) − j w( j)}
= 2 {[( j + 2)k ′ + 18h̄ + 6ī + g(r̄ + 2)] − [ jk ′ + 18h̄ + 6ī + g(r̄)]}
= 2 {2k ′ + g(r̄ + 2) − g(r̄)}
≤ 2 {2(k − 2) + g(r̄ + 2) − g(r̄)} ≤ 4k

The first inequality above uses the fact that k ′ ≤ k − 2, and the second inequality
uses property P1 of the g(·) function. Likewise, using property P2, we have

s w(s) − (s − 4) w(s − 4)

= [s(k − 1) + 18h̃ + 6ĩ + g(r̃)] − [(s − 4)(k − 1) + 18h̃ + 6ĩ + g(r̃ − 4)]
= 4(k − 1) + g(r̃) − g(r̃ − 4) = 4(k − 1) + 6 = 4k + 2

Case 4 ( j = 3k + 1). Then s ≤ 3k − 2. Then instead of placing j = 3k + 1 coins
on each pan and setting aside s coins, it is better to place j − 1 = 3k coins on each pan
and set aside s + 2 coins. This is because w( j;m) > w( j − 1;m) iff 2{ j w( j) −
( j − 1) w( j − 1)} > (s + 2) w(s + 2) − s w(s), which holds true since 2 { j w( j) −
( j − 1) w( j − 1)} = 2 {2k + g(1) − g(0)} = 4k + 4 > 4k̃ + 4 ≥ 4k̃ + g(r̃ + 2) −
g(r̃) = (s + 2) w(s + 2) − s w(s), where 3k̃ ≤ s < 3k̃+1 − 2 with k̃ < k.

Case 5 (3k + 2 ≤ j ≤ m/2). Then instead of placing j coins on each pan and
setting aside s coins, it is better to place j − 2 coins on each pan and set aside s +
4 coins. This is because w( j;m) > w( j − 2;m) iff (s + 4) w(s + 4) − s w(s) <
2{ j w( j) − ( j − 2) w( j − 2)}, which holds true since 2 { j w( j) − ( j − 2) w( j −
2)} ≥ 2 {2k + g(r̄) − g(r̄ − 2)} ≥ 4k + 4 > 4k + 2 = (s + 4) w(s + 4) − s w(s).

The abovefive cases together imply that no value of 1 ≤ j < m/2 achieves a lower
expected number of weighings than that achieved by j∗. That is, w(m) ≥ w( j∗;m).
This completes the proof of Lemma 2.
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In view of Lemmas 1 and 2, w(m) = w( j∗;m) = k + {18h + 6i) + g(r)}]/m.
Indeed, placing j∗ = 3k−1 + 4h + 2i coins on each pan (and setting aside s∗ =
c − 2 j∗ coins) during the first weighing is one of the optimal designs. There may
be other optimal designs (putting j coins on each pan for some select values of
3k−1 ≤ j ≤ 3k , but never a value of j < 3k−1 or j > 3k), each attaining the same
minimum expected number of weighings given by (4).

Therefore, (3) and (4) hold for c = m; and hence by strongmathematical induction
they hold for all c ≥ 1. This completes the proof of the theorem. Q.E.D.

Remark 1 Expression (3) helps us automate the choice of n1(c). This choice may be
called a “hybrid trisection-bisection method,” since the first 3k coins are trisected
among the left pan, the right pan and the set aside pool; then from the remaining
(c − 3k) coins, the highest multiple of 12 coins are also trisected; if there are still
more coins, the next multiple(s) of 4 coins are bisected between the two pans; and
finally any remaining coin(s) (at most 3) is/are set aside. Thus, this hybrid trisection-
bisection method always yields a j∗ such that (c − 2 j∗) ≤ j∗ + 3 and j∗ ≤ (c −
2 j∗) + 4. Hence, j∗ is an odd number between 	c/3
 − 1 and �(c + 1)/3� + 1. Of
course, whenever there is a unique value of n1(c) (for example, when 1 ≤ c ≤ 5, 7 ≤
c ≤ 11, or more generally when 3k − 2 ≤ c ≤ 3k + 2), we have n1(c) = j∗ = 3k−1.

Remark 2 Here is an alternative way to evaluate w( j). The proof of Theorem 1
reveals that p( j) = j w( j) can be obtained by taking the cumulative sum of the
sequence {a j : j ≥ 1} defined as follows: a1 = 0, a2 = 2, and for k ≥ 1, if 3k ≤
j = 3k + 4l + r < 3k+1, where r = ( j − 3k)(mod 4); then a j = k + f (r), where
f (0) = 0, f (1) = 2, f (2) = 1, f (3) = 3. Thereafter, w( j) is found as
w( j) = p( j)/j .

3 Discussions

Minimization of the expected number of weighings has been our sole criterion for
determining optimal weighing designs. This has led to a multiplicity of optimal
weighing designs. Exactly how many optimal weighing designs are there? We say
that two weighing designs are distinct if during any one particular weighing either
the designs involve different sizes of the suspected pools containing the fake lighter
coin, or the number of coins placed on each pan differs across the two designs. Let
D(c) denote the number of distinct optimal weighing designs to detect the single
fake lighter coin from among c coins. We let the reader work out an exact formula
for D(c). Here we only give a recursive relation that we evaluate numerically.

Clearly, for each of c = 1, 2, 3, there is exactly one thing to do; namely, for
c = 1, do nothing; and for c = 2, 3, place one coin on each pan. So, D(1) = 1 =
D(2) = D(3). Next, for c = 4, the two distinct designs are 1 + 1 + 2(U) and 1 +
1 + 2(B) → 1 + 1 + 0(U). Here, we are writing the number of coins on the left
pan, the right pan and the set aside pool. Also, U denotes the pans are unbalanced
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Table 3 Number of distinct optimal weighing designs to identify a single fake lighter coin from
among 1 ≤ c ≤ 110 coins

[1] 1 1 1 2 2 5 2 2 1 3 3 11 6 7 4
[16] 18 7 8 7 18 4 7 6 13 3 3 1 4 4 20
[31] 11 14 8 51 24 28 24 84 26 39 34 100 42 49 38
[46] 126 48 55 48 126 42 56 49 128 49 56 42 126 48 55
[61] 48 126 38 49 42 102 34 39 26 88 24 28 24 55 8
[76] 14 11 24 4 4 1 5 5 32 17 23 13 108 52 62
[91] 52 232 75 109 94 363 152 182 148 583 224 261 228 762 268

[106] 343 303 964 375 433

and B denotes they are balanced during the particular weighing. For c = 5, the
two distinct designs are 1 + 1 + 3(U) and 1 + 1 + 3(B) → 1 + 1 + 1. For c = 6,
there are five distinct designs: 1 + 1 + 4(U), 1 + 1 + 4(B) → 1 + 1 + 2(U), 1 +
1 + 4(B) → 1 + 1 + 2(B) → 1 + 1 + 0(U), 2 + 2 + 2 → 1 + 1 + 0(U), and 3 +
3 + 0(U) → 1 + 1 + 1.

In general, for c ≥ 4, we have the following recursive relation:

D(c) =
∑

j∈n1(c)
{D( j) + D(c − 2 j) ∗ I (c �= 3 j) ∗ I (c �= 2 j)} (5)

To justify (5), we reason as follows: During the first weighing we place j ∈ n1(c)
coins on each pan and set aside c − 2 j coins. The first weighing results in either (i)
unbalanced pans, causing us to select an optimal design for j coins on the higher pan,
or (ii) balanced pans, causing us to select an optimal design for c − 2 j coins from the
set aside pool. However, if j = s = c/3 we only select an optimal design from the
appropriate set of j coins (either on the higher pan or from the set aside pool). Also,
we rule out the case when ( j = c/2 ∈ n1(c), s = 0) (which is applicable only for
c = 6) since in that case we must impose the convention D(c − 2 j) = D(0) = 0.

We report the values of D(c) in Table3, obtained by using the R codes given in
the Appendix.

Returning to the pill counting Scenarios (1) and (2), note that D(99) = 148 and
D(100) = 583. While we leave the reader to find a general formula for D(c), we
make just one observation: For k ≥ 1, by mathematical induction on k, we see that
D(3k) = 1, D(3k − 1) = k = D(3k − 2) and D(3k + 1) = k + 1 = D(3k + 2).

To reduce the number of optimal weighing designs, one may wish to impose
an additional desirable feature to select a subset of these optimal designs. Such an
additional feature may be: (1) minimize the variance of the number of weighings,
or (2) minimize a fixed percentile (say, the 80th percentile) of the number of weigh-
ings needed to identify the fake lighter coin. We leave these topics to the reader to
investigate.

What if there is at most one fake coin? Let us allow the possibility that either
there is one fake lighter coin or all coins are genuine, but we do not know which is
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the case. Clearly, if c = 1 it is not possible to determine whether this coin is genuine
or fake using only a two pan balance. For c ≥ 2, we consider two approaches: (1)
Assume that there is exactly one fake lighter coin, and proceed to identify it using
recursive relation (1), but with a possible exception at the very end as described
below. (2) As quickly as possible, ascertain whether all coins are genuine or there is
a fake coin, by using the method of extended bisection during the first weighing; that
is, by splitting the coins equally (if c is even), or nearly equally (if c is odd) on the
two pans. Let w̄1(c) and w̄2(c) denote the minimum expected number of weighings
needed to identify the fake lighter coin or to declare that all coins are genuine in the
two approaches.

In Approach (1), three cases are possible, of which only the third case results in
a weighing design different from that under the knowledge that there is exactly one
fake lighter coin: (i) Should the pans ever be unbalanced, we will know for sure that
there is a fake lighter coin on the higher pan. (ii) If the pans always balance and
eventually the suspected pool reduces to 2 coins (which happens only if c is even),
we will place one coin on each pan, just as we would do so under the knowledge
of exactly one fake lighter coin. (iii) If the pans always balance until the suspected
pool reduces to 1 coin (which happens with probability 1/c only if c is odd), we will
have to weigh it against any one of the c − 1 genuine coins to determine whether
it is lighter or genuine, requiring one more weighing than under the knowledge of
exactly one fake lighter coin. Hence, if unbeknownst to us there is exactly one fake
coin then w̄1(c) = w(c) + I {c odd}/c. On the other hand, if unbeknownst to us there
is no fake coin then w̄1(c) = 	log3(c + 1)
.

In Approach (2), when c ≥ 2 is even, the first weighing determines that all coins
are genuine (if the pans balance), or that there is a fake lighter coin on the higher
pan containing c/2 coins, and it can be detected using w(c/2) more weighings on
average. Hence, if unbeknownst to us there is exactly one fake coin then w̄2(c) =
1 + w(c/2). On the other hand, if unbeknownst to us there is no fake coin then
w̄2(c) = 1. Likewise, when c ≥ 3 is odd, the first weighing reduces the suspected
pool to the single coin set aside (if the pans balance), or that there is a fake lighter
coin on the higher pan containing (c − 1)/2 coins. In the former case, one more
weighing determines whether the single set aside coin is genuine or lighter. In the
later case, we need w((c − 1)/2) more weighings to identify the fake lighter coin.
Hence, if unbeknownst to us there is exactly one fake coin then w̄2(c) = 1 + (1 −
1/c)w((c − 1)/2) + 1/c. On the other hand, if unbeknownst to us there is no fake
coin then w̄2(c) = 2.

Since we are dealing with identification of a fake coin, some people would tend to
believe that there is a fake coin. However, since we are cautioned that there might be
no fake coin at all, some other people would believe in that proposition. Most people
would have different degrees of belief on the two propositions. If one believes that
with a high probability there is a fake coin, then Approach (1) is preferable. But if
one believes that with a high probability there is no fake coin, then Approach (2) is
preferable. Thus, a subjective belief influences the choice of optimal design when
there is at most one fake lighter coin among c ≥ 2 coins.
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Appendix

R codes to compute the minimum expected number of weighings, the number of
coins to place on each pan during the first weighing, and the number of distinct
optimal designs.

N=110 # set the number of coins
NEPL=rep(1,N) # ENW min with this lowest #coins on each pan at 1st weighing
NEPH=rep(1,N) # ENW min with this highest #coins on each pan at 1st weighing
ENW=c(0,rep(1,N-1)) # set ENW[1]=0, ENW[2]=1, if exactly one coin is lighter
# Now recursively compute ENW[c] for c>=3
for (c in 3:N){

IPS=(c-2)*ENW[c-2] # min inner product if put 1 coin on each pan
c2=floor(c/2) # put i=2..c2 coins on each pan at 1st weighing
for (i in 2:c2){

if (c >2*i){ # there are left-over coins during first weighing
IP=2*i*ENW[i]+(c-2*i)*ENW[c-2*i] # inner product
if (IP <IPS){ IPS=IP; NEPL[c]=i } # a lower inner product is found
if (IP==IPS){ IPS=IP; NEPH[c]=i } } # the same lowest inner product

if (c==2*i){ # no coin is set aside during first weighing
IP=2*i*ENW[i]
if (IP <IPS){ IPS=IP; NEPL[c]=i }
if (IP==IPS){ IPS=IP; NEPH[c]=i } }

}
ENW[c]=1+IPS/c # expected number of weighings to detect the lighter
}
cbind(NEPL, NEPH, ENW) # print w(c)=ENW, solution unique if NEPL=NEPH
#
# How many coins to put on each pan during the first weighing? n_1(c)
# Also calculate the number of distinct optimal designs
D=rep(1,N) # initialize the number of distinct optimal designs
for (n in 4:110){

m=floor(n/2)
W=rep(0,m)
for (j in 1:m){

if (2*j!=n){W[j]=2*j*ENW[j]+(n-2*j)*ENW[n-2*j]}
if (2*j==n){W[j]=2*j*ENW[j]}

}
smallest=min(W)

sol=which( W < (smallest+1)*rep(1,length(W)) )
# W is a vector of integers. So, +1 allows truncation error in ENW.

print(c(n, sol))
D[n]=sum(D[sol]+D[n-2*sol]*(n*rep(1,length(sol))!=3*sol)*

(n*rep(1,length(sol))!=2*sol)) # explained in Section 3
}
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