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PREFACE 

 The presentment should be as simple as possible, but not a 
bit simpler. 

Albert Einstein  
 

Introduction  

The power of the variational approach in mechanics of solids and 
structures follows from its versatility: the approach is used both as a 
universal tool for describing physical relationships and as a basis for 
qualitative methods of analysis [1]. And there is yet another important 
advantage inherent in the variational approach – the latter is a crystal clear, 
pure and unsophisticated source of ideas that help build and establish 
numerical techniques for mechanics. This circumstance was realized 
thoroughly and became especially important after the advanced numerical 
techniques of structural mechanics, first of all the finite element method, 
had become a helpful tool of the modern engineer.  Certainly, it took some 
time after pioneering works by Turner, Clough and Melos until the finite 
element method was understood as a numerical technique for solving 
mathematical physics problems; nowadays no one would attempt to 
question an eminent role played by the variational approach in the process 
of this understanding. It is a combination of intuitive engineer thinking and 
a thoroughly developed mathematical theory of variational calculus which 
gave the finite element method an impulse so strong that its influence can 
still be felt.  

It would be too rash to say that there are few publications or books on 
the subject matter discussed in this book. It suffices to list such names of 
prominent mathematicians and mechanicians as Leibenzon [2], Mikhlin 
[3], Washizu [4], Rectoris [5], Rozin [6] … – the ellipsis shows that this 
list could be continued. So, a person can be thought of as overmuch 
confident (even arrogant) to follow the listed authors and other recognized 
personalities, who furrowed up their way through the ocean of variational 
principles in mechanics long ago, and to make the venture of writing 
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another book on the same subject. The words said by English physicist 
H.Bondy come into mind in this regard [7]: 

“A book is a wonderful thing, but, honestly, there are too many books; 
so the readers have a hard time, and the authors maybe harder”. 

However, every book written is worth its readers’ audience. Some of the books 
(by Mikhlin or Rectoris) are intentionally oriented at mathematical aspects of 
variational solutions, while others (by Leibenzon, Washizu, Rozin) have a clear 
and pure mechanical accent. 

Obviously, when an author is in process of writing a book like this one, there is 
a difficult issue that constantly crosses the way: who are the potential readers of 
the book and how to keep to their interests. K. Rektorys [5] is totally right by 
stating that it is quite a fancy matter how to make a book useful for both the 
mathematician and the engineer because:  

“…the said reader categories often have opposite opinions about a book 
like this, so they advance totally different requirements to it, which cannot 
be satisfied at the same time. For example, one can hardly accommodate 
oneself to the wish of the mathematician and provide a book written very 
concisely where the theory would be evolved at a quick pace”. 

This is a matter of choice, and the choice in this book is unambiguous: 
The book is oriented at people who took (or intend to take) their 
engineering degree and also have a certain awareness of mathematics — 
generally, within the curriculum of the present mathematical education 
given to students of engineering at universities. 

Here follows a short list of skills and knowledge that the reader of the 
book should possess. The reader is believed to have acquaintance with a 
standard set of solid mechanics subjects included in the curriculum on 
engineering at any university — strength of materials, structural 
mechanics, basics of elasticity theory — and to know something about 
basic notions of the calculus of variations. The concepts like a functional, 
Euler equations for one, principal and natural boundary conditions, the 
Lagrangian multiplier rule for a functional’s point of stationarity when 
additional conditions are present, some others are assumed to be known to 
the reader and understood by him. The reader is also supposed to have 
mastered the basics of linear algebra; as for the calculi, the Gauss–
Ostrogradski formula is used everywhere in several variations without 
additional explanation. Also, the author believes the reader will not have 
any difficulties with the differentiation of a function with respect to its 
vector argument; this operation can be met in the book a few times. 

The author wanted to restrict the requirements to the mathematical skill 
of the reader, therefore the book does not use basics of tensor analysis 
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even in cases when the tensors would be totally relevant. All that the 
reader should know about the subject is how to sum over repeated indices.  

The author keeps to the needs of the engineers and tries to avoid where 
possible the lure of discussing delicate mathematical issues — for 
example, the very important notion of space completeness. However, the 
reader is assumed to know simple things about the Hilbert spaces. It is 
possible that mathematical purists might find this style of presentment 
inadmissible… well, then we refer to the following opinion by Bertran 
Russell: 

“A book must be either strict or simple. These two requirements are not 
compatible”.    

Speaking briefly, this book is addressed to the engineers rather than the 
mathematicians; however, to the engineers who have a taste for mathematical 
formulations and methods of engineering analysis based thereupon, even though 
the methods are not presented in their pure mathematical form. 

Speaking about the potential reader, the author already mentioned the engineers 
and researchers (first of all) and wishes to add senior students of engineering who 
intend to make their career in close connection with engineering analysis. Post-
graduates of specialities related to mechanical strength are welcome, too. I do 
hope the professors of the same specialities will be able to find the book useful in 
some way for their lectures or topical seminars.  

The discussion of the book’s contents by chapters is omitted; a look at 
the table of contents is enough to have a clear idea of the subject. Also, the 
reader should notice that the book pays equal attention to general 
formulations of variational problems and to the variational treatment of 
particular classes of mechanical problems. Therefore the book can be both 
(1) a guide to deeper study of variational principles and methods in 
mechanics of solids and structures and (2) a practical manual for the 
engineer. 

The variational principles of structural mechanics can be presented in a 
variety of ways. One of the approaches suggests that particular variations 
of the basic principles can be derived one from another by formal 
mathematical transformations such as Legendre transform, Friedrichs 
transform, Lagrange transform. This approach is used systematically in 
[8], for example. But the same variational principles can be derived 
independently, too, so that the connections between the respective 
functionals are established later, maybe using the same mathematical 
transforms. For methodical reasons, one of which is the orientation of the 
book at the reader educated in engineering, the book uses the second 
approach.  
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Obviously, it is not necessary to consider all thinkable variational 
formulations in one book (nor it is possible because the volume of the 
book is limited). The scientific journals never cease publishing more and 
more papers on the subject, which is an evidence that the topic is far from 
being exhausted. This book presents only some most important and 
popular formulations; the author has chosen those as useful for both the 
general theory of structural mechanics and the construction of numerical 
algorithms that solve application problems. 

It should be specified that all structural mechanics formulations in this 
book are strictly linear1. These are the considerations why this limitation 
has been adopted: 

• First, the variational formulations and methods of solutions in the linear 
analysis are self-contained. The author thinks it is a good methodical 
approach to treat most important features of the variational methods in 
the linear formulation without making things too complicated by 
introducing nonlinear effects.  

• Second, one should keep in mind that the solution of nonlinear problems 
is based in most cases on a reduction to a sequence of linear solutions.  

• Third, and most essential, the nonlinear analysis is both practically 
important and very specific. Therefore the respective problems deserve 
a separate detailed treatment in a separate publication.  

The above said is an actual promise, given by the author to his reader 
audience, to prepare a book as soon as possible which will be dedicated 
particularly to formulations and methods of solution in nonlinear structural 
analysis. 

The author wishes to give one excuse for terminology used in the book. The 
book makes extensive use of a number of abbreviations such as: SSS for ‘stress 
and strain state’, PSS for ‘plane stress state’, FEM for ‘finite element method’. 
The author is aware that a number of experts in mechanics of solids and structures 
(MSS) feel bad about the abbreviations like these. But even the last abbreviation is 
used in the title of a respectable academic journal, so is it not an evidence that 
abbreviations are recognized by the mechanicians and can be used in publications? 
As for the sense of proportion, it is the reader who will judge. 

                                                      
1 That is why we do not distinguish between the strain energy of a system and 

its complementary energy; this difference becomes essential in the nonlinear 
analysis.  
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Remarks on references to publications 

The fact that no list of literature references can by any means claim its 
completeness is a very traditional excuse made by authors; I don’t even 
feel myself obliged to make that excuse again. 

The only thing worth mentioning here is the purpose of the references 
made in the book. Actually, there can be more than one purpose. However, 
if the reader seeks to find the author’s reasoning on historical priorities in 
the book, there will be a disappointment. This is not because the author 
underestimates the historical component in the development of the 
scientific thinking. On the contrary, the author feels so deep a respect to 
the science he is engaged in that he cannot declare himself the historian of 
that science even to a slightest degree2. Generally, the problem of priorities 
is both complicated and very delicate, and sometimes it just cannot be 
resolved so that no one has bad feelings about the historical unfairness of 
the solution. Historians of science belonging to different scientific schools 
are often devoted to strictly opposite opinions3. It is better here to step 
aside from the priority problem and the related issue — how to name 
particular scientific achievements based on their historical precedence. I 
just note that the references to publications are given chiefly for the reader 
to be able to find more information on a particular topic covered in the 
book. Another purpose of listing the references is to give the reader an idea 
what sources were used by the author in order to present particular topics 
of the subject. 

How to read this book 

Strictly speaking, the reader is not required to follow the recommendations 
given below. The method of reading depends on the qualification of the 
reader and on the goals he has in mind when he is going to spend his time 
for studying the suggested material. 

For the beginning, the reader is asked to read the first three chapters of 
the book. Chapters 4 through 8 present formulations of particular classes 
of problems based on the general variational principles. If the reader feels 
sufficiently knowledgeable about those formulations, or if he has no 

                                                      
2  However, the author feels he has a right sometimes to express his point of 

view on the priority issue, too, especially when that point of view is quite well 
grounded. 

3 Just for example, recall arguments between the adherents of the priorities of 
Newton and Leibnitz in the invention of differential calculus. 
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interest in those for some reason, the reader can skip the chapters entirely 
or partially with little effect on the further understanding. 

Chapter 9 contains an introduction to the Ritz method, intended for 
engineers and researchers in mechanics. A well-prepared reader can skip 
the chapter or just take a look at it. However, Section 9.3 of it contains 
some new information not represented in monographs until now.  

Chapters 10 and 11 are intended for engineers or researchers interested 
in the frequency spectrum analysis and the stability of equilibrium of 
structures.  

The appendices give some general mathematics which, though 
sometimes relate indirectly to the main presentment, can be of help for the 
reader who does not feel like following literary references simultaneously 
with perusing this book. For example, Appendix F presents a brief but 
complete description of the theory of curvilinear coordinates. We 
recommend that even a prepared reader familiarize himself with this 
appendix in order to master the system of designations which is used in 
many places of the book.  

The appendices include also sections which present something different 
from general mathematics. Those sections discuss certain specific details 
or particularize issues of a theory; they are intentionally removed from the 
main presentment in order not to overload it. 

Before studying the plate bending theories in Chapter 5, one is 
recommended to look through Section 4.7 dedicated to planar curvilinear 
bars. It will help to understand better at least an important section on the 
static-geometric analogy in the plate theory, especially in connection with 
the formulation of so-called boundary conditions for deformations. 

The book does not abound in examples, so we recommend not to miss 
ones that the book does have. Generally, the examples presented in the 
book are not intended to coach a student for solving typical problems like 
piece of cake. The examples are there to provide an explanatory material 
that helps look at a problem at a different angle. This special role played 
by examples in the cognitive process in mathematics and engineering is 
well-known and traditional in scientific papers. The role was emphasized 
many times in works by a great expert in teaching mathematics and 
mechanics, A.N. Krylov. In his well-known book [9], A. Krylov refers to 
words by I. Newton: “in the study of sciences, examples are no less 
educational than rules”. 

In most of the cases, all statements of theoretical nature are provided in 
the book along with a detailed background. If there are any violations of 
the rule, they are intentional — it is the reader who is invited to complete 
the demonstration. This is not to save space; this is to ensure a better 
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education. Exercises of this kind help master the theory much better and 
grow one’s creative potential.  
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respective sections of the book. 

Finally, the SCAD Group company, that the author has the bonds of 
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Some general rules for designations used in this book 

The following numbering of formulas and references to those is used. 
Within one section, the formulas are numbered by two numbers separated 
with periods. First number is No. of a section in a particular chapter and 
second one is No. of the formula in the subsection. When there is a 
reference to a formula from a different chapter, the number of that chapter 
is indicated in addition; for a better visual recognition, No. of the chapter is 
bold-faced. For example, (2.3) means a reference to Formula (2.3) from 

Section 2 of Chapter 1. 
 
The author is deeply convinced by the whole course of his student’s and 

professor’s experience that a well-thought system of designations is one of 
important educational components in the presentment of any physical theory 
which uses mathematics. A good system of designations will help both master the 
theory and remember results presented in formulas. On the contrary, a babelized, 
disorganized system of designations will only repel the student. The sensible 
designations help the students concentrate on the ideas of the subject without 
distracting their minds to recalling each time the meaning of symbols used in new 
formulas. Therefore the author worked hard to introduce such designations which 
would be mnemonic and systematic rather than chaotic, without deviating much 
from ones commonly used in the science. The reader will judge how well the 
author did his work.  

Vectors, matrices, and tensors are printed in bold face.  

The matrix and vector transposition is denoted by the superscript T. The same 
mark is used to denote differential operators conjugate in the Lagrangian sense.  

Both the identity operator and the identity matrix are denoted as I.  
 

Section 2 of the current chapter, while (1.2.3) is Formula (2.3) from 
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An overstrike is used consistently to denote given values, such as given 
volumetric forces X . However, this designation rule is not strict over the whole 
book. If there are any deviations from the rule, they will be specified. 

An upper tilde, 
∼ 

, over a certain quantity shows that a perturbed value of the 
quantity is under consideration.  

An asterisk * used as a subscript shows that the subscripted quantity is exact. 
 
An example: 

%
*E  is an exact value of the strain energy in a system which is different from a 

given one by some perturbation. 

It has been already mentioned that the index transformations make use of a 
common convention of summing over repeated, so-called mute, indices5. In cases 
when an index is repeated in a formula but is not a mute one, the summing will not 
be done, and the index will be indicated after the respective formula in 
parentheses, accompanied by an exclamation mark. For example, in the following 
formula  

cij = aijbj      (j !)  

there is no summing over the index j, which is quite obvious because the 
mute index cannot participate in the formation of an aggregate in the left 
part.  

Also, in many cases we do not even comment on the carrying of indices 
from upside down and vice versa because the tensor analysis says it is 
quite admissible in orthogonal Cartesian coordinates where covariant and 
contravariant components of the tensors are indistinguishable. 

It is worth mentioning here also that the figures will use a common rule of 
depicting internal forces (stresses) in elements of a system by double arrows. The 
external forces are represented by single arrows. A moment vector is denoted, as a 
rule, by a right-hand corkscrew. 

Form of representation of equations used in the book 

It is a tradition in the solid mechanics, to use an index form for tensor 
relations. On the other hand, a number of authors (such as A.I. Lurie [10] 
and his school, Truesdell [11] etc.) are oriented at a so-called index-free 
tensor representation. In Russian-language papers on structural mechanics 
of bar systems, basic equations were written in a matrix form since the 

                                                      
5 Some authors prefer “deaf indices” to mute indices . In order to make peace, 

maybe we should call them the “deaf-mute” indices?  
“ ”
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publication of a book by A.F. Smirnov [12]; this commonly used form has 
become a prevailing one by now. Undoubtedly, each one of the forms 
should be allowed to exist because every one of them brings along both its 
advantages and its shortcomings. The argument over these advantages and 
shortcomings can be both very long and totally fruitless. 

Certainly, it is the author of a publication who should choose what form of 
equations to use in a particular publication; this choice is influenced by tradition, 
by the way the author thinks, and not in the least by the opinion of the majority. 
However, the main thing in this choice is still the adequacy of the mathematical 
theory for particular problems treated by the publication. 

The basic form of representation used in this book is derived from the general 
operator form of governing equations of structural mechanics (not necessarily of 
bar systems) where matrices and vectors are widely employed. This way seems 
concise, visually convenient, and universal in the variational formulations of the 
problems; also, engineering-educated people find this form quite apprehensible. 
The systems of designations closest to that used in this book include one 
employed in works by L.A. Rosin [6], [13], one used by T. Belytschko, Wing 
Kam Liu, B. Moran [14], and one found in a well-know three-volume 
encyclopedic edition by Zienkiewicz & Taylor [15] on the finite element method. 
However, when the author deemed it reasonable to switch to a different form, 
there was no hesitation. 
 

And one more terminology note. We will call a column matrix a vector. 
However, one should keep in mind that a mathematical object represented by the 
respective column matrix is not necessarily an actual vector, i.e. a physical object 
with appropriate transformations of its components between different coordinate 
systems. The actual object can be a tensor or even a scalar. 

List of key designations  

Designations of functionals 

The Arial regular font is used to designate the functionals. 

  A   – a virtual work of external forces; 
  B   – a virtual work of internal forces; 

     – Bolotin functional in the equilibrium stability analysis; 
     – Brian–Treftz functional in the linearized equilibrium stability 

analysis; 
  E   – a potential energy of strain; 
  G  – Gurtin functional; 
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  H   – Herrmann functional in the plate bending analysis; 
  K   – Castigliano functional; 
  L   – Lagrange functional (a full potential energy of a system); 
  N   – Novozhilov functional in the equilibrium stability analysis; 
  P   – a functional of physical relations; 
  R   – Reissner (Hellinger–Reissner) functional; 
  S   – a general designation for functionals in the equilibrium stability 

   analysis; 
  T      – Timoshenko functional in Saint-Venant problem of a prism  

torsion; 
 – a kinetic energy of a mechanical system; 

  W  – Washizu (Hu–Washizu) functional; 

  Г   – a functional of boundary conditions; 
  Ф  – a generalized (parameterized) mixed functional; 

  Пs  – a force potential (a potential of static actions); 
  Пk     – a kinematical potential (a potential of kinematical actions); 
  Пs0  – a potential of initial strains, a force one; 
  Пk0  – a potential of initial strains, a kinematical one; 

  r   – Raleigh functional (Raleigh ratio) in the spectral problem. 

Designations of sets  

The italic ArtScript font is used to designate the sets. 

   P   – a set of physically admissible SSS fields; 

  Uk – a set of kinematically admissible SSS fields; 
  Uko  – a set of uniformly kinematically admissible SSS fields; 
  U k/2  – a set of kinematically semi-admissible SSS fields; 
  U s/2  – a set of statically semi-admissible SSS fields; 
 P k/2   – a set of physically and kinematically semi-admissible SSS fields;  
  P k – a set of physically and kinematically admissible SSS fields; 
  P ko   – a set of physically and uniformly kinematically admissible SSS 

fields; 

  P s/2 – a set of physically and statically semi-admissible SSS fields; 
  P s  – a set of physically and statically semi-admissible SSS fields; 
  P so    
  R   – a set of rigid displacements of a mechanical system; 

– a set of physically  and uniformly statically admissible SSS fields; 
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  R A – a set of rigid displacements of an elastic body; 
  R K – a set of rigid displacements of an elastic medium; 
  R o   

a mechanical system; 
  RAo   

an elastic body 
 

R ⊆ RA ,   RAo ⊆ RA ,         R o = R  ∩ RAo ;  
  K   – Castigliano energy space; 
  L   – Lagrange energy space; 
  F   – a parameterized energy space; 
  n       – Euclid space of dimension n. 

Designations of fields and operators   

  F      –  an arbitrary SSS field with stresses σ, strains ε, displacements u, 

  F = {σ, ε, u}; 

  V      –  a field of external actions with external forces X  distributed 
over the area Ω, with edge forces p  and given edge 

displacements u  specified on the boundary Г, 

  V = { X , p , u }; 

  О  – a general designation of a zero operator (annihilator);  
  I    – a general designation of an identity operator; 

  A  – a differential operator of geometry, 

  Au = ε ; 

  B     – a differential operator of equilibrium, commonly B = AT  

  ATσ + Ku = X ; 

  K      – an algebraic operator of stiffness of a medium in which an elastic 
body is placed;  

  С       –  an algebraic operator of a physical law of linear elasticity,  

  σ = Сε,           ε = С -1σ; 

  L      –  a differential operator of equilibrium in displacements (Lame 
operator)  

  L = ATCA + K ,             Lu = X ; 

 – a set of uniformly kinematically admissible rigid displacements of 

 – a set of uniformly kinematically admissible rigid displacements of 
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  S       – a differential operator of strain compatibility (Saint-Venant 
operator),  

                                       Sε = 0,               SA = O ;    

      – a differential operator of stability of equilibrium; 

  Ф     – a vector of stress functions  

  σ = STФ,             ATST = О ; 

  M     – a differential operator of compatibility in the stress functions  

  M = SC -1ST,            MФ = О ; 

Ω   – a matrix differential operator of rotation; 

Ep  –  an operator of extracting static edge conditions; 

Eu  –  an operator of extracting kinematical edge conditions, 

Ep + Eu = I, EpEu = EuEp = O ; 

Hσ  –  an operator of transforming internal forces σ into edge forces p, 

  p = Hσσ ; 

u

displacements u, 

  u = Huu. 

Some of other designations 

ω = , ,x y z⎡ ⎤ω ω ω⎣ ⎦
T
– a vector of rotations; 

n = |[nx, ny, nz]|
T   – a vector of an exterior normal to the boundary Г of  

the area Ω. 
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1 BASIC VARIATIONAL PRINCIPLES OF STATICS 
AND GEOMETRY IN STRUCTURAL MECHANICS 

 We have the right as well as are obliged to subject all our 
definitions to critical analysis from the standpoint of their 
application and revise them (fundamentally, if need be) if they 
do not work for us. 
    Young L (1969) Lectures on the calculus of variations and 
optimal control theory. W.B. Saunders company, Philadelphia 
London Toronto  

1.1 Preliminaries 

Let an area Ω with a piecewise smooth boundary Г be defined in a k-
dimensional space. Structural mechanics deals with one, two, and three-
dimensional problems only, therefore we take the case of k ≤ 3.  

Consider a linear set M with elements a, b, c... which are functions of 
points x ∈ Ω. The elements of the set M will be assumed to exist as scalar, 
vector or tensor functions. We assume also that for every couple of 
elements, a and b, from the set M, two bilinear functionals, (a, b) and 
(a, b)Г , can be defined which acquire finite values. The functionals are 
specified by these formulas: 

(a, b) = d
Ω

⋅ Ω∫a b , (1.1) 

 (a, b)Г =
Г

dГ⋅∫a b , (1.2) 

where ⋅a b  means a scalar expression calculated according to the rule 

i
i

ij
ij

ab
a b
a b

⎧
⎪= ⎨
⎪
⎩

⋅a b  
– for scalar quantities, 
– for vector quantities,                                           (1.3) 
– for tensor quantities. 
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Here and further we use a common rule: the same indices on different 
levels are used for summation. 

The one-dimensional version of the area Ω is an interval, [x1,x2], over 
which an independent variable, x, can vary, so that 

(a, b) =
2

1

x

x
dx⋅∫ a b ,         (a, b)Г = 2 1

( ) ( )x x x x= =⋅ + ⋅a b a b . (1.4) 

The latter relationship can be rewritten also as 

(a, b)Г = 2 1
( 1 ) ( 1 )x x x x= =+ ⋅ − − ⋅a b a b = 2

1
[ ] x

xn ⋅a b . (1.5) 

Here n is the cosine of the angle between the x axis and the external 
normal to the interval [x1,x2] in its end points, so that  

1
1

n ⎧
= ⎨−⎩

 
at x = x2 , 
at x = x1 . 

Note that the bilinear functional (a, b) can be treated as a scalar product 
on the linear set M, while the functional (a, b)Г generates a scalar product 
on the linear set MГ which consists of functions defined on the boundary Г. 
Indeed, both functionals are linear with respect to either argument and 
symmetric (insensitive to the order of their arguments). Also, the result is 
nonnegative when the arguments are equal: 

(a, a) ≥ 0,  (a, a)Г ≥ 0. 

Moreover, the condition (a, a) = 0 implies the equality a = 0 where 0 is 
a zero element of the M set, that is, all components of a are zero functions 
on Ω. Similarly, (a, a)Г = 0 implies a = 0 where 0 is a zero element of the 
set MГ, i.e. all components of a are functions with zero values on Г.  

1.1.1 Formally conjugate differential operators 
 

Now we consider two linear sets, N  and M, such that for any element a∈N  
a differential operation A is defined with its range of values in M, and for 
any element b∈ M a differential operation B is defined with its range of 
values in N, in other words,  

a∈ N  ⇒  Aa∈ M             and        b∈ M ⇒  Bb∈ N  . (1.6) 

Further on we will follow the terminology common in mechanics and 
use the words differential operators with objects like A and B thus treating 
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them as symbolic differentiation operations, although in mathematics [3] 
an operator is a bigger notion than a simple differentiation expression.  

The differential operators A and B are called formally conjugate 
(sometimes Lagrange-conjugate) if they satisfy (1.6) and the following 
relationship holds: 

(Aa, b) = (a, Bb) + (Aγ a, Bγ b)Г  (1.7) 

where Aγ and Bγ are certain linear differential operations such that the 
bilinear functional (Aγ a, Bγ b)Г  makes sense for all elements a from N  and 
all elements b from M.   

Further we will use the word conjugate for this relationship between the 
operators, always assuming the Lagrange-type conjugation. Also, an 
operator, B, conjugate to the operator A will be denoted as AT, that is, 
B = AT, if the relationship (1.7) holds1.  

Let’s give an example of a matrix differential operation which conforms 
to a certain operator A and its conjugate operator AT 

2

2

( ) ( )

( )( )

d
dx

d d
dx dx

⎡ ⎤
⎢ ⎥ρ
⎢ ⎥=
⎢ ⎥⎛ ⎞ −⎜ ⎟⎢ ⎥ρ⎝ ⎠⎣ ⎦

A ,      2

2

( ) ( )1

( )( )

d d
dx dx

d
dx

⎡ ⎤− −⎢ ⎥ρ
⎢ ⎥=
⎢ ⎥−⎢ ⎥ρ⎣ ⎦

AT  (1.8) 

where ρ = ρ(x) is a sufficiently smooth function of the independent 
variable2.  

The linear sets N and M both will be a set of vectors of the type 
a = |[a1(x), a2(x)]|T with their components being sufficiently smooth 
functions defined on the interval [0, l]. The following holds for two vectors 
a and b: 

                                                      
1 We do not use a common mathematical notation for conjugate operators using 

∗; instead, we choose T, not just because the asterisk ∗ is reserved in our book for 
marking quantities related to an exact solution of a problem. The matter is that the 
conjugation operation is a generalization of a matrix transposition which is usually 
denoted by the symbol T. There is no confusion; just remember that this symbol 
applied to a differential operator means something bigger than the mere 
transposition of a matrix. 

2 As we will see, this example gives the operators of geometry and equilibrium 
in the problem of bending of a planar curvilinear beam with its curvature radius, 
ρ(x), variable along the arc coordinate x – see Section 4.7. 
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2
1

1
2

aa

a a

⎡ ⎤′ +
⎢ ⎥ρ
⎢ ⎥= ′⎢ ⎥⎛ ⎞ ′′−⎢ ⎥⎜ ⎟ρ⎢ ⎥⎝ ⎠⎣ ⎦

Aa ,       

2
1

1
2

bb

b b

′⎡ ⎤′− −⎢ ⎥ρ
⎢ ⎥=
⎢ ⎥′′−⎢ ⎥ρ⎣ ⎦

A bT  (1.9) 

where the stroke means the differentiation with respect to x. The scalar 
products of our interest can be represented now as 

        (Aa, b) = 2 1
1 1 2

0

l a aa b a b dx
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞′ ′′⎢ ⎥+ + −⎨ ⎬⎜ ⎟ ⎜ ⎟ρ ρ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

′
∫ , 

(a, ATb) = 2 1
1 1 22

0

l b bb a b a dx
′⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′′− − +⎨ ⎬⎜ ⎟⎜ ⎟ρ ρ⎝ ⎠⎝ ⎠⎩ ⎭

−∫ . 

 

Integrating these products by parts will transform them into the 
following: 

(Aa, b) =
0

2 1 1 2 1 2
1 1 2 2 1 1 2 2

0

ll a b a b a ba b a b dx a b a b
′⎛ ⎞ ⎡ ⎤′ ′ ′ ′− + − + + + −⎜ ⎟ ⎢ ⎥ρ ρ ρ⎣ ⎦⎝ ⎠∫ , 

           (a, ATb) = [ ]
0

2 1 1 2
1 1 2 2 2 2 0

l la b a ba b a b dx a b
′⎛ ⎞′ ′ ′ ′− + − + + −⎜ ⎟ρ ρ⎝ ⎠∫  

 

which makes it clear that (Aa, b) and (a, ATb) are different only in non-
integral terms; this is where the mutual conjugation of the A and AT 
operators can be seen. 

Confining ourselves to this only example 3, now we give general rules 
how to construct a conjugate operator, AT, for a given original operator A. 
The rules are simple [4] and consist of the following two operations: 

• the matrix A of symbolic differentiations is transposed; 
• every term of the type Fα(x)Dα( ) in the matrix obtained by the 

transposition is replaced by its conjugate term in the form 
(-1)αDα [Fα(x)( )] where Dα represents a symbolic form of the α-order 
differentiation, that is,  

                                                      
3 L. Young  [13] gives a convincing reference which proves that one example is 

enough for every rule. This is an experience of “…a nine-year old girl, a lady 
indeed, who solved only one of summation exercises from her homework and 
wrote in her writing-book that the others can be solved similarly”. 
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Dα( ) = 
1

1

( )
k

kx x

α

αα

∂

∂ ⋅ ⋅ ⋅ ∂
,   |α| = α1+…+αk  . 

 

With one dimension (k = 1) we can use the integration by parts, while 
with two or three dimensions we can use the Gauss–Ostrogradsky formula 
to check that these rules really produce the conjugate operator. 

To complete this section, we note two simple but important properties of 
the conjugation operation. First, the definition (1.7) implies directly that 
the conjugation is mutual, that is, the conjugate operator of a conjugate 
operator is identical to the original operator: 

(AT)T = A . (1.10) 

Second, the conjugate of the product of two operators is equal to the 
product of the operators conjugate of the original cofactors, placed in the 
reverse order, that is, 

(AB)T = B TAT . (1.11) 

Both properties are quite similar to the properties of the usual matrix 
transposition.  

1.2  Basic integral identity 

Let σ be a somehow ordered set of functions which determine the stress 
state of a mechanical system (a full set of stresses or internal forces).  

For example, in three-dimensional elasticity this σ will be a stress tensor 
with its components σij referred to a particular system of axes, (x1,x2,x3), 
which will be treated as a rectangular right-oriented Cartesian coordinate 
system if not stated otherwise. For further applications it will be 
convenient to use σ as a six-dimensional column vector, 
σ = |[ σ11, σ22, σ33, σ12, σ23, σ31]|T, remembering its symmetry and its tensor 
nature. Actually, the tensor nature of the stresses is relevant only when 
doing a transformation of the coordinate system.   

Another example is a Timoshenko beam in bending. Here σ will be a 
two-component column vector, σ = |[Q, M]|T,  Q being the shear force and 
M the bending moment in a cross-section of the beam. When discussing 
and posing any particular problem of structural mechanics, we will assume 
that the ordering rules for the components of the internal stresses/forces in 
σ are defined and known. 

Let ε be a set of components of a strain tensor (vector) which is in 
energy reciprocity with σ. The energy reciprocity means that the usual 
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scalar product σ⋅ε in the sense of (1.3) will yield an expression of the 
elastic deformation energy.  

For example, in three-dimensional elasticity ε means the strain tensor εij 
or the column vector ε = |[ε11,ε22,ε33,γ12,γ23, γ31]|T where  γij = 2εij at i ≠ j. It 
is easy to notice that the vector notation for the set of the components of 
the stress and strain tensors will produce the following representation of 
the scalar product: 

σ⋅ε = σTε = εTσ . (2.1) 

In the Timoshenko beam bending, ε = |[γ, χ]|T where γ is a shear strain, 
χ is a bending strain (the derivative of the slope of the beam’s cross-
sections).  

A set of governing equations for the analysis of a mechanical system 
under static loading will be presented in the following form: 

Bσ + Ku = X                          equilibrium equations (2.2-a)

        Au = ε                                 geometric equations (2.2-b)

σ = Cε  or  ε = C –1σ                      physical equations (2.2-c)

Here  

• u = |[ui]| is a displacement vector;  
• X = |[ iX ]| is a vector of given external forces per unit of volume of an 

elastic body;  
• K = {kij} is a tensor of elasticity coefficients of a medium in which the 

deformable solid in question is put;  
• C = {Cijkl} and C –1 = {Dijkl} are algebraic, mutually inverse operators 

which represent the respective tensors of coefficients of elasticity and 
compliance for the material of the deformable system. 

The operators C, C –1 and K are symmetric, and  C and C –1 are also 
positive definite, while operator K is nonnegative (which is sometimes 
referred to as ‘positive semi-definite’) in every point of the area Ω. The 
conditions thus formulated can be reduced to the following requirements: 

Cijkl = Cjikl = Cklij ,        Mc aijaij ≥ Cijklaijakl ≥ mc aijaij     (mc > 0), 

Dijkl = Dklij = Djikl ,       Md aijaij ≥ Dijkl aijakl ≥ md aijaij     (md > 0), 

kij = kji ,               kijbibj ≥ mk bibi    (mk ≥ 0), (2.3) 

where  
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• a = {aij} is an arbitrary symmetric tensor of second rank;  
• b = {bi}  is a vector;  
• Mc = 1/md,  Md = 1/mc,  mk are scalars independent of coordinates, tensor 

a, and vector b. 

Further we will refer to the operator B as an operator of equilibrium and 
to the operator A, which is purely geometric and relates the strains with the 
displacements, as an operator of geometry. 

The system of governing equations (2.2) should be supplemented with 
boundary conditions; in the operator-based form they can be written as 

    Ep(Hσσ  – p ) = 0                   (static boundary conditions) (2.4-a) 

Eu(Huu  – u ) = 0                   (kinematic boundary conditions) (2.4-b) 

and should be specified on the boundary Г of the area Ω. 
The formulas (2.4) use the notation:  

• p  for a vector of given external boundary forces;  
• u  for a vector of given external boundary displacements.  

We will assume that the components of these two vectors are 
represented simultaneously either in a coordinate system global for the 
whole structure, (x1,x2,x3) or as decompositions by axes of a local basis in 
each point of the boundary Г. The only local coordinate basis that we will 
use will be a right-oriented orthonormalized  triple of vectors (n, t, b) 
where n is a unit vector of the exterior (with respect to the area Ω) normal 
to the boundary Г; t is a unit vector tangential to Г. The condition of 
orthogonality and the right orientation of the triple (n, t, b) define the third 
unit vector b as a vector product, b = n×t. In two-dimensional elasticity, 
the global coordinate system consists of the couple of axes, (x1,x2), and the 
local basis is made up by the unit vectors (n,t) where the positive direction 
of the vector t tangential to the boundary Г is defined in such way that the 
condition n×t = i1×i2 holds, where i1 and i2 are unit vectors of the respective 
axes x1 and x2. 

Algebraic operators Ep and Eu take the boundary conditions in each 
point of the boundary Г and extract those of them which are actually 
specified in a particular problem. The operators are symmetric; they make 
up a decomposition of the identity operator I into an orthogonal sum, that 
is,  

Ep + Eu = I,        Ep Eu = Eu Ep = O , (2.5) 

where O is a zero (annihilating) operator.  
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The relation (2.5) implies the idempotency of the boundary condition 
extraction operators: 

Ep Ep = Ep ,      Eu Eu = Eu . (2.6) 

It should be obvious that the operators are defined on the whole 
boundary Г, but they may have different values on different pieces of the 
boundary.  

If we introduce the designation p for the boundary force vector and u for 
the boundary displacement vector, i.e. if we assume 

p = Hσσ ,     u = Huu ∈Г (2.7) 

then the conditions (2.5) show that one and only one boundary condition 
can be specified for each component of the two vectors: a static one (for 
the p vector components) or a kinematic one (for the u vector 
components). 

It should be clear also that the couple of the predefined vectors, p  and 
u , and the calculated couple of vectors, p and u, are represented by their 
decompositions by the coordinate axes of the same basis, either global or 
local, and only in this case the respective components of the vectors can be 
compared according to (2.4).   

Let’s explain this by an example of planar elasticity. Suppose that a part 
of the boundary Г is subject to external forces tp  tangential to the contour 
Г and displacements nu  in the direction of the external normal to Г 
(Fig. 1.1). 

This means not all components of the vectors are specified in the local 
coordinates. In this particular case the decomposition of the vectors p  and 
u  by the axes of the local basis will give 

p = 
tp

⊗⎡ ⎤
⎢ ⎥
⎣ ⎦

,      u = nu⎡ ⎤
⎢ ⎥⊗⎣ ⎦

 (2.8) 

where the symbol ⊗  designates values of components not known 
beforehand. Obviously, on this piece of the boundary Г the algebraic 
operators Ep and Eu are described by the matrices of the following kind: 

Ep = 
0 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

,       Eu = 
1 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, (2.9) 

to exclude the undefined quantities ⊗  from the boundary conditions (2.4). 
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Fig. 1.1.  Mixed boundary conditions on a piece of the boundary Г 
of the area Ω 

 
If p  and u  are specified in a local coordinate system, and if the 

components of the boundary force vector, p, and of the boundary 
displacement vector, u, are transformed by formal calculation according to 
(2.7) into quantities expressed in the global coordinate system, 

p = |[p1, p2]|T,         u = |[ u1, u2]|T,  

then, before using the vectors p and u in the boundary conditions 

            Ep(p – p ) = 0 ,        Eu(u  – u ) = 0   ∈Г ,  

they should be converted to the local coordinate system following common 
rules. The reason for this is the sensitivity of the boundary condition 
extraction operators, Ep and Eu, to the coordinate system; they are 
constructed in such way that they are not invariant to the coordinates, 
instead they keep track of a coordinate system in which the predefined 
boundary forces and displacements are specified. 

If there are no mixed boundary conditions anywhere on the contour Г, 
then the latter can be divided into two parts, Гp and Гu, so that 

Г = Гp ∪ Гu ,     Гp ∩ Гu = ∅ (2.10) 

and 
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Ep  = I ,  Eu = О ∈Гp ,         Ep  = О ,  Eu = I  ∈Гu . (2.11) 

When (2.10) and (2.11) hold, the boundary conditions (2.4) can be 
written as 

     Hσσ  – p  = 0    ∈Гp              (static boundary conditions)  (2.12-a) 

    Huu  – u  = 0     ∈Гu             (kinematic boundary conditions) (2.12-b) 

In problems where the equilibrium operator B and the geometry 
operator A contain derivatives of orders higher than first, the vector of the 
boundary displacements, u, exceeds the vector of internal displacements, 
u, by the number of its components: the kinematic boundary conditions on 
the boundary Г may contain both values of the vector function u itself and 
some derivatives of the components. The matrix differential operator Hu 
transforms the vector of internal displacements u, to a space of vectors of 
the boundary displacements u. When needed, this operator can perform a 
transformation of the boundary displacement vector to a local coordinate 
system.  

The matrix differential operator Hσ works in a similar way. It transforms 
an internal force vector, σ, to the space of boundary force vectors p. In a 
particular case when the equilibrium and geometry operators contain 
differential operations of at most first order and the local coordinate 
system coincides with the global one, Hu is an identity operator, that is, 

Hu = I. (2.13) 

In the same situation, the algebraic operator Hσ contains components of 
the unit vector n of an exterior normal to the boundary Г with respect to 
the global coordinate system, i.e. the cosines of angles between the vector 
n and the direction of the respective axis xi, in other words, the quantities 

ni = cos(n, xi) = (ii,n) (2.14) 

where ii is the unit vector of the xi axis. 
As it will be seen from formulations of various types of structural 

mechanics problems, in all cases the operators of equilibrium and 
geometry at the given boundary conditions (2.4) satisfy a so-called basic 
integral identity 

(Au, σ) = (u, Bσ) + (Hσσ, Huu)Г . (2.15) 

This equation can be validated directly by constructing the appropriate 
equilibrium and geometry operators. However, as we will see further, the 
basic integral identity (2.15) is actually true and fundamental for all linear 
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problems of structural mechanics. It implies all basic theorems given 
further below. In particular, comparing (2.15) and (1.7) will give an 
immediate result that the equilibrium operator and the geometry operator 
are mutually conjugate: 

B = AT . (2.16) 

The latter relationship allows us to designate the equilibrium operator 
further as AT without noticing this fact additionally4.  

Taking into account the designations from (2.7) will convert the basic 
integral identity into the following: 

(Au, σ) = (u, ATσ) + (p, u)Г  . (2.17) 

Now, we can take the properties (2.5) and (2.6) of the boundary 
condition extraction operators into account and use a chain of obvious 
transformations 

(p, u)Г  = ((Ep +Eu)p, (Ep + Eu)u)Г =  (Ep p, Ep u)Г + (Eu p, Eu u)Г (2.18) 

to represent the same integral identity as 

 (Au, σ) = (u, ATσ) + (Ep p, Ep u)Г  + (Eu p, Eu u)Г  .                (2.19) 

This is the form of the basic integral identity which we will use most 
often throughout the book. 

1.3 Various types of stress and strain fields 

We will say that a whole set of stresses  σ, strains ε, and displacements u 
determine a stress-and-strain state (SSS) of a mechanical system. As the 
stresses, strains, and displacements of the mechanical system may vary  
from point to point, another proper term will be a field or a distribution of 
the stresses, the strains, or the displacements. All three fields together will 
be called a stress-and-strain field. Further below, whenever the nature of a 
field is not specified, we will understand that the field is actually a stress-
and-strain field. An arbitrary field of this kind will be denoted as F, and an 
expression like F  = {σ, ε, u} should be read as a field F consisting of 
stresses σ, strains ε, and displacements u. In their turn, the stresses σ, the 
strains ε, and the displacements u will be referred to as elements of the 

                                                      
4 Nearly everywhere. Rare exceptions will be specified. 
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field F. It should be emphasized that the elements of a field are not 
supposed to relate to one another anyhow in the most general case. 

Now, let’s introduce more notions and definitions which will be useful 
for further presentment.  

We will say that external forces X, distributed over the volume of a 
body Ω,  and contour forces p are in static conformance to a field 
F  = {σ, ε, u} if the following holds:  

X = ATσ + Ku ∈Ω ,              Ep p = EpHσσ  ∈Г , (3.1) 

or, in another words, if the forces X and p obey the equations of 
equilibrium inside the body Ω and the static boundary conditions on the 
surface Г. 
 

A field Fs = {σs, εs, us} will be called statically admissible if the given 
external forces X and p  are in static conformance to the stresses σs and 
displacements us , or, in other words, 

X  = ATσs + Kus ∈Ω ,           Ep p  = EpHσσs  ∈Г . (3.2) 

The “s” subscript emphasizes the static admissibility of the field and its 
elements. This definition implies that the property of static admissibility of 
a field does not depend on the strains εs.  

A field Fsο = {σsο, εsο, usο} will be called homogeneously statically 
admissible  if internal forces in Ω created by this field are self-balanced 
while on the boundary Г homogeneous static boundary conditions hold in 
such locations and in such directions where the original problem has the 
respective static boundary conditions. To put it otherwise, the elements of 
the field Fsο satisfy the relationships 

ATσsο + Kusο = 0  ∈Ω ,           EpHσσsο  = 0    ∈Г . (3.3) 

The additional subscript “ο” emphasizes the homogeneous static 
admissibility of the field and its elements. 
 

A field Fk = {σk, εk, uk} will be called kinematically admissible if the 
displacements uk and the strains εk inside the area Ω satisfy the geometric 
equations and the kinematic boundary conditions on the boundary Г. In 
other words, the elements of the field Fk  satisfy the following 
relationships: 

εk = Auk   ∈Ω ,      Eu(Huuk – u ) = 0    ∈Г . (3.4) 

The subscript “k” emphasizes the kinematic admissibility of the field 
and its elements. 
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A field Fkο = {σkο, εkο, ukο} will be called homogeneously kinematically 
admissible if the displacements ukο and the strains εkο satisfy the geometric 
equations inside the area Ω and the homogeneous kinematic boundary 
conditions on the boundary Г. In other words, the elements of the field Fkο 

 meet the conditions  

εkο = Aukο  ∈Ω ,        EuHuukο  = 0      ∈Г . (3.5) 

A field Fs/2 = {σs/2, εs/2, us/2} will be called statically semi-admissible  if 
the elements of the field satisfy the static boundary conditions 

Ep p  = EpHσσs/2     ∈Г . (3.6) 

The equations of equilibrium in the volume of the body, Ω, are not 
required to hold with such a field. 
 

A field Fk/2 = {σk/2, εk/2, uk/2} will be called kinematically semi-
admissible if the displacements uk/2 and the strains εk/2 satisfy the 
geometric equations inside the area Ω, 

εk/2 = Auk/2   ∈Ω . (3.7) 

There are no requirements to the values of the displacements uk/2 or their 
derivatives on the boundary Г. 

 
It will be useful to introduce, together with the definitions of stress-and-

strain fields, the notion of a field of external actions, V = { X , p , u }, 
which will mean a set of given external forces, X , distributed over the 
area Ω, contour forces p  specified on the boundary Г, and given boundary 
displacements u . 

1.4 The general principle of statics and geometry 

Consider two states of a mechanical system; one of those will be named 
the state 1 and the other the state 2. Let the state 1 be defined by the field 
F1 = {σ1, ε1, u1} and the state 2 by the field F2 = {σ2, ε2, u2}. For now, let’s 
think both fields are absolutely independent.  

Assuming σ = σ1 and u = u2 in the basic integral identity (2.19) and 
taking into account the conjugation between the geometry and equilibrium 
operators will give 

(σ1, Au2) = (ATσ1, u2) + (Ep p1, Ep u2)Г  + (Eu p1, Eu u2)Г  (4.1) 
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where the contour stresses, p1 = Hσσ1, are taken from the state 1 and the 
contour displacements, u2 = Huu2 , from the state 2. 

By adding external volumetric forces, X1 = ATσ1 + Ku1, which are in 
static conformance to the field  F1, we make the relationship (4.1) look like 

(X1, u2) + (Ep p1, Ep u2)Г  + (Eu p1, Eu u2)Г  =  (σ1, Au2) + (Ku1, u2-) . (4.2) 

Actually, (4.2) is an equivalent of the basic integral identity (2.19). Now, 
by giving the states  1 and 2 a certain sense we can derive various versions 
and mechanical treatments of the basic integral identity in the form (4.2). 

 
First of all, note that the left part in (4.2) is a virtual work A12 of the 

external forces in static conformance with the state 1 on the displacements 
of the state 2 corresponding to those forces, 

A12 = (X1, u2) + (Ep p1, Ep u2)Г  + (Eu p1, Eu u2)Г  . (4.3) 

We should add some explanation to the definition of the virtual work of 
external forces according to (4.3). The matter is that the external contour 
forces, p1, include the full set of the contour forces in the state 1, together 
with the contour forces Eu p1  in such locations and in such directions 
where the kinematic boundary conditions are specified. In other words, the 
expression of A12  from (4.3) includes the work of the contour reactive 
forces of the state 1 in the form (Eu p1, Eu u2)Г . This part of the work can 
be different from zero because the field of displacements, u2, is not 
required to be homogeneously kinematically admissible, thus it does not 
have to satisfy homogeneous kinematic boundary conditions.  

Finally, it should be noted that the expression (4.3) is not an actual work 
of the external forces of the state 1 but a virtual work which would be done 
by the forces hypothetically if these forces could be somehow maintained 
in the body when the displacements u2 appeared in our deformable body. 

Next, let’s define the right part of (4.2) as a virtual work B12 of the 
internal forces (stresses) of the state 1 on the respective displacements of 
the state 2, taken with the opposite sign. 

B12 = – (σ1, Au2) – (Ku1, u2) . (4.4) 

Note that the internal forces in the mechanical system in question are of 
a dual nature. On one hand, we can treat the stresses σ as internal forces 
which appear in the material of an elastic body. Another source of the 
internal forces is related to the forces 

r = Ku (4.5) 
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created by an elastic medium in which the deformable solid is placed. The 
forces of this kind are reactions of the elastic medium sometimes called a 
response of an elastic foundation.  

As one can see from (4.4), the expression of the virtual work of the 
internal forces, B12, consists of two components where the first term is 
interpreted as a virtual work of the stresses σ1 and the second term is 
treated as a virtual work of the internal forces of the elastic medium. Note 
also that the assumed independence of the three elements of the field F2  
makes it impossible, in the general case, to identify the virtual work of the 
stresses σ1 in the form –(σ1, Au2) with the scalar product, -(σ1, ε2), of the 
stresses of the field F1 and the strains of the field F2 . These two can be 
identified with each other only when the field F2 is at least semi-admissible 
kinematically.  

Now the relationships (4.3) and (4.4) turn (4.2) into 

A12 + B12  = 0, (4.6) 

and this form of it is called  the general principle of statics and geometry 
[8]. This entitlement for (4.6) is totally justified because, first, the 
relationship can be proved without any physical state equations and it does 
not have anything in common with any thermodynamic considerations 
being of pure static and geometric nature; second, it is formulated on the 
basis of two arbitrarily chosen states of the mechanical system. 

An inverse proposition can be formulated just as easily: if (4.6) holds 
for a certain state 1, then this relationship implies the equilibrium 
equations for the state both in the volume of the body Ω and on its 
boundary Г. To see this, note that (4.6) is a brief form of the relationship 
(4.2) which we assume to hold for a certain set of external forces X1 and p1 
not subject to any additional conditions so far. Transforming (4.2) with 
help of the basic integral identity in the form (2.15) and regrouping its 
terms will give 

(ATσ1 + Ku1 – X1, u2) + (Hσσ1 – p1, u2)Г = 0 . (4.7) 

Assuming that the relationship (4.7) holds for any fields of 
displacements u2, we conclude that the scalar products from (4.7) should 
be equal to zero separately as well. The properties of the scalar products 
imply that the field F1 = {σ1, ε1, u1} is balanced by the volumetric forces 
X1  and the contour forces p1.  

Thus, in terms of mechanics the general principle of statics and 
geometry (GPSG) can be read as follows: 
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It is necessary and sufficient for a linearly deformable mechanical system 
to remain in equilibrium in a certain state that the overall virtual work of 
all external and internal forces of this state of the system be equal to zero 
on any displacements. 

It should be emphasized once more that we speak about the virtual 
work, and the two states of the system which participate in the GPSG 
formulation are not related to each other in any way. 

This formulation of the general principle of the statics and geometry 
operates the following three categories: 

• an expression of the work of internal forces (WIF); 
• equilibrium equations (EE); 
• geometric equations (GE).  

 
The fact that the general principle of statics and geometry contains 

implicitly the geometric equations becomes obvious after we represent the 
virtual work of the stresses σ1 as –(σ1, ε2); this can be done only if the 
geometric equations ε2 = Au2 hold. 

There is a tradition in courses of structural mechanics and strength of 
materials: the definition of the virtual work of internal forces is not 
introduced in axiomatic manner on the basis of an expression like (4.4); 
instead, certain direct mechanical considerations are used. Let’s connect 
the considerations of that kind with our general case of the geometrically 
linear structural analysis and do the following reasoning. 

Divide mentally a deformable solid body into a set of elementary bodies 
of small volume, Ωi, so that ΣΩi = Ω where the sum is taken over the 
whole set of the elementary bodies. Let Гi be a boundary surface of i-th 
elementary body. Next, replace the action of adjacent bodies on a certain 
elementary body by a vector of forces, p1i , resulted from the stresses σ1, 

p1i = Hσσ1i   (4.8) 

and acting in every point of the boundary surface Гi. Now, for the i-th 
elementary body the set of the forces p1i becomes a set of external forces 
(with respect to this i-th body only) which perform their work on the 
displacements u2i = Huu2i. It is assumed implicitly that the internal stresses 
are self-balanced inside each of the elementary bodies in the sense that 
ATσ1i + Ku1i = 0   ∈Ωi . Then the virtual work 12dB  of the forces p1i on the 
displacements of the body, u2i, is defined by the integral 

12dB  = 1 2i i

i

d⋅∫ p u
Γ

Γ . (4.9) 
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Now we use the basic integral identity in the form (2.17) in application 
to the elementary body; let’s transform the integral into the form 

  12dB  = 2i

iΩ

⋅∫ Au σ1idΩ – 2i

iΩ

⋅∫ u ATσ1idΩ = 2i

iΩ

⋅∫ Au σ1idΩ + 1 2i i

i

d
Ω

Ω⋅∫ Ku u . 

This allows for the above assumption ATσ1i =  –Ku1i   ∈Ωi .  
Now we sum the expression of the work thus obtained over all 

elementary bodies and derive this:  

12B = (σ1, Au2) + (Ku1, u2) . (4.10) 

The quantity 12B  is defined here as a virtual work of internal forces, but 
it is calculated with the assumption that the internal forces have been 
formally converted to external ones. If we compare (4.10) and (4.4), we 
will have to admit that B12 and 12B  can be matched only by assuming 
B12 = – 12B . This logical transformation is usually based on the statement 
that the internal forces resist to deformations in the body and thus perform 
a negative work5. This reasoning is logically vulnerable, which is obvious 
to anybody who ever tried to explain to an inquisitive student why it is 
necessary (!?) to alter the sign in (4.10) when deriving the expression of 
the virtual work of the internal forces. 

Actually, the four categories introduced above are related to one another 
in such way that any three of them can be postulated, and then the fourth 
one will result from the three. This circumstance was noticed by 
L.A. Rozin; he composed the following table which we borrow from [8]: 

  
GPSG EE WIF GE 

Implied Postulated Postulated Postulated 
Postulated Implied Postulated Postulated 
Postulated Postulated Implied Postulated 
Postulated Postulated Postulated Implied 

 
First two rows of the table conform to the verbal formulation of the 

general principle of statics and geometry given above; it is assumed that 
the virtual work of the internal forces is expressed by the relationship (4.4) 
while the geometric equations are as in (2.2-b). The statements contained 
                                                      

5 Here’s a characteristic quote on this subject [2]: “The work done by internal 
forces is negative because the internal forces tend to resist to displacements 
caused by the external forces; the internal forces are directed oppositely to the 
displacements of their application points”. The essential point is that the subject 
being discussed is actually a virtual work of the internal forces. 
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in the third and fourth rows of the table can be proved to be true, too. We 
will not dwell on this; instead, we recommend [8] to the reader who wants 
details.  

The notion of the virtual work can belong to the category of 
constructible concepts; one of the confirmations of this fact is that some 
publications (see [12], or [9], or [10], for example) treat the principle of 
virtual displacements in the statics of the deformable solid as an equality 
between the virtual work of the external forces and the virtual work of the 
internal forces, rather than an equality of the sum of the works to zero. Of 
course, this requires redefining the notion of the virtual work of the 
internal forces by introducing the expression (4.4) with the opposite sign. 
As it could be expected, no further logical contradiction comes from this 
redefinition of the virtual work  of internal forces. Therefore it should be 
clear that one cannot really justify the necessity of minus in the right part 
of (4.4)  by any logical reasoning.  

1.4.1 The principle of virtual displacements as an implication of 
the general principle of statics and geometry 

It is obvious that while the relationship (4.2) holds for arbitrary 
displacements u2 as long as the forces X1 and p1 balance the internal 
stresses in the system in its state 1, it is going to hold also for a particular 
case when the state 2 of the deformable system is assumed to be a 
homogeneously kinematically admissible state, so that u2 = ukο, which 
gives us immediately 

(X1, ukο)  + (Ep p1, Ep ukο)Г  = (σ1, εkο) + (Ku1, ukο) . (4.11) 

This relationship takes into account that a homogeneously kinematically 
admissible field meets the condition Eu ukο = 0  ∈Г. 

Now, let’s show that the equality (4.11) being held is enough to keep the 
equilibrium in the volume of the body and on a part of its surface where 
static boundary conditions are specified. To see this, substitute (4.1) and 
regroup the terms: 

(ATσ1 + Ku1 – X1, ukο) + (EpHσσ1 – Ep p1 , Ep ukο)Г = 0 . (4.12) 

We use the same reasoning as before and come to the principle of 
virtual displacements: 
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It is necessary and sufficient for a linearly deformable mechanical system 
to remain in equilibrium that the overall virtual work of all external and 
internal forces on any homogeneously kinematically admissible 
displacements be equal to zero. 

Some courses of structural mechanics advance another requirement 
when formulating the principle of virtual displacements: the displacements 
on which the virtual work is calculated must be infinitesimal. This is 
relevant when we deal with a geometric nonlinearity (second-order 
analysis). The requirement that homogeneously kinematically admissible 
displacements should be infinitesimal is not essential in first-order analysis 
and can be omitted. Even though this is obvious, some authors were 
confused and suggested various justifications. However, in the linear 
analysis this principle is totally independent from any particular cases of 
the nonlinear analysis, therefore no justification is required. 

It should be said that the direct application of the principle of virtual 
displacements sometimes produces a quicker and nicer solution that the 
use of equilibrium equations. Here is an example to illustrate this 
statement Consider a problem shown in Fig. 1.2. 

The bars in intermediate nodes of the system are connected as in 
scissors; two couples of bars come to one node, so that two bars that form 
a couple and belong to one straight line are attached stiffly while the 
couples are joined by hinges. 

We are required to find the stress in the bar that connects nodes 0 and 1 
in this simple, statically determinate system. We could use the equilibrium 
equations in nodes and move from the system’s right end to its left end to 
find the stress (which we denote as S01); however, the direct application of 
the principle of virtual displacements will bring us to our goal much faster. 

0

a

a n

1 2 n P
0-1

     
Fig. 1.2.  An example of application of the principle of virtual displacements 

The system is statically determinate, therefore its internal forces 
(stresses) in its elements do not depend on physical properties of the 
elements. That’s why we can assume, without limiting the generality, that 
all bars except for 0-1 are perfectly rigid, that is, their strains are zero – as 
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is the virtual work of the internal forces which appear in the bars under 
external forces. As a result, the virtual work of all internal forces in the 
system can be expressed as –S01∆  where  ∆ is a virtual (homogeneously 
kinematically admissible) displacement of the node 1 along the x-axis. It is 
easy to see that this displacement of the node 1 causes all cells of the 
system to distort their size equally, so the difference between the 
displacements of any two adjacent nodes will be equal to ∆, and the last 
node, n, will acquire the displacement n∆ . Thus, the virtual work of the 

displacements gives 

Pn∆ – S01∆ = 0  

and, accordingly, S01 = nP. 

1.4.2 The principle of virtual stress increments as an 
implication of the general principle of statics and geometry 

A principle reciprocal with the principle of virtual displacements will be 
derived again from the general principle of statics and geometry, but this 
time the state 1 will be a homogeneously statically admissible state; this 
assumption allows us to rewrite (4.2) in the form 

(Eu psο, Eu u2)Г  =  (σsο, Au2) + (Kusο, u2) . (4.13) 

We choose only the class of kinematically admissible states from all 
possible kinds of the state 2 of the system. Then, according to (3.4), the 
relationship (4.13) will become 

(Eu psο, Eu u )Г  =  (σsο, ε2) + (Kusο, u2) . (4.14) 

The scalar product in the left part of (4.14) can be interpreted as a 
virtual work, A12, of all external forces of the state 1 on real displacements 
of the system (there are no active external forces in the state 1, hence the 
zero virtual work done by them). If we postulate the expression for the 
virtual work of the internal forces of the state 1 on the displacements of the 
state 2 directly via the strains, 

B12  = –(σsο, ε2) – (Kusο, u2) , (4.15) 

we will come to a formulation of the principle of virtual stress increments:  
 
 

external forces will be equal to P ∆n  . The principle of virtual displacements 
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It is necessary and sufficient for a certain state 2 of a linearly deformable 
mechanical system to be kinematically admissible that the sum of the 
virtual work, A12 , of all external forces of any homogeneously statically 
admissible state 1 on the real displacements of the system and the virtual 
work, B12, of the internal forces of the same state on the displacements of 
the state 2 be equal to zero. 

The necessity is obvious because this is just a verbal presentation of the 
proved equality (4.14), therefore we start with proving the sufficiency. 

So, let (4.14) hold for a certain, arbitrary so far, state 2 with any field 
Fsο = {σsο, εsο, usο} which satisfies the conditions (3.3). Let’s prove that the 
state 2 is kinematically admissible. To do it, we take a scalar product of the 
first condition in (3.3) and an arbitrary vector λ and then subtract the 
obtained expression, equal to zero, from the right part of (4.14). The result 
is 

(σsο, ε2) + (Kusο, u2) – (λ, ATσsο) – (λ, Kusο) – (Eu psο, Eu u )Г  = 0. (4.16) 

With this identity we can already assume that the field {σsο, εsο, usο} 
does not satisfy the first condition in (3.3) because the condition itself is a 
corollary from (4.16) as the vector λ is an arbitrary one. In particular, we 
can assume λ = u2 and use the basic integral formula (2.19) to derive 

(λ, ATσsο) = (u2, ATσsο) = (σsο, Au2) – (psο, Huu2)Г ,  

which will yield the following after substituting to (4.16): 

(σsο, ε2) – (σsο, Au2) + (psο, Huu2)Г  – (Eu psο, Eu u )Г  = 0.  

Now we use the second condition in (3.3) and the fact that Ep+Eu = I to 
transform the latter identity into the following: 

(σsο, ε2 – Au2) – (Eu psο, Eu( u – u2))Г  = 0. (4.17) 

As (4.17) should hold for any homogeneously statically admissible field 
{σsο, εsο, usο}, we can conclude that either scalar product from the left part 
of (4.17) should be equal to zero, thus 

ε2 – Au2 = 0    ∈Ω ,      Eu( u – u2) = 0  ∈Г, (4.18) 

which are the same requirements (3.4) of the kinematic admissibility of the 
state 2.  
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1.4.3 Theorem of field orthogonality 

We can derive the following statement from the formula (4.13) as a 
particular case:  

The virtual work of internal stresses of a homogeneously statically 
admissible state (field) on the displacements of a homogeneously 
kinematically admissible state (field) is equal to zero. 

To put it another way, 

(σsο, εkο) + (Kusο, ukο) = 0 . (4.19) 

To see this, we use the formula (4.13) and take a homogeneously 
kinematically admissible state as the state 2. Seeing that Eu ukο = 0 ∈ Г , 
we have (4.19).  

The formulation of the field orthogonality theorem can be expressed in 
another way: 

If the virtual work of the internal stresses of a certain state 1 of a system on 
the displacements of any homogeneously kinematically admissible state of 
the same system is equal to zero, then the state 1 is homogeneously 
statically admissible. 

In other words, the equality 

(σ1, εkο) + (Ku1, ukο) = 0, (4.20) 

which is true for an arbitrary homogeneously kinematically admissible 
field Fkο = {σkο, εkο, ukο}, implies that the state 1 is homogeneously 
statically admissible. It is clear that this formulation of the orthogonality 
theorem follows from the principle of virtual displacements. 

Finally, 

If the virtual work of the internal stresses of any homogeneously statically 
admissible state on the displacements of a certain state 2 of the system is 
equal to zero, then the state 2 is homogeneously kinematically admissible. 

In other words, the equality 

(σsο, ε2) + (Kusο, u2) = 0, (4.21) 

which is true for an arbitrary homogeneously statically admissible state 
Fsο = {σsο, εsο, usο}, implies that the state 2 is homogeneously kinematically 
admissible. It is clear also that the latter formulation is a corollary from the 
principle of virtual stress increments. 
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All three framed statements above, taken together, will be called a 
theorem of field orthogonality. Further on, after we introduce the notion of 
an energy metrics, the fundamental relationship (4.19) will be treated also 
as a condition of orthogonality between a homogeneously statically 
admissible field, Fsο, and a homogeneously kinematically admissible field, 
Fkο , in this metrics. This is why we have the right to name the theorem in 
the way we do in the title of this subsection.  

 
Let’s give a tiny illustration of the field orthogonality theorem using a 

three-bar truss as an example (Fig. 1.3). 
In this case, the “stress” vector, σ = |[N1, N2, N3]|T, consists of 

longitudinal forces/stresses in the bars of the truss which are assumed 
positive when in tension. The “strain” vector corresponding to the σ 
vector, ε = |[∆1, ∆2, ∆3]|T, consists of the elongations of the same bars. If 
we denote as U and V the displacements of the only free node of the truss  
in the respective directions x and y, we find that the homogeneously 
kinematically admissible strains, εkο, can be calculated as 

εkο = |[U sinα + V cosα, V, –U sinα + V cosα]|T.  

The condition of equilibrium of the free node in its projections onto the 
axes x and y in the absence of external loads will give the homogeneously 
statically admissible stresses in the bars: 

σsο = |[А, –2А cosα, А]|T  

where А is an arbitrary constant.  

x

y

� �

 
Fig. 1.3.  An illustration to the theorem of field orthogonality 

Direct substitution helps verify that the equality (σsο, εkο) = σT
sο εkο = 0 

holds; this corresponds to (4.19) because K = О in this case. 
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1.4.4 Integral identity by Papkovich 
 

P.F. Papkovich [6] derived an integral identity in the theory of elasticity, 
which he called a general expression of the work of external forces. 
Papkovich used this identity to derive various relationships and theorems 
applicable to the variational formulations in elasticity. Now we will show 
how this identity looks for a general elastic body all equations of which are 
written in the operator form that we use in this chapter. 

Consider the following four independent states of a mechanical system. 
Let us assume that in the state 1 we know all external forces (active and 
reactive), such as: a vector of external volumetric forces, X1, and a vector 
of surface forces, p1. The forces are supposed to be known on the whole 
boundary surface of the body, including places where the kinematic 
conditions are specified in the original problem. Only a displacement field, 
u2, is supposed to be known in the state 2. The state 3 of the system is 
defined by a stress field, σ3, only. Finally, we know only a strain field, ε4, 
in the state 4. The four listed states of the system are in no relation with 
one another, that is, they are arbitrary. 

Following the expression (4.3), we define a virtual work, A12, of the 
external forces of the state 1 on the respective displacements of the state 2 
as 

A12 = (X1, u2) + (Ep p1, Ep u2)Г + (Eu p1, Eu u2)Г  . (4.22) 

Note once more that the term Eu p1 means the reactive forces in the 
state 1 which appear in the exact locations of the contour Г and in the exact 
directions where the kinematic conditions are defined.  

According to Papkovich, the expression of A12 can be represented also 
in the form 

A12 = (X1 – ATσ3, u2) + (σ3, Au2 – ε4) – (Ep Hσσ3 – Ep p1, Ep u2)Г  – 

– (EuHσσ3 – Eu p1 , Eu u2)Г  + (σ3, ε4). (4.23) 

The equivalence of the expressions (4.22) and (4.23) can be checked 
directly by using the basic integral identity (2.19) with the second and third 
states of the system, that is, in the form 

(ATσ3, u2) = (σ3, Au2) – (EpHσσ3, Ep u2)Г  – (EuHσσ3, Eu u2)Г . (4.24) 

As can be seen, substituting (4.24) to the right part of (4.23) will 
annihilate all terms related to the third and fourth states, and the rest will 
coincide with (4.22). 

Further, taking mechanical states with particular properties as each of 
the four independent states of the system can turn (4.23) into various 
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relationships and theorems related to the variational formulations of 
structural mechanics [6]. 

1.5 Final comments to Chapter 1 

First of all, we have to explicate our usage of the term principle.  The 
literature on the structural mechanics uses the words principle and law 
sometimes as mutual equivalents. One can occasionally run into an 
expression like “law of virtual displacements”. In principle6, this should 
not make any confusion if the context makes it clear. Nevertheless, in 
order to avoid ambiguity in terms we had better adhere to the linguistic 
basis once established. We prefer the terminology advocated by 
L.A. Rozin. A quote from [8] helps explain what we mean: 

“Variational formulations of problems can be represented either as 
integral identities which mechanics treats as variational principles and 
refers to as variational equations, or as requirements that certain 
functionals should be stationary, which mechanics treats as variational 
laws”. 

As the definitions of the static and kinematic semi-admissibility of stress 
and strain fields are new for the reader7, we should emphasize the 
differences between the notions once again. The criterion for the static 
semi-admissibility is that the static boundary conditions should be met 
while the equilibrium equations in the volume of a body are neglected. On 
the contrary, the kinematic semi-admissibility uses the criterion of the 
geometric equations satisfied inside the body while the boundary 
conditions of the geometric type may be violated.  

Further, as we use the different notions of stress and strain fields, it 
would be appropriate for us to name the two basic principles of statics and 
geometry as the principle of homogeneously kinematically admissible 
displacements and the principle of homogeneously statically admissible 
stresses, to emphasize the reciprocity of the principles by their very names. 
However, there is a long-living historical tradition of naming these 
principles otherwise (the principle of virtual displacements and the 
principle of virtual increments of the stress state) which is widely used in 
literature, so any deviations from this tradition are undesirable. The virtual 
displacements in mechanics are displacements which do not conflict with 
                                                      

6 Another use of the term principle, and of a totally different meaning, too. 
7 Strictly speaking, one of the notions, the static semi-admissibility of a stress 

field, was introduced by us earlier in the paper [11]. 
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constraints of a particular mechanical system. In our situation they are 
equivalent to displacements from a homogeneously kinematically 
admissible field.  

It should be said that the notion of the homogeneously kinematically 
admissible displacements (as well as just kinematically admissible 
displacements) actually needs a more accurate definition. Formal 
mathematics advances two requirements relevant to this notion:  

• the displacements should satisfy the respective kinematic boundary 
conditions;  

• the displacements should be sufficiently smooth functions.  
 

Different definitions of a problem’s solution (a classic, strong, weak, 
semi-weak solution [1]) require a different smoothness of the 
displacements, therefore the very set of the kinematically admissible 
displacements will change together with the definition of the solution. In 
the context that we use, we require the smoothness corresponding to the 
semi-weak solution definition. This admits the Au operation, at the least. 

The theorem of field orthogonality was obtained here as a corollary of 
the principle of virtual displacements and the principle of virtual variations 
of the stress state. The reader can make sure (we do not dwell on it here) 
that the inverse relationship is also true: the theorem of field orthogonality 
implies the two basic versions of the variational principles. In that sense 
the theorem of field orthogonality can be treated as a fundamental static-
geometric statement. 

And the final note. As we have said before, the general principle of 
statics and geometry written as an integral identity (4.2) is a good starting 
point for obtaining various partial but in a certain way important versions 
of the basic variational principles. All of those are derived from (4.2) by 
giving particular meanings to the states 1 and 2 of a mechanical system, 
which states were quite arbitrary from the beginning. This is the way they 
derive a whole bunch of partial variational principles in [8] where the 
interested reader can find the details. We confine ourselves intentionally to 
only two: the principle of virtual displacements and the principle of virtual 
variations of the stress state. These two principles can be called ‘basic’ due 
to the following reasons. First, these two were the first to appear, and 
many known works on elasticity and/or structural mechanics discuss 
nothing more in their presentment of variational principles of statics and 
geometry – refer to [5] for an example. Second, as we will show in the 
next chapter, these two principles are in tight connection with two classic 
variational laws: the Lagrange variational principle and the Castigliano 
variational principle, which we also call basic ones and which have an 
important property of extremality. Third, all the other variational principles 
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and laws (which we call supplementary) can be derived from the basic 
ones by means of various known transformations such as: the Lagrange 

Finally, we should mention a so-called Vorobiov identity [5] formulated 
for a general nonlinear analysis. In the particular case of linear elasticity 
this identity becomes  

(Auk, σs) = (uk, X ) + (Ep p , Ep uk)Г  + (Eu Hσσs, Eu u )Г  .  

Taking into account the static admissibility of the stresses σs and the 
kinematic admissibility of the displacements uk will transform this identity 
into the following: 

(Auk, σs) = (uk, ATσs) + (Ep Hσσs, Ep uk)Г  + (EuHσσs, Eu uk)Г  .  

Now it is easy to see that the Vorobiov identity in linear elasticity is just 
another form of the same basic integral identity (2.19) in application to 
statically admissible stresses and kinematically admissible displacements.  
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2  BASIC VARIATIONAL PRINCIPLES OF 
STRUCTURAL MECHANICS 

 The history of mechanics and physics is a history of attempts to 
explain things that happen around us in the world, using a small 
number of laws and universal principles. The most successful 
and fruitful attempts are based on the idea that phenomena we 
observe have certain extreme properties and these general 
principles sought for are of variational nature… 
V.L. Berdichevsky. Variational principles in mechanics of 
continua. Moscow, “Nauka”, 1983, p.16 

2.1 Energy space  

2.1.1  Physically admissible fields 
 

Up to this point, we dealt solely with static and geometric properties of a 
deformable body (assuming that the problems are posed as geometrically 
linear, first-order). All theorems given in Chapter 1 are invariant with 
respect to the properties of the deformable solid’s material. From now on, 
we will assume that the material of the body obeys a linear law of relation 
between the stresses (internal forces) and strains, 

σ = Cε   or   ε = C –1σ . (1.1) 

Now, let’s extract a separate class from the set of all thinkable stress-
and-strain fields: a set P of all physically admissible fields, 
Fp  = {σp, εp, up}, which have a linear relation between their stresses and 
their strains in the form (1.1). All fields dealt with in this chapter will be 
physically admissible. 

 
An important role in further proceedings will be played by the set P k/2 . 

Let’s say that an arbitrary field, F  = {σ, ε, u}, belongs to the set P k/2 if the 
said field is physically admissible and kinematically semi-admissible at the 
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same time. Thus, our definition permits us to represent any field F ∈P k/2  
as 

F  = {CAu, Au, u}, (1.2) 

so the field is defined thoroughly by a given vector of displacements, u. As 
can be easily seen, the P k/2 set is a linear set. 

Two subsets will be introduced on the set P k/2: P  k ⊆ P k/2 and P  ko ⊆ P k/2 . 
The set P k consists of kinematically admissible fields, and the set P  ko 

consists of homogeneusly kinematically admissible fields. Note that P  ko is 
a linear set while the set P  k is not. Thus, according to its definition, the set 
P  ko consists of all fields of the kind 

F  = {CAu, Au, u}    where   Eu Huu = 0 ∈Г . (1.3) 

Consequently, this linear set is fully defined by a specific displacement 
vector u. 

Next, we take all physically admissible fields and extract a set, P s/2, of 
statically semi-admissible fields. We introduce a subset P  s ⊆ P  s/2 on the 
set P s/2, which will consist of statically admissible fields. Finally, the set 
P  so ⊆ P  will consist of homogeneously statically admissible fields. Note 
that P so is a linear set while the sets P  s and P  s/2 are not. So, according to 
the definition, F ∈P  so if it is of the type 

F  = {σ, C –1σ, u}   where  ATσ + Ku = 0  ∈Ω  and EpHσσ = 0  ∈Г. (1.4) 

Thus, the linear set P  so is completely defined by two known vectors, the 
displacement vector u and the stress vector σ. 

A field, F∗  = {σ∗, ε∗, u∗}, will be called a true field (or a real field) if it 
is statically admissible, kinematically admissible, and physically 
admissible, all at the same time. This is the case when all equations (1.2.2) 
and boundary conditions (1.2.4) hold. So, any field from the intersection of 
the sets P s and P  k is true by definition: 

F∗ ∈ P s ∩ P  k . (1.5) 

2.1.2 Betty theorem 
 

Let us consider two arbitrary but physically admissible fields, F1  and F2 , 
and write an expression of the virtual work, B12 , of the internal forces of 
the state 1 of a system on the displacements of the state 2, and an 
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expression of the virtual work, B21 , of the internal forces of the state 2 of 
the same system on the displacements of the state 1. We have  

B12 = – (σ1, ε2) – (Ku1, u2) ,     B21 = – (σ2, ε1) – (Ku2, u1) . (1.6) 

Now we use (1.1) and take into account the symmetry of the algebraic 
operators C and K to make a conclusion that 

B12 = B21 . (1.7) 

In other words, the virtual work B12 of internal forces of the state 1 of a 
mechanical system on the respective displacements of the state 2 of the 
same system is equal to the virtual work B21 of internal forces of the state 2 
of the system on the respective displacements of the state 1.  

The relationship (1.7) is called a theorem of work reciprocity (Betty 
theorem). We emphasize once again that the Betty theorem can be proven 
true for physically admissible fields only. 

 
Now, let both states of the system belong to the linear set P k/2  . Then the 

expression of the virtual work of the internal forces can be represented in 
the form (1.4.4). If each of the two states of the system is assumed to 
correspond to a set of statically conforming external forces, then the 
general principle of static and geometry in the form (1.4.6) yeilds  

A12 = A21 . (1.8) 

In other words, the virtual work of all external (active and reactive) 
forces of the state 1 of a system on the respective displacements of the 
state 2 of the same system is equal to the virtual work of all external 
(active and reactive) forces of the state 2 of the system on the respective 
displacements of the state 1. Thus, for the Betty theorem in the form (1.8) 
to be true, the following three conditions must be met:  

• each of the two states taken into account must be physically admissible;  
• the two states must be kinematically semi-admissible; 
• each of the two must be statically admissible (each one under its own 

forces). 

However, the most frequent formulation (and application) of the Betty 
theorem is a partial case when the states 1 and 2 of a system are fully 
kinematically admissible. But then the respective fields, F1 and F2, will 
contain true components of the stresses, strains, and displacements which 
conform to the external forces of the state 1 and state 2, respectively. The 
result is the following formulation of the Betty theorem: 
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The virtual work, A12 , of the external forces of state 1 of a system on actual 
displacements of state 2 of the same system is equal to the virtual work, 
A21 , of the external forces of state 2 on the actual displacements of state 1. 

Let’s give a brief illustration of the Betty theorem’s application which 
will remind us that the calculation of the virtual work of the external forces 
must take into account the work of the reactive contour forces. Consider a 
flexible bar of the length l clamped at its left end and simply supported at 
its right end (Fig. 2.1). 

M

R
1

X

�

l
 

Fig. 2.1.  An illustration to the Betty theorem 

Let the bar be loaded by an end moment, M, in its state 1 and let a 
kinematic external action be specified for the state 2: a sag of the right 
support by a length of ∆. It is easy to find that the deflection v2 of the beam 
in its second state is 

v2 = 
3

2
2

3 ( )32
xx ll

∆ − ,   so       θ2 = 2 ( )d ldx
v = 3

2l
∆ , 

where θ2 is a slope of the right end of the bar in its second state. 
We denote the reaction of the right support in the first state of the 

system as R1. The virtual work A12  of all external (active and reactive) 
forces  of the 1st state of the system on the respective displacements of the 
2nd state is A12 = Mθ2 – R1∆ . On the other hand, it is easy to see that the 
reactive forces of the 2nd state do not perform any work on the 
displacements of the 1st state, i.e. A21 = 0. Thus, the Betty theorem gives 
Mθ2 – R1∆ = 0, so 

R1 = 3
2
M
l . 
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2.1.3 Energy of strain. Clapeyron theorem 
 

Consider a true field, F1  = {σ, ε, u}, which conforms to given external 
actions, V = { X , p , u }, applied to an elastic mechanical system. In the 
vicinity of the true field F1 , we consider a perturbed state (state 2) with its 
true field F2 = {σ + δσ, ε + δε, u + δu} that conforms to new external 
actions already perturbed, V + δV = { X + δX , p + δp , u + δu }. It is easy 
to notice that F2 = F1 + δF  and that the field of variations 
δF  = {δσ, δε, δu} belongs to the linear set P k/2  .  

As the system transits to its perturbed state, the external forces perform 
a certain amount of work, δA. The energy consumption for doing this work 
will increase the internal energy of the elastic body caused by the body’s 
deformation. When calculating the work δA, one does not have to allow 
for the work of the external force increments on the displacement 
increments because this contribution is a second-order infinitesimal 
comparing to the work of the external forces of the state 1 on the 
displacement increments. Thus, 

δA = ( X , δu)  + (Ep p , Ep δu)Г + (Eu p, Euδu )Г . (1.9) 

The expression that stands in the right part of (1.9) can be treated also as 
a virtual work of all external forces of the state 1 on variations of the 
displacements. The general principle of statics and geometry makes it 
possible to replace the said work by the virtual work of the internal forces 
of the state 1 on the same displacements. To put it another way, 

δA = (σ, δε) + (Ku, δu) , (1.10) 

which takes into account the kinematic semi-admissibility of the variations 
δε and δu. 

The laws of thermodynamics (for example, see [1, 2]) imply that 
adiabatic or isothermic reversible elastic deformation transforms the whole 
change in the internal energy of an elastic mechanical system into its 
accumulated potential energy E. This lets us identify the increment of the 
work, δA, with the increment of the strain energy of an elastic mechanical 
system, δE 

δE = (σ, δε) + (Ku, δu) . (1.11) 

The total energy of strain, E, accumulated in the mechanical system as it 
transits from its initial unstrained and unstressed state to the state 1, is 
determined in the general case by an integral of (1.11) along a given path 
of deformation. If this integral does not depend on the path of integration 
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so that it depends only on the final state of the system (recall that the initial 
state is zero), then the quantities in the right part of (1.11) should be total 
differentials. Calculus of functions of multiple real variables says that the 
condition of existence of a total differential for the linear physical law 
(1.1) is essentially the symmetry of the algebraic operators C and K, which 
is the same condition we stipulated earlier in Section 1.2. If the strain 
energy happens not to depend on how the system transits to its final state, 
then we can choose a simplest, so-called proportional mode of loading in 
which all external (both static and kinematic) actions vary proportionally 
to a single time-like parameter, t, which changes through the interval from 
0 to 1. But then, because of the linearity of the problem in any arbitrary 
“moment of time” t, the actual state of the system will be described by the 
field Ft  = {tσ, tε, tu}, so with this loading mode the variations of the 
kinematic parameters are proportional to the increment of “time” dt, i.e. 
δε = εdt,  δu = udt. Thus the increment of the strain energy, В, will 
become 

δE = [(Cε, ε) + (Ku, u)] tdt . (1.12) 

As the scalar quantity in the brackets above does not depend on t, 
integrating (1.12) with respect to t from zero to one will give the following 
expression for the strain energy, E: 

 E = ½ (Cε, ε) + ½ (Ku, u) .                          (1.13) 
 
As one can see from (1.13), the strain energy accumulated in a 

deformable system consists of two terms. The first term in (1.13) is an 
energy accumulated in the deformable body itself, while the second term is 
a part of the energy stored in an elastic medium that surrounds the body.   

Now we return to the general principle of statics and geometry, to find 
that the virtual work A11 of the external forces of the state 1 of the system 
on the actual displacements of the same state is equal to the doubled 
potential energy of strain, 

A11 = 2E . (1.14) 

This relation is known as the Clapeyron theorem.  
When using the Clapeyron theorem, one should keep in mind that the 

work of the external forces, A11, must inlcude also the work of reactive 
contour forces, i.e. the work of reactions of imposed constraints in those 
places and in those directions where the given external actions are 
displacements of the constraints. 
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Now, let us give another derivation of the Clapeyron theorem, also to 
demonstrate an application of the Papkovich identity. To do this, assume 
that all four states of a system are the same in (1.4.23), which gives us the 
right to identify all of the states with the subscript 1, that is, 

      A11 =(X1 – ATσ1, u1) + (σ1, Au1 – ε1) – (Ep Hσσ1 – Ep p1, Ep u1)Г – 

– (Eu Hσ σ1 – Eu p1, Eu u1)Г  + (σ1, ε1). 

If we assume also that the state 1 is a true state of the system, then all 
external actions will be the same as given ones, i.e.  

X1 = X ∈Ω,  Ep( p1 – p ) = 0    ∈Г,        Eu(u1 – u ) = 0 ∈Г,  

    where      u1 = Huu1 . 

Also, the second, third, and fourth terms in the right part of the expression 
of A11 will disappear when a true state of the system is used, which gives 

A11 = (X1 – ATσ1, u1)  + (σ1, ε1). 

Recalling that for a true state of the system X1 – ATσ1 = Ku1 and σ1 = Cε1, 
we take (1.13) into account and arrive at the Clapeyron theorem (1.14) 
again.  

2.1.4 Rigid displacements 
 

If displacements u do not cause any strain, that is, if Au = 0, then the 
displacements of this kind are usually called collectively a rigid 
displacement, though a rigid displacement for the elastic body would be 
more exact. With a rigid displacement of an elastic body, the part of the 
energy EA , 

EA = ½ (Cε, ε) , (1.15) 

stored by the body itself will be equal to zero1. However, the presence of 
an elastic surrounding medium can make the mechanical system 
accumulate the energy in this medium due to the presence of the term EK, 

                                                      
1 Here and further we use the subscript A to emphasize the connection of a 

quantity with the geometry operator A, which means that the quantity relates not 
to the whole mechanical system but only to the elastic body mentally deprived of 
the surrounding elastic medium. Everything related to the elastic medium is 
subscripted by K which shows that the quantity in question depends on the 
operator K . 
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EK = ½ (Ku, u) , (1.16) 

in the energy expression (1.13), so that E = EA + EK.  
We use energy considerations to demand that both terms in the energy 

expression (1.13) could not be negative in any state of the mechanical 
system belonging to the linear set P k/2 , i.e. EA ≥ 0  and  EK ≥ 0. Moreover, 
for all displacements u which cause a nonzero strain ε, the energy EA must 
be strictly positive, and thus the quadratic form (Cε, ε) must be positive 
definite. Physically, the strict positivity of EA postulates a stable behavior 
of the material of a linearly elastic body [9]. This is where the requirement 
of positive definiteness of the algebraic operator C formulated in 
Section 1.2 comes from.  

We will call displacements u which do not change the potential energy 
of the surrounding medium a rigid displacement for the elastic medium. In 
other words, (Ku, u) = 0 on a rigid displacement for the medium. 
Displacements of this kind may exist if the algebraic operator K is positive 
semi-definite but is not positive definite, which is quite admissible. This 
can be represented from the mechanical point of view as a medium which 
provides an elastic resistance to the displacements of a body’s points along 
one of the coordinate axes only and does not resist to the displacements  in 
the directions orthogonal to this coordinate. In a particular case, the ealstic 
medium can be totally absent; this conforms to a zero operator K.  

The following statement is true: for a displacement u to be a rigid 
displacement for the elastic medium, it is necessary and sufficient that the 
vector Ku be a zero vector, i.e., 

Ku = 0 . (1.17) 

The sufficiency is obvious because when (1.17) is true for a certain vector 
u, it immediately implies (Ku, u) = 0.  

Now, let uо be a vector of rigid displacements for the elastic medium, 
that is, let (Kuо, uо) = 0. We can assume, without limiting the generality, 
this vector to be normalized to the unit value, in the sense that (uо, uо) = 1. 
Let’s prove this implies Kuо = 0. 

Thus, we are considering a set of values of the quadratic functional, 
f(u) = (Ku, u), on all u vectors which draw a sphere of a unit radius, that 
is, which satisfy the condition 

(u, u) = 1. (1.18) 

The limitations (1.2.3) related to the algebraic operator K give 

f(u) ≥ 0 (1.19) 
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for any vectors  u including those meeting the condition (1.18). Therefore 
it should be clear that the least possible value of f(u) is zero, and this 
minimum is achieved, in particular, on the vector uо because 
f(uо) = (Kuо, uо) = 0 by definition. Now let’s find necessary conditions of 
the extremum of the functional f(u) under the limitations (1.18). 

We use standard Lagrange’s method of undetermined multipliers λ to 
reduce this conditional extremum problem to the problem of finding a 
point of stationarity of an auxiliary functional, F(u,λ), 

F(u,λ) = (Ku, u) – λ[(u, u) – 1] (1.20) 

where the Lagrangian multiplier λ and the vector u will be varied 
independently. With this functional, we don’t have to impose the 
limitations (1.18) on the vector u beforehand because the limitations 
follow immediately from the conditions of stationarity of F(u,λ). To see 
this, we vary the functional F(u,λ) with respect to u and to λ and then 
equal its first variation to zero thus obtaining 

2(Ku, δu) – 2λ(u, δu) – [(u, u) – 1]δλ = 0 , (1.21) 

wherefrom we can see that the necessary conditions for the stationarity of 
F(u,λ) are 

(Ku – λu, δu) = 0 ,       (u, u) – 1 = 0 . (1.22) 

As the variations of δu are assumed arbitrary here, the first of the 
stationary conditions in (1.22) is equivalent to the requirement 

Ku = λu  ∈Ω , (1.23) 

that is, u is one of the eigenvectors and λ is its respective eigenvalue of the 
operator K. But according to the given condition, uо is a stationary point of 
the functional f(u), consequently,  

Kuо = λuо ∈Ω , (1.24) 

and this minimum is equal to zero, hence f(uо) = (Kuо, uо) = λ = 0. Now 
the desirable relationship, Kuо = 0, follows directly from (1.24).  

Note that the physical meaning of the requirement that Ku = 0 on a rigid 
displacement for the elastic medium is quite clear because this is the only 
case when the displacements u do not cause any reactions, r = Ku, in the 
elastic medium. 

 
A rigid displacement of a mechanical system will refer to a 

displacement, u, which is a rigid displacement both for the elastic body 
and the surrounding medium. Thus, the set of rigid displacements of a 
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mechanical system is an intersection of the set of rigid displacements for 
the elastic body and that for the elastic medium. This set can be empty in a 
particular case. Obviously, by definition E = 0 for a rigid displacement of 
a mechanical system. Also, each of the sets of rigid displacements is 
obviously linear. 

To give an example, let’s consider rigid displacements for a three-
dimensional elastic body. Geometric considerations immediately produce 
the fact that the general expression of the rigid displacements of an elastic 
body in the vector form is 

u = uo + θ × r (1.25) 

where uo is a vector of translational displacements of a point selected as 
the coordinate origin; r is a position vector  of an arbitrary point of the 
body in which the displacement u is determined; θ is a rotation vector of 
the body. By introducing a Cartesian coordinate system, (x, y, z), and 
decomposing the vector product into the respective components, we can 
represent (1.25) in a matrix form, 

u = uox

1
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+ uoy

0
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+ uoz

0
0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+ θx

0
z

y

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

+ θy 0
z

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

+ θz

0

y
x
−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 , (1.26) 

where uox, uoy, uoz are components of the vector uo; θx, θy, θz are 
components of the vector θ; x, y, z are components of the vector r in the 
selected coordinate system. 

Seeing that the six quantities uox, uoy, uoz, θx, θy, θz can have arbitrary 
independent values, one can see from (1.26) that the number of dimensions 
in the linear set of rigid displacements for a three-dimensional elastic body 
is six. 

We will postulate an important property for the operator of geometry, A: 

the set of linearly independent solutions of the homogeneous equation of 
geometry, Au = 0, must be finite-dimensional. 

This is equivalent to adopting the requirement that the set of rigid 
displacements for an elastic body, hence for the whole mechanical system, 
should be finite-dimensional. The Laplace operator is a simple example of 
an operator that does not satisfy this requirement. Indeed, any harmonic 
function on Ω is a solution of the homogeneous Laplace equation, and the 
set of harmonic functions is known to be infinite-dimensional. 
Consequently, the Laplace operator cannot be a geometry operator 
according to the postulated statement. If we assumed the possibility for the 
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homogeneous equation with the geometry operator to have an infinite 
number of linearly independent solutions, this would mean mechanically 
that the system was internally unstable so that the instability could not be 
eliminated by a finite number of externally imposed constraints. This kind 
of (linear) mechanical systems will be further excluded from 
consideration. 

So, let ui (i = 1, …, nA) be a full set of linearly independent solutions of 
the homogeneous equation of geometry, Au = 0, which is called a 
fundamental system for the operator A in mathematics; the linear span of 
the fundamental system is called a kernel of the operator A. The 
mechanical interpretation of the kernel of the operator A is a linear set of 
the rigid displacements for the elastic body which we will denote as RA.  

Note that the field F ∈P k/2  with the displacement component u ∈RA has 
the form F  = {0, 0, u}. To see this, note that its kinematical semi-
admissibility implies ε = Au, knowing that u ∈R A gives ε = 0, and the 
physical admissibility entails also σ = Cε = 0.  

If we clear the fundamental system ui (i = 1, …, nA) of all displacements 
uj which generate nonzero energy in the elastic surrounding medium, that 
is, displacements which meet the condition (Kuj, uj) > 0, then the 
displacements not removed by this operation from the fundamental system, 
in the amount of n, will form a linear set, R, of rigid displacements for the 
mechanical system. The dimensionality, n, of this set is within 0 ≤ n ≤ nA.  

Now let’s truncate both linear sets, RA and R, futher by keeping only 
homogeneously kinematically admissible displacements. All these 
operations will produce linear sets of homogeneously kinematically 
admissible rigid displacements for the elastic body and for the mechanical 
system, which we denote as RAo и Ro, respectively, with the respective 
dimensionalities nAo and no. Obviously, the method of construction implies 
the following embedding relations of these linear sets: 

 
R ⊆ RA ,   RAo ⊆ RA ,         R o = R  ∩ RAo , 

  
0 ≤ n ≤ nA,    0 ≤ nAo ≤ nA,          0 ≤ no ≤ n,          0 ≤ no ≤ nAo .  

If the linear set R o is an empty set, R o = ∅, or, equivalently, if no = 0, 
then the system is called kinematically unstable (also substatic), otherwise 
kinematically stable, and the dimensionality no of the linear set Ro is called 
a degree of kinematic instability of the system. 

Thus, the degree of kinematic instability of a system is equal to the 
number, no, of linearly independent displacements which do not conflict 
with the external constraints and which make the strain energy of the 
system equal to zero.  
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Let us illustrate how the linear sets of rigid displacements introduced 
above appear in practice by a simple example of bending of a three-span 
beam with hinged connection between its bars, as shown in Fig. 2.2. The 
same figure shows how the beam is attached to its supports. In its middle 
span, the beam is supported by an elastic compliant Winkler-type 
foundation with a nonzero coefficient of subgrade reaction. 

1

1

w
4

w
1

w
2

w
3

1

1

 
Fig. 2.2.  Rigid displacements for a three-span beam 

The vector of displacements, u, in this problem is a function of lateral 
displacements of the beam’s axis, w(x). The strain ε will be the curvature 
of its axis, χ, in the deformed state. It is easy to see that the linear set of 
rigid displacements of the elastic body, RA, is made up by four piecewise-
linear functions wi represented by their plots in Fig. 2.2. 

Now let us show what is included in each of the linear sets of rigid 
displacements introduced above and what dimensionality they have. We 
have: 

 
RA  = { w1, w2, w3, w4},    nA = 4;   RAo = { w2, w4},     nAo = 2; 

 
R   = { w1, w4},    n  = 2;  R o  = { w4},  no = 1. 

 
As no ≠ 0, the mechanical system is kinematically unstable, and the 

degree of this instability is 1. This is quite obvious from mechanical 
viewpoint because the right span of the beam can rotate freely (without 
any resistance) around the hinge on its left end. 

If we introduce the designation RK for the set of rigid displacements for 
the elastic medium, then the definition will give  

 
R    = RA ∩ RK . 

 
Further we will use the designations R o and RK also for representing a 

set of stress-and-strain fields of the type F  = {0, 0, u} with the respective 
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displacement vector u. More exactly, R o will designate a set of stress-and-
strain fields of the type F  = {0, 0, u} with the displacement vector u which 
is a homogeneously kinematically admissible rigid displacement of the 
system. Similarly, RK will designate a set of stress-and strain fields of the 
type F  = {0, 0, u} with the displacement vector u which is a rigid 
displacement for the elastic medium. Both sets are linear2. The definitions 
imply the following embedding relations between the sets: 

R o ⊆Pko ,   RK ⊆Pso ,   R o ⊆RK . (1.27) 

Thus, all fields from the linear set R o are at the same time 
homogeneously kinematically admissible and homogeneously statically 
admissible fields. 

2.1.5 Strain compatibility conditions in the form of an integral 
identity  

  
Theory of elasticity says [9] that a field of strains ε must satisfy continuity 
conditions the mathematical expression of which consists of the well-
known strain compatibility equations by St.-Venant. The compatibility 
equations’ being true is necessary and sufficient for a displacement field u 
to be restorable from a known strain field ε. On the other hand, the 
restoration of the displacements u from the strains ε can be treated as 
searching for a partial solution of the inhomogeneous system of equations 
Au = ε.  

Theory of differential equations says that the general solution of the 
inhomogeneous equation Au = ε can be represented as a sum of the general 
solution of the respective homogeneous equation and a partial solution of 
the homogeneous equation which we denote (in case it exists!) as u0. In 
other words, the general solution is of the type 

u = u0 +
1

i i
i

n

C
=
∑

A

u  (1.28) 

with arbitrary constants Сi (i = 1,…, nA).  

                                                      
2

 o K
ambiguity. The context always makes it clear what exactly we are discussing: a set 
of displacement vectors or a set of stress-and-strain fields of the type 
F  = {0, 0, u}. 

  The  dual meaning of the  designations R  and  R   does not cause any 
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As (1.28) is a general form of the geometry equation’s solution, one can 
see that any two solutions of the geometry equation can differ from each 
other only by a rigid displacement for the elastic body3.  

However, right now we are more interested in the possibility to 
construct a partial solution of the geometry equation because it is the 
existence of the partial solution that ensures the restorability of the 
displacements from the strains, hence it is the strain compatibility 
condition.  

The formulation of these conditions is facilitated by the main theorem of 
linear algebra [19]:  

 
a system of linear algebraic equations, Ax = b, has a solution when and only 
when its right part, b, is orthogonal to all solutions y of the homogeneous 
system of equations with the conjugate operator, ATy = 0, that is, under the 
condition (y, b) = yTb = 0.  

 
In our case the homogeneous equation with the conjugate operator is 
ATσο = 0, that is, σο  is a field of self-balanced stresses on Ω. Note that the 
stresses σο are assumed self-balanced without taking into account the 
forces in the elastic medium. Now it seems that the desirable strain 
compatibility condition can be represented in the form (σο , ε) = 0 ∈Ω. 
 However, borrowing the main theorem of algebra and using it in this 
situation is illegal. Just remember that the conjugation between the 
geometry operator and the equilibrium operator is understood formally, in 
the sense of the definition that includes also integrals over the boundary Г 
of the area Ω. Therefore the correct formulation of the strain compatibility 
conditions as an integral identity is: 

 
strains ε are compatible when and only when 

(σο , ε) = 0   ∈Ω (1.29) 

for any stress field σο self-balanced in the area Ω and on the boundary Г, 
that is, for all σο meeting the conditions 

ATσο = 0  ∈Ω,             Hσσο = 0  ∈Г . (1.30) 

Let us prove the necessity first. If there exist displacements u such that 
ε = Au then using the basic integral identity (1.2.15) will yield 

                                                      
3  We do not touch details of the conditions of unambiguity for a displacement 

field restored from known strains. A discussion on this problem, the solution of 
which depends on the degree of connectivity of the domain Ω, can be found in any 
detailed course of theory of elasticity. 
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(σο , ε) = (σο , Au) = (ATσο , u) + (Hσσο, Huu)Г . (1.31) 

Applying (1.30) will annihilate both scalar products in the right part of 
(1.31).  

Now let (1.29) be true at any σο satisfying the conditions (1.30). 
Multiplying the first of the equations in (1.30) scalarly by an arbitrary 
vector u and subtracting the expression thus obtained and equal to zero 
from (1.29) will give an equivalent identity: 

(σο , ε) – (ATσο , u) = 0   ∈Ω . (1.32) 

We can assume for this identity that σο is not subject beforehand to any 
requirements in the area Ω because the equality ATσο = 0 ∈Ω itself is a 
corollary of the identity (1.32) as the vector u is arbitrary.  

But (ATσο, u) = (σο , Au) – (Hσσο, Huu)Г, and when this is substituted to 
(1.32) taking into account the second of the equalities in (1.30), we will 
have 

(σο , ε – Au) = 0 , (1.33) 

wherefrom follows ε = Au. Note that the proof of sufficiency uses actually 
the technique of Lagrangian multipliers well known in calculus of 
variations. This method lets us formally avoid additional conditions 
imposed on functions which are subject to variation. 

The integral identity (1.29) is in close relation to the principle of virtual 
stress increments. However, these two have much in difference, too. First, 
and principal, while the principle of virtual stress increments defines 
conditions under which the displacements and the strains belong to the 
fully kinematically admissible class (one that takes into account the 
kinematic boundary conditions), the integral identity (1.29) being true 
ensures nothing more than the strain compatibility. That’s why the integral 
identity (1.29) can be treated as a general variational principle of strain 
compatibility. Second, the principle of virtual stress increments contains 
the stress σsο which belongs to a homogeneously statically admissible field 
while the formulation of the general variational principle of the strain 
compatibility contains the stress σο self-balanced in the sense of (1.30). 

The strain compatibility conditions in the form of an integral identity (in 
terms that we use, we can talk also about the conditions under which the 
strains belong to a kinematically semi-admissible stress-and-strain field) 
have certain advantages over their differential analog, the St.-Venant 
equations. The matter is that the St.-Venant equations for elasticity contain 
twice differentiable strains which is too strict a requirement for the 
smoothness of the functions. At the same time, the integral form of the 
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strain compatibility conditions does not require them to be differentiable 
even once.  

At this point the following note should be made. One of substantial 
differences (though not the only one!) of one-dimensional problems from 
two- and three-dimensional ones (we mean the dimensionality k of the area 
Ω) is that, as we will show later, there is a wide class of one-dimensional 
problems where stresses σο self-balanced in the sense of (1.30) are always 
zero. Consequently, the general variational principle of strain compatibility 
in the form of the integral identity (1.29) is ensured for such problems. 
Thus, strains ε in problems of that kind are always compatible in the sense 
that there is always a vector of displacements, u, which satisfies the 
geometric equation ε = Au. This note corresponds thoroughly also to the 
continuity conditions in the form of differential equations which take place 
only at k = 2 and k = 3 but do not exist for one-dimensional problems. 

2.1.6 Necessary conditions for an equilibrium state of a system 
to exist 

 
Let ui (i = 1,…, no) be a set of linearly independent, homogeneously 
kinematically admissible rigid displacements of a mechanical system. We 
use the principle of virtual displacements of statics and geometry in the 
form (1.4.11) and assume the state 1 to be the true state of the system 
under a given load and the state 2 to be any of fields F2i  = {0, 0, ui}  
(i = 1,…, no). The fields F2i make the right part in (1.4.11) zero which 
gives the necessary condition for a balanced state of the system to exist, in 
the form  

( X , ui) + (Ep p , EpHuui)Г  =  0 . (1.34) 

So, for an equilibrium state to exist under given external forces X  and 
p , the virtual work of the forces on all displacements ui ∈Ro must be zero. 

Let’s take an example: a so-called second (Neumann) boundary-value 
problem for three-dimensional elasticity [6] in which the whole boundary 
of a body is subject to static boundary conditions (1.2.12-a) and there is no 
elastic medium, that is, K = O. Thus, in this case Г = Гp, Ep = I,  Hu = I. It 
is easy to notice that the linear set R o for this problem has the number of 
dimensions no = 6, and the general form of any vector u from this set is 
given by the formula (1.25). The condition (1.34) can be reduced to the 
following requirement: 
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o(
Ω

+⋅∫ X u θ × r) dΩ + o( +⋅∫ p u
Γ

 θ × r) dГ = 0 . (1.35) 

Now using the known property of mixed product of three vectors, a, b 
and c [3], in the form a ⋅ (b×c) = – b ⋅ (a×c), and seeing that the 
components of the vectors uo and θ are constant throughout the area Ω 
together with its boundary Г lets us rewrite (1.35) as 

uo⋅( d
Ω

Ω∫ X  + ∫ p
Γ

dГ) – θ ⋅ ( d
Ω

× Ω∫ X r  + ×∫ p r
Γ

dГ) = 0 

wherefrom the arbitrariness of the vectors uo and θ gives the known 
necessary conditions for the problem to be solvable: 

d
Ω

Ω∫ X + ∫ p
Γ

dГ = 0,        d
Ω

× Ω∫ X r +
Γ

×∫ rp dГ = 0 . (1.36) 

The physical meaning of the two requirements is obvious: for an 
equilibrium state of the system to exist, the resultant force and the resultant 
moment of all active external forces applied to the body must be equal to 
zero. 

2.1.7 Theorem of a general form of an arbitrary physically 
admissible field 

 
An arbitrary field F ∈ P  can be decomposed into a sum of a 
homogeneously statically admissible field Fso and a homogeneously 
kinematically admissible field Fko , 

F  =  Fso + Fko ,     Fso ∈Pso ,      Fko ∈P ko  . (1.37) 

This form means summation by elements, that is, 

σ = σso + σko ,    ε = εso + εko ,   u = uso + uko . (1.38) 

The proof is based on the following consideration by S.G. Mikhlin [7]. 
Let some volumetric forces, X , and contour forces, p , be in static 

conformance to the field F, and let contour displacements u  be caused by 
displacements u ∈F,  that is, 

X = ATσ + Ku  ∈Ω,     Ep p   = Ep Hσσ   ∈Г,     Eu u = Eu Huu   ∈Г. (1.39) 

The elements of the field Fko will be taken from the solution of the 
following auxiliary problem: 
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   ATσko + Kuko = X         equilibrium equations, (1.40-a) 

   Auko = εko                      geometric equations, (1.40-b) 

    σko = Cεko                         physical equations, (1.40-c) 

   Ep(Hσσko  – p ) = 0       static boundary conditions, (1.40-d) 

   EuHuuko  = 0                  kinematic boundary conditions. (1.40-e) 

The necessary conditions (1.34) for the solution of this problem to exist 
hold because the virtual work of the active external forces, X  and p , on 
homogeneously kinematically admissible rigid displacements of the 
system must be zero – otherwise the first two inequalities (1.39) could not 
hold. Now, all we have to prove is to check that the elements σso = σ – σko , 
εso = ε – εko ,  uso = u – uko belong to a homogeneously statically admissible 
field, i.e. ensure the conditions (1.3.3). And indeed, we have 

ATσsο + Kusο = AT(σ – σkο) + K(u – ukο) =  

                = (ATσ + Ku) – (ATσkο + Kukο) = X – X = 0       ∈Ω , 

                     Ep Hσσsο  = Ep Hσ(σ – σkο) = Ep p – Ep p = 0       ∈Г , 

which proves the theorem. 
Note the circumstance that this general formulation makes the 

decomposition (1.37) sometimes ambiguous. To see this, let’s consider the 
field FR o = {0, 0, uo} ∈Ro. As we mentioned above, the embedding 
relations (1.27) make the field FR o both a homogeneously statically 
admissible field and a homogeneously kinematically admissible field at the 
same time. Therefore, together with (1.37), the decomposition 
F  = Fsο1 + Fkο1 is also true where the fields  

Fkο1 = Fkο + FRo,    Fsο1 = Fsο – FR o 

differ from the components of the decomposition (1.37) by an arbitrary 
field FR o ∈Ro.  

Let’s finally notice an obvious fact: if the original field F belongs to the 
linear set P k/2 , then  Fsο ∈P k/2 also in the decomposition (1.37). 
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Now we are going to construct an important linear set for further 
consideration, L, by removing all fields of R o from the linear set P  ko. This 
can be done by using the scalar product introduced earlier on the set P  ko 
with the formula (1.1.1). The metric produced by this scalar product will 
be called the main metric. Let’s decompose the space thus obtained into a 
direct sum using the main metric: 

P  ko = L  ⊕ R o (1.41) 

The latter means that for any field Fkο = {CAukο, Aukο, ukο} from P  ko with 
the displacement component ukο the following representation holds: 
Fkο = FL + FR о , FL  = {CAuL , AuL , uL} ∈L , FR о = {0 , 0 , uR о}∈R o ,  
ukο = uL + uR о ,  AuR о  = 0 , so that 

(uL  , uR о) = 0. (1.42) 
It is easy to understand that the linear set L is made up by all physically 

admissible and homogeneously kinematically admissible fields which 
ensure a positive strain energy. And indeed, if E(ukο) = 0, then ukο is a 
vector of homogeneously kinematically admissible rigid displacements of 
the system, hence the respective field Fkο = {0, 0, ukο} does not belong to 
the set L . 

Now we turn again to the example of second  (Neumann) boundary-
value problem of elasticity for three-dimensional bodies. We see that the 
orthogonality condition (1.42) in this case is written as: 

ko o(
Ω

+⋅∫u u θ × r)dΩ = 0 (1.43) 

or, as uo and θ are arbitrary 

kod
Ω

Ω∫u  = 0,       ko d
Ω

× Ω∫u r  = 0 . (1.44) 

As there are no kinematical boundary conditions in this problem, the set L  
consists here of all possible (sufficiently smooth) vectors of displacements 
which satisfy the integral conditions (1.44). Obviously, the first condition 
in (1.44) restrains a rigid translational movement of the body and the 
second condition restrains its rigid rotation. 

Let’s introduce a symmetric bilinear functional on the set P; we will 
denote it by broken brackets < , >: 

<F1, F2> = ½ (Cε1, ε2) + ½ (Ku1, u2) =  

= ½ (C -1σ1, σ 2) + ½ (Ku1, u2) . (1.45) 

2.1.8 Lagrangian energy space 
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Comparing (1.13) and (1.45) gives <F, F> =  E(F) wherefrom the 
positivity of the energy E on L  yields the scalar product on the set L 
produced by this bilinear functional. This scalar product is called an 
energy (Lagrangian) scalar product.  

Introducing a scalar product on the linear set L allows us to treat this 
linear set as a Hilbert space which we will call a Lagrangian energy space 
and designate by the same letter, L 4. As it is usually done with the Hilbert 
spaces, we will demand additionally that the scalar product 
<F, F> = ½ (CAu, Au) + ½ (Ku, u) has a finite value for any field F from 
L . Thus, the Lagrangian energy space L  ⊆ P  ko ⊆ P  consists of a set of 
fields of the type F  = {CAu, Au, u} submitted to the following 
requirements: 

• the displacements u must satisfy the homogeneous kinematic boundary 
conditions; 

• the displacements u must be orthogonal, with respect to the main metric, 
to all homogeneously kinematically admissible rigid displacements of 
the system; 

• the scalar product <F, F> = ½ (CAu, Au) + ½ (Ku, u) must have a finite 
value for any field F from L . 
 
Now let’s return to the theorem of a general form of an arbitrary 

physically admissible field from the previous subsection. If the set of all 
homogeneously kinematically admissible fields is limited to the space L , 
then the decomposition (1.37) can be proved to be the only possible one. 
To see this, we can assume the opposite situation and introduce two 
decompositions of a field F  according to (1.37), with subscripts 1 and 2 
for the component fields in these decompositions. Thus, 

Fso1 + Fko1  =  Fso2 + Fko2 ,         so that  Fko1∈L ,    Fko2∈L . (1.46) 

                                                      
4 The usual mathematical term for a linear set with a scalar product is a pre-

Hilbert or unitary space [14]. A genuine Hilbert space is additionally required to 
be complete with respect to the metrics generated by the scalar product. However, 
as we already told in the preface to this book, we do not touch mathematical issues 
related to the space completeness. We imply that the conditions for all Hilbert 
spaces considered in this book to be complete, are fulfilled. Therefore here and 
further our reader  (were he or she be more fastidious than one educated in 
engineering rather than mathematics could be expected) should not be 
embarrassed with the equivalence that we declare implicitly between the Hilbert 
and pre-Hilbert spaces. 
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Multiplying both parts of the equality (1.46) scalarly (in the energy 
metric) by an arbitrary field Fkο ∈L  and taking into account the theorem of 
field orthogonality (1.4.21) will give 

< Fkο, Fkο1 – Fkο2> = 0 . (1.47) 

As the selected field Fkο is arbitrary, this gives Fkο1 = Fkο2, hence 
Fsο1 = Fsο2. 

By taking into account all that was said above, we can modify the 
decomposition (1.37) into 

F  =  Fso + FL   + FR o ,    FL ∈L  ,     FR o ∈Ro , (1.48) 

the field Fsο being orthogonal by energy to the two other fields, and the 
fields FL  and FR o being orthogonal to each other in the main metric. By the 
way, the fields FL  and FR o are orthogonal to each other not only in the 
main metric but also by energy. Indeed, 
<FL  , FR o> = ½ (CAuL , AuR o) + ½ (KuL , uR o). But AuR o = 0 and KuR o = 0 
from the definition of a homogeneously kinematically admissible set of 
rigid displacements Ro, hence <FL , FR o> = 0. 

2.1.9 Prager–Synge identity 
 

Let Fs  and Fk be respective statically admissible and kinematically 
admissible fields from the linear set P , and let F∗ be a true stress-and-strain 
field. Then a so-called Prager–Synge identity [11] takes place: 

E(F∗ – Fs) + E(F∗ – Fk) = E(Fs – Fk)  (1.49) 

which is useful to build error estimates for approximate solutions.  
To see this, we perform a chain of identical transformations: 

E(F∗ – Fs) + E(F∗ – Fk) = E(F∗) – 2<Fs, F∗> + E(Fs) + E(F∗) – 

– 2<Fk, F∗> + E(Fk) = [E(Fs) + E(Fk) – 2<Fs, Fk>] + 2<Fs, Fk> – 

–2<Fs, F∗> – 2<Fk, F∗> + 2<F∗, F∗> = 

= E(Fs – Fk) + 2<F∗ – Fs, F∗ – Fk>. (1.50) 

Noting that F∗ – Fs = Fsо and F∗ – Fk = Fkо are respective homogeneously 
statically admissible and homogeneously kinematically admissible fields 
and taking into account the field orthogonality theorem (1.4.21), we 
conclude that the second term in the right part of (1.50) is annihilated, 
hence (1.49).  
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2.2 Lagrange variational principle 

2.2.1 Conservative external forces 

Up to this point, we did not discuss the nature of external forces X  
distributed over the volume of a body and contour forces p  which can 
depend (both in their value and in their direction), generally, on the 
displacements of the system. From here onward, we will assume that all 
external forces are conservative (or potential). The latter means that the 
work done by the forces during the process of deformation does not 
depend on the path of deformation; this is equivalent to the existence of 
two functions, 

ΠΩ = ΠΩ(u)  ∈Ω ,            ΠГ = ΠГ (u)   ∈Г , (2.1) 

such that each of the force components of iX  and ip  permits the 
representation 

iX = 
i

ΩΠ∂
∂u

,       ip  = 
i

Π∂
∂u

Γ . (2.2) 

The functions ΠΩ(u) and ΠГ(u) are called densities of potentials of 
volumetric and surface forces, respectively. The potential of all external 
(active) forces, Пs, is defined as a sum of integrals of the above functions: 

Пs = ( )  dΩ
Ω

Π Ω∫ u + ( ) . dΠ∫ uΓ
Γ

Γ  (2.3) 

Further we will refer to the potential Пs as a potential of static external 
actions, to emphasize that it is different from a potential of external 
actions, Пk, which will be introduced later and related to reactive forces 
that appear on the contour Г where inhomogeneous kinematic boundary 
conditions are specified.  

The simplest case of the conservative external forces X  and p  (the 
case we will confine ourselves to) includes so-called “dead” forces or 
loads5. External forces are called dead if their points of application in the 
Lagrangian (material) coordinate system do not change their locations in 
the process of the system’s deformation, while the relations between the 
projections of those forces with respect to the Eulerian (spatial) coordinate 

                                                      
5  Some examples of conservative external forces which are not dead loads are 

discussed in Appendix E. 
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system are also maintained constant. The densities of potentials of dead 
loads are especially simple to write: 

ΠΩ(u) = ⋅X u ,       ΠГ (u) = Ep ⋅p u . (2.4) 

As a result, the potential of static external actions, Пs for dead external 
forces can be represented as 

Пs = d
Ω

Ω⋅∫ X u  + p p u d⋅∫ E p E H u
Γ

Γ = ( X , u) + (Ep p , Ep Huu)Г . (2.5)

2.2.2 Lagrange functional 

First of all, we would like to note that any field F from the set P k/2 is 
unambiguously determined by the vector of displacements, u, because 
F = {CAu, Au, u}. Therefore any functional defined on that set or on a 
subset of it can be treated, without limiting the generality, as a functional 
which depends on the displacement vector u only.  

Let us introduce a Lagrange functional, L = L(F), on the set P  k ⊆ P k/2, 
also called a Lagrangian or a full potential energy of the system  

 L(u) = E(u) – Пs(u)                             (2.6) 
 

where energy E is treated as a quadratic functional of u, which gives the 
following according to (1.13): 
  

E(u) = ½ (CAu, Au) + ½ (Ku, u) . 
 

Now let’s show that the Lagrange functional L takes a minimum value 
on true fields F∗ , 

L(F∗) ≤ L(F), (2.7) 

for all F ∈P  k. By assuming F = F∗ + δF, we can rewrite the desirable 
inequality (2.7) as 

L(F∗ + δF) – L(F∗) =  

={E(u∗ + δu) – E(u∗)} – {Пs(u∗ + δu) – Пs(u∗)} ≥ 0 . (2.8) 

Now let’s evaluate the differences contained in (2.8) separately. We have 

E(u∗ + δu) – E(u∗) = E(u∗) + 2<F∗, δF > + E(δu) – E(u∗) =  

= 2<F∗, δF > + E(δu) , 
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Пs(u∗ + δu) – Пs(u∗) = Пs(δu) . 
 
Substituting all this in (2.8) will yield 

L(u∗ + δu) – L(u∗) = {2<F∗, δF > – Пs(δu)} + E(δu) . (2.9) 

But the braced expression from (2.9) can be expanded as follows: 

2<F∗, δF > – Пs(δu) =  

= (CAu∗, Aδu) + (Ku∗, δu) – ( X , δu) – (Ep p , Ep Huδu)Г . (2.10) 

As the variation δu is a difference between two kinematically 
admissible displacements u and u∗, δu will satisfy the homogeneous 
kinematic boundary conditions, that is, δF ∈P  ko. This gives us the right to 
refer to the principle of virtual displacements which makes the right part in 
(2.10) equal to zero. As a result, (2.9) becomes 

L(F∗ + δF) – L(F∗) =  E(δu) . (2.11) 

But E(δu) ≥ 0 at any vector δF ∈P  ko, and thus the inequality (2.7) is 
proved.  

The inverse statement is also true: a field F1 on which the Lagrange 
functional L(F) is minimum, 

L(F1) ≤ L(F), (2.12) 

is a true fields among all F ∈P  k , that is, F1 = F∗.  
To validate this statement, it suffices to prove that a stress-and-strain 

field F1 from P  k with the displacement component u1, which we will call 
the state 1 of the system, satisfies both the equilibrium equations and the 
static boundary conditions. By introducing δF  as a difference between the 
fields, δF = F – F1 , and doing the same as before, we can come to an 
evaluation of the difference of the Lagrange functional’s values 

L(F) – L(F1) =  

= (CAu1, Aδu) + (Ku1, δu) – ( X , δu) – (Ep p , Ep Huδu)Г + E(δu). (2.13) 

Now it is convenient to represent the variation δF as δF = αFkο where Fkο 
is a field from P  ko  and α is an arbitrary numerical parameter, which 
makes it possible to rewrite (2.13) as 

L(F) – L(F1) = α{(CAu1, Aukο) + (Ku1, ukο) – ( X ,ukο) – 

– (Ep p , Ep Huukο)Г} + α2E(ukο). (2.14) 
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According to the condition (2.12), the right part in (2.14) must be 
nonnegative at any, even infinitesimal, value of α. But this can be true 
only if the factor at α raised to power one is zero: 
 

(CAu1, Aukο) + (Ku1, ukο) – ( X , ukο) – (Ep p , Ep Huukο)Г = 0 . 
 
If we consider the equality above from the standpoint of the principle of 

virtual displacements, we will conclude that the state 1 satisfies all the 
equilibrium equations. So, it yields the following correct formulation of 
the Lagrange principle: 

      A stress-and-strain field in a linear deformable mechanical system is a 
true field if and only if this field makes the Lagrange functional, L, of the 
system take a least possible value among all physically and kinematically 
admissible stress-and-strain fields. 

Note that the principle of virtual displacements is invariant with respect 
to the physical equations while the Lagrange variational principle is 
essentially based on the physical admissibility of stress-and-strain fields 
which we compare. 

Note the circumstance that the set P  k which we search for the minimum 
of the Lagrange functional is not linear under nonzero external kinematical 
actions; this can be inconvenient. The natural measure of deviation of an 
approximation Fh from the exact solution F∗  can be the norm of the 
difference ||F∗ – Fh|| in the energy metric where  

 
||F∗ – Fh|| = ( ), ( )* h * hF F F F< − − > = ( )* hF F−E . 

 
In this regard, we would like to give another equivalent formulation of 

the Lagrange variational principle. To do this, first we will transform the 
functional to conditions of its variations on the Lagrangian energy space 
L . Let’s fix an arbitrary field Fk ∈P  k and then represent any field from  
F ∈P  k in the form 

F = Fk + F kο = Fk + FL + FR o ,       FL  ∈L ,        FR o ∈R o . (2.15) 

Now, substituting (2.15) to (2.6) and seeing that E(FR o) = 0 and 
<FL , FR o > = 0 will give 

L(F) = E(uL ) – Пs(uL ) + 2<Fk, FL > + C (2.16) 

where the constant С independent of the vector uL is 
 

С = E(uk) – Пs(uk) – Пs(uR) . 
 

Here we take into account the fact that <Fk, FR o > = 0.  
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By varying the Lagrange functional in the form (2.16) on the 
Lagrangian energy space L   and using the same reasoning as before, we 
can find its minimum “point” F∗L  from L . As a result, we have 
u∗ = uk + u∗L, up to an inessential homogeneously kinematically admissible 
rigid displacement uR o where u∗L  gives the functional (2.16) its least value 
on the Lagrangian energy space L  .  

Pay attention to the fact that the inequality (2.7) is unstrict and allows 
the equality, too, which follows from the inequality E(δF) ≥ 0 at any field 
δF ∈P ko. However, if we limit the variability of the displacement vector by 
requiring that the fields to be compared should belong to the energy 
space L and thus assuming δF ∈L , then E(δF) > 0  and the inequality (2.7) 
will become a strict one, 

L(F∗) < L(F) . (2.17) 

This is where we immediately obtain the theorem of uniqueness of the 
solution known in elasticity as the Kirchhoff theorem. Indeed, if there 
existed two points of minimum of the Lagrange functional, say, F∗1 ∈L  
and F∗2 ∈L, then (2.17) would produce two mutually contradictory  
inequalities, L(F∗1) < L(F∗2) and L(F∗2) < L(F∗1).  

So, the solution of the problem (1.2.2), (1.2.4) is unique up to 
homogeneously kinematically admissible rigid displacements.  

2.3 Castigliano variational principle 

2.3.1 Castigliano functional 

While the Lagrange variational principle is related to the principle of 
virtual displacements, there is also a reciprocal variational principle for it, 
one based on the principle of virtual stress increments and called a 
Castigliano principle. The Castigliano functional (or Castiglianian, as one 
likes), K = K(F), can be represented in the form 

K(σ,u) = ½ (C –1σ, σ) + ½ (Ku, u) – (Eu Hσσ, Eu u )Г  . (3.1) 

The linear part of the Castigliano functional, that depends only on the 
stresses σ, can be interpreted mechanically as a potential of the kinematic 
external actions, Пk(σ), while its quadratic part can be treated as the strain 
energy of the system, E(σ,u), in which the energy of the elastic body itself 
is expressed via the stresses σ, 
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E(σ,u) = ½ (C –1σ, σ) + ½ (Ku, u) ,    Пk(σ) = (Eu Hσσ, Eu u )Г  (3.2) 

where 

 K(σ,u) = E(σ,u) – Пk(σ) .                           (3.3) 
 
Let F∗ = {σ∗, ε∗, u∗} be a true stress-and-strain field. The following 

statement holds:  

K∗ = K(F∗) ≤ K(Fs) (3.4) 

for any field Fs = {σs, C –1σs, us} ∈Ps .  
So, we have to compare values of the Castigliano functional on two 

fields, F∗ and Fs.  
Assume δF = Fs – F∗ = {σs – σ∗, C –1(σs – σ∗), us – u∗}. Obviously, the 

field of variations, δF, is a homogeneously statically admissible field, and 
this permits us to write the components of the field as 
δF = α{σsо, C -1σsо, uso} with an arbitrary factor α.  Now we have 

K(Fs) – K(F∗) = K(F∗ + αFsо) – K(F∗) = 

   = α{(C –1σ∗, σsо) + (Ku∗, usо) – (Eu Hσσsо, Eu u )Г} + 

+ α2 ½ {(C –1σsо, σsо) + (Kusо, usо)}. (3.5) 

Due to the principle of virtual stress increments, the factor at α to the 
power of one becomes zero while the factor at α2 is nonnegative.  

Now let’s prove an inverse statement: a field F1 = {σ1, C –1σ1, u1} ∈Ps 
on which the Castigliano functional K(Fs) takes a minimum value among 
all fields F ∈Ps, 

K(F1) ≤ K(F), (3.6) 

is a true field, that is, F1 = F∗ .  
It suffices to prove that the field F1 ∈Ps which gives the minimum to the 

Castigliano functional is a kinematically admissible field because any field 
from the intersection Ps ∩P k is a true field by definition. With this goal in 
mind, we introduce a field of variations, δF, as a difference between fields  
δF = F – F1 and evaluate the difference between the values of the 
Castigliano functional: 

K(F) – K(F1)=(C –1σ1, δσ) + (Ku1, δu) – (EuHσδσ, Eu u )Г + E(δF). (3.7) 
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The field of variations δF is a homogeneously statically admissible field, 
therefore this field can be represented as δF = αFso with a certain field 
Fso∈Pso and an arbitrary numerical parameter α. The result is that (3.7) will 
become 

K(F) – K(F1) =  

= α{(C –1σ1, σso) + (Ku1, uso) – (EuHσσso, Eu u )Г} + α2E(Fso) . (3.8) 

The condition of nonnegativity of the right part in (3.8) implies that at 
any α 

(C –1σ1, σso) + (Ku1, uso) – (EuHσσso, Eu u )Г = 0 . (3.9) 

But the equality (3.9) is nothing but a mathematical formulation of the 
principle of virtual stress increments, wherefrom we have that the field F1 
is kinematically admissible. 

So we finally compe up with the following formulation of the 
Castigliano variational principle: 

     A stress-and-strain field in a linear deformable mechanical system is a 
true field if and only if this field makes the Castigliano functional, K, of the 
system take the least value among all stress-and-strain fields, both 
physically and statically admissible. 

Note that the principle of virtual stress increments is invariant with 
respect to the physical equations while the Castigliano variational principle 
is essentially based on the physical admissibility of the stress-and-strain 
fields being compared. 

2.3.2 Castigliano energy space 

We indicated above that the energy E(σ,u) ≥ 0 on the linear set Pso. Now 
let’s ask ourselves a question what conditions are needed for the energy 
E(σ,u) to be strictly positive on any field F ∈Pso  not identical to zero. The 
expression of the energy in (3.2) shows directly that if the stresses σ are 
nonzero then the respective energy E(σ,u) is strictly positive, therefore the 
equality E(σ,u) = 0 can hold only on fields of the type F = {0, 0, u} among 
all fields from Pso. However, as this field must be homogeneously statically 
admissible, AT0 + Ku = 0  ∈ Ω, we have immediately that Ku = 0, and 
E(σ,u) = 0 on all fields of this kind. The set of all fields of the type 
F = {0, 0, u} under the restriction Ku = 0 was introduced earlier as a linear 
set denoted as RK . It is also obvious that RK ⊂Pso .  
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Now we can introduce the linear set K  as a truncation of the set Pso at 
the expense of all fields from RK  and represent Pso as a direct sum  

Pso = K  ⊕ RK (3.10) 

where the orthogonality is understood in the sense of the main metric. In 
other words, for any field Fso ∈Pso with the displacement component 
uso the following representation holds: 

Fso = FK + FR K,  FK ∈K ,  FR K ∈RK,    и при этом    (uK , uR K) = 0 . (3.11) 

As a result, the bilinear functional < , >  

<F1, F2> = ½ (C –1σ1, σ2) + ½ (Ku1, u2) , (3.12) 

which is defined on the whole set Pso, can be treated as an energy scalar 
product (in the Castigliano sense) on the set K, and the linear set itself will 
become a Hilbert space which we will call a Castigliano energy space.  

Thus, the Castigliano energy space K  ⊆Pso consists of a set of fields, 
F  = {σ, C –1σ, u}, which meet the following requirements: 

• the displacements u and stresses σ satisfy the homogeneous equilibrium 
equations in the area Ω and homogeneous static boundary conditions; 

• the displacements u are orthogonal, in the main metric, to all rigid 
displacements for the elastic medium; 

• the scalar product <F, F> = ½(C –1σ, σ) + ½(Ku, u) takes a finite value 
for any field F ∈K . 

 
Notice a particular but important case when there is no elastic medium 

whatsoever, that is, K = O. In this situation the set RK consists of all 
possible fields of the type {0, 0, u}. But then the Castigliano energy space 
K  is a set of fields of the type 

{σ, C –1σ, 0}, 

with quadratically summable6 stresses σ which satisfy the conditions 
ATσ = 0 ∈Ω ,  EpHσσ  = 0 ∈Г.  

Now, in the same way as we did with the Lagrange functional, we can 
formulate the Castigliano variational principle in another equivalent 
manner, by transforming the functional to the conditions of its variation on 
the Castigliano energy space, K . To achieve this goal, we represent an 
arbitrary field F from Ps as 

                                                      
6 The requirement of quadratic summability of the stresses is equivalent to the 

requirement of finiteness of the scalar product, (C –1σ, σ). 
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F = Fs + FK + FR K  , (3.13) 

where Fs is a certain fixed field from Ps , FK ∈K , FR K ∈RK. Substituting 
(3.13) to (3.3) and taking into account the equalities E(FR K) = 0 and 
<FK, FR K > = 0 will give 

K(F) =  E(FK) – Пk(FK) + 2<Fs, FK > + C  (3.14) 

where the C constant independent of the field FK is defined as  
 

С = E(Fs) – Пk(Fs) – Пk(FR K) , 
 

where we use the relation < Fs, FR K > = 0. 
In the Castigliano functional represented in the form (3.14), the 

comparison involves fields belonging to the energy space K .  
It is interesting to note that the Castigliano variational principle follows 

immediately from the Prager–Synge identity in the particular case when 
the problem has homogeneous kinematic boundary conditions. And 
indeed, in this case the field Fk in (1.49) can be assumed zero and then the 
Prager–Synge identity will become 

E(F∗ – Fs) + E(F∗ ) = E(Fs) . (3.15) 

But at Eu u = 0 ∈Г the Castigliano functional becomes as simple as 
K(F) =  E(F), and (3.15) entails the inequality E(F∗) ≤ E(Fs) which is 
equivalent to the inequality K(F∗) ≤ K(Fs) . This is the method of 
validation that the book [7] adopts for the Castigliano principle. 

We could follow a similar method to validate the Lagrange variational 
principle in an opposite particular case: when the given external actions 
upon the system are only the displacements on the fixed part of the 
boundary Г and there are no external static (force) actions. In that case the 
Prager–Synge identity can make use of the zero field Fs which gives 

E(F∗ – Fk) + E(F∗ ) = E(Fk) . (3.16) 

If there are no active external forces, the Lagrange functional becomes 
simpler, L(F) =  E(F), and it follows from (3.16) that L(F∗) ≤ L(Fk) .   

Now, a final note. As it was demonstrated above, the condition of 
minimum of the Castgliano functional implies an integral identity which is 
actually the principle of virtual stress increments from the mechanical 
standpoint. In its turn, the latter in an integral form of the strain 
compatibility equations and the kinematical boundary conditions. 
Consequently, one may expect that the St.-Venant compatibility equations 
are actually Euler equations for the Castigliano functional from the 
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standpoint of classic calculus of variations, while the kinematic boundary 
conditions are natural boundary conditions for the same functional7. The 
direct proof of this fact, which is not based on the principle of virtual stress 
increments as an integral equivalent of the compatiblity conditions, can be 
found in such works as a book by L.S. Leibenzon [5].  

2.4 Sensitivity of the strain energy to modifications of a 
system 

2.4.1 First theorem of the strain energy minimum 

First of all, let’s consider values of the Lagrange and Castigliano 
functionals on the solutions of a problem. To shorten the notation, we will 
use asterisks with exact values of all involved functionals, for example, 
L* = L(u*). Now, turning to the values of the potentials Пs according to 
(2.5) and Пk according to (3.2) at u = u* and σ = σ*,  

П s* =  ( X , u*) + (Ep p , Ep Huu*)Г  , Пk*  = (Eu Hσσ*, Eu u )Г , 
 

we note that the sum of the potentials Пs* + Пk*  can be understood as a 
virtual work of all external (active and reactive) forces on actual 
displacements of the system. But then we will have the following from the 
Clapeyron theorem (1.14): 

2E* = Пs* + Пk* . (4.1) 

Using the formulas (2.6) and (3.3) makes it possible to come up with the 
following expressions for the values of the Lagrange and Castigliano 
functionals on the solution of a problem: 

L* = E* – Пs* = – E* + Пk* ,      K* = E* – Пk* = – E* + Пs* , (4.2) 

hence an important relationships:  

 L*  + K* = 0 .                               (4.3) 
 

Thus, the values of the Lagrange and Castigliano functionals on the 
solution of a problem are always equal in their absolute values and 
opposite by their signs. This is exactly why approximate solutions obtained 
                                                      

7  As it was said in the preface to this book, we assume the reader’s familiarity 
with basics of calculus of variations, so expressions like “Euler equations” or 
“natural boundary conditions” need not be explained here. 
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with the Ritz method where either the Lagrange functional or the 
Castigliano functional is used, respectively, enables one to approach the 
exact solution of a problem from both sides. 

 
Let’s sum up the results obtained here into Table 2.1 which shows exact 

values of the functionals we use in the general case and in some particular 
cases important for further presentment. 

 
 Table 2.1 
 External actions applied to the system 

 Force and kinematic Force only 
Пk = 0 

Kinematic only 
Пs = 0 

L* E* – Пs* = – E* + Пk* – E* E* 

K* E* – Пk* = – E* + Пs* E* – E* 

E* ½ (Пs* + Пk*) ½ Пs* ½ Пk* 
  
A known book by Southwell on the theory of elasticity [18] proves the 

following statement, a formulation of the so-called “first theorem of 
energy minimum”: 

     If there are displacements specified in a body that observes Hooke’s 
law, then the deformation which corresponds to the equilibrium 
configuration has a lower elastic energy than the deformation which 
corresponds to any other configuration (one that does not satisfy the 
equilibrium equations) in which the displacements have the same given 
values 8. 

It is easy to see that the above statement or theorem is just a corollary of 
the Lagrange variational principle applied to the case of purely kinematic 
external actions because under such conditions the following holds:  

E* = L* ≤ L(u) = E(u)   ∀ u ∈ P k. 

                                                      
8 Here we present a literal formulation of first theorem of the energy minimum 

given by Southwell. Of course, this formulation assumes an implicit condition that 
the comparison involves not all possible states (configurations) of a system but 
only those which are kinematically admissible. 
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2.4.2 Remarks on the effect of additional constraints 
(kinematical and force) 

Kinematical constraints 

What is usually called a constraint in structural mechanics is a limitation 
imposed upon allowed displacements of the system. If those limitations are 
formulated mathematically as linear homogeneous equations for the 
displacements of the system’s points, then we call them linear retaining 
constraints. Here we will confine ourselves to this type of constraints, 
calling them kinematic(al) constraints. The linear retaining kinematical 
constraints do not violate the superposition principle according to which 
the sum of results of various independent loads on a system is equal to the 
overal result of their combined application9. In an extended definition, the 
kinematical constraints are any limitations of the allowed displacements of 
the system.  

Now let’s consider an original mechanical system described 
mathematically by the equations (1.2.2) and the boundary conditions 
(1.2.4). Together with the system thus specified, we will consider also a 
perturbed mechanical system (under the same external load) which will 
differ from the original one only by the presence of additional kinematical 
constraints imposed upon the allowable displacements of the system. 
Practical sources of such constraints can be things like additional external 
supports or fixations; however, this is not the only source of the 
kinematical constraints. Internal constraints are possible, too, which are 
implemented, say, by making particular elements or parts of a system so 
stiff that those elements can be treated as perfectly rigid, i.e. 
nondeformable, in the design model. An example of imposing of an 
internal kinematical constraint on a system is a three-dimensional elasticity 
problem for an incompressible material; if the material is isotropic, this is 
formally equivalent to making the Poisson ratio equal to ½. Anyway, an 
additional kinematic constraint can be treated mathematically as a 
truncation of the linear set of homogeneously kinematically admissible 
displacements, P  ko. Making this truncation is equivalent to requiring that 
the homogeneously kinematically admissible displacements should be 
orthogonal in the main metric to a certain vector of displacements, v ∈P  ko, 
which depends on a particular constraint, that is, 

                                                      
9  Here ‘the result’ means a stress-and-strain field and/or any linear functional 

of its elements. Obviously, no linear superposition can take place for nonlinear 
functional such as the strain energy of a system. 
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(v, uko) = 0 ,      ∀ uko ∈P  ko . (4.4) 

This definition of a “constraint plane” (4.4) includes a vector, v, which we 
call a constraint vector. 

As a result, the linear set koP  of homogeneously kinematically 
admissible displacements for the modified system (the system with the 
constraint) becomes a reduction of the set P ko for the original system, that 
is, koP  ⊆P  ko, and so the Lagrange energy space L will narrow to L . If we 
turn to the Lagrange variational principle and take the form (2.16) of it into 
account, we will understand that 

L* ≤ *L~  (4.5) 

where *L  is an exact value of the Lagrangian functional on the solution of 
the perturbed problem.  

The inequality (4.5) follows obviously from the consideration that  

( ),
{ }

min=
∈

*L L u
u L  

( ),
{ }

min=
∈ ⊆

*L L u
u LL

 
 

and the functional’s minimum cannot become lower on a narrower set 
comparing to the original wider set where this minimum takes place. 

To find out the qualitative effect of an additional kinematic constraint 
on the behavior of the Castigliano functional, we will use the identity (4.3) 
obtained above which is true for any mechanical system and thus for the 
system perturbed by adding a new constraint, 

*L  + *K = 0 . (4.6) 

Now we derive from (4.6) and (4.3) that ( *L  – L*) + ( *K – K*) = 0 
which produces the following if we take the inequality (4.5) into account: 

K* ≥ *K . (4.7) 

Thus, additional kinematic constraints affect the behavior of the 
Lagrange and Castigliano functionals in opposite ways. 

Note that the equality in (4.5) and (4.7) can be achieved only if the true 
displacement vector, u*, for the original problem does not have the 
respective component belonging to the plane of the additional constraint, 
that is, under the condition that u* and the constraint vector v are 
orthogonal: 
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(v, u*) = 0 . (4.8) 

To illustrate this with an example, we will present a solution of the 
“Oxford problem” formulated as follows10.  

Two series of two consecutive experiments are dedicated to 
investigation of an initially unstressed elastic body. In the first series:  

• Experiment “а”: given forces P1, P2,…,Pk are applied at points 
a1, a2,…,ak; 

• Experiments “b”: points b1, b2,…,bn are subjected to given displacements 
u1, u2,…,un . 

In the second series, the body is subjected to some constraints which 
prevent its points from moving. We have to prove that introducing the 
constraints makes the elastic energy E accumulated in the boyd under the 
conditions of Experiment “а” either remains unchanged or lowers while 
the elastic energy accumulated in the boyd under the conditions of 
Experiment “b” either remains unchanged or rises. 

It becomes obvious immediately why this statement is true if we 
consider the inequalities (4.5), (4.7) and Table 2.1 above for particular 
values of the Lagrange and Castigliano functionals where 
in Experiment “а”: E* = K* ≥ *K = *E ; 

in Experiment “b”: E* = L* ≤ *L = *E  . 

Force constraints 
 
It is useful to introduce a separate class of force (or static) constraints 
opposite to the kinematic constraints: the force constraints are limitations 
imposed on forces/stresses in elements of a system. Just as with the 
kinematic constraints, we will deal with linear force constraints only; the 
said limitations will be expressed as linear homogeneous equations11. It is 

                                                      
10 Southwell [18], who provides us with the formulation below, refers to final 

exams in Oxford in 1939 where this problem comes from. The solution given 
there, in a statement with some additional limitations of constraint types, occupies 
nearly two pages, while using the variational principles in their modern 
understanding makes the solution fit in one phrase of four lines of text which 
immediately follows the statement of the problem. 

11 The case of linear inhomogeneous equations of force constraints does not 
introduce anything new; the only difference is that the nonzero right part of such 
an equation would be interpreted as a given external action. 
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easy to see that the force constraints do not violate the superposition 
principle either.  

It is often necessary to allow for force constraints in the structural 
design practice. For example, one may have to analyze a structure with 
pre-stresses when the stresses in some of the elements of the structure must 
acquire certain predefined values. A peculiar example of the force 
constraints appears in the analysis of structures supported by a system of 
hydraulic jacks [10]. All jacks of the common hydraulic system should 
have the same pressure of liquid, and thus we have linear homogeneous 
equations between the reactions applied to the structure by the jacks. The 
force constraint technique is useful also to construct some technical 
theories based on certain static hypotheses. Characteristic examples are 
momentless or semi-momentless theories of shells. Seeing all that was 
said, it seems quite useful to separate the force constraints into a particular 
class where they will exist apart from kinematical constraints. It is even 
more useful to do so within the scope of issues we discuss here because, as 
we will see later, the responses of a deformable system to additional 
kinematic or additional static constraints are exactly opposite. 

Now let’s do some analysis how additional force constraints affect the 
behavior of our basic functionals. It is more convenient to start with the 
Castigliano functional rather than the Lagrange one. First of all, note that 
adding one more force constraint to the system can be treated as a 
truncation of the linear set of homogeneously statically admissble stress-
andstrain fields P so to its linear subset soP ⊂ P so the elements of which 
satisfy the equation of the added force constraint. The Castigliano energy 
space K will be respectively truncated to its subspace K . Repeating the 
earlier reasoning gives us estimates of the functionals for a problem 
perturbed by adding a force constraint: 

K* ≤ *K ,    L* ≥ *L . (4.9) 

Comparing the inequality (4.9) with the inequalities (4.5) and (4.7) 
shows us that the effect of force constraints on changes which happen in 
the values of the basic functionals is exactly opposite to the effect of 
kinematical constraints.  

Now let us collect all obtained results together and put them 
conveniently in Table 2.2 where some useful cases of external loads are 
selected. We remind that the values of the functionals for a configuration 
perturbed by a kinematic or force constraint are marked with tilde above 
“∼”, while the same functionals for the original configuration are not 
marked in any way. 
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 Table 2.2 
 External actions applied to a system 

 
Type of 

perturbation 

Force and kinematic Force only 
Пk = 0 

Kinematic only 
Пs = 0 

L* ≤ *L  
 

Kinematical 
constraints 

K* ≥ *K  

 

E* ≥ *E  
   

E* ≤ *E  

L* ≥ *L  
 

Force 
constraints 

K* ≤ *K  

   

E* ≤ *E  E* ≥ *E  

 
We give a simple example below to illustrate the effect of force 

constraints. 
Fig. 2.3-a shows a two-span continuous beam under a concentrated 

force Р applied to the middle of the right span. The static analysis of this 
simple statically indeterminate system with redundance 1 gives the 
following support reactions: 

 

R1 = P
32
3− ,  R2 = P

32
22 , R3 = P

32
13 . 

 
The reactions are positive if they look upward. The bending moment M(x) 
in the beam is shown as a distribution diagram in Fig. 2.3-b. As we know 
from any course of structural mechanics of bar systems [4], [12], the 
energy of strain accumulated in the beam that experiences bending is given 
by the integral     

 

E* =
2 2

0 2
l M dxEI∫  

 
where EI is the bending stiffness of the beam. 

Simple calculations yield (here we assume the stiffness EI to remain 
constant over the beam’s length): 
 

E* =
2 323

32 48
P l
EI×

≈ 0.015
2 3P l

EI . 
 

Now let’s modify the statement of the problem by adding a force 
constraint into the system. We will assume that the reactions of supports 2 
and 3 should meet the condition of equality, that is, 

R2 – R3 = 0 . 

The mechanical implementation of this force constraint can be imagined 
as putting points 2 and 3 of the beam on two ends of an equal-sided 
nondeformable swing or a sway-beam — see Fig. 2.3-с. 
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Fig. 2.3.  An example of imposed force constraints 
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Introducing the force constraint makes the system statically determinate 
immediately because now the equilibrium equations are enough to 
determine the reactions. The calculation gives 

 

R1 = 0,  R2 = P
2
1 , R3 = P

2
1 . 

 
The moment distribution that conforms to the modified system is shown in 
Fig. 2.3-d. Now, calculating the strain energy of the modified system 
yields 

 

*E  = 
2 31

48
P l
EI  ≈ 0.021

2 3P l
EI , 

 
wherefrom one can see that the inequality E* ≤ *E  holds. 

Another version of a force constraint can be implemented by making the 
reactions of the supports 2 and 3 exactly opposite, or  

 
R2 + R3 = 0 . 

 
One of possible mechanical models that implement this force constraint is 
a system shown in Fig. 2.3-е where two sway-beams (equal-sided swings) 
connected with a hinge are used. The reactions of the supports are easy to 
calculate: 

 

R1 = P,  R2 = – P
2
3 , R3 = P

2
3 . 

 
The distribution of the bending moments in the beam modified with the 
above force constraint is shown in Fig. 2.3-f.   

The energy of strain for this system is 
 

*E  = 
2 339

48
P l
EI  ≈ 0.813

2 3P l
EI  

 
which is obviously greater than E*.  

In the problem above, the system shown in Fig. 2.3-а is derived from 
the modified system as in Fig. 2.3-с by adding one kinematical constraint 
to the latter – by prohibiting the rotation of the sway-beam around its 
support. Similarly, the original system in Fig. 2.3-а is derived from the 
system in Fig. 2.3-е by restraining one of the sway-beams in the latter – 
the other sway-beam loses its freedom to rotate automatically.  

Mechanically, when we impose a force constraint on a system, therewith 
we always remove one kinematical constraint. And vice versa, introducing 
one kinematical constraint into a system is equivalent to removing one 
force constraint. 
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It may seem this reciprocity of kinematical and force constraints makes 
the separate consideration of force constraints unnecessary because force 
constraints can always be transformed into kinematical ones. This is 
actually true, and force constraints are seldom introduced in courses of 
mechanics. However, sometimes a direct analysis of the effect of force 
constraints on the behavior of a mechanical system may be more 
convenient, that’s why we separated these constraints into a new class. 

2.4.3 Build-up of a system 

In this section we will deal with a qualitative sensitivity of our basic 
functionals to changes in the area Ω itself in statements of elasticity 
problems. In short, we will compare the values of the Lagrange and 
Castigliano functionals for the original body’s configuration and for one 
where the area Ω is built up to Ω + δΩ.  

The build-up of the system can be studied directly; however, it is 
simpler to reduce the problem to the already established facts concerning 
the effect of additional constraints. We cut the area Ω by a certain surface 
into two sub-areas so that Ω = Ω1 + Ω2 as shown in Fig. 2.4. The surface 
which divides the Ω area into two sub-areas will be denoted as Г12.  

We begin our consideration with a system consisting of two 
disconnected sub-areas, Ω1 and Ω2 . Under given external loads the 
Lagrange functional on this system will consist of a sum of the functionals 
L1* + L2* calculated separately for each of the said sub-areas. 

 

�

Ã
12

 

�
1

�
2

Ã
12

Ã
12

 

Fig. 2.4.  An area divided into two sub-areas 

It is easy to see that the Lagrange functional for the whole area Ω, that 
is, for the system shown in Fig. 2.4 on the left, is a sum of functionals, 
L = L1 + L2 , and the minimum of this sum should be searched for under 
the additional condition that the displacements of each of the separate 
systems must be equal on the separation surface, Г12. These conditions 
written as 

u1 = u2    ∈ Г12  (4.10) 
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are nothing but one of possible forms of kinematic constraints12 .  
As the sum L1* + L2* (just as K1* + K2*) is the value of the respective 

functional on the system consisting of separate disconnected areas, 
Ω1 and Ω2, we come up with the following estimates immediately: 

L1* + L2* ≤ L*  ,     K1* + K2* ≥. K* . (4.11) 

Assuming the area Ω1 to be the original area Ω and the area Ω2 to be the 
perturbation δΩ, and supposing that δΩ is not subjected to any external 
loads, we can use L2* = 0 and K2* = 0 in (4.11). Changing the designations 
to those we used for the original and perturbed configurations of problems 
will give 

L* ≤ *L ,    K* ≥ *K . (4.12) 

Thus, building up a system cannot decrease the Lagrange functional or 
increase the Castigliano functional. Table 2.3 shows conveniently how 
building up a system affects the behavior of its basic functionals.  

 
    Table 2.3 
 External actions applied to the system 

 
Type of 

perturbation 

Force and 
kinematical 

Force only 
Пk = 0 

Kinematical only 
Пs = 0 

L* ≤ *L  
 

Building up a 
system 

K* ≥ *K  
E*≥ *E  E*≤ *E  

 
Taking into account the functional dependence of the basic functionals 

on the area Ω, we can rewrite the same results in another form, as the 
following inequalities: 

d
dΩ

*L
≥ 0,         

d
dΩ

*K
≤ 0 (4.13) 

which are sometimes more convenient. 
To conclude this section, we note that the inequalities considered here 

are strict, as a rule. The equality will take place if and only if there is no 
stressed state caused by attaching the area δΩ to the original area. One 

                                                      
12 As we talk about finding a point of minimum of the Lagrange functional, we 

do not have to require that the stresses match on the common boundary, Г12, of the 
areas. Stress matching conditions for the areas are implied by the Lagrange 
functional’s stationarity conditions on a set of functions that satisfy the 
relations (4.10).  
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should keep in mind that first we “glue” the unstressed areas and only then 
apply external loads to the area Ω as a part of the merged area Ω + δΩ.  

We leave the proof of this fact to the reader for an exercise. 

2.4.4 Modification of stiffness properties of a system 
 

Now let’s see how values of the functionals are affected by changes in the 
tensors C and K which participate in the governing equations (1.2.2). We 
consider an original elastic problem and a perturbed problem different 
from the original one in that the perturbations of these algebraic operators, 

δC = C – C,       δK = K – K, (4.14) 

are positive semi-definite in each point of the area Ω, that is, the following 
conditions hold: 

aTδCa ≥ 0,         bTδKb ≥ 0 (4.15) 

for any vectors a and b of the appropriate dimensionality.  
Let’s write out explicit expressions of the Lagrange functionals for the 

original and perturbed problems. Based on (2.6), (2.5), and (1.13), we have 
 
   L(u)  = ½ (CAu, Au)  + ½ (Ku, u)  –  ( X , u) + (Ep p , Ep Huu)Г  , 

 
L (u) = ½ ( C Au, Au) + ½ ( K u, u) – ( X , u) + (Ep p , Ep Huu)Г 

 
thus, taking into account (4.15), we have the estimate: 

L (u) – L(u)  =  ½ (δCAu, Au)  + ½ (δKu, u) ≥ 0 . (4.16) 

Also, (4.16) gives the inequality 
 

L (u) ≥ L(u) ≥ min L(u) = L* .  
But the latter is true for any vector u which means 

L* ≤ *L ,        K* ≥ *K . (4.17) 

Obviously, the second inequality in (4.17) follows from the first and from 
the identity (4.3). 

Thus, when we make an elastic body and/or its surrounding elastic 
medium stiffer, the Lagrange functional cannot become bigger while the 
Castigliano functional cannot become smaller. If we consider force and 
kinematic actions upon the system separately, we can formulate this 
conclusion in a more obvious way from the physical standpoint: 
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     When the stiffness properties of an elastic body and/or its surrounding 
elastic medium are increased, the strain energy of the system, E* , cannot 
rise under a purely force load and cannot lower under a purely kinematic 
action. 

The conditions of modification of a mechanical system in the form of 
inequalities (4.15) are guaranteed when, for example, one increases the 
material’s modulus of elasticity and/or stiffness coefficients of the elastic 
medium in the diagonal matrix K. It is especially curious, however, to 
track the effect of changing such property as the Poisson ratio on the 
behavior of the system from the integral viewpoint (energy). 

In a three-dimensional elasticity problem [2] written in the matrix/vector 
form, the stiffness matrix of an isotropic material, C, and its inverse 
compliance matrix, C –1, can be represented as  

 
2 0 0 0

2 0 0 0
2 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

λ + µ λ λ
λ λ + µ λ
λ λ λ + µ

µ
µ

µ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C ,  

1

1 0 0 0
1 0 0 0

1 0 0 0
0 0 0 2(1 ) 0 0
0 0 0 0 2(1 ) 0
0 0 0 0 0 2(1 )

1
E

−

−ν −ν
−ν −ν
−ν −ν

+ ν
+ ν

+ ν

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C , 

where the elastic Lame constants λ and µ are related to the engineering 
characteristics, the elasticity modulus E and the Poisson ratio ν, as follows: 

E = 3 2λ + µ
µ

λ + µ
,          ν = 

2( )
λ
λ + µ

, (4.18) 

or, inversely,  

λ =
(1 2 )(1 )

Eν
− ν + ν

,       µ =
2(1 )

E
+ ν

. (4.19) 

Linear algebra [19] says the condition (4.15) of positive semi-
definiteness of the matrix δC is equivalent to the requirement that all 
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eigenvalues of it be nonnegative. We use direct calculation to expand the 
characteristic determinant of the matrix C and find out that all its 
eigenvalues ρi (i = 1,…, 6) are roots of the polynomial 

(µ – ρ)3 (2µ – ρ)2 (3λ + 2µ – ρ) = 0 . (4.20) 

One can see that increasing the Lame constants, λ and µ, will also 
increase these eigenvalues, so this change in the elastic properties will 
make the matrix δC positive semi-definite. However, when we vary the 
Poisson ratio by increasing its value from ν to ν + dν, the increments in the 
first five of six (multiplicity taken into account) eigenvalues ρi are negative 
while the increment in the sixth eigenvalue is of the opposite sign. And 
indeed, the signs of those increments are determined by the signs of the 
derivatives dρi/dν, which gives 

d
d
µ
ν

 = 22(1 )
E

−
+ ν

< 0,                (3 2 )d
d
λ + µ
ν

 =  2

2
(1 2 )

E
− ν

> 0. (4.21) 

Thus, when we vary the Poisson ratio, the signs of the changes in the 
Lagrange and Castigliano functionals are not defined in the general case. 

2.4.5 Perturbation of external actions 
 

In this section we consider the behavior of our basic functionals when 
external force and/or kinematic actions undergo certain changes.  

First, let’s take the simplest case when all external loads vary 
proportionally. Suppose we know an exact solution, the field 
F  = {σ, ε, u}, under a given external load V = { X , p , u }. Let’s consider 
a perturbed state of the system different from the original one in that all 
three components of the external load are multiplied by a common factor t  
and thus can be written as tV = {t X , t p , t u }. The problem is linear, 
therefore the solution F  for the perturbed state is described by the field 
F = tF. It is easy to calculate that the values of all functionals on the 
solution of the perturbed problem are related quadratically (with respect to 
t) to the values of the same functionals on the solution of the original 
problem: 

*E  = t2E* ,    s*П  = t2Пs* ,   k*П  = t2Пk*  ,    *L = t2L* ,       *K = t2K*. (4.22) 

To see this, consider that (4.22) follows from the definitions of the 
respective functionals and the chains of transformations  
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*E  = < F , F > = < tF, tF > = t2< F, F > = t2E* , 

s*П =(t X , u ) + (Ep t p , Ep u )Г = (t X , tu) + (Ept p , Eptu)Г = t2Пs* , 
 

k*П = (Eu Hσ σ , Eu t u )Г = (Eu tp, Eu t u )Г = t2Пk* . 
 
Now let’s analyze the effect of summing two independent loads. 

Suppose we know two states of the system with their loads, their resulting 
fields, and their respective values of the functionals marked by indices 1 
and 2. 

When the combined load is applied to the system, the resulting field, 
F = F1 + F2, will be the sum of the fields of state 1 and state 2 because of 
the linearity. Let’s calculate the strain energy, E*, accumulated by the 
system under the combined load: 

 

E* = < F1 + F2, F1 + F2> = E1* + E2* + 2<F1, F2> . 
                                                                                  

The expression 2<F1, F2> is a virtual work (with the minus sign),  

B12 = –B21, 

of all internal forces of one of the two states on the displacements of the 
other state. Based on the general principle of statics and geometry, this 
same expression 2<F1, F2> can be interpreted also as a virtual work, 
A12 = A21, of all external (active and reactive) forces of one of the two 
states on the displacements of the other state. So finally we have 

E* = < F1 + F2, F1 + F2> = E1* + E2* + A12 . (4.23) 

Similarly, on the basis of the formulas (2.5) and (3.2) we can prove that 
the force and kinematic potentials, Пs* and Пk*, permit the following 
representation under the combined load on the system: 

Пs* = Пs1* + Пs2* + As,12 + As,21 ,   Пk* = Пk1* + Пk2* + Ak,12 + Ak,21  (4.24) 

where   As, ij = ( iX , uj) + (Ep ip , Ep uj)Г ,  Ak,ij = (Eu pi, Eu ju )Г  are the 
virtual works of the respective active and reactive forces of state i on the 
full displacements of state j.  

There is no cause to assume that As,ij = As, ji or Ak,ij = Ak, ji because the 
work reciprocity theorem is true only for the sum of the respective 
quantities,  

Aij = As, ij + Ak,ij = As, ji + Ak, ji = Aji. (4.25) 
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2.4.6 Second theorem of the strain energy minimum 
 

Consider two independent actions on the system, one of which being 
purely kinematic (no active external forces) and the other purely force (no 
given nonzero displacements). The state of the system under the kinematic 
action will be the state 0 and that under the force action will be the state 1.  

Now let’s imagine a procedure of loading when the system is first 
subjected to the purely kinematic external load and then the purely force 
action is added. The state 0 created by the kinematic action can be treated 
as an initial state of the system from which to count further states caused 
by further loading. Based on the formula (4.23), we will derive an 
expression of the total strain energy accumulated in the system after the 
second phase of loading,  

 
E* =  E0* + E1* + A01 .                                                                                   

Due to the specific nature of the loads, A01 = 0. To see this, consider that 
the state 0 has only the reactions as external forces while the state 1 has the 
respective displacements equal to zero. Thus the latter relation becomes  

E* =  E0* + E1* , (4.26) 

which  gives the following because the strain energy is positive: 

E* ≥ E1* . (4.27) 

Note that the inequality (4.27) has ben obtained with the assumption that 
the initial state of the system, state 0, was caused by a purely kinematic 
action. However, it is not hard to understand how this limitation can be 
avoided so that (4.27) could be true with any initial state of the system as 
long as that state is self-balanced (i.e. such that has no active external 
forces). It is not important how a particular initial self-balanced state was 
created (by given dislocations or temperature) as long as the equality A01 = 
0 holds and implies (4.27). 

In this interpretation the inequality (4.27) expresses a so-called “second 
theorem of energy minimum” which we give here as it was formulated by 
Southwell [18]: 

     The value of energy E* (total elastic energy accumulated in a body 
subjected to external forces) in a body with initial stresses is always 
greater than one in the same body without the initial stresses. The energy 
E* has its minimum at E0* = 0, that is, if there are no initial stresses. 
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This formulation of the second theorem of energy minimum is taken nearly 
literally from Southwell13.  

2.4.7 St.-Venant principle and its energy-based background 

The earlier conclusion which we made about the effect of the structure’s 
build-up on its strain energy gives much in the sense that it may be the 
basis for energy treatment of the St.-Venant principle well known in theory 
of elasticity. We present these considerations here below; the basic idea is 
borrowed from a paper by G. Janelidze and Y. Panovko [2] who, in their 
turn, refer to original results by Soutwell [17] and Zanaboni [20]. The 
reasoning by Zanaboni is repeated also in a book by V. Novatsky [8]. 

There are several known (equivalent) formulations of the St.-Venant 
principle. The one most convenient for us follows. 

Let a deformable structure be subjected to a set of external forces in a 
vicinity of some point of it, and let this system of forces be statically 
equivalent to zero (a self-balanced system of forces). Then, as we move 
away from the said vicinity, we will see the stress state in the structure 
decay.  

The meaning of the St.-Venant principle is the very fact of the stresses 
and strains decaying when getting farther from the location of applied 
loads. The behavior of this decay, i.e. its rate, cannot be established in a 
statement so general. Moreover, the decay rate of the stresses and strains 
depends much on what particular class of problems we are dealing with, 
but the very fact of the decay which is postulated by the St.-Venant 
principle can be validated on the basis of energy considerations. 

Let an elastic deformable body, which occupies an area Ω with a 
boundary Г, be loaded by external forces X different from zero and self-
balanced in a certain limited area, Ωp. Let us surround the loaded area Ωp  
by a boundary Г1 and by another boundary Г2 wholly belonging to the area 
Ω as shown in Fig. 2.5. 

It is essential here that the loaded area Ωp is wholly contained in the area 
Ω1 with the external boundary Г1, which is contained in the area with the 
external boundary Г2 in its turn, and the latter area is again contained in the 
original area Ω. 

                                                      
13 Southwell calls the quantity E* a full energy. However, there may be a 

confusion of terms because in the modern practice the full energy is not the strain 
energy but the Lagrange functional as it was said in Section 2.2. Therefore we 
refer to it as a total energy rather than a full energy. 
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Fig. 2.5.  To the validation of the St.-Venant principle 

Let us use the designation Ω2 for an area between the boundaries Г1 and 
Г2, and Ω3 for an area between the boundaries Г2 and Г. Next, we can 
denote interaction stresses on Г1 between the areas  Ω1 and Ω2 as p1, and 
interaction stresses appearing on Г2 between the areas Ω2 and Ω3 as p2, and 
then the St.-Venant principle becomes just a statement that p2 is less than 
p1 in a certain sense. 

The measure that we will use to compare these two stresses will not be 
based on their pointwise values; instead, we will use an integral 
characteristic of the stresses — an energy measure.  

Now let’s introduce the following designations: 

• E(X) is a potential strain energy accumulated in the area Ω under given 
forces X; 

• E1(X) is a potential strain energy accumulated in the area Ω1, which is 
separated from the other part of the system, under the forces X; 

• Ei(pj) is a potential strain energy accumulated in the area Ωi (i = 1,2,3), 
which is separated from the other part of the system, under the forces pj 
(j = 1,2). 

Let’s show here that the total energy created by the surface forces p2, 
which are located farther from the loaded area, is less than the energy 
created by work of the surface forces p1 which are applied to the boundary 
Г1 nearer to the loaded area, i.e. 

E2(p2) + E3(p2) < E1(p1) + E2(p1) . (4.28) 

This is what we will mean when saying ‘stresses p2 are less than forces 
p1’, and this is the same sense in which the stresses ‘decay’ farther away 
from the loaded area. 
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To prove the inequality (4.28), first we note that the strain energy E(X) 
accumulated in the original system can be represented as 

E(X) = {E1(X) + E1(p1) + A1(p1,X)} + 

+ {E2(p1) + E2(p2) + A2(p1,p2)} + E3(p2) (4.29) 

where we add the following designations: 

• A1(p1, X) is a work done in the area Ω1 by the forces p1 on 
displacements caused by the forces X; 

• A2(p1, p2) is a work done in the area Ω2 by the forces p1 on 
displacements caused by the forces p2. 

The expression in the first brace in (4.29) is a total strain energy 
accumulated in Ω1; the next brace contains the expression of an energy 
accumulated in Ω2; the last term, E3(p2), is an energy  accumulated in Ω3. 

Now let’s ask ourselves the question how the energy E(X) is going to 
change if we replace the actual boundary stresses p1 and p2 by stresses αp1 
and βp2 where α and β are numerical factors. It is easy to see that the total 
energy under this load will be 

 
E(X,α,β) = {E1(X) + α2E1(p1) + αA1(p1,X)} + 

+{α2E2(p1) + β2E2(p2) + αβA2(p1, p2)} + β2E3(p2) ,  
so now we can treat E(X,α,β) as a function of two arguments, α and β.  

Note that the stresses p1 taken as a whole over the boundary Г1 are self-
balanced, and the same is true about the stresses p2. Due to this fact we can 
use the Castigliano variational principle according to which the function 
E(X,α,β) must have its minimum at α = 1 and β = 1 because these values 
of the parameters conform to the true distribution of the stresses in the 
system.  

Hence the following conditions must hold: 
 

1, 1

( , , )

α= β=

∂ α β
∂α
XE = 0,     

1, 1

( , , )

α= β=

∂ α β
∂β
XE = 0, 

 
wherefrom two equations follow: 

 
2E1(p1) + A1(p1, X) + 2E2(p1) + A2(p1, p2) = 0,   

 2E2(p2) + A2(p1, p2) + 2E3(p2) = 0 . 
 

Resolving these equations with respect to the works A1(p1, X) and 
A2(p1, p2) yields 
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A2(p1, p2) = –2E2(p2) – 2E3(p2), 

A1(p1, X) = –2E1(p1) – 2E2(p1) + 2E2(p2) + 2E3(p2) .  
Substituting these expressions to (4.29) gives the equality 

E(X) – E1(X) = – E1(p1) – E2(p1) + E2(p2) + E3(p2) . (4.30) 

But the energy E(X), comparing to E1(X), is an energy in the system 
with the built-up area, so the data of Table 2.3 give E1(X) ≥ E(X). 
Moreover, in the case of our interest we can assume the strict inequality 
E1(X) > E(X) to hold, because the strict equality conforms to the total 
absence of stresses beyond the area Ω1 and the St.-Venant principle holds 
for sure. The relation (4.30) and the said inequality imply the inequality 
(4.28), which was to be proved.  

Note that the paper [2] to which we referred above proves a bit different 
inequality, 

E1+2(p2) + E3(p2) < E1(p1) + E2+3(p1) , (4.31) 

where E1+2(p2) is an energy accumulated in the overall area Ω1+Ω2 under 
the action of p2, while E2+3(p1) is an energy accumulated in the overall area 
Ω2+Ω3 under the action of p1.  

Obviously, the difference between the inequalities (4.28) and (4.31) is 
not important from the standpoint of the St.-Venant principle’s validation; 
the difference is just in a special construction and interpretation of the 
energy measure for the stresses p1 and p2, to be able to compare them 
adequately. 

To conclude this section, we would like once again to draw the reader’s 
attention to the paper [2] where the issue of applicability of the St.-Venant 
principle is discussed in great detail; the discussion includes an analysis of 
the stress attenuation rate for various classes of problems. We recommend 
that everybody deeply interested in the topic take a closer look at the paper 
[2] which, though of a considerable age, is still not at all obsolete. 

2.5 Generalized forces and generalized displacements 

2.5.1 Force actions. Castigliano theorem  

Now let’s consider a situation when a deformable system is subjected to m 
independent actions of purely force nature, Vi = { i iP X , i iP p , 0} 
(i = 1,…, m), each one being a set of loads distributed over the body’s 
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volume and over its surface. The class of force actions taken into 
consideration will be limited so far by one requirement only: we will 
assume that each of m actions Vi satisfies the conditions of existence of an 
equilibrium state; these conditions are that the virtual work of external 
forces iX  and ip  on any homogeneously kinematically admissible rigid 
displacements of the system must be zero — see Section 2.1.6. Any set of 
actions of the type Vi = { i iP X , i iP p , 0} = iP { iX , ip , 0} from the 
admissible class can be treated as an external generalized force and the 
scalar factor iP  as a value of this generalized force. Then the increment of 
the generalized displacement, dqi, that conforms to this generalized force is 
the coefficient in the expression of the work of this force, iP dqi.   

Consider m unit states of the system, its i-th unit state with the stress-
and-strain field Fi being the true state of the system that conforms to the 
action of only one, i-th, generalized unit force { iX , ip , 0}, that is, at 

iP = 1. Obviously, all unit fields Fi belong to the class of homogeneously 
kinematically admissible fields. Moreover, we will assume that all of them 
belong to the Lagrangian energy space, L  , thus the energy scalar product 
<Fi, Fj> makes sense. 

Under these conditions the resulting expression of the strain energy of 
the system, E*, under the combined action of all m external forces can be 
conveniently represented in the matrix form, 

E* = <P1F1+…+PmFm,P1F1+…+PmFm> = 

= 1
2 [ ]1 mP P,...,

11 1

1

m

m mm

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A A

A A

1

m

P

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= 1
2 PTAP, (5.1)

where Aij = 2<Fi, Fj> is the virtual work of i-th generalized unit force on 
displacements of the system caused by the action of j-th generalized unit 
force. Thus, the strain energy of the system is a homogeneous quadratic 
form that depends on the generalized forces through the matrix A; the 
matrix can be represented by its components, energy scalar products (in 
the Lagrangian energy space), A = |[2<Fi, Fj>]|.  

Let the vector q = |[q1, q2,..., qm]|T be a vector of generalized 
displacements which conform to the vector of the generalized forces, 
P = |[P1,P2,..., Pm]|T . This means the strain energy, E*, can be represented 
as 

E* = ½ PTq . (5.2) 
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Comparing (5.1) and (5.2) gives 

q = AP , (5.3) 

so the matrix A can be treated as a compliance matrix of the system which 
conforms to the vector of generalized forces, P. Further we will use the D 
letter for the compliance matrix, so under the action of a pure force 

A = D = 
11 1

1

m

m mm

δ δ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥δ δ⎣ ⎦

=  
1 1 1

1

2 , 2 ,

2 , 2 ,

m

m m m

F F F F

F F F F

< > < >⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥< > < >⎣ ⎦

 (5.4) 

and 

E* = ½ PTDP. (5.5) 

The relationships (5.3) and (5.1) produce a formula for determining the 
vector of generalized displacements, q  

q  = *  ∂

∂P

E
, (5.6) 

or, expanded into components, 

qi =
iP∂

∂   *E
. (5.7) 

The formula (5.7) is the essense of a theorem known in structural 
mechanics as a Castigliano theorem; it reads as follows:  

     A generalized displacement, qi, which conforms to a generalized force, 
Pi, is equal to a partial derivative of the potential energy of strain in the 
system, E*, with respect to that force. 

Obviously, the formulation of the Castigliano theorem treats the strain 
energy of the system, E*, as a function (more exactly, a quadratic form) of 
the set of generalized forces, P1, P2,..., Pm, applied to the body. 

As can be seen, any arbitrary element δij = 2<Fi, Fj> of the compliance 
matrix D can be treated as a generalized displacement corresponding to i-
th generalized force Pi but caused by j-th generalized unit force, Pj = 1. The 
symmetry of scalar products implies that the coefficients δij are insensitive 
to the swapping of their indices, δij = δji , and this fact is known in 
structural mechanics as a Maxwell theorem of displacement reciprocity. 
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2.5.2 Kinematic actions. Lagrange theorem  

Now let a deformable system be subject to n independent, purely 
kinematic actions Vi = {0, 0, qi iu } (i = 1,…,n). Any set of external actions 
of the type {0, 0, qi iu } = qi{ iu } can be treated as a given generalized 
displacement and the scalar factor qi  as a value of that displacement. There 
are no external active forces in either state, only reactive forces. A 
generalized (reactive) force, Pi , which corresponds to a generalized 
displacement, qi, is a coefficient in the expression of the increment of the 
work, Pidqi , on the increment of that displacement, dqi.  

Consider n unit states of the system, such that i-th unit state with the 
stress-and-strain field Fi corresponds to a kinematic action upon the system 
in the form of a given i-th generalized unit displacement {0, 0, iu }, that is, 
at qi = 1 and the other generalized displacements equal to zero, qj = 0 
(j ≠ i). Obviously, all unit fields Fi belong to the class of homogeneously 
statically admissible fields. Moreover, we suppose that all of them belong 
to the Castigliano energy space K  , so the energy scalar product is defined,  
<Fi, Fj>. 

The resulting expression of the strain energy in the system, E* , under 
the combined action of all external kinematic loads can be represented 
conveniently in the matrix form 

E* = <(q1F1+…+qnFn) ,  (q1F1+…+ qnFn)> = 

= 1
2 [ ]1,..., nq q

11 1

1

n

n nn

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A A

A A

1

n

q

q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= 1
2

qTAq (5.8)

where Aij = 2<Fi, Fj> is the virtual work of reactive generalized forces of i-
th unit state of the system on the displacements of j-th unit state. Thus, the 
strain energy of the system is a homogeneous quadratic form depending on 
the generalized displacements through the matrix A, which can be 
represented by its components, energy scalar products (in the Castigliano 
energy space), as A = |[2<Fi, Fj>]|. 

Let the vector P = |[P1, P2,..., Pm]|T be a vector of reactive generalized 
forces which conforms to the vector of given generalized displacements, 
q = |[q1, q2,..., qm]|T. This means that the strain energy E* can be 
represented as 

E* = ½ PTq . (5.9) 

Comparing (5.8) and (5.9) gives 
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P = Aq, (5.10) 

so under a purely kinematic action the A matrix can be treated as a 
stiffness matrix of the system which corresponds to the vector of 
generalized displacements q. Further we will denote the stiffness matrix of 
the system as R, therefore under a purely kinematic external action 

A = R =
11 1

1

n

n nn

r r

r r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
1 1 1

1

2 , 2 ,

2 , 2 ,

n

n n n

F F F F

F F F F

< > < >⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥< > < >⎣ ⎦

, (5.11)

and 

E* = ½ qTR q . (5.12) 

The relationships (5.8) and (5.10) produce a formula for determining the 
vector of reactive generalized forces P , 

P = *  ∂

∂q

E
, (5.13) 

or in the component form, 

Pi = *  
iq

∂

∂

E
. (5.14) 

The formula (5.14) reciprocal with (5.7) is known as a Lagrange theorem: 

      A generaliled force, Pi, which conforms to a generalized displacement, 
qi, is equal to the partial derivative of the system’s potential energy of 
strain, E*, with respect to this displacement. 

Keep in mind that in the formulation of the Lagrange theorem the strain 
energy of the system, E*, is treated as a function (a quadratic form, to be 
exact) of a set of given generalized displacements, q1, q2,..., qn, treated as 
external actions applied to the system. 

Obviously, any arbitrary element rij = 2<Fi, Fj> of the stiffness matrix R 
can be treated as a reaction in a constraint, which corresponds to i-th 
generalized displacement qi but is caused by j-th generalized unit 
displacement qj = 1. The symmetry of scalar product implies the 
insensitivity of the coefficients rij to the swapping of their indices, rij = rji , 
which fact is known in structural mechanics as a Rayleigh theorem of 
reaction reciprocity. 



2.5 Generalized forces and generalized displacements      83 

2.5.3 Inversion of stiffness and compliance matrices  

Now let’s return to purely static (force) actions applied to a system and 
assume additionally that all m external force actions (loads) are linearly 
independent. This means none of the loads { i iP X , i iP p } (i = 1,…, m) can 
be represented as a linear combination of the other m – 1 loads. It is quite 
clear this condition is necessary for the respective unit states defined by 
the stress-and-strain fields Fi (i = 1,…, m) to be linearly independent as 
elements of the Lagrange energy space. This condition might seem 
sufficient also for linear independence between the fields Fi (i = 1,…, m). 
However, this is not the case14. Therefore we will postulate the linear 
independence of all unit states of the system as a separate condition; this 
can be easily validated in practical problems. But then the compliance 
matrix D of the quadratic form (5.5), written as 

D =
11 1

1

m

m mm

δ δ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥δ δ⎣ ⎦

 = 
1 1 1

1

2 , 2 ,

2 , 2 ,

m

m m m

F F F F

F F F F

< > < >⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥< > < >⎣ ⎦

, (5.15)

will be a Gram matrix for linearly independent elements [19], hence a 
nondegenerated and even positive definite matrix.  

As we have established just above, the compliance matrix D is not 
degenerate, therefore the linear relationship (5.3) can be inversed to 
produce 

P = D –1q , (5.16) 

so we can derive the following from (5.2): 

E* = ½ qTD –1q . (5.17) 

The matrix D –1 (if it exists!) is also referred to as a stiffness matrix of the 
system that corresponds to the vector of generalized displacements, q. 
However, the matrix D –1 does not describe the stiffness of the original 
system; rather, it describes the stiffness of a system derived from the given 
one by imposing m kinematic constraints which prevent the generalized 
displacements qi (i = 1,…, m).    

Now let’s repeat this kind of reasoning for the case of purely kinematic 
actions. Let all n unit states of the system be linearly independent. The 
necessary (not sufficient!) condition of it is that all n kinematic actions 
must be linearly independent. If all n unit states of the system are 

                                                      
14 We leave it to the reader — to build an appropriate contrary example. 
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independent, then the stiffness matrix R of the quadratic form (5.12), 
written as 

R =
11 1

1

n

n nn

r r

r r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
1 1 1

1

2 , 2 ,

2 , 2 ,

n

n n n

F F F F

F F F F

< > < >⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥< > < >⎣ ⎦

, (5.18)

is a Gram matrix for linearly independent elements and thus is a 
nondegenerated and, moreover, positive definite matrix. 

If the stiffness matrix R is non-degenerated, then the linear relation 
(5.10) can be inversed to derive 

q = R –1P , (5.19) 

thus (5.12) produces 

E* = ½ PTR –1P . (5.20) 

The R –1 matrix (if it exists!) is also referred to as a compliance matrix of 
the system that corresponds to the vector of generalized reactive forces P . 
However, the matrix R –1 does not describe, actually, the compliance of the 
original system; instead, it describes that of a system derived from the 
original one by removing n kinematic consstraints which prevented the 
generalized displacements qi  (i = 1,…, n) earlier.    

2.5.4 Lemma of constraints 

Consider two mechanical systems, SA and SB, ordered in the sense that the 
“higher” system SB is made of the “lower” system SA by adding a few 
additional constraints to SA15, say, in the amount of n.  Let FA and FB be the 
respective true stress-and-strain fields for those systems, which conform to 
the same external load V. for this couple of fields (FA and FB), we build a 
stress-and-strain field FBA = FB – FA which will be called a difference field.  

Let P Ako and P Aso be the respective sets of homogeneously kinematically 
admissible and homogeneously statically admissible fields for the system 
SA, and P Bko and P Bso be the similar sets for the system SB. Here we will be 
interested only whether the difference field belongs to the respective linear 
set. 

The following statement, which we call a lemma of constraints, is true:  

                                                      
15 When talking about the constraints in this subsection, we will refer to 

kinematic constraints only. 
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      Under any arbitrary action V, the difference field FBA is a 
homogeneously kinematically admissible field for the lower system SA and 
a homogeneously statically admissible field for the higher system SB, or 

FBA ∈P Ako   and    FBA ∈P Bso . 

The system SB is made of the system SA by imposing n constraints on 
the latter, so we can assume the linear set P Bko to consist of elements of the 
set P Ako which satisfy the conditions of orthogonality, 

(vi, uko) = 0  (i = 1,…, n)     ∀ uko∈P Bko , (5.21) 

where vi is, as usual, the vector of reactions of i-th constraint. Hence the 
direct relation of embedding for the linear sets: 

P Ako ⊃ P Bko . (5.22) 

The set of all physically admissible fields P is the same for the systems SA 
and SB. Therefore (5.22) and the theorem of a general form of any 
physically admissible field make also the opposite direction of embedding 
for the homogeneously statically admissible linear sets true: 

P Aso ⊂ P Bso . (5.23) 

Note also that under a pure force action the resulting field for any system 
will be homogeneously kinematically admissible, while under a purely 
kinematic action it will be homogeneously statically admissible. 

Further we associate the designation X = |[X1,…, Xn]|T with a vector of 
reactions of the imposed constraints that appear in the system SB and the 
designation Z = |[Z1,…, Zn]|T with a vector of the respective generalized 
displacements in the directions of the same constraints which appear in the 
system SA. Based on the principle of independent force action, we can 
write16  

FA(V) + FA(X) = FB(V),       FB(V) + FB(Z) = FA(V). (5.24) 

The argument in the parentheses is an external action which creates the 
final field. By the way, (5.24) can produce a useful identity, 

FA(X) + FB(Z) = 0 . (5.25) 

But the field FA(X) is a resulting field of the system SA under a purely 
static load, hence FA(X) ∈P Ako. Similarly, FB(Z) is a resulting field for the 
                                                      

16 The reader will notice, undoubtedly, that the first equation in (5.24) is 
essentially the equation of the work (force) method for the system SB. Similarly, 
the second equation in (5.24) can be understood as the equation of the 
displacement method for the system SA . 
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system SB under a purely kinematic action, hence FB(Z) ∈P Bso. That’s why 
we derive this directly from (5.24): 
 

FBA = FB(V) – FA(V) = – FA(X) ∈ P Ako ,  
FBA = FB(V) – FA(V) = – FB(Z) ∈ P Bso , 

 
and the statement is proved.  

2.5.5 Mohr formula and its reciprocal 

In many cases it may be interesting to find the value of a generalized 
displacement qij  which conforms to i-th generalized force Pi but is caused 
by j-th generalized force Pj. This displacement can be represented in the 
form  

qij = δ ijPj (5.26) 

where δ ij is the same displacement but caused by a unit generalized force 
Pj = 1. It is obvious from the previous presentment that 
δ ij = Aij = 2<Fi, Fj>. Applying the formula (1.45) will give finally 

δij =  (Cεi, εj) + (Kui, uj) =  (C –1σi, σj) + (Kui, uj) . (5.27) 

Here σi, εi, ui are elements of the field Fi  created in the system by the unit 
force Pi = 1, and  σj, εj, uj are elements of the field Fj created by the unit 
force Pj = 1. 

The formula (5.27) is called a Mohr formula and is widely applicable in 
structural mechanics. As one can see, in its general form the formula 
works both for structural mechanics of bar systems and for elasticity, 
plates and shells, other applied theories of deformable solid mechanics. 

Recall that both fields Fi  and Fj are homogeneously kinematically 
admissible because both in the state i and in the state j the external actions 
are of purely force nature. But then, because of the theorem of field 
orthogonality, we can subtract an arbitrary homogeneously statically 
admissible field Fso in the Mohr formula from one of the two fields (say, 
from the field Fi) without violating the equality in (5.27): 

δij =  (C –1σiko, σj – σso) + (Kuiko, uj – uso)  (5.28) 

where σso amd uso are elements of a homogeneously statically admissible 
field. In (5.28) the elements of the field Fi are subscripted additionally by 
ko in order to emphasize that the formula is true under the condition that the 
field Fi is homogeneously kinematically admissible.  
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This remarkable invariance of the Mohr formula with respect to a shift 
by an arbitrary homogeneously statically admissible field can be proved in 
another way [16, 17]; however, referring to the field orthogonality theorem 
is, in our opinion, the most general and direct way to validate this 
invariance17. 

To turn to the mechanical treatment of the Mohr’s formula invariance, 
first we notice that the invariance with respect to a shift by Fso makes it 
possible to construct the shifted field (in our case, Fj) not for the given 
system (let it be called SB here) but for a system SA which is derived from 
the given one by removing some of the kinematic constraints. To see this, 
note that the lemma of constraints implies that the field (Fj – Fso) can be a 
true one but built for the system SA rather than the given system SB. To 
understand this, we should treat the shift field Fso as a difference field FВА. 
The only limitation of the removed constraints is that a solution must exist 
for the system SA under the action of the given generalized force Pj .  

In particular, the analysis of bar structures is much facilitated by 
choosing this auxiliary system SA appropriately from the class of statically 
determinate and kinematically stable systems derived from the given 
system by removing extra constraints.  

This statement, very nice from mechanical viewpoint, helps sometimes 
obtain qualitative evaluations of the displacements without making bulky 
calculations. Let’s give a simple example18. Fig. 2.6-a shows a planar 
frame and a load applied to the girder of the frame. Question: which side 
the girder is going to move to — right or left?  

It is easy to depict a qualitative distribution of the bending moments Mg 
in the bars of the frame (Fig. 2.6-b). 

                                                      
17 We cannot say for sure who was really the first to discover the invariance 

with respect to shift in the Mohr formula. The memoirs of a godfather of the 
structural mechanics in our country, I.M. Rabinovitch [13], refer to a paper by 
A.K. Vereschagin (1924) written by him when he was a student at Moscow 
Institute of Railway Engineers. This paper anticipates some statements of the 
modern structural mechanics formulated and understood thoroughly only decades 
later after the publication by Mr. Vereschagin. He suggested an idea (and a very 
advanced one for that time) that different principal systems can be used to analyze 
bar structures with the force method. It is easy to see that this is just another 
formulation of the Mohr formula’s invariance with respect to shift. 

18 Professors of structural mechanics at engineering departments of universities 
know how fascinating the impression is that their students take from examples of 
such kind. 
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The Mohr formula implies that the displacement we are interested with 
can be calculated as an integral of the product of moments Mg and MP 
where MP are the bending moments in the frame caused by a unit force, P, 
which is applied to the frame in the place and in the direction of our 
interest19. However, just as we have established above, the distribution of 
the moments MP does not have to be taken from the original statically 
indeterminate frame; it can be taken from the frame with some of its 
constraints removed. In particular, it is convenient to build the MP moment 
diagram for a statically determinate system, after cutting the frame apart in 
the location of the hinge as shown in Fig. 2.6-с. Now it is obvious that 
(Mg , MP) > 0. This inequality shows that the girder of the frame moves in 
the same direction in which the P force is applied, that is, from left to 
right.  
 

Now let u1, u2, …, um be a set of given linearly independent fields of 
displacements of a system, and let Fi = {CAui, Aui, ui} (i = 1,… , m) be 
stress-and-strain fields created by these displacements. Each separate field 
of displacements, ui , can be treated as a unit kinematic action on the 
system, and the factor qi at this field can be treated as a value of the 
respective generalized displacement. Let’s assign the designation rij to a 
generalized force which corresponds to i-th generalized displacement but 
is caused by j-th generalized unit displacement qj. Repeating the previous 
reasoning gives 

rij =  (Cεi, εj) + (Kui, uj) =  (C –1σi, σj) + (Kui, uj) . (5.29) 

L.A. Rozin states that the formula (5.29) is reciprocal to the Mohr formula 
[16] because it enables us to restore “generalized loads” which cause a 
respective stress-and-strain field type.  

                                                      
19 We assume that the effect of the longitudinal deformation in the bars can be 

ignored and that the bending stiffness, EI, is the same for all bars of the frame. 
Therefore, we can assume EI=1 for our qualitative evaluation. 
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These two formulas are different in their essense even though they have 
the same form. While in (5.27) the arguments σk, εk, uk belong to stress-
and-strain fields created by generalized unit forces, Pk = 1 (k = i,j), in the 
formula (5.29) the same designations relate to fields created by generalized 
unit displacements, qk = 1, at zero values of the other generalized 
displacements. Actually, the formula (5.29) refers to a system subjected to 
m external kinematic constraints rather than to the original system. 

All external actions here are purely kinematic, so all fields Fi 
(i = 1,…, m) are homogeneously statically admissible. Hence the 
invariance of the formula (5.29) with respect to a shift by any 
homogeneously kinematically admissible field Fko. Thus, the formula 
(5.29) can be generalized into  

rij =  (C –1σiso, σj – σko) + (Kuiso, uj – uko) (5.30) 

where σko, uko are elements of an arbitrary homogeneously kinematically 
admissible field. 

2.6 Basic variational principles in problems with initial 
strains 

Up to this point we assumed that when there are no external actions, the 
system is in a natural, unstressed and unstrained, state. This state was a 
reference point to calculate all components of the stress-and-strain field 
from — the stresses, the strains, and the displacements.  However, this is 
not always convenient, and there are situations when this assumption is 
burdensome20.  

Let us assume that a system is subjected to both external actions and 
internal kinematic actions. The latter actions are defined as given initial 
strains ε0 which appear in practice because of inaccuracy of a structure’s 
manufacturing or mounting, temperature deformation, shrinkage of an 
elastic body’s material, creep and similar phenomena. 

Here we believe that a certain hypothetic field of initial strains, ε0, is 
known, which would appear in elements of a structure if all internal 
constraints that provided the strain compatibility were removed. Therefore 
we would be more exact speaking about free initial strains rather than 
                                                      

20 Some books on elasticity (for example, see [1]) treat this statement as a 
hypothesis of a body’s natural state where no stress in the body is assumed to 
appear as long as there is no strain. We think, though, that calling it a ‘postulate’ 
rather than a ‘hypothesis’ would be more correct from the standpoint of 
terminology. 
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simple initial strains. For example, if we heat a three-dimensional elastic 
body from its natural state by an additional temperature T, the field of the 
free initial strains ε0  will be defined by the following well-known 
relationships 

ε0 = |[ε011, ε022, ε033, γ012, γ023, γ031]|T = |[αT, αT, αT, 0, 0, 0]|T  (6.1) 

where α is a coefficient of heat expansion of the body’s material.  
Free initial strains, which do not satisfy the compatibility conditions by 

themselves, bring about elastic strains ε which ensure the continuity of the 
body together with ε0. If the displacements u are counted off from the 
original unstrained state of the system (its state before the initial strains 
have appeared), then the displacements will bring about the total strains 
(ε0 + ε).   

As a result, the mathematical formulation of the problem will change 
from the equations (1.2.2) into the equations (6.2), 

ATσ + Ku = X                   equations of equilibrium, (6.2-a) 

            Au  = ε + ε0                        geometric equations, (6.2-b) 

            σ = Cε  or  ε = C –1σ            physical equations. (6.2-c) 

As for the boundary conditions (1.2.4), they do not depend on the 
presence or absence of the initial strain ε0 in the system, so they remain 
unchanged.  

 Now we will use the formulation of the problem in displacements. To 
do so, we exclude the stresses from the equilibrium equations, (6.2-a), 
using the equations (6.2-c) and then exclude the strains using (6.2-b). This 
will give 

ATCAu + Ku = X + ATCε0 . (6.3) 

By excluding the stresses from the boundary conditions in a similar 
way, we transform (1.2.4) into 

Ep(HσCAu  – p – HσCε0) = 0            static boundary conditions, (6.4-a) 

 Eu(Huu  – u ) = 0                        kinematic boundary conditions. (6.4-b) 

Equation (6.3) together with the boundary conditions, (6.4), will define 
a differential formulation of the problem in displacements if there are 
initial strains. Obviously, this problem is formally equivalent to finding a 
displacement field under modified external forces. The volumetric forces 
will be ( X + ATCε0), and the surface forces on the boundary Г will be 
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( p + HσCε0). Using this fact permits us to employ the Lagrange variational 
principle and modify the expression (2.6) of the Lagrangian functional into  

 L(u) = E(u) – Пs(u) – Пs0(u)                                   (6.5) 
 

where  

Пs0(u) =
Ω
∫ A CT ε0 · u dΩ + p σ∫ E H C

Γ

ε0 ·Ep Huu dГ =  

= (ATCε0, u) + (Ep HσCε0, Ep Huu)Г  . (6.6)

The quantity Пs0(u) can be naturally entitled a force potential of initial 
strains. Under the action of temperature, the free initial strains ε0 are 
treated as initial temperature strains. In a particular case when an elastic 
three-dimensional body is heated by temperature T, this vector is defined 
by the expression (6.1). 

Now let’s see how the Castigliano variational principle will change in 
the case there are initial strains specified. To see this, we introduce a 
conditional stress, τ, equal to the desirable stress σ shifted by the vector 
Сε0, and a conditional (total) strain, е, by assuming 

τ = σ + Сε0,       e = ε + ε0. (6.7) 

The set of governing equations (6.2) in new variables (the 
components {τ, e, u} of the stress-and-strain field) will become 

 

ATτ + Ku = X + ATCε0             equations of equlibrium, (6.8-a) 

         Au  = е                                             geometric equations, (6.8-b) 

 τ = Cе or е = C –1τ                               physical equations, (6.8-c) 

while the boundary conditions (1.2.4) will turn into 

Ep(Hστ  – p – Hσ Cε0) = 0              static boundary conditions, (6.9-a) 

 Eu(Huu  – u ) = 0                     kinematic boundary conditions. (6.9-b) 

The problem (6.8), (6.9) with respect to the stress-and-strain field 
{τ, e, u} is in no way different from the usual formulation (1.2.2), (1.2.4) 
if we assume the external volumetric forces to be equal to ( X + ATCε0) 
and the external surface forces defined on the boundary Г to be equal to 
( p + Hσ Cε0). 
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Now we will derive the expression of the Castigliano functional for 
problems with initial strains from (3.3). We have 

K(τ,u) =  E(τ,u) – Пk(τ) (6.10) 

where we use (3.2) and (6.7) and take into account the symmetry of the 
mutually inverse algebraic operators D and C 

E(τ,u) = ½(C –1τ,τ) + ½(Ku,u) =  

= ½(C –1σ,σ) + ½(Ku,u) + (σ, ε0) +½(Cε0,ε0) = E(σ,u) + (σ,ε0)+ С1 , 

Пk(τ) = (EuHστ, Eu u )Г = 

= (EuHσσ, Eu u )Г + (EuHσCε0, Eu u )Г = Пk(σ) + С2 , (6.11)

the constants С1 and С2 (which do not depend on variables subject to 
variation) being equal to 

С1 = ½ (Cε0, ε0),             С2 = (EuHσCε0, Eu u )Г . (6.12) 

Now we return to the original components of the stress-and-strain fields 
{σ, ε, u} and rewrite the Castigliano functional (6.10) using (6.11), which 
gives  

 K(σ,u) = E(σ,u) – Пk(σ) + Пk0(σ)                                  (6.13) 
 

where  

Пk0(σ) = 
Ω
∫ σ·ε0 dΩ = (σ,ε0) , (6.14) 

with the constants С1 and С2 omitted from the expression (6.13) because 
they are not essential when searching for points of stationarity of the 
functional K(σ,u).  

The quantity Пk0(σ) can be conveniently entitled a kinematic potential of 
initial strains. 

Notice that the set Ps  of all physically and statically admissible stress-
and-strain fields, which we search for a “point” of stationarity of the 
Castigliano functional, now consists of fields which meet the conditions 

ATσ + Ku = X ,    σ = C(Au – ε0)  ∈Ω ,      Ep(Hσσ  – p ) = 0  ∈Г . (6.15) 

Now let’s discuss briefly how initial stresses affect the formulation of a 
problem. Let a body contain an initial stress field before any external 
forces are applied to it; this field will be denoted as σ0 and assumed to be 
self-balanced in the sense that it satisfies the relationships (1.30). If the 
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kinematic parameters (the displacements u and strains ε) are counted off 
from the initial stress state, and if we denote the stress increments as σ so 
that the full stress be equal to (σ + σ0), then the mathematical formulation 
of the problem with respect to the stress-and-strain fields of the type 
{σ, ε, u} will be reduced to the already known equations (1.2.2) with the 
boundary conditions (1.2.4). Further details are not discussed here. 

2.7 Statically determinate and statically indeterminate 
systems 

Earlier (see Section 2.1.4 “Rigid displacements”) we formulated a 
requirement that the set of solutions of a homogeneous equations with the 
geometry operator A should be finite-dimensional. However, it is 
important to notice that the requirement does not work with the conjugated 
operator AT. The respective homogeneous equation for the equilibrium 
operator can have either finite or infinite number of linearly independent 
solutions.  

First, let’s consider the case when there is a finite number of linearly 
independent solutions of the homogeneous equation 

ATσ = 0 . (7.1) 

Let them be stresses σj (j = 1,…, mA) where mA is the number of linearly 
independent solutions of the homogeneous equation (7.1), i.e. a 
fundamental system for the equilibrium operator AT, and let τ be a partial 
solution of the inhomogeneous equilibrium equation 

ATσ = X (7.2) 

at given external forces X. Of course, the equation (7.2) should be treated 
not as a full equation of equilibrium of the whole mechanical system but as 
a condition of equilibrium of the elastic body without the elastic medium 
that surrounds it.  

The general solution of the inhomogeneous equation of equilibrium 
(7.2) can be represented in the form 

σ = τ  + 
1

A

j
j

m

=

β∑ σj . (7.3) 

Suppose there is no elastic medium, which is equivalent to the condition 
K = O. In that case, if the fundamental system σj (j = 1,…, mA) is known 
and so is the partial solution τ, then what is left of the whole problem is to 
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determine the coefficients βj in the expansion (7.3)21. Some of the 
unknown coefficients (let there be r of them, r ≤ mA) will be determined 
from the static boundary conditions, while the coefficients still unknown 
(in the number of m, 0 ≤ m = mA – r) will be obtained from the strain 
compatibility conditions and the kinematic boundary conditions. 
Obviously, if m = 0 then the true stress state of the system will be found 
from the equilibrium equations and the static boundary conditions only; in 
that case the system is called statically determinate. Otherwise the system 
is called statically indeterminate (or redundant), and the number m > 0 is 
called a redundancy of the system. 

Mechanically, the coefficients βj in the expansion (7.3) can be treated as 
values of generalized internal forces, and the respective generalized 
displacements will determine the degrees of freedom of the mechanical 
system. This is why a finite dimensionality of the fundamental system of 
the equilibrium operator AT always reduces the analysis of a structure to 
the analysis of a system having a finite number of degrees of freedom.  

If we take unidimensional problems (in the sense that the area Ω is 
unidimensional), such as structural analysis of bar systems, the operator AT 
in this case will have the required properties. The critical role is played by 
the circumstance that all unknowns depend on one coordinate only, so the 
operator AT includes only ordinary (not partial) derivatives.  

Section 2.1.5 establishes that an arbitrary strain field, ε, is compatible 
when and only when this field is orthogonal to any stress field, σο, self-
balanced in the sense that the following conditions hold for it: 

ATσο = 0  ∈Ω, (7.4-а) 

Hσσο = 0  ∈ Г . (7.4-b) 

Due to the condition (7.4-а), the field of stresses σο belongs to the kernel 
of the equlibrium operator AT and thus is a linear combination of the 
fundamental system σj (j = 1,…, mA) of the equlibrium operator, that is, 

                                                      
21 As it should be clear from the previous presentment, it is nearly always a 

trivial matter to construct the general solution of a homogeneous equation for the 
geometry operator A (the construction consists of searching for rigid 
displacements), while the complicated part is how to find a partial solution of the 
geometry equation, Au = ε. With the equilibrium operator, AT, the situation is 
exactly opposite. A partial solution of an inhomogeneous equation is quite easy to 
find, which is not true about the general solution of the homogeneous equation of 
equilibrium. 
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σο = 
1

A

j
j

m

=

β∑ σj . (7.5) 

But the condition (7.4-b) demands that σο satisfy the homogeneous static 
boundary conditions all over the boundary Г . Mechanically, it ensures that 
the stresses in all external kinematical constraints imposed on the system 
are equal to zero.  

If all boundary conditions of the type (7.4-b) contain exactly mA of 
linearly independent ones, then all coefficients  βj  in the expansion (7.5) 
are equal to zero. All one-dimensional problems of this, pretty important, 
class will be called statically determinate problems. In other words, a 
system is declared statically determinate if it is not possible to indicate a 
self-balanced and nonzero state of it. 

Thus, the stresses σο self-balanced in the sense of (7.4) are always equal 
to zero for one-dimensional statically determinate problems. 

A totally different situation takes place in two- and three-dimensional 
elasticity. In that case the kernel of the equilibrium operator AT is not a 
finite-dimensional linear set. A couple of important mechanical 
conclusions should be made in this regard. First, such problems are always 
statically indeterminate. Second, the two- and three-dimensional problems 
cannot be reduced to finite degrees of freedom in principle. Even if a 
problem is reduced (such as they always are in numerical analysis), this 
reduction can be treated only as an approximation. The infinite-
dimensional kernel of the operator AT is replaced by its finite-dimensional 
approximate counterpart. Third and final, the strain compatibility 
conditions are an absolutely necessary component in the statements of 
two- and three-dimensional problems.  

2.8 Final comments to Chapter 2 

Let us return to the definition of the Castigliano functional according to 
(3.2) and (3.3). The traditional definition of the Castigliano functional 
[6, 20] does not contain the displacements as its functional argument, and  
K = K(σ). In our case the dependence of the Castigliano functional on two 
functional arguments, K = K(σ,u), seems unusual. However, this 
dependence is necessary to expand the definition so that it could cover the 
elastic foundation, too.  

It follows from (3.3) and (3.2) that in an ultimate situation and in the 
absense of an elastic foundation (K = O) the displacements u are excluded 
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from the list of functional arguments of the Castigliano functional. On the 
other hand, the functional K(σ,u) defined according to (3.3) keeps the 
critically important identity (4.3) true; this identity can be appropriately 
called a dual relation between the Lagrange and Castigliano functionals. 

Of course, one could define the Castigliano functional formally as one 
depending on force-type variables only — by introducing the response of 
the elastic foundation, r, according to (1.4.5) and thus having K = K(σ, r). 
However, that would mean seeking for the Castigliano functional’s 
minimum on fields which contain an additional component of the 
responses r not included in the general definition of the stress-and-strain 
field. In other words, this interpretation would define the general stress-
and-strain field, F, as a four-component field, F = {σ, ε, u, r}. A stress-
and-strain field acceptable for consideration would have to satisfy the 
additional condition, 

r = Ku .  

The second difference of the definition of the Castigliano functional 
used here from one in common use [15] is that the functional here has the 
opposite sign; this makes the respective variational principle the principle 
of minimum instead of the traditional principle of maximum. The similar 
change is made to the formulation of the dual relation mentioned above 
which is expressed by the identity (4.3) in our case while traditionally it is 
an equality between the Castigliano functional and the Lagrange functional 
on the solution of a problem. One should understand that this change of 
sign is not critical; it is introduced only for convenience of further 
reasoning. 

The lemma of constraints, in a formulation slightly different from one 
used here, is given in a textbook by L.A. Rozin [16] in connection with 
invariance of the Mohr formula which determines the displacements in the 
bar systems with respect to shear.  
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3 ADDITIONAL VARIATIONAL PRINCIPLES OF 
STRUCTURAL MECHANICS 

 Mechanics is no herbarium of dried leaves; it is a living 
and blooming garden! 
Panovko YG  (1985) Mechanics of deformable solids. 
Modern concepts, mistakes and paradoxes (in Russian). 
Nauka, Moscow 

3.1 Reissner mixed variational principle 

The previous chapter discussed two basic variational principles of 
structural mechanics: the Lagrange principle and the Castigliano principle. 
Both principles are similar in a most important way: certain functionals in 
their respective principles take minimum values on the solution of a 
problem, that is, both principles are of extreme nature. At the same time, 
these two basic variational principles are essentially different. 

The Lagrange functional takes a minimum value on the solution of the 
problem among all physically and kinematically admissible fields, and the 
equations of equilibrium in the volume and on the surface of the body are 
corollaries (necessary conditions) of this minimality. The language of 
calculus of variations refers to this as Euler equations and natural boundary 
conditions. 

The Castigliano functional is directly opposite. The Castigliano 
functional takes a minimum value on the solution of the problem among 
all physically and kinematically admissible fields, while the strain 
compatibility conditions and the kinematic boundary conditions are Euler 
equations and natural boundary conditions for the Castigliano functional. 

So, these two basic variational principles are complementary and require 
that only a certain limited class of fields be considered — those that satisfy 
certain predefined conditions. In this regard, we would naturally like to 
construct such a functional (and its respective variational principle) that 
would take at least a stationary value if not an extreme one on the solution 
of the problem, but among stress-and-strain fields not submitted to any 
predefined conditions. 
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Also, the Lagrangian energy space, L, is defined completely by the 
vector of displacements, u. If we assume the elastic medium to be absent, 
which corresponds to K = O, then the Castiglianian energy space, K, will 
be completely defined by the stresses, σ. Therefore in structural mechanics 
the problem of searching for a point of minimum of the Lagrangian 
functional defines the variational formulation of the original problem in 
displacements, while the problem of searching for a point of minimum of 
the Castiglianian functional defines the variational formulation of the 
problem in stresses. In opposition to this, variational principles where 
stress fields and displacement fields are treated as independent even if 
there is no elastic medium are usually referred to as mixed variational 
principles.  

 
The first of functionals of this kind and its respective variational 

principle were built by E. Reissner [8], [9]. However, as even Reissner 
himself states [9], a similar principle in mathematics (classic calculus of 
variations) was known earlier to Hellinger [5] as a canonic form of the 
original problem. Therefore the Reissner principle is often referred to as 
the Hellinger–Reissner principle. Fair as this double entitlement could be 
from historical viewpoint, it was the work by Reissner that made this 
variational principle a common tool for variational formulations of 
problems in structural mechanics. 

3.1.1 Reissner functional 

First of all, let us introduce a linear set, U k/2 , consisting of stress-and-
strain fields which are kinematically semi-admissible but not necessarily 
physically admissible. Thus, according to the definition, an arbitrary field 
F ∈U k/2 can be represented as F = {σ, Au, u}. Obviously, the linear set 
P k/2 introduced earlier is a subset of the linear set U k/2 or, exactly speaking, 
the intersection P  k/2 = P  ∩U k/2.  

The following expression1 on the linear set U k/2 will be adopted as a 
Reissner functional, or a Reissnerian as it can be titled, 

R = ½(C –1σ, σ) – ½(Ku, u) – (Au, σ) + ( X , u) + 

+ (Ep p , Ep u)Г +(Eu p, Eu(u – u ))Г  , (1.1) 

                                                      
1 Based on certain, not very essential, considerations of convenience, we 

deviate from Reissner’s definition of the functional R used in his papers by 
altering its sign. 
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where p и u designate, as before, the following vector functions defined on 
the boundary Г: 

p =  Hσσ ,    u = Huu      ∈Г . (1.2) 

Now recalling the expressions of the force potential Пs and kinematic 
potential Пk of the external actions, 

Пs(u) =  ( X , u) + (Ep p , Ep u)Г ,     Пk(σ) = (Eu p, Eu u )Г , (1.3) 

we can rewrite the expression (1.1) as 

 R1(σ, u) = ½(C –1σ, σ) – ½(Ku, u) – (Au, σ) + (Eu p, Eu u)Г + 

+ Пs – Пk .  

 

  (1.4) 
 
Expression (1.4) will be called, according to L.A. Rozin [11], first form 

of the Reissner functional, to differ it from its second form derived from 
(1.4) by using the basic integral formula (1.2.19). As a result, the Reissner 
functional can be rebuilt to look like 

 R2(σ, u) = ½(C –1σ, σ) – ½(Ku, u) – (ATσ, u) – (Ep p, Ep u)Г +  

+ Пs – Пk .  

 

  (1.5) 
 

In (1.4) and (1.5), the subscript at the functional R indicates No. of the 
form of expression for the functional. Note that the first form of the 
Reissner functional contains the geometry operator A, while the second 
form includes the equilibrium operator AT.  

Of course, both forms are equivalent in the sense that the values of 
R1(σ, u) and R2(σ, u) coincide on the same functions σ and u. All the 
difference (which, however, can be important in the construction of 
numerical procedures!) is that the domains of the functionals overlap but 
do not coincide. The R1(σ,u) functional is defined on sufficiently smooth 
displacements, u, which at least allow the differential operation A. 
However, for the R2(σ, u) functional to exist, the smoothness requirements 
to the displacements u are weakened while those to the stresses σ are 
strengthened, and the latter must allow the differential operation AT. 

In some of the formulations of problems in applied theories (bars, 
plates, shells), when the A operator contains differential operations of 
higher than first order (even), the third term, (ATσ, u), included in the 
second form of the Reissner functional can be transformed by integration 
by parts. This involves removing half of the derivatives from the stresses σ 
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and placing them on the displacements u2. This formal transformation in 
the problems of that kind will derive a third form of the Reissner 
functional. As the third form of the Reissner functional contains 
differential operations of lower orders than its first and second form, 
making use of it in numerical techniques (such as finite element method) 
can give some advantages because the elements of fields from U k/2 are 
required to satisfy only minimal conditions of smoothness. This means 
every vector function appearing in the definition of the functional R must 
be differentiable a sufficient number of times and must guarantee the 
existence of finite values of the integrals participating in the R functional. 
Accordingly, weaker requirements to smoothness are imposed on 
coordinate functions for the Ritz method; this will be discussed later in 
more detail.  

Now let us show that the Reissner functional takes a stationary value on 
the solution of problem (1.2.2), (1.2.4). To do it, consider a perturbed field, 
F∗ + δF, with a field of variations, δF, from the linear set U k/2 in the 
vicinity of a true field,  F∗ = {σ∗, ε∗, u∗}. The latter requirement forces the 
perturbed field F∗ + δF to belong to the same set. 

As a result, the value of the functional R in the vicinity of the true field 
can be represented as 

R(F* + δF) = R(F∗) + δR + ½ δ2R (1.6) 

where δR and δ2R are the respective first and second variations of the 
Reissner functional.  

Based on the second form of the Reissner functional, we will have 

δR = (С –1σ, δσ) – (Ku, δu) – (ATσ, δu) –  

– (ATδσ, u) – (Ep p, Epδu )Г  – (Epδp, Epu)Г + ( X , δu) + 

  + (Ep p , Epδu)Г  – (Euδp, Eu u )Г , (1.7) 

δ2R = (С –1δσ, δσ) – (Kδu, δu) – 2(ATδσ, δu) – 2(Epδp, Epδu )Г . (1.8) 

Let us transform the expression of first variation δR by moving the 
differential operation A in the fourth term of (ATδσ, u) to the displacement 
function u using the basic integral identity and then regrouping the terms. 
The result will be 

                                                      
2 Exactly speaking, one can use integration by parts in one-dimensional 

problems. In two- or three-dimensional problems the ‘integration by parts’ 
operation is actually based on the Gauss-Ostrogradsky formula. 
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δR = (С –1σ – Au, δσ) – (ATσ + Ku – X , δu) –  

– (Ep(p – p ), Epδu )Г  + (Euδp, Eu(u – u ))Г  . (1.9) 

As variation δR is taken in the vicinity of the true field F∗, according to 
(1.6) we should assume σ = σ∗ , u = u∗  ∈ Ω  and  Ep p = Ep p , Euu = 
Eu u  ∈Г in (1.9). Now it becomes obvious that all terms in the right part of 
(1.9) are zeros. When the first variation of a functional is equal to zero at 
any δσ and δu, it means the true field F∗ is a “point” of stationarity of the 
Reissner functional. 

The opposite statement is also true: the point of stationarity of the  
Reissner functional coincides with a true stress-and-strain field of the 
structure. To see this, we equal first variation δR as in (1.9) to zero and 
take into account the independence of variations δσ and δu to conclude 
that each of the four terms in the right part of (1.9) is equal to zero by 
itself. Consequently, 

С –1σ – Au = 0,            ATσ + Ku – X = 0   ∈Ω , (1.10) 

Ep p = Ep p ,            Euu = Eu u      ∈Г. (1.11) 

Thus, at the point of stationarity the stress-and-strain field is physically 
admissible, statically admissible, and kinematically admissible — that is, it 
is a true field. Equations (1.10) are Euler equations for the Reissner 
functional, and all boundary conditions (1.11) are natural for this 
functional. 
 

Now let’s turn to the analysis of extreme properties of the Reissner 
functional. First of all, we should recall that the Reissner functional is 
considered on the linear set U k/2, thus it is defined completely by only two 
elements of the stress-and-strain field — by the stresses and the 
displacements; this fact can be represented as R = R(σ,u). 

We fixate the displacements in the Reissner functional by assuming 
u = u∗ and, respectively, Eu u = Eu u . By varying the stresses σ only (we 
should think the variations of displacements are zero both in the Ω area 
and on the Г boundary in this special case) we derive from (1.8) that the 
second variation will be δ2R = (С –1δσ, δσ) > 0. Consequently, this special 
case of variation will turn equation (1.6), considering that δR = 0, into 

R(F* + δF) – R(F∗) > 0 , (1.12) 

so with this type of variation of the stress-and-strain fields the R functional 
will take a minimum value, that is, 
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R(σ*,u∗) < R(σ,u∗) . (1.13) 

On the contrary, if the stresses σ = σ∗ are fixated and so are Ep p = Ep p , 
respectively, then the variation involves only the displacements, and (1.8) 
produces δ2R = – (Kδu, δu) ≤ 0. Similar reasoning leads to the inequality 

R(σ*,u) ≤ R(σ∗,u∗) . (1.14) 

Combining inequalities (1.13) and (1.14) gives a two-side estimate 

R(σ*,u) ≤ R(σ*,u∗) < R(σ,u∗) . (1.15) 

If we use terminology of a branch of mathematics called “convex 
analysis” [10], [1], we can say that the point of stationarity of the Reissner 
functional is a saddle point. Note that if there is no elastic medium then the 
K operator is identical to zero, so varying the functional with the fixated 
stresses will give δ2R = 0. In that particular case, we will have the 
following instead of (1.15) 

R(σ*,u) = R(σ*,u∗) < R(σ,u∗) , (1.16) 

which is a definition of a degenerate saddle point of the functional. 
The circumstance that R(σ*,u) = R(σ*,u∗), and that consequently the 

Reissner functional’s value remains the same whatever changes of the 
displacements may be, seems strange at first glance. However, all will 
become quite clear if we assume σ = σ* in the second form of the Reissner 
functional according to (1.5), not forgetting that the current case is K = О. 
As a result, 

 
R(σ*,u) = ½(С –1σ*, σ*)  – (ATσ*, u)  + ( X , u) – (Eu p*, Eu u )Г ,  

and because σ* satisfies the equilibrium equations by definition, the second 
and third terms will be mutually canceled. Thus,  

 
R(σ*,u) =½(С –1σ*,σ*) – (Eu p*, Eu u )Г ,  

wherefrom it is immediately obvious that the R(σ*,u) functional does not 
depend on the displacements, so the second functional argument can be 
omitted, and we have R(σ*,u) = R*. 

3.1.2 Principle of minimum for stresses 

To characterize the stationarity point of the Reissner functional, it is useful 
to present another kind of reasoning the idea of which is borrowed from 
the original work by E. Reissner [9]. 



3.1 Reissner mixed variational principle      105 

Suppose all states of the elastic system permitted for comparison satisfy 
the equilibrium equations both inside the body and on its boundary: 

ATσ + Ku – X = 0   ∈Ω,           Epp = Ep p      ∈Г . (1.17) 

It means the variations of the displacements and stresses satisfy the 
respective homogeneous equations 

 
ATδσ + Kδu = 0   ∈ Ω,        Epδp = 0   ∈ Г. 

 
By making a scalar product of the first of the equations with δu we derive 
(ATδσ, δu) = – (Kδu, δu), which is then substituted to (1.8) to produce the 
following expression for the second variation: 

δ2R = (С –1δσ, δσ) + (Kδu, δu) ≥ 0 . (1.18) 

Actually, with this special kind of varying, we have a new functional 
which we designate Rσ; it is derived from R by using conditions (1.17). If 
we multiply scalarly the first of relationships (1.17) by u and the second 
by u, then substituting the equalities thus produced to (1.5) will give 

Rσ = ½(С –1σ, σ) + ½(Ku, u) – (Eu p, Eu u )Г , (1.19) 

and this expression of Rσ(σ,u) is an exact copy of the Castigliano  
functional’s, K(σ,u), according to (2.3.1). However, it would be a mistake 
to identify these two functionals with each other. 

The matter is that the functionals Rσ(σ,u) and K(σ,u) are defined in 
different domains. The Castigliano functional is defined on the set Ps of 
physically and statically admissible stress-and-strain fields, that is, on 
fields of the kind F = {σ,С –1σ,u}, which satisfy (1.17). The functional 
Rσ(σ,u) is defined on the set of statically admissible and kinematically 
semi-admissible stress-and-strain fields, that is, on fields of the type 
F = {σ,Au,u} which satisfy the same equations (1.17).  

As the second variation of Rσ in the vicinity of the true field according 
to (1.18) is nonnegative, we obtain the following estimate: 

R(σ*,u*) = Rσ(σ*,u*) ≤ Rσ(σ,u) . (1.20) 

In a particular case of zero operator K, which was the object of 
consideration by Reissner, the functional Rσ does not depend on the 
displacements as it can be seen in (1.19), so the absence of an elastic 
medium turns the estimate (1.20) into 

R(σ*,u*) = Rσ(σ*) ≤ Rσ(σ) , (1.21) 
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and Reissner treats it in this form as a variational principle of minimum for 
stresses3. 

3.1.3 Principle of maximum for displacements 

Now suppose that all states of the mechanical system allowed for 
comparison satisfy the physical equations and the kinematic boundary 
conditions 

С –1σ – Au = 0  ∈Ω ,         Euu = Eu u   ∈Г . (1.22) 

It will be natural to designate the functional R(σ,u) with elements of the 
stress-and-strain field which satisfy additional conditions (1.22) as 
Ru(σ,u). The first of equations (1.22) will give σ = CAu, and the second 
will yield (Eu(u – u ), Eup)Г = 0. Using these equalities, we transform (1.5) 
to obtain 

Ru(σ,u) = – ½(CAu, Au) – ½(Ku, u) +( X , u) + (Ep p , Epu)Г . (1.23) 

Note first of all that the right part of (1.23) does not contain any stresses, 
therefore the first functional argument (stresses σ) in Ru can be omitted. 
Further note that the right part of (1.23) contains an expression for the 
Lagrange functional L(u) taken with the minus sign. The sets of stress-and-
strain fields on which the functionals Ru(u) and L(u) are defined coincide: 
in both cases we deal with physically and kinematically admissible fields. 
Therefore these two functionals can be identified with each other (up to 
their sign). 

Using the ability of the Lagrange functional to take a minimum value on 
the solution of the problem as established in Chapter 2, we come up with 
the estimate 

R(σ*,u*) = Ru(u*) = – L(u*) ≥  – L(u) = Ru(u) . (1.24) 

The relationship thus obtained will be called, following E. Reissner, a 
variational principle of maximum for displacements. 

Combining estimates (1.20) and (1.24) gives a useful two-sided estimate 
of the Reissner functional on the solution of a problem, 

Ru(u) ≤ R(σ*,u*) ≤ Rσ(σ,u) , (1.25) 

                                                      
3  Actually, Reissner himself makes it the other way around: the principle of 

maximum for stresses and that of minimum for displacements. This difference 
takes place because we have altered the sign of the R functional comparing to that 
introduced by Reissner himself. 
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which can be written in a simpler way when K = O: 

Ru(u) ≤ R(σ*,u*) ≤ Rσ(σ) . (1.26) 

Next, (1.24) shows that the value of the Reissner functional R* on the 
solution of the problem is equal in magnitude and opposite in sign to the 
value of the Lagrange functional, so from identity (2.4.3) we immediately 
arrive at a conclusion that the values of the Reissner and Castigliano 
functionals on the solution of the problem are identical: 

R* = K* . (1.27) 

Identity (1.27) permits to extend the qualitative estimates, obtained in 
Section 2.4 for the effect of various kinds of perturbations in the 
formulation of the problem, to the value of the Reissner functional. 

3.2 Principle of stationarity of the boundary conditions 
functional 

Following E. Reissner [9], now we will build a functional the stationarity 
conditions for which will yield boundary conditions, both static and 
kinematic. We assume that the set of stress-and-strain fields, on which we 
consider the Reissner functional to be defined, is limited to the fields that 
are physically admissible and satisfy the equilibrium equations in the 
volume of the body (but not on its surface!) 

С –1σ – Au = 0 ,         ATσ + Ku – X = 0     ∈ Ω . (2.1) 

A functional derived from the Reissner functional under these 
conditions will be called a functional of boundary conditions and denoted 
by Г. First of all, using (2.1) and the basic integral formula will give 

 
(С –1σ, σ) = (Au, σ) = (ATσ, u) +  (Ep p, Ep u)Г +(Eu p, Eu u)Г ,  

(ATσ, u) + (Ku, u) = ( X , u) . 
 

Substituting these expressions to the second form of the Reissner 
functional according to (1.5) will give the desirable functional Г: 

 Г(σ, u) = –½( X , u) – ½ (Ep p, Ep u)Г  + ½ (Eu p, Eu u)Г +  

+ Пs – Пk .  

 

  (2.2) 
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Involving expressions (2.2.5) and (2.3.2) for the static and kinematic 
potential of external actions, we turn functional Г = Г(σ,u) into another 
equivalent form 

Г = ½( X , u) – ½(Ep p, Ep u)Г  + ½(Eu p, Eu u)Г + 

+ (Ep p , Ep u)Г – (Eu p, Eu u )Г . (2.3) 

Now let us prove that the true stress-and-strain field of the system is a 
point of stationarity of the boundary conditions functional Г. To see this, 
we present Г  in the vicinity of the true field F* as 

Г(F* +δF) = Г(F*) + δГ + ½δ2Г . (2.4) 

Because of limitations (2.1) the variations of the stresses, δσ, and the 
variations of the displacements, δu, are not independent but are related as 

δσ = CAδu ,       ATδσ = – Kδu    ∈Ω . (2.5) 

Nor are independent the variations of the boundary conditions, δp, and 
of the edge displacements, δu. We will show that they are related through 
the condition 

( X , δu) =  (δp, u)Г  – (p, δu)Г  . (2.6) 

And indeed, the basic integral formula helps represent the scalar 
products (δp, u)Г  and (p, δu)Г  using (2.1) and (2.5) as 

 
(δp, u)Г = (Au, δσ) – (ATδσ, u) = (Au, CAδu)  + (Ku, δu), 

 
(p, δu)Г = (Aδu, σ) – (ATσ, δu) = (Aδu, CAu)  – ( X – Ku, δu). 

 
Subtracting the second relationship from the first gives (2.6). 

Now, taking (2.3) and allowing for (2.5) and (2.6), we go through a 
chain of transformations to find the first variation of the functional Г, 

 
δГ= ½( X ,δu) –½δ(Ep p, Ep u)Г +½δ(Eu p, Eu u)Г + (Ep p , Ep δu)Г – 

– (Eu δp, Eu u )Г  = ½(δp, u)Г  – ½(p, δu)Г  – ½δ(Ep p, Ep u)Г  + 

+ ½δ(Eu p, Eu u)Г  + (Ep p , Ep δu)Г  – (Eu δp, Eu u )Г = 

–(Eu p, Eu δu)Г + (Eu δp, Eu u)Г + (Ep p , Ep δu)Г – (Eu δp, Eu u )Г , 

hence 

δГ = (Eu δp, Eu (u – u ))Г  + (Ep( p – p), Ep δu)Г  . (2.7) 



3.3 A variational principle for physical relationships      109 

As we are interested with the value of variation δГ in the vicinity of the 
system’s true state,  we should assume Eu u = Eu u  and Ep p = Ep p  ∈Г in 
(2.7). As we can see from (2.7), δГ is zero, which is an evidence that 
functional Г has the point of stationarity. 

It is easy to make sure that the inverse statement is true, too: a point of 
stationarity of the boundary conditions functional, Г, coincides with the 
true stress-and-strain field of the system. And indeed, by equaling first 
variation δГ from (2.7) to zero we arrive at the conclusion that boundary 
conditions (1.11) hold at the point of stationarity of functional Г. All 
equations hold in the Ω area according to the definition of functional Г, 
therefore the stress-and-strain field of the system coincides with the 
solution of the original problem at the point of stationarity of functional Г. 

Functional Г is defined on a fairly limited class of fields — actually, so 
much limited that there are no Euler equations for this functional. The set 
of all necessary conditions of stationarity for Г contains only natural 
boundary conditions as in (1.11).   

Using formula (2.3), we find the value Г* of functional Г on the 
problem’s solution: 

Г* = ½Пs* – ½Пk* , (2.8) 

or, referring to Table 2.1,  

Г* = ½K* – ½L* = K*. (2.9) 

The latter relationship helps extend the conclusions of Section 2.4 to 
functional Г. 

3.3 A variational principle for physical relationships 

Now, let’s build a functional and its respective variational principle for 
which only physical equations will provide the conditions of stationarity. 
Again we use the second form of the Reissner functional according to 
(1.5), but now we define the functional on stress-and-strain fields which 
satisfy additional conditions 

ATσ + Ku – X = 0   ∈Ω, (3.1) 

Ep p = Ep p ,     Eu u = Eu u  ∈Г . (3.2) 

The functional obtained from this definition will be called a functional 
of physical relationships and denoted by P. Substituting (3.1) and (3.2) to 
(1.5) will give 
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P(σ, u) = ½(С –1σ, σ) + ½ (Ku, u) – (Eu p, Eu u )Г .        (3.3) 
 
Its first variation δP is 

δP = (С –1σ, δσ) + (Ku, δu) – (Eu δp, Eu u )Г , (3.4) 

however, variations δσ and δu are not independent here because the 
displacements and stresses are related through equilibrium equation (3.1), 
hence 

Kδu = – ATδσ . (3.5) 

Considering the symmetry of algebraic operator K, formula (3.5), and the 
basic integral identity, we can write a chain of equalities: 
 

(Ku, δu) = (u, Kδu) = – (u, ATδσ) = – (Au, δσ) + (δp, u)Г .  
Further, (δp, u)Г = (Eu δp, Eu u)Г + (Ep δp, Ep u)Г . But boundary 
conditions (3.2) yield Ep δp = 0  ∈Г, while Eu u = Eu u ∈Г.  Therefore 

(Ku, δu) = – (Au, δσ) + (Eu δp, Eu u )Г , (3.6) 

and the expression for δP will acquire its final form 

δP = (С –1σ – Au, δσ). (3.7) 

Now it is obvious that the point of stationarity of the functional of 
physical relationships coincides with the true stress-and-strain field of the 
system. 

Substituting the true stress and strain fields to (3.3) as functional 
arguments will yield 

P* = E* – Пk* = K* . (3.8) 

3.4 Hu–Washizu mixed variational principle 

 
A generalization of the mixed Reissner principle is a variational principle 
known in literature as the Hu–Washizu principle [16]. This one is widely 
used in a well-known book by Japanese scientist K. Washizu [17] where it 
is called a generalized variational principle. Further we will refer to the 
respective functional as a Washizu functional and designate it by W.  

The basic idea behind the introduction of W (which can be also called a 
Washizuan functional) is quite simple; it is to construct a functional the 
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Euler equations and the natural boundary conditions for which would 
cover the full set of all governing equations (1.2.2) and all boundary 
conditions (1.2.4). Obviously, this functional should depend on three 
functional arguments: stresses, strains, and displacements.  

The Washizu functional, W, that depends on all three elements of the 
stress-and-strain field, will be based on the following expression: 

 W(σ,ε,u) = ½(Сε,ε) + ½ (Ku, u) + (Au, σ) – (σ, ε) –  

– Пs + Пk – (Eu p, Eu u)Г. 

 

    (4.1) 
 
To find the necessary conditions of stationarity of the Washizu 

functional, we establish its first variation 
 

δW =  
= (Cε, δε) + (Ku, δu) + δ(Au, σ) – δ(σ, ε) – δПs + δПk – δ(Eu p, Eu u)Г  = 

 
= (Au – ε, δσ) + (Cε – σ, δε) + (ATσ +Ku – X , δu) + (p, δu)Г – 

– (Ep p , Ep δu)Г  + (Eu δp, Eu u )Г  – (Eu δp, Euu)Г  – (Eu p, Eu δu)Г . 
 

Gathering all terms that contain variations of the same quantities will 
give 

δW = (Au – ε, δσ) + (Cε – σ, δε) + (ATσ +Ku – X , δu) + 

+ (Ep(p – p ), Ep δu)Г – (Eu δp, Eu (u – u )Г . (4.2) 

By equaling the first variation, δW, to zero we conclude that all 
equations (1.2.2) are Euler equations for the Washizu functional and all 
boundary conditions are natural boundary conditions for the same 
functional. 

To characterize the stationarity point of the Washizu functional, we 
compose its second variation’s expression, that is, the variation of 
variation δ2W = δ(δW). Thus, 

δ2W = (Aδu, δσ) – 2(δε, δσ) + (Cδε, δε) + (ATδσ, δu) +  

+ (Kδu, δu) + (Ep δp, Ep δu)Г – (Eu δp, Eu δu)Г . (4.3) 

If we fixate the stresses by assuming σ = σ* and, respectively, δσ = 0, 
δp = 0, we will have δ2W = (Cδε, δε) + (Kδu, δu). As both terms are not 
negative, we have the estimates 
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W(σ*,ε*,u*) ≤  W(σ*,ε*,u)  ≤  W(σ*,ε,u) ,    

W(σ*,ε*,u*) ≤  W(σ*,ε,u*)  ≤ W(σ*,ε,u) . (4.4) 

If we fixate the strains and displacements, thus assuming δε = 0, δu = 0, 
then we will have δ2W = 0. As a result, we arrive at the following 
estimates by taking (4.4) into account: 

W(σ,ε*,u*) = W(σ*,ε*,u*) ≤ W(σ*,ε*,u)≤ W(σ*,ε,u) . (4.5)

So, point F* = {σ*,ε*,u*} of stationarity of the Washizu functional W is a 
degenerate saddle point. 

The value of the Washizu functional, W*, on the solution of the problem 
can be derived from (4.1) by replacing the functional arguments with their 
values from the true stress-and-strain field. As a result, we will have 

W* = E* – Пs* = L* . (4.6) 

3.5 A generalized mixed variational principle 

A lot of attention has been paid in recent years to mixed variational 
formulations of problems and to their respective software implementations, 
especially to those related to a mixed form of the finite element method. 
Solutions developed for most various problems evidence high efficiency of 
mixed approaches; there are numerous confirmations from numerical 
experiments. However, wide practical implementations of the mixed 
approaches based mainly on Reissner-type functionals are restrained by a 
vexatious circumstance: the Reissner functional does not have an 
extremum in its stationarity point. This is a source of difficulties in two 
ways: 

• First, it is difficult to offer a theoretical basis for numerical algorithms 
because the Reissner functional is not a positive definite one, thus it 
does not generate a metric4; 

• Second, there are computational difficulties, too, because the governing 
Ritz-type simultaneous equations do not have the property of positive 
definiteness. 

The said difficulties were the reason why a generalized mixed functional 
[13], [14] different from one by Reissner was constructed. This functional, 
                                                      

4 Form the standpoint and in terms of convex analysis, one could say that the 
Reissner functional is not a convex one. 
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or, more exactly, a parametric family of functionals, has a minimum in its 
point of stationarity under certain (pretty loose) conditions. Particular 
cases from the respective variational principle are the Lagrange and 
Reissner principles, therefore we have the right to call this principle a 
generalized one5. 

It is interesting to note that the Euler equations for that functional are 
linear combinations of the equilibrium equations and the physical 
relationships after being differentiated. Similar linear combinations 
participate also in the static-type natural boundary conditions. Seeing that 
the said variational principle has not been sufficiently addressed to in 
monographic literature (except for a book by L.A. Rozin [12]), we should 
give more background for it and use a stricter mathematical approach. 

3.5.1 A generalized solution of a problem 

Let U k be a set of all possible kinematically admissible stress-and-strain 
fields, and let U ko be a set of homogeneously kinematically admissible 
fields. 

Definition 

A generalized solution of problem (1.2.2), (1.2.4) will be called a field, 
F* = {σ*, Au*, u*}, such that for every field Fo = {σko, Auko, uko} from U ko 
the following integral identity holds: 

κ(CAu*, Auko) + (1 – κ)( С –1σ*, σko) – (1 – κ)(Au*, σko) + 

(2κ – 1)(Ku*, uko) – (2κ – 1)Пs(uko) = 0 (5.1) 

where κ is an arbitrary numerical parameter, κ ∈ [0,1]. 
Actually, identity (5.1) defines a family of generalized solutions which 

depend on parameter κ. Note that integral identity (5.1) contains the 
principle of virtual displacements as a particular case; it suffices to assume 
κ = 1 to see this. On the other hand, at κ = 0 integral identity (5.1) 
becomes a Reissner variational equation written for the elements of set Uk .  

Now let’s show that field F* , which is the solution of problem (1.2.2), 
(1.2.4) in the usual sense, is at the same time a generalized solution, that is, 

                                                      
5 To be exact, we should note that the variational principle to be considered 

below implies a particular version of the Reissner variational principle rather than 
its general case. In the said particular case the functional is defined on 
kinematically admissible displacement fields. 
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satisfies the integral identity (5.1). And indeed, according to the principle 
of virtual displacements we have 

(CAu*, Auko) + (Ku*, uko) – Пs(uko) = 0 . (5.2) 

Further, from (1.2.2) CAu* = σ* or С –1σ* = Au*, so, the following 
identity holds: 

(CAu*, Auko) + (С –1σ *, σko) – (σ*, Auko) – (Au*, σko) = 0 . (5.3) 

By multiplying (5.2) by (2κ – 1) and (5.3) by (1 – κ) and summing the 
results we arrive at identity (5.1).   

Now let (5.1) hold. We show that if the generalized solution in the sense 
of (5.1) is smooth enough, then it is the solution of problem (1.2.2), (1.2.4) 
in the usual sense. 

To see this, we recall that σko from (5.1) is arbitrary, and this implies 
С -1σ* = Au*, hence identity (5.3) holds. Multiplying (5.3) by (1 – κ) and 
subtracting the result from (5.1), we obtain identity (5.2) after canceling 
the common factor (2κ – 1), and this is nothing but a mathematical 
notation for the principle of virtual displacements6. The principle of virtual 
displacements implies the equilibrium equations in displacements, 
provided the u* vector is smooth enough [7].  

3.5.2 A generalized mixed functional 

Let us introduce a family of functional on the U k set, such that depend on 
parameter κ 

Ф(σ,u) = 
2
κ (CAu, Au) + 1

2
− κ (С –1σ, σ) – (1 – κ)(Au, σ) +  

+ 2 1
2
κ − (Ku, u) – (2κ – 1)Пs(u) . (5.4) 

By varying the Ф functional on the Uk set, we can obtain its stationarity 
conditions in the form 

δФ = κ(CAu, Aδu) + (1 – κ)( С –1σ, δσ) – (1 – κ)(Au, δσ) – 

– (1 – κ)(Aδu, σ) + (2κ – 1)(Ku, δu) –  (2κ – 1)δПs(u) = 0 . (5.5) 

Variations δσ and δu must not let the varied states leave the U k set, so 
they must belong to the linear set U ko. Thus, we can identify these 

                                                      
6 We suppose κ ≠ ½ . 
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variations with arbitrary elements from the U ko set, that is, with σko and 
uko, respectively. After substituting δσ = σko and δu = uko to (5.5) we will 
have the integral identity (5.1).  

Thus, the problems of searching for a generalized solution that would 
satisfy the integral identity (5.1) and for a stationarity point of the Ф 
functional on the U k set are equivalent. 

 
Now we are going to prove the following theorem: 
If there exists a generalized solution, F*, in the sense of (5.1), then, 

provided 

½ < κ < 1, (5.6) 

this solution gives a minimum to functional Ф. 
To see this, we produce the following for any field Fko ∈ Uko by taking 

(5.1) into account: 

Ф(F* + Fko) – Ф(F*) = 

= 2
κ (CAuko, Auko) + 1

2
− κ (С –1σko,σko) – (1 – κ)(Auko,σko) + 

+ 2 1
2
κ − (Kuko, uko), (5.7) 

and we should prove only that the right part in (5.7) is not negative.  
It can be verified directly that the right part in (5.7) can be rewritten in 

the equivalent form 

1
2
− κ (C(С –1σko – Auko), (С –1σko – Auko)) + 2 1

2
κ − (CAuko, Auko) + 

+ 2 1
2
κ −  (Kuko, u ko) = 

= 1
2
− κ (C(С –1σko – Auko), (С –1σko – Auko)) + (2κ–1)E(uko) , (5.8) 

where each term is not negative if (5.6) holds. Immediately we have the 
estimate 

Ф(F* + Fko) ≥ Ф(F*) , (5.9) 

and this completes the proof. 
If the energy of deformation, E(uko), is a strictly positive value for any 

nonzero vector uko∈U ko, then (5.9) will become a strict inequality7  
                                                      

7 We remind that the strict inequality E(uko) > 0 takes place in the case when 
the set of rigid displacements for the system is empty. 



116      3 ADDITIONAL VARIATIONAL PRINCIPLES 

Ф(F* + Fko) > Ф(F*) . (5.10) 

Under these conditions, and also when inequality (5.6) holds, the 
generalized solution in the sense of (5.1) is unique. Supposing the 
opposite, that is, assuming that there are two different fields F*1 and F*2 
which minimize functional Ф, we use (5.10) to derive two mutually 
contradicting inequalities Ф(F*1) < Ф(F*2) and Ф(F*2) < Ф(F*1). 

3.5.3 A connection between the Lagrange & Reissner 
functionals and the generalized mixed functional 

It is fairly easy to establish a connection between three functionals: the 
Lagrange one L, the Reissner one R, and the mixed one Ф: 

Ф = κL + (1 – κ)R . (5.11) 

Formula (5.11) can be validated by direct substitution8. This formula 
proves to be very useful when establishing the expressions of the mixed 
functional Ф in various particular cases. By the way, here we can see that 
the mixed functional Ф can be written in any of three forms (first, second, 
third) depending on which form is taken by the Reissner functional 
participating in (5.11).  

The form of the mixed functional Ф, Ф = L+2R, suggested originally in 
the paper [13], is a particular case of formula (5.11) derived later in [14]. 
This form can be derived from (5.11) by assuming κ =  2/3 and 
disregarding the common factor 1/3 inessential for the stationarity point. 

Based on formula (5.11) and taking into account (1.27) and (2.4.3), we 
can find the value of the Ф functional on the solution of the problem: 

Ф* = κL* + (1 – κ)K* = (2κ – 1)L*  . 

It is convenient to redefine functional Ф, by assuming the following 
instead of (5.11): 

 [ ]1 (1 ) .
2 1

Φ = κ + − κ
κ −

L R
  

 (5.12) 

This is a form of functional Ф we will use further. In that case the value of 
functional Ф on the solution of the problem will coincide with the exact 
value of the Lagrange functional, that is, 
                                                      

8 It is the convenient structure of this formula that made us alter the sign of the 
Reissner functional. 
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Ф* = L*. (5.13) 

L.A. Rozin drew our attention to another connection between the three 
functionals. If we introduce a new parameter α by assuming 

α = 1
2 1
− κ
κ −

 ,       κ = 1
2 1
+ α
α +

 , (5.14) 

then formula (5.12) with the new parameter will become 

Ф = L + α(L +R) . (5.15) 

Condition (5.6) for the new parameter α turns into 

0 < α < ∞  . (5.16) 

If we sum the expressions of the Lagrange and Reissner functionals and 
consider the kinematic boundary conditions, we will have the functional 

Q = L + R = ½(С –1σ, σ) + ½(CAu, Au) – (Au, σ) =  

= ½(C(С –1σ – Au), (С –1σ – Au)) , (5.17) 

and formula (5.15) can be rewritten as 

Ф = L + αQ . (5.18) 

Functional Q can be used as a functional of least squares built for 
physical equations. 

Generally speaking, the idea of supplementing known functionals with 
additional terms which have the meaning of least-squares functionals helps 
produce more versions of mixed functionals with similar properties. For 
example, the same functional Q could be added to the Castigliano 
functional. More details on this kind of possibilities and other application 
aspects of various least-squares functionals can be found in the book [12]. 

The generalized mixed functional Ф, formally introduced above, 
contains as a particular case both the Reissner functional (at κ = 0) and the 
Lagrange functional (at κ = 1). Note also that the end points of our interval 
of interest, ½ < κ < 1, are singular points for functional Ф. And indeed, at 
κ = 0.5 functional Ф defined by the original formula (5.11) acquires the 
form of the Q functional because we can derive the following from (5.11): 

Фκ=0.5 = ½ L + ½ R = ½ Q . (5.19) 

Functional Q implies only the physical relationships as Euler equations. 
On the other hand, at κ = 1 functional Ф degenerates because it becomes a 
Lagrangian functional and does not contain stresses. 



118      3 ADDITIONAL VARIATIONAL PRINCIPLES 

3.5.4 Parametrized energy space 

There is a standard technique with which we can reformulate the 
variational problem for functional Ф on the set U k as an equivalent 
problem of minimizing Ф on the linear set U ko. Let’s fixate a certain field, 
Fk = {0,Av,v}, from set U k . Then an arbitrary field, F∈U k, can be 
represented as F = Fk + Fko, Fko = {σ,Au,u} ∈U ko. Using formula (5.12), 
we can specify the Ф functional as one subject to variation on the U ko 

linear set: 

Ф = 2(2 1)
κ
κ −

(CAu, Au) + 1
2(2 1)

− κ
κ −

( С –1σ, σ) – 1
2 1
− κ
κ −

+ 

+ (Au, σ) + 1
2 (Ku, u) – Пs(u) + 2 1

κ
κ −

 (CAu, Av) –  

– 1
2 1
− κ
κ −

 (Av, σ) + (Ku, v) + C (5.20) 

where С is a constant that depends on the fixated vector v. We introduce a 
bilinear form, b(F1,F2), on the linear set U ko, that depends on two fields 
F1∈U ko and F2∈U ko , by assuming 

 
b(F1,F2) = 2(2 1)

κ
κ −

(CAu1, Au2)+ 1
2(2 1)

− κ
κ −

(С –1σ1, σ2) – 

– 1
2(2 1)

− κ
κ −

(Au1, σ2) – 1
2(2 1)

− κ
κ −

(Au2, σ1) + 1
2

(Ku1, u2) . 

This form, under the conditions 

E(uko) > 0   ∀ uko∈U ko,  uko ≠ 0  и ½ < κ < 1, (5.21) 

satisfies all axioms of scalar product and thus generates a metric in U ko 
because  

b(F1,F1) = 1
2(2 1)

− κ
κ −

(C(С –1σ1 – Au1), (С –1σ1 – Au1)) + E(u1) > 0 

if  u1 ≠ 0. 
For condition (5.21) to hold, it suffices to demand that all displacements 

uko allowed for comparison be orthogonal in the main metric to all 
homogeneously kinematically admissible rigid displacements uR о 

(uko  , uR о) = 0. (5.22) 
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A set of all stress-and-strain fields of the type F = {σ, Auko, uko} with 
homogeneously kinematically admissible displacements uko that satisfy 
conditions (5.22) makes up a space with the scalar product generated by 
the bilinear functional b(F1,F1). Completing this space produces a Hilbert 
space, F, which we will call a parametrized energy space conforming to 
functional Ф.  

Obviously, the parametrization means that the κ parameter is 
introduced. This energy space permits to estimate the error of approximate 
solutions based on minimization of functional Ф by the respective 
parametrized energy norm. 

Condition (5.22) can be treated now as a decomposition of U ko into a 
direct sum 

U ko = F  ⊕ R o , (5.23) 

where R o means a set of stress-and-strain fields of the type F = {0, 0,uR о} 
under the condition AuR o = 0. 

Thus, parametrized energy space F  ⊆U ko consists of a set of fields of 
the type F = {σ, Au, u} which obey the following requirements: 

• displacements u satisfy homogeneous kinematic boundary conditions; 
• displacements u are orthogonal in the main metric to all homogeneously 

kinematically admissible rigid displacements of the system; 
• scalar product 

<F, F> = 

= 2(2 1)
κ
κ −

(CAu, Au) + 1
2(2 1)

− κ
κ −

(С –1σ, σ) – 1
2 1
− κ
κ −

(Au, σ) + 1
2 (Ku1, u2) 

 
 takes a finite value on any field F from F . 

 
Now let’s find Euler equations and natural boundary conditions for 

functional Ф. To do it, we turn to formula (5.5) which states a condition 
for the Ф functional’s first variation to be equal to zero. Using the basic 
integral formula (1.2.19), we transform formula (5.5) into the following 
variational equation: 

 
δФ = κ(ATCAu, δu) – (1 – κ)(ATσ, δu) + (2κ – 1)(Ku, δu) –  

– (2κ – 1)( X , δu) + (1 – κ)(С –1σ, δσ) – (1 – κ)(Au, δσ) –  

– (2κ – 1)(Ep p , Ep δu)Г  + κ(Ep HσCAu, Epδu)Г – (1 – κ)(Ep p, Epδu)Г = 0 . 

As the δu and δσ variations are arbitrary, we have the Euler equations 
and the natural boundary conditions for functional Ф, 
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κATCAu – (1 – κ)ATσ + (2κ – 1)Ku – (2κ – 1) X = 0    ∈Ω, (5.24) 

С –1σ – Au = 0   ∈Ω, (5.25) 

Ep[– (2κ – 1) p  + κHσCAu – (1 – κ)p] = 0     ∈Г, (5.26) 

equivalent to the original equations of the problem, (1.2.2), (1.2.4); the 
geometric equation (1.2.2-b) and the kinematic boundary condition 
(1.2.4-b) hold because u ∈U k (the main boundary condition for the Ф 
functional). The said equivalence of the equations can be easily established 
by noticing that (5.24) is a linear combination of the equilibrium equations 
and physical equations (5.25) with the ATC operator applied to them. A 
similar linear combination of the static boundary conditions and the 
physical equations participates in the natural boundary condition (5.26).  

3.6 Gurtin’s variational principle 

The practice of structural design knows cases when an engineer wants to 
know only some of the components of the stress-and-strain state in a 
structure rather than all of them. In particular, in many problems the 
distribution of stresses is the main thing to know while the 
strains/displacements are of less interest or of no importance at all for that 
particular purpose. 

On the other hand, traditional approaches of numerical structural 
analysis based on variational formulations, such as the variation-difference 
method, finite element method, or Ritz method with smooth approximants, 
in their best developed forms require either that both stress and kinematic 
fields be found together using mixed-type functionals or that the 
strains/displacements be found first and then the stresses be derived from 
the calculated results. 

There is a natural wish to find the stress distribution directly by 
minimizing the Castigliano functional, but more often than not this 
approach does not work because of the difficulty to build statically 
admissible stress fields9.  

The said difficulties can be overcome by making the variational 
formulation of the problem “rougher” — demanding that the equilibrium 

                                                      
9 We mean the case when there is no elastic medium in the problem’s 

statement. Then the Castigliano functional depends only on the stresses in the 
system and does not depend on the displacements. 
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equations hold in a weak (integral) sense rather than exactly; this will yield 
a functional with a penalty derived from M. Gurtin’s functional for a 
dynamic problem in convolutions [4]. Later it was found that the Gurtin-
type functionals could be extended to the problems of statics, too, if there 
was an elastic medium with a non-degenerate operator K. This kind of 
problems is most often encountered in beam- and slab-like constructions 
lying on elastic Winkler-type foundations. 

The extension of the approach to the problems with no elastic medium 
gave birth to the idea of formal introduction of an elastic medium with a 
non-degenerate operator K to the mechanical model. This artificial 
medium plays the part of a penalty in the problem’s statement, which 
distorts the solution a little bit but in return provides a convenient 
transition to the formulation of the variational problem in stresses only [3].  

3.6.1 Gurtin’s functional 

As it was said before, M. Gurtin has constructed a governing functional for 
problems of dynamics in convolutions, which depends only on the stress 
vector, σ, and (which is important!) this Gurtin functional is defined on 
stress fields not subject beforehand to any equations or boundary 
conditions. In order not to deviate from the main topic, we will not discuss 
the statement of a dynamical problem in convolutions, including its 
variational statement. Instead we will give the respective functional for the 
static problems with the non-degenerate operator K and then give a 
validation for the variational equation that corresponds to that functional10.  

However, before doing all that, it is useful to transform the formulation 
of the original problem (1.2.2), (1.2.4) into such form that does not include 
any displacements and stresses. It can be done because we assume the 
operator K to be non-degenerate. And indeed, the equation of 
equilibrium (1.2.2-а) gives 

u =  K –1( X – ATσ) . (6.1) 

On the other hand, by excluding the strains from geometric equations 
(1.2.2-b) using physical equations (1.2.2-с) we obtain 

Au = C –1σ , (6.2) 

                                                      
10 People interested with the statement and validation of the dynamic problem 

in convolutions can find all necessary information in any of the works [11], [12], 
[4]. 
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so replacing displacements u by their expressions from (6.1) will give a 
single equation containing the stresses only: 

AK –1( X – ATσ) – C –1σ = 0 . (6.3) 

Now boundary conditions (1.2.4) can be rewritten in stresses using (6.2) 
and (6.3): 

Ep(p – p ) = 0,                 ∈Г   – static boundary conditions, (6.4-а) 

  Eu[Hu K –1( X – ATσ)– u ] = 0, ∈Г    – kinematic boundary 
                                                               conditions. 

(6.4-b) 

Now let’s turn to the variational formulation of problem (6.3), (6.4), and 
consider the following functional G1 – a Gurtin functional11 

G1(σ) = ½(C –1σ, σ) + ½(K –1ATσ, ATσ) – (AK –1 X , σ)  + 

+ (Ep(p – p ), Ep Hu K –1ATσ)Г  + (Eu p, Eu(Hu K –1 X – u ))Г  . (6.5) 

By varying the G1 functional with respect to stresses σ we derive 
 

δG1 = (C –1σ, δσ) + (K –1ATσ, ATδσ) – (AK –1 X , δσ) +  

+ (Ep δp, Ep Hu K –1ATσ)Г  + 
 

+ (Ep(p – p ), Ep Hu K –1ATδσ)Г  – (Eu δp, Eu(Hu K –1 X – u ))Г  . 
 
Now we transform this expression using the main integral formula: 

δG1 =  (C –1σ + AK –1ATσ – AK –1 X , δσ) + 

+ (Eu δp, Eu Hu K –1( X – ATσ))Г  – 

– (Eu δp, Eu u )Г + (Ep(p – p ), Ep Hu K –1ATδσ)Г. (6.6) 

Equaling the δG1 variation to zero gives the Euler equation and the 
natural boundary conditions for the Gurtin functional which repeat  (6.3) 
and (6.4) exactly. 

The variational formulation of the problem (6.3), (6.4), based on the 
Gurtin functional as in (6.5), has a shortcoming: it has overly strict 
requirements to the smoothness of the vector of external actions, X , and 
to the tensor of compliance of the elastic medium, K –1, because their 
components in (6.5) are differentiated (subject to the action of the matrix 

                                                      
11 The 1 subscript emphasizes that we mean here the first form of the Gurtin 

functional.  
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differential operator of geometry, A). This shortcoming can be removed by 
applying the basic integral formula to the (AK –1 X , σ) term. As a result, 
we obtain the second form of the Gurtin functional 

G2 = ½ (C –1σ, σ) + ½ (K –1ATσ, ATσ) – (K –1 X , ATσ) + 

+ (Ep(p – p ), Ep Hu K–1ATσ)Г  – (Ep p, Ep Hu K–1 X )Г  – 

 – (Eu p, Eu u )Г . (6.7) 

In the general case, the Gurtin functional does not have an extremum in 
the stationarity point. To see this, let σ* be the exact solution of 
problem (6.3), (6.4). The increment of the Gurtin functional, G, from point 
σ*  to point σ* + δσ will be equal to ½δ2G, so the sign of this increment is 
defined by that of the second variation, δ2G 

δ2G = (C –1δσ, δσ) + (K –1ATδσ, ATδσ) + 2(Epδp, Ep Hu K –1ATδσ)Г  . (6.8) 

As the δσ variations are arbitrary, they can be chosen in such way that 
δp = 0 ∈Г, and then δ2G > 0. 

On the other hand, the δσ tensor can be selected in such way that Euler 
equation (6.3) hold for it at X = 0 

AK –1ATδσ + C –1δσ = 0 . (6.9) 

By making a scalar product of this equality with δσ in the Ω area and using 
the basic integral formula, we derive 

(K –1ATδσ, ATδσ) + (C –1δσ, δσ) + (δp, Hu K –1ATδσ)Г  = 0 . 

If we further limit the stress variations taken into consideration  by 
requiring that Euδp = 0 ∈Г, this equality can be rewritten as 
 

(Epδp, Ep Hu K –1ATδσ)Г  = – (K –1ATδσ, ATδσ) – (C –1δσ, δσ), 
 
and the expression for δ2G for this special case of variation will become 

δ2G =  – (K –1ATδσ, ATδσ) – (C –1δσ, δσ) < 0 . (6.10) 

Thus, different methods of variation of the stresses makes the second 
variation, δ2G, have opposite signs, therefore there is no extremum in the 
point of stationarity of the G functional. 

Further simplifications in the Gurtin functional can be done by 
narrowing the set of stress fields allowed for comparison — limiting it to 
the statically semi-admissible fields, that is, stress fields which satisfy the 
static boundary conditions. Then the G functional can be rewritten as 
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G3 = ½( C –1σ, σ) + ½(K –1ATσ, ATσ) – (K –1 X , ATσ) – 

 – (Eup, Eu u )Г + C (6.11) 

where C = – (Ep p , Ep Hu K –1 X )Г  is an additive constant that does not 
affect the search for a stationarity point of the functional. 
Expression (6.11) will be called the third form of the Gurtin functional. 

The last term in the right part of (6.8) is absent in the third form of the 
Gurtin functional, consequently, the variational principle of minimum 
holds for this functional defined on statically semi-admissible stress fields. 

Let’s introduce two more functionals: 

Kσ = ½(C –1σ, σ) –  (Eu p, Eu u )Г ,    Qσ = (K –1(ATσ – 2 X ), ATσ). (6.12) 

The Kσ functional is formally a Castigliano functional for the elastic 
body, while Qσ can be treated as a functional of quadratic residual in the 
equations of equilibrium of the elastic body in the absence of an elastic 
medium, where the K –1 matrix plays the role of a weight function. This 
treatment of the Qσ functional becomes clear when we represent the 
second formula in (6.12) as 

Qσ = (K –1(ATσ – X ), (ATσ – X )) – (K –1 X , X )  

and omit the constant (K –1 X , X ) that appears in this transformation of Qσ 
because the constant is not essential for the stationarity. 

Comparing (6.11) and (6.12) yields a simple formula for the Gurtin 
functional defined on statically semi-admissible stress fields: 

G3 = Kσ + ½Qσ ,         Qσ = (K –1(ATσ – X ), (ATσ – X )) . (6.13) 

It is useful for determining expressions of the Gurtin functional’s third 
form in particular problems. 

This treatment of the Gurtin functional’s third problem has one more 
meaning: it produces an idea that the functional can be used in problems 
where there is no elastic medium in the original statement (K = О). If we 
used the variational principle by Castigliano with the functional Kσ as a 
basic tool in the problems of this kind, we would have to demand that 
stresses admitted to the comparison satisfy the equilibrium conditions in 
the volume of the body and static conditions on the boundary, that is, 

ATσ – X  = 0  ∈Ω,             Ep p = Ep p    ∈Г. (6.14) 

Assuming K = kI, we reduce the problem of a conditional minimum of 
the Kσ functional with limitations (6.14) to the problem of an 
unconditional minimum of a functional with a penalty, 
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G3 = Kσ + 1
2k ( (ATσ – X ), (ATσ – X )) , (6.15) 

where the first limitation in (6.14) is taken into account integrally by 
introducing a penalty term to the functional itself, and the second  
limitation is taken into account explicitly by narrowing the set of stresses 
admitted to the comparison.  

At k → 0  (1/k is a penalty factor) the solution of the problem of 
minimization of (6.15) tends to the solution of the original problem [15].  

Note that one of useful applications of the penalty method in structural 
analysis is to use the penalty functional for formal reduction of the 
differentiation order under the integral, to weaken the requirements to 
smoothness of coordinate functions in the Ritz method [3].  

3.7 Geometric interpretation of functionals used in 
structural mechanic 
 
It is useful to give a geometric interpretation to some of the functionals 
employed in structural mechanics. Obviously, an analysis of this kind can 
be done in a simplest way on a system that has one degree of freedom. As 
in this case we are not going to involve a space of more than three 
dimensions, the analysis will be also easier to understand and imagine. 

3.7.1 Generalized mixed functional 

So, let’s consider a spring of stiffness c and compliance d = 1/c . Let a 
compressive force, P, be applied to the spring. We denote by u the 
shortening of the spring and by N the stress that develops in it. Then 

L = ½ cu2 – Pu ,           R = ½ N 2d – Nu + Pu , (7.1) 

and according to formula (5.11) the generalized mixed functional, Ф, for 
this problem will be 

Ф = 2
κ cu2 + 1

2
− κ N 2d – (1– κ) Nu – (2κ–1) Pu . (7.2) 

This simple example can be used to track visually how the Ф functional 
changes its behavior when the κ parameter varies. 

Figs. 3.1–3.5 show axonometric images of the Ф(N,u) surface at κ = 0, 
¼ , ½ , ¾ , 1, respectively, in the case of c = 1, P = ½ .  
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The images show clearly a “saddle” (a negative Gaussian curvature of 
the surface) in the stationarity point at 0 < κ <½. On the other hand, at  
½ < κ < 1 the stationarity point realizes a minimum (the surface has a 
positive Gaussian curvature). 

 
κ = 0 

Reissnerian 
κ =  ¼ κ =  ½ κ =  ¾ κ = 1 

Lagrangian 

Fig. 3.1. Fig. 3.2. Fig. 3.3. Fig. 3.4. Fig. 3.5. 

Shapes of  the surface graphs of the Ф(N,u) functional at different values of κ 

Based on the expression of the Ф functional from (7.2), we can find 
conditions for its minimum in the following form: 

u
∂
∂
Ф = κ c u – (1– κ) N – (2κ – 1)P = 0, (7.3) 

N
∂
∂
Ф = – (1 – κ) u + (1 – κ) dN = 0 . (7.4) 

We can always choose a dimensionality of the participating quantities in 
such way that c = 1, d = 1. In this case the matrix of the simultaneous 
equations (7.3), (7.4) is 

1
1 1

κ κ −⎡ ⎤
⎢ ⎥κ − − κ⎣ ⎦

, (7.5) 

and its eigenvalues are 

1,2
1 1 4(1 )(2 1)

2
± − − κ κ −

λ = . 
(7.6) 

Fig. 3.6 shows a dependence of the maximum, λ2, and the minimum, λ1, 
eigenvalues of the matrix from (7.6) on the κ parameter, where it can be 
seen also that, as it could be expected, matrix (7.5) is positive definite at 
½ < κ < 1.  
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Fig. 3.6.  Dependence of  λ1 and λ2 on the κ parameter. 

 
The arbitrariness in choosing parameter κ should be used to improve 

somehow the quality of the problem’s solution. For example, one may 
require that the system of equations be stablest possible. 

As it is known [4], an adequate measure of stability of a system of 
equations can be a so-called conditionality number, H, of that system’s 
matrix: 

H = max

min

λ
λ

, (7.7) 

and the stablest system possible is one where the conditionality number is 
minimum. 

As it can be seen in Fig. 3.6, the conditionality number H is minimum at 
κ = ¾, consequently, on the interval ½ < κ < 1 the system of equations 
(7.3), (7.4) is stablest at the central point of the admissible interval, that is, 
it is least sensible to the error of computation at κ = ¾. By the way, the 
optimum parameter in this sense, κ = ¾, corresponds to the value of α 
equal to α = ½ according to (5.17). 

Thus, we have 

Ф = ½ (3L + R) . (7.8) 

The ½ factor, itself inessential for the stationarity point of the Ф 
functional, is used here because it makes the exact value of the functional, 
Ф*, identified with L*  

Ф* = L* , (7.9) 

which can be useful in comparisons of energy norms of different 
approximate solutions of the problem. 

An alluring hypothesis appears at this point: what if this value of the 
parameter, κ = ¾ , always conforms to a stablest system of Ritz equations? 
However, the analysis shown below makes this hypothesis totally invalid. 
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So, let us consider a mechanical system with n degrees of freedom. 
Let C be a stiffness matrix of the system, C –1 a compliance matrix, u a 
vector of displacements, N a vector of internal generalized forces, P a 
vector of external generalized forces which conform to the selected  
degrees of freedom. Let’s write the expressions of the Lagrange functional, 
L, and the Reissner functional, R, in the matrix form. We have 

L = ½ uTCu – PTu ,    R = ½ N TC –1N – N Tu + PTu . (7.10) 

From the general formula (5.11) we derive this expression of the 
functional: 

Ф = 2
κ uTCu + 1

2
− κ N TC –1N – (1 – κ)N Tu – (2κ – 1)PTu . (7.11) 

Conditions of stationarity of the Ф functional help obtain the following 
system of equations 

1

( 1)
( 1) (1 ) −

κ κ −⎡ ⎤
⎢ ⎥κ − − κ⎣ ⎦

C I
I C

⎡ ⎤
⎢ ⎥
⎣ ⎦N

u
=

(2 1)κ −⎡ ⎤
⎢ ⎥
⎣ ⎦0

P
 , (7.12) 

and our task here is to find the conditionality number, H, of the matrix of 
equation system (7.12); this matrix will be designated by G : 

G = 1

( 1)
( 1) (1 ) −

κ κ −⎡ ⎤
⎢ ⎥κ − − κ⎣ ⎦

C I
I C

. (7.13) 

To determine the eigenvalues, λ, of the G matrix, we equal to zero the 
respective characteristic determinant, that is, we assume 

1

( 1)
( 1) (1 ) −

κ − λ κ −
κ − − κ − λ
C I I

I C I
= 0 . 

Using the Schur formulas [2], we transform this characteristic equation 
into 

|(κC – λI)[(1 – κ)C –1 – λI)] – (κ – 1)2I| = 

= | –λ[(1 – κ)C –1 + κC] + [(1 – κ)(2κ – 1)+λ2]I| = 0. (7.14) 

After introducing the designation 

χ = 
2(1 )(2 1)− κ κ − + λ

λ
 (7.15) 

we can rewrite equation (7.14) as 
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| [(1 – κ)C –1 + κC] – χI| = 0, 

consequently, χ is an eigenvalue of the matrix (1 – κ)C –1 + κC. 
Further, matrix C is symmetric and positive definite, therefore all its 

eigenvalues, µi (i = 1,…, n), are strictly positive, so 

0<µ1 ≤ µ2 ≤ …≤ µn . 

It is easy to understand that eigenvalues χi of the matrix (1 – κ)C –1 + κC 
and eigenvalues µi of matrix C are related as12 

χi = 1

i

− κ
µ

 + κµi . (7.16) 

Replacing the χi parameter with its expression from (7.15), we obtain a 
relationship between λi and µi 

2(1 )(2 1) i

i

− κ κ − + λ
λ

= 1

i

− κ
µ

 + κµi . (7.17) 

For each index i = 1,…, n, formula (7.17) gives two values of λi, which is 
quite appropriate because the order of matrix G is 2n. By solving 
equation (7.17), which is quadratic with respect to λi we derive 

λi = 
2 2 2 4 21 (1 ) 2(1 )(3 2)

2
i i i

i

− κ + κµ ± − κ + κ µ − − κ κ − µ
µ

. (7.18)

Without limiting the generality, we can assume that the major 
eigenvalue of the С matrix is equal to one, that is, µn = 1. Obviously, it can 
always be done by scaling the С matrix appropriately.  

If we denote by i
+λ  the expression in (7.18) with the plus sign before the 

root and by i
−λ  the same expression with the minus sign, we can represent 

the desirable conditionality number, Н, of the G matrix as a function of 
parameter κ in the following form: 

                                                      
12 This follows from the consideration that both matrices, C and C –1, can be 

reduced to their diagonal form by the same similarity transformation, T –1CT = Λ 
and T  -1C  –1T = Λ–1. Here Λ is a diagonal matrix with elements µ1 , …,µn . 
Consequently, T –1[(1 – κ)C –1 + κC]T= (1 – κ)Λ–1 + κΛ, hence (7.16). 
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Н(κ) =
max

min
ii

jj

+

−

λ

λ
= 

=
2 2 2 4 2

2 2 2 4 2

[1 (1 ) 2(1 )(3 2) ]
max max

[1 (1 ) 2(1 )(3 2) ]
j i i i

i j
i j j j

µ − κ + κµ + − κ + κ µ − − κ κ − µ

µ − κ + κµ − − κ + κ µ − − κ κ − µ
. (7.19) 

It is not possible to find the general expression of the κ parameter on the 
allowable interval ½ < κ < 1, at which the Н(κ) function has its minimum. 
Therefore we involve a numerical experiment.  

0.5 0.6 0.7 0.8 0.9 1

200

400

 
Fig. 3.7.  An example of the Н = Н(κ) dependence 

For simplicity, we assume n = 2, and let µ1 = 0.2 and µ2 = 1. We can use 
the well-known Mathcad software to build a graph of the dependence 
Н = Н(κ) on the basis of formula (7.19) at the values of the parameters 
indicated above. The result is shown in Fig. 3.7. 

The graph in Fig. 3.7 shows that the minimum of function Н(κ) is 
achieved in this case at κ slightly greater than κ = ¾ (approximately, at 
κ = 0,84).  

3.7.2 A remark on the Gurtin functional 

Now let’s use an equally simple system to track the behavior of the Gurtin 
functional, G. Let a package of two springs connected in parallel, one of 
which being a ‘master’ with stiffness c and the other being a ‘slave’ with 
stiffness k, be subjected to an external force, P (Fig. 3.8).  
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c

P

k

 
Fig. 3.8.  A package of two parallel springs 

Let u be a shortening of the package of springs, as before, and let N be a 
force that develops in the main spring. Obviously, 

u = P
c k+

,      N = Pc
c k+

. (7.20) 

In this case the master spring is an elastic body while the slave spring is 
an elastic medium, and we have 

Kσ = 1
2

N 
2d,      Qσ = 1

k
(N – P)2,     d = 1/c , (7.21) 

wherefrom, using formula (6.13), we derive 

G = 1
2

N 
2d  + 1

2k
(N – P)2 . (7.22) 

Here G is a quadratic parabola with its point of minimum found from the 
condition 
 

d
dN
G = 0            or      Nd + N P

k
− = 0 , 

 
wherefrom (7.20) follows. By the way, it is easy to calculate in this case 
that 

G* = 
2

2( )
P
c k+

. (7.23) 

3.8 Final comments to Chapter 3  
 
 
Gurtin himself was interested, as it was said before, in a variational 
formulation of the dynamics problem in convolutions rather than the static 
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variational problem; this is how he obtained his functional G. A similar 
functional was obtained later, after Gurtin, by using the penalty method.  

The same functional was built independently by M.D. Nikolsky [6] and 
used by him effectively in numerical procedures for static structural 
analysis of constructions supported by elastic Winkler-type foundations. In 
this regard, titling the G functional in problems of statics as the Gurtin 
functional is not quite unquestionable, but is totally acceptable in 
consideration of priority. 
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4 PARTICULAR CLASSES OF PROBLEMS IN 
STRUCTURAL MECHANICS – part 1 

 Construction of a model of any physical process begins 
with laws of conservation. If we may say so, the laws of 
conservation are a foundation, a basis of any model or 
simulation.  

 Moiseyev NN (1979) Mathematics makes an experiment 
(in Russian). Nauka, Moscow  

4.1 Variations of the operator formulations 
in structural mechanics 

This subsection will present a brief discussion on some variations of the 
problem statements in their differential forms. 

The contents of this book concerns mainly the variational formulations 
of mechanical problems, and the respective differential forms are of 
secondary importance, therefore we do not dwell on advantages and 
disadvantages of those formulations; we only give a minimum amount of 
information which we will need in further presentment. 

4.1.1 Statement of a problem in displacements 
 

First of all, let us write out the original problem statement (1.2.2)-(1.2.4), 
to have it right here instead of referring to previous chapters: 

ATσ + Ku = X                      equations of equilibrium, (1.1-a) 

          Au = ε                                          geometric equations, (1.1-b) 

σ = Cε  or  ε = C –1σ                      physical equations. (1.1-c) 

The simultaneous governing equations of the problem (1.1) should be 
supplemented with boundary conditions which look as follows in their 
operator form: 
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    Ep(Hσσ  – p ) = 0                      static boundary conditions, (1.2-a) 

  Eu(Huu  – u ) = 0                      kinematic boundary conditions. (1.2-b) 

If we exclude strains ε from geometric equations (1.1-b) using physical 
equations (1.1-c), then stresses σ can be expressed directly via the 
displacements, 

σ = CAu , (1.3) 

which, substituted to (1.1-a), produces equations of equilibrium in 
displacements: 

ATCAu + Ku = X . (1.4) 

Accordingly, boundary conditions (1.2) can be expressed via the 
displacements only, using (1.3): 

   Ep(HσCAu  – p ) = 0               static boundary conditions, (1.5-a) 

   Eu(Huu  – u ) = 0                    kinematic boundary conditions (1.5-b) 

The statement of an elastic problem in displacements is usually 
associated with the name of Lame, therefore further we will call the formal 
differential operator 

L = ATCA + K (1.6) 

a Lame operator. Actually, the Lame operator equation is an equation of 
equilibrium of a mechanical system written in displacements, 

Lu  = .X  (1.7) 

Being supplemented by boundary conditions (1.5), operator equation (1.7) 
will be a full operator statement of the original problem in displacements. 
After the problem is solved, that is, after a field of displacements is 
calculated, the strains will be found from geometric equations (1.1-b), and 
then the strains will be used to find the stresses from physical equations 
(1.1-c). 

4.1.2 Statement of a problem in stresses 

Let S be a Saint-Venant matrix differential operator — a strain 
compatibility operator. This means that strains ε ensure the continuity of 
the body by satisfying the homogeneous equations with the S operator. In 
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the mathematical language we could say that the strains are compatible if 
and only if they belong to the kernel of the Saint-Venant operator, 

Sε = 0. (1.8) 

If we replace the strains in Saint-Venant equations (1.8) by their 
expressions via the displacements according to (1.1-b), we will have the 
identity, 

SAu = 0, (1.9) 

because strains of the type ε = Au do not violate the continuity of a 
deformable body according to the very definition of the strain 
compatibility. So, operator SA is an annulling operator for any vector u, in 
other words, 

SA = O. (1.10) 

Now, using the conjugation operation on both parts of (1.10), we will have 
also 

ATST = O. (1.11) 

To return to the discussion on statements of problems in stresses, we 
consider two separate variations of the problems. The first variation is 
where there is no elastic foundation, that is, where we can assume K = O in 
(1.1-а). If we replace the strains in (1.8) by the stresses using Hooke’s law, 
then we will have a set of equations in the Ω area where only the stresses 
participate as unknowns: 

ATσ  = X   ∈ Ω , (1.12-a) 

SC –1σ = 0    ∈ Ω . (1.12-b) 

If the boundary conditions along the whole boundary, Г, are of a static 
type, then they define a differential statement of the problem in stresses 
together with equations (1.12). If there are kinematic boundary conditions, 
the differential statement in displacements is difficult. 

Now let’s turn to second option. The second variation has the operator 
of elastic foundation, K, positive definite in the whole area Ω. But then the 
operator is reversible, and we can derive the following from the equation 
of equilibrium (1.1-а): 

u = K –1( X – ATσ) . (1.13) 

Substituting this to the rest of equations (1.1) and making some elementary 
transformations, we have 
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(AK –1AT + C –1)σ = AK –1 X . (1.14) 

All boundary conditions can be easily written in stresses in this case, too 

Ep(Hσσ  – p ) = 0                             static boundary conditions, (1.15-a) 

   Eu[Hu K –1( X – ATσ)  – u ] = 0      kinematic boundary 
                                                           conditions. 

(1.15-b) 

4.2 Spatial elasticity 

We suppose that our reader is familiar with basics of theory of elasticity, 
therefore we present principal relationships of linear spatial elasticity here 
without their derivation. By using a designation, which is common in 
tensor analysis, of a derivative with respect to coordinate xi as subscript i 
(i = 1,2,3) of the variable of differentiation after a comma, 

 

,
( ) ( ) i

ix
∂

=
∂

, 
 

we can rewrite those relationships as follows: 

– ,
ij

jσ  + ij
jk u = iX                               equations of equilibrium, (2.1-a) 

ijε = 1
2 , ,( )i j j iu u+                                     geometric equations, (2.1-b) 

ijσ  = ijklC klε   or   ijε  = ijklD klσ                  physical equations. (2.1-c) 

We represent the stress tensor, σ = { ijσ }, the strain tensor, 
ε = { ijε }, and the displacement vector, u, in a matrix form where we use a 
symmetry of the σ and ε tensors: 

σ = |[ σ11, σ22, σ33, σ12, σ23, σ31]|T , 

ε = |[ε11, ε22, ε33, γ12, γ23, γ31]|T     where  γij = 2εij  for i ≠ j, 

u = |[u1, u2, u3]| T . (2.2) 

Now all three relationships in (2.1) can have the matrix form as in (1.1), 
where the matrix differential operator of geometry, A, is as follows in its 
component representation: 
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A = 

1

2

3

2 1

3 2

3 1

0 0

0 0

0 0

0

0

0

x

x

x

x x

x x

x x

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂

∂ ∂⎢ ⎥⎣ ⎦

 = 

1

2

3

2 1

3 2

3 1

,

,

,

, ,

, ,

, ,

( ) 0 0
0 ( ) 0
0 0 ( )

( ) ( ) 0
0 ( ) ( )

( ) 0 ( )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.3)

But then the equilibrium operator conjugate in the Lagrangian sense, AT, 
will become as follows, according to common rules of operator 
conjugation (see §1.2): 

AT = 
1 2 3

2 1 3

3 2 1

0 0 0

0 0 0

0 0 0

x x x

x x x

x x x

⎡ ⎤∂ ∂ ∂− − −⎢ ∂ ∂ ∂ ⎥
⎢ ⎥∂ ∂ ∂− − −⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂− − −∂ ∂ ∂⎢ ⎥⎣ ⎦

 (2.4)

where it really corresponds to equilibrium equations (2.1-a).  
Let’s pay more attention to the strain compatibility equations which are 

referred to by theory of elasticity as Saint-Venant equations. After being 
expanded into separate components, they will become [12] 

 
Sij = ∈ikm∈jlnεkl,mn = 0. 

 
Here Sij are components of a so-called incompatibility tensor, ∈ikm is a 
Levi–Chivita symbol. The Levi–Chivita symbol, ∈ikm , is defined by unit 
vectors i1, i2, i3 of Cartesian rectangular coordinate system (x1, x2, x3) using 
well-known formulas 
 

∈ikm = ii • (ik× im) . 
 

The Saint-Venant matrix differential operator, S, of strain compatibility 
can be represented as 
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S =

2 2 2

2 2
3 2 2 3

2 2 2

2 2
3 1 3 1
2 2 2

2 2
2 1 1 2

2 2 2 2

2
1 2 3 3 1 2 3

2 2 2 2

2
2 3 3 1 1 1 2

2 2 2 2

2
3 1 2 3 1 2 2

0 0 0

0 0 0

0 0 0

0 0
2 2 2

0 0
2 2 2

0 0
2 2 2

x x x x

x x x x

x x x x

x x x x x x x

x x x x x x x

x x x x x x x

⎡ ∂ ∂ ∂
−⎢ ∂ ∂ ∂ ∂⎢

∂ ∂ ∂⎢
−⎢ ∂ ∂ ∂ ∂⎢

∂ ∂ ∂⎢ −⎢ ∂ ∂ ∂ ∂⎢
∂ ∂ ∂ ∂⎢ − −⎢ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢

∂ ∂ ∂ ∂⎢− −⎢ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⎢

∂ ∂ ∂ ∂⎢ − −
∂ ∂ ∂ ∂ ∂ ∂ ∂⎣

.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎢ ⎥⎦

 

In the matrix form of a general anisotropic case, matrix C of the 
material’s stiffness coefficients will include 21 independent coefficients, 
seeing that it is symmetric. Its inverse matrix, C –1, of compliance 
coefficients of the elastic body’s material has the same kind of 
representation. 

C = 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

c c c c c c
c c c c c

c c c c
c c c

c c
c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,   C –1 = 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

d d d d d d
d d d d d

d d d d
d d d

d d
d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
The elements of the C and C –1 matrices below the main diagonal are not 
shown in this matrix form because they can be easily restored from the 
condition of symmetry.  
In a particular but practically important case of an isotropic elastic 
material, the components of these tensors, C = { ijklC } and C -1 = { ijklD }, 
are expressed via two independent constants [13]: 

 
ijklC = 1 ( )1 1 2 2

ij kl ik jl jk ilE ν⎡ ⎤δ δ + δ δ + δ δ⎢ ⎥+ ν − ν⎣ ⎦
,     

ijklD = 11 ( )2ij kl ik jl jk ilE
+ ν⎡ ⎤−νδ δ + δ δ + δ δ⎢ ⎥⎣ ⎦

, 
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where δij = δij is Kronecher’s delta. 
This is how it looks in the matrix representation: 

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

λ + µ λ λ⎡ ⎤
⎢ ⎥λ λ + µ λ⎢ ⎥
⎢ ⎥λ λ λ + µ

= ⎢ ⎥µ⎢ ⎥
⎢ ⎥µ
⎢ ⎥

µ⎢ ⎥⎣ ⎦

C , 

1

1 0 0 0
1 0 0 0

1 0 0 01
0 0 0 2(1 ) 0 0
0 0 0 0 2(1 ) 0
0 0 0 0 0 2(1 )

E
−

−ν −ν⎡ ⎤
⎢ ⎥−ν −ν⎢ ⎥
⎢ ⎥−ν −ν

= ⎢ ⎥+ ν⎢ ⎥
⎢ ⎥+ ν
⎢ ⎥

+ ν⎢ ⎥⎣ ⎦

C , 

where Lame elastic constants λ and µ are related to technical 
characteristics of the material, elasticity modulus E and Poisson ratio ν, 
through the following dependencies: 

E = 3 2λ + µ
µ

λ + µ
,      ν = 

2( )
λ
λ + µ

, (2.5) 

or, inversely, 

λ =
(1 2 )(1 )

Eν
− ν + ν

,       µ =
2(1 )

E
+ ν

. (2.6) 

Now let us discuss boundary conditions. Let n = |[n1, n2, n3]|T be a 
vector of an external normal to surface Г that bounds area Ω occupied by 
an elastic body. In each point of boundary Г, three boundary conditions are 
posed: either static or kinematic, or both. Let (n, t, b) be a right-hand 
Cartesian triple of axes of a local coordinate system placed in each point of 
the boundary surface, Г, in the way described in Section 1.2. Let us assume 
that the vectors of given boundary forces, p , and displacements, u , can 
be represented by either their projections on the global coordinate axes or 
their projections onto the local axes. In the first case we have 
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p = |[ 1p , 2p , 3p ]|T,       u = |[ 1u , 2u , 3u ]|T, (2.7) 

while in the second case 

p = |[ np , tp , bp ]|T,      u = |[ nu , tu , bu ]|T. (2.8) 

In each point of the boundary surface, each coordinate component has 
one of its two respective quantities specified: either a component of the 
force vector, p , or a component of the displacement vector, u . The set of 
specified boundary conditions is defined by the contents of operators Ep 
and Eu which were called earlier boundary condition extraction operators. 
For the spatial elasticity, these algebraic operators are 

Ep = 
1

2

3

0 0
0 0
0 0

p

p

p

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,       Eu = 
1

2

3

0 0
0 0
0 0

u

u

u

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (2.9) 

or 

Ep = 
0 0

0 0
0 0

pn

pt

pb

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,       Eu = 
0 0

0 0
0 0

un

ut

ub

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (2.10) 

where representation (2.9) corresponds to the global coordinate system and 
(2.10) to the local one. 

Each of the diagonal components of matrix Ep is equal to either one or 
zero, and the same requirement relates also to the diagonal components of 
matrix Eu , where, according to conditions (1.2.5), 

epα + euα = 1         (α = 1,2,3;  or  α = n,t,b) . (2.11) 

As for matrix Hσ, it can be written in the following form, where the 
boundary conditions are specified in the global coordinates: 

Hσ =  
1 2 3

2 1 3

3 2 1

0 0 0
0 0 0
0 0 0

n n n
n n n

n n n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

(2.12) 

where ni is a component of the n vector of the external normal to 
boundary Г with respect to the global axis xi . Interestingly enough, the 
structures of matrices AT and Hσ are identical; matrix Hσ can be derived 
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from matrix AT by formally replacing the differentiation by the respective 
component of vector n.  

And indeed, the matrix product Hσσ produces a vector,  
|[σ1jnj , σ2jnj , σ3jnj ]|T, of boundary forces acting on a spot with the normal 
n, and the coordinates of that vector refer to the global coordinates. As a 
result, boundary conditions (1.2) in their component form will be 

epi (σijnj – ip ) = 0      (i = 1,2,3), (2.13-a) 

eui (ui – iu ) = 0          (i = 1,2,3) . (2.13-b) 

The same boundary conditions in the equivalent matrix form are 

Ep(Hσσ  – p ) = 0  , (2.14-a) 

Eu(Huu  – u ) = 0 . (2.14-b) 

It follows from (2.13-b) that the vector of boundary displacements, u, 
coincides with the vector of displacements, u, on boundary Г, hence a 
conclusion — matrix Hu is an identity matrix of third order. Of course, this 
conclusion is true if the boundary conditions are formulated in the global 
coordinate system. Note that the geometry and equilibrium operators for 
spatial elasticity, A and AT, contain differential operators of first order at 
the most, and this is why operator Hu is an identity operator in this case. 

If the boundary conditions are specified by their components along the 
axes of a local basis, then a matrix of coordinate transformation, Λ, can be 
introduced for convenience: 

Λ = 
1 2 3

1 2 3

1 2 3

n n n

t t t

b b b

⎡ ⎤λ λ λ
⎢ ⎥λ λ λ⎢ ⎥
⎢ ⎥λ λ λ⎣ ⎦

= 
1 2 3

1 2 3

1 2 3

n n n
t t t
b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.15) 

its components being projections of the local basis’ unit vectors onto the 
axes of the global coordinate system. Then, by expanding the vector of 
boundary forces and the vector of boundary displacements over the local 
basis, we will have the following instead of (2.13):1 

epα (pα – pα ) = 0 ,            pα = i
αλ σij nj           (α = n, t, b) , (2.16-a) 

                                                      
1 Note that the epi,..., euα quantities are not components of a tensor, therefore 

the rule of summation over repeating indexes does not apply to them. 
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  euα (uα – uα ) = 0 ,            uα =  i
αλ ui                 (α = n, t, b) . (2.16-b) 

So, in the formulation of the boundary conditions with respect to the 
local coordinate system, the vector of boundary forces, p, and the vector of 
boundary displacements, u, must be converted beforehand to the local 
coordinate system. This conversion can be done with formal matrix 
transformations by left-multiplying matrices Hσ  and Hu which participate 
in (2.14) by the coordinate transformation matrix, Λ — that is, by 
assuming 

Hσ =  Λ
1 2 3

2 1 3

3 2 1

0 0 0
0 0 0
0 0 0

n n n
n n n

n n n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,          Hu = Λ. (2.17) 

The basic integral identity (1.2.17) for spatial elasticity can be represented 
in components as 

, ,
1
2

ij
i j j iu u d

Ω

σ ( + ) Ω∫  = – ,
ij

j iu d
Ω

σ Ω∫  + ij
j in u dσ∫

Γ

Γ  . (2.18) 

Now let us write out explicit expressions of some functionals of 
structural mechanics in application to spatial (three-dimensional) elasticity. 

4.2.1 Lagrange functional 

L(u) = , , , ,
1 1
8 2

ijkl ij i
i j j i k l l k i j iC u u u u k u u u X d

Ω

⎡ ⎤( + )( + ) + − Ω⎢ ⎥⎣ ⎦∫  – 

– i
pi ie u p d∫

Γ

Γ . (2.19) 

This functional is defined on a set of vector functions u which satisfy 
kinematic boundary conditions (2.13-b) or (2.16-b) and assure a finite 
value of the energy integral, E, 

E(u) = , , , ,
1 1
2 4

ijkl ij
i j j i k l l k i jC u u u u k u u d

Ω

⎡ ⎤( + )( + ) + Ω⎢ ⎥⎣ ⎦∫  . (2.20)

Euler equations for the L functional are the Lame equations which are 
especially simple in the case of an isotropic material [11]: 
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– G ( 1
1 2i

i
u x

∂θ∆ +
− ν ∂

) + kijuj = iX  (2.21) 

where G is a shear modulus and θ is a dilatation, 

G = 2(1 )
E
+ ν

,         θ = 31 2

1 2 3

uu u
x x x

∂∂ ∂
+ +

∂ ∂ ∂
. (2.22) 

Static boundary conditions are natural boundary conditions for the  
L functional.   

The variational formulation of the problem based on minimizing the 
Lagrange functional conforms to the operator statement of the problem in 
displacements. 

4.2.2 Reissner functional 

According to (3.1.4) and (3.1.5), we present expressions for the first and 
second forms of the Reissner functional in an expanded representation for 
three-dimensional elasticity: 

R1(σ,u) = , ,
1 1 1 (2 2 2

ij kl ij ij i
ijkl i j i j j i iD k u u u u u X d

Ω

⎡ ⎤σ σ − − + )σ + Ω⎢ ⎥⎣ ⎦∫  + 

+ i
pi ie u p d∫

Γ

Γ – ( ij
ui i i je u u n d− )σ∫

Γ

Γ , (2.23)

 

R2(σ,u) = ( ),
1 1
2 2

ij kl ij ij i
jijkl i j i iD k u u u u X d

Ω

σ σ − + σ + Ω∫  + 

+ ( )i ij
pi i je u p n d−σ∫

Γ

Γ – ij
ui i je u n dσ∫

Γ

Γ . (2.24)

The Reissner functional is defined on a set of stress tensors and 
displacement vectors not subject to any predefined boundary conditions. 
The requirements to smoothness of the integrand functions in the Reissner 
functionals are based on the existence of finite values of the integrals in the 
respective expressions of R1 and R2.  

Euler equations for functional R are: equilibrium equations (2.1-a) and 
physical equations (2.1-c). All boundary conditions play the part of natural 
boundary conditions for functional R . 
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4.2.3 Castigliano functional 

K(σ,u) = 1 ( )2
ij kl ij

ijkl i jD k u u d
Ω

σ σ + Ω∫  – ij
ui i je u n dσ∫

Γ

Γ . (2.25) 

The Castigliano functional is defined on a set of stress tensors and 
displacement vectors which satisfy equilibrium equations (2.1-a) and static 
boundary conditions (2.13-a) or (2.16-a).  

Euler equations for functional K are equations of strain compatibility in 
stresses (1.12-b), and its natural boundary conditions are kinematic-type 
boundary conditions (2.13-b) or (2.16-b).  

4.2.4 Gurtin functional (third form) 

G3(σ) = ( ), , ,
1 1
2 2

ij kl ik jl jk i
ijkl ij k l ij kD b b X d

Ω

σ σ + σ σ + σ Ω∫  – 

 – ij
ui i je u n dσ∫

Γ

Γ , (2.26)

where |[bij]| = K –1.  
Gurtin functional in its third form is defined on a set of stress tensors 

which satisfy static boundary conditions (2.13-a) or (2.16-a). Finite values 
are supposed to exist for all integrals included in the expression of G3. 
Obviously, the Gurtin functional is defined only for problems for which 
the K operator is not degenerate. 

4.3 Plane elasticity 

There are two versions of two-dimensional, or plane, elasticity: plane 
stress and plain deformation. Area Ω in plane elasticity is a two-
dimensional region which we assume to lie in the (x, y)-plane, just to be 
definite. In both plane elasticity versions all desirable functions depend on 
two coordinates, which are x and y according to our convention. 

A plane stress (state) is a kind of a deformed state in a body where the 
stresses on all planes parallel to the (x, y)-plane are assumed to be zero, 
and the stressed state at all points on the perpendicular to that plane is the 
same. We can write the condition for the plane stress to take place as 
follows, by denoting the normal stresses as σi and the tangential stresses 
as τij: 
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σz = 0,     τyz = τzx = 0,     σx = σx(x,y),     σy = σy(x,y),        τxy = τxy(x,y). 
 
The plane stress takes place, for example, in a thin plate subject to loads 

constant over its thickness and parallel to the plate’s plane. 
A plane deformation (plane strain state) is a kind of a deformed state in 

a body where the displacements of all points of this body are parallel to the 
same plane — to the (x, y)-plane under our convention. Introducing the z-
axis as an axis orthogonal to the (x, y)-plane and denoting the respective 
components of the three-dimensional displacement vector by u, v, w, we 
can write the conditions for a plane deformation to take place as follows: 

 
u = u(x, y) ,   v = v(x, y) ,   w = 0 . 

   
The desirable stresses, strains, and displacements, together with external 

forces distributed over a two-dimensional area Ω, can be represented in the 
matrix form as follows: 

σ = |[σx, σy, τxy]|T,   ε = |[εx, εy, γxy]|T,   u = |[u, v]|T, 

  X = |[ X ,Y ]|T. (3.1) 

Now let us write out the basic equations of plane elasticity in 
coordinates [5], confining ourselves to the case of no elastic medium 
(K = O). Differential equations of equilibrium are:  

x xy

x y
∂σ ∂τ− − =
∂ ∂

X ,       
yx y

x y
∂τ ∂σ− − =
∂ ∂

Y . (3.2) 

Geometric equations (Cauchy relationships), which establish a connection 
between the strains and the displacements, are: 

εx = u
x
∂
∂

,           εy = y
∂
∂
v ,           γxy = x

∂
∂
v + u

y
∂
∂

. (3.3) 

Physical equations, which we write here for an isotropic material in plane 
stress, are: 

σx = 21
E
− ν

(εx + ν εy),    σy = 21
E
− ν

 (εy + ν εx),   τxy = 2(1 )
E
+ ν

γxy , (3.4) 

or 

εx = 1
E (σx – νσy),      εy = 1

E  (σy – νσx),    γxy = 2(1 )
E
+ ν τxy . (3.5) 

In the plane deformation problem, the structure of the physical equations is 
maintained, and all one should do to be able to apply relationships (3.4) 
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and (3.5) to the plane deformation is to replace the material constants, E 
with Eo and ν with νо , as follows: 

Eo = 21
E
− ν

 ,        νо = 1
ν
− ν

. (3.6) 

Now let us formulate boundary conditions, confining ourselves to the 
global coordinate system. 

 
static 

boundary conditions 
kinematic 

boundary conditions 
 

 
epx (σxnx + τxyny – xp ) = 0, 

 

 
eux (u – u ) = 0, 

 
 

epy (τxynx + σyny – yp ) = 0, euy (v – v ) = 0. (3.7)  

The set of governing equations and boundary conditions of the plane 
elasticity can be represented in the matrix form if we assume the following 
in addition to (3.1): 

 
p = |[ xp , yp ]|T,      Hu = I , 

 

A =

0

0
x

y

y x

⎡ ⎤∂
⎢ ⎥∂
⎢ ⎥∂⎢ ⎥∂
⎢ ⎥
∂ ∂⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

,     AT =
0

0

x y

y x

∂ ∂⎡ ⎤− −∂ ∂⎢ ⎥
⎢ ⎥∂ ∂− −⎢ ⎥∂ ∂⎣ ⎦

,        

Hσ =
0

0
x y

y x

n n
n n

⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 

C = 21
E
− ν

1 0
1 0

10 0 2

⎡ ⎤
ν⎢ ⎥

⎢ ⎥ν
⎢ ⎥

− ν⎢ ⎥
⎢ ⎥⎣ ⎦

,       C –1 = 1
E

1 0
1 0

0 0 2(1 )

−ν⎡ ⎤
⎢ ⎥−ν⎢ ⎥
⎢ ⎥+ ν⎣ ⎦

. 

 
By performing matrix operations according to formula (1.6), we can find 
the Lame operator for plane elasticity: 
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L = ATCA = 21
E
− ν

2 2
2

2

2 2
2

2

1 1
2 2

1 1
2 2

x yy

x y x

⎡ ⎤+ ν ∂ + ν ∂−∇ + −⎢ ⎥∂ ∂∂
⎢ ⎥

+ ν ∂ + ν ∂⎢ ⎥− −∇ +⎢ ⎥∂ ∂ ∂⎣ ⎦

. (3.8)

The strain compatibility condition for plane elasticity consists of a 
single equation: 

 
2 22

2 2
y xyx

x yy x
∂ ε ∂ γ∂ ε

+ −
∂ ∂∂ ∂

= 0, 
 
so the Saint-Venant matrix differential operator, S, can be written in the 
form 
 

S = 
2 2 2

2 2 x yy x
⎡ ⎤∂ ∂ ∂−⎢ ⎥∂ ∂∂ ∂⎣ ⎦

. 

 
Basic integral identity (1.2.17) for plane elasticity can be represented in 

components as 

( )x y xy
x y xy d

Ω

σ ε +σ ε + τ γ Ω∫  =  – , , , ,[( ) ( ) ]x xy y xy
x y y xu d

Ω

σ + τ + σ + τ Ω∫ v  + 

+ [( ) ( ) ]x xy y xy
x y y xn n u n n dσ + τ + σ + τ∫

Γ

Γv . (3.9)

4.3.1 Lagrange functional 

Let us write out an expression of the Lagrange functional in application to 
an isotropic material in plane stress: 

L(u) = 22(1 )
E
− ν

2 2 2
,, , , , ,

12 ( )2x y x y y xu u u d
Ω

− ν⎡ ⎤+ + ν + + Ω⎢ ⎥⎣ ⎦∫ v v v  – 

– ( )uX Y d
Ω

+ Ω∫ v   – ( )x y
px pye up e p d+∫

Γ

Γv . (3.10) 

This functional is defined on a set of vector functions u which meet the 
kinematic boundary conditions and assure a finite value of the energy 
integral,  E, 
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E(u) = 22(1 )
E
− ν

2 2 2
, , , , , ,

12 ( )2x y x y y xu u u d
Ω

− ν⎡ ⎤+ + ν + + Ω⎢ ⎥⎣ ⎦∫ v v v . (3.11) 

Euler equations for functional L are the equilibrium equations in 
displacements, 

       21
E
− ν

2 2
2

2
1 1

2 2
uu x yy

⎛ ⎞+ ν ∂ + ν ∂−∇ + −⎜ ⎟∂ ∂∂⎝ ⎠
v = X , 

 

       21
E
− ν

2 2
2

2
1 1

2 2
u

x y x
⎛ ⎞+ ν ∂ + ν ∂− −∇ +⎜ ⎟∂ ∂ ∂⎝ ⎠

vv = Y . (3.12) 

The static boundary conditions are natural ones for functional L .   

4.3.2 Castigliano functional 

K(σ) = 1
2E

2 2 2[( ) 2 ( ) 2(1 )( ) ]x x y y xy d
Ω

σ − νσ σ + σ + + ν τ Ω∫  – 

– [ ( ) ( ) ]x xy y xy
u x y y xe n n u e n n dσ + τ + σ + τ∫

Γ

Γv v . (3.13)

Functional K(σ) is defined on a set of stress fields σ that satisfy 
equilibrium equations (3.2) and static boundary conditions from (3.7). 

Euler equations for the Castigliano functional are equations of strain 
compatibility in stresses, which can be written in the following form for 
plane elasticity after some transformations using the equilibrium 
equations [5]: 

2 2 2

2 22 ( ) 0
x xy y

x y

x yx y
∂ σ ∂ τ ∂ σ− + − ν∆ σ + σ =

∂ ∂∂ ∂
. 

4.3.3 Reissner functional 

Based on formulas (3.1.4) and (3.1.5), here we present expressions of the 
Reissner functional in its first and second form for plane elasticity. The 
expanded representation is 
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R1(σ,u) = 1
2E

2 2 2[( ) 2 ( ) 2(1 )( ) ]x x y y xy d
Ω

σ − νσ σ + σ + + ν τ Ω∫ – 

– , , , ,[ ( + )]x y xy
x y y xu u d

Ω

σ + σ + τ Ω∫ v v  + [ ]uX Y d
Ω

+ Ω∫ v  + 

+ ( )x y
px pye p u + e p d∫

Γ

Γv + 

+ [ ( )( ) ( )( )]x xy y xy
u x y y xe u u n n e n n d− σ + τ + − σ + τ∫

Γ

Γv v v , (3.14)

R2(σ,u) = 1
2E

2 2 2[( ) 2 ( ) 2(1 )( ) ]x x y y xy d
Ω

σ − νσ σ + σ + + ν τ Ω∫ + 

+ , , , ,[ ( ) ( )]x xy y xy
x y y xu d

Ω

σ + τ + σ + τ Ω∫ v  + [ ]uX Y d
Ω

+ Ω∫ v + 

+ [ ( ) ( )]x x xy y y xy
px x y py y xe u p n n e p n n d−σ − τ + − σ − τ∫

Γ

Γv – 

– [ ( ) ( )]x xy y xy
u x y y xe u n n e n n dσ + τ + σ + τ∫

Γ

Γvv . (3.15)

Euler equations for the R equations are: equilibrium equations (2.1-a) 
and physical equations (2.1-c). All boundary conditions are natural for 
functional R.   

4.4 Lengthwise deformation of a straight bar 

We consider a problem of tension/compression of a straight bar. Let x be a 
lengthwise axis of the bar, and let q(x) be an intensity of a load distributed 
along the axis of the bar and acting in the direction of the x-axis. 

If we assume that the beginning of the coordinate system coincides with 
one of the bar’s ends and the whole length of the bar is l, then concentrated 
forces applied to the respective ends of the bar can be denoted by 0P  
and lP  (Fig. 4.1). Let u(x) be a function of lengthwise displacements of the 
bar’s sections during its deformation, and let N(x) be a longitudinal force 
assumed to be positive when the bar is in tension. We denote by A = A(x) a 
function that shows a change in the area of a cross-section of the bar. In 
addition, we assume that the lengthwise deformation of the bar is 
restrained by an elastic bed with its reaction coefficient k = k(x).  
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u

x
q x( )

P
l

P
0

l  
Fig. 4.1. Tension or compression of a straight bar 

The vectors of stresses σ, strains ε, and displacements u, which define 
the stress-and-strain distribution in the bar, consist in this case of one 
component each: 

σ =  |[N]|,        ε = |[ε]|,        u = |[u]|, (4.1) 

where ε = du
dx  is a relative lengthwise strain, positive when in tension. The 

set of governing equations is 
 

dN
dx− + ku = q   equation of equilibrium, 

 
du
dx = ε    geometric equation, 

 
N = EAε   physical equation. 

 
These equations acquire their usual matrix form (1.1) if we assume this in 
addition to (4.1): 

A = d
dx
⎡ ⎤
⎢ ⎥⎣ ⎦

,         AT = d
dx

⎡ ⎤−⎢ ⎥⎣ ⎦
,         C = |[EA]|,        C –1= 1

EA
⎡ ⎤
⎢ ⎥⎣ ⎦

. (4.2) 

In this (one-dimensional) problem, area Ω occupied by the elastic body is a 
straight segment [0,l], and boundary Г of area Ω consists of two points, 
x = 0 and x = l, so that the direction cosines, n, of external normal n to 
boundary Г at these points are equal, respectively, to: 

n(0) = –1,        n(l) = 1. (4.3) 

Boundary conditions in points x = 0 and x = l are formulated as  
 

static 
boundary conditions 

kinematic 
boundary conditions 

 

 
ep [N(0) + 0P ] = 0, 

 

 
eu [u(0) – u (0)] = 0, 

 
 

ep [–N(l) + lP ] = 0, eu [u(l) – u ( l)] = 0.         (4.4)  
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Parameters of boundary condition extraction, ep and eu , are specified on 
each end of the bar and are either 0 or 1 so that ep + eu = 1. It is also 
obvious that matrix operators Ep and Eu are first-order matrices, that is, 

Ep = |[ep]| ,          Eu = |[eu]| . (4.5) 

The basic integral identity for the bar tension/compression problem is 

0 0
0 0

[ ] | [ ] |
l l l l

p u
du dNNdx udx e Nu e Nudx dx= − + +∫ ∫ , (4.6)

By assuming Hσ = |[n]| and Hu = I = |[1]| and using formulas (1.1.4) and 
(1.1.5), we can write the non-integral terms in the right part of (4.6) in the 
operator form: 

(Hσσ, u)Г = (nNu)x=0 + (nNu)x=l = (Nu)x=l – (Nu)x=0 = lNu 0|][  . 

Also, expressions of the force and kinematic potentials can be represented 
as 

Пs(u) =  ( X , u) + (Ep p , Ep Huu)Г = 

= 0
0

( ) ( )
l

p x p x lqudx e Pu e Pu= =+ +∫ = 0
0

[ ] |
l

l
pqudx e nPu+∫ , 

Пk(σ) = (Eu Hσσ, Eu u )Г = (еu u nN)x=0 + (еu u nN)x=l = 
0[ ] |lue Nu , (4.7)

where we allow for the fact that n2 = 1 according to (4.3). 
As a result, the Lagrange functional in components is 

L(u) = 2 2
0

0
,

1 1( ) [ ] |2 2

l
l

x pEAu ku qu dx e nPu+ − −∫ . (4.8)

Euler equations of the functional consist of one equilibrium equation in 
displacements, 

( )d duEA ku qdx dx− + = , (4.9) 

and the natural boundary conditions consist of the static boundary 
conditions. 

The Castigliano functional in components is 

K(N,u) =
2

2
0

0

1 [ ] |2

l
l

u
N ku dx e NuEA

⎛ ⎞+ −⎜ ⎟
⎝ ⎠∫ . (4.10) 
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We will also present expressions of first and second forms of the 
Reissner functional. Based on general expressions for those functionals 
according to (3.1.4) and (3.1.5), and taking (4.7) into account, we have 

R1(N,u) = 

2
2

0
0

,
1 [ ( )] |2 2

l
l

x u
N ku u N qu dx e N u - uEA

⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠∫ +

0
[ ] |lpe nPu , 

 

R2(N,u) = 

2
2

0
0

,
1 [ ] |2 2

l
l

x u
N ku uN qu dx e NuEA

⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠∫ +

0
[ ( ) ] |lpe n P nN u− . (4.11) 

Finally, we present an expression of the Gurtin functional in its third form 

G3(N) =
2

0
0

, ,
1 1 [ ] |2 2 2

l
l2

x x u
N N qN dx e NuEA k k

⎛ ⎞+ + −⎜ ⎟
⎝ ⎠∫ , (4.12)

where functions N(x) allowed for comparison must satisfy the main 
boundary conditions: 
 

0( )p xe P N =+ = 0 ,        ( )p x le P N =− = 0 . 

4.5 Bernoulli-type beam on elastic foundation 

Let us consider a problem of bending of a straight bar (beam). We 
introduce a Cartesian coordinate system, (x, y, z), and match its x-axis with 
the longitudinal axis of the beam being bent. We assume the beam to bend 
in the (x, y)-axis, that is, in the plane of drawing that coincides with the 
plane of loading (a plane in which external loads are applied). If we direct 
third axis, z, of the right-hand Cartesian triple (x, y, z) from the observer to 
the plane of drawing, then the arrangement of the x and y axes in the 
drawing plane will be such as shown in Fig. 4.2. Here we assume that the 
origin of the coordinate system is matched with one of the ends (the left 
one) of the bar, and the whole length of the bar is l. 

Let q(x) be an intensity of a lateral load distributed along the bar and 
acting in the y-axis direction, and let m(x) be an intensity of an external 
moment-type load distributed over the beam’s length. External force and 
moment actions specified on the respective ends of the bar will be denoted 
by 0Q  and lQ , 0M  and lM , respectively (Fig. 4.2).  
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Fig. 4.2. External actions, internal forces, and displacements in a bar in bending 

Let v(x) be lateral displacements (deflections) of the bar, θ(x) its cross-
sections’ slopes, Q(x) its lateral shear force, M(x) its bending moment in 
the cross-section. Fig. 4.2 shows assumed positive directions of the 
internal forces, displacements, and external load actions. 

As commonly known, the classic theory of bending of a straight bar 
(Bernoulli–Euler theory) is based on the following three assumptions 
(sometimes they say, hypotheses): 

• a hypothesis of planar sections, according to which all sections normal 
to the beam’s axis in its undeformed state will remain planar 
(undistorted) and perpendicular to the beam’s axis during its bending; 

• a hypothesis of no pressure, according to which the longitudinal fibers 
of the beam do not interact with one another in their normal directions, 
in other words, σy = σz = 0 is assumed; 

• a hypothesis of no shear, according to which the shear strains are so 
small that the work of the tangential stresses, τ, in the expression of the 
strain energy, E, can be neglected comparing to the work of the normal 
stresses, σx 2. 

                                                      
2 Strictly speaking, the no-shear hypothesis is not a self-contained assumption. 

It is a corollary from the planar sections hypothesis. And indeed, it is not hard to 
understand that a section can remain planar (undistorted) only in the case the shear 
strain, γ, is constant over the whole height of the section. But that constant should 
be equal to zero as long as the shear at the level of at least one fiber is zero; the 
latter is zero in any of points of the section’s contour, for example, in the 
uppermost fiber. Hence the work of the tangential stresses, τ, is zero, that is, 
τγ = 0. Nevertheless, here we make a separate hypothesis out of this assumption, 
only because further it will be the only hypothesis to be thrown away in order to 
construct a theory of beam bending by Timoshenko on the basis of the variational 
approach; the second hypothesis will be kept intact and the first will be weakened. 
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The planar sections hypothesis is purely kinematic; it permits to use 
geometric considerations to immediately obtain an expression of the 
slopes, θ, of the beam’s cross-sections, and at the same time to establish a 
relationship between θ(x) and a change in the curvature of the beam’s 
axis, χ, 

θ = v’,    χ = – θ’ = – v’’, (5.1) 

where the longitudinal strain, εx , is a uniform linear function of the y 
coordinate of a fiber of the section where strain εx is calculated, 

εx = χy. (5.2) 

Curvature χ is assumed to be positive when the beam’s axis bends in 
such way that its convexity looks towards the increasing y coordinate 
(towards bigger deflections v).  

Relation (5.2) is essentially a mathematical form of the planar sections 
hypothesis. To see this, recall that any section of the bar should move as a 
perfectly rigid body according to this hypothesis, therefore the function of 
longitudinal displacements, u(x,y), of the section’s points satisfy a plane 
relationship, that is,  

u(x,y) = u(x,0) – θ(x)y, 
 

where u(x,0) are displacements along the x-axis of points on the beam’s 
axis. Now we take (5.1) and find the following from the Cauchy 
relationships for the general three-dimensional elasticity, which establish a 
relation between the displacements and the strains εx = ∂u/∂x, 

εx = ε0 + χy, (5.3) 

where ε0 = ∂u(x,0)/∂x is a relative lengthwise strain at the points of the 
section with the coordinate y = 0. Further, by assuming the physical law 
for normal stresses σx in the form3  

σx = Eεx , (5.4) 

where E is an elasticity modulus of the beam’s material, we can find the 
overall longitudinal force N that develops in an arbitrary section of the 
beam: 

N = x

A
dAσ∫ = E(ε0A + χSz) ,        Sz =

A
ydA∫ , (5.5) 

                                                      
3  Quite obviously, relationship (5.4) follows immediately from the general 

form of Hooke’s law for a three-dimensional isotropic elastic body and from the 
hypothesis of no pressure between the beam’s longitudinal fibers. 
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where A is an area of the beam’s cross-section. 
If we choose the coordinate system’s origin in such way that the 

longitudinal axis, х, passes through the centers of gravity of the beam’s 
cross-sections, then the static moment, Sz , of any section with respect to 
the z-axis will be zero. However, there are no external longitudinal forces 
among those acting on the flexural beam, therefore the condition of 
equilibrium of the beam in the projection onto the x-axis gives N = 0. 
Substituting this condition to (5.5) gives ε0 = 0 and thus (5.3) turns into 
(5.2), which was to be proved. 

We neglect the work of tangential stresses τ according to the no-shear 
hypothesis and calculate the strain energy of the beam, EA , in bending: 

EA = 
0 2

xl
x

A
dAdxσ ε

∫ ∫  = 1
2

2

0

l

x
A

E dAdxε∫ ∫ = 1
2

2 2

0

l

A
E y dAdx′′∫ ∫v = 

= 1
2

2

0

l

EI dx′′∫ v . (5.6)

Here A = A(x) is an area of the beam’s cross-section, which is variable over 
the beam’s length. As usual, here we denote by I = I(x) a moment of inertia 
of the beam’s cross-section, generally variable along the beam: 

 
I(x) = 2

A
y dA∫ . 

 
Supposing that the beam lies on a Winkler-type elastic bed with the 

subgrade reaction coefficient k(x), we calculate also an energy  
accumulated in this elastic bed: 

EK = 1
2

2

0

l

k dx∫ v . 
  
Let the parameters of boundary condition extraction, eQ, eM, ev and eθ, 

be specified on each of the beam’s ends, and let them take the values of 
either 0 or 1 so that eQ + ev = 1 and eM + eθ = 1. The meaning of these 
parameters is defined by its respective subscript. For example, eQ = 1 if the 
beam has an external concentrated force, Q , specified on the respective 
end, while displacement v is not known at the same place.  

Similarly, eθ = 1 if the beam has the cross-section’s slope, θ , specified 
on its respective end, while the bending moment, M, at the same point is 
unknown and will be obtained from the solution of the problem. 
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The potential of external static actions, Пs(v), is a virtual work of all 
external forces on displacements v and slopes θ = v’, hence it can be 
written in its general form as 

Пs(v) = 
0

l

q dx∫ v  +
0

l

m dx′∫ v  +eQ(0) 0Q v(0) + 

+ eQ(l) lQ v(l) + eM(0) 0M v’(0) + eM(l) lM v’ (l) = 
 

=  
0

l

q dx∫ v  +
0

l

m dx′∫ v  +
0[ ] |lQe nQv +

0[ ] |lMe nM ′v . (5.7)

As a result, the Lagrange functional (the full potential energy of a 
system) for a flexural beam which lies on an elastic bed will be 

L(v) = 1
2

2 2

0
[ ]

l

EI k dx′′ +∫ v v  – 

0

l

q dx−∫ v –
0

l

m dx′∫ v  –
0

[ ] |lQe nQv –
0

[ ] |lMe nM ′v . (5.8) 

By varying functional L and using the integration by parts, we derive 

δL =
0
[( ]

l

EI k q m dx′′ ′′ ′+ − + δ∫ v v v)  + 

+
0

( )
l

MEI e nM′′ ′⎡ ⎤− δ⎣ ⎦v v –
0

[( ]
l

QEI nQ′′ ′⎡ ⎤+ + δ⎣ ⎦v ) m e v  . 

 
As it was noted in Chapter 2, the Lagrange functional is defined on 

kinematically admissible fields of displacements, therefore its admissible 
variation, δv, is different from zero at the end of the beam if eQ = 1 and 
ev = 0. Similarly, variation δv’ is different from zero at the end of the beam 
if eM = 1 and eθ = 0. Considering this, the variation of the Lagrange 
functional on kinematically admissible displacements will finally become 

δL =
0
[( ]

l

EI k q m dx′′ ′′ ′+ − + δ∫ v v v)  + 

+
0

( )
l

Me EI nM′′ ′⎡ ⎤− δ⎣ ⎦v v –
0

[( ]
l

Q EI nQ′′ ′⎡ ⎤+ + δ⎣ ⎦e v ) m v . 

Equaling first variation, δL, to zero gives an Euler equation, 
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 (EIv’’)’’ + kv = q – m’,    (5.9) 

which is a differential equation of the beam’s equilibrium written in 
displacements. This also gives natural (static) boundary conditions 

eM (nEIv′′– M ) = 0,       eQ [n(EIv′′)′ + nm + Q ] = 0 (5.10) 

at ends points x = 0 and x = l.  
The formulation of boundary conditions (5.10) which follow from 

condition δL = 0 makes use of the obvious identity n2 = 1. The physical 
meaning of the boundary conditions is quite clear. The first of them makes 
the bending moment, M, in the end section of the beam equal (allowing for 
a sign convention) to an external concentrated moment, M , specified in 
the same section. The second of the boundary conditions concerns the 
shear force, Q, that develops in the end section of the beam and must be 
equal to a given external force Q . To see this, we consider the equilibrium 
of an elementary piece of the beam having the length of dx (Fig. 4.3), 

M

Q Q dQ+

M dM+

dx

q

m

 
Fig. 4.3. An elementary piece of the beam  

and arrive at the following two differential relationships for shear forces Q 
and bending moments M: 

Q′ = – q ,          M′ = Q + m . (5.11) 

Further, bending moment M in an arbitrary section of the beam is (by 
definition) an integral characteristic of first order with respect to normal 
stresses σx , that is, 

M = x

A
ydAσ∫ = 2

A
E y dAχ∫  = χEI, (5.12) 

hence using (5.1) and (5.11) we have 

M = – EIv′′,       Q = – (EIv′′ )′ – m . (5.13) 

Now we take (5.13) and make static boundary conditions (5.10) look as 
follows: 
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eM (nM + M ) = 0,       eQ (nQ – Q ) = 0. (5.14) 

We want to convert all relationships of the Bernoulli–Euler theory of 
beam bending to a common matrix form. 

The vectors of stresses σ, strains ε, and displacements u, which 
determine the stress-and-strain state of a beam, consist each of one 
component in the present case: 

σ =  |[M]|,     ε = |[χ]|,     u = |[v]|, (5.15) 

the only “strain” component ε being a change in the curvature of the 
beam’s axis during the bending, χ = -v’’, and the only “stress” component 
σ being the bending moment, M.  

The set of the governing equations for the problem will consist of 
2

2
d M
dx

− + kv = q – m’  equilibrium equation, 
 

2

2
d
dx

− v = χ   geometric equation, 
 

   M = EIχ   physical equation. 

These equations will take our usual matrix form (1.1) if we assume the 
following in addition to (5.15): 

A = 
2

2

d
dx

⎡ ⎤
−⎢ ⎥
⎣ ⎦

,     AT =
2

2

d
dx

⎡ ⎤
−⎢ ⎥
⎣ ⎦

,    C = |[EI]|,     C –1 = 1
EI

⎡ ⎤
⎣ ⎦ ,    

K = |[k]|,     X =|[ q – m’]|. (5.16) 

Now let us re-formulate the boundary conditions in the matrix form. The 
vectors of edge displacements and forces, u and p, and their respective 
vectors of given edge displacements, u , and forces, p , are written as 
second-order column matrices: 

u = ⎡ ⎤
⎢ ⎥′⎣ ⎦

v
v

,           p = 
nM
nM
′⎡ ⎤

⎢ ⎥−⎣ ⎦
,        u = ⎡ ⎤

⎢ ⎥θ⎣ ⎦

v
,       p =

Q nm
M

⎡ ⎤+
⎢ ⎥
⎣ ⎦

. (5.17) 

The matrix operators of boundary condition extraction, Ep and Eu , are 
square matrices of second order: 
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Ep =
0

0
Q

M

e
e

⎡ ⎤
⎢ ⎥
⎣ ⎦

,          Eu = 
0

0
e

eθ

⎡ ⎤
⎢ ⎥
⎣ ⎦

v . (5.18) 

Further we assume 

Hσ = 
dn dx
n

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎣ ⎦

,           Hu =
1
d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, (5.19) 

which enables us to represent the boundary conditions in the matrix form, 
too — in the form of equations (1.2). 

Now let us verify that the basic integral identity holds. First of all, recall 
(1.1.5) and write 

(p,u)Г = (Hσσ, Huu)Г = (nM′v – nMv′ )x=0 +(nM′v – nMv′ )x=l = 

= 
0

[ ] |lM ′v –
0

[ ] |lM ′v . 

Thus, 
(Au,σ) = (–v′′, M) = 

= –
0

l
Mdx′′∫ v  = –

0

l
M dx′′∫ v – 

0[ ] |lM ′v +
0[ ] |lM ′v = (u, ATσ) + (p, u)Г , 

which is the basic integral identity as in (1.2.17).   
Now we want to derive expressions for the Castigliano and Reissner 

functionals based on a general operator representation. First of all, we 
determine the potential of external kinematic actions, Пk(σ), from (2.3.2). 
We have 

Пk(σ) = (Eu Hσσ, Eu u )Г =  

= |[ev nM′ , – eθ nM]|·
0x=

⎡ ⎤
⎢ ⎥θ⎣ ⎦

v
+ |[ev nM′ , – eθ nM]|·

x l=

⎡ ⎤
⎢ ⎥θ⎣ ⎦

v
= 

= 
0[ ] |le M ′v v – 

0[ ] |le Mθ θ . (5.20) 

Further, using formula (2.3.3) helps derive the Castigliano functional for 
the Bernoulli–Euler beam bending as 

( , )MK v =  1
2

2

0

l
M dxEI∫  + 1

2
2

0

l

k dx∫ v  + 
0[ ] |le M ′v v + 

0[ ] |le Mθ θ . (5.21) 
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In this case the set Ps of physically and statically admissible stress-and-
strain fields consists of all possible couples of functions M and v which 
satisfy the following equations at the interval [0,l]: 

– M’’+ kv = q – m’,         M = –EIv’’, (5.22) 

and meet the static boundary conditions at each end of the interval: 

eM (nM + M ) = 0,         eQ (nM’ – nm – Q ) = 0. (5.23) 

According to (3.1.4) and (3.1.5), we define the Reissner functional in its 
first and second forms as follows: 

R1(M,v) = 

= 1
2

2

0

l
M dxEI∫ – 1

2
2

0

l

k dx∫ v  +
0

l

Mdx′′∫ v  +
0

l

q dx∫ v +
0

l

m dx′∫ v  + 
 

+
0

[ ( ] |le M ′ −v v v) – 
0

[ ( )] |le Mθ ′ − θv +
0

[ ] |lQe nQv +
0

[ ] |lMe nM ′v , (5.24) 

R2(M,v) = 

= 1
2

2

0

l
M dxEI∫ – 1

2
2

0

l

k dx∫ v  +
0

l

M dx′′∫ v  +
0

l

q dx∫ v  +
0

l

m dx′∫ v  – 
 

–
0

[ ] |le M ′v v + 
0

[ ] |le Mθ θ –
0

[ ( ) ] |lQe M - nQ′ v +
0

[ ( ) ] |lMe M nM ′+ v . (5.25) 

While the Reissner functional in its first form requires that 
displacements v be twice differentiable, its second form requires the 
differentiability of the same kind from moments M.  

Requirements of smoothness to those two functions can be 
symmetrized, and thus we will arrive at the third form of Reissnerian with 
equal conditions of differentiability for both displacements and moments. 
In order to do this, we use integration by parts on the third integral in 
either R1(M,v) or R2(M,v), which gives 

R3(M,v) = 

= 1
2

2

0

l
M dxEI∫ – 1

2
2

0

l

k dx∫ v  –
0

l

M dx′ ′∫ v  +
0

l

q dx∫ v  +
0

l

m dx′∫ v  + 
 

+
0

[ ( ] |le M ′ −v v v) + 
0

[ ] |le Mθ θ +
0

[ ] |lQe nQv +
0

[ ( ) ] |lMe M nM ′+ v . (5.26) 
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All boundary conditions (both static and kinematic) are natural boundary 
conditions for the Reissner functional in any form of it. 

Now we will finally give an expression in components for the Gurtin 
functional in its third form, assuming the functional to be defined on 
statically semi-admissible stress fields. Using the general formula (3.6.11), 
we obtain the following for a Bernoulli–Euler beam: 

G3(M) = 1
2

2

0

l
M dxEI∫ + 1

2

2

0

l M dx
k
′′

∫ +
0

(  )l M q m dx
k

′′ ′−
∫  – 

–
0[ ] |le M ′v v +

0[ ] |le Mθ θ . (5.27)

We emphasize again that functional G3 takes its minimum on the solution 
of the problem among a set of functions M(x) which satisfy static boundary 
conditions (5.14). The obvious thing is that the M(x) functions allowed for 
comparison must be smooth enough — more exactly, they are required to 
have quadratically summable second derivatives. 

4.6 Timoshenko-type beam on elastic foundation 

We want to formulate a problem of analysis for a flexural beam where 
shear strains are taken into account. This is a so-called theory of beams by 
Timoshenko. This theory is an enhancement of the Bernoulli–Euler beam 
theory; it abandons the third hypothesis used in the construction of the 
classic beam theory. In other words, the governing equations will now 
contain a refinement that allows for a work of tangential stresses; that’s 
why the Timoshenko beam theory can be treated as a beam bending theory 
that takes shear into account. 

Expression (5.6) acquires an additional term of the strain energy in the 
flexural beam, so 

EA = 
0 2

xl
x

A
dAdxσ ε

∫ ∫  + 
0 2

xyl
xy

A
dAdx

τ γ
∫ ∫ , (6.1) 

where τxy are tangential stresses developing in the sections of the beam and 
γxy are their respective shear strains. 

According to the planar sections hypothesis, any cross-section of the 
beam is treated as an undeformable body that does not allow any 
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displacements other than rigid ones4. It immediately follows from here that 
shear strain γxy can be a constant only for all points of a particular section. 
To see this, consider that the u and v displacements along the x and y axes 
can be written as follows on the basis the condition of rigid displacements 
and the sign convention, respectively: 

 
u(x,y) = u(x,0) – θ(x)y,        v(x,y) = v(x), 

 
hence 

γxy(x,y) = u
y x
∂ ∂

+
∂ ∂

v  = v′(x) – θ(x), (6.2) 

wherefrom we can see that the shear strains do not depend on the y-
coordinate. 

On the other hand, the distribution of tangential stresses τxy over a cross-
section is determined by well-known Zhuravsky’s formula5 

τxy = oQS
Ib

, (6.3) 

where we introduce these designations in addition to the previous ones: 

• b is a width of a cross-section (its size in the direction of the z-axis) at a 
point with a given coordinate y where the tangential stress, τxy, is to be 
determined; 

• Sо is a static moment of a cutoff part of the section which is above (or 
below) the fibers in question with a fixed y-coordinate.  

According to Hooke’s law, 

γxy = 
xy

G
τ , (6.4) 

where G is a shear modulus. Obviously, (6.4) is in general contradiction 
with relationship (6.2) because stresses τxy vary with the height of the 
section (they depend on the y-coordinate). In order to eliminate this 
contradiction, we will think that formula (6.2) determines only a certain 
shear strain averaged over the section which we will denote by γ without 
any additional indexes, that is, we assume 
                                                      

4  The Timoshenko theory of beams adopts the planar sections hypothesis in a 
weakened form: any cross-section of a beam is assumed to stay planar after the 
deformation, but the cross-section is not required to remain perpendicular to the 
deformed axis of the beam. 

5  Comments to Zhuravsky’s formula can be found in Appendix B. 
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γ(x) =  v′(x) – θ(x) . (6.5) 

This section-average shear γ will be found from the condition of energy 
equivalence between tangential stresses, τxy, and their integral 
characteristic, Q. We want to calculate a part of the strain energy in (6.1) 
per unit of length of the beam, which conforms to the work of the 
tangential stresses. Now, using the theorem of average value from integral 
calculus, we have 

1
2

xy
xy

A
dAτ γ∫  = 1

2 γ xy

A
dAτ∫ = 1

2 Q γ         where     Q = xy

A
dAτ∫ . (6.6) 

The section-average shear strain, γ, should be in a natural linear 
relationship with an overall tangential stress in the section, that is, shear 
force Q, 

γ = 
y

Q
GF

, (6.7) 

where Fy is a certain quantity of the `area’ dimensionality which we will 
call a shear area. Here subscript y emphasizes that we analyze the shear in 
the (x, y)-plane. 

Substituting expressions (6.3) and (6.4) to the left part of (6.6) gives 

1
2

xy
xy

A
dAτ γ∫ = 1

2

2( )xy

A
dAG

τ
∫ = 1

2

22
o

2 2
A

SQ dA
GI b∫ = 

1
2 Q

2
o

2 2
A

SQ A dA
GA I b

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ . (6.8)

Comparing (6.8) with (6.6) and (6.7) yields shear area Fy, where µ is a 
so-called section shape factor : 

Fy = 1
µ

A,         µ = 
2
o

2 2
A

SA dA
I b∫ . (6.9) 

As a result, (6.1) produces an expression for the strain energy stored in 
the beam and represented as a functional of internal forces M and Q: 

EA(M, Q) = 
2

0

( )
2

l x

A
dAdxE

σ
∫ ∫  + 

2

0

( )
2

l xy

A
dAdxG

τ
∫ ∫  = 

=
2

0 2

l M dx
EI∫  + 

2

0 2

l

y

Q dx
GF∫ . (6.10) 
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Further, internal forces M and Q are related through elasticity dependences 

M = EIχ,         Q = GFyγ (6.11) 

to kinematic parameters χ and γ which can be treated as components of a 
strain vector6  

χ = – θ’,               γ = v’– θ. (6.12) 

Substituting (6.11) to (6.10) will make the expression of EA a functional of 
displacements, 

EA(v,θ) =
2

0 2

l EI dx
′θ

∫  + 
2

0

( )
2

l
yGF

dx
′ − θ

∫
v

. (6.13) 

Now we are finally able to write out the Lagrange functional (the full 
potential energy of the system)  for a Timoshenko flexural bar lying on an 
elastic bed: 

L(v,θ) = 1
2

2 2 2

0
[ ( ) ]

l

yEI GF k dx′ ′θ + − θ +∫ v v –
0

l

q dx∫ v –
0

l

m dxθ∫  – 

–
0

[ ] |lQe nQv –
0

[ ] |lMe nMθ . (6.14) 

Taking (6.14) as a basis, we want to write an expression of first variation 
of the Lagrange functional on kinematically admissible displacements: 

δL=
0
{[ ( ( ) ]

l

yEI GF m′ ′ ′− θ − − θ − δθ +∫ v)  

[ ( ( )) ] }yGF k q dx′ ′+ − − θ + − δv v v + 

+
0

( )
l

Me EI nM′⎡ ⎤θ − δθ⎣ ⎦ +
0

[ ( ]
l

Q yGF nQ′⎡ ⎤− θ − δ⎣ ⎦e v ) v . (6.15)

By equaling first variation δL to zero, we derive Euler equations 

 –(GFyv′)′ + kv + (GFyθ)′ = q ,

–GFyv′ + GFyθ – (EIθ′)′ = m ,

 

(6.16) 

                                                      
6  We note that in the Timoshenko beam bending analysis the flexural strain 

parameter, χ, cannot have a simple geometric interpretation such as a curvature of 
the beam’s axis in the deformed state. Relationships (6.12) imply that 1/ρ = –
v′′ = χ – γ′ where ρ is a radius of curvature of the beam’s axis when deformed. 
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which are simultaneous differential equations of equilibrium for a 
Timoshenko beam, written in displacements. The natural boundary 
conditions for the L functional are 

0
[ ( ]

l

Q yGF nQ′⎡ ⎤− θ −⎣ ⎦e v ) = 0,      
0

( )
l

Me EI nM′⎡ ⎤θ −⎣ ⎦ = 0, (6.17) 

and are boundary conditions of static type. 
Collecting together all relationships derived above, we will have a full 

set of governing equations for the bending of a Timoshenko beam, 

       –Q′+ kv = q ,     –Q + M′ = m          equilibrium equations, (6.18-a) 

         γ = v′ – θ ,        χ = –θ′              geometric equations, (6.18-b) 

Q = GFyγ ,       M = EIχ                        physical equations. (6.18-c) 

Boundary conditions at points x = 0 and x = l include 

static 
boundary conditions 

kinematic 
boundary conditions 

 

 
n Q –  Q  = 0   ∈ГQ , 
n M +  M = 0  ∈ГM ,  

 
v – v  = 0   ∈Гv , 

 
θ – θ  = 0   ∈Гθ .  

 
 

              (6.19) 

Now we want to unify all relationships of the Timoshenko beam 
bending theory into the same matrix form. 

The vectors of stresses σ, strains ε, and displacements u, which define a 
stress-and-strain state in a bar, contain two components each in this case: 

σ = 
Q
M
⎡ ⎤
⎢ ⎥
⎣ ⎦

,       ε = 
γ⎡ ⎤
⎢ ⎥χ⎣ ⎦

,       u = ⎡ ⎤
⎢ ⎥θ⎣ ⎦

v
. (6.20) 

All equations will have the usual matrix form (1.1) if, in addition to (6.20), 
we assume 

A = 
1

0

d
dx

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

,         AT =
0

1

d
dx

d
dx

⎡ ⎤−
⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

,      K =
0

0 0
k⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

C =
0

0
yGF

EI
⎡ ⎤
⎢ ⎥
⎣ ⎦

,       C –1 =
1 0

10
yGF

EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,      X =
q
m
⎡ ⎤
⎢ ⎥
⎣ ⎦

. (6.21) 
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Now let us formulate the boundary conditions in the matrix form. The 
vectors of edge displacements and forces, u and p, and their respective 
vectors of given edge displacements and stresses, u  and p , are column 
matrices of second order: 

u = ⎡ ⎤
⎢ ⎥θ⎣ ⎦

v
,            p = 

nQ
nM

⎡ ⎤
⎢ ⎥−⎣ ⎦

,        u = ⎡ ⎤
⎢ ⎥θ⎣ ⎦

v
,        p =

Q
M
⎡ ⎤
⎢ ⎥
⎣ ⎦

. (6.22) 

Exactly in the same way as in the Bernoulli–Euler beam bending 
analysis, the matrix operators of boundary conditions extraction, Ep and 
Eu , are square matrices of second order: 

Ep =
0

0
Q

M

e
e

⎡ ⎤
⎢ ⎥
⎣ ⎦

,          Eu = 
0

0
e

eθ

⎡ ⎤
⎢ ⎥
⎣ ⎦

v . (6.23) 

Further we assume 

Hσ = 
0

0
n

n
⎡ ⎤
⎢ ⎥−⎣ ⎦

,         Hu = I, (6.24) 

which makes it possible to represent the boundary conditions in the matrix 
form, too — as equations (1.2). 

Let us check that the basic integral identity holds. First of all, (1.1.5) 
gives 
 

(p, u)Г  = (Hσσ, Huu)Г = (nQv – nMθ)x=0 + (nQv – nMθ)x=l =  

= 0[ ] |lQv  – 0[ ] |lMθ . 
 
Thus, 

(Au, σ) = (v′ – θ, Q) + (–θ′, M) = 
0

]
l

Q M dx′ ′θ − θ∫ v - )[(  = 

=
0

( )]
l

Q Q M dx′ ′− θ −∫ v[  + 
0

[ ] |lQv  – 
0

[ ] |lMθ = (u, ATσ) + (p, u)Г , (6.25) 

so we can see that the basic integral identity as in (1.2.17)  holds.   
Based on the general operator form of representation, we want to obtain 

expressions of the Castigliano and Reissner functionals. First of all, we 
take (2.3.2) and determine the potential of kinematic external actions, 
Пk(σ). We have 
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Пk(σ) = (EuHσσ, Eu u )Г = 

= |[ev nQ, – eθ nM]|·
0x=

⎡ ⎤
⎢ ⎥θ⎣ ⎦

v
+|[ev nQ, – eθ nM]|·

x l=

⎡ ⎤
⎢ ⎥θ⎣ ⎦

v
= 

= 
0[ ] |le Qv v – 

0[ ] |le Mθ θ . (6.26) 

Further, we use formula (2.3.3) to determine the Castigliano functional for 
the Timoshenko beam bending analysis as 

( , , )Q MK v = 1
2

2 2

0

l

y

Q M dxGF EI
⎛ ⎞

+⎜ ⎟
⎝ ⎠
∫  + 1

2
2

0

l

k dx∫ v  – 

– 
0

[ ] |le Qv v + 
0

[ ] |le Mθ θ . (6.27) 

In this case the set, Ps , of physically and statically admissible stress-and-
strain fields consists of all possible sets of functions Q, M, and v which 
satisfy equations (6.18-a) on the interval [0,l] and the static boundary 
conditions on each end of the interval.  

According to (3.1.4) and (3.1.5), we define the Reissner functional in its 
first and second forms as 

R1(Q,M,v) = 1
2

2 2

0

l

y

Q M dxGF EI
⎛ ⎞

+⎜ ⎟
⎝ ⎠
∫  – 1

2
2

0

l

k dx∫ v – 

–
0

]
l

Q M dx′ ′− θ − θ∫ v )[(  +
0

l

q dx∫ v   +
0

l

m dxθ∫  + 

+
0

[ ( ] |le Q −v v v) – 
0

[ ( )] |le Mθ θ − θ +
0

[ ] |lQe nQv +
0

[ ] |lMe nMθ , (6.28) 

R2(Q,M,v) = 1
2

2 2

0

l

y

Q M dxGF EI
⎛ ⎞

+⎜ ⎟
⎝ ⎠
∫  – 1

2
2

0

l

k dx∫ v – 

–
0

( )]
l

Q Q M dx′ ′− θ −∫ v[ +
0

l

q dx∫ v   +
0

l

m dxθ∫  – 
 

–
0

[ ] |le Qv v + 
0

[ ] |le Mθ θ –
0

[ ( ) ] |lQe Q nQ− v +
0

[ ( ) ] |lMe M nM+ θ . (6.29) 

Note that, unlike the Bernoulli beam case, there is no third form of the 
Reissner functional for a Timoshenko beam. This is because all functional 
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arguments participate in the Reissner functional with their derivatives of 
first order at the most. 

4.6.1 Another remark on kinematic boundary conditions for a 
Timoshenko beam 

As can be seen from (6.19), the kinematic boundary conditions for a 
Timoshenko beam involve displacements v and slopes θ of the beam’s 
cross-sections. Meanwhile, authors of various publications sometimes try 
to reanimate an erroneous suggestion that the boundary conditions should 
be formulated for first derivative of the displacement function, v′, rather 
than for slope θ. However, boundary conditions which include v′ (or the 
shear angle, γ) do not conform to a physically correct problem statement. 
The boundary conditions like these violate fundamental laws of mechanics 
so the reciprocity theorems do not work anymore7. 

It is simplest to demonstrate this by an example of a cantilever beam 
(Fig. 4.4) in its two states.  

M
P

l l  
Fig. 4.4.  Two states of a cantilever beam 

In its state 1, the beam is loaded by an end moment M, and in its state 2 
by a force P applied to its free end. First, we imagine that the boundary 
conditions v(0) = 0 and v′(0) = 0 are formulated for the clamped section 
x = 0. It is easy to make sure by direct substitution that the respective 
solutions for load cases 1 and 2 will be 

        v1 = 2

2
M x
EI

,            θ1 = M x
EI

;  

v2 = 
3 2 3

2 332
Pl x x

l lEI
⎛ ⎞−⎜ ⎟
⎝ ⎠

,          θ2 = 
2 2

2 22y

Pl x xEI
ll GF lEI

⎛ ⎞
− + −⎜ ⎟⎜ ⎟
⎝ ⎠

, 

 
because these solutions satisfy both the differential equations of the 
problem and all boundary conditions of it.  

If now we calculate the work of external forces in each state on the 
respective displacements from the other state, we will have 
                                                      

7  In the mathematical language it sounds like these boundary conditions are not 
self-conjugated anymore. 
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A12 = 
2

2
1
2y

MPl EI
l GFEI

⎛ ⎞
− +⎜ ⎟⎜ ⎟
⎝ ⎠

, A21 = 
2

2
PMl

EI
, 

 
and, obviously, these values are not equal, which contradicts to the work 
reciprocity theorem (Betty theorem).  On the other hand, if we pose the 
boundary conditions correctly in the location where the beam is clamped, 
that is, if we assume v(0) = 0 and θ(0) = 0, then the solution for the load in 
the form of an edge moment will remain the same whereas the state of the 
system under a concentrated force (state 2) will change to become 
 

v2 = 
3 3 2

2 3 26 2y

Pl x x xEI
ll GF l lEI

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
,          θ2 = 

2 2

22
Pl x x

l lEI
⎛ ⎞−⎜ ⎟
⎝ ⎠

, 

 
so 

A12 = 
2

2
MPl

EI
,  A21 = 

2

2
PMl

EI
, 

 
and the Betty theorem holds. 

4.7 Planar curvilinear bar, shear ignored 

Consider a planar curvilinear bar all cross-sections of which are orthogonal 
to a certain planar curve that belongs to the (x1,x2)-plane of a Cartesian 
coordinate system, (x1,x2,x3). This planar curve will be called an axis of the 
bar, and the (x1,x2)-plane a plane of the (curvilinear) bar.   

Let us assume that any cross-section of the bar orthogonal to the bar’s 
axis is crossed by the axis in its center of gravity. One of principal central 
axes of inertia of the bar’s section (z-axis, to be definite) will be deemed to 
belong to the plane of the bar. We will also assume that the plane of the 
bar is at the same time its plane of loading. The plane of loading (or the 
load plane) is a plane in which all external forces are applied8. 

The limitations formulated above permit us to deal with displacements 
and strains in the bar’s plane only, without considering any behavior of the 
bar out of the plane. 

Let the axis of the bar be a smooth curve defined by the following 
vector equation in the parametric representation: 

                                                      
8  When a moment load is involved, its vector must be orthogonal to the load 

plane. This should be clear because a moment load is actually a force couple 
consisting of two forces in opposite directions, which belong to the same plane. 
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M = M(s) (7.1) 

where:  

• M is a radius vector of the current point, M, of the bar’s axis;  
• s is a scalar parameter, being the length of arc counted from a certain 

initial point with the coordinate s = 0 in a direction assumed positive for 
the movement along the curve.  

Each point of the bar’s axis will conform to a local natural trihedron 
consisting of a triple of unit vectors, (n, t, b). Unit vector t will be defined 
as a vector of length one, tangential to the bar’s axis and directed towards 
increasing values of parameter s. From a well-known formula of vector 
analysis we have 

t = d
ds
M . (7.2) 

Unit vector n, called a normal, belongs to the plane of the bar’s axis, is 
orthogonal to the tangential unit vector t, and is directed towards the 
convexity of the bar’s axis, that is, away from the center of curvature of 
the axis. Unit vector b, called a binormal, is orthogonal to the plane of the 
bar. As the (n, t, b) trihedron has a right-hand orientation, each of the unit 
vectors can be represented via a vector product of the two others: 

n = t×b ,     t = b×n ,     b = n×t . (7.3) 

The conventions for the positive directions of the tangential vector t and 
normal n are given above; relationship (7.3) enables us to define also an 
unambiguous positive direction for binormal b.  

And vice versa, if we demand from the very beginning that the positive 
direction of binormal b coincide with the direction of increasing for third 
coordinate x3 of the fixed coordinate system, (x1,x2,x3), in this way we will 
define the above said positive direction of the movement along the bar’s 
axis because t = b×n. For example, for a piece of a curvilinear bar shown 
in Fig. 4.5, binormal b looks into the drawing away from the reader. 

x
1

s

x
2

t

s

 
Fig. 4.5. A natural trihedron in the current point, М, of the bar’s axis 
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A set of all points of the (x1,x2)-plane at the distance z from the bar’s 
axis along its normal (taking into account the sign of z) will be called a z-
fiber of the bar. In other words, z-fiber will be a curve defined by radius 
vector N = M + zn at a fixed value of z. The combination of parameters 
(z,s) can be conveniently treated as Lagrangian (material) coordinates in 
the two-dimensional analysis of deformation of a planar curvilinear bar, 
and further we will call z a normal coordinate and s an arc coordinate.  

As we move along the bar’s axis, unit vectors n and t will change (their 
direction), while binormal b will remain a constant vector9.  

Further we will need formulas for differentiating unit vectors n and t 
with respect to the arc coordinate. The formulas following below are used 
for unit vector differentiation — these are called Frenet formulas (see, for 
example, [6])10 

d
ds

t = – kn ,       d
ds
n = kt , (7.4) 

where k is a curvature of the bar’s axis — a quantity inverse to the radius 
of curvature, ρ, that is, k = 1/ρ.  

                                                      
9  Strictly speaking, binormal b does not change its direction as long as the arc 

coordinate keeps the sign of the curvature of the bar’s axis. When the curvature 
alters its sign in a point of zero curvature on the axis (a contraflexure), the positive 
direction of the binormal will become its opposite. The point of contraflexure 
itself is a singular point because there is no definite direction of normal n in it. Of 
course, one could build a theory of a curvilinear bar the axis of which contains 
contraflexure points, too. We will, however, omit those complicating 
circumstances and will assume for the sake of simplicity that the bar’s axis does 
not contain any contraflexure points. Moreover, we will assume that the deformed 
state of the bar does not alter the sign (direction) of the curvature in any point of 
the bar’s axis, nor it contains any points of zero curvature. 

10 In [6] the Frenet formulas contain the curvature with an opposite sign. The 
explanation for this is that the convention for the positive direction of normal n in 
[6] is opposite to the convention we use here. However, the formulas of 
differentiation (7.4) can be easily validated. The length of vector n is one by 
definition, therefore (n, n) = 1. We can differentiate this equality with respect to 
parameter s to find (n, dn/ds) = 0, hence the mutual orthogonality of vector n and  
vector dn/ds . Consequently, this latter vector is collinear with vector t, so it can 
be represented as dn/ds = аt where а is a certain scalar. The value of this scalar, 
equal to the curvature, can be easily found out from simple geometric 
considerations. The second Frenet formula can be proved in the same way. 
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4.7.1 Geometric equations 

The basis for an engineering theory of planar curvilinear bars is the same 
kinematic and static assumptions or hypotheses which were used to 
construct the Bernoulli–Euler theory of beams. 

First of all, let’s turn to kinematic relationships and express the strain of 
a z-fiber via displacements of the bar’s axis. In order to do this, we extract 
an elementary piece of the bar bounded by the axis and by the z-fiber of 
the bar together with two cross-sections orthogonal to the axis at the points 
with the arc coordinates s and s + ds. A curvilinear quadrangle which we 
obtain in this way is shown in Fig. 4.6 with Lagrangian coordinates of its 
respective angle points as shown here: M(s, 0),  N(s, z), P(s+ds, 0), 
Q(s+ds, z). The same figure depicts the selected element in its deformed 
state; the respective angle points of the quadrangle in the deformed state 
are denoted by the same letters but with the additional subscript 1. 

According to the planar sections hypothesis, straight segments МN and 
PQ remain straight in their deformed state, keep their length, and remain 
orthogonal to the deformed axis of the bar. These straight segments in their 
deformed state are denoted as М1N1 and P1Q1 , respectively, in Fig. 4.6.   

N

M

P

Q

M( )s

z

u

ds

ds
z

M
1

N
1

Q
1

P
1

ds
z1

ds
1

�

x
2

x
1

n

t

 
Fig. 4.6.  A displacement of an elementary piece of the curvilinear bar 

Let the current point, M, of the bar’s axis have got displacements 
corresponding to vector u = wn + vt. It is common to refer to w as a 
normal displacement and to v as a tangential displacement.  

Now let us explain the designations of arc differentials shown in 
Fig. 4.6: 

  ds is the length of arc MP;  ds1 is the length of arc M1P1;  
   dsz is the length of arc NQ;  dsz1 is the length of arc N1Q1.  
Obviously, 
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zds ds
z =ρ + ρ

        or        dsz = (1 + kz) ds. (7.5) 

Let ε be a relative strain of the z-fiber and let ε0 be a relative strain at the 
level of the bar’s axis (that is, at z = 0). Obviously, the arc differentials 
introduced above are related to one another as 

ds1 = (1 + ε0) ds,             dsz1 = (1 + ε) dsz = (1 + ε)(1 + kz) ds. (7.6) 

We will denote by k1 a curvature of the bar’s axis in its deformed state. 
We use formula (7.5) in application to the deformed state to express the 
length of arc N1Q1 via element ds in another way: 

dsz1 = (1 + k1z) ds1 = (1 + k1z)(1 + ε0) ds , (7.7) 

Comparing two expressions for dsz1 from (7.6) and (7.7) gives the equality 

ε(1 + kz) = ε0(1 + k1z) + k1z – kz . (7.8) 

However, it is more convenient to work with a quantity denoted by χ — a 
variation of the curvature of the bar’s axis — rather than the new curvature 
of the axis, k1, after assuming 

χ = k1 – k . (7.9) 

Substituting (7.9) to (7.8) and making some transformations, we have 
 

ε = ε0(1 + 1
z
kz

χ
+

) + 1
z
kz

χ
+

 . 
 

We want to estimate the value of χz/(1+kz) in comparison to one. It is 
easy to notice that this aggregate characterizes a distortion of the z-fiber 
caused by the bending of the bar (without the longitudinal deformation of 
the bar’s axis, that is, at ε0 = 0). Consequently, this aggregate conforms to 
a strain by its order of magnitude, so in the small-strain theory it can be 
neglected when added to one. As a result, we have this formula: 

ε = ε0 + 1
z
kz

χ
+

 . (7.10) 

Formula (7.10) defines a law of variation of the relative strains, ε, over the 
z-coordinate in the general case of a curvilinear bar. Further simplifications 
can be made seeing that the bar in question has a small initial curvature. 

When we build kinematic relationships for a curvilinear bar, for our 
convenience we want to distinguish between three principal versions of the 
theory depending on the order of smallness of a dimensionless parameter, 
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kh, where h is a height of the bar’s section, that is, a maximum size of the 
section in the direction of axis n.  

Following this classification criterion, we adopt this separation of all 
curvilinear bars into: 

• small-curvature bars, for which this estimate takes place: kh << 1; it 
shows that we can neglect the value of kh in comparison to one in 
various relationships; 

• medium-curvature bars, for which parameter kh is less than one but not 
so much that we would be able to neglect it when added to one without 
losing a good deal of accuracy. We think, however, that the estimate 
(kh)2 << 1 takes place, and it says we can neglect the value (kh)2 
comparing to one in various relationships; 

• big-curvature bars, with which formula (7.10) must be used without any 
simplification.  
 
We begin our discussion with curvilinear bars of medium curvature. 

Formulas related to small-curvature bars will be derived further using 
more simplifications. 

We expand expression 1/(1+kz) into a series over the powers of z: 

1
1 kz+

= 1– kz + ... (7.11) 

If we follow V.Z. Vlasov [14] and keep only two first terms in expansion 
(7.11), which is consistent with the estimate (kh)2 << 1, then 
expression (7.10) for the strain in the z-fiber will become as simple as 

ε = ε0 + χz(1 – kz) . (7.12) 

Parameters ε0 and χ permit to restore the strains at any point of a planar 
curvilinear bar, so in this sense they can be called components of strains in 
a curvilinear bar. However, for reasons which will be discussed later, we 
deem it reasonable to use a more exact entitlement with these parameters: 
components of strains in a curvilinear bar according to Vlasov. 

Our task is now to establish geometric relationships which would derive 
the bar’s strain components, ε0 and χ, from given components of the 
displacements of its axis, v and w. 

We introduce a new trihedron, (n1, t1, b1), together with the old one, 
(n, t, b). The new trihedron will have the same meaning but relate to the 
deformed state of the bar. Note that b1 = b because of the conditions stated 
in footnote 9. Further, exactly as formula (7.2) holds for the original 
position of the bar’s axis, its deformed state is subject to the relationship 
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t1 = 1

1

d
ds
M = 1d

ds
M

1

ds
ds = ( )d

ds
+ +t nM v w

0

1
(1 )+ ε

= 

=
0

1
(1 )+ ε

(t +v′ t + w′n +v d
ds

t + w d
ds
n ) . 

     
Here and further in this section we use a stroke to denote the 
differentiation with respect to parameter s.  

Now we want to use the Frenet formulas to derive this: 

t1 =
0

1
(1 )

a+
+ ε

t + 
0(1 )

b
+ ε

n, (7.13) 

where we denote 

a = v′ + kw,           b =  w′ – kv. (7.14) 

We can use (7.13) to obtain an expression of strain ε0 at the level of the 
bar’s axis. In order to do this, we recall that t1 is a unit vector. 

Let’s bother the ashes of the Samian Sage, Pythagoras: 

(1 + ε0)2 = (1 + a)2 + b2, 

or, after transformations, 

ε0(1 + 0

2
ε ) = a  + 1

2 ( a2 + b2). 

To remain within the small-strain theory, we neglect the value of ε0/2 
comparing to one and have 

ε0 = a  +  ½( a2 + b2). (7.15) 

Formula (7.15) defines a relative strain at the level of the axis of a 
curvilinear bar and is based on geometrically nonlinear (second-order) 
considerations. In the case of first-order analysis (geometrically linear), 
which is our subject at the moment, we should omit quadratic 
displacement terms in the right part of (7.15), to have finally 

ε0 = v′ + kw. (7.16) 

Returning to formula (7.13), we define unit vector n1 as a unit normal to 
the deformed axis of the bar. We have 

n1 = t1×b = 
0

1
(1 )

a+
+ ε

n – 
0(1 )

b
+ ε

t . (7.17) 
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Now we use the Frenet formulas on the axis of the bar in its deformed state 
and derive these relationships: 

1

1

d
ds

t = – k1n1,            1

1

d
ds
n = k1t1. (7.18) 

The new curvature of the bar’s axis, k1, can be obtained by making a scalar 
product of the second equality in (7.18) and vector t1, to derive 

k1 = (t1, 1

1

d
ds
n ) = 

0

1
(1 )+ ε

( t1, 1d
ds
n ). (7.19) 

Formal differentiation of (7.17) and application of the Frenet formulas 
gives 

1d
ds
n = At + Bn (7.20) 

where 

A =  k
0

1
(1 )

a+
+ ε

– 
s

d
d 0(1 )

b
+ ε

= 
0

(1 )
1

k a b′+ −
+ ε

 + 0
2

0(1 )
b ′ε
+ ε

, 

B = k
0(1 )

b
+ ε

 +
s

d
d 0

1
(1 )

a+
+ ε

= 
01

kb a′+
+ ε

– 0
2

0

(1 )
(1 )

a ′+ ε
+ ε

. (7.21) 

Substituting (7.13) and (7.20) to formula (7.19) and taking (7.9) into 
account, we have an expression for the variation of the curvature of the 
bar’s axis, χ, 

χ = 2
0

1
(1 )+ ε

[A(1+a) + Bb] – k . (7.22) 

Replacing the expressions of parameters A and B in (7.22) by those from 
(7.21), we make some transformations and arrive at the equality 

χ(1+ε0)3 = k[(1+a)2 + b2 – (1 + ε0)3] – b′(1+a) + a′b . 

But the expression in the brackets here is equal to 

(1+a)2 + b2 – (1 + ε0)3 = (1+ε0)2 – (1+ε0)3 = – ε0(1+ε0)2 = – ε0(1+2a+a2+b2), 

consequently, 

χ = 
2 2

0
3

0

(1 2 ) (1 )
(1 )

k a a b b a a b′ ′− ε + + + − + +
+ ε

. (7.23) 
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Formula (7.23) is exact in the sense that no simplifications — omissions of 
small quantities — were used to derive it. 

Adopting the small-strain theory, we can assume the denominator  in 
formula (7.23) to be equal to one, and to take the value for ε0 in the 
numerator from formula (7.15). Keeping terms of at most second order of 
the displacements and their derivatives in the expression thus obtained, we 
have 

χ = – ka – b′ – 
2
k (5a2 + b2) – b′a + a′b . (7.24) 

Finally, in the geometrically linear (first-order) analysis, we omit second-
order terms of displacements in (7.24). As a result, replacing parameters a 
and b with their expressions via the displacement components as in (7.14) 
gives a final equation: 

χ = – w′′ – k2w  + k′v. (7.25) 

Further we want to manipulate another convenient geometric parameter 
which has the meaning of a slope, θ, of a current cross-section in the bar. It 
is easy to notice that geometric considerations give sinθ = –(n, t1). We 
suppose slope θ to be small, therefore its sine can be replaced by the value 
of the slope itself, and after involving (7.13) we have 

θ = – b = – w′ + kv. (7.26) 

Formulas (7.16), (7.25), and (7.26) make up a complete set of geometric 
equations which establish relationships between the displacements and the 
strains in the theory of planar curvilinear bars. They are a particular case of 
geometric relationships obtained by V.Z. Vlasov in his engineering theory 
of cylindrical shells [14], therefore we will call them Vlasov’s geometric 
relationships. 

There is another possible approach to geometric relationships for a 
planar curvilinear bar which has its roots in the theory of shells by Love 
[8] and adopted by most authoritative experts in the thin shell theory in our 
country [10], [4].  

The second approach is different in two points. First, and most 
important, the initial curvature of the bar’s axis is assumed to be so small 
that the estimate (kh)2 << 1 should be replaced by a stronger estimate, 
kh << 1. The classification given above treats such case as curvilinear bars 
of small curvature. Second, the theory (which we will call a Kirchhoff–
Klebsch theory) uses a different parameter of flexural strain, other than the 
variation of the bar’s axis curvature χ = k1 – k  but close enough to it, 
namely 
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κ = χ + kε0 , (7.27) 

which gives the following after substituting formulas (7.16) and (7.25) 

κ = – w′′ + (kv)′. (7.28) 

The κ quantity will be called a Kirchhoff–Klebsch parameter of flexural 
strain11. Taking into account (7.27), we can rewrite formula (7.12) as 

ε = ε0 + χz(1 – kz) = ε0(1– kz + k2z2) + κz(1– kz), 

so, in order to remain consistent in our omitting infinitesimal terms, we 
should replace both expressions in the parentheses by one and thus obtain 
a linear distribution of the strains along the z-coordinate,   

ε = ε0 + κz . (7.29) 

Now let us collect all geometry-related results that we have obtained 
and place them together in Table 4.1 for convenience of browsing. Please 
note again that all formulas in Table 4.1 refer to the geometrically linear 
(first-order) analysis. 

  Table 4.1 

Big-curvature 
 bars 

 

Medium-curvature  
bars 

 
(kh)2 << 1 

 

Small-curvature 
bars 

 
kh << 1 

 

ε = ε0 + 1
z
kz

χ
+

 
 

ε = ε0 + χz – χkz2 
 

ε = ε0 + κz 

ε0 = v′ + kw 
θ = – w′ + kv 
χ = – kε0 + θ′ 

ε0 = v′ + kw 
θ = – w′ + kv 
χ = – kε0 + θ′ 

ε0 = v′ + kw 
θ = – w′ + kv 

κ =  θ′ 

χ = – w′′ – k2w  + k′v χ = – w′′ – k2w  + k′v κ = – w′′ + (kv)′ 

ε = v′ + kw + 
+(-w′′ - k2w +k′v)

1
z
kz+

 

ε = v′ + kw + 
+(-w′′ - k2w +k′v)z(1-kz)

 

ε = v′ + kw + 
+ (–w′′ + kv′ + k′ v)z 

 

                                                      
11 Strictly speaking, Love treats the flexural strain parameter, κ, in Section 259 

of his known work [8] exactly as a variation of the bar’s axis curvature rather than 
a quantity close enough to but different from χ, based on and referring to previous 
results by Klebsch and even earlier works by Kirchhoff. This treatment, though 
not quite accurate, is used by him also for building the general theory of shells in 
Section 326. See formulas (4.27) in Novozhilov’s [10]. 
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4.7.2 Equations of equilibrium 

The set of internal forces (stresses), N, Q, M, is shown in Fig. 4.7. Let qt(s) 
and qn(s) be components of intensities of external loads distributed along 
the bar’s axis and acting along the respective tangential and normal 
directions, and let m(s) be an intensity of a distributed moment load. 
External concentrated static actions specified on the ends of the bar will be 
denoted by 0N  and lQ , 0M  and lM , respectively (Fig. 4.7).  

m

q
n

q
t

Q l( ) N l( )

M l( )

Q(0)
N(0)

M(0)

Q
l

Q
0

M
l

M
0

N
l

N
0  

Fig. 4.7.  Internal and external forces acting on a curvilinear bar 

This figure shows all internal and external force actions in their positive 
directions. 

We want to consider the equilibrium of an elementary piece of the 
curvilinear bar, ds long, in projections onto the tangential, t, and the 
normal, n, directions and in moments with respect to one of the bar’s ends; 
in this way we obtain the following differential relationships between 
internal force quantities: 

–N′ – kQ = qt,          kN – Q′ = qn,        Q – M′ = m. (7.30) 

Equations (7.30) have the meaning of differential equations of 
equilibrium; they are called Kirchhoff equations [3].  

If we use the third equation in (7.30) to exclude the shear force, Q, from 
first two Kirchhoff equations, then the equilibrium equations will contain 
two unknown functions, longitudinal force N and bending moment M, 

–N′ – kM′ = qt + km,      kN – M′′ = qn + m′, (7.31) 

and these will be also called Kirchhoff equations. 
Based on the hypothesis of no pressure between the longitudinal fibers 

of the bar, we adopt the physical law of relation between longitudinal 
stress σ and strain ε in its simplest form, a linear relation: 

σ = Еε. (7.32) 

Further, the internal forces – longitudinal force N and bending moment 
M are integral characteristics of the stresses; they are calculated by the 
following formulas: 
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• for medium-curvature bars (Vlasov’s theory), 

N = 
A

dAσ∫ = 0
2( )

A
E z kz dAε + χ − χ∫ = ε0EA – χkEI, 

M = 
A

zdAσ∫ = 0
2( )

A
E z kz zdAε + χ − χ∫ =  

= χEI – χkEI2 = χEI(1– k 2I
I ), (7.33) 

• for small-curvature bars (Kirchhoff–Klebsch theory), 

N = 
A

dAσ∫ = 0( )
A

E z dAε + κ∫ = ε0EA, 

M = 
A

zdAσ∫ = 0( )
A

E z zdAε + κ∫ = κEI, (7.34) 

• for big-curvature bars, 

N = 
A

dAσ∫ = 0( )1A

zE dAkz
χε +
+∫ = ε0EA  +χESρ , 

M = 
A

zdAσ∫ = 0( )1A

zE zdAkz
χε +
+∫ = χEIρ . (7.35) 

Formulas (7.33) involve a new geometric property of a cross-section in 
addition to standard ones (area of section A  and moment of inertia I) – a 
second-order moment of inertia, I2. 

Generally, let In  be called a moment of inertia of n-th order if 

In = 1n

A
z dA+∫       so that      I2 = 3

A
z dA∫ . (7.36) 

The integration in (7.33) to (7.35) over the area takes into account the 
fact that the z-coordinate is counted from the section’s center of gravity 
along the principal central axis, therefore the integral of z to first power (a 
static moment of the section’s area) becomes zero. Note, by the way, that 
for cross-sections with two axes of symmetry the moment of inertia of 
second order (as well as of any even order) is zero. It is quite clear because 
dA = b(z)dz where b(z) is a size of the section in the direction 
perpendicular to the z-axis (width of the section). For a bisymmetric 
section, b(z) = b(–z), hence In = 0 for an even n.  However, if there is no 
bisymmetry, the kI2/I ratio is small comparing to one. For example, it is 
easy to calculate that kI2/I = 2kh/15 for a section in the shape of an 
equilateral triangle of height h. This is a reason why we can adopt the 
additional estimate kI2/I  << 1 in the theory of medium-curvature bars. But 
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then the second of relationships (7.33) will be simplified, so finally we 
arrive at this in the Vlasov theory: 

N = ε0EA – χkEI,      M =  χEI. (7.37) 

Further, (7.35) introduces two more geometric properties: a static 
moment, Sρ , of a reduced section with respect to the level of the center of 
gravity of the original section, and a moment of inertia of the reduced 
section, Iρ , with respect to the same axis. The reduced section of a 
curvilinear bar is a section derived from a given one by formally 
decreasing its width, b, (1+kz) times at the level of the z-fiber. In other 
words, 

Sρ = 
1A

z dA
kz+∫ ,        Iρ = 

2

1A

z dA
kz+∫ . (7.38) 

By the way, these two geometric properties can be easily expressed via the 
reduced section’s area, Aρ, because  

Aρ = 1
1A

dAkz+∫ ,        kSρ = 1 1
1A

kz dAkz
+ −
+∫ = A – Aρ , 

kIρ = 
2

1A

z kz z dAkz
+ −
+∫ = – Sρ. 

Physical relationships (7.35) for big-curvature bars should be rewritten 
now in a final convenient form: 

N = ε0EA  – χkEIρ ,          M =  χEIρ . (7.39) 

We present all physical relationships for three classes of curvilinear bars 
together in Table 4.2. The second column of the same table presents 
expressions of the stresses/forces via the displacements, obtained by 
substituting strain expressions from the respective column of Table 4.1 to 
the physical relationships. 

 
Table 4.2 

Big-curvature bars 

N = ε0EA  – χkEIρ N = (v′ + kw)EA + (w′′ + k2w – k′ v)kEIρ 

M =  χEIρ M = (– w′′ – k2w + k′ v)EIρ 
 

Medium-curvature bars (according to Vlasov)      (kh)2 << 1 

N = ε0EA – χkEI N = (v′ + kw)EA + (w′′ + k2w – k′ v)kEI 

M =  χEI M = (–w′′ – k2w + k′ v)EI 
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Small-curvature bars (according to Kirchhoff–Klebsch)      kh << 1 

N = ε0EA  N =  (v′ + kw)EA  

M =  κEI M = (– w′′ + k′v + kv′ )EI 

Comparing formulas related to the bars of big and medium curvature, 
we notice that they are identical up to the replacement of the section’s 
moment of inertia, I, by the reduced section’s moment of inertia, Iρ, and 
vice versa. As for the bars of small curvature, the differences from the first 
two theories are more substantial because the very structure of the 
formulas is subject to changes. 

We can replace the internal forces in equilibrium equations (7.31) by 
their representations via the displacement components, v and w, according 
to Table 4.2 and collect terms related to particular displacements to arrive, 
after some transformations, at a governing system of two simultaneous 
differential equations with respect to the displacements:  

 L11v + L12w =  qt + km , 

L21v + L22w =  qn + m′ , 

 

(7.40) 

which has a meaning of simultaneous equations of equilibrium in 
displacements (a Lame-type system of equations, if it is more to the 
reader’s liking) for the analysis of the behavior of a curvilinear bar in its 
plane of curvature. The differential operators, L11, L12, L21 and L22, for 
different versions of the theory are given below – see Table 4.3. In 
particular, for a bar of a round shape with the radius R and constant cross-
section these operators become simpler, as shown in Table 4.4. 

Tables 4.3 and 4.4 do not contain explicit expressions of operators Lij 
for big-curvature bars. But they are not needed, actually, because those 
operators coincide with the respective Vlasov operators after replacing I 
with Iρ. Equations (7.40) for medium-curvature bars are a particular case of 
V.Z. Vlasov’s equations derived by him for a circular cylindrical 
shell [14]. 

Table 4.3 
Medium-curvature bars (according to Vlasov)      (kh)2 << 1 

L11v  = – (EAv′)′  + (k′)2EIv L12w = – (kEAw)′ – k′EI(w′′ + k2w) 

L21v = kEAv′- k2k′EIv - ( k′EIv)′′ L22w=k2EAw+k2EI(w′′+k2w)+[EI(w′′+k2w)]′′ 
 

Small-curvature bars (according to Kirchhoff–Klebsch)       kh << 1 

L11v = – (EAv′)′ – k[EI(kv′)]′ L12w = – (kEAw)′ +   k(EIw′′)′ 



4.7 Planar curvilinear bar, shear ignored      185 

Small-curvature bars (according to Kirchhoff–Klebsch)       kh << 1 

L21v = kEAv′  – [EI(kv)′]′′ L22w = k2EAw + (EIw′′)′′ 
 

Table 4.4 
Medium-curvature bars (according to Vlasov)      (kh)2 << 1 

L11v  = –EAv′′ L12w = – kEAw′ 

L21v = kEAv′ L22w = k2EAw  + EI(wIV + 2k2w′′ + k4w) 
 

Small-curvature bars (according to Kirchhoff–Klebsch)        kh << 1 

L11v = – (EA + k2EI)v′′ L12w = kEIw′′′  –  kEAw′ 

L21v = – kEIv′′′ + kEAv′ L22w = EIwIV  +  k2EAw 

Here we call upon V.Z. Vlasov to speak for himself: 

“In Table 11 we can see12 that differential operators located in 
symmetric positions with respect to the main diagonal terms have the same 
expressions. This symmetry of shell equations, which was noted for the 
first time in a number of our papers, is in complete accordance with basic 
theorems of elasticity, such as the work reciprocity theorem by Betty.” 

And further, on page 214: 

“…we believe that the system of differential equations with a symmetric 
matrix13 is in full conformance to basic laws of energy in statics of solid 
elastic bodies. 

Due to this symmetry that follows from the reciprocity law, the problem 
of equilibrium of an elastic shell can be represented in the form of purely 
integral or integral-differential equations with their kernels 
unexceptionally symmetric. In addition, the analysis of natural oscillations 
of a shell that makes use of a symmetric matrix of the governing 
differential equations can always be reduced to a secular equation which 
gives only real values for all the frequencies in the oscillation spectrum”. 

An analysis given below indeed gives a confirmation of the statement 
that the reciprocity laws are satisfied; however, we do not feel that the 
                                                      

12 Table 11 on page 212 of the work [14] contains a system of differential 
equations of equilibrium for a circular cylindrical shell. As we noted above, a 
particular case of that system of equations developed by V.Z. Vlasov in 
application to a bar of a circular shape and a constant cross-section is the system 
of differential equations (7.40) with operators Lij , shown in Table 4.4 for medium-
curvature bars. 

13  Underlined by us. 
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grounds presented by Prof. Vlasov are convincing. His statement seems to 
be rather a conjecture based on a perfect intuition of a prominent 
mechanician. 

What draws an immediate attention is that the symmetry of the 
differential equations for a curvilinear bar takes place only if the bar has a 
constant curvature and a constant cross-section; in addition, the sign 
should be altered in one of the equations of system (7.40). But this formal 
symmetry is unimportant — and the more so seeing that it vanishes for 
general equations defined in Table 4.3. What is important is the fact that 
the matrix differential operator for equations (7.40) is self-conjugated in 
the Lagrangian sense. This statement can be easily validated by recalling 
rules for construction of a conjugated operator indicated in Section 1.1. 
But even the formal self-conjugation of the differential operator is only a 
necessary but not sufficient condition for the fundamental reciprocity 
theorems to hold. Formulations of the boundary conditions are equally 
important.  

V.Z. Vlasov does not write out explicit formulas for the static boundary 
conditions, but he gives the following verbal explanation [14]:   

“If boundary conditions for a shell are specified in forces, then there 
must be four such conditions in each point of the contour line. Of those 
conditions, two will relate to the normal and shearing forces and will 
conform to two static conditions in plane elasticity...” 

Obviously, in the last sentence of the quotation V.Z. Vlasov means edge 
conditions for shear force Q and longitudinal force N in application to a 
curvilinear bar. 

It is easy to see that the matrix differential operator for the Kirchhoff–
Klebsch theory is also self-conjugated in the Lagrangian sense. 

Before we begin a direct consideration of the edge conditions, we want 
to convert all relationships obtained above to a matrix form by introducing 
the vectors of displacements u, strains ε, “stresses” σ, and given external 
forces X . We will need to distinguish between two strain vectors which 
correspond to two theories: εV will be a strain vector of Vlasov’s theory, 
and εK will be a strain vector of the Kirchhoff–Klebsch theory 

u = |[v, w]|T,      εV = |[ε0, χ]|T,      εK = |[ε0, κ]|T,  

σ = |[N, M]|T,       X  = |[qt + km, qn + m′]|T. (7.41) 

Based on the formulas derived above, further we present the matrix 
differential operators of geometry, AV, for the Vlasov theory and AK for the 
Kirchhoff–Klebsch theory, the general (Kirchhoff’s) operator of 
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equilibrium, B, and the respective operators of physical relationships, CV 
and CK . Thus we have 

V 2
2

2

( ) ( )

( )( ) ( )

d k
ds

dk d k
ds ds

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −⎢ ⎥⎣ ⎦

A ,     K 2

2

( ) ( )

( ( )) ( )

d k
ds

d k d
ds ds

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥⎣ ⎦

A , 

2

2

( ) ( )

( )( )

d dk
ds ds

dk
ds

⎡ ⎤− −⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥⎣ ⎦

B ,    V 0
EA kEI

EI
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C ,  

1
V

1/ /
0 1/
EA k EA

EI
− ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C ,  K

0
0

EA
EI

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C ,  1
K

1/ 0
0 1/
EA

EI
− ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C . (7.42) 

Here we have 

εV = AVu ,    εK = AKu ,        Bu = X ,     σ = CV εV ,      σ = CK εK . (7.43) 

4.7.3 Stresses conjugate to the Vlasov vector of strains 

First of all, we cannot help but notice that in Vlasov’s selection of 
governing vectors the equilibrium operator, B, is not conjugate to the 
geometry operator, AV, which makes us return to the original designation 
of B for an equilibrium operator. Also, Vlasov’s mutually inverse 
algebraic operators CV and 1

V
−C  for physical relationships in (7.42) are not 

symmetric. This occurs because the vector of stresses, σ, and the vector of 
strains, εV, have been chosen arbitrarily and do not match each other in the 
sense of energy. At the same time, for the Kirchhoff–Klebsch theory 

B = KAT         and         CK = KC T . (7.44) 

It is easy to prove that if we introduce a generalized force denoted by T 
according to formula 

T = N + kM, (7.45) 

then we can define a vector of stresses, σV = |[T, M]|T, conjugated by 
energy to Vlasov’s vector of strains, εV = |[ε0, χ]|T.  
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The stress/force T defined by formula (7.45) can be conveniently named 
a generalized longitudinal force. It can be expressed via displacements  v 
and w based on the formulas from Table 4.2 as follows: 

T = (v′ + kw)EA. (7.46) 

The conjugation by energy between strain and stress vectors will be 
understood in the sense that the following two conditions must be met: 

• the operators of geometry and equilibrium must be mutually conjugated;  
• the physical relationships must be symmetric and positive definite.  

From the mechanical standpoint, the generalized forces and their 
respective strains are vectors conjugated by energy if their scalar product 
has the meaning of a virtual work of internal forces. 

And indeed, linear transformation (7.45) can be represented as follows 
in the matrix form: 

σV = Λσ ,    Λ = 
1
0 1

k⎡ ⎤
⎢ ⎥
⎣ ⎦

,    Λ–1 = 
1
0 1

k−⎡ ⎤
⎢ ⎥
⎣ ⎦

, (7.47) 

so in the new force variables, σV , the equations of equilibrium Bσ = X  
and the physical relationships CVεV = σ will be written respectively as 

BΛ–1σV = X ,         ΛCV εV = σV . (7.48) 

But the BΛ–1 operator is equal to  

BΛ–1
2

2
2

( ) ( )

( )( ) ( )

d dk
ds ds

dk k
ds

⎡ ⎤−⎢ ⎥
⎢ ⎥=
⎢ ⎥− −⎢ ⎥⎣ ⎦

, (7.49) 

and now we find that 

VAT = BΛ–1 ,        СK = ΛCV , (7.50) 

where operator VAT  is conjugate (in the Lagrangian sense) to geometry 
operator AV, and operators CK and 1

K
−C  are symmetric and positive definite 

as can be seen from (7.42).  
So, the equations of equilibrium in stresses σV = |[T, M]|T conjugate to 

strains εV will be 

–T′ + k′M = qt + km,        kT – M′′ – k2M = qn + m′ . (7.51) 
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Now we use general formula (1.6) to build Lame’s matrix differential 
operator LV  for the theory of bars of medium and big curvature as a 
consecutive product of the equilibrium operator, the operator of physical 
relationships, and the operator of geometry, that is, LV = BCVAV . By 
noting that BCV = (BΛ–1)(ΛCV) = VAT СK  and recalling properties of 
conjugate operators (1.1.10) and (1.1.11), we derive 

LV = BCVAV = VAT СKAV = ( VATСKAV)T = VLT . (7.52) 

Now (7.52) makes it clear why operator LV for Vlasov’s system of 
equation is formally self-conjugated. 

Consider the basic integral identity in the form of (1.2.17) in application 
to stresses σV . We have 

(AVu, σV) = 0
0
[ ] s

l

T M dε + χ∫ = 

= 2

0
[( ) ( ) ] s

l

k T k k M d′ ′′ ′+ + − − +∫ v w w w v = 

= 2

0
[ ( ) ( ] s

l

T k M kT M k M d′ ′ ′′− + + − −∫ v w + 0[ ] |lTv + 0[ ] |lM ′w – 

–
0

[ ] |lM′w = (u, VAT σV) + (p, u)Г . (7.53) 

Obviously, the basic integral identity (7.53) holds if, for example, we 
take p = pa and u = ua for edge forces and edge displacements, where  

pa = |[ nT, nM′, nM]|T,        ua = |[v, w , ψ]|T,        ψ = –w′ , (7.54) 

ψ being a kinematic parameter which we will call a generalized slope. 
In (7.54) and further on we denote by n the cosine of an angle between 

the external normal to a current section and the direction of unit vector t, 
so 

n(l) = 1,     n(0) = –1. 

At this point we have to note that the distribution of edge forces pa and 
edge displacements ua according to (7.54) is not the only possible one. 
Basic integral identity (7.53) will not be violated if instead (7.54) we take 
second version (let’s call it “version b”) of the edge forces and 
displacements by assuming  p = pb  and  u = ub  in this way: 

pb = |[ nN, n M ′ , nM]|T,         ub = |[v, w , θ]|T,        θ =  –w′ + kv . (7.55) 

These two versions of the boundary conditions are related as follows: 
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pa = ΛГ pb ,            ua = ( 1−ΛΓ )Tub , 

ΛГ = 
1 0
0 1 0
0 0 1

k⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,         ( 1−ΛΓ )T =
1 0 0
0 1 0

0 1k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

, (7.56) 

wherefrom we have an important relationship 

(pa , ua)Г  = (ΛГ pb , ( 1−ΛΓ )Tub)Г  = ( 1−ΛΓ ΛГ pb , ub)Г  = (pb , ub)Г . (7.57) 

From the mechanical standpoint we can interpret this as follows:  

the virtual work of contour forces, pa , on their respective contour 
displacements, ua, is equal to the virtual work of contour forces pb of their 
respective contour displacements ub.  

Note that this fact is not a variation of the work reciprocity theorem by 
Betty, though the verbal formulations of the two statements are very 
similar. It is a separate independent proposition. In the Betty theorem, 
indexes a  and b  refer to two states of a system, while here the same 
indexes refer to two possible formulations of the edge conditions for the 
same state of the system.   

Now let’s turn to the basic integral identity for the AK operator. Instead 
of (7.53) we have 

(AKu, σ) = 0
0
[ ]

l

N M dsε + κ∫ =
0
[( ) ( ( ) ]

l

k N k M ds′ ′′ ′+ + − +∫ v w w v) = 

=
0
[ ( ) ( ]

l

N - kM kN M ds′ ′ ′′− + −∫ v w + 0[ ] |lNv – 

– 
0[( ] |lk M′ −w v) + lM 0|][ ′w = (u, KAT σ) + (p, u)Г  . (7.58)

And again we can choose to assume either p = pb and u = ub according to 
(7.55) or p = pa and u = ua according to (7.54). 

Thus, the boundary conditions can be formulated in a dual way both in 
Vlasov’s theory and in one by Kirchhoff and Klebsch, and both versions of 
the boundary conditions never contradict to the laws of energy in statics. 
The most popular version is one we denoted by index “b”.  

In many cases both versions of the boundary condition formulations are 
equivalent. For example, if the end of a curvilinear bar is fully clamped, 
the conditions on that end, either ub = 0 or ua = 0, are implied by each 
other because of (7.56) and the nondegeneracy of matrix ΛГ. However, this 

“ “” ”
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may not be the case in some other combinations of boundary conditions. 
For example, let us consider the case when the end of a bar is restrained 
from rotation, can move tangentially, and cannot move in the direction 
normal to the bar’s axis (Fig. 4.8-с).  

Clear and convenient mechanical interpretations of version a and 
version b of the boundary conditions are shown in Fig. 4.8-a and 4.8-b, 
respectively. The boundary condition as in Fig. 4.8-a should be treated in a 
limit sense: two constraints that prohibit normal displacements are 
installed at an infinitesimal distance. In Fig. 4.8-b it is a rotation of the 
bar’s section which is prohibited. 

�

 

 
 

Fig. 4.8-a.  
Boundary conditions  

according to version a 

Fig. 4.8-b.  
Boundary conditions  

according to version  b 

Fig. 4.8-c. 
A slipping fixation  

at the bar’s end 

So, for the homogeneous boundary conditions we have 

       version a (Fig. 4.8-a):  w = 0,       ψ = 0,       T = 0, 
       version b (Fig. 4.8-b):  w = 0,       θ = 0,        N = 0, 

or, talking displacements, 

• for Vlasov’s theory: 

       version a (Fig. 4.8-a):   
w = 0,      w′ = 0,            v′ = 0, 

       version b (Fig. 4.8-b):    
w = 0 ,    –w′ + kv = 0,   v′EA + (w′′ – k′v)kEI = 0. 

• for Kirchhoff–Klebsch theory: 

version a (Fig. 4.8-a):   
w = 0,      w′ = 0,   v′EA + (w′′ – kv′)kEI = 0,        

version b (Fig. 4.8-b):   
w = 0 ,    –w′ + kv = 0,    v′ = 0. 

Both formulations of the boundary conditions are valid. 
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It should be said that we could go an opposite way in Vlasov’s theory: 
first, take Kirchhoff’s stress vector σ = |[N, M]|T into consideration and 
then deal with a vector of strains conjugated to it by energy, ε. We do not 
present this approach here because it will give nothing new in the final 
expressions. Now we can write a matrix form of both versions of the 
boundary conditions and re-formulate the boundary conditions in a 
common form as in (1.2.4). Table 4.5 presents matrix operators of 
boundary condition extraction, Ep and Eu, and matrix differential 
operators, Hu and Hσ , for converting the displacement vector, u = |[v,w]|T, 
and the stress vector, σ = |[N, M]|T or σV = |[T, M]|T, to the respective 
vector of edge displacements, u, and the vector of edge forces, p. Note that 
Table 4.5 presents two matrix operators Hσ for each of two possible 
versions of the boundary condition formulations; one of the operators 
transforms Vlasov’s stress vector σV and the other transforms the 
Kirchhoff–Klebsch stress vector σ into the edge force vector, p.  

Table 4.5 
 Version "a" 

of boundary 
conditions 

Version "b" 
of boundary 
conditions 

Eu 
0 0

0 0
0 0

e
e

eψ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v

w  
0 0

0 0
0 0

e
e

eθ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v

w  

Ep 
0 0

0 0
0 0

T

Q

M

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 0

0 0
0 0

N

Q

M

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hu 
1 0
0 1

0 s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂−⎢ ⎥∂⎣ ⎦

 
1 0
0 1

k s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂−⎢ ⎥∂⎣ ⎦

 

 

σV =
T
M
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

0

0

0

n

n
s

n

⎡ ⎤
⎢ ⎥∂⎢ ⎥

∂⎢ ⎥
⎢ ⎥
⎣ ⎦

 0

0

n kn

n
s

n

−⎡ ⎤
⎢ ⎥∂⎢ ⎥

∂⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Hσ  

σ =
N
M
⎡ ⎤
⎢ ⎥
⎣ ⎦

 0

0

n kn

n
s

n

⎡ ⎤
⎢ ⎥∂⎢ ⎥

∂⎢ ⎥
⎢ ⎥
⎣ ⎦

 

0

0

0

n

n
s

n

⎡ ⎤
⎢ ⎥∂⎢ ⎥

∂⎢ ⎥
⎢ ⎥
⎣ ⎦
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A question may arise: why would Vlasov’s theory (or any theory, for that 
matter) absolutely have to derive such types of stresses and strains that should be 
conjugated by energy? The answer is simple. There are formal techniques of 
building variational principles for conjugated force/stress and kinematical 
parameters, and in the next sections we will develop those principles for 
curvilinear bars. 

4.7.4 Variational principles for curvilinear bars 

First of all, we want to define an expression for the strain energy, E. In 
Vlasov’s theory we have the following, marking the respective functionals 
by subscript V: 

EV(u) = 1
2 (σV, εV) = 1

2 (ΛCV εV, εV) = 1
2 (CK AVu, AVu) = 

= 1
2

2 2 2

0
[ ( ) ( ) ]

l

EA k EI k k ds′ ′′ ′+ + − − +∫ v w w w v , (7.59) 

EV(σ) = 1
2 (σV, εV) =

2
1 (σV, 1

K
−C σV) = 1

2

2 2

0

( )l N kM M dsEA EI
⎡ ⎤+ +⎢ ⎥
⎣ ⎦

∫ . (7.60) 

We can follow another approach: take a direct definition of the strain 
energy and omit small quantities from it as necessary. And indeed, we can 
notice that an element of volume of a curvilinear bar is equal to 
dΩ = (1 + kz)dAds. By summing the strain energy accumulated in all 
elementary volumes dΩ we obtain 

EV(u) = 1
2

2

0
(1 )

l

A
E kz dAdsε +∫ ∫ = 1

2 0
2

0
[ (1 )] (1 )

l

A
E z kz kz dAdsε + χ − +∫ ∫ = 

= 1
2 0 0

2 2 2 2 2 2 2

0
[ (1 ) 2 (1 ) (1 )(1 )]

l

A
E kz z k z z k z kz dAdsε + + ε χ − + χ − +∫ ∫ . 

Here we can neglect the quantity k2z2 in comparison to one and then 
integrate over the cross-section area, A, to derive 

EV(u) = 1
2 0

2 2
2

0
[ ( ) ] s

l

EA E I kI dε + + χ∫ . 

But, as we stated before, for medium-curvature bars we adopt the 
additional estimate, kI2/I << 1, so within that theory 
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EV(u) = 1
2 0

2 2

0
( )

l

EA EI dsε + χ∫ . (7.61) 

Quite expectably, formula (7.61) coincides with formula (7.59), which 
becomes obvious after replacing strain parameters ε0 and χ in (7.61) by 
their expressions via the displacement vector’s components according to 
the middle column in Table 4.1. 

Now recall that all formulas for medium-curvature curvilinear bars 
(Vlasov’s theory) are valid also for the big-curvature bars. We only need to 
replace the moment of inertia of the bar’s cross-section, I, by that of the 
reduced section, Iρ, defined by (7.38). Hence formulas (7.59), (7.60) work 
for the big-curvature bars, too, after the said replacement. 

Similarly, we want to establish an expression of the strain energy, EK, 
that conforms to the Kirchhoff–Klebsch theory: 

EK(u) = 1
2 (σ, εK) = 1

2 (CK εK, εK) = 1
2 (CK AKu, AKu) = 

= 1
2

2 2

0
[ ( ) ( ) ]

l

EA k EI k k ds′ ′′ ′ ′+ + − + +∫ v w w v v , (7.62) 

EK(σ) = 1
2 (σ, εK) = 1

2 (σ, 1
K
−C σ) = 1

2
2 2

0

l
N M dsEA EI

⎛ ⎞+⎜ ⎟
⎝ ⎠∫ . (7.63) 

Let qt(s) and qn(s) be components of intensities of external loads 
distributed along the bar’s axis, which act in the respective normal and 
tangential directions, and let m(s) be an intensity of a distributed moment 
load. We will denote external concentrated force/moment static actions on 
the ends of the bar as 0Q  and lQ , 0N  and lN , 0M  and lM , respectively 
(Fig. 4.7).  

A full list of parameters of the edge condition extraction, specified on 
each end of the curvilinear bar, consists of (eT, eQ, eM, ev, ew, eψ ) for 
version “a” and of (eN, eQ, eM, ev, ew, eθ) for version “b” of the boundary 
conditions. These parameters are components of the respective matrices Ep 
and Eu (Table 4.5) and satisfy the following conditions on each end: 

• version a:   eT  + ev = 1,    eQ + ew = 1,   eM + eψ = 1, 
• version b:   eN  + ev = 1,    eQ + ew = 1,    eM + eθ = 1. 

The meanings of these parameters are obvious. 
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As usual, we define the potential of external static actions, Пs(v,w), as 
the virtual work of external forces on displacements v, w and slopes θ = – 
w′ + kv . We have 

Пs(v,w) = 
0

l

tq ds∫ v +
0

l

nq ds∫ w +
0

( )
l

m k ds′− +∫ w v + 

  +
0[ ] |lNe nNv +

0[ ] |lQe nQw +
0[ ( )] |lMe nM k′− +w v . (7.64)

However, non-integral terms in (7.64) can be represented in another way 
after re-grouping, as 

0[ ] |lTe nT v +
0[ ] |lQe nQw +

0[ ( )] |lMe nM ′−w . (7.65) 

The method of representation of the work of external contour forces as in 
(7.65) corresponds to the first form (version a) of the boundary forces and 
displacements according to (7.54). On the contrary, the non-integral terms 
in (7.64) define the same work but correspond to the second form 
(version b) of the boundary forces and displacements according to (7.55).  

In addition to the potential of external static actions, we will need also 
an expression for the potential of external kinematic actions, Пk(σ). Based 
on formula (2.3.2) and involving data from Table 4.5, we have 

Пk(σ) = (Eu p, Eu u )Г = 0[ ] |le Tv v +
0[ ] |le M ′w w +

0[ ] |le Mψ ψ , (7.66-a) 

or, in another form, 

Пk(σ) = 
0

[ ] |le Nv v +
0

[ ] |le M ′w w +
0

[ ] |le Mθ θ . (7.66-b) 

Formula (7.66-a) deals with the first form (version a) of the edge 
conditions for the curvilinear bar, and formula (7.66-b) relates to the 
second form (version b). Note that both expressions of kinematic potential 
Пk(σ) are the same for both the Vlasov stress vector, σV, and the 
Kirchhoff–Klebsch stress vector, σ. 

Lagrange functional 

Now we want to build the Lagrange functional, L(v,w) = E(v,w) – Пs(v,w). 
We have, for Vlasov’s theory, 
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LV(v,w) = 1
2

2 2 2

0
[ ( ) ( ) ]

l

EA k EI k k ds′ ′′ ′+ + − − +∫ v w w w v  – 

 –
0

l

tq ds∫ v  – 
0

l

nq ds∫ w  – 
0

( )
l

m k ds′− +∫ w v – 

–
0

[ ] |lNe nNv –
0

[ ] |lQe nQw –
0

[ ( )] |lMe nM k′− +w v . (7.67)

For the Kirchhoff–Klebsch theory, we have 

LK(v,w) = 1
2

2 2

0
[ ( ) ( ) ]

l

EA k EI k k ds′ ′′ ′ ′+ + − + +∫ v w w v v – 

 –
0

l

tq ds∫ v  – 
0

l

nq ds∫ w  –
0

( )
l

m k ds′− +∫ w v – 

–
0

[ ] |lNe nNv –
0

[ ] |lQe nQw –
0

[ ( )] |lMe nM k′− +w v . (7.68)

To formulate the variational problem carefully, we need to define a set, 
P  k , of physically and kinematically admissible stress-and-strain fields 
which will be searched for the minimum of the Lagrange functional. This 
is where the choice of a particular form of boundary conditions is 
important. For example, the P  ka set in case a will consist of functions v 
and w which satisfy the following conditions at end points 0 and l: 

e =vv v ,     e =ww w ,    ( )eψ ′− = ψw . (7.69-a) 

In case b, the P  kb set of functions v and w allowed for comparison will 
consist of functions satisfying the following requirements at the same end 
points: 

e =vv v ,     e =ww w ,    ( )e kθ ′− + = θw v . (7.69-b) 

These sets are obviously different, that is, P  ka ≠ P  kb . 
By varying Lagrange functionals LV(v,w) and LK(v,w) one time on the 

P  ka set and second time on the P  kb set and making the first variation equal 
to zero, we find that the Euler equations for these functionals are 
equations (7.40) where differential operators Lij are defined by the 
respective rows of Table 4.3. 

As we can see, the Euler equations for the two functionals do not 
depend on which set is used, P  ka or P  kb , but they are different for two 
different functionals LV(v,w) and LK(v,w). As for the natural boundary 
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conditions, they do depend on which set is chosen, P  ka and P  kb. See 
Table 4.6 for details of the natural boundary conditions for these 
functionals. 

                 Table 4.6 
 for functional LV(v,w) 

P  ka 
eT [(v′ + kw)EA – nT ] = 0 

eQ{[(–w′′– k2w + k′ v)EI]′– nQ m+ }=0 
eM[(–w′′ – k2w + k′ v)EI – nM ] = 0 

P  kb 
eN[(v′ + kw)EA + (w′′ + k2w – k′v)kEI – nN ]=0 

eQ{[(–w′′ – k2w + k′ v)EI]′– nQ m+ }= 0 
eM[(–w′′ – k2w + k′ v)EI – nM ] = 0 

 
 for functional LK(v,w) 

P  ka 
eT[(v′ + kw)EA + (–w′′ + k′v +kv′ )kEI – nT ] = 0 

eQ{[(–w′′ + k′v + kv′ )EI]′– nQ m+ } = 0 
eM[(–w′′ + k′v + kv′ )EI – nM ] = 0 

P  kb 
eN[(v′ + kw)EA – nN ] = 0 

eQ{[(–w′′ + k′v + kv′ )EI]′– nQ m+ } = 0 
eM[(–w′′ + k′v + kv′)EI – nM ] = 0 

Castigliano functional 

We want to derive an expression for the Castigliano functional, so we use 
general formula (2.3.3) for this purpose. The strain energy for a medium-
curvature bar is defined by (7.60), and the potential of external kinematic 
actions is defined by (7.66). As a result, we have this for Vlasov’s theory: 

KV(T,M) = 1
2

2 2

0

l
T M dsEA EI

⎛ ⎞+⎜ ⎟
⎝ ⎠∫ –

0
[ ] |le T v v –

0
[ ] |le M ′w w –

0
[ ] |le Mψ ψ , (7.70) 

or, to put it another way, 

KV(N,M) = 1
2

2 2

0

( )l N kM M dsEA EI
⎡ ⎤+ +⎢ ⎥
⎣ ⎦

∫ – 

–
0

[ ] |le Nv v –
0

[ ] |le M ′w w –
0

[ ] |le Mθ θ . (7.71) 
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A particular form of the Castigliano functional should be chosen 
depending on what static boundary conditions we have. 

In the first case, the P sa set of physically and statically admissible fields 
of stresses consists of functions T and M which satisfy the following 
conditions at end points 0 and l 

eT (nT – T ) = 0,        eQ(nQ – Q nm+ ) = 0,         eM(nM – M ) = 0. (7.72) 

In the second case, the variation is applied to functions N and M from 
set P sb, which at end points 0 and l satisfy 

eN (nN – N ) = 0,        eQ(nQ – Q nm+ ) = 0,        eM(nM – M ) = 0. (7.73) 

Similarly to (7.70) and (7.71), we will write also expressions for the 
Castigliano functional which correspond to the curvilinear bar theory by 
Kirchhoff–Klebsch: 

KK(T,M) = 1
2

2 2

0

( )l T kM M dsEA EI
⎡ ⎤− +⎢ ⎥
⎣ ⎦

∫ – 

–
0

[ ] |le T v v –
0

[ ] |le M ′w w –
0

[ ] |le Mψ ψ , (7.74) 

or, to put it another way, 

KK(N,M) = 1
2

2 2

0

l N M dsEA EI
⎛ ⎞+⎜ ⎟
⎝ ⎠∫ –

0
[ ] |le Nv v –

0
[ ] |le M ′w w –

0
[ ] |le Mθ θ . (7.75) 

Reissner functional 

We want to find an expression of the Reissner functional in its first form. 
To do it, we use general formula (3.1.4) in application to Vlasov’s theory 
of curvilinear bars by assuming K = O,  σ = σV,  A = AV , and also C = СK. 
The latter substitution has been introduced because the elasticity 
relationship that connects vectors σV and εV is СKεV = σV as it follows from 
(7.47) and (7.49). So, 

1
V1 V K V V V V

1( , ) ( , ) ( , )2
−= −C AR u uσ σ σ σ + Пs – Пk + (Eu p1 , Euu1)Г . (7.76) 

An additional numeric subscript here marks No. of the Reissner 
functional’s form. Therefore a designation like V1R  should be read as first 
form of the Reissner functional for the Vlasov theory. 

Switching to coordinates in (7.76) gives 
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RV1(T,M,v,w) = 

= 1
2

2 2

0

l
T M dsEA EI

⎛ ⎞+⎜ ⎟
⎝ ⎠∫ – 2

0
[( ) ( ) ]

l

k T k k M ds′ ′′ ′+ + − − +∫ v w w w v + 

+
0

l

tq ds∫ v +
0

l

nq ds∫ w +
0

( )
l

m k ds′− +∫ w v + 

+ 
0[ ] |lNe nNv +

0[ ] |lQe nQw +
0[ ( )] |lMe nM k′− +w v + 

+
0

[ ( )] |le N −v v v +
0

[ ( )] |le M ′ −w w w +
0

[ ( )] |le Mθ θ − θ . (7.77)

Having obtained first form of the Reissner functional, it is easy to derive 
its second and third form by moving the respective derivatives from the 
displacements to the stresses in the integrands. If need be, the reader can 
do this simple operation by himself. 

In exactly the same way we can derive the Reissner functional for the 
theory of curvilinear bars by Kirchhoff–Klebsch. Here we present an 
expression of the second form of that functional: 

RK2(N,M,v,w) = 

= 1
2

2 2

0
( ) ( )

l

t n
N M N kM kN M q q dsEA EI

⎡ ⎤′ ′ ′′+ + + − − + +⎢ ⎥⎣ ⎦∫ v w v w + 

+ 
0

[ ( ) ] |lNe nN N− v +
0

[ ( ) ] |lQe nQ M  ′− w – 

– 0[ ( )( )] |lMe nM M k′+ − +w v – 0[ ] |le Nv v – 0[ ] |le M ′w w + 0[ ] |le Mθ θ . (7.78)

4.7.5 Remark on comparison of solutions in various 
formulations of curvilinear-bar-related problems 

So, we have three basic engineering theories for a curvilinear bar (theories 
of big-curvature, medium-curvature, and small-curvature bars) and two 
versions or forms of boundary conditions for each. It is a natural question 
how much solutions of problems differ in different theories, and another 
— how much a solution changes after switching from one boundary 
condition form to the other. 

We want to introduce a criterion for comparing the solutions correctly 
and reasonably. This criterion will be an energy error of a solution which 



200      4 PARTICULAR CLASSES OF PROBLEMS – part 1 

enables us to make comparisons integrally without minding local 
differences. 

The very concept of the energy error of a theory was introduced to 
structural analysis in a systematic form by V.V. Bolotin [2], and he was 
the first to use it extensively. However, as Bolotin himself indicated, this 
concept was used implicitly by other authors earlier. 

We introduce a dimensionless parameter, с, following Vlasov [14]: 

c2 = 
2k I
A , (7.79) 

which will be convenient for our further presentment14. One should keep in 
mind that, when dealing with big-curvature bars, formula (7.79) should 
contain reduced moment of inertia Iρ according to (7.38) in place of 
moment of inertia I.  

We suppose for simplicity that a curvilinear bar has statically 
determinate fixations on its ends, to be able to obtain internal 
forces/stresses in the bar from the static equations only; in this way the 
forces (longitudinal force N and bending moment M) will not depend on 
which version of theory is used. But then, using formulas (7.60) and 
(7.63), we can calculate the relative energy error, η, introduced to the 
solution by switching from one theory to another. So we have 

V K

K

−
η =

E E
E

= 

2 2

0
2 2

0

2l

l

kNM k M ds
EA

N M ds
EA EI

+

⎛ ⎞
+⎜ ⎟

⎝ ⎠

∫

∫
=

2 2

0
2 2

0

l

l

T N ds
EA

N M ds
EA EI

−

⎛ ⎞
+⎜ ⎟

⎝ ⎠

∫

∫
. (7.80) 

This shows immediately that the energy error of switching between the 
theories is zero for a moment-free stress state in the curvilinear bar. In the 
opposite particular case, that is, in a pure bending (N = 0), this error can be 
easily calculated as well. It is equal to something of order of magnitude c2 
with an averaged value of this parameter along the bar.  Consequently, we 
can expect that switching to the refined Vlasov theory will give a fairly 
small refinement comparing to the Kirchhoff–Klebsch model in the sense 
of energy (averagely, integrally). However, this is not the case in the sense 
of a local behavior. It is these data (such as stresses in particular points) 
which are of special practical interest for an engineer. That’s why 

                                                      
14 When dealing with the theory of cylindrical shells, Vlasov assumes 

с2 = k2h2/12 where h is a thickness of a shell. In application to a curvilinear bar 
this gives (7.79). 
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switching to the refined Vlasov theory is justified for medium-curvature 
bars. 

It is not possible to obtain an explicit analytic solution for a general 
curvilinear bar. However, we can do that by confining ourselves to bars 
which have a circular arc shape of a radius R and by introducing an 
additional simplification of a constant cross-section along the whole bar. 

We switch from the arc coordinate, s, to a dimensionless angular 
coordinate, ϕ = s/R, and use Table 4.3 for operators Lij to rewrite 
equations (7.40) as:  

• for big-curvature and medium-curvature bars, 

           –
2

2
d
dϕ

v – d
dϕ

w                                       = 
2

( )t
mR qEA R+ , 

d
dϕ

v +c2 4

4
d
dϕ

w + 2c2 2

2
d
dϕ

w +(1+c2)w     = 
2

( )n
dmR qEA Rd+
ϕ

, (7.81) 

• for small-curvature bars, 

           – (1+c2)
2

2
d
dϕ

v  + c2 3

3
d
dϕ

w – d
dϕ

w            = 
2

( )t
mR qEA R+ , 

– c2 3

3
d
dϕ

v  + d
dϕ

v  + c2 4

4
d
dϕ

w  + w          = 
2

( )n
dmR qEA Rd+
ϕ

. (7.82) 

As we want to be consistent in removing negligible terms, we are 
tempted to omit parameter c2 as small comparing to one because c2 < 
(kh)2 << 1. However, let us not hurry but see what consequences will 
follow from this kind of simplification of simultaneous equations (7.81) 
and (7.82). It is easy to notice that the self-conjugation of the Lame 
differential operator will be maintained in this simplification. But that is 
not enough; just recall words by N.N. Moiseyev given as an epigraph to 
this chapter. 

We begin with system of equations (7.81) simplified in the said way. 
Let’s consider a half-ring (0 ≤ ϕ ≤ π) and let a true field of displacements 
be described by functions 

v = cosϕ,   w = sinϕ. (7.83) 

It is easy to see that both equations of the simplified system (7.81) will be 
satisfied by assuming 
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m = 0,    qt = 0,    qn = 2
2

EAc
R

− sinϕ. (7.84) 

The edge displacements will be 

v(0) = 1,   w(0) = 0,    θ(0) = 0,    v(π) = –1,   w(π) = 0,    θ(π) = 0, 

and all internal forces in the bar are identical to zero. 
Now we calculate the work, A, of all external forces on the respective 

displacements caused by the same forces to find that the reactive forces do 
not do any work in places where the bar is fixed. As a result, 

 A = 
0

nq Rd
π

ϕ∫ w  = 2 EAc
R

− 2

0
sin d

π

ϕ ϕ∫ . 

Because A < 0, we find that removing the term c2w  in the second equation 
of (7.81) violates a most fundamental law of mechanics, the energy 
conservation law. 

It is exactly the same case with bars of small curvature. And indeed, if 
we find that the displacements vary according to (7.83), then the simplified 
equations (7.82) will be satisfied, too, but under the following load: 

m = 0,    qt = 2
2

EAc
R

− cosϕ,    qn = 0. (7.85) 

The same reasoning as before gives again the inequality A < 0 which 
contradicts the energy conservation law. 

The above considerations force us into using the governing equations 
for curvilinear bars exactly in the same form they are written in (7.81) and 
(7.82).  

Let’s give a general solution of the homogeneous simultaneous 
equations from (7.81) and (7.82) for reference. We have 

• for medium-curvature and big-curvature bars 

            v = C1 cosϕ – C2 sinϕ – C3 (sinϕ – ϕ cosϕ) –  

      – C4 (cosϕ + ϕ sinϕ) – (1+c2)C5 ϕ + C6, 

 w = C1 sinϕ + C2 cosϕ + C3 ϕ sinϕ + C4 ϕ cosϕ + C5 , (7.86) 

• for small-curvature bars 
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            v = C1 cosϕ – C2 sinϕ – C3 
2

2
1 sin cos
1

c
c

⎛ ⎞− ϕ − ϕ ϕ⎜ ⎟+⎝ ⎠
 – 

                          – C4 
2

2
1 cos sin
1

c
c

⎛ ⎞− ϕ + ϕ ϕ⎜ ⎟+⎝ ⎠
 – C5 ϕ + C6, 

 w = C1 sinϕ + C2 cosϕ + C3 ϕ sinϕ + C4 ϕ cosϕ + C5 . (7.87) 

Representations (7.86) and (7.87) can be validated by direct substitution. 

 
 

Fig. 4.9-a Fig. 4.9-b 

Now let us analyze the effect of a method of specification of the 
boundary conditions on the solution of a curvilinear bar problem. We will 
use a particular example shown in Fig. 4.9-a and Fig. 4.9-b.  

So, we deal with two states of a curvilinear bar (a quarter of a circle) 
under the same load (an end moment, M ), which we will call State a and 
State b. In State a, one of the bar’s ends (at s = 0) has homogeneous 
boundary conditions according to version a as we defined earlier. In 
State b the same end of the bar has homogeneous boundary conditions 
according to version b. 

Letters A, B and C denote in these figures the reactive forces which can 
be easily found from the equilibrium equations (both problems are 
statically determinate). 

In State a we have 

Aa = M ,   Ba = M
R

 ,  Ca = 2M
R

 

thus the forces in the bar’s sections are equal to the following in State a: 
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Ma = M (sinϕ + cosϕ),       Na = – M
R

( sinϕ + cosϕ). 

On the other hand, for the problem in Fig. 4.9-b we have 

Ab = M ,   Bb = 0,    Cb = 0, 

thus the forces in the bar’s sections in State b are 

Mb = M ,     Nb = 0. 

There are obvious and noticeable differences in the solutions of these two 
problems. 

4.8 Planar curvilinear bar, shear considered 

4.8.1 Geometry of a curvilinear bar revisited 

It is useful to return to the geometric relationships for a planar curvilinear 
bar, now using formal mathematical transformations. Of course, this way 
of deriving geometric relationships is less obvious because it does not 
involve direct geometric considerations. However, its advantage is that it is 
based on a strict mathematical formalism. 

Having this purpose in mind, first of all we will write out basic 
geometric relationships for two-dimensional elasticity in an orthogonal 
curvilinear coordinate system, referring to [9] (see also Appendix F).  

So, let (α1, α2) be an orthogonal coordinate system defined on a plane. 
Let H1, H2 be Lame parameters which correspond to those coordinates. 
This means aggregates H1dα1 and H2dα2 are increments of arc lengths 
which conform  to the respective coordinate increments, dα1 and dα2.   

In application to a planar curvilinear bar, we take the normal coordinate 
z as coordinate α1, and coordinate α2 will be the arc coordinate s. The 
respective Lame parameters will be 

H1 = 1,        H2 = 1+kz.       

General formulas for the strain components in the curvilinear coordinate 
system, (α1, α2), will be [9] 
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ε1 = 1 1
2

1 1 1 2 2

1 1u H u
H H H

∂ ∂
+

∂α ∂α
,       ε2 = 2 2

1
2 2 2 1 1

1 1u H u
H H H

∂ ∂
+

∂α ∂α
, 

γ12 = 2 2 1 1

1 1 2 2 2 1

H u H u
H H H H

⎛ ⎞ ⎛ ⎞∂ ∂
+⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

. (8.1)

Here:  

• ε1 is a relative elongation in the direction of coordinate α1; 
• ε2 is a relative elongation in the direction of coordinate α2; 
• γ12 is a shear angle between coordinate lines α1 and α2; 
• u1, u2 are components of a displacement vector, uz = u1e1 + u2e2 , with 

respect to unit vectors e2 and e3 tangential to coordinate lines α1 and α2. 

In our case coordinate α1 is the normal coordinate z and coordinate α2 is 
the tangential coordinate s. This means that unit vectors e1 and e2 should be 
e1 = n and e2 = t, and displacements u1, u2 should be u1 = wz(z,s) and 
u2 = vz(z,s), where vz and wz are the tangential and normal components of 
the displacement vector, uz = wzn + vzt, of an arbitrary point with 
coordinates (z,s).  

The respective substitutions of dependent and independent variables will give 

1 1 (1 )
1 1

z
s z

kz
kz s kz z

∂ ∂ +
ε = + =

+ ∂ + ∂
v w ( )1

1 z zk
kz

′ +
+

v w , 

z
z z

∂
ε =

∂
w 1 (1)

1 zkz s
∂

+ =
+ ∂

v z

z
∂
∂
w , 

γsz = 1 1
1 1 1 1

z zkz
kz s z kz

∂ + ∂⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟+ ∂ ∂ +⎝ ⎠ ⎝ ⎠

w v 1
1 1

z
z z

k
kz z kz

∂′ + −
+ ∂ +

vw v . (8.2) 

To simplify the formulas, we will use a stroke for differentiation with 
respect to tangential coordinate s.  

The basic kinematic hypothesis used to build technical theories of bars 
(the planar sections hypothesis) can be represented by two formal 
mathematical requirements: 

0zε = ,   γsz = 0 . (8.3) 

And indeed, if the first requirement is met, then the normals to the bar’s 
axis have invariable lengths. The second requirement ensures the 
unchanged orthogonality of the coordinate lines in a deformed state of a 
bar because the respective shear angle is assumed to remain zero. 
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As in Section 4.7, we denote by w(s) and v(s) the normal and tangential 
components of the displacement vector, u = wn + vt, in an arbitrary point 
of the bar’s axis. In other words, we assume by definition 

v(s) = vz(0,s),     w(s) = wz(0,s). (8.4) 

From the first requirement in (8.3) we find that function wz(z,s) does not 
depend on z, consequently 

w = wz . (8.5) 

Further, the condition of no shear, γsz = 0, leads to a differential equation 
for function vz: 

(1 ) z
zkz

z
∂ ′+ − = −
∂
v kv w . (8.6) 

The right part of equation (8.6) contains a function depending only on 
coordinate s but not on coordinate z. Therefore we have actually an 
ordinary differential equation of first order, and its general solution can be 
found easily by introducing an integrating multiplier [7]. We omit quite 
elementary transformations and present a final solution of the equation: 

1 (1 ) ( )
1z
z kz C s

k
−′= − + +
+

v w , (8.7) 

where C(s) is an arbitrary function of s. Representation (8.7) can be 
validated directly by substituting to equation (8.6).  

Assuming z = 0 in (8.7), we have 

( )
1

C s
k
′

= −
+
wv , 

 

which gives the following after being substituted to (8.7): 

(1 )z z kz′= − + +v w v . (8.8) 

If we now substitute relationships (8.5) and (8.8) to the expression of 
longitudinal strains ε according to the first formula in (8.2) and take into 
account the estimates of smallness of dimensionless parameter kh adopted 
in the small-curvature and medium-curvature bar theories, we will arrive at 
the formulas obtained earlier and given in the last row of Table 4.1. This 
fact evidences that results obtained in different ways in Section 4.7.1 and 
in this section are identical. 
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4.8.2 Allowing for shear deformations 

Recalling expression (7.26) for slope θ of the bar’s section, we rewrite 
formula (8.8) as 

z z= + θv v . (8.9) 

Keeping the kinematic relationships in the form (8.5) and (8.9), we will 
adopt the planar sections hypothesis in a weaker formulation. Starting from 
this point, we will assume further on that the normal to the bar’s axis does 
not change its length and remains rectilinear; however, it is not obliged to 
stay perpendicular to the bar’s axis after the deformation. It means that the 
slope of the normal, θ, is not defined by formula (7.26) anymore but is 
treated as an independent kinematical parameter which describes the 
deformed state of the bar. Under these conditions, substituting (8.5) and 
(8.9) to the expression of the shear strain in the third relationship from 
(8.2) gives 

1sz
k
kz

′ − + θ
γ =

+
w v . (8.10) 

Thus, based on the kinematical relationships, we know now that the 
shear angle varies along the height of the curvilinear bar’s section 
according to a hyperbolic law. Earlier we found out for a rectilinear bar 
that its shear angle is constant over the height of its section, which also 
follows from (8.10) if we assume k = 0. 

Now we want to calculate a strain energy stored in an elementary 
volume, dΩ = b(1+kz)dzds, of the bar’s material, which is caused by the 
work of tangential stresses. This energy is 

½ τsz γsz b(1+kz)dzds = ½ τsz( k′ − + θw v )bdzds. 

By integrating the above expression over the height of the bar’s cross-
section, we obtain energy dEτ of the tangential stresses per unit of length 
of the bar’s axis. Obviously, it is 

dEτ = ½ ( k′ − + θw v )
/ 2

/ 2

h
sz

h

bdz
−

τ =∫ ½Qγ, 

where Q is a shear force in the section of interest, and γ is a shear angle at 
the level of the bar’s axis, that is, γ = γsz(0,s) = k′ − + θw v . Shear angle γ is 
related to the shear force via a linear dependence; we assume 

Q
GF

γ =  
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where F is a certain quantity yet to be found; we will call it (exactly as for 
a Timoshenko beam) a shear area. But then 

dEτ =
2

2
Q
GF

. (8.11) 

Turning to Hooke’s law for shear stresses and strains, 
sz

szGτ = γ ,  

we have 

dEτ =   
/ 2 2

/ 2

1 ( ) (1 )
2

h sz

h

b kz dz
G−

τ
+∫ . (8.12) 

Appendix B presents derivations of formulas for tangential stresses 
which develop in curvilinear bars. Here we place those formulas in 
Table 4.7. Based on the same considerations as we used in the justification 
of the Timoshenko bar theory, we will keep only the main term – an 
analogue of Zhuravsky’s formula for rectilinear bars. 

  Table 4.7 

Big-curvature 
 bars 

Medium-curvature  
bars 

 

Small-curvature 
bars 

 

τsz = o
2(1 )

QS
bI kzρ +

 
 

τsz = o (1 2 )
QS

kz
bI

−  

 

τsz = oQS
bI

 

/ 2 2
o

2
/ 2 (1 )

h

h

SA dz
b kzIρ − +∫  

/ 2 2
o

2
/ 2

(1 2 )(1 )
h

h

SA kz kz dz
bI −

− +∫
/ 2 2

o
2

/ 2

(1 )
h

h

SA kz dz
bI −

+∫ . 

Comparing (8.11) and (8.12), after having substituted expressions of τsz 
from Table 4.7 to formula (8.12) of dEτ , we have a general formula for 
calculating the shear area: 

1F A=
µ

. (8.13) 

The section shape factor, µ, for this case is given in the second row of 
Table 4.7. Note that for a symmetric section, which is the only case here, the 
integral 

       
/ 2 2

o

/ 2

h
n

h

S z dz
b−

∫  
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is zero at any odd n. If we consider the previous estimate of smallness, 
(kh)2<<1, for medium-curvature bars, we will understand that the same 
formula (6.8) which worked for rectilinear bars is true for the section’s 
shape factor, µ, of small-curvature and medium-curvature bars. 

To give an example, we will show what the section’s shape factor µ is 
for a big-curvature bar of a rectangular cross-section b×h the axis of which 
is a piece of a circle of a radius R. Fig. 4.10 presents a graph of the 
dependence µ = µ(kh) built for this particular case after results of 
calculation by the formulas given above. 

0 1 2 kh

1
1.2

�

 
Fig. 4.10. Shape factor µ for the section of a curvilinear bar 

As can be seen from this graph, at kh = 0 the section’s shape factor is 
equal to the known value µ = 6/5 and is close to it in a vicinity of the zero 
argument. 

Now we can write out an expression of the strain energy accumulated in 
a curvilinear bar of the length l accounting for the work of shear strains. 
We use formulas (7.60) and (7.63) adding the respective term from (8.11) 
to the integrands to allow for the work of the shear strain. 

Bars of medium and big curvature 

All formulas presented in this section will be written for medium-curvature 
bars. However, they will be fitting for big-curvature bars, too, after 
replacing moment of inertia I with reduced moment of inertia Iρ.  

So we have 

EV(σ) = 1
2

2 2 2

0

( ) +
l N kM M Q ds

EA EI GF
⎡ ⎤+

+⎢ ⎥
⎣ ⎦

∫ . (8.14) 

Further, internal forces N, Q, M  are related via the elasticity equations 

N = ε0EA – χkEI,        Q = GFγ,       M = χEI (8.15) 

with kinematic parameters εо, γ, and χ which can be treated as components 
of a strain vector expressed via displacements v, w и θ by these formulas: 
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ε0 = v′ + kw,        γ = k′ − + θw v ,       χ = – kv′ – k2w + θ′. (8.16) 

Substituting (8.15) and (8.16) to (8.14) lets us represent the expression 
of energy EV as a functional of the displacements, 

EV(v,w,θ) = 1
2

2 2 2
o

0
( )

l

EA EI GF dsε + χ + γ∫ = 

= 1
2

2 2 2 2

0
[( ) ( ) ( ) ]

l

k EA k k EI k GF ds′ ′ ′ ′+ + − − + θ + − + θ∫ v w v w w v . (8.17) 

Now we can write a final Lagrange functional for a medium-curvature 
bar where the shear work is allowed for: 

LV(v,w,θ) =  

= 1
2

2 2 2 2

0
[( ) ( ) ( ) ]

l

k EA k k EI k GF ds′ ′ ′ ′+ + − − + θ + − + θ∫ v w v w w v  – 

– 
0

l

tq ds∫ v  – 
0

l

nq ds∫ w  – 
0

l

m dsθ∫ – 

– 0[ ] |lNe nNv – 0[ ] |lQe nQw – 0[ ] |lMe nMθ . (8.18)

By varying functional LV(v,w,θ) on the set of kinematically admissible 
displacements and equaling its first variation to zero, we arrive at Euler 
equations and natural boundary conditions.  

Euler equations for functional LV according to (8.18), which are in 
essence differential equations of equilibrium in displacements for medium-
curvature bars (Lame-type equations), are 

 L11v + L12w + L13θ =  qt , 

L21v + L22w + L23θ =  qn , 

L31v + L32w + L33θ =  m . 

 

(8.19) 

Differential operators Lij are listed in Table 4.8 . In this table we denote, as 
before, 

c2 =
2k I
A

. 
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     Table 4.8 

L11v  = 
= –[ EA(1+ c2)v′]′ +  

 +k2GFv 

L12w = 
= –[kEA(1+ c2)w]′ – 

– kGFw′ 

L13θ  = 
= (kEIθ′)′ – kGFθ 

L21v  = 
= kEA(1+ c2)v′ + (kGFv)′

L22w = 
= k2EA(1+ c2)w – 

– (GFw′)′ 

L23θ  = 
= –k2EIθ′ – (GFθ)′ 

L31v  = 
= (kEIv′)′ – kGFv 

L32w = 
= (k2EIw)′ + GFw′ 

L33θ  = 
= –(EIθ′)′ + GFθ 

We are eager to omit the c2  parameter (negligible comparing to one) in 
these equations for medium-curvature bars. However, wouldn’t this 
operation contradict the basic theorems of energy conservation, as it was 
the case with the shear-free theory of curvilinear bars? 

The matter is that, unlike the shear-free curvilinear bar theory, here we 
are entitled to do so without violating any energy laws, theorems, or 
principles. This conclusion could be justified by formal reasoning, but 
actually we can arrive at it using really simple considerations. As we can 
see in the formulas of Table 4.8, neglecting parameter c2 in comparison to 
one is equivalent to the mere replacement of the bar’s section area, А, by a 
fairly close value, А/(1 + c2), which is quite admissible. 

What about natural boundary conditions that this functional generates? 
They are, as they should be, static-type boundary conditions, and their 
formulation depends on which set, P  ka or P  kb, of kinematically admissible 
displacements we choose. 

But let us discuss this issue a bit later. Now we want to convert all 
relationships of the medium-curvature bar theory where shear is allowed to 
a matrix form. The vectors of stresses σ, strains ε, and displacements u, 
which define a stress-and-strain state of a curvilinear bar, contain three 
components each: 

σ = 
T N kM

Q
M

= +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,    ε =
oε⎡ ⎤

⎢ ⎥γ⎢ ⎥
⎢ ⎥χ⎣ ⎦

,    u =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥θ⎣ ⎦

v
w . (8.20) 

All equations will acquire a common operator form if we assume the 
following in addition to (8.20): 
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A = 

2

0

1

d k
ds

dk
ds

d dk k
ds ds

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

,      AT = 2

0 1

d d dkk k
ds ds ds

dk k
ds

d
ds

⎡ ⎤− − +⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

, 

C =
0 0

0 0
0 0

EA
GF

EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  C -1 =
1/ 0 0

0 1/ 0
0 0 1/

EA
GF

EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  
t

n

q
q
m

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X . (8.21) 

It can be checked that general formula (1.6) for Lame matrix differential 
operator L = ATCA works in this case, too15. To see this, we make formal 
mathematical transformations and find that all six components of  operator 
L coincide with data of Table 4.8. Now we demand that the basic integral 
identity in the form of (1.2.17) hold. We have 

(Au, σ) =  

= (v′ +kw, T) + (–kv + w′  + θ, Q) + (–kv′ – k2w + θ′ , M) = 

= 2

0
[( ) ( ) ( ) ]

l

k T k k M k Q ds′ ′ ′ ′+ + − − + θ + − + + θ∫ v w v w v w = 

= 2

0
{ [ ( ) ] [ ] [ ]}

l

T kQ kM kT Q k M Q M ds′ ′ ′ ′− − + + − − + θ −∫ v w + 

+
0 0 0

[ ( )] [ ] [ ]l l lT kM Q M− + + θv w = (u, ATσ) + (p, u)Г . (8.22)

We can see from (8.22) that, in order for the basic integral identity to 
hold, we can adopt any of the representations of the work of contour 
forces:  
• version a:     (p, u)Г = 

0 0 0
[ ] [ ] [ ]l l lT Q M+ + ψv w , 

• version b:     (p, u)Г = 
0 0 0

[ ] [ ] [ ]l l lN Q M+ + θv w , 

the generalized slope, ψ, being defined as follows in curvilinear bars where 
shear is allowed: 
                                                      

15 In theories of curvilinear bars considered here, we assume no elastic 
foundation or bed present, therefore the K operator has been excluded from the 
general formula (1.6) in application to the curvilinear bars. 
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ψ = θ – kv , (8.23) 

which is different from the generalized slope expression, ψ =  – w′, used in 
the theory of curvilinear bars with no shear.  

Let’s formulate boundary conditions in the matrix form. As should be 
clear now, the vector of edge displacements, u, and the vector of edge 
forces, p, for curvilinear bars where shear is allowed for can be also 
represented in either of two versions: a or b. Here we have 

ua =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ψ⎣ ⎦

v
w ,          pa =

nT
nQ
nM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,    au  =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ψ⎣ ⎦

v
w ,        ap  =

T
Q
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

ub =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥θ⎣ ⎦

v
w ,         pb =

nN
nQ
nM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,    bu  =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥θ⎣ ⎦

v
w ,        bp  =

N
Q
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (8.24) 

Note that the equality between the virtual works of edge forces holds in 
the following form, exactly as one for curvilinear bars where no shear is 
taken into account: 

(pa , ua)Г  = (pb , ub)Г . 

Now we are able to write out a matrix form of both versions of the 
boundary conditions in a common representation defined by (1.2.4). 
Table 4.9 below lists the respective matrix operators of boundary condition 
extraction together with operators of transition to edge displacements and 
edge forces. 

Now we have matrix expressions for all needed operators, so we can use 
the general formulas of the functionals of structural mechanics given in 
Chapters 2 and 3 to easily obtain these functionals in their component 
form. The reader can make those simple operations himself, if need be. 
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Table 4.9 

 Version "a" 
of boundary 
conditions 

Version "b" 
of boundary 
conditions 

Eu 
0 0

0 0
0 0

e
e

eψ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v

w  
0 0

0 0
0 0

e
e

eθ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v

w  

Ep 
0 0

0 0
0 0

T

Q

M

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 0

0 0
0 0

N

Q

M

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hu u =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥θ⎣ ⎦

v
w  

1 0 0
0 1 0

0 1k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hσ σ =
T
Q
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 0

0 0
0 0

n
n

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0

0 0
0 0

n kn
n

n

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Bars of small curvature 

Formula (7.63) is a starting point for the small-curvature bars. We add an 
elementary work of the tangential stresses to the integrand and have 

EK(σ) = 1
2

2 2 2

0
+

l N M Q ds
EA EI GF

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∫ . (8.25) 

But the physical law for the small-curvature bars is 

N = ε0EA,        Q = GFγ,       M = κEI. (8.26) 

Kinematic parameters εо, γ, and κ are components of a strain vector, 
expressed via displacements v, w, and θ using these formulas 

ε0 = v′ + kw,        γ = k′ − + θw v ,       κ = θ′. (8.27) 

Substituting (8.15) and (8.16) to (8.14) permits us to represent the 
expression of energy EK as a functional of displacements, 
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EK(v,w,θ) = 1
2

2 2 2
o

0
( )

l

EA EI GF dsε + κ + γ∫ = 

= 1
2

2 2 2

0
[( ) ( ) ]

l

k EA EI k GF ds′ ′ ′+ + θ + − + θ∫ v w w v . (8.28)

The final form of the Lagrange functional for a bar of small curvature, 
that takes into account the work of shearing stresses, is 

LK(v,w,θ) =  

= 1
2

2 2 2

0
[( ) ( ) ]

l

k EA EI k GF ds′ ′ ′+ + θ + − + θ∫ v w w v  – 

– 
0

l

tq ds∫ v  – 
0

l

nq ds∫ w  – 
0

l

m dsθ∫ – 

–
0

[ ] |lNe nNv –
0

[ ] |lQe nQw –
0

[ ] |lMe nMθ . (8.29)

Now we vary functional LK(v,w,θ) on a set of kinematically admissible 
displacements and equal its first variation to zero. In this way we derive 
Euler equations and natural boundary conditions. The Euler equations for 
this functional are written in the same operator form (8.19) which we used 
for the big-curvature and medium-curvature bars. However, differential 
operators Lij for the small-curvature bars are different. The operators are 
given in Table 4.10 

                  Table 4.10 

L11v  = 
= –[ EAv′]′ + k2GFv 

L12w = 
= –[kEAw]′ – kGFw′ 

L13θ  = 
= – kGFθ 

L21v  = 
= kEAv′ + (kGFv)′ 

L22w = 
= k2EAw – (GFw′)′ 

L23θ  = 
= –(GFθ)′ 

L31v  = 
= – kGFv 

L32w = 
= GFw′ 

L33θ  = 
= –(EIθ′)′ + GFθ 

We want to switch to a matrix form and represent the vectors of stresses 
σ, strains ε, and displacements u, which describe the stress-and-strain state 
of a small-curvature bar, as 
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σ = 
N
Q
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,    ε =
oε⎡ ⎤

⎢ ⎥γ⎢ ⎥
⎢ ⎥κ⎣ ⎦

,    u =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥θ⎣ ⎦

v
w . (8.30) 

All equations acquire a common operator form if in addition to (8.30) 
we assume 

A = 

0

1

0 0

d k
ds

dk
ds

d
ds

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,      AT = 

0

0

0 1

d k
ds

dk
ds

d
ds

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

, 

C =
0 0

0 0
0 0

EA
GF

EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  C –1 =
1/ 0 0

0 1/ 0
0 0 1/

EA
GF

EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  
t

n

q
q
m

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X . (8.31) 

It is easy to check that general formula (1.6) for the Lame matrix 
differential operator, L = ATCA, works for the small-curvature bars, too. 
And indeed, after making formal matrix transformations we find that all 
six components of the L operator are the same as in Table 4.10. 

Now we demand that the basic integral identity in the form of (1.2.17) 
hold. We have 

(Au, σ) = (v′ +kw, N) + (–kv + w′  + θ, Q) + (θ′ , M) = 

=
0
{ [ ] [ ] [ ]}

l

N kQ kN Q Q M ds′ ′− − + − + θ −∫ v w + 

+
0 0 0

[ ] [ ] [ ]l l lN Q M+ + θv w = 

= (u, ATσ) + (p, u)Г . (8.32) 

And again we can see from (8.32) that, for the basic integral identity to 
hold, we can adopt any of the two forms of the work of contour forces –  

• version a:     (p, u)Г = 
0 0 0

[ ] [ ] [ ]l l lT Q M+ + ψv w , 

• version b:     (p, u)Г = 
0 0 0

[ ] [ ] [ ]l l lN Q M+ + θv w , 

where the generalized slope, ψ, is defined by the same formula (8.23). 
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The vector of edge displacements, u, and the vector of edge forces, p, 
for the small-curvature bars where shear is taken into account can be also 
represented by two different versions: a and b according to the previously 
derived formulas (8.24). It is easy to see that Table 4.9, with its boundary 
condition extraction operators and operators of transition to edge 
displacements and to edge forces, is applicable to the small-curvature bars 
as well. The only thing to change is to replace the last row of Table 4.9 by 
a rows shown below in Table 4.11. 

Table 4.11 
 Version "a" 

of boundary 
conditions 

Version "b" 
of boundary 
conditions 

Hσ σ =
N
Q
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0

0 0
0 0

n kn
n

n

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 0

0 0
0 0

n
n

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

4.8.3 Estimation of changes in the strain energy introduced by 
switching to the refined theory 

Let us try to compare the orders of magnitude of refinements introduced to 
the strain energy of a curvilinear bar: 

• by taking shear into account; 
• by switching from the theory of small-curvature bars to the theory of 

medium-curvature bars. 

For the convenience of comparison, here we give expressions of the 
respective energies again; those are represented as quadratic functionals of 
internal forces in Table 4.12 

  Table 4.12 
 Shear ignored Shear taken into account 

Small-
curvature 
bars 

E11 = 

= 1
2

2 2

0

l N M ds
EA EI

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∫  

E12 = 

= 1
2

2 2 2

0
+

l N M Q ds
EA EI GF

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∫  

Medium-
curvature 

bars 

E21 = 

= 1
2

2 2

0

l T M ds
EA EI

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∫  

E12 = 

= 1
2

2 2 2

0
+

l T M Q ds
EA EI GF

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∫  
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Recall that, according to (7.45), 

T = N + kM.  

We will suppose for simplicity that the curvilinear bar is subject to end 
forces and/or displacements only, which will let us treat the equations of 
equilibrium (7.30) as homogeneous – there is no external distributed load 
upon the bar. Thus, 

–N′ – kQ = 0,                 kN – Q′ = 0,             Q – M′ = 0 . (8.33) 

We assume 

e12 = E12 – E11 ,         e21 = E21 – E11 ,          e22 = E22 – E11 . (8.34) 

Taking the homogeneous equations of equilibrium (8.33) into account 
and using Table 4.12, we have 

e12 = 1
2

2

0

l Q ds
GF∫ = 1

2

2

0

l M ds
GF
′

∫ ,   

 e21 = 1
2

2 2

0

2l kNM + k M ds
EA∫ = 1

2

2 2

0

2l M M + k M ds
EA

′′
∫ . (8.35)

If we assume the bar to have a constant cross-section, then the 
integration by parts will turn the expression of e21 into 

e21 = 1
2

2 2 2

0 0

2 +
ll k M M M Mds

EA EA
′ ′− ⎡ ⎤

⎢ ⎥⎣ ⎦∫ . 
 

Now we want to take another assumption that the boundary conditions 
make the non-integral term in the above formula equal to zero; also, we 
adopt an approximate estimate, 2GF ≈ EA. Then we have 

e12 + e21 = 1
2

2 2

0

l k M ds
EA∫ . (8.36) 

But the integral in the right part of formula (8.36) is a fairly small quantity 
comparing to the main expression of energy E11. And indeed, this addition 
can be estimated as 

E11 + 1
2

2 2

0

l k M ds
EA∫ = 1

2

2 2 2 2

0
+ =

l N M k M ds
EA EI EA

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∫  
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                         1
2=

2 2 2

0

(1 )l N c M ds
EA EI

⎛ ⎞+
+⎜ ⎟

⎝ ⎠
∫  

where the dimensionless parameter с2 < (kh)2 << 1 is defined by (7.79). 
In this way we arrive at an important qualitative conclusion that the 

refinements in the energy, e12 and e21 , are approximately equal but 
opposite in sign, so that e12 ≥ 0 while e21 ≤ 0.  

This conclusion can be interpreted from the mechanical standpoint as 
follows:  

taking the shear deformations into account makes the stiffness of a 
structure integrally lower, while switching from the theory of small-
curvature bars to the theory of medium-curvature bars makes the structure 
integrally stiffer. 

This conclusion is especially important in problems where the engineer 
is interested mainly with integral properties of a structure, such as the 
spectrum of natural oscillation frequencies. 

4.9 Final comments to Chapter 4  

This chapter, as well as the following four chapters, is dedicated to 
particular classes of problems or analyses encountered in structural 
mechanics, basically in their variational formulations. 

As we can see, the variational approach lets us use the strictness and 
persuasiveness of mathematical formality, which would be hardly possible 
otherwise. Interestingly, it was the mathematically formal character of 
calculus of variations that helped reveal certain aberrations which 
somehow had crept into traditional foundations and particular theses of 
structural analysis, and this occured a lot of times in the history of this 
science. We will encounter examples of this kind many times in the 
forthcoming chapters. Here we can refer to Section 4.6.1 which discusses 
one of popular mistakes in the formulation of kinematic boundary 
conditions for the Timoshenko beam.  

Similarly, in the analysis of curvilinear bars the variational approach 
reveals a natural possibility for the formulation of boundary conditions in 
two versions, both being noncontradictory and self-consistent in the 
physical and mathematical sense. 

Finally, a direct variational formulation of applied mechanical problems 
is needed for building effective numerical methods of structural design. 
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That is, it is necessary for solving problems which appear in the course of 
development and improvement of contemporary engineering software. 
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5 PARTICULAR CLASSES OF PROBLEMS IN 
STRUCTURAL MECHANICS – part 2 

 Theory is a wonderful thing, but you cannot do as much as 
feed a dog with it. 

          Grinzo L (1996) ZEN of Windows 95 programming.  
                           Coriolis Group Books  

5.1 Thin plate bending — Kirchhoff–Love theory 

Let us consider the bending of a thin plate, of a thickness h. We assume 
that a set of points dividing the thickness of the plate into two equal parts 
forms a plane. This plane is usually referred to as a median plane of a 
plate. 

We introduce a right-hand Cartesian coordinate system, (X,Y,Z), in such 
manner that the plane of the (X,Y)-axes coincides with the plate’s median 
plane. 

In the theory of plates we usually call a normal a piece of a straight line, 
all points of which have the same x and y coordinates while the z 
coordinate varies from –h/2 to h/2. For the sake of certainty, we will call 
the face surface of the plate with the coordinate z = –h/2 a top (upper) face 
and the surface with the coordinate z = h/2 a bottom (lower) face of the 
plate. Thus we can say that the median surface is equidistant from the top 
and bottom faces of the plate. 

A classic technical theory of bending of thin plates, traditionally 
associated with the names of Kirchhoff and Love, is based on the 
following three assumptions (hypotheses): 

• a straight-normals assumption, according to which any normal to the 
median surface (plane) of an undeformed plate will remain rectilinear, 
will keep its length, and will remain orthogonal to the median surface 
that the median plane becomes after the plate is deformed; 

• a no-pressure assumption, according to which all planes of a plate 
which are parallel to its median plane do not interact in their normal 
direction; in other words, we suppose σzz = 0; 
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• a no-shear assumption, according to which the shear strains, γxz and γyz , 
are so small that the work of the tangential stresses, τxz and τyz, in the 
expression of energy E can be neglected in comparison to the work of 
stresses σxx, σyy, and τxy.  

The straight-normals assumption is purely kinematic. Its mechanical 
statement is that a normal to a plate behaves during the bending as if it 
were a perfectly solid body. 

Thus, the mathematical equivalents of the above assumptions are the 
requirements that 

εzz = 0,    γxz = 0,    γyz = 0,     σzz = 0. 

As usual, we denote by u, v, w the components of displacements of any 
arbitrary point of a plate with respect to the X, Y, Z axes, accordingly. As 
we have εzz = ∂w/∂z from general three-dimensional geometric 
relationships, we now know that the w function of the lateral 
displacements of the plate’s points is independent of the z coordinate. In 
other words, 

w = w(x,y). (1.1) 

In the plate’s deformed state, a normal to its median surface will acquire 
a translational displacement toward Z equal to w and slopes θx and θy with 
respect to axes X and Y, correspondingly. The positive directions of slopes 
θx and θy are defined by the right-hand screw rule. Hence, simple 
geometric considerations give the following representation of the 
displacements of an arbitrary point of the plate with the coordinates (x,y,z): 

u = u0 + zθy ,      v = v0 – zθx (1.2) 

where u0 = u(x,y,0) and v0 = v(x,y,0) are displacements along X and Y, 
respectively, of points of the plate belonging to the median plane. 

Now we are able to construct expressions for the other components of 
the strain tensor. As εxx = ∂u/∂x, εyy = ∂v/∂y, and γxy = ∂u/∂y + ∂v/∂x, we 
use this and (1.2) to produce 

εxx = ε0xx + zθy,x ,      εyy = ε0yy – zθx,y ,   γxy = γ0xy + z(θy,y – θx,x) , (1.3) 

where 

ε0xx =  ∂u0/∂x,       ε0yy =  ∂v0/∂y,      γ0xy = ∂u0/∂y + ∂v0/∂x .  

Simple relationships can be established between the slopes of the 
normal, θx and θy, on one hand, and the function of the plate’s lateral 
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displacements, w(x,y), on the other hand, by using the condition of no 
shear  γxz and γyz. And indeed, we have 

γxz = u
z x

∂ ∂
+

∂ ∂
w = θy + w,x = 0 ,     γyz = 

z y
∂ ∂

+
∂ ∂
v w = –θx + w,y = 0 . 

 

Consequently, 

θx = w,y ,     –θy = w,x .  (1.4) 

By the way, (1.4) immediately gives 

θx,x + θy,y = 0 . (1.5) 

The latter means we can introduce a normal’s slope vector, θ = θxix + θyiy , 
where ix and iy are unit vectors of the X and Y axes, and rewrite relationship 
(1.5) in a form invariant with respect to a coordinate system, 

div θ = 0 . (1.6) 

It will be convenient for further presentment if we introduce 
components of a tensor of curvature of the plate’s median surface in its 
bent state by assuming 

χxx = –
2

2x
∂
∂

w ,      χyy = –
2

2y
∂
∂

w ,        χxy = –
2

x y
∂
∂ ∂

w , (1.7) 

where χxx and χyy are the curvatures of the surface in the respective planes 
(X,Z) and (Y,Z), and χxy is its twist. The ‘minus’ sign in expressions (1.7) 
shows that the curvature of the surface is assumed to be positive if the 
surface’s convexity looks toward increasing Z’s. Taking relations (1.4) into 
account, we can rewrite the expressions of the curvature tensor’s 
components as 

χxx = θy,x ,          χyy = –θx,y ,         χxy = –θx,x = θy,y . (1.8) 

Now we use relationships (1.3) to express strains εxx , εyy and γxy via the 
components of the curvature tensor. We have 

εxx = ε0xx + zχxx ,      εyy = ε0yy + zχyy ,     γxy = γ0xy +2zχxy . (1.9) 

So, we conclude from (1.9) that, under the assumptions of the thin plate 
bending theory, strains εxx , εyy and γxy together with stresses σxx, σyy and τxy 
vary over the thickness of the plate linearly. 

Let a plate in the (X,Y)-plane occupies an area Ω with a boundary Г. 
Then, according to the assumptions we have taken, we can write an 
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expression of energy E accumulated in the deformed plate in the form of 
an integral, 

E = 
/ 2

/ 2 2

xx yy xyh
xx yy xy

h

dzd
Ω −

σ ε + σ ε + τ γ
Ω∫ ∫ . (1.10) 

Here we deem it convenient to switch to a tensor notation where the 
designations of global coordinates such as X, Y are replaced by indexed 
coordinates such as X1, X2. It means that the indexes of the tensors take 
values from 1 to 2. Then (1.10) can be rewritten as 

E = 
/ 2

/ 2

1
2

h
ij

ij
h

dzd
Ω −

σ ε Ω∫ ∫ . (1.11) 

Here and further we assume σ11 = σxx,  σ22 = σyy, σ12 = σ21 = τxy, ε11 = εxx , 
ε22 = εyy , ε12 = ε21 = ½ γxy . 

Now let’s turn to physical relationships of the plate theory. According to 
the no-pressure assumption,  σzz = 0, so in this case Hooke’s law for an 
isotropic material will become 

εxx = 1
E

(σxx – νσyy),           εyy = 1
E

(σyy – νσxx),         γxy = 1
G

τxy, (1.12) 

or, inverted, 

σxx = 21
E

− ν
(εxx + νεyy),      σyy = 21

E
− ν

(εyy + νεxx),     τxy = Gγxy . (1.13) 

In the general case of an anisotropic material, we will have this tensor 
form instead of (1.13)1 

σij = Cijklεkl ,           εij = Dijklσkl, (1.14) 

where tensors {Cijkl} and {Dijkl} are mutually inverse. 
For an isotropic material, relations (1.12) and (1.13) can be represented 

in the form of (1.14) if we assume 

                                                      
1 Obviously, the stiffness coefficients of the material, Cijkl, we use here are 

different from those used in the general three-dimensional elasticity. Here we do 
not give relationships between these two sets of coefficients; an interested reader 
can turn to literature on the subject where the bending of anisotropic plates is 
considered. See [2], for example. 
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Cijkl = 21
E

− ν
[νδijδkl + 1

2
− ν (δikδjl + δjkδil)] , 

Dijkl = 1
E

[–νδijδkl + (1 )+ ν δikδjl ]  (1.15) 

where δij and δij are Kronecher’s deltas. 
The formulas of the strains from (1.9) can be rewritten in the tensor 

form, too, so we have 

εij = ε0ij + zχij . (1.16) 

Returning to the energy expression in (1.11) and taking (1.14) and 
(1.16) into account, we will derive this by integrating over z 

E = 
/ 2

/ 2

1
2

h
ijkl

ij kl
h

C dzd
Ω −

ε ε Ω∫ ∫ = 0 0
1
2

ijkl
ij klhC d

Ω

ε ε Ω∫  +  

+
31

2 12
ijkl

ij kl
h C d

Ω

χ χ Ω∫ . (1.17) 

As strains ε0ij at the level of the plate’s median plane depend only on 
tangential displacements u0 and v0 , and curvatures χij depend only on 
lateral displacements w, hence energy E splits into a sum of two 
independent functionals, each depending on its own functional argument: 

E = EP(u0,v0) + EB(w)   (1.18) 

where EB is a bending energy, and EP is a plane stress energy. Recalling 
the notion of a Lagrangian energy space, we can say that the states of a 
plate caused by plane stress and by bending are orthogonal in the energy 
metric. 

As we are interested only with the bending in this section (the plane 
stress was considered earlier in Section 4.3), further we will mean by 
energy E only the energy of bending (so the index B will not be necessary). 
In other words, we will assume 

E = 
31

2 12
ijkl

ij kl
h C d

Ω

χ χ Ω∫ = 
3

, ,
1
2 12

ijkl
ij kl

h C d
Ω

Ω∫ w w .  

Introducing these designations for the anisotropy tensor’s coefficients, 
where the thickness of the plate is allowed for, 
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3

12
ijkl ijklhc C= ,     3

12
ijkl ijkld D

h
= ,  (1.19) 

we can rewrite the expression of the plate bending energy, E, as 

E = 1
2

ijkl
ij klc d

Ω

χ χ Ω∫ = , ,
1
2

ijkl
ij klc d

Ω

Ω∫ w w . (1.20) 

This will give the following for an isotropic material of the plate: 

E = 2 2 2
, , , , ,

1 2 2(1 )
2 xx xx yy yy xyD d

Ω

⎡ ⎤+ ν + + − ν Ω⎣ ⎦∫ w w w w w , (1.21)

where D is a so-called cylindrical (flexural) rigidity of the plate, 

D =
3

212(1 )
Eh

− ν
. 

So, as long as we are interested with stresses in the plate, caused solely 
by its bending, we have the right to remove terms related to the tangential 
displacements from the expressions of the strain components in (1.3) and 
(1.9). That is, instead of (1.3) and (1.9) we assume 

εxx =  zθy,x ,      εyy = – zθx,y ,   γxy = z(θy,y – θx,x) , (1.22) 

εxx =  zχxx ,      εyy =  zχyy ,     γxy = 2zχxy . (1.23) 

The stresses in the sections of the plate will become as follows after 
applying Hooke’s law from (1.14) or (1.13): 

• for a general anisotropic material 

σij = zCijklχkl = – zCijklw,kl ; (1.24) 

• for an isotropic material 

σxx = 21
E

− ν
(χxx + νχyy)z,          σyy = 21

E
− ν

(χyy + νχxx)z,      

τxy = 
1

E
+ ν

χxyz. (1.25) 

The bending moments per unit of length in the plate’s sections will be 
defined as the respective integral characteristics of the stresses, by 
assuming 
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/ 2

/ 2

h
xx xx

h

M zdz
−

= σ∫ ,    
/ 2

/ 2

h
yy yy

h

M zdz
−

= σ∫ ,     
/ 2

/ 2

h
xy yx xy

h

M M zdz
−

= = τ∫ , (1.26) 

which, when integrated, will give 

• for a general anisotropic material, 
ij ijkl

klM c= χ = – ,
ijkl

klc w  (1.27) 

• for an isotropic material, 

M xx = D(χxx + νχyy) = – D(w,xx + νw,yy), 

M yy = D(χyy + νχxx) = – D(w,yy + νw,xx), 

                      M xy = (1 )D − ν χxy   = – (1 )D − ν w,xy . (1.28) 

We will think that external actions upon the plate which are distributed 
over area Ω and cause its bending consist of the following components: 

• a load distributed over the area of the plate’s median surface, of an 
intensity q, acting in the direction of the Z-axis; 

• moment loads distributed over the area of the plate’s median surface, of 
intensities mx

 and my, with their positive directions defined by the right-
hand screw convention. 

Those distributed external moments are created by loads px and py applied 
to the top and bottom faces of the plate, as shown in Fig. 5.1 where the 
loads are presented as acting in their positive direction. The formal sign 
convention for those surface loads is as follows: we assume px to be 
positive if that load acts in the positive direction of the X-axis on a face 
with the positive z-coordinate (on the bottom face). The same convention 
of signs is applicable to the surface load, py, too. 

Y Y

X X

Z Z

x

mx

px

p y

py

my

p

 
Fig. 5.1.  Loads upon the external surfaces of a plate = moment loads at the level 

of the plate’s median surface 
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Obviously, with this method of applying the moment load and with the 
sign convention defined above, the following formulas hold: 

mx = –hpy
 ,         my = hpx

 . (1.29) 

The last group of equations which we have not used yet is a group of 
equilibrium equations. Let us first write the simultaneous equations of 
equilibrium for three-dimensional elasticity. As we know specific external 
actions applied to the plate, we can write 

0,

0,

0.

xx xy xz

yx yy yz

zx zy

x y z

x y z
q

x y h

∂σ ∂τ ∂τ
+ + =

∂ ∂ ∂

∂τ ∂σ ∂τ
+ + =

∂ ∂ ∂

∂τ ∂τ
+ + =

∂ ∂

 

(1.30) 

We should note that the third of the equilibrium equations does not have 
the ∂σzz/∂z term, which agrees with the no-pressure assumption. Also, the 
intensity of the volumetric load acting in the direction of the Z-axis is 
assumed to be q/h, which corresponds to a uniform distribution of that load 
over the plate’s thickness. 

We multiply the first two of those equations by z and integrate them 
over the thickness of the plate.. Taking into account (1.26), we derive 

/ 2

/ 2
, , 0,

h xz
xx xy
x y

h

M M zdz
z−

∂τ
+ + =

∂∫      
/ 2

/ 2
, , 0

h yz
yx yy
x y

h

M M zdz
z−

∂τ
+ + =

∂∫ . 

We know that 
/ 2 / 2

/ 2

/ 2
/ 2 / 2

,
h hxz hxz xz x x y x

h
h h

zdz z dz p h Q m Q
z −

− −

∂τ
= τ − τ = − = −

∂∫ ∫  

/ 2 / 2
/ 2

/ 2
/ 2 / 2

h hyz hyz yz y y x y

h
h h

zdz z dz p h Q m Q
z −

− −

∂τ
= τ − τ = − = − −

∂∫ ∫ . 

Here we denote by Q x and Q y the shear forces per unit of length, which act 
in the respective sections of the plate, 

/ 2

/ 2

h
x xz

h

Q dz
−

= τ∫ ,        
/ 2

/ 2

h
y yz

h

Q dz
−

= τ∫ , (1.31) 
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and are integral (with respect to the plate’s thickness) characteristics of 
tangential stresses τxz and τyz. Of course, involving these nonzero tangential 
stresses is in contradiction with the no-shear assumption. The contradiction 
reveals itself by violating the physical law τxz = Gγxz . This violation of the 
physical law for the tangential stresses is a tradeoff of the kinematic 
assumptions of the Kirchhoff–Love plate theory — first of all, of the 
straight-normals assumption. 

As a result, the first two integrated equations of equilibrium are 

, ,
xx xy x y
x yM M Q m+ − = − ,        , ,

yy yx y x
y xM M Q m+ − = . (1.32) 

As for the third equation of system (1.30), it will yield the following 
after being integrated over the thickness of the plate (without previously 
multiplying it by coordinate z): 

, , 0x y
x yQ Q q+ + = . (1.33) 

After differentiating the first of equations (1.32) with respect to x and 
the second with respect to y, we add together what we have obtained and 
exclude the shear forces using equation (1.33). The result is a single 
equation of equilibrium that does not contain any shear forces, 

, , ,2xx xy yy
xx xy yyM M M q− − − = , (1.34) 

where we denote 

, ,
x y
y xq q m m= − + . (1.35) 

The function, q , defined by formula (1.35) can be reasonably called a 
generalized transverse load. 

It follows from (1.27) for a general anisotropic material or from (1.28) 
for an isotropic material that moments M ij are linear aggregates built of 
second derivatives of deflection function w, therefore substituting these 
expressions to (1.34) will give a fourth-order differential equation that 
governs the thin plate bending. This equation contains a sole unknown 
function — a deflection function, w, and its physical sense is an equation 
of equilibrium in displacements, that is, a Lame-type equation which is 
alike to (4.1.7) in its operator form: 

Lu = X . 

The vector of desirable displacements, u, and the vector of loads, X , 
are scalars or, if it is more to your liking, first-order vectors: 
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u = |[w]| ,        [ ]q=X . (1.36) 

Having made the substitutes indicated above, we find that the governing 
equation of the bending analysis in the general case of an anisotropic 
material will be as follows (the tensor coordinate notation is used): 

( ), ,
ijkl

kl ij
c =w q . (1.37) 

This equation becomes especially simple for a plate made of a 
homogeneous isotropic material and of a constant thickness. The flexural 
rigidity of the plate will be D = Const. Substituting (1.28) to (1.34), we 
find that the Lame operator is a biharmonic operator multiplied by 
cylindrical rigidity D  

L = D ∇2∇2 = 
4 4 4

4 2 2 42D
x x y y

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

. (1.38) 

In the theory of elasticity, the equation of plate bending in the form 

∇2∇2w = q /D (1.39) 

is sometimes referred to as a Germain-Lagrange equation2.  

5.1.1 Local basis in points of boundary Г of area Ω 

Let (ix, iy, iz) be unit vectors of a right-hand Cartesian coordinate system, 
(X,Y,Z), introduced earlier. In addition, let n be a unit vector of an external 
normal to boundary Г of area Ω occupied by the plate in bending, and let t 
be a vector tangential to the same boundary Г and of the unit length. These 
vectors have the following matrix representation: 

n = |[nx , ny]|T,               t = |[tx , ty]|T 

where nx , ny and tx , ty are components of those vectors with respect to axes 
X and Y. 

For definiteness, we will assume the triple of unit vectors, (n, t, iz), to be 
right-hand, that is, 

                                                      
2 As S.P. Timoshenko notes ([22]), the priority in deriving a biharmonic 

equation for a thin plate bending problem belongs to Sophie Germain who, 
however, made a mistake in her paper submitted for a competition to the French 
Academy; the mistake was noticed and corrected by Joseph Lagrange who was in 
the jury.   
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iz = n × t = ix × iy . (1.40) 

Further we will treat n as a local coordinate along a normal to the plate’s 
contour, zero on the contour itself and increasing toward the external 
normal, n. The designation of s will be used for a so-called arc coordinate 
which means the length of the contour line, Г, counted off from an 
arbitrarily chose point of the contour, s = 0, and increasing toward the 
direction indicated by vector t. 

We will say that unit vectors (n, t , iz) make up a local basis in each 
point of boundary Г. It is easy to understand that the local basis is 
unambiguous everywhere in points of Г where the boundary curve is 
smooth enough (differentiable). However, in a breakpoint of the boundary 
there can be two local bases because the n and t unit vectors jump to alter 
their directions when they pass the breakpoint – these unit vectors have a 
discontinuity as vector functions of arc coordinate s.  

Turning to Appendix F (Section F.4), we note that the set of parameters 
(n,s) introduced above can be treated as a system of orthogonal curvilinear 
coordinates on the (X,Y)-plane, defined in a certain vicinity of boundary Г 
and associated with the closed curve of Г. Consequently, we can use all 
formulas given in that Appendix. In particular, formula (F.36) defines a 
rotation matrix, ω, as 

ω = 
0 1
1 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

which causes a vector multiplied by it to rotate by the angle of π/2. The 
relation between the components of slope vector θ and the derivatives of 
the plate’s deflection function established by formulas (1.4) earlier can be 
also written in the following form using the rotation matrix ω: 

θ = –ωgradw. (1.41) 

Thus, the vector of the normal’s slope, θ, is the gradient of function w 
rotated by angle –π/2.  

We will need auxiliary formulas for further presentment, which help 
replace the differentiation of the functions with respect to global 
coordinates (X,Y) by the differentiation with respect to local coordinates 
(n,s) defined in every point of boundary Г of area Ω. To do it, here we 
present formulas borrowed from Section F.4. We have 
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n

s

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎣ ⎦

 = ϕ
Tω  x

y

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎢ ⎥⎣ ⎦

,          x

y

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎢ ⎥⎣ ⎦

= ωϕ
n

s

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎣ ⎦

, (1.42) 

where the rotation matrix, ωϕ , is 

ωϕ = x y

y x

n n
n n

−⎡ ⎤
⎢ ⎥
⎣ ⎦

= x x

y y

n t
n t

⎡ ⎤
⎢ ⎥
⎣ ⎦

,              1−
ϕω = ϕ

Tω . (1.43) 

Formulas (1.42) establish a relationship between first derivatives of an 
arbitrary function — for example, w — in the global and local coordinate 
systems.  

Appendix F also presents a relation between second derivatives in these 
coordinate systems. The formulas are 

 , , , , , ,( ) ( )kl k l nn k l l k ns k l ss k l n k l l k sn n n t n t t t kt t k n t n t= + + + + − +w w w w w w . (1.44) 

It should be reminded also that formulas (1.42) and (1.44) hold only for 
points of the plate which belong to curve Г. The formulas are more 
complicated for the rest of points of area Ω, but we will not need those, so 
they are not presented. 

Also, we will need two more matrices composed of the components of 
vectors n and t  

An = 
0

0
x y

y x

n n
n n

⎡ ⎤
⎢ ⎥
⎣ ⎦

=
0

0
y x

x y

t t
t t

−⎡ ⎤
⎢ ⎥−⎣ ⎦

, (1.45) 

At = 
0

0
x y

y x

t t
t t

⎡ ⎤
⎢ ⎥
⎣ ⎦

= 
0

0
y x

x y

n n
n n

−⎡ ⎤
⎢ ⎥−⎣ ⎦

. (1.46) 

As we move along contour Г, matrices An  and At  vary. Formulas (F.52) 
give 

n
tk

s
∂

=
∂
A A ,        t

nk
s

∂
= −

∂
A A . (1.47) 
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5.1.2 Matrix representation of basic relationships in the 
Kirchhoff–Love plate theory 

Now we are going to convert all relationships of the thin plate theory that 
we have obtained into a general matrix form. For the plate bending 
analysis, the matrix representation of “stresses” σ and “strains” ε can be 
conveniently written as 

σ = |[M xx, M yy,  M xy]|T,      ε = |[χxx, χyy, 2χxy]|T, (1.48) 

while displacement u and load X  are determined by formulas (1.36). 
If we assume 

A = 

2

2

2

2

2

2

x

y

x y

⎡ ⎤∂
−⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂

−⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂⎢ ⎥−
∂ ∂⎢ ⎥⎣ ⎦

,           AT = 
2 2 2

2 2, , 2
x y x y

⎡ ⎤∂ ∂ ∂
− − −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

, (1.49) 

then both geometric equations (1.7) and the equilbrium equations with 
respect to the moments, (1.34), will be satisfied. The same equations will 
acquire a general matrix form, 

 ε = Au ,         ATσ = X . 

Let us give also a matrix form of the physical relationship operators 
according to (1.27) and (1.28). For an isotropic material, we have 

3

2

1 0
1 0

12(1 )
10 0

2

Eh

⎡ ⎤
⎢ ⎥ν
⎢ ⎥

= ν⎢ ⎥− ν ⎢ ⎥− ν
⎢ ⎥
⎣ ⎦

C ,     1
3

1 0
12 1 0

0 0 2(1 )
Eh

−

−ν⎡ ⎤
⎢ ⎥= −ν⎢ ⎥
⎢ ⎥+ ν⎣ ⎦

C . (1.50) 

For a general anisotropic material, matrices С and С –1 will be completely 
filled symmetric matrices of third order. A relation between the matrix and 
tensor representations of algebraic equations C and C –1  is given by 
formulas 
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1111 1122 1112

2211 2222 2221

1211 1222 1212

c c c
c c c
c c c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C ,    
1111 1122 1112

1
2211 2222 2221

1211 1222 1212

d d d

d d d

d d d

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

C . (1.51) 

If we follow a general rule for building the Lame operator as in (4.1.6) 
and make formal matrix transformations, we will arrive, as expected, at the 
same equation (1.37) or (1.39).   

The bending moment, M nn, and the torque, M nt, which act on the 
contour of the plate (Fig. 5.2), are defined as 

M nn  = M xx nx nx + M yy ny ny + 2M xy nx ny = M ij ni nj =  nTAn σ, 

M nt =  M xx nx tx + M yy ny ty + M xy (nx ty + ny tx) = M ij ni tj = tTAn σ . (1.52) 

These formulas can be easily validated by using the equilbrium equations 
with respect to the moments for an element of the plate cut out from the 
vicinity of the plate’s contour as shown in Fig. 5.2. One should keep in 
mind, when deriving relationships (1.52), that the moments shown in 
Fig. 5.2 are not full moments acting on the respective faces of the extracted 
element but moments per unit of length. Note also a circumstance that the 
positive torque M nt acting on the contour of the plate is opposite to unit 
vector n, as can be seen in Fig. 5.2. At the same time, the positive bending 
moment, M nn, has the same direction with unit vector t 3. 
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Fig. 5.2.  Internal forces in sections of the plate near its contour 

                                                      
3 The convention of signs for these moments is based on the following 

considerations. A positive bending moment, M nn, is created by positive 
(tensioning) normal stresses σ nn which act at those points of an oblique section in 
Fig. 5.2 which have a positive Z coordinate. A positive torque, M nt, is created by 
positive tangential stresses τ nt which act along the oblique plane in Fig. 5.2. In its 
turn, a positive tangential stress, τ nt, which acts at a point with a positive Z 
coordinate has the same direction with the t-axis. 
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We can also define the bending moment, M tt, as a moment which acts 
on the contour in a cross-section the normal to which coincides with the t-
axis, so that 

M tt =  M xx tx tx + M yy ty ty + 2M xy tx ty = M ij ti tj = tTAt σ . (1.53) 

Formulas (1.52), (1.53) define the components of the moment tensor in 
the (n, t)-axes via the components of the same tensor in the original global 
coordinate system. The latter are expressed via the derivatives of the 
deflection function by formulas (1.27) in the general case or by (1.28) for 
an isotropic material of the plate. However, for the analysis of plates with a 
curvilinear contour, it is useful to have expressions for quantities M nn, M tt, 
and M nt also via the derivatives of the deflection along the normal to the 
contour and along the contour itself. Based on (1.52) and taking (1.27) and 
(1.44) into account, we have 

M nn = M ij ni nj = – ,
ijkl

klc w ni nj = 

  , , , , ,[ ( ) ( ) ]ijkl
i j k l nn k l l k ns k l ss k l n k l l k sc n n n n n t n t t t kt t k n t n t= − + + + + − +w w w w w . 

In particular, coefficients сijkl are defined by expressions (1.15) and (1.19) 
for an isotropic material, which gives the following after the substitutions: 

M nn = –D[w,nn + ν(w,ss + kw,n)]. (1.54) 

These transformations use the index lifting/lowering rules known in tensor 
analysis and based on Kronecher’s deltas, for example, 

δijnj = n i , 

as well as inequalities which can be easily validated: 

n knk = n·n = 1,    t ktk = t·t = 1,      n ktk = n·t = 0. 

Similarly, further we have 

M tt = –D[w,ss + νw,nn + kw,n)] . (1.55) 

M nt = –D(1 – ν)[w,ns  – kw,s)] . (1.56) 

Let us determine shear forces Q x and Q y which act in the plate’s cross-
sections as shown in Fig. 5.2 and Fig. 5.3, and shear force Q n which acts 
on contour Г. 

From formulas (1.32) we derive 

, ,
x xx xy y

x yQ M M m= + + ,        , ,
y yy yx x

y xQ M M m= + −  (1.57) 

and 
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Q = |[Q x, Q y]|T ,             Q n = Q x nx + Q y
 ny = nTQ . (1.58) 

The formula for Q n follows from an equation of equilibrium with respect 
to projections onto the Z-axis for an element cut off from the plate in the 
vicinity of its contour (Fig. 5.2). 

Z

Y

X

n

t

M
nt

M
nn

K

Q

x

x

K

Q

x

x

M
xx

M
xy

M
xy

M
yy

P
�

�

K

Q

y

y

 
Fig. 5.3.  Internal forces in the plate’s cross-sections and forces on its contour 

Relationships (1.57) can be represented also in the tensor notation as 

,
i ij ij

j jQ M m= − ω . (1.59) 

Now let us consider a matrix notation for the shear forces. In order to 
obtain it, we introduce an auxiliary differentiation matrix, Ad, and a vector 
of external moments, m, 

Ad = 
0

0

x y

y x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

,           m = 
x

y

m

m

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

. (1.60) 

Note that matrix Ad has the same structure as matrix An. These matrices 
can be converted to each other by replacing the respective direction cosine 
of vector n with the differentiation with respect to the same coordinate; 
this can be symbolized as 

An ⇔ Ad :         nx ⇔ ∂/∂x ,         ny ⇔ ∂/∂y . 

As a result, (1.57) will acquire the following matrix form: 
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Q = Ad σ – ωm , 

so, consequently, Q n = nTQ = nTAd σ – nTωm. But then from (F.37) we 
derive tT = –nTω, therefore 

Q n =  nTAd σ + tTm = ,
ij t
i jM n m+ , (1.61) 

where tm  is a component of an external moment, distributed over area, 
with respect to the local axis t, 

t x y
x ym m t m t= + . (1.62) 

5.1.3 Basic integral identity for thin plate bending 

Thus, what we have obtained above is a basic governing equation for the 
thin plate bending analysis within the limits of the Kirchhoff–Love theory 
– equation (1.37) for a general case, or biharmonic equation (1.39) for a 
particular case. To get a closed mathematical statement of the problem in 
the differential form, we need to formulate admissible boundary 
conditions. In order to define the boundary conditions correctly, we will 
need definitions of boundary displacements u and boundary stresses/forces 
p; we require that a basic integral identity for the plate bending analysis 
hold: 

d
Ω

Ω∫ AT uσ  = d
Ω

Ω∫ AT Tu σ  d
Γ

Γ+ ∫ u pT . (1.63) 

Now we drop the matrix notation for a while and again turn to a more 
natural form for this particular problem – a coordinate tensor notation. It is 
not hard to see that rewriting the left part of (1.63) in the tensor form and 
applying the Gauus–Ostrogradsky formula twice will give 

d
Ω

Ω∫ AT uσ  = – ,
ij

ijM d
Ω

Ω∫ w  = , ,
ij
i jM d

Ω

Ω∫ w  ,
ij

j iM n d
Γ

Γ− ∫ w = 

= – ,
ij
ijM d

Ω

Ω∫ w – ,
ij

j iM n d
Γ

Γ∫ w ,
ij
i jM n d

Γ

Γ+ ∫ w = 

= d
Ω

Ω∫ AT Tu σ – ,
ij

j iM n d
Γ

Γ∫ w ,
ij
i jM n d

Γ

Γ+ ∫ w . (1.64) 

Now we will be interested with an overall contour integral, J, contained in 
the right part of formula (1.64), which can be represented as follows by 
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using the symmetry M ij =  M ji and an insignificant transposition of umbral 
(“dummy”) indexes 

J , ,( )ij ij
i j i jM n M n d

Γ

Γ= −∫ w w . 

First of all, we note that formulas (1.42) imply 

, , ,i n i s in t= +w w w . (1.65) 

Using (1.65) and (1.52), we can easily validate the following useful 
identity4,  

w, i
 M ij nj = w,n M nn + w,s M nt , (1.66) 

which we substitute to the integrand in J. 
The aggregate w,s M nt that appears in the integral can be replaced by 

expression , ,( )nt nt
s sMM −w w , which follows from the formula of 

differentiation of a product. We have 

J , , , ,[ ( ) ( ) ]nn ij nt nt
n i j s sM M n M M d

Γ

Γ= − + + −∫ w w w . (1.67)

Let a piecewise-continuous function f(s) be defined on contour Г, and let 
it have discontinuities in a certain finite number of singular points s = sβ so 
that the function be differentiable on each segment of its continuity, that is, 
between two adjacent singular points. Then the integral of the derivative of 
this function with respect to arc coordinate s, taken over the whole closed 
contour Г, will be equal to an alternated sum of leaps of the function in all 
singular points, that is, 

f d
sΓ

Γ∂
∂∫ = – ( 0) ( 0)f s f sβ β

β

⎡ ⎤+ − −⎣ ⎦∑ . (1.68) 

We assume f(s) = wM nt in (1.68) and take into account the continuity of 
the deflection function, w, along the whole contour, to derive 

,( )nt
sM d

Γ

Γ− ∫ w = ( )s Pβ β
β
∑w , (1.69) 

where Pβ denote leaps of the torque, M nt, as we move along contour Г, 

                                                      
4 Note that here and below we do not use n and t as summation indexes; they 

just indicate the direction of a normal to the boundary, n, and a tangential 
direction, t . 
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Pβ = M nt(sβ + 0) – M nt(sβ – 0) . (1.70) 

The sum in (1.69) is taken over all singular points of the contour, that is, 
over points in which moment M n experiences a discontinuity. In particular, 
the discontinuity takes place in breakpoints of contour Г. This becomes 
obvious when we turn to second formula in (1.52) where it can be seen 
clearly how torques M nt experience discontinuities in all those points – the 
components of tangential vector t change in leaps. 

It will be convenient for us to write the right part of (1.69) as a part of a 
contour integral, which can be dome by using Dirac delta functions, δ(s–
sβ) 

( )s Pβ β
β
∑w ( )P s s d

Γ

Γβ β
β

= δ −∑∫ w . (1.71) 

It is also easy to show that –w,n = θt. Indeed, this equality follows from a 
chain of formal transformations, 

–w,n = –nTgradw = –(ωTt)Tgradw = –tTωgradw = tTθ = θt. (1.72) 

So, the final form of contour integral J is 

J = , , ( )nn ij nt
t i j sM M n M P s s d

Γ

Γβ β
β

⎧ ⎫⎡ ⎤⎪ ⎪θ + + + δ −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑∫ w . (1.73)

Now we return to formula (1.64) and rewrite it as 

d
Ω

Ω∫ AT uσ  =  

= d
Ω

Ω∫ AT Tu σ + , , ( )nn ij nt
t i j sM M n M P s s d

Γ

Γβ β
β

⎧ ⎫⎡ ⎤⎪ ⎪θ + + + δ −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑∫ w , 

which is the same as the basic integral formula (1.63), if we take the 
following expressions for the vectors of boundary displacements u and 
boundary stresses p, 

u = |[w, θt]|T,          p = |[ , , ( )ij nt
i j sM n M P s sβ β

β

+ + δ −∑ , M nn]|T. (1.74) 

The quantity of , , ( )ij nt
i j sM n M P s sβ β

β

+ + δ −∑ , which we denote by K n, 

was brought in the plate bending theory by Kirchhoff, as a generalized 
force conjugated by energy to the plate’s deflection on the contour, w ∈Г. 
That is why K n is called a generalized (or Kirchhoff’s) shear force, 
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K n = , , ( )ij nt
i j sM n M P s sβ β

β

+ + δ −∑ . (1.75) 

Now we want to find out how the common shear force, nQ , and 
Kirchhoff’s shear force, K n, relate to each other. In order to do it, we 
transform expression ,

ij
i jM n . From formula (1.61) we derive 

,
ij
i jM n n tQ m= − . 

Consequently, 

K n = , ( )n nt t
sQ M m P s sβ β

β

+ − + δ −∑ . (1.76) 

Thus, Kirchhoff’s contour shear force per unit of length differs from the 
common shear force, nQ , by the derivative of torque ,

nt
sM  and the value of 

tm  in all regular points of the contour; in addition, it differs by a shear 
force, concentrated in that point and equal to a leap of the torque, 
Pβ = M nt(sβ + 0) – M nt(sβ – 0), in a singular point of the contour where 
torque ntM  experiences a discontinuity. 

Now we will define operators Hu and Hσ which map the vector of 
displacements u and vector of stresses σ into the vector of contour 
displacements u and the vector of contour stresses p, in accordance with 
general formulas (1.2.7) 

u = Huu ,         p = Hσ σ . 

As for operator Hu , it is clear from (1.72) and (1.42) that 

Hu =
1

n

⎡ ⎤
⎢ ⎥∂⎢ ⎥−
⎢ ⎥∂⎣ ⎦

= 
1

x yn n
x y

⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥− −

∂ ∂⎢ ⎥⎣ ⎦

. (1.77) 

It can be validated directly that aggregate ,
ij
i jM n  can be represented as 

,
ij
i jM n = nTAd σ . (1.78) 

Further, 

,
nt
sM = ( )ns

∂
∂

t AT σ = ( )n

s
∂

∂
t AT

σ + tTAn s
∂
∂
σ . 
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Turning to Frenet formulas (F.52) and differentiation formulas (1.47), we 
have 

( )ns
∂
∂

t AT = –knTAn + ktTAt = –knT(An +ω At) . 

Thus, replacing vector tT by –nTω will give 

,
nt
sM = –nT[k(An +ω At) + ωAn s

∂
∂

]σ . (1.79) 

Now we introduce a symbolic operator, Гβ, that acts on a certain 
function, a(s), and maps that function into the following expression: δ(s –
 sβ)[a(sβ + 0) – a(sβ – 0)]. 

Taking second formula from (1.74) and the relationships obtained 
above, we can present operator Hσ in its symbolic form: 

Hσ = 
( )d n t n n

n

k s β
β

⎡ ⎤∂⎡ ⎤− + + +∂⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑n A n A A A t A

n A

T T T

T

ω ω Γ
 ; (1.80)

this maps the vector of stresses σ into the vector of boundary stresses p.  
It will be also useful for further presentment to write an expression for 

the scalar product of the contour forces/stresses and the contour 
displacements, (p, u)Г , in an explicit expanded form. We derive this from 
(1.74) and (1.75): 

(p, u)Г nK d
Γ

Γ= ∫ w ,
nn

nM d
Γ

Γ− ∫ w . (1.81) 

5.1.4 Boundary conditions for thin plate bending 

The basic integral identity established above permits us to write correct 
boundary conditions for the plate bending analysis right now. As it follows 
from formula (1.74) for the contour displacements and contour stresses, 
two boundary conditions can be formulated in each point of the plate’s 
contour, Г. 

According to the structure of the contour displacements and the contour 
stresses, the full boundary, Г, of area Ω can be divided into two sets of 
boundaries such that  

Г = ГK ∪ Гw ,    ГK ∩ Гw = ∅,  Г = ГM ∪ Гθ ,    ГM ∩ Гθ = ∅, (1.82) 
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where kinematic-type boundary conditions are stated on Гw and Гθ and 
static-type conditions on ГK and ГM , 

w = w ∈ Гw , θt = tθ  ∈ Гθ            kinematic boundary conditions, 

K n = K ∈ ГK ,  M nn = M ∈ ГM             static boundary conditions. (1.83) 

Here θt is a slope of the normal to the plate’s median surface with respect 
to local axis t, which can be represented as follows using (1.72): 

θt = – w, n = – w,x nx – w,y ny . (1.84) 

Overscored symbols in formulas (1.83) denote, as usual, quantities 
specified on the respective segments of contour Г. 

Obviously, the coresponding matrices of boundary condition extraction, 
Eu and Ep , are 

Eu =
0

0
e

eθ

⎡ ⎤
⎢ ⎥
⎣ ⎦

w ,     Ep =
0

0
K

M

e
e

⎡ ⎤
⎢ ⎥
⎣ ⎦

, (1.85) 

where ew, eθ, eK, eM are characteristic functions of contour conditions; each 
of those is equal to one on a segment of the contour where a boundary 
condition corresponding to its subscript is stated and is equal to zero on the 
rest of the contour. It should be kept in mind that the matrices satisfy 
conditions (1.2.5). 

So, we repeat that the Kirchhoff–Love theory of plates states two 
boundary conditions in each point of the contour, which is in accordance 
with all energy theorems of structural mechanics that follow from the basic 
integral identity.  

It is a matter of history that the question of boundary conditions in the 
technical theory of plate bending was a subject of a long scientific 
discussion. One of creators of the plate bending theory, French 
mathematician and mechanician Simeon Denis Poisson arrived at the 
Germain–Lagrange biharmonic equation and formulated three boundary 
conditions on a fixation-free edge of a plate: (in our notation) for shear 
force Q n, for bending moment M nn, and for torque M nt. As we have 
already told, mechanics of solids should thank another prominent scientist, 
Gustav Robert Kirchhoff, for his detecting a contradiction of this 
(redundant) set of boundary conditions to the energy laws of statics. 
Kirchhof used a variational formulation of the problem to show [11] that 
the natural conditions for the Lagrange functional in the plate bending 
theory include only two conditions on a fixation-free edge: for bending 
moment M nn and for generalized (Kirchhoff’s) shear force K n. The 
publication of Kirchhoff’s paper started a hot and one of longest scientific 
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discussions in the history of mechanics. The participants of the discussion 
were numerous prominent scientists, and the very fact of an incorrect, from 
the standpoint of energy, formulation of the boundary conditions in the 
technical theory of plate bending was called a “Poisson’s mistake in the 
plate theory”.   

In the course of that discussion, Kelvin and Tait suggested a mechanical 
model that explained, on a level of mathematical abstraction, how it was 
admissible (and even necessary!) to transit from the common shear force to 
Kirchhoff’s generalized shear force on a fixation-free edge of the plate. 
The Kelvin–Tait transformation has been described many times in the 
literature, including various textbooks. We will not give a mechanical 
interpretation of the Kelvin–Tait transformation here because this is a bit 
of a deviation from the main course of the book; instead, we will refer to 
such books as [19] and [3] where this subject is addressed with a great 
carefulness and accuracy5.  

                                                      
5 It is curious that the said discussion was continued with a new passion at the 

end of twentieth century in Russia. Of course, particular issues and the whole 
subject were different in this new outbreak; the main interest of the participants 
was addressed to contradictions in the Kirchhoff–Love theory and its comparison 
with Reissner’s theory of plates from the standpoint of matching the respective 
solutions to the solutions of three-dimensional elasticity. We will not participate in 
that discussion; instead, we suggest that the reader, if interested, made himself 
familiar with opinions of the discussion’s participants and assessed them as best 
he could; it can be educational at the least. Here’s a list of the relevant 
publications. 

1.  Goldenweiser AL (1992) A general theory of thin elastic bodies (shells, roofs, 
spacers) (in Russian).   Bull. Acad. Sci., Mech. Deform. Solids, 3: 5 – 17 

2.  Vasiliev VV (1992) On a theory of thin plates (in Russian). Bull. Acad. Sci., Mech. 
Deform. Solids, 3: 26 – 46 

3.  Zhilin PA (1992) On theories of plates by Poisson and by Kirchhoff from the 
standpoint of the modern plate theory (in Russian). Bull. Acad. Sci., Mech. Deform. Solids, 
3: 48 – 64 

4.  Alfutov NA (1992) Some paradoxes in the theory of thin elastic plates (in Russian). 
Bull. Acad. Sci., Mech. Deform. Solids, 3: 65 – 72 

5.  Darevsky VM (1995) On static boundary conditions in the classic theory of shells 
and plates (in Russian). Bull. Acad. Sci., Mech. Deform. Solids, 4: 129–132 

6.  Zhilin PA (1995) On the classic theory of plates and the Kelvin–Tait transformation 
(in Russian). Bull. Acad. Sci., Mech. Deform. Solids, 4: 133 – 139 

7.  Vasiliev VV (1995) To a discussion on classic theory of plates (in Russian). Bull. 
Acad. Sci., Mech. Deform. Solids, 4: 140 – 150 

8.  Goldenweiser AL (1997) On approximate methods of analysis of thin elastic shells 
and plates (in Russian). Bull. Acad. Sci., Mech. Deform. Solids, 3: 134–149    

9.  Vasiliev VV (1997) An asymptotic method of justification of the plate theory (in 
Russian). Bull. Acad. Sci., Mech. Deform. Solids, 3: 150 – 155 
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Here we just emphasize once again that Kirchhoff’s boundary 
conditions are quite correct in the technical theory of plates by Kirchhoff–
Love from the standpoint of variational formulations, which is not the case 
for Poisson’s conditions. 

5.1.5 Important functionals for thin plate bending 

Lagrange functional 

Earlier we have established an admissible set of external force actions on 
the plate, specified in area Ω, which includes a lateral load, q, and 
moments mx and my

 distributed over the median surface of the plane. 
To complete the picture, now we supplement these external forces with 

a load specified on the plate’s contour, Г. This contour load consists of 
contour forces Q  per unit of length with the same positive direction as the 
Z-axis has and contour bending moments tM  and torques nM  per unit of 
length. Fig. 5.4 shows those external forces and mments as acting in their 
positive direction. 

X

Y
Z

n

s

K

M
t

M
n

 
Fig. 5.4.  External loads on the contour of the plate 

Now we are able to write out an expression of force potential Пs as a 
virtual work of all external forces on the respective displacements. We 
have 

                                                                                                                          
10. Goldenweiser AL (1997) Notes on the paper by V.V. Vasiliev "An asymptotic 

method of justification of the plate theory" (in Russian). Bull. Acad. Sci., Mech. Deform. 
Solids, 4: 150 – 158 
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Пs = ( )x y
x yq m m d

Ω

+ θ + θ Ω∫ w  ( )t n
t nQ M M d

Γ

Γ+ + θ + θ∫ w . (1.86) 

Here θn and θt are components of the normal’s slope vector, θ, in axes n 
and t.  

First of all, we want to transform an expression of the virtual work of 
loads distributed over area Ω by making substitutions according to (1.4) 
and using the Gauss–Ostrogradsky formula. We have 

( )x y
x yq m m d

Ω

+ θ + θ Ω∫ w = , ,( )x y
y xq m m d

Ω

+ − Ω∫ w w w = 

= , ,( )x y
y xq m m d

Ω

− + Ω∫ w ( )x y
y xm n m n d

Γ

Γ+ −∫ w . 

Now recall a designation introduced earlier by formula (1.62):  
t x y x y

y x x ym m n m n m t m t= − + = + , 

and formula (1.35) for a generalized lateral load q . Now we have 

( )x y
x yq m m d

Ω

+ θ + θ Ω∫ w = q d
Ω

Ω∫ w tm d
Γ

Γ− ∫ w . (1.87)

Then, considering (1.4) and (1.46), we express slopes θt and θn via the 
derivatives of deflections w, 

θt = – w,n  ,          θn = w,s    .        

After substituting, we transform the expression of Пs according to (1.86) 
into the following: 

Пs = q d
Ω

Ω∫ w tm d
Γ

Γ− ∫ w ( )t n
t nQ M M d

Γ

Γ+ + θ + θ∫ w =  

= q d
Ω

Ω∫ w , , ,[ ( ) ]t n n t
n s sQ M M M m d

Γ

Γ+ − + − −∫ w w w w w =. 

= q d
Ω

Ω∫ w ,( )t
nK M d

Γ

Γ+ −∫ w w . (1.88)

Here we denote 

, ( )t n
sMK Q m P s sβ β

β

= − − − δ −∑ , (1.89) 
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where Pβ  is a leap of the contour torque, nM , as we move along the 
contour coordinate, s: 

( 0) ( 0)n nP M s M sβ β β= + − − . (1.90) 

Function ( )K s  defined on contour Г by formula (1.89) can be called a 
generalized (or Kirchhoff’s) contour load. Note that the summation in 
(1.89) is performed over all singular points of the contour with the 
coordinates s = sβ, that is, over points where the given external contour 
moment, nM , experiences a discontinuity. We can think of two types of 
singular points:  

• point s = sβ is a singular one if function nM  specified on contour Г has a 
discontinuity in that point, though the point itself may belong to a 
smooth part of the contour; 

• point s = sβ is a singular one if it is a breakpoint of the contour because 
the given external moment nM  has a leap of its direction.   

Note that the integral in formula (1.88) is taken formally over the whole 
closed contour Г. If we recall, however, that the external (active) contour 
actions K  and tM  are nonzero only on parts of the contour where the 
respective characteristic functions eK and eM are equal to one, and if we 
introduce a simplified (index-free) designation of M  for the contour 
bending moment, tM , that is, if we assume 

M = tM , 

then we can rewrite expression (1.88) of force potential Пs as 

Пs = q d
Ω

Ω∫ w Ke K d
Γ

Γ+ ∫ w ,M ne M d
Γ

Γ− ∫ w . (1.91) 

If we introduce, as we did all the time, a common designation for a 
vector of external forces p  specified on the contour by assuming 

p  = ,K M⎡ ⎤⎣ ⎦
T

, (1.92) 

then, according to (1.2.5) the expression of force potential Пs will acquire 
a general operator form: 

Пs = d
Ω

Ω⋅∫ X u  + p p u d⋅∫ E p E H u
Γ

Γ = ( X , u) + (Ep p , EpHuu)Г  . (1.93)
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Now, recalling the expression of the strain energy, E, from (1.20) and 
(1.21), we will present the Lagrange functional, L = E – Пs , for a flexural 
Kirchhoff-Love plate. We have 

L = , ,
1
2

ijkl
ij klc d

Ω

Ω∫ w w – q d
Ω

Ω∫ w ,( )K M ne K e M d
Γ

Γ− −∫ w w = 

= ½ (CAu, Au) – ( X , u) – (Ep p , EpHuu)Г  . (1.94) 

The set, P k , of kinematically admissible stress-and-strain fields which we 
search for the minimum of Lagrangian functional L will consist of all 
fields of the type 

F = {CAu, Au, u}    at    Euu = u  ∈Г. 

The expanded form of this can be written as follows for an isotropic plate: 

F = 
, , ,

, , ,

, ,

( )
( ) , ,

(1 ) 2

xx yy xx

yy xx yy

xy xy

D
D

D

⎧ ⎫⎡ ⎤ ⎡ ⎤− + ν −
⎪ ⎪⎢ ⎥ ⎢ ⎥− + ν −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥− − ν −⎣ ⎦ ⎣ ⎦⎩ ⎭

w w w
w w w w

w w
: 

ew(w – w ) = 0,      eθ(–w,n – tθ ) = 0    ∈Г. 

Earlier, in Chapter 2, we established that the condition of minimum of 
functional L on set P k implies the Lame equation (a Euler equation for the 
L functional) in area Ω and static (natural) boundary conditions on 
contour Г 

ATCAu = X ∈Ω ,           Ep(p – p ) = 0  ∈Г. 

This gives the already known relationships when written in components: 

( ), ,
ijkl

kl ij
c =w q  ∈Ω ,      K n – K = 0 ∈ ГK ,      M nn – M = 0  ∈ ГM. (1.95) 

Castigliano functional 

To derive the Castigliano functional, we use general formula (1.3.1) and 
assume K = О – there is no elastic foundation. 

An expression of the strain energy represented as a functional of the 
moment tensor’s components is as follows for the general case of an 
anisotropic material: 
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E(σ) = ½(C –1σ, σ) = 1
2

ij kl
ijkld M M d

Ω

Ω∫ . (1.96) 

This gives the following for an isotropic plate of a constant thickness: 

E(σ) = 

2 2 2
2

1 ( ) 2 ( ) 2(1 )( )
2 (1 )

xx xx yy yy xyM M M M M d
D Ω

⎡ ⎤= − ν + + + ν Ω⎣ ⎦− ν ∫ (1.97) 

Further, from (1.81) we derive this expression for a potential of external 
kinematical actions 

Пk(σ) = (EuHσσ, Eu u )Г = n nn
te K d e M d

Γ Γ

Γ Γθ+ θ∫ ∫w w . (1.98)

A point of minimum of the Castigliano functional, 

K(σ) = E(σ) – Пk(σ) =  

1
2

ij kl
ijkld M M d

Ω

= Ω∫ n nn
te K d e M d

Γ Γ

Γ − Γθ− θ∫ ∫w w , (1.99)

should be sought for in a set of statically admissible stress-and-strain 
fields.  

As the Castigliano functional depends only on “stresses” M ij when there 
is no elastic foundation, the “stresses” must satisfy the equilibrium 
equations in area Ω, 

, , ,2xx xy yy
xx xy yyM M M q− − − =    ∈Ω, (1.100)

and static boundary conditions on the plate’s contour, Г, 

K n = K ∈ ГK ,         M nn = M ∈ ГM . (1.101)

As we established in Chapter 2 for the general case, Euler equations for 
the Castigliano functional are conditions of strain compatibility written in 
terms of stresses. For the thin plate bending analysis, the strain 
compatibility conditions consist of the two following relationships: 

0xyxx

y x
∂χ∂χ

− =
∂ ∂

,     0yy xy

x y
∂χ ∂χ

− =
∂ ∂

. (1.102)

Actually, the strain compatibility conditions (1.102) can be obtained 
from the requirement that the third mixed derivatives of the deflection 
function should be independent from the order of differentiation. If we turn 
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to the operator-based form of these equations as in (4.1.8), we will find 
easily that the compatibility operator, S, is 

S = 
0

2

0
2

x y

y x

∂ ∂⎡ ⎤−⎢ ⎥∂ ∂⎢ ⎥
∂ ∂⎢ ⎥−⎢ ⎥∂ ∂⎣ ⎦

. (1.103)

Here we take into account the fact that strain vector ε for the plate bending 
is defined by second formula in (1.48). Also, (1.49) helps make sure that 
operator SA is indeed an annihilating operator, as required by (4.1.10), that 
is, 

SA = O. 

Further, a general strain compatibility condition written in terms of 
stresses was already presented earlier by formula (4.1.12-b), which in our 
case is 

SC –1σ = 0. 

In particular, the strain compatibility conditions in terms of stresses, 
written in components for a plate of a constant thickness made of a 
homogeneous isotropic material, are 

, , ,(1 ) 0xx yy xy
y y xM M M− ν − + ν = , 

, , ,(1 ) 0yy xx xy
x x yM M M− ν − + ν = . (1.104) 

Reissner functional  

Here we present an expression of the Reissner functional for the bending 
of a Kirchhoff–Love plate. Writing in components, we have 

(Au,σ) = , , ,[ 2 ]xx yy xy
xx yy xyM M M d

Ω

− + + Ω∫ w w w  = ,
ij

ijM d
Ω

− Ω∫ w , (1.105) 

 (Eu u, Eu p)Г – Пk(σ) = ,( ( )n nn
n te K d e M d

Γ Γ

Γ Γθ− + − − θ∫ ∫w w w w . (1.106) 

Now we derive an expression of the Reissner functional’s first form from 
the general formula (3.1.4): 
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R1(σ, u) = ½(C –1σ, σ)  – (Au, σ) + (Eu p, Eu u)Г + Пs – Пk = 

= ,
1
2

ij kl ij
ijkl ijd M M M q d

Ω

⎡ ⎤+ + Ω⎢ ⎥⎣ ⎦∫ w w ( )ne K d
Γ

Γ+ −∫ w w w + 

,( )nn
n te M d

Γ

Γθ+ − − θ∫ w Ke K d
Γ

Γ+ ∫ w ,M ne M d
Γ

Γ− ∫ w . (1.107) 

The second form of the Reissner functional can be obtained in a similar 
way: 

R2(σ,u) = ½(C -1σ, σ) – (ATσ, u) – (Ep p, Ep u)Г +Пs – Пk = 

= ,
1
2

ij kl ij n
ijkl ijd M M M q d e K d

Γ

Γ
Ω

⎡ ⎤+ + Ω −⎢ ⎥⎣ ⎦∫ ∫ ww w w – 

nn
te M d

Γ

Γθ− θ∫ ( )n
Ke K K d

Γ

Γ+ −∫ w ,( )nn
M ne M M d

Γ

Γ− −∫ w . (1.108)

Herrmann functional 

As we noted in Section 3.1.1, there exists a third form of the Reissner 
functional for a number of applications where geometry operator A 
contains differential operations of an even order. This third form is derived 
from the Reissner functional’s first or second form by formally moving 
some of the derivatives from the displacements/stresses onto the 
stresses/displacements using the Gauss–Ostrogradsky formula, to make the 
differentiation orders of the stresses and the displacements equal. 

For example, let us consider the second form of the Reissner functional 
and try to transform in this way the –(ATσ, u) term contained in the 
expression of R2(σ,u) by moving half of the derivatives from the moments 
onto the displacements. We have 

– (ATσ, u) = ,
ij
ijM d

Ω

Ω∫ w = , , ,
ij ij
i j i jM d M n d

Γ

Γ
Ω

− Ω +∫ ∫w w . 

As the condition ew + eK = 1 holds in any point of contour Г, we can divide 
the contour integral in the above relationship into two integrals. This gives 

–(ATσ, u) =  , , , ,
ij ij ij
i j i j K i jM d e M n d e M n d

Γ Γ

Γ Γ
Ω

− Ω + +∫ ∫ ∫ww w w . 

Substituting this relation to (1.108) produces a component-based third 
form of the Reissner functional. Thus, we have 



5.1 Thin plate bending — Kirchhoff–Love theory      251 

R3(σ,u) = , ,
1
2

ij kl ij
ijkl i jd M M M q d

Ω

⎡ ⎤− + Ω⎢ ⎥⎣ ⎦∫ w w – 

,( )n ij nn
i j te K M n d e M d

Γ Γ

Γ Γθ− − − θ∫ ∫w w w + 

,( )n ij
K i je K K M n d

Γ

Γ+ − +∫ w ,( )nn
M ne M M d

Γ

Γ− −∫ w . (1.109) 

By using formulas (1.75) and (1.70) we derive 

, ,

, , ,

( ) [ ( )]

[ ( ) ] .

n ij nt
i j s

nt nt nt
s s s

K M n d M P s s d

M M d M d
Γ Γ

Γ Γ

Γ Γ

Γ Γ

β β
β

− = + δ − =

= − = −

∑∫ ∫

∫ ∫

w w

w w w
 

(1.110) 

Substituting formula (1.110) to (1.109) and making some insignificant 
transformations, we produce a final functional which we denote by H(σ,u): 

H(σ,u) = , ,
1
2

ij kl ij
ijkl i jd M M M q d

Ω

⎡ ⎤− + Ω⎢ ⎥⎣ ⎦∫ w w  ,
nt

sM d
Γ

Γ+ ∫ w – 

( )n nn
t

K

K d M d K d
θ

− − − θ + −∫ ∫ ∫
Γ Γ Γ

Γ Γ Γ
w

w w w  

,( )nn
n

M

M M d− −∫
Γ

Γw . (1.111)

Although this functional is nothing but the third form of the Reissner 
functional for the thin plate bending, nearly the same form of it was 
derived and used for the first time by Herrmann [10] as a variational basis 
for a mixed finite element method. Therefore we deem it reasonable to 
name the functional a Herrmann functional and give it a proper 
designation as indicated above. 

An unquestionable advantage of the Herrmann functional is that all 
functions in its integrand are differentiated once at the most. This fact 
permits us to advance only minimal requirements of smoothness to the 
approximations of both the displacements and the stresses. In subsequent 
publications (see [1], [6], for example) the Herrmann functional was used 
many times to try and build various versions of mixed finite-element 
approaches to the plate bending, where it showed a good applicability and 
high efficiency. 
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5.2 Static-geometric analogy in the theory of plates 

It is well-known that the problems of the bending and the plane stress in a 
plate are closely related, and their relation reveals itself in a so-called 
static-geometric analogy. Before we describe the static-geometric analogy 
in the theory of plates, we want to represent the statements of the plane 
stress and bending problems via a stress function. 

5.2.1 A stress function vector in the theory of plates 

Consider a plane stress state in a plate, taking an assumption that there is 
no volumetric load upon it. However, even if the original problem’s 
statement contains external loads distributed over area Ω, the problem can 
always be reformulated in such way that there will be no more external 
forces and the equations of equilibrium in area Ω will be homogeneous. To 
do so, we represent a general solution of the equlibrium equations and the 
strain compatibility equations in terms of stresses, (4.1.12), 

ATσ = X ,       SC –1σ = 0    ∈ Ω  

as a sum of general solution σ0 of homogeneous equations  

ATσ0 = 0,   SC –1σ0 = 0 

and some (arbitrary) partial solution τ of inhomogeneous equations 
ATτ = X ,   SC –1τ = 0 , that is, we assume 

 σ = σ0 + τ . 

Usually, the construction of partial solution τ is not especially difficult, 
therefore the requirement of no volumetric forces in the problem statement 
is not really restrictive. So we will assume for the future that the 
equilibrium equations are homogeneous — that is, X = 0 6.  

Before doing anything with the plane stress problem, we want to make 
an insignificant transformation by switching from stresses σ ij to forces per 
unit of line, N ij, that is, by assuming 

N x = hσx,     N y = hσy,     N xy = hτxy,              σT = |[N x , N y , N xy ]| . (2.1) 

                                                      
6 Some possibilities for finding a partial solution, τ, for the plane stress are 

considered in a well-known book by N.I. Muskhelishvili [18]. One of methods for 
the construction of a partial solution for the plate bending was indicated by 
A.I. Lurie [16].  
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If we turn to the equations of equlibrium for the plane stress analysis, 
we will derive the following from (4.3.2), where the conversion into the 
linear forces according to (2.1) should be taken into account: 

x xyN N
x y

∂ ∂− − =
∂ ∂

0,       
yx yN N

x y
∂ ∂− − =

∂ ∂
0. (2.2) 

We introduce a stress function, Ф (an Airy function), defined in area Ω 
and related to the forces per unit of length, N ij, via the formulas 

2

2
xN

y
∂ Φ

=
∂

,     
2

2
yN

x
∂ Φ

=
∂

,     
2

xyN
x y

∂ Φ
= −

∂ ∂
. (2.3) 

By substituting (2.3) to (2.2), we make sure that the homogeneous 
equilibrium equations (2.2) are satisfied automatically.  

To switch to a matrix form of the plane stress problem, it is convenient 
to introduce a one-dimensional vector of stress functions Ф by assuming 

Ф = |[Ф]| . (2.4) 

Relationships (2.3) can be represented in the matrix form as 

σ = STФ , (2.5) 

where the matrix differential operator ST is an operator conjugate in the 
Lagrangian sense to the Saint-Venant compatibility operator for the plane 
stress analysis: 

S = 
2 2 2

2 2, ,
y x x y

⎡ ⎤∂ ∂ ∂
−⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

. 

It is not surprising because we established the following identity earlier by 
formula (4.1.11): 

ATST = O. 

Now we substitute an expression of vector σ from (2.5) to equation 
(4.1.12-b) and arrive at a governing equation of the problem in terms of the 
stress function. We have 

MФ = 0 , (2.6) 

where 

M = SC –1ST . (2.7) 

The matrix differential operator M defined by (2.7) will be further called 
a compatiblity operator in stress functions. 
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The M operator takes its simplest form in the case of a homogeneous 
isotropic material of a constant-thickness plate, h = Const. It is easy to see 
that the M operator for the plane stress analysis is just a common 
biharmonic operator (up to a constant factor), or 

M = 1
Eh

∇2∇2 . (2.8) 

Now let’s return to the plate bending. Based on (1.103) and formal rules 
of conjugation, we have  

ST = 

0

0

2 2

y

x

y x

∂⎡ ⎤−⎢ ⎥∂⎢ ⎥
∂⎢ ⎥−⎢ ⎥∂⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

. (2.9) 

It is now clear that the vector of stress functions Ф in the plate bending 
analysis is a two-dimensional vector: 

ФT = |[Фx , Фy]| , (2.10) 

and the components of the moment tensor are expressed via the 
components of the vector of stress functions Ф as follows: 

yxxM
y

∂Φ
= −

∂
,     yy xM

x
∂Φ

= −
∂

,     1
2

yxy xM
y x

∂Φ⎛ ⎞∂Φ
= +⎜ ⎟∂ ∂⎝ ⎠

. (2.11) 

And again we can see how the homogeneous equation of equlibrium that 
follows from (1.34), 

, , ,2 0xx xy yy
xx xy yyM M M− − − = , 

is satisfied automatically by representations (2.11). 
Based on the general formula (2.7) and making some necessary 

transformations, we conclude that the compatibility operator in stress 
functions, M, for the plate bending is 
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M = 3

12
Eh

2 2
2

2

2 2
2

2

1 1
2 2

1 1
2 2

y x y

x y x

⎡ ⎤⎛ ⎞− ν ∂ − ν ∂
−∇ + −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞− ν ∂ − ν ∂⎢ ⎥− −∇ +⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

. (2.12)

Physical meaning of the stress function in plane stress 

The stress function, Ф, can have a certain physical meaning, and it is 
useful to find out what that is. Let us begin with the plane stress. 

Let a stress function, Ф, be an exact solution of the problem. This means 
that equation ∇2∇2Ф = 0 holds and all boundary conditions are met. We 
denote by P x and P y the forces per unit of length, which take place on 
contour Г. Those values are predefined and equal to x xP = hp ,  y yP = hp , 
respectively, in locations of the contour where the original statement of the 
problem contains given static boundary conditions according to (4.3.7). In 
places where kinematic boundary conditions are formulated, P x and P y 
mean reactive forces which appear on the contour in response to an 
external load upon the plate. In any case, we have the following on the 
whole contour of the plate: 

N xnx + N xyny = P x,       N xynx + N yny = P y   ∈Г . (2.13) 

The same boundary conditions, expressed via stress function Ф, will 
look like 

2

2y
∂ Φ
∂

nx – 
2

x y
∂ Φ
∂ ∂

ny = P x,       –
2

x y
∂ Φ
∂ ∂

nx + 
2

2x
∂ Φ
∂

ny = P y ∈Г.  (2.14) 

But we know that function Ф is defined up to linear terms because if Ф 
is a solution then the following stress function is also a solution: 

Ф + αx + βy + γ , 

where α, β, and γ are arbitrary constants. And indeed, adding the above 
terms to the stress function does not violate either the main equation, 
∇2∇2Ф = 0, or boundary conditions (2.14) . 

We can handle the constants in such way that we make stress function Ф 
itself and its first derivatives equal to zero in a certain predefined point O 
of contour Г. This point O will be an origin of arc coordinate s counted off 
along contour Г, so that 
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Ф(0) = 0,        (0)
x

∂Φ
∂

= 0 ,        (0)
y

∂Φ
∂

= 0 . 

Let a point S (a current point), located on contour Г, have an arc 
coordinate s. According to formulas (F.57) from Appendix F, we have the 
following on the contour curve, Г: 

i
i

t
s x

∂ ∂
=

∂ ∂
,       i

i

n
n x

∂ ∂
=

∂ ∂
;           i i

i

n t
x n s
∂ ∂ ∂

= +
∂ ∂ ∂

. (2.15) 

Using these equalities, expressions (2.14) for the boundary conditions can 
be rewritten as 

s y
⎛ ⎞∂ ∂Φ
⎜ ⎟∂ ∂⎝ ⎠

= P x,       –
s x

∂ ∂Φ⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠

 = P y    ∈Г .   

By integrating the latter from the origin, О, to the current point, S, over 
the arc coordinate, we obtain 

0
( )

s
xs P ds

y
∂Φ

=
∂ ∫ = R x,       

0
( )

s
ys P ds

x
∂Φ

= −
∂ ∫ = –R y, (2.16) 

where R x and R y are projections onto axes X and Y of the general vector, R, 
of an external load applied to the piece of the contour from point О to 
point S. By differentiating function Ф with respect to s and using (2.15) 
and (2.16), we derive 

x yt t
s x y

∂Φ ∂Φ ∂Φ
= + =

∂ ∂ ∂
 R xnx + R yny = R·n . (2.17) 

We can treat the piece of curve Г from point О to point S formally as an 
axis of a planar curvilinear bar free from fixation in point О. Then the 
scalar product R·n can be treated as a shear force, Q, in the cross-section of 
that bar in point S, taken with an opposite sign, that is,7  

R·n = – Q. 

Recalling Kirchhoff equations (4.7.30) for a curvilinear bar, we will 
have (when there is no moment load, m = 0) 

                                                      
7 The convention of signs for stresses in cross-sections of a curvilinear bar 

follows Fig. 4.7. 
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dM
ds

= Q , 

where М is a bending moment in the bar’s cross-section. Thus, 

s
∂Φ

=
∂

– Q dM
ds

= −  . 

Integrating the latter relationship from zero to s, remembering that 
Ф(0) = 0, and assuming M(0) = 0, we have the final result: 

Ф(s) = –M(s) . (2.18) 

Thus, the value of stress function Ф(s) in an arbitrary point of 
boundary Г with coordinate s is equal to a negative moment of all contour 
load (both active and reactive forces) applied to the piece of the contour 
from origin О to the current point, with respect to that point. 

We further differentiate stress function Ф along the normal to contour Г 
and take into account equalities (2.15) and (2.16) to derive 

x yn n
n x y

∂Φ ∂Φ ∂Φ
= + =

∂ ∂ ∂
 –R xtx – R yty = –R·t . 

The scalar product R·t can be treated as a negative longitudinal force, N, 
that develops in the cross-section of the “bar” at point S, and thus8 

( )s
n

∂Φ
∂

= N(s) . (2.19) 

An important conclusion from the above is that the mathematical aspect 
of the solution of the plane stress problem for a plate with static boundary 
conditions is to find a function Ф, biharmonic in area Ω, such that its 
values and the values of its normal derivative are specified on boundary Г 
as in (2.18) and (2.19), respectively. 

Physical meaning of the stress function in plate bending 

Now let us find out what the physical meaning of the vector of stress 
functions Ф is in the plate bending analysis. Formula (2.12) for operator M 
in the plate bending gives that the components of vector function Ф satisfy 
the following homogeneous system of equations: 

                                                      
8 We remind that a longitudinal force in a bar is positive when it causes a 

tension. 
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22 2

2 2

2 22

2 2

1 1 0,
2 2

1 1 0.
2 2

yx x

y yx

x y x y

x y y x

∂ Φ∂ Φ ∂ Φ+ ν − ν
− − − =

∂ ∂ ∂ ∂

∂ Φ ∂ Φ∂ Φ− ν + ν
− − − =

∂ ∂ ∂ ∂

 

(2.20) 

The plate is subject to the following on contour Г: a generalized shear 
force, K n, and a bending moment, M nn , so that9  

K n = , ,
ij nt
i j sM n M+ ,        M nn = M ijninj . (2.21) 

Further, formulas (2.11), which establish a relation between the 
components of the stress functions vector and those of the moment tensor, 
can be written in the following tensor form: 

1
2

ij ik ljk l

l k

M
x x

⎛ ⎞∂Φ ∂Φ
= ω + ω⎜ ⎟∂ ∂⎝ ⎠

, (2.22) 

where ijω  is an antisymmetric tensor introduced by formula (F.36) in 
Appendix F, which we called a rotation tensor. The equivalence between 
(2.11) and (2.22) can be easily checked by a direct substitution. 

Seeing that, according to formula (F.39), 
lj

l jt n= ω   and  ik
k it n= −ω , 

now we want to represent boundary forces according to (2.21) via the 
components of the stress functions vector10. 

Let us begin with an expression for bending moment M nn on the contour 
of the plate. We have 

1 1
2 2

nn ik ljk l k l i
i j k l i

l k l k

M n n t t t
x x x x s

⎛ ⎞ ⎛ ⎞∂Φ ∂Φ ∂Φ ∂Φ ∂Φ
= ω + ω = − + = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

. (2.23) 

Further, 

                                                      
9 In order to simplify the formulas, we confine ourselves to considering only a 

smooth piece of contour Г that does not contain any breakpoints. 
10 Here and in other places we use a formal lifting and/or lowering of indexes of 

vectors and/or tensors without additional comments, only to follow the convention 
of summation over repeating indexes placed on different levels. As known from 
tensor analysis, this operation is admissible for tensor components defined in a 
Cartesian coordinate system. 
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,
1( )
2

nt ij ik ljk l
s i j i j

l k

M M n t n t
s s x x

⎡ ⎤⎛ ⎞∂Φ ∂Φ∂ ∂
= = ω + ω =⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 

1 1
2 2

k l i i
l k i i

l k

n t t n
s x x s n s

⎡ ⎤⎛ ⎞∂Φ ∂Φ ∂Φ ∂Φ∂ ∂ ⎛ ⎞= + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
. 

Also, 
2 2

,
1 1
2 2

ij ik lj ikk l k l
i j j l

i l k l i k i

M n n t
x x x x x x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂Φ ∂Φ ∂ Φ ∂ Φ∂
= ω + ω = ω +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

It is easy to notice that 
2

0ik l

k ix x
∂ Φ

ω =
∂ ∂

   (l = 1,2), 

which can be validated by writing this aggregate out with a component-by-
component summation. Consequently,  

2

,
1 1
2 2

ij ik ikk k k
i j i i

i

M n n t
s x s n s

⎡ ⎤∂ Φ ∂Φ ∂Φ∂ ⎛ ⎞= ω = ω + =⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
 

1
2

k k
k kt n

s n s
∂Φ ∂Φ∂ ⎛ ⎞= − +⎜ ⎟∂ ∂ ∂⎝ ⎠

. 

Summing both terms for K n yields a simple formula for Kirchhof’s 
shear force on the contour via the components of the stress functions 
vector 

K n = , ,
ij nt
i j sM n M+  = i

in
s s

∂Φ∂ ⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠

. (2.24) 

Now we will show that if some functions Фx and Фy satisfy both 
equation system (2.20) and boundary conditions (2.23) and (2.24) then the 
following functions Fx and Fy have the same properties: 

Fx = Фx + α – γy ,          Fy = Фy + β + γx , 

where α, β, and γ are arbitrary constants. And indeed, adding any linear 
term does not violate system of equations (2.20) because second 
derivatives of functions Fx and Fy annihilate the linear terms added to Фx 
and Фy. We have to check only that boundary conditions (2.23) and (2.24) 
hold. Let functions x = X(s) and y = Y(s) make up a parametric description 
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of boundary Г. This means that we have the following in any point of the 
boundary when moving along it: 

x
dX t
ds

= ,    y
dY t
ds

= . 

So we have 

FF F yi x i i
i x y i x y i

dY dXt t t t t t t
s s s s ds ds s

∂∂ ∂ ∂Φ ∂Φ
= + = − γ + γ =

∂ ∂ ∂ ∂ ∂
 

and 

F ( )i i i
i i x y y x in n n t n t n

s s s s s s s
∂ ∂Φ ∂Φ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + γ − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

because 1x y y x x x y yn t n t n n n n− + = − − = − . It is now clear that boundary 
conditions (2.23) and (2.24) hold for functions Fx and Fy, too. 

By handling the α, β, and γ constants introduced above, we can always 
make the following conditions hold in a chosen point О of contour Г: 

Фx(0) = 0,           Фy(0) = 0 ,     (0) (0) 0i
in

s
∂Φ

=
∂

. 

This will be an origin of the arc coordinate, s, on contour Г.  
Integrating expression (2.24) of K n over the arc coordinate from the 

origin, О, to the current point, S, will give 

0

s
ni

i Zn K ds R
s

∂Φ
= =

∂ ∫ ,   (2.25) 

where RZ is a projection onto the Z-axis of the general vector, R, of an 
external load applied to the part of the contour between point О and 
point S.  

Let us imagine that a piece of curve Г from point О to point S is an axis 
of a planar curvilinear bar, free from fixation in point О and loaded by 
forces K n which act out of the plane of the bar’s axis and by torques M nn 
distributed along the axis. 

Now let’s consider an elementary segment of that bar from a cross-
section with coordinate s to a cross-section with coordinate s + ds 
(Fig. 5.5) and denote by MX and MY  the moments with respect to axes X 
and Y, which act in the bar’s cross-section with coordinate s. Equations of 
equilibrium of the moments with respect to axes X and Y for that segment 
of the bar will be 
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nnX
x Z y

dM M t R t
ds

= − ,      nnY
y Z x

dM M t R t
ds

= + . (2.26) 
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M + MX X

M + M dsY Y

M
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MY
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Y

t dsy

t dsx
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R +z Rz

'

'

ds

ds'

 
Fig. 5.5. An elementary fragment of a curvilinear bar 

By integrating these equalities from zero to s and taking into account 
(2.23) and (2.25), we obtain 

( )
0

s
i

X i x i yM t t n t ds
s

∂Φ
= − +

∂∫ ,   ( )
0

s
i

Y i y i xM t t n t ds
s

∂Φ
= − −

∂∫ . 

But, as it can be easily seen, 

1 1
0 2i x i y

if i
t t n t

if i
=⎧

+ = ⎨ =⎩
,       

0 1
1 2i y i x

if i
t t n t

if i
=⎧

− = ⎨ =⎩
, 

hence the final result: 

x XMΦ = − ,       y YMΦ = − . (2.27) 

Thus, the vector of stress functions in every point S of contour Г 
coincides (up to a sign) with the general moment of contour forces applied 
to a piece of the boundary between zero and s.  Hence a conclusion: the 
mathematical aspect of the plate bending with static boundary conditions 
specified on the contour of the area is to find a vector function Ф in area Ω 
such that its components satisfy the system of differential equations (2.20) 
and are known on boundary Г according to (2.27).  
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 Table 5.1 
Bending Plane stress 

σB = |[M xx, M yy, M xy]|T      σP = |[ N x, N y, N xy]|T  

εB = |[χxx, χyy, 2χxy]|T   εP = |[εx, εy, γxy]|T  

uB = |[w]|T uP = |[u, v]|T 

ФB = |[Фx, Фy]|T   ФP = |[Ф]|T  

AB = 
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2

2

2

2

2
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x y

⎡ ⎤∂
−⎢ ⎥

∂⎢ ⎥
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−⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂⎢ ⎥−
⎢ ⎥∂ ∂⎣ ⎦

 AP =

0

0
x

y

y x

⎡ ⎤∂
⎢ ⎥∂
⎢ ⎥∂⎢ ⎥∂⎢ ⎥

∂ ∂⎢ ⎥
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Now let us define what is a static-geometric analogy. For convenience, we 
again write out basic matrix relationships of the plate bending (marked by 
subscript B) and the plane stress (marked by subscript P) in two parallel 
columns of Table 5.1. Also, please note that Table 5.1 describes the case of 
an isotropic material. 

To begin with, notice that elasticity matrices С in these two problems 
are the same, up to factor с2: 

с2CP = CB ,           с2 = h2/12. (2.28) 

Further, if we introduce matrix Λ as 

Λ = 
0 1 0
1 0 0

0 0 2

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

,           Λ–1 = 
0 1 0
1 0 0

0 0 1/ 2

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

, (2.29) 

we will find that:  

• the operator of equlibrium, AT, in one of the two problems becomes the 
operator of strain compatibility, S, in the other problem and vice versa, 
by means of a transformation with the Λ matrix. Strictly speaking, the 
following relationships take place: 

SP = BAT Λ–1,       SB = PAT Λ–1, 

PAT = SB Λ ,       BAT = SP Λ . (2.30) 

  We can also say that the homogeneous equations of equilibrium for one 
problem turn into the strain compatibility equations for the other 
problem, and vice versa;   

• the Lame operator, LB, for the plate bending coincides, up to a factor, 
with the compatibility operator in stress functions, MP, for the plane 
stress; 

• the Lame operator, LP, coincides with the MВ operator up to a factor 
under an additional condition – the sign of Poisson ratio ν should be 
altered11. 

A reciprocity of the operators of the two mechanical problems as 
described above is known as a static-geometric analogy in the theory of 
plates. It is a particular manifestation of a more general static-geometric 

                                                      
11 By the way, a negative value of the Poisson ratio does not violate the plane 

stress problem formulation because the matrix of elasticity, С, is positive definite 
at any |ν|<1, including negative values of ν.   

5.2.2 A static-geometric analogy in the theory of plates 
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analogy known in the classic theory of shells by Kirchhoff and Love [7], 
[15]. 

The reciprocity of the equations of the plane stress/strain and the plate 
bending makes it possible in some cases (when there is no load distributed 
over area Ω and under certain boundary conditions) to reduce one of the 
problems to the other. 

Let us first consider a boundary-value problem for the plate bending 
with purely kinematical boundary conditions and a boundary-value 
problem for the plane stress with purely static boundary conditions12. 
These problems are formulated as follows: 

ABuB = εB ,     BAT σB = 0 ,      CBεB =  σB ∈Ω ;      uB – Bu = 0  ∈Г ,   (2.31-b) 

APuP = εP ,      PAT σP = 0 ,       CPεP =  σP ∈Ω ;      pP – Pp = 0  ∈Г .   (2.31-p) 

It can be established that problems (2.31-p) and (2.31-b) are 
transformable into each other in the mathematical sense. And indeed, if we 
write the formulation of problem (2.31-b) in terms of displacements and 
the formulation of problem (2.31-p) in terms of the stress function, we will 
have, respectively, 

               LBw =  0  ∈Ω ;                 w = w ,     ,n t= −θw   ∈Г  , 

               MPФ = 0  ∈Ω ;                 Ф = – M ,   ,n NΦ =   ∈Г  , 

where M  and N  are a bending moment and a longitudinal force in a 
curvilinear bar depicted by curve Г, cut apart in point О, and subjected to 
loads Pp  defined on contour Г. It is obvious that the two problems are 
identical from the standpoint of mathematics. 

In the same way, we can write out an operator formulation of a 
boundary-value problem of the plate bending with purely static boundary 

                                                      
12 Here we are conscious in our not using the terms of first and second 

boundary-value problems because this nomenclature, though frequently 
encountered, is not unified in the general use. For example, mathematicians, 
starting from S.G. Mikhlin [17], use the term of a first boundary-value problem of 
elasticity  in their papers to refer to a problem with purely kinematical boundary 
conditions, while their term of a second boundary-value problem refers to purely 
static boundary conditions. The same nomenclature is used by L.A. Rozin [21]. In 
other papers, mainly by mechanicians (for example, see A.I. Lurie [16] or 
N.I. Muskhelishvili [18]), an exactly opposite terminology is used. 
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conditions and a formulation of the plane stress problem with purely 
kinematic boundary conditions, 

ABuB = εB ,      BAT σB = 0 ,      CBεB =  σB ∈Ω ;     pB – Bp = 0  ∈Г ,   (2.32-b) 

APuP = εP ,      PAT σP = 0 ,       CPεP =  σP ∈Ω ;      uP – Pu = 0  ∈Г .   (2.32-p) 

As it follows from the above, problems (2.32-p) and (2.32-b) also turn 
out to be reducible to each other; however, in the latter case this reduction 
involves an additional condition: the Poisson ratio’s sign in one of the two 
problems should be altered. To see this, we can write the formulation of 
problem (2.32-b) in terms of stress functions and the formulation of 
problem (2.31-p) in displacements, to derive 

           MBФB =  0  ∈Ω ;                x XMΦ = − ,     y YMΦ = −   ∈Г , 

             LPuP =  0  ∈Ω ;                   u u= ,    =v v   ∈Г  , 

where XM  and YM  are components (with respect to the respective axes X 
and Y) of a moment that acts in the cross-sections of a curvilinear bar 
depicted by curve Г, cut apart in point О, and subjected to force loads nK  
and moment loads nnM  defined on contour Г.  

This latter fact was established for the first time, apparently, in works by 
A.I. Lurie [16], [15] in a way different from what we use here. In essense, 
this is a coincidence between the operators LP and MВ provided the sign of 
Poisson ratio ν is altered.  

Proceeding from our static-geometric analogy, we can notice that Airy 
function Ф being determined in the plane stress problem up to a term 
α + βx + γy can be interpreted as a calculation of the plate’s deflection, w, 
up to a rigid displacement, wR = α + βx + γy, that does not affect the stress 
distribution in the plate. In a perfect resemblance to this, the vector of 
stress functions Ф = |[Фx,Фy]|T is defined in the plate bending up to a 
vector 

|[α – γy,β + γx]|T, 

because the same vector is a vector of rigid displacements 

|[uR ,vR ]|T = |[α – γy, β + γx]|T 

for the plane stress problem.  
The static-geometric analogy is usually treated like this: if we make the 

following replacements/substitutes of functions in the equations of 
equlibrium and strain compatibility: 
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εP → ΛσB ,     εB → ΛσP , 

Λ–1εP ← σB ,      Λ–1εB ← σP , (2.33) 

then equilibrium equations ATσ = 0  in one of the problems will become 
strain compatibility equations Sε = 0  in the other problem. And vice versa, 
the compatibility equations in any of the problems will become 
equilibrium equations in the other problem.  

If we find a formal way to understand the substitution symbols in (2.33)  
as equalities, then we immediately arrive at relationships (2.30) established 
above. A corollary of substitutions (2.33) is a reciprocity (in a certain 
understanding) between the displacement function in one of the problems 
and the stress functions in the other, 

uB ↔ ФP ,            uP ↔ ФB . (2.34) 

5.2.3 Boundary conditions for deformations in the theory of 
plates  

As our previous presentment shows, the cornerstone of all constructions of 
variational formulations for problems of structural mechanics is the basic 
integral identity (1.2.19) which we will rewrite here as 

(Au, σ) = (u, ATσ) + (Hσσ, Huu)Г  . (2.35) 

The contour scalar product, (Hσσ, Huu)Г , also written as (p, u)Г  in other 
designations, can be interpreted from the mechanical standpoint as a 
virtual work, AГ, of contour forces p = Hσσ (both active and reactive) on 
the respective contour displacements u = Huu, 

AГ = (p, u)Г . (2.36) 

As we showed earlier, the multipliers which participate in this scalar 
product also take part in the construction of boundary conditions.  

Suppose we can compose this expression in another way, that is, 
construct different multipliers but maintain the final value of the contour 
scalar product, thus keeping the basic integral identity true, by assuming 
something like 

(p, u)Г  = (a, b)Г , 

where vector a is not identical to Hσσ and vector b differs from Huu. But 
then nothing restrains us from identifying vector a with a certain 
generalized contour force and vector b with a generalized contour 
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displacement which is conjugate by energy to that force. Exactly speaking, 
we will suppose that 

 a = Haσ ,        b = Hbu , 

where operators Ha and Hb are different from operators Hσ and Hu . 
A different representation of the contour scalar product permits us to 

formulate the boundary conditions in another way, too, at the same time 
complying with all requirements of Kirchhoff’s theorem of uniqueness of 
the solution. All that the boundary conditions have to do is to specify 
either of the following along i-th coordinate on any piece of contour Г: a 
force component, a i, or a kinematical component, bi (following the 
exclusive “or” principle)13. We already encountered an example of an 
ambiguity of this kind in Chapter 4, in a representation of a contour scalar 
product when we considered various formulations of boundary conditions 
for a curvilinear bar. 

It turns out that the theory of plates always permits to represent the  
contour-based scalar product (a, b)Г in such way that the vector of 
generalized contour forces, a, may have the meaning of a vector of forces 
in a curvilinear bar depicted by curve Г. When we find out the mechanical 
meaning of vector b, we conclude that its components are parameters 
which characterize a deformation of the curvilinear bar. A related 
conclusion can be made about the three-dimensional elasticity  [20].   

What follows from our consideration is a set of so-called boundary 
conditions for deformations.  

We will consider contour Г to be an axis of a closed curvilinear bar. We 
choose an arbitrary point О on contour Г and assign it to be an origin for 
arc coordinate s. 

Let a set of contour forces p applied to the curvilinear bar on a piece of 
contour Г between the origin, О, and the current point, S, with arc 
coordinate s, form a general vector, R, and a general moment, M.  

Boundary conditions for deformations in plane stress 

For the plane stress analysis, general vector R is a two-component vector 
that belongs to the (X,Y)-plane, 

R = |[R x, R y]|T . (2.37) 

                                                      
13 There is a significant requirement: the respective algebraic operators of 

boundary condition extraction, Ea and Eb, should be diagonal matrices with zeros 
and units in their main diagonal, and the matrices should be also related as 
Ea + Eb = I,  EaEb = O. 
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We will not need general moment M itself for our plane stress analysis; 
instead, we will be interested with another moment M — a bending 
moment calculated in cross-section S of a planar curvilinear bar cut apart 
at point О. That will be a moment of all forces with respect to the current 
point, S, applied to a piece of the curvilinear bar between point О to 
point S. 

The components of the general force vector, R x, R y, projected onto axes 
n and t, will make up a shear force, Q, and a longitudinal force, N, in the 
same cross-section of the curvilinear bar: 

Q = –R · n  = –R xnx – R yny ,                 N = –R · t = –R xtx – R yty . (2.38) 

Obviously, 

R(s) =
0

s
ds∫ p  + R(0) . (2.39) 

Further, the work AГ(s) of contour forces distributed on a piece of the 
boundary between point О and point S can be represented as follows in the 
plane stress analysis: 

AГ(s) =
0

s
ds⋅∫ p u =

0

s d ds
ds

⋅∫
R u = [ ]

0 0

ss d ds
ds

−⋅ ⋅∫
uR u R . (2.40) 

Now we represent the vector of contour displacements, u, by its 
decomposition into components along the local basis’ axes: 

u = un n + ut t . (2.41) 

Then, taking into account the Frenet formulas (F.52), we will have 

d
ds

=
u n t

t n
du duku ku
ds ds

⎛ ⎞ ⎛ ⎞− + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

n t . (2.42) 

Now we use formulas (4.7.16) and (4.7.26) for longitudinal strain ε0 on the 
axis of the curvilinear bar and for slope θ of its cross-section, replacing the 
earlier designations by those used here, ut → v  and un → w, to obtain 

θ = n
t

du ku
ds

− + ,   ε0 = t
n

du ku
ds

+ , (2.43) 

which gives 

d
ds

=
u

0−θ + εn t . (2.44) 

So we have 
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AГ(s) = [ ] ( )00 0

ss
ds+ θ − ε⋅ ⋅ ⋅∫R u R n R t = 

[ ] ( ) [ ]0 00 00 0

s ss s dMQ N ds N ds
ds

⎛ ⎞= + −θ + ε = + −θ + ε⎜ ⎟
⎝ ⎠

⋅ ⋅∫ ∫R u R u . (2.45)

Here we have used one of Kirchhoff’s equations (4.7.30) for a curvilinear 
bar, which establishes a relationship between a shear force and a bending 
moment (in our case we should assume m = 0 in that equation). 

We use the integration by parts once again: 

AГ(s) = [ ] [ ] ( )00 0 0

ss s
M M N ds− θ + κ + ε⋅ ∫R u , (2.46) 

where κ is a parameter of flexural deformation of a curvilinear bar of a 
small curvature, which is a derivative of slope θ as can be seen from the 
respective formula in Table 4.1: 

κ = d
ds
θ . (2.47) 

We supposed implicitly in the derivation of formula (2.46) for AГ(s) that 
curve Г is smooth between point О and current point S, that is, it does not 
contain breakpoints. 

Suppose that area Ω is simply connected; consequently, its bounding 
contour Г is a single closed curve. Let the whole curve Г of a length L 
consist of q smooth pieces separated by breakpoints with coordinates sβ, so 
the whole contour Г is a combination of those smooth pieces, 

Г = 
1

q

β
β=
∪Γ . (2.48) 

We assume that a piece of the curve, Гβ, extends between a point with 
coordinate sβ-1 to a point with coordinate sβ. Thus, point О is also included 
formally in the set of breakpoints of the contour. The last piece of the 
contour starts at the point with the coordinate sq-1 and ends at the point 
with the coordinate sq = L, that is, actually at point O. 

Formula (2.46) can be applied now to each of q smooth pieces of the 
contour, so that the expression of the work of all contour forces, βAΓ , 
applied to a piece Гβ of the contour curve, is written as 
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 βΓA = ( ) [ ] [ ]0
1 11

s s s
s ss

M N ds M
β β β

β− β−β−

κ + + − θε ⋅∫ R u . 

This formula uses designations of R, M, and N for the respective quantities 
calculated for a curvilinear bar free from fixation at the point s = 0; that is, 
a build-up takes place when we move from one smooth piece of the 
contour to the next one. 

By summing the work of the contour forces over all pieces and taking 
into account an obvious continuity of functions R, M, and u, we find14  

AГ(L) = ( )
1

0 0 0 0
1

[ ] (0) [ ] [ ] ( )[ ]
q

M N ds M M s
Γ

−

β β
β=

κ + + − θ − θε ⋅ ∑∫ R u . (2.49) 

This formula uses the following designations: 

• [R]0 = R(L) – R(0) is a jump of vector function R at the zero point of 
contour as we follow the closed trajectory of Г around the contour;  

• [θ]β =  θ(sβ+0) –  θ(sβ–0)  is a jump of function θ(s) in the transition over 
angular point sβ ; 

• [M]0 = M(L) – M(0) is a jump of the moment after a full circle around 
contour Г. 

If we denote by symbol P a general vector of all external forces 
distributed over area Ω, and by symbol M0 a moment of the same forces 
with respect to the point of the contour with the coordinate s = 0, then the 
integral equilibrium of the body requires that 

[R]0 = P ,       [M]0 = M0 . (2.50) 

In particular, the jumps should be equal to zero in absence of volumetric 
forces: 

[R]0 = 0 ,        [M]0 = 0 . (2.51) 

So, the contour integral in the basic integral formula (2.35) can be 
written as follows in our case: 

                                                      
14 The continuity of force quantities R and M in all points of the contour, with 

the only possible exception of the zero point, follows from an assumption that 
contour forces p do not contain concentrated force actions. The continuity of the 
vector of contour displacements, u, is identical to a requirement that the contour 
curve, Г, should be continuous during the deformation of the structure. 
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(Hσσ,Huu)Г = 

( )
1

0 0 0 0
1

[ ] (0) [ ] [ ] ( )[ ]
q

M N ds M M s
Γ

−

β β
β=

= κ + + − θ − θε ⋅ ∑∫ R u . (2.52) 

Hence we have immediately that the boundary conditions for the plane 
stress can be written in this form, too: 

0 0ε = ε ∈Гε ,     κ = κ ∈Гκ ,        N N= ∈ГN ,      M M= ∈ГM , (2.53) 

where a dash over a letter designates given external actions, as usual. 
Obviously, the division of the whole contour into pieces Гε , Гκ , ГN , ГM  
must satisfy the conditions 

Г = Гε ∪ ГN ,      Гε ∩ ГN = ∅ ;          Г = Гκ ∪ ГM ,   Гκ ∩ ГM = ∅. (2.54) 

It should be remembered also that the formulation of boundary 
conditions according to (2.54) on smooth pieces of the contour requires a 
specification of the slope jumps, [θ]β, in breakpoints of the contour 
according to (2.52). Jumps like that should be specified only in points sβ 
which belong to the piece of the boundary Гκ. As for the pieces of the 
boundary ГM, their respective jumps are obtained by the solution of the 
problem.  

For a multiply connected area Ω, the full boundary Г consists of 
multiple closed curves Гi (i = 1,…,m), where m is a number of connectivity 
of area Ω, and the formulation of boundary conditions for deformations 
becomes  more complicated. The reasons for this are as follows: 

• for a multiply connected area, the contour integral in (2.52) should be 
understood as a sum of integrals over all closed contours, and non-
integral terms should be also written separately for each of the closed 
contours and then summed together. It is also obvious that [R]0 and [M]0 
in formulas (2.50) and (2.51) now mean sums of the respective jumps on 
all closed contours;  

• mutuall displacements of separate contours as rigid bodies should be 
defined somehow for a multiply connected area. A mutual displacement 
of two contours even without a deformation of the contours themselves 
will create a strain in area Ω.  

Boundary conditions in the form of (2.53) are called boundary 
conditions for deformations in the plane stress analysis. The mechanical 
meaning of these conditions is that they define a deformation of the area’s 
contour via kinematical parameters ε0 and κ, and they define force actions 
on the contour via static parameters N and M. 
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Boundary conditions for deformations in plate bending 

In the plate bending analysis, contour Г of a plate is subjected to a vector 
of edge loads, p = |[K n, M nn]|T. However, here we will be interested mainly 
with a general moment, M, of all contour forces applied to a piece of the 
curvilinear contour between the origin, О, and the current point, S. This 
moment can be represented as a two-component moment vector, 

M = |[MX, MY]| . (2.55) 

The general vector, R, of contour forces applied to the piece of the 
boundary between point О and point S is a two-component force vector 
directed along the Z-axis so that 

R = |[RZ]|. (2.56) 

The components of the general moment vector, MX and MY, when 
projected onto axes n and t, make up bending moment M 

n and torque M t in 
the same cross-section of the curvilinear bar: 

M 
n = M · n  = MX

 nx + MY ny ,             M t = M · t = MX tx + MY ty . (2.57) 

Obviously, 

RZ(s) =
0

s
nK ds∫  + RZ(0) . (2.58) 

Also, we derive from (2.57) and (2.26) that 

t X Y
x y x X y Y

dM dM dMt t kn M kn M
ds ds ds

= + − − = M nn – k M 
n , 

n X Y
x y x X y Y

dM dM dMn n kt M kt M
ds ds ds

= + + + = –RZ + k M t . 

Consequently, 

M nn = tdM
ds

 + k M n ,        RZ = – ndM
ds

+ k M t . (2.59) 

Further, work AГ(s) of contour forces distributed over the piece of the 
boundary from point О to point S can be represented as follows for the 
plate bending: 

AГ(s) = ( )
0

,
s

n nn
nK M ds−∫ w w =

0
, ,

s
tZ

n n n
dMdR kM ds

ds ds
⎡ ⎤− −⎢ ⎥⎣ ⎦∫ w w w ,  

which yields the following after integration by parts: 
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AГ(s) = [ ]
0 0 0

, , , , )
sss

Z t n Z s t sn n nR M R M kM ds⎡ ⎤ ⎡ ⎤− − − +⎣ ⎦ ⎣ ⎦∫w w w w w . 

Substituting the expression of RZ from (2.59) and integrating by parts again 
produces 

AГ(s) = [ ]
0 0 0, ,

s ss
Z t n n sR M M⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦w w w + 

0
, , , ,( ) ( )

s

n ss n t sn sM k M k ds⎡ ⎤+ − + + −⎣ ⎦∫ w w w w . (2.60) 

Non-integral terms in this equation, which depend on moments M 
n and 

M 
t, will be transformed using (2.57) and (F.57). We have 

, ,n s t nM M−w w = (MX
 nx + MY ny) , ,( )x x y yt t+w w – 

–(MX
 tx + MY ty)( , ,( )x x y yn n+w w = , ,X y Y xM M−w w , (2.61) 

and in this form the expression is obviously continuous around the whole 
contour, including transitions across breakpoints..  

Reasoning in the same way as in the plane stress analysis, we can finally 
write out a full work of the contour forces on all pieces of the bar as 
follows: 

AГ(L) =
1

0 0
0

, ,[ ] ( ) [ ] (0) [ ] (0)
q

Z X y Y xR s M M
−

β β
β=

+ −∑ w w w + 

+ ( )n n t tM M ds
Γ

κ + κ∫ , (2.62)

where the designations are 

, ,n ss nkκ = − −w w ,        , ,t sn skκ = −w w . (2.63) 

It can be shown that quantities κ n and κ t are parameters of flexural and 
torsional deformation of a planar curvilinear bar from its plane of 
curvature. 

Further details are omitted – the consequent reasoning is exactly the 
same as that for the plane stress. 
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5.3 Bending of medium-thickness plates – Reissner’s 
theory 

The classic theory by Kirchhoff and Love is known to describe the stresses 
in a bent plate with a satisfactory accuracy in the case when the respective 
thickness of the plate, h/L, where L is a characteristic linear size of the 
plate’s plane, is a value significantly less than one. As the plate’s thickness 
h increases, the error of the theory, created chiefly by overly strict 
kinematical limitations of the Kirchhoff–Love straight-normals hypothesis, 
tends to grow. In this regard we have to reformulate the plate bending 
problem as a problem of three-dimensional elasticity. The bending of 
plates considered as a part of three-dimensional elasticity analysis is 
usually referred to as a theory of thick plates, though sometimes this term 
refers to an analysis not quite in the style of three-dimensional elasticity. 

There are intermediate versions of the theory which consider so-called 
medium-thickness plates. Various authors built quite a few versions of the 
medium-thickness plate bending theory at various times15; most of those 
theories are intended to refine the classic Kirchhoff–Love theory 
somehow. A general feature of those theories is that all of them are two-
dimensional – that is, all stress and displacement parameters depend on 
two coordinates only, which makes the problem generally much easier. Of 
course, it seems hardly possible to indicate exact borders between thin 
plates,, medium-thickness plates, and thick plates. As it is often the case 
for any qualitative classification, the borders between those concepts are 
vague and unclear. 

We will consider in detail one of simplest (and, apparently, most 
popular) versions of the medium-thickness plate theory, developed by 
E. Reissner16. The version of Reissner’s theory discussed here is about the 
same in comparison with the Kirchhoff–Love theory as the theory of beam 
bending by Timoshenko is in comparison with the classic beam theory by 
Bernoulli–Euler. To be more specific, the theory stated below will be 
based on the same principles of weakening the straight-normals 
hypothesis, which we used when we modified the Bernoulli–Euler beam 
theory to turn it into the Timoshenko theory.  

                                                      
15 One should not think that the process of construction of the medium-

thickness plate theories and theories of thick plates is finished; the process is still 
underway. 

16 It should be said that E. Reissner returned to the plate bending analysis many 
times, so his name is associated actually with more than one competing version of 
the theory. 
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The version of the Reissner theory discussed here is based on a refined 
expression of the strain energy of a bent plate, supplemented by an 
additional term to allow for the work of tangential stresses τxz and τyz. In 
other words, we can adopt the following instead of (1.10): 

E = 
/ 2

/ 2 2 2

xx yy xy xz yzh
xx yy xy xz yz

h

dzd
Ω −

⎛ ⎞σ ε + σ ε + τ γ τ γ + τ γ
+ Ω⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ . (3.1) 

First of all, we want to consider a distribution (along the thickness of the 
plate) of tangential stresses τxz and τyz. Recall that formulas (1.25) and 
(1.28) give the following representations of stresses in any point of a plate 
in bending, the point having the (x,y,z) coordinates: 

σxx = 3

12 xxM z
h

,     σyy = 3

12 yyM z
h

,    τxy = 3

12 xyM z
h

. (3.2) 

As for tangential stresses τxz and τyz, we should have assumed those to 
be equal to zero had we followed strictly the third of the hypotheses from 
the beginning of Section 5.1 and Hooke’s law: 

τxz = Gγxz = 0,      τyz = Gγyz = 0. (3.3) 

In this regard, keeping the expressions in (3.2) intact, we will adopt the 
straight-normals assumption in a weakened formulation by assuming that 
the normal remains rectilinear after the plate’s deformation but it does not 
have to remain perpendicular to the deformed surface of the plate. 

Treading nearly the same path as we did when we were deriving 
Zhuravsky’s formula for tangential stresses in the beam bending analysis, 
we will try to extract expressions for our desirable tangential stresses from 
the equations of equilibrium: 

0,

0.

xx xy xz

yx yy yz

x y z

x y z

∂σ ∂τ ∂τ
+ + =

∂ ∂ ∂

∂τ ∂σ ∂τ
+ + =

∂ ∂ ∂

 
(3.4) 

After substituting formulas (3.2) and integrating the equations over the z-
coordinate, we will have 

τxz = – 2
3
,6 xx
xM

z
h

– 2
3
,6 xy
yM

z
h

+ С1 ,        τyz = – 2
3
,6 yy
yM

z
h

– 2
3
,6 xy
xM

z
h

+ С2 , 

where C1 and C2 are constants of integration. 
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Taking into account the conditions of an equality between tangential 
stresses τxz and τyz on the faces of the plate (at z = ±h/2) and the respective 
tangential loads px and py specified on those faces (Fig. 5.1), we will 
determine these constants and arrive at the following formulas: 

( )
2 2

3, ,
3( 4 )

2
xz xx xy x

x y
h zM M p

h
−

τ = + + , ( )
2 2

3, ,
3( 4 )

2
yz yy xy y

y x
h zM M p

h
−

τ = + + .  

But from (1.32) and (1.29) we have 

, ,
xx xy x y
x yM M Q m+ = − ,    , ,

yy yx y x
y xM M Q m+ = + ,     mx = –hpy,     my = hpx, 

so the final expressions of the tangential stresses are 

τxz = 
2 2 2

3 3

3( 4 ) 6 1
2 2

x yh z zQ m
h h h

⎛ ⎞−
+ −⎜ ⎟

⎝ ⎠
,       

τyz = 
2 2 2

3 3

3( 4 ) 6 1
2 2

y xh z zQ m
h h h

⎛ ⎞−
− −⎜ ⎟

⎝ ⎠
. (3.5)

Thus, according to what we have derived, tangential stresses τxz and τyz 
are distributed over the thickness of the plate as a quadratic parabola. 
Obviously, (3.5) contradicts relationships (3.3) that follow from Hooke’s 
law, as we already mentioned. But it is also obvious that the contradiction 
is a tradeoff of the straight-normals hypothesis. 

Formulas (3.5) show that tangential stresses τxz and τyz consist of a sum 
of two quantities one of which is proportional to the respective shear force 
and the other to the external moment load. But if we want to consider an 
integral characteristic of the tangential stresses over the height of the cross-
section, h, then we will find that the second term (proportional to the 
moment load) makes a zero contribution to the integral, so nothing will 
change in the general form of the integrals in (1.31), 

/ 2

/ 2

h
x xz

h

Q dz
−

= τ∫ ,        
/ 2

/ 2

h
y yz

h

Q dz
−

= τ∫ , 

if the integrands include only a part of tangential stresses τxz and τyz 
proportional to the shear forces. 

Further, based on formula (1.2) and taking u0 = 0, v0 = 0, which is an 
exclusion of the plane stress, we will have 

u = zθy ,      v = –zθx , (3.6) 

and thus the following expressions for the shear angles will take place: 
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γxz = ,y x
u
z x

∂ ∂
+ = θ +

∂ ∂
w w ,            γyz = ,x yz y

∂ ∂
+ = −θ +

∂ ∂
v w w . (3.7) 

In order to mitigate the above-mentioned contradiction, if not to eliminate 
it at all, we will think that formulas (3.7) define only certain shear strains, 
averaged over the plate’s thickness, which we will denote by γx and γy 
without additional subscript z . The geometrical sense of this is that the 
normal remains rectilinear after the plate is deformed, but it deviates from 
the right angle with respect to the median surface.  

The shears averaged over the thickness of the plate will be found from 
the conditions of equivalence, in the sense of energy, between tangential 
stresses τxz and τyz and their integral characteristics Qx and Qy. In order to 
do that, we calculate a part of the strain energy per unit of area of the 
plate’s median plane, which corresponds to the work of tangential stresses 
τxz and τyz denoted below by eτ. Using the theorem of an average value 
from integral calculus, we have 

eτ ( )
/ 2 / 2 / 2

/ 2 / 2 / 2

1 1 1
2 2 2

h h h
xz yz xz yz

xz yz x y
h h h

dz dz dz
− − −

− − −
= τ γ + τ γ = γ τ + γ τ =∫ ∫ ∫  

1 ( )
2

x y
x yQ Q= γ + γ . 

Further, it is natural to establish a proportional relation between average 
shears γx and γy over the plate’s thickness and the integral characteristics of 
the tangential stresses, that is, shear forces 

x

x
x

Q
Gh

γ = ,          
y

y
y

Q
Gh

γ = , (3.8) 

where hx and hy are certain quantities of the dimensionality of length, 
which we will call shear thicknesses. 

Substituting (3.8) to the expression of specific energy eτ will yield 

eτ = 
2 21 ( ) ( )

2

x y

x y

Q Q
Gh Gh

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦
. (3.9) 

At the same time, 

 eτ ( )
2 2/ 2 / 2

/ 2 / 2

1 1 ( ) ( )
2 2

xz yzh h
xz yz

xz yz
h h

dz dz
G G

− −

− −

⎡ ⎤τ τ
= τ γ + τ γ = + =⎢ ⎥

⎣ ⎦
∫ ∫  
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2 2 2 2 2 2 2 2/ 2

6 6/ 2

1 ( ) 9( 4 ) ( ) 9( 4 )
2 4 4

x yh

h

Q h z Q h z dz
G h G h

−

−

⎡ ⎤− −
= + =⎢ ⎥

⎣ ⎦
∫  

2 21 6( ) 6( )
2 5 5

x yQ Q
hG hG

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. 

Here we do not use a complete expression of the tangential stresses as in 
(3.5), but only a part of those which is proportional to the shear forces. The 
justification for this (approximate) replacement is a note made above that 
the additional terms can be omitted from formulas (3.5) for the tangential 
stresses averaged over the cross-section without making any harm to the 
integral equilibrium of the plate over its thickness. 

Comparing this with formula (3.9), we conclude that the shear 
thicknesses should be taken as 

hx = hy = 5
6

h . (3.10) 

Integrating the expression of specific energy eτ over the whole area of 
the plate’s median surface gives its strain energy, Eτ, generated by 
“vertical” tangential stresses, 

2 21 6( ) 6( )
2 5 5

x yQ Q d
hG hGτ

Ω

⎛ ⎞
= + Ω⎜ ⎟

⎝ ⎠
∫E . (3.11) 

When we sum the strain energies caused by stresses σxx, σyy and τxy as 
defined by formula (1.97) and energy Eτ that corresponds to the original 
formula (3.1), we will finally have 

E(Q x, Q y, M xx, M yy, M xy) = 

= 2 2 2
2

1 ( ) 2 ( ) 2(1 )( )
2 (1 )

xx xx yy yy xyM M M M M d
D Ω

⎡ ⎤− ν + + + ν Ω⎣ ⎦− ν ∫ + 

+ 2 26(1 ) ( ) ( )
5

x yQ Q d
Eh Ω

+ ν ⎡ ⎤+ Ω⎣ ⎦∫ . (3.12)

Formula (3.12) represents an expression of the strain energy of a Reissner 
plate as a functional of stresses in the plate, so that the stress vector, σ, of 
the Reissner plate is a five-component vector of the following form: 

σ = |[Q x, Q y, M xx, M yy, M xy]|T . (3.13) 
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Strains εxx , εyy and γxy were expressed in the Kirchhoff–Love thin plate 
theory via the curvatures of the bar’s axis according to formulas (1.23). In 
the case of a Reissner plate, the role of the curvatures is played by 
derivatives of the normal’s slopes. To see this, we derive the following 
from kinematical relationships (3.6): 

εxx = zθy,x ,        εyy = –zθx,y ,      γxy = z(θy,y – θx,x) . (3.14) 

As we can see, the Reissner theory, unlike the Kirchhoff–Love theory, 
does not define the whole set of displacements in a plate via a sole 
function of lateral deflections, w, because the slopes of the normal, θx and 
θy, are used in this theory as independent kinematical parameters not 
restricted by conditions (1.4). However, in the further presentment it will 
be convenient for us to use a vector φ rotated by 90° instead of the 
normal’s slope vector θ itself: 

φ = ωθ       or       ϕx = –θy ,    ϕy = θx . (3.15) 

Obviously, when there are no shears γxz and γyz , vector φ will be a gradient 
of deflection function w as can be derived from (3.7). 

Now we introduce flexural strain parameters, χxx, χyy, χxy, by defining 

χxx = –ϕx,x ,     χyy = –ϕy,y ,    χxy = –½ (ϕx,y + ϕy,x) , (3.16) 

or, in a tensor component form, 

χij = –½ (ϕi,j + ϕj,i) . (3.17) 

Then kinematic relationships (3.14) for the strain tensor components will 
be as follows: 

εxx = zχxx ,        εyy = zχyy ,      γxy = 2zχxy , (3.18) 

which are exactly of the same form as formulas (1.23) in the Kirchhoff–
Love plate theory.  

Accordingly, we will have the following formulas for the shear strains 
instead of (3.7): 

γxz = ,x x− ϕw ,            γyz = ,y y− ϕw . (3.19) 

To use a matrix form, we assume the vector of displacements, u, and the 
vector of strains, ε, to be 

u = |[w, ϕx , ϕy]|T ,   ε = |[γxz, γyz, χxx , χyy , 2χxy]|T . (3.20) 

A relation between the displacement vector, u, and the strain vector, ε, 
is based on the above formulas, (3.16) and (3.19), so we have the 
following operator of geometry, A, in the conventional matrix form ε=Au: 
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A = 

1 0

0 1

0 0

0 0

0

x

y

x

y

y x

∂⎡ ⎤−⎢ ⎥∂⎢ ⎥
∂⎢ ⎥−⎢ ⎥∂

⎢ ⎥
∂⎢ ⎥−⎢ ⎥∂

⎢ ⎥∂⎢ ⎥−
⎢ ⎥∂
⎢ ⎥

∂ ∂⎢ ⎥− −
⎢ ⎥∂ ∂⎣ ⎦

. (3.21) 

But then the operator of equilibrium, conjugate to the operator of 
geometry, will be as follows, according to formal rules of construction of 
conjugate operators: 

AT = 

0 0 0

1 0 0

0 1 0

x y

x y

y x

⎡ ⎤∂ ∂
− −⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂
−⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂
−⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

. (3.22) 

And indeed, equilibrium equations (1.32) and (1.33) do not depend on a 
currently adopted theory of plates, as can be easily seen. If we take into 
account the structure of the vector of “stresses”, σ, according to (3.13), 
then these equations will become a matrix equation, ATσ = X , provided 
we assume the vector of external distributed forces to be 

X = |[q, –my, mx]|T . (3.23) 

Now let us find out what the elasticity matrix, C, actually is. To 
construct this matrix, we can do all the reasoning and calculations in the 
same way as we did for the Kirchhoff–Love plate theory. However, we can 
do it in another way, too, because we already have an expression of the 
strain energy of a Reissner plate – formula (3.12). And indeed, strain 
energy E, being a quadratic functional of stresses σ, can be represented as 

E(σ) = 1
2

(σ, C –1σ) = 1
2 1 1

n n
i j

ij
i j

d d
= =Ω

σ σ Ω∑∑∫ = ( ,..., )1 5f d
Ω

σ σ Ω∫ . (3.24) 
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Here n is a dimensionality of the stress vector (in the case we are 
considering, it is n = 5), and coefficients dij are components of matrix C –

1 = |[dij]|.  
The quadratic form in the integrand, denoted here by 

f(σ1,…,σ5) = f(Q x,Q y, M xx,M yy,M xy) for convenience, is defined by (3.12), 
so 

f(Q x, Q y, M xx, M yy, M xy) = 2 26(1 ) ( ) ( )
5

x yQ Q
Eh
+ ν ⎡ ⎤+⎣ ⎦  + 

+ 2 2 2
2

1 ( ) 2 ( ) 2(1 )( )
2 (1 )

xx xx yy yy xyM M M M M
D

⎡ ⎤− ν + + + ν⎣ ⎦− ν
. (3.25) 

Formula (3.24) implies that the components of matrix C –1 are 
determined by double differentiation of function f, where 

dij = 
2

i j

f∂
∂σ ∂σ

. (3.26) 

By doing the said differentiation, we find 

C –1 =

2

2

2

(1 ) 0 0 0 0
5

(1 )0 0 0 01
5

(1 ) 0 0 1 0
0 0 1 0
0 0 0 0 2(1 )

h

h

D

⎡ ⎤+ ν
⎢ ⎥
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⎢ ⎥+ ν
⎢ ⎥
⎢ ⎥− ν −ν⎢ ⎥
⎢ ⎥−ν⎢ ⎥

+ ν⎢ ⎥⎣ ⎦

. (3.27)

Now, inverting the above matrix yields 

C  =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0

10 0 0 0
2

D

λ⎡ ⎤
⎢ ⎥λ⎢ ⎥
⎢ ⎥ν
⎢ ⎥ν⎢ ⎥
⎢ ⎥− ν
⎢ ⎥
⎣ ⎦

, (3.28) 

where we denote additionally 
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λ = 2

5(1 )
h
− ν . (3.29) 

The physical relationships of the Reissner theory of plates in the 
component form are: 

   Q x = λDγxz = λD ,( )x x− ϕw = λD ,( )x y+ θw , 

Q y = λDγyz = λD ,( )y y− ϕw = λD ,( )y x− θw , 

 M xx = D(χxx + νχyy) =  – D , ,( )x x y yϕ + νϕ = – D , ,( )y x x y−θ + νθ , 

M yy = D(χyy + νχxx) = – D , ,( )y y x xϕ + νϕ = – D , ,( )x y y xθ − νθ , 

M xy = D(1–ν)χxy = 

= –½D(1–ν) , ,( )x y y xϕ + ϕ = –½D(1–ν) , ,( )y y x x−θ + θ . (3.30) 

Now we can write out an expression of the Lame operator for the theory 
of bending of Reissner plates. Based on the general formula (4.1.6), we 
have 

L = ATCA = 

= D

2 2

2 2

2 2 2

2 2

2 2 2

2 2

1 1
2 2

1 1
2 2

x yx y

x x yx y

y x y y x

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
−λ + λ λ⎢ ⎥⎜ ⎟ ∂ ∂∂ ∂⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞∂ ∂ − ν ∂ + ν ∂⎢ ⎥−λ λ − − −⎜ ⎟⎢ ⎥∂ ∂ ∂∂ ∂⎝ ⎠
⎢ ⎥

⎛ ⎞∂ + ν ∂ ∂ − ν ∂⎢ ⎥−λ − λ − −⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

. (3.31)

Returning from the components of vector φ to the original designations of 
the normal’s slopes, θx and θy, as in (3.15), now we have the following 
governing set of differential equations in terms of displacements for the 
Reissner plate bending: 
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m
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∂ θ∂ θ ∂ θ∂ − ν + ν
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w  .  (3.32) 

To make a closed mathematical statement of the problem in the 
differential form, we need to formulate also boundary conditions. In order 
to do that, we will use the basic integral identity in application to the 
Reissner plate bending. 

However, before we turn to the basic integral identity, we would like to 
consider other forms of the simultaneous governing equations for problem 
(3.32). 

5.3.1 A governing system of equations for a Reissner plate with 
respect to two unknown functions 

In order to proceed with convenience, we will divide the system of 
equations (3.32) into two. The left part in each of the new systems will be 
inherited from (3.32), and we will assume mx = my = 0 in the right part of 
the first system and q = 0 in the second system. In other words, the 
solution of the original problem will be divided into a sum of solutions of 
two problems: a homogeneous problem with respect to external moment 
actions and a homogeneous problem with respect to a lateral load. The 
general solution of the original problem can be represented as a sum of the 
general solution of the moment-free problem and some partial solution of 
the lateral-load-free problem17. As usual, a partial solution of the lateral-
load-free (and, what is more important, not free from external moment 
actions) problem will be omitted. We will try to find a general solution of 
the problem where we assume mx = my = 0.  

Following [24], we introduce two functions Φ and Ψ by establishing the 
following relationship with slope vector  θ: 

θ = –ωgrad Φ + grad Ψ , (3.33) 

                                                      
17 Though this statement may sound a bit unusual, it is easily provable. 
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where rotation tensor ω is defined by matrix ω in the global coordinate 
system according to formula (F.36) from Appendix F. Paper [24] refers to 
functions Φ and Ψ as a penetrating potential and an edge potential, 
respectively. The meaning of these names will become clear later18. 
Representation (3.33) looks as follows in its component form: 

θx = 
y x

∂Φ ∂Ψ
+

∂ ∂
,        θy = 

x y
∂Φ ∂Ψ

− +
∂ ∂

. (3.34) 

We will show that the system of equations (3.32) with respect to three 
unknown functions is reducible to a system of two equations with respect 
to functions Φ and Ψ if we assume the following in addition to (3.34): 

w = Φ – 21
∇ Φ

λ
. (3.35) 

To see this, we substitute (3.34) and (3.35) to the first of the equations of 
system (3.32) and find 

2 2 q
D

∇ ∇ Φ = . (3.36) 

Substituting the same to the second and third equation of system (3.32) 
(and recalling that the external moments are zero in this problem, 
mx = my = 0) will produce the requirements that 

( )2 2 0,c
x

∂
∇ Ψ − Ψ =

∂
         ( )2 2 0,c

y
∂

∇ Ψ − Ψ =
∂

 (3.37) 

where we denote additionally 

2
2

2 10
1

c
h

λ
= =

− ν
. (3.38) 

Equations (3.37) imply that the aggregate expression (∇2Ψ – с2Ψ) is a 
constant, and this constant can be assumed to be zero because its value 

                                                      
18 Strictly speaking, paper [24] deals with a slightly different version of a shear-

based theory for medium-thickness plates, which is different from Reissner’s 
theory. But that is insignificant for our reasoning because the structure of the 
problem’s governing equations derived in [24] is exactly the same as the structure 
of equations (3.32). The difference lies in an expression of coefficient λ which is 
equal to 6(1 – ν)/h2 for an isotropic material in V.V. Vasiliev’s theory of plates, 
unlike formula (3.29) for a Reissner plate 
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does not affect the components of the slope vector, θ, which we are 
interested with, because of (3.34). So, 

2 2 0c∇ Ψ − Ψ = . (3.39) 

A system of two equations: an equation of fourth order, (3.36), with 
respect to function Φ and an equation of second order, (3.39), with respect 
to function Ψ fulfils our goal – it is a governing system of equations for 
the external-moment-free problem. Obviously, the overall order of the two 
equations is six19. The equations themselves keep functions Φ and Ψ 
separated, but, as we will see later, the solutions are still mutually 
dependent through boundary conditions. 

Note that when the thickness of the plate, h, tends to zero, equality 
(3.35) implies that w → Φ, which shows an expected tendency of 
degeneration of system (3.36), (3.39) into one equation (3.36), a 
characteristic relationship of Kirchhoff’s theory of plates. 

When we have integrated equations (3.36) and (3.39) to determine 
functions Φ and Ψ, we can then find the internal forces in the cross-
sections of the plate by formulas (3.30), which now become as follows 
after substituting expressions (3.34) and (3.35) to those: 

Q x = 2D
x y

⎛ ⎞∂ ∂Ψ
− ∇ Φ + λ⎜ ⎟∂ ∂⎝ ⎠

,       Q y =  2D
y x

⎛ ⎞∂ ∂Ψ
− ∇ Φ − λ⎜ ⎟∂ ∂⎝ ⎠

, (3.40) 

                                                      
19 Both types of equations are studied well by mathematics and are known in 

mechanics. Equation (3.36) is the same as the Germain–Lagrange equation for a 
classic Kirchhoff plate, and equation (3.39) is a Helmholtz equation. One of 
possible mechanical interpretations of the Helmholtz equation is a homogeneous 
equation of the deflection of a membrane supported by an elastic Winkler-type 
foundation. The general integral of the Germain–Lagrange equation (3.36) 
contains terms which vary across the area of the plate, Ω, at a comparatively 
slow rate. At the same time, the general integral of the Helmholtz equation 
(3.39) gives a solution with a comparatively quick variability. Equation (3.39) 
can be said also to describe a stress distribution in a plate similar to an edge 
effect. These were the considerations why function Φ was called a penetrating 
potential and function Ψ an edge potential in paper [24]. 
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M xx =
2 2 2

2 2 (1 )D
x y x y

⎡ ⎤∂ Φ ∂ Φ ∂ Ψ
− + ν − − ν⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

, 

M yy =
2 2 2

2 2 (1 )D
y x x y

⎡ ⎤∂ Φ ∂ Φ ∂ Ψ
− + ν + − ν⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

, 

M xy = –
2 2 2

2 2

1(1 )
2

D
x y x y

⎡ ⎤⎛ ⎞∂ Φ ∂ Ψ ∂ Ψ
− ν + −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

. (3.41) 

The components of the strain vector, ε, according to (3.20) will become as 
follows when expressed via the governing functions Φ and Ψ: 

γxz = 21
x y

∂ ∂Ψ
− ∇ Φ +

λ ∂ ∂
,        γyz = 21

y x
∂ ∂Ψ

− ∇ Φ −
λ ∂ ∂

 

χxx = 
2 2

2x x y
∂ Φ ∂ Ψ

− +
∂ ∂ ∂

,           χyy = 
2 2

2y x y
∂ Φ ∂ Ψ

− −
∂ ∂ ∂

,   

2χxy =
2 2 2

2 22
x y y x

∂ Φ ∂ Ψ ∂ Ψ
− + −

∂ ∂ ∂ ∂
. (3.42) 

5.3.2 Basic integral identity in the Reissner plate theory 

Based on earlier matrix relationships, we can write 

(Au, σ) = , ,( ) ( )x y
x x y yQ Q d

Ω

⎡ ⎤− ϕ + − ϕ Ω⎣ ⎦∫ w w + 

+ , , , ,( )xx yy xy
x x y y x y y xM M M d

Ω

⎡ ⎤−ϕ − ϕ − ϕ + ϕ Ω⎣ ⎦∫ . 

By using the Gauss–Ostrogradsky formula, we remove the 
differentiation from the displacements in the integrand, to obtain 

(Au, σ) = 

  = , , , , , ,( ) ( ) ( )x y x xx xy y yy xy
x y x x y y y xQ Q Q M M Q M M d

Ω

⎡ ⎤− − + ϕ − + + + ϕ − + + Ω⎣ ⎦∫ w + 

( ) ( ) ( )x y xx xy yy xy
x y x x y y y xQ n Q n M n M n M n M n d

Γ

Γ⎡ ⎤+ + − ϕ + − ϕ +⎣ ⎦∫ w . 



5.3 Bending of medium-thickness plates – Reissner’s theory      287 

First of all, we would like to notice that the integral over area Ω is a 
scalar product, (u, ATσ). Further, we can easily check that the following 
identity is true: 

( ) ( )xx xy yy xy nn nt
x x y y y x n tM n M n M n M n M Mϕ + + ϕ + = ϕ + ϕ , 

where moments M nn and M nt are defined by formulas (1.52), and quantities 
ϕn and ϕt are projections of vector φ onto axes n and t, where 

    n x x y y y y x x tn n t tϕ = ϕ + ϕ = −θ − θ = −θ , 

t x x y y y y x x nt t n tϕ = ϕ + ϕ = θ + θ = θ . (3.43) 

As a result, the basic integral identity becomes 

(Au, σ) = (u, ATσ) ( )n nn nt
t nQ M M d

Γ

Γ+ + θ − θ∫ w . (3.44) 

Now it is clear that the vector of edge displacements, u, and the vector 
of edge forces, p, in the Reissner theory of plates should be 

u = |[w, θt, –θn]|T,              p = |[Q n, M nn, M nt]|T . (3.45) 

Thus, unlike the Kirchhoff–Love theory, the Reissner plate theory states 
three boundary conditions on the contour of the plate, Г, according to the 
dimensionality of vectors u and p.  

5.3.3 Important functionals for the Reissner plate 

Lagrange functional 

The strain energy stored in the Reissner plate can be represented as a 
quadratic functional of displacements, derived from the general formula  

E(w, ϕx , ϕy) = 1 ( , )
2

u uA CA , 

which yields the following after substitutions and matrix transformations: 

E(w, ϕx , ϕy) = 2 2
, ,( ) ( )

2 x x y y
D d

Ω

λ ⎡ ⎤− ϕ + − ϕ Ω⎣ ⎦∫ w w + 

+ 2 2 2
, , , , , ,

12 ( )
2 2x x x x y y y y x y y x
D d

Ω

− ν⎡ ⎤ϕ + νϕ ϕ + ϕ + ϕ + ϕ Ω⎢ ⎥⎣ ⎦∫ . (3.46)
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Obviously, the first of the above integrals corresponds to a shear part of 
the energy and the second one to the bending energy itself.  

As for the force potential, Пs, an expression for it is given by the earlier 
formula (1.86), which can be represented as follows for a Reissner plate if 
we take into account relations (3.15) and (3.43): 

Пs = 

( )x y
x yq m m d

Ω

= + θ + θ Ω∫ w ( )t n
Q Mt t Mn ne Q e M e M d

Γ

Γ+ + θ + θ∫ w = 

= ( )y x
x yq m m d

Ω

− ϕ + ϕ Ω∫ w ( )t n
Q Mt n Mn te Q e M e M d

Γ

Γ+ − ϕ + ϕ∫ w . (3.47) 

Here we have already taken into account the fact that the external 
(contour) force actions are different from zero only on segments of the 
contour where the respective characteristic functions, eQ, eM t, eM n, are 
equal to one. The expression of the Lagrangian functional, L, is 
constructed in the usual way, as L = E – Пs.  

As usual, kinematically admissible fields of displacements are searched 
for a minimum of the Lagrangian functional, which are displacement 
functions giving a finite value to integral (3.46) and satisfying kinematical 
boundary conditions 

=w w   ∈Гw ,       n tϕ = −θ   ∈Гθt ,       t nϕ = θ   ∈Гθn . (3.48) 

Euler equations for the Lagrangian functional is the system of 
differential equations obtained earlier, (3.32), and natural boundary 
conditions for it are static boundary conditions 

n nQ Q=   ∈ГQ ,     nn tM M= ∈ГM t ,    nt nM M= − ∈ГM n , (3.49) 

where 

Гw ∪ГQ = Г,  Гw ∩ ГQ = ∅;        Гθt ∪ ГM t = Г,   Гθt ∩ ГM t = ∅; 

Гθn ∪ ГM n = Г,       Гθn ∩ ГM n = ∅; 

Castigliano functional 

The strain energy, E, is already given by formula (3.12) in the form of a 
quadratic functional of “stresses”. Therefore all we have to do now is to 
write an explicit form of the kinematic potential. Based on (3.44) and 
(3.45), we have 
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Пk(σ) = ( )n nn nt
t t n ne Q e M e M d

Γ

Γθ θ+ θ − θ∫ ww . (3.50) 

A point of minimum of the Castigliano functional, K(σ) = E(σ) – Пk(σ), 
is searched for in a set of statically admissible stresses σ. This means that 
stresses admitted to the comparison should satisfy equations of equlibrium 
(1.32), (1.33) over the whole area Ω and static boundary conditions (3.49). 
Now we want to derive strain compatibility conditions for a Reissner plate, 
which would be Euler equations for the Castigliano functional when 
formulated in terms of stresses. 

As (3.20) shows, the displacement vector, u, is a three-component 
vector and the strain vector, ε, has five components. Consequently, all five 
components of the strain vector cannot be specifed independently; they 
must be restricted by two additional relationships which would make it 
possible to restore the displacements from the strains. These additional 
relationships between the components of the strain vector are called Saint-
Venant compatibility conditions. 

As it is known, relationships of such a kind can be interpreted from the 
mathematical standpoint as conditions of independence of some mixed 
derivatives of the strain vector’s components from the order of 
differentiation. In particular, two independent relationships of this type for 
the Reissner plate are 

     
22

2 0
2 2 2

yz yy xyxz

y x y x y
∂ γ ∂χ ∂χ∂ γ

− + − =
∂ ∂ ∂ ∂ ∂

, 

22

2 0
2 2 2

yz xyxz xx

x y x y x
∂ γ ∂χ∂ γ ∂χ

− + + − =
∂ ∂ ∂ ∂ ∂

. (3.51) 

The strain compatibility conditions from (3.51) can be validated 
immediately. Indeed, substituting the expressions of the strains via the 
displacements from (3.16) and (3.19) make relationship (3.51) an identity. 

Another identity which seems obvious when we look at kinematical 
relationships (3.16), 

2 22

2 2 0
2 2

yy xyxx

y x x y
∂ χ ∂ χ∂ χ

+ − =
∂ ∂ ∂ ∂

 

is not independent because it follows from (3.51): it can be obtained by 
differentiating the first equality there with respect to x, the second with 
respect to y, and summing the results.  
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Seeing that the strain vector’s structure follows (3.20), we obtain the 
Saint-Venant operator for the Reissner plate: 

S = 

2 2

2

2 2

2

0
2 2 2

0
2 2 2

y x y x y

x y x y x

⎡ ⎤∂ ∂ ∂ ∂
− −⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂
− −⎢ ⎥

∂ ∂ ∂ ∂ ∂⎣ ⎦

. (3.52) 

When written in terms of stresses, the strain compatibility conditions, 

SC –1σ = 0, 

are Euler euqations for the Castigliano functional. 

A stress function vector for the Reissner plate 

As we already know the Saint-Venant operator, S, we can derive its 
conjugate ST. From formal rules of construction of Lagrange-conjugate 
operators we have 

ST = 

2 2

2

2 2

2

2 2

2 2

0

0

2 2

y x y

x y x

y

x

y x

⎡ ⎤∂ ∂
−⎢ ⎥∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂
−⎢ ⎥

∂ ∂ ∂⎢ ⎥
⎢ ⎥∂

−⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂
−⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎣ ⎦

. (3.53) 

It is easy to check that 

SA = O,        ATST= O, 

just the way the Saint-Venant operator should be. 
Exactly as we did in Section 5.2 for a Kirchhoff–Love plate and for a 

plane stress, here we introduce a vector of stress functions Ф related to 
stresses σ (in the case when there is no distributed load over area Ω – 
neither moments nor forces) via relationship (2.5) and an operator, M, of 
strain compatibility in stress functions: 
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σ = STФ ,        M = SC –1ST. 

Obviously, the stress function vector Ф is a two-component vector for 
both the Reissner plate and the Kirchhoff–Love plate, so 

Ф = |[Фx , Фy]|T. 

Making required matrix transformations and canceling out the 
insignificant common constant h2/[20D(1–ν)] will yield an expression for 
the strain compatibility operator in stress functions, 

M = 

2 2 2 2 2
2 2 2 2

2 2

2 2 2 2 2
2 2 2 2

2 2

2 2( ) ( )
1 1

2 2( ) ( )
1 1

c cc c
y x x y

c cc c
x y x y

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
∇ − − − ∇ − −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ + ν ∂ + ν ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥− ∇ − − ∇ − −⎜ ⎟ ⎜ ⎟+ ν ∂ ∂ ∂ + ν ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, (3.54) 

where numerical parameter с2 has been defined by formula (3.38). 
A frightfully complicated structure of the matrix differential operator M 

is not actually as terrible as it seems, because the system of differential 
equations that corresponds to that operator can be reduced and simplified. 
To see this, we denote by M11, M12, M21, M22 the elements of matrix 
operator M and find that each component of the stress function vector, Φx 
and Φy, satisfies a homogeneous differential equation with the operator 

L = M22M11 – M12M21. 

Making some required operations, we have the final result20  

∇4(∇2Φx – с2Φx) = 0,            ∇4(∇2Φy – с2Φy) = 0. (3.55) 

However, there is another problem. The matter is that each of the two 
equations in (3.55) is a sixth-order equation. As we established earlier, we 
have only three boundary conditions. Obviously, an extra freedom was 
created by an additional differentiation added to (3.55) when we switched 
to operator L. This extra freedom can be eliminated if we recall that 
functions Φx and Φy must satisfy also the original system of differential 
equations with operator M, hence two more conditions. Another degree of 
freedom can be eliminated by remembering the fact that actually we are 
interested  with the stresses in the plate expressed via functions Φx and Φy 
rather than with the functions themselves. But functions Φx and Φy are 
                                                      

20  If we do the same procedure for a Kirchhoff plate and recall formula (2.12), 
we will see that each of the components of the stress function vector should satisfy 
a biharmonic equation, that is, ∇4Φx = 0,   ∇4Φy = 0. 
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differentiated in those expressions, which eliminates the third degree of 
freedom.  

As we can see, this way of solving problems involves a lot of work. This 
is probably the reason why the method of stress functions is hardly ever 
used to solve practical problems for the Reissner plates. However, we 
deem it useful to present the method here so that the students do not have 
any suspicion  about an incompleteness of this aspect of the Reissner plate 
theory, because the vector of stress functions is not even mentioned in 
many popular textbooks on the theory of plates. 

A Reissner functional for a Reissner plate 

We want to derive an expression of the Reissner functional’s first form, 
based on the general formula (3.1.4):  

R1(σ, u) = ½(C –1σ, σ)  – (Au, σ) + (Eu p, Eu u)Г + Пs – Пk = 

= 2 2 2
2

1 ( ) 2 ( ) 2(1 )( )
2 (1 )

xx xx yy yy xyM M M M M d
D Ω

⎡ ⎤− ν + + + ν Ω⎣ ⎦− ν ∫ + 

2 26(1 ) ( ) ( )
5

x yQ Q d
Eh Ω

+ ν ⎡ ⎤+ + Ω −⎣ ⎦∫ , ,( ) ( )x y
x x y yQ Q d

Ω

⎡ ⎤− ϕ + − ϕ Ω⎣ ⎦∫ w w – 

– , , , ,( )xx yy xy
x x y y x y y xM M M d

Ω

⎡ ⎤−ϕ − ϕ − ϕ + ϕ Ω⎣ ⎦∫ + 

+ ( )y x
x yq m m d

Ω

− ϕ + ϕ Ω∫ w + ( )t n
Q Mt n Mn te Q e M e M d

Γ

Γ− ϕ + ϕ∫ w + 

+ ( )( ) ( ) ( )n nn nt
t n t n t ne Q e M e M d

Γ

Γθ θ− + −ϕ − θ − ϕ − θ∫ w w w . (3.56)

The Reissner functional’s second form can be derived from the general 
formula (3.1.5): 

R2(σ,u) = ½(C –1σ, σ) – (ATσ, u) – (Ep p, Ep u)Г + Пs – Пk = 

= 2 2 2
2

1 ( ) 2 ( ) 2(1 )( )
2 (1 )

xx xx yy yy xyM M M M M d
D Ω

⎡ ⎤− ν + + + ν Ω⎣ ⎦− ν ∫ + 

+ 2 26(1 ) ( ) ( )
5

x yQ Q d
Eh Ω

+ ν ⎡ ⎤+ Ω⎣ ⎦∫  – 

– , , , , , ,( ) ( ) ( )x y x xx xy y yy xy
x y x x y y y xQ Q Q M M Q M M d

Ω

⎡ ⎤− − + ϕ − + + + ϕ − + + Ω⎣ ⎦∫ w + 
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+ ( )y x
x yq m m d

Ω

− ϕ + ϕ Ω∫ w  – 

– ( )( ) ( ) ( )n nn t nt n
Q Mt n Mn te Q Q e M M e M M d

Γ

Γ− − − + ϕ + − + ϕ∫ w – 

– ( )n nn nt
t t n ne Q e M e M d

Γ

Γθ θ+ θ − θ∫ ww . (3.57) 

5.4 Some examples  

We present a few examples here in order to demonstrate solutions of 
problems from the theories of plates by Kirchhoff and by Reissner in some 
simple cases which allow an exact analysis. The same examples can be 
used as tests for debugging (and validating!) of software implementations 
declared in popular commercial software packages for structural analysis. 

5.4.1 Example 1. A round plate loaded by a torque on its edge 

Our first example is a round plate of a radius R, free from fixations and 
subjected to a contour torque action of an intensity m constant along the 
contour. We will use polar coordinates in this problem because, obviously, 
the solution depends only on the radial coordinate, ρ = 2 2x y+  and does 
not depend on the angular coordinate, α. Under these conditions, the 
Laplace operator ∇2 is known to become unidimensional, as follows: 

2
2

2

1 1d d d d
d d d d

⎛ ⎞
∇ = ρ = +⎜ ⎟ρ ρ ρ ρ ρ ρ⎝ ⎠

. 

First of all, we want to exclude rigid displacements by assuming that the 
plate is freely supported along its contour. This assumption does not 
violate the given boundary conditions for forces because, obviously, our 
external condition for this problem makes both shear forces Q n = Q ρ and 
bending moments M nn = M ρρ equal to zero. Moments M ρρ are equal to 
zero because such is the sense of the boundary conditions for a freely 
supported plate, and shear forces Q ρ are zero because otherwise the global 
equilbrium of the plate in projection onto the Z-axis would be violated. 
Moreover, if we repeat the same consideration of equilibrium for any 
round part of the plate of a radius ρ, we will understand that shear forces 
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Q ρ must be identical to zero in the whole plate, not only on its contour – 
that is, Q ρ(ρ) = 0.  

Furthermore, a general integral of the homogeneous biharmonic 
equation, ∇2∇2Φ = 0, for a penetrating potential with the above stated 
operator ∇2 is known; it can be written as 

2 2
1 2 3 4ln lnA A A AΦ = ρ ρ + ρ + ρ + . 

This representation can be easily validated by direct differentiation. 
On the other hand, a general integral of the homogeneous equation, 

∇2Ψ – c2Ψ = 0, 

is also known for a boundary-layer potential with this operator [14]; it can 
be represented as 

1 0 2 0( ) ( )B I c B K cΨ = ρ + ρ , 

where I0 and K0 are modified Bessel functions of the first and second type, 
zero order. Here A1, A2, A3, A4, B1, B2 are constants of integration, yet to be 
found. 

Using formula (3.35) gives 

w = Φ – 21
∇ Φ

λ
= ( )2 2

1 2 3 4
4 4ln ln 1 lnA A A A⎡ ⎤ ⎡ ⎤ρ ρ − ρ + + ρ + ρ − +⎢ ⎥ ⎢ ⎥λ λ⎣ ⎦ ⎣ ⎦

.  

The limitedness of the deflection at the center of the plate gives 
A1 = A2 = 0. Furthermore, the deflection is equal to zero at the center of the 
circle (at ρ = 0) and on the contour (at ρ = R) – at the center, because of 
the symmetry, and on the contour, because of the boundary condition. 
Hence A3 = A4 = 0 too. Thus, the penetrating potential is identical to zero, 
Φ = 021. Seeing this and considering formulas (3.40), we have the shear 
forces in the plate: 

xQ D
y

∂ψ
= λ

∂
,     yQ D

x
∂ψ

= −λ
∂

, 

so 

                                                      
21 The fact that the penetrating potential is zero can be justified in another way 

in this problem, without having to find the constant of integration, A1,…, A4. To 
see this, we should consider the symmetry and understand that the plate’s 
deflection must be identical to zero. This means that the penetrating potential 
satisfies two conditions at once: ∇2∇2Φ = 0 and ∇2Φ – λΦ = 0, hence Φ = 0.  
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n x y
x yQ Q Q n Q nρ = = + = 0y xD t t D

y x R
⎛ ⎞∂ψ ∂ψ ∂Ψ

λ + = λ =⎜ ⎟∂ ∂ ∂α⎝ ⎠
, 

which was to be expected.  
Further, in our case (3.41) produces 

M xx = –M yy =
2

(1 )D
x y

∂ Ψ
− ν

∂ ∂
,       M xy = –

2 2

2 2

(1 )
2

D
x y

⎛ ⎞− ν ∂ Ψ ∂ Ψ
−⎜ ⎟∂ ∂⎝ ⎠

. 

Consequently, formulas (1.52) will give 

M nn = 2 2 2xx yy xy
x y x yM n M n M n n+ + =  

=
2 2 2

2 2
2 2(1 ) ( )x y x yD n n n n

x y x y
⎡ ⎤⎛ ⎞∂ Ψ ∂ Ψ ∂ Ψ

− ν − − −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
 . 

If we take a point on the X-axis, we will have for it 

x
∂ ∂

=
∂ ∂ρ

,    
y R

∂ ∂
=

∂ ∂α
,    1xn = ,   0yn = ,    0xt = ,     1yt = . 

So finally we have M nn = 0, on the contour of the plate too, which is in 
accordance with the free support boundary condition.  

Now let us use the fact that the torque on the contour of the plate is 
equal to a given value, m. We have: 

M nt = ( )xx yy xy
x x y y x y y xM n t M n t M n t n t+ + + =  

=
2 2 2

2 2(1 ) ( ) ( )x x y y x y y xD n t n t n t n t
x y x y

⎡ ⎤⎛ ⎞∂ Ψ ∂ Ψ ∂ Ψ
− ν − − − +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

.  

Now we turn to points of the X axis again and have 

M nt =
2

2(1 )D ∂ Ψ
− − ν

∂ρ
. 

As function I0 is singular in the infinity, and K0 is singular at zero, the 
limitedness of the solution at zero requires that the constant of integration 
B2 should be assumed equal to zero. 

Let us present known relationships of the Bessel functions theory [14]  

1( ) ( )k k
k k

d I c c I c
d −⎡ ⎤ρ ρ = ρ ρ⎣ ⎦ρ

. 
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This gives the following in our case: 

[ ]0 1( ) ( )d I c cI c
d −ρ = ρ

ρ
,       [ ] ( )

2
1

0 12 ( ) ( )d dI c c I c
d d

−
−ρ = ρρ ρ =

ρ ρ
 

2 2 2 0 11 1
2 2

( ) ( )( ) ( )( ) ( ) c I c I cI c I cc c I c c I c c
c c

−
−

ρ ρ − ρ⎛ ⎞ρ ρ
= + ρ = + ρ =⎜ ⎟ρ ρ ρ⎝ ⎠

. 

Here we take into account two known facts from the theory of Bessel 
functions: 

• I–1(cρ) = I1(cρ) and I–2(cρ) = I2(cρ) ; 

• cρI2(cρ) = cρI0(cρ) – 2 I1(cρ) . 

The boundary condition for the torque gives the last, still undetermined, 
constant of integration B1 

[ ]1 2
0 1(1 ) ( ) ( )

mcRB
c D cRI cR I cR

= −
− ν −

. 

The final distribution of the torques along the radial coordinate of the 
plate is 

0 1

0 1

( ) ( )
( ) ( )

nt c I c I cRM m
cRI cR I cR

⎛ ⎞ρ ρ − ρ
= ⎜ ⎟ρ −⎝ ⎠

. 

Graphs of the torque vs. the radial coordinate of the plate, based on the 
above formula, are shown in Fig. 5.6 for various values of the plate’s 
respective thickness, h/R, where the abscissas are radial coordinates ρ/R 
and the ordinates are dimensionless torques M nt/m. 

 
Fig. 5.6. Torque vs. the radial coordinate on the plate 
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The graphs show a clear edge effect, as was mentioned earlier, for the 
distribution of the torque. Even for a relatively thick plate (at h/R = 0,2) 
the M nt moment falls quickly as we move away from the plate’s edge. 

To complete the presentment, we should find the slopes of the normal to 
the plate, which describe its strain state. Using formulas (3.34) and 
considering points which lie on the X-axis, we have 

θt = 0,            θn = ∂Ψ
∂ρ

= 
[ ]

1

0 1

( )
(1 ) ( ) ( )

mI c R
D cRI cR I cR

ρ
−

− ν −
.  

5.4.2 Example 2. A square plate loaded by torques on its edge 

Our second example will be a square plate with its contour free from 
fixations. Let the plate be subjected to torques m evenly distributed along 
the contour and directed oppositely on each of the plate’s sides as shown in 
Fig. 5.7.  

Y

X

a

m

P=2m P=2m

P=2mP=2m

 
Fig. 5.7.  A square plate subjected to torques in opposite directions on its contour 

It can be checked directly that the solution of this simple problem 
according to Kirchhoff’s theory is given by the following elementary 
formulas 

(1 )
m xy x y

D
= − + α + β + γ

− ν
w ,  

(1 )x
m x

D
θ = −

− ν
, 

(1 )y
m y

D
θ =

− ν
, 

     0x yQ Q= = ,    0x yK K= = ,       0xx yyM M= = ,     xyM m=  

with undetermined constants α, β, γ which characterize deflections w of 
the plate as a rigid body. Also, concentrated Kirchhoff’s forces Р = 2m 
appear in the angles of the plate as shown in the same Fig. 5.7.  

Now we want to solve the same problem according to the Reissner 
theory of plates. Obviously, the distribution of internal forces in a Reissner 
plate is the same as that in a Kirchhoff plate (except for generalized shear 
forces K x and K y which just do not exist in the Reissner plate). 
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And indeed, in this case all equations of equlibrium hold together with 
the strain compatibility conditions expressed via stresses, that is, SC –

1σ = 0.  All the boundary conditions hold true, too. Then we find that the 
field of displacements for the Reissner plate coincides with that for the 
Kirchhoff plate. We can see that the shear forces are zero, therefore the 
shear angles are zero, too, wherefrom we have the relationships 

,y xθ = −w ,     ,x yθ = w , 

which describe a Kirchhoff plate. After restoring the penetrating and edge 
potentials for this problem, we have 

(1 )
m xy

D
Φ = −

− ν
,    Ψ = 0. 

Now we want to modify this problem by assuming the external contour 
moment, m, to be directed as in Fig. 5.8. 

Y

X
m

 
Fig. 5.8.  A square plate subjected to codirectional torques on its contour 

It turns out that there is no elementary solution for this problem, unlike the 
previous one. An approximate solution of the problem (or, rather, a 
solution for a linear combination of the problems from Fig. 5.7 and 
Fig. 5.8) can be found by the interested reader in paper [25]. Here we just 
want to notice that the very statement of the problem in Fig. 5.8 contains 
an incorrectness because the reciprocity of tangential stresses is violated in 
the angular points of the plate, which is M xy = M yx in the theory of plates. 

If we consider this problem within the limits of the Kirchhoff theory, we 
will understand easily that a Kirchhoff plate does not respond to that kind 
of load at all. All force and kinematical fields for the Kirchhoff plate are 
zero. 
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5.4.3 Example 3. A simply supported rectangular plate 

Reissner plate 

Consider a rectangular, simply supported plate of sizes a×b under a 
sinusoid-shaped load 

( , ) sin sinmn
m x n yq x y q

a b
π π

= . (3.58) 

If we manage to find a solution for a plate subjected to load (3.58), we can 
always find a solution for the same plate under any arbitrary load q(x,y) by 
expanding the latter into a double Fourier series and then summing the 
solutions over indexes m and n.  

First of all, let us formulate boundary conditions carefully. It should be 
noted that, unlike a Kirchhoff plate, the Reissner plate requires more than 
just words to describe actual boundary conditions of “simple support” on 
the contour of the plate. Indeed, as we have noticed earlier, every point of 
the contour of the Reissner plate must have three boundary conditions. In 
particular, the boundary conditions for a simple support can be formulated 
in either of two competing forms: 

• version “А” :    w = 0,   M nn = 0,   θn = 0   ∈Г –  a cylindrical hinge; 
• version “B” :    w = 0,   M nn = 0,  M nt = 0  ∈Г –  a free support.  

In these two versions, the first two conditions are the same and the third 
are different Version “А” has the plate’s contour fixed against slopes 
around axis n, and shear γs along the contour of the plate becomes zero 
automatically because 

γs = w,s – ϕt = w,s – θn = 0 , 

where it is obvious that w,s = 0. On the contrary, version “В” permits the 
shear of the plate along its contour but eliminates the torque on the 
contour. It can be said that version “А” of the boundary conditions 
corresponds to an attachment of the flexural plate along its contour to 
some hypothetic wall that possesses an absolute flexibility from its plane 
and a perfect rigidity in its plate.  

In order to focus the attention on differences in the problem statements 
for these two versions of boundary conditions for a simply supported 
Reissner plate, the authors of [9] even suggest to distinguish the conditions 
by their titles. For example, version “В” should be called a free support, 
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while version “А” will refer to a cylindrical hinge on the edge of the 
plate22.  

Let us dwell on the solution for the boundary conditions of version “A”, 
that is, for a cylindrical hinge rather than a free support on the plate’s 
contour. Only in this case the solution can be obtained by elementary 
methods in a closed form (in double trigonometric series). We will seek 
the solution in the following form: 

sin sinmn
m x n yW

a b
π π

=w , 

sin cosx mn
m x n yX

a b
π π

θ = ,            cos siny mn
m x n yY

a b
π π

θ =  (3.59) 

where amplitude factors of the displacements, that is, numerical 
coefficients Wmn, Xmn and Ymn , are to be found. We note immediately that 
the solution in the form (3.59) satisfies all boundary conditions in 
version “А” but does not make the torque on the plate’s contour equal to 
zero (which would be necessary for version “В”) because from (3.30) we 
have 

, ,
1 1( ) ( )cos cos

2 2
xy

y y x x mn n mn m
m x n yM D D Y X

a b
− ν − ν π π

= −θ + θ = − η + ξ , 

where the following designation is introduced for the sake of brevity: 

,m
m
a
π

ξ =     n
n
b
π

η = . (3.60) 

Substituting (3.59) to differential equations (3.32) produces a set of 
three simultaneous algebraic equations with respect to desirable 
parameters Wmn, Xmn and Ymn : 
                                                      

22 It should be said that the possibility of a dual formulation of the boundary 
conditions for a simply supported Reissner plate is not always mentioned 
explicitly in publications. Among works where this topic is addressed, we can 
mention a book by L.A. Gordon and L.A. Gotlif [9] and a paper by V.V. Vasiliev 
[24]. It is important because version “А”, which is used commonly to build 
analytical solutions (see [8], for example), cannot be a basis for a comparison with 
solutions for a simply supported Kirchhoff plate, as we will see a bit later. 
Furthermore, version “B” of the boundary conditions for a simply supported 
Reissner plate should be adopted also for the purpose of comparison to a solution 
based on three-dimensional elasticity where the edge of the plate has fixations 
against lateral deflections only at points of the median surface of the plate (and no 
other fixations are allowed for the three-dimensional problem). 
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( )2 2

2 2

2 2

1 1
2 2

1 1
2 2

m n n m

m m n m n

n n m m n

⎡ ⎤
⎢ ⎥ξ + η −η ξ
⎢ ⎥
⎢ ⎥+ ν − ν⎛ ⎞−λξ ξ η −λ − ξ − η⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥− ν + ν⎛ ⎞−λη λ + η + ξ − ξ η⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

0
0

mn

mn

mn

mn

q
W D
X
Y

⎡ ⎤
⎢ ⎥⎡ ⎤ λ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

. 

A direct check helps make sure that the solution of the above equations is 
2 2

2 2 2( )
mn m n

mn
m n

qW
D

λ + ξ + η
=

λ ξ + η
,         

2 2 2( )
mn n

mn
m n

qX
D

η
=

ξ + η
,         2 2 2( )

mn m
mn

m n

qY
D

ξ
= −

ξ + η
. (3.61) 

In a particular case when the plate is loaded by a constant load, q = q0, 
the Fourier expansion gives 

1 1
sin sinmn m n

m n
q q x y

= =

= ξ η∑∑ ,        where  0
2

16
mn

qq
mn

=
π

, 

and the summation invovles only odd indexes. Consequently, the solution 
for the constant load upon the Reissner plate with the cylindrical hinge on 
the contour is 

           
2 2

0
2 2 2 2

1 1

16 1 sin sin
( )

m n
m n

m n m n

q x y
D mn= =

λ + ξ + η
= ξ η

π λ ξ + η∑∑w , 

                 0
2 2 2 2

1 1

16 1 sin cos
( )

n
x m n

m n m n

q x y
D mn= =

η
θ = ξ η

π ξ + η∑∑ , 

            0
2 2 2 2

1 1

16 1 cos sin
( )

m
y m n

m n m n

q x y
D mn= =

ξ
θ = − ξ η

π ξ + η∑∑ . (3.62)

Now we can obtain all internal forces in the plate from (3.30). In 
particular, shear forces Qx and Qy, that develop on the contour and are 
equal to the respective reaction of the contour support, are 
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      ,(0, ) ( )x
x yQ y D= λ + θ =w 0

2 2 2
1 1

16 1 sin
( )

m
n

m n m n

q y
mn= =

ξ
η

π ξ + η∑∑ , 

      ,( ,0) ( )y
y xQ x D= λ − θ =w 0

2 2 2
1 1

16 1 sin
( )

n
m

m n m n

q x
mn= =

η
ξ

π ξ + η∑∑ . (3.63)

If we integrate these shear forces along the whole contour of the plate, we 
will have an overall reaction R that develops on the supported contour. 
Now let us determine reactions Ry and Rx that act along the separate faces 
of the plate: 

Ry = 
0

(0, )
b

xQ y dy∫ ,    Rx = 
0

( ,0)
a

yQ x dx∫ . 

Obviously, R = 2(Rx + Ry), so a proper calculation gives 

R = 0
2

1 1

64 1 1
m n m n

q
mn= =π ξ η∑∑ = 

2

0 2 2
1

8 1
m

q ab
m=

⎛ ⎞
⎜ ⎟π⎝ ⎠

∑ . (3.64) 

It is known [5] that the sum of this series (with odd indexes) is equal 
exactly to π2/8, so we finally have R = q0ab as expected because the 
overall reaction must counterbalance the overall external load. 

The bending moments and torques in the plate are 

       , ,( )xx
y x x yM D= − −θ + νθ =

2 2
0

2 2 2 2
1 1

16 1 sin sin
( )

m n
m n

m n m n

q x y
mn= =

ξ + νη
ξ η

π ξ + η∑∑ , 

 

, ,
(1 ) ( )

2
xy

y y x x
DM − ν

= θ − θ =  

0
2 2 2 2

1 1

16 1(1 ) cos cos
( )

m n
m n

m n m n

q x y
mn= =

ξ η
= − − ν ξ η

π ξ + η∑∑ . 

Note the fact that slopes θx and θy together with forces M ij and Q i do not 
depend on parameter λ in this problem. 

The solution obtained above can be a good test case for debugging 
computational algorithms and software intended for the analysis of 
Reissner plates. 
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Kirchhoff plate 

A solution in double trigonometric series for a Kirchhoff plate simply 
supported on its contour was derived by Navier [23]. This solution for a 
separate term of the Fourier series can be also represented as 

sin sinmn
m x n yW

a b
π π

=w , (3.65) 

where the boundary conditions on the contour, w = 0,  M nn = 0, are 
satisfied. 

Substituting (3.65) to the Germain–Lagrange equation (1.39) gives 

2 2 2( )
mn

mn
m n

qW
D

=
ξ + η

. (3.66) 

Thus, for a constant load q0 we will have 

0
2 2 2 2

1 1

16 1 1 sin sin
( ) m n

m n m n

q x y
D mn= =

= ξ η
π ξ + η∑∑w , 

          0
2 2 2 2

1 1
,

16 1 sin cos
( )

n
x y m n

m n m n

q x y
D mn= =

η
θ = = ξ η

π ξ + η∑∑w , 

          0
2 2 2 2

1 1
,

16 1 cos sin
( )

m
y x m n

m n m n

q x y
D mn= =

ξ
θ = − = − ξ η

π ξ + η∑∑w . (3.67)

When comparing solution (3.66) for the Kirchhoff plate with solution 
(3.62) for the Reissner plate, we notice that the deflections are different in 
these two models but the normal’s slope prove to be the same. 

When we have the expression of the deflection from (3.67), it is easy to 
derive expressions for internal forces in the Kirchhoff plate. Based on 
(1.28), we have 

   M xx = – D(w,xx + νw,yy) = 
2 2

0
2 2 2 2

1 1

16 1 sin sin
( )

m n
m n

m n m n

q x y
mn= =

ξ + νη
ξ η

π ξ + η∑∑ , 

M xy = – (1 )D − ν w,xy = 0
2 2 2 2

1 1

16 1(1 ) cos cos
( )

m n
m n

m n m n

q x y
mn= =

ξ η
− − ν ξ η

π ξ + η∑∑ . 

Finally, using relationships (1.76), we obtain Kirchhoff’s shear forces 
on the contour of the plate: 
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, ,( , ) 2x xx xy
x yK a y M M= + =  

2 2
0

2 2 2 2
1 1

16 [ (2 ) )1 sin
( )

m n m
n

m n m n

q y
mn= =

ξ + − ν η ξ
= − η
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  , ,( , ) 2y yy xy
y xK x b M M= + =  

2 2
0

2 2 2 2
1 1

16 [ (2 ) )1 sin
( )

n m n
m

m n m n

q x
mn= =

η + − ν ξ η
= − ξ

π ξ + η∑∑ . (3.68) 

Note that the following concentrated forces P act in the angular points of 
the plate: 

P = 2M xy = 0
2 2 2 2

1 1

32 1(1 )
( )

m n

m n m n

q
mn= =

ξ η
− ν

π ξ + η∑∑  (3.69) 

which are directed toward the growth of Z. 
The overall reaction on the plate’s contour (without taking into account 

the concentrated forces in the corners) is 

 
0 0

2 ( , ) 2 ( , )
b a

x xK a y dy K x b dx+∫ ∫ =
4 2 2 4

0
2 2 2 2

1 1

64 2(2 )1
( )

m m n n

m n m n m n

q
mn= =

ξ + − ν ξ η + η
−

π ξ + η ξ η∑∑ . 

And again, summing all the reactions on the contour of the plate 
together with the angular concentrated forces, we conclude that the 
reactions counterbalance the external load. 

Now we want to calculate common shear forces Qx and Qy which 
develop on the plate’s contour. We have 

       , ,( , )x xx xy
x yQ a y M M= + = 0

2 2 2
1 1

16 1 sin
( )

m
n

m n m n

q y
mn= =

ξ
− η

π ξ + η∑∑ , 

  , ,( , )y yy xy
y xQ x b M M= + = 0

2 2 2
1 1

16 1 sin
( )

n
m

m n m n

q x
mn= =

η
− ξ

π ξ + η∑∑ . (3.70)

Let us see how reactions r(x) are distributed along one of the sides of the 
square plate, that is, at a = b. Formulas (3.68) yield 

r(x) = ( , )xK x b =
2 2

0
3 2 2 2

1 1

16 (2 ) sin
( )m n

q n m m x
m m n a= =

+ − ν π
−

π +∑∑ . (3.71)

For a Kirchhoff plate, these reactions distributed over the side of the plate 
should be supplemented by concentrated tearing forces at the beginning 
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and at the end of the side, equal to half the concentrated angular 
reaction P: 

P/2 = 
2

0
4 2 2 2

1 1

16 1(1 )
( )m n

q a
m n= =

− ν
π +∑∑ . 

The calculation gives (at ν = 0.3)  

P/2 = q0a2 = 0.032 , 

which accords with a result presented by Timoshenko [23].  
A distribution of contour reactions r(x) for the square Kirchhoff plate is 

shown in Fig. 5.9. The same figure presents a distribution of contour 
reactions calculated for the Reissner plate by (3.53). 
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Fig. 5.9.  A distribution of the reactive pressure on the contour along the side of a 

simply supported square plate 

As we can see from the graphs, the fraction of the reaction of the 
supporting contour contributed by angular points is pretty big for a square 
Kirchhoff plate. At the same time, for the Reissner plate (version “А” of 
the boundary conditions) the reaction of the supporting contour in angular 
points is zero as follows from (3.53), so in this regard there is a significant 
difference between the two theories. An expectation that the analysis can 
be refined by using the Reissner theory of bending is deceived for several 
reasons – in particular, because the comparison should have involved the 
solution of a problem with the type “B” boundary conditions, that is, a free 
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support of a Reissner plate along its contour. Results of calculations of that 
kind, done independently by various authors (such as Kromm [12], [13] 
and Donnell [4]23), are shown in the same Fig. 5.9.  

Three curves shown in Fig. 5.9 have the following meaning: curve 1 
shows a distribution of Kirchhoff’s contour forces (without the 
concentrated tearing force, P = 0,032 q0a2, in the corner of the plate). If we 
calculate the value of the tearing (negative) reaction on the quarter of the 
plate’s contour, we will find that it is very close to 0,032q0a2, that is, to the 
value of the concentrated tearing force in an angular point of Kirchhoff’s 
plate per one side that joins the corner. Curve 2 shows a distribution of 
reactive contour forces Q calculated for the Reissner plate under the 
“cylindrical hinge” boundary conditions. Finally, curve 3 shows a 
distribution of the same reactive forces Q calculated for the Reissner plate 
but under the “free support” boundary conditions. 

Note that a Kirchhoff plate cannot reproduce type “A” boundary 
conditions – a cylindrical hinge. The reason for this is an utter inability of 
Kirchhoff plates to transfer torques via their contours to a surrounding 
structure. 

5.5 Final comments to Chapter 5 

In general, when we take the Kirchhoff–Love hypotheses and use them to 
build a technical theory of plate bending, we produce contradictory 
relationships. Indeed, the basic assumptions of the theory are 

εzz = 0,   σzz = 0 ,   

and when we substitute those to an elastic relationship of the three-
dimensional elasticity, 

εzz = 1
E

(σzz – νσxx – νσyy) , 

we obtain the equality σxx + σyy = 0, thus M xx + M yy = 0, which cannot be 
true. 

We also violate the elasticity relationships for the tangential stresses, 

                                                      
23 We should say for the sake of justice that the calculations done by Kromm 

refer to a slightly different theory of plate bending that allows for shear 
deformations, was built by Kromm itself, and is different from Reissner’s theory. 
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γxz = 1 xz

G
τ ,    γyz = 1 yz

G
τ ,  

because shears γxz and γxz are assumed to be zero and tangential stresses τ xz 
and τ yz taken from the equilibrium equations prove to be nonzero. 

The contradictory relationships are an inevitable tradeoff of the 
Kirchhoff assumptions. These violations can be justified by the following. 
Fisrt, of all types of equations used in three-dimensional elasticity 
(geometric equations, equilibrium equations, physical equations), the 
elasticity relationships are least important. Second, the condition of σ zz = 0 
should not be treated as an absolutely exact equality; it is just an omission   
of a small stress component, σ zz, from the elasticity relationships in 
comparison to the other two normal stress components σ xx and σ yy, that is, 

      εxx = 1
E

(σxx – νσyy – νσzz) ≈ 1
E

(σxx – νσyy) , 

εyy = 1
E

(σyy – νσxx – νσzz) ≈ 1
E

(σyy – νσxx) . 

This is how we treat the first two physical relationships from (1.12) in the 
Kirchhoff–Love theory of plates. 

Sometimes a totally different logical justification is proposed: the plate 
of interest is assumed to be made of a transversally orthotropic material 
rather than an isotropic one, for which the third physical relationship can 
be written as 

εzz = 1
1

zz xx yy

E E
σ σ + σ

− ν ≈ 0 . 

As the elasticity modulus Е1 is assumed to be big enough while coefficient 
ν1 is assumed to be very small, εzz can be treated as small without requiring 
that σxx + σyy ≈ 0 either exactly or approximately. 

Similar physical relationships are adopted for the transverse tangential 
stresses, 

γxz = 
1

1 xz

G
τ ,    γyz = 

1

1 yz

G
τ ,  

where the shear modulus, G1, is very big, therefore we can think that 
shears γxz and γyz are approximately zero while tangential stresses τ xz and 
τ yz are not.   
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Furthermore, the Reissner plate theory presented in this chapter is a 
simplest version of a multitude of theories suggested for use with medium-
thickness plates. This theory allows for a contribution made by lateral 
tangential stresses to the overall balance of the system’s energy but ignores 
an energy accumulated by small stresses σ zz. As the comparative analysis 
shows in most cases, taking into account a lateral shear introduces a much 
bigger correction to the solution of problems than taking into account a 
normal reduction of the plate. This holds true even for plates lying on an 
elastic foundation, if only that elastic foundation is not too stiff.  

Discussions on Kirchhoff’s theory of plates sometimes contain a 
statement that Kirchhoff’s generalized shear forces K lack a “physical 
sense”, and their concentrated component that appears in angular points of 
the plate is often called a “fictitious force” 24.  

Moreover, some people say that Kirchhoff’s shear forces do not 
counterbalance the normal load, q, applied to the plate (in projection onto 
the Z-axis) while common shear forces Q do. But the latter statement is 
based on a mere misunderstanding; its authors seem to forget to include 
concentrated Kirchhoff forces, acting in angular points of the plate’s 
contour, in the overall Kirhhoff shear force to check the equilibrium of 
                                                      

24 We can hardly do even as much as to give a comment on this cunning 
prestidigitation of words, at least until we define the meaning of the “physical 
sense” precisely. Of course, the concept of a concentrated force is an idealization, 
a model, or a strong abstraction. Still, doesn’t mechanics use models of this kind 
extensively, including the model of a concentrated action? Why, then, is this 
classic and widely popular model quite admissible as an external load but 
protested against as an internal force in a Kirchhoff plate?   

As a historical recollection, we remind that the adjective “fictitious” was 
already used earlier in mechanics in application to internal forces distributed 
according to a Dirac’s delta function law. For example, there is a problem of a 
plate lying on a two-parametric foundation. The contour of the plate (and not even 
always angular points of it!) has an edge shear force which appears in any plate 
independently of what theory is used, including Reissner plates. If we adopt one of 
possible interpretations of the two-parametric foundation – a membrane in tension, 
supported by a Winkler-type layer of springs – we will understand that the 
derivative of the membrane’s deflection function at contour points of the plate in 
the direction of a normal to that contour will have a discontinuity. But this 
discontinuity in the derivative can be caused by nothing but a concentrated action 
upon the membrane (in the direction of the normal to the plate’s contour). This is 
how nonzero shear forces appear on the contour of a fixation-free plate lying on a 
two-parametric foundation as a result of an interaction between the membrane and 
the plate. The concept of fictitious, here used to emhasize that it is opposite to 
real, just expresses a disbelief of the authors of the term towards a new model or 
abstraction.   



5.5 Final comments to Chapter 5      309 

projections onto the Z-axis. Actually, those concentrated forces are a part 
of the K forces, distributed according to a Dirac’s delta function law.  

We want to show that the above said equation of equilibrium should not 
be checked in every particular problem because it holds for the general 
case. To see this, we extract a subarea ω ⊆ Ω from area Ω occupied by the 
plate; the subarea is bounded by contour L which can be smooth or can 
have a certain number of breakpoints. In a particular case ω = Ω, then 
contour L coincides with boundary Г or area Ω. A resultant of load q 
applied to the extracted subarea ω will be denoted by R, that is, 

R = qd
ω

Ω∫ . 

According to the equation of equlibrium (1.33), which holds for a 
Kirchhoff plate in the differential form, the same resultant can be also 
written as 

R = ( ) ( ), ,
x y x y n
x y x y

L L

Q Q d Q n Q n dL Q dL
ω

− + Ω = − + = −∫ ∫ ∫ , 

where we use the Gauss–Ostrogradsky formula and expression (1.58) for 
shear force Q n on the contour. Thus, common shear forces Q n 
counterbalance, in an integral sense, a load acting on any subarea ω 
extracted from area Ω. But the same holds true for the Kirchhoff shear 
forces, K. It suffices only to prove that 

( )n n

L

K Q dL−∫ = 0. 

By subsituting the expression of K n from (1.76)25, we transform the 
equality to be proved into 

, ( )nt
s

L

M P s s dLβ β
β

⎛ ⎞
+ δ −⎜ ⎟

⎝ ⎠
∑∫ = 0, 

which is true because by definition the Pβ concentrated forces from (1.70) 
are jumps of  torque M nt at angular points of contour L. 

The above discussion produces another, practically important, question 
which should be asked to the designers/analysts and, in a lesser degree,  to 
the developers of software for structural analysis. What should we take for 

                                                      
25 To simplify the formulas, we think that there is no external moment load. In 

this way we can set m t = 0 in formula (1.76)  
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a force of interaction between a plate and a structure that supports the plate 
if our mechanical model for the plate is based on Kirchhoff’s theory? 

In response to this question, we can hear a choir of most ardent critics of 
the classic theory of plates: one should use common shear forces Q rather 
than Kirchhoff’s shear forces K as integral characteristics  of the respective 
lateral tangential stresses. But this recommendation is hardly reasonable; 
we prefer to agree with an exactly opposite answer as more logical. 

And indeed, if we take the advice and use the common shear force as 
recommended above, we will eventually arrive at a contradiction. For 
example, if the contour of a plate is free from fixation and external loads, 
then nobody would mind that the mathematically justified condition for the 
contour is that Kirchhoff’s shear force should be equal to zero. But then 
the common shear force, Q, becomes a nonzero quantity on the free egde 
of the plate and “hangs in the air” because it is not resisted by a 
surrounding structure. 

Obviously, issues of this kind just do not appear when we do our 
analysis on the basis of a shear-aware theory of plates. 
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6 PARTICULAR CLASSES OF PROBLEMS 
IN STRUCTURAL MECHANICS – part 3 

 There are no rules for finding paths in the wilds of the nature. A 
creative thought is guided by generalized results of experiments, 
uses analogies, and brings old concepts revised in some way to 
newly born approaches. Here’s when the flexibility and versatility of 
mathematical formulations of variational principles comes to help 
the researcher. 
  Polak L (1965) From a preface to the Russian translation of the 
book by C. Lanczos: Variational principles of mechanics. Mir, 
Moscow   

6.1 Torsion of solid bars – Saint-Venant’s theory 

In the year when these words are being written (2003), one hundred and 
fifty years have passed since that significant day for the theory of elasticity 
when Barré de Saint-Venant submitted his famous memoir on torsion of 
prisms to the French Academy of Science [15], which became a basis for a 
theory of free (pure) torsion of prismatic bars; the theory was formulated 
in such details and in such manner that it has lived to our times in nearly 
the same form1.  

This theory can be derived from certain assumptions, or hypotheses, of a 
kinematic nature. These hypotheses play about the same role in the torsion 
of bars as the planar-sections hypothesis by Bernoulli–Euler does in the 
technical theory of bar bending2. But before we formulate those 

                                                      
1 This moment indeed seems to be the beginning in the history of the theory of 

bar torsion, although the paper by Saint-Venant [12] itself was published only two 
years later, in 1855. 

2 When we build the theory of bar torsion according to Saint-Venant, we may 
omit the explicit introduction of any kinematical hypotheses; instead, we can start 
out from general equations of three-dimensional elasticity and use a so-called 
semi-inverse method [11], suggested and developed by that same Saint-Venant for 
solving problems of elasticity, in application to the bar torsion analysis. 



314       6 PARTICULAR CLASSES OF PROBLEMS – part 3 

assumptions, we deem it reasonable to discuss some conventions and a 
notation.  

Let (X,Y,Z) be a right-hand Cartesian system of axes so that the X-axis is 
parallel to the generatrix of a prismatic bar and the Y-axis and Z-axis are 
principal central axes of inertia of the bar’s cross-section3. The cross-
section of the bar itself occupies an area Ω with a boundary Г in the (X,Y)-
plane (Fig. 6.1). It is convenient to associate the origin of the X-axis with 
the beginning section of the bar.  

Y

Z

X

X

Z

Y

t
n

M

M

s

l

�
�

Ã

 
Fig. 6.1.  A pure torsion of a prismatic bar 

Let n be a unit vector of the external normal to boundary Г of area Ω, 
and let t be a unit vector tangential to the same boundary, so that the 
mutual orientation of the vectors is defined by condition n×t = ix where ix 
is the unit vector of axis X. The components of vectors n and t with respect 
to the (Y,Z) coordinate system will be denoted by ny, nz and ty, tz, 
respectively. Fig. 6.1 gives a hint that 

ny = tz ,        nz = – ty . (1.1) 

We will assume the side surface of the bar to be free from any loads and 
all the external load upon the bar to consist of torques M  applied to the 
butt cross-sections, that is, to the cross-sections with coordinates x = 0 and 
x = l where l is the length of the bar in torsion4. According to the Saint-
Venant principle, we deem the method of applying the torque insignificant 
when we want to know the distribution of stresses in the bar at a certain 
remote distance from the load application point. 

                                                      
3 As we will see later, the requirement that the Y,Z axes be coincident with the 

principal central axes of inertia of the bar’s cross-section can be omitted. 
4 These are exactly the conditions of loading that define a so-called free or pure 

torsion of bars. 
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So, we make the following kinematical assumptions (hypotheses): 

• each cross-section of the bar does not change its profile in the course of 
deformation. In other words, the bar’s cross-section behaves in its plane 
as if it were a rigid body rotating by a certain angle θ(x) around the X-
axis. 

• as the bar experiences the torsion, its cross-sections undergo a warping 
(a deplanation) such that the points of every cross-section can deviate 
from their original plane. Following Saint-Venant, we assume that all 
cross-sections of the bar experience the same deplanation. It means that 
the u displacement in the direction of X does not depend on the 
x-coordinate. Furthermore, the u deviation is assumed proportional to a 
rate of change of the twisting angle θ, that is, to the value of θ′ (the 
stroke denotes the differentiation with respect to the longitudinal 
coordinate, x)5. The θ′ parameter is often called a twist or a twist factor 
of the bar. 

To exclude a rigid displacement of the body, we need to apply 
6 external constraints to it. In particular, we can assume that the initial 
cross-section of the bar (that at x = 0) does not experience any rotation 
around the X-axis. We further assume that a point of the X-axis located at 
the origin of the (X,Y,Z) coordinate system does not experience any 
displacements at all. Finally, the end point of the bar on the X-axis with 
coordinates (l,0,0) is restrained from displacements in the Y and Z 
directions. To put it another way, we assume 

θ0 = θ(0) = 0,    

u0 = u(0,0,0) = 0,      v0 = v(0,0,0) = 0,      w0 = w(0,0,0) = 0, 

vl = v(l,0,0) = 0,   wl = w(l,0,0) = 0. (1.2) 

Obviously, these six external constraints just restrain the body from rigid 
displacements and do not affect the distribution of stresses in it. The values 
of the displacements can be calculated only up to their perfectly rigid 
components. It is easy to show that all points of the bar belonging to the X-
axis do not move under these conditions, or 

u(x,0,0) = 0,       v(x,0,0) = 0,       w(x,0,0) = 0, (1.3) 

                                                      
5  Further we will use the term warping more often than deplanation because it 

is more common in English-language technical literature. 
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where u, v, w are displacement components with respect to the 
corresponding axes of the (X,Y,Z) coordinate system, which are functions 
of the (x,y,z)-coordinates.  

Indeed, to see this, let us suppose something like v(x,0,0) ≠ 0 – and we 
will see immediately that the axis of the bar will have a curvature in the 
(X,Y)-plane during such a deformation. But then cross-sections of the bar 
which have a non-zero curvature must experience bending moments Mz. At 
the same time, external loads applied to the bar are not able to reproduce 
those bending moments. This contradiction proves that the equality 
v(x,0,0) = 0 is true. If we suppose that u(x,0,0) ≠ 0, then we will have to 
admit that the external loads must reproduce a longitudinal force, N, in the 
bar, which cannot take place. 

6.1.1 Saint-Venant torsion function. Lagrange functional 

The mathematical treatment of the above kinematical hypotheses is 
obvious: they permit to express the displacement components u, v, w via 
the respective axes of the (X,Y,Z) system in the following simple form, 

u = θ′ϕ(y,z) – θ′ϕ(0,0),        v = –θz,       w = θy, (1.4) 

where ϕ(x,y) is a function called a Saint-Venant torsion function which is 
to be determined further6.  

According to second kinematical hypothesis, u does not depend on x, 
therefore twist θ′ is a constant, and if we use (1.2) we arrive at the 
following linear relation between the torsion angle θ and the x coordinate: 

θ(x) = θ′x. (1.5) 

Now, if we use general formulas 4.2.1-b for the components of the 
strain tensor, we will find that all of them are zero, except for shear 
components εyx and εzx. However, it is more convenient to replace the 
strain tensor components εyx and εzx with shear angles γyx =2εyx and 
γzx = 2εzx, which we derive from (1.4) and (1.5) as follows: 

γyx = v, x +  u, y = θ′(ϕ, y – z),      γzx = w, x +  u, z = θ′(ϕ, z + y). (1.6) 

As follows from Hooke’s law, all components of the stress tensor are 
zero, except for tangential stresses τ yx and τ zx. We have 

                                                      
6  Here we assume the torsion angle of the cross-section, θ, to be small. This is 

what permits us to be sure that the displacement components v and w are 
proportional to angle θ by assuming v = –θz, w = θy in formula (1.4). 
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τ yx = Gθ′(ϕ, y – z),        τ zx = Gθ′(ϕ, z + y). (1.7) 

The boundary conditions for a prismatic bar in torsion are formulated as 
follows: 

• on the butt x = 0:   v = 0,           w = 0, 
• on the butt x = l:   v = –θ′lz,     w = θ′ly, 
• on side faces:   τ xn = τ xyny + τ xznz = 0. 

The latter condition follows from the requirement that there must be no 
load on the side faces of the bar, so that the component of the tangential 
stress in the direction of normal n to the section’s contour Г must be zero.  

Taking account of (1.6) and (1.7), we can represent strain energy E of 
the bar in torsion as 

E = 
0

1 ( )
2

l
yx zx

yx zx d dx
Ω

τ γ + τ γ Ω∫ ∫ = 

 
2

2 2
, ,[( ) ( ) ]

2 y z
G l z y d

Ω

′θ
= ϕ − + ϕ + Ω∫ . (1.8)

Based on (1.2), we can say that force potential Пs is created solely by one 
external moment M  applied to the butt x = l, and it can be written as 

Пs = M θ′l . (1.9) 

Thus, we have the following general expression of the full potential energy 
of the system 

L(θ′,ϕ) = E – Пs =
2

2 2
, ,[( ) ( ) ]

2 y z
G l z y d

Ω

′θ
ϕ − + ϕ + Ω∫ – M θ′l . (1.10) 

So, the Lagrange functional in the problem of bar torsion depends on 
two variables: the numerical parameter, θ′, and the torsion function, ϕ. By 
varying the Lagrange functional with respect to those variables and using 
the Gauss–Ostrogradsky formula, we derive 

δL = 2 2
, ,[( ) ( ) ]y zG l z y d

Ω

⎛ ⎞
′ ′θ ϕ − + ϕ + Ω δθ⎜ ⎟

⎝ ⎠
∫ – M lδθ′ + 

+ 2
, ,( )yy zzG l d

Ω

′θ −ϕ − ϕ δϕ Ω +∫  

2
, ,[( ) ( ) ]y y z zG l z n y n d

Γ

Γ′+ θ ϕ − + ϕ + δϕ∫ . (1.11) 
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Equaling δL to zero and considering the independence of variations δθ′ 
and δϕ produces Euler equations and natural boundary conditions for 
functional L. The Euler equations are 

2 2
, ,[( ) ( ) ]y zM G z y d

Ω

′= θ ϕ − + ϕ + Ω∫ , (1.12) 

, , 0yy zzϕ + ϕ =  ∈Ω, (1.13) 

and the natural boundary conditions are 

, ,( ) ( ) 0y y z zz n y nϕ − + ϕ + =    ∈Г, (1.14) 

which is equivalent to a static boundary condition, τ xn = τ xyny + τ xznz = 0, 
on the side faces of the bar. 

Introducing a designation for the moment of inertia, 
2 2

, ,[( ) ( ) ]x y zI z y d
Ω

= ϕ − + ϕ + Ω∫ , (1.15) 

we can rewrite (1.12) in a form usual in the science of strength of 
materials: 

M = GIxθ′. (1.16) 

The geometric characteristic of a cross-section, Ix, is called its torsional 
moment of inertia.  

Further, differential equation (1.13) defines a function ϕ, harmonic in 
area Ω. But the Laplace operator, 

∇2 = 
2 2

2 2y z
∂ ∂

+
∂ ∂

, 

is invariant with respect to a Cartesian coordinate system. Relationships 
(1.1) help us rewrite boundary condition (1.14) for the desirable harmonic 
function, ϕ, also in a form invariant with respect to a rotation of the 
coordinate system, namely 

( , )
n

∂ϕ
=

∂
r t  ∈Г . (1.17) 

where r = yiy + ziz is a radius vector that defines an arbitrary point of 
boundary Г (Fig. 6.1).  Thus, we can omit the requirement that axes Y and 
Z should be principal axes of inertia, but we still keep the requirement that 
axis X should be coincident with the axis of centers of gravity of the bar’s 
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cross-sections because the scalar product (r,t) depends generally on the 
location of the coordinate origin in the (Y,Z)-plane. 

Mathematics puts it in such way that a combination of differential 
equation (1.13) and boundary condition (1.17) defines a Neumann problem 
for the Laplace equation. 

The expression of moment of inertia Ix can be written also in another 
form, different from (1.15). In order to do that, we determine torque M  
from the condition of equilibrium, 

M = ( )yx zxz y d
Ω

−τ +τ Ω∫ . (1.18) 

Substituting the expressions of the stresses from (1.7) gives 

M = , ,[ ( ) ( ) ]y zG z z y y d
Ω

′θ − ϕ − + ϕ + Ω∫ , (1.19) 

consequently, 

, ,[ ( ) ( ) ]x y zI z z y y d
Ω

= − ϕ − + ϕ + Ω∫ . (1.20) 

Comparing between (1.15) and (1.20) gives the equality 
2 2
, ,( )y z d

Ω

ϕ + ϕ Ω∫  = , ,( )y zz y d
Ω

ϕ −ϕ Ω∫ , (1.21) 

which can be proved directly by using the Gauss–Ostrogradsky formula. 
It can be checked (though we will not dwell on it) that the fields of 

displacements (1.4) and (1.5), strains (1.6), and stresses (1.7), which 
follow from the basic kinematical assumptions adopted earlier, satisfy 
accurately the equations of equilibrium in the volume of the bar and all 
boundary conditions on the side surface of the bar in torsion. As for 
boundary conditions on the butt surfaces of the bar, they are satisfied in an 
integral sense only – the stresses on those surfaces are statically equivalent 
to the given torque. 

6.1.2 Prandtl stress function. Timoshenko functional 

The torsion function, ϕ, can be replaced by a so-called Prandtl stress 
function, ψ, which is related to torsion function ϕ as follows: 

ψ,z = (ϕ,y – z)Gθ′,          ψ,y = –(ϕ,z + y)Gθ′. (1.22) 
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It follows directly from the definition that the Prandtl stress function 
satisfies the following differential equation (a Poisson equation) in area Ω: 

∇2ψ = –2Gθ′   ∈Ω. (1.23) 

Now we should formulate a boundary condition that the Prandtl function 
must satisfy. Formulas (1.7) for the tangential stresses in the cross-sections 
of a bar in torsion will become quite simple when (1.22) are substituted to 
express the stresses via function ψ: 

τ yx = ψ,z  ,        τ zx = –ψ,y . (1.24) 

Earlier we have said that the condition τ xn = 0 must be met on contour Г, 
which gives 

τ xn = ψ,z ny – ψ,y nz = ψ,y ty + ψ,z tz = 
s

∂ψ
∂

= 0    ∈Г . (1.25) 

Here s is an arc coordinate counted off in the positive direction along the 
contour. 

The cross-section in a bar may occupy a multiply connected area, Ω, in 
the general case. It means that boundary Г may consist of multiple 
independent closed contours – say, it can include contours Г0, Г1,…, Гm for 
a (m + 1)-connected area, so that Г = Г0 ∪ Г1∪…∪ Гm. We assume that Г0 
designates an external boundary of area Ω, while Г1,…, Гm are boundaries 
of areas Ωi (“holes”). If we denote by Ω0 the whole area comprised by 
boundary Г0, then the original area Ω can be obtained by subtracting all the 
“holes” from it, that is, as 

Ω = Ω0 – 
1

m

i
i=

Ω∑ . (1.26) 

According to (1.25), the Prandtl function does not change on any of the 
contours, so this function obeys the following boundary condition on each 
contour: 

ψ = Сi    ∈Гi   (i = 0,1,…, m), (1.27) 

where Сi is a constant, which is different on different closed contours. We 
could assume that С0 = 0 without limiting the generality because adding an 
arbitrary constant to function ψ does not change the distribution of the 
stresses, and this is the way the problems are solved. However, we will not 
make an a priori assumption that С0 = 0 for the sake of generality. 
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Here mathematics says that a combination of differential equation (1.23) 
and boundary conditions (1.27) defines a Dirichlet problem for the Poisson 
equation. 

Potential energy E, accumulated in the twisted bar, can be expressed via 
the Prandtl function as follows: 

E(ψ) =
2 2

0

( ) ( )
2

l yx zx

d dx
GΩ

τ + τ
Ω∫ ∫ =

2 2
, ,

2
y zl d

GΩ

ψ + ψ
Ω∫ . (1.28)

Now it is convenient for us to replace the original problem for a bar 
under torques M  with a problem where an external constraint is imposed 
to prevent the butt section x = l from rotation. The external action upon the 
bar will be a kinematical action – a given nonzero angle of torsion, lθ , of 
the bar’s end section. In other words, six constraints from (1.2) are now 
supplemented by another one, 

θ(l) = lθ . (1.29) 

In order to distinguish between the statement of the original problem by 
Saint-Venant and the statement of the problem of torsion of the same bar 
but with external constraint (1.29) imposed, we will refer to the original 
problem of a bar in torsion under a given moment M  as problem (a), 
while the new problem of a bar subjected to torsion by the given angle, lθ , 
will be called problem (b).  

If we assume that the reactive torques at the beginning and end sections 
of the bar in problem (b) are equal to M , then, obviously, the stress and 
strain distributions of problems (a) and (b) will be the same. It follows 
from this, in particular, that twist θ′ will be also the same for problem (a) 
and problem (b). To put it another way, 

θ′ = l

l
θ . (1.30) 

Now, turning to problem (b), we notice that there are no stresses on the 
side faces, and we know the displacements on the butt faces; in 
problem (b) those displacements are nonzero only at x = l and are as 
follows:  

v = – lθ z,     w = lθ y. 

Thus, we have the following for kinematic potential kbП , constructed for 
problem (b): 
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kbП = ( )yx zx d
Ω

τ + τ Ω∫ v w = – lθ , ,( )z yz y d
Ω

ψ + ψ Ω∫ . (1.31) 

The integral participating in the above expression can be transformed 
using the Gauss–Ostrogradsky formula, which yields 

kbП = 2 lθ d
Ω

ψ Ω∫ – lθ ( , ) d
Γ

Γψ∫ r n . (1.32) 

We have established that the static boundary conditions on the side faces 
of the bar can be reduced to requirements (1.27) on each contour of the 
area. Consequently, after dividing the common contour integral in (1.32) 
into a sum of separate integrals over each of the closed contours and seeing 
that the ψ function is constant on each contour, we can rewrite (1.32) as 

kbП = 2 lθ d
Ω

ψ Ω∫ – lθ 0
1

0

( , ) ( , )
m

i
i

i

C d C d
Γ Γ

Γ Γ
=

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑∫ ∫r n r n . 

Furthermore, it is easy to note that 

0

0

( , ) 2d A
Γ

Γ =∫ r n , 

where A0 is the area of Ω07. Similarly, we have the following for the rest of 
the contours: 

( , ) 2 i

i

d A
Γ

Γ = −∫ r n , 

where Ai is the area of Ωi (a positive value). The minus sign is present here 
because the direction of tracing around contour Гi is opposite to the 
positive direction for the external boundary of Ωi. As a result, instead of 
(1.32) we have 

kbП = 2 lθ d
Ω

ψ Ω∫ – 2 lθ 0 0
1

m

i i
i

C A C A
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ . (1.33) 

Now we can present an expression of the Castigliano functional in 
application to problem (b): 

                                                      
7 This equality can be easily proved by using the Gauss–Ostrogradsky formula. 
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bK (ψ) = E – kbП = 

= 
2 2
, , 2
2

y z ll d
G lΩ

⎛ ⎞ψ + ψ θ
− ψ Ω⎜ ⎟⎜ ⎟

⎝ ⎠
∫ + 2 lθ 0 0

1

m

i i
i

C A C A
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ . (1.34)

Thus, we have the following variational problem to solve, in order to 
determine function ψ:  

minimize functional bK  on a set of functions ψ which satisfy static 
boundary conditions (1.27) on contours Гi (i = 0,1,…, m).  

From the standpoint of stationarity of the functional, the term 

2 lθ 0 0
1

m

i i
i

C A C A
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  

is an additive constant that has no influence on the variation of bK  with 
respect to ψ, so it can be omitted without affecting the search for a point of 
minimum of the Castigliano functional. When we do it, we arrive at the 
functional 

T(ψ) = 
2 2
, , 2
2

y z
ll d

GΩ

⎛ ⎞ψ + ψ
− θ ψ Ω⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ,  (1.35) 

which was derived for the first time by S.P. Timoshenko for the Saint-
Venant problem of torsion of prisms. The priority of S.P. Timoshenko is 
indicated by L.S. Leibenson [7]. Actually, as we have just seen, the 
Timoshenko functional is a part, subjected to variation, of the Castigliano 
functional which is constructed for problem (b) rather than for the original 
Saint-Venant problem – that is, for a problem perturbated by constraint 
(1.29). 

Considering moment M  to be an integral characteristics of the 
tangential stresses according to (1.18) and taking account of (1.31), we 
have the following: 

M = , ,( ) ( )yx zx
z yz y d z y d

Ω Ω

−τ + τ Ω = − ψ + ψ Ω∫ ∫ = kb

lθ
П . (1.36)

Substituting in the expression (1.33) for kinematical potential kbП  will 
yield 

M = 2 d
Ω

ψ Ω∫ – 2 0 0
1

m

i i
i

C A C A
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ . (1.37) 
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Now take note again of the fact that the boundary conditions of (1.35) 
should be treated as main boundary conditions in the minimization of the 
Timoshenko functional (1.35), so the minimum T(ψ) must be sought for 
within a set of functions which are sure to satisfy conditions (1.27). 

At the same time, the boundary conditions in the form of (1.27) are not 
convenient for multiply connected areas, because they contain unknown 
constants Ci. A standard way to overcome this difficulty is to make use of 
a well-known theorem by Bredt, which we are about to present. 

Bredt theorem of the tangential stress circulation 

Let L be a closed curve fully belonging to area Ω. A curvilinear integral 
taken over that curve, 

TL = sx

L

dsτ∫ , (1.38) 

is called a circulation of the tangential stress over the curve. Here τ sx is a 
component of the tangential stress in the direction of the tangent of the L 
curve. 

As τ sx = τ yxty + τ zxtz = – ψ,y ny – ψ,z nz = – ψ,n , herefrom we derive 

TL =
L

ds
n

∂ψ
−

∂∫ . (1.39) 

Now we want to define the longitudinal displacement u via the Prandtl 
function. From (1.4) and (1.22) we derive 

,
, ,z
yu z

G
ψ

′= + θ      ,
,

y
zu y

G
ψ

′= − − θ . (1.40) 

Obviously, a necessary condition for function u, defined in the two-
dimensional area Ω by its partial derivatives, to be unambiguous is a 
requirement that 

L

u ds
s

∂
∂∫ = 0, (1.41) 

which must be satisfied on every closed contour L fully belonging to 
area Ω. From (1.40) we derive 

u,s = u,yty + u,ztz = , ( , )n
LG

ψ
′− − θ r n , (1.42) 
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which transforms the requirement of continuity of u according to (1.41) 
into 

TL = – , 2n
L

L

ds A
G

ψ
′= θ∫ , (1.43) 

where AL is an area of a two-dimensional region belonging to the 
(X,Y) plane and bounded by the closed contour L.  

Formula (1.43) is a mathematical representation of a well-known Bredt 
theorem of circulation of the tangential stress in torsion: 

For any closed contour L, which lies completely within the cross-section of 
a bar, the circulation of the tangential stress is equal to area AL, bounded 
by that contour, multiplied by 2Gθ′. 

Now, having established the Bredt theorem, we can get rid of the 
undetermined constants in the boundary conditions. As for the exterior 
contour itself, we have already said that we can assume C0 = 0 without 
limiting the generality. The conditions on every interior contour according 
to (1.27) can be replaced now by linear relationships 

– , 2n
i

i

ds A
GΓ

ψ
′= θ∫  (i = 1,…, m), (1.44) 

which contain no undetermined constants whatsoever. 
But then we have another problem: with the boundary conditions 

formulated as requirements (1.44), we deviate from the mathematical 
statement of the Dirichlet problem. The wish to stick to the Dirichlet 
problem leads to the following algorithm. 

Instead of one problem for the (m + 1)-connected area, we will construct 
solutions for multiple Dirichlet problems in the number of (m + 1). We 
denote by ψj the Prandtl function for problem j  (j = 0,1,…, m), and assume 

• for problem 0 : ∇2ψ0 = –2Gθ′ ∈Ω; ψ0 = Ci ∈Гi; C0 = 0, C1 = 0, 
…,Cm = 0; 

• for problem j ≠ 0: ∇2ψj = 0 ∈Ω; ψj  = Ci ∈Гi; все Ci = 0 при i ≠ j,   
Cj = 1. 

Now it is obvious that the solution of the original problem with the Prandtl 
function ψ can be represented as a linear combination, 

ψ = ψ0 + 
1

m

j j
j

C
=

ψ∑ . (1.45) 
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The representation of the solution of the original problem as in (1.45) 
helps write out the Bredt theorem for each of the internal contours Гi 
(i = 1,…, m) as 

0
1

, ,

2

m

n j j n
j

i

i

C
d A

GΓ

Γ=

ψ + ψ
′− = θ

∑
∫    (i = 1,…, m). (1.46) 

Unknown constants Cj (j = 1,…, m) will be determined from the solution 
of simultaneous algebraic equations (1.46)8.   

Center of twist 

A center of twist is a point of the cross-section of a bar, which is not 
subjected to any displacements while the bar experiences a twist (torsion). 

Earlier we imposed six external constraints (1.2) on a bar twisted by 
moments M ; the constraints prevent the bar from moving as a rigid body. 
We found that all points of the bar’s axis (an axis of the centers of gravity 
of the bar’s cross-sections) maintained their position in space — that is, the 
bar’s axis proved to be at the same time an axis of twist, according to the 
above definition. 

However, it is not hard to check that we could do without preliminarily 
excluding the rigid displacements, by assuming the following instead of 
(1.4): 

v = –θ′x(z – z0),     w = θ′x(y – y0),   

u = θ′[ϕ(y,z) – ϕ( y0, z0)] – θ′( z0y – y0z), (1.47) 

where y0, z0 are arbitrary constants. 
A direct check shows easily that the displacements from (1.47) are a 

solution of the Saint-Venant problem. It follows from here that the location 

                                                      
8 The procedure described above can be shown to represent a mathematical 

analogue of a well-known method of structural mechanics of bar systems, the 
force (area-moment) method. The matrix of the system of equations (1.46) 
possesses all good qualities  of the compliance matrix constructed for a principal 
system of the method of forces. The reader can derive this interpretation of the 
system of equations (1.46) for an exercise. Note that a convenient way of 
reasoning in this derivation is to refer to a so-called “membrane analogy” 
mentioned in many books on elasticity where the Saint-Venant problem is 
considered in sufficient detail – see [7], [3], for example. 
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of the center of twist cannot be determined unambiguously in the Saint-
Venant problem9.  

6.1.3 Two-sided estimates of a section’s torsion inertia moment 

We introduce a functional, Jϕ, as 

Jϕ = 2 2
, ,[( ) ( ) ]y zz y d

Ω

ϕ − + ϕ + Ω∫ , (1.48) 

which works on a set of functions ϕ defined in area Ω and possessing 
square-summable first partial derivatives. There are no requirements to 
boundary conditions for functions ϕ.  

If now we denote by *′θ  and *ϕ  the respective twist and the torsion 
function, which solve the Saint-Venant problem exactly, then (1.15) 
produces 

Ix = Jϕ(ϕ*) . (1.49) 

Furthermore, because of (1.10) the Lagrange functional can be expressed 
via functional Jϕ , 

L(θ′,ϕ) = ½ G(θ′)2lJϕ(ϕ) – M θ′l . (1.50) 

But then, the Lagrangian functional takes a minimum value on the 
solution of the problem. In particular, the equality * *( , )′θ ϕL  ≤  *( , )′θ ϕL  
holds, which is equivalent to 

Ix ≤ Jϕ(ϕ) = 2 2
, ,[( ) ( ) ]y zz y d

Ω

ϕ − + ϕ + Ω∫ , (1.51) 

and this is an estimate from above for the torsional moment of inertia of 
section сечения Ix. A combination of inequality (1.51) and equality (1.49) 
permits us to state the following variational problem of minimization with 
the intention to determine Ix, 

                                                      
9 We notice this simple fact just because the literature sometimes gives 

inaccurate statements concerning the location of the center of twist in the cross-
section of a bar in torsion. For example, a well-known monograph by A.N. Dinnik 
[3] says the following with regard to the Saint-Venant problem: In the case of 
asymmetric cross-sections or sections that have a single axis of symmetry, when 
the bar is twisted, its cross-sections turn around a point which may be different 
from the center of gravity and which is called a center of twist .  ”

“
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Ix = min ( )ϕϕ
ϕJ . (1.52) 

To construct a guaranteed estimate from below, for the sake of 
simplicity we confine ourselves to the case of a singly connected cross-
section of the bar10. We introduce the following functional Jψ: 

Jψ = 2 2
, ,4 ( )y zd d

Ω Ω

ψ Ω − ψ +ψ Ω∫ ∫ , (1.53) 

which works on a set of functions ψ defined in area Ω and possessing 
square-summable first partial derivatives. The admissbile functions ψ must 
be identical to zero on contour Г of the singly connected area Ω. 

Now we will show that the determination of Ix can be based on a 
variational problem of the maximum of functional Jψ, reciprocal to the 
variational problem (1.52). To put it another way, 

Ix = max ( )ψψ
ψJ . (1.54) 

To see this relationship, we introduce the designation of 

a = lG
l
θ  (1.55) 

and understand that functionals T(ψ) and Jψ are related through a simple 
dependence 

T(aψ) = ( )
2

la
ψ

θ
− ψJ . (1.56) 

We rewrite the Timoshenko functional as 

T(ψ) = E(ψ) – 2 lθ d
Ω

ψ Ω∫  , (1.57) 

where E(ψ) is defined by (1.28). Let ψ* be a Prandtl function that gives an 
exact solution to the Saint-Venant problem. Then the Clapeyron theorem 
and relationship (1.37) give 

E(ψ*) = 
2

lM θ ,      2 *d
Ω

ψ Ω∫  = M , 

                                                      
10  The reader who is interested with the estimation from below of the torsional 

moment of inertia for cross-sections with non-connected areas should take a look 
at the book by S.G. Mikhlin [9]. 
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consequently, 

T(ψ*) =  – 
2

lM θ = – 
2

l
x

a Iθ . (1.58) 

But the Castigliano functional bK (ψ), and the Timoshenko functional 
T(ψ) along with it, takes its minimum value on the solution of the 
problem. This can be written also as an inequality, 

T(ψ*) ≤ T(aψ), (1.59) 

which is true for any constant a and for any function ψ from the admissible 
set. Substituting (1.56) and (1.58), and seeing that parameters a and lθ  are 
positive, we transform this inequality into 

Ix  ≥  Jψ(ψ) . (1.60) 

Now, if we assume a = 1 and ψ = ψ* in relationship (1.56), we will get the 
equality 

Ix  =  Jψ(ψ*) . (1.61) 

A combination of inequality (1.60) and equality (1.61) is equivalent to the 
variational principle of maximum (1.54) being proved. 

So, we have the following two-sided estimates for Ix: 

Jψ(ψ) ≤ Ix  ≤ Jϕ(ϕ) . (1.62) 

These inequalities can be made stronger in the following way, if we play 
with functions ψ and ϕ chosen for the estimation of Ix. We replace the 
functional argument of ψ with αψ in the left-hand part of inequality (1.62), 
and choose parameter α in such way that the value of Jψ(αψ) be 
maximum. Obviously, 

Jψ(αψ) = 2 2 2
, ,4 ( )y zd d

Ω Ω

α ψ Ω − α ψ +ψ Ω∫ ∫ . 

It should be clear that the maximum of Jψ(αψ) is achieved at 

2 2
, ,

2

( )y z

d

d
Ω

Ω

ψ Ω
α =

ψ + ψ Ω

∫

∫
,    so that    

2

2 2
, ,

2
max ( )

( )y z

d

d
Ω

α

Ω

⎛ ⎞
ψ Ω⎜ ⎟

⎝ ⎠αψ =
ψ + ψ Ω

∫

∫
J . 

As a result, the left-hand inequality in (1.62) becomes stronger by turning 
into 
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2

2 2
, ,

4

( )y z

d

d
Ω

Ω

⎛ ⎞
ψ Ω⎜ ⎟

⎝ ⎠
ψ + ψ Ω

∫

∫
 ≤ Ix . (1.63) 

It is worthwhile to remind that function ψ which we use in the above 
estimation should be zero on contour Г of area Ω.   

A similar idea works for making the upper estimate from (1.62) 
stronger, too. By reasoning in the same way as in the derivation of (1.63), 
we obtain the following after some simple transformations: 

2

2 2

, ,

, ,

( )
min ( )

( )

y z

r
y z

z y d
I

d
Ω

ϕα

Ω

⎛ ⎞
ϕ − ϕ Ω⎜ ⎟

⎝ ⎠αϕ = −
ϕ + ϕ Ω

∫

∫
J , 

where Ir is a polar moment of inertia of the cross-section, 

Ir = 2 2( )y z d
Ω

+ Ω∫ . 

So the final estimates are 
2

2 2
, ,

4

( )y z

d

d
Ω

Ω

⎛ ⎞
ψ Ω⎜ ⎟

⎝ ⎠
ψ + ψ Ω

∫

∫
 ≤  Ix  ≤

2

2 2

, ,

, ,

( )

( )

y z

r
y z

z y d
I

d
Ω

Ω

⎛ ⎞
ϕ − ϕ Ω⎜ ⎟

⎝ ⎠−
ϕ + ϕ Ω

∫

∫
. (1.64)

In the practical structural analysis, the engineers use a popular 
approximate formula recommended by Vlasov [17] 

Ix ≈ 
4 y z

y z

I I
I I+

, (1.65) 

where Iy and Iz are moments of inertia of the cross-section with respect to 
the corresponding axes Y and Z. Based on inequality (1.64), this formula 
can be proved to always produce an upper (and generally rough) estimate 
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of the torsional stiffness. To see this point, it suffices to assume ϕ = yz and 
perform simple calculations in the right-hand part of inequality (1.64)11.    

6.1.4 A remark on Reissner-type functionals for the bar torsion 
analysis 

First of all, we want to write out an expression of the second form of the 
Reissner functional for the general case of three-dimensional elasticity – 
by using formula (4.2.24) and removing terms from it which are related to 
the elastic foundation. In this way we have 

R2(σ,u) = ,
1( )2

ij kl ij i
jijkl i i

V

D u u X dVσ σ + σ +∫  + 

+ ( )i ij
pi i j

S

e u p n dS− σ∫ – ij
ui i j

S

e u n dSσ∫ , (1.66) 

where the three-dimensional volume of the body is denoted by V and its 
bounding surface is re-denoted by S because the Г symbol is already used 
in this section for another purpose. 

Aggregate ½Dijklσijσkl is a specific strain energy; in the case of the bar 
torsion we are dealing with, this aggregate is 

2 2( ) ( )
2

yx zx

G
τ + τ . 

Further, 

, , , , ,
ij xy xz yx zx

j i y z x xu u uσ = τ + τ + τ + τv w  = 0, ,( ) ( )yx zx
y z ′τ + τ θ ϕ − ϕ , (1.67)

where we denote ϕ0 = ϕ(0,0). Here we use the fact that (1.7) makes the 
tangential stresses independent of x. 

Thus, the integral over volume V in formula (1.66) turns into 

,
1( )2

ij kl ij i
jijkl i i

V

D u u X dVσ σ + σ +∫ =  

= 
2 2

0, ,
( ) ( ) ( )( )

2

yx zx
yx zx
y zl d

GΩ

⎡ ⎤τ + τ ′+ θ τ + τ ϕ − ϕ Ω⎢ ⎥
⎣ ⎦

∫ . (1.68) 

                                                      
11 The reader is invited to make an exercise: show that Vlasov’s formula 

produces a closest estimate when the Y and Z axes are principal central axes of 
inertia of the bar’s cross-section. 
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Now let us consider the integrals over surface S in (1.66), meaning that 
we are going to construct them for problem (b). We note that the first of 
the integrals should be taken over the side surface of the bar only, because 
only that surface has the boundary conditions in problem (b) formulated in 
stresses (in zero ones), so only that surface has the characteristic functions 
for extracting the static boundary conditions, epi, different from zero. Thus, 

( )i ij
pi i j

S

e u p n dS− σ∫ =  

= – 0
0

( ) ( )
l

yx zx xn
y zn n u d dx l d

Γ Γ

Γ Γ′τ + τ = −θ τ ϕ −ϕ∫ ∫ ∫ . (1.69)

Finally, the second of the contour integrals in (1.66) should be taken 
over the butt section of the bar at x = l, because only in that place the 
characteristic functions of extraction of the kinematical boundary 
conditions, eui, and the given displacements are both different from zero. 
This integral is a kinematic potential, kbП , introduced by us earlier for 
problem (b) and represented via the torsion function, ϕ. To see this, we 
have 

– ij
ui i j

S

e u n dSσ∫ =  

( ( ) ) ( )yx zx yx zx
x l x l ln z n y d z y d

Ω Ω

= − τ −θ +τ θ Ω = θ τ − τ Ω∫ ∫ . (1.70) 

By summing expressions (1.68), (1.69), and (1.70) obtained for 
particular terms of functional (1.66), we arrive at a Reissner-type 
functional constructed for problem (b), which in our case depends on three 
functions τ yx, τ zx, ϕ. So, 

Rb2(τ yx,τ zx,ϕ) =  – 0( )xn
l d

Γ

Γθ τ ϕ − ϕ∫ + 

+ 
2 2

0, ,
( ) ( ) ( )( ) ( )

2

yx zx
yx zx yx zx

l y z ll z y d
GΩ

⎡ ⎤τ + τ
+ θ τ + τ ϕ − ϕ + θ τ − τ Ω⎢ ⎥

⎣ ⎦
∫ . (1.71)

Note that this functional is defined on a set of functions τ yx, τ zx, ϕ not 
subjected to any boundary conditions beforehand. Now, if we take the first 
variation of that functional and equal it to zero, we will obtain the 
following three Euler equations: 
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,( ) 0
yx

l yl z
G
τ

− θ ϕ − = ,    ,( ) 0
zx

l zl y
G
τ

− θ ϕ + = ,    , , 0yx zx
y zτ + τ =  ∈Ω (1.72) 

and the natural boundary conditions for the functional: 

0xnτ =    ∈Г. (1.73) 

The Reissner functional from (1.71) can be transformed into its first 
form by removing the differentiation of the tangential stresses in the 
integrand over Ω. To do this, we use the Gauss–Ostrogradsky formula and 
have 

        0, ,( )( )yx zx
l y z d

Ω

θ τ + τ ϕ − ϕ Ω =∫  

0, ,( ) ( )yx zx xn
l y z ld d

Γ

Γ
Ω

= −θ τ ϕ + τ ϕ Ω + θ τ ϕ − ϕ∫ ∫ . 

Substituting the latter expression to (1.71) gives the first form of the 
Reissner functional, 

Rb1(τ yx,τ zx,ϕ) = 
2 2

, ,
( ) ( ) ( ) ( )

2

yx zx
yx zx

l y l zl z y d
GΩ

⎡ ⎤τ + τ
= − θ τ ϕ − − θ τ ϕ + Ω⎢ ⎥

⎣ ⎦
∫ . (1.74) 

This ends our consideration of the Saint–Venant problem from the 
standpoint of its variational formulations. 

6.1.5 A membrane analogy by Prandtl. Torsion of a narrow strip  

It is known that the deflection, U, of a membrane stretched over contour Г 
is determined by the solution of the following boundary-value problem: 

, , /yy zzU U q H+ = −   ∈Ω,     U = 0   ∈Г, 

which is mathematically identical to the bar torsion analysis if the latter 
uses the Prandtl stress function, ψ12, and the tension in the membrane, H, 
and the lateral load, q, are chosen in such way that 

2 /G q H′θ = . 

                                                      
12  In this section we confine ourselves to singly connected areas Ω. 
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In that case the stress function, U, of the membrane will be identical to 
the stress function ψ. According to formula (1.37), volume V located 
between the surface of the membrane in its deformed state and its flat 
position before the load is applied will be equal numerically to half of  the 
torque Mx. The slopes of the deformed surface of the membrane in the 
(X,Y) and (X,Z) planes will be equal to the respective components of the 
tangential stresses. Or, more exactly, 

τ yx = ,zU  ,        τ zx = – ,yU  .  

Furthermore, in the problem of torsion of a bar with its cross-section 
occupying the singly connected area Ω, the following statement holds13: 

Torque M (yx) created by tangential stresses τ yx is equal to torque M (zx) 
created by stresses τ zx. 

In other words, the tangential stresses in the section, which are parallel to 
each of the Cartesian axes, create half of the full torque Mx each. This 
statement can be proved very easily. According to the defintion, we know 
that 

M (yx) = yx zd
Ω

− τ Ω∫ ,         M (zx) = zx yd
Ω

τ Ω∫ .  

Substituting in the expressions of the stresses via the Prandtl function 
according to (1.24) and using the Gauss–Ostrogradsky formula gives 

M (yx) = ,z zzd d n zd
Γ

Γ
Ω Ω

− ψ Ω = ψ Ω − ψ∫ ∫ ∫ , 

M (zx) = ,y yyd d n yd
Γ

Γ
Ω Ω

− ψ Ω = ψ Ω − ψ∫ ∫ ∫ . 

But the Prandtl function is zero on the contour of the singly connected 
area Ω, so 

M (yx) = M (zx) = d
Ω

ψ Ω∫ , 

which is exactly half of the full torque. This result also corresponds to 
formula (1.37) obtained earlier; that was applied to a singly connected 
section of a twisted bar.  

                                                      
13 As stated by S.P. Timoshenko and J.Goudier [16], this fact was established 

by Lord Kelvin.  
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Now let us show that the membrane analogy by Prandtl and the 
statement about the equality between moments M (yx) and M (zx) just proved 
above make it possible to obtain an approximate solution of the problem of 
torsion of a narrow strip with quite elementary means. 

We consider a section in the shape of a strip with its characteristic sizes 
b×h where b is the strip’s length and h is its width (Fig. 6.2).  

b

h

h

b

Z

Y
��

 
Fig. 6.2.  Torsion of a bar the section of which is an elongated strip 

The membrane analogy by Prandtl helps predict that the solution for 
torsion of the bar with the bent-strip-shaped section is not going to differ 
much from that for a rectilinear strip of the same sizes if the ratio h/ρ << 1, 
where ρ is a radius of curvature of the median line in the original bent 
strip. Furthermore, we can assume with a certain degree of accuracy that 
the deflection function of a membrane stretched over an elongated 
rectangular contour will be well approximated in the most part of area Ω 
by a square parabola, that is, U = k(h2 – 4z2) with a certain coefficient k.  

This approximation is apparently satisfactory along the b side of the 
rectangle, except for short pieces about h long near the ends of the 
rectangle. Therefore, in order to have a more accurate approximation of the 
end segments of area Ω, we set 

2 2

2
2 2

2

2
2 2

2

( 4 ) , [ ( / 2 ),( / 2 )]

( / 2 )( 4 ) 1 , [( / 2 ), / 2]

( / 2 )( 4 ) 1 , [ / 2, ( / 2 )]

k h z y b h b h

y b hk h z y b h bU h

y b hk h z y b b h
h

⎧
⎪ − ∈ − − −
⎪
⎪ ⎡ ⎤− +⎪ − − ∈ −= ⎢ ⎥⎨

⎣ ⎦⎪
⎪ ⎡ ⎤+ −⎪ − − ∈ − − −⎢ ⎥⎪ ⎣ ⎦⎩

 . (1.75) 

The volume V located between the deflected membrane and the same 
membrane in its undeformed state is determined by integrating function U 
over the whole rectangle (b×h), which gives 
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V = 32 21
3 3

hkbh
b

⎛ ⎞−⎜ ⎟
⎝ ⎠

, 

so we derive the following from Prandtl’s analogy: 

Mx = xGI ′θ = 34 21
3 3

hkbh
b

⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

According to the approximation we are using, we can think that stresses 
τ yx vary little with the y coordinate, so τ yx(y,z) ≈ τ yx(b/2,z). To shorten the 
notation, we denote 

τ1 = – τ yx(b/2,h/2). 

The minus sign is used because the value of τ1 is assumed to be positive 
while our convention of signs prescribes to have stress τ yx(b/2,h/2)  
negative for a positive torque Mx . But then τ yx = –2τ1z/h. Thus, 

M (yx) = yx zd
Ω

− τ Ω∫ = b
2/ 2

1/ 2
2

h

h

z dz
h−

τ∫ = 
2

1 6
bh

τ . 

As we have just shown above, this value is half of the full torque Mx , 
therefore 

τ1 = x

x

M
W

,              where   
2

3x
bhW = . (1.76) 

As for the torsional moment of inertia of the section, Ix, this parameter 
can be estimated from above by Vlasov’s formula (1.65) which gives 

Ix ≤
4 4 3

3 3 2 2

4
12( ) 3(1 / )

b h bh
bh b h h b

=
+ +

.   

In our case we can obtain also an estimate from below if we use the left-
hand part of formula (1.64) and, following the membrane analogy, replace 
the Prandtl function ψ defined by (1.75) with the deflection function of the 
membrane, U. Making necessary calculations and taking into account the 
estimate according to Vlasov’s formula, we have the final result, 

3 21
3 3

bh h
b

⎛ ⎞− ≤⎜ ⎟
⎝ ⎠

Ix ≤
3

2 2

1
3 1 /

bh
h b

⎛ ⎞
⎜ ⎟+⎝ ⎠

. (1.77) 

As we can see, for elongated strips where the dimensionless parameter 
h/b << 1, the two-sided estimates of the torsional moment of inertia 



6.2 Thin-walled open-profile bars – a theory by Vlasov      337 

according to (1.77) are fairly tight. In practice, a simplified formula is 
commonly used; that one gives a slightly overestimated torsional stiffness 
of the strip, 

Ix =
3

3
bh .   (1.78) 

6.2 Thin-walled open-profile bars – a theory by Vlasov 

This section deals with rectilinear thin-walled open-profile bars. 
The structural mechanics uses the term of a thin-walled rectilinear bar 

to refer to a cylindrical shell (not necessarily a round cylinder)  that has all 
three characteristic linear sizes substantially different in their orders of 
magnitude. The first characteristic size is the thickness of the bar, h, the 
second characteristic size is the extent of the profile of the shell’s cross-
section, l, and the third characteristic size is the bar’s length, L. A thin-
walled bar is supposed to have the following relations between the orders 
of magnitude of the said parameters: 

1h
l

<< ,     1l
L

<<  . (2.1) 

The first of the above inequalities is used commonly with shells, while 
the second is a characteristic property of bars. This is why we can treat the 
thin-walled bar as a kind of a “child” element which partially inherits and 
thus combines the properties of its parents, both the bar and the shell.  

Let us introduce a right-oriented Cartesian system of coordinates,  
(X,Y,Z), such that its X-axis coincides with the line of the centers of gravity 
of the bar’s cross-sections and its Y and Z-axes are principal central axes of 
inertia of those sections. Further we will refer to the X-axis in the same 
way as we did in the theory of solid-section bars, that is, as a longitudinal 
axis of the thin-walled bar. Thus, the longitudinal axis of a thin-walled bar 
is parallel to the generatrix of the cylindrical shell that makes up the bar. 

The theory of bars uses a most important notion of a median surface, 
being a surface that divides the shell into two equal parts in its thickness. 
The notion of a profile of a thin-walled bar, which was mentioned above 
and is quite intuitive, can be defined explicitly as a flat curve formed by 
the intersection between the bar’s median surface and its cross-section’s 
plane, that is, by the (Y,Z)-plane.   

If the bar’s profile does not contain any closed curves, then the profile is 
called an open profile. This is a kind of the thin-walled bars we will 
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consider in this section of the book. Also, we will adopt a limitation 
according to which the cross-section of the bar may not vary along the X-
axis. It follows from here, in particular, that the thickness of the wall, h, 
may not depend on the x-coordinate as well; however, it is a function of 
the arc coordinate s, i.e. h = h(s). 

In addition to the global coordinate system, every point of the median 
surface of a thin-walled bar will have its local coordinate system. To 
introduce such a system, we fixate a coordinate origin О on the profile of 
the bar and a certain direction in which the arc coordinate s will increase, 
so that the increment of the arc coordinate, ds, be an increment of the 
profile curve’s length as we move along the profile in the assumed positive 
direction. The position of an arbitrary point М that belongs to the median 
surface of the shell will be defined by two coordinates, (x,s), as shown in 
Fig. 6.3. By definition, the beginning point of the profile, О, will have the 
zero arc coordinate and thus will be a coordinate origin. 

x

Y

Z

X

sn
t

M

O

 
Fig. 6.3.  Global and local coordinate systems for a thin-walled bar 

Now let us define a unit vector t as a vector belonging to the plane of the 
bar’s cross-section and tangential to the profile of the section in every 
point; the direction of the vector will coincide with the increasing direction 
of arc coordinate s. The above-mentioned local coordinate system is a 
curvilinear orthogonal system, with the vectors (ix, n, t) being unit vectors 
of its axes, where n is a unit vector of the normal to the bar’s profile, the 
positive direction of which is defined by the requirement of the right-hand 
orientation of the triple of axes (ix, n, t), that is, 

n = t × ix . (2.2) 
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Let a certain current point M of the profile become a point N through 
the deformation of the bar. The directed segment MN is a vector of a full 
displacement of the current point of the shell-bar’s median surface. This 
vector can be expanded either over the global coordinate axes or over the 
local coordinates, which gives 

uix + vt + wn = Uix + Viy + Wiz , (2.3) 

where (u,v,w) are components of the displacement vector of the М point 
with respect to the local coordinate system, and (U,V,W) are components 
of the same vector with respect to the global coordinates. The v local 
component is called a tangential displacement of the current point М, and 
the w component a normal displacement of the same point. 

By multiplying the above equality scalarly first by vector t and then by 
vector n, we can establish relationships between the components of the 
displacement vector, which have been introduced above, as 

v = Vty + Wtz ,           w = Vny + Wnz ,        u = U,     

and multiplying equality (2.3) scalarly by unit vectors iy and iz in order 
gives the inverse relationships 

V = vty + wny,           W = vtz + wnz . 

The components of the basic unit vectors of the local coordinate system 
with respect to the global system of axes, 

ty = t · iy ,    tz = t · iz ,     ny = n · iy ,     nz = n · iz , 

are not independent quantities. To see this, we make a scalar product of 
(2.2) with unit vector iy and unit vector iz and then use a known property 
[6] of the mixed vector product, a · (b × c) = b · (c × a), to obtain the 
following, after a chain of appropriate transformations: 

ny =  iy · n = iy · (t  × ix) = t · (ix  × iy) =  t · iz = tz ,     

nz = iz · n = iz · (t  × ix) = t · (ix  × iz) =  – t · iy = –ty , (2.4)

which is identical to (1.1), as should be expected. Therefore we can re-
write the formulas of the direct and inverse transformations between the 
displacement vector’s components in the global and local coordinates in 
their final form that depends on the components of unit vector t only, 

v = Vty + Wtz ,              w = Vtz – Wty , 

V = vty + wtz,             W = vtz – wty . (2.5) 
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6.2.1  Basic assumptions in the theory of thin-walled open-
profile bars 

A technical theory of thin-walled open-profile bars can be based on the 
following set of hypotheses of the kinematic and static nature: 

• an unchanged-contour hypothesis, according to which the cross-section 
of the bar does not change its shape in its plane; 

• a no-shear hypothesis: there is no shear in the median surface of the 
thin-walled bar so that γ xs = 0; 

• a no-pressure hypothesis, according to which the longitudinal fibers of 
the thin-walled bar do not interact in their normal directions. In other 
words, we assume σ s = σ n = 0; 

• a moment-free-shell hypothesis: there are no moments in the 
longitudinal direction, that is, the distribution of normal stresses σ x over 
the thickness of the shell is assumed uniform, and tangential stresses τ xn 
are believed negligibly small and therefore approximately equal to zero; 

• a hypothesis of a linear distribution of tangential stresses τ xs over the 
thickness of the shell.  

Now we would like to give some comments on the above hypotheses and 
establish their corollaries. 

The unchanged-contour hypothesis declares, actually, that the bar’s 
profile behaves like a perfectly rigid body in the (Y,Z)-plane, that is, in the 
bar’s cross-section plane. Thus, the profile has three degrees of freedom in 
the (Y,Z)-plane – two translational displacements of a selected point of the 
profile with respect to the (Y,Z) axes, and a rotation of the profile by a 
certain angle about that point (a slope). Of course, the applicability of this 
assumption is not unconditional; taking the assumption should be justified  
by structural features of the thin-walled bar in question, which prevent the 
deformation of the profile in the plane of the bar’s cross-section. The thin-
walled bar is usually assumed to have narrowly spaced transversal 
diaphragms installed throughout its length, the diaphragms being perfectly 
rigid in their planes and perfectly flexible from their planes. Those 
diaphragms are what keeps the profile’s geometry unchanged when the 
thin-walled bar experiences the deformation. 

Now let us drop for a time the longitudinal displacements u = U of a 
current point, М, of the thin-walled bar’s median surface and define a two-
dimensional vector of displacements v of the same point in the plane of the 
bar’s cross-section, that is, in the (Y,Z)-plane. The unchanged-profile 
hypothesis permits us to represent this vector as 
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v = vP + θ×RPM 

where: 

• vP  is a vector of displacements of a certain, arbitrarily chosen, point P 
of the section, which we call a pole and which has global coordinates yP 
and zP. The P pole itself does not have to belong to the section’s profile, 
but it is assumed to have a rigid attachment to it; 

• θ = θix  is a vector of rotation of the section about an axis that goes 
through the pole, P, and is parallel to the X-axis. The positive direction 
of that vector is defined by right-hand screw and coincides with the 
direction of the X-axis. The absolute value of the rotation, |θ| = ||θ||, is 
assumed to be small, that is, |θ| << 1;  

• RPM = (r – rP) = (y – yP)iy + (z – zP)iz  is a vector from the pole, P, to the 
current point of the profile, М, with coordinates y, z. 

After expanding all separate components of the displacement vector v 
over the axes of the global coordinate system and then performing the 
vector multiplication, we have 

v = [η – θ(z – zP)] iy + [ζ + θ(y – yP)] iz , (2.6) 

where η = vP
 · iy ,  ζ = vP

 · iz  are components of the displacement of the 
pole Р with respect to the global system of axes. 

But the same vector v can be expanded over the axes of the local 
coordinate system, 

v = v t + w n, (2.7) 

where v = v · t , w = v · n  are components of the displacement of the current 
point, М, with respect to the local system of axes. By equaling expressions 
(2.6) and (2.7) for vector v, we derive 

 [η – θ(z – zP)] iy + [ζ + θ(y – yP)] iz = v t + w n. 

Making the scalar product of this equality with unit vector t and 
considering that 2 2 1y zt t+ =  gives 

v = ηty + ζtz + θ[(y – yP)tz – (z – zP)ty] . (2.8) 

Formula (2.8) expresses the tangential displacement  v  of the current 
point М of the profile via translational displacements η, ζ and the rotation 
anlge θ of the cross-section as a rigid body around the pole. 

The hypothesis of no shear in the median surface of the shell-bar is a 
close analogy of the respective Bernoulli hypothesis; it states, actually, that 
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γxs = u
s x

∂ ∂
+ =

∂ ∂
v 0. (2.9) 

When we take the assumption of no shear, we can integrate (2.9) and 
derive an expression of the longitudinal displacements, u, as follows: 

u = 0
0

( )
s

u x ds
x

∂
−

∂∫
v  

where by u0 we denote a longitudinal displacement of the beginning point 
of the profile, О, i.e.  u0(x) = u(x,0).  

Substituting the expression of tangential displacement v from 
formula (2.8) and denoting the arc coordinate of the current point М by s, 
we derive 

0
0 0 0

( , ) ( )
s s s

y zu x s u x t ds t ds ds′ ′ ′= − η − ζ − θ ρ∫ ∫ ∫ , 

where we use the notation of 

ρ = (y – yP)tz – (z – zP)ty = (y – yP)ny + (z – zP)nz = RPM · n . (2.10) 

Here and further a stroke means a differentiation with respect to 
longitudinal coordinate x. Obviously, ρ is a projection of the RPM vector 
onto the direction of normal n to the profile line at the current point M. It 
is obvious, too, that ty ds = dy, tz ds = dz. Also, the geometrical meaning of 
the ρds = dω quantity can be represented as the doubled area of an 
elementary triangle hatched in Fig. 6.4-a. So, making the integration, we 
obtain 

0 0 0( ) ( )u u y y z z′ ′ ′= − η − − ζ − − θ ω  (2.11) 

where ω is a so-called sectorial area, called also a sectorial coordinate, 
which is the doubled area of a figure swept by the radius vector RPM when 
its end moves continuously along the profile from the origin О to the 
current point М – see Fig. 6.4-b. By y0 and z0 we denote global coordinates 
of the origin point of the profile, О.  

The sectorial area is associated with a sign according to the following 
rule. At the zero point of the profile, it is equal to zero, ω(0) = 0, and the 
increment of the sectorial coordinate, dω = ρds, is thought positive at a 
positive ρ and when we move toward bigger tangential coordinates s. For 
example, areas ω/2 and dω/2 shown in Fig. 6.4 should get the minus sign 
because the convention of the right-hand orientation of the triple of axes 
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(ix, n, t) makes the ρ projection of vector RPM onto the direction of n 
negative. 
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Fig. 6.4.  Definition of the sectorial area, ω  

Thus, 

0
( )

s
s dsω = ρ∫ . (2.12) 

Now imagine that the pole Р is bound to the zero point of the profile, О, 
by a perfectly rigid element РО (Fig. 6.5).  
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Fig. 6.5.  A rigid binding of the pole Р to the profile’s zero point 

Then the longitudinal displacement, u0, of the zero point of the profile 
can be expressed via the longitudinal displacement, uР, of the pole (that is, 
its displacement in the direction of axis X) and lateral displacements of the 
pole η, ζ as 
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u0 = uР P 0 P 0( ) ( )y y z z′ ′+η − + ζ − . (2.13) 

This follows from apparent geometrical considerations if we notice that 
quantities ′η  and ′ζ  are slopes θz and θy of the perfectly rigid element, 
РО, in the respective planes (X,Y) and (X,Z). To be more particular,  

θy = ′−ζ ,      θz = ′η . (2.14) 

Slopes θz and θy follow here the following convention of signs: a slope 
angle is assumed to be positive if the respective right-hand vector of 
rotation has the same direction as the respective axis of the global 
coordinate system.  
By substituting the expression of u0 thus obtained to (2.11), we find 

P P P( ) ( )u u y y z z′ ′ ′= + η − + ζ − − θ ω . 

We will assume that the pole Р is, in its turn, bound rigidly to a point G 
of the bar’s cross-section, which is the center of gravity of that cross-
section. It means that the G point is located on the X axis. The relation 
between the longitudinal displacement, ξ, of the G point and the 
longitudinal displacement, uР, of the pole Р follows the law of plane, 
which gives 

ξ = P P Pu y z′ ′+ η + ζ . 

It follows from here and from the previous equality that 

u y z′ ′ ′= ξ − η − ζ − θ ω . (2.15) 

Formula (2.15) defines the longitudinal displacement, u(x,s), of an 
arbitrary point М belonging to the bar’s profile via: 

• the longitudinal displacement ξ of the cross-section’s center of gravity, 
as a function of x; 

• the lateral displacements of the pole, (η, ζ), as functions of the x-
coordinate; 

• the angle of rotation (the slope), θ, of the bar’s cross-section about the 
pole Р, as a function of the section’s coordinate, x;  

• the global coordinates (y, z) of point М, as functions of coordinate s; 
• the sectorial coordinate, ω, of point М, as a function of coordinate s. 

Taking the derivative of kinematic relationship (2.15) with respect to 
coordinate x gives an expression of the relative longitudinal strain, 
εx = du/dx, at the current point of the profile, М, 
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εx = y z′ ′′ ′′ ′′ξ − η − ζ − θ ω . (2.16) 

The no-pressure hypothesis is totally equivalent to its counterpart in the 
bar bending theory by Bernoulli–Euler. It states that normal stresses 
σ s and σ n can be neglected in the part of Hooke’s law that relates to 
normal stresses σ x, which gives 

σ x = Eεx = E u
x

∂
∂

. 

Now, using the new form of Hooke’s law, we can determine normal 
stresses σ x, too: 

σ x = E E y E z E′ ′′ ′′ ′′ξ − η − ζ − θ ω . (2.17) 

The moment-free-shell hypothesis that states the absence of longitudinal 
moments in the shell-bar seems intuitively reasonable, because a small 
thickness, h, of the bar’s walls makes the variation of longitudinal normal 
stresses σ x over the thickness hardly noticeable. This is confirmed also by 
a more accurate analysis of the stresses in long cylindrical shells.  

The mathematical meaning of this hypothesis is that normal stresses σ x 
are assumed to be functions of two coordinates only – longitudinal 
coordinate x and arc coordinate s, 

σ x = σ x(x,s) . 

Using this law and summing stresses σ x  over the whole area of the 
bar’s cross-section, we can obtain the longitudinal force, N, in it. And if we 
integrate the same stresses over the bar’s cross-section area after 
multiplying them by coordinate y or z, we will have overall bending 
moments in the respective sections, M 

z or M 
y. So, 

x

A

N dA= σ∫ ,       x
y

A

M z dA= σ∫ ,      x
z

A

M y dA= σ∫ , (2.18) 

where A is the area of the bar’s cross-section. 
Note that the longitudinal force, N, is assumed to be positive if it causes 

positive stresses σ x. Bending moments M y and M z are assumed to be 
positive if they cause tension in fibers with positive coordinates z and with 
positive coordinates y, respectively. We would like to emphasize that the 
bending moments, according to their definition, are calculated with respect 
to the principal central axes of inertia. 
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As the element of area, dA, can be expressed via the thickness of the 
wall, h, and the element of the arc coordinate, ds, as dA = hds, we will 
have the following after substituting (2.17) to (2.18) and integrating: 

l

N EA E h ds′ ′′= ξ − θ ω∫ , 

y y
l

M EI E h zds′′ ′′= −ζ − θ ω∫ ,         z z
l

M EI E h yds′′ ′′= −η − θ ω∫ . (2.19) 

The integration takes account of the fact that the Y and Z axes are principal 
central axes of inertia of the bar’s cross-section, and Iy and Iz denote, as 
usual, the respective moments of inertia of the bar’s cross-section. 

We have at our disposal an arbitrary choice of the coordinates of pole P 
and the origin point, О, of the bar’s profile. So we choose those points in 
such way that the following three conditions should hold: 

0
l

h dsω =∫ ,      0
l

h ydsω =∫ ,      0
l

h zdsω =∫ . (2.20) 

The pole P and the origin О such that they satisfy conditions (2.20) are 
called a principal pole and a principal origin (zero point) of the profile, 
respectively. Appendix G shows how the second and the third of the 
conditions from (2.20)  are sufficient to determine the coordinates of the 
principal pole. However, there can exist more than one (and even an 
infinite number of) origin of a particular profile that satisifies the first of 
conditions (2.20). To determine an unambiguous location of the principal 
origin among all possible origins of a particular profile which satisfy 
conditions (2.20), we can choose the nearest one to the principal pole, for 
example. This will be explained in detail in Appendix G.  

As a result of selecting the pole and the origin on the basis of (2.19), we 
have 

N
EA

′ξ = ,       y

y

M
EI

′′ζ = − ,       z

z

M
EI

′′η = − . (2.21) 

The geometrical meaning of the ′′ζ  and ′′η  quantities is the respective 
inverted curvature, χz or χy, of the pole axis in the undeformed state of the 
bar. Obviously, the pole axis (the axis of poles) is an axis parallel to the 
longitudinal axis, X, to which the principal pole Р belongs.  

As for the expression of ′ξ , it can be treated as a conditional relative 
strain, εG, on the axis of the centers of gravity of the bar’s sections. We 
mention the conditional, not actual, strain because the actual strain can be 
determined only for points of the cross-section which belong to the profile. 
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But neither the cross-section’s center of gravity, G, nor the main pole Р 
belong to the profile in the general case. 

Thus, we have the following geometric relationships to relate 
displacement components ξ, η, ζ to strain parameters εG, χy, χz: 

εG = ′ξ ,        χz = – ′′ζ ,        χy = – ′′η . (2.22) 

Further, substituting (2.21) to formula (2.17) will give the following 
expression of the normal stresses: 

σ x = y z

y z

M MN z y
A I I

+ + – E ′′θ ω . (2.23) 

The first three terms in formula (2.23) are the same as those used to 
analyze a solid bar for bending in two planes and for tension. The last term 
is an additional one comparing to the classic theory of solid bars. This last 
term defines normal stresses caused by a non-uniform twist along the thin-
walled bar. The stress itself, 

E ′′θ ω , 

is called a normal stress of constricted torsion. As we can see, the 
constricted-torsion normal stress varies over the cross-section according to 
the law of sectorial areas rather than the law of plane. 

If we multiply equality (2.23) by ω and integrate the result over the 
whole area of the section, we will have this, considering (2.20): 

2x

l l

h ds E h ds′′σ ω = − θ ω∫ ∫ . 

An integral characteristic of the stresses in the left-hand part of the formula 
is called a bitorque and denoted usually by letter B, 

B = x

l

h dsσ ω∫ . (2.24) 

Also, a purely geometric property of the section, Iω, 

Iω = 2

l

h dsω∫ , (2.25) 

is called a sectorial moment of inertia of the section. 
Using these designations, we can write 

B
EIω

′′θ = − . (2.26) 
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Therefore the final formula of the normal stresses in the bar’s cross-section 
will be 

σ x = y z

y z

M MN z y
A I I

+ +  + B
Iω

ω . (2.27) 

Note that a positive bitorque B causes tension in points of the bar which 
have a positive sectorial coordinate ω. 

The hypothesis of a linear distribution of the tangential stresses over the 
thickness of the bar’s walls suggests that the tangential stresses in the bar’s 
cross-sections, τ xs, along the tangent to the profile line can be represented 
as as sum, 

τ xs = τ + τk, (2.28) 

where the average tangential stress τ is constant over the thickness of the 
wall and τk are stresses of pure torsion distributed linearly over the 
thickness (Fig. 6.6) with the value of zero on the profile line. The 
superscript xs of those components is not indicated because there are no 
other tangential stress components other than τ xs in the bar’s cross-
sections, so there is not going to be any ambiguity.  
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Fig. 6.6.  A representation of tangential stresses τ xs as a sum of average tangential 

stresses τ and pure-torsion tangential stresses τk.  

We remind that, according to the moment-free hypothesis, the τ xn 
component of the tangential stresses, orthogonal to the profile line, is 
assumed to be zero.  

The pure-torsion tangential stresses, τk, reproduce the torque of the pure 
torsion according to Saint-Venant, which we will denote by H. Recall that 
the Saint-Venant theory, which determines the pure-torsion torque H, is 
already discussed in Section 6.1. According to that theory, the pure-torsion 
torque, H, is calculated as 

H = GIx ′θ , (2.29) 

where Ix  is the section’s torsional moment of inertia.  
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We noted earlier in Section 6.1.5 that the analysis of thin-walled open-
profile sections can use the following assumption and still provide a 
practically sufficient accuracy of calculation: 

Ix = 31
3 l

h ds∫ . (2.30) 

To determine the average tangential stress, τ, we will use the 
equilibrium equations. We extract an element from the thin-walled shell-
bar — one limited by two longitudinal sections parallel to the generatrix 
and located at the distance ds from each other and by two cross-sections of 
the bar at the distance dx from each other – as shown in Fig. 6.7. 
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Fig. 6.7.  A shell-bar element of the sizes ds×dx   

Considering the equilibrium of this extracted element in the projections 
onto the X axes, we arrive at the differential equation 

( ) ( ) 0
x

x
h h q
s x

∂ τ ∂ σ
+ + =

∂ ∂
 

where qx(x,s) is the intensity of an external load in the direction of the X-
axis per unit of area of the median surface of the bar. 

By integrating this equation, we find 

0
0 0

xs s

xT T hds q ds
x

∂σ
= − −

∂∫ ∫ , 

where T(x,s) = τh is a tangential force per unit of length at the current point 
of the profile, which is also called sometimes a flow of tangential stresses. 
Here T0 = T(x,0) is a flow of the tangential stresses at the zero point of the 
profile. 

By substituting expression (2.27) for normal stress σ x, we obtain 
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0
0

( ) ( )( )( ) s
y z

y z x
y z

S s S sS sA sT T N M M B q ds
A I I I

ω

ω

′ ′ ′ ′= − − − − − ∫ . (2.31)

Here we use the designations of 

0
( )

s
A s hds= ∫ ,  

0
( )

s

yS s hzds= ∫ ,  
0

( )
s

zS s hyds= ∫ ,  
0

( )
s

S s h dsω = ω∫ . (2.32) 

The right-hand part of formula (2.31) contains the still unknown stress 
T0  at the zero point of the profile. To exclude this stress from formula 
(2.31), we use the known stress on one of the profile’s edges, which should 
be obviously equal to an external shear force specified for that edge. 
However, we can assume the shear forces on the profile’s edges to be zero, 
without limiting the generality of the consideration. This can be always 
achieved if we permit the longitudinal load, qx(x,s), to contain a Dirac delta 
function with respect to the arc coordinate, s. 

For example, let one of the profile’s edges defined by the coordinate of 
sГ have an external load in the form of a shear force per unit of length, 
equal to ( )T x , and let there be no other longitudinal loads upon the bar. 
Then it suffices to assume 

qx(x,s) = ( )T x δ(s – sГ) 

to be able to make T(x,sГ) = 014.    
Now assuming s = sГ in (2.31) and taking into account the equality of 

T(x,sГ) = 0, we have 

0
0

( ) ( )( ) ( ) s
y z

y z x
y z

S s S sA s S sT N M M B q ds
A I I I

ΓΓ ΓΓ Γ ω

ω

′ ′ ′ ′= + + + + ∫ , 

which gives the following when substituted to formula (2.31): 

oo o o( )( ) ( ) ( ) s
y z

y z x
sy z

S sA s S s S sT N M M B q ds
A I I I Γ

ω

ω

′ ′ ′ ′= − − − − − ∫ , (2.33)

where we use the designations of 

                                                      
14 This can be interpreted as shifting the longitudinal load applied to the edge of 

the profile inside the profile by an infinitesimal distance.  
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o ( )
s

s
A s hds

Γ

= ∫ ,    o ( )
s

y
s

S s hzds
Γ

= ∫ ,    o ( )
s

z
s

S s hyds
Γ

= ∫ ,   

o ( )
s

s
S s h ds

Γ
ω = ω∫ . (2.34) 

The geometrical meaning of these parameters is obvious. To see this, we 
name a piece of the bar’s cross-section between the edge of the profile, Г, 
to the current point of the profile, М, with the coordinate s a cut-off part of 
the cross-section, and here’s what we have:  

• Aо  is an area of the cut-off part of the cross-section;  
• Sоy is a static moment of the cut-off part of the cross-section with respect 

to the Y-axis;  
• Sоz is a static moment of the cut-off part of the cross-section with respect 

to the Z-axis;  
• Sоω is a sectorial static moment of the cut-off part of the cross-section.  

Fig. 6.8 shows the cut-off part of the cross-section hatched. 
Z

Y

t
M

Ã

 
Fig. 6.8.  A cut-off part of a cross-section 

6.2.2  Equations of equilibrium of an open-profile thin-walled 
bar 

Let us begin with discussing kinds of external loads that can be applied to 
a thin-walled bar. In addition to the longitudinal load introduced above, 
qx(x,s), the median surface of a shell-bar can be subjected also to loads 
qy(x,s), qz(x,s), which are lateral loads per unit of area of the median 
surface acting in the respective Y and Z directions. However, sometimes it 
proves more convenient to represent the lateral loads by expansions over 
local, rather than global, axes and operate their qt(x,s), qn(x,s) components. 
The mutual transition between the two methods of representation of the 
lateral loads is based on the simple formulas: 
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qt = qyty + qztz ,        qn = qytz – qzty , 

qy = qtty + qntz ,        qz = qttz – qnty , (2.35) 

which become obvious if we take (2.4) into account. 
As we will see later, the equations of equilibrium for a thin-walled bar 

will not include the actual loads, qx , qy and qz, distributed over the median 
surface; instead, the equations will include their integral characteristics 
over the bar’s cross-section such as: 

( ) ( , )x x
l

p x q x s ds= ∫ ,   ( ) ( , )y y
l

p x q x s ds= ∫ ,   ( ) ( , )z z
l

p x q x s ds= ∫ , 

mx(x) = ( ) ( )z P y P
l

q y y q z z ds⎡ ⎤− − −⎣ ⎦∫ , 

( ) ( , )y x
l

m x q x s zds= ∫ ,   ( ) ( , )z x
l

m x q x s yds= −∫ , 

( ) ( , )B x
l

m x q x s ds= ω∫ . (2.36) 

Obviously, px , py, and pz are loads per unit of length (of the bar’s length) in 
the directions of the axes corresponding to the subscripts. Similarly, mx , my 
and mz are moment loads per unit of length. More exactly, mx is an external 
moment per unit of length, which is created by loads qy and qz with respect 
to the pole axis, and my and mz are external moments per unit of length 
created by load qx,  but these are taken with respect to the principal central 
axes of inertia of the bar’s cross-section. We adopt a standard sign 
convention for the external moment loads, mx , my and mz – a positive right-
hand moment vector has the same direction as the respective axis of the 
global coordinate system. 

In addition to this, the last of formulas (2.36) defines a so-called 
external bitorque per unit of length, mB, which is created by longitudinal 
load qx in the same cross-section. 

Further, we want to determine internal force factors acting in the cross-
sections of the thin-walled bar, as integral characteristics of normal 
stresses σ x and tangential stresses τ sx = τ + τk . 

The integral characteristics of the normal stresses have been already 
established; they include: 

• a normal force, N; 
• a bending moment, M y; 
• a bending moment, M z; 
• a bitorque, B. 
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The tangential stresses, τk, create the pure-torsion moment, H. The 
average tangential stresses, τ, which act along the profile, also create a 
torque with respect to the pole P, which is called a constricted-torsion 
moment and denoted by symbol M ω: 

M ω = 
l

h dsτ ρ∫ = 
l

Tdω∫ . (2.37) 

The same average tangential stresses give, when projected onto the Y 
and Z axes, such integral characteristics as the respective lateral forces Q y 
and Q z , 

Q y = y
l

ht dsτ∫ =
l

Tdy∫ ,        Q z = z
l

ht dsτ∫ =
l

Tdz∫ . (2.38) 

So, the integral characteristics of the tangential stresses are: 

• a moment of pure torsion,  H; 
• a moment of constricted torsion, M ω; 
• a lateral (shear) force, Q y; 
• another lateral (shear) force, Q z. 

Let us consider an element of a thin-walled bar, cut out by two cross-
sections with the distance between them denoted by dx (Fig. 6.9).  
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Fig. 6.9.  The equilibrium of an element of a thin-walled bar 

The conditions of equlibrium of the extracted element in terms of the 
moments with respect to the Y-axis and the Z-axis give 
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y z zQ M m′= − ,       z y yQ M m′= + . (2.39) 

Formulas (2.39) are counterparts of the well-known formula by 
Zhuravsky in the theory of bending of solid bars, in application to the 
theory of open-profile thin-walled bars. 

By using the relationships of (2.39), formula (2.33) of the tangential 
force can be rewritten as 

o ( )A sT N
A

′= − −  

o o o( ) ( ) ( )( ) ( )
s

y z
z y y z x

sy z

S s S s S sQ m Q m B q ds
I I I Γ

ω

ω

′− − − + − − ∫ . (2.40)

Substituting this expression of T to (2.37) gives 

M ω =. o o o

( ) ( )
( ) ( ) ( )z y y z

y z
y zl l l

Q m Q mN A s d S s d S s d
A I I

− +′
− ω − ω − ω∫ ∫ ∫  – 

– ( )o ( )
s

x
sl l

B S s d q ds d
I Γ

ω
ω

′
ω − ω∫ ∫ ∫ . 

We want to transform the integrals from this formula using integration by 
parts. Before doing that, we introduce some additional designations. Let 
s = s1 be a minimum arc coordinate of the profile in question, and let s = s2 
be a maximum arc coordinate of the same profile. Obviously, both 
coordinates conform to ultimate points of the profile, so the lengths of the 
profile is l = s2 – s1. Now, using formulas (2.34) and assuming sГ = s1, we 
have 

o ( )
l

A s dω =∫
2

11 1

ss s

s s sl l

hds d hds hds⎛ ⎞ ⎡ ⎤ω = ω − ω⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ ∫ ∫ = ω(s2)A, 

o ( )y
l

S s dω =∫
2

1 1 1

ss s

s s sl l

hzds d hzds hzds⎛ ⎞ ⎡ ⎤ω = ω − ω⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ ∫ ∫ = 0, 

o ( )z
l

S s dω =∫
2

1 1 1

ss s

s s sl l

hyds d hyds hyds⎛ ⎞ ⎡ ⎤ω = ω − ω⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ ∫ ∫ = 0, (2.41)

where we take account of the fact that the Y and Z axes are principal 
central axes of inertia of the bar’s cross-section, and we also use  
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equalities (2.20) which help choose the principal pole and the zero point of 
the profile. 

In addition to that, 

o ( )
l

S s dω ω =∫
2

2

1 1 1

ss s

s s sl l

h ds d h ds hds Iω
⎛ ⎞ ⎡ ⎤ω ω = ω ω − ω = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ ∫ ∫ , (2.42) 

where Iω is a sectorial moment of inertia of the cross-section, defined by 
(2.25).  

Finally, 

2

1 1 1

ss s

x x x
s s sl l

q ds d q ds q ds⎛ ⎞ ⎡ ⎤ω = ω − ω⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ ∫ ∫ = 2( ) xs pω − Bm . 

Considering all the above, the formula of the constricted-torsion 
moment will become 

M ω =. 2( ) ( )xN p s′− + ω + BB m′ + . 

It is easy to notice that the following equality holds because of the 
equation of equilibrium of the bar’s element shown in Fig. 6.9, in 
projections onto X: 

0xN p′ + = . (2.43) 

So the formula of M ω becomes ultimately as simple as 

M ω =. BB m′ + . (2.44) 

If there is no longitudinal load, qx = 0, the external bitorque also vanishes, 
and the formula acquires its simplest form possible: 

M ω = B′ . (2.45) 

Let us return to the equations of equilibrium. Considering the conditions 
of equilibrium of the extracted element of the bar (Fig. 6.9) in terms of the 
projections onto the Y and Z axes, we have 

0y yQ p′ + = ,  0z zQ p′ + = , (2.46) 

which gives the following together with equations (2.39) after excluding 
the lateral forces: 

z y zM p m′′ ′= − + ,    y z yM p m′′ ′= − − . (2.47) 
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Also, the overall torque Мx over the cross-section consists of the pure-
torsion moment and the constricted-torsion moment, that is, 

xM H Mω= + . (2.48) 

We would like to note that Мx is understood as a torque created by 
tangential stresses τxs and calculated with respect to a longitudinal axis 
through the principal pole, Р.  

If we consider the last equation of equlibrium, which still remain 
unused, in terms of the moments with respect to a longitudinal exis 
through the bending center, then we can extract an element of the bar 
between two cross-sections at a distance of dx from each other and obtain 

x xM m′ = − . (2.49) 

It will be convenient for further presentment to introduce the notion of 
generalized loads yp , zp , xm  by defining them as 

y y zp p m′= − ,      z z yp p m′= + ,       x x Bm m m′= + . (2.50) 

Now the set of all differential equations of equilibrium gathered from 
(2.43), (2.44), (2.47) through (2.50) can be written in a final form: 

xN p′− = ,     z yM p′′− = ,     y zM p′′− = ,     xH B m′ ′′− − = . (2.51) 

6.2.3  Center of twist, center of bending 

Earlier in Section 6.1 we gave a general definition of a center of twist as a 
point CR of a cross-section which does not have any displacements when 
the bar is in torsion (twist). According to Saint-Venant’s theory, the center 
of twist is undefined in the problem of pure torsion. In other words, in the 
pure torsion any point of the bar’s cross-section can be assigned to be a 
center of twist. It is a different thing with the problem of constricted 
torsion. In that case, as we will show later, the position of the center of 
twist, CR, is unambiguous. 

Consider a cantilever bar with a concentrated force, P, applied to a 
certain point, CB, on the free end of the bar in the plane of its cross-section. 
If that force does not cause any torsion of the bar, the point of its 
application is usually called a bending center15. Generally, the bending 
                                                      

15 Sometimes the bending center is called a shear center. The English-language 
technical literature uses the latter term. Another usable term is a center of stiffness 
of the cross-section. The designations of СВ and СR have been derived from the 
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center is a point of a cross-section of the bar such that lateral forces pass 
through it without causing any twist of the bar. 

The locations of the two points can be calculated independently from 
their definitions. However, it suffices to find the position of one of the 
points only, because the following statement, a corollary of the unchanged-
contour hypothesis, holds: 

In the theory of thin-walled bars with an unchanged contour, the bending 
center and the center of twist coincide. 

This statement can be proved easily on the basis of Betty’s work 
reciprocity theorem. To see the statement, we suppose an opposite thing: 
let the bending center, СВ, and the twist center, СR, be two different points. 
Then we consider two states of the thin-walled bar. Let the bar be loaded 
by a torque Mx in State 1, and let it be loaded by a force P applied to the 
center of bending, СB, perpendicular to the bar’s axis, X, in State 2. The 
work of the forces of State 1 on the displacements of State 2 is equal to 
zero, A12 = 0, because the P force causes a bending of the bar without any 
torsion. On the other hand, the work of the forces of State 2 on the 
displacements of State 1 is different from zero, A21 ≠ 0, because the 
displacement of the force’s application point, СB, in the torsion of the bar 
around the СR point is nonzero. This is a contradiction with the Betty 
theorem which follows from our supposition of the two points not being 
coincident; this proves the original statement. 

The following statement is also true in the theory of open-profile thin-
walled bars: 

The bending center, СB, thus the center of twist, CR, too, coincides with the 
principal pole of the profile, Р. 

To see this point, we note that the position of the bending center, 
according to its definition, is characterized by the condition that tangential 
stresses τQ created by shear forces Qy and Qz (and by them only!) do not 
create a torque with respect to point CB. According to formula (2.40), 
tangential stresses τQ caused by shear forces Qy and Qz are defined as 

                                                                                                                          
abbreviations of the bending center and rotation center (the latter is not quite 
correct but related and permits to distinguish between the centers easily – 
Translator’s note). We prefer to use the ‘bending center’ term for reasons declared 
in Appendix G. The notion of the shear center denoted by СS should be reserved 
for naming a totally different point which does not coincide, generally, with the 
bending center. 
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o o( ) ( )y z
Q z y

y z

S s S sQ Q
hI hI

τ = − − . (2.52) 

Denoting the coordinates of the bending center by yB and zB, we 
formulate the condition of zero torque as 

BMQ
l

h dsτ ρ∫ = 0, (2.53) 

where ρBM is a projection of vector RBM onto the direction of normal n to 
the profile at the current point, M, and vector RBM goes from point CB to 
point M. In other words, ρBM is a distance from CB to the tangent of the 
profile at the current point М, taken with an appropriate sign. 

Obviously, the bending center is defined unambiguously, that is, its 
location should not depend on a particular distribution of tangential 
stresses τQ over the profile. Therefore, in order to prove our statement, it 
suffices to show that (2.53) will hold if we place the principal pole at the 
bending center, which lets ul assume assume ρBM = ρ or 

Q Q
l l

h ds hdτ ρ = τ ω∫ ∫  = 0 . 

But this equality is warranted because, as we have shown with 
formulas (2.41), 

o ( )y
l

S s dω =∫  0,       o ( )z
l

S s dω =∫  0. 

This proves the statement.  

6.2.4  Tangential stresses in the open-profile thin-walled bar 
theory 

Earlier we established formula (2.40) as a general expression of the flow of 
tangential stresses, T = τh, at an arbitrary point of the profile with 
coordinates (x,s). Our next problem here is to simplify that formula and 
reduce it to a more convenient form both for calculation and for 
subsequent transformations. 

First of all, we would like to note that the profile has only four degrees 
of freedom with regard to longitudinal displacements u. To see this, we use 
formulas (2.15) and (2.14) to derive 

z yu y z ′= ξ − θ + θ − θ ω . (2.54) 
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The immediate consequence is that displacements u of an arbitrary point of 
the profile with its arc coordinate s, in an arbitrary cross-section of the bar 
with its longitudinal coordinate x, are defined unambiguously by four 
parameters: 

• ξ, a longitudinal displacement of the cross-section’s center of gravity 
which is rigidly connected to the principal pole Р, and the latter is, in its 
turn, rigidly connected to the zero point of the profile, О; 

• θy and θz , slopes of the rigid element ОР - РG about the respective  axes 
Y and Z; 

• θ′, a twist factor (an angle of twist of the bar per unit of its length). 

Such are the parameters that can be treated as four degrees of freedom of 
the profile, as indicated above. 

Each of the degrees of freedom corresponds to its own function of 
distribution of the displacements over the arc coordinate, s. As can be seen 
from (2.54), the functions are 

1,       y = y(s),      z = z(s),      ω = ω(s). (2.55) 

These four functions satisfy the following conditions of a generalized 
orthogonality, or, more particularly, the orthogonality with the weight of h 
throughout the length of the profile, l, 

     1 0
l

yhds⋅ =∫ ,      1 0
l

zhds⋅ =∫ ,      1 0
l

hds⋅ ω =∫ , 

       0
l

y zhds⋅ =∫ ,     0
l

y hds⋅ ω =∫ ,     0
l

z hds⋅ ω =∫ . (2.56) 

Obviously, the conditions of mutual orthogonality of the first three 
functions in (2.55) follow from our choice of the (Y,Z)-axes, which are 
principal central axes of inertia of the bar’s cross-section by definition. As 
for the orthogonality of function ω(s) to the first three functions in (2.55), 
this is a consequence of our choice of the principal pole and the zero point 
of the profile, for which equalities (2.20) must hold.  

Now let us turn to function qx = qx(x,s) which characterizes a 
distribution of the longitudinal load upon the bar over the whole median 
surface of the bar. We represent this function as a series every term of 
which is a product of a function of x and a function of s, and the first four 
functions of s in that series will be the functions from (2.55) multiplied 
by h(s). This gives 
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qx(x,s) = a1(x)h(s) + ay(x)h(s)y(s) + az(x)h(s)z(s) +  

+ aω(x)h(s)ω(s) + … (2.57)

The ellipsis denotes the rest of the terms in the series. 
However, the tail of the series can be (and should be!) omitted within 

the frames of the theory of thin-walled bars we are dealing with, because, 
as we have just shown, the first four terms of the series cover all the 
generalized forces which correspond to all degrees of freedom of the 
profile. Therefore the generalized external longitudinal force actions are 
only functions a1(x), ay(x), az(x), aω(x). 

We will determine those functions by multiplying (2.57) by 1, y(s), z(s), 
ω(s) in succession and integrating the results over the whole profile l. 
Considering the conditions of generalized orthogonality as in (2.56), we 
have 

1 1x
l l

q ds a hds a A= =∫ ∫ ,        2
x y y z

l l

q yds a hy ds a I= =∫ ∫ , 

  2
x z z y

l l

q zdx a hz ds a I= =∫ ∫ ,      2
x

l l

q ds a h ds a Iω ω ωω = ω =∫ ∫ .  (2.58) 

Also, using formulas (2.36), now we can represent the desirable factors a1, 
ay, az, aω in the expansion of (2.57) as follows: 

1 ,xpa
A

=     ,z
y

z

ma
I

= −     ,y
z

y

m
a

I
=     .Bma

Iω
ω

=  

Substituting these coefficients to the expansion of load qx in (2.57) and 
keeping only the first four terms will yield 

yx z B
x

z y

m hp h m h m hq y z
A I I Iω

= − + + ω . (2.59) 

If we integrate both parts of formula (2.59) by s from one edge of the 
profile with the arc coordinate sГ to the current coordinate, s, we will have 

oo o o( )( ) ( ) ( ) .
Г

s
y z

x x y z B
s y z

S sA s S s S sq ds p m m m
A I I I

ω

ω

= + − +∫  (2.60)

Now we can simplify formula (2.40) of the flow of tangential stresses. 
To see this, we substitute (2.43), (2.44) and (2.60) to (2.40), to find finally 
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o o oy z
z y

y z

S S ST Q Q M
I I I

ω
ω

ω

= − − − , 

hence an expression for the tangential stresses which we were going to 
derive: 

o o oy z
z y

y z

S S SQ Q M
hI hI hI

ω
ω

ω

τ = − − − . (2.61) 

This is exactly the formula we wanted to have. 

6.2.5  A matrix form of basic relationships in the theory of 
open-profile thin-walled bars 

Now we introduce a vector of “stresses” σ and a vector of given external 
force actions X , together with a vector of displacements u and a vector of 
strains ε: 

σ = , , , ,y zN H M M B⎡ ⎤⎣ ⎦
T

,    , , ,x y z xp p p m⎡ ⎤= ⎣ ⎦X
T

, 

u = [ ], , ,ξ η ζ θ
T

,          ε = G , , , ,x z y B⎡ ⎤ε χ χ χ χ⎣ ⎦
T

, (2.62) 

where we also use additional designations of the strain parameters, χx and 
χB, 

χx = θ′,           B ′′χ = −θ . (2.63) 

A relation between these vectors is written in the matrix form in a 
standard way, ε = Au, where formulas (2.22) and (2.63) produce 

A =
2

2

2
2

2
2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

d
dx

d
dx

d
dx

d
dx

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

,     Au =

′ξ⎡ ⎤
⎢ ⎥′θ⎢ ⎥
⎢ ⎥′′−ζ
⎢ ⎥′′−η⎢ ⎥
⎢ ⎥′′−θ⎣ ⎦

= ε, (2.64) 

so, according to the formal rules of construction of conjugate operators, we 
have 
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2

2

2

2

2

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

d
dx

d
dx

d
dx

d d
dx dx

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

AT . (2.65) 

Obviously, the matrix differential operator AT is indeed an equilibrium 
operator because the equality ATσ = X  is just a matrix form of the 
equations of equilibrium from (2.51) with vectors of stresses σ and vectors 
of external force actions X  specified according to (2.62). Now let us turn 
to physical relationships which connect the strain vector and the 
displacement vector. According to (2.21) and (2.22), we can write the 
following: 

N = εGEA,        My = χzEIy,        Mz = χyEIz, (2.66) 

and because of (2.26), (2.29) and (2.63) 

H = xGI′θ ,         BB EIω= χ . (2.67) 

This enables us to write an explicit form of the matrix of elasticity, σ = Сε: 

С =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

x

y

z

EA
GI

EI
EI

EIω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.68) 

Using the general formula, L = ATCA, to build the Lame operator, we 
come up with a governing system of differential equations for the problem 
in terms of the displacements, Lu = X . The expanded form of the system 
of equations is 

 
xEA p′′ξ = ,      IV

z yEI pη = ,      IV
y zEI pζ = ,    

 .IV
x xEI GI mω ′′θ − θ =  

 

    (2.69) 
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As we can see, the system of equations in terms of displacements for a 
thin-walled bar decomposes into four independent equations: one equation 
of second order and three equations of fourth order:  

• the first of the equations, which contains the longitudinal displacement 
of the cross-section’s center of gravity, ξ(x), as an unknown function, 
describes a tension/compression of the thin-walled bar; 

• the second and third equations describe a problem of bending. These 
equations are formally equivalent in their structure to the equations of 
bending of solid bars. However, there is a little difference between the 
two problems. To see this, take the second equation. For a solid bar, the 
sought-for function of displacements should have been a function that 
somehow characterizes the lateral displacements of the cross-section’s 
center of gravity. For a thin-walled bar, the sought-for function is η(x) 
which describes lateral dsiplacements of the principal pole Р (the center 
of bending). As the center of bending does not belong to the material 
substance of the bar’s cross-section in a general case (it lies outside the 
profile), η is actually a conditional displacement or, more exactly, a 
displacement of the pole which has an imaginable rigid connection to 
the principal zero point of the profile. It should be noted also that the 
relation between bending moment Mz and function η has a usual form 
Mz = – zEI ′′η  though the bending moment itself is taken with respect to 
the principal central axis of inertia of the cross-section, Z, by definition 
according to (2.18); 

• however, the most important equation for the whole theory of thin-
walled bars is the last one in (2.69), which contains the cross-section’s 
rotation angle, θ, as an unknown desirable function. It is the solution of 
this equation that determines the state of the thin-walled bar caused by 
the constriction of the torsion.  

Each of the equations conforms to its specific set of boundary 
conditions; to formulate those, we will use the basic integral identity 
within the frames of the theory of open-profile thin-walled bars. 

6.2.6  Basic integral identity in the theory of open-profile 
thin-walled bars 

Now we can derive the following from the matrix relationships obtained 
above, using our usual approach of integration by parts: 

(Au, σ) =
0

L

y zN H M M B dx′ ′ ′′ ′′ ′′⎡ ⎤ξ + θ − ζ − η − θ =⎣ ⎦∫   
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=
0

( )
L

y zN B H M M dx′ ′′ ′ ′′ ′′⎡ ⎤−ξ − θ + − ζ − η⎣ ⎦∫ + [ ]
0

L
Nξ – 

– [ ]
0

L
B′θ + [ ]

0
( )

L
B H′θ + –

0

L

yM′⎡ ⎤ζ⎣ ⎦ +
0

L

yM ′⎡ ⎤ζ⎣ ⎦ – [ ]
0

L
zM′η + [ ]

0

L
zM ′η . 

The matrix form of this formula is standard: 

(Au, σ) =(u, ATσ) + (p, u)Г , 

where the edge loads, p, and the edge displacements, u, are 

p = , ( ), , , , ,y z y znN n B H nM nM nB nM nM′ ′ ′⎡ ⎤+ − − −⎣ ⎦
T

, 

u = [ ], , , , , ,′ ′ ′ξ θ ζ η θ ζ η
T

. (2.70)

The components participating in the vectors are those that are directly used 
to construct the boundary condtions. Recall that the n parameter, a factor 
in the components of the p vector, is a projection onto the X-axis of the 
vector of the external normal to the bar’s cross-section defined as follows:  
n(0) = –1,  n(L) = 1. 

6.2.7  Basic variational principles in the theory of open-profile 
thin-walled bars 

First of all, we want to find an expression of the strain energy, E, of a thin-
walled bar. Writing the expression of the energy as a functional of the 
displacement vector, u, we obtain E(u) = ½(Au, CAu) or 

E(u) = 

( ) ( ) ( ) ( ) ( )2 2 2 2 2

0

1
2

L

x y zEA GI EI EI EI dxω
⎡ ⎤′ ′ ′′ ′′ ′′= ξ + θ + ζ + η + θ⎣ ⎦∫ . (2.71) 

The same energy can be represented as a quadratic functional of the 
stresses, which gives E(σ) = ½ (σ, C –1σ) or 

E(σ) = 1
2

2 22 2 2

0

L
y z

x y z

M MN H B dx
EA GI EI EI EIω

⎡ ⎤
+ + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ . (2.72) 

We will also give expressions of the force and kinematic potentials. 
Confining ourselves, for the sake of simplicity, to homogeneous boundary 
conditions for forces, we make the potential of external forces equal to the 
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virtual work of external distributed loads. Obviously, this work can be 
written as a double integral, 

Пs(u) =
0

( )
L

x t n
l

q u q q ds dx
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

∫ ∫ v w . (2.73) 

Recall formula (2.8) which enables us to represent the tangential 
displacement, v, of an arbitrary point of the bar’s profile via lateral 
displacements η and ζ of the principal pole and via the rotation angle, θ, of 
the bar’s cross-section about the pole axis. Similarly, by making a scalar 
product of equality (2.7) with unit vector n, we derive an expression of 
normal displacement w. Adding formula (2.15) to all this, we have finally: 

u = y z′ ′ ′ξ − η − ζ − θ ω , 

      v = ηty + ζ tz + θ[(y – yP)tz – (z – zP)ty] , 

    w = ηtz – ζ ty – θ[(y – yP)ty + (z – zP)tz] . (2.74) 

Here we take account of our earlier relations ny = tz, nz = −ty.  
In addition to the above, we can use the representation of the 

components of the external actions, qt and qn, in the local coordinate 
system via components of the same actions, qy and qz, in the global 
coordinate system according to (2.35). 

Substituting all these to (2.73), we transform the expression of the force 
potential into 

[ ] [ ] [ ]{ }P P
0

) ( ) ( )
L

x y z
l

q y z q z z q y y dsdx′ ′ ′ξ − η − ζ − θ ω + η − θ − + ζ + θ −∫ ∫ . 

Integrating over arc coordinate s and using the designations of external 
actions integral with respect to the bar’s cross-section from (2.36), we 
simplify the above expression as follows: 

Пs(u) = ( )
0

L

x y z x z y Bp p p m m m m dx′ ′ ′ξ + η + ζ + θ + η − ζ − θ∫ . (2.75)

To transform this integral further, we will use the integration by parts and 
the designations of the generalized loads from (2.50). The result is 

Пs(u)= ( ) [ ] [ ]
0 000

L LL L
x y z x z y Bp p p m dx m m m⎡ ⎤ξ + η + ζ + θ + η − ζ − θ⎣ ⎦∫ . (2.76)

Please note that the expression of Пs according to (2.76) comprises the 
virtual work only of loads specified along the bar, without the force actions 
at the ends. Note that this condition has been adopted to simplify the form 
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of the formulas. Actually, this condition is not a limitation of the class of 
loads, because we can formally include the force actions at the ends in the 
distributed loads by using generalized functions such as Dirac’s delta 
function. 

If we use the general formula for the Lagrange functional in the form of 

L(u) = E(u) – Пs(u), 

then the conditions of minimum of the Lagrangian functional on 
kinematically admissible fields of displacements will consist of Euler 
equations for this same functional, the latter being equations (2.69), and of 
natural boundary conditions – in our case these are homogeneous 
conditions for the stresses at the begining and end sections of the bar, 

    [ ]
0

L
Ne EA ′ξ = 0 ,                   [ ]

0
( 0

L
Mx x Be EI GI mω ′′′ ′− θ + θ − = , 

  
0

( )
L

Qy z ze EI m′′′⎡ ⎤− η +⎣ ⎦ = 0 ,      
0

( )
L

Qz y ye EI m′′′⎡ ⎤− ζ −⎣ ⎦ = 0 , 

  [ ]
0

L
Mz ze EI ′′η = 0 ,           

0

L

My ye EI ′′⎡ ⎤ζ⎣ ⎦ = 0 ,        [ ]
0

L
Be EIω ′′θ = 0 . (2.77) 

The physical meaning of these boundary conditions is quite clear: 

• the first of them relates to longitudinal force N; 
• the second to full torque Mx;  
• the third and the fourth to shear forces Qy and Qz;  
• the fifth and the sixth to bending moments My and Mz; 
• the last, seventh, boundary condition defines bitorque B. 

As usual, the characteristic functions for boundary condition extraction, 
eN, eMx, eQy, eQz, eMy, eMz, eB, are equal to one only at that end of the bar 
where an appropriate static boundary condition is formulated. 

Now let us construct the potential of the kinematical external actions. 
First of all, it is useful to write out explicit expressions of operators Hσ and 
Hu which map stress vector σ and displacement vector u to the vectors of 
edge stresses, p, and of edge displacements, u, that is, p = Hσσ and u = 
Huu . Based on formulas (2.70), we have 
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Hσ =

0 0 0 0

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

n
dn n
dx

n
n

n
dn
dx

dn
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,    Hu =

1 0 0 0
0 0 0 1

0 0 0

0 0 0

0 0 0

0 0 1 0
0 1 0 0

d
dx

d
dx

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.78) 

Now, turning to the general formula (2.3.2), we are able to define the 
potential of kinematical external actions as 

Пk(σ) = (Eu Hσσ, Eu u )Г = 

         =
0

L
e Nξ⎡ ⎤ξ⎣ ⎦ +

0
( )

L
e B Hθ ′⎡ ⎤+ θ⎣ ⎦ –

0

L

ye M′ζ ′⎡ ⎤ζ⎣ ⎦ –
0

L

ze M′η ′⎡ ⎤η⎣ ⎦ – 

                       –
0

L
e B′θ ′⎡ ⎤θ⎣ ⎦ + 

0

L

ye Mζ ′⎡ ⎤ζ⎣ ⎦ +
0

L

ze Mη ′⎡ ⎤η⎣ ⎦ . (2.79) 

The characteristic functions of boundary condition extraction, eξ, eθ, eζ′, 
eη′, eθ′, eζ, eη, are equal to one only at that end of the bar where an 
appropriate kinematical boundary condition is formulated. Matrix Eu that 
extracts the kinematical boundary conditions is defined as a diagonal 
matrix, 

Eu = diag , , , , , ,e e e e e e e′ ′ ′ξ θ ζ η θ ζ η⎡ ⎤⎣ ⎦ . 

In the similar way we can define the diagonal matrix Ep for extracting the 
static boundary conditions, 

Ep = diag , , , , , ,N Mx My Mz B Qz Qye e e e e e e⎡ ⎤⎣ ⎦ , 

where the usual condition, Eu + Ep = I, must hold where I is the identity 
matrix of seventh order. 

Having the potential of kinematical external actions, Пk(σ), and the 
expression of strain energy E(σ), we can easily derive the Castigliano 
functional as 

K(σ) = E(σ) – Пk(σ),  
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the minimum of which is to be sought for on statically admissible fields of 
stresses. Further details are omitted. 

6.2.8  A remark on non-warped cross-sections in the open-
profile thin-walled theory 

The class of non-warped cross-sections occupies a special place among all 
possible kinds of cross-sections of open-profile thin-walled bars. This term 
denotes a cross-section for which the sectorial coordinate, ω, is zero in 
each point of the profile. This means that there is no warping component 
uw of the longitudinal displacements u of the profile’s point, that is, 

uw = –θ′ω = 0 , 

and thus the longitudinal displacements, u, of the profile’s points should 
follow the law of plane because of (2.15): 

u y z′ ′= ξ − η − ζ . (2.80) 

The class of non-warped cross-sections consists of all possible so-called 
foil profiles (fig. 6.10) which consist of flat ribs intersected in one point. 
The simplest case of a foil-like profile is a standard angle section. For a 
foil profile, bending center Р is at the intersection of the foil ribs (see 
Appendix G), so the sectorial coordinate ω is identical to zero. 

 
Fig. 6.10.  Non-warped sections 

For a non-warped section, formula (2.23) of stresses σ x keeps only first 
three terms, so 

σ x = y z

y z

M MN z y
A I I

+ + . (2.81) 

If now we reproduce the process of derivation of formula (2.61) of 
tangential stresses τ, starting from (2.81) instead of (2.23), we will see that 
formula (2.61) should be replaced with the following for a non-warped 
section: 
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o oy z
z y

y z

S SQ Q
hI hI

τ = − − . (2.82) 

But if we started directly from the general formula (2.61) and assumed 
ω = 0, we would have to deal with a singularity of the 0/0 type because 
Mω → 0,   S oω  → 0,  Iω  → 0 at ω → 0. 

Bitorque B and the constricted-torsion moment Mω are absent in a non-
warped section (that is, they are identical to zero). As a result, the vector of 
stresses, σ, and the vector of strains, ε, will contain one component less, so 
formulas (2.62) will be replaced by 

σ = . , ,y zN H M M⎡ ⎤⎣ ⎦
T

,      X = , , ,x y z xp p p m⎡ ⎤⎣ ⎦
T

, 

u = [ ], , ,ξ η ζ θ
T

,         ε = G , , ,x z y⎡ ⎤ε χ χ χ⎣ ⎦
T

. (2.83) 

The sizes of the matrices of geometry, equilibrium, and elasticity will 
reduce accordingly. Obviously, matrix A in (2.64) should have its last row 
excluded, matrix AТ in (2.65) should have its last column removed, and 
matrix С in (2.68) should lose its last row and its last column. As a result, 
we will have the following for a non-warped section: 

A = 2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

d
dx

d
dx

d
dx

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

,  

AT = 

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

d
dx

d
dx

d
dx

d
dx

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

, (2.84) 
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С =

0 0 0
0 0 0
0 0 0
0 0 0

x

y

z

EA
GI

EI
EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (2.85) 

We use our general formula, L = ATCA, to build the Lame operator and 
arrive at a governing system of simultaneous differential equations  in 
terms of displacements, Lu = X . When expanded, this system becomes as 
follows: 

 
xEA p′′ξ = ,    IV

z yEI pη = ,    IV
y zEI pζ = ,   x xGI m′′− θ = .    (2.86) 

As we can see, the system of the equilibrium equations in terms of the 
displacements for a thin-walled bar with a non-warped section is 
equivalent in its structure with the respective equations for solid bars. The 
last, fourth, equation in (2.86), which describes the torsion of the bar, is an 
equation of second order and corresponds to pure torsion. The fact that the 
differential equation has an order less by two than that of the counterpart 
equation from (2.69) shows how the problem of torsion degenerates for a 
non-warped profile. 

The degeneration happens not only to the governing simultaneous 
equations but to the variational formulation of the problem, too. So instead 
of (2.71) and (2.72) we will have the following for strain energy E: 

E(u) = ( ) ( ) ( ) ( )2 2 2 2

0

1
2

L

x y zEA GI EI EI dx⎡ ⎤′ ′ ′′ ′′ξ + θ + ζ + η⎣ ⎦∫ , (2.87)

E(σ) =
2 22 2

0

1
2

L
y z

x y z

M MN H dx
EA GI EI EI

⎡ ⎤
+ + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ . (2.88)

The expression of the force potential can be simplified, too. To make it 
simpler, we should get rid of the distributed bitorque action, mB, in 
formulas (2.75) and (2.76). As a result, the following holds for the non-
warped section: 

Пs(u)= ( ) [ ]
0 00

L LL
x y z x z yp p p m dx m m⎡ ⎤ξ + η + ζ + θ + η − ζ⎣ ⎦∫ . (2.89)
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6.3 Allowing for shearing in open-profile thin-walled bars 
 
The theory of open-profile thin-walled bars was created by joint effort of a 
lot of scientists, though its most complete and general form should be 
attributed to V.Z. Vlasov, therefore the whole theory is usually associated 
with the name of this outstanding mechanician. One of fundamental 
postulates in this theory is an assumption that there should be no shearing 
in the median surface of a thin-walled bar.  

As the theory was being developed, a lot of various suggestions were 
advanced in order to modify it; those were based on attempts to omit the 
no-shear hypothesis and to somehow take into account the effect of shear 
strains on the behavior of a thin-walled bar. In this regard we can refer to 
well-known publications by Adadurov [2], [1], Janelidze and Panovko [5], 
Goldenweiser [4], Vorobiev [18], Mescheriakov [8].   

We will follow the general idea being developed in this book and try to 
take into account the effect of the shear strains by supplementing the 
expression of the strain energy of a thin-walled bar with a term caused by 
the work of the tangential stresses. This idea is essentially an application of 
the known procedure, which we have used to switch from the Bernoulli–
Euler theory of beams to the theory by Timoshenko or from Kirchhoff’s 
theory of plate bending to the theory by Reissner, to the case of the thin-
walled bars. This reasoning seems to have been applied first to the shear 
strains in the thin-walled bar theory by L.N. Vorobiev in his paper [18], 
where it produces one of simplest versions of the shear theory of thin-
walled bars. 

Below we present, for the convenience of referencing, the expressions 
of the normal and tangential stresses in an open-profile thin-walled bar, 
taken from  (2.27) and (2.61). Thus, we have: 

σ x = y z

y z

M MN Bz y
A I I Iω

+ + + ω , (3.1) 

o o oy z
z y

y z

S S SQ Q M
hI hI hI

ω
ω

ω

τ = − − − . (3.2) 

Formula (3.2) defines only those tangential stresses τ which are distributed 
evenly over the thickness of the walls, h, of the bar’s cross-section (see 
Fig. 6.6). 

Exactly as in the Bernoulli–Euler beam theory, nonzero tangential 
stresses τ are in contradiction with the physical law, 
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τ = Gγxs, 

because, according to the no-shear hypothesis, 

γxs = u
s x

∂ ∂
+

∂ ∂
v = 0 . 

If we recall the expression of strain energy E(σ), 

E(σ) =
2 22 2 2

0

1
2

L
y z

x y z

M MN H B dx
EA GI EI EI EIω

⎡ ⎤
+ + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ . (3.3)

we will see easily that this energy shows the work of the normal stresses 
and of a part of tangential stresses τk distributed over the wall thickness 
linearly, with the zero value on the profile (Fig. 6.6). In other words, 
expression (3.3) includes the energy of normal stresses σ x and the energy 
of tangential stresses τk of the pure (Saint-Venant’s, as it is sometimes 
called) torsion.  

Focusing on energy E(τ) created by the tangential stresses τ which are 
distributed evenly over the profile’s wall thickness, we can write 

E(τ) =
2

0

1
2

L

l

hdsdx
G
τ

∫ ∫ , (3.4) 

which, after substituting (3.2) and integrating along the profile, gives the 
following expression of the strain energy consisting of eleven terms 
together with the energy from (3.3): 

E(σ) =
2 22 2 2

0

1
2

L
y z

x y z

M MN H B dx
EA GI EI EI EIω

⎡ ⎤
+ + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ + 

+
2 22

2
0

2 221
2

L
y z y yzz

z y zy z y

Q Q Q Q MM Q MQ dx
GF GF GF r GF GF r GF r

ωω ω

ω ω ω

⎡ ⎤
+ + + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ . (3.5) 

Here we use the following designations for the new geometrical 
characteristics of the cross-section: 
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z
zz

AF =
µ

,     
2
o

2
y

zz
y l

SA ds
I h

µ = ∫ ,       y
yy

AF =
µ

,    
2
o

2
z

yy
z l

SA ds
I h

µ = ∫ , 

zy
zy

AF =
µ

,   o oz y
zy

z y l

S SA ds
I I h

µ = ∫ ,   AFω
ωω

=
µ

,   
2
o

2
r

l

SI ds
I h

ω
ωω

ω

µ = ∫ , 

z
z

AF ω
ω

=
µ

,       o oyr
z

y l

S SAI
ds

I I h
ω

ω
ω

µ = ∫ , 

y
y

AF ω
ω

=
µ

,        o or z
y

z l

AI S S ds
I I h

ω
ω

ω

µ = ∫ , (3.6) 

where Ir = Iy + Iz is a polar moment of inertia of the section, r2 = Ir/A is the 
square of the polar radius of inertia of the bar’s cross-section.  

Dimensionless factors µ will be called cross-section shape factors. 
Unlike the theory of beams by Timoshenko where only one cross-section 
shape factor is used, the theory of thin-walled bars makes use of six 
(dimensionless) factors of shape, which make up a symmetric matrix, µ, of 
cross-section shape factors, 

µ =
zz zy z

yz yy y

z y

ω

ω

ω ω ωω

⎡ ⎤µ µ µ
⎢ ⎥µ µ µ⎢ ⎥
⎢ ⎥µ µ µ⎣ ⎦

,          ν = µ–1 =
zz zy z

yz yy y

z y

ω

ω

ω ω ωω

⎡ ⎤ν ν ν
⎢ ⎥ν ν ν⎢ ⎥
⎢ ⎥ν ν ν⎣ ⎦

. (3.7) 

The matrix ν introduced here is the inverse of µ, and its components will 
be useful further. 

We introduce a new vector of stresses, σ, by assuming 

σ = , , , , , , ,y z z yN H M M B Q Q M ω⎡ ⎤⎣ ⎦
T

. (3.8)

In this formula, unlike (2.62) for the vector of stresses in the shear-free 
theory of thin-walled bars, the stress vector has eight components. 
Comparing to vector σ from (2.62), here we have three more components: 
Qz, Qy and Mω. Obviously, the expression of strain energy E(σ) from (3.5) 
can be represented in a common matrix form, E(σ) = ½ σTC –1σ , if we 
adopt the following for matrix C –1: 



374       6 PARTICULAR CLASSES OF PROBLEMS – part 3 

1

2

1 0 0 0 0 0 0 0

10 0 0 0 0 0 0

10 0 0 0 0 0 0

10 0 0 0 0 0 0

10 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

x

y

z

zy zzz

yz yy y

yz

EA

GI

EI

EI

EI

GA GA rGA

GA GA rGA

rGA rGA r GA

−

ω

ω

ω

ωω ωω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥µ µµ⎢ ⎥
⎢ ⎥
⎢ ⎥µ µ µ
⎢ ⎥
⎢ ⎥
⎢ ⎥µµ µ
⎢ ⎥
⎣ ⎦

C .  (3.9) 

If we assume the kinematic boundary conditions to be homogeneous, 
then the strain energy, E(σ), will be a Castigliano functional which should 
be minimized under the condition that the equilibrium equations should 
hold in the volume of the bar and at its ends.  

Now we want to write out a full set of all equations of equilibrium for 
the eight-component vector of stresses, σ, introduced above; we refer to 
(2.39), (2.43), (2.44), (2.46), (2.48), (2.49) to do it. So, we have 

xN p′− = ,  xH M mω′ ′− − = ,    y z yM Q m′− + = ,   z y zM Q m′− + = − , 

z zQ p′− = ,   y yQ p′− = ,  BB M mω′− + = .  (3.10) 

These equations of equilibrium can be represented in the standard 
matrix form, 

ATσ = X , 

if we compose the vector of loads, X , as 

X = , , , , , ,x y z x y z Bp p p m m m m⎡ ⎤⎣ ⎦
T

. (3.11) 

and construct the equilibrium operator, AT, as 
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                    N        H       My     Mz      B        Qz      Qy      Mω 
           = = = = = = = = = = = = = = = = = = = = = = = = = = 

AT =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

d
dx

d
dx

d
dx

d d
dx dx

d
dx

d
dx

d
dx

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

. (3.12)

For the convenience of visual perception, the corresponding components 
of the stress vector, σ, are indicated above the columns of the AT operator. 
As we can see, matrix AT consists of seven rows (according to the number 
of equilibrium equations) and of eight columns (according to the number 
of the components of the stress vector, σ). Obviously, the geometry 
operator, A, which is conjugate to the equilibrium operator, is a matrix of 
the dimensions 8×7, 

A =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (3.13)
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Let us find out the physical meaning of the geometry operator, A. We 
will use the kinematical relationships of the theory of thin-walled bars 
where the shear is taken into account. 

It is easy to see that the longitudinal displacements, u, of points of the 
bar’s cross-section, as defined by (2.54), in the form of 

z yu y z ′= ξ − θ + θ − θ ω , (3.14) 

ensure with their first three terms that the displacements vary over the 
cross-section according to the law of plane, while the last term of the 
formula defines a warping displacement. Earlier, with regard to formulas 
(2.14), we already gave a geometrical treatment of slopes θz and θy of the 
rigid cross-sections of the bar with respect to the corresponding axes, Z 
and Y, as the derivatives of displacements η and ζ: 

θy = ′−ζ ,      θz = ′η . 

These relationships should be omitted from the shear-based theory, and 
slopes θz and θy should be treated as independent kinematical parameters 
which characterize the bar’s displacements integrally over its section. 
Also, we adopt the same law of sectorial areas over the bar’s section for 
the warping component of longitudinal displacement u as before, but with 
a functional factor β(x) different from twist θ′; we will call that factor a 
warping measure function. As a result, in the shear theory formula (3.14) 
should be replaced by 

z yu y z= ξ − θ + θ − βω , (3.15) 

Let us present also an expression of tangential displacement v, deriving 
it from (2.8), (2.10): 

v = η ty + ζ tz + θρ . (3.16) 

Now we are able to find shear strain γxs using (2.9) but not assuming the 
shear equal to zero: 

γxs = u
s x

∂ ∂
+

∂ ∂
v = ( ) ( ) ( )z y y zt t′ ′ ′η − θ + ζ + θ + θ − β ρ . (3.17)

Here we take account of the fact thast ty = dy/ds,  tz = dz/ds,  ρ = dω/ds. 
We will denote particular components of the above formula by 

γy = z′η − θ ,    γz = y′ζ + θ ,    γω = ′θ − β , (3.18) 

which gives the following alternative representation of (3.17): 
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γxs = γy ty + γz tz + γω ρ. (3.19) 

The strain parameters γy, γz, γω can be interpreted geometrically in this 
way: 

• γy    is a shear in the (X,Y)-plane, averaged over the cross-section;  
• γz    is a shear in the (X,Z)-plane, averaged over the cross-section;  
• γωρ is a shear in each point of the profile, caused by the warping of the 

cross-section.  

Parameter γω, which is equal to the difference between twist θ′ and 
warping measure β, characterizes a warping strain of shear. As we can 
see, this parameter is the same for the whole section.  

Notice that displacement vector u will have seven components rather 
than four, as it used to have in (2.62) for the shear-free theory of thin-
walled bars, because now we take account of the shear strains: 

u = , , , , , ,y z⎡ ⎤ξ η ζ θ θ θ −β⎣ ⎦
T

, (3.20) 

These are the additional displacement components: 

• θy, a slope (rotation angle) of the bar’s cross-section about the Y-axis; 
• θz, a slope (rotation angle) of the bar’s cross-section about the Z-axis; 
• –β, an inverted warping measure different from twist factor θ′.  

But then the strain vector, ε, will be 

ε = G , , , , , , ,x z y B z y ω⎡ ⎤ε χ χ χ χ γ γ γ⎣ ⎦
T

, (3.21) 

where we use the notation of 

G ′ε = ξ ,      x ′χ = θ ,     z y′χ = θ ,      y z′χ = −θ ,     B ′χ = −β , 

γz = y′ζ + θ ,       γy = z′η − θ ,       γω = ′θ − β . (3.22) 

When written in the matrix form, Au = ε, these relationships produce 
exactly the geometry matrix, A, obtained earlier by us as a matrix operator 
conjugate to the equilibrium operator, AT. 

The stiffness matrix, C, can be derived by formal inversion of 
compliance matrix C –1, as follows: 
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2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x

y

z

zz zy z

yz yy y

z y

EA
GI

EI
EI

EI
GA GA rGA
GA GA rGA
rGA rGA r GA

ω

ω

ω

ω ω ωω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥

ν ν ν⎢ ⎥
⎢ ⎥ν ν ν⎢ ⎥

ν ν ν⎢ ⎥⎣ ⎦

C . (3.23) 

Now we are able to derive a governing system of equations in terms of 
displacements for the theory of thin-walled bars where the shear strains are 
taken into account. Based on the general formula of the Lame operator 
equation, we have 

Lu = X ,             L = ATCA , 

and, by making necessary matrix transformations, we derive the following 
system of seven differential equations with respect to seven components of 
displacement vector u, 

xEA p′′− ξ = , 

( ) ( ) ( )yz y yy z y yGA r pω′′ ′ ′′ ′ ′′ ′⎡ ⎤− ν ζ + θ + ν η − θ + ν θ − β =⎣ ⎦ , 

( ) ( ) ( )zz y zy z z zGA r pω′′ ′ ′′ ′ ′′ ′⎡ ⎤− ν ζ + θ + ν η − θ + ν θ − β =⎣ ⎦ ,

( ) ( ) ( )x z y y z xGI GAr r mω ω ωω′′ ′′ ′ ′′ ′ ′′ ′⎡ ⎤− θ − ν ζ + θ + ν η − θ + ν θ − β =⎣ ⎦ , 

( ) ( ) ( )y y zz y zy z z yEI GA r mω′′ ′ ′ ′⎡ ⎤− θ + ν ζ + θ + ν η − θ + ν θ − β =⎣ ⎦ , 

( ) ( ) ( )z z yz y yy z y zEI GA r mω′′ ′ ′ ′⎡ ⎤− θ − ν ζ + θ + ν η − θ + ν θ − β =⎣ ⎦ , 

( ) ( ) ( )z y y z BEI GAr r mω ω ω ωω′′ ′ ′ ′⎡ ⎤β + ν ζ + θ + ν η − θ + ν θ − β =⎣ ⎦ . (3.24) 

As we can see, each of the desirable seven components of displacement 
vector u is contained in the above system together with its major derivative 
of up to second order. Unlike the shear-free theory by Vlasov, the bending 
and torsion states of the system are not separated but coupled. The physical 
meaning of the equations is easy to see: 
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• first three equations are equations of equilibrium in terms of projections 
onto the respective axes X, Y and Z; 

• the fourth, fifth, and sixth equations are equations of equilibrium in 
moments with respect to the corresponding axes;  

• the last, seventh, equation is an equation of equilibrium of bitorques. 

6.3.1  Basic integral identity in the shear theory of open-profile 
thin-walled bars 

Based on the matrix relationships obtained earlier and using our common 
approach of integration by parts, we have 

 

(Au, σ) =
0
[ ( )

L

y y z z y zN H M M B Q′ ′ ′ ′ ′ ′ξ + θ + θ − θ − β + ζ + θ +∫  

( ) ( ) ]z yQ M dxω′ ′+ η − θ + θ − β =
0
[ ( )

L

y zN Q Q H Mω′ ′ ′ ′ ′−ξ − η − ζ − θ + −∫  

( ) ( ) ( )]y y z z z yM Q M Q M B dxω′ ′ ′−θ − + θ − − β − + [ ]
0

L
Nξ +

0

L

yQ⎡ ⎤η⎣ ⎦ + 

+ [ ]
0

L
zQζ + [ ]

0
( )

L
H M ωθ + +

0

L

y yM⎡ ⎤θ⎣ ⎦ – [ ]
0

L
z zMθ – [ ]

0

L
Bβ . 

The matrix form of the above equation is standard: 

(Au, σ) =(u, ATσ) + (p, u)Г , 

where we use the following vector of boundary loads, p, and the vector of 
boundary displacements, u: 

p = , , , ( ), , ,y z y znN nQ nQ n H M nM nM nBω⎡ ⎤+ −⎣ ⎦
T

 , 

 u = , , , , , ,y z⎡ ⎤ξ η ζ θ θ θ −β⎣ ⎦
T

. 

As usual, n denotes an X-component of the vector of external normal to the 
bar’s section. That is, n = 1 when x = L, and n = –1 when x = 0.   

Let us derive explicit expressions of operators Hσ и Hu using the above 
components of the vector of boundary stresses, p, and the vector of 
boundary displacements, u, where p = Hσσ and u = Huu. These are 
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Hσ =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

n
n

n
n n

n
n

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

,              Hu = I, (3.25) 

where I is an identity matrix of seventh order. 

6.3.2  Basic variational principles in the shear theory of open-
profile thin-walled bars 

Earlier we defined an expression of strain energy E(σ) by formula (3.5) as 
a quadratic functional of stresses σ. The same energy but now represented 
as a quadratic functional of the displacements can be derived from the 
general formula, E(u) = ½ (Au, CAu), or 

E(u) = 2 2 2 2 2

0

1 {
2

L

x y y z zEA GI EI EI EIω′ ′ ′ ′ ′ξ + θ + θ + θ + β +∫  

2 2 2 2[ ( ) ( ) ( )zz y yy zGA rωω′ ′ ′+ ν ζ + θ + ν η − θ + ν θ − β +  

2 ( )( ) 2 ( )( )zy y z z yrω′ ′ ′ ′+ ν ζ + θ η − θ + ν ζ + θ θ − β +  

2 ( )( )}y zr dxω ′ ′+ ν η − θ θ − β . (3.26)

Now let us deal with expressions of the force and kinematic potential. 
As earlier in Section 6.2.7, we use homogeneous boundary conditions for 
forces for the sake of simplicity. Then the potential of external forces will 
be a virtual work of the external distributed loads, written as a double 
integral: 

Пs(u) =
0

( )
L

x t n
l

q u q q ds dx
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

∫ ∫ v w . (3.27) 

Earlier we used (2.74) to transform this integral, but in our present case 
the expression of longitudinal displacement u should be replaced according 
to (3.15). Therefore, instead of (2.74), the shear theory uses 
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z yu y z= ξ − θ + θ − βω , 

     v = ηty + ζ tz + θ[(y – yP)tz – (z – zP)ty] , 

      w = ηtz – ζ  ty – θ[(y – yP)ty + (z – zP)tz] . (3.28) 

Substituting (3.28) and (2.35) to (3.27) transforms the force potential 
into 

{ }P P
0

[ ] [ ( )] [ ( )]
L

x z y y z
l

q y z q z z q y y dsdxξ − θ + θ − βω + η − θ − + ζ + θ −∫ ∫ . 

Integrating over arc coordinate s and using the notation of external loads 
integral over the bar’s cross-section from (2.36) yields the final expression 
of the force potential: 

Пs(u) = ( )
0

L

x y z x z z y y Bp p p m m m m dxξ + η + ζ + θ + θ + θ − β∫ . (3.29)

If we take the difference between this force potential and that for the 
shear-free theory defined by (2.75), we will have an increment of the force 
potential, ∆Пs(u), caused by taking the shear into account: 

∆Пs(u) =
0

( ) ( ) ( )
L

z z y y Bm m m dx′ ′ ′⎡ ⎤θ − η + θ + ζ + θ − β⎣ ⎦∫ . (3.30)

As we can see, this increment of force potential ∆Пs(u) is a virtual work of 
the external distributed moment and bitorque loads on the shear strains, 
which is quite expectable. 

Following the formal rules formulated in Chapter two for the general 
case, it is easy to build also the potential of the kinematical external 
actions and to write out explicit expressions of the basic functionals, the 
Lagrange functional and the Castigliano functional. 

The reader can make this derivation by himself, if need be. 

6.3.3  A remark on the shear theory of open-profile thin-walled 
bars for non-warped cross-sections 

As we established in Section 6.2.8, the non-warped case makes the 
problem degenerate both in the differential form and in the variational 
form of the shear-free theory of open-profile thin-walled bars.  

Now let us see what changes the non-warpedness introduces to the shear 
theory. Formulas (3.1) and (3.2) of the normal and tangential stresses will 
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be replaced by (2.81) and (2.82). As a result, formula (3.5) of the strain 
energy transforms into 

E(σ) =
2 22 22 2

0

21
2

L
y y z yz z

x y z z y zy

M Q Q QM QN H dx
EA GI EI EI GF GF GF

⎡ ⎤
+ + + + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ . (3.31)

The matrix of cross-section shape factors, µ, together with its inverse 
matrix ν, becomes a second-order matrix: 

µ = zz zy

yz yy

µ µ⎡ ⎤
⎢ ⎥µ µ⎣ ⎦

,      ν = µ–1 = zz zy

yz yy

ν ν⎡ ⎤
⎢ ⎥ν ν⎣ ⎦

. (3.32) 

Further, the vector representations of “stresses” σ, strains ε, 
displacements u and external load X  will change, so we will have the 
following instead of (3.8), (3.11), (3.20) and (3.21): 

σ = , , , , ,y z z yN H M M Q Q⎡ ⎤⎣ ⎦
T

,    , , , , ,x y z x y zp p p m m m⎡ ⎤= ⎣ ⎦
T

X , 

      u = , , , , ,y z⎡ ⎤ξ η ζ θ θ θ⎣ ⎦
T

,          ε = G , , , , ,x z y z y⎡ ⎤ε χ χ χ γ γ⎣ ⎦
T

. (3.33) 

As we can see, the vector of stresses, σ, has lost its bitorque B and its 
constricted-torsion moment Mω, which are absent in a non-warped section. 
The respective strain components χB and γω are also excluded from 
vector ε. The vector of external force loads has lost its bimoment load mB, 
and the displacement vector, u, does not contain warping measure β 
anymore.  

Following the changes made to vectors σ and ε for a non-warped 
section, we should exclude: 

• sixth and eighth rows and seventh column from geometry matrix A as 
defined in (3.13);  

• fifth and eighth columns and seventh row from equlibrium matrix AT as 
defined in (3.12);  

• rows and columns number five and eight from elasticity matrix С as 
defined in (3.23).  

The result is 
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                                  ξ      η      ζ       θ      θy      θz                 
                             ===================== 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

A , (3.34) 

                        N          H          My        Mz         Qz         Qy        
        ================================= 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 1

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

AT , (3.35) 

and  

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

x

y

z

zz zy

yz yy

EA
GI

EI
EI

GA GA
GA GA

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥ν ν
⎢ ⎥

ν ν⎢ ⎥⎣ ⎦

C . (3.36) 
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The governing system of equations in terms of displacements is derived 
from the general formula of the Lame operator equation: 

Lu = X ,             L = ATCA . 

After making appropriate matrix transformations, we will have the 
following system of six simultaneous differential equations  with respect to 
six components of the displacement vector, u, 

xEA p′′− ξ = , 

( ) ( )yz y yy z yGA p′′ ′ ′′ ′⎡ ⎤− ν ζ + θ + ν η − θ =⎣ ⎦ , 

( ) ( )zz y zy z zGA p′′ ′ ′′ ′⎡ ⎤− ν ζ + θ + ν η − θ =⎣ ⎦ , 

x xGI m′′− θ = , 

( ) ( )y y zz y zy z yEI GA m′′ ′ ′⎡ ⎤− θ + ν ζ + θ + ν η − θ =⎣ ⎦ , 

( ) ( )z z yz y yy z zEI GA m′′ ′ ′⎡ ⎤− θ − ν ζ + θ + ν η − θ =⎣ ⎦ .  (3.37) 

As for the expression of strain energy E represented as a functional of 
the displacements, we will have the following for the non-warped section 
instead of (3.26) which was derived for a warped section: 

E(u) = 2 2 2 2

0

1 {
2

L

x y y z zEA GI EI EI′ ′ ′ ′ξ + θ + θ + θ +∫  

+ 2 2[ ( ) ( ) 2 ( )( )]}zz y yy z zy y zGA dx′ ′ ′ ′ν ζ + θ + ν η − θ + ν ζ + θ η − θ . (3.38) 

6.3.4  Remark on a matrix of cross-section shape factors, µ 

Earlier we have defined the components of matrix with formulas (3.6) – a 
matrix of dimensionless factors of the cross-section’s shape. Also, 
according to (3.7), matrix ν is defined by formal inversion of matrix µ. The 
latter definition is based on the implicit assumption that the inversion is 
possible, i.e. that the µ matrix is nondegenerate. 

The µ matrix can be shown to be positive definite – hence invertible. To 
see this, take note than formula (3.4) implies the strict positivity of energy 
E(τ) > 0 at τ ≠ 0. Hence follows, as is easy to see, the positive definiteness 
of the matrix: 
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2

zy zzz

yz yy y

yz

GA GA rGA

GA GA rGA

rGA rGA r GA

ω

ω

ωω ωω

µ⎡ ⎤µµ
⎢ ⎥
⎢ ⎥

µ µ µ⎢ ⎥
=⎢ ⎥

⎢ ⎥
µµ µ⎢ ⎥

⎢ ⎥
⎣ ⎦

 

1 0 0 1 0 0
1 0 1 0 0 1 0

0 0 1/ 0 0 1/

zz zy z

yz yy y

z y

GA
r r

ω

ω

ω ω ωω

⎡ ⎤µ µ µ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ µ µ µ ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥µ µ µ⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

If we consider that GA > 0 and r > 0, we will understand that the positive 
definiteness of the matrix implies the same for matrix µ.  

This kind of reasoning works only when we deal with a warped section. 
A non-warped section is a special degenerate case, for which the last two 
terms in (3.1) and (3.2) vanish. This makes the order of matrices µ and ν 
lower by one (see Section 6.3.3 for more detail). At the same time, the 
positive definiteness of these truncated matrices is still maintained even in 
the degenerate case of the non-warped section. 

The latter statement can be proved directly, without using any energy 
considerations. To see this, consider the µ matrix for a non-warped cross-
section: 

µ = zz zy

yz yy

µ µ⎡ ⎤
=⎢ ⎥µ µ⎣ ⎦

2
o o o

2

2
o o o

2

y y z

y y zl l

z y z

z y zl l

S S SA Ads ds
I h I I h

S S SA Ads ds
I I h I h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫
. (3.38)

As we know from linear algebra [14], a symmetric matrix is positive 
definite if and only if all its principal minors are positive. Because µzz > 0, 
it becomes clear that the positive definiteness of the second-order matrix µ 
will follow immediately from the positiveness of its determinant. We have 

det µ =
22 22

o o oo
2 2

y z yz

y z l l l

S S SSA ds ds ds
I I h h h

⎡ ⎤⎛ ⎞
⎢ ⎥− ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫ . (3.39) 

But the brackets in (3.39) contain a positive expression because of the 
well-known Buniakovsky inequality [13]: 
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2

2 2

l l l

UVds U ds V ds
⎛ ⎞

≤⎜ ⎟
⎝ ⎠
∫ ∫ ∫ , 

in which we should assume 

o /yU S h= ,         o /zV S h= . 

6.4 A semi-shear theory of open-profile thin-walled bars 
 
Let us return to formula (3.2) of the tangential stresses in particular points 
of the cross-section of a thin-walled bar and rewrite it here as a sum of two 
terms: 

τ = τQ + τM ,      τQ = o oy z
z y

y z

S SQ Q
hI hI

− − ,      τM = oSM
hI

ω
ω

ω

− . (4.1) 

Tangential stresses τQ caused by shear forces Qz and Qy will be called 
tangential stresses of bending. Then stresses τM caused by the constricted-
torsion moment, Mω, can be reasonably called tangential stresses of 
torsion. 

As known [5], one of methods of building approximate (applied) 
theories is based on dividing the stresses and/or strains into primary (say, 
σо, εо) and secondary (say, σ1, ε1) and then excluding the secondary 
components from the governing equations because they are less significant 
than the primary ones. The energy-based approach to this division is to 
neglect the energy of the secondary components comparing to the energy 
of the primary stress and strain components. In other words, the general 
expression of the energy, 

E(σ) = E(σо) + E(σ1) + А(σо,ε1) ≈ E(σо) 

should lose its second and third terms because they are far less than the 
first. Here А(σо,ε1) is a virtual work of the primary stresses on the strains 
caused by the secondary stresses (or vice versa, because the work 
reciprocity theorem holds). 

If we use this approach to compare between the shear theory of thin-
walled bars discussed in Section 6.3 and the shear-free theory by 
V.Z. Vlasov, we can see that Vlasov’s theory adopts the normal stresses, 
σx, and the tangential stresses, τk, as the primary stress components. As for 
tangential stresses τ evenly distributed over the thickness, h, of the bar’s 
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cross-section walls, they are classified as secondary stress components – it 
suffices to compare the expressions of the energy from (3.5) and from 
(2.72).  

However, we can also use an intermediate version of the theory where 
only a part of the tangential stresses, τ, is thought to be primary. Those are 
the tangential stresses of torsion, τM, while the tangential stresses of 
bending, τQ, are classified as secondary. A theory of this kind will be 
called a semi-shear theory of thin-walled bar. 

The significance of the semi-shear theory, which is an intermediate one 
between the shear and shear-free versions of the theories, is as follows. 
First, as we can predict beforehand and will see later, the semi-shear 
theory is essentially simpler than the shear version. Second, we can expect 
that the energy of tangential stresses τQ and the energy of normal stresses 
σx are in about the same relation as are the additional terms in the 
expression of the energy in Timoshenko’s theory of beam bending 
comparing to that in the Bernoulli–Euler theory. But, as we know well, 
there is a wide scope of practical problems where the refinement of the 
solutions achieved by using Timoshenko’s theory can be neglected 
beforehand without introducing any substantial error.  

So, according to what has been said, we adopt the following energy 
expression for the semi-shear theory instead of (3.5): 

E(σ) =
2 22 22 2

2
0

1
2

L
y z

x y z

M MM BN H dx
EA GI EI EI EI GF r

ω

ω ω

⎡ ⎤
+ + + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ , (4.2)

where, as it is worth reminding, 

AFω
ωω

=
µ

,        
2
o

2
r

l

SI ds
I h

ω
ωω

ω

µ = ∫ .   

Obviously, in the semi-shear theory the shear forces should be omitted 
from stress vector σ in (3.8), and this gives the following six-component 
vector: 

σ = , , , , ,y zN H M M B M ω⎡ ⎤⎣ ⎦
T

. (4.3) 

It is also obvious that matrix C –1 from (3.9) should be replaced by the 
following for the purposes of the semi-shear theory: 
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1

2

1 0 0 0 0 0

10 0 0 0 0

10 0 0 0 0

10 0 0 0 0

10 0 0 0 0

0 0 0 0 0

x

y

z

EA

GI

EI

EI

EI

r GA

−

ω

ωω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥µ
⎢ ⎥
⎣ ⎦

C . (4.4)

As we can see, the elasticity matrix, C, is diagonal in the semi-shear 
theory, and this is a simplification of the governing simultaneous equations 
of the problem in comparison to the equations of the full shear theory.  

The set of the equilibrium equations (3.10) will become as follows, after 
the shear forces are excluded: 

xN p′− = ,  xH M mω′ ′− − = ,  y zM p′′− = ,  z yM p′′− = , 

BB M mω′− + = , (4.5) 

where the generalized loads yp  and zp  are defined by the first two 
formulas in (2.50).  

We introduce the vector of loads, X , 

X = , , , ,x y z x Bp p p m m⎡ ⎤⎣ ⎦
T

, (4.6) 

to write the system of equilibrium equations (4.5) in the matrix form, 
ATσ = X , where we assume 
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          N       H         My        Mz        B        Mω 
                    = = = = = = = = = = = = = = = = = = = = = 

2

2

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 1

d
dx

d
dx

d
dx

d d
dx dx

d
dx

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

TA . (4.7)

Then the operator of geometry, A, conjugate to the equilibrium operator, 
will become 

       ξG      ηP         ζP         θ     –β 
                              = = = = = = = = = = = = = = = 

2

2

2

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A . (4.8)

This operator produces the vector of strains, ε, when applied to the vector 
of displacements, u, where we denote 

u = [ ], , , ,ξ η ζ θ −β
T

,     ε = G , , , , ,x z y B ω⎡ ⎤ε χ χ χ χ γ⎣ ⎦
T

,  (4.9) 

and  
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G ′ε = ξ ,   x ′χ = θ ,   z ′′χ = −ζ ,   y ′′χ = −η ,  B ′χ = −β ,   ω ′γ = θ − β . (4.10) 

The final system of governing equations of equilibrium in terms of 
displacements, 

Lu = X ,             L = ATCA, 

looks like 

xEA p′′− ξ = ,    IV
z yEI pη = ,    IV

y zEI pζ = , 

2

( )x x
r GAGI m

ωω

′′ ′′ ′− θ − θ − β =
µ

,   
2

( ) B
r GAEI mω

ωω

′′ ′β + θ − β =
µ

. (4.11) 

As we can see, the bending and torsion problems are separate in the 
semi-shear theory. This is why the system of equations (4.11)  is much 
simpler than its counterpart in the full shear theory, that is, simpler 
than (3.24).  

By the way, the problem of torsion described by the last two differential 
equations in (4.11) can be easily reduced to one equation of third order 
with respect to function β. To see this, we differentiate the last equation in 
(4.11) with respect to x and sum the result with the fourth equation of 
system (4.11) to produce 

x x BGI EI m mω′′ ′′′ ′− θ + β = + . (4.12) 

Now we exclude the value of ′′θ  from the fourth equation of (4.11) using 
(4.12) and get 

1 1r r r r
x B

x x x

I GI I IEI m m
I I Iω

ωω ωω ωω ωω

⎛ ⎞ ⎛ ⎞
′′′ ′ ′+ β − β = + +⎜ ⎟ ⎜ ⎟µ µ µ µ⎝ ⎠ ⎝ ⎠

. 

It is convenient to introduce a dimensionless geometrical parameter, ψ, 
by defining 

1 x

r

I
I

ωωµ
ψ = + . (4.13) 

With this notation, the final governing differential equation of third order 
for the analysis of torsion with the semi-shear theory of open-profile thin-
walled bars will be 
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   x x BEI GI m mω ′′′ ′ ′ψ β − β = + ψ . (4.14) 

It is also useful to present an expression of strain energy E, which is 
treated here as a functional of the displacements in the semi-shear theory. 
It is easy to derive this: 

E(u) = 2 2 2

0

1 [
2

L

y zEA EI EI′ ′′ ′′ξ + ζ + η +∫  

                 2 2 2( ) ]
1

x
x

GIEI GI dxω ′ ′ ′+ β + θ + θ − β
ψ −

 . (4.15) 

Obviously, the torsion corresponds to only a part of the integrand in (4.15), 
which is placed on the second line.  

Confining ourselves with the constricted torsion (no bending 
considered), we can write the following expression of the Lagrange 
functional, 

L(θ,β) = 

= 2 2 2

0 0 0

1 ( )
2 1

L L L
x

x x B
GIEI GI dx m dx m dxω

⎡ ⎤′ ′ ′β + θ − β + θ − θ + β⎢ ⎥ψ −⎣ ⎦
∫ ∫ ∫ . (4.16)

Here we would like to note that the structure of the above functional 
bears some resemblance to the Lagrange functional in the Timoshenko 
beam theory – see formula (4.6.14). To bring these two functionals to a 
complete consistency, we would need, however, to support the 
Timoshenko beam not by a usual Winkler-type foundation but by an 
elastic foundation which would resist to the rotation of the original ground 
surface with the factor of С2 [10]. Formula (4.6.14), transformed for this 
purpose, will look like 

L(v,ϕ) = 2 2 2
2

0 0 0

1 [ ( ) ]
2

L L L

yEI GF C dx q dx m dx′ ′ ′ϕ + − ϕ + − − ϕ∫ ∫ ∫v v v . (4.17)

In (4.17) we re-denote the slope of the Timosheko beam by ϕ because the 
symbol of θ is already used here to designate a torsion angle of the thin-
walled bar’s cross-section. 

The comparison between (4.16) and (4.17) leads to an important 
conclusion: the torsion of an open-profile thin-walled bar can be modeled 
and analyzed within the frames of the semi-shear theory as the bending of 
a Timoshenko beam. To do it, one needs to replace the designations in 
one’s equations according to Table 6.1 presented below. 
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Table 6.1 
Bending of a Timoshenko beam Torsion of a thin-walled bar 

deflection v torsion angle θ 
slope of section ϕ warping measure β 
flexural stiffness  EI sectorial stiffness EIω 

shearing stiffness GFy 
 GIx /(ψ – 1) 

stiffness of foundation С2 
stiffness of pure 
torsion GIx 

lateral load q external torque per 
unit of line mx 

moment load m external bitorque per 
unit of line – mB 

bending moment in the 
beam’s cross-section M = –EIϕ′ bitorque B = – EIωβ′ 

shear force in the 
beam’s cross-section Q = GFy(v′–ϕ) constricted-torsion 

moment ( )
1

xGI
Mω ′= θ − β

ψ −
 

moment reaction of 
elastic foundation С2v′ pure-torsion moment H = GIxθ′ 

generalized shear force 
in the beam K = Q + С2v′ 

full torque 
xM M Hω= +  

Further details are not discussed here. 
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7  PARTICULAR CLASSES OF PROBLEMS IN 
STRUCTURAL MECHANICS – part 4 

 The theory of analysis of thin-walled constructions no earlier 
became a chapter of structural mechanics than its clear and 
convenient working hypotheses were formulated on the basis of 
experimental data and made it possible to construct practical 
methods of calculation. 
Kan SN, Panovko YG (1952) Principles of structural mechanics 
of thin-walled constructions (in russian). Oborongiz, Moscow 

7.1 Closed-profile thin-walled bars – a theory by Umanski 

We consider a closed cylindrical (not necessarily round) shell of the 
length L, with the perimeter of its cross-section’s median line being l and 
the thickness of the wall being h. We assume that, exactly as in the theory 
of open-profile thin-walled bars, those characteristic parameters are related 
in comparison to one another as (6.2.1). This is the case when we deal with 
a closed-profile thin-walled bar.  

As before, we introduce a right-hand Cartesian coordinate system, 
(X,Y,Z). The X-axis is a longitudinal axis of the bar, parallel to the 
generatrix of the cylindrical shell, and it passes through the center of 
gravity of any cross-section of the bar. The Y and Z axes are central 
principal axes of inertia of the bar’s cross-section. The origin of the 
coordinates will be located in such way that the beginning and the end 
sections of the bar have the respective coordinates of x = 0 and x = L.  

We choose an arbitrary point, О, on the bar’s profile, from which to 
count off the arc coordinate, s — a distance, taken with a certain sign, 
between the origin О and the current point of the profile, M. The sign of s 
is defined by the positive direction along the contour. We assume that the 
positive direction of coordinate s conforms to a counter-clockwise 
movement around the contour, when looking from the positive side of the 
X-axis.   

As earlier in Section 6.2, a right-hand triple of curvilinear axes is 
introduced in every point М of the profile, with local unit vectors (ix, n, t). 
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Unit vector t is tangential to the arc coordinate s, towards its increasing 
values, and unit vector n is an external normal to the profile. Take note of 
the important fact that, in order to describe the material properties, we 
introduce two dimensionless functions of the arc coordinate, e(s) and g(s), 
and the modulus of elasticity, Е, together with the modulus of shear, G, 
which help define a fictitious unified material for the section (and thus can 
be called the unification moduli). Functions e and g characterize the 
distribution of the material’s physical properties along the profile. The 
actual elasticity modulus, Е(s), and the actual shear modulus, G(s), in an 
arbitrary point of the profile are defined as 

Е(s) = Еe(s),         G(s) = Gg(s). (1.1) 

The reason why sections not uniform with respect to their material are 
taken into consideration is the wish both to generalize the relevant 
formulas and to serve practical purposes. In particular, when a modern 
bridge is being built, the sections of the bridge’s stiffening girder are often 
composed of steel boxes, with a ferroconcrete slab to serve for the 
carriageway as shown further in Fig. 8.1. 

With regard to what has been said, please note that the geometrical 
characteristic values of the sections are actually their combined physical 
and geometrical characteristics. Particularly, the area of the section, A, and 
the moments of inertia, Iy and Iz, are defined as 

A ehds= ∫ ,      2
yI ehz ds= ∫ ,       2

zI ehy ds= ∫ . 

It is also obvious that the position of the center of gravity and those of the 
central principal axes of inertia of the section depend on function e(s). 

7.1.1  Pure torsion of a closed-profile thin-walled bar 

We begin our consideration of the theory of closed-profile thin-walled bars 
with a simplest analysis of pure (free, nonconstricted) torsion of a thin-
walled bar with its cross-section containing a single closed contour. 
Sometimes cross-sections of this kind are called singly closed. 

Let each end of the bar have a specific external moment, Mx, applied to 
it, as shown in Fig. 7.1. There are no other external actions, nor external 
constraints (fixations of the bar). But then we can, just as we did in Saint-
Venant’s problem, impose six external constraints on the bar in order to 
eliminate its rigid displacements without affecting the stress distribution. 
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Fig. 7.1.  Pure torsion of a thin-walled bar with a singly closed cross-section 

To solve this simple problem, we adopt the following set of 
assumptions, or hypotheses: 

• an unchangeable-contour hypothesis, according to which the cross-
section of the bar does not change its shape in its plane; 

• a uniform-tangential-stress hypothesis, which states that tangential 
stresses τ xs are distributed uniformly over the thickness of the shell;  

• an independent-longitudinal-displacement hypothesis, which states that 
displacements u of the profile’s points are independent of their 
longitudinal coordinate x. 

• a no-pressure hypothesis, according to which the longitudinal fibers of 
the thin-walled bar do not interact with one another in their normal 
directions. In other words, we assume σ s = σ n = 0. 

The unchangeable-contour hypothesis is an exact replica of its 
counterpart in the theory of open-profile thin-walled bars, and it has 
exactly the same sense.  

It is the matter of course that the hypothesis is true just as long as the 
thin-walled bar is reinforced throughout its length by a set of sufficiently 
frequent transversal diaphragms, stiff in their planes and perfectly flexible 
from their planes. 

The uniform-tangential-stress hypothesis states that the stresses τ xs 
remain the same along the thickness of the shell, that is, they do not vary 
with the local coordinate n. Also, this hypothesis assumes that there are no 
tangential stresses other than τ xs, directed tangentially to the profile, in the 
bar’s cross-section. Therefore we can omit the xs superscript of these 
stresses and denote τ = τ xs.  

The independent-longitudinal-displacement hypothesis assumes that the 
displacements u = u(s) of the profile’s points are a function of the arc 
coordinate s only and do not depend on x. The geometrical meaning of this 
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fact is an equal deformation of all cross-sections of the shell bar from their 
planes. This hypothesis implies the absence of the longitudinal strain, 
εx = du/dx = 0, in pure torsion. 

The no-pressure hypothesis and the εx = 0 condition imply also the 
absence of the normal stress in pure torsion, that is, σx = 0. 

We will show that the flow of tangential stresses T = τh is the same in 
all points of the profile. To see this, we cut an element of the dx × ds sizes 
from the shell bar and check its equilibrium in projections onto X, to obtain 
immediately that ∂T/∂s = 0. The similar condition of equilibrium of the 
same element in projection onto the tangential direction, t, gives ∂T/∂x = 0.  
So, the flow of the tangential stress T in pure torsion is a constant.  

This constant, which is the only characteristic value of the stress 
distribution in the system, can be easily determined from the equation of 
equilibrium in terms of the moments with respect to the X-axis. If we take 
an arbitrary cross-section of the bar and select an arbitrary point Р to be a 
pole in the plane of that section, then the total torque created by the Т  flow 
with respect to the pole will be equal to 

PM( ) xT ds•×∫ R t i = PMT ds•∫ R n =T dsρ∫ , 

where ρ is a projection of vector RPM onto the direction of normal n to the 
profile of the bar at the current point М.  

Parameter ρ, considered as a function of arc coordinate s, will be called 
an arm function of pole P, or just an arm of pole P.  

It is clear that the integral of the arm function over the whole profile, 

dsρ∫ = Ω, (1.2) 

has the geometrical meaning of the doubled area bounded by the bar’s 
profile, and it does not depend on a particular location of pole Р. Pole Р 
can be chosen, for example, among the points of the profile itself, or even 
outside the area bounded by the profile. To be particular (although we do 
not have to), we can place pole Р in the center of gravity of the bar’s cross-
section.    

Equaling the moment of internal forces (stresses) from (1.1) to the 
external torque, Mx, yields immediately 

xMT =
Ω

. (1.3) 

Formula (1.3) is well-known in the science of strength of materials, where 
it is often called the Bredt formula. 
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Thus, all the components of the stress distribution in the bar are now 
determined, and we still have used nothing but the equilibrium equations 
to find them. Hence an important conclusion:  

The problem of a pure torsion of a singly closed profile belongs to the 
category of statically determinate problems. 

Now let us determine the kinematical parameters. Of all strain 
components, the only one different from zero is the shear, γxs, which can be 
determined from Hooke’s law as 

γxs = T
Ggh

. (1.4) 

On the other hand, 

γxs =
u
s x

∂ ∂
+

∂ ∂
v , (1.5) 

where v is the tangential displacement of the current point of the 
profile, М.  

We will use about the same above-mentioned six external constraints as 
we have used with the Saint-Venant problem. Strictly speaking, we assume 
that: 

• the location of pole Р at the beginning and end sections of the bar does 
not change in the bar crosss-section’s plane – this gives us four 
constraints;  

• the slope, θ, of the beginning section of the bar is kept equal to zero – 
this is the fifth constraint; 

• the start point, О, of the beginning section of the bar is restrained from 
displacements toward X – this is the sixth constraint.  

Clearly, by excluding only the rigid displacements of the body with 
these constraints, we make the axis of poles of all cross-sections of the bar 
keep its position in the (Y,Z)-plane. As a result, the tangential 
displacement, v, of the current point, М, of an arbitrary section of the bar 
can be determined as the product of the section’s slope θ by arm ρ of 
pole Р around which the rotation takes place1  

v = θρ, (1.6) 

wherefrom 

                                                      
1 It should be obvious that we assume the slopes θ to be small (infinitesimal). 
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x
∂ ′= θ ρ
∂
v . (1.7) 

Now, excluding shear γxs from (1.5) using (1.4), and then using (1.7) 
yields 

du T
ds Ggh

′= − θ ρ . (1.8) 

Note that we are entitled to change the partial derivative to the ordinary 
differentiation here, because function u is independent of coordinate x as 
we said earlier. The integration of (1.8) with respect to the arc coordinate 
from the start point of the profile, О, to the current point М will give 

0
0 0

s sT dsu u ds
G gh

′= + − θ ρ∫ ∫ , (1.9) 

where u0 is a longitudinal displacement of the zero point of the profile.  
The displacement continuity condition requires that the function u(s) be 

periodic with a period equal to the perimeter of the profile, l. The 
mathematical condition of space periodicity is u(s) = u(s + l); in particular, 
u0 = u(l). Therefore, by assuming s = l in (1.9) we get this expression for 
twist θ′: 

T ds
G gh

′θ =
Ω ∫ 2

xM ds
G gh

=
Ω ∫ . (1.10) 

Placing the result in equation (1.9) gives 

0
0 2

s

x

ds
M dsghu u dsG gh

gh

⎛ ⎞
⎜ ⎟
⎜ ⎟= + Ω −ω

Ω ⎜ ⎟
⎜ ⎟
⎝ ⎠

∫
∫

∫
, (1.11) 

where ω is a so-called sectorial coordinate of the current point of the 
profile, М, which is equal to the doubled area of the sector swept by  
radius vector RPM as the end of this vector moves from origin О to the 
current point, М, that is, 

0

s
dsω= ρ∫ , (1.12) 

and 
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ω(l) = Ω . 

It may seem that formula (1.11) includes a still unknown 
displacement, u0. However, in our case this displacement has to be equal to 
zero because this was the way we imposed one of the above said 
constraints to exclude the rigid displacement of the bar. So, finally, 

0

2

s

x

ds
M dsghu dsG gh

gh

⎛ ⎞
⎜ ⎟
⎜ ⎟= Ω −ω

Ω ⎜ ⎟
⎜ ⎟
⎝ ⎠

∫
∫

∫
. (1.13) 

Note that all values in the right-hand part of formula (1.10) of the twist 
do not depend on x. Consequently, the twist is a constant in the problem of 
pure torsion of the singly closed profile. Hence the slope of the bar’s 
section, θ, should be a linear function of coordinate x: 

x′θ = θ .  

Returning to formula (1.10), we can rewrite it with standard 
designations from the science of strength of material: 

x

x

M
GI

′θ = . (1.14) 

Comparing (1.10) and (1.14) gives immediately an expression of the 
torsional moment of inertia of the bar’s cross-section, 

2

xI ds
gh

Ω
=

∫
. (1.15) 

After introducing the above designations, we can rewrite formula (1.13)  
of longitudinal displacements u(s) as 

( )x

x

Mu s
GI

= α , (1.16) 

where 

0
( )

s
xI dss

gh
α = −ω

Ω ∫ . (1.17) 

Now we could consider the solution of the problem to be completed but 
for one circumstance, still unexplained. The matter is that parameter α, 
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which is a factor in (1.16), is a function of the arc coordinate, α = α(s), and 
is (together with sectorial coordinate ω) dependent on the location on the 
profile of pole Р and of the start point, О, from which to count off the arc 
coordinate, s. It means that the choice of the pole and start point О affect 
also the longitudinal displacements, u. But in our pure torsion case this 
choice means just a certain way of eliminating the rigid displacements of 
the bar. 

We are not going to dwell on the determination of the pole Р location 
here; we will find this out later, when discussing a more general behavior 
of a thin-walled bar. 

Note that function α(s) introduced earlier characterizes the distribution 
of the warp displacements along the profile of a thin-walled bar in pure 
torsion. That is why the α(s) function can and should be called a warp 
function. 

7.1.2  A general behavior of a closed-profile thin-walled bar 

To analyze the general behavior of a thin-walled singly closed bar, we 
introduce the following assumptions or hypotheses: 

• an unchangeable-contour hypothesis, which assumes the cross-section 
of the bar does not change its profile in the section’s plane; 

• a longitudinal-moment-free-shell hypothesis, according to which the 
distribution of normal stresses σ x over the thickness of the shell is 
assumed to be uniform, and tangential stresses τ xn are thought negligible 
thus equivalent to zero; 

• a no-pressure hypothesis, which assumes that the longitudinal fibers of 
the thin-walled bar do not interact in their common normal directions. In 
other words, it assumes σ s = σ n = 0; 

• a uniform-tangential-stress hypothesis, which assumes tangential stress 
τ xs to be uniformly distributed over the thickness of the shell; 

• Umanski’s hypothesis of warping in the general analysis of the behavior 
of a thin-walled bar.  

Of all the hypotheses listed above, the new one (and the most important 
one, too) is Umanski’s hypothesis [7], [8]. The main point of it follows. 

In the general analysis of a closed-profile thin-walled bar, the 
longitudinal displacements of the points of the bar’s cross-sections consist 
of displacements obeying the law of plane and of additional warp 
displacements. Or, 
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u = A + By + Cz + uw , (1.18) 

where uw = uw(x,s) are the longitudinal warp displacements which appear 
when the cross-sections leave their planes, while contours A, B and C are 
different for different cross-sections2. More accurately, the said values are 
actually not constants but parameters which are functions of the 
longitudinal coordinate, x. 

The key idea that belongs to A.A. Umanski is simple and elegant. The 
meaning of Umanski’s hypothesis is that the warp component of the 
longitudinal displacements in the general mechanical behavior of a thin-
walled bar for each particular cross-section of it is inherited from the free 
torsion of the bar. Of course, the inheritance should not be understood as a 
direct borrowing; instead it means that a pattern of variation of that 
component in the bar’s cross-section plane (that is, in the Y,Z-plane) is 
inherited. In essence, Umanski’s hypothesis assumes that warp 
displacements uw are the same as those in free torsion, up to a certain 
scaling factor.  

Turning to formula (1.16), which defines the warping of a singly closed 
section in free torsion, we rewrite it in application to the general analysis 
of the thin-walled bar as 

w ( ) ( )u x s= β α , (1.19) 

where β(x) is a function yet to be determined, which we will call a warp 
measure function. 

So, according to Umanski’s hypothesis, warp displacements uw can be 
represented with a sufficient accuracy (approximated, if it is more to one’s 
liking) as the product of the warp function, α(s), by the warp measure 
function, β(x). 

We should emphasize once again that the α(s) function is defined 
completely only when the Р pole is chosen and a start point, O, is assigned 
on the contour of the section to be an origin of the arc coordinate, s. We 
will return to the definition of those points later, and now we want to 
notice that the meaning of the warp function, α(s), implies that the pole, Р, 
should be the section’s center of twist which, as was proved in 
Section 6.2.3, is the same as its center of bending. 

Obviously, the first three terms in formula (1.18), which define the 
longitudinal displacements of the bar’s cross-section as a rigid body, can 
be treated from the standpoint of geometry as a translatory displacement of 
the section along the X-axis and as displacements of the section’s points 

                                                      
2 The subscript of w corresponds, quite obviously, to warping.  
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caused by the rotation of the section about the Y and Z axes. Thus, instead 
of (1.18) we can write 

( , ) z yu x s y z= ξ − θ + θ + βα , (1.20) 

where 

• ξ = ξ(x) is a translatory displacement of the section along the X axis; 
• θy and θz are slopes of the section with respect to the Y and Z axes, 

respectively. 

Based on (1.20) and the no-pressure hypothesis, we have this for the 
normal stresses: 

σx = Eе u
x
∂
∂

= Eе ( )z yy z′ ′ ′ ′ξ − θ + θ + β α . (1.21) 

The section-integral characteristics of normal stresses σx are thus 
determined as follows: 

xN hds= σ∫ = EA E e hds′ ′ξ + β α∫ , 

x
yM z hds= σ =∫ y yEI E e zhds′ ′θ + β α∫ , 

x
zM y hds= σ∫ z zEI E e yhds′ ′= − θ + β α∫ . (1.22) 

To simplify the formulas, we introduce three values, ω0, ωy, ωz, which 
are constants for the section as a whole: 

0
1 e hds
A

ω = α∫ ,     1
y

y

e zhds
I

ω = α∫ ,      1
z

z

e yhds
I

ω = α∫ . (1.23) 

This enables us to rewrite (1.22) as 

0
N
EA

′ ′ξ = −β ω ,      y
y y

y

M
EI

′ ′θ = −β ω ,        z
z z

z

M
EI

′ ′θ = − +β ω . (1.24) 

Substituting these relations to the general formula (1.21) will transform the 
formula of the normal stresses into 

σx =  ( )yz
z y

z y

MMN e ey ez Ee y z
A I I

′+ + − β ϖ +ω +ω , (1.25)

where 
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0ϖ = ω −α . (1.26) 

The function of the arc coordinate, ϖ = ϖ(s), introduced by 
formula (1.26) is called a generalized sectorial coordinate, and it plays an 
important part in the whole theory of the closed-profile thin-walled bars. 
The role that belongs to this function in the closed-profile bar theory is 
about the same as that of the usual sectorial coordinate, ω = ω(s), in the 
theory of open-profile bars. Note one essential property of the generalized 
sectorial coordinate ϖ(s), such as: 

The generalized sectorial coordinate, ϖ, does not depend on a particular 
origin of the arc coordinate s. 

And indeed, if we expand the expression from (1.26) for ϖ as a function 
of s, we will see how both α(s) and ω0 do depend on the location of the arc 
coordinate’s origin separately, but the variations of these functions as the 
О point is moving along the profile annihilate each other thus keeping the 
value of ϖ(s) intact. 

Also, it follows directly from (1.26) and (1.23) that the generalized 
sectorial coordinate, ϖ, as a function of s satisfies the condition 

0ehdsϖ =∫ . (1.27) 

We will choose the pole, Р, right now as a point with coordinates (yP, zP) 
such that it should meet two extra conditions of orthogonality for the 
generalized sectorial coordinate, 

0ehydsϖ =∫ ,         0ehzdsϖ =∫ . (1.28) 

Later we will see that meeting these requirements does indeed make pole Р 
coincident with the center of bending/twist. 

It is easy to check that conditions (1.28) imply that the two constants are 
equal to zero, ωy = 0 and ωz = 0. Therefore formula (1.25) becomes as 
simple as 

σx =  yz

z y

MMN e ey ez Ee
A I I

′+ + − β ϖ . (1.29) 

Once again we should call the reader’s attention to the fact that the 
formula is true for any start point of the profile, О, whatsoever. 

Finally, it should be noted that the first three terms in formula (1.29) are 
standard for the science of resistance of materials. They define the normal 
stresses in a section, caused by the longitudinal displacements of the 
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section according to the law of plane. The last term, one proportional to 
function β′, is a normal stress caused by the warping of the section.  

Tangential stresses 

Let us extract an element from the thin-walled bar by using two 
longitudinal cross-sections and two lateral cross-sections, as shown in 
Fig. 7.2. 

X

Y

Z

O

M

s

dx

T
0

T s( )

dx
x

)h(
h

x
x

�

��

��

hx
�

 
Fig. 7.2.  The equilibrium of an extracted element of the bar 

One of the longitudinal cross-sections will go through the zero point of 
the profile, О, and the second longitudinal section will go through the 
current point of the profile, М, with the arc coordinate of s. The two cross-
sections are at the distance dx from each other. 

We compose an equation of equilibrium of the extracted element of the 
bar in terms of projections onto X and thus have 

0

xs
hds

x
∂σ
∂∫ + 0( )T s T− +

0

s

xq ds∫ = 0 . (1.30) 

Substituting the expression of σx from (1.29) in (1.30) will give 

T = T0 –
oo o

o
yz

z y
z y

SA SN M M E S
A I I ϖ′ ′ ′ ′′− − + β –

0

s

xq ds∫ , (1.31) 

where we use the designations of 

o
0

s
A ehds= ∫ ,  o

0

s

zS yehds= ∫ ,  o
0

s

yS zehds= ∫ ,  o
0

s
S ehdsϖ = ϖ∫ . (1.32) 

Obviously, Ao, Soy and Soz are the material-adjusted area and static 
moments of the cut-off part of the section, that is, the part between the start 
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point О and the current point of the coordinate s. As for the value of oS ϖ , 
it can be called a sectorial static moment of the cut-off part of the section.  

Exactly in the same way as we did with the open-profile thin-walled 
bars and similarly to (6.2.36), we introduce the following integral 
characteristics of the external actions with respect to the cross-section of 
the bar: 

 ( ) ( , )x xp x q x s ds= ∫ ,   ( ) ( , )y yp x q x s ds= ∫ ,   ( ) ( , )z zp x q x s ds= ∫ , 

mx(x) = ( ) ( )z P y Pq y y q z z ds⎡ ⎤− − −⎣ ⎦∫ , 

( ) ( , )y xm x q x s zds= ∫ ,             ( ) ( , )z xm x q x s yds= − ∫ , 

( ) ( , )B xm x q x s ds= ϖ∫ . (1.33)

As can be seen, the only difference between formulas (1.33) and (6.2.36) is 
the replacement of sectorial coordinate ω in the expression of the 
distributed bitorque load, mB, by the generalized sectorial coordinate ϖ. 

Further, it is easy to notice that the equation of equlibrium in projections 
onto X for a piece of the bar cut off by adjacent cross-sections at the 
distance of dx between them makes the following equality true: 

( )N p x′− = , (1.34) 

and the conditions of equilibrium of that piece of the bar in terms of the 
moments with respect to the Y and Z axes yield 

Qy = z zM m′ − ,               Qz = y yM m′ + ,  (1.35) 

where Qy and Qz are shear forces in the bar’s cross-section, and 

y yQ t hds= τ∫ ,                z zQ t hds= τ∫ .     (1.36) 

Just as we did in the theory of open-profile bars, we will represent the 
longitudinal load, qx, as an expansion over four degrees of freedom 
(solely!) which participate in the formation of the longitudinal 
displacements according to (1.20): 

qx(x,s) = a1(x) eh + ay(x) ehy + az(x) ehz + aω(x) ehα .  (1.37) 

By multiplying this expansion successively by 1, y(s), z(s), ϖ(s) with 
subsequent integration over the whole profile, we get 

1xp a A= + aωω0A ,       zm− = y za I ,         ym = z ya I ,       Bm a Iω ϖ= − , 
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where Iϖ is a sectorial moment of inertia of the material-adjusted section, 
2I ehdsϖ = ϖ∫ . 

Having determined the coefficients in expansion (1.37), we obtain the final 
expression of the longitudinal load, 

qx(x,s) = x
ehp
A

 –  z
z

ehym
I

 + y
y

ehzm
I

 + B
ehm
Iϖ

ϖ  ,  (1.38) 

which should be used for the analysis. Note that the value of ω0, which the 
a1 coefficient depends on directly, does not participate in the final 
expression of the longitudinal load in (1.38). This should be clear because 
the expression of qx should not depend on the choice of the start point, О. 

If we integrate the expression of the longitudinal load over the arc 
coordinate from zero to s, we will have 

0

s

xq ds∫ = oo o oyz
x z y B

z y

SA S Sp m m m
A I I I

ϖ

ϖ

− + + . 

By substituting this in (1.31) using (1.34) and (1.35), we transform the 
expression of the flow of tangential stresses into 

T = T0 
oo o( )yz

y z B
z y

SS SQ Q EI m
I I I

ϖ
ϖ

ϖ

′′− − + β − . (1.39) 

According to its method of derivation, formula (1.39) should be true for 
any arbitrary start point О of the profile. However, particular terms in this 
formula are of course dependent on the choice of О. 

To exclude the flow T0 from (1.39), we use the condition of static 
equivalence of flow T(s) over the whole bar’s section to the torque, Mx, 
acting with respect to the center of twist, Р. Thus we have 

Mx = ( )T s dsρ∫ . (1.40) 

Substituting in the formula of T(s) from (1.39) gives 

Mx = 0 o o o
y Bz

z y
z y

Q EI mQT S ds S ds S ds
I I I

ϖ
ϖ

ϖ

′′β −
Ω − ρ − ρ + ρ∫ ∫ ∫ , 

so, consequently, 
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 0 o o o
yx Bz

z y
z y

QM EI mQT S ds S ds S ds
I I I

ϖ
ϖ

ϖ

′′β −
= + ρ + ρ − ρ

Ω Ω Ω Ω∫ ∫ ∫ . (1.41) 

The final result is obtained by excluding the initial flow of T0 from 
(1.39) using (1.41): 

 o o
yx z

z y
z y

QM QT S S
I I

= − − +
Ω o

BEI m S
I

ϖ
ϖ

ϖ

′′β − , (1.42) 

where we use the designations of 

o o o
1

z z zS S S ds= − ρ
Ω ∫ ,            o o o

1
y y yS S S ds= − ρ

Ω ∫ , 

o o o
1S S S dsϖ ϖ ϖ= − ρ
Ω ∫ . (1.43) 

Properties of functions ozS , oyS , oS ϖ  

The functions just introduced possess peculiar properties which we are 
going to prove right now and use when necessary in our subsequent 
presentment. The following five properties are worth noticing.  

• Property 1: 
This is a pretty important feature of these functions. 

Neither function ozS , oyS , oS ϖ  depends on the choice of an origin for the 
arccoordinate s; each is an unambiguous characteristic of any point 
belonging to the profile. 

This statement can be validated by directly using (1.43) and (1.32). 

• Property 2: 
It follows immediately from the definition of (1.43) that 

o 0zS dsρ =∫ ,        o 0yS dsρ =∫ ,       o 0S dsϖρ =∫ .  (1.44) 

What the first two equalities in (1.44), if we take (1.42) into account, state 
is that tangential stresses τQ, i.e. tangential stresses caused by the shear 
forces and nothing else, do not create a torque with respect to a pole that 
satisfies conditions (1.28). This means we used such a condition for 
choosing a pole, when we were deriving the formula, that the pole then 
became the center of bending, and thus the center of twist, too. 
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• Property 3: 
We show that the functions obey the following integration formulas 

with respect to the whole profile: 

    o 0y yS t ds =∫ ,       oz y zS t ds I= −∫ ,      o 0yS t dsϖ =∫ , 

oy z yS t ds I= −∫ ,       o 0z zS t ds =∫ ,        o 0zS t dsϖ =∫ . (1.45) 

To prove those, we first notice that 

0y
dyt ds ds
ds

= =∫ ∫ ,           0z
dzt ds ds
ds

= =∫ ∫ . 

But then (1.43) and (1.32) yield 

( )o o
0 0 0

0
s ls s

y y y y y
s

S t ds S t ds zehds t ds y zehds yzehds
=

=

⎡ ⎤= = = − =⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ ∫ ∫ , 

( ) 2
o o

0 0 0
,

s ls s

z y z y y z
s

S t ds S t ds yehds t ds y yehds y ehds I
=

=

⎡ ⎤= = = − = −⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ ∫ ∫  

( )o o
0 0 0

0.
s ls s

y y y
s

S t ds S t ds ehds t ds y ehds y ehds
=

ϖ ϖ
=

⎡ ⎤= = ϖ = ϖ − ϖ =⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ ∫ ∫  

The transformations presented here are based on the integration by parts, 
on the space periodicity y(0) = y(l), and on the earlier formulas (1.27) и 
(1.28). The other three formulas in (1.45) are proved in a similar way. 

• Property 4: 
The following formulas hold for the integration over the section’s 

profile: 

0d ds
ds
ϖ

=∫ ,     

o 0y
dS ds
ds
ϖ

=∫ ,       o 0z
dS ds
ds
ϖ

=∫ ,      o
dS ds I
dsϖ ϖ

ϖ
= −∫ . (1.46) 

The first of the formulas in (1.46) is obvious because there is a 
periodicity in the generalized sectorial coordinate ϖ, i.e. ϖ(0) = ϖ(l). 
Further, we use the integration by parts to obtain 

o o
o o 0

0
s l y y

y y s

dS dSdS ds S ds ds zeh ds
ds ds ds

=

=

ϖ ⎡ ⎤= ϖ − ϖ = − ϖ = − ϖ =⎣ ⎦∫ ∫ ∫ ∫ . 
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Here we have used (1.43) and (1.28). The third formula in (1.46) is proved 
in the same way. So we finally have 

o
o o 0

s l

s

dSdS ds S ds eh ds I
ds ds

=
ϖ

ϖ ϖ ϖ=

ϖ ⎡ ⎤= ϖ − ϖ = − ϖ ϖ = −⎣ ⎦∫ ∫ ∫ , 

because (1.43) and (1.32) yield 

o odS dS eh
ds ds

ϖ ϖ= = ϖ . 

Thus all the formulas in (1.46) have been proved. 

• Property 5: 
It is useful to notice, to end this consideration, that the functions in 

question obey also the following integration formulas with respect to the 
section’s profile: 

o 0yS
ds

gh
=∫ ,       o 0zS ds

gh
=∫ ,      o

x

S ds I
gh I
ϖ

ϖ

Ω
=∫ . (1.47) 

To see this, we take (1.17) and (1.26) to write 

xId
ds gh
ϖ
= − + ρ

Ω
. 

By multiplying this equality by oyS , integrating the result over the whole 
closed profile, and taking account of the already proved relationships 
(1.44) and (1.46), we establish that the first relation in (1.47) is true. The 
same technique is used with the second formula in (1.47). Applying this 
procedure to function oS ϖ , we arrive at the third formula in (1.47).  

To conclude this section, we would like to note that multiplying both 
parts in formula (1.42) successively by ty and tz and integrating over the 
whole closed contour will yield, taking (1.45) and (1.46) into account: 

y yQ Tt ds= ∫ ,                z zQ Tt ds= ∫ ,     

which is, as expected, in full accord with (1.36).   
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7.1.3 General physical relationships in the theory of 
closed-profile thin-walled bars 

Up to this point, we have derived formulas (1.29) for the normal stresses 
and formulas (1.42) for the tangential stresses. 

We begin with making these formulas similar to (6.3.1) and (6.3.2), the 
latter being used in the open-profile bar theory. In other words, we assume 

σ x = y z

y z

M MN e ez ey
A I I

+ +  + B e
Iϖ

ϖ , (1.48) 

o o oyx z
z y

y z

SM S SQ Q M
h hI hI hI

ϖ
ϖ

ϖ

τ = − − −
Ω

, (1.49) 

where bitorque B and the constricted-torsion moment Mϖ are related to the 
warp measure β as 

B EIϖ ′= − β ,      BM EI mϖ ϖ ′′= − β + , (1.50) 

which relations follow from the comparison between (1.29) and (1.42), on 
one hand, and (1.48) and (1.49), on the other hand. By the way, formulas 
(1.50) imply also a relation between B and Mϖ as follows: 

BM B mϖ ′= + , (1.51) 

which is formally the same as (6.2.44) in the open-profile bar theory.  
As for bitorque В, the first of formulas (1.50) defines its relation to the 

warp measure. However, the same value can be treated also as a section-
integral static characteristic of the normal stresses. To see this, we multiply 
(1.48) by ϖ and integrate the result over the whole section, to obtain 

xB hds= σ ϖ∫ . (1.52) 

And again we find a full accord with (6.2.24) for the open-profile bars, 
with the only exception that the sectorial coordinate, ω, is replaced by the 
generalized sectorial coordinate, ϖ. Formula (1.52) permits to introduce 
[4] a purely static definition of bitorque B, totally independent of all 
kinematic parameters, such as: 

Bitorque В is a moment of the normal stresses, σx, on the "arm" of ϖ. 

We can also establish a purely static characteristic for the constricted-
torsion torque. To do this, we multiply both parts of formula (1.49) of the 
tangential stresses by dϖ/ds and integrate the result over the whole section. 
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Using the properties of functions ozS , oyS , oS ϖ  proved earlier, we obtain 
this by means of the integration: 

dM h ds
dsϖ

ϖ
= τ∫ . (1.53) 

Hence a purely static definition of the constricted-torsion torque, namely: 

The constricted-torsion torque, Mϖ , is a moment of the tangential stresses , 
τ, on the arm  of dϖ/ds. 

Note that the two definitions of the internal stress factors in the cross-
sections of the thin-walled bars are true not only for the closed profiles but 
for the open profiles, too. And indeed, the static definition of bitorque В 
for an open-profile section is a verbal description of (6.2.24). On the other 
hand, for the open profiles we use the conventional sectorial coordinate, ω, 
instead of the generalized one, ϖ, and (6.2.12) gives dω/ds = ρ. Now, 
using formula (6.2.37), we obtain the above-cited verbal definition of the 
constricted-torsion torque. 

For the closed profile, the derivative dϖ/ds can be written as follows on 
the basis of (1.26) and (1.17): 

xId d
ds ds gh
ϖ α
= − = ρ −

Ω
. 

Hence, taking account of (1.53) and (1.40), we have 

x
x

IM M ds
gϖ

τ
= −

Ω ∫ . (1.54) 

The relation between the components of the stress state in the bar, N, 
My, Mz, and the displacements of the section can be restored from (1.24) 
where we should assume ωy = ωz = 0 because we use the center of bending 
as the pole Р. Also, conditions (1.28) define the location of the main 
pole, Р, but those conditions are, together with the requirement of (1.27), 
invariant with respect to the location of the profile’s zero point. That’s why 
we are able to choose the zero point, О, to our liking. In particular, it is 
convenient to place it in such way that constant ωо defined by the first 
formula in (1.23) should become zero, i.e. ωо = 0. So, 

N EA ′= ξ ,      y y yM EI ′= θ ,        z z zM EI ′= − θ . (1.55) 

Up to this point we did not establish any relation between the slopes of 
the section, θy and θz, and the η and ζ functions, and we did not do that 

“

“
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intentionally. The geometrical meaning of functions η and ζ is the same as 
that in the open-profile thin-walled bar theory: these functions are 
displacements of the center of bending of the bar’s cross-section in the 
respective directions of Y and Z. We remind that the whole section of the 
bar is treated as a perfectly rigid body with respect to displacements in the 
(Y,Z)-plane (this is what the unchangeable-contour hypothesis assumes). 

This is where the theory bifurcates. Taking one of the approaches, we 
can think for the sake of generality that slopes θy and θz of the section, 
which we used in the original formula (1.20) and further, are independent 
kinematical variables not identified with the derivatives of the 
displacement functions, η and ζ. To put it another way, we can assume for 
the general case that 

θy ≠ ′−ζ ,      θz ≠ ′η .  (1.56-a) 

The assumption that slopes θy and θz from (1.56) are fully independent of 
displacements η and ζ originates a full shear theory of closed-profile thin-
walled bars. 

There can be the second way to construct the theory, when slopes θy 
and θz are identified with the derivatives of functions η and ζ. In that case 
(1.56-a) is replaced by the following convention: 

θy ≡ ′−ζ ,      θz ≡ ′η .  (1.56-b) 

We can predict beforehand that excluding the θy and θz slopes from the list 
of the independent kinematical parameters and adopting the convention of 
(1.56-b) will correspond to the semi-shear version of the theory. 

However, even before dividing the theory into the shear and semi-shear 
versions, it is useful to introduce, at least formally so far, a moment 
(torque) H as a difference between the full torque, Mx, and the constricted-
torsion torque, Mϖ , 

H = Mx – Mϖ .  (1.57) 

We will see a bit later that this value can be treated as a pure-torsion 
torque, hence the designation.  

Comparing (1.57) with (1.54) yields an expression of the pure-torsion 
torque, H, as an integral characteristics of the tangential stresses: 

xIH ds
g
τ

=
Ω ∫ . (1.58) 

Thus, from (1.57) we have a statement that 
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the full torque, Mx , is a sum of the pure-torsion torque, H, and the 
constricted-torsion torque, Mϖ . 

Let us first pay some attention to the formulation of physical 
relationships in the shear theory of closed-profile thin-walled bars. 

7.1.4 First (energy-based) version of the theory 

The expression of the strain energy, E, represented as a quadratic 
functional of the stresses, can be written in the form of 

( , )x
σ τσ τ = +E E E , 

where 
2

0

( )
2

xL
hdsdx

Eeσ
σ

= ∫ ∫E ,      
2

0 2

L
hdsdx

Ggτ
τ

= ∫ ∫E . (1.59) 

The first of the integrals up there conforms to an energy of the normal 
stresses while the second describes an energy stored by the tangential 
stresses. We express the normal and tangential stresses in the integrands 
via the components of stress vector σ,  i.e. by using formulas (1.48) and 
(1.49).  Substituting (1.48) and (1.49) in (1.59) and taking note of (1.57) 
gives 

σE
2 2 22

0 2 2 2 2

L
y z

y z

M M BN dx
EA EI EI EIϖ

⎡ ⎤
= + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ , 

τE =
2

o o o

0 2

L
y z

z y
y z

SH M S S hQ Q M ds dx
h hI hI hI Gg

ϖ ϖ
ϖ

ϖ

⎡ ⎤⎛ ⎞+⎢ ⎥− − −⎜ ⎟⎜ ⎟Ω⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ . (1.60) 

We transform the expression of energy τE  in this way: 

      τE =
22 2 2 22 2

o o
o2 2 2 2

0

1 1
2

L
y y zz

y z

S Q S M IH Qds ds ds S ds dx
G gh gh gh ghI I I

ϖ ϖ
ϖ

ϖ

⎡ ⎤⎛ ⎞
⎢ ⎥+ + + −⎜ ⎟ΩΩ⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫ ∫ ∫ ∫ + 

+ o o
o

0

1 L
y y zz

y z

S ds HQ S ds HM IHQ dsS dx
G I gh I gh I gh

ϖ ϖ
ϖ

ϖ

⎡ ⎤⎛ ⎞− − − −⎢ ⎥⎜ ⎟Ω Ω Ω Ω⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫ ∫ ∫ + 

+ o o

0

1 L
z y z y

y z

Q Q S S ds
dx

G I I gh∫ ∫ + 
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                    + o o o o
0

1 L
yz

y z
y z

Q MQ M I Ids dsS S S S dx
G I I gh I I gh

ϖϖ ϖ ϖ
ϖ ϖ

ϖ ϖ

⎡ ⎤⎛ ⎞ ⎛ ⎞− + −⎢ ⎥⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫ ∫ .     (1.61) 

This is where we make use of property 5 of functions oyS , ozS , oS ϖ , 
which we established earlier. We take formulas (1.47) and use (1.15) to 
make sure that the second of the integrals in (1.61) vanishes.  

It is appropriate at this point to introduce another designation for 
another geometric characteristic of the section, 

o o
IS S ϖ

ϖ ϖ= −
Ω o o

1 IS S ds ϖ
ϖ ϖ= − ρ −

Ω Ω∫ . (1.62) 

Now, just as we did in the theory of open-profile thin-walled bars where 
shear was taken into account, we introduce a matrix of shape factors of the 
section, µ, by defining 

µ =
zz zy z

yz yy y

z y

ϖ

ϖ

ϖ ϖ ϖϖ

⎡ ⎤µ µ µ
⎢ ⎥µ µ µ⎢ ⎥
⎢ ⎥µ µ µ⎣ ⎦

= 

=

2
o o o o o

2

2
o o o o o

2

2
o o o o o

2

y y z yr

y y z y

z y rz z

z y z z

yr r z r

y z

S S S S SI AA Ads ds ds
gh gh ghI I I I I

S S I AS S SA Ads ds ds
gh gh ghI I I I I

S SI A I A S S SIds ds ds
gh gh ghI I I I I

ϖ

ϖ

ϖ

ϖ

ϖ ϖ ϖ

ϖ ϖ ϖ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

. (1.63)

In these designations, formula (1.61) of energy τE  becomes 

   τE =
2 22 2

2
0 2 2 2 2

L
y yy z z zy y yz zz zz

x

Q Q Q Q MM Q MH Q dx
GI GA GA GA rGA rGAr GA

ϖ ϖϖ ϖϖ ϖ ϖ
⎡ ⎤µ µ µµ µµ

+ + + + + +⎢ ⎥
⎢ ⎥⎣ ⎦

∫ . 

Here Ir and r are the respective polar moment of inertia of the section and 
the polar radius of inertia. Summing τE  and σE  and switching to the 
matrix representation, we have the final relation, E(σ) = ½ σTC –1σ, where 
the vector of stresses σ is 
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σ = , , , , , , ,y z z yN H M M B Q Q Mϖ⎡ ⎤⎣ ⎦
T

. (1.64) 

It is easy to notice that this type of stress vector σ implies the following 
matrix C –1: 

C –1

2

1 0 0 0 0 0 0 0

10 0 0 0 0 0 0

10 0 0 0 0 0 0

10 0 0 0 0 0 0

10 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

x

y

z

zy zzz

yz yy y

yz

EA

GI

EI

EI

EI

GA GA rGA

GA GA rGA

rGA rGA r GA

ϖ

ϖ

ϖ

ϖϖ ϖϖ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥µ µµ⎢ ⎥
⎢ ⎥
⎢ ⎥µ µ µ
⎢ ⎥
⎢ ⎥
⎢ ⎥µµ µ
⎢ ⎥
⎣ ⎦

. (1.65)

An important point here is that the components of stress vector σ from 
(1.64) are exactly the same as the components of the same vector in the 
shear theory of open-profile bars – see formula (6.3.8). 

Physical relationships in the first (energy-based) version of the 
semi-shear theory 

Recalling what we did in the semi-shear theory of open-profile thin-walled 
bars, we decompose tangential stresses τ into a sum of the tangential 
stresses of bending, τQ, and the tangential stresses of torsion, τM. 
According to (1.49), we have 

τ = τM  + τQ,    ox
M

M SM
h hI

ϖ
ϖ

ϖ

τ = −
Ω

,   o oy z
Q z y

y z

S SQ Q
hI hI

τ = − − . (1.66) 
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Categorizing the tangential stresses of bending, τQ, into the secondary 
class, but keeping the energy contribution of stresses τM in the expression 
of energy τE , we have 

τE =
2

o

0 2

L H M S hM ds dx
h hI Gg

ϖ ϖ
ϖ

ϖ

⎡ ⎤⎛ ⎞+
⎢ ⎥−⎜ ⎟Ω⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫ . 

After being integrated over the bar’s section, this formula becomes 

τE =
22

20 2 2

L

x

MH dx
GI r GA

ϖ ϖϖ⎡ ⎤µ
+⎢ ⎥

⎣ ⎦
∫ . (1.67) 

For the semi-shear version of the theory, we should deprive stress vector σ 
taken from (1.64) of the shear forces, thus turning it into 

σ = , , , , ,y zN H M M B Mϖ⎡ ⎤⎣ ⎦
T

, (1.68) 

which has the same form as stress vector σ from (6.4.3) used in the semi-
shear theory of open-profile bars. 

We present also equilibrium equations for a thin-walled bar, the 
expanded form of which is 

xN p′− = ,       y yQ p′− = ,           z zQ p′− = ,  

xH M mϖ′ ′− − = ,     y z yM Q m′− + = ,        z y zM Q m′ − = ,  

BB M mϖ′− + = . (1.69) 

The physical meaning of the above equations is obvious:   

• the first three equations are differential equations in terms of projections 
onto the  X, Y, Z axes; 

• the fourth to sixth equations are differential equations in terms of 
moments with respect to the X, Y, Z axes; 

• as for the last equation in (1.69), it is a generalized equation of 
equilibrium that relates to a bitorque state of the bar. This equation was 
established earlier by (1.51).    

If now we sum energies τE  and σE  and switch to the matrix form, we 
will have E(σ) = ½ σTC –1σ with the diagonal matrix C –1 as follows: 
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1

2

1 0 0 0 0 0

10 0 0 0 0

10 0 0 0 0

10 0 0 0 0

10 0 0 0 0

0 0 0 0 0

x

y

z

EA

GI

EI

EI

EI

r GA

−

ϖ

ϖϖ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

µ⎢ ⎥
⎢ ⎥⎣ ⎦

C . (1.70)

Governing equations of the first version of the semi-shear 
theory 

Remaning within the boundaries of the shear theory, we should keep all 
equations of equilibrium in (1.69) when building the operator of 
equilibrium, AT, because (1.64) dictates so. In the matrix form, this 
produces operator AT already established by (6.3.12) for the shear theory 
of the open-profile bars. 

As it follows immediately, the respective operators of geometry, A, are 
coincident, too, because they are Lagrange-conjugate to the equilibrium 
operator. 

The coincidence also takes place for load vectors X , displacements u 
and strains ε, for which formulas (6.3.11), (6.3.20), (6.3.21) hold as before. 

Finally, the matrices of physical relationships, C –1, of the two theories 
are also equivalent in their form of representation: (1.65) for the closed-
profile bars and (6.3.9) for the open profiles.  

Thus, the only difference in the equations of the shear theories of the 
closed and open bar profiles is solely in the calculation of the geometrical 
characteristics of the cross-sections. The two theories are totally equivalent 
in all the other aspects. Hence a conclusion: the final governing equations 
(6.3.24) are applicable to the closed-profile thin-walled bars. One should 
remember, of course, that the sectorial coordinate ω must be replaced 
everywhere, including the subscripts, by the generalized sectorial 
coordinate ϖ. It should be also obvious that matrix ν is an inverse of 
matrix µ. The components of this matrix for the closed-profile bars are 
calculated by formulas (1.63).  

It goes without saying that the respective functionals in the two theories 
have the same form of representation, too.  
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Now let us return to the interpretation of torque H as a pure-torsion 
torque which we promised to give earlier. We use the physical relationship 
of σ = CAu. In particular, it will permit us to establish an expression of 
torque H via the displacements or, after making substitutions, 

H = GIxθ′ , (1.71) 

wherefrom we have the promised treatment of torque H as a pure-torsion 
torque.  

Comparing this result with (1.58) gives 

ds G
g
τ ′= Ωθ∫ . 

Recalling the Bredt theorem of the tangential stress circulation (see 
Section 6.1.2) derived for bars of solid sections and made of a 
homogeneous material (that is, at g = 1), we can see that this theorem is 
applicable to the closed-profile thin-walled bars, too.  

A semi-shear theory by Janelidze–Panovko 

Reasoning similarly to the previous section, we find out that the semi-
shear theories of closed- and open-profile thin-walled bars are identical in 
the mathematical sense, too. 

Therefore all basic formulas of Section 6.4 are applicable (with the 
stipulations of the previous section) also to the semi-shear theory of 
closed-profile thin-walled bars. We present here a governing differential 
equation (with respect to the warp measure, β) for the constricted-torsion 
analysis in the semi-shear theory of closed-profile thin-walled bars. 
Referring to (6.4.14) and (6.4.13), we rewrite those formulas here in 
application to bars which have closed profiles of their cross-sections: 

x x BEI GI m mϖ ′′′ ′ ′ψ β − β = + ψ , (1.72) 

where 

                                            1 x

r

I
I
ϖϖµ

ψ = + . 

It should be said that the theory suggested and developed by 
A. Umanski relates, strictly speaking, exclusively to the semi-shear theory, 
though this fact is never indicated explicitly or discussed in either the 
papers by A. Umanski himself or subsequent works of other people where 
this theory is presented.  
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The matter is that both Umanski himself and his followers make an 
implicit assumption when they begin to construct their theory: they assume 
the bending analysis and the torsion analysis of a thin-walled bar to be 
separated in the mathematical sense. But, as we just discussed, this 
separation takes place only in the semi-shear version of the theory. The 
key point that makes the separation of the two analyses possible is the 
diagonal structure of the С elasticity matrix.  

Moreover, the original theory by A.A. Umanski is slightly different also 
from the energy-based version of the semi-shear theory presented above. 
Actually, equation (1.72) is exactly coincident (up to the notation) not with 
Umanski’s equation but with a similar governing equation derived for the 
first time by Janelidze and Panovko (see equation (29), page 116 of [4]). 
This is not just a chance; the authors use similar assumptions in their book 
[4] and also base their consideration on an energy-related reasoning3. We 
believe what we said is a sufficiently good reason to name the above-stated 
semi-shear theory of closed-profile thin-walled bars a Janelidze–Panovko 
theory. 

7.1.5 Second (physical) version of the theory 

We will start from Hooke’s law for tangential stresses τ, which states this 
for the general case: 

uGg
s x
∂ ∂⎛ ⎞τ = +⎜ ⎟∂ ∂⎝ ⎠

v . 

In the notation that we use, the vector vP = ηiy + ζ iz describes a full  
displacement of the center of bending (point Р) in the (Y,Z)-plane. But, 
according to the kinematical hypotheses that we use, the tangential 
displacement v of an arbitrary point of the profile consists of a projection 
of vector vP onto the direction of the tangent to the profile at the point in 
question and of a tangential displacement caused by the rotation of the 
profile around point Р as a pole. Or, to put it another way, 

v = vP•t + θρ = ηty + ζ tz + θρ, (1.73) 

wherefrom 

                                                      
3 Janelidze and Panovko [4] derive the differential equation (1.72) using directly 

the Castigliano variational principle. 
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y zt t
x
∂ ′ ′ ′= η + ζ + θ ρ
∂
v . 

At the same time, according to (1.20)  

z y y z
u dt t
s ds
∂ α

= −θ + θ +β
∂

. 

Therefore the shear strain, γxs = ∂u/∂s + ∂v/∂x, becomes equal to 

( ) ( )xs z y y z
dt t
ds
α⎛ ⎞′ ′ ′γ = η − θ + ζ + θ + θ ρ +β⎜ ⎟

⎝ ⎠
 . 

According to (1.17) and (1.12) 

xId
ds gh
α
= −ρ

Ω
,    

so, finally, 

γxs = γy ty + γz tz + γϖ ρ,  (1.74) 

where 

γy = z′η − θ ,       γz = y′ζ + θ ,       γϖ = ( ) xI
gh

′θ −β + β
ρ Ω

. (1.75) 

As we can see, formula (1.74) for the total shear γxs is exactly equivalent 
to (6.3.19) in its structure, the latter being used in the theory of open-
profile thin-walled bars where shear is allowed for. Furthermore, the first 
two formulas in (1.75) coincide with the first two in (6.3.18). As for the 
formulas for the shear parameter γϖ, there is a significant difference from 
the respective formula of γω. The difference is in the additional term 
(βIx)/(ρghΩ) which participates in the expression of the shear 
parameter γϖ. We have 

γϖ = γω + xI
gh

β
ρ Ω

. 

It should be apparent because the closed section supplements the warp-
caused shear strain, γωρ, with the pure-torsion-caused shear strain equal to 
(βIx)/(ghΩ). 

If we equal shears γxs defined by (1.74) and by (1.49), we will have 
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( ) ( ) ( ) x
z y y z

It t
gh

′ ′ ′η − θ + ζ + θ + θ −β ρ +β
Ω

= 

= o o oyx z
z y

y z

SM S SQ Q M
Ggh GghI GghI GghI

ϖ
ϖ

ϖ

− − −
Ω

. (1.76) 

However, as we have said, the physical law in the form of (1.76) cannot 
be thought, actually, to hold in every point of the bar’s section. There is no 
reason to believe that the two expressions of the tangential stress (one 
following from Hooke’s law and the other from the equations of 
equilibrium) will produce the same result. All we can demand is that the 
equality (1.76) should be satisfied at least in the integral, if not pointwise, 
sense. As we will see further, this way of reasoning leads to the original 
theory by Umanski (of course, within the boundaries of the semi-shear 
theory), although the approach of A.A. Umanski himself, presented also in 
[4], is different from what we use here. 

For further presentment we will need some additional geometrical 
characteristics of the section. These characteristics were endenizened in 
the theory of thin-walled bars by R.A. Adadurov [2], [1] and used with the 
same notation by G.Y. Janelidze and Y.G. Panovko [4]. We present those 
characteristics here in their generalized form, for a heterogeneous material. 
So, we assume 

           2I ghdsρ = ρ∫ ,        y zK t ghds= ρ∫ ,         z yK t ghds= ρ∫ , 

     yz zy y zL L t t ghds= = ∫ ,     2
y zL t ghds= ∫ ,       2

z yL t ghds= ∫ . (1.77) 

Note that the value of Iρ is called, following A.A. Umanski, a directed 
moment of inertia of the section. 

For the physical law of (1.76) to hold in average, we multiply this 
equality by ghρ and integrate the result over the profile. Hence a physical 
relationship, integral for the section, between torque Mx and the 
displacement components: 

Mx = ( ) ( )z z y yGK GK′ ′η − θ + ζ + θ + GIρ(θ′ – β) + GIxβ. (1.78) 

It is also useful to introduce a dimensionless value, µ, which is usually 
referred to as a warp factor, 

1 xI
Iρ

µ = − , (1.79) 
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and which is also one of the section’s geometric characteristics. 
In the designations thus introduced, the physical relationship (1.78)  can 

be rewritten as 

( ) ( ) ( )x z z y yM GK GK GIρ′ ′ ′= η − θ + ζ + θ + θ −µβ . (1.80)

The following two integral relations of a physical nature, which follow 
from (1.76), are derived by multiplying both parts of (1.76) by ghty and 
ghtz and integrating over the whole profile. These relations provide 
expressions of shear forces Qy and Qz via displacement components, 

   Qy = ( ) ( ) ( )z z yz y zGL GL GK′ ′ ′η − θ + ζ + θ + θ −β ,    

     Qz = ( ) ( ) ( )yz z y y yGL GL GK′ ′ ′η − θ + ζ + θ + θ −β . (1.81) 

Finally, the fourth physical relationship for the integral stress 
characteristics over the bar’s section will be derived from (1.76) by 
multiplying by ghdϖ/ds and integrating over the whole profile. Using 
(1.46), we have the following result: 

    Mϖ =       

( ) ( ) ( )z y y z
d d dG t gh ds G t gh ds G gh ds
ds ds ds
ϖ ϖ ϖ′ ′ ′= η − θ + ζ + θ + θ −β ρ∫ ∫ ∫ . 

We noticed earlier that 

xId d
ds ds gh
ϖ α
= − = − + ρ

Ω
, 

therefore 

y z
dt gh ds K
ds
ϖ

=∫ ,   z y
dt gh ds K
ds
ϖ

=∫ ,    x
dgh ds I I I
ds ρ ρ

ϖ
ρ = − = µ∫ . 

As a result, the expression of Mϖ becomes 

( ) ( ) ( )z z y yM GK GK GIϖ ρ′ ′ ′= η − θ + ζ + θ + µ θ −β . (1.82) 

The set consisting of the first equality from (1.50) and equalities (1.55), 
(1.80), (1.81) and (1.82) is exactly the set of the desirable physical 
relationships. All those can be written conveniently in a unified matrix 
form, so we have  
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x x

yy z

zz y

B

y yz yz z

zy z zy y

y z

EAN
GIH

EIM
EIM

EIB
GL GL GKQ
GL GL GKQ
GK GK GIM

ϖ

ρϖ ω

ε⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥χ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥χ
⎢ ⎥⎢ ⎥ ⎢ ⎥

χ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥χ
⎢ ⎥⎢ ⎥ ⎢ ⎥

γ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥γ⎢ ⎥⎢ ⎥ ⎢

µ⎢ ⎥ γ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦
⎥
⎥

, (1.83) 

where the pure-torsion torque, H, is defined by (1.57) and 

′ε = ξ ,    x ′χ = θ ,    z y′χ = θ ,    y z′χ = −θ ,    B ′χ = −β , 

γz = y′ζ + θ ,       γy = z′η − θ ,       γω = ′θ −β . (1.84) 

We introduce, as we did earlier, a vector of “stresses” σ, a vector of 
displacements u, and a vector of strains ε by assuming 

σ = , , , , , , ,y z z yN H M M B Q Q Mϖ⎡ ⎤⎣ ⎦
T

, 

u = , , , , , ,y z⎡ ⎤ξ η ζ θ θ θ −β⎣ ⎦
T

,    ε = , , , , , , ,x z y B z y ω⎡ ⎤ε χ χ χ χ γ γ γ⎣ ⎦
T

.  (1.85) 

Comparing these formulas with (6.3.8), (6.3.20) and (6.3.21) from the 
theory of open-profile bars, we can see that the former and the latter are 
identical. But with these designations the formula of physical relationships 
(1.83) will have a standard matrix form: 

σ = C ε, 

if matrix C  is the linear transformation matrix from (1.83). Here we put a 
bar over the designation of the elasticity matrix intentionally, to separate 
the notation of this version of the theory from the notation of the first 
(energy-based) version. We would like to note that the operator of 
geometry, А, which defines a differential relation between displacements u 
and strains ε according to (1.84), is our familiar matrix differential 
operator (6.3.13). It should be clear because the operator of equilibrium, 
АТ, conjugate to operator А, may not change from one version of the 
theory to another: the equilibrium equations are the same in both versions.  

It is convenient to switch from the designations by Adadurov as in 
(1.77) to dimensionless coefficients ν  by defining 
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21
yy yt ghds

A
ν = ∫ ,       21

zz zt ghds
A

ν = ∫ , 

1
yz zy y zt t ghds

A
ν = ν = ∫ ,      2

r r

I
ghds

I I
ρ

ϖϖ

µ
ν = ρ = µ∫ , 

 

1
z z z

r

t ghds
I Aϖ ϖν = ν = ρ∫ ,        1

y y y
r

t ghds
I Aϖ ϖν = ν = ρ∫ . (1.86) 

We remind that Ir denotes the polar moment of inertia of the section, i.e. 
Ir = Iy + Iz. 

As can be seen at this point, the geometrical characteristics of the 
section according to Adadurov, introduced earlier by (1.77), together with 
the directed moment of inertia Iρ, can be expressed via the dimensionless 
geometrical characteristics of the section, ν , as follows: 

2 /I r Aρ ϖϖ= ν µ ,            y zK rA ϖ= ν ,           z yK rA ϖ= ν ,      

        yz zy yzL L A= = ν ,        y zzL A= ν ,            z yyL A= ν . (1.87) 

Therefore the matrix of elasticity, C , will be as follows with the new 
designations: 

2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x

y

z

zz zy z

yz yy y

z y

EA
GI

EI
EI

EI
GA GA rGA
GA GA rGA
rGA rGA r GA

ϖ

ϖ

ϖ

ϖ ϖ ϖϖ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥

ν ν ν⎢ ⎥
⎢ ⎥ν ν ν⎢ ⎥

ν ν ν⎢ ⎥⎣ ⎦

C . (1.88) 

Exactly as in the theory of open-profile thin-walled bars which allows 
for shear, the symmetric matrix ν  and its inverse are positive definite. But 
this fact is not true for a non-warped section. The non-warped sections 
require a separate consideration which we will do later.   

The structure of matrix ν  is defined by formula (1.89): 
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ν  = 
zz zy z

yz yy y

z y

ϖ

ϖ

ϖ ϖ ϖϖ

⎡ ⎤ν ν ν
⎢ ⎥ν ν ν⎢ ⎥
⎢ ⎥ν ν ν⎣ ⎦

= 

=

2

2

2

1 1 1

1 1 1

1 1

z z y z
r

y z y y
r

z y
rr r

t hds t t hds t hds
A A I A

t t hds t hds t hds
A A I A

t hds t hds hds
II A I A

⎡ ⎤
ρ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥ρ
⎢ ⎥
⎢ ⎥

µ⎢ ⎥ρ ρ ρ⎢ ⎥
⎣ ⎦

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

. (1.89)

Now that we know all matrix operators, we can find the governing 
equations for our problem, Lame equations, in the usual way. And again 
we obtain a system of equations totally equivalent in its structure to 
(6.3.24) but with coefficients ν replaced by the coefficients of matrix ν . 

A semi-shear theory by Umanski 

If we confine ourselves to the semi-shear theory when adopting the second 
approach to the derivation of physical relationships, then we will have the 
following instead of equation (1.72): 

x x BEI GI m mϖ ′′′ ′ ′ψ β − β = + ψ , (1.90) 

where 

                                            1 x

r

I
Iϖϖ

ψ = +
ν

. 

This is an equation derived in the theory which was suggested by 
A.A. Umanski himself. By replacing the ϖϖν  coefficient with its 
expression from (1.86) and using (1.79), we have 

1/ψ = µ , (1.91) 

so (1.90) can be transformed into a form commonly used in the 
presentment of A. Umanski’s theory4 

                                                      
4 See [4], for example. It should be said that [4] does not consider a most 

general load upon the bar because all equations are derived there from the 
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x x BEI GI m mϖ ′′′ ′ ′β −µ β = µ + .  (1.92-a) 

Sometimes the basic governing equation of Umanski’s theory contains 
slope θ rather than function β as an unknown. After making necessary 
transformations, we have 

(1 )IV
x x x B

x

EIEI GI m m m
GI

ϖ
ϖ ′′ ′′ ′θ − µ θ = µ − −µ + µ .  (1.92-b) 

7.1.6 A remark on non-warped cross-sections of closed-profile 
thin-walled bars 

We would like to draw attention to a circumstance related to the warp 
factor, µ. The fact is that the warp factor µ is always nonnegative and 
strictly less than one: 

0 ≤  µ < 1 . (1.93) 

The definition of the warp factor, µ, from (1.79) and the positiveness of the 
moments of inertia, Ix and Iρ, imply that the estimates of (1.93)  are 
equivalent to one inequality, 

Iρ ≥ Ix , 

which is, in its turn, equivalent to 

( )2
dsρ∫ ≤ 2 dsghds

gh
ρ∫ ∫ . (1.94) 

But the latter is a corollary of an inequality well known in mathematics, 
one by Buniakovsky [6], for two functions U and V, which is 

( )2 2 2UVds U ds V ds≤∫ ∫ ∫ , (1.95) 

where we should assume 

U gh= ρ ,     1/V gh= . 

By the way, the equality takes place in (1.95) only when functions U 
and V are linearly dependent, that is, when U = СV where С is a constant. 

                                                                                                                          
assumption that there is no bitorque load, i.e. mB = 0. However, this fact does not 
have any significant effect on the subsequent reasoning. 
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Hence the warp factor µ is equal to zero if and only if the ρgh product is a 
constant.  

Physically, the fact that the warp factor is equal to zero is equivalent to 
the requirement that the cross-section of the thin-walled bar should not be 
warped when in torsion. And indeed, the absence of the warp 
displacements according to (1.16) is equivalent to the warp function being 
equal to zero, α(s) = 0, or, according to (1.17) 

0 0
0

s s
xI ds ds

gh
− ρ =

Ω ∫ ∫ . (1.96) 

We will show that the equality of (1.96) implies µ = 0. To do it, we 
differentiate (1.96) with respect to s and obtain 

xI gh= ρ
Ω

. 

But the left-hand part of this equality contains a constant independent of 
arc coordinate s, hence ρgh = Const, and this, as we have just found out, 
implies the desirable equality µ = 0. 

The inverse statement is true, too: the condition that µ = 0 implies the 
non-warpedness of the section, that is, α(s) = 0. The reasoning is like this: 

µ = 0 ⇒  ρgh = Const  ⇒ 
0 0 0

( ) 1
s s s

x xI Idss ds ds
gh gh

⎛ ⎞ρ
α = − ρ = − ρ⎜ ⎟Ω ρ Ωρ⎝ ⎠

∫ ∫ ∫ . 

And further, 

µ = 0 ⇒  Ix = Iρ ⇒
2

1x
dsghdsII

gh gh gh
ρ

ρρ
= = = =

Ωρ Ωρ Ωρ Ω
∫ ∫ ⇒ α(s) = 0. 

A simplest case of a non-warped section is a ring of a constant 
thickness. This is, of course, not the only member in the category of non-
warped sections.  

P

RR

R

 
Fig. 7.3.  A non-warped section with a constant thickness of the wall 
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In particular, the non-warped sections include any closed one made of a 
homogeneous material with a constant thickness of the walls, h = Const, 
provided its profile consists of straight line segments touching the same 
circle. An example is shown in Fig. 7.3. 

To validate this statement, it suffices to show that the center of twist, P, 
for such a profile coincides with the center of the inscribed circle because 
g = 1 and ρgh = Rh = Const 5.  

As we will see, considering the non-warped sections as a separate class 
is critically important for the theory of closed-profile thin-walled bars. 
From the standpoint of theory, this type of the sections is degenerate, and 
the very notion of the warp measure, β, makes no sense. The torsion of the 
non-warped sections occurs under any conditions without constriction 
effects, i.e. exactly in the same way as the pure (free) torsion does. 

Basic relationships of the theory of closed-profile thin-walled 
bars for non-warped cross-sections 

Just as we did in the shear theory of open-profile bars, we have to consider 
a non-warped section of a closed profile separately because this is a 
degenerate case. 

Omitting detailed transformations in order to save space (an attentive 
reader can restore those easily if he reads this section carefully), we 
present only final results. Instead of formulas (1.48) and (1.49) for the 
stresses in the case of the non-warped profile, we have 

σ x = y z

y z

M MN e ez ey
A I I

+ + , (1.97) 

o oyx z
z y

y z

SM SQ Q
h hI hI

τ = − −
Ω

, (1.98) 

and the physical relationships become 

( )x
y zEe z y′ ′ ′σ = ξ + θ − θ , (1.99) 

( ) ( )z y y zGg t t′ ′ ′⎡ ⎤τ = η − θ + ζ + θ + θ ρ⎣ ⎦ . (1.100) 

These are the basic vectors for the non-warped profiles: 

                                                      
5 The reader is invited to prove that the center of twist coincides with the center 

of the inscribed circle for exercise. Should there be any problems with this, 
additional guidelines can be taken from Appendix G. 
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σ = , , , , ,x y z z yN M M M Q Q⎡ ⎤⎣ ⎦
T

,   X = , , , , ,x y z x y zp p p m m m⎡ ⎤⎣ ⎦
T

, 

u = , , , , ,y z⎡ ⎤ξ η ζ θ θ θ⎣ ⎦
T

,         ε = , , , , ,x z y z y⎡ ⎤ε χ χ χ γ γ⎣ ⎦
T

, (1.101) 

and these are operators A and AT: 

A =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

x

x

x

x

x

x

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎢ ⎥

⎢ ⎥∂
⎢ ⎥∂
⎢ ⎥∂−⎢ ⎥∂
⎢ ⎥∂⎢ ⎥∂⎢ ⎥

∂⎢ ⎥−∂⎣ ⎦

, 

AT =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

x

x

x

x

x

x

∂⎡ ⎤− ∂⎢ ⎥
⎢ ⎥∂− ∂⎢ ⎥
⎢ ⎥∂−⎢ ⎥∂
⎢ ⎥∂−⎢ ⎥∂
⎢ ⎥∂−⎢ ⎥∂⎢ ⎥

∂⎢ ⎥−∂⎣ ⎦

. 

As for the elasticity matrix, С, it can be presented in two versions: 
• first (energy-based) version: 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

x

y

z

zz zy

yz yy

EA
GI

EI
EI

GA GA
GA GA

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥ν ν
⎢ ⎥

ν ν⎢ ⎥⎣ ⎦

C ; (1.102) 

• second (physical) version: 
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0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

x

y

z

zz zy

yz yy

EA
GI

EI
EI

GA GA
GA GA

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥ν ν
⎢ ⎥

ν ν⎢ ⎥⎣ ⎦

C . (1.103) 

Building the Lame operator according to the general rule, we arrive at a 
governing system of equations (1.104) in terms of the displacements of the 
non-warped sections.  

Note that the equations are given for the first (energy-based) version of 
the theory in (1.104). Obviously, to switch to the second (physical) version 
of the theory, one needs only to replace the components of matrix ν  by the 
components of ν  in these formulas. 

xEA p′′− ξ = , 

( ) ( )yz y yy z yGA p′′ ′ ′′ ′⎡ ⎤− ν ζ + θ + ν η − θ =⎣ ⎦ , 

( ) ( )zz y zy z zGA p′′ ′ ′′ ′⎡ ⎤− ν ζ + θ + ν η − θ =⎣ ⎦ , 

x xGI m′′− θ = , 

( ) ( )y y zz y zy z yEI GA m′′ ′ ′⎡ ⎤− θ + ν ζ + θ + ν η − θ =⎣ ⎦ , 

( ) ( )z z yz y yy z zEI GA m′′ ′ ′⎡ ⎤− θ − ν ζ + θ + ν η − θ =⎣ ⎦ . (1.104) 

7.2  Multiple-contour, closed-profile, thin-walled bars 

7.2.1 Pure torsion of a multiple-contour profile 

The preceding presentment assumed that the cross-section of the bar was a 
single closed contour. In that way we could analyze the stress distribution 
in the bar in pure torsion without using any strain compatibility conditions, 
by involving the equilibrium equations only.  

However, if there are multiple closed contours, the static equations are 
no longer sufficient because the pure torsion problem becomes a statically 
indeterminate one. 
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To be particular, let us consider a cross-section of a thin-walled bar, the 
profile of which contains three closed base contours (Fig. 7.4-a). 
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Fig. 7.4-a.  Pure torsion of a three-contour profile – flows of tangential stresses 

along each of the non-bifurcating segments of the profile 

The base closed contours will mean here and further a set of closed 
contours Гi (i = 1,…, k) such that each of them comprises a two-
dimensional area Ωi and satisfies two conditions: 

• no intersection –  Ωi ∩ Ωj = Ø at i ≠ j, where Ø is an empty area; 
• completeness – the union of all k areas Ωi coincides with area Ω0 

bounded by the exterior closed contour Г0. 

There are the following base contours for the profile shown in 
Fig. 7.4-a: 

Г1 :  ABCA ;            Г2 :  ACDFA ;           Г2 :  DEFD . (2.1) 

In the list of points which every closed contour passes, the first and the last 
points of the contour have the same names because they are coincident. 
We adopt the convention that the positive direction of tracing a contour 
will be the counter-clockwise direction, if we look from the positive 
direction of the longitudinal axis X. Note that the base contours defined in 
(2.1) have their points indicated in the order that corresponds to the 
positive direction of the contour tracing. 

Each of the contours contains both independent segments not included 
in any other contour and segments which are common for it and another 
contour. For example, take a three-contour profile shown in Fig. 7.4-a; the 
common boundary for its first and second contours is Г12 = Г1 ∩ Г2 , and 
for its second and third contours the common boundary occupies the 
profile’s segment Г23 = Г2 ∩ Г3 .  
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In addition to the base contours, the profile can be defined by such 
objects as non-bifurcating segments, i.e. continuous pieces between two 
points of bifurcation. In the example we are considering, the profile 
contains six non-bifurcating segments: 

segment 1: АВС;       segment 2: CD;       segment 3: DEF; 
           segment 4: FA;          segment 5: АС;       segment 6: FD. 

Reasoning the same way as we did with pure torsion of a singly closed 
profile, we find out that the flow of the tangential stresses along each of 
the non-bifurcating segment of the contour is a constant. In other words, 
we have six unknown flows, Ti (i = 1,…, 6), according to the number of 
the non-bifurcating pieces of the profile (Fig. 7.4-а). Generally, each of the 
segments has its own constant, so 

T1 ≠ T2 ≠ T3 ≠ T4 ≠ T5 ≠ T6 . 

These six flows are actually not independent but related through conditions 
of equilibrium.  

To establish these relationships, we introduce the notion of a flow on 
each of the base contours, 1T , 2T , 3T , as shown in Fig. 7.4-b. The flows 
meet one another on common segments of the base contours. 

A contour flow is assumed positive if it moves in the positive direction 
around the contour of the section the exterior normal to which has the 
same direction as the X-axis. With this sign convention, the positive flows 
of adjacent base contours have the opposite directions when meeting on a 
common boundary (see Fig. 7.4-b). 
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Fig. 7.4-b.  Pure torsion of a three-contour profile – flows of tangential stresses 

along each of the base contours 

The flows on the non-bifurcating segments of the profile can be proved 
to have the following relation to the flows on the contours: 
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1 1T T= ,   2 2T T= ,   3 3T T= ,   4 2T T= ,   5 1 2T T T= − + ,   6 2 3T T T= − + . 

As the number of the base contours is less than the number of the non-
bifurcating segments of the profile, it will be more convenient further to 
deal with the flows on the contours.   

Obviously, the total torque in the section, created by contour flows 1T , 

2T , 3T , is equal to the sum of the torques created by each particular flow. 
Reasoning the same way as in Section 7.1, we obtain the following instead 
of (1.3): 

1 1 2 2 3 3xM T T T= Ω + Ω + Ω , (2.2) 

where Ωi is the doubled area comprised by i-th contour. 
As we can see, one equation of statics contains three unknown flows. 

This means our problem has the redundance of two, so the strain 
compatibility conditions should be involved to solve it.  

Apparently, it is easiest to formulate the strain compatibility conditions 
on the variational basis, by considering the Castigliano functional. To do 
it, we should define the strain energy via the stresses, which will be exactly 
the Castigliano functional that we need for our analysis.  

Up to an insignificant multiplier L, where L is the length of the bar in 
torsion, the Castigliano functional can be written as 

1 2 3 12 23

22 2
3 2 31 2 1 2

2 2 2
hds hds hds hds hds

Gg Gg Gg Gg GgΓ Γ Γ Γ Γ

τ τ ττ τ τ τ
= + + − −∫ ∫ ∫ ∫ ∫K , 

where /i iT hτ =  is a tangential stress created by flow iT . The two last 
integrals account for the mutual work of the opposite flows of the 
tangential stresses on common boundaries of the contours. After 
expressing the stresses via the flows and allowing for the constancy of the 
flows on each of the contours, we can transform this formula into a more 
convenient relation, 

1 2 3( , , )T T T =K  

1 2 3 12 23

22 2
3 2 31 2 1 2

2 2 2
T T TT T TTds ds ds ds ds

G gh G gh G gh G gh G ghΓ Γ Γ Γ Γ

= + + − −∫ ∫ ∫ ∫ ∫ , (2.3)

which turns the Castigliano functional into a quadratic form of three scalar 
values, flows 1T , 2T , 3T . 
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The minimum of this quadratic form should be sought for in a statically 
admissible set, i.e. in a set of flows which satisfy the only equation of 
equilibrium (2.2). We use the standard Lagrangian multipliers approach 
that helps reduce the problem of a conditional extremum of function K to 
the problem of unconditional stationarity of the modified function M, 

1 2 3 1 2 3 1 1 2 2 3 3( , , , ) ( , , ) ( )xT T T T T T M T T Tλ = − λ − Ω − Ω − ΩM K , (2.4) 

with the Lagrangian multiplier λ. The condition of stationarity of M 
produces the following system of simultaneous linear algebraic equations: 

1 12

12 2 23

23 3

1

1

2 2

3

3

1 2 3

1 1 0

01 1 1
0
0

1 10

0

x

ds ds
G gh G gh

Tds ds ds
TG gh G gh G gh
T

ds ds M
G gh G gh

Γ Γ

Γ Γ Γ

Γ Γ

⎡ ⎤− Ω⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − Ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− Ω λ ⎣ ⎦⎣ ⎦⎢ ⎥
⎢ ⎥

Ω Ω Ω⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫ ∫

∫ ∫

. (2.5) 

The solution of this system of equations resolves the problem of  
redundance. 

It is of little avail to present the solution of this system of equations here 
in its general form because its analytic expression is too bulky. The only 
thing worth mentioning is that the solution can be represented as 

1 1
0

xMT a=
Ω

,      2 2
0

xMT a=
Ω

,      3 3
0

xMT a=
Ω

, (2.6) 

where the dimensionless coefficients 1a , 2a , 3a  satisfy the condition 

1a Ω1 + 2a Ω2 + 3a Ω3 = Ω0, (2.7) 

and Ω0 is a total area of the three contours, 

Ω0 = Ω1 + Ω2 + Ω3 . (2.8) 

By the way, it is worth noticing that the values of those coefficients 
showing a relative distribution of the flows between the contours do not 
depend on the common shear modulus, G, nor they depend on the Mx  
torque.6 
                                                      

6   It is important because it permits to formally assume G = 1 in the system of 
equations of the type (2.5) written for the coefficients of distribution of the flows 
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It is also obvious that the result will be similar in the general case for a 
k-contour profile: 

0

x
i i

MT a=
Ω

    (i = 1,…, k),           0
1

k

i i
i

a
=

Ω = Ω∑ ,        0
1

k

i
i=

Ω = Ω∑ . (2.9) 

A topologic structure of a multiple-contour profile 

When we construct a governing system of equations for a general multiple-
contour profile, there is such an essential thing as the topologic structure of 
the multiple-contour profile in question. This structure is characterized by 
the following three integer parameters: 

• k, the number of base (non-intersecting, closed) contours which make up 
the profile; 

• n, the number of non-bifurcating segments in the profile; 
• t, the number of points of bifurcation of the profile.  

It wiil be convenient for us to think topologically — in terms of some 
elementary concepts of the theory of directed graphs which we borrow 
mainly from [3]7. We introduce new notions in application only to that 
(pretty narrow) class of graphs which will help us in our analysis.  

A vertex or a node of a graph will refer to any point of bifurcation 
where the profile goes along more than one path. For example, the profile 
shown in Fig. 7.4-а and 7.4-b is associated with the graph shown in 
Fig. 7.5 that has four nodes, v1, v2, v3, v4. Those four nodes of the graph 
conform to four points of bifurcation of the profile, the respective 
A, C, F, and D. 

An edge or an arc of the graph will refer to any non-bifurcating segment 
of the profile. The graph shown in Fig. 7.5 has six edges r1, r2, r3, r4, r5, r6 
which conform to the respective non-bifurcating segments ABC, CD, 
DEF, FA, AC, FD of the profile, as shown in Fig. 7.4-а and 7.4-b . 

A base loop of the graph will refer to a set of edges which make up any 
base contour of the profile. The graph in Fig. 7.5 has three base loops: 
с1 = (r1, r5), с2 = (r5, r2, r6, r4), с3 = (r3, r6).  

                                                                                                                          
over the contours – see the general formula (2.15) later. So it is worth doing some 
work in order to prove this statement. 

7 This is not a new idea to use techniques of the theory of graphs in application 
to the analysis of thin-walled bars. For example, [5] uses this approach to calculate 
geometrical characteristics of the sections of thin-walled bars. 
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A frame loop, с0, of the graph will refer to a set of edges that make up 
the outermost bounding contour of the profile, Г0. In our case 
с0 = (r1, r2, r3, r4).  
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Fig. 7.5.  An oriented graph of a profile 

In terms of the graph theory, the three integral parameters introduced 
above can be interpreted as follows: 

• k is the number of base loops in the graph; 
• n is the number of edges in the graph; 
• t is the number of vertices in the graph.  

In the class of graphs that we are dealing with, each edge can be 
included in one base loop or two base loops. If an edge participates in one 
base loop only, we will call it a frame edge. Otherwise, such an edge will 
be called a double edge. 

The direction of any frame edge (indicated by an arrow on the graph’s 
picture) is predefined by the choice of a positive direction of the respective 
base contour. As for any double edge, its direction does not obey any rule 
and can be chosen arbitrarily. 

The set of all frame edges listed in succession is exactly the frame loop 
of the graph. 

The presence of a definite direction on each edge permits to associate 
each vertex (node) with a list of incoming edges and a list of outgoing 
edges. An edge ri is said to be incident to a vertex vα if that edge either 
comes to or goes from the vα vertex. In the class of graphs that we are 
dealing with, each vertex has at least three edges incident to it. 

It can be proved that the integer parameters introduced above, n, t and k, 
are not independent in this particular class of graphs. Instead, they are 
related as 

n – t = k – 1 . (2.10) 
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From the standpoint of structural mechanics, this number of (k – 1) is 
exactly the redundance of the multiple-contour profile in the pure torsion 
analysis. Indeed, if the profile contains k independent contours, then the 
unknown contour flows iT (i = 1,…, k) obey exactly one static equation of 
the type (2.2): 

1

k

i i x
i

T M
=

Ω =∑ , (2.11) 

and the other (k – 1) equations have to have the sense of strain 
compatibility conditions. Note that the above-introduced parameters are as 
follows for the profile shown in Fig. 7.4: 

k = 3;     n  = 6;     t = 4. 

We introduce a so-called incidence matrix, G, which is used to describe 
the topologic structure of a directed graph by algebraic means. This matrix 
contains t rows and n columns, and its elements can take one of three 
values: 0, 1, or –1. Each i-th column of matrix G corresponds to a separate 
edge of the graph, and each α-th row to a separate vertex of it. All 
elements are zeros in every i-th column, except for two elements one of 
which is equal to one (this element’s row number indicates a node which i-
th edge of the graph goes out of) and the other to minus one (this element’s 
row number indicates a node which i-th edge of the graph comes to).  

Numbering the vertices and edges of the graph from our example as 
shown in Fig. 7.5, we obtain the following matrix G: 
                                         r1     r2     r3     r4     r5     r6  

                     G =.

1

2

3

4

v 1 0 0 1 1 0
v 1 1 0 0 1 0
v 0 0 1 1 0 1
v 0 1 1 0 0 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

.                                

In addition to the incidence matrix, G, there is another important matrix 
used to describe the topologic structure of the profile; this is a loop matrix, 
F. This matrix has the dimensions of k×n. An arbitrary element, fij, of that 
matrix, F = |[fij]|, is equal to: 

• zero, if edge rj is not included in the loop сi; 
• one, if edge rj is included in the loop сi, and the chosen direction on this 

edge coincides with the positive direction of tracing the contour that 
conforms to the loop; 
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• minus one, if edge rj is included in the loop сi, and the chosen direction 
on this edge is different from the positive direction of tracing the the 
contour that conforms to the loop. 

For the profile that we use as an example, the loop matrix F will be 
            r1   r2   r3   r4    r5     r6 

F =
1

2

3

c 1 0 0 0 1 0
c 0 1 0 1 1 1
c 0 0 1 0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Obviously, edge rj is a frame one if one of the elements in j-th column of 
the loop matrix is equal to one and all the others are zeros.  

The two matrices, G and F, are not thoroughly independent. For the 
class of graphs we are dealing with, the incidence matrix and the loop 
matrix are mutually orthogonal8, that is, 

GFT = O, (2.12) 

where O is a zero matrix of the t×k dimensions.  
It is further useful to associate each j-th edge of the graph with an edge 

weight, pj, which is defined as 

pj = 
jl

ds
gh∫     (j = 1,..., n) , (2.13) 

where lj is a geometrical length of the profile’s segment which conforms to 
the edge of graph rj. Similarly, we can associate each closed base 
contour ci with a contour weight, ip , by defining 

1

| |
i

n

i ij j
j

dsp f p
ghΓ =

= =∑∫    (i = 1,..., k). (2.14) 

We suggest that the reader think over the proof for what we present 
here: a general form of the governing system of equations for calculating 
the flow distribution coefficients, ia  (i = 1,…, k), in a multiple-contour 
profile in pure torsion: 

                                                      
8 A formal proof of this statement will be an exercise for the reader. 
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1 12 1 1 1 1

21 2 2 2 2 2

1 2

1 2

1 2 0

0
0

0

0
0

j k

j k

j j j jk j j

k k kj k k k

j k

p p p p a
p p p p a

p p p p a

p p p p a

− − − Ω⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− − − Ω⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− − − Ω ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
− − − Ω⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥Ω Ω Ω Ω Ωλ⎣ ⎦ ⎣ ⎦⎣ ⎦

, (2.15)

where:  

• pij = pji = 0 ,  if contours ci and cj do not have common edges; 
• pij = pji = pα,  if edge rα is a common one of contours ci and cj. 

The solution of this system of equations produces coefficients ia  
(i = 1,…, k) for each of the base contours, thus the values of flows iT  for 
each of the base contours, too: 

0

x
i i

MT a=
Ω

 (i = 1,…, k). (2.16) 

Now we can determine flows Tj (j = 1,…, n) on each of the non-
bifurcating segments of the profile: 

jT = 
1

k

ij i
i

f T
=
∑     (j = 1,…, n) . (2.17) 

We can associate each of the non-bifurcating segments with its 
particular dimensionless coefficient aj by defining 

ja = 
1

k

ij i
i

f a
=
∑     (j = 1,…, n) . (2.18) 

Obviously, with these designations introduced, the flows Tj (j = 1,…, n) on 
non-bifurcating segments of the contour can be written as follows: 

0

x
j j

MT a=
Ω

    (j = 1,…, n)  .         (2.19) 

We would like to note that it is appropriate to refer to coefficients aj 
(j = 1,…, n) as coefficients of flow distribution over segments, while 
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coefficients ia  (i = 1,…, k) can be entitled coefficients of flow distribution 
over contours.  

It is also convenient to introduce a piecewise-constant function, a(s), 
which takes the values of aj for the argument s from j-th piece of the 
contour. Function a(s) will be called a flow distribution function, meaning 
the distribution along the profile. Using this function and following (2.19), 
the flow, T(s), in any point of the profile can be represented as 

0

( ) ( ) xMT s a s=
Ω

 .         (2.20) 

A warp function for a multiple-contour profile 

Further we will deal with the warp function, α(s), constructed for a 
multiple-contour profile. 

Exactly as we did in Section 7.1, we will choose an arbitrary point of the 
(Y,Z)-plane to be the pole Р and will impose the same six constraints on the 
bar, which will prevent the bar from moving as a rigid whole.  

Formula (1.8), which can be more conveniently written as 

( )du T s
ds Ggh

′= − θ ρ , (2.21) 

will still remain true for each of the segments of the profile. However, 
here’s what we should keep in mind about this formula: 

• flows Т take different values in different parts of the profile; 
• the increase of coordinate s (that is, the sign of ds) and the sign of 

parameter ρ should be consistent in common parts of the contours. 

Let us now consider the contour Г0, which is the outermost, bounding 
contour of the section. For example, take a profile shown in Fig. 7.4-b; the 
positive direction around its contour Г0 is to move successively between 
the points ABCDEFA of the profile. Integrating (2.21) along that contour 
in the positive direction gives this for an arbitrary point М∈ Г0: 

M M

M A
A A

1 Tdsu u ds
G gh

′= + − θ ρ∫ ∫ . (2.22) 

Flow Т remains in the integrand because it is different in different parts of 
the profile. After tracing the Г0 contour, we return to point А, so the 
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condition of unambiguity of the longitudinal displacement in that point 
yields a general expression of the twist:9 

00

1 Tds
G ghΓ

′θ =
Ω ∫ , (2.23) 

where Ω0 is the doubled area bounded by exterior contour Г0 which we 
introduced earlier: 

0

0 1 2 3ds
Γ

Ω = ρ = Ω +Ω +Ω∫ . 

Using the representation (2.20) of flow T(s), we transform (2.23) into 

0

2
0

xM ads
G ghΓ

′θ =
Ω ∫ . (2.24) 

After writing the twist expression in standard designations of the science 
of strength of materials, 

x

x

M
GI

′θ = , 

we find an expression of the torsional moment of inertia of the multiple-
contour section by comparing the previous relation with (2.24): 

0

2
0

xI ads
ghΓ

Ω
=

∫
. (2.25) 

Formula (1.15) for a singly closed section follows naturally from the 
general formula (2.25), when assuming Ω0 = Ω and a(s) ≡ 1 in the latter. 

If we begin the movement from the A point of the contour and move 
constantly in the positive direction ofthe flow,  we can eventually reach 
any point M of the profile. There can be multiple paths to some points M. 
For example, for a point M belonging to the FA segment, the potential 
paths by which it can be reached include ACDFM, ACDEFM, ABСDFM. 
Let us choose one of the paths to М and integrate (2.21) from point А to 
point М along that. The result is again (2.22) in which, however, the 
                                                      

9 Note that (2.23) is actually nothing but a re-formulation of the Bredt theorem 
of the tangential stress circulation in application to the bounding contour Г0 for a 
thin-walled section with a closed multiple-contour profile under the condition of 
g = 1. 
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chosen path of integration may be different from contour Г0. Substituting 
the expression of the twist from (2.24) to (2.22) gives 

0

M M

M A 2
0 0A A

x xM Mads adsu u ds
G gh G ghΓ

= + − ρ
Ω Ω∫ ∫ ∫ . 

Of course, in this formula the value of each integral with the variable 
upper limit, 

M

A

ads
gh∫       and      

M

A

dsρ∫ , 

depends on what path of integration has been chosen, but the ultimate 
result for uM should be invariant with respect to the path. Otherwise, the 
uniqueness of the displacements at point М would be violated.  

Further, in our case we are entitled to assume constant uA to be zero, 
which is equivalent to the fixation of the bar against rigid longitudinal 
displacements exactly at the А point. As a result, the final formula for the 
warp displacements in pure torsion of a multiple-contour profile becomes 

( )x

x

Mu s
GI

= α , (2.26) 

which is the same as (1.16) if we take the warp function, α(s), to be 
M M

0 A A

( ) xI adss ds
gh

α = − ρ
Ω ∫ ∫  (2.27) 

with an arbitrary path of integration from the start point, А, to the current 
point of the profile, М.  

To conclude this section, we would like to present a useful validation 
identity which is required to hold for the function of distribution of the 
flows over the non-bifurcating segments of the profile: 

0

2

1 j

n

j
j l

ds adsa
gh ghΓ=

=∑ ∫ ∫ . (2.28) 

The reader is kindly asked to prove this identity by himself.  
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7.2.2 A general behavior of a multiple-contour profile 

By reasoning the same way as we did for a singly closed profile, we find 
that formulas (1.19) through (1.29) remain true for a multiply closed 
profile, too. In particular, formulas (1.23) and (1.26) define a generalized 
sectorial coordinate, ϖ, in each point of the multiply closed profile. The 
only thing to be particularly careful about when defining the generalized 
sectorial coordinate ϖ for the multiply closed profile is a bit different, 
comparing to (1.23), form of parameters ω0, ωy, ωz: 

0
1

1 ( )
j

n

j l

s ehds
A =

ω = α∑∫ ,     
1

1 ( )
j

n

y
jy l

s zehds
I =

ω = α∑∫ , 

 
1

1 ( )
j

n

z
jz l

s yehds
I =

ω = α∑∫ , (2.29) 

though the meaning of the formulas does not change comparing to (1.23).  
However, the formulas of the tangential stresses for a multiply-closed 

profile need refining. 

Tangential stresses in a multiple-contour profile 

On each of the non-bifurcating segments of the profile, formula (1.30) will 
be 

M

Si

x
hds

x
∂σ
∂∫ + M SiT T− +

M

Si

xq ds∫  = 0 , (2.30) 

where the symbol of Si denotes a start point of the non-bifurcating i-th 
segment in question, and the symbol of М is, as usual, an arbitrary current 
point of that segment. 

Substituting formulas (1.29) in here permits to express the value of the 
flow TM in the current point М of the profile’s segment i via its value TiS in 
the start point of the same segment,  

TМ = TiS – oo o
o

i yi i z
z y i

z y

SA SN M M E S
A I I ϖ′ ′ ′ ′′− − + β –

M

Si

xq ds∫ , (2.31) 

where instead of (1.32) we use this notation: 
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M

o
Si

iA ehds= ∫ ,  
M

o
Si

i zS yehds= ∫ ,   
M

o
Si

i yS zehds= ∫ ,   
M

o
Si

iS ehdsϖ = ϖ∫ . (2.32) 

Obviously, Aio, Sioy and Sioz are the respective area and static moments of 
the cut-off part of the current cross-section’s segment, that is, a part of the 
section between the initial (start) point of i-th segment Si and the current 
point М. Similarly, the value of oiS ϖ  is a sectorial static moment of the 
same cut-off part of the section.  

Reasoning the same way as we did with a singly closed profile, we 
arrive also at (1.39), which is as follows on each non-bifurcating segment 
of the multiple-contour profile: 

TМ = TiS oo oi yi z i
y z

z y

SS SQ Q M
I I I

ϖ
ϖ

ϖ

− − − , (2.33) 

where we denote 

BM EI mϖ ϖ ′′= − β + . (2.34) 

Clearly, there can be exactly n relationships like (2.33) – according to the 
number of the non-bifurcating pieces of the profile.  

But relationship (2.33) is true for any point М of the non-bifurcating 
piece of the contour in question, thus for its “tail point” Тi, too. This 
permits us to write exactly n equations which have the meaning of 
equilibrium equations and establish a simple linear relation between the 
start and tail tangential stresses in each part of the profile: 

TiT – TiS = iyiz i
y z

z y

SS SQ Q M
I I I

ϖ
ϖ

ϖ

− − −     (i = 1,…, n) , (2.35) 

where we simplify the designations in this way: 

• TiT denotes a flow of the tangential stresses on the “tail” of i-th segment;  
• TiS denotes a flow of the tangential stresses at the “start” of i-th segment;  
• Siz, Siz, Siϖ denote static moments and a sectorial moment of a part of the 

bar’s section which is located between the start and tail points of i-th 
segment. 

To put it another way, 
T

S

i

i

izS yehds= ∫ ,    
T

S

i

i

iyS zehds= ∫ ,    
T

S

i

i

iS ehdsϖ = ϖ∫  . (2.36) 
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So, we have 2n flows in total to be our unknowns: TiT and TiS 
(i = 1,…, n), and we still have only n equations of equilibrium to calculate 
those (2.35). 

We can compose t additional equations of equilibrium by extracting a 
vicinity of each bifurcation point and making an equation of equilibrium of 
the flows in projections onto the X-axis. For example, by extracting an 
element of the bar’s section in the vicinity of point С (Fig. 7.6) and 
considering the equilibrium of the extracted elements in projections onto 
axis X, we will have 

–T1T + T2S – T5T = 0 . 

There are exactly t equations of this kind: one for each bifurcation point.  
To write the equations of this kind in the general case, we can use a 

matrix introduced earlier: the incidence matrix of directed graph G which 
describes the topology of a multiple-contour profile. 

T
2S

T
5T

T
1T

C  
Fig. 7.6.  An element of the bar’s cross-section in the vicinity of point С  

Now, having introduced matrix G = |[gαi]|, we can write the equations of 
equilibrium for α-th point of bifurcation of the profile for the most general 
case, 

[ ]S T
1

( 1) ( 1) 0
n

i i i i i
i

g g T g Tα α α
=

+ − − =∑        (α = 1,…, t). (2.37) 

It is easy to make sure that actually α-th equation will contain positive 
start values of the flows on segments the beginnings of which coincide 
with point α. The same equation will contain negative tail values of the 
flows on segments the ends of which are coincident with point α. The form 
(2.37) of the equations of equilibrium of the flows in α-th point of 
bifurcation is universal and therefore convenient for building practical 
algorithms and developing analytic software.  

However, the set of equations (2.37), in the number of t, contains 
exactly one equation which is linearly dependent on the rest (t –1) 
equations. This fact is equivalent to the rank of matrix G being (t –1).  
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The inequality rank G < t can be easily proved. To see this, we add up 
all rows of G and get a zero row because the sum of the elements of each 
column is zero. This means that the last t-th equation in system (2.31) is a 
linear combination of first (t –1) equations10.  

Finally, another equation of equilibrium can be derived from the 
condition of static equivalence between the torque created by flow T(s) and 
the total torque, Mx, acting in the section: 

Mx = 
T

1 S

( ) ( )
i

i

n

i
i

T s s ds
=

ρ∑ ∫ . (2.38) 

Here Ti(s) means a value of the TM flow in an arbitrary point of i-th 
segment, defined by (2.33). The symbol of ρ denotes, as usual, an arm 
function, that is, a projection of the РМ vector onto the normal unit vector, 
n, which comes from the current point М on the i-th segment of the 
contour. We remind that Р is a center of twist of the profile. 

Replacing Ti(s) with the expression of the flow from (2.33) and 
integrating gives 

T T T T

S o o o
1 S S S S

i i i i

i i i i

n
y z

x i i z i y i
z yi

Q MQM T ds S ds S ds S ds
I I I

ϖ
ϖ

ϖ=

⎡ ⎤
⎢ ⎥= ρ − ρ − ρ − ρ
⎢ ⎥⎣ ⎦

∑ ∫ ∫ ∫ ∫ . (2.39) 

So, we have the following to calculate 2n unknown flows TiS and TiT:  

• n equilibrium equations (2.35);  
• (t – 1) equilibrium equations (2.37);  
• one equilibrium equation (2.39).  

In total we have (n + t) equations of equilibrium. Consequently, the 
problem of calculating the flows becomes statically indeterminate with its 
redundance equal to 

2n – (n + t) = k – 1 . 

As we can see, this number is the same as the redundance in our earlier 
analysis of pure torsion, which is of course quite expectable.  

Clearly, the lacking (k – 1) equations should be based on the strain 
compatibility conditions. To construct these lacking equations, we again 
turn to the Castigliano variational principle.  

                                                      
10 It would be well to show that first (t – 1) equations in system (2.37) are 

linearly independent, hence the equality rank G = (t –1). How about another 
exercise in proving propositions? 
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However, before we use the Castigliano principle directly, it will be 
useful to simplify the set of equilibrium equations with respect to the 
unknown flows by avoiding the determination of the tail flows, TiT. A 
matrix form will be most convenient for both systems, (2.35) and (2.37). 
To arrive at it, we introduce a vector of the flows at the start points  of the 
segments, TS, and a vector of the flows at the end points of the segments, 
TT, by defining 

TS = [ ]1S S,..., nT T T
,        TT = [ ]1T T,..., nT T T

. (2.40) 

With these designations, we can rewrite the system of equilibrium 
equations (2.35) as 

TT = TS – ∆T, (2.41) 

where (2.35) defines ∆T as a vector of increments of the flows on each of 
the non-bifurcating segments of the profile, 

∆T = y z
z y

z y

Q MQ
I I I

ϖ
ϖ

ϖ

+ +S S S  , (2.42) 

and vectors , ,z y ϖS S S  are 

11 1

, ,
yz

z y

nz ny n

SS S

S S S

ϖ

ϖ

ϖ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

S S S  (2.43) 

with the components defined according to (2.36). 
If we supplement the incidence matrix, G, with a truncated matrix G  

from which the last row of G has been removed and with a matrix |G | 
composed of absolute values of the G  components, so that 

G  = 
11 1

1,1 1,

n

t t n

g g

g g− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
,         | |G  = 

11 1

1,1 1,

| | | |

| | | |

n

t t n

g g

g g− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
, (2.44) 

then the system of first independent (t – 1) equations of equilibrium in 
(2.37) can be rewritten in the matrix form as 

S T(| | ) (| | )+ − − = 0G G T G G T . 
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By excluding the tail flows TT using (2.41), we get the equations of 
equilibrium in the number of (t – 1), which contain only start flows TS for 
unknowns: 

S2 (| | )+ − ∆ = 0GT G G T . (2.45) 

It will be convenient for us also to rewrite the condition of equilibrium 
in terms of moments with respect to the X-axis – that is, equation (2.39) – 
as 

Mx = ωTTS – y z
z y

z y

Q MQS S S
I I I

ϖ
ρ ρ ρϖ

ϖ

− − , (2.46) 

where we use these additional designations: 

ω = [ ]1,..., nω ω
T

,     
T

S

i

i

i dsω = ρ∫ ,  

T

o
1 S

i

i

n

z i z
i

S S dsρ
=

= ρ∑ ∫  ,    
T

o
1 S

i

i

n

z i z
i

S S dsρ
=

= ρ∑ ∫ ,     
T

o
1 S

i

i

n

i
i

S S dsρϖ ϖ
=

= ρ∑ ∫ . (2.47) 

Assuming for simplification that the boundary conditions are 
homogeneous, we can establish an identity between the Castigliano 
functional and the expression of the strain energy via the stresses11. Thus, 

2 2

0 1 2 2
i i

nL

i l l

hds hds dx
Ee Gg=

⎡ ⎤⎛ ⎞σ τ⎢ ⎥⎜ ⎟= +
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑∫ ∫ ∫K . (2.48) 

The summation comprises all non-bifurcating parts of the profile. 
Now we replace the normal stress, σ, with its representation from 

(1.48), and the tangential stress, τ, with its representation via the flow, τ = 
T/h, where flow T(s) is defined by (2.33) in its turn in every non-
bifurcating part of the profile.   

As a result, we have 

                                                      
11 The assumption like this does not make the subsequent conclusions any 

narrower in this case. The matter is that all we need is Euler equations for 
functional K, which determine the strain compatibility conditions expressed via 
flows TiS. But the Euler equations for a quadratic functional are known to be 
independent from the boundary conditions. 
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2
S S o S o S o

0 1

1 2 2 2 (...)
2

i

nL y z
i i i z i i y i i

z yi l

Q MQ dsT T S T S T S dx
G I I I gh

ϖ
ϖ

ϖ=

⎡ ⎤
= − − − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑∫ ∫K , 

where (…) denotes all other terms not depending on flows TiS.  
We introduce another series of additional designations by denoting 

1 0 0
0

0
0 0 n

p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

p ,   
1hz

hz

nhz

S

S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S ,   
1hy

hy

nhy

S

S

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

S ,  

1h

h

nh

S

S

ϖ

ϖ

ϖ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  (2.49) 

with components 

i

i
l

dsp
gh

= ∫ ,  o

i

i z
ihz

l

SS ds
gh

= ∫ ,  o

i

i y
ihy

l

S
S ds

gh
= ∫ ,   o

i

i
ih

l

SS ds
gh
ϖ

ϖ = ∫ . (2.50) 

The diagonal matrix p can be called (and for a good reason) a weight 
matrix of the non-bifurcating parts of the profile.  

In terms of the designations just introduced, we can rewrite the K 
functional as 

S S S S S
1

2
y z

hz hy h
z y

Q MQ
G GI GI GI

ϖ
ϖ

ϖ

= − − −T pT T S T S T ST T T TK + (…) . (2.51) 

Further we should minimize the K functional with respect to the 
components of the TS vector under additional conditions (2.45) and (2.46).  

We use a standard Lagrange-multiplier-based approach to reduce this 
problem to the search for a stationary point of a modified functional, M, by 
assuming 

M = K + ΛT
S2 (| | )⎡ ⎤+ − ∆⎣ ⎦GT G G T +  

              +λt [ωTTS – y z
z y

z y

Q MQS S S
I I I

ϖ
ρ ρ ρϖ

ϖ

− − – Mx] , (2.52) 
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where Λ = |[λ1,…, λt–1]|T is a vector of Lagrangian multipliers of the order 
t – 1 and λt is another (additional) Lagrangian multiplier. 

The stationarity of M yields the following set of simultaneous linear 
algebraic equations of the order (n + t)12: 

S
2

2
10

x

t

G
M

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥λ⎢ ⎥ ⎣ ⎦⎣ ⎦

⎣ ⎦

0
0 0 0

0

p G T
G

T

T

ω

Λ

ω

 

( | |) ( | |) ( | |)

hyhz h

y z
z y

z y
z y

G G GQ MQ
I I I

S SS

ϖ

ϖ
ϖ

ϖ
ρ ρϖρ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥+ − + − + −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

SS S

G G S G G S G G S . (2.53)

The solution of this system defines the components of the vector of start 
flows, TS, which we want to know. This vector can be represented as 

TS = y z
x x z y

z y

Q MQM
I I I

ϖ
ϖ

ϖ

+ + +b b b b . (2.54) 

                                                      
12 We anticipate a perplexity, if not a protest, of some (supposedly, not very 

numerous) readers educated by books on structural mechanics written in fifties of 
the last century or even much newer publications. Why, such a reader would ask, 
do you want me to solve a system of equations of a higher order, (n + t), while I 
know that I can (and how I can) use a system of equations of the order (n – t) = 
(k – 1)? 

       Here I count on the understanding of mostly younger professionals in 
structural mechanics, for which the calculation in our science can (and should) no 
longer be done without computer programming. Such readers would not need my 
explanation to understand that the principal criteria by which a computational 
algorithm is assessed in these latter days, since the second half of the twentieth 
century, are not ingenious tricks for reducing the orders of equations systems but, 
rather, such things аs versatility, simple algorithmization etc. It is a wondrous 
thing how our attitude to “good and bad” has changed along with the tools of 
caclulation! From manual calculations on paper, through the now forgotten 
abacus, counting frame, and sliding rule, through the arithmometer, through first 
analog and digital electron-tube computers to the contemporary advanced personal 
computers – this is one impressive way, not only for structural mechanics. What 
then awaits us ahead? 
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Each of vectors  bx, by, bz, bϖ is a vector of the order n composed of 
coefficients which are taken from the solution of equations (2.53). More 
accurately, each of the vectors is a solution of the system of equations with 
the same М matrix, 

2

2

0

G
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M 0 0

0

p G

G

T

T

ω

ω

, (2.55) 

but with different right-hand parts, where 

1

x

t
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M

S
b

G G SΛ . (2.56) 

Of course, the values of Lagrangian multipliers λ1,…, λt are different in 
the solution of each particular system of equations, but this is inessential 
for us because we are little interested with the multipliers at the moment. 

Excluding the start flows from the general formula (2.33) of flows in an 
arbitrary point using (2.54) gives 

o o o( ) y z
i x ix i z i y i

z y

Q MQT s M b S S S
I I I

ϖ
ϖ

ϖ

= − − − , (2.57) 

where functions o o o, ,i z i y iS S S ϖ  are defined on each of the non-bifurcating 
parts of the contour as 

o oi z i z izS S b= − ,     o oi y i y iyS S b= − ,   o oi i iS S bϖ ϖ ϖ= − . (2.58) 

Formula (2.57) is a counterpart of (1.49) which we established and used 
earlier for singly closed cross-sections. In exactly the same way, formulas 
(2.58) are counterparts of (1.43).  
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Now let us show that the components of vector bx are not quite 
unfamiliar to us. They are related in a simple way to the components of the 
earlier vector, a = |[a1,…,an]|T, where ai are coefficients of distribution of 
the flows over the non-bifurcating parts of the profile in pure torsion – see 
(2.18). To see this, we assume we are dealing with a pure torsion. Then 
Mx = H,  Qy = Qz = Mϖ = 0, so (2.57) gives 

Ti = Hbix . 

But the flows obey formula (2.19) when in pure torsion, or 

Ti =
0

i
Ha
Ω

. 

Equaling these two expressions of the pure-torsion flows gives 

a = Ω0bx . (2.59) 

Now we represent the full torque, Mx, as a sum of the pure-torsion 
torque, H, and the constricted-torsion torque, Mϖ, to rewrite formula (2.57) 
in a slightly more convenient form:  

o o o
0

( ) y z
i i i z i y i

z y

Q MQHT s a S S S
I I I

ϖ
ϖ

ϖ

= − − −
Ω

, (2.60) 

where we assume 

o o
0

i i i
IS S a ϖ

ϖ ϖ= −
Ω

. (2.61) 

This ends our consideration of the tangential stresses in the theory of 
thin-walled bars having multiple-contour closed profiles.  

Functions oi zS , oi yS , oiS ϖ  just introduced are multiple-contour 
generalizations of functions ozS , oyS , oS ϖ  which we introduced earlier for 
a singly closed profile. These functions can be shown to have 
characteristic properties of functions ozS , oyS , oS ϖ . We will not spend our 
time giving formal grounds; we just want to note that the following 
formulas are true: 
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i l
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gh=
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Sa ds
gh=

=∑ ∫ ,      o

1
0

i

n
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i
i l

Sa ds
gh

ϖ

=

=∑ ∫ ; (2.62) 

these will be needed in the next section.  
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Governing equations for thin-walled bars having closed 
multiple-contour profiles 

It is easy to notice that the structure of the governing equations for the 
shear and semi-shear theories, which we have established for a singly 
closed profile, is thoroughly applicable to a multiple-contour profile.  

We confine ourselves to considering the first (energy-based) version of 
the theory and find that the only difference in the multiple-contour case 
lies in formulas for the elements of the shape factor matrix, µ. To obtain 
the µ matrix using (2.59), we write the expression of the strain energy, Eτ, 
in the form of 

τE =
2

o o o
0 1 0 2
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nL
y z

i i z i y i
i z yl

Q MQH ha S S S ds dx
h hI hI hI Gg
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⎢ ⎥− − −⎜ ⎟⎜ ⎟Ω⎢ ⎥⎝ ⎠⎣ ⎦

∑∫ ∫ . (2.63) 

Now we transform the expression of energy Eτ. We have 
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The second line of this expression of τE  vanishes because of the 
properties of (2.62). Note also that (2.25) and (2.28) imply 

2 2
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2 2

i

nL L

i
i xl
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G gh GI=

=
Ω∑∫ ∫ ∫ . (2.65) 

Thus we finally have the following for the multiple-contour profile:  

      τE =
2 22 2

2
0 2 2 2 2

L
y yy z z zy y yz zz zz
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∫ , 
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where numerical parameters µzz, µzy, µzϖ, µyy, µyϖ, µϖϖ make up a matrix of 
the section’s shape factors, µ,  given below: 

                                                 µ =
zz zy z

yz yy y
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. (2.66) 

 As the operator of equilibrium, AT, which we established earlier by 
(6.3.12), is the same for all kinds of profiles in the shear theory, its 
Lagrange-conjugate operator of geometry, A, must not depend on the 
profile type, too. The latter operator is defined by (6.3.13).  

The physical relationships are defined by matrix C –1 according to 
(1.65), where, of course, the geometrical characteristics of the section are 
understood as calculated for the multiple-contour profile. 

Due to the said circumstances, the governing equations of the shear 
theory for the multiple-contour profile are (6.3.24), and those of the semi-
shear theory are (6.4.11). 
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8  PARTICULAR CLASSES OF PROBLEMS IN 
STRUCTURAL MECHANICS – part 5 

 …only those of all investigations are valuable which are 
initiated by applications… and only those theories are really 
useful which follow from the analysis of particular cases. 
Liapunov AM. From an essay dedicated to P.L.Chebyshev.  

8.1 Compound-profile thin-walled bars 

The two preceding chapters are dedicated to two separate theories of the 
open-profile and the closed-profile thin-walled bars. However, a practical 
engineer often encounters thin-walled bars which cannot be 
unquestionably classifed into either category. A characteristic example is 
the cross-section of a box-shaped or even a two-box stiffening girder of a 
bridge’s span (Fig. 8.1).  

  

Fig. 8.1.  Examples of compound thin-walled profiles 

Another complication of the design model of a thin-walled bar, which is 
also often encountered in practice, is the presence of so-called elastic 
warping constraints in the cross-section. A structural prototype of such 
constraints can be something like transversal straps or struts (Fig. 8.2). 

 
Fig. 8.2.  Examples of thin-walled profiles with warping constraints 
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Of course, experts in the theory of thin-walled bars have always 
understood how pressing is the need of the engineering science for a 
unified practical theory free from any limitations of the profile type. There 
have been numerous attempts of developing such a theory. Not meaning to 
give a full review, we would like to mention works by 
D.G. Eliashvili [7], [8], I.V. Kruglenko [13], O.V. Luzhin [14], [15], and 
also by foreign authors [10], [9], [16].   

It is important to notice that one of the hardest issues in the theory is a 
passing-to-limit requirement. This requirement demands that the theory of 
open-profile thin-walled bars should be implied by (follow from) the 
compound theory as a particular case, a result of passing to a limit. 
Similarly, the closed-profile thin-walled bar theory should be another 
particular case of the same compound theory. However, these two theories 
were no sooner combined into something more general than a lot of effort 
had been undertaken. 

The matter is that the no-shear hypothesis in V.Z. Vlasov’s theory 
stands in contradiction with the basic principles of A.A. Umansky’s theory 
where the physical relationship τ xs = Gγxs is critical, so assuming no shear, 
γxs = 0, does not work for the closed-profile bars.  

There is another circumstance that, according to opinions of some 
authors, is an obstacle for a union between the two theories. We mean the 
hypotheses concerning the distribution of the tangential stresses over the 
thickness of the walls of a thin-walled section. Umanski’s theory uses the 
assumption that the tangential stresses are uniform throughout the 
thickness of the walls, while in Vlasov’s theory the stresses are generally 
linear (see Fig. 6.6), so Vlasov assumes them to be τ xs = τ + τk. As it is not 
possible to omit the pure-torsion stresses τk in the theory by Vlasov, one 
could try to modify the theory by Umanski: by introducing stresses τk 
linearly distributed over the thickness of the walls and having zero values 
directly on the profile.  

A similar reasoning led O.V. Luzhin to one of simplest compound 
theories, which is by far the best recognized theory among experts in the 
thin-walled bar analysis. E.A. Beilin [3], [6], [4] generalized the approach 
of the theory by Luzhin afterwards, by making modifications needed to 
allow for effects of the warping constraints. It is important to notice that 
Luzhin’s theory deems it significant to formulate its physical relationships 
in the way Umanski does in his semi-shear theory of closed-profile thin-
walled bars, rather than use the energy-based approach. 

Of course, allowing for tangential stresses τk additionally in the closed 
part of the section introduces a certain refining correction to the general 
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theory of thin-walled bars. However, as we will show later, this refinement 
is not substantial for a compound theory based on the energy approach. 

It seems to us that the actual difficulty in the creation of a unified theory 
was how to connect the shear-free theory by Vlasov with the semi-shear 
theory by Umanski. However, as soon as we build the theory of open-
profile thin-walled bars as a semi-shear one, there are no more difficulties 
of the unification. A similar unification of the full shear theories for the 
opne-profile and closed-profile bars does not meet any obstacles. 

Having made these introductory notes, we begin to present the theory of 
compound-profile bars by using Luzhin’s generalizing refinement (that 
allows for τk in the closed part of the section). As we will see further, 
ignoring this refinement will not make significant changes to the general 
theory. 

For the sake of simplicity, we begin the consideration of the combined 
theory by assuming that the profile in question contains a single closed 
contour like one shown on the left in Fig. 8.1. 

8.1.1 Pure torsion of a compound-profile thin-walled bar 

The theory by Luzhin postulates for pure torsion of a compound-profile 
bar that the open parts of the contour have the tangential stresses τk only, 
while the closed contours have both the tangential stress τ and the 
tangential stress τk. The total torque created by all these stresses is 

kxM T GI ′= Ω + θ  (1.1) 

where 

Ik = 31
3 l

gh ds∫ , (1.2) 

and the integral is taken along the whole length of the compound contour1. 
The k subscript emphasizes that we mean the characteristics corresponding 
to the action of tangential stresses τk only. 

                                                      
1 Formula (1.2), derived for the closed part of the profile by formally inheriting 

the respective formula for the open part, is of course a pretty rough approximation. 
However, the fact is that the moment of the tangential stresses τk over the closed 
part of the section is a small value comparing to the moment of the average 
tangential stresses, TΩ. This means that the further refinement of the small term’s 
value is not really practical, so the approximation given by (1.2) is quite usable in 
engineering applications for both the open and the closed parts of the section. 



462      8 PARTICULAR CLASSES OF PROBLEMS – part 5 

The first term in (1.1) follows from formula (7.1.3) for the closed-
profile section. It defines a torque created by the flow, Т, of tangential 
stresses τ which act along the closed part of the profile.  

Making the same derivation for the closed part of the profile as we did 
in Section 7.1.1, we have that the twist θ′ obeys the relation 

d

T ds T
G gh GI

Ω′θ = =
Ω ∫ . (1.3) 

Here we follow Luzhin and Beilin [14], [4] in denoting 
2

dI ds
gh

Ω
=

∫
. (1.4) 

In other words, Id is a torsional moment of inertia of a section produced 
from the one in question by removing all segments of it not included in the 
closed part – see formula (7.1.15) for the purely closed-profile sections. 

Please note that the integral of ( )ds∫  means everywhere an integral 

taken along the segments of the profile which are included in its closed 
part only.  

Replacing the twist θ′ in (1.1) by using (1.3), we arrive at a formula that 
defines the flow Т in the closed part of the profile, 

k(1 / )
x

d

MT
I I

=
Ω +

. (1.5) 

Now, if we put the obtained expression of the flow in formula (1.3), we 
will have a relation of twist θ′ vs. torque Mx. Thus, 

k( )
x

d

M
G I I

′θ =
+

. (1.6) 

It is now clear that the combined theory demands that the torsional 
moment of inertia, Ix, of the whole compound section should be calculated 
as 

Ix = Id  + Ik . (1.7) 

Now let us construct the warp function, α(s), for the compound profile. 
For the purpose of our further presentment, we would like to introduce 

the notion of a characteristic function of the profile, κ(s), by defining 
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• κ(s) = 1, if the point of the profile with the arc coordinate s belongs to 
the closed part of the profile; 

• κ(s) = 0, if the point of the profile with the arc coordinate s belongs to 
the open part of the profile only. 

This function makes it possible to write the respective integrals over the 
whole closed part of the profile, over the whole open part of the profile, 
and over the whole profile as 

( )
l

ds⋅ κ∫ = ()ds∫ ,         ( )(1 )
l

ds⋅ − κ∫ = ( )
l

ds⋅∫ – ( )ds∫ ,          ( )
l

ds⋅∫ ,  

where (⋅) denotes an integrand, a function of the arc coordinate s. 
Formula (1.2) of the geometric characteristic Ik can be conveniently 

represented as a sum of two terms, 

Ik = Ik0 + Ik1,          Ik0 = 31 (1 )
3 l

gh ds− κ∫ ,          Ik1 = 31
3 l

gh dsκ∫ . (1.8) 

Obviously, Ik0 characterizes the torsional rigidity of the section that 
corresponds to stresses τk  in the open part of the profile. The value of Ik1 
characterizes a similar torsional rigidity which corresponds to stresses τk in 
the closed part of the profile only. 

As for the longitudinal displacements, u, they still obey formula (7.1.9) 
within the closed part of the profile, where we can assume u0 = 0 by means 
of choosing a location where a longitudinal constraint preventing the rigid 
displacements of the bar should be imposed. In other words, we have this 
within the closed part of the profile: 

0 0

s sT dsu ds
G gh

′= − θ ρ∫ ∫ . (1.9) 

Replacing Т and θ′ by their expressions according to (1.5) and (1.6), we 
come up with the following formula for the longitudinal displacements, u, 
of points that belong to the closed part of the profile: 

0 0

s s
x d

x

M I dsu ds
GI gh

⎛ ⎞
= − ρ⎜ ⎟Ω⎝ ⎠

∫ ∫ . (1.10) 

Let a point R of the profile be its bifurcating point. It means that the R 
point belongs simultaneously to both the open and the closed part of the 
profile. We consider an open segment of the profile between its end points 
R and F (Fig. 8.3).  
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Recall that we assume the no-shear hypothesis on the open segments of 
the profile; it says that 

0u
s x
∂ ∂

+ =
∂ ∂

v , 

wherefrom we have the following for an arbitrary point М of the segment 
in question: 

M

M R
R

u u ds
x
∂

= −
∂∫
v . 

If we restrain the pole Р from lateral displacements, thus satisfying one of 
the conditions of the rigid displacement prevention in the (Y,Z)-plane, we 
will have v = θρ and thus 

M R RMu u ′= − θ ω , (1.11) 

where ωRM is an increment of the sectorial coordinate, ω, as we move from 
point R to the current point М, i.e. 

M

RM
R

dsω = ρ∫ . (1.12) 

We can write a general expression for the longitudinal displacement, uM, 
at an arbitrary current point of the profile, М, as follows, using the 
characteristic function of the profile, κ, which we have introduced above: 

0 0 0
(1 )

s s s
x d

x

M I dsu ds ds
GI gh

⎛ ⎞κ ′= − κρ − θ − κ ρ⎜ ⎟Ω⎝ ⎠
∫ ∫ ∫  

Here we integrate from a chosen origin (start point) of the profile, О, to the 
current point М with the arc coordinate s, i.e. along the O-R-M segment of 
the profile. 

Substituting in the expression of the twist from (1.6) gives the final one, 

0 0

s s
x d x d

x x

M I M Idsu ds p
GI gh GI

⎛ ⎞κ ⎛ ⎞= − ρ = −ω⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠⎝ ⎠
∫ ∫ , (1.13) 

where p(s) is a so-called weight function of the arc coordinate s, and ω is 
the sectorial coordinate of the current point М, 

0
( )

s dsp s
gh
κ

= ∫ ,        
0

s
dsω= ρ∫ . (1.14) 
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We represent the longitudinal displacements u, as usual, via the warp 
function α(s) as 

( )x

x

Mu s
GI

= α ,  

and thus we have this final relation for the compound profile: 

α = dI
Ω

p – ω . (1.15) 

Note that formula (1.15) for the warp function α works in the limit cases, 
too: for a purely closed profile and for a purely open one. In the former 
case, the weight function p takes exactly the values it should take for the 
purely closed profile. In the latter case, the weight function p becomes 
identical to zero.  

There is a pitfall worth noticing: a possibly erroneous treatment of 
formula (1.15) for points belonging to the open part of the profile. It is a 
mistake to think that the weight function p is always zero on the open part 
of a compound profile. If it were, it would make the warp function α(s) 
discontinuous which is absolutely inadmissible because the longitudinal 
displacements of the profile are continuous. A different thing about the 
weight function is true: p(s) is a constant on the open part of the profile, 
and this constant is the value of the function at the bifurcation point on the 
closed segment of the profile, from which our open part in question 
protrudes. For example, this constant is p(R) for the profile shown in 
Fig. 8.3, for a piece between the points R and F: 

p(R) = 
R

O

ds
gh∫ . 

Obviously, the warp function, α(s), depends on the choice of the 
position of the pole, Р, on which the arm function ρ(s) is based, and on the 
position of the profile’s origin or start point, О, from which the arc 
coordinate is counted. The mechanical interpretation of the pole Р is a 
fixation point through which to restrain the bar in pure torsion from rigid 
displacements in the (Y,Z)-plane. In addition to that, choosing the start 
point of the profile, О, means choosing a method of fixation (by choosing 
a point on the profile) of this same bar against rigid translational 
displacements along X. 
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8.1.2 General behavior of a compound-profile thin-walled bar 

Repeating the reasoning of Section 7.1.2, we can see that all formulas 
(7.1.18) through (7.1.29) work for a compound profile, too. However, it 
should be noted especially that the integration over a closed contour in 
those formulas is to be replaced by the integration over the whole length of 
the compound profile. For example, formulas (7.1.23), (7.1.27), and 
(7.1.28) are as follows for the compound profile: 

0
1 ( )

l

s ehds
A

ω = α∫ ,   1 ( )y
y l

s zehds
I

ω = α∫ ,   1 ( )z
z l

s yehds
I

ω = α∫ , (1.16) 

0
l

ehdsϖ =∫ ,     0
l

ehydsϖ =∫ ,   0
l

ehzdsϖ =∫ , (1.17) 

where, as we should remind, the generalized sectorial coordinate ϖ is 
defined as 

0ϖ = ω −α . (1.18) 

It can be checked directly that the independence of the generalized 
sectorial coordinate ϖ from the origin of the arc coordinate s takes place 
for the compound profile, too. Note also that second and third conditions 
in (1.17) define the location of the principal pole, Р, of the profile. 

Under these conditions, the formula of normal stresses σx, 

σx =  yz

z y

MMN Be ey ez e
A I I Iϖ

+ + + ϖ , (1.19) 

can be extended onto the compound profile without any modifications. 
However, things regarding average tangential stresses (or flows T(s), 
which are nearly the same) should be revised. 

Average tangential stresses 

We will choose (arbitrarily) a certain point О of the profile to be its start 
point, i.e. its curvilinear coordinate origin. Moving from point О to the 
current point М gives the formula of the flows (7.1.39) which we represent 
here as 

TМ = T0 
oo oyz

y z
z y

SS SQ Q M
I I I

ϖ
ϖ

ϖ

− − − , (1.20) 

where the integrals 
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M

oz
O

S yehds= ∫ ,    
M

oy
O

S zehds= ∫ ,    
M

o
O

S ehdsϖ = ϖ∫  (1.21) 

should be understood as the respective static moments and the sectorial 
static moment of the cut-off part of the section located between the initial 
point О and the current point М of the profile.  

To give an explanatory example, we show the cut-off parts of the 
section darkened in Fig. 8.3 for three different locations of the current 
point М. 

OOO

R

M

M

M

R R

F F F

.

.

.

.

.

.

 
Fig. 8.3.  Cut-off parts of the section for various locations of the М point 

Obviously, formula (1.20) works when the current point of the profile М 
belongs to the closed part of the section (Fig. 8.3). In the case when the 
М point belongs to the open part of the section (which in our case lies 
between the bifurcating point of the profile, R, and the extreme point F), 
the expression of flow TМ will no longer contain the starting point О 
because the integration can be done by moving from the extreme point F to 
the current point М. However, as the flow TF at the extreme point of the 
profile is guaranteed to equal zero, we obtain the following formula for the 
flows on the open segments of the profile: 

T = oo oyz
y z

z y

SS SQ Q M
I I I

ϖ
ϖ

ϖ

− − − . (1.22) 

It is the matter of course that Soz, Soy, Soϖ in the open part of the profile 
are understood as the following integrals different from (1.21): 

M

o
F

zS yehds= ∫ ,    
M

o
F

yS zehds= ∫ ,    
M

o
F

S ehdsϖ = ϖ∫ .  

The overall torque Mx consists of the moment created by the flow of 
tangential stresses Т and the moment of tangential stresses τk. This means 
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Mx = GIkθ′ + ( )
l

T s dsρ∫ . (1.23) 

Putting in the expressions of flow Т from (1.20) in the closed part of the 
profile and from (1.22) in the open part of the profile yields an expression 
of flow Т0: 

k
0 o o o

yx z
z y

z yl l l

QM GI MQT S ds S ds S ds
I I I

ϖ
ϖ

ϖ

′− θ
= + ρ + ρ + ρ

Ω Ω Ω Ω∫ ∫ ∫ , (1.24)

where Ω is the doubled area comprised by the closed contour of the 
profile. 

Next, substituting (1.24) to (1.20) gives the following for points 
belonging to the closed part of the profile: 

k
o o

o o o o

1

1 1 .

yx
z z

z l

z
y y

y l l

QM GIT S S ds
I

MQ S S ds S S ds
I I

ϖ
ϖ ϖ

ϖ

⎛ ⎞′− θ
= − − ρ −⎜ ⎟⎜ ⎟Ω Ω⎝ ⎠

⎛ ⎞ ⎛ ⎞
− − ρ − − ρ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

∫

∫ ∫
 

(1.25)

We will show that the general formula (1.25) for flow Т works also for a 
limit case of a completely closed profile. To see this, we should assume the 
following for a completely closed section: 

Ik = 0, 

because the theory discussed in Chapter 7 is based on neglecting the 
tangential stresses τk. As a result, formula (1.25) becomes (7.1.49), after  
its left and right parts are divided by h, and now describes the tangential 
stresses in closed sections. 

On the other hand, we have the already established relation (1.22) 
instead of (1.25) for points which belong to the open part of the profile. 
For a completely open profile, we can make sure that 

ϖ = ω. 

Therefore formula (1.22) works also for a completely open profile because 
in that case it coincides with (6.2.61). 

We deem it inconvenient, however, to have different formulas for the 
flows in the open and closed parts of the profile. It is easy to understand 
that two formulas (1.22) and (1.25) can be merged into one if we use our 
previously defined characteristic function of the profile, κ(s). By 
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multiplying (1.25) by κ and (1.22) by (1 – κ) and summing the results, we 
derive a general formula of the flows in any point of the compound profile, 

k
o o o

( ) yx z
z y

z y

QM GI MQT S S S
I I I

ϖ
ϖ

ϖ

′κ − θ
= − − −

Ω
 (1.26)

with the functions 

o o oz z z
l

S S S dsκ
= − ρ

Ω ∫ ,      o o oy y y
l

S S S dsκ
= − ρ

Ω ∫ , 

o o o
l

S S S dsϖ ϖ ϖ
κ

= − ρ
Ω ∫ . (1.27) 

Properties of functions ozS , oyS , oS ϖ  and consequences of 
these properties 

We show here that the three just defined functions of the arc coordinate s 
possess the properties established earlier in Section 7.1.2 for a purely 
closed profile. We would like to note also the consequences of the 
properties of the three functions which can be formulated in the theory of 
compound-profile thin-walled bars. 

• Property 1: 
Obviously, each of functions Soz, Soy, Soϖ depends on the location of the 

start point О from which the arc coordinate is counted along the profile. 
However, if we trace carefully the way the ozS , oyS , oS ϖ  functions have 
been derived, we will find the following statement true: 

Neither of functions ozS , oyS , oS ϖ  depends on a particular location of the 
origin of the arc coordinate s; instead, all three functions depend 
unambiguously on the points belonging to the profile. 

• Property 2: 
It follows directly from the definition of (1.27) and from the obvious 

inequality 

l

ds dsκρ = ρ = Ω∫ ∫  

that 
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o 0z
l

S dsρ =∫ ,          o 0y
l

S dsρ =∫ ,          o 0
l

S dsϖρ =∫ . (1.28) 

The first two equalities in (1.28), if we also recall (1.26), testify that the 
tangential stresses τQ, ones created solely by the shear forces, do not create 
any torque with respect to the pole that satisfies (1.17). This means the 
pole selection criterion of (1.17) which we used when deriving (1.26) 
makes the pole identical to the center of bending and thus to the center of 
twist, too. 

Multiplying (1.26) by arm function ρ and integrating the result over the 
whole profile gives 

kx
l

T ds M GI ′ρ = − θ∫ , 

which is, of course, identical to (1.23).  

• Property 3: 
The following formulas of integration over the profile hold: 

o 0y
l

dS ds
ds
ϖ

=∫ ,       o 0z
l

dS ds
ds
ϖ

=∫ ,      o
l

dS ds I
dsϖ ϖ

ϖ
= −∫ . (1.29) 

To begin, we prove the first one in (1.29). We split the integral to be 
calculated over the whole profile l into the sum of two integrals: the first 
one over the closed part and the second one over the open part of the 
profile.  

For the convenience of reasoning, we take a profile shown in Fig. 8.3 
and note that the generalized sectorial coordinate ϖ is continuous along the 
whole profile. At the same time, function oyS  has a discontinuity at the 
profile’s bifurcation point, R, as we move along the closed part of the 
profile. We denote the leap of that function at point R by [ oyS ]R. Fig. 8.3 

and the definition of function oyS  make it clear that the value of this leap is 
the integral taken along the whole open part of the profile from point F to 
the profile’s bifurcation point, R, that is, 

[ oyS ]R = 
R

F

zehds∫ . 

In other words, the leap in question is equal to the static moment, with 
respect to the Y-axis, of the whole open branch of the section that includes 
the point of bifurcation, R.  
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Now the formula of integration by parts will help us derive the 
following for the closed part of the profile: 

  

[ ] [ ]

R 0 R 0
o

o o o o R
R 0 R 0

R R 0

F R 0
R R

F F

(R)[ ]

(R)

1 (R) 1 (R) .

y
y y y y

l

l

dSd d dS ds S ds S ds S ds
ds ds ds ds

zeh ds zeh ds

zeh ds zeh ds zeh ds

− −

+ +

−

+

ϖ ϖ ϖ
κ = = = −ϖ − ϖ =

= −ϖ ϖ − ϖ =

= −ϖ ϖ − ϖ = −ϖ ϖ

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫

 

Here we use the criterion of selection of the principal pole, (1.17). Also, 
we have this on the open part of the profile: 
R R R R RR o

o o o F
F F F F F

(R)y
y y y

dSd dS ds S ds S ds zehds zeh ds
ds ds ds
ϖ ϖ ⎡ ⎤= = ϖ − ϖ = ϖ − ϖ⎣ ⎦∫ ∫ ∫ ∫ ∫ . 

By adding these two integrals, we obtain the first relation in (1.29). The 
second one in (1.29) is proved in the same way, as should be obvious. 

Now let us justify the third formula in (1.29). We follow the same 
approach and obtain 

[ oS ϖ ]R = 
R

F

ehdsϖ∫ . 

Further, 

[ ]

[ ]

R 0 R 0
o

o o o o R
R 0 R 0

R R 0 R
2 2 2 2

F R 0 F
R

2

F

(R)[ ]

(R) 1 (R)

1 (R) .

l

l

dSd d dS ds S ds S ds S ds
ds ds ds ds

eh ds eh ds eh ds eh ds

eh ds I

− −
ϖ

ϖ ϖ ϖ ϖ
+ +

−

+

ϖ

ϖ ϖ ϖ
κ = = = −ϖ − ϖ =

= −ϖ ϖ − ϖ = −ϖ ϖ − ϖ =

= −ϖ ϖ −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫

 

The open part of the profile has 
R R

o o
F F

d dS ds S ds
ds dsϖ ϖ

ϖ ϖ
= =∫ ∫  

[ ]
R R R

R 2o
o F

F F F

(R)dSS ds ehds eh ds
ds

ϖ
ϖ= ϖ − ϖ = ϖ ϖ − ϖ∫ ∫ ∫ . 
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Summing gives the third formula in (1.29). This proves the whole 
Property 3. 

Now, after multiplying both parts of (1.26) by dϖ/ds and considering 
the following obvious equality 

0
l

d ds
ds
ϖ

κ =∫ , 

that follows from the continuity of the generalized sectorial coordinate ϖ, 
we have 

Mϖ = 
l

dh ds
ds
ϖ

τ∫ . (1.30) 

This lets us extend the purely static definition of the constricted-torsion 
torque Mϖ, presented in Section 7.1.3, onto the case of a compound  
profile, too. 

Now let us turn to the general expression of the derivative dϖ/ds; 
according to (1.14), (1.15), and (1.18), we have 

dId
ds gh

κϖ
= ρ −

Ω
. (1.31) 

Putting (1.31) in the integrand of (1.30) and considering (1.23) gives 

Mϖ = Mx – GIkθ′ – d

l

I ds
g
κτ

Ω ∫ . (1.32) 

We use the generalized Bredt formula of the tangential strain circulation   
(see Appendix D) and have 

l

ds
g
κτ
∫ = ds G

g
τ ′= Ωθ∫ . (1.33) 

Combining (1.32) and (1.33) yields 

Mx = H + Mϖ , (1.34) 

where the pure-torsion torque Н, following (1.6), is defined as 

H = (GIk + GId)θ′. (1.35) 

Thus, the representation of torque Mx in the section of the bar as the sum 
of the pure-torsion torque, H, and the constricted-torsion torque, Mϖ, is 
true also for a compound profile. This helps us rewrite (1.26), the formula 
of the flows, as 
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o o o
y z

z y
z y

Q MQHT S S S
I I I

ϖ
ϖ

ϖ

κ
= − − −

Ω
, (1.36) 

where we denote additionally 

kx dH M GI M GIϖ′ ′= − θ − = θ , (1.37) 

and function oS ϖ  is defined as 

o o
IS S ϖ

ϖ ϖ
κ

= −
Ω

. (1.38) 

Obviously, stress H  is the part of the pure-torsion torque, H, which is 
created by the average tangential stresses only. 

It is useful to define a dimensionless geometrical parameter, λ, by 
assuming 

λ = 
k

d

d

I
I I+

, (1.39) 

so we can represent torque H  as a fraction of torque H: 

H = λH . (1.40) 

Note that a fully open profile has λ equal to zero. For a fully closed profile, 
if we neglect the value of Ik in comparison to Id, we can assume λ = 1.  

• Property 4: 
Finally, it is useful to note that the functions satisfy such formulas of 

integration over the profile as 

o 0yS
ds

gh
=∫ ,       o 0zS ds

gh
=∫ ,      o

d

S ds I
gh I
ϖ

ϖ

Ω
=∫ . (1.41) 

And indeed, by multiplying (1.31) by oyS , integrating the result over the 
profile, and considering the already proved relations of (1.28) and (1.29), 
we can easily establish that the first of (1.41) is true. The second one in 
(1.41) is proved in the same way. Making the same transformation on oS ϖ  
gives the third formula in (1.41).  

A corollary of the third formula in (1.41) and (1.38) is 

o

d

S I dsds I
gh I gh
ϖ ϖ

ϖ

Ω
= −

Ω∫ ∫ . 
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Recalling the expression of (1.4) for the geometric characteristics Id, we 
find out the following property of function oS ϖ : 

o 0S ds
gh
ϖ =∫ , (1.42) 

which we will need further. 

Physical relationships of the theory of 
compound-profile thin-walled bars 

Now we want to calculate the strain energy created by the tangential 
stresses. As we already noted, we deal with two types of the tangential 
stresses in a compound profile, τ and τk. Therefore the overall energy 
created by those can be represented as Eτ + Eτk where Eτ is the energy of 
average tangential stresses τ and Eτk is that of tangential stresses τk2. Let us 
calculate Eτk first. As the pure-torsion torque caused by the τk stresses only 
is equal to (H – )H , we have 

Eτk =
2

0 k

( )
2

L H H dx
GI
−

∫ = 
2 2

0 k

(1 )
2

L H dx
GI

− λ
∫ . 

Further, 

 Eτ =
22

o o o
0 0

1 1
2 2

L L y z
z y

z yl l

Q MQT H dsdsdx S S S dx
G gh G I I I gh

ϖ
ϖ

ϖ

⎛ ⎞κλ
= − − −⎜ ⎟⎜ ⎟Ω⎝ ⎠

∫ ∫ ∫ ∫ . 

Summing these two expression gives 

Eτ + Eτk = 

=
2 2 2 2 22 2

o o o
2 2 20

1
2

L
y y zz

x y zl l l

S ds Q S ds M S dsH Q dx
G I I gh I gh I gh

ϖ ϖ

ϖ

⎡ ⎤
+ + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫ ∫ + 

                      + o o o

0

1 L
y y zz

y zl l l

S ds HQ S ds HM S dsHQ dx
G I gh I gh I gh

ϖ ϖ

ϖ

⎡ ⎤κ λ κ λ κλ
− − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫ + 

                                                      
2  It is easy to understand, recalling the symmetric distribution of average 

stresses τ and the antisymmetric distribution of stresses τk over the thickness of 
the walls, h, that the virtual work of either stress on the displacements caused by 
the others is zero.  



8.1 Compound-profile thin-walled bars      475 

+ oz o

0

1 L
z y y

y z l

Q Q S S ds
dx

G I I gh∫ ∫ + 

                                + o o o o

0

1 L
y yz z

y zl l

S S ds Q MQ M S S ds dx
G I I gh I I gh

ϖ ϖϖ ϖ

ϖ ϖ

⎡ ⎤
⎢ ⎥+
⎢ ⎥⎣ ⎦

∫ ∫ ∫ .     (1.43) 

The second line in the right part of (1.43) vanishes because of (1.41) and 
(1.42). The final energy of the tangential stress can be represented as 

Eτ + Eτk = 

=
2 22 2

2
0 2 2 2 2

L
y yy z z zy y yz zz zz

x

Q Q Q Q MM Q MH Q dx
GI GA GA GA rGA rGAr GA

ϖ ϖϖ ϖϖ ϖ ϖ
⎡ ⎤µ µ µµ µµ

+ + + + + +⎢ ⎥
⎢ ⎥⎣ ⎦

∫ , 

where numerical parameters µzz, µzy, µzϖ, µyy, µyϖ, µϖϖ make up a matrix of 
the section’s shape factors, µ, presented earlier in Chapter 7 – see (7.1.63).  

As the formula (1.19) of the normal stresses is identical with its 
counterpart for open or closed profiles, the expression of the strain energy, 
Eσ, created by the normal stresses will not differ from its counterparts for 
the section types considered earlier. Now it is clear that the matrix of 
physical relationships, C –1, for the compound profile is identical in its 
form with (6.3.9) or (7.1.65). 

This means that the system of governing equations of the full shear 
theory of closed-profile thin-walled bars is identical with (6.3.24). The 
similar identity takes place between the governing equations for the semi-
shear theory. 

8.1.3 Non-warped compound profiles 

It is reasonable to define explicitly a class of non-warped compound 
profiles of thin-walled bars. 

 
Fig. 8.4.  An example of a non-warped compound profile 
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The meaning of the notion of a non-warped profile is such that the warp 
function, α, of such a profile should be identical to zero. Using formulas 
(1.14) and (1.15), we can derive a general expression of the warp function: 

0 0
( )

s s
dI dss ds

gh
κ

α = − ρ
Ω ∫ ∫ . 

When α ≡ 0, we take the derivative of this identity with respect to s and 
reduce the non-warpedness condition to 

dIghρ = κ
Ω

. (1.44) 

As the characteristic function κ is equal by definition to one on the 
closed part and to zero on the open part of the profile, we can see that the 
compound profile does not warp if the following two conditions hold: 

• on the closed part of the profile, /dgh Iρ = Ω ; 
• on the open part of the profile, ρgh = 0, or, to put it another way, all 

walls of the open part of the profile should be straight and, when 
extended, should intersect the principal pole Р. 

A simplest example of a non-warped compound profile is shown in 
Fig. 8.4. 

8.2 A multiple-contour compound profile 

Let us discuss briefly the changes which have to be made to the basic 
formulas for the case when the closed part of the profile has multiple 
contours. 

For the sake of generality, we will assume as earlier that different walls 
in a thin-walled section can be made of different materials. The modulus of 
elasticity, Е(s), and the modulus of shear, G(s), at an arbitrary point of the 
profile are then defined as 

Е(s) = Еe(s),          G(s) = Gg(s). (2.1) 

We will use the following limitations of the profile’s type: 

• Fisrt, we will assume the graph of the profile to be connected. It means 
that there is always at least one path on the profile from any arbitrary 
point to another arbitrary point of it. 

• Second, we do not allow concentrated pointwise areas on the profile. 
• And the last limitation: there are no warping constraints on the profile. 
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These limitations are adopted here solely to simplify the further 
formulas a little bit. When necessary, these limitations can be easily 
omitted. For example, the limitation of the absence of concentrated areas 
can be avoided by formally placing a short piece of the profile in a point 
with a concentrated area and by proportioning the thickness of the wall, h, 
as appropriate. The elimination of the two other limitations requires some 
rebuilding of the formulas, which we suggest that the reader do. 

First of all, we want to discuss additions to be made in order to describe 
the topology of a generalized multiple-contour compound profile, 
comparing to the similar description from Section 7.2.1. 

8.2.1 Topology of a multiple-contour compound profile 

For the sake of convenience, we take a profile example shown in the right 
part of Fig. 8.1. The graph of the profile is shown in Fig. 8.5. 
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Fig. 8.5.  The oriented graph of a two-contour compound profile 

For the profile in question, the incidence matrix G looks like 

                       r1     r2     r3     r4     r5     r6     r7 

           G =  

1

2

3

4

5

6

v 0 0 1 0 0 0 0
v 1 0 1 1 0 0 0
v 1 0 0 1 1 0 0
v 0 1 0 0 1 1 0
v 0 1 0 0 0 1 1
v 0 0 0 0 0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

, 

and the loop matrix F is 
                     r1   r2   r3   r4   r5   r6   r7 

                                       F = 1

2

1 0 0 1 0 0 0
0 1 0 0 0 1 0

c
c

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

The basic integer parameters of the graph take the values of k = 2;  
n = 7;  t = 6. 
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Now we will need a bit more detailed classification of the edges. As 
earlier, we will call an edge a frame one if it is included in one base loop 
only, or a double one if the edge is included in two base loops. However, a 
compound profile contains edges not included in any base loops. Edges of 
this kind will be called free edges. For example, the graph in Fig. 8.5 has 
the frame edges of r1, r2, r4, r6 and the free edges of r3, r5, r7. There are no 
double edges. 

Let ϑj be a classification identifier of the edge rj  in the sense that: 

• ϑj =    1 for a frame edge; 
• ϑj =  –1 for a double edge; 
• ϑj =    0 for a single edge. 

8.2.2 Pure torsion of a multiple-contour compound profile 

Let k be the number of the base contours in the profile, and k > 1. In this 
case we will have the following instead of (1.1) for pure torsion: 

k
1

k

x i i
i

M GI T
=

′= θ + Ω∑ , (2.2) 

where iT  is a flow along i-th base contour, Ωi is the doubled area 
comprised by this contour. Seeing that the material’s properties may be 
variable over the profile, we assume 

3

k 3l

ghI ds= ∫ . (2.3) 

Clearly, we have to use the strain compatibility conditions to be able to 
determine k unknown flows when we have only one equation of 
equilibrium. Reasoning the same way as we did in Section 7.2.1, we 
construct the Castigliano functional, 

2

1
1

( ,..., )
2

i ij

k
i ji

k
i ij

TTT ds dsT T
G gh G ghΓ Γ=

= −∑ ∑∫ ∫K , (2.4)

where the symbol 
ij
∑ means that the summation comprises all adjacent 

edges Гij of any two adjacent base contours, so that each adjacent edge is 
included once in this sum. In other words, the summation comprises all 
double edges. 
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Considering the conditions of equilibrium (2.2) in terms of moments, 
the modified functional М with the Lagrangian multiplier λ  becomes 

1 1 k
1

( ,..., ) ( ,..., ) ( )
k

k k x i i
i

T T T T M GI T
=

′= − λ − θ − Ω∑M K . (2.5)

The conditions of stationarity of functional М produce a system of linear 
algebraic equations the general solution of which can be represented as 

k

0

x
i i

M GIT a
′− θ

=
Ω

   (i = 1,…, k),               0
1

k

i
i=

Ω = Ω∑ , (2.6) 

so that 

0
1

k

i i
i

a
=

Ω = Ω∑ . (2.7) 

Clearly, we can immediately build a system of simultaneous linear 
algebraic equations to determine coefficients ia  similar to (7.2.15). 
However, we should keep in mind that the weight factors of particular 
edges pj and contours ip  are defined as follows, with the non-uniformity 
of the profile’s material taken into account: 

j

j
l

dsp
gh

= ∫  (j = 1,…, n),           
i

i
dsp
ghΓ

= ∫  (i = 1,…, k). (2.8) 

Coefficients aj of the distribution of flows Tj over non-bifurcated segments 
of the profile are defined by the earlier formula (7.2.18) in the pure torsion. 
It should be clear also that formulas (7.2.19) and (7.2.20) of the flows on 
the contours, Tj, and of flow T(s) in an arbitrary point of the compound 
profile should undergo some slight revision: 

k

0

x
j j

M GIT a
′− θ

=
Ω

   (j = 1,…, n),           k

0

( ) ( ) xM GIT s a s
′− θ

=
Ω

. (2.9) 

Obviously, the function of flow distribution along the profile, a(s), is 
assumed to be identical to zero on open segments of the profile. 

A warp function for a multiple-contour compound profile 

Let us consider an arbitrary closed base contour, Г0. Moving along it from 
a certain selected point А∈ Гi, we obtain the formula 
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M M

M A
A A

1 Tdsu u ds
G gh

′= + − θ ρ∫ ∫  

which generalizes the formula (7.2.22) of the uM displacement at any 
point М of the same contour. Having traced the Гi around, we return to the 
original point А. As a result, instead of (7.2.23) we will have this formula 
of the twist: 

1

ii

Tds
G ghΓ

′θ =
Ω ∫ . (2.10) 

Substituting the expression of flow T(s) from (2.9) in here gives 

0 k

( )

( )

x

i

i

i

a sM ds
gh

a sG I ds
gh

Γ

Γ

′θ =
⎛ ⎞
⎜ ⎟Ω Ω +
⎜ ⎟
⎝ ⎠

∫

∫
. (2.11) 

Using the standard representation of x xM GI′= θ , we produce the 
following expression of the torsional moment of inertia of the multiple-
contour compound profile 

k 0 ( )
i

x

i

I I a s ds
ghΓ

Ω
= +Ω

∫
. (2.12) 

As the torsional moment of inertia of the section, Ix, is a numerical 
characteristic of the whole section, and (2.12) holds true for any index i 
from 1 to k, we have a useful identity: 

1 2

1 2 ...( ) ( ) ( )

k

k

a s a s a sds ds ds
gh gh ghΓ Γ Γ

ΩΩ Ω
= = =

∫ ∫ ∫
, (2.13) 

which should be satisfied by function a(s) that describes the distribution of 
the flows along the profile. The identity (2.13) can be also proved directly3.  

Formula (2.6) for flow iT  can be rewritten more conveniently using the 
substitution of θ′ = Mx/GIx: 

                                                      
3  This is our call to intellectual exercises.  
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0

x
i i

MT a λ
=

Ω
  (i = 1,…, k),                    k1

x

I
I

λ = − . (2.14) 

The same transformation takes place for (2.9) that describes flow Tj on 
each of the non-bifurcated segments of the profile, 

0

x
j j

MT a λ
=

Ω
    (j = 1,…, n). (2.15) 

This expression holds formally for all non-bifurcated segments of the 
profile from 1 to n, though actually the respective flows are equal to zero 
on open segments. 

We take a fixed point А of the profile and restrain it from longitudinal 
displacements thus eliminating the rigid displacements of the bar 
lengthwise. Let a point М be the current point of the profile. We can move 
from point А to point М along more than one path, so let us choose one of 
the feasible ways in which we can reach point М. Then the longitudinal 
displacement of this point can be written as 

M M

M
0 A A

1 Tdsu ds
G gh

′= κ − θ ρ∫ ∫  

where κ(s) is the characteristic function of the profile introduced earlier. 
Of course, each of the two integrals depends on what path of integration 

we choose, but the overall result should be independent. Otherwise we 
would have an ambiguity in the longitudinal displacements of the profile’s 
points. Note also that the profile’s characteristic function κ(s) can be 
actually omitted from the first integral because flow Т is necessarily zero 
on single edges of the graph in the pure torsion analysis. 

We replace θ′ with the ratio of Mx/GIx and flow Т with its expression 
from (2.15) to find 

M M

M
0 A A

x x

x

M I adsu ds
GI gh

⎛ ⎞λ
= κ − ρ⎜ ⎟

Ω⎝ ⎠
∫ ∫ . (2.16) 

Now it is clear that the warp function, α(s), for the multiple-contour 
compound profile is 

M M

M
0 A A

xI ads ds
gh

λ
α = κ − ρ

Ω ∫ ∫ . (2.17) 



482      8 PARTICULAR CLASSES OF PROBLEMS – part 5 

Also, we have the following instead of (1.4) for the geometric 
characteristic Id of an inhomogeneous material: 

0

( )
i

d

i

I a s ds
ghΓ

Ω Ω
=

∫
. (2.18) 

so the general formula (1.7) still holds. 

8.2.3 A general behavior of a thin-walled multiple-contour 
compound profile 

What we have to do here in essence is to repeat the reasoning of 
Section 7.2.2 but in application to a compound multiple-contour profile. 
Therefore we indicate here only changes and additions in comparison to 
the formulas of Section 7.2.2. 

As for (7.2.29)-(7.2.37), they go unchanged for the case of the 
compound multiple-contour profile. The main change in the formulas 
comparing to Section 7.2.2 is the necessity to replace the Mx torque by the 
expression 

Mx – GIkθ′ = Mx – GIxθ′ k

x

I
I

= Mx – (1 – λ)H , 

where we use our common designation of H = GIxθ′ – this is a pure-torsion 
torque. This is implied by the fact that the original formula (7.2.38) has to 
be represented as follows for a compound section, according to (1.23): 

Mx – GIkθ′ = 
T

1 S

( ) ( )
i

i

n

i
i

T s s ds
=

ρ∑ ∫ . 

Thus, the equation of equilibrium in terms of the torques will become as 
follows instead of (7.2.46): 

Mx = ωTTS + (1 – λ)H – y z
z y

z y

Q MQS S S
I I I

ϖ
ρ ρ ρϖ

ϖ

− − , (2.19) 

Formula (7.2.57) becomes 

[ ] o o o( ) (1 ) y z
i x ix i z i y i

z y

Q MQT s M H b S S S
I I I

ϖ
ϖ

ϖ

= − − λ − − − . (2.20)
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If we consider, particularly, the pure torsion, we should assume Mx = H,  
Qy = Qz = Mϖ = 0, so (2.20) yields 

Ti = λHbix . 

But the pure-torsion flows obey (2.9) or 

Ti =
0

i
Ha λ
Ω

. 

By equaling these two expressions of the pure-torsion flows, we find 

a = Ω0bx, (2.21) 

which is the same as (7.2.59).  
The representation of the full torque, Mx, as the sum of the pure-torsion 

torque, H, and the constricted-torsion torque, Mϖ, lets us finally rewrite the 
formula (2.20) of the flows as 

o o o
0

( ) y z
i i i z i y i

z y

Q MQHT s a S S S
I I I

ϖ
ϖ

ϖ

λ
= − − −
Ω

, (2.22) 

where function oiS ϖ  is still defined by (7.2.61). As we can see, the only 
difference of formula (2.22) from its counterpart (7.2.60) is the presence of 
the λ factor at the pure-torsion torque, H.  

Further, by composing an expression of the overall energy of the 
tangential stresses, we produce  

Eτ + Eτk = 

  =
2 22 2

2
0 2 2 2 2

L
y yy z z zy y yz zz zz

x

Q Q Q Q MM Q MH Q dx
GI GA GA GA rGA rGAr GA

ϖ ϖϖ ϖϖ ϖ ϖ
⎡ ⎤µ µ µµ µµ

+ + + + + +⎢ ⎥
⎢ ⎥⎣ ⎦

∫ , 

where numerical parameters µzz, µzy, µzϖ, µyy, µyϖ, µϖϖ make up a matrix of 
shape factors for the section, µ, which is defined by the same formula 
(7.2.66).  



484      8 PARTICULAR CLASSES OF PROBLEMS – part 5 

8.3 Final comments to thin-walled bar theories 

8.3.1 A remark on the energy-based comparison between 
Vlasov’s shear-free theory and the semi-shear theory of open-
profile thin-walled bars 

Let us return to the open-profile thin-walled bars. In the constricted-torsion 
analysis according to Vlasov’s theory (the shear-free theory), the Lagrange 
functional, L , depends on the θ function only; its form in our designations 
is 

( ) ( )2 2

0 0

1( )
2

L L

x x BEI GI dx m m dxω ′′ ′ ′θ = θ + θ − θ − θ∫ ∫L . (3.1)

At the same time, the Lagrange functional of the semi-shear theory, L, will 
depend on two unknown functions and can be represented as 

( , )θ β =L  

( ) ( )22 2

0 0

1
2 1

L L
x

x x B
GIEI GI dx m m dxω

⎡ ⎤′ ′ ′= β + θ + θ −β − θ − β⎢ ⎥ψ −⎣ ⎦
∫ ∫ . (3.2) 

Let us show that the exact values of these functionals, L* and *L , on the 
solutions of the respective problems satisfy the inequality 

L* ≤ *L . (3.3) 

To see this, note that functional L becomes equal to L  if the twisted bar 
is subjected to an additional kinematic constraint: 

θ′ – β = 0. (3.4) 

Herefrom we derive inequality (3.3) immediately as a particular 
manifestation of the general property of the Lagrange functional 
established in Section 2.4 – see Table 2.2 that demonstrates the influence 
of additional kinematic constraints on the value of the Lagrange functional.  

It is easy to show by reasoning in the same way that the employment of 
the full shear theory also gives a lower value of the Lagrange functional on 
the solution of the problem, comparing to the solution that follows the 
semi-shear theory. 
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An example 

Our example will be a simple problem of torsion of a cantilever bar of 
length L, loaded by torque xM  at its free end. The theory by Vlasov 
suggests the following differential equation for the angle of twist, θ: 

0IV
xEI GIω ′′θ − θ =  (3.5) 

with the following boundary conditions: 

θ(0) = 0,              θ′(0) = 0,     

B(L) = –EIωθ″(L) = 0,           Mx(L) = GIxθ′(L) – EIωθ″′(L) = xM . (3.6) 

A direct check shows that the solution of the boundary-value problem 
(3.5), (3.6) is 

( ) th ch 1 shx

x

M L kx L kxx k x
GI k L k L

⎡ ⎤⎛ ⎞θ = − + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, (3.7)

where we use the designation of 

xGIk L
EIω

= . (3.8) 

From (3.7) which expresses the angle of twist of the cantilever’s end, 
θL = θ(L), in Vlasov’s theory, we derive 

θL = th1x

x

M L k
GI k

⎛ ⎞−⎜ ⎟
⎝ ⎠

. (3.9) 

The formulation of the same problem on the basis of the semi-shear 
theory produces a system of differential equations – see (6.4.11): 

( ) 0r
x

IGI
ωω

′′ ′′ ′− θ − θ −β =
µ

,        ( ) 0rIEIω
ωω

′′ ′β + θ −β =
µ

, (3.10) 

with the boundary conditions 

θ(0) = 0,          β(0) = 0,        B(L) = –EIωβ′(L) = 0, 

      Mx(L) = GIxθ′(L) + ( )( ) ( )rGI L L
ωω

′θ −β
µ

= ( )
1

xGI ′ψθ −β
ψ −

= xM , (3.11) 

where, according to (6.4.13) and (6.3.6), 
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1 x

r

I
I
ωωµ

ψ = + ,           
2
o

2
r

l

SI ds
I h

ω
ωω

ω

µ = ∫ .     

We present the solution of the boundary-value problem (3.10), (3.11) 
below. First of all, by making a linear combination of the two equations 
(3.10) we write the system in a more convenient form for our analysis: 

0xEI GIω ′′′ ′ψ β − β = ,           ( 1)
x

EI
GI

ω′ ′′θ = β − ψ − β . (3.12) 

Now it is easy to see that the general solution of these simultaneous 
equations is 

1 2 3ch shnx nxC C C
L L

β = + + , 

1 2 3 4sh chL nx L nxC x C C C
n L n L

θ = + + +
ψ ψ

, (3.13) 

where 

xGI kn L
EIω

= =
ψ ψ

. (3.14) 

After determining the integration constants, C1,…, C4, from the 
boundary conditions (3.11), we present the solution of this boundary-value 
problem in the form 

1 ch th( )shx

x

M nx nxn
GI L L

⎛ ⎞β = − +⎜ ⎟
⎝ ⎠

, 

sh th ch 1x

x

M L nx L nxx n
GI n L n L

⎡ ⎤⎛ ⎞θ = − + −⎜ ⎟⎢ ⎥ψ ψ ⎝ ⎠⎣ ⎦
. (3.15) 

Therefor the angle of twist of the cantilever’s end in the semi-shear theory 
is 

th1x
L

x

M L n
GI n

⎛ ⎞
θ = −⎜ ⎟ψ⎝ ⎠

. (3.16) 

If we denote the ratio of the angle of twist from (3.9) to the angle of 
twist from (3.16) as ξ, we will have 
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th
1 th

k k
kk

−
ξ =

−
ψ ψ

, (3.17) 

and ψ > 1 implies ξ < 1. This is quite expectable because the stiffness of a 
bar in the shear-free theory is higher than that calculated according to the 
semi-shear theory.  

It should be noted that the dimensionless parameter, ψ, is nearly equal 
to one often in the design practice. Therefore the refining contribution 
made by the semi-shear theory in comparison to the shear-free theory by 
Vlasov does not influence the final results really much. Apparently, the 
semi-shear theory does not give any valuable refinement of results of static 
analyses in application to the open-profile bars, therefore its virtue is based 
on something different: its letting us build a consistent theory of 
compound-profile thin-walled bars. Taking into account the full shear 
gives a yet less additional refinement of the numbers, which will certainly 
be ignored, too. These considerations allow us to omit the analysis of 
integration methods for the general system of equations of the type 
(6.3.24) though in principle it could be done. The semi-shear theory gives 
quite acceptable results from the practical accuracy standpoint, and it can 
be recommended as a reasonable engineering approach to the analysis of 
thin-walled bars. 

8.3.2 A remark on the Luzhin equations for compound-profile 
thin-walled bars 

As it should be obvious from the previous presentment, the traditional 
separation between the theories of thin-walled bars, based on the profile’s 
type (open, closed, or compound) and used in nearly every book on the 
thin-walled bars (textbooks, scientific publications, reference manuals), is 
not really critical. 

The form of the basic functionals in the variational formulation of the 
problem, thus the form of the governing differential equations and the 
respective boundary conditions, depends not on the profile’s type but on 
whether certain stress components are included or not (or in what form 
they are) in the expression of the system’s strain energy4.  
                                                      

4 In a different interpretation the origin of which can be found in the book by 
Janelidze and Panovko [11], applied theories of particular classes of elastic 
problems are classified by the way the stress components are divided into primary 
and secondary ones. 
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As we noted at the beginning of this chapter, all difficulties encountered 
in the attempts to unify the theories proceed mainly from the 
misunderstanding of this fact. Hence numerous earlier efforts of 
combining the shear-free theory by Vlasov and the semi-shear theory by 
Umanski; this approach was even considered to be the only right way to a 
general applied theory of compound-profile thin-walled bars.  

We have already noted that this approach was used by O.V. Luzhin 
[14], [15] to construct a theory meant to take tangential stresses τk in the 
closed part of the profile into consideration. In our notation and our 
nomenclature, the reasoning by Luzhin can be described in this way.  

First of all, the analysis of torsion and the analysis of bending in a thin-
walled bar are assumed to be independent5. Based on the theory of 
constricted torsion of closed-profile thin-walled bars developed by 
A.A. Umanski, Luzhin considers the separate problem of constricted 
torsion of the thin-walled bar and advances a general relationship which 
binds together the torque Mx, the slope θ of the section with respect to the 
longitudinal axis X and the warp measure β: 

xA BM′β = θ +  (3.18) 

where А and В are certain constants which depend on the material and the 
geometry of the bar’s section.  

This relationship holds in Vlasov’s theory of thin-walled bars if we 
assume 

А = 1,      В = 0. (3.19) 

At the same time, for relation (3.18) to be applicable in the theory by 
Umanski, we have to assume 

1A =
µ

,      1B
GIρ

= −
µ

, (3.20) 

where, as we should remind, µ is a warp factor defined for a closed profile 
by (7.1.79) as µ = 1 – Id /Iρ, Iρ being a directed moment of inertia of the 
section and Id being defined by (1.4)6. And indeed, if we want to stick to 
Umanski’s semi-shear theory, we should use (7.1.80) assuming 

P 0z′η − θ =  and P 0y′ζ + θ =  to obtain 

                                                      
5 As we know by now, this assumption is equivalent to dropping the full shear 

theory. 
6 Note that we designated the Id geometric characteristic of a section as Ix in 

Chapter 7. This works because generally Ix = Id + Ik, and for a purely closed profile 
we take Ik = 0.  
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Mx = GIρ(θ′ – µβ), 

and this is equivalent to (3.18) provided we assume (3.20). 
Further, Luzhin extends the same relation of (3.18) formally onto the 

case of a compound profile by assuming 

k 1 11 x
I M
I GIρ ρ

⎛ ⎞
′β = + θ −⎜ ⎟⎜ ⎟ µ µ⎝ ⎠

. 

If we replace the warp factor, µ, with its expression via Id and Iρ, we will 
have this relation transformed into 

k 1
( ) x

d d

I I
M

I I G I I
ρ

ρ ρ

+
′β = θ −

− −
. (3.21) 

Relation (3.21) is not derived by Luzhin from any physical 
considerations; instead, he uses a formal selection of factors А and В in the 
linear relation of (3.18) to make this relation produce (3.19) and (3.20) in 
the respective limit cases of the purely open and purely closed profile. This 
means the relation of (3.21) is postulated by Luzhin7. Thus, the assumption 
of (3.21) is an auxiliary hypothesis in addition to ones adopted earlier.  

By the way, proceeding from (3.21) to the limit case of the purely 
closed profile works if we assume Ik = 0, but this is true only when 
tangential stresses τk are assumed to be zero on the closed part of the 
profile. So when the τk tangential stresses are taken into consideration on 
the closed part of the profile, it is not really critical for the final equations 
constructed by Luzhin himself. There are, though, worse grounds for 
proceeding to the limit case of the purely open profile in the shear-free 
version of the theory. It is clear that the open profile corresponds to Id  = 0, 
and this makes Luzhin’s relationship of (3.21) look like 

k 11 x
I M
I GIρ ρ

⎛ ⎞
′β = + θ −⎜ ⎟⎜ ⎟

⎝ ⎠
. (3.22) 

But (3.22) is an additional relation for the open profile, which does not 
follow from any theoretical reasoning. Therefore Luzhin has to adopt an 
additional tendency, Iρ → ∞, to transit to a purely open profile according to 
Vlasov’s theory and thus to be able to obtain the relationships (3.19) 
passing to the limit. Clearly, adopting this tendency is a bit of stretch 

                                                      
7    The fact that relation (3.21) should be treated as an additional postulate for a 

compound profile is recognized by O.V. Luzhin himself in [14]. 
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because it actually does not take place. However, to be fair, we should note 
that the estimate of the orders of magnitude as Iρ >> Ik for the purely open 
profile can be at least considered. 

If we adopt the semi-shear theory of thin-walled bars based on energy 
considerations (independently of the profile’s type), then we have 

k( )dH G I I ′= + θ ,       
2

( )r GAMϖ
ϖϖ

′= θ −β
µ

,       xM H Mϖ= + , 

which are also equivalent to (3.18) though with factors different from 
those in (3.21). To be particular, we have 

k1 d
x

r r

I I M
I GI

ϖϖ
ϖϖ

⎛ ⎞+ µ′β = + µ θ −⎜ ⎟
⎝ ⎠

. (3.23) 

where Ir = r2GA is a polar moment of inertia of the section and the 
dimensionless shape factor of the section, µϖϖ, is defined by relations 

2
o

2
r

l

SI ds
I h

ϖ
ϖϖ

ϖ

µ = ∫ ,    o o
IS S ϖ

ϖ ϖ

κ
= −

Ω
,     o o o

l

S S S dsϖ ϖ ϖ

κ
= − ρ

Ω ∫ . (3.24) 

Quite expectedly, relation (3.23) works for the limit cases, too: the purely 
closed and purely open profiles. The characteristic function of the profile, 
κ, is identical to one in the former case and to zero in the latter case on the 
whole profile. Of course, this relation holds for a fully open profile in the 
semi-shear theory of open-profile bars, not in the shear-free theory by 
Vlasov, and instead of (3.22) we have 

2 2
o ok

2 2

11 x
l l

S SI ds ds M
I h GI h

ω ω

ω ω

⎛ ⎞
′β = + θ −⎜ ⎟

⎝ ⎠
∫ ∫ . (3.25) 

Now it becomes obvious that the relation (3.22) by Luzhin holds if and 
only if 

2
2o

l

SI ds I
h
ω

ρ ω=∫ . (3.26) 

If (3.26) were true, this would mean the Luzhin equations produced the 
semi-shear theory for the limit case of the open profile. However, a direct 
calculation of practical examples shows easily that the requirement of 
(3.26) is not satisfied. 

The things said above are already enough to drop the theory by Luzhin 
as one having no unquestionable logical justification. It makes sense to 
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reject this theory also for another reason: the analytic relationships of the 
shear and semi-shear theories of compound-profile thin-walled bars 
presented above are provable to exactly the same extent as are the 
relationships of the theories of closed-profile and open-profile bars. There 
are no new hypotheses introduced for construction of those relationships in 
addition to those that form the fundamental basis of the thin-walled bar 
theory. 

The fact that the attempts to unite the shear-free theory by Vlasov and 
the semi-shear theory by Umanski are illogical and doomed to failure can 
be explained by an analogy: imagine what happens if we try to unite the 
Bernoulli–Euler theory and the Timoshenko theory for the same beam 
subject to bending. Suppose a part of the section of a flexural beam (the 
analogue of the open part of a compound profile) is described by the 
Bernoulli-Euler theory (being a shear-free theory) and the rest of the 
section (the analogy of the closed part of the compound profile) obeys the 
Timoshenko theory that takes into consideration the contribution of the 
energy made by the flexural tangential stresses. Obviously, this kind of 
union between the two theories can be reasonable to any sensible extent 
only in very special circumstances (for example, a part of the section is 
made of a material which hardly resists to shear). But if the situation is 
usual and there are no special circumstances, this mixture of the two 
theories will look like an excruciating tumble of cunning tricks. And this 
is, essentially, the way of reasoning followed by all published and known 
papers which try to construct a unified theory of compound open/closed 
thin-walled profiles.  

8.3.3 Classification criteria for separation between theories of 
thin-walled bars 

We have already noted that the tradition in the theory of thin-walled bars 
separates the branches of the theory using the criterion of the profile type. 
There were the following reasons for this classification: 

• the theories of open-profile bars (by Vlasov) and of closed-profile bars 
(by Umanski) are unrelated historically, i.e. they were constructed 
independently; 

• the open-profile bars were identified with the shear-free theory while the 
closed-profile bars were associated with the semi-shear theory. 

However, as we said earlier, when a mathematical formulation of a 
problem is being constructed using the energy-based (variational) 
approach, the type of the governing equations is not determined by the 
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profile type; the criterion is how one divides the set of stress/strain 
components into primary and secondary components. 

Table 8.1 presents a unified classification of the thin-walled bars which 
uses both classification criteria.   

 Table 8.1 
 shear-free 

theory 
semi-shear 

theory 
shear  
theory 

open 
profile V.Z. Vlasov  L.N. Vorobiev 

G.Y. Janelidze, 
Y.G. Panovko closed 

profile 

 

A.A. Umanski 

 

 
 compound 

profile 

 

O.V. Luzhin, 
     E.A. Beilin 

 

As one can see from this table, the shear-free theory is constructed for 
the open profiles only; it should be obvious why. On the other hand, the 
total absence of the shear strains in bars the sections of which are based on 
closed contours is not admissible. 

In the case of the semi-shear theory, the final governing equations for 
the closed and compound profiles differ by their method of establishing 
physical relationships8. We identify our opinion with that by Janelidze and 
Panovko [11]: the energy-based (variational) approach for the derivation of 
physical relationships in the theory is best justified and most convincing by 
its logic. 

A more general version of the thin-walled bar theory should be recalled 
here, too. It was suggested by R.A. Adadurov [2], [1] who used a minimal 
set of hypotheses in his reasoning – he found it sufficient to assume the 
unchangeable-contour hypothesis only. The governing system of 
simultaneous equations thus derived is a fairly complex system of integral-
differential equations. Therefore the theory created by Adadurov is usually 
excluded from the list of practical applied theories and treated as a 
theoretical sample that other applied theories can be compared with by 
estimating the accuracy of produced results. This is the reason why we do 
not discuss this theory here and do not include it in any of the cells of 

                                                      
8 The said difference does not relate to the types of the differential equations; it 

relates solely to the values of the coefficients at functions which participate in the 
differential equations of the problem. 

- - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - -
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Table 8.1. For the interested reader, the theory created by Adadurov is 
presented in original papers by this author and also in [11]. 

8.3.4 Final remarks 

The construction of any applied (and not only) theory seems to be finished 
when that theory permits a full solution of all problems from a sufficiently 
wide class where clear formulations have been established. However, the 
virtue of any theory lies not only in its completeness in the sense indicated 
above; it is equally important what prospects it opens for the further 
scientific research in the field and what attractions it has for new 
generations of researchers. 

All that was said in Chapters 6 through 8 is related solely to the linear 
(first-order) static analysis of thin-walled bars. With primarily the interests 
of young scientists in mind, we deem it useful to present a short list of 
promising (in the author’s opinion) directions of research on the thin-
walled bars. Here they are: 

• dynamics of thin-walled bars; 
• stability/buckling of thin-walled bars; 
• second-order (strain-based) analysis of thin-walled bars; 
• curvilinear thin-walled bars (statics, dynamics, stability of those); 
• thin-walled bars with the lengthwise-variable geometric parameters; 
• computational implementation of a thin-walled bar as one of basic 

elements for structural design models created and analyzed by CAD 
software systems.   

Of course, all these problems have been solved in various ways and to a 
various extent, and a lot of papers have been published on the respective 
subjects. When we say we invite new people to open the new phase of 
research concerning the techniques and approaches of the thin-walled bar 
analysis, we mean we would like to see the general energy-based approach 
we use in this book extended onto all of the listed parts of the thin-walled 
bar theory.  

A book may appear one day in which the above-listed problems of 
engineering will be thoroughly addressed from the standpoint of the 
energy-based approach.  

To conclude this section, we would like to call the reader’s attention to a 
newly published textbook by E.A. Beilin [5] which presents principles of 
the theory of torsion of thin-walled bars on quite an elementary level. We 
recommend this textbook to people who wish to make a primary 
acquaintance with the theory of thin-walled bars. It is worth noticing that 
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the presentment in the textbook is based on a traditional approach without 
involving any variational considerations. 
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9  THE RITZ METHOD AND ITS MODIFICATIONS 

 …the physical laws of nature are most appositely 
formulated in terms of the minimality principle which provides 
a natural approach to a more or less complete solution of 
particular problems. 

Richard Courant, Herbert Robbins  
 

9.1  The basic theorem of the Ritz method 

We consider a quadratic functional, J(F), defined on a certain linear 
space M, 

J(F) = E(F) – П(F) ,      F ∈ M . (1.1) 

Here E(F) is a homogeneous quadratic functional which is, in its physical 
sense, the strain energy of an elastic system calculated on the elements of 
the stress-and-strain field F, and П(F) is a linear functional. 

The linear space M can be, for example, any of the following energy 
spaces:   

 L   – the Lagrangian energy space; 
 K   – the Castiglianian energy space; 
 F   – the parametrized energy space. 

As our subsequent reasoning relates equally to any of the three spaces and 
to the respective functionals defined on those spaces, we will use the 
general symbol of M to denote an energy space which to search for the 
point of minimum of the functional J(F).   

As usual, we will denote by angular brackets the energy scalar product, 
<F1, F2>, so that 

E(F) = <F, F> = ||F||2, (1.2) 

where symbol ||F|| designates the norm of the stress-and-strain field F in 
the energy metric of the M space. 

Let the functional in question take its minimum value at a point F*: 
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J(F*) ≤  J(F) . (1.3) 

The essence of the Ritz method which is used to search for the point of 
minimum of functional J(F) is as follows. Instead of searching the whole 
space M for the solution of the variational problem (1.3), we deal with a 
sequence of its finite-dimensional subspaces embedded in one another as 
the n index grows, the index itself being the dimensionality of its 
respective subspace1: 

M1 ⊂ M2 ⊂ … ⊂ Mn ⊂ … ⊂ M . (1.4) 

An appropriate variational problem can be formulated on each of the 
subspaces, so that 

arg min ( )n

n n

F F
F

∗ =
∈M

J , (1.5) 

which is equivalent to 

J(Fn*) ≤  J(Fn)   ∀ Fn ∈ Mn . (1.6) 

So, an n-dimensional Ritz solution of the original variational problem (1.3) 
is a solution of the finite-dimensional variational problem (1.5) or, which 
is the same, (1.6). 

The technique of searching for a Ritz solution is very simple. It follows 
these steps. First of all, we have to build the subspace Mn ⊂ M. This can be 
done if we choose  a sequence of linearly independent elements, 
Φ1,Φ2,…, Φn,…, in M. A linear envelope of the first n terms of the 
sequence is the desirable subspace, Mn. In other words, subspace Mn 
consists of all possible elements Fn such that 

Fn = α1Φ1 + α2Φ 2 +…+ αnΦn (1.7) 

with an arbitrary set of scalar factors α1, α2,… αn.  

                                                      
1 Actually, some versions of the Ritz method (such as the finite element 

method) may ignore the embeddedness of the subspaces as in (1.4). This happens 
when the sequence of finite element meshes obeys the different, a bit weaker 
condition h → 0 where h is a so-called mesh diameter, that is, a minimum 
diameter of the sphere which can contain, in the geometrical sense, any of the 
finite elements. We can regard the diameter of the mesh, h, as a dimensionality, n, 
of the approximant space, Mn, or, more exactly, h = С/n. Here С is a certain 
constant that depends on the used mesh type.   
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The set of n linearly independent elements, Φ1,Φ2,…, Φn, is said to make 
up a basis of the finite-dimensional space Mn, and the elements themselves 
are often called base or coordinate elements. 

As soon as the basis is known and fixed, the J(Fn) functional becomes a 
quadratic form of parameters α1, α2 ,… αn , 

J(Fn) = J(α1 ,α2 , … αn) = 
1 1 1

, ( )
n n n

i i j j i i
i j i= = =

< α Φ α Φ > − α Φ∑ ∑ ∑П = 

=
1 1 1

, ( )
n n n

i j i j i i
i j i= = =

α α < Φ Φ > − α Φ∑∑ ∑ П . (1.8)

This is how it looks in the matrix form: 

J(α) = 1
2
αTRα – αTP , (1.9) 

where we use the designations of 

α = 
1

n

α⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥α⎣ ⎦

, R = 2
1 1 1

1

, ,

, ,

n

n n n

< Φ Φ > < Φ Φ >⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥< Φ Φ > < Φ Φ >⎣ ⎦

, P = 
1( )

( )n

Φ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ⎣ ⎦

П

П
. (1.10) 

The R matrix is a Gram matrix [18] built for linearly independent 
elements Φ1,Φ2,…, Φn. The course of linear algebra says that the Gram 
matrix possesses peculiar properties: it is nondegenerate and, moreover, 
positive definite. The problem of minimizing the quadratic form J(α) from 
(1.9) consists of solving a set of simultaneous linear algebraic equations, 

Rα = P, (1.11) 

wherefrom 

α = R –1P. (1.12) 

The calculation of the components of vector α gives an approximate (Ritz) 
solution, Fn* , of the original variational problem: 

Fn* = α1Φ1 + α2Φ2 +…+ αnΦn . 

The key question with regard to the Ritz solution is: what relation is 
there between the exact solution of the original variational problem, F*, 
and its Ritz approximation, Fn* ? 

The answer to this question is given by the basic theorem of the Ritz 
method formulated as follows. 
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The Ritz solution, Fn* , is a projection of the exact solution of the original 
problem, F* , onto the finite-dimensional subspace Mn. 

It goes without saying that the projection we mention is based on the 
energy metric, i.e. one generated by the energy scalar product. 

The basic theorem of the Ritz method states essentially that 

F* – Fn* ⊥ Fn*     or,   which is the same,     < F* – Fn* , Fn* > = 0 . (1.13) 

An intuitive geometrical depiction of this statement is presented in Fig. 9.1 
where the three-dimensional Euclidean space represents the whole energy 
space M and the darkened plane plays the role of its finite-dimensional 
subspace, Mn. 

F*

Fn*

Mn

M

 
Fig. 9.1. A geometrical interpretation of the basic theorem of the Ritz method2 

Before we start proving this important proposition, we would like to formulate 
its obvious corollary known as a generalized Pythagorean theorem: 

|| F* – Fn*||2 = || F*||2 – || Fn*||2 . (1.14) 

                                                      
2  Of course, pictures like that in Fig. 9.1 are not any proof by themselves. Their 

actual meaning and their educational importance are totally different. This is what 
such experts in teaching mathematics as R. Courant and H. Robbins say in this 
regard [3]: 

The advantage of this geometrical method of describing mathematical facts 
is that it emphasizes certain aspects of the algebraic nature, which do not 
depend on the number of dimensions, n, and at the same time can be 
presented in a reader-friendly way for n ≤ 3 . 

“

“
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As the left-hand part is nonnegative here, we have a guaranteed estimate: 
the energy norm of the Ritz solution does not exceed the energy norm of 
the problem’s exact solution, 

||Fn*|| ≤  || F*|| . (1.15) 

Next goes the proof of the theorem. 
As Fn*  minimizes J(F) on Mn, the following inequality holds for any 

number η and for any element ϕ ∈ Mn: 

J(Fn*) ≤  J(Fn* + ηϕ) . 

The right-hand part of this inequality is equivalent to the following 
expression (when expanded) 

<Fn* + ηϕ, Fn* + ηϕ> – П(Fn* + ηϕ) = 

= J(Fn*) + η[2<Fn* , ϕ> – П(ϕ)] + η2<ϕ, ϕ> . 

Therefore 

η[2<Fn* , ϕ> – П(ϕ)] + η2<ϕ, ϕ> ≥ 0. 

This inequality must hold for any number η of any sign, therefore the 
expression in the brackets must be zero: 

2<Fn* , ϕ> – П(ϕ) = 0. (1.16) 

Obviously, this equality must be true for any number n, and on the whole 
space M as well, that is, 

2<F* , ϕ> – П(ϕ) = 0    ∀ ϕ∈ M . (1.17) 

Subtracting (1.16) from the above gives 

<F* – Fn* , ϕ> = 0. (1.18) 

As (1.18) holds true for any element ϕ ∈ Mn, we can assume ϕ = Fn*, and 
this proves the proposition of (1.13). 

This theorem has another equivalent formulation. It states that the Ritz 
solution, Fn*, is the one closest to the exact solution of the problem among 
all stress-and-strain fields which belong to a particular finite-dimensional 
space Mn. To see this, we should make sure Fn* is a solution of the 
following minimum problem: 

* * * * * *, min ,n n n n

n n

F F F F F F F F
F

< − − > = < − − >
∈M

. (1.19) 
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We have 

<F* – Fn* – Fn , F* – Fn* – Fn> =  

=<F* – Fn* , F* – Fn*> – 2<F* – Fn* , Fn> + <Fn , Fn> . 

But due to (1.18) 2<F* – Fn* , Fn> = 0, therefore 

   <F* – Fn* , F* – Fn*> ≤  <F* – Fn* – Fn , F* – Fn* – Fn>, 

and the equality can take place only when <Fn , Fn> = 0, i.e. at Fn = 0. 
Consequently, Fn*  is the only element in Mn which minimizes the 
functional <F* – Fn , F* – Fn> .  

Following S.G. Mikhlin [7], we will call the sequence of Ritz elements  
F1*, F2*,… a minimizing sequence.  

As noted soundly by Strang and Fix [19], the proof of the theorem has 
only begun from the viewpoint of a mathematician (particularly, an expert 
in functional analysis) because the very existence of the F* solution is not 
yet proved. The proof of existence is based on deeper mathematical 
considerations related to the completeness of the energy space M, which is 
hardly the mathematical competence that can be required from a 
mechanical engineer. The interested reader can find a thorough 
mathematical discussion in the literature on the subject where the Ritz 
method is justified with all the strictness required by the mathematical 
style [7], [19], [14]. However, the proof above is quite sufficient for the 
engineer who is just sure the solution exists, therefore we finish it here3. As 
                                                      

3  A discussion on the notion of existence  and a strict separation between the 
meanings of this notion in pure and applied mathematics is presented in an 
interesting and educative book by I.I. Blekhman, A.D. Myshkis, and 
Y.G. Panovko [2]. In particular, as quoted from [2]: 

any great value for an application-oriented analyst, and the lack of such a proof 
cannot unarm him in his search for an actual working solution .  

Nearly the same point of view towards the theorems of existence in elasticity 
has been advocated by V.V. Novozhilov. We would like to present a fairly long 
quotation from [9]:  

However, proving the existence of a solution of an elasticity problem does not 
seem relevant from the physical point of view, because it is obvious that any solid 
body loaded and fixed in a certain admissible way must have at least one position 
of equilibrium (provided the strains appearing in it do not violate its continuity). 
Therefore, whenever we doubt the existence of a solution of elasticity equations, 
we essentially question their consistency with the physical problem they describe. 
The considerations used in Chapters I, II, III to give a mathematical formulation 
of the elasticity problems are based on a few thoroughly credible physical 
principles, therefore the equations thus obtained are in full accordance with the 

“…in general, we can say that a non-constructive proof of existence is not of 

“

“ ”

“
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for the uniqueness of the solution, this issue is already resolved by the 
well-known Kirchhoff theorem discussed in Section 2.2.2.  

So, what conditions guarantee the convergence of the Ritz method, i.e. 
the fulfilment of the limit relationship for the following minimizing 
sequence? 

||F* – Fn*|| → 0   as   n → ∞ . (1.20) 

There are three such conditions: 

• Linear independence – coordinate elements Φ1,Φ2,…, Φn must be 
linearly independent for any n; 

• Belonging to the energy space – all coordinate elements Φ1,Φ2,…, Φn  
must be taken from the space M; 

• Completeness – the set of coordinate elements Φ1,Φ2,…, Φn,… must be 
complete in the M space. 

Let us give a comment on each of the requirements above. 

Linear independence 

The requirement of linear independence is obvious. If there is an element 
(say, Φn) among coordinate elements Φ1,Φ2,…, Φn which can be 
represented as a linear combination of the other n – 1 elements, then the 
Ritz system of linear algebraic equations (1.11) becomes unsolvable 
because the Gram matrix, R, in (1.10) degenerates. This can be easily 
proved by algebraic methods [18]. 

Belonging to the energy space 

The coordinate elements must belong to the energy space according to 
sufficient conditions of convergence for the Ritz method. This requirement 
was deemed for a long time a condition beyond all question, one of those 
which together ensure the convergence. However, the development of the 
practice and theory of computation4 – first of all, of the finite element 
method – resulted in second thoughts about this requirements. A question: 
what if we do not require the Φ1,Φ2,…, Φn elements to formally belong to 
the energy space M; in other words, what if each separate finite-

                                                                                                                          
problem and thus cannot produce absurd results. They are bound to give the 
solution of any particular problem that makes a real sense and has a correct 
formulation (meaning that the problem complies with the basic principles of the 
theory used) . 

4 In this exact order. The computational practice was ahead of the theory: it 
introduced the question, for the theory to answer, whether the inconsistent finite 
elements could be used justly. 

”
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dimensional space Mn is not necessarily a subspace of the original energy 
space M? Can we then talk about the convergence of the Ritz solutions 
and, if we can, in what sense should we understand that convergence?  

The answers to these questions are given by mathematical researches 
dedicated to the justification of the so-called inconsistent finite elements 
[19]. As it turned out, in a number of cases the requirement that the 
coordinate elements should belong to the energy space could be weakened. 
It has been found out that there exist such processes of construction of the 
minimizing sequences that each element of such a sequence does not 
belong to the original energy space M but is part of a bigger space N 
(M ⊂ N); at the same time, the limit element of this sequence does belong 
to M. Here’s the simplest geometric analogy: any point of the plane (being 
a two-dimensional energy space) can be approached as accurately as 
needed from the wider three-dimensional space, and no element of the 
approaching sequence is obliged to belong to the plane itself. 

At the same time, we should notice the important fact that the basic 
theorem of the Ritz method holds true only for such approximant elements 
which do belong to the energy space. This is where the inequality (1.15) is 
ensured. The history of structural mechanics knows cases when ignoring 
this circumstance (or checking carelessly whether the coordinate elements 
belong to the energy space) produced fallacious deductions. An example is 
a known mistake made by Bernstein and discussed in detail by Panovko & 
Gubanova [12]. The example is fairly educative, so we present its short 
description below5.  

The subject of consideration is a flexural beam with hinged supports 
under a concentrated force Р applied to the middle of the span. If we 
assume the flexural stiffness of the beam to vary according to a 
complicated law, then we have to use a computational numerical method 
to determine the deflection of the beam, ∆, in the middle of the span. We 
use the Ritz method to find the deflection function of the beam, w(x). The 
Lagrangian functional for this problem is 

L = 2

0

1 ( / 2)
2

l
EI dx P l′′ −∫ w w ,      

and note also that ∆ = w(l/2). 

                                                      
5  Actually, S.A. Bernstein [1] dealt with free oscillation frequencies rather than 

statics. The same problem is discussed in the mentioned book by Y.G. Panovko 
and I.I. Gubanova. However, this is not critical because the essence of the mistake 
made by Bernstein concerns the statics equally. 
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We take the only coordinate function, Φ1(x), such that Φ1(l/2) = 1. Then, 
assuming w(x) = αΦ1(x), we will find the desirable factor, α, by 
minimizing the Lagrangian functional. An easy transformation gives 

2

0

l

P

EI dx
α =

′′∫ w
 . 

Apparently, the mechanical sense of (1.15) in this case is that the 
following estimate must hold true for sure: 

α ≤ ∆ . 

However, if we take a “lid-shaped” function shown in Fig. 9.2 to be 
Φ1(x), then the denominator in the formula of α becomes zero which leads 
to a formal violation of the inequality α ≤ ∆ . 

1

l

j0.5j 0.5j

 
Fig. 9.2. An approximant 

Bernstein explains the contradiction in this way, following intuitive 
considerations: “The example has an obvious flaw (the violation of 
smoothness of the deflection curve), but it could be eliminated and the 
smoothness could be easily restored by assuming a finite length of the 
rounding, while the result of the calculation would remain the same”.  

That’s right: the violation of smoothness of the deflection curve! The 
matter is that the lid-shaped function does not belong to the Lagrangian 
energy space; the latter requires the existence of second square-summable 
generalized derivatives 1( )x′′Φ , and this existence is based on the existence 
of continuous first derivatives of the same function in the whole interval 
from 0 to l. This is exactly the minimum “smoothness of the deflection 
curve” mentioned by Bernstein. However, his speculation that the result of 
the calculation would remain the same even after the smoothness of the 
curve was restored is invalid.  

We will present a correct treatment of this “paradox”, borrowed from 
[12]. Let two straight segments of the approximant curve be mated by a 
circular arc of a radius ρ as shown in Fig. 9.2. We denote by а the length 
of a small part of the bar’s longitudinal axis on which the approximant 
function is of the circular shape, and by ϕ the central angle; then we find 
that а = 2ρ sin(ϕ/2).  
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Choosing the approximant Φ1(x) in this way makes the formula for α 
look like 

2

( ) / 2( ) / 2

2 ( ) / 2( ) / 2

l al a

l al a

PP
EI EIdxdx

++

−−

ρα = =

ρ ∫∫
 . 

If we maintain the value of ϕ and make the radius of the curve, ρ, tend to 
zero, then а → 0 too. At a sufficiently small ρ we have 

/ 2

0
2 sin

2x l

P
EI =

ρα→ →ϕ    as  0ρ→ . 

Consequently, the smoothed approximant Φ1(x) shown in Fig. 9.2 on the 
right produces an infinitesimal rather than infinite displacement of the 
beam’s central point as ρ → 0. This is totally consistent with the basic 
theorem of the Ritz method. 

Returning to the feasibility of building the minimizing sequence from a 
wider space than the energy one, we would like to notice again the 
violation of the conditions under which the inequality (1.15) holds; this 
fact was noticed in practice after the inconsistent finite elements came into 
usage. 

The theoretical analysis of convergence and the estimation of errors of 
the respective sequences require finer mathematical approaches. Such an 
analysis has been done many times for one important class of problems 
where inconsistent finite elements are used. To mention some Russian-
language mathematical publications dedicated to the convergence of 
inconsistent finite element approximations, we should refer to a series of 
papers by Kiev mathematicians I.D. Evzerov and V.S. Karpilovsky (see 
[4], [5] for examples). 

Completeness 

The last requirement, the completeness of the system of coordinate 
elements Φ1, Φ2,…, Φn,… in the M space, purports the possibility to 
approximate an arbitrary element F∈M with any given accuracy by a 
linear aggregate of the type F ≈ α1Φ1 + α2Φ2 +…+ αnΦn. It means that for 
any given ε > 0 one can find such integer N and such set of coefficients 
{α1, α2,…, αn} that the following will hold for n > N: 

||F – α1Φ1 – α2Φ2 –…– αnΦn|| ≤ ε. 

However, it is easy to prove that the requirement of completeness can be 
weakened. It suffices to require the possibility of approximating, at any 
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given accuracy, not any arbitrary element of the space M but any element 
of a subspace, K (M  ⊃ K), to which the problem’s solution belongs for 
sure6. For example, the considerations of symmetry can give us a hint that 
the solution should be sought for in the class of symmetric functions 
without caring to approximate antisymmetric elements of the space M.  

9.2  The Ritz method in application to mixed functionals 

The basic concept and the procedure of the Ritz method presented in the 
preceding section is essentially based in its proof part on the requirement 
that the functional of interest achieve its minimum at the point of its 
stationarity. However, the idea of replacing the original linear set M, one to 
search for the solution, by its finite-dimensional approximation works, in 
the purely technical sense, also when the functional is not convex and thus 
does not generate a Hilbert space on the M linear set.  

Of course, we cannot talk about projecting the exact solution, F*, onto 
the finite-dimensional linear set because the very notion of projection loses 
its meaning when there is no proper metric. Nonetheless, a formal Ritz 
procedure of searching for an approximate solution can be constructed for 
this case, too.  

9.2.1 The Ritz method in application to the Reissner functional 

To be more particular, let us see what happens if we apply the Ritz method 
to the problem of finding a point of stationarity of the Reissner functional. 
                                                      

6  The book already quoted earlier [2] presents different shades of 
understanding the role of the completeness of base functions in theoretical and 
applied mathematics. In particular, [2] says the following with regard to the 
completeness of the system of base functions in the Ritz or Galyorkin method:  

“Let us keep in mind that even if we work with a mathematically complete set of 
functions, we really take only a small subset of them for the purpose of our 
calculation. On the other hand, it is easy to see that any finite system of functions 
can be supplemented so as to become a complete system, i.e. the original finite set 
can be deemed formally a part of such a complete system. However, this does not 
mean the finite sets of functions we take for coordinate ones in the Galyorkin 
method are all the same from the standpoint of completeness. The finite set should 
posses the property of a practical completeness with respect to the problem in 
question, i.e. we must be sure (or at least cherish a hope) that the desirable 
solution can be approximated at an acceptable accuracy by a linear combination 
of our base functions”.   
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To simplify the formulas, we confine ourselves to homogeneous 
kinematical boundary conditions.  

Recalling Chapter 3, we note that the original linear set M consists in 
our case of all possible stress-and-strain fields of the type F = {σ, Au, u} 
which belong to the linear set U ko. As for the requirements of smoothness 
for stresses σ and displacements u, they are defined by the form of the 
Reissner functional we use, as discussed in Chapter 3. The original linear 
set M can be conveniently represented as the sum (union) of two linear sets 
M = Mσ ∪ Mu where Mσ consists of all possible fields of the type 
Fσ = {σ, 0, 0} and Mu consists of all possible fields of the type 
Fu = {0, Au, u} with homogeneously kinematically admissible 
displacements, 

EuHuu  = 0 ∈ Г . (2.1) 

Let us build a system of linearly independent elements Ψ1, Ψ2,…, Ψm,… 
on the set Mσ. Similarly, we build a system of linearly independent 
elements Φ1, Φ2,…, Φn,… on the set Mu. Obviously, the set of (m+n) 
elements {Ψ1, Ψ2,…, Ψm, Φ1, Φ2,…, Φn} makes up a system of linearly 
independent elements in the original set M.  

Now let us approximate an arbitrary element F ∈ M by element Fm+n 
which is a linear combination of the selected base elements. In other 
words, we assume 

F ≈ Fm+n = (X1Ψ1 + …+ XmΨm) + (Z1Φ1  +…+ ZnΦn) = 

= XTΨ + ZTΦ, (2.2) 

with (m+n) coefficients Xi (i = 1,…, m), Zj (j = 1,…, n) yet to be 
determined. Here we use the following designations of vectors: 

X = |[X1 ,…, Xm]|T,               Z = |[Z1,…, Zn]|T,  

 Ψ = |[Ψ1,…, Ψm]|T,              Φ = |[Φ1,…, Φn]|T. (2.3) 

For convenience, we repeat the general expression of the Reissner 
functional’s first form from (3.1.4) here: 

R1(σ, u) = ½(C –1σ, σ) – ½(Ku, u) – (Au, σ) + (Eu p, Eu u)Г + Пs – Пk . 

According to (3.1.3), this holds for the homogeneously kinematically 
admissible fields: 

Пs(u) =  ( X , u) + (Ep p , Ep u)Г , Пk(σ) = 0 ,   (Eu p, Eu u)Г = 0, 

therefore for the linear set M 
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R1(σ, u) = ½(C –1σ, σ) – ½(Ku, u) – (Au, σ) + 

+ ( X , u) + (Ep p , Ep u)Г. (2.4) 

Fixing the integral values of m and n and subsituting approximations 
(2.2) in (2.4) makes the Reissner functional a quadratic form of 
(m+n) desirable parameters: 

R1(X, Z) = 11 ( , )
2

−X C XT Ψ Ψ – 1 ( , )
2

Z K ZT Φ Φ – ( , )Z A XT Φ Ψ + 

+ ( , )Z XT Φ +ZT(Ep p , EpHuΦ)Г . (2.5) 

This is how it looks in the matrix form: 

1
1( , ) , ,
2

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G H 0
H K P

X
X Z X Z X Z

Z
T T T T

TR , (2.6)

where the following designations are used: 11
2, ( , )i j i j

−< Ψ Ψ > = Ψ ΨC , 

1( , )−= =G CΨ Ψ 2
1 1 1

1

, ,

, ,

m

m m m

< Ψ Ψ > < Ψ Ψ >⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥< Ψ Ψ > < Ψ Ψ >⎣ ⎦

, 

( , )= =H AΦ Ψ
1 1 1

1

( , ) ( , )

( , ) ( , )

n

m m n

Ψ Φ Ψ Φ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Ψ Φ Ψ Φ⎣ ⎦

A A

A A
, 

 

( , )= =K KΦ Φ
1 1 1

1

( , ) ( , )

( , ) ( , )

n

n n n

Φ Φ Φ Φ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ Φ Φ Φ⎣ ⎦

K K

K K
,   P =

s 1

s

( )

( )n

Φ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ⎣ ⎦

П

П
. (2.7) 

The conditions of stationarity of R1(X, Z) produce this set of 
simultaneous linear algebraic equations: 

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G H 0 0
H K P 0

X
ZT  (2.8) 

with respect to unknown vectors X and Z. 
The primary question with regard to the system of equations (2.8) is 

whether it can be solved unambiguously. First of all, we would like to 
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notice the following two properties of blocks of the common matrix that 
makes up the system (2.8).  

 Property 1. The square matrix G of the order m is a positive definite 
matrix. This statement follows directly from the definition of matrix G 
according to which G can be looked at as a Gram matrix of the system 
of linearly independent elements Ψ1, Ψ2,…, Ψm with the Castiglianian 
energy metric. 

 Property 2. The square matrix K of the order n is a positive semi-
definite matrix. This also follows from the definition of the matrix and 
the earlier condition (1.2.3) that the K operator must obey. 

These two properties make the following theorem true: 
The system of equations (2.8) can be solvable unambiguously with any 

right part and any positive definite operator K (including the zero operator 
K = О) if and only if the following requirement is satisfied: 

rank H = n , (2.9) 

where n is the dimensionality of the finite-dimensional space of 
displacements. 

First we prove the sufficiency (the “if” part) of condition (2.9). As the G 
matrix is positive definite, first m equations in (2.8) yield 

X = G –1HZ, 

which gives the following when substituted in the last n equations of (2.8): 

(HTG –1H + K)Z = P. (2.10) 

The square matrix HTG –1H of the order n can be interpreted as a Gram 
matrix for n column vectors of the H matrix specified in the Euclidean 
space of the dimensionality m with the scalar product (x, y) defined by the 
formula (x, y) = xTG –1y. As the rank of the H matrix is equal to the number 
of its columns according to (2.9), all columns of the matrix are linearly 
independent, hence the positive definiteness of the Gram matrix HTG –1H. 
This means that the following strict inequality holds for any nonzero 
vector Z: 

ZT(HTG –1H + K)Z > 0, 

because, according to Property 2, ZTKZ ≥ 0. Thus the matrix 
(HTG -1H + K) is positive definite, hence invertible. 

Now we prove the necessity (the “only if” part) of condition (2.9). We 
suppose that rank H = t < n. The theory of matrices says [18] that the rank 
of the product of matrices does not exceed the least rank of the matrix 
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cofactors. This means rank HTG –1H ≤ t < n, hence the square matrix HTG –

1H of the order n is degenerate and the system (2.8) is not necessarily 
solvable with any arbitrary vector P (at K = О, at the least).  

Note an obvious corollary to the theorem just proved. Clearly, for the 
condition of (2.9) to hold, the following inequality must take place: 

m ≥ n . (2.11) 

The mechanical interpretation of the requirement (2.11) can be formulated 
as follows: 

The Ritz system of equations which corresponds to the conditions of 
stationarity of the Reissner functional can be solved only if the 
dimensionality m of the finite-dimensional space of the stresses is not less 
than the dimensionality n of the finite-dimensional space of the 
displacements. 

9.2.2 The Ritz method in application to the generalized mixed 
functional Ф  

We use the formula (3.5.12) for the generalized mixed functional, Ф(σ, u), 
and have 

[ ]1 (1 )
2 1

= κ + − κ
κ −

Ф L R . 

As we found out in Chapter 3, when the inequality ½ < κ < 1 holds, the 
functional Ф is convex and generates a metric, so the basic theorem of the 
Ritz method is applicable to this functional in these particular conditions. 

Expanding the expression of the functional for the linear set U ko 
produces the following, up to the unimportant factor of 1/(2κ – 1): 

Ф(σ, u) = 1
2
− κ (C –1σ, σ) + 2 1

2
κ − (Ku, u) + 

2
κ (Au,CAu) – 

– (1 – κ)(Au, σ) + ( X , u) + (Ep p , Ep u)Г . (2.12) 

Using the approximations of (2.2), we change this functional into a 
quadratic form, 
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Ф(X, Z) = 11 ( , )
2

−− κ X C XΨ ΨT + 2 1 ( , )
2
κ − Z K ZΦ ΦT + 

+ ( , )
2
κ Z A CA ZΦ ΦT – (1 ) ( , )− κ Z A XΦ ΨT + 

+ ( , )Z X ΦT +ZT(Ep p , Ep HuΦ)Г . (2.13) 

The matrix form for this is 

(1 ) (1 )1( , ) ,
(1 ) (2 1)2
− κ − − κ⎡ ⎤ ⎡ ⎤⎡ ⎤Φ = +⎢ ⎥ ⎢ ⎥⎣ ⎦ − − κ κ + κ −⎣ ⎦ ⎣ ⎦

G H
H R K

X
X Z X Z

Z
T T

T  

, ⎡ ⎤⎡ ⎤+ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0
P

X ZT T . 

The result is the following Ritz system of equations: 

(1 ) (1 )
(1 ) (2 1)
− κ − − κ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − κ κ + κ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G H 0
H R K P

X
ZT

, (2.14) 

where 

( , )=R A CAΦ Φ . (2.15) 

As we can see, the system of equations (2.14) contains the system (1.11) 
as a particular case at κ = 1 and the system (2.8) at κ = 0. 

It should be noticed that the requirement (2.11) at ½ < κ < 1 does not 
apply to functional Ф(σ, u). The reason for this is that the Ф functional 
yields the following instead of (2.10): 

[–(1 – κ)HTG –1H + κR + (2κ – 1)K]Z = –P. (2.16) 

Obviously, (2.16) becomes (2.10) in the particular case of κ = 0. At the 
same time, when the Ф functional is convex,, we can show that the matrix 
of the system of equations (2.16) of the order n is guaranteed to be positive 
definite7 at any value of the integer parameter m. The meaning of it is that 
the Ritz system of equations is solvable regardless of a relationship 
between the dimensionalities in the approximations of the stresses and 
those of the displacements. 

                                                      
7 The reader is invited to prove this. 
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An example  

Our illustrative example will consist of an analysis of a beam which lies on 
an elastic bed with a reaction factor k; the beam is simply supported on its 
ends. 

Following approximations (2.2), we introduce two systems of 
coordinate functions {Φα} and {Ψα} , both complete in the sense that the 
respective deflection w and moment M can be approximated as accurately 
as needed by linear aggregates composed of the said functions. We assume 
m = n and 

1

n

Zα α
α=

= Φ∑w ,     
1

n

M Xα α
α=

= Ψ∑ , 

so that 

Φα(0) = Φα(l) = 0,      Ψα(0) = Ψα(l) = 0, 

where l is the length of the beam’s span. 
It is easy to see that the approximations thus introduced satisfy both the 

kinematic and the static boundary conditions for the beam with simple 
(hinged) supports on its ends. 

The components of the respective blocks of the matrix of the Ritz 
equation system and the components of the absolute-term vector are 
defined as 

0
G

l
dx

EI
α β

αβ

Ψ Ψ
= ∫ ,    

0
H

l
dxαβ α β′ ′= Ψ Φ∫ ,     

0
R

l
EI dxαβ α β′′ ′′= Φ Φ∫ , 

0
K

l
k dxαβ α β= Φ Φ∫ ,        

0
P

l
q dxα α= Φ∫ . (2.17) 

In addition to the already known designations, we introduce the following: 
EI is a bending stiffness of the beams’ section, k is a subgrade reaction 
coefficient, q is a lateral load on the beam. 

Assuming κ = 1, we get the classic version of the Ritz method based on 
the minimization of the Lagrangian functional. The system of equations 
(2.14) gets simpler to become 

(R + K)Z = –P 

and does not contain the components of the X vector as unknowns. But 
then the bending moments M are defined by the relationship M = –EIw′′ or 



514      9 THE RITZ METHOD 

1

n

M EI Zα α
α=

′′= − Φ∑ . 

On the other hand, at κ ≠ 1 the bending moments M will be calculated 
directly from solution of the Ritz equations, or 

1

n

M Xα α
α=

= Ψ∑  

This approach does not require any differentiation of the coordinate 
functions, which may deteriorate the accuracy of the results. In particular, 
if the EI function is discontinuous (piecewise continuous, for example), 
then the bending moments calculated by the minimization of the 
Lagrangian functional will experience a discontinuity, too.   

Assuming 

Φα = Ψα = (2 1)sin x
l

α − π     (α = 1, 2,…, n), 

we can derive explicit expressions of the elements of all matrices needed 
for our calculation from formulas (2.17). 

Without dwelling on the intermediate calculation, we present below the 
results for the beam with the stepwise bending stiffness EI under the 
concentrated force Р applied to the middle of the beam’s span (Fig. 9.3). 

Table 9.1 gives the calculated values of the respective bending 
moment Mo, 

o 0

1

100 EIMM
Pl EI

= , 

in the cross-section of the beam right under the load vs. the number of 
terms, n, kept in the expansion of the deflections and of the moments. 
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Fig. 9.3. The bending of a beam on an elastic bed 

The following values of the parameters were used in the calculation: 



9.2  The Ritz method in application to mixed functionals      515 

1

0

2
3

EI
EI

= ,         2

0

1
12

EI
EI

= ,         4
0

6.25kl EI = . 

The exact values of M o in the middle of the span is 7.37. 
 Table 9.1 

n 2 3 4 5 6 
oML  1κ =  4.25 6.14 6.04 5.43 5.85 
oMR  0κ =  2.68 4.40 5.39 5.87 6.11 
oMФ  2 / 3κ =  1.43 2.64 4.49 5.97 6.58 

Fig. 9.4 presents curves of moments M o at n = 6. Curve 1 depicts the 
exact solution of the problem, curve 2 corresponds to oMФ , and the dash 
line (curve 3) depicts oML . Here oM J  is a relative bending moment 
calculated from the condition of stationarity of the functional 
J (J = L,R,Ф). 

It is interesting to track the variation of the accuracy at which the 
maximum bending moment is calculated vs. the parameter κ. The data 
presented in Table 9.2 help us watch this variation. 
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Fig. 9.4. Moment curves for a flexural beam 

 Table 9.2 
κ 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

oMФ  6.53 6.60 6.59 6.58 6.55 6.53 6.51 6.50 6.49 
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9.3  Method of two functionals 

The Ritz method based on the minimization of the full potential energy 
functional (a Lagrangian functional) of an elastic system on a finite-
dimensional subspace of a certain admissible space of displacement 
functions (a Lagrangian energy space) produces approximate solutions 
more accurate by displacements than by stresses. The finite element 
method (FEM), being a variation of the Ritz method with particular 
coordinate functions, features stress fields discontinuous on the boundaries 
between the elements where the displacement fields are continuous. This 
shortcoming of the Ritz method (FEM, in particular) vanishes if the 
variational formulation of the problem is based on the Castigliano 
functional. However, there is a great deal of difficulties in building 
systems of coordinate functions for the stress fields, which would satisfy 
the equilibrium equations in the volume and on the surface of the body. 
There is an alternative approach related to the mixed-type functionals 
where the fields of stresses and displacements are approximated 
independently. The Reissner functionals, being the best known 
representatives of the mixed-type functionals, posses two serious 
shortcomings: 

• the lack of extreme properties (the stationarity point is a not a point of 
extremum for the Reissner functional) creates computational 
difficulties;  

• the order of the mixed system of equations is the sum of the orders of 
both the displacement and stress approximations.  

The first shortcoming in the above list can be eliminated by replacing 
the Reissner functional with the mixed one Ф which, as we have shown, 
has its minimum in the stationarity point for ½ < κ < 1. However, no 
simple reconstruction of the mixed functional is enough to eliminate the 
second shortcoming. 

The paper [17] suggested a scheme for constructing Ritz approximations 
with the following properties: 

• independent approximations of the stress and displacement fields are 
used; 

• two Ritz systems of equations are constructed, each having a positive 
definite matrix; 

• the boundary conditions (both static and kinematic) are satisfied 
precisely. 
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Unlike the traditional approach where the stationarity of one functional 
is sought for, our current method associates two functionals with the 
differential formulation of the problem; the conditions of minimum for 
those in finite-dimensional spaces yield the desirable Ritz systems of 
equations.  

9.3.1 Weak and strong solutions with respect to stresses 

As is known [13], [15], a generalized or weak solution of a problem where 
the strains and stresses in an elastic body should be found is a 
kinematically and statically admissible stress-and-strain field, 
F* = {σ*, ε*, u*}∈ P  k, for which the following integral identity holds: 

(ATσ* + Ku* – X , ukο) + (EpHσσ*  – Ep p , Ep ukο)Г = 0 , (3.1) 

true for any homogeneously kinematically admissible field of 
displacements, ukο ∈ Uko.  

As we already know, the mechanical interpretation of this integral 
identity is called the principle of virtual displacements – see (1.4.12). 
Further, the results of Chapter 2 imply that the above definition of the 
generalized solution is equivalent to a variational formulation where the 
Lagrangian functional should be minimized: 

L(u) = E(u) – Пs(u) (3.2) 

where E is the potential strain energy, Пs is the force potential. Note that 
the force potential can be treated as a potential of all active volumetric and 
surface forces. 

Usually, as soon as we have determined the vector of displacements, u*, 
which minimizes the Lagrangial functional, finding the stress distribution 
in the system (i.e. finding the true vector of stresses σ*) is quite trivial 
because 

σ* = САu* . (3.3) 

Further we will refer to stresses σ* determined by (3.3) as a weak solution 
with respect to stresses. This definition supposes that u* in (3.3) is a weak 
solution with respect to displacements in the sense of the integral 
identity (3.1).   

For reasons discussed later, it makes sense to re-formulate the problem 
of finding stresses σ so that it become variational. 

Let U s/2 be a set of statically semi-admissible stress-and-strain fields, 
and let U sо/2 be a set of homogeneously statically semi-admissible stress-
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and-strain fields. To put it another way: σ∈U s/2 if stresses σ satisfy the 
static boundary conditions and σо∈U sо/2 if stresses σо satisfy the 
homogeneous static boundary conditions. Also, for these stresses the 
following integrals are supposed to exist and take finite values: 

d
Ω

Ω∫ Tσ σ ,   o od
Ω

Ω∫ Tσ σ ,    ( ) ( )d
Ω

Ω∫ A AT T Tσ σ ,   ( ) ( )dο ο
Ω

Ω∫ A AT T Tσ σ . 

For any vector uk ∈Uk and any vector σо∈U sо/2, the basic integral 
identity (1.2.17) holds, which can be written as follows: 

(Auk, σо) = (uk, ATσо) + (Hσσо, Huuk)Г . (3.4) 

Definition.  
We will call a strong solution of a problem with respect to stresses a 

vector σ ∈U s/2 that satisfies the integral identity 
1

*( ) ( ) ( )u ud d d
Γ

Γ−
ο ο σ ο

Ω Ω

Ω = Ω +∫ ∫ ∫uC A E H E uσ σ σ σT T T T  (3.5) 

for any homogeneously statically semi-admissible vector σо∈U sо/2 where 
u* is the weak solution with respect to displacements. 

If u* is a sufficiently smooth vector, then the weak stresses are identical 
with the strong stresses. To see this, we make the scalar product of С –1σ* 
with σо and take (3.3) and (3.4) into account to obtain the integral 
identity (3.5).  

Now let us show that if the strong stresses exist σ then they are also the 
weak stresses. From (3.5) and (3.4) we derive 

(С –1σ – Au*, σо) = 0,  

and the arbitrariness of σо∈U sо/2 gives σ = САu* . 
We introduce a functional D as follows on the set U s/2: 

D(σ) = E(σ) – Пr (σ) (3.6) 

where E(σ) = ½(С –1σ,σ) is the strain energy represented as a quadratic 
functional of the stresses and Пr (σ) is the potential of reactive volumetric 
and surface forces, which is equal to the following by definition: 

Пr (σ) = (ATσ, u*) + (EuHσσ, Eu u )Г . (3.7) 

It should be said that the expression E(σ) = ½(С –1σ,σ) is, strictly 
speaking, a physical strain energy of only the deformable body itself, i.e. 
without the energy accumulated in the elastic medium surrounding the 
body. 
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We take the variation of functional D and write out its stationarity 
conditions: 

δD = (С –1σ, δσ) – (ATδσ, u*) – (EuHσδσ, Eu u )Г = 0. 

By identifying variation δσ with σо, we derive the integral identity (3.5). 
Thus the search for a strong solution with respect to stresses and the search 
for a stationarity point of functional D on the set of statically semi-
admissible stresses, U s/2, are two equivalent problems. 

The following statement is true: if a strong solution with respect to 
stresses, σ, exists, then the D functional has its minimum in its point of 
stationarity. To see this, we write out the following for any statically semi-
admissible field of stresses σs/2 ∈U s/2: 

D(σs/2) – D(σ) = 

= ½ (C –1σo,σo) + (C –1σ,σo) – (ATσo,u*) –(EuHσσo, Eu u )Г, (3.8) 

where 

σo = σs/2 – σ  ∈U sо/2 . 

As σ satisfies the integral identity (3.5), this annuls the last three terms in 
the right-hand part of (3.8), therefore 

D(σs/2) – D(σ) = ½ (C –1σo,σo). 

As the С matrix is positive definite, we have 

D(σs/2) ≥ D(σ) , 

which proves the proposition.  

9.3.2 A remark on existence of a strong solution with respect to 
stresses 

Let us now consider the question of existence of a minimum point for 
functional D8. For the beginning, we re-formulate the variational problem 
                                                      

8 The author is aware that the very appearance of this section in the book 
discords from his attitude towards the theorems of existence uttered in footnote 
number 2. An excuse for this inconsistency follows. First, the reader competent in 
mathematics can find the justification of principal theorems of existence in theory 
of elasticity in many well-known mathematical papers where, however, the goal of 
searching for a strong solution with respect to stresses itself is not addressed. 
Second, the reader oriented primarily at engineering applications is suggested just 
to skip this section and start reading the next one.   
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for D(σ) on the set U s/2 into an equivalent problem of minimization of 
D(σ) on the linear set U sо/2 . 

Let stresses τ ∈U s/2 (the U s/2 set is supposed not to be empty). Then for 
any vector σs/2∈U s/2 such a vector τo ∈U so/2  can be found that 

σs/2 = τ + τo . 

Functional D can be defined now on the set U sо/2: 

D(τo) = 

= ½ (C –1τo,τo) + (C –1τ,τo) – (ATτo,u*) – (EuHστo, Eu u )Г + Cτ (3.9) 

where Cτ is a scalar value that depends solely on the fixed vector of τ.  
The following bilinear form will be introduced on the linear set U sо/2: 

b(σo,τo) = ½(C –1σo,τo) , 

which satisfies all axioms of scalar product due to the C matrix’s being 
positive definite. Completing U sо/2 in the metric thus introduced yields a 
Hilbert space, Hσ, and the metric itself will be called an energy metric9. 
Also, as the C matrix is positive definite, the energy metric in Hσ is 
equivalent to the metric of L2(Ω): 

2

2
( )|| ||L dο Ω ο ο

Ω

= Ω∫τ τ τT ,       2|| ||
σο =τ H  ½(C –1τo,τo) ,   

because the conditions of (1.2.3) give 

2

2
( )|| ||2

d
L

m
ο Ω ≤τ 2|| ||

σο ≤τ H 2

2
( )|| ||2

d
L

M
ο Ωτ . (3.10) 

The linear part, l(τo), of functional D(τo) is defined on the set of 
statically semi-admissible variations of stress vectors, U sо/2, and is 
bounded in Hσ. To see this, 

|l(τo)| ≤ |(C –1τ,τo)| + |(ATτo,u*) + (EuHστo, Eu u )Г | ≤ 

                                                      
9 You should not think the Hilbert space Hσ just introduced coincides with the 

Castiglianian energy space K defined earlier in Section 2.3.2. There is no such 
coincidence even if the elastic medium is absent, K = О. The matter is that the 
elements of the Castiglianian energy space, K, are obliged to satisfy both the static 
boundary conditions and the homogeneous equations of equilibrium in area Ω. 
Therefore an inclusion takes place: K  ⊂ Hσ. However, for K = О the metric 
defined on Hσ is formally the same as that on K . Thus we can refer to this metric 
as a Castiglianian energy metric.  
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≤ 2 || || || ||
σ σοτ τH H + o *| |d

Ω

Ω∫ uAτT ≤ 

≤ 2 || || || ||
σ σοτ τH H + 

2 2*|| || || ||L LοuA τ ≤ 

     ≤
2* ( )

2|| || 2 || || || ||
d

Lmσ σο Ω
⎛ ⎞+⎜ ⎟
⎝ ⎠

uAτ τH H . 

This inequality’s derivation is based on the Cauchy–Buniakovsky 
inequality, the basic integral identity (3.4), and the inequality (3.10). 

According to the Hahn–Banach theorem [6], the linear bounded 
functional, l(τo), defined on the linear set, U sо/2, of the Hilbert space Hσ 
can be extended by continuity onto the whole space Hσ keeping the norm 
of the functional. The D(τo) functional thus extended will reach its lower 
bound on Hσ [8]. 

All that was said above implies that the minimum of functional D is 
guaranteed on Hσ, and at the same time the “minimum point” does not 
necessarily belong to set U sо/2. The condition for a strong stress state to 
exist is the inclusion  

σ* = САu* ∈ U s/2. 

9.3.3 A remark on consistent approximations for minimization 
of functional D 

To minimize the D functional by the Ritz method, we choose a sequence 
of finite-dimensional subspaces Hmσ ⊂ Hσ with base vectors τ1, τ2,…, τm. 
To ensure the convergence of the Ritz method (as m → ∞), we need to be 
able to approximate any element σ ∈ Hσ with any given accuracy by an 
element of the type 

X1τ1 + X2τ2 +…+ Xmτm 

with an appropriate finite dimensionality m and proper coefficients Xi 
(i = 1,…, m). As Hmσ is finite-dimensional, the D functional achieves its 
lower bound on it, and the problem of minimizing D on Hmσ

 has a unique 
solution. 

Together with functional D = D(σ, u*), we consider a perturbed 
functional, ( , )uσD , where u  is a distorted vector of displacements, which 
is close to the displacement vector u*  in some sense. In particular, u  can 
be vector un that makes the Lagrangian functional L take a minimum value 
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in the finite-dimensional subspace Ln of the Lagrangian energy space, L. 
Let *σ  be a point of minimum of ( , )uσD  in Hσ, and let mσ  be a point of 
minimum of the same functional in H mσ. Note that 

*σ = CAun . 

It makes sense to pose and solve the problem of minimization of 
( , )uσD  in Hmσ if the approximate (Ritz) solution mσ  for the distorted 

functional is “more exact than its exact solution *σ ” meaning how close 
they are to the exact solution, σ*, for the exact functional D. This strangely 
looking phrase is actually a verbal form of the following inequality: 

2 * * 1|| || || ||m ne e= − ≤ − =uCAσ σ σ , (3.11) 

which is supposed to hold in terms of a certain common norm. 
Error e1 depends solely on the selection of subspace Ln, and error e2 

depends on Ln and H mσ.  
Let Ln be chosen in such way that the following estimate of the 

approximation order takes place: 

e1 = O(hp),   p > 0 . (3.12) 

Here h is a parameter that has the dimension of length. This parameter is 
thought to be proportional to the maximum size of area Ω occupied by the 
elastic body. Also, h → 0 when n → ∞. In particular, the finite element 
method usually means by parameter h the minimum diameter of a sphere 
that can contain any of finite elements of a particular mesh division of 
area Ω.  

We will call the Hmσ subspace consistent with Ln by order α if the 
following estimate holds: 

e2 = O(hp+α),   α > 0 . (3.13) 

Fig. 9.5 shows a qualitative picture of relationships between the 
consistent sets of Ln and Hmσ, where the abscissa axis simulates the energy 
space Hσ and the ordinate axis shows values of the D functional (solid line) 
and the perturbed functional, D  (dash line).  

Clearly, if error e1 has the order of hp, then for error e2 to have a higher  
order of smallness, the error e3 

3 *|| ||me = −σ σ  (3.14) 
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is required to have exactly the same order of hp. Thus, in order to achieve 
the consistence, the Ritz solution for the distorted functional should be 
neither too “good” nor too “rough”. 

e
3

e
2

e
1

D
*

D
*

~

D
~

�
�

�
�

~

D

�m
~

 
Fig. 9.5. Approximations of stresses and displacements consistent in their order 

The question under what conditions the consistent approximations exist 
and how to estimate the respective errors is a subject of special 
mathematical studies10, however, the very fact of existence of the 
consistent approximations has been validated in computational 
experiments. 

9.3.4 A remark on the connection between functional D and the 
Reissner functional 

Let us establish a relation between functional D and the Reissner 
functional R which is represented here in its second form: 

R2(σ, u) = ½(C –1σ, σ) – ½(Ku, u) – (ATσ, u) + ( X , u) – 

– (Eu u , Eu p)Г  + (Ep ( −p Hσσ), Ep u)Г . (3.15) 

If we fix the displacements, u, in the above expression by assuming 
u = u* and consider only statically semi-admissible stresses, i.e assume 
σ∈U s/2, then Ep ( −p Hσσ) = 0 ∈ Г. Extracting a part of the resulting 
expression for R2(σ, u) which depends only on the variable stresses, we 
notice its coincidence with functional D.    
                                                      

10  Actually, so special that they are far beyond both the subject of this book and 
the mathematical competence of its author. 
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In this regard, we can give the method of two functionals the following 
simple interpretation. The approximate Ritz solution is found in two 
phases. First, the minimization of the Lagrangian functional produces an 
approximate solution for displacements un. Next, this vector of 
displacements is substituted in the Reissner functional which becomes a 
functional dependent on the stresses only, because the vector of 
displacements is now fixed. The second phase is to find a stationary point, 

mσ , of the functional just obtained. The set of statically semi-admissible 
stress fields is searched for this point. This makes the stationarity 
conditions of the Reissner functional its minimality conditions. 

The method of two functionals and the method of conjugate 
approximations by Oden 

If we classify the preceding two-phase procedure as belonging to the finite 
element method, which is nothing but a variation of the Ritz method, then 
it turns out that the procedure can be also a fairly general method for 
constructing continuous fields of stresses in the course of finite element 
analysis. 

The foreign literature makes extensive references to a so-called method 
of conjugate approximations by Oden–Reddy [11], which is included even 
in textbooks [16] as a recipe (with no attempts of explaining). A detailed 
presentment of the Oden–Reddy method can be found in the book [10] by 
Oden himself. However, that particular presentment is much complicated 
by bulky index transformations and insignificant details which make it 
difficult to see the main idea. 

The following interpretation can be given to the Oden–Reddy scheme 
after tracking through it carefully and establishing a relation between it and 
the variational problem of searching for stresses given a known field of 
displacements. The stress field is sought for as an expansion over the same 
base functions which have been used to minimize the Lagrangian 
functional. Further we can compose a functional, which can be called an 
Oden functional for convenience (though Oden himself does not treat his 
method as variational): 

O(σ) = ½(σ, σ) – (σ, CAu) . (3.16) 

The conditions of stationarity of functional O(σ) produce physical 
equations 

σ = CAu . 
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Let the set of vector functions Φ1,…, Φn make up a system of base 
functions used to minimize the Lagrangian functional in the finite element 
analysis of displacements. 

By expanding the stresses into finite sums over the base functions and 
substituting the expansions in (3.16), we make a quadratic form out of the 
functional. The condition of stationarity of the form produces a system of 
equations to calculate the coefficients of expansion of the stresses over the 
system of the same base functions. 

The method of conjugate approximations by Oden yields continuous 
stress (force) fields, yet has a number of disadvantages: 

• to determine the coefficients in the expansions of the stresses over 
functions Φ1,…, Φn, one has to compose and solve an additional set of 
simultaneous linear algebraic equations; 

• the static boundary conditions are still not satisfied precisely in the 
Oden method; 

• the approximation of the stresses is bound strictly to that of the 
displacements and does not leave any free choice of the coordinate 
functions; 

• the variational formulation of the Oden method shows that the 
governing equations of this method follow from the stationarity of the 
O(σ) functional which has no clear energy-based meaning; this fact 
becomes obvious if we consider the dimensions of quantities contained 
in the integrands in (3.16); 

• The method is oriented at obtaining continuous stress fields and cannot  
allow for discontinuities caused by such reasons as jump-like variations 
of the material constants in the integration domain of a two-dimensional 
or three-dimensional problem. 

The method of two functionals is similar to the Oden–Reddy method in 
a certain sense (in its procedure) because it also requires the construction 
and solution of an additional system of equations. Therefore the first of the 
shortcomings of the Oden–Reddy conjugate approximations (a two-phase 
solution) remains in the method of two functionals, too. However, the 
other listed shortcomings vanish. The reason is that the method of two 
functionals can take the same functions Φ1,…, Φn as those in the method 
of conjugate approximations to be base functions for minimizing D(σ), but 
it can use also a different, specifically chosen, system of coordinate 
functions Ψ1,…,Ψm. 
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9.3.5 Examples of application of the method of two functionals 

Example 1 

Our first example will be a Lame problem about the distribution of the 
stresses in a circular ring of an exterior radius b and an interior radius а 
under an internal pressure p (Fig. 9.6). 

p

a

b  
Fig. 9.6. The Lame problem 

Let 

• u be the radial displacement; 
• σr, σϕ be the respective radial and tangential stresses; 
• E, ν be the respective modulus of elasticity and the Poisson ratio of the 

ring’s material. 

We assume 

at
b

= ,     rx
b

=  

where r is the radial coordinate of a current point of the ring. 
With these designations, the solution of the Lame problem is given by 

the formulas [20] 

 
2

* 2

1(1 )
(1 )
pbtu x

E t x
+ ν⎡ ⎤= − ν +⎢ ⎥− ⎣ ⎦

,  
2

* 2 2

11
1

r pt
t x
⎛ ⎞σ = −⎜ ⎟− ⎝ ⎠

, 
2

* 2 2

11
1

pt
t x

ϕ ⎛ ⎞σ = +⎜ ⎟− ⎝ ⎠
. 

The L and D functionals for the Lame problem look like (up to the 
insignificant factor 2π) 
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L = 
2

2
2 1

2 ( )
2(1 )

tE u uu u x dx pbtu t
x

⎛ ⎞
′ ′+ ν + −⎜ ⎟− ν ⎝ ⎠

∫ , 

D= ( )
2 1 1

*( 2 ) ( )
2

r r r r r

t t

b xdx b x u dx
E

ϕ ϕ ϕ ϕ ′σ σ − νσ σ +σ σ − σ −σ − σ∫ ∫ . (3.17)

Here and further the stroke means the differentiation with respect to 
coordinate x.  

We divide the integration interval [t,1] into n equal parts and try to 
minimize the above functionals using the Ritz method with a piecewise 
linear approximation of the desirable functions, u(x), σr(x), σϕ(x), thus 
making up the sets of U kn and U (s/2)m. The U kn set will be an n-
dimensional set of kinematically admissible displacements, and the U (s/2)m 
set will be an m-dimensional set of statically semi-admissible stresses. In 
our case we assume m = n. 

With this method of construction of the coordinate functions, the Ritz 
approach actually becomes the finite element method where the maximum 
diameter of the finite element mesh, h, is the parameter 

(1 )t bh
n
−

= . 

Without dwelling on details of the calculation, we present the results for 
t = 0.5. Fig. 9.7 shows curves of stresses σϕ (upper curves) and σr (lower 
curves) multiplied by the factor (1 – t2)/(pt2) for n = 4.  

0.500 0.625 0.750 0.875
0

-2.0

2.0

4.0

x

s

 
Fig. 9.7. Tangential and radial stresses in the Lame problem 
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The solid line depicts the exact stresses *
ϕσ  and *

rσ , the dash line depicts 
stresses h

ϕσ  and r
hσ  calculated as 

2(1 )
r h
h h

uE u
b x
⎛ ⎞′σ = + ν⎜ ⎟− ν ⎝ ⎠

,       2(1 )
h

h h
uE u

b x
ϕ ⎛ ⎞′σ = + ν⎜ ⎟− ν ⎝ ⎠

, 

where uh is a displacement function calculated by minimizing the 
Lagrangian functional. 

If we calculate the h
ϕσ  and r

hσ  stresses by the minimization of the D  
functional and put these on the graphs as in Fig.. 9.7, then the respective 
curves  will nearly coincide with those depicting the exact stresses *

ϕσ  
and *

rσ . 
It is interesting to estimate the rate of convergence of the finite element 

method with respect to the stresses as h → 0. Fig. 9.8 shows a relation (in 
percents) between the relative error of the calculated stresses (in the metric 
of the energy space Hσ) and the number of the finite elements used, n.  

The error ratio e1/e2 (Fig. 9.8) varies linearly vs. n, hence the finite-
dimensional sets U kn and U (s/2)m are consistent by the order α = 1. 

The finite element analysis theory says that e1 = O(h) [19]. 
Consequently,  e2 = O(h2), which corresponds to the rate of convergence of 
displacements uh to u*  in average. 
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Fig. 9.8. Errors in the stresses for the Lame problem 

Here 

*
1

*

|| ||
100

|| ||
he σ

σ

−
= H

H

σ σ

σ
,        *

2
*

|| ||
100

|| ||
he σ

σ

−
= H

H

σ σ

σ
. (3.18) 
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Example 2 

Let us illustrate the techniques of the method of two functionals (as a 
variation of the finite element method) by considering a problem of finding 
the stresses and strains in a cone-shaped structural part one end of which is 
fixed and the other subjected to an axial load of 42000 N (Fig. 9.9). This 
problem is discussed in the book by Oden [10] as an example of 
application of the method of conjugate approximations. 

0 1 32

x42000

A
0
= 6

A
1
= 8

l = 90

E = 6.7 10
6

h = 30 h = 30 h = 30

A
2
= 10

A
3
= 12

.

 
Fig. 9.9. Oden’s problem 

The area of the part’s cross-section varies linearly between 6 cm2 on its 
left end and 12 cm2 on its right end. Also, the part is heated up by 
temperature ∆t = 20° evenly throughout its length. The linear thermal 
expansion factor is α = 7×10-6. All sizes in Fig. 9.9 are in centimeters. 

The solution of this problem by the finite element method using 
piecewise linear approximations of the displacements and the division of 
the part into three elements (Fig. 9.9) is presented in the book [16]. Here 
we repeat the calculated nodal values of the displacements from that book 
— Lagrangian displacements, 

0 0.0753hu = − cm,    1 0.0450hu = − cm,    2 0.0207hu = − cm,    3 0hu = − ,  

where uih is the displacement in node i obtained from the finite element 
solution of the problem. At the same time, the exact values of the nodal 
displacements are equal to 

0* 0.0780u = − cm,    1* 0.0460u = − cm,    2* 0.0210u = − cm,    3* 0u = − .  

Let us calculate the stress field through the procedure of minimization 
of the D  functional. We have 



530      9 THE RITZ METHOD 

2 2

0 0
( )

2 2

l l

h h
S Au S tS dx u A t A dx
EA E

⎛ ⎞ ⎛ ⎞σ′ ′= + + α∆ = + σ + α∆ σ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫D  (3.19) 

where S = σA is the longitudinal stress in the cross-section of the part, А is 
its cross-section’s area.   

ee-1

1

1

x

�
1
( )x

Y x
2
( ) 

Fig. 9.10. Approximant functions on e-th finite element 

We use a piecewise linear approximation of the stresses. On e-th finite 
element (Fig. 9.10) we have11 

σ(ξ) = σe-1Ψ1(ξ) + σeΨ2(ξ),            A(ξ) = 0 (2 / )
3
A e h+ + ξ , 

1, 1 , 2( ) ( ) ( )h e h e hu u u−ξ = Ψ ξ + Ψ ξ  

where ξ ∈ [0, h] ,    h = l/3 is the finite element’s length, 

Ψ1(ξ) = 1 – ξ/h ,          Ψ2(ξ) = ξ/h . 

Components ( ){ }e
ijg (i,j = 1,2) of the compliance matrix, Ge, for е-th 

finite element are determined by the formula 

( ) 0

0
( ) ( ) ( )

3

h
e

ij i j
Ag a d
E

= Ψ ξ Ψ ξ ξ ξ∫  (3.20) 

where 

a(ξ) = 2 + e + ξ/h . 

Substitutions and an integration gives 
                                                      

11 Never mistake the approximant functions of a particular finite element shown 
in Fig. 9.10 for the base functions of the Ritz method! As is known, because the 
finite element method is a special variation of the Ritz method, the base functions 
are constructed from element-by-element approximants for all finite elements 
meeting in one node (as it is said, on the star of the node ). The element-by-
element approximants used in the finite element method are often called shape 
functions in the literature on the subject. 

”“
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Ge = 0 9 4 5 2
5 2 11 436

e eA h
e eE

+ +⎡ ⎤
⎢ ⎥+ +⎣ ⎦

. (3.21) 

Components ( )e
pi∆  of the load vector Gpe for e-th finite element are 

determined as 

( ) 0
1, 1 , 2

0

( )( )
3

h
e i

pi e h e h i
A d au u t a d

d−

Ψ⎡ ⎤
∆ = Ψ + Ψ +α∆ Ψ ξ⎢ ⎥ξ⎣ ⎦

∫ , (3.22)

hence 

Gpe = 1,0 0

,

5 3 7 3 4 3
8 3 10 3 8 318 18

e h

e h

ue e eA A th
ue e e
−− − − − +⎡ ⎤⎡ ⎤ ⎡ ⎤

⋅ + α∆⎢ ⎥⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦⎣ ⎦
. (3.23)

The calculation yields the following. 

• for element 1: 

G1 = 0 13 7
7 1536

A h
E
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

Gp1 = 0,0 0 0

1,

8 10 0.0294 1.0813
11 15 0.0462 1.367118 18 18

h

h

uA A A
u

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

• for element 2 

G2 = 0 17 9
9 1936

A h
E
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

Gp2 = 1,0 0 0

2,

11 13 0.0420 0.8061
14 16 0.0588 0.902418 18 18

h

h

uA A A
u

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

• for element 3 

G3 = 0 21 11
11 2336

A h
E
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

Gp3 = 2,0 0 0

3,

14 16 0.0546 0.3444
17 19 0.0714 0.280518 18 18

h

h

uA A A
u

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
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Let us merge, as the common finite element approach dictates, the 
compliance matrices of the elements into a single compliance matrix of the 
whole system and the load vectors into a common one. We have 
                     0, 1, 2, 3,h h h hσ σ σ σ  

G = 0

13 7 0 0
7 32 9 0
0 9 40 1136
0 0 11 23

A h
E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,       Gp = 0

1.0818
0.5610
0.558018
0.2805

A
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

. (3.24) 

But for functional D , the boundary condition on the free end of the part, 

0, 7000hσ =  N/cm2 

is the principal boundary condition because the minimum of that 
functional is sought for among statically semi-admissible fields of stresses. 
If this boundary condition is taken into consideration beforehand, our final 
governing system of equations with respect to the nodal displacement 
values will be 

1,

2,

3,

32 9 0 201580
9 40 11 249340
0 11 23 125290

h

h

h

⎡ ⎤σ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ σ =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥σ⎣ ⎦ ⎣ ⎦⎣ ⎦

. (3.25) 

Solution of this system of equations gives 

1, 5141hσ = ,    2, 4118hσ = ,    3, 3478hσ = . 

Table 9.3 below present comparative results; values of the stresses  
calculated by Oden’s method of conjugate approximations [10] are 
borrowed from [16]. 

    Table 9.3 
No. of 
node 

Exact stress Stress by Oden’s 
method 

Stress by the 
method of two 

functionals 

Constant 
stress on the 

element 
 0 7000 6132 7000 

5829 
1 5250 5222 5141 

4489 
2 4200 3935 4118 

3 3500 3558 3478 
3685 
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Fig. 9.11 shows a visual picture of the obtained results. This is what we 
can see there:  

• curve 1 depicts the exact solution, σ*;  
• stair-step line 2 presents the constant stresses on the elements, σh;  
• polygonal line 3 shows the stresses calculated by Oden’s method of 

conjugate approximations;  
• piecewise linear curve 4 conforms to the stresses calculated by the 

method of two functionals. 

1

2

3

4

3500

0 1 2 3

4500

5500

6500

7000

 
Fig. 9.11. Stresses found for the Oden problem 

Example 3 

Let us consider another interesting example. The interest follows from the 
fact that the solution for it obtained by the method of two functionals is a 
closed analytical expression, so the error estimation can be done explicitly. 

P. Tong [21] proved the following simple but useful theorem for the 
one-dimensional analysis. Let  

• the base functions for the FEM-minimization of the Lagrangian 
functional be functions that satisfy the respective homogeneous 
differential equation on each of the finite elements; 

• each of the finite elements have two nodes and let every node have 
k degrees of freedom, so that 2k is the order of the problem’s differential 
equation (the Euler equations for the Lagrange functional). 
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Then, independently of the mesh (the number and the relative sizes of 
its finite elements) and of the form of the partial solution (that is, of the 
load), the finite element solution uh that describes the displacements in the 
nodes of the mesh will coincide with the exact solution in those points. In 
other words, uh interpolates u*: 

*( ) ( )
j j

h
i ij j

d u d ux x
dx dx

= ,         (j = 0, 1,…, k – 1), (3.26) 

where xi is the coordinate of any nodal point of the mesh. 
Now we consider a boundary-value problem, 

0 sin 0
2
xEAu q
l

π′′ + = ,     (0) ( ) 0u u l′= = ,   x∈ [0,l] , (3.27) 

that modeles the tension of a cantilever bar of a constant cross-section 
under a longitudinal load 

0( ) sin
2
xq x q
l

π
= . 

The exact solution of the problem is 
2

0
*

2 sin
2

q l xu
EA l

π⎛ ⎞= ⎜ ⎟π⎝ ⎠
, 

and the longitudinal force, N*, is 

*
* 0

2 cos
2

du l xN EA q
dx l

π
= =

π
. 

We divide the integration interval [0,l] into n equal parts so that  

h = l/n 

and number the nodes from 0 to n by associating i-th node with 
coordinate xi , 

xi = ih   (i = 0,…, n) . 

Next we use a piecewise linear approximation of the displacements. The 
Tong theorem says that on i-th finite element, i.e. at x ∈ [xi-1, xi], 

2
0 2 sin( 1) 1 sinh

q l x xu i i i i
EA h h

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − α + − + α⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥π⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
, (3.28)

where we denote 
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2 2
h

n l
π π

α = = . 

Using (3.28) to calculate the constant value of the longitudinal force on 
i-th finite element, we have 

0
4 (2 1)sin cos

2 2
h

h
du l iN EA q
dx

α − α
= =

πα
. (3.29) 

Now we use the piecewise linear approximation of the longitudinal 
stress in the bar by assuming 

0 0 1 1 1 1...h n nN X X X − −= Ψ + Ψ + + Ψ . 

The Xn coefficient at Ψn is assumed to be zero because of the boundary 
condition ( ) 0u l′ =  on the right end of the bar, which is equivalent to 
N(l) = 0. The rest of the coefficients at the piecewise linear 
approximants Ψi (i = 0, 1,…, n) will be calculated by minimizing the 
functional D , 

2

0 2

l

h
N N u dx
EA

⎛ ⎞
′= +⎜ ⎟

⎝ ⎠
∫D . (3.30) 

The result is the following system of simultaneous linear algebraic 
equations with a three-diagonal matrix, which determines the 
Xi (i = 0, 1,…, n – 1) coefficients — actual values of the desirable function 

hN  in the nodes of the finite element mesh: 

 

0

1

2
0

2

1

2 1 0.5
1 4 1 cos

2 sin1 4 1 cos
6

1 4 1 cos( 2)
1 4 cos( 1)

i

n

n

X
X

qh lX i
EA EA

X n
X n

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥α⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎛ ⎞⋅ = α α⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥π⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

− α⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− α⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

The functions Ψi (i = 0, 1,…, n – 1) themselves are shown in Fig. 9.12 
for the convenience of visual perception.  
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Fig. 9.12. Piecewise linear base functions Ψi 

A direct substitution shows that the solution of the above system of 
equations is 

0
2 3sin cos

(2 cos )i
lX q iα

= α
π α + α

,        (i = 0, 1,…, n – 1) . 

Thus, we have the following on i-th finite element: 

0
2 3sin cos( 1) 1 cos

(2 cos )h
l x xN q i i i i

h h
⎡ ⎤α ⎛ ⎞ ⎛ ⎞= − + − α + − + α⎜ ⎟ ⎜ ⎟⎢ ⎥π α + α ⎝ ⎠ ⎝ ⎠⎣ ⎦

. (3.31) 

Note that hN  coincides with the linear interpolant of the exact solution, 
N*, multiplied by coefficient k(α), 

k(α) = 3sin
(2 cos )

α
α + α

 . 

If we expand this coefficient as a function of α into a Taylor series, we 
will have a pointwise (not even an average) error of the stresses in the 
nodes of the finite element mesh. The result is 

2*

*( 0,1,..., )

| |max ( )
| |

h

i n

N N O
N=

−
= α . 

As we can see, in this problem the pointwise error of the stresses hN  
calculated by the method of two functionals in the nodes of the finite 
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element mesh decreases at the rate of the order of h2. At the same time, the 
root-mean-square error by stresses Nh is estimated as (intermediate 
calculations are omitted) 

2

2 3
2 0

* 2

2|| ||L
q lN =
π

,        
2

2 3
2 0

* 2 2

2 2(1 cos )|| || 1h L
q lN N − α⎡ ⎤− = −⎢ ⎥π α⎣ ⎦

. 

We can derive a simple asymptotic estimate of the error: 

2

2

*

*

|| ||
( )

|| ||
h L

L

N N
O

N
−

= α , 

which shows the convergence of Nh
  to the exact solution N* by metric L2 

at the rate of the order of h. 
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10 VARIATIONAL PRINCIPLES IN SPECTRAL 
PROBLEMS  

 It is the hardest thing for a physicist, to have a correct 
proportion of mathematical strictness. Or, it would be more 
correct to say this: he needs to know how to determine that 
proportion 
      Mandelshtam LI (1972) Lectures on the oscillation 
theory (in Russian).  Nauka, Moscow  

10.1 Basic concepts. Terminology 

Up to this point, we have been dealing with static problems solely. New 
circumstances in the formulations of dynamical problems include the 
following. 

First, given external force actions X , p  and external kinematical 
actions u  are assumed to vary with time according to a known law, that is,  

( )t=X X ,       ( )t=p p ,      ( )t=u u . 

Second, the dynamical problems have to deal with inertia forces which 
can be represented as follows according to the second Newton’s law: 

( )t− uρ , 

where the usual notation of two dots above the letter means the 
differentiation with respect to time t, and ρ denotes an algebraic operator 
that describes inertial properties of the mechanical system (a distribution 
of the system’s inertial characteristics over the Ω area). 

In the case when the mechanical system in question does not contain 
any additional weights except for the construction’s weight itself, the ρ 
operator is an algebraic operator proportional to the scalar function, ρ, 
where ρ is the density of the material of the system as a function of the 
points of area Ω. The ρ operator is assumed to be a symmetric positive 
definite operator. 
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As a result, the problem of equilibrium turns into a problem concerning 
the motion of the mechanical system because all stress and strain fields we 
want to know will, generally speaking, vary with time. 

Of all the governing set of equations of problem (1.2.2) and (1.2.4), only 
the equations of equilibrium (1.2.2-a) will be modified because the 
dynamics implies the presence of inertia forces: 

ATσ + Ku + uρ = X . (1.1) 

Sometimes the equations of motion (1.1) are called equations of 
dynamic equilibrium. 

We will not deal with integration of the equations of motion in this 
section; instead, we will consider a particular but practically and 
theoretically important issue. With that in mind, we will assume that 

• there is no external load X  distributed over the area of integration; 
• both static and kinematic boundary conditions are homogeneous. 

Having adopted these limitations, we arrive at a problem of free (natural) 
oscillations of the mechanical system. The free oscillations imply that the 
time history of the motion is harmonic and all stress and strain components 
to be found can be represented as 

0 sin( )t= ω +µσ σ ,    0 sin( )t= ω + µε ε ,    0 sin( )t= ω + µu u , (1.2) 

where the zero subscript denotes amplitude values of the respective 
physical parameters.  

As a result, the problem of free oscillations of a mechanical system is 
defined by the following set of equations: 

ATσ0 + Ku0 = ω2ρu0  – equations of dynamic equilibrium,  (1.3-a) 

 Au0 = ε0                    – geometric equations, (1.3-b) 

 σ0 = Cε0 или ε0 = C –1σ0        – physical equations. (1.3-c) 

The set of governing equations for problem (1.3) must be supplemented 
with boundary conditions that look like the following in the operator form: 

             EpHσσ0  = 0      – static boundary conditions,  (1.4-a) 

          EuHuu0  = 0      – kinematic boundary conditions, (1.4-b) 

and are specified on boundary Г of area Ω. 
The scalar parameter, ω, for which a nonzero solution of problem 

(1.3) – (1.4) exists, is called a natural oscillation frequency of the 
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mechanical system. It is also referred to as an eigenfrequency; both terms 
are equivalent and refer to the free oscillations at a frequency immanent in 
the system. All natural frequencies together make up a frequency spectrum 
of the mechanical system.  

Parameter µ which participates as an additional term in the argument of 
sine in (1.2) is called a phase shift or an initial phase of the oscillatory 
motion. Note that the amplitude values of the stress and strain components 
in the system that performs free oscillations can be determined only up to a 
scalar multiplier. 

A nonzero displacement, u0, which conforms to the frequency of natural 
oscillations, ω, is a vector function of spatial coordinates of the system and 
determines a natural oscillation mode (an eigenvector) of the system. 
Different natural frequencies conform to different natural modes of 
oscillation. 

Although the tradition understands the oscillation mode as a 
displacement function, u0, of the mechanical system, we can also use this 
term in reference to the respective stresses, σ0 = CAu0, or the respective 
strains, ε0 = Au0. 

If we switch from the general formulation (1.3) – (1.4) to the statement 
of the problem in terms of displacements by using the Lame operator, we 
will have this: 

Lu0 = ω2ρu0     ∈Ω , (1.5) 

EpHσCAu0  = 0 ,       EuHuu0  = 0      ∈Г. (1.6) 

where the Lame operator is defined as 

L = ATCA + K . (1.7) 

Another term will be useful for the presentment: an eigenload, X0. A 
load X0 will be called an eigenload that corresponds to eigenfrequency ω if 
the static problem, 

Lu0 = X0     ∈Ω , 

Ep HσCAu0  = 0 ,       Eu Huu0  = 0      ∈Г, 

produces a solution in terms of displacements, u0, which coincides (up to a 
scalar multiplier) with the respective natural frequency mode of the 
system.  

The square of the system’s natural frequency, ω2, is also called an 
eigenvalue of operator L which corresponds to the inertia operator ρ; it is 
denoted usually by λ = ω2.  
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The problem that requires us to calculate the eigenfrequencies and 
natural modes of oscillation of a mechanical system is called a spectral 
problem1. 

10.2 The spectral problem as a variational problem 

10.2.1 The spectrum of a mechanical system with a finite 
number of degrees of freedom 

Let us start our consideration from a simplest problem formulation where a 
mechanical system of interest will possess a finite number of degrees of 
freedom (DOFs). In this case we will deal only with algebraic operators 
described by certain matrices rather than differential operators and 
boundary conditions. 

Let the position of a mechanical system be fully defined by 
n generalized coordinates q1, q2,…, qn which make up a vector of 
generalized coordinates, q = |[q1,q2,…, qn]|T. The state of the system in the 
course of its motion is also defined by a vector of generalized velocities, 

1| [ ,..., ] |nq q=q T . (2.1) 

Suppose the system is in equilibrium in a fixed state of interest; it means 
the velocities of all its material particles are zeros, = 0q . Now we force 
the system somehow to leave its state of equilibrium and suppose that this 
forced deviation is limited to a small vicinity of the system’s equilibrium 
state. By releasing the deviated system, we let it return to the initial 
equilibrium by itself. As a result, the mechanical system starts moving, and 
its motion will be a linear combination of n harmonic oscillations. 

The physical characterisitcs of the system are fully defined by one 
function E which is a potential energy of the system. To simplify the 
reasoning without limiting its generality, we can assume that all 
generalized coordinates are equal to zero in the equilibrium state of the 
system around which the free oscillatory motion occurs; that is, q = 0. If it 
is not so, then we can always switch to a new set of generalized 
coordinates by subtracting the values of the old generalized coordinates in 
the equilibrium state of the system from those coordinates, which validates 
our assumption. Note that this shift of the system’s generalized coordinates 
                                                      

1 As noted by R. Bellman [1], the words “spectrum” and “spectral” were 
introduced in mathematical studies by D. Hilbert. 
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does not affect the generalized velocities because time derivatives of the 
constants are equal to zero. 

With the above-said small deviations from the state of equilibrium, the 
principal term of the expansion of potential energy E = E(q) of the 
deviated state into a power series will be a homogeneous quadratic form of 
the generalized coordinates. To put it another way, 

E = E(q) = 
1 1

1
2

n n
ij

i j
i j

r q q
= =
∑∑ + …, (2.2) 

where coefficients r ij are defined as 

r ij = 
2

(0,...,0)
i jq q
∂
∂ ∂

E . (2.3) 

The ellipsis in (2.2) denotes terms containing the generalized coordinates 
raised to powers higher than second, so our assumption of smallness of the 
initial deviation makes those values effective zeros. 

The representation of (2.2) can be easily validated using formal rules for 
expanding a function of n coordinates into a Taylor series. To see this, 

E(q) = (0,...,0)E + 
2

1 1 1

1(0,...,0) (0,...,0)
2

n n n

i i j
i i ji i j

q q q
q q q= = =

∂ ∂
+ +

∂ ∂ ∂∑ ∑∑E E …. (2.4)

But, as we have agreed, the zero position of the system conforms to its 
state of equilibrium, and the potential energy has its stationary value in this 
state. It means 

(0,...,0) 0
iq

∂
=

∂
E    (i = 1,…, n) . 

Assuming (0,...,0)E = 0, which is nothing more than a relative reference 
level for the potential energy, we obtain (2.2), (2.3).   

Further we will assume that the state of equilibrium of the system, q = 0, 
is a stable equilibrium. According to the known Lagrange–Dirichlet 
theorem [15], this means the quadratic form (2.2), along with the matrix 
r = |[r ij]| composed of the coefficients of the same quadratic form, is 
positive definite2. It means 

                                                      
2  Actually, the Lagrange–Dirichlet theorem says just that the conditions of 

minimum of the potential energy are sufficient conditions for the equilibrium to be 
stable. The theorem says nothing about the necessary conditions of stability. 
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 E(q) > 0 for  q ≠ 0 . (2.5) 

In addition to potential energy E, the motion of the system is described 
also by its kinetic energy, T, which is, as known from theoretical 
mechanics [14], a homogeneous positive definite quadratic form of the 
generalized velocities. To put it another way, 

T = T ( )q = 
1 1

1
2

n n
ij

i j
i j

m q q
= =
∑∑ , (2.6) 

where matrix m = |[m ij]| is called a matrix of inertial characteristics of the 
system, or, shorter, a mass matrix. The mass matrix m is also supposed to 
be symmetric and positive definite which ensures the positiveness of the 
system’s kinetic energy at any nonzero velocities of its material particles. 

The matrix representations of the potential energy, E, and of the kinetic 
energy, T, look like 

E = 1
2

q rqT ,      T = 1
2

q mqT . (2.7) 

It is quite clear that the equations of motion of the above system in the 
absence of any exterior perturbations look like 

+ = 0mq rq . (2.8) 

The d’Alembert principle lets us treat this equation, exactly as the earlier 
equation (1.1), as an equation of mechanical equilibrium of a mechanical 
system that has a finite number of DOFs and where only inertia forces 
−mq  are taken for an external force action.  

Note that the matrix differential equation of motion (2.8) can be easily 
derived in a formal way from (2.7) by using the known second-kind 
Lagrange equations which say3  

                                                                                                                          
Therefore the assumption of the quadratic form (1.9) being positive definite is a 
bit stronger condition. See [15] for more details on this.  

3 We do not have to use the second-kind Lagrange equations to derive the 
matrix equation (2.8); instead, we could use the energy conservation law which 
says d(E+T)/dt = 0. Substituting in the expressions of the potential and kinetic 
energies from (2.7) and seeing that matrices r and m are symmetric, we transform 
this condition into ( ) 0+ =q mq rqT . The velocity vector, q , must not be 
identical to zero, hence equation (2.8). 
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d d d
dt d d

+ = 0
q q
T E . 

The solution of the set of differential equations (2.8) is sought for in a 
form similar to (1.2): 

q = z sin(ωt + µ)  (2.9) 

where z = |[z1,…, zn]|T is a vector of displacement amplitudes which 
corresponds to the generalized coordinates  qi (i = 1,…, n). 

Putting (2.9) into (2.8) and canceling out the sinusoid multiplier gives a 
homogeneous linear algebraic set of equations, 

(r – λm)z = 0 , (2.10) 

where we want to be consistent with the traditional notation of 
mathematics and denote by λ the square of the oscillation frequency, 

λ = ω2 . (2.11) 

Now we will formulate briefly some definitions and propositions of the 
theory of symmetric matrices which we are going to use and which we 
deem known to the reader. 

A generalized eigenvalue/eigenvector  problem for a couple of matrices 
r and m is a problem that requires to find nonzero vectors z and their 
respective numbers λ which satisfy the homogeneous equation (2.10). If a 
pair consisting of a scalar λ and a vector z satisfies that equation then λ is 
called an eigenvalue (or a characteristic value) of the r matrix with respect 
to m matrix, and vector z which corresponds to the eigevnalue is called an 
eigenvector4. 

It is known that:  

a) There are at most n eigenvalues for any symmetric matrices r and m;  
b) If matrix m is not degenerate, then there exist precisely n eigenvalues 

(taking into account their multiplicity) and precisely n linearly 
independent eigenvectors; 

c) If at least one of the matrices r or m is positive definite, then all 
eigenvalues λ take real values; 

d) If both r and m are positive definite, the eigenvalues are strictly 
positive; 

e) An eigenvalue of multiplicity k corresponds to exactly k linearly 
independent vectors;  

                                                      
4 We would like to emphasize that the definition above treats the eigenvalue 

and the characteristic value terms as mutually synonymous. 
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f) A positive definite matrix can be decomposed into a product of two 
mutually transposed square matrices of the same order. Note that such a 
decomposition is not unique, which is demonstrated by the following 
simple example: 

122 0
2 1 2

1 31 2 3022 2

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 11 3
2 2 22

3 31 3
2 222

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥− ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 . 

Further we will confine ourselves to free oscillations only of mechanical 
systems which have positive definite matrices r and m. As we mentioned 
earlier, the positive definiteness of those matrices takes place in our 
problems because the kinetic energy of the system is positive by definition 
and the potential energy is positive, too, because we consider oscillations 
of the system in the vicinity of its state of equilibrium which is assumed to 
be stable5. It is useful to index all eigenvalues by putting them in the 
ascending order: 

0 < λ1 ≤ λ2 ≤ …≤ λn . (2.12) 

The same indexing can be used with their respective eigenvectors, so i-th 
eigenvalue λi and i-th eigenvector zi for (2.10) will relate as follows: 

(r – λim)zi = 0    (i = 1,…, n). (2.13) 

Note that the inequalities in the sequence of (2.12) are not necessarily 
strict (except for 0 < λ1 which is strict). But then admitting the presence of 
equalities in (2.12) means that the full set of n eigenvalues can include 
equal eigenvalues under different indices. If a value λ is repeated k times 
in the set (2.12), then we are dealing with a k-fold eigenvalue (or an 
eigenvalue of multiplicity k). 

One of the most important theorems in the theory of real-value 
symmetric matrices, which we will call a theorem of multiplicity, was 
formulated above as Proposition (e).  

                                                      
5  A lot of books can be used to refresh the knowledge of the above propositions 

and statements from the theory of symmetric matrices (or, at worst, to get a 
primary acquaintance with them). We recommend any of the books [1], [25], [8].  
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Metric ideas in the spectral eigenvalue probem 

Obviously, any eigenvector can be multiplied by any number without 
violating the inequality (2.13). We use this freedom to make the length of 
each eigenvector equal to 1 (the length is defined in the Euclidean metric) 

|| zi ||2 = (zi, zi) = i iz zT = 1    (i = 1,…, n). (2.14) 

The requirement of (2.14) is essentially a method to choose a 
normalization of the eigenvectors. Any other normalization could be used, 
too, as long as there is a meaningful concept of the vector’s length.  

Let λi and λj be different eigenvalues, i.e λi ≠ λj. Then it is easy to prove 
that the following relationships of generalized orthogonality between the 
eigenvectors hold true: 

0i j =z mzT ,         0i j =z rzT    (i ≠ j). (2.15) 

The first of the relationships in (2.15) is also referred to as an 
orthogonality of the vectors with the mass matrix m. The second 
relationship in (2.15) is pronounced as an orthogonality with the stiffness 
matrix r.   

And indeed, the symmetry of matrix r gives 

i j j i=z rz z rzT T . 

By replacing jrz  with j jλ mz  and irz  with i iλ mz  we turn this equality 
into 

j i j i j iλ = λz mz z mzT T , (2.16) 

which gives the following seeing that m is symmetric: 

( ) 0j i i jλ − λ =z mzT , 

hence the first of the generalized orthogonality relationships in (2.15) at 
λi ≠ λj. The second relationship follows from the first one if we replace 

jmz  with /j jλrz  and take into account that λj ≠ 0.  
Note that the generalized orthogonality relationships (2.15) can be 

interpreted mechanically as a manifestation of the work reciprocity 
theorem by Betty. To see this, think of the displacement vector zi as a 
solution of a quasi-static problem in which the mechanical system is 
subjected to statically applied inertia forces 2

i iω mz  because 2
i i i= ωrz mz . 

But then two different modes of oscillation, zi and zj, each being caused by 
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its particular set of forces, can be treated as two states of the mechanical 
system: state i state j, respectively. The Betty theorem gives 

2 2( ) ( )i j j j i iω = ωz mz z mzT T , 

which is just another form of the same relation (2.16), hence (2.15). 
The generalized orthogonality relationships have been derived with the 

limitation λi ≠ λj. But if an eigenvalue, say λi, is k-fold then the above-
stated theorem of multiplicity says this eigenvalue has exactly k linearly 
independent eigenvectors. Let 

λi = λi + 1 = … = λ i + k – 1,     

and let all eigenvectors zi, zi + 1,…, zi + k – 1, which we consider to be 
normalized to the length one as in (2.14), be linearly independent. A 
straightforward check shows that any linear combination of the vectors 
which is also a unit-length vector can be treated as a normalized 
eigenvector that conforms to eigenvalue λi. Of all possible linear 
combinations, we choose only vectors orthogonal with the mass matrix as 
candidates for our further consideration6. This makes it possible for us to 
extend the first of the generalized orthogonality relationships in (2.15) onto 
all eigenvectors independently of the presence or absence of multiple 
eigenvalues in the spectrum. The second of the orthogonality relationships 
in (2.15) will follow naturally from here.  

To summarize, we would like to note that the orthogonality of the 
eigenvectors, both with the mass matrix and with the stiffness matrix, 
follows automatically for the different eigenvalues while for the multiple 
eigenvalues it can be proved by choosing a special system of linearly 
independent eigenvectors. 

Having chosen such a system of linearly independent eigenvectors, we 
can write the following for any two unit-length eigenvectors instead 
of (2.15): 

i j i ijM= δz mzT ,         i j i ijR= δz rzT , (2.17) 

where δij is Kronecker’s delta,  Mi = i iz mzT , Ri = i iz rzT . Values Mi and Ri 
can be treated as the squares of the norms of eigenvector zi in the metrics 
generated by the respective matrices m and r.  

                                                      
6 To build an orthogonal system of vectors out of any given linearly 

independent set of vectors, one can use a well-known orthogonalization process by 
Gram–Schmidt [25]. 



10.2 The spectral problem as a variational problem      549 

The original system of ordinary differential equations (2.8) contains all 
the unknown functions qi (i = 1,…, n) in each of its equations in the 
general case, therefore it is not very convenient to analyze. There is a 
simple method of transforming this system in such way that each of the 
equations will contain only one unknown function. 

We introduce a matrix V composed of the eigenvectors in such way that 
first column of the matrix contains first eigenvector, second column 
contains second eigenvector etc. To put it another way, 

V = |[z1,…, zn]| = 

11 12 1

21 22 2

1 2

n

n

n n nn

z z z
z z z

z z z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.18) 

where zij is i-th component of j-th eigenvector. Using this matrix as a 
matrix of linear transformation of the generalized coordinates helps us to 
switch to a new set of variables, y = |[y1,…, yn]|T, by defining 

q = Vy . (2.19) 

Putting (2.19) in the main differential equation (2.8) and then multiplying 
the result by matrix VT on the left makes the following out of that 
equation: 

+ =M R 0y y  (2.20) 

where eigenvectors zi follow the conditions of generalized orthogonality as 
in (2.17) and thus matrices M and R are diagonal matrices7 

VТrV = R = diag|[R1,…,Rn]| ,         VТmV = M = diag|[M1,…,Mn]| , (2.21) 

and the positive definiteness of matrices r and m make their the diagonal 
elements strictly positive.  

As matrices R and M are diagonal, the set of equations (2.20) 
decomposes into n independent equations so that 

                                                      
7 The nomenclature of the theory of quadratic forms which is closely related to 

the theory of symmetric matrices includes a beautiful proposition (theorem) about 
the possibility to reduce two quadratic forms simultaneously (at least one has to be 
positive definite) to a diagonal form using the same linear transformation of the 
coordinates [25]. Relationships (2.21) known in the theory as congruence 
transformations are corollaries to that proposition. 
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2

2 0i
i i i
d yM R y
dt

+ =    (i = 1,…, n) . 

The general solution of these equations can be written as 

sin( )i i i iy A t= ω +µ  (2.22) 

where:  

• Ai is an amplitude value of the new generalized displacement, yi; 
• ωi is a circular frequency of the system’s free oscillations in i-th mode; 
• µi is an initial phase shift. 

Obviously, (2.22) is a solution of the ordinary differential equation derived 
above if 

i
i

i

R
Mω = . (2.23) 

Values yi are different from the original generalized coordinates qi , and 
they are usually called principal or normal coordinates. Parameters 
R1, R2,…, Rn and M1, M2,…, Mn are called effective stiffnesses and effective 
masses, respectively (or reduced masses/stiffnesses, meaning that they are 
reduced to the principal coordinates). As we have said before, the effective 
stiffnesses and effective masses have the geometrical meaning of squared 
lengths of the eigenvectors in the respective metrics generated by matrices 
r and m. It follows from here and from (2.23) that the free-oscillation 
frequency, ωi, of i-th mode is the ratio of the norms of eigenvector zi in 
those two metrics. 

What we have said above means knowing the eigenvectors is a much 
better knowledge that knowing the eigenvalues. Indeed, the eigenvectors 
determine the transformation matrix V unambiguously, and the latter 
permits to calculate the effective stiffnesses and masses. Formula (2.23) 
gives us a tool to calculate the eigenvalues. 

Returning to the original generalized coordinates qi, assuming V = |[zij]| 
and using (2.19) gives 

1

sin( )
n

i ij j j j
j

q z A t
=

= ω + µ∑ . 

This result means the motion of the system with respect to each 
generalized coordinate is a superposition of n harmonic oscillations. 

All these things are well-known from the simplest theory of free linear 
harmonic oscillations of finite-dimensional systems, and they are not 
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directly related to the variational definition of the system’s spectral 
properties. That’s why the preceding text of this section should be 
understood as a reminder and an introduction to the further presentment 
which makes the reader familiar with the necessary nomenclature and the 
notation. 

10.2.2 A variational description of eigenvalues 

Assuming that we know the natural (free) oscillation frequencies and 
modes of a mechanical system that has n degrees of freedom, we have a 
chance to track the changes in basic integral characteristics of the system 
as it moves. The integral characteristics which we want to know and track 
are the potential energy and the kinetic energy. 

Based on (2.7) and (2.9), we calculate these values at any arbitrary 
moment of time: 

E = 1
2

q rqT = 21 sin ( )
2

tω +µz rzT  ,      T = 1
2

q mqT =
2

2cos ( )
2

tω
ω +µz mzT . 

The above expressions and the equality rz = ω2mz produce immediately 
the fact that the total energy of the system at any moment of time is the 
same and equal to 

E + T = 1
2

z rzT , (2.24) 

which is quite expectable from the standpoint of the energy conservation 
law. However, each separate term in (2.24) varies with time. 

From this point on, we will use the designations of E and T to denote 
amplitude values of the respective energies, so we can write 

E = 1
2

z rzT ,          T =
2

2
ω z mzT .  (2.25) 

The above equalities should be understood as follows. If a mechanical 
system carries out a free oscillatory movement at a frequency ω and 
amplitude values of the generalized coordinates z, then its amplitude 
values of the potential energy and the kinetic energy in the course of that 
oscillation can be calculated by (2.25).   

Of course, these values must be equal for the true displacement vectors z 
which satisfy the principal differential equation (2.8). Hence immediately 
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2ω =
z rz
z mz

T

T . (2.26) 

Assuming the z vector in the right-hand part of (2.26) equal to one of the 
eigenvectors, say zi, we can clearly see that the ratio above is equal to the 
respective eigenvalue λi, that is, 

i i
i

i i

λ =
z rz
z mz

T

T . (2.27) 

However, we will be more interested with the two quadratic forms in the 
numerator and in the denominator of (2.26) as functionals of the 
displacement vector z. The ratio of the two quadratic forms can be also 
treated as a functional of vector z.  

This functional is called a Rayleigh functional, r, or sometimes a 
Rayleigh ratio8.  Thus, 

=
T

Tr z rz
z mz

. (2.28) 

Actually, we are dealing with three methods of introducing a metric in 
the space of the system’s generalized displacements (this is a finite-
dimensional space in our case). We will work with three spaces the 
properties of which will depend on what metric is introduced: 

• the basic (Euclidean) space n with the scalar product (x, y) = xTy ; 
• the E-space with the scalar product (x, y)E = xTr y ; 
• the T-пространство with the scalar product (x, y)T = xTm y . 

We have mentioned before that effective stiffnesses Ri and effective 
masses Mi have the geometrical meaning of the squares of the respective 
E-length and Т-length of i-th eigenvector zi which has the Euclidean length 
one. To put it another way, 

2|| ||i iR = Ez ,         2|| ||i iM = Tz ,        at      rzi = λizi ,   || zi || = 1. (2.29) 

In the same terms, the Rayleigh functional is a ratio of the squared 
lengths of the same vector in two metrics, namely, 

                                                      
8 An excuse: we use the lowercase letter r to denote the Rayleigh functional in 

order to avoid the confusion. The matter is that the capital letter R is already used 
as a symbol for the Reisner functional. 
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2

2

( , ) || ||( )
( , ) || ||

= =E E

T T

r z z zz
z z z

. (2.30) 

Obviously, the Rayleigh ratio does not change when vector z is 
multiplied by any scalar k, i.e. r(kz) = r(z) for any k ≠ 0. This means it 
suffices to consider the functional only with vectors z the T-length of 
which is equal to one, ||z||T = 1. The locus of all vectors of this kind is an n-
dimensional sphere of the unit radius in the T-space with its center at the 
coordinate origin. 

A remark on expansion of an arbitrary vector over a basis of 
eigenvectors 

Let us take an arbitrary vector x of the T-length one in the T-space, which 
does not have to be any eigenvector of the problem in question. Let 
{x1, x2,…, xn} be a set of all eigenvectors of the T-length one.  

We expand this vector over the basis of x1, x2,…, xn, that is, we assume 

x = α1x1 + α2x2 +…+ αnxn , (2.31) 

and because || x ||T = 1 these coefficients satisfy the condition 
2 2 2
1 2 ... 1nα + α + + α = . (2.32) 

Coefficients αi are calculated by a standard technique: making scalar 
products of the equality (2.31) with all the basis vectors in succession. 
Taking into account the T-orthogonality of those vectors gives 

αi = (x,xi)T     (i = 1,…, n). 

Thus, the expansion (2.31) can be written as 

x = (x,x1)T x1 + (x,x2)T x2 +…+ (x,xn)T xn . (2.33) 

In exactly the same way, we can take any vector y of the unit E-length 
in the E-space, such that || y ||E = 1, and expand this vector over the set of 
eigenvectors {y1, y2,…, yn}. Each of eigenvectors yi is considered to be a 
unit E-length vector, i.e. || yi ||E = 1. Then the expansion of vector y over the 
basis of the eigenvectors will be 

y = (y, y1)E y1 + (y, y2)E y2 +…+ (y, yn)E yn . (2.34) 



554      10 VARIATIONAL PRINCIPLES IN SPECTRAL PROBLEMS 

A recursive variational definition of eigenvalues and 
eigenvectors 

The following proposition, usually attributed to Rayleigh only, though we 
will refer to it as a Rayleigh–Weber principle9, holds: 

Functional r(z) gets its minimum from its first eigenvector z1, and this 
minimum is equal to the least eigenvalue λ1 of matrix r with respect to 
matrix m, that is, 

1 1min ( ) ( )= = λz z r r . 

The Rayleigh–Weber principle can be easily validated for the first 
eigenvalue by the following consideration. Let us find all vectors z of the 
T-length one such that the Rayleigh functional r(z) = zTr z takes a 
stationary value on them. As the varied vector z  must satisfy the additional 
condition zTm z = 1, what we are dealing with is a conditional variational 
problem. We use a standard approach of reducing a conditional variational 
problem to an unconditional one by introducing a modified Lagrangian 
functional 

p(z) = zTr z + µ(1 – zTm z) 

with the Lagrangian multiplier µ. The necessary conditions of stationarity 
for this functional produce these equations: 

rz – µm z = 0,       zTm z = 1. 

But the first of the equations has a nonzero solution only if vector z is one 
of the eigenvectors and the Lagrangian multiplier µ is the respective 
eigenvalue.  

Thus, all stationary values of the Rayleigh functional are taken on 
eigenvectors, and according to (2.27), 

( ) i i
i i

i i

= = λ
T

Tr z rzz
z mz

     (i = 1,…, n). (2.35) 

The numbering of the eigenvalues satisfies the order defined in (2.12), 
hence the least of the stationary values of r(z) is 1 1min ( ) ( )= = λz z r r .  

                                                      
9 Before Rayleigh, this variational principle for the eigenvalues was known to 

Weber whose paper [28] presents a recursive calculation of the eigenvalues in 
application to an oscillating membrane. This principle was then employed 
extensively by Rayleigh in the determination of various physical properties of 
oscillating mechanical systems [21].    
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The Rayleigh–Weber principle formulated as above concerns only the 
first (minor) eigenvalue. However, the Rayleigh functional permits to 
develop a generalized variational description of the eigenvalues without 
confining ourselves to the first one only. 

Now let us represent the general Rayleigh–Weber variational principle 
as the following statement: 

Functional r(z) gets its minimum from i-th eigenvector zi, and this minimum 
is equal to i-th eigenvalue λi of matrix r with respect to matrix m only when 
the minimum is sought for among vectors z such that they are T-orthogonal 
to the first (i – 1) eigenvectors z1,…, zi-1,  i.e. 

min ( ) ( )i i= = λr rz z  
under the conditions zTmz1 = 0,…, zTmz i-1 = 0. 

Indeed, we know that all stationary values of the Rayleigh functional are 
taken on eigenvectors. But we have to exclude first (i – 1) eigenvectors 
from our consideration because any one of those (say, zj such that 1 ≤ j ≤ 
i – 1) violates the requirement zTm zj = 0 at z = zj. As for the other vectors 
admitted to the comparison, it is vector zi that gives the minimum to r(z) 
according to (2.35), which proves the proposition.  

The Rayleigh–Weber variational principle can be treated as an 
essentially new (variational) definition of the eigenvalues and the 
eigenvectors. As we have shown above, Rayleigh’s variational definition is 
recursive: first eigenvalue and first eigenvector are calculated 
independently, then these data are used to find second eigenvalue and its 
respective eigenvector, and so on. 

These considerations allow us to treat the general Rayleigh–Weber 
principle as a variational and recursive technique for finding the 
eigenvalues and eigenvectors. 

A remark on the effect of constraints on first eigenvalue 

The variational definition of the eigenvalues gives us a powerful tool for 
estimating the effect of constraints on the natural frequencies of a 
mechanical system. 

If we take the variational definition of the eigenvalues instead of the 
original one, we will make it much easier to prove the well-known Routh 
theorem that states an increase (more exactly, no decrease) in the natural 
frequencies of a mechanical system when some new constraints are 
imposed on the system. 

Let us first consider the Routh theorem for one additionally imposed 
constraint. The formulation of it follows. Let a mechanical system S have n 
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degrees of freedom, and let its spectrum of the squares of its natural 
frequencies be 

0 < λ1 ≤ λ2 ≤ …≤ λn . 

We make a new system out of it by incorporating an additional constraint; 
the new system will be denoted by S . We suppose the system remains 
linear after the new constraint is imposed; this means the constraint is 
actually a requirement that all the generalized coordinates of the system 
should satisfy a linear homogeneous equation of the type 

a1z1 + a2z2 + … + anzn = 0 (2.36) 

with at least some of its coefficients ai not equal to zero; this requirement 
is equivalent to 

 2 2 2
1 2 ... 0na a a+ + + ≠ . 

Equation (2.36) is usually called a constraint equation10.  
Obviously, incorporating the constraint (2.36) reduces the number of 

independent generalized coordinates by one. Therefore the system with the 
new constraint will actually have (n – 1) DOFs, and its frequency spectrum 
will be 

0 < 1λ ≤ 2λ  ≤ …≤ 1n−λ  . 

The theorem by Routh states that the following mutual estimate of the 
frequencies of the two systems takes place: 

1 1 2λ ≤ λ ≤ λ ,   2 2 3λ ≤ λ ≤ λ , … , 1 1n n n− −λ ≤ λ ≤ λ , (2.37) 

It can be said that the frequency spectra of the original system and of the 
additionally constrained one are intermittent. 

In this section we will prove only the first pair of inequalities in  (2.37), 

1 1 2λ ≤ λ ≤ λ . The others will be validated afterwards as a particular case of 
the more general Routh theorem about the effect of constraints on the 
frequency spectrum of a mechanical system. 

To prove the above proposition, first of all we should re-formulate the 
constraint equation (2.36). It can be represented in the matrix form as 
aTz = 0 where vector a = |[a1,a2,…, an]|T is not a zero vector. We assume 

                                                      
10 The mechanical meaning of it is a perfectly rigid kinematical constraint; each 

constraint of this kind reduces the number of dynamical DOFs of a mechanical 
system by one. The effect of additional elastic constraints on the shift in the 
frequency spectrum will be discussed a bit later.  
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b = m–1a which is admissible because the mass matrix is non-degenerate. 
Then vector b is also nonzero. The symmetry of matrix m helps represent 
the constraint equation in an equivalent form, 

bTm z = (b, z)T = 0 . (2.38) 

This means the constraint condition can be treated from the mathematical 
standpoint as a requirement that any admissible displacement vector z 
should be Т-orthogonal to the constraint vector b. 

The Rayleigh–Weber variational principle gives λ1 = min r(z), while 

1 min ( )λ = r z  under the condition (b, z)T = 0. Hence immediately 1 1λ ≤ λ  
because no truncation of the admissible set of vectors can decrease the 
minimum of the functional. Thus, the least eigenvalue increases when a 
new constraint is imposed. Or, a more correct formulation would be “does 
not decrease” instead of “increases”. The equality 1 1λ = λ  can take place, 
and it becomes quite clear if we take any of the eigenvectors zi at 
i = 2,…, n for the constraint vector b. 

Our next step of reasoning will be to validate the inequality 1 2λ ≤ λ . In 
the particular case b = z1 all admissible displacements must be Т-
orthogonal to the first eigenvector. The recursive variational definition of 
the second eigenvalue of the original system gives λ2 = min r(z) for all z 
which meet the condition (z1, z)T = 0. But the same variational definition 
holds for the first eigenvalue 1λ  of the additionally constrained system. 
Therefore, if b = z1 then the equality 1 2λ = λ  takes place. Now let us show 
that no constraint vector b can make the first eigenvalue 1λ  greater 
than λ2.  

We consider an arbitrary vector x of the Т-length one such that it meets 
the constraint condition and at the same time is a linear combination of two 
first eigenvectors of the Т-length one, x1 and x2, i.e. 

(b, x)T = 0       and      x = (x, x1)T x1 + (x, x2)T x2 . (2.39) 

Such a vector exists necessarily; this is obvious at least for dimensionality 
reasons if nothing else. To see this, consider that the number of dimensions 
in the subspace of vectors that satisfy the constraint condition is (n – 1), 
while the number of dimensions in the subspace made up by a linear 
combination of the two first eigenvectors is 2. Consequently, a subspace 
created by intersection of the above two subspaces can by no means have 
zero number of dimensions.  

Now we have 
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1λ = min r(y) ≤ r(x)  (2.40) 

where the minimum is taken with respect to all vectors y of the (n – 1)-
dimensional subspace defined above. On the other hand, for vector x of 
unit Т-length (2.39) gives 

r(x) = (x,x)E = 2 2 2 2 2 2
1 1 2 2 1 1 2 2( , ) || || ( , ) || || ( , ) ( , )+ = λ + λT E T E T Tx x x x x x x x x x . 

Here we take into account the fact of Т-orthogonality of vectors x1 and x2. 
Further, λ1 ≤ λ2, so we immediately have the following estimate 

r(x) ≤ 2 2
1 2 2[( , ) ( , ) ]+ λT Tx x x x = 2|| ||Tx λ2 = λ2 . 

Thus, r(x) ≤ λ2, which proves the inequality 1λ ≤ λ2 when taken together 
with (2.40). 

Before we formulate and validate the general Routh theorem about the 
effect of constraints on the frequency spectrum of a mechanical system, we 
would like to discuss a variational technique for determining the 
eigenvalues independently; this approach will be called a Fischer–Courant 
maximin principle, or, shorter, a maximin principle11. 

A variational technique to find the eigenvalues independently 
from one another 

The recursive variational definition of the eigenvalues that the Rayleigh–
Weber principle establishes has an inconvenience: in order to find 
eigenvalue λi it supposes the previous (i – 1) eigenvectors are already 
known.  

The variational principle by Fischer–Courant does not have this 
shortcoming because it gives a definition of an eigenvalue under any 
number, which is independent of the preceding elements of the spectrum. 
The formulation of the principle is 

                                                      
11 The literature on the subject is not unanimous about this entitlement. For 

example, L. Collatz [3] attributes this principle to Courant only. An excellent book 
by S. Gould [9] indicates in its bibliographic notes that the principle was 
formulated clearly for the first time by Fischer [7] as early as in 1905, though 
Fischer used it just as an auxiliary tool. R. Courant was apparently the first to 
realize the importance of the principle from the standpoint of variational 
formulations of physical problems and to employ it extensively in problems of an 
inifinite number of dimensions described by equations of mathematical 
physics [4].     
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An eigenvalue λi is equal to a maximum value that the minimum of the 
Rayleigh functional, r(z), can take under the condition that the system is 
subjected to (i – 1) additional perfectly rigid constraints. 

To clear the things up, we would like to emphasize that the 
maximization here means an exhaustive search (by varying) of all possible 
constraints in the number of (i – 1); for any particular fixed set of 
constraints, a minimum of the Rayleigh functional is sought for, so the 
final result is a maximum of minima. 

Suppose the said (i – 1) constraints are defined by vectors b1,…, bi-1. 
Obviously, first eigenvalue 1λ  of the constrained system will depend on 
the choice of the constraints. In other words, 1λ = 1 1 1( ,..., )i−λ b b  can be 
treated as a functional of the set of constraints. According to the Rayleigh–
Weber variational principle, 1λ  is a minimum of r(z) under the condition 
that vector z is orthogonal in the Т-metric to all constraint vectors 
b1,…, bi-1. Our intention is to choose such a set of the constraint vectors 
that gives 1λ  its largest possible value.  

If we choose the constraint vectors as the first (i – 1) eigenvectors by 
assuming b1 = z1,…, bi-1 = zi-1, then the recursive variational definition 
gives 

1 1 1( ,..., )i i−λ = λz z  (2.41) 

where λi is i-th eigenvalue of the system without the constraints. So, these 
(i – 1) constraints can be always put in such way that the first eighenvalue 
of the constrained system be equal to i-th eigenvalue of the unconstrained 
system.  

Now we need to show that any other method of choosing the constraints 
would not make 1λ  larger, that is, 1 1 1( ,..., )i−λ b b ≤ 1 1 1( ,..., )i−λ z z . We 
construct two subspaces of the basic space n. The first subspace, i, is 
defined as a linear capsule on the first  i eigenvectors x1,…, xi of the Т-
length one. The second subspace, n-i+1, is a set of all vectors from n 
which are T-orthogonal to the constraint vectors. The sum of the 
dimensionalities of the subspaces is (n + 1) which is more than n in the 
original subspace. It means the intersection i ∩ n-i+1 is not empty. We 
take an arbitrary vector x of the Т-length one from that intersection and 
represent it as an expansion over the basis of x1,…, xi: 

x = (x, x1)T x1 + (x, x2)T x2 + … + (x, xi)T xi . 
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Then we find the Rayleigh functional’s value on this vector: 

r(x) = (x, x)E = 2 2 2
1 1 2 2( , ) ( , ) ... ( , )i iλ + λ + + λT T Tx x x x x x . 

Obviously, r(x) ≤ λi . Also, for any choice of the constraint vectors 

1 1 1( ,..., )i−λ b b ≤ r(x) 

because the left-hand part here is a minimum of the Rayleigh ratio over all 
vectors which are Т-orthogonal to the constraint vectors, and the right-
hand part has the argument of vector x which is Т-orthogonal to all the 
constrain vectors and, moreover, obeys the additional limitation of 
belonging to the above introduced space i. Merging the two inequalities 
gives 

1 1 1( ,..., )i−λ b b ≤ λi . (2.42) 

Establishing this relationship and the possibility for (2.41) to become an 
equality finishes the proof of equivalence between the recursive and the 
independent variational definitions for i-th eigenvalue. 

To complete this section, we would like to note that the independent 
variational definition of i-th eigenvalue according to Fischer–Courant can 
be formulated as both the above maximin principle and, inversely, as a 
minimax principle. Here’s the formulation: 

Eigenvalue λi is equal to a minimum value which the maximum of the 
Rayleigh functional r(z) can take in conditions when the mechanical system 
has (i – 1) perfectly rigid constraints imposed on it. 

We will not dwell on the proof of the minimax principle; the reader can 
do it by herself because all the needed information and approaches for 
such a proof have been already presented.  

A general Routh theorem about the effect of constraints on the 
eigenvalues of a mechanical system 

Having been established once and for all, the principle of maximin permits 
us to greatly simplify future considerations of various spectral properties 
of a mechanical system. In particular, this principle helps simplify the 
validation of the well-known Routh theorem of constraints with the 
following formulation12: 

                                                      
12 The literature on the theory of mechanical oscillations often refers to this 

theorem as a theorem of frequency separation, and sometimes it is also called a 
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Eigenvalues iλ (i = 1,…, n – k) of a mechanical system subjected to 
k linearly independent constraints separate eigenvalues λi (i = 1,…, n) of 
the original mechanical system with n degrees of freedom in the sense that 

λi ≤ iλ ≤ λi+k 
for any index i such that i ≤ n – k . 

In particular, at k = 1 this theorem provides a proof for all inequalities in 
(2.37). 

The validation of this theorem is a fairly simple matter if we use the 
maximin principle by Fischer–Courant13. We would like to present a 
simple statement as a corollary to the Routh theorem, which is often used 
in writings on mechanics:  

 
If a mechanical system receives a perfectly rigid constraint, it 
spectrum, a discrete set of numbers on the axis of real numbers, 
can shift only to the right. Imposing each following constraint will 
shift the new spectrum again to the right, and so on.  

 
The Routh theorem establishes, actually, something bigger. It dictates 

the widest limits up to which the mechanical system permits its spectrum 
to be shifted in such a way. 

Kinematic constraints which do not alter the number of 
dynamic degrees of freedom in a mechanical system 

It should be understood clearly that the Routh theorem considers only such 
mechanical constraints which reduce the number of dynamic degrees of 
freedom in the system. By dynamic degrees of freedom we understand a 
set of independent coordinates which determine the positions of all the 
masses of the system unambiguously. It is the masses not mass-free points 
that matter.  

                                                                                                                          
Rayleigh theorem. However, Rayleigh himself admits that a full proof of the 
theorem was given by Routh in [22]. Notes to the book by S. Gould [9] made by 
its Russian translation’s editor, V.B. Lidsky, say that the essense of the theorem 
can be found in an earlier memoir by Poincaré [20]. At the same time, a book by 
Lancaster [13] on the theory of matrices says that even Cauchy already knew the 
theorem in his time. All this is an illustrative example of how vague and 
contradictory can be the opinions of experts when it comes to scientific priorities.  

13 A successful attempt at the proof of the Routh theorem can be the best 
evidence that the discussed material has been digested perfectly by the reader. If 
the attempt fails, something like [8] can help. 
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Now let us imagine that we deal with free flexural oscillations of a beam 
simply supported at its ends, which has a certain finite amount of masses 
placed on it (Fig. 10.1-а). 

Together with the original system, we want to consider a system with a 
constraint S  which prohibits the motion of one mass — say, mass 3 as 
shown in Fig. 10.1-b. The mathematical description of the motion of the 
mechanical model in Fig. 10.1-b differs from that in Fig. 10.1-a by an 
additional requirement, q3 = 0, where q3 is a deviation of mass m3 from the 
state of equilibrium in the oscillation process. Obviously, this constraint 
reduces the number of dynamic DOFs by one and therefore satisfies the 
conditions of applicability of the Routh theorem. 
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Fig. 10.1. Various kinds of constraints 

There is another constraint type when we prevent the beam from 
rotating in its beginning section (Fig. 10.1-с). The number of dynamic 
DOFs in the system is not reduced by the additional constraint, so the 
Routh theorem is not applicable, though the constraint is a perfectly rigid 
one from the mechanical standpoint. 

Another kind of constraints that does not change the number of dynamic 
DOFs is shown in Fig. 10.1-d. Here masses m2 and m3 are reinforced by 
springs, therefore the constraints like these can be called elastic. The 
elastic constraint category includes also constraints which increase the 
stiffness of all or some of the elements of a mechanical system. In our 
example problem it can be an increase in the flexural rigidity of the beam, 
EI, by making the material’s elasticity modulus, E, or the moment of 
inertia of the beam’s cross-section, I, larger. 

For all constraint types listed above which do not reduce the number of 
dynamic DOFs, any changes in the mechanical system affect solely its 
potential energy counted off from its state of equilibrium. 
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Let E = E(q1,…, qn) = ½qTrq be an increment of the potential energy of 
a particular system in its small deviation from its state of equilibrium; the 
latter is assumed to take place at q = 0. Similarly, let 
E = 1( ,..., )nq qE = ½qT r q be an increment of the potential energy of the 
constrained system, where the constraint does not alter the number of 
DOFs in the system. First of all, for any deviation of the system from its 
state of equilibrium the following inequality holds: 

( )E q ≥ E(q) . (2.43) 

According to their construction/definition, the values of E and E  are the 
energies of the two closely related systems under a kinematic action — 
the q vector of given deviations of the masses from the systems’ common 
state of equilibrium. But then we meet the conditions of a perturbed system 
considered earlier in Chapter 2. In particular, Table 2.2 says that if the 
system is subjected to a perfectly rigid constraint like that in Fig. 10.1-с 
and to a purely kinematic action, then the inequality (2.43) is sure to hold. 
If the constrain is elastic like one in Fig. 10.1-d, then a similar inequality 
takes place according to the central (framed) proposition of Section 2.4.4.  

For the purpose of further analysis, the inequality (2.43) can be 
represented in a convenient equivalent form by assuming 

= + ∆r r r  (2.44) 

where the matrix of stiffness increments, ∆r, is positively semi-definite, i.e 
for any vector q the equality holds: 

qT∆r q ≥ 0 . (2.45) 

Writing out an expression of the Rayleigh ratio in application to the 
original system and to the one perturbed by the constraint gives the 
following, after we take (2.45) into account: 

( ) ( ) ∆
= ≤ = +

T T T

T T Tr rz rz z rz z rzz z
z mz z mz z mz

. (2.46) 

Obviously, the frequency spectrum of the system with the constraints 
imposed as shown above, will shift to the right on the real axis. It is also 
obvious that the major frequencies of the system can be made arbitrarily 
large by this shifting. To see this, imagine matrix ∆r proportional to a 
certain numerical parameter β. The perturbation in the stiffness matrix β∆r  
can be made arbitrarily large by varying this parameter, and the respective 
maximum value of the Rayleigh ratio can also increase arbitrarily. 
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Of course, the qualitative effect of this type of constraints on the 
perturbation of the frequency spectrum is quite expectable. At the same 
time, we have a feeling that there must be tighter estimates of the type the 
Routh theorem provides. 

And this feeling is right — the following theorem holds. 

Let λi (i =1,…, n) be eigenvalues of the original mechanical system, and let 
values iλ (i =1,…, n) be eigenvalues for the mechanical system with 
constraints that do not decrease the number of its dynamic DOFs. Let the 
rank of matrix ∆r (a stiffness increment matrix of the system) be equal to k 
(1 ≤ k ≤ n). Under these conditions, the following estimates take place: 

λi ≤ iλ   (i =1,…, n);                iλ ≤ λi+k   (i = 1,…, n – k). 

The first part of the proposition is apparent and essentially follows from 
(2.46). We have to prove just that iλ ≤ λi+k   (i = 1,…, n – k), which is not 
too hard using the Fischer–Courant variational principle14. 

Returning to the example shown in Fig. 10.1, we can see that for the 
constrained system in Fig. 10.1-d the following takes place: 

2

3

0 0 0
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⎡ ⎤
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⎢ ⎥⎣ ⎦

r  

where с2 and с3 are stiffnesses of the added springs which should be 
positive. Obviously, k = 2. Therefore no calculation is required to 
immediately write out the following mutual estimates of the frequencies of 
the systems in Fig. 10.1-a and 10.1-d  

λ1а ≤ λ1b ≤ λ3а ,     λ2а ≤ λ2b,      λ3а ≤ λ3b . 

Knowing how to construct such estimates helps much in the solution of 
practical problems. 

An exercise: show that imposing a constraint of the type shown in 
Fig. 10.1-с is mathematically equivalent to building up the stiffness 
matrix r according to (2.44). Find out the rank k of the matrix ∆r for this 
case without making detailed calculations. 

                                                      
14 Let it be another exercise. A full proof can be found in [8].   
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10.2.3 A geometric description of eigenvalues and 
eigenvectors. A Rayleigh ellipsoid 

In Section 10.2.1 we noted (see proposition f) that a symmetric positive 
definite matrix can be always represented as a product of two mutually 
transposed square matrices of the same order.  

Now let us use this proposition to represent the inertia matrix, m, as 

m = WTW . (2.47) 

After introducing a linear coordinate transformation, 

x = Wz , (2.48) 

the spectral problem for the couple of matrices rz = λmz will become a 
standard spectral problem for matrix p: 

px = λx ,           p = W–TrW–1 . (2.49) 

To shorten the notation, we denote by –T a double operation: inversion plus 
transposition of the inverted matrix.  

The eigenvalues are not changed by this replacement, and eigenvectors 
zi of the original problem are related to eigenvectors xi of the transformed 
problem through expressions that follow from (2.48), 

xi = Wzi ,          zi = W–1xi . (2.50) 

Matrix p inherits its positive definiteness from matrix r; this follows 
from a chain of identity transformations: 

0 < (z, rz) = (W–1x, rW–1x) = (x,W–TrW–1x) = (x, px) . 

It is also obvious that eigenvectors x1,…, xn of the transformed problem 
are orthogonal both in the conventional (Euclidean) metric and in the 
metric generated by matrix p. Normalizing these vectors in the usual way 
(by assuming (xi, xi) = 1) will give the following instead of (2.17): 

(xi, xj) = δij ,     (xi, pxj) = λiδij . (2.51) 

The Rayleigh ratio will become as follows in terms of the new variables: 

r = 
1− −

= = =
W W

W W

T T T T T

T T T T T

z rz z rz x r x x px
z mz z z x x x x

 (2.52) 

and now it can be treated as a functional of vector x.  
Now we know that the eigenvalues we want to find are equal to values 

of the Rayleigh functional in its points of stationarity. Without limiting the 
generality, this functional can be considered only with such arguments x 
the Euclidean norm of which is equal to one.  
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Suppose the denominator in the Rayleigh ratio is fixed equal to one; 
then we take the numerator and equal it to one, too, to produce the 
equation 

(x, px) = 1. (2.53) 

Analytical geometry tells us that a set of unit vectors x which satisfy the 
equation (2.53) describes a second-order surface. We will show that the 
surface is an ellipsoid (at least in the three-dimensional space). To see this, 
we expand an arbitrary vector x of unit length over the basis of 
eigenvectors x1, x2, x3: 

x =(x, x1)x1 +(x, x2)x2 +(x, x3)x3  , 

so  

px =(x,x1)px1 + (x,x2)px2 + (x,x3)px3 = λ1(x,x1)x1 + λ2(x,x2)x2 + λ3(x,x3)x3 . 

Then the equation of our surface from (2.53) becomes 

λ1(x, x1)2
 + λ2(x, x2)2

 + λ3(x, x3)2 = 1. (2.54) 

Recall that the equation of an ellipsoid in the three-dimensional space, 
its principal axes coincident with unit vectors x1, x2, x3 and its semi-axis 
lengths being a, b, c, is written as 

22 2
31 2

2 2 2

( , )( , ) ( , ) 1
a b c

+ + =
x xx x x x  

This proves that (2.54) defines an ellipsoid, thus (2.53) does so too. 
The ellipsoid thus constructed will be called a Rayleigh ellipsoid.  

Obviously, the principal axes of the Rayleigh ellipsoid are codirectional 
with the eigenvectors of the auxiliary problem, and the lengths of its semi-
axes are equal to 

a = 1/ 2 1/ 2 1/ 2
1 2 3, ,b c− − −λ = λ = λ . 

That is, the longest semi-axis a is directed along the first eigenvector, 
x1 = Wz1, and the shortest one c along the major eigenvector x3 = Wz3. By 
generalizing this “visible” three-dimensional geometric shape onto the n-
dimensional space we arrive at an abstract geometric representation of an 
n-dimensional Rayleigh ellipsoid15.  

                                                      
15 Sometimes the direct Rayleigh ellipsoid is replaced with a reverse one, with 

its semi-axes equal to the square roots of the problem’s eigenvalues. However, this 
choice is not critical.  
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An illustrative two-dimensional geometrical drawing is shown in 
Fig. 10.2. 

a

b

x
1x

2

 
Fig. 10.2. A Rayleigh ellipsoid 

Strictly speaking, there is nothing the Rayleigh ellipsoid can serve for in 
the analytical studies. However, as we have mentioned many times, a 
geometric representation of a problem permits to get a better 
understanding of it and to predict a result long before it is confirmed by 
accurate analysis. 

For example, the effect of a constraint which is imposed on the system 
and reduces its number of dynamic DOFs can be represented as an 
intersection between the Rayleigh ellipsoid and a plane which goes 
through the coordinate origin and is orthogonal to the constraint vector. An 
ellipsoid in the (n – 1)-dimensional space formed by this intersection is 
exactly the Rayleigh ellipsoid for the constrained system. The reader is 
invited to make up the rest of the geometric interpretation for the Routh 
theorem. 

A notion of a maximum-rigidity constraint 

The preceding presentment and the geometric analogy discussed above 
make it quite clear that if the constraint vector is x1, i.e. if all 
displacements allowed by the constraint are required to be orthogonal to 
the first eigenvector, then the first eigenvalue of the perturbed system, 1λ , 
is equal to the second eigenvalue λ2 of the original problem. The 
geometrical meaning of it is that the length a  of the longest semi-axis of 
the (n – 1)-dimensional ellipsoid will be equal to the length b of the second 
axis of the n-dimensional ellipsoid.  

The Routh theorem says this shift of the first eigenvalue is a maximum 
achievable with one constraint. However, another question arises 
immediately. Does the above means that a constraint orthogonal to the first 
eigenvector is the only kind of constraint that provides a maximum growth 
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of the first eigenvalue? In other words, may we suggest that a constraint of 
the following type: 

(β, x) = 0 , (2.55) 

where vector β is different from the first eigenvector x1 of the original 
problem, though might increase 1λ  in comparison to λ1, cannot let the 
equality 1λ = λ2 take place?  

The answer to this question may seem to be undoubted yes. At least, the 
geometric analogy for n = 2 shows clearly this is the case (Fig. 10.2) 
because when a two-dimensional ellipse is intersected by a ray coming 
from the coordinate origin, the ellipse will cut off a piece of this ray the 
half-length of which is sure to be greater than b if the ray is not orthogonal 
to the long semi-axis of the ellipse. 

However, this conclusion is a mistake even in three dimensions, let 
alone a larger dimensionality. Imagine a Rayleigh ellipsoid in three 
dimensions with the lengths of all its three semi-axes different, i.e. a > 
b > c. Now imagine the geometric picture of a constraint vector of the type 
β = |[cosα, 0, sinα]|T with a sufficiently small angle α16.  The constraint 
plane (β, x) = 0 cuts the three-dimensional Rayleigh ellipsoid apart and 
creates a two-dimensional ellipse with semi-axes a b≥ . This plane is 
created by turning the plane of axes (x2, x3) about axis x2 by an angle α. If 
the α angle is small enough, it is obvious from geometrical considerations  
that the longest semi-axis a  of the two-dimensional ellipse remains equal 
to the second longest semi-axis b of the original three-dimensional 
ellipsoid. If we vary the α angle continuously, the equality a b=  will hold 
until the two-dimensional ellipse becomes a circle so that b a= . 
Increasing the α angle further would switch the eigenvalues in their 
ascending order, and the condition a b=  will be violated, becoming the 
inequality a b> = b .  

Any constraint that increases maximally the first eigenvalue of a 
mechanical system is called a maximum-rigidity constraint. The notion of 
the maximum-rigidity constraint can be generalized in two ways. First, we 
can consider multiple (say, k) constraints instead of one. Second, we can 
deal also with constraints which do not reduce the number of dynamic 
DOFs in the system. In particular, we can switch from rigid to elastic 
constraints. Third, the notion of the maximum-rigidity constraints can be 
generalized onto infinite-dimensional systems. 
                                                      

16 We assume the constraint vector’s components to be specified with respect to 
the principal axes. 
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Seemingly the first formulated and correctly solved problem about the 
maximum-rigidity constraints in history was a problem of stability of a bar 
held by a set of elastic supports, not a free oscillations problem. In that 
problem, now known as Bubnov’s problem [27], I.G. Bubnov found out 
that there is a certain limiting stiffness of the elastic supports which 
increases the first critical force of a compressed bar maximally. No further 
growth of the stiffness of the supports affects the value of the critical load.  

We confine ourselves to the above brief introduction to the notion of the 
maximum-rigidity constraints and do not dwell on it any longer. It should 
be said that the problem of detecting all maximum-rigidity constraints for a 
given mechanical system subjected to a particular admissible set of 
constraints is one of most exciting topics studied by a branch of structural 
mechanics which is sometimes called a theory of qualitative methods for 
stability and dynamics. An interested reader can find more about this in the 
literature on the subject; there is much relevant information in 
Nudelman [17] and Dolberg [5], [6]. A fairly detailed presentment on the 
maximum-rigidity constraints can be found also in the above mentioned 
book by Gould [9].  

10.3 A general spectral problem 

Let us return from systems with a finite number of dynamic DOFs to a 
general problem which we started in Section 10.1.   

First of all, we rewrite the statement of the problem (1.5) – (1.6) that 
concerns the frequency spectrum of a mechanical system as  

(ATCA + K)u = λρu     ∈Ω , (3.1) 

EpHσCAu  = 0 ,       EuHuu  = 0      ∈Г. (3.2) 

Here and further we deal exclusively with amplitude values of the 
displacements, the stresses, and the strains, therefore we can omit the zero 
in the subscripts for the sake of brevity. Also, comparing to (1.5), the 
square of the frequency, ω2, is re-denoted by λ. 

Let us introduce expressions for the amplitude values of the potential 
and kinetic energy. Obviously, (2.25) should be replaced by the following 
in the general case, which follows from (2.1.13): 

E = ½ (CAu, Au) + ½ (Ku, u) . (3.3) 

At the same time, the general expression of the amplitude value of the 
kinetic energy becomes 
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T = ½ ω2(ρu, u) . (3.4) 

By generalizing the expression of the Rayleigh functional onto the most 
general spectral problem, we obtain 

r(u) = ( , ) ( , )
( , )

+u u u u
u u

CA A K
ρ

. (3.5) 

Obviously, it is sufficient to look for stationary values of the Rayleigh 
functional in the fields of displacements u which satisfy the mass 
normalization condition, (ρu,u) = 1. To meet the mass normalization 
condition, we just have to introduce the multiplier into the function u 
because no such multiplier can change the value of the Rayleigh 
functional. 

The result is a conditional variational problem reducible in standard way 
to an unconditional problem for the functional 

p(u,µ) = (CAu, Au) + (Ku,u) + µ[1 – (ρu,u)] (3.6) 

with the Lagrangian multiplier µ. The conditions of stationarity of p(u,µ) 
on arbitrary homogeneously kinematically admissible fields of  
displacements u are as follows17: 

ATCAu + Ku = µρu,       (ρu,u) = 1. (3.7) 

Comparing (3.7) with (3.1) makes us conclude that the points of 
stationarity of the Rayleigh functional coincide with the eigenfunctions of 
the problem (3.1) - (3.2), and the Lagrangian multiplier µ is equal to the 
respective eigenvalue. It is obvious also that the value of the Rayleigh 
functional on any eigenfunction u will be equal to the respective 
eigenvalue, that is, 

λi = ( , ) ( , )
( , )

i i i i

i i

+u u u u
u u

CA A K
ρ

   (i = 1, 2,…). (3.8) 

                                                      
17 Notice we do not require that the homogeneous static boundary conditions 

should be met when searching for a point of stationarity of the Rayleigh functional 
or, which is the same, of functional p(u,µ). The static boundary conditions belong 
to the category of natural boundary conditions which are satisfied automatically at 
points of stationarity of p(u,µ). The reasoning in the derivation of the governing 
differential equation (3.7) is the same as that used by us to formulate conditions of 
stationarity for the Lagrangian functional. Therefore we do not have to repeat it 
here. 
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Here and further we presume all eigenvalues λi and eigenvectors ui are 
numbered in the eigenvalue ascending order, or 

λ1 ≤ λ2 ≤ … ≤ λi ≤ λi+1 ≤ …. (3.9) 

Return to Chapter 2 and recall that symbol R o was used there to denote 
a set of homogeneously kinematically admissible rigid displacements of a 
mechanical system. Suppose first that R o is an empty set so that the 
mechanical system in question is kinematically stable (its geometry does 
not change). We will show that all eigenvalues of the problem (3.1) – (3.2) 
are strictly positive in such a case. 

To see this, we assume λi to be an eigenvalue of the problem 
(3.1) - (3.2) and ui to be its respective eigenfunction. The denominator of 
(3.8) is a strictly positive value because earlier we specified that the inertia 
operator, ρ, is a positive definite algebraic operator. The physical meaning 
of it is the positivity of the system’s kinetic energy. On the other hand, the 
numerator in (3.8) is a doubled potential energy of strain, 2E, accumulated 
in the mechanical system with displacements ui. Energy E, as we found 
out in Chapter 2, is strictly positive on any displacements of the system 
dfferent from perfectly rigid ones. The positivity of the numerator and 
denominator in (3.8) entails the strict inequality, λi > 0.  

Now let R o be non-empty so the dimensionality of this set be k ≥ 1. 
According to a definition introduced in Chapter 2, the k number is called a 
degree of kinematic instability of the system. It is quite clear that any 
function from R o is an eigenfunction of the problem, and the respective 
eigenvalue of that eigenfuction is zero. This fact follows from the very 
definition of the rigid displacements according to which the numerator in 
(3.8) is equal to zero if ui ∈ R o. Thus, 

A mechanical system that has the degree of kinematic instability k, has 
exactly the same number k of zero eigenvalues, and any rigid displacement 
is an eigenfuction of the problem that conforms to a zero eigenvalue. All 
the other eigenvalues of the system are strictly positive. 

What should not be forgotten: the above formulation lacks an explicit 
indication of the fact that we work with states of stable equilibrium only. 

Let us show that all eigenfunctions of the problem (3.1) – (3.2) are 
orthogonal with respect to both mass and energy. First we should prove the 
orthogonality of eigenfunctions which correspond to different eigenvalues. 
We have 

(ATCA + K)ui = λiρui  ,     (ATCA + K)uj = λjρuj  ,     λi ≠λj . (3.10) 
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Making a scalar product of the first of these equalities with uj and of the 
second with ui and subtracting one from the other gives 

(ATCAui,uj) + (Kui,uj) – (ATCAuj,ui) – (Kuj,ui) = (λi –λj)(ρui,uj) . 

But the left-hand part here is zero, therefore at λI ≠ λj we have (ρui,uj) = 0. 
This means eigenfunctions ui and uj are orthogonal with respect to mass.  

The orthogonality with respect to mass implies the orthogonality with 
respect to energy, too. This can be proved by simply multiplying the first 
of the equalities in (3.7) by uj and seeing that (ρui,uj) = 0 gives 

(ATCAui,uj) = (CAui, Auj) = 0  при  λi ≠λj . (3.11) 

If an eigenvalue such as λi conforms to multiple (say, k) linearly 
independent eigenfunctions, the the eigenvalue is said to have a 
multiplicity of k.  

In this case all the eigenfunctions can be orthogonalized by the Gram–
Schmidt orthogonalization process. Therefore further we can think of the 
set of all eigenfunctions as an an orthogonal system both in the metric 
generated by the mass of the system and in the energy metric. 

10.3.1 An expansion of an arbitrary function over the 
eigenfunctions 

Let u be an arbitrary function of displacements which satisfies the 
homogeneous boundary conditions (3.2). And let {u1, u2,…} be a system 
of eigenfunctions, each conforming to its particular eigenvalue {λ1, λ2,…}. 
To be definite without limiting the generality, we can think of each 
eigenfunction as having the T-length one, i.e. (ρui,ui) = 1. 

We expand the selected function u, its T-norm being 1, over the basis 
made up of eigenfunctions {u1, u2,…}: 

u = α1u1 + α2u2 +… , (3.12) 

and because ||u||T = 1 or (ρu,u) = 1, coefficients αi obey the condition 
2 2
1 2 .... 1α + α + = . (3.13) 

We determine coefficients αi in the expansion (3.12)  by making scalar 
products of (3.12) with all eigenfunctions ui in succession: 

αi = (ρu,ui) = (ρui,u),          u = 
1

( , )i i
i

∞

=
∑ u u uρ . (3.14) 
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As we know, all eigenfunctions ui are mutually orthogonal with respect 
to both mass and energy. Therefore, for a sufficiently smooth displacement 
function u such that energy E(u) in (3.3) exists and is finite, we obtain the 
following from the expansion (3.14): 

E(u) = 2

1
( , ) ( )i i

i

∞

=
∑ u u uEρ . (3.15) 

Thus, the energy accumulated by a mechanical system on 
displacements u can be represented by a sum of energies taken with their 
coefficients and accumulated by the same system on each of the natural 
modes (eigenfunctions). 

10.4 The Ritz method in the spectral problem 

Up to this point we have established the fact that the Rayleigh functional 
takes a central place in the variational formulation of the spectral problem 
for a mechanical system. It seems now quite logical to use this functional 
directly and try to extend the Ritz method discussed in Chapter 9 onto the 
spectral problem18. This is the way it is usually done — see [24], for 
example.  

However, there is another (and quite equivalent, generally speaking) 
opportunity for employing the Ritz approach in the solution of spectral 
problems. We will use the latter. Let us try to formulate a variational 
spectral problem without using the Rayleigh functional. There is a way to 
do it: we can use a quasi-static statement of the problem by formally 
classifying the inertia force, λρu, as an external action; this force appears 
in the system during its harmonic oscillation described by equations (3.1), 
(3.2) where the frequency is ω = λ .  

Let us write out the Lagrangian and Reissnerian functionals (the latter in 
two forms) for this quasi-static problem. Based on results obtained in 
Chapter 2 and Chapter 3, we have 

L(u) =½(CAu, Au) + ½(Ku, u) – ½λ(ρu,u),  (4.1) 

R1(σ, u) = 

= ½(C –1σ, σ) – ½(Ku, u) – (Au, σ) + (Eu p, Eu u)Г + ½λ(ρu,u), (4.2) 

                                                      
18 When the method is applied to spectral problems, it is sometimes called a 

Rayleigh–Ritz method, which is quite fair. 
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R2(σ, u) =  

= ½(C –1σ, σ) – ½(Ku, u) – (ATσ, u) – (Ep p, Ep u)Г + ½λ(ρu,u).  (4.3) 

Two following circumstances are taken into account. First, the 
homogeneous boundary conditions from (3.2) and the relationships of 
(3.1.3) give 

 Пk(σ) = (Eu p, Eu u )Г = 0  and  Пs(u) = ( X , u) + (Ep p , Ep u)Г = ( X , u). 

Second, in the expression of the potential of inertial forces ( X ,u) we 
cannot just assign formally X = λρu. The multiplier of ½ must be added 
because the inertia forces, though conservative, are not dead. They depend 
on the displacements linearly, and the result is Пs(u) = ½λ(ρu,u).  

The stationarity conditions for the Lagrangian functional on 
kinematically admissible fields of displacements produce the following 
Euler equations and natural boundary conditions: 

(ATCA + K)u = λρu     ∈Ω ,      EpHσCAu  = 0   ∈Г, (4.4) 

and the kinematical boundary conditions, 

EuHuu  = 0  ∈Г, (4.5) 

are the principal conditions for the functional because the fields of 
displacements we admit to the consideration are kinematically admissible. 

As we can see, the boundary-value problem (4.4), (4.5) is the same as 
the original problem (3.1), (3.2). 

Using the stationarity conditions for the Reissner functional gives – see 
(3.1.10) and (3.1.11) – the following: 

С –1σ – Au = 0,            ATσ + Ku – λρu = 0   ∈Ω , (4.6) 

EpHσσ  = 0,         EuHuu  = 0     ∈Г. (4.7) 

Both types of boundary conditions in (4.7) are natural conditions for the 
Reissner functional. We use the first relation in (4.6) to exclude the 
stresses from the other equations, and again arrive at the original problem 
(3.1), (3.2). 

Now that we have introduced the Lagrange and Reissner functionals 
into the spectral problem, we can use the general procedure of the Ritz 
method.  

We start by constructing the Ritz method for the Lagrangian functional. 
To do it, we consider a system of linearly independent and kinematically 
admissible vectors of displacements {φ1,φ2,…,φn,…} – these will be 
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coordinate functions for the Ritz method. This set can be considered 
complete in the sense that any vector of displacements u∈U ko can be 
approximated as accurately as needed (in the Lagrangian energy metric) by 
a linear combination of the type 

u = Z1φ1 + Z2φ2 +…+ Znφn (4.8) 

if we choose the number n of the terms in expansion (4.8) and coefficients 
Zi. properly. 

In addition to the linear independence and kinematical admissibility, we 
require one more thing from the coordinate functions. Namely, we want to 
assume that the set of the coordinate functions does not contain rigid 
displacements of the mechanical system. The mathematical equivalent of 
this requirement is that each coordinate function φi should be orthogonal in 
the main metric to any kinematically admissible rigid displacement uj ∈ 
R o, that is, 

(uj,φi) = 0 . (4.9) 

As we already know from Chapter 2, meeting this requirement leads us to 
the Lagrangian energy space L the elements of which are coordinate 
functions {φ1,φ2,…,φn,…}. The mechanical treatment of the requirement 
(4.9) is just that there must be a statically determinate fixation of the 
system that prevents it from any rigid displacements. 

Putting (4.8) in (3.18) makes the Lagrangian functional a quadratic form 
of parameters Zi, 

L(Z) = ½ ZT(R – λM)Z , (4.10) 

where we denote 

R = (CAФ, AФ) + (KФ, Ф),        M = (ρФ,Ф),  

Z = |[Z1,…,Zn]|T ,          Ф = |[φ1,…, φn]|T. (4.11) 

The conditions of stationarity of L(Z) produce the following finite-
dimensional spectral problem: 

(R – λM)Z = 0. (4.12) 

Matrix R fits well the name of a stiffness matrix of a finite-dimensional 
system derived from the given infinite-dimensional system by the Ritz 
approximation of the displacements. Similarly, matrix M lends itself to the 
name of a mass matrix. Both matrices are sure to be positive definite 
because they are Gram matrices for a system of linearly independent 
coordinate functions, 
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R = 
1 1 1
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We denote by ( )
1
nλL , ( )

2
nλL ,…, ( )n

nλL  a set of eigenvalues of the finite-
dimensional problem (4.12) in the ascending order: 

0 < ( )
1
nλL ≤ ( )

2
nλL ≤ …≤ ( )n

nλL . (4.13) 

Here the (n) superscript in parentheses indicates that the eigenvalues have 
been obtained by solving the n-dimensional spectral problem. The L 
subscript emphasizes that the eigenvalues have been derived from the 
stationarity conditions for the Lagrangian functional, therefore we will call 
them Lagrangian eigenvalues. 

Now imagine that our set of coordinate functions will not include all n 
functions {φ1,φ2,…, φn}; instead, we will use only some of them. To be 
definite, we keep first (n – k) functions of the set by assuming 

Ф = |[φ1,…,φn – k]|T. 

We arrive at the problem (4.12) again, but the dimensionality of all 
matrices and vectors is now reduced to (n – k). The set of eigenvalues of 
this reduced problem is 

0 < ( )
1
n k−λL ≤ ( )

2
n k−λL ≤ …≤ ( )n k

n k
−
−λL . (4.14) 

How do the sets of eigenvalues of the n-dimensional problem and of the 
(n – k)-dimensional problem relate to each other? Actually, we already 
know the answer. It suffices to understand that our (n – k)-dimensional 
problem is derived from the n-dimensional one by imposing k constraints 
on the latter; the constraints are of the type 

φn – k + 1 = 0 ,…, φn = 0 . (4.15) 

Now we can use the Routh theorem of frequency separation; in our 
designations it gives 

( )n
iλL  ≤ ( )n k

i
−λL ≤ ( )n

i k+λL       (i = 1, 2,…, n – k) .  (4.16) 

The relation (4.16) implies an important conclusion: the sequence of i-th 
eigenvalues ( )n

iλL  decreases monotonously as the dimensionality n of the 
finite-dimensional Ritz approximation grows. However, as this 
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monotonously decreasing sequence is bounded from below by zero, it will 
tend to a certain limit when n tends to infinity, which follows from a well-
known theorem of mathematical analysis. Further, methods of functional 
analysis help prove that certain, fairly general conditions make these limits 
equal to the eigenvalues of the original infinite-dimensional problem19.  
For us, the most important qualitative conclusion that follows from the 
results presented above is: 

The Lagrangian eigenvalues always estimate the true eigenvalues λi  of the 
original mechanical system from above: 

λi ≤ ( )n
iλL  . 

Let us introduce a Rayleigh ratio 

rL = R
M

T

T

Z Z
Z Z

. (4.17) 

As the М matrix is positive definite, it can be represented as the product 
М = WTW, which makes it possible to rewrite (4.17) as 

rL = 
−W RWT T

T

Y Y
Y Y

,        где Y = WZ. (4.18) 

The equation 

1− =W RWT TY Y , (4.19) 

defines, as we already know, an n-dimensional ellipsoid which we will call 
a Rayleigh L-ellipsoid. The sizes of the main semi-axes of the L-ellipsoid 
in the descending order are 

( ) ( ) ( )
1 2

1 1 1...
n n n

n

≥ ≥ ≥
λ λ λL L L

. (4.20) 

10.4.1 The Ritz method in the spectral problem, applied to the 
Reissner functional 

Exactly as we did in the static problems, we should supplement the set of 
coordinate functions for the displacements, {φ1,φ2,…, φn}, with a set of 
coordinate vector functions for the stresses, {ψ1,ψ2,…, ψm}. We have 
noted that all boundary conditions are natural for the Reissnerian 

                                                      
19 See, for example, [9] or [24]. 
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functional, therefore we could avoid imposing any boundary requirements 
on the new coordinate functions. However, for the sake of simplicity we 
will think of functions {φ1,φ2,…, φn} as belonging to the Lagrange energy 
space and of functions {ψ1,ψ2,…, ψm} as being homogeneously statically 
semi-admissible, i.e. ones that satisfy homogeneous static boundary 
conditions. The next step is to use independent approximations: 

u = Z1φ1 + Z2φ2 +…+ Znφn ,      σ = X1ψ1 + X2ψ2 +…+ Xnψm . (4.21) 

Substituting the approximations (4.21) in the expression of the first form 
of the Reissner functional and seeing that φi ∈U ko produces a quadratic 
form, 

R1(X, Z) = 11 ( , )
2

−TX C XΨ Ψ – 1 ( , )
2

TZ K ZΦ Φ – ( , )TZ A XΦ Ψ + 

+ ( , )
2
λ Ф ФTZ Zρ . (4.22) 

Recalling the designations from (9.2.7), we rewrite the above formula in 
the matrix form: 

1
1( , ) ,
2

−⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ − − + λ⎣ ⎦ ⎣ ⎦

G H
H K M

T T
TR

X
X Z X Z

Z
. (4.23)

The stationarity conditions for this quadratic form give the following two 
homogeneous algebraic equations: 

GX – HZ = 0,      HTX  + (K – λM)Z = 0.  (4.24) 

We use the first of equations (4.24) to exclude the X vector from the 
second equation and thus arrive at an eigenvalue problem for the couple of 
matrices: 

(HTG–1H + K)Z = λMZ. (4.25) 

Let us denote by ( , )
1
n mλR , ( , )

2
n mλR ,…, ( , )n m

nλR  the set of eigenvalues of the 
finite-dimensional problem (4.25) in the ascending order, 

0 < ( , )
1
n mλR ≤ ( , )

2
n mλR ≤ …≤ ( , )n m

nλR . (4.26) 

These numbers lend themselves obviously to the name of Reissnerian 
eigenvalues. The R subscript emphasizes that the eigenvalues are obtained 
from the stationarity conditions for the Reissnerian functional. The double 
superscript in parentheses, (n, m), indicates the dimensionalities involved: 
the first index n is the dimensionality of the displacement approximation 
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space, and the second index m is the dimensionality of the stress 
approximation space. 

From results of Section 9.2.1 we already know that the solvalibity of the 
Ritz system of equations for a static problem (at least where there is no 
elastic medium, K = O) requires that m ≥ n. As we will see a bit later, this 
key inequality is also important for the spectral problems. At the same 
time, we are interested how the Lagrangian and Reissnerian frequencies 
relate to one another. To get to know this, first we introduce a Rayleigh 
ratio for the problem (4.25): 

rR = 
1 1( ) ( )− − −+ +

=
H G H K W H G H K W

M

T T T T T

T T

Z Z Y Y
Z Z Y Y

. (4.27)

The equation 
1( ) 1− − + =W H G H K WT T TY Y  (4.28) 

defines an n-dimensional ellipsoid which we will further call a Rayleigh R-
ellipsoid. The lengths of the main semi-axes of the R-ellipsoid in the 
descending order are 

( , ) ( , ) ( , )
1 2

1 1 1...
n m n m n m

n

≥ ≥ ≥
λ λ λR R R

. (4.29) 

For the n-dimensional R-ellipsoid to exist, the quadratic form 
1( )− − +W H G H K WT T TY Y  needs to be positive definite. Otherwise the 

numerator of the Rayleigh ratio in (4.27) could become negative or zero 
for a nonzero vector Y. This would mean the equation (4.28) described a 
second-order surface which was not an ellipsoid.  

In Chapter 9 the HTG–1H matrix was proved to be positive definite if 
and only if rank H = n. This implies the requirement (for K = O) of m ≥ n, 
i.e the dimensionality of the stress approximation space should not be less 
than that of the displacement approximation space. If we assume the 
following for the approximations (4.21): 

s = n – m > 0, (4.30) 

then we will have rank H = m, and the n-dimensional R-ellipsoid will 
degenerate into an m-dimensional ellipsoid. In other words, s main semi-
axes of it will be zero. 

The components of matrix H = |[Hij]| (i = 1,…, m; j = 1,…, n) are 
defined as 

Hij = (ψi, Aφj) = (ATψi, φj) . (4.31) 
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Both representations of Hij in formula (4.31) produce the same result 
because, according to our condition, φj satisfies homogeneous kinematical 
boundary conditions and ψi homogeneous static boundary conditions. But 
then the two representations of Hij according to (4.31) are true simply as 
corollaries to the basic integral identity (1.2.19) where the displacements u 
are φj and the stresses σ are ψi. 

We denote by Lφ a linear hull of the set of vectors {φ1,φ2,…,φn} and by 
Nχ a linear hull of the set of vectors {χ1,χ2,…,χm} where χi = ATψi. The 
following theorem holds: 

In order for matrix H to have the rank of n, it is necessary and sufficient 
that the projection of Nχ onto Lφ, in the sense of a scalar product in the 
main metric, coincide with Lφ.  

Sufficiency. The linear independence of the vectors {φ1,φ2,…,φn} 
makes the Lφ set a finite-dimensional space of the dimensionality n. 
According to the condition of the theorem, m ≥ n because the 
dimensionality of no projection can exceed that of the projected set. Let χ i 
∈ Nχ, then 

χ i = χ i1 + χ i2,      χ i1∈ Lφ,      χ i2 ⊥ Lφ, (4.32) 

and there must be n linearly independent vectors among χ i1. Let them be 
the first n vectors {χ 1,χ 2,…,χ n}. We introduce a square matrix В 
composed of first n rows of the H matrix, 

В = |[(χ i1, φj)]| = |[(χ i, φj)]|   (i = 1,…, n;  j = 1,…, n). 

This matrix is non-degenerate, det В ≠ 0, because otherwise its rows would 
be linearly dependent, 

2 2 2
1 2

1
0, ... 0

n

i ij n
i

c B c c c
=

= + + + ≠∑ ,      ( j = 1,…, n), 

or 

1
1

( , ) 0
n

i i j
i

c
=

=∑ χ ϕ ,      ( j = 1,…, n). 

This means vector χ 

1
1

n

i i
i

c
=

=∑χ χ  

is orthogonal to all φj and at the same time it belongs to Lφ, i.e. χ = 0, 
which contradicts to the linear independence of vectors χ i1 (i = 1,…, n).  
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As the rows of matrix В coincide with the first n rows of matrix H, the 
condition det В ≠ 0 implies that rank H = n. 

Necessity. Obviously, 

rank H = n   ⇒    m ≥ n. 

By representing vector χ i  as an expansion (4.32), we can make sure that 
vectors χ i1 (i = 1,…, m) include n linearly independent ones because 
otherwise there would not be n linearly independent rows in matrix H. The 
linear hull of the n linearly indepdendent vectors χ i1 coincides with Lφ. 
This completes the proof of the theorem.  

Further we will asume that the approximations we use meet the 
conditions of the above theorem.  

Now let us carry out a comparison between the Lagrangian and 
Reissnerian eigenvalue problems. We are going to prove the following 
simple but important qualitative theorem. 

An L-ellipsoid is fully contained within the respective R-ellipsoid. 

Indeed, the surfaces of the L-ellipsoid and R-ellipsoid are swept by the 
respective radius vectors 

1
2

|| ||
−

Lr
Y
Y

,      
1

2

|| ||
−

Rr
Y
Y

. 

Therefore the condition of nesting of the ellipsoids is equivalent to the 
inequality 

rR ≤ rL . (4.33) 

For any two vectors of stresses σ and strains ε = Au which have a finite 
energy, the following inequality holds: 

(σ, ε) ≤ (С –1σ, σ)(Сε, ε) , (4.34) 

which can be seen to follow from the Cauchy–Buniakovsky inequality if 
we notice the positive definiteness of the algebraic operator С. 

By using the approximations of (4.21), we transform inequality (4.34) 
into 

2( ) ( )( )≤H G RT T TX Z X X Z Z  (4.35) 

which holds for any m-dimensional vector X and any n-dimensional 
vector Z. In particular, (4.35) is not violated if we assume 

1−=G HX Z . 
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The result is 
1 2 1( ) ( )( )− −≤H G H H G H RT T T T TZ Z Z Z Z Z . (4.36) 

Matrix G–1 is positive definite, therefore 

 1 0− ≥H G HT TZ Z  

and it follows from (4.36) that 
1− ≤H G H RT T TZ Z Z Z  (4.37) 

for any n-dimensional vector Z.  The inequality (4.37) is equivalent to 
(4.33), which proves the nesting theorem.  

10.4.2 The method of two functionals in the spectral problem 

A scheme of computing which we discussed in Section 9.3 and called the 
method of two functionals is applicable to the spectral problems, too [24]. 

We begin with formula (4.17) of the Rayleigh ratio that conforms to the 
Lagrangian functional. Obviously, if the Z vector in that formula is 
replaced by i-th eigenvector ZL i of problem (4.12), we will have i-th 
Lagrangian eigenvalue. Or, 

( ) i in
i

i i

λ =
R
M

T
L L

L T
L L

Z Z
Z Z

. (4.38) 

The numerator is the doubled potential strain energy 2E accumulated by a 
discrete n-dimensional elastic system as it moves in i-th mode of 
oscillations.  

According to the general procedure of the method of two functionals, 
knowing the displacements (at least approximately) lets us pose a 
variational problem of finding the stresses from the condition of minimum 
of functional D. Based on formula (9.3.6) and the homogeneous 
kinematical boundary conditions, we can write 

D = ½ (C –1σ,σ) – (ATσ, u) . (4.39) 

Let us insert the approximations (4.21) in here taking i-th eigenvector 
ZL i of problem (4.12) as vector Z. This gives 

D = ½ XTGX – XTHZL i . (4.40) 

Minimization of the quadratic form (4.40) yields a stress vector XD i that 
corresponds to the eigenvector ZL i: 
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XD i = G–1HZL i . (4.41) 

The doubled potential energy 2E can be expressed now via the “eigen” 
stresses XD i by assuming 

2E = 1
i i i i

−=G H G HT T T
D D L LX X Z Z . (4.42) 

After we replace the numerator in (4.38) by the energy expression from 
(4.42), we will get a formula of λD i – the square of the natural oscillation 
frequency of the system for i-th mode, 

1
( ) i in

i
i i

−

λ =
H G H

M

T T
L L

D T
L L

Z Z
Z Z

. (4.43) 

We already know that the spectrum of the Lagrangian frequencies is 
shifted on the numerical axis to the right with respect to the spectrum of 
true frequencies of the system, therefore refining the frequencies by using 
formula (4.43) instead of (4.38) makes sense only under the conditions 

( ) ( )n n
i iλ ≤ λD L      (i = 1,…, n). (4.44) 

Seeing that we use the Rayleigh ratio (4.27) for the Reissner functional, 
the Reissnerian eigenvalues ( , )n m

iλR  are expressed as follows (provided that 
K = O): 

1 1
( , ) i i i in m

i
i i i i

− − −

λ = =
H G H W H G HW

M

T T T T T
R R R R

R T T
R R R R

Z Z Y Y
Z Z Y Y

 (4.45)

where 

i i= WR RY Z .  

The iRY  is codirectional with i-th principal axis of the R-ellipsoid. 
Comparing (4.45) with (4.43) leads to a conclusion that 

Values 1/ ( )n
iλD  are equal to the lengths of segments cut off on the semi-

axes of the L-ellipsoid by the surface of the R-ellipsoid. 

A geometry of the relationships between the Lagrangian and 
Reissnerian Rayleigh ellipsoids, where also the properties of the 
eigenvalues in the method of two functionals are depicted, is shown in 
Fig. 10.3 for the two-dimensional case n = 2. 
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The semi-axes of two ellipsoids shown in Fig. 10.3 are related to the 
eigenvalues as follows: 

1

1OA =
λL

,        
1

1OC =
λR

,       
1

1OE =
λD

, 

 
2

1OB =
λL

,       
2

1OD =
λR

,        
2

1OF =
λD

. (4.46) 
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L

 
Fig. 10.3. A Rayleigh L-ellipsoid and a Rayleigh R-ellipsoid 

The theorem of nesting the L-ellipsoid in the R-ellipsoid implies the 
estimates 

1 1 1λ ≤ λ ≤ λR D L ,   i iλ ≤ λD L ,   i iλ ≤ λR L  (i = 1,…, n), 

n n nλ ≤ λ ≤ λD R L . (4.47) 

Example 1. 

Consider a problem of longitudinal oscillations of a bar. Let l be the length 
of the bar, EA its longitudinal stiffness, ρ its mass per unit of length, u a 
displacement along the bar’s axis, N a longitudinal stress. The problem of 
free longitudinal oscillations of the bar is described by the differential 
equation 

2( ) 0EAu u′ ′ + ω ρ =  (4.48) 

where each end of the bar has one of two possible boundary conditions 
specified on it: either u = 0 or N = 0, so that N = EAu′. 
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The functionals that correspond to this problem are as follows: 
2

2 2

0

1( )
2

l duu EA Au dx
dx

⎡ ⎤⎛ ⎞= −ω ρ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫L , 

2

0

1( ) 2
2

l N dNN u dx
EA dx

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫D , 

2
2 2

0

1( , ) 2
2

l N dNu N u Au dx
EA dx

⎡ ⎤
= + + ω ρ⎢ ⎥

⎣ ⎦
∫R . (4.49) 

Assuming 

1

n

i i
i

u Z
=

= ϕ∑ ∈Uko,            
1

m

i i
i

N X
=

= ψ∑ ∈ U so/2, (4.50) 

we obtain the following expressions of the components of matrices R, M, 
G, H: 

Rij =
0

l

i jEA dx′ ′ϕ ϕ∫ ,     Mij =
0

l

i jdxρϕ ϕ∫ , 

Gij =
0

l
i j dx
EA
ψ ψ

∫ ,     Hij =
0

l

i jdx′− ψ ϕ∫ . (4.51) 

Let us take as an example the Weinstein–Ficker problem [16] where the 
eigenvalues of the following equation should be determined: 

(1 sin ) 0u x u′′ + λ + = ,    u(0) = 0,   u(π) = 0 (4.52) 

for eigenfunctions symmetric with respect to the point x = π/2, i.e. 
u(π/2 + x) = u(π/2 – x). 

We divide the integration interval [0, π/2] into n equal pieces and, 
assuming m = n in (4.50), use piecewise linear “lid” functions as 
coordinate ones: 

/ 1 , ( 1)
( ) / 1 , ( 1)

0
i

x h i i h x ih
x x h i ih x i h

otherwise

+ − − ≤ ≤⎧
⎪ϕ = − + + ≤ ≤ +⎨
⎪
⎩

,  
/ 2 , ( 2) ( 1)

( ) / , ( 1)
0

i

x h i i h x i h
x x h i i h x ih

otherwise

+ − − ≤ ≤ −⎧
⎪ψ = − + − ≤ ≤⎨
⎪
⎩

. 

Here h = π/(2n) is the mesh’s spacing, i = 1,…, n. 
Omitting the details, we present the first seven calculated eigenvalues of 

the Weinstein–Ficker problem at n = 15 – see Table 10.1.  
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Table 10.1 

i λi λL i λR i λD i 
1     0.54031884     0.54081742     0,54031807     0.54031811 
2     5.4486361     5.4945998     4.7965807     5.4480117 
3   15.312608   15.674429     5.447986   15.298727 
4   30.114984   31.520968   15.298160   30.006716 
5   49.853254   53.734343   30.001928   49.343253 
6   74.526762   83.267328   43.004475   72.740792 
7 104.13529 121.30172   49.317578   98.991497 

The error of calculation of the first three eigenvalues vs. the number n of 
the involved coordinate functions φi and ψi is shown in Table 10.2. 

Table 10.2 
n eL1 eL2 eL3 eR1 eR2 eR3 eD1 eD2 eD3 
2 5.273 33.23  0.558 54.66  0.464 54.67  
3 2.324 21.80 31.81 0.097 36.69 66.28 0.089 9.136 76.09 
4 1.303 12.21 33.05 0.030 26.19 65.45 0.028 2.616 24.97 
5 0.833 7.748 21.91 0.012 21.01 64.80 0.011 1.016 9.241 
6 0.578 5.347 15.19 0.006 18.03 64.60 0.005 0.475 4.149 
7 0.424 3.912 11.10 0.003 16.17 64.51 0.003 0.252 2.136 
8 0.325 2.987 8.448 0.002 14.94 64.47 0.002 0.146 1.212 
9 0.256 2.355 6.646 0.001 14.08 64.46 0.001 0.090 0.740 
10 0.208 1.904 5.365 0.001 13.46 64.44 0.001 0.059 0.477 
11 0.172 1.572 4.422 - 13.00 64.43 - 0.040 0.322 
12 0.144 1.320 3.707 - 12.64 64.43 - 0.028 0.225 
13 0.123 1.124 3.154 - 12.37 64.42 - 0.020 0.162 
14 0.106 0.969 2.716 - 12.15 64.42 - 0.015 0.120 
15 0.092 0.843 2.363 - 11.97 64.42 - 0.011 0.091 

The following designations are used in the tables: 
λi is i-th eigenvalue calculated as a half-sum of its upper and lower 
estimates; the latter are taken from results by A. Weinstein [16], 

eL i = 100(λi – λL i)/λi ,    eR i = 100(λi – λR i)/λi ,    eD i = 100(λi – λD i)/λi . 

Note, by the way, that all calculated errors are indicated in Table 10.2 
with the positive sign. Actually, all the calculated eigenvalues λL i are, as 
they should be, a bit higher than the true values of λi. At the same time, all 
the eigenvalues λR i and λD i are a little lower than the true values. 

Note that the error in the second and third Reissnerian eigenvalues is 
very large. An explanation of this will be given later in Section 10.4.3. 
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Example 2. 

Our second example will be a problem that deals with axisymmetric 
oscillations of a round membrane of radius l, described by the same 
equation (4.48). We should assume 

EA(x) = x,   λ = ω2/S,  ρ(x) = xη(x),  u(l) = 0,  u′(0) = 0, 

where x is a radial coordinate, η(x) is a mass per unit of area of the 
membrane, S is a tension in the membrane. 

We use the coordinate functions 

( ) sini
i x i xx i
l l
π π

ϕ = − + π ,     ( ) cos 1i
i i xx
l l
π π⎛ ⎞ψ = −⎜ ⎟
⎝ ⎠

 

and assume m = n. In our case 

Rij =
/ 2

2 2

0
16 sin sinij i j d

π

ξ ξ ξ ξ∫ ,   

Mij = ( )( )
2

0
sin sinl li i i j j j d

π ξ⎛ ⎞ ⎛ ⎞ξ − ξ + π ξ − ξ + π ξη ξ⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠∫ ,  

 Gij =
2 2 2/ 2

0

sin sin4 i jij d
l

ππ ξ ξ⎛ ⎞ ξ⎜ ⎟ ξ⎝ ⎠ ∫ ,  Hij = ( )
2

0
sin sini i j j j d

l

ππ
ξ ξ − ξ + π ξ∫ . 

The first and second frequencies calculated by the method of two 
functionals for the round membrane with its inertial characteristic 
following a linear law of distribution, 

2 1
1( )x x

l
η −η

η = + η , 

are shown in Table 10.3. Note that to achieve the same accuracy of 
calculation with the same type of the coordinate functions in [23] required 
keeping 20 to 40 functions in the expansion of the displacements; this is  
about 10 times bigger than the number required by the method of two 
functionals. 
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Table 10.3 
 

1 1 /l Sω η  2 1 /l Sω η  

η2/η1 η2/η1 n 
0.5 1.0 2.0 0.5 1.0 2.0 

2 2.705 2.405 2.011 6.373 5.342 4.308 
3    6.363 5.522 4.558 
4    6.366 5.521 4.553 
5    6.362 5.520 4.556 

exact 
solution 2.405 5.520 

10.4.3 A remark on an effect which arises when the finite 
element method in its mixed form is applied to the spectral 
problems 

Algorithms of the finite element method have become widely popular not 
only in the static analysis of elastic systems but also in the spectral 
problems. However, a formal application of the algorithms without a 
proper validation thereof can be unpredictably dangerous and can lead to 
pitfalls that are hard to detect. 

There is a simple example for a one-dimensional problem in [11] where 
closed solutions of the mixed-form FEM equations are known and where, 
much to an analyst’s chagrin, the spectrum of the frequencies can be 
distorted qualitatively by the approximate solution. In particular, we find 
that the FEM scheme for longitudinal oscillations of a bar described by a 
second-order differential equation, which is based on the stationarity 
conditions for the Reissner functional and an independent approximation 
of the displacements and the stresses, produces double series of 
frequencies which converge to second, fifth, eighth etc. natural 
frequencies. 

A modification of the algorithm based on a specific choice of the 
coordinate functions (on a shifted mesh [12]) does not produce the extra 
series of the frequencies20.  

The known exact solutions of the FEM equations can be used as 
benchmarks for developing new software; they are also useful for 
                                                      

20 The paper [12] uses one mesh for approximating static parameters and 
another for approximating kinematical values. Those two meshes are shifted with 
respect to each other. The coordinate functions in [12] are piecewise constant. At 
the same time, [11] uses only the idea of shifting the two meshes but keeps a 
continuous (piecewise linear) approximation. 
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validating theoretical estimates of the meshing error introduced by the 
finite elements. 

So, let us consider a problem of longitudinal oscillations of a bar one 
end of which is fixed and the other free. Let ρ be a density of the bar’s 
material; Е be an elasticity modulus; А be an area of cross-section; l be a 
length of the bar.  

The Lagrangian and Reissnerian functionals for the problem of free 
longitudinal oscillations of the bar are as shown in (4.49). 

The stationarity conditions for the Lagrangian functional, L, on 
functions that satisfy the boundary condition u(0) = 0 and the stationarity 
conditions for the Reissner functional, R, on functions that satisfy the 
boundary conditions u(0) = 0 and N(l) = 0 produce the following 
equivalent Sturm–Liouville problems: 

2 0

(0) 0, ( ) 0

d duEA Au
dx dx

duu EA l
dx

⎫⎛ ⎞ + ω ρ =⎜ ⎟ ⎪⎪⎝ ⎠
⎬
⎪= = ⎪⎭

 (4.53) 

and 

20, 0

(0) 0, ( ) 0

N du dN Au
EA dx dx

duu EA l
dx

⎫− = + ω ρ = ⎪⎪
⎬
⎪= =
⎪⎭

. (4.54) 

For the constant coefficients Е =Const, A =Const, ρ =Const, the exact 
solution for the frequencies and the modes is known and looks like 

(2 1)
2i

i c
l

− π
ω = ,   sin i

i u
xu A

c
ω

= ,  cos i
i N

xN A
c
ω

=  (4.55) 

where 
2 Ec = ρ . 

We divide the integration interval [0,l] into n equal parts by assuming 

lh n=  

and switch to dimensionless variables as follows: 



590      10 VARIATIONAL PRINCIPLES IN SPECTRAL PROBLEMS 

x
hξ = ,  u

h=v ,  NS EA= ,  ( )2h
c

ωλ = . 

The Lagrangian and Reissnerian functionals in these designations become 

( )2 2

0

1
2

n
d

EAh
′= − λ ξ∫

L v v ,   ( )2 2

0

1 2
2

n
S S d

EAh
′= + + λ ξ∫

R v v . (4.56) 

Here and further a stroke denotes the differentiation with respect to the 
dimensionless coordinate ξ. 

We take piecewise linear “lid” functions ϕi(ξ) = ψi(ξ) (i = 1,…, n) as the 
FEM coordinate functions 

1 , [ 1, ]
( ) ( ) 1 , [ , 1]

0
i i

i i i
i i i

otherwise

ξ + − ξ∈ −⎧
⎪ϕ ξ = ψ ξ = −ξ + + ξ∈ +⎨
⎪
⎩

, 

and use the following approximations: 

1
( )

n

i i
i

Z
=

= ϕ ξ∑v ,        
1

0
( )

n

i i
i

N X
−

=

= ψ ξ∑ . (4.57) 

Substituting the approximations (4.57) in (4.56) turns the Lagrangian 
and Reissnerian functionals into the quadratic forms (4.10) and (4.23)  
with respect to variables Zi  and Xj (i = 1,…, n; j = 0,…, n – 1). The square 
matrices R, M, G and H of the order n are banded three-diagonal matrices: 

R =

2 1
1 2 1

1 2 1
1 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎢ ⎥⎣ ⎦

,      M =

4 1
1 4 1

1
6

1 4 1
1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

G =

2 1
1 4 1

1
6

1 4 1
1 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,         H =

1
0 1
1 0 11

2
1 0 1

1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

. 
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Treating the system of equations (4.12) that follows from the 
stationarity conditions for the Lagrangian functional as simultaneous 
equations in finite differences [2], we seek for its solution in the form 

Zα = Z sin(αν) . (4.58) 

Putting (4.58) in (4.12) for equations No. α = 2,…, n – 1 gives 

( ) 2 cos1 cos sin
6

Z+ ν⎡ ⎤− ν − λ αν⎢ ⎥⎣ ⎦
= 0, 

wherefrom the condition of existence of a non-trivial solution yields 

1 cos6
2 cos
− ν

λ =
+ ν

. (4.59) 

A direct check shows that the first of equations (4.12) is satisfied by any 
value of parameter ν. Substituting (4.58) in the last equation of the system 
(4.12) gives, taking (4.59) into account, 

cos nν = 0, 

wherefrom 

νi = (2 1)
2

i
n
− π . (4.60) 

At i = 1,…, n we have different solutions for the natural frequencies and 
modes of oscillation. At i = n +1, n +2,… the solutions repeat those 
already found. Thus, we have find all n frequencies of oscillation of the 
discrete system with n degrees of freedom which will be Lagrangian 
frequencies ωL i so that 

ωL i = 6(1 cos )
2 cos

i i

i i

ω − ν
ν + ν

. (4.61) 

The ratio  

i i

i i

ω λ
=

ω ν
L  

characterizes the accuracy of the FEM computational algorithm. At a fixed 
number i and an increasing number of DOFs n we have νi → 0 and 

2
41 ( )

24
i i

i
i

O
ω ν

= + + ν
ω

L , (4.62) 
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so that 

lim 1i

n
i

→∞

ω
=

ω
L  

and, expectedly, ωL i > ωi. Note that ωL 1 < ωL 2 <…< ωL n. 
Now let us determine the Reissnerian natural frequencies. The system of 

equations (4.24) that follows from the sationarity conditions for the 
Reissner functional can be treated in our case as a set of simultaneous 
equations in finite differences. We will seek a solution of this system in the 
form 

Zα = Z sin(αν) ,    Xα–1 = X cos(α–1)ν  ,  (α = 1,…, n). (4.63) 

Putting (4.63) in (4.24) gives 

   [–X (2 + cos ν) + 3Z sin ν] cos(α–1)ν = 0, 

[3X sin ν – λ Z (2 + cos ν)] sinαν = 0. 

The condition of existence of a nontrivial solution for this system gives a 
relation between parameters λ and ν: 

2sin3
2 cos

ν⎛ ⎞λ = ⎜ ⎟+ ν⎝ ⎠
. (4.64) 

Analysis of the rest of the equations in (4.24) shows that the ν value is 
defined by the condition cos nν = 0 and thus νi is defined by (4.60). At 
i = 1,…, n we have various solutions for the natural frequencies and 
modes. At i = n + 1, n + 2,… the solutions repeat those we have already 
found. Thus, for the Reissnerian frequencies we have 

ωR i = 3sin
2 cos

i i

i i

ω ν
ν + ν

. (4.65) 

At a fixed number i and an increasing number of finite elements n, the 
asymptotic estimate νi → 0 holds; also, 

4
61 ( )

180
i i

i
i

O
ω ν

= − + ν
ω

R , (4.66) 

which is much better (in terms of the rate of convergence) than the 
estimate (4.62) for the Lagrangian frequencies. Then the following is 
obvious for the Reissnerian frequencies: 
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lim 1i

n
i

→∞

ω
=

ω
R , 

however, unlike the Lagrangian frequencies, the Reissnerian frequencies 
are not put in the ascending order according to the standard numbering. 
For example, at n = 4 the calculation by the above formulas gives 

1 4 2 3
0.999 2.716 2.962 4.364 .

2 2 2 2
c c c c

l l l l
π π π π

ω = < ω = < ω = < ω =R R R R   (4.67) 

If we fix an integer number k (k = 1, 2,…), we will find easily that 

 ( 1) 1

3 1 3 1 1 3 1

3sin 3sinlim lim lim 1
(2 cos ) (2 cos )

n k n k k

n n n
k k n k k k

− + − +

→∞ →∞ →∞
− − − + −

ω ν ν
= = =

ω ν + ν ν − ν
R . 

Thus, the Reissnerian frequencies include additional series which converge 
to the accurate values of the frequencies with the numbers 3k – 1. 

This circumstance can be a serious difficulty for the use of the Reissner 
functional in the Ritz method when we want to find natural frequencies of 
an elastic system. Indeed, the only reasonable criterion for establishing a 
sequence of the frequencies in a discrete system during a numerical 
solution is based on putting all the frequencies in the ascending order. As 
we have just shown, there is a chance that “extra” or spurious frequencies 
stalk into the spectrum and distort it dramatically. Note that in the problem 
we are dealing with, the modes of oscillation that conform to the spurious 
frequencies feature many sign alterations, which is a usual indication of 
high-frequency oscillations. 

To overcome the said difficulties, we need to develop a criterion that 
allows to filter the spurious frequencies out of the discrete system’s 
spectrum, or we need to use consistent coordinate functions for 
approximating force and kinematic parameters which would give no 
chance to the spurious frequencies to get into the spectrum of the system. 

In particular, in our problem the consistent approximation can be 
achieved by using coordinate functions on a so-called shifted mesh. The 
shifted meshes were suggested in [12]; the essence is that functions φi(x) 
are based on one mesh and functions ψi(x) on another, and the nodes of the 
two meshes are shifted with respect to one another. We are not going to 
dwell on an analysis of consistency of the shifted-mesh approximations; 
we just refer to [11] where this analysis is already done. Here we are going 
to show that one of effective methods for filtering the spurious frequencies 
out is the method of two functionals. 
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It turns out that in our problem the frequencies of the method of two 
functionals can be calculated in the closed form. First of all, we determine 
the Lagrangian form of the discrete system’s natural oscillations. We take 
formula (4.58) and write out the Lagrangian eigenvector, ZL i . Thus, 

ZL i = |[sin νi, sin 2νi,…, sin nνi]|T, 

where parameter νi is defined by formula (4.60). 
Calculating the matrix product MZL i gives 

MZL i = 

2sin
2 cos

2sin( 1)6
sin

i

i

i

i

n
n

ν⎡ ⎤
⎢ ⎥+ ν ⎢ ⎥
⎢ ⎥− ν
⎢ ⎥ν⎣ ⎦

. 

Consequently, 

2 2

1

2 cos 2 sin sin
6

n
i

i i i i
k

k n
=

+ ν ⎛ ⎞
= ν − ν⎜ ⎟

⎝ ⎠
∑MT

L LZ Z . 

The sum of squares of sines that participates in the above formula can be 
reduced to (see (1.351.1) in [10])  

2

1

cos( 1) sinsin
2 2sin

n
i i

i
k i

n nnk
=

+ ν ν
ν = −

ν∑ . 

Seeing that cos nνi = 0, we can expand cos (n + 1)νi and get 
2

2

1

sinsin
2 2

n
i

i
k

nnk
=

ν
ν = +∑ . 

Therefore 

2 cos
6

i
i i n + ν

=MT
L LZ Z . 

Now let us establish an expression of the numerator in the right part of 
the general formula (4.43) for the eigenvalues of the method of two 
functionals. By calculating the product HZL i and denoting it by V for the 
sake of brevity, we find 

V = HZL i = sin νi |[½, cos νi,…, cos (n–1)νi]|T. 

In our designations, the numerator that we seek is 
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VTG–1V . 

The G matrix cannot be inverted in its general form; however, we can 
calculate the desired product without inverting G. We denote 

Y = G–1V ,  

hence the Y vector is a solution of the following set of simultaneous 
algebraic equations: 

1 1

2

1

0.52 1
cos1 4 1

6sin
cos( 2)1 4 1
cos( 1)1 4

i

i

n i

n i

Y
Y

Y n
Y n
−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ν⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅ = ν
⎢ ⎥ ⎢ ⎥⎢ ⎥ − ν⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ − ν⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

A direct substitution confirms that the solution of the system is the 
vector Y with its components being 

 Yk = 3sin cos( 1)
2 cos

i
i

i

kν
− ν

+ ν
     (k = 1,…, n) . 

Thus,  

VTG–1V = VTY = 
2

2

2

3sin 1 cos ( 1)
2 cos 2

n
i

i
ki

k
=

ν ⎛ ⎞
+ − ν⎜ ⎟+ ν ⎝ ⎠
∑ . 

Using formula (1.351.2) from [10] gives 
1

2 2

2 1

cos sin( 1)1 1cos ( 1) cos
2 2sin 2

n n
i i

i i
k j i

n nn nk j
−

= =

ν − ν− −
− ν = ν = + =

ν∑ ∑ . 

Consequently, 

VTG–1V =
23sin

2 2 cos
i

i

n ν
+ ν

. 

So, according to formula (4.43) we have 
2

3sin
2 cos

i
i

i

⎛ ⎞ν
λ = ⎜ ⎟+ ν⎝ ⎠

D . (4.68) 

When comparing formula (4.68) for λD i with formula (4.64) for λR i, we 
can see a total coincidence between the frequencies of the method of two 
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functionals and the Reissnerian frequencies. This coincidence is not 
accidental; it accords with results presented in Section 10.4.2. Indeed, by 
comparing (4.58) and (4.63) we find that eigenvectors ZL i and ZR i are 
coincident. This means the L-ellipsoid and R-ellipsoid are coaxial. Hence, 
due to the theorem proved in Section 10.4.2, we have 

λD i = λR i . 

Note, however, that in spite of the totally coincident eigenvalues λD i and 
λR i the method of two functionals has certain advantages in its algorithm 
and approach: 

1)   Starting from the stationarity conditions for the Reissnerian functional, 
we ultimately have to solve a generalized eigenvalue problem for 
matrices of the order 2n – see formula (4.23), 

⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− λ ⋅ =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

G H
H MT

O O X O
O O Z O

, 

which are not of fixed sign, by the way, and this creates additional 
difficulties for the computation. Of course, we could reduce the 
problem to a generalized problem of eigenvalues of positive definite 
matrices of the order n, 

(HTG–1H – λM)Z = 0, 

but 
a) this would require an additional computational burden for inverting 

matrix G and calculating the matrix product HTG–1H; 
b) matrix HTG–1H becomes fully filled, so one of the advantages of 

the finite element method is lost – a band-like shape (or, generally, 
a sparse population) of the stiffness matrix.  

When following the method of two functionals, we have first to solve 
the generalized eigenvalue problem for the n-dimensional problem 

(R – λM)Z = 0 

wherefrom we obtain λR i, ZL i (i = 1,…, p ≤ n), and then to calculate 
λD i using (4.43). In practice we need to find some rather than all 
eigenvalues: p first ones of the discrete problem where p << n. 
Anyway, we can think of p as a number never exceeding n/2 [19], [26] 
because the higher eigenvalues of the discrete problem have no sense 
for us — they are very far from the respective eigenvalues of the 
counterpart continuous problem (due to both the meshing error and to 
an inaccuracy of determining higher eigenvalues of a finite-
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dimensional system). Therefore we can avoid inverting matrix G and 
confine ourselves to the solution of a system of equations with p right-
hand parts, 

G|[Y1,…,Yp]| = H|[ZL 1,…,ZL p]| . 

To be fair, we should note a shortcoming: the method of two 
functionals dictates to search for the eigenvectors ZL i of the discrete 
problem even in cases when the original problem does not demand that 
in any way. 

 2) However, the most important advantage of the algorithm for searching 
λD i in comparison to other algorithms that calculate λR i is that the 
method of two functionals permits to detect the presence of spurious 
frequencies and filter them out automatically. This useful feature of the 
method of two functionals is based on the fact that the λD i frequencies 
are not numbered in the ascending order of their numerical values; 
instead, their numbering has been determined at an earlier stage of the 
algorithm by the ascending order of the λL i values. 

For example, if we treat this problem numerically rather than 
analytically, we will get (for n = 8) the following results presented in 
Table 10.4. 

    Table 10.4 
 i = 1 i = 2 i = 3 i = 4 

i

i

ω
ω

L  1.0016 1.00145 1.0405 1.0792 

i

i

ω
ω

R  0.9999 0.9749 0.5996 0.7102 

i

i

ω
ω

D  0.9999 0.9993 0.9942 0.9753 

2
i

l
cω π  1.0 3.0 5.0 7.0 

It is this circumstance (an intrusion to the spectrum of spurious natural 
frequencies) that explains the low accuracy of the calculated numbers λR i 
in the Weinstein–Ficker problem (see Tables 10.1 and 10.2) comparing to 
the accuracy of λD i.  

10.4.4 A generalized mixed functional in the spectral problem  

We still have one opportunity unused, and now we are going to discuss it 
here briefly. It will be useful to find out what we can do by employing the 
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generalized mixed functional Ф introduced in Section 3.5 for the 
calculation of natural frequencies of elastic systems.  

We use the formula (3.5.11), 

Ф = κL + (1 – κ)R, (4.69) 

and put in the epxressions of functional L(u) from (4.1) and functional 
R2(σ, u) from (4.3) for the free harmonic oscillations of elastic systems. 
We confine ourselves to considering these functionals on kinematically 
admissible fields of displacements and statically semi-admissible fields of 
stresses; at K = O we have 

Ф(σ, u) = 
2
κ  (CAu, Au) +  

1
2
− κ

+  (C –1σ, σ) – (1 )− κ (ATσ, u)  + λ1 2
2
− κ  (ρu,u). (4.70) 

Introducing an independent approximation of the displacement and 
stress fields according to (4.21) gives a quadratic form, 

(1 ) (1 )1( , ) ,
(1 ) (1 2 )2
− κ − − κ⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ − − κ κ + λ − κ⎣ ⎦ ⎣ ⎦

G H
H R M

T T
TФ

X
X Z X Z

Z
, (4.71)

where matrices R, H, G, M coincide with the matrices denoted the same 
way and introduced earlier, provided the approximating functions of the 
displacements are homogeneously kinematically admissible and those of 
the stresses are homogeneously statically semi-admissible. 

The stationarity conditions for the quadratic form Ф(X, Z) bring about 
the following algebraic eigenvalue problem: 

1 2,
1 1
κ − κ

− = − + + λ =
− κ − κ

G H 0 H R M 0TX Z X Z Z , (4.72)

or, after the X vector is excluded from this system, 

(Ф – λМ)Z = 0 . (4.73) 

Matrix Ф is defined as 

Ф = 11 (1 )
2 1

−⎡ ⎤κ − − κ⎣ ⎦κ −
R H G HT . (4.74) 

Earlier in Section 3.5.2 we considered a static problem and proved a 
theorem that the condition 

½ < κ < 1 (4.75) 
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makes the Ф(σ, u) functional convex.  
Now let us show that the condition (4.75) is sufficient also to ensure the 

positive definiteness of matrix Ф, hence the positiveness of all 
n eigenvalues of problem (4.73). And indeed, the inequality (4.37) 
produces the following estimate: 

ZTФZ = 11 (1 )
2 1

−⎡ ⎤κ − − κ ≥⎣ ⎦κ −
R H G HT T TZ Z Z Z  

1 (1 ) 0
2 1

⎡ ⎤≥ κ − − κ = >⎣ ⎦κ −
R R RT T TZ Z Z Z Z Z , (4.76)

where the inequality takes place for any nonzero vector Z because the R 
matrix is positive definite21. 

We introduce the Rayleigh ratio 

=
M

T

Ф Tr Z Z
Z Z

Φ  (4.77) 

which generates an  n-dimensional ellipsoid (an Ф-ellipsoid) in the n 
space, similar to the L-ellipsoid and R-ellipsoid. 

Now let us find estimates to establish relations between the Rayleigh 
ratio rФ, on one hand, and the ratios rL and rR, on the other hand. As the 
denominators in the formulas for these three values are the same (and 
positive), it suffices to compare only their numerators. The estimate (4.76) 
yields immediately 

rФ ≥ rL . 

Further, 

ZTФZ ≤ 
2 1
κ
κ −

RTZ Z    or    rФ ≤ 
2 1
κ
κ −

rL , 

so our final estimate is a two-side one, 

rL ≤ rФ ≤ 
2 1
κ
κ −

rL . (4.78) 

If we construct another ellipsoid (called a Ф -ellipsoid) by extending the 
Ф-ellispoid with the extension factor k 

                                                      
21 We still assume the approximations of (4.21) to be such that rank H = n. 
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k =
2 1
κ
κ −

, (4.79) 

then the estimates (4.78) make the following statement true: 

The Ф-ellipsoid is nested in the L-ellipsoid, and the L-ellipsoid is nested in 
the Ф -ellipsoid. 

The respective two-dimensional geometrical picture is presented in 
Fig. 10.4. When the parameter κ tends to one, the Ф-ellipsoid and 
Ф -ellipsoid will contract to the L-ellipsoid together. 

L

Ô

Ô

~

C

B
A

0

 
Fig. 10.4. An L-ellipsoid,  a Ф-ellipsoid and Rayleigh’s Ф -ellipsoid 

As the eigenvalues λL i are shifted along the semi-axis (0,∞) to the right 
with respect to the true frequency spectrum, i.e. λL i ≥ λi , an approximate 
(Ritz) solution for eigenvalues based on the stationarity of the Ф(σ, u) 
functional can consist of iλФ  rather than λФ i, where 

2 1
i i i i

κ −
λ = λ ≤ λ ≤ λ

κФ Ф L Ф . (4.80) 

We can also derive a mutual estimate of the Rayleigh ratios rФ and rR. 
Definition (4.74) gives 

ZTФZ 11
2 1

−− κ
≥

κ −
H G HT TZ Z , 

hence 
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1
2 1
− κ

≥
κ −Ф Rr r . (4.81) 

Further details are omitted.  

10.5 Final comments to Chapter 10 

Practical engineers use various approximate formulas extensively which 
permit to estimate the fundamental natural frequency of a mechanical 
system roughly but in a simplest way possible. In particular, the well-
known Rayleigh formula serves the same purpose. The Rayleigh formula 
can be interpreted as a result of applying the Ritz method to the Lagrange 
functional with a single-point approximation of the displacements. 

To see this, we take n = 1 in the approximations of (4.8), i.e. we assume 
an approximate relationship 

u = Zφ ,  

and get the following expression for the fundamental-tone natural 
frequency  of the mechanical system: 

2
1

( , )
( , )

ω =L
CA Aϕ ϕ
ρϕ ϕ

. (5.1) 

Formula (5.1) is essentially the same famous Rayleigh formula included in 
most textbooks and manuals on structural dynamics, taken in its particular 
form of representation. For example, in the case of natural oscillations of a 
flexural bar we should assume 

( )2

0
( , )

l
EI dx′′= ϕ∫CA Aϕ ϕ ,    2

0
( , )

l
m dx= ϕ∫ρϕ ϕ , 

where EI is the bar’s flexural rigidity, l is the bar’s length, m is the bar’s 
weight per unit of its length, and ϕ is a function that approximates the 
deflection of the bar and satisfies the kinematical boundary conditions. 

As a result, the Rayleigh formula (5.1) becomes quite usual for the eye 
of an engineer: 

( )2

2 0
1

2

0

l

l

EI dx

m dx

′′ϕ
ω =

ϕ

∫
∫

L . (5.2) 
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There are several known modifications of this formula which are 
presented and commented in detail in [18]. Here we just want to indicate 
another version of the approximate formula for the fundamental tone of 
oscillations because, as far as we know, it has not been published in 
literature yet. 

The same idea which was used to validate the Rayleigh formula (5.1) or 
(5.2) works for an approximate formula based on the stationarity condition 
for the Reissner functional. To see this, we use an independent single-point 
approximations for both the displacements and the stresses, i.e. we assume 
the following instead of (4.21): 

u = Zφ ,      σ = Xψ  .   

Using the Rayleigh ratio (4.27) with the single-term approximations 
gives 

2
2

1 1

( , )
( , )( , )−ω =

T

R
A

C
ψ ϕ

ψ ψ ρϕ ϕ
. (5.3) 

In particular, the stress σ in a flexural bar is the bending moment, М, and 
formula (5.3) becomes 

( )2

2 0
1 2

2

0 0

l

l l

dx

dx m dx
EI

′ ′ψ ϕ
ω =

ψ
ϕ

∫

∫ ∫
R . (5.4) 

Here we use the equality 

0 0 0

l l l
dx dx dx′′ ′ ′ ′′ψ ϕ = − ψ ϕ = ψϕ∫ ∫ ∫  

that follows from the integration by parts formula provided function ϕ 
satisfies kinematical boundary conditions and function ψ satisfies static 
conditions.  

Let us see, for example, what the Rayleigh formula (5.2) and formula 
(5.4) give for flexural oscillations of a cantilever bar. The simplest 
approximations can be 

φ = x2,     ψ = (l – x)2 .  

For EI = Const,   m = Const we have 

 
5

2

0 5

l mlm dxϕ =∫ , ( )2

0
4

l
EI dx lEI′′ϕ =∫ , 

2 5

0 5

l ldx
EI EI
ψ

=∫ , 
3

0

2
3

l ldx′ ′ψ ϕ = −∫ . 
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Substituting in (5.2) and (5.4) gives 

2
1 420 EI

ml
ω =L ,       2

1 4

100
9

EI
ml

ω =R . 

The exact value of the fundamental-tone frequency is 

2
1 412.36 EI

ml
ω = . 
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11 VARIATIONAL PRINCIPLES IN 
STABILITY/BUCKLING ANALYSIS 

 The structure of the world is indeed perfect, being 
built by our wisest Creator, therefore no such thing 
happens in the world in which we could not see the 
meaning of a certain maximum or minimum 
                                              Euler L.    

 
 
 
 
The stability of equilibrium of elastic systems is one of most interesting 
branches of structural mechanics. One can often hear that the problems of 
stability/buckling are equivalent to eigenvalue problems and therefore 
identical in the mathematical sense to the analysis of natural oscillations of 
elastic systems1. But this is only partially true. The fact is that the 
mathematical basis of the stability analysis is much wider and more 
multifarious hence more complicated than its formal counterpart, the 
natural oscillation analysis. 

Many a time the insidious peculiarity of the equilibrium stability 
problems (even in the linearized and purely static formulation) was a cause 
for errors both in solutions of particular practical problems and in various 
fundamental statements of the structural stability theory. It is not for 
nothing that the history of the foundation and development of this branch 
of structural analysis, more than of any other branch of this science, is 
overwhelmed by numerous mistakes, paradoxes, misbeliefs, incorrect or 
inaccurate formulations, treatments etc. Quite a few celebrities of the 
science were not able to avoid being vexatiously caught by the tricky net 
of the stability problems; the first of them seems to be the very founder of 
the static stability analysis – the famous author of the epigraph to this 
chapter. 
                                                      

1 The essential point here is that we are talking about the equilibrium stability 
analysis in a linearized formulation. As we noted in the preface to the book, full 
treatment of the geometrically nonlinear problems is beyond the scope of our 
book. 
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A torrent of mistakes, many of which are brilliantly and educatively 
discussed in a well-known book by Y.G. Panovko and I.I. Gubanova [13], 
does not seem to dry up yet. An evidence of this is a commonly popular 
error in advanced computing software the detection and analysis of which 
is described in [15] or [16].   

This is the reason why the author, in spite of the existence of many 
books (some of them outstanding) on the theory of structural stability, 
believes it useful and even necessary to do justice to this branch of 
structural mechanics and treat it from the standpoint of variational 
formulations. The present chapter is thoroughly dedicated to this kind of 
analysis. 

11.1 Stability of systems with a finite number of degrees 
of freedom 

Let us consider an elastic mechanical system with a finite number of 
degrees of freedom (DOFs). To be definite, we will think that the position 
of the mechanical system is defined by n generalized coordinates q1,…, qn 
which together make up a vector of the generalized coordinates, q: 

q = |[q1,…,qn]|T. 

Let E = E(q) be a potential energy of strain of the mechanical system in 
quesiton, and let Пs = Пs(P,q) be a potential of external forces. This form 
of the force potential imports that Пs depends both on the displacements 
and, parametrically, on the external forces defined by vector P. 

We assume the level of the load to be characterized by a single scalar 
parameter λ and to depend on this parameter proportionally. In other 
words, we assume Р =λP  where P  is a fixed known vector which lends 
itself to the name of a unit load vector. 

The above conditions of loading permit us to write the external force 
potential as 

Пs = Пs(λ,q) = ( )sλП q      where    ( ) (1, )s s=П Пq q . (1.1) 

The value of ( )sП q  will be entitled a unit force potential. Note 
immediately that when there is no external force, the force potential 
becomes identical to zero, Пs(0,q) ≡ 0. 

In the system’s position of equilibrium, its full potential energy L is 

L = E(q) – ( )sλП q , (1.2) 
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which is treated as a function of generalized coordinates q and takes a 
stationary value. Or, to put it another way, in the position of equilibrium 
we have 

0s

i i iq q q
∂∂ ∂

= − λ =
∂ ∂ ∂

ПL E       (i = 1,…, n) . (1.3) 

Any solution of the system of equations (1.3) with respect to generalized 
coordinates q defines a certain position of equilibrium. The following three 
options are available: 

• the equilibrium equation system (1.3) has a unique solution; 
• the equilibrium equation system (1.3) has multiple solutions; 
• the equilibrium equation system (1.3) has no solution at all. 

The no-solution case is of no interest because it means the mechanical 
system is unable to counterbalance its external loads. Let qo be a solution 
of the set of equations (1.3). It goes without saying that qo is a vector 
function of the load parameter, λ: 

qo = qo(λ) . (1.4) 

Further we will be interested with the quality of this equilibrium state of 
the system, i.e. we will want to know whether this state is stable or not. We 
should remind a known definition of the stable equilibrium of a 
mechanical system given in courses on theoretical mechanics [11]: 

“The definition of a stability of equilibrium is based on considering 
motions that the system would perform after being unbalanced when its 
points receive fairly small initial deviations from its position of 
equilibrium and fairly small initial velocities. If the system would, after its 
equilibrium has been thus violated, deviate in its subsequent motion by 
only a little from the equilibrium position in question then this position of 
equilibrium is stable”. 

The mathematical language suggests the following translation of the 
above qualitative definition into the terms of ε-δ. Let qo be a displacement 
vector for the equilibrium position. This position is called stable if for any 
arbitrarily small number ε there is a respective small number δ such that 
for any perturbations of the generalized coordinates, δq, and of the initial 
velocities, δq , which satisfy the conditions 

|| ||δ < δq ,    || ||δ < δq , 

the following inequalities are assured at any moment of time t: 
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|| ( ) ||t < εq ,     || ( ) ||t < εq . 

We do not specify any particular norm. The usual approach is to use a 
maximum absolute value of the generalized coordinate and that of the 
generalized velocity, that is, 

|| || max | |ii
q=q ,      || || max | |ii

q=q , 

although any other can be used because all kinds of norms are equivalent 
in a finite-dimensional space. 

In order to find out whether a certain state of equilibrium is stable or 
not, we use the Lagrange–Dirichlet theorem. It involves an analysis of the 
system’s full potential energy for extremum in the vicinity of the 
equilibrium state of interest. If a stationary point of L is a point of 
minimum, then the Lagrange–Dirichlet theorem says the state of 
equilibrium is stable in the sense of the above definition2.  

As is known from calculi, the local minimum of L for a system with 
multiple DOFs will be ensured if the Hessian matrix H of function L is 
positive definite at the point of stationarity, 

H =
2

i jq q
⎡ ⎤∂
⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

L . (1.5) 

Clearly, the components of the Hessian matrix should be calculated at 
q = qo, therefore they are functions of parameter λ. If at a certain fixed λ 
the H matrix is positive definite, then the equilibrium is stable. 

The equilibrium of a mechanical system is assumed to be stable a priori 
for sufficiently small values of the external load. It means the equilibrium 
is stable at λ = 0. By changing λ we find its minimum value λ = λcr at 
which the H matrix loses its positive definiteness. This value of λ = λcr is 
called a critical value (in the Lagrange–Dirichlet sense).   

Another, and a quite typical reasoning for the equilibrium stability 
analysis originates from Leonard Euler’s works and is still taught by 
tradition in most textbooks on structural mechanics. It is based on a partly 
intuitive treatment of the stability rather than on the Lagrange–Dirichlet 
theorem.  

The Eulerian idea of stability of equilibrium is essentially based on a 
totally different definition in which the concept of motion does not 
                                                      

2 We remind that, generally speaking, the Lagrange–Dirichlet theorem gives 
only the sufficient conditions for the equilbrium of a system to be stable. The 
proof of the Lagrange–Dirichlet theorem can be found, for example, in [11].  
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participate at all3. According to Euler, the stability of a mechanical system 
is stable if the system tends to return to its original position after being 
deviated from the equilibrium by a small perturbation of its generalized 
coordinates. This approach also includes a gradual increase of the external 
load and supposes that at a certain moment of time another state of 
equilibrium may become feasible in addition to the original one. This 
second state will be adjacent to the original state in the sense that it will 
differ from the latter by an infinitesimal perturbation in the values of the 
generalized coordinates. In other words, the equilibrium state of the system 
ceases being unique, and one of two possibilities is realized: either the 
equilibrium modes will bifurcate or the curves of the equilibrium states in 
the “load vs. displacements” (n + 1)-dimensional space will have so-called 
limit points4. A value of the load parameter, λ = λe, at which this ambiguity 
of the equilibrium mode is permitted by the mechanical system, is called 
critical (in the Euler sense). A state of equilibrium is thought to be stable 
when the load is lower than the Euler critical value, and the equilibrium is 
unstable when the load is higher than the Euler critical value λe. 

Euler’s formulation of the stability problem seems to contain no allusion 
to the equlibrium stability analysis based on the Lagrange–Dirichlet 
theorem that requires a minimum of the system’s full potential energy in 
its stable position. Strangely, the traditional engineering education, a great 
part of which still exists in our time, not only teaches the Euler approach to 
the engineer but forcedly trains him to use it exclusively in the elastic 
equilibrium stability analysis, leaving the more consistent Lagrange–
Dirichlet analysis only in an earlier course of theoretical mechanics 
without employing it in structural analysis. Of course, under certain 
conditions both approaches produce the same results. However, the latter 
statement needs to be verified because otherwise the methodologies of the 
stability presentment in the courses of theoretical and structural mechanics 
would be inconsistent and a close relation between the two sciences would 
be lost. 

                                                      
3 It was V.V. Bolotin who in 1965 noticed both this fact and the general 

shortcomings of the structural mechanics courses that teach the structural stability 
according to Euler’s approach solely [4].  

4 Points where the equilibrium modes bifurcate are naturally called bifurcation 
points. It was H. Poincaré who introduced the notion of limit points into the theory 
of stability of mechanical equilibrium. No bifurcation of the equilibrium mode 
occurs at a limit point of the curve of equilibrium states, but the tangent to this 
curve is orthogonal to the loading axis, i.e. parallel to the n-dimensional plane of 
displacements. 
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So, now our intention is to validate the Euler method for a fairly general 
case of stability of elastic systems with a finite number of DOFs. The 
validation will consist of a proof of equivalence between the Eulerian 
critical load and that according to Lagrange–Dirichlet. Of course, the 
equivalence will obey certain, though sufficiently general conditions. 

We will expand, purely formally for now, the expression of the potential 
strain energy, E = E(q), and the expression of the force potential, 
Пs = ( )sλП q , into Taylor series over powers of the generalized coordinates 
in the vicinity of the zero vector, q = 0: 

2

1 1 1

1( )
2

n n n

i i j
i i ji i j

q q q
q q q= = =

∂ ∂
= + + +

∂ ∂ ∂∑ ∑∑0 E EE E  

3

1 1 1

1 ...
6

n n n

i j k
i j k i j k

q q q
q q q= = =

∂
+ +

∂ ∂ ∂∑∑∑ E  

2

1 1 1
( ) ...

2

n n n
s s

s s i i j
i i ji i j

q q q
q q q= = =

∂ ∂λ
= λ + λ + +

∂ ∂ ∂∑ ∑∑0 П ПП П . (1.6)

Note that the derivatives of the functions E and Пs in the right-hand parts 
of the above formulas are taken at the zero point q = 0. 

We suppose that the force potential vanishes when there are no 
displacements, i.e. ( )s 0П = Пs(1,0) = 0. Similarly, the potential strain 
energy is zero in the undeformed state of the system. This means E(0) = 0. 

Finally, when there are no external forces (i.e. at λ = 0) the undeformed 
state of the system is postulated to be self-balanced and stable. The state’s 
being self-balanced means in the mathematical language that when there is 
no external action on the system, we have 

( ) 0
i iq q

∂ ∂
= =

∂ ∂
0L E  (i = 1,…, n) . 

Thus, the formulas (1.6) of the expansions of E and Пs into the Taylor 
series in the vicinity of zero become as simple as 

2 3

1 1 1 1 1

1 1 ...
2 6

n n n n n

i j i j k
i j i j ki j i j k

q q q q q
q q q q q= = = = =

∂ ∂
= + +

∂ ∂ ∂ ∂ ∂∑∑ ∑∑∑E EE , 

2

1 1 1
...

2

n n n
s s

s i i j
i i ji i j

q q q
q q q= = =

∂ ∂λ
= λ + +

∂ ∂ ∂∑ ∑∑П ПП    . (1.7)
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In order to investigate the quality of the equilibrium state, we need to 
use the expansions of E and Пs in the vicinity of vector qо rather than zero; 
we assume 

q = qо + δq. 

So, instead of (1.6) we have 
2

o o
1 1 1

1( ) ( ) ...
2

n n n

i i j
i i ji i j

q q q
q q q= = =

∂ ∂
+ δ = + + +

∂ ∂ ∂∑ ∑∑E EE Eq q q , 

2

o o
1 1 1

( ) ( ) ...
2

n n n
s s

s s i i j
i i ji i j

q q q
q q q= = =

∂ ∂λ
+ δ = λ + λ + +

∂ ∂ ∂∑ ∑∑П ПП Пq q q , (1.8) 

where all derivatives are taken at q = qо. Recalling that vector qо 
corresponds to the self-balanced state of the system, we find in accordance 
with (1.3) that 

o o o( ) ( ) ( ) 0s

i i iq q q
∂∂ ∂

= − λ =
∂ ∂ ∂

ПL Eq q q        (i = 1,…, n), (1.9) 

consequently, 

o o( ) ( )+ δ − =L Lq q q  

22

1 1 1 1

1 ...
2 2

n n n n
s

i j i j
i j i ji j i j

q q q q
q q q q= = = =

∂∂ λ
= δ δ − δ δ +

∂ ∂ ∂ ∂∑∑ ∑∑ ПE  (1.10)

The last expression shows that qо is a point of minimum of L(q) if 
increment δL of functional L equal to δL o o( ) ( )= + δ −L Lq q q  is positive 
for any arbitrarily small variations δq, and this is equivalent in its turn to 
the requirement that the following quadratic form should be positive 
definite: 

.
22

1 1

1 1
2 2

n n
s

i j
i j i j i j

q q
q q q q λ

= =

⎛ ⎞∂∂
− λ δ δ = δ δ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∑∑ TПE q r q . 

The elements of matrix λr  of this quadratic form which is actually the 
Hessian matrix, H, are 

22

o o( ) ( )s

i j i jq q q qλ

⎡ ⎤∂∂
= − λ⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

ПEr q q  (1.11) 

and are functions of parameter λ. 
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The rλ matrix will be called a full tangential stiffness matrix of the 
system. This term is based on the consideration that the matrix is a 
generalized characteristic of the instantaneous stiffness at a certain point of 
the system’s balanced state, i.e. the stiffness that corresponds to 
infinitesimal increments of the generalized coordinates, δq.  

We would like to emphasize again that the second derivatives are taken 
at the n-dimensional “point” q = qо the components of which depend on 
parameter λ according to (1.4). It is important to understand that 
parameter λ participates both as a factor at the second term in the 
representation of matrix rλ in (1.11) and as an argument in the second 
derivatives of the strain energy and of the force potential. As it was said 
before, the value of parameter λ at which matrix rλ ceases to be positive 
definite is called critical, λcr (in the Lagrange–Dirichlet sense). 

Now let us determine the Euler critical load in the general case of a 
finite-dimensional system. Euler’s approach is to find out a critical value 
of the load parameter together with the respective equilibrium state of the 
system determined by the equation (1.9), therefore we start by taking a 
perturbed state characterized by vector q = qо + δq, which is also assumed 
to be an equilibrium, that is, 

o o o( ) ( ) ( ) 0s

i i iq q q
∂∂ ∂

+ δ = + δ − λ + δ =
∂ ∂ ∂

ПL Eq q q q q q . (1.12)

Subtracting the equations (1.9) from the equations (1.12) of equilibrium 
of the perturbed state gives 

o o o o( ) ( ) ( ) ( )s s

i i i iq q q q
⎡ ⎤⎡ ⎤ ∂ ∂∂ ∂

+ δ − − λ + δ −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

П ПE Eq q q q q q = 0  (i = 1,…, n) . 

As the variations δqj are assumed to be infinitesimal values, the 
expressions in the brackets can be treated as increments of first derivatives 
of the given functions E and sП  between point qо and the immediately 
adjacent point qо + δq. They can be written equivalently using second 
partial derivatives of the same functions, 

22

o o
1

( ) ( ) 0
n

s
j

j i j i j

q
q q q q=

⎛ ⎞∂∂
− λ δ =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∑ ПE q q    (i = 1,…, n) . (1.13) 
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Recalling the definition of matrix rλ from (1.11), we can rewrite the same 
system of equations in the matrix form: 

λδ = 0r q . (1.14) 

The condition for a nontrivial solution of the homogeneous system of 
equations (1.14) with respect to variations δqj to exist is that the 
determinant of the matrix of this system should be zero, which gives the 
Euler load λe. Thus, the analytical representation of the Euler load is given 
by the equation 

det 0eλ (λ ) =r . (1.15) 

But the same condition (1.15) is a criterion for achieving the Lagrange–
Dirichlet critical load because, according to our convention of stability of a 
self-balanced undeformed state, matrix rλ(0) = ro should be positive 
definite. Therefore, as the λ parameter is changing continuously, matrix 
rλ(λ) can lose its positive definiteness only when the equality (1.15) begins 
to be true. 

Thus, under the above stated conditions the following proposition is 
true: 

The critical Euler load λe is equivalent to the Lagrange–Dirichlet critical 
load λcr. 

As we can see, the fact that the Euler critical load and the Lagrange–
Dirichlet one are equal has been established for a general geometrically 
nonlinear (second-order) analysis. 

11.1.1 A functional of stability – Bolotin’s functional 

The system of homogeneous equations of stability (1.14) with respect to 
variations δq can be treated as a condition of stationarity of a certain 
homogeneous quadratic functional which we will call a stability functional 
and denote by S for the obvious reason. It is apparent that 

1
2 λ= δ δTS q r q . 

Replacing matrix rλ with its representation from (1.11) gives 

2

o
1 ( )
2 i jq q

⎡ ⎤∂
= δ δ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

T LS q q q , (1.16) 
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and now we can see that the stability functional S can be interpreted 
mechanically as a second special variation of the full potential strain 
energy of the system. The ‘special’ word in this statement reflects the fact 
that we do not mean to vary the full potential energy arbitrarily; instead, 
we take the variation in the vicinity of the equilibrium state of interest – 
the second derivatives of L are taken at point qo.  

This critical theoretical proposition was clearly established by 
V.V. Bolotin [5], not for systems with a finite number of DOFs but for the 
general three-dimensional elasticity. He also derived a general stability 
functional for the general three-dimensional elasticity analysis. 

11.1.2 Linear analysis and a linearized formulation of the 
stability problem 

We are going to introduce a few notions to be used in the further 
presentment. 

A square symmetric matrix rо of an order n, 

rо = o
ijr⎡ ⎤⎣ ⎦

2

( )
i jq q

⎡ ⎤∂
= ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
0E , (1.17) 

is called an initial stiffness matrix of the system, and, obviously, rλ(0) = ro. 
The self-balanced undeformed state is postulated to be stable, hence the 
initial stiffness matrix rо is positive definite. 

A vector Q that has n coordinates, 

Q = iQ⎡ ⎤⎣ ⎦ = ( )s

iq
⎡ ⎤∂
⎢ ⎥∂⎣ ⎦

0П , 

will be called a unit load vector.  
Suppose the generalized coordinates qi that participate in the expansion 

(1.7) are very small values in the state of equilibrium. Suppose they are so 
small that we can confine ourselves to using only lowest-power terms in 
the expansion (1.7) when searching for an equilibrium. This means the 
expression of energy E will contain only quadratic terms, and the 
expression of the external force potential, Пs, will contain only linear 
terms. Then (1.7) is replaced by 

o
1
2

= TE q r q ,        s = λ
TП Q q . (1.18) 
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The equations of equilibrium become linear equations, and vector qо 
becomes equal to 

1
o o

−= λq r Q . (1.19) 

The respective mechanical system is linear. This is obvious because, as 
(1.19) shows, displacements qо are linearly dependent on the load. 

The definition of the tangential stiffness matrix rλ given by (1.11) shows 
that the problem of stability makes no sense within the scope of the linear 
analysis where rλ = ro and thus in any linear problem generally because the 
initial stiffness matrix of the system, rо, is positive definite. 

Now let us return to formulas (1.7) and keep in the expansion of E all 
terms up to third order inclusive, and in the expansion of Пs all terms up to 
second order inclusive. In other words, we take into account one more 
term in each expansion comparing to the linear (first-order) analysis. After 
introducing the designations 

3

( )ijk

i j k

a
q q q
∂

=
∂ ∂ ∂

0E ,     
2

( )ij s

i j

b
q q
∂

=
∂ ∂

0П , (1.20) 

the expressions of E and Пs become as simple as 

o
1 1 1

1 1
2 6

n n n
ijk

i j k
i j k

a q q q
= = =

= + ∑∑∑TE q r q ,   
2s
λ

= λ +T TП Q q q bq , (1.21) 

where the square symmetric matrix b of the order n is made up of 
coefficients bij: 

ijb⎡ ⎤= ⎣ ⎦b . 

Note that coefficients a ijk of the “cubic” form ijk
i j ka q q q  are symmetric 

with respect to any couple of their indexes, that is, 

a ijk = a jik = a ikj = a kji . (1.22) 

This is true because the differentiation of a function with respect to its 
three arguments does not depend on the order of taking its derivatives. 

By considering the formulas of single and double differentiation of E as 
given by (1.21), carefully tracking the differentiation process, and taking 
into account the symmetry of coefficients a ijk , we find out that the 
derivative formulas can be generally represented as 
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o
1
2

ij ijk
j j k

i

r q a q q
q
∂

= +
∂
E ,       

2

o
ij ijk

k
i j

r a q
q q
∂

= +
∂ ∂

E  (1.23) 

where o
ijr  is the respective component of matrix ro. To shorten the 

notation, we use a tensor summation over repeated indexes. 
We define a linearized formulation of the problem as one based on third 

order of approximation for E and on second order for Пs, which produce 
the representations (1.21).  

Based on representations (1.21), we can see that if coefficients a ijk are 
not zero (a general case) then the equations of equilibrium like (1.3) are 
nonlinear. To see this, consider these equations of equilibrium: 

o
10 0
2

ij ijk i ij
j j k j

i

r q a q q Q b q
q
∂

= ⇒ + −λ − λ =
∂

L    (i = 1,…, n) , 

or, in another form, 

o
1( )
2

ij ijk ij i
k jr a q b q Q+ − λ = λ    (i = 1,…, n) . (1.24) 

Thus we have a system of square equations with respect to the components 
of vector q. In a particular case, coefficients a ijk may be equal to zero, then 
the set of equations becomes linear, and this can be written in the matrix 
form as 

o( )− λ = λr b q Q . (1.25) 

If we manage to somehow find vector qo which is a solution of (1.24), then 
this calculation procedure is called an analysis in the deformed state. The 
following two terms are responsible for it in the system of equations 
(1.24): 

1
2

ijk ij
j k ja q q b q− λ . 

When we neglect these terms, we have a linear formulation of the problem 
and a solution from (1.19). 

The deformed-state analysis is a lowest level on which we can take into 
account the geometrical nonlinearity: the equations of equilibrium are 
composed not in the original position of the system but in its deformed 
configuration. Of course, even when we have found a solution qo of the 
system of equations (1.24), this does not mean we can avoid checking the 
stability of the state of equilibrium thus obtained. 
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However, an even simpler procedure exists for the stability check. The 
simplest problem formulation is as follows. The equations of equilibrium 
are composed for the linear problem, i.e. we adopt the approximation 
(1.18) to search for a state of equilibrium, so this approach produces 
(1.19). The stability of the equilibrium state is to be found out on the basis 
of the linearized approximations (1.21). According to (1.11), we have 

o o
1
2

ij ij ijk
kr b a qλ

⎡ ⎤⎛ ⎞= − λ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
r  (1.26) 

where okq  are the components of the 1
o o

−=q r Q  vector, i.e. the same 
vector qо calculated at λ = 1. 

Matrix Gr  

1
o2

ij ijk
G kb a q⎡ ⎤= −⎣ ⎦r  (1.27) 

is called a geometric stiffness matrix.  
Thus, the problem of stability in its linearized formulation is an 

eigenvalue problem for the couple of matrices ro and Gr  because (1.26) 
and (1.27) let us write 

o Gλ = − λr r r . (1.28) 

The geometric stiffness matrix Gr  plays a most important role in the 
theory of stability of linearized mechanical systems. This matrix is an 
analogue of the mass matrix m which is used in the theory of natural 
mechanical oscillations. However, the eigenvalue problem in the stability 
analysis is more complex than that in the spectral analysis of natural 
oscillations. This complexity is due to matrix Gr  which, unlike its 
counterpart (matrix m) does not have to be positive definite. 

11.1.3 Example 1 

We’d better give some examples right now in order to illustrate our formal 
consideration of equations with visible mechanical images. We start by 
considering a mechanical system with two degrees of freedom shown in 
Fig. 11.1. 

All sizes in this figure are given for an initial (undeformed) state of the 
system which is supposed to stay in equilibrium when there is no external 
load. This is the state we will count the generalized coordinates from. 
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Fig. 11.1.  Stability of a mechanical system that has two degrees of freedom 

We assume the bars shown in Fig. 11.1 to be perfectly rigid, so all the 
strains are confined to three springs only; the stiffness characteristics of 
those are denoted by с1, с2, с3, respectively. 

The generalized coordinates of the system will be the horizontal, u, and 
vertical, v, displacements of the load application point, Р, so that 

q = |[u,v]|T. 

These two parameters indeed determine the position of the mechanical 
system in space unambiguously because the lengths of the bars are fixed. 
Denoting by u1 and u2 the respective value of the horizontal displacements 
of the end points of the first and second springs (Fig. 11.1 shows an 
imaginable deformed state of the system in a dash line), we derive this 
from the condition that the bars are non-deformable: 

(l + u – u1)2 + v2 = l2 ,        (l – u + u2)2 + v2 = l2 , 

hence 

2
1 1 ( / )u l u l l= + − − v ,      2

1 1 ( / )u l u l l= − + + − v .  (1.29) 

The potential energy of strain, E, of this system is a sum of energies 
accumulated in each of the three springs; it can be written as 

E = 
22 2

31 1 2 2

2 2 2
cc u c u

+ +
v . (1.30) 

Under the given conditions of loading, the external force potential is 

Пs = Pu = λu. (1.31) 

Now we can write out equations of equlibrium of the type (1.9). According 
to the rule of indirect differentiation, 

1 2
1 1 2 2 0u uc u c u

u u
∂ ∂

+ − λ =
∂ ∂

,  1 2
1 1 2 2 3 0u uc u c u c∂ ∂

+ + =
∂ ∂

v
v v

. (1.32) 
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The values u1 and u2 should be treated in these equations as functions of 
generalized coordinates u and v determined by the equation (1.29). 
Further, the differentiation of equations (1.29) gives 

1 1u
u

∂
=

∂
,   2 1u

u
∂

=
∂

,    1
2

/
1 ( / )

u l
l

∂
=

∂ −

v
v v

,   2
2

/
1 ( / )

u l
l

∂
= −

∂ −

v
v v

. (1.33) 

Also, further we will need second partial derivatives of the same functions; 
we’d better write them out right now: 

2
1

3/ 22 2

1

1 ( / )

u

l l

∂
=

∂ ⎡ ⎤−⎣ ⎦
v v

,    
2

2
3/ 22 2

1

1 ( / )

u

l l

∂
= −

∂ ⎡ ⎤−⎣ ⎦
v v

. (1.34) 

Putting (1.33) in (1.32) produces equations of equilibrium in terms of 
displacements, 

1 1 2 2c u c u+ = λ ,   2
1 1 2 2 3 1 ( / ) 0c u c u c l l− + − =v v v v . (1.35) 

One of solutions of the equilibrium equation system (1.35) is obvious. 
This solution is 

o
1 2

u
c c
λ

=
+

,   vо = 0 . (1.36) 

This one will be called the main solution. Obviously, the main solution 
exists at any value of the load parameter λ and at any (positive) values of 
the stiffness characteristics of the springs. 

To complete the picture, we are going to find the other solutions of the 
system of equations (1.35). By assuming v ≠ 0, we derive the following 
from (1.35): 

2
3

1
1

1 ( / )
2

c l l
u

c
λ − −

=
v

,    
2

3
2

2

1 ( / )
2

c l l
u

c
λ + −

=
v

. (1.37) 

To shorten the notation, we denote 

21 ( / )x l= − v , (1.38) 

and derive the following from (1.37) after putting in (1.29): 

  3

12
c lxl u lx
c

λ −
+ − = ,    3

22
c lxl u lx
c

λ +
− + + = .  

We have 
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3 3

1 24 4
c lx c lxu
c c

λ − λ +
= + ,     3 3

1 2

( 1)
4 4

c lx c lxl x
c c

λ − λ +
− = − + .  

Consequently, 

1 2
1 2

1 2 3 1 2

4

4 ( )

c cc c
lx

c c c c c

−
+ λ

=
+ +

,   

2 2
3 1 2

3 1 2 1 2
1 2

1 2 3 1 2

( )( )
2

4 ( )

c c cc l c c c c
c c

u
c c c c c

⎡ ⎤+
− + λ + +⎢ ⎥

⎣ ⎦=
+ +

, (1.39) 

and, according to (1.38), 

21l x= −v . 

Thus, two states of equilibrium can occur in the system: one (the main 
one) is defined by (1.36) and the other (the additional one) is defined by 
(1.39). Further we will be interested with the quality of only the main state 
of equilibrium. The question of stability of the nonlinear solution (1.39) is 
beyond our scope.  

In order to find out whether the main state of equilibrium is stable or 
not, we should turn directly to the Lagrange–Dirichlet theorem. In 
particular, the Hessian matrix for the current example with two DOFs is 

                                         H =

2 2

2

2 2

2

u u

u

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥ =
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂ ∂⎣ ⎦

v

v v

L L

L L
  

1 2
1 2 1 2

2 22 2
1 2 1 1 2 2

1 2 1 1 2 2 32 2

u uc c c c

u u u u u uc c c u c u c

∂ ∂⎡ ⎤+ +⎢ ⎥∂ ∂⎢ ⎥= ⎡ ⎤ ⎡ ⎤⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + + +⎢ ⎥ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

v v

v v v v v v

. 

When considering the stability of the main equilibrium state, we should 
use the solution (1.36) which gives the following if we take into account 
(1.33) and (1.34): 

1

0
0u

=

∂
=

∂ vv
, 2

0
0u

=

∂
=

∂ vv
,  

2
1

2
0

1u
l=

∂
=

∂ vv
, 

2
2

2
0

1u
l=

∂
= −

∂ vv
. 

Thus, the Hessian matrix is as follows in the main state of equilibrium: 
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H =
1 2

1 1 2 2
3

0

0

c c
c u c u c

l l

+⎡ ⎤
⎢ ⎥
⎢ ⎥− +
⎢ ⎥⎣ ⎦

, 

and now it is clear why the condition of positive definiteness of the 
Hessian matrix, H, hence the condition of stability of the main state, is 
equivalent to the requirement that the second diagonal element of the 
matrix be positive (because the first diagonal element is sure to be) 

1 1 2 2
3 0c u c u c

l l
− + > . 

But the state of equilibrium from (1.29) and (1.36) has 

1 o
1 2

u u
c c
λ

= =
+

,    2 o
1 2

u u
c c
λ

= =
+

 

which makes the stability condition 

1 2
3

1 2

0c c c l
c c
−

λ + >
+

. (1.40) 

This inequality shows that the main state of equilibrium is stable at any 
(positive) value of the load parameter λ if 

1 2 0c c≥ > . 

However, if the stiffness values of the first and second springs relate to 
each other differently, 

1 20 c c< < , 

then the condition of equilibrium stability (1.40) holds for λ < λcr where 

1 2
3

2 1
cr

c cc l
c c
+

λ =
−

. (1.41) 

The force value λ = λcr that separates stable and unstable areas of the 
equilibrium is called a critical load value. Fig. 11.2 presents a graph of the 
dependency defined by (1.41). The dependence presented in the figure also 
takes into account the possibility for the system to lose its stability under 
negative loads, i.e. when the force Р is opposite to the direction shown in 
Fig. 11.1. 
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Fig. 11.2.  The critical force vs. the ratio of the spring stiffness values 

Now let us turn to Euler’s concept for finding the critical load in the 
main state of equilibrium for our example. Suppose that, in addition to 
vector qо = |[uо,vо]|T where uо and vо are defined for the main state by 
(1.27), there is an adjacent state of equilibrium defined by a perturbed 
vector of generalized displacements, qо + δq = |[uо + δu, vо + δv]|T, where 
δu and δv are infinitesimal increments (variations) of the components of 
displacement vector q. This means the equilibrium equations (1.33) hold 
together with the equations where the perturbed coordinates participate: 

1 1 1 2 2 2( ) ( )c u u c u u+ δ + + δ = λ , 

    
2

1 1 1 2 2 2 3 2

( )( )( ) ( )( ) ( ) 1 0c u u c u u c l
l
+ δ

+ δ + δ − + δ + δ + + δ − =
v vv v v v v v . 

Substracting (1.35) from the above equations and seeing that v = vо = 0 
and u1 = u2 = uо in the state we are dealing with, we have 

1 1 2 2 0c u c uδ + δ = ,    1 o 2 o 3 0c u c u c lxδ − δ + δ =v v v . (1.42) 

The products of variations of the generalized coordinates are omitted from 
(1.42) being second-order values. According to (1.38) and (1.29), 

o
2 2

o

0
1 ( / )

dxx
d l l

δ = δ = − δ =
−

vv v
v v

,    

1u u l x uδ = δ − δ = δ ,     2u u l x uδ = δ − δ = δ .  

Also, x = 1 for our state of equilibrium. Therefore (1.42) transforms into 

1 2( ) 0c c u+ δ = ,   1 2 o 3( ) 0c c u c l− δ + δ =v v . (1.43) 
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The system of linear homogeneous equations (1.43) with respect to 
variations δu and δv has a nonzero solution only if the following condition 
holds: 

1 2 o 3( ) 0c c u c l− + = , 

which gives the Euler critical load λe after putting in the expression of uо 
from (1.36), 

1 2
3

2 1
e

c cc l
c c
+

λ =
−

. (1.44) 

As we can see by comparing it with (1.41), the Euler critical force λe is 
equal to the critical load λcr that defines the loss of stability according to 
the Lagrange–Dirichlet theorem. This result is quite expectable.  

If we keep only lower terms in the expansions of E and Пs into the 
Taylor series in the vicinity of zero, we arrive at formulas that correspond 
to the linear analysis. The equations of equilibrium rоq = λQ which follow 
from this representation of the strain energy and the force potential 
correspond to the geometrically linear (first-order) analysis. The vector of 
displacements qо = 1

o
−λr Q , which conforms to the geometrically linear  

analysis, characterizes the deformed state of equilibrium of the linear 
system.  

Let us see how the above-introduced notions manifest themselves in the 
example of a system shown in Fig. 11.1.  We have 

o

2 2
2

1 2
o 2 2

32
, 0

0
,

0
u u

c cu uu
c

u = =

⎡ ⎤∂ ∂
+⎡ ⎤⎡ ⎤ ∂ ∂⎢ ∂ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎢ ⎥∂ ∂ ∂⎣ ⎦ v

v
v

v v

q r
E E

E E
, 

Пs = λu,     
1
0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Q ,   o
1 2o

o

1
( )

0

u c c
⎡ ⎤⎡ ⎤ +⎢ ⎥= = λ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

v
q . (1.45)

Comparing with (1.36) shows that the solution of the linear problem 
described by displacements uо = λ/(с1 + с2) and vо = 0 coincides with the 
main deformed state of equilibrium. 

As we have said before, the investigation of quality of the main 
equilibrium state should be based on expanding the E and Пs functions in 
the vicinity of vector qо, not zero, where q = qо + δq. Recall that (1.11) 
defines the elements of matrix λr , 
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22

o o( ) ( )s

i j i jq q q qλ

⎡ ⎤∂∂
= − λ⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
r q qПE , 

as functionally dependent on parameter λ. We emphasize again that the 
second derivatives are taken at the n-dimensional “point” q = qо the 
components of which are also proportional to parameter λ as in (1.45).   

In our problem with two degrees of freedom, in its main equilibrium 
state we have, as we already found out, 

o

2 2
1 22

1 22 2
o 32

, 0

0

0
u u

c c
uu

c c u c
lu

λ

= =

⎡ ⎤∂ ∂ +⎡ ⎤
∂ ∂⎢ ∂ ⎥ ⎢ ⎥= = =−⎢ ⎥ ⎢ ⎥+∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦∂ ∂ ∂⎣ ⎦ v

v

v v

r
E E

E E
 

    
1 2

1 2
o1 2 2 1

3 3
1 2 1 2

0 0 0
0

0 00
( ) ( )

G

c c
c c

c c c cc c
l c c l c c

+⎡ ⎤ ⎡ ⎤
+⎡ ⎤⎢ ⎥ ⎢ ⎥= = − λ = − λ− −⎢ ⎥⎢ ⎥ ⎢ ⎥λ + ⎣ ⎦+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

r r . 

Matrix rG , 

2 1

1 2

0 0

0
( )

G c c
l c c

⎡ ⎤
⎢ ⎥= −⎢ ⎥

+⎢ ⎥⎣ ⎦

r , 

is a matrix of geometric stiffness of the system.  
The condition that the tangential stiffness matrix is no longer positive 

definite, 

o Gλ = − λr r r , (1.46) 

gives the critical value of the load parameter according to Lagrange–
Dirichlet, 

1 2
3

2 1
cr

c cc
c c
+

λ =
−

, 

which was established earlier by (1.41). 
Now let us turn to a linearized formulation of stability for our example. 

By expanding functions (1.29) into a Taylor series in the vicinity of zero 
and keeping terms up to second order inclusive, we obtain 
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2

1 2
u u

l
= +

v ,      
2

2 2
u u

l
= −

v . 

It enables us to represent the expression of E from (1.30), where all terms 
up to third order are kept, as follows: 

2 2
2 2

1 2 2
3

2 2 2

u uc u c u
l l c

⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= + +

v v
vE . 

It follows from here and from (1.31) for the linearized problem that 

2 2
2

2 2
2

o o,u u

uu

u
λ

= =

⎡ ⎤∂ ∂
∂ ∂⎢ ∂ ⎥= ⎢ ⎥∂ ∂⎢ ⎥∂ ∂ ∂⎣ ⎦ v v

v

v v

E E

E E
r =

1 2
1 2 o

1 2 1 2
o o 3

c cc c
l

c c c c u c
l l

−⎡ ⎤+⎢ ⎥
⎢ ⎥

− −⎢ ⎥+⎢ ⎥⎣ ⎦

v

v
. 

We know that uо = λ/(с1 + с2) and vо = 0 for the linear equilibrium state, 
therefore in the linearized problem we have the same formula (1.46) with 
the same matrices ro and rG. 

11.1.4 Example 2 – paradoxes in the stability analysis 

The force potential in the preceding example was a linear function of the 
generalized coordinates of the system, and this fact made our reasoning 
simpler to a certain extent. However, the general expression of the force 
potential can be a more complicated function of the generalized 
coordinates. Now we are going to give an example where a natural choice 
of the generalized coordinates will produce a nonlinear expression of the 
force potential. 

Let us consider a mechanical system with two degrees of freedom as 
shown in Fig. 11.3. The problem assumes the АВ bar to be inflexible, but it 
can change its length due to a longitudinal deformation of a spring inserted 
in the bar and having the stiffness of c2. All sizes in the figure are given for 
an initial (undeformed) state of the system, which is also assumed to be a 
stable equilibrium when there is no external load. This is the state we will 
count our generalized coordinates from. 

The following generalized coordinates of the system will be convenient: 

q1 = θ,    q2 = ∆, (1.47) 
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where θ is an angle of rotation (a slope) of the rigid lever АВ around the А 
point (which is positive when the lever rotates clockwise from its initial 
position), ∆ is a shortening of the rotating lever АВ. Let u and v be the 
respective horizontal and vertical displacements of point В (the positive 
directions of the displacements are shown in Fig. 11.3).  

l

l - D

c
3

c
2

c
1

P

u

v

q

B

A
 

Fig. 11.3.  An example of a mechanical system with two degrees of freedom 

It is easy to see from geometrical considerations that in the general 
geometrically nonlinear case the kinematical parameters, u and v, are 
expressed via the generalized coordinates of the system, θ and ∆, as 
follows: 

( )sinu l= − ∆ θ ,    ( )cosl l= − − ∆ θv . (1.48) 

The basic state of equilibrium, the stability of which we want to find out, is 
described by kinematic parameters θо and ∆о where 

θо = 0,  o
1 2c c
λ

∆ =
+

. (1.49) 

Obviously, the deformed state of equilibrium according to (1.49) conforms 
to the linear formulation of the problem. 

First of all, we should analyze the stability of the equilibrium in the 
general geometrically nonlinear formulation. Let us begin with expressions 
of E and Пs. We have 

[ ]22 2 2 2 2 2

1 2 3 1 2 3

( )cos ( ) sin
2 2 2 2 2 2

l lu lc c c c c c
− − ∆ θ∆ ∆ − ∆ θ

= + + = + +
vE  

and 

[ ]( )coss l l= λ = λ − − ∆ θП v . 



11.1 Stability of systems with a finite number of degrees of freedom      627 

The respective second derivatives of the full potential energy 
L = E - Пs with respect to the generalized coordinates at the points of our 
desirable state of equilibrium are 

[ ]
2

2 3
o o o 1 o 3 o 32

1 2 1 2

( , ) ( ) ( ) c cl c c l l c l
c c c c

⎛ ⎞⎛ ⎞+∂ λ
θ ∆ = − ∆ ∆ + − ∆ − λ = − − λ⎜ ⎟⎜ ⎟∂θ + +⎝ ⎠⎝ ⎠

L , 

            
2

o o( , ) 0∂
θ ∆ =

∂θ∂∆
L ,    

2

o o 1 22 ( , ) c c∂
θ ∆ = +

∂∆
L . 

Now we can write out a full expression for the tangential stiffness 
matrix in an arbitrary point of our state of equilibrium: 

 

2 2

2 32
3

1 2 1 22 2

2 1 2
o o,

0

0

c cl c l
c c c c

c c
λ

θ=θ ∆=∆

⎡ ⎤∂ ∂ ⎡ ⎤⎛ ⎞⎛ ⎞+λ⎢ ⎥ − − λ⎢ ⎥⎜ ⎟⎜ ⎟∂θ ∂θ∂∆⎢ ⎥= = + +⎝ ⎠⎝ ⎠⎢ ⎥⎢ ⎥∂ ∂ ⎢ ⎥+⎢ ⎥ ⎣ ⎦∂θ∂∆ ∂∆⎣ ⎦

L L

L L
r . 

Making the determinant of the tangential stiffness matrix equal to zero 
helps us find critical values of the load parameter. This condition produces 
two critical values: 

1 2

1
( )

cr

c c l
′λ

=
+

,     3

1 2 2 3( )
cr c

c c l c c
′′λ

=
+ +

. 

Obviously, cr′′λ < cr′λ , therefore the final critical value of the load 
parameter for this problem is the smaller one: 

1 2
3

2 3
cr

c cc l
c c
+

λ =
+

. (1.50) 

Let us take a closer look at this formula. In the limit case when the 
stiffness of the lower spring grows infinitely, с2→∞, this formula produces 
a well-known expression, 

3cr c lλ = , (1.51) 

which defines a critical longitudinal force for a perfectly rigid bar of the 
length l with one end of it fixed by a hinge and the other not being able to 
move laterally because of a spring of the stiffness с3 .  

However, in the opposite limit case when с2→0, formula (1.50) gives 

1cr c lλ → , (1.52) 
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and this looks suspicious. Intuition says the system should not lose its 
stability at all when с2→0, so there is a contradiction with (1.52). But this 
is just a first impression which can be deceptive. 

The first thing to note is that the limit case с2→0 combines two opposite 
tendencies. One of them is that the longitudinal compressive force N , 

N = 2

1 2

c
c c
λ
+

, 

which appears in the АВ bar, falls together with stiffness c2. Obviously, 
this tendency increases the critical value of the load parameter. But there is 
another tendency, too. As stiffness c2 decreases, the actual length of the АВ 
bar decreases, too, and at the moment of loss of stability it becomes equal 
to l*, 

*
1 2

crl l
c c
λ

= −
+

. 

The shortening of the AB lever causes the critical value of the load 
parameter to lower. But the critical value of the longitudinal force in the 
AB bar is 

Ncr = c3l* , 

which produces the same formula (1.50) after making the substitutions, 
and this fact brings back our belief in it. 

So what is the matter? To clear up the things, we would like to return to 
the expression of the tangential stiffness matrix rλ and note that the 
condition of its positive definiteness is equivalent to 

(1 )(1 ) 0cr cr′ ′′− λ − λ > . (1.53) 

According to this condition, we define an area of stability and an area of 
instability of the system in the plane of two dimensionless parameters α 
and β by assuming 

2

3

c
c

α = ,   
1 2( )c c l
λ

β =
+

. 

Fig. 11.4 shows the area of instability, where the inequality (1.53) does not 
hold, as a darkened region. The rest of the half-plane α ≥ 0 conforms to the 
stable equilibrium of the system. The meaning of the dash lines in this 
figure will be discussed later. 

Let us imagine the process of increasing the load for a very small value 
of the spring’s stiffness c2, or, more exactly, for a small dimensionless 
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parameter α. At the beginning the equilibrium remains stable, but as the 
load continues to grow we have to cross the lower boundary of the 
darkened area and thus make the equilibrium unstable. 

1

b =
l

( +c
1

c l
2
)

a = c
3

c
2

1

1 + a
1

2 + a

1
a

 
Fig. 11.4.  Areas of stable and unstable equlibrium states of the system  

By continuing to increase the load, we soon cross the second 
(horizontal) boundary of the instability area, and the system returns to a 
stable balanced state! The lower the α parameter is, the shorter the 
segment of the unstable equilibrium gets. In the limit case c2 = 0 this 
segment becomes just an isolated point (α = 0, β = 1). So what kind of 
equilibrium can we see in this secondary position?  

Let us switch from formal mathematical transformations to the 
mechanical treatment of the area. It is easy to notice that the upper part of 
the stable equilibrium area conforms to such enormous deformations in the 
system that move the B point below the A point; the external force P 
travels down there, too. Thus, the AB bar is tensioned rather than 
compressed in that area. It takes one glance of a mechanician to conclude 
that this state of equilibrium is totally stable. Thus, the tendency (1.52) by 
no means contradicts our first intuitive apprehension of the stability of 
equilibrium at c2 = 0.   

As we can see, even this simple example helps confirm our introductory 
thesis of this chapter about the insidious peculiarity of the equilibrium 
statiblity problems. 

Note that the previous derivation was based on the general nonlinear 
geometric relationships. Our next step is to construct a linearized 
formulation of the stability problem. 

First of all, let us represent functions (1.48) as a Taylor series where 
only the second-order and lower terms are kept: 

( )u l= − ∆ θ ,    
2

2
l θ= ∆ +v . 

The potential strain energy E looks as follows, up to third-order terms: 



630      11 VARIATIONAL PRINCIPLES IN STABILITY ANALYSIS 

2 2 2 2 2 2 2 2 2

1 2 3 1 2 3
2

2 2 2 2 2 2
u l l lc c c c c c∆ ∆ + ∆θ ∆ θ − ∆θ

= + + = + +
vE . 

At the same time, the force potential is represented by an expansion with 
the accuracy up to second-order terms, which gives 

2

2s
l⎛ ⎞θ

= λ = λ ∆ +⎜ ⎟
⎝ ⎠

П v . 

Thus, in the linearized formulation of the problem we must use the 
following expression of the full potential energy: 

2 2 2 2 2 2 2

1 2 3
2

2 2 2 2
l l l lc c c

⎛ ⎞∆ + ∆θ ∆ θ − ∆θ θ
= + + − λ ∆ +⎜ ⎟

⎝ ⎠
L . 

Now we have 
2

2 2 3
o o 1 3 o 3 32

1 2

2( , ) ( 2 ) c cc c l c l l l c l
c c

⎛ ⎞+∂
θ ∆ = − ∆ + − λ = − λ⎜ ⎟∂θ +⎝ ⎠

L , 

            
2

o o( , ) 0∂
θ ∆ =

∂θ∂∆
L ,    

2

o o 1 22 ( , ) c c∂
θ ∆ = +

∂∆
L . 

The condition of positive definiteness of rλ produces an expression of 
the critical load in the linearized analysis: 

1 2
3

2 32cr
c cc l

c c
+

λ =
+

. (1.54) 

But this expression is totally different from the “correct” formula (1.50)! 
First of all, let us consider the limit cases again. As с2→∞, formula 

(1.54) of the critical load leads to a correct result, i.e. to the same 
formula (1.51). If we make с2 tend to zero, we will have a halved result 
comparing to (1.52): 

1 / 2cr c lλ → . (1.55) 

What then, another paradox? 
Rest assured there is no paradox at all. Indeed, why should we believe 

the critical loads calculated by the linearized method must always be equal 
to those of the nonlinear approach? There is no reason to believe so. But 
then we have the question to what extent the linearized models are 
applicable in the stability analysis.  
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Recall that the linearized formulation of the stability problem implies 
the check of stability of an equilibrium of a linear system, not just any 
equilibrium. Engineers know well that the error due to the linearization of 
the analysis is acceptable only when the relative strains in a structure’s 
elements are much less than one, say of the order of magnitude 10-2 or 
even less. Therefore the linearization of the problem, both for the purpose 
of finding a state of equilibrium and for analyzing its stability, may be 
justified only for small relative strains5. Otherwise the error of the solution 
could get unacceptably large. 

The smallness of the strains means in our problem that the relative 
shortening of bar AB is small. In other words, if we assume the 
linearization to be possible, therewith we imply that the following estimate 
holds: 

1 2

1
( )c c l

λ
β = <<

+
. 

In terms of dimensionless designations, the formula (1.54) can be rewritten 
as 

1/(2 )crβ = + α , 

and its applicability implies, roughly speaking, that 

2 3/ 100c cα = > . 

Under these conditions, formula (1.50) rewritten in the same dimensionless 
designations,  

1/(1 )crβ = + α , 

differs little from the approximate formula (1.54). The solution of the 
paradox is that passing to the limit as с2 → ∞ is justified while с2 → 0 is 
not allowed. In the latter case the condition of smallness of strains β, 
which is equivalent to a big α, is violated inevitably. 

                                                      
5 It is exactly “may be justified” not simply “is justified”. The smallness of the 

strains is a necessary condition for the linearization to be possible but not 
sufficient. As an example, we can consider a very shallow von Mises’ truss the 
equilibrium state of which, determined by the linear theory, can be too rough an 
approximation of the true state defined by nonlinear equations. 
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A remark on a non-invariant critical load with respect to the 
choice of generalized coordinates 

There is an important question that comes up with regard to the linearized 
analysis of stability. This question is somehow ignored in all books on 
stability that we know of. The question is why there is no invariance in the 
formulas of the critical load with respect to the choice of generalized 
coordinates. If we deal with the full nonlinear formulation, then the 
invariance obviously takes place at least when we investigate the stability 
of the same state of equilibrium which is an exact solution of the 
respective nonlinear equations. But we are interested with the linearized 
analysis which, as we already know, can produce approximate formulas of 
the critical load. Therefore it is reasonable to expect that the invariance can 
be lost in the linearized analysis. 

This can be easily demonstrated by the example of the same system 
shown in Fig. 11.3. This time the generalized coordinates will be 
kinematical parameters u and v, and (1.47) will be replaced by 

q1 = u,    q2 = v. (1.56) 

From the Pythagorean theorem, 
2 2 2( ) ( )l u l− ∆ = + − v , 

we obtain this in a formal mathematical way: 

2 2
2 2

2 2( ) 1 1 2 ul u l l
l l l

⎛ ⎞
∆ = − + − = − − + +⎜ ⎟⎜ ⎟

⎝ ⎠

v vv . (1.57)

The minus sign only is kept intentionally before the square root in the 
above formula because it is this sign that corresponds to small strains when 
∆ << l. Also, in the state of equilibrium of the linear system we should 
assume 

o 0u = ,   o 1 2/( )c c= λ +v . 

Expanding the function (1.57) into a Taylor series gives, up to quadratic 
terms: 

2 /(2 )u l∆ = −v . 

Now we can rewrite the expression of the system’s full potential energy up 
to the third-order terms: 
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2
2

2 2 2 2 2

1 2 3 1 2 32 2 2 2 2 2

u
u ulc c c c c c

−∆
= + + − λ = + + − λ

vvv vv vL . 

Calculation of second derivatives of the full potential strain energy in 
the state of equilibrium gives 

2
o

o o 3 22 ( , )u c c
u l
∂

= −
∂

vvL ,      
2

o o( , ) 0u
u
∂

=
∂ ∂

v
v

L ,      
2

o o 1 22 ( , )u c c∂
= +

∂
v

v
L . 

Hence another expression of the critical load: 

1 2
3

2
cr

c cc l
c
+

λ = . (1.58) 

Rewriting this formula in a dimensionless form gives 

1/crβ = α . (1.59) 

We already know that all three expressions for the dimensionless value of 
the critical load parameter actually give the same result, in spite of 
differences in their written forms, and differ only in the relative strain 
components which can be ignored comparing to one. Or,   

1 1 1
(1 ) (2 )≈ ≈α + α + α  

at sufficiently large values of α.  
Nonetheless, the very formulas for the critical values of the load in the 

linearized problem formulation depend on the choice of the generalized 
coordinates. This is what we mean by saying there is no invariance in the 
formulas. 

In Fig. 11.4, dashed lines depict two more curves that conform to the 
critical loads from two versions of the linearized problem formulations. As 
we can see, one of the curves is below the accurate solution of the 
nonlinear problem while the other is above. Hence a conclusion: the sign 
of the error introduced by the linearization is undefined.   

* * *  
The analysis of the above two examples might seem too cumbersome. 

This is indeed so, but we have an excuse: this complicated analysis is a 
sign of our great wish to demonstrate the technique of direct application of 
the Lagrange–Dirichlet theorem to the analysis of stability of equilibrium 
of a mechanical system or structure. The traditional way of calculating 
critical forces, which is based on a so-called static method, for systems 
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with a finite number of DOFs has been described in sufficient detail in 
many books and textbooks such as [1], [18], [2]. Therefore we can omit 
demonstrations of its techniques in application to the above examples. 
Another incentive for us to discuss the technique of direct application of 
the Lagrange-Dirichlet theorem so thoroughly is the fact that this analysis 
is especially convincing in situations where so-called paradoxes take place. 
The situations like that could hardly be resolved within the scope of the 
purely static critical load analysis. 

11.2 Variational description of critical loads 

We have found that the problem of equilibrium stability in the linearized 
formulation is equivalent to a spectral problem for a couple of matrices 
one of which (the geometric stiffness matrix rG) is not necessarily positive 
definite. 

The general characteristic equation, 

o| | 0G− λ =r r , (2.1) 

will have p positive roots and q negative ones so that p + q ≤  n. The 
negative eigenvalues determine, according to their physical sense, the 
critical values of the load parameter when all the external forces alter their 
direction simultaneously.  

Obviously, the most practical numbers are two lowest absolute critical 
values of the load parameter (of opposite signs). These two define an 
admissible range of the load values that ensures the stable equilibrium of a 
system6. However, it does not mean higher eigenvalues of the 
characteristic equation (2.1) have no practical sense, as it can be often read 
in various sources. Considerations and examples concerning this subject 
are given in our book [16].   

Let a number λcr be one of the roots of the characteristic equation (2.1). 
It means the homogeneous system of equations (1.14) allows a nontrivial 
solution with respect to vector δq at λ = λcr. In its physical sense, the 
components of the respective eigenvector δq characterize such 
relationships between infinitesimal deviations of the generalized 

                                                      
6 It can be enough in many cases to consider only positive eigenvalues of the 

characteristic equation (2.1) – when the sign of the load cannot alter. For example, 
the self-weight of a structure always has the same fixed direction according to the 
gravity. However, there can be other types of loads such as loads on a bridge 
caused by a braking rolling stock; those can act in either direction. 
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coordinates from the state of equilibrium which permit sign alteration of 
the second variation of the system’s full potential energy.  

The eigenvector δq is said to define a mode of buckling (loss of stability) 
of the system. Further we are going to drop the designation of the buckling 
mode as δq and use a more convenient designation of z; this provides a 
symmetry with the natural oscillation analysis. Thus, in the new 
designations we have 

o( )cr G− λ = 0r r z . (2.2) 

To distinguish between positive and negative eigenvalues of the couple 
of matrices ro and Gr , we order them separately by defining 

2 1 1 2... 0 ...q p
− − − + + +λ ≤ ≤ λ ≤ λ < < λ ≤ λ ≤ ≤ λ . (2.3)

Clearly, at a given loading intensity λ the equilibrium is stable if 
1 1
− +λ < λ < λ . Therefore the open interval 1 1( , )− +λ λ  is called an area of  

buckling (loss of stability).  
The theory of equilibrium stability wields the term of a system’s degree 

of instability. A state of equilibrium is said to have the degree of instability 
equal to s at a given λ if one of the two conditions holds: 

1s s
+ +

+λ < λ < λ      or    1s s
− −
+λ < λ < λ . (2.4) 

We will say that vector i
+z  is i-th positive mode of buckling of the 

system if 

o( )i G i
+ +− λ = 0r r z   (1 ≤ i ≤ p). 

Similarly, we define vector i
−z  as i-th negative mode of buckling if   

o( )i G i
− −− λ = 0r r z   (1 ≤ i ≤ q). 

We emphasize that these definitions relate the poisitivity (or negativity) of 
a buckling mode not to the signs of the components of the mode but to the 
sign of the respective eigenvalue for this mode. 

11.2.1 A Rayleigh ratio and a recursive variational calculation 
of critical loads 

Here we introduce a formal Rayleigh ratio for the equilbrium stability 
analysis by carrying this notion over from the frequency spectral analysis 
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and using it to search for a spectrum of critical values of the load 
parameter. Similarly to (10.2.28), we have 

o( )
G

=
z r zz
z r z

T

Tr . (2.5) 

The critical difference between the Rayleigh ratio (2.5) and its 
frequency-analysis counterpart (10.2.28) is that formula (2.5) does not 
guarantee the positivity of its denominator. 

We cannot, unfortunately, mimic our reasoning from the frequency 
analysis to find conditions of stationarity of this new Rayleigh ratio. The 
matter is that matrix rG is not positive definite and therefore cannot 
generate a metric, so we cannot use the normalization condition 1G =z r zT  
either. However, we have another opportunity at hand, and we will not be 
slack to use it. 

Suppose the Rayleigh ratio takes a stationary value on a certain vector z. 
This means 

0
iz

∂
=

∂
r    (i = 1,…, n) . 

Representing formula (2.5) as 

o( ) G =z z r z z r zT Tr  

and differentiating both parts of it with respect to zi yields 

o2 2ij ij
G G j j

i

r z r z
z
∂

+ =
∂

z r zTr r . 

But ∂r/∂zi = 0 at the point of stationarity, so at the same point we have 

o( )G− = 0r r zr . (2.6) 

Now it is clear that the stationary values of the Rayleigh ratio r are 
precisely equal to the eigenvalues of the couple of matrices rо and rG, and 
these eigenvalues are taken on the respective eigenvectors. 

As we have already ordered all stationary values of r according to (2.3), 
therewith we have established the following two propositions, which 
concern lower critical values of the load parameter: 

The lowest positive value of functional r(z) is taken on first positive 
eigenvector 1

+z , and this value is equal to the least positive eigenvalue 1
+λ  

of matrix rо with respect to matrix rG, i.e. 
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1 1min ( ) ( ) += = λr r +z z , 

where the minimum is searched for among all vectors z that satisfy the 
condition 0G >Tz r z . 

Similarly, 

The lowest (by absolute value) negative value of functional r(z) is taken on 
first negative eigenvector 1

−z , and this value is equal to the least (by 
absolute value) negative eigenvalue 1

−λ  of matrix rо with respect to 
matrix rG, i.e. 

1 1min | ( ) | ( )− −= − = −λr rz z  

where the minimum is searched for among all vectors z that satisfy the 
condition 0G <Tz r z . 

Let λα and λβ be two different eigenvalues (no matter whether they are 
of the same or opposite signs), and let zα and zβ be their respective 
eigenvectors. This means 

o Gα α α= λr z r z    and    o Gβ β β= λr z r z  

We multiply the first of the equalities by βz
T  and the second by αzT  on the 

left and carry λ over to the left-hand parts of the equalities: 
1

o G
−
α β α β αλ =z r z z r zT T   и  1

o G
−
β α β α βλ =z r z z r zT T . 

The right-hand parts of these equalities are equal seeing that matrix rG is 
symmetric. As matrix rо is symmetric, too, hence 

1 1
o( ) 0− −

α β β αλ − λ =z r zT . 

The eigenvalues λα and λβ are different (and both nonzero), so the 
respective eigenvectors zα and zβ are orthogonal in the metric generated by 
matrix ro, i.e. in the original energy metric, 

o( , ) 0β α =z r z . (2.7) 

Further we will say eigenvectors zα and zβ are E-orthogonal meaning the 
equality (2.7). 

The same eigenvectors also obey a similar equality: 
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( , ) 0Gβ α =z r z . (2.8) 

However, the equality (2.8) cannot be interpreted in terms of orthogonality 
of vectors zα and zβ because matrix rG does not generate any metric. 

As all (p + q) eigenvectors are linearly independent, we can suggest that 
the relationships (2.7) and (2.8) hold, generally, for any couple of different 
eigenvectors zα and zβ.    

Returning to the proposition about the stationarity points of the Rayleigh 
ratio established above and considering the order of the eigenvalues 
defined by (2.3), we arrive at a recursive variational definition of the 
critical values of the load parameter: 

The least positive value of functional r(z), sought for in the set of vectors z 
E-othogonal to vectors 1 1,..., i

+ +
−z z , is taken on i-th positive mode of 

buckling, i
+z , and this least value is equal to i-th positive critical value of 

the load parameter, i
+λ , that is, 

min ( ) ( )i i
+= = λr r +z z  

under the conditions: o 1 o 10,..., 0i
+ +

−= =T Tz r z z r z  and 0G >Tz r z . 

Similarly, 

The least (by absolute value) negative value of functional r(z), sought for in 
the set of vectors z E-othogonal to vectors 1 1,..., i

− −
−z z , is taken on i-th 

negative mode of buckling, i
−z , and this least (by absolute value) negative 

value is equal to i-th negative critical value of the load parameter, i
−λ , 

that is, 

min | ( ) | ( )i i
− −= − = −λr rz z  

under the conditions: o 1 o 10,..., 0i
− −

−= =T Tz r z z r z  and 0G <Tz r z . 

The above recursive variational definitions of the critical loads are an 
extension of the Rayleigh–Weber variational principle onto the stability 
analysis of elastic systems. 
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11.2.2 A remark on the effect of constraints on the stability of a 
linearized elastic system 

The effect of constraints on the stability of an elastic system is not so 
easily found out as it may seem from the first glance. The matter is that the 
stability analysis requires a more careful classification of the constraints 
than that needed for analyzing the effect of the constraints on the 
frequency spectrum of an elastic structure. 

A point of view quite frequent among engineers – that the constraints 
always have a stabilizing effect – can lead to bad mistakes. To see this, 
take a look at an example shown in Fig. 11.1 and imagine that this system 
is subjected to an external rigid constraint that prevents the right end of the 
bar from moving. The mathematical interpretation of this constraint is 

u2 = 0 . (2.8) 

The same constraint can be also treated as an infinite stiffness of the 
right spring, i.e. we can think that с2 → ∞ makes the system constrained. 
Passing to the limit in (1.41) gives a critical value of the load 
parameter crλ  for the constrained system: 

3cr c lλ = < 1 2
3

2 1
cr

c cc l
c c
+

λ =
−

. 

In other words, the constraint of (2.8) has a destabilizing effect on the 
system. The same conclusion follows from the graph in Fig. 11.2 – the 
critical force falls together with the ratio с1/с2. 

Why does it happen so and can we nonetheless indicate conditions 
under which constraints have a guaranteed stabilizing effect on a 
mechanical system?   

Before we answer this question, it is useful to use the same example to 
analyze the effect of other constraints on the critical value of the load 
parameter. Now suppose that the system is subjected, unlike (2.8), to the 
constraint of the following kind: 

u1 = 0 . 

The mechanical meaning of this constraint is a prohibition of the 
longitudinal displacements at the left end of the left bar. Analysis of the 
same graph in Fig. 11.2 shows that even at с1 > c2, let alone с1 → ∞, the 
stability of the system is always stable under positive loads. This means 
the constraint u1 = 0 is a stabilizing one for this particular state of 
equilibrium. 
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Finally, it is easy to see that the v = 0 constraint is also a stabilizing one 
because the system with it cannot lose its stability at all under any kinds of 
external actions. 

We would like to note, returning to the destabilizing effect of the 
constraint (2.8), that that constraint both confines the potential mode of 
buckling and changes the very state of equilibrium. This means imposing 
the constraint (2.8) leads to a problem of stability of a totally different state 
of equilibrium7.  

We can distinguish constraints based on the time when they are imposed 
(conditionally). On one hand, there are constraints imposed on the system 
before the moment it is loaded. We will refer to such constraints as prior 
constraints. It is essential that a prior constraint is involved in the system’s 
behavior in the course of its being loaded and, generally, affects the 
system’s deformed state of equilibrium. However, there can be also the 
situation when a constraint is imposed on an already loaded and deformed 
system; this constraint will be unstressed. Such constraints will be referred 
to as posterior constraints. A posterior constraints does not change the 
state of equilibrium, but it confines a potential mode of buckling. 

Of course, there can be prior constraints which do not change the state 
of equilibrium in any way. Following a nomenclature suggested by 
A.R. Rzhanitsin [19], this kind of constraint will be referred to as an 
immobile constraint. The constraint v = 0 in the above example is just this 
kind of constraint, while both u1 = 0 and u2 = 0 cannot be categorized as 
such. 

Suppose the system is subjected to either a posterior constraint or a prior 
but immobile one. This means the system is in the same state of 
equilibrium described by vector qo but is confined in its displacement 
variations δq. According to our notation, such constraints are imposed on 
the components of vector z only. Further on, by the term ‘constraint’ we 
will mean this kind of constraints. 

The general equation of such a constraint (supposed to be linear) is 

a1z1 + a2z2 +…+ anzn = 0 (2.9) 

with at least one of its coefficients ai not equal to zero. 
We reformulate the constraint equation (2.9) by introducing the 

constraint vector b like this: 

                                                      
7 This is another evidence of the fact that the popular and seemingly harmless  

abridgement “stability of a structure” instead of the correct term “stability of an 
equilibrium of a structure” is not actually harmless at all. 
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b = 1
o
−r a      where    a = |[a1,…,an]|T . 

In these designations, the constraint equation (2.9) can be treated as a 
condition of E-orthogonality between the constraint vector b and vector z: 

o ( , ) 0= =b r z b zT
E . (2.10) 

We know from the recursive variational definition of the critical loads 
that 1 min ( )+λ = zr  for all : 0G >z z r zT  and 1 min | ( ) |−−λ = zr  for all 

: 0G <z z r zT . The same critical loads 1
+λ  and 1

−λ  for the system with the 
constraint (2.10) are the same minima but calculated under an additional 
condition, (2.10). But no additional limitation can lower the minimum. 
Hence 

1 1
+ +λ ≥ λ   and  1 1

− −λ ≤ λ . (2.11) 

Thus, imposing an immobile constraint can either extend the area of 
stability of the system or leave it unchanged. It means that the constraints 
of this kind are ones that stabilize the equilibrium of the structure. At the 
same time, prior constraints which are not immobile can be either 
stabilizing or destabilizing for the equilibrium. 

In the same way as we did in the frequency analysis, we can give an 
independent variational definition of the critical loads and derive an 
analogue of the Routh theorem concerning the effect of constraints on the 
spectrum of critical forces. We are not going to do it now; instead, we 
suggest that the reader himself modify the respective formulations. It is not 
hard to do by using all stages of reasoning from Chapter 10 and take 
account of changes introduced into the eigenvalue spectrum by the 
presence of negative critical forces. We present only the final conclusion 
about the effect of the constraints: 

By imposing posterior or immobile constraints on a mechanical system, the 
positive part of the spectrum of critical values of the load parameter can be 
shifted only to the right on the numerical axis, and the negative part of the 
spectrum can be shifted only to the left. 

As for the notion of the Rayleigh ellipsoid used in the frequency 
spectrum analysis, it cannot be transferred to the stability analysis. The 
reason is obvious – the geometric stiffness matrix is not guaranteed to be 
positive definite. 
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11.2.3 Papkovich theorem of convexity of the stability area 

The case when a structure is subjected to one fixed external action is rather 
an exception than a rule. Nearly always an engineer deals with a set of 
independent loads which can act in most various combinations. In this 
regard we encounter a problem how to choose a worst combination of the 
external actions both in the sense of strength and in the sense of a stability 
margin in states of equilibrium which correspond to various combinations 
of external loads. 

We begin with a simple example. Imagine that an elastic system shown 
in Fig. 11.5 can be subjected to two independent forces P1 and P2, and the 
forces can vary within wide limits in their absolute value and can act in 
both directions. Three bars of the system are assumed to be perfectly  rigid. 

P
1

P
2

l l l

k k

c c
A B

 
Fig. 11.5.  The stability of equilibrium of an elastic system 

under two independent loads 

If we fixate the ratio of the forces, P1/P2, then we can find a state of 
equilibrium and determine boundaries of the stability area for it following 

deformed state which is supposed to be feasible at the moment when the 
system loses its stability. Fig. 11.6 shows a hypothetic mode of buckling. 
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Fig. 11.6. Reactions in the constraints at the moment of loss of stability 

In the linear formulation of the problem – one for which we are 
investigating the stability of equlibrium – the reactions in the horizontal 
springs of stiffness k will be both equal to (Р1 + Р2)/2 as shown in 
Fig. 11.6. Denoting the displacements of the hinged nodes above the 
vertical springs in the course of buckling by u1 and u2, we find that the 
respective reactions will be сu1 and сu2 where c is a stiffness of the vertical 
springs installed above the hinged nodes. 

the standard procedure. Let us try to solve the problem generally by  
the Euler (static) method. We compose equations of equilibrium for the 
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Reactions RA and RВ of the vertically fixed supports (see Fig. 11.6) are 
easily determined from equations of equilibrium in terms of moments with 
respect to points А and В. We have 

1 2
1 2

1 12
3 3A

P PR c u c u
l l

⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,  1 2
1 2

1 1 2
3 3B

P PR c u c u
l l

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Now we use the fact that the moments are zero in the hinged nodes. This 
gives 

1 2
1 0

2A
P PR l u+

− = ,    1 2
2 0

2B
P PR l u+

+ = . 

Substituting in the above expressions of reactions RA and RВ yields two 
simultaneous linear homogeneous equations for u1 and u2: 

1 2 1 2 2(4 3 ) (2 2 ) 0cl P P u cl P u− − + + = ,  1 1 1 2 2(2 2 ) (4 3 ) 0cl P u cl P P u− + + + = .  

Equating the determinant of the system to zero gives the following 
equality for the critical state: 

2 2 2
1 2 1 24 4 ( ) ( ) 0c l cl P P P P+ − − + = . (2.12) 

It is convenient to introduce dimensionless force variables p1 and p2 by 
designating 

1
1

Pp
cl

= ,       2
2

Pp
cl

= . 

In terms of these, the equation (2.12) becomes 
2

1 2 1 24 4( ) ( ) 0p p p p+ − − + = . (2.13) 

This equation defines a certain curve in the plane of parameters p1 
and p2 as shown in Fig. 11.7. Clearly, a two-dimensional area Ω bounded 
by this curve is an area of stability of the system’s equilibrium. The 
stability is unstable beyond this area. Fig. 11.7 shows the area of 
stability, Ω, the boundary of which satisfies the equation (2.13). 

As we can see, point (p1 = 0, p2 = 0) belongs to the area of stability Ω – 
expectably, because the point conforms to the unloaded system. But the 
main thing is that the Ω area is a convex area. 

By the way, note that the critical loads do not depend on the stiffness of 
the horizontal springs k8. 
                                                      

8 The only important thing here is that both horizontal springs (on the left and 
right ends of the system) have the same stiffness. If the stifness values were 
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Fig. 11.7.  An area of equilibrium stability 

The property of convexity of the Ω area is not extrinsic to this problem. 
It turns out that the following very important theorem holds true; its author 
is P.F. Papkovich [14]: 

When an elastic mechanical system is subjected to a combined loading, the 
area of its equilibrium stability, Ω, built in the space of loads within the 
scope of the linearized stability analysis, is a convex area that contains the 
coordinate origin. 

Papkovich was the first both to detect the fact of the convexity and to 
give a rigorous proof of that. The proof by Papkovich is, however, pretty 
complex, therefore other researchers tried subsequently to find other ways 
of validation. In particular, B.M. Broude [8] and A.R. Rzhanitsin [18] gave 
theirs.   

                                                                                                                          
related differently, the critical forces would be different, too. It should be noted 
also that the whole reasoning holds true only as long as the stiffnesses k are the 
same and finite. If the horizontal springs were replaced with rigid constraints, 
passing to the limit at k→∞ would be incorrect for the following reason. When the 
stiffness values are infinite, the relation between them is undefined, and so is the 
equlibrium state of the system, therefore the critical load is undefined as well. A 
similar example is given in a book by N.A. Alfutov [1] where those springs are 
replaced with rigid constraints, but the circumstance we indicate here was not 
noticed by the author of that book. By the way, Fig. 1.22 in the book by Alfutov 
[1] shows the stability area as closed while we have it open in Fig. 11.7. As can be 
easily seen, the conclusion that the Ω area is closed is a mistake for inextensible 
bars. To see this, imagine that forces Р1 and Р2 are equal in their value and 
opposite in their directions, Р1 = –Р2, so that they both extend the middle bar. This 
means the tension stresses remain completely within the limits of the middle bar, 
and the longitudinal force in the two extreme bars is zero, so the system cannot 
lose its stability with this distribution of the forces. The reasoning of Alfutov 
becomes correct if we assume the bars in the system to have an equal, perhaps 
very large but finite stiffness for tension/compression. 
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Before we start proving the Papkovich theorem, we would like to 
introduce a couple of definitions and establish one important auxiliary 
proposition.  

Let a mechanical system be subjected to independent mechanical force 
actions in the number of m. Without limiting the generality, we can assume 
that an arbitrary combination of the loads is described by m-dimensional 
vector P where P = |[P1,…,Pm]|T. We represent vector P as an expansion 
over unit vectors, 

1

m

Pα α
α=

=∑P e ,     где | [0,...,0,1,0,...,0] |α =e T . 

In other words, a unit vector αe  has all its coordinates equal to zero except 
for α-th component which is equal to one.  

Let us introduce the designation λ for the length of vector Р in the load 
space, 

2 2
1 ... mP Pλ = + + . 

Now the load vector, Р, is represented as 

1

m

Pα α
α=

= λ = λ∑P e P ,       
1

m

Pα α
α=

=∑P e ,      /P Pα α= λ , 

where vector P  is by construction an arbitrary unit-length vector in the 
load space. 

In the m-dimensional load space with axes e1, e2,…, em, we can find a 
critical value of the factor λ = λcr for any fixed load defined by the 

components of a unit load vector, 1,..., mP P⎡ ⎤= ⎣ ⎦P
T

, by which to multiply 

all components of the unit load vector to make the stability unstable in the 
linearized formulation of the problem. The geometrical interpretation of 
parameter λcr in the load space is a critical length of the load vector. 

In this way the critical values of the load parameter become functions of 
the unit load vector, P  , 

1 1 ( )+ +λ = λ P . (2.14) 

If suffices to find only the dependence between the first positive critical 
values and the load combination vector P . The negative critical values 
will not be lost in this way; they will be found automatically by changing 
the P  vector to its opposite – P . 
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The functional relationship (2.14) defines an (m–1)-dimensional surface 
Г in the load space (the surface is not necessarily closed). This surface is 
described by the set of vectors 1 ( )+λ P P , and our task is to prove the 
proposition that this surface, Г, bounds a convex m-dimensional area Ω 
that contains the origin of the coordinates. One possible geometrical 
interpretation for relationship (2.14) is a mapping of the surface of a unit-
radius sphere from the load space onto the boundary Г of the equilibrium 
stability area so that an arbirtrary unit-length vector P  is extended by the 
extension factor 1 ( )+λ P  and mapped into a vector the end of which belongs 
to Г.   

What has been said above implies that the functional relationship (2.14) 
is to be found from the following characteristic equation parametrized 
by P : 

odet ( ) 0G⎡ ⎤− λ =⎣ ⎦r r P , (2.15) 

and, clearly, the initial stiffness matrix ro does not depend on the load 
vector P .  

The following proposition is true, which we will call a lemma of linear 
dependence of the geometric stiffness matrix, rG, on vector P . Viz.: the 
components of the matrix of geometric stiffness, rG , are linear 
homogeneous functions of the components of vector P . 

To say it with math, 

1 1 2 2 ...ij ij ij ij
G m mr P P P= ρ + ρ + + ρ , (2.16) 

where ij
αρ  are certain constants (α = 1,…, m). Obviously, matrix ij

α⎡ ⎤ρ⎣ ⎦  is 

a matrix of geometric stiffness that corresponds to the load upon the 
system in the form of unit vector eα. 

To prove the proposition, we use the general formula (1.27) for the 
components of the geometrical stiffness matrix, 

o
1
2

ij ij ijk
G kr b a q= − . 

Apparently, the force potential Пs for the combined load we deal with can 
be represented as a sum of the potentials of particular forces, i.e. as 

1 1( ... )s m mP g P g= λ + +П , 

where gα = gα(q) are some functions of the generalized coordinates,  
q1,…, qn. This means that, according to (1.20), 
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22
1

1 ...ij m
m

i j i j

ggb P P
q q q q

∂∂
= + +

∂ ∂ ∂ ∂
, 

and the values of bij are linear homogeneous functions of the components 
of the unit load vector, P . 

Coefficients a ijk depend only on energy E and do not depend on the 
load, according to their very definition in (1.20). Therefore we need only 
to prove that okq  are linearly dependent on the components of the 
vector P . Earlier in section (11.1.2) we found out that 1

o o
−=q r Q , so it 

suffices to establish the linear dependence of the unit load vector, Q, on 
vector P . Direct calculation of it gives 

Q = iQ⎡ ⎤⎣ ⎦ = ( )s

iq
⎡ ⎤∂
⎢ ⎥∂⎣ ⎦

0П =
1 1 1

1

1

m

m

m

nn

g gP
q q

P
ggP
qq

α α
α

α=

α
α=

αα
α

α=

⎧ ⎫∂ ∂⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥∂ ∂⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥= ⎨ ⎬

⎢ ⎥ ⎢ ⎥⎪ ⎪∂∂⎢ ⎥ ⎢ ⎥⎪ ⎪
⎢ ⎥ ⎢ ⎥∂∂ ⎪ ⎪⎣ ⎦⎣ ⎦ ⎩ ⎭

∑

∑
∑

. 

Now it can be seen that the representation (2.16) takes place, which proves 
the proposition. 

Returning directly to the Papkovich theorem, we would like to note that 
there is a number of different approaches to it. P.F. Papkovich himself 
based his reasoning on the following characteristic feature of an arbitrary 
convex area Ω. If any ray that comes from an arbitrary point А∈ Ω crosses 
boundary Г of area Ω once at the most, then area Ω is convex. The whole 
complexity of the proof done by Papkovich is concentrated in proving this 
property of the area of stability of equilibrium states in the load space. 

The proofs by B.M. Broude and A.R. Rzhanitsin make use of a different 
characteristic feature of convexity of area Ω. The notion of a base 
hyperplane is introduced for the Ω area defined in the m-dimensional 
linear space m.  

Generally, a hyperplane in m is any affine set of dimensionality m – 1. 
In particular, any straight line is a hyperplane in the space of 
dimensionality 2, and any two-dimensional plane is a hyperplane in the 
three-dimensional space, even if it does not cross the coordinate origin. 
Any hyperplane divides the space m into two m-dimensional half-spaces 
which lie on the opposite sides of the dividing hyperplane. 
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A hyperplane is called a base one for area Ω if at least one point of 
boundary Г of area Ω belongs to the hyperplane while area Ω is wholly 
contained by one of the half-spaces created by this hyperplane. 

Finally, area Ω is convex if every point of boundary Г can be a point of 
a base hyperplane of the area. The last proposition is quite intuitive 
geometrically and sounds convincing for a mechanician. Readers who 
want a rigorous mathematical proof of this proposition are invited to get 
familiar with the branch of modern mathematics called “Convex analysis” 
[17], [10]. It is this characteristic feature of convexity of area Ω that 
B.M. Broude and A.R. Rzhanitsin use in their proofs, although they have 
slightly different approaches. 

Following the logic by Rzhanitsin, the first step is to see that when a 
few constraints are imposed on the system (the constraints are such that 
confine the buckling mode but do not affect the state of equilibrium – i.e. 
posterior or immobile constraints according to our nomenclature), the 
stability area can only expand, never diminish. This follows immediately 
from results of Section 11.2.2.   

Further, let Г be the boundary of the equilibrium state stability area in 
the load space. We take a point А that belongs to this boundary. Then the 
length of vector ОА will be 1 ( )A

+λ P , where AP  is a unit vector 
codirectional with ОА. Let vector 1

+z  be a mode of buckling that 
corresponds to eigenvalue 1

+λ , i.e. 

o 1 1( )G
+ +− λ = 0r r z . (2.17) 

For this load pattern defined by vector AP , we consider a system with 
one degree of freedom derived from the given system by imposing (n – 1) 
posterior constraints which prevent the buckling in any mode other  
than 1

+z . Clearly, this system with one degree of freedom will lose its 
stability of equilibrium at the same value of the critical load, 1

+λ . Let *or  
and *Gr  be the initial stiffness matrix and the geometric stiffness matrix 
(first-order) for the system thus obtained with one degree of freedom. It 
means together with (2.17) we have 

*o 1 * 0Gr r+− λ = . (2.18) 

According to the proposition proved earlier, number *Gr  is a linear 
combination of the components of the unit load vector, and this permits to 
rewrite (2.18) as 
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*o 1 *
1

0
m

=
r P+

α α
α

− λ ρ =∑ . (2.19) 

Equation (2.19) defines a hyperplane in the load space, and all points of 
the space which conform to stable equilibrium states of the unidimensional 
system are on one side of the plane (when the left-hand part of (2.19) is 
positive) while all points of unstable states lie on the other side (when the 
left-hand part of (2.19) is negative). In other words, the equilibrium 
stability area for the unidimensional system is an m-dimensional half-space 
that lies on one side of a hyperplane crossing the point of interest, А. The 
half-space is defined unambgiously by the condition that it should contain 
the coordinate origin.  

As the stability area Ω for the original n-dimensional system is just a 
part of the selected half-space in the m-dimensional load space (removing 
the constraints can only narrow the stability area), the whole Г boundary is 
guaranteed to belong to the stability half-space. 

This reasoning is good for every point А on boundary Г. It means the 
hyperplanes are base hyperplanes with respect to area Ω. This ends the 
proof of the Papkovich theorem. 

* * *  
The great importance of the Papkovich theorem for applications is in the 

possibility to use its propositions for analyzing the stability of equilibrium 
states of a structure not for every thinkable combination of loads but for 
just a few particular load patterns. Next, the area of stability can be 
evaluated with a guaranteed sign of the error; in this process the true 
boundary of the area is approximated by a set of hyperplanes. See more 
details in [16].  

11.2.4 The geometric stiffness matrix revisited 

We have already mentioned that the geometric stiffness matrix of a system 
is one of key notions in the theory of stability of equilibria of mechanical 
systems. Therefore we deem it reasonable to discuss this notion a bit more 
carefully and to illustrate its application by an example of a simple 
mechanical system. 

To do it, we return to our example 1 (see Fig. 11.1) and denote by N1 the 
longitudinal force in bar 1 and by N2 the longitudinal force in bar 2. These 
forces are supposed to be calculated in the equilibrium state of our interest. 
Apparently, 
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1
1 1 o

1 2

cN c u P
c c

= =
+

,      2
2 2 o

1 2

cN c u P
c c

= =
+

. 

Force N1 is positive when bar 1 is extended, and force N2 is positive when 
bar 2 is compressed.  

We already know that matrices rо and rG in this problem look as 
follows: 

ro = 1 2

3

0
0

c c
c

+⎡ ⎤
⎢ ⎥
⎣ ⎦

,       rG = 2 1

1 2

0 0

0
( )
c c

l c c

⎡ ⎤
⎢ ⎥−⎢ ⎥

+⎢ ⎥⎣ ⎦

 , 

where the first row and the first column of each relate to the longitudinal 
displacement, u, of the central node, and the second row/column relate to 
the lateral displacement, v, of the same node. 

The structure and the contents of matrix rо are quite clear. Its 
components correspond to an ordinary linear problem formulation. If we 
consider the equilibrium of each element of the system in a deformed state 
that conforms to its buckling mode, we will find (Fig. 11.8) that the lateral 
force Q1 = N1v/l develops in the left bar and the lateral force Q2 = N2v/l 
appears in the right bar.  

l l

v

c
3

N
2

N
2

N
1

N
1

Q
2

Q
2

Q
1

Q
1

 
     1 1Q N

l
=

v ,   2 2Q N
l

=
v  

Fig. 11.8.  Obtaining the components of matrix rG by the static method 

Therefore, when the central node is deviated by a unit displacement, v = 1, 
the total reactive force upon this node, r22, will consist of two terms: 

r22 = с3 + 1 2N N
l l
− = с3 2 1

1 2( )
c cP
c c l

−
−

+
. 

The second term in the right part of the formula is exactly the 
component r22 that relates to the geometric stiffness matrix. 

This simple example demonstrates a traditional technique for obtaining 
the components of the geometric stiffness matrix – without using the 
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expressions of the strain energy and the work of external forces, i.e. in a 
way based on the equations of equilibrium only. The equations of 
equilibrium must be composed for the deformed state of the system and 
must take into account those external forces that appear in the elements of 
the system in its state of equlibrium the stability of which is under 
consideration. 

11.2.5 The stability of equilibrium under a non-force-type 
action 

Up to this point, we dealt with the stability of equilibrium of a mechanical 
system under the action of forces only. An attentive reader may notice that 
the stability problems can be posed for kinematical actions, too. For 
example, the ends of a single bar can be forcedly pushed together by a 
given distance; the bar appears to be in equilibrium which, however, is not 
necessarily stable. 

The problem is that the Lagrange–Dirichlet theorem’s application is not 
straightforward in the case of the kinematical actions; some additional 
explanations are needed, at the least. 

Our reasoning can be like this. We extend the set of degrees of freedom 
(1.1) to the number of m where m > n. The additional s = m – n DOFs will 
be those for which nonzero displacements are specified as external actions. 
In our case there is no external force potential, Пs, so 

1 , 1( ,..., ,..., )n n mq q q q+=L E , (2.20) 

but the last s variables are not varied; instead, they are considered to be 
known values proportional to the load parameter, λ. To put it another way, 
we assume 

1 1n nq q+ += λ ,  … , n s n sq q+ += λ . (2.21) 

The score above denotes fixed values of the displacements that correspond 
to the unit load parameter, λ = 1. 

We divide the q vector into two parts: 

q = |[q1, q2]|T,      q1 = |[q1,…, qn]| T,       q2 = |[qn +1,…,qn +s]| T. 

First vector q1 is made up of the varied displacements while the 
components of second vector q2 meet the requirements 

2 2= λq q . (2.22) 
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The equilibrium state of the system is found from the condition that the L 
function of m variables from (2.20) should be stationary with the 
additional conditions (2.21). The linear formulation of the problem (one 
that we are investigating the stability under the conditions of) gives 

[ ] 1o11 o12
1 2

2o21 o22

1 ,
2

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

qr r
q q

qr r
T

L  (2.23) 

where the components of the matrix blocks, o11r , o12r = o21rT , o22r ,  are 
defined by the common formula (1.17). The conditions of stationarity of L 
from (2.23) under the additional conditions (2.22) produce the following 
system of linear algebraic equations: 

o11 o12 1

o21 o22 2

2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = λ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

0 0
0

0 0

r r q
r r I q

I qΛ
 (2.24) 

with a vector of Lagangian multipliers, Λ, of order m. 
Solution of this system of equations gives the following formula for the 

components of vector qо1 that defines an equilibrium of the linear system 
under the kinematical actions specified by (2.22): 

1
o1 o11 o12 2

−= −λq r r q . (2.25) 

After introducing the designation 
1

o1 o11 o12 2
−= −q r r q  

we can rewrite (2.25) as 

o1 o1= λq q . (2.26) 

In order to find out the boundaries of the stability area for this 
equilibrium state, we can use the condition that Bolotin’s stability 
functional should be positive definite (1.16). As the variable parameters 
are only the components of vector q1 in the number of n, we have the 
following condition of stability for our particular equilibrium: 

11 0λ >z r zT  

for any vector z of dimensionality n.  Matrix 11λr  is a tangential stiffness 
matrix of the system, with dimensions n×n, which conforms to the 
variations δq1 = z1,…, δqn = zn of the generalized displacements. Also, 
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2

11 o1 2( , )ij

i j

r
q qλ
∂

= λ
∂ ∂

q qL ,      i, j = 1,…, n . (2.27) 

The linearized formulation of this stability problem gives 

11 o11 11Gλ = − λr r r . (2.28) 

It is easy to notice from the general formula (1.27) of the components of 
the geometric stiffness matrix that coefficients bij are identical to zero in 
our case because there is no force potential Пs. Therefore, according to 
(1.20), (1.21), and (1.27), 

3

11 o1
1

1 ( )
2

n
ij

G k
k i j k

r q
q q q=

∂
=

∂ ∂ ∂∑ 0E , (2.29) 

where  o1kq  is k-th component of vector o1q  (k = 1,…, n). 
Now we are going to demonstrate the technique of solving the problem 

of stability under a kinematical action by the example shown in Fig. 11.3. 
However, now we will take as an external action a forced vertical 
displacement of the upper node of the spring the stiffnes of which is с1, 
rather than force P. The length of this displacement will be denoted by λ . 
Using the designations from (1.47), we have 

   q1 = |[θ, ∆]| T,       q2 = [ ]1λ ,     n = 2,  s = 1. 

Apparently, the equilibrium state of the system is described by the 
following displacements in the linear formulation: 

θо = 0,       1
o

1 2

c
c c

∆ = λ
+

. (2.30) 

Next, the expression of the strain energy will be 

( )2 2 2

1 2 32 2 2
uc c c

− λ ∆
= = + +L E

v
, 

which gives the following after putting in the expressions of u and v 
from (1.48): 

[ ]2 2 2 2

1 2 3

( )cos ( ) sin
2 2 2

l l lc c c
− − ∆ θ − λ ∆ − ∆ θ

= + +L . 
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We determine the components of the tangential stiffness matrix 
immediately, without using the linearized formulation of the problem. 
These are 

2
2

o o 1 o o 3 o2 ( , ) ( )( ) ( )c l c l∂
θ ∆ = ∆ − λ − ∆ + − ∆ =

∂θ
L  

[ ]o 1 o 3 o( ) ( ) ( )l c c l= − ∆ ∆ − λ + − ∆ , 

2

o o( , ) 0∂
θ ∆ =

∂θ∂∆
L ,    

2

o o 1 22 ( , ) c c∂
θ ∆ = +

∂∆
L . 

According to (2.27), 

[ ]o 1 o 3 o
11

1 2

( ) ( ) ( ) 0
0

l c c l
c cλ

⎡ ⎤− ∆ ∆ − λ + − ∆
= ⎢ ⎥+⎣ ⎦

r . 

After replacing ∆о with its value from (2.30), we use the positive 
definiteness of matrix 11λr  to arrive formally at two critical values of the 
external action parameter, 

1 2

1

cr c c
l c
′λ +
= ,       3 1 2

1 3 2

( )
( )

cr c c c
l c c c
′′λ +
=

+
. 

We introduce dimensionless parameters by assuming 

2

3

c
c

α = ,      1

1 2

c
l c c
λ

β =
+

. (2.31) 

It is easy to see that the boundary of the stable equilibrium area for the 
given kinematic action in the plane of the above dimensionless parameters 
is defined by the conditions 

1cr′β = ,       1/(1 )cr′′β = + α .  

Now it is clear that the boundaries between the areas of stable and 
unstable states of equilibrium are described by the same graphs in 
Fig. 11.4 but parameter β in that figure should be defined by the second of 
the formulas (2.31). 

In order to conclude this section, we would like to note that more 
possible non-force-type actions exist that may cause the loss of stability. 
Those include an initial strain caused by heat/frost, shrinkage or creep of 
concrete in ferroconcrete/composite structures. Further details are omitted. 



11.3  Geometrically nonlinear problems in elasticity      655 

11.3  Geometrically nonlinear problems in elasticity 

In the linear elasticity, the components of the strain tensor are expressed 
via the components of the displacement vector by linear 
relationships (4.2.1–b). But this degree of accuracy of the geometric 
relationships is not enough for the equilibrium stability analysis, therefore 
we have to take into account additional quadratic terms of the 
displacements. In this regard we would like to briefly discuss a 
geometrically nonlinear formulation of problems in elasticity. 

11.3.1 Geometric equations 

As is known, the three-dimensional geometric equations of the theory of 
elasticity which express a relation between the strains and the 
displacements are as follows in standard designations, provided the 
elongations and shears are small comparing to one [12]9 

2 2 21
2xx

u u
x x x x

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε = + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

v w ,    … 

1
2xy

u u u
y x x y x y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
ε = + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

v v v w w ,   … (3.1)

(3.1) presents two of six geometric relationships; the other four are derived 
from (3.1) by cyclic permutation of the letters as x→y→z→x and 
u→v→w→u.  

We can introduce an index notation by assuming, as usual, 

x1 = x,  x2 = y,  x3 = z,    and    u1 = u,  u2 = v,  u3 = w, 

to rewrite the nonlinear geometrical equations (3.1) in a tensor form more 
convenient for understanding and transforming: 

                                                      
9  Note that, unlike (3.1), Novozhilov’s expressions of shear strains εxy, εyz, εzx  

[12] do not include the multiplier of ½. This is not a mistake; in [12] the same 
designations are used for the shears, which we denoted by γxy, γyz, γzx in Chapter 4, 
rather than for the shear components of the strain tensor. Also note that we confine 
ourselves to considering such simplifications of the geometric equations that 
follow from the assumption of smallness of all components of the strain tensor 
comparing to one. We omit the consideration of large strains which can be 
practically important for rubber-like materials. 
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, , , ,
1 1( )
2 2

km
i j i j j i k i m ju u u uε = + + δ . (3.2) 

Kronecker’s delta δk m is introduced here in order to keep our convention of 
summing over repeated indexes placed on different levels. As we can see, 
the relationships (3.2) are supplemented with additional terms 
quadratically dependent on the displacements, unlike the linear elasticity.  

In order to distinguish between the components of the stress and strain 
tensors in the linear and geometrically nonlinear elastic analysis, we will 
use the following notation further in this chapter: 

• τij, eij are the components of the stress and strain tensors in the linear 
elastic analysis; 

• σij, εij are the components of the stress and strain tensors in the 
geometrically nonlinear elastic analysis. 

It means we have 

ije = 1
2 , ,( )i j j iu u+ . (3.3) 

The two strain tensors, εij and eij, are related as 

εij = eij + fij , (3.4) 

where fij is a part of tensor εij which is quadratic with respect to the 
displacements, 

fij = , ,
1
2

km
k i m ju uδ . (3.5) 

It is useful to introduce a so-called antisymmetric rotation (slope) tensor 
with the components 

ijω = 1
2 , ,( )i j j iu u− , (3.6) 

so that 

,i j ij iju e= + ω . (3.7) 

Putting the expansion (3.7) in (3.4) and (3.5) gives 

( )( )1
2

km
ij ij ki ki m j m je e eε = + δ + ω + ω . (3.8)

As is known [12], the nonlinear geometrical relationships (3.1)  or, 
equivalently, (3.2) hold true for the general case but only when the 
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elongations and the shears are small. It means all components of the |[εij]| 
tensor are much less than one by absolute value. In other words, for all 
combinations of indexes the following estimate must hold: 

|εij| << 1 . (3.9) 

Further simplifications of the geometrical relationships are based on an 
additional assumption that the ωij parameters are small, too. The latter can 
be then identified with average slopes of an infinitesimal element of 
volume that surrounds a point of the elastic medium with respect to 
appropriate axes. Denoting the components of the slopes as ωx, ωy, ωz, we 
can express them via the components of the rotation tensor (see [12]) as 

ωx = ω32,    ωy = ω13,   ωz = ω21.  

So we assume in addition to (3.9) that the estimate holds: 

|ωij| << 1 . (3.10) 

Smallness of the slopes in comparison to one does not yet guarantee the 
equivalence of the order of magnitude between the slopes and the strains. 
Therefore the nearest simplifying assumption is a set of the following 
estimates: 

|εij| << 1 ,   |ωij| << 1 ,    |eij| << |ωij| . (3.11) 

It is essential that the slopes, being small comparing to one, can exceed by 
their order of magnitude the kinematical parameters eij. The last estimate in 
(3.11) postulates, actually, that the eij values have the same order of 
smallness as the slope squares, that is, 

2| |ij ije ω∼  . (3.12) 

But then, as we can see from (3.8) and the estimates (3.11), the following 
formulas are quite acceptable by accuracy: 

1
2

km
i j i j ki m jeε = + δ ω ω . (3.13) 

The representation of the strains in (3.13) keeps only the terms the order of 
smallness of which corresponds to first power of eij. 

Expressions of variations of the strain tensor components 

For our further presentment we will need to track how the strain tensor 
components change vs. the vector of displacements u that causes the 
strains. In other words, we suppose that the vector of displacements, u, 
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gets infinitesimal increments of its components, i.e. it changes from u to 
u + δu. Apparently, this changes the strain tensor ε, too, making ε + δε out 
of it10.  

As any arbitrary component εij of the strain tensor depends on the 
components of the displacement vector with the order not higher than 
quadratic, we can use a Taylor series expansion and obtain a general 
formula for increments δεij: 

21
2

ij ij
ij k k m

k k m

d d
u u u

du du du
ε ε

δε = δ + δ δ . 

The second term above contains the products of variations, δuk δum, 
which are values of second order of smallness comparing to linear 
terms δuk , therefore they can be omitted. Considering the representation of 
εij as a sum in (3.4), we can write 

δεij = δeij  + δfij , (3.14) 

where, according to (3. 5), 

δfij = 1
2
δkm(uk, iδum, j + um, jδuk, i) . (3.15) 

Further we will need second variations of fij, too. Clearly, 

δ2fij = δkmδuk, iδum, j . (3.16) 

For the simplified geometrical relationships (3.13), which hold true also 
for small slopes |εij| ∼ 2

ijω , we have the following instead of (3.15) and 
(3.16): 

δfij = 1
2
δkm(ωk iδωm j + ωm jδωk i) ,        δ2fij = δkmδωk iδωm j . (3.17) 

11.3.2 Equations of equilibrium and static boundary conditions 

The geometrically nonlinear elastic analysis implies that the equations of 
equilibrium must be composed for the deformed state of the elastic body. 
These equations can be derived following a typical procedure when an 

                                                      
10 We hope the reader’s eyes are able to distinguish between the resembling 

designations of Kronecker’s delta δij and the symbol of variation δ with no 
indexes. 
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infinitesimal volume is extracted from an elastic body and the equilibrium 
equations in projections onto the respective axes are composed for it in its 
deformed state [12]. However, we can use a different approach and derive 
the same equations following a variational procedure (see, for 
example, [3]).       

We remind that our consideration is confined to an elastic material 
where a linear physical relation between the stresses and the strains holds: 

i j i jkm
k mCσ = ε . (3.18) 

As we are talking about geometrically nonlinear formulations, we should 
understand the components of both the stress tensor and the strain tensor in 
the above notation as referring to the Lagrangian basis in the deformed 
state of the system. The Lagrangian basis will be specific to every point of 
the body, so it can be only a local Lagrangian basis. 

This is the general expression of the full potential energy of the elastic 
body, L: 

L = 1
2

p

ijkm i i
ij km i iC d X u d p u d

Γ

Γ
Ω Ω

ε ε Ω − Ω −∫ ∫ ∫ . (3.19) 

To simplify the notation, we suppose here and futher that there are no 
mixed boundary conditions and the whole boundary Г of area Ω occupied 
by the elastic body consists of two parts as in (1.2.10). To interpret this 
formula correctly, note that the components of the external volumetric, 

iX , and surface, ip , forces together with the vector of displacements, ui, 
are assumed to refer to the Eulerian basis which is supposed to coincide 
with the Lagrangian one when there is no deformation. This confusion of 
the bases for different terms in the same functional should not confound 
the reader because each of the integrals in (3.19) is a scalar invariant with 
respect to the basis while the tensor representation of each scalar can refer 
to its own basis. 

Now let us derive the equations of equilibrium as conditions of 
stationarity of the Lagrange functional, L, on the set of physically and 
kinematically admissible fields. By varying L and taking the elasticity 
relationships (3.18) into account, we produce this: 

δL =
p

ijkm i i
km ij i iC d X u d p u d

Γ

Γ
Ω Ω

ε δε Ω − δ Ω − δ∫ ∫ ∫ = 

=
p

ij i i
ij i id X u d p u d

Γ

Γ
Ω Ω

σ δε Ω − δ Ω − δ∫ ∫ ∫ . (3.20)
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The condition of δL = 0 is a principle of virtual displacements in its 
mechanical interpretation. The expressions of strains εij, as well as those of 
their variations δεij, will depend on how the geometrical nonlinearity is 
taken into account. 

We divide the first of the integrals in the right-hand part of (3.20) into 
two components using the representation (3.14): 

ij
ijd

Ω

σ δε Ω =∫ ij ij
ij ije d f d

Ω Ω

σ δ Ω + σ δ Ω∫ ∫ . (3.21) 

Next, the Gauss–Ostrogradsky formula gives 

,
ij ij ij

ij j i j i

p

e d u d n u d
Γ

Γ
Ω Ω

σ δ Ω = − σ δ Ω + σ δ∫ ∫ ∫ . (3.22) 

Also, 

ij
ijf d

Ω

σ δ Ω =∫ , , , ,
1 ( )
2

ij km
k i m j m j k iu u u u d

Ω

σ δ δ + δ Ω =∫  

( ), ,,
km ij km ij

k i m k i j mj
p

u u d u n u d
Γ

Γ
Ω

= −δ σ δ Ω + δ σ δ =∫ ∫  

( ), ,,
ki mj ki mj

k m i k m j ij
p

u u d u n u d
Γ

Γ
Ω

= −δ σ δ Ω + δ σ δ∫ ∫ . (3.23)

The transformations of (3.23) use a standard technique of replacing the 
umbral indexes, which leaves the result intact. Also, these transformations 
make use of the symmetry of the stress tensor σij which follows from 
(3.18) and the symmetry of the tensor of elastic constants Cijkm – see 
relationships (1.2.3). Note also (3.22) and (3.23) use the fact that δu = 0 
on Гu because of kinematical admissibility of the displacement fields. 

Substituting (3.22) and (3.23) in (3.20) and equating δL to zero yields 
the Euler equation and natural boundary conditions, 

( ), , ,
0i j ki m j i

j k m j
u X−σ − δ σ − = ∈Ω,   

,( )i j ki m j i
k m ju n pσ + δ σ = ∈Гр , (3.24) 

treated from the physical standpoint as equations of equilibrium in the 
volume of the body, Ω, and as static boundary conditions on boundary Гр, 
respectively. 
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Now let us turn to the geometrically nonlinear equations of equilibrium 
for small slopes the squares of which have the same order of smallness as 
the elongations and the shears. According to (3.17), this version of the 
geometrically nonlinear theory gives the following instead of (3.23): 

ij
ijf d

Ω

σ δ Ω =∫
1 ( )
2

ij km km ij
ki mj mj ki ki mjd d

Ω Ω

σ δ ω δω +ω δω Ω = δ σ ω δω Ω =∫ ∫  

= , ,
1 ( )
2

km ij
ki m j j mu u d

Ω

δ σ ω δ − δ Ω =∫  

( ) ( ),

1 1
2 2

ki mj km ij ki mj km ij
kj i kj m il

p

u d n u d
Γ

Γ
Ω

⎡ ⎤= − δ σ − δ σ ω δ Ω + δ σ − δ σ ω δ⎣ ⎦∫ ∫ . 

The final form of the equations of equilibrium and the static boundary 
conditions for this geometrically nonlinear theory is as follows. 

( ), ,
1 0
2

i j k i m j k m i j i
j k j m

X⎡ ⎤−σ − δ σ − δ σ ω − =⎣ ⎦ ∈Ω,      

  ( )1
2

i j k i m j k m i j i
j k j mn n pσ + δ σ − δ σ ω = ∈Гр . 

(3.25) 

Now let us concentrate all the governing equations of the geometrically 
nonlinear theory of elasticity that we have obtained in a convenient 
Table 11.1. 
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11.4 Stability of equilibrium of an elastic body  

Suppose we know the state of equilibrium for our mechanical system. Let 
the displacements of the system in this state be described by vector u. By 
formally extending the Lagrange–Dirichlet theorem onto systems with an 
infinite number of DOFs, we use the minimum of functional L of the 
system’s full potential energy in a particular state of equilibrium as a 
criterion of stability of this state. 

Let us assume all the external loads to grow proportionally to one 
parameter λ. Understanding X  and p  as external force actions that 
correspond to the unit value of the load parameter, λ = 1, we set down this 
general expression of the Lagrange functional: 

L = •
1
2

p

d d d
Γ

Γ
Ω Ω

Ω −λ Ω −λ∫ ∫ ∫u uC X pε ε T T = 

= •
1 ( ) ( )
2

p

d d d
Γ

Γ
Ω Ω

+ + Ω −λ Ω −λ∫ ∫ ∫u uC e f e f X pT T . (4.1)

The displacements u correspond to the state of equilibrium of the system, 
and this means the first variation of functional L is zero: 

δL = •( ) ( ) 0
p

d d d
Γ

Γ
Ω Ω

δ Ω −λ δ Ω −λ δ =∫ ∫ ∫u u u uC X pε ε T T  (4.2)

for any homogeneously kinematically admissible variations of the 
displacements δu. The vector argument in parentheses after strains ε 
indicates displacements which create those strains.  

A minimum takes place in points of stationarity of L if the second 
variation of the functional is positive; thus, the criterion of equilibrium 
stability is δ2L > 0. The second variation δ2L is equal to δ2E, or 

δ2L = δ2E = δ(δE) = •( ) ( )d
Ω

⎛ ⎞
δ + δ + δ Ω⎜ ⎟
⎝ ⎠
∫C e f e f = 

2• •( ) ( ) ( )d d
Ω Ω

= δ + δ δ + δ Ω + + δ Ω∫ ∫C e f e f C e f f , (4.3)

because vector е depends linearly on the displacements and thus its second 
variation with respect to the displacement field vanishes. 
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But C(e + f) = σ where σ is a stress vector in the equilibrium state of 
interest. Apparently, this vector depends on the load intensity λ 
(nonlinearly in a general case), so 

σ = σ(λ) . (4.4) 

The variation of the displacements, δu, will be denoted by v for a while, 
for the sake of convenience. Second variation δ2L, treated as a functional 
of vector v, is nothing but a quadratic functional of stability, S; its being 
positive definite guarantees the stability of equilibrium that corresponds to 
the displacement vector u.  

Thus, (4.3) produces a general expression of the equilibrium stability 
functional: 

S(v) 2• •
1 1
2 2

d d
Ω Ω

= δ δ Ω + δ Ω∫ ∫C fε ε σ . (4.5) 

The multiplier ½, inessential for the stationarity points of the above 
functional, has been introduced for convenience of subsequent physical 
interpretation. Note also that our nomenclature of designations prescribes 
to understand δεij and δ2fij as 

δεij = 1
2

(vi, j + vj, i) + 1
2
δkm(uk, ivm, j + um, jvk, i) ,    δ2fij = δkmvk, ivm, j . (4.6) 

As a result of substituting (4.6) in (4.5) and using the symmetry of the 
elasticity coefficient tensor C, we have this final form of the stability 
functional: 

B1(v) = 

( ), , , , , , , , ,
1 2
2

ijkm pr pr qs
i j k m r i p j k m r i s k p j q mC u u u d

Ω

= + δ + δ δ Ω∫ v v v v v v + 

+ , ,2

km
ij

k i m jd
Ω

δ
σ Ω∫ v v . (4.7) 

This is a general form established for the first time by V.V. Bolotin [5], 
[7], hence the designation of B1(v). 

In the case when the estimates (3.11) hold, we should consider (3.17) 
and replace (4.6) with 

δεij = 1
2

(vi, j + vj, i) + 1
2
δkm[ϖk iωmj + ϖm iωkj],      δ2fij = δkmωkiωmj , (4.8) 
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where ϖij denote the components of the rotation tensor for the original 
state of equilibrium, and ωij denote the components of the rotation tensor 
defined by the displacement vector v. In other words, 

( ), ,
1
2ij i j j iu uϖ = − ,     ( ), ,

1
2ij i j j iω = −v v . (4.9) 

Next, inserting (4.8) in (4.5) produces the following form of the stability 
functional: 

N1(v) = 

( ), , ,
1 2
2

ijkm pr pr qs
i j k m i j rm pk ri sk pj qmC d

Ω

= + δ ϖ ω + δ δ ϖ ϖ ω ω Ω∫ v v v + 

+
2

km
ij

ki mjd
Ω

δ
σ ω ω Ω∫ . (4.10) 

Functional N1(v) corresponds to the formulation of the stability analysis 
problem considered by Novozhilov, so the designation of N1(v) is a tribute 
to the author of [12]. 

11.4.1 A linearized formulation of the equilibrium stability 
problem for an elastic body 

Now let us consider a formulation of the linearized problem of equilibrium 
stability for general elastic bodies by generalizing the procedure described 
in Section 11.1.2 for systems with a finite number of degrees of freedom. 

First of all, we assume that the initial state of equilibrium to analyze the 
stability of has been obtained using the linear analysis. This assumption is 
quite admissible in most applications because [12]: 

“slopes ϖx, ϖy, ϖz, which conform to the initial mode of equilibrium of a 
body, can be either equal to zero or of the same order as the elongations 
and shears”.  

According to our earlier notation, the tensor τ is a stress tensor for the 
initial state of equilibrium and the tensor e is its respective strain tensor. 
The latter means that 

τ = Сe       and       τ = λ τ . (4.11) 

The obvious symbol τ  is used to denote a stress tensor determined by the 
linear analysis for the unit value of the load parameter, λ = 1.    
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Exactly as we did with systems that had a finite number of DOFs, we 
keep all terms containing the displacements raised to third or lower power 
in the expression of the strain energy, in order to construct a linearized 
formulation of the equilibrium stability problem. This procedure gives 

L = •
1 ( 2 )
2

p

d d d
Γ

Γ
Ω Ω

+ Ω −λ Ω −λ∫ ∫ ∫u uCe e f X pT T , (4.12)

and the expression of second variation δ2L becomes 

δ2L 2• •( 2 )d d
Ω Ω

= δ δ + δ Ω + δ Ω∫ ∫C e e f Ce f . (4.13) 

With the above designations, the stability functional for the linearized 
problem formulation is 

B2(v) = ( ), , , , ,
1 2
2

ijkm pr
i j k m r i p j k mC u d

Ω

+ δ Ω∫ v v v v + , ,2
ij km

k i m jd
Ω

λ
τ δ Ω∫ v v . 

We have assumed that the original stress-and-strain distribution in the 
system obeys the linear elasticity relationships. It means that both 
stresses τij and displacements ui are proportional to the load parameter λ. 
That is, we can define 

i iu u= λ  

where iu  are components of the displacement vector of the system’s initial 
state, which correspond to the unit value of the load parameter, λ = 1. Now 
it turns out that the stability functional for the linearized analysis is 

B2(v) = , ,
1
2

ijkm
i j k mC d

Ω

Ω∫ v v + 

( ), , , , ,2
2

ij km ijkm pr
k i m j r i p j k mC u d

Ω

λ
+ τ δ + δ Ω∫ v v v v . (4.14) 

A further simplification that ignores the role played by the initial 
displacements u produces the following expression for the stability 
functional, 

B3(v) = , ,
1
2

ijkm
i j k mC d

Ω

Ω∫ v v + , ,2
ij km

k i m jd
Ω

λ
τ δ Ω∫ v v . (4.15)
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To change from functional B2 to functional B3, we just omit the term 
, , ,2 ijkm pr

r i p j k mC uδ v v  in the integrand of B2, and this approach is sometimes 
interpreted mechanically as the following condition:  

the linearized formulation of the equilibrium stability problem assumes 
that “an elastic body in its initial state is treated as being stressed but 
undeformed” [1].  

This condition permits to formally assume the components of the initial 
displacement vector iu  in the formula (4.14) to be equal to zero, which 
gives (4.15). 

Functional B3 is known well in the theory of elastic equilibrium 
stability, although experts do not agree on the authorship of the functional. 
For example, N.A. Alfutov [1] attributes this functional to Bryan while 
V.V. Bolotin [7] deems it fair to recognize the authorship of Trefftz. As for 
functional B2, it was derived for the first time by the same V.V. Bolotin, 
although his method of derivation in [7] is different from one we present 
here. 

If we use the simplified functional N1 from (4.10) in the linearized 
analysis following Novozhilov’s approach, we will replace (4.14) with 
functional N2 and (4.15) with functional N3 : 

N2(v) = , ,
1
2

ijkm
i j k mC d

Ω

Ω∫ v v + 

( ),2
2

ij km ijkm pr
k i m j i j p m r kC d

Ω

λ
+ τ δ ω ω + δ ϖ ω Ω∫ v , 

N3(v) = , ,
1
2

ijkm
i j k mC d

Ω

Ω∫ v v +
2

ij km
k i m jd

Ω

λ
τ δ ω ω Ω∫  (4.16)

where pmϖ  are the components of the rotation tensor for the original state 
of equilibrium calculated for the unit value of the load parameter, λ = 1, 
that is, 

( ), ,
1
2pm p m m pu uϖ = − . 

Functionals N2 and N3 conform to a linearized formulation of the 
equilibrium stability problem for thin-walled bodies which was considered 
and solidly validated by V.V. Novozhilov [12].  

To observe historical justice, we think we should refer to the 
equilibrium stability functionals N2 and N3 as Novozhilov functionals. 
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A remark on a mechanical interpretation of particular terms in 
the stability functional 

As can be easily seen, the integral  

E(v) = , , , ,
, ,

1 1
2 2 2 2

i j j i k m m kijkm ijkm
i j k mC d C d

Ω Ω

+ +⎛ ⎞⎛ ⎞
Ω = Ω⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∫ ∫

v v v v
v v  

is formally coincident with the expression of the strain energy accumulated 
by an elastic body on displacements vi. We emphasize (because it is really 
important) that energy E(v) is calculated in the same way as in the 
geometrically linear analysis. We can write it as follows in the general 
operator form: 

E(v) = 1 ( , )
2

v vCA A . (4.17) 

At the same time, the integrals of the kind 

AB(v) = – , ,2
ij km

k i m jd
Ω

λ
τ δ Ω∫ v v ,       AN(v) = –

2
ij km

k i m jd
Ω

λ
τ δ ω ω Ω∫  (4.18) 

are named in scientific, engineering, and educational literature, according 
to the tradition (unluckily, a totally incorrect one), as a negative work of 
external forces on displacements vi. The obvious inadmissibility of this  
mechanical interpretation of functionals A(v) was noticed by V.V. Bolotin 
back in 1965 [5]; he stated justly that the functionals 

B3(v) = E(v) – AB(v),          N3(v) = E(v) – AN(v) (4.19) 

were in essense the second variation of the full potential energy in the 
vicinity of the state of equilibrium. 

Nonetheless, functionals A(v) can and should receive a certain 
mechanical interpretation. We transform the integrals in (4.18) by using 
the Gauss–Ostrogradsky formula: 

AB(v) = – , ,2
ij km

k i m jd
Ω

λ
τ δ Ω =∫ v v  

 = ( ), ,,2 2
km ij ij km

k i m k i j mj
d n d

Γ

Γ
Ω

λ λ
δ τ Ω − τ δ∫ ∫v v v v  (4.20)

and 
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AN(v) = –
2

ij km
ki mjd

Ω

λ
τ δ ω ω Ω =∫

( ),
2 2

km ij kj im
ki ki j

md
Ω

δ τ ω − δ τ ωλ
Ω −∫ v  

2 2

km ij kj im
ki ki

j mn d
Γ

Γ
δ τ ω − δ τ ωλ

− ∫ v . (4.21)

Clearly, the terms 

( ), ,
m m km ij
B B k i j

X X= λ = λδ τ v , ( ),
1
2

m m km ij kj im
N N ki ki j

X X= λ = δ τ ω − δ τ ω  (4.22)

can be treated as a conditional volumetric load with the components m
BX  

or m
NX  that depends on the components of vector v. Similarly, the terms 

,
m m ij km
B B k i jp p n= λ = −λτ δ v ,  ( )1

2
m m km ij kj im
N N ki jp p n= λ = −λ δ τ − δ τ ω  (4.23) 

can be interpreted as a conditional surface (edge) load.  
A conditional load of this kind is often introduced to derive differential 

equations of structural equilibrium stability. Sometimes this load is called 
“effective” [21], sometimes “equivalent”, sometimes “fictitious” [6]. No 
matter how it is called, this conditional load is introduced as a result of a 
certain colourable reasoning based on half-intuitive static and geometric 
considerations rather than on a rigorous mathematical theory. It is the 
formulas (4.22) and (4.23) that give this notion a clear mathematical sense. 

But then integrals A(v), being represented as 

AB(v)
2 2

m m
B m B mX d p d

Γ

Γ
Ω

λ λ
= Ω +∫ ∫v v , 

AN(v)
2 2

m m
N m N mX d p d

Γ

Γ
Ω

λ λ
= Ω +∫ ∫v v , 

can be treated from the mechanical standpoint simply as a work of the 
equivalent load on the displacements determined by vector v. The factor 
of ½ participates in the expression of this work because the equivalent load 
depends on the displacements v linearly according to (4.22) and (4.23).  

Criteria of a critical state in a system 

Obviously, the equilibrium of an elastic system is stable when the load 
parameter is equal to zero, because at λ = 0 any of the stability functionals 
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S(v) is a positive functional for certain, i.e. S(v) > 0 for any (nonzero) 
vector v. Moreover, the equilibrium is stable also in a certain vicinity of 
the point λ = 0. However, when the load grows further, it is not unlikely 
that at some λ = λcr the stability functional S(v) can lose its positivity; this 
is the way to define the boundary of a stability area of the system. 

S(v) is a homogeneous quadratic functional of v, hence it can be 
represented in the most general way as 

S(v) = ½ (Sv,v) (4.24) 

where S is a linear operator defined in the set of kinematically admissible 
fields of displacements, vectors v. We will call it a stability operator. 

Note that the stability operator depends parametrically on the load 
intensity λ. Clearly, the requirement of obligatory positive definiteness of 
functional S(v) is equivalent to the requirement that the stability operator S 
should be positive definite. A moment when the stability operator S loses 
in positive definiteness (at λ = λcr) corresponds to the critical state. This 
means the first variation of the stability functional is zero in the critical 
state because the condition of existence of a nonzero solution of the 
homogeneous equation, 

Sv = 0, (4.25) 

is equivalent to the condition 

δS(v) = 0. (4.26) 

Vector v found from (4.25) or (4.26) defines a mode of buckling of the 
system, and the v vector itself is called an eigenvector that conforms to 
eigenvalue λ = λcr. 

As the A(v) integral depends on the load parameter λ linearly, we can 
write 

A(v) = λ ( )vA , 

where ( )vA  is, obviously, the work of the equivalent unit load on the 
mode of buckling v. 

So, let us know a critical value of the load value, λcr, and its respective 
mode of buckling, v. Thne by definition this vector makes S(v) = 0: 

E(v) – λcr ( )vA = 0. (4.27) 

In other words, in the critical state of the system its potential strain energy 
accumulated during the deformation in the buckling mode is equal to the 
work of the effective load on the displacements defined by eigenvector v.  
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While the condition (4.26) is a variational-type criterion, the 
equality (4.27), strictly speaking, is not. The equality (4.27) can be shown 
to be an immediate corollary of the variational criterion (4.26) in the 
formal mathematical sense. It suffices to recall that the stability functional 
S(v) is a homogeneous quadratic functional. 

We should note once again that the equality (4.27) follows from (4.26) 
while the inverse is, generally, not true. In other words, (4.27) does hold in 
a critical state of the system, but the mere fact that the equality E(v) –
 λ ( )vA = 0 takes place for a vector v and for a value λ does not imply 
necessarily that this particular λ and this particular vector v are a critical 
value of the load parameter and a buckling mode, respectively. If the 
inverse were true, then taking an arbitrary vector v such that ( )vA ≠ 0 and 
calculating λ as λ = E(v)/ ( )vA  would make us think that λ = λcr and that 
vector v defines a buckling mode of the system. This is, obviously, not the 
case, therefore the condition (4.26) can be called a critical-state criterion 
while (4.27) is just an equality that always holds in a critical state. We 
draw the reader’s attention to this simple fact only because literature 
abounds in partially correct propositions where the equality (4.27) is 
treated as a criterion11. 

Taking first variation of the Bryan–Trefftz stability functional B3(v) 
from (4.15) with respect to vector v (in the field of homogeneously 
kinematically admissible displacements) and equating it to zero produces, 
after applying the Gauss–Ostrogradsky formula, the following Euler 
equations and natural boundary conditions: 

( ) ( ), ,, ,
0ijkm mj ki

k m k mj j
C + λ τ δ =v v ∈Ω, 

( ) , 0ijkm mj ki
k m jC n+ λτ δ =v ∈Гр. (4.28) 

The formulation of the spectral problem in the differential form of (4.28) is 
known as a Sturm–Liouville problem in mathematics. So we can say that 
the linearized formulation of the elastic stability analysis is mathematically 
equivalent to the Sturm–Liouville problem. It is also clear that the 

                                                      
11 S.P. Timoshenko in his works often makes the equality (4.27) sound like a 

criterion. We do not want to say that Timoshenko makes mistakes in his results by 
applying the equality (4.27) to particular equilibrium stability problems. However, 
the correct final result is not the only important thing; it is equally important to 
make the considerations which produce that result mathematically rigorous and 
theoretically convincing.  
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differential equations and static-type boundary conditions in (4.28), 
together with the homogeneous kinematical boundary conditions 

0k =v ∈Гu, 

are nothing but the expanded operator equation (4.25) in application to the 
Bryan–Trefftz functional.  

Using the definition of the equivalent load from (4.22) and (4.23), we 
can rewrite (4.28) as 

( ), ,
0ijkm i

k m Bj
C X− − λ =v ∈Ω,       , 0ijkm i

k m j BC n p− λ =v ∈Гр. (4.29) 

Now it is easy to see that one possible mechanical sense of the 
equations (4.29) is that they are equations of equilibrium and static 
boundary conditions for an elastic body subjected to the equivalent load. 
The equations must follow the geometrically linear problem formulation.  

The same technique for another functional, Novozhilov’s functional 
N3(v), produces the following Sturm–Liouville boundary-value problem: 

( ) ( ), , ,
1 0
2

ijkm ki mj kj im
k m km kmj j

C + λ δ τ ω − δ τ ω =v ∈Ω, 

( ),
1 0
2

ijkm ki mj kj im
k m j km jC n n+ λ δ τ − δ τ ω =v ∈Гр . (4.30)

Finally, we can introduce the Rayleigh ratio for the linearized elastic 
equilibrium stability analysis as 

( )
( )

=
v
v

Er
A

. (4.31) 

Also, it is easy to show that the criterion for the critical state to occur 
can be written as a condition of stationarity of the Rayleigh ratio as a 
functional of vector v on the kinematically admissible fields of 
displacements, 

0δ =r . (4.32) 

No formal proof is presented here; the reader can do it by herself. 
The criterion (4.32) helps find the modes of buckling, v, for the system. 

The critical value of the load parameter that conforms to this particular 
mdoe of buckling is calculated as a Rayleigh ratio on the mode v, 

λcr = r(v) . (4.33) 
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11.4.2 The Ritz method 

One of most effective ways to reduce a problem of equilibrium stability for 
an elastic body to the same problem for a finite-dimensional system is the 
Ritz method. 

Exactly as we did in Section 9.1, we introduce a system of linearly 
independent displacement vectors V1, V2,…, Vn. In addition to their linear 
independence, we demand that they belong to a homogeneously 
kinematically admissible field of displacements. As for the requirement of 
smoothness, it suffices that there exist finite integrals E(Vi) and A(Vi), 
i = 1,…, n. As before, vector functions V1, V2,…, Vn that satisfy the said 
conditions will be called base functions. 

We expand the desirable mode of buckling of the system, v, over the 
base vector functions by postulating an approximate equality: 

v = 
1

n

i i
i

z
=
∑ V . (4.34) 

Any of the criteria (4.26) or (4.32) can be used to determine the desirable 
coefficients zi.   

We choose to apply the criterion (4.26), so we insert the approximations 
(4.34) in there. This makes the equilibrium stability functional, 
S(v) = E(v) – A(v), a quadratic form of vector z: 

S(z) = 1
2 o( )G− λz r r zT , (4.35) 

where ro and rG are the respective matrices of initial stiffness and of 
geometric stiffness for the system with a finite (and equal to n) number of 
DOFs, and vector z is composed of the sought-for coefficients zi 

z = |[z1,…,zn]|T . (4.36) 

The components of the initial stiffness matrix, oijr , are defined as 

o ( , )ij i jr = CAV AV          (i, j = 1,..., n) . (4.37) 

Here, the matrix differential operator A is a known geometry operator that 
maps the displacement vector into the strain vector in the linear elasticity. 
The components of the geometric stiffness matrix Gijr  are calculated in 
different ways depending on a particular form of the stability functional 
which is used. 

Each of the base vector functions V1,V2,…,Vn consists of three 
components, so 
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Vi = 
1

2

3

i

i

i

V
V
V

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (i = 1,..., n) ,         
1

n

k i ik
i

z V
=

=∑v   (k = 1, 2, 3) . 

It is easy to see that with the Bryan–Treffz functional the formula for 
the Gijr  components is 

, ,
pq km

Gij ik p jm qr V V d
Ω

= τ δ Ω∫     (i, j = 1,..., n) ,   (p, q, k, m = 1, 2, 3). (4.38) 

To write a general formula of the components of the geometric stiffness 
matrix based on the Novozhilov functional, it is convenient to represent 
the expression of functional AN(v) from (4.18) in matrix form. We denote 

11

22

33

12

23

31

xx

yy

zz

xy

yz

zx

⎡ ⎤ ⎡ ⎤τ τ
⎢ ⎥ ⎢ ⎥τ τ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥τ τ

= =⎢ ⎥ ⎢ ⎥
τ τ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥τ τ
⎢ ⎥ ⎢ ⎥
τ τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

τ ,   

   φ

2 2 2 2
1 1 21 31

2 2 2 2
2 2 32 12

2 2 2 2
3 3 13 23

1 2 31 32

2 3 12 13

3 1 23 21

2 2 2
2 2 2
2 2 2

km
k m z y

km
k m x z

km
k m y x

km
k m y x

km
k m z y

km
k m x z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤δ ω ω ω +ω ω +ω
⎢ ⎥ ⎢ ⎥ ⎢ ⎥δ ω ω ω +ω ω +ω⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢δ ω ω ω +ω ω +ω

= = =⎢ ⎥ ⎢ ⎥ ⎢
δ ω ω ω ω − ω ω⎢ ⎥ ⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥ ⎢δ ω ω ω ω − ω ω
⎢ ⎥ ⎢ ⎥ ⎢
δ ω ω ω ω − ω ω⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

, (4.39) 

and now can rewrite the AN(v) functional as 

AN(v) = –
2

d
Ω

λ
Ω∫ Tτ ϕ . (4.40) 

Obviously, the components of vector ϕ are quadratically dependent on 
the components of vector v. It means putting the approximations (4.34) in 
ϕ(v) makes the AN integral from (4.40) a homogeneous quadratic form of 
coefficients zi. The coefficients of this quadratic form are exactly the 
components of the geometric stiffness matrix, Gijr . Hence the general 
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formula, considering that the components of the initial stress vector τ  in 
(4.39) do not depend on zi: 

2

Gij
i j

r d
z zΩ

∂
= Ω

∂ ∂∫ T ϕ
τ    (i, j = 1,..., n) . (4.41) 

Now let us suppose that matrices ro and rG are already constructed. Then 
the criterion (4.26) becomes 

( ) 0
iz

∂
=

∂
zS  (i = 1,…, n) . 

The latter condition is met if 

o( )G− λ = 0r r z , (4.42) 

which is the same as the already known condition (2.2) for a critical state 
to come up in a system with a finite number of DOFs. 

All the reasoning could be done for the variational criterion in the form 
of (4.32). The reader can make sure by herself that the result will be the 
same finite-dimensional spectral problem (4.42) for the couple of 
matrices ro and rG.   

By the way, if we insert the Ritz approximations in (4.27), this equality 
becomes 

o( )G− λz r r zT = 0 . 

The latter equality does no more than gives a hint that the z vector is 
orthogonal to the o( )G− λr r z  vector in the system’s critical state. The 
equality (4.42) is a stronger result which does not follow directly from the 
above. 

11.5 Stability of equilibrium in particular classes of 
problems 

Based on various forms of the stability functional, S(v), we will try to 
derive formulations of the stability problem in application to some 
particular conditions and configurations. 
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11.5.1 Stability of equilibrium of a bar in the engineering theory 
of bars 

We start our consideration by a simple case of equilibrium stability for a 
rectilinear-axis bar (the planar case). All reasoning and calculations will be 
very detailed in this simple problem, in order to be able in the future to 
omit similar ones where necessary. 

We make the longitudinal axis of the bar, X, coincident with the line of 
center of gravity of the bar’s cross-sections; it is assumed to be straight. 
For the sake of simplicity, we suppose that the bar is subjected to axial 
loads only, so only the longitudinal force N = Nλ  appears in the initial 
stressed state of the bar, where ( )N N x=  is a longitudinal force that 
corresponds to the unit load parameter. To confine ourselves to the planar 
analysis, we will suppose the bar is fixed in some way against the buckling 
in the (X,Z)-plane. Axes Y and Z are assumed to be principal central axes 
of inertia of the bar’s cross-sections, and their directions are not variable 
along the bar. 

We represent the vector of displacements, v, of an arbitrary point with 
the coordinates (x,y,z), which defines the buckling mode, by its 
components as 

v = |[U,V]|T , 

where U,V are the components of vector v with respect to the set of 
axes (X,Y).  

We introduce the notation 

u(x) = U(x,0),      v(x) = V(x,0).  

In other words, u, v are the components of the displacement vector of the 
points on the axis of the bar.  

Taking into account the kinematic hypotheses of the engineering theory 
of tension/compression/bending of bars and using geometric 
considerations, we can write 

U = u – v′ y ,        V = v . (5.1) 

Here and further, the stroke means taking the derivative with respect to 
coordinate x. Thus it turns out the engineering theory defines the bar’s 
kinematics by two functions of coordinate x, namely 

u = u(x),    v = v(x).   

Based on the results of Section 4.4 and Section 4.5, we can immediate 
write out an expression of functional E(v) according to (4.17). It is 
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E(v) = 2 2

0

1
2

l
EAu EI dx′ ′′⎡ ⎤+⎣ ⎦∫ v  (5.2) 

where l is the bar’s length, А is its cross-section’s area, and I is its cross-
section’s moment of inertia.  

To derive a variational formulation for the stability of equilibrium of the 
bar, we have yet to handle the A(v) functional using the general 
formulas (4.18). 

First of all, note that the expression of functional A(v) contains 
components of the initial unit stress tensor, ijτ . According to (4.11), these 
components are based on Hooke’s law and the initial strain tensor, е. In 
our case the engineering theory says the only nonzero component of the 
initial strain tensor, е, is the exx component that describes the normal 
stresses in the cross-sections of the bar – we are dealing with the stability 
of equilibrium of a bar subjected to axial longitudinal loads. Obviously, the 
respective nonzero component, 11 xxτ = τ , of the initial unit stress tensor is 
a well-known expression, 

xx N
A

τ = . (5.3) 

We have 

11 0ω = ,   12 21
1
2

U V
y x

⎛ ⎞∂ ∂ ′ω = −ω = − = −⎜ ⎟∂ ∂⎝ ⎠
v . (5.4) 

Next, we put the above in (4.18) and integrate over the area of cross-
section of the bar, А. The result is 

AN(v) = – 2
21

02

l
xx

A

dAdxλ
τ ω∫ ∫ = 2

02

l
N dxλ ′− ∫ v , 

so, according to (4.19), the Novozhilov stability functional in our problem 
becomes 

N3(v) = E(v) – AN(v) = 2 2 2

0

1
2

l
EAu EI N dx′ ′′ ′⎡ ⎤+ + λ⎣ ⎦∫ v v . (5.5) 

As we can see, this functional falls apart into two independent parts. The 
first part is a functional of the longitudinal displacement, u, of the bar’s 
axis, and it is always nonzero for any function u = u(x). The second part 
depends on the lateral displacements, v = v(x), of the bar’s axis. It is this 
second part that can change the sign of the N3(v) functional at a certain 



678      11 VARIATIONAL PRINCIPLES IN STABILITY ANALYSIS 

(critical) value of the load parameter, λ = λcr. It is also obvious that the 
minimum critical value, λ = λcr, corresponds to u′ = 0, i.e. u = Const. So 
actually it suffices to keep only such terms in the stability functional that 
depend on the v function. Consequently, we can take 

N3(v) =  2 2

0

1
2

l
EI N dx′′ ′⎡ ⎤+ λ⎣ ⎦∫ v v . (5.6) 

The functional (5.6) is known well in the theory of stability of bars. 
Taking the variation of the functional with respect to homogeneously 
kinematically admissible fields of displacements and equaling its first 
variation to zero leads to the following fourth-order differential equation: 

( ) ( )EI N ′′′′′ ′− λv v = 0 , (5.7) 

a nonzero solution of which under the respective homogeneous boundary 
conditions defines a buckling mode for the bar. 

By the way, the equality (4.27) obliged to hold in the critical state of the 
system implies that for 0N ≥  (pure tension along the bar) the buckling 
may occur only if λ is negative. And vice versa, if the longitudinal force is 
compressive, 0N ≤ , then the buckling occurs at a positive load 
parameter λ solely. The physical meaning is obvious. 

If we replace the Novozhilov functional, N3, with the Bryan–Trefftz 
one, B3, then the general formula (4.18) will give 

  AB(v) =  ( ) ( )22 2 2

0 0
, ,2 2

l l
xx

x x
A A

NU V dAdx u y dAdx
A

λ λ ⎡ ⎤′ ′′ ′− τ + = − − +⎣ ⎦∫ ∫ ∫ ∫ v v , 

and the integration of the latter over the cross-section’s area А yields 

AB(v) =  ( )2 2 2 2

0

1
2

l
N u r dx′ ′′ ′λ + +∫ v v  

where r2 = I/A is the squared radius of inertia of the bar’s cross-section. 
The result is the following Bryan–Trefftz stability functional: 

B3(v) =  ( )2 2 2 2

0

1
2

l
EI N r dx⎡ ⎤′′ ′′ ′+ λ +⎣ ⎦∫ v v v . (5.8) 

As we can see, the Bryan–Trefftz stability functional differs from the 
Novozhilov functional by an additional term, 2 2r ′′v . It is easy to see that 
removing this additional term 2 2r ′′v  from the integrand of (5.8) is 
equivalent to neglecting the value of 2 2/r s  comparing to one, where s 
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denotes a “characteristic scale of variability” of v′  – see [6]. This scale 
can be understood as a half-wavelength that characterizes the variance in v′ 
along the bar’s axis. This assumption is apparently consistent with the 
basic definition of a bar – a three-dimensional body extended in one 
direction for which the ratio of the characteristic size of its cross-section to 
the characteristic scale of variability of the stress-and-strain distribution 
along the extended size is greatly less than one. If this estimate does not 
take place, then we should question the very applicability of the theory of 
bars to the case. Thus, ignoring the said term in the integrand of (5.8) is 
fully consistent with the basic assumptions of the bar theory. Then the 
Bryan–Trefftz functional becomes just identical to the Novozhilov 
functional.  

11.5.2 Stability of equilibrium of a Timoshenko bar 

Now let us turn to the stability of equilibrium of the same bar where we 
will try to allow for shear strains (using the Timoshenko theory of bars). 
As we will see a bit later, this seemingly simple problem has peculiar 
pitfalls of a theoretical nature which were not yet discussed in literature as 
far as we know. 

Instead of (5.2), we have the following expression of the bar’s strain 
energy in its mode of buckling v: 

E(v) = 2 2 2

0

1 ( )
2

l
EAu EI GF dx′ ′ ′⎡ ⎤+ θ + − θ⎣ ⎦∫ v , (5.9)

where we remind that F is a so-called shear area of the bar’s cross-section. 
Also, the kinematics of the bar is now described by the following 

relationships instead of (5.1): 

U = u – θ y ,        V = v , (5.10) 

where θ = θ(x) is an independently calculated slope of the bar’s cross-
section – see Section 4.6. Therefore, instead of (5.4) and on the basis of 
(5.10), we have 

11 0ω = ,   12 21
1
2

U V
y x

′⎛ ⎞∂ ∂ + θ
ω = −ω = − = −⎜ ⎟∂ ∂⎝ ⎠

v
2

. (5.11) 

Substituting and integrating over the cross-section’s area gives 
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AN(v) = – 2
21

02

l
xx

A

dAdxλ
τ ω∫ ∫ =

2

0

( )
2 4

l
N dx

′λ + θ
− ∫

v . 

The same reasoning as in the preceding section produces the following 
Novozhilov functional for the stability of the Timoshenko bar: 

N3(v,θ) =  
2

2 2

0

1 ( )( )
2 4

l
EI GF N dx

′⎡ ⎤+ θ′ ′θ + − θ + λ⎢ ⎥
⎣ ⎦

∫
vv . (5.12) 

The Euler equations for it are 

( ) ( ) ( ) 0
4

EI GF Nλ′ ′ ′ ′− θ − − θ + + θ =v v , 

[ ]( ) ( ) 0
4

GF Nλ ′′′ ′⎡ ⎤− θ + + θ =⎣ ⎦v v . 

Let us consider a bar of a constant section loaded by a constant 
compressive force, 1N = − . We rewrite each of the equations of this 
system expressing v via θ. So we have 

4 4
4 4

EI GF
GF GF

− λ′ ′′= − θ + θ
+ λ + λ

v ,        4
4
GF
GF

+ λ′′ ′= θ
− λ

v . 
(5.13) 

Now, differentiating the first of them and subtracting the second yields a 
third-order differential equation with respect to function θ, 

4 0
(4 )

GF
EI GF

λ′′′ ′θ + θ =
− λ

. (5.14) 

By denoting 

2 EIa
GF

= ,    
GF
λ

µ = ,    2
2

4
(4 )

k
a

µ
=

−µ
 (5.15) 

we make (5.14) look like 
2 0k′′′ ′θ + θ =  

with its general solution being 

1 2 3sin cosC kx C kx Cθ = + + . (5.16) 

Placing θ from (5.16) in the first of the equations of (5.13) and integrating 
once gives 
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( )
2 2

1 2 3 4
4 4 cos sin

(4 )
a k C kx C kx C x C

k
+ −µ

= − + + +
+ µ

v . (5.17)

As an example, we take a bar of a length l with the boundary conditions 
of hinged (simple) support on its ends, i.e. 

  (0) 0′θ = ,   ( ) 0l′θ = ,   (0) 0=v ,  ( ) 0l =v .  

The given boundary conditions help find the four constants Ci needed to 
know the solution. These are 

1 0C = ,  2 sin 0C kl = ,  3 0C = ,  4 0C = ,   

so a nonzero solution for v and θ is possible only when kl = nπ at any 
integer n. Hence, using (5.15), 

2 2

2 2

4
(4 )

cr

cr

n
l a

µπ
=

−µ
      and    

2 2

2 2 2 2

21
4

cr
EI n
a n l

l

π
λ =

π
+

 . 

Obviously, the minimum critical value of the load parameter, λ = λcr, is 
achieved at n = 1, so 

2

2 22

2

1

1
4

cr
EI

al
l

π
λ =

π
+

. (5.18) 

In the limit case when GF → ∞, the a2 parameter tends to zero and the 
critical load becomes equal to the well-known value 

2

2cr
EI

l
π

λ = . 

As we can see, the formula (5.12) and its subsequent corollaries up to 
(5.18) are based on a consistent mathematical analysis that makes use of 
the Novozhilov functional. However, the literature on engineering 
traditionally uses a slightly different stability functional for the 
Timoshenko bar (see [1], for example): 

S(v,θ) =  2 2

0

1 ( )
2

l
EI GF N dx′ ′ ′⎡ ⎤θ + − θ + λ⎣ ⎦∫ 2v v , (5.19) 

which is equivalent to using this expression of the slopes: 

12 21 ′ω = −ω = −v  
instead of earlier (5.11). 



682      11 VARIATIONAL PRINCIPLES IN STABILITY ANALYSIS 

The equations of equilibrium for the neutral state in terms of 
displacements, which follow from the above stability functional, are: 

    ( ) ( ) 0EI GF′ ′ ′− θ − − θ =v , 

[ ]( ) 0GF N ′′′ ′⎡ ⎤− θ + λ =⎣ ⎦v v . 

Further calculations yield a critical value of the load parameter obtained by 
Engesser back in 1891 (see also [1]): 

2

2 22

2

1

1
cr

EI
al

l

π
λ =

π
+

. (5.20) 

As we can see, the formulas (5.18) and (5.20) are significantly different 
in their form. The stability functional from (5.12) has been derived by 
rigorous mathematics, which is not the case for (5.19) and its corollary 
(5.20). But, actually, the dimensionless parameter a2π2/l2 is a value much 
less than one, at least for common bars made of an isotropic material. 
Therefore the addition to one in the denominators of (5.18) and (5.20) can 
be simply ignored in view of practical applications. 

Of course, it should be taken into account that the Timoshenko theory is 
sometimes applied to compound bars/beams where the a2π2/l2 parameter 
cannot be deemed small in comparison with one. Then the difference in the 
results calculated by these two formulas can be significant. However, as 
A.R. Rzhanitsyn showed [18], the very extension of the Timoshenko 
theory onto the case of a compound bar is already a rough approximation 
that can distort the results noticeably. A neater theory of compound bars 
not based on the Timoshenko theory has been created by the same 
Rzhanitsin [18], and the interested reader is invited to get familiar with that 
by herself. 

Another, second variation of applicability of the Timoshenko theory of 
bars exists. We mean bars made of materials with drastically anisotropic 
properties for which the estimate G << E takes place. For example, the 
same book [1] presents estimates of the a2π2/l2 parameter for a three-
layered bar where the material of the innermost layer (filling) has much 
weaker stiffness characteristics in comparison with those of the outer 
layers. It is shown there also that the dimensionless parameter a2π2/l2 can 
be not so small in that case. Then the application of (5.20) can give a 
noticeably different result from that calculated by (5.18).  
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The approach to the Timoshenko bar stability analysis where the 
equilibrium stability functional is written as (5.19), is somehow very 
popular12, therefore we feel it necessary to do a more careful analysis of the 
situation.  

Let us try to evaluate an unknown error immanent in the preceding 
analysis due to the use of the simplified stability functional by Novozhilov. 
To do it, we take a more accurate stability functional, one by Bryan–
Trefftz, B3(v,θ). So we have 

AB(v) = – ( )2 2

0
, ,2

l
xx

x x
A

U V dAdxλ
τ +∫ ∫ . (5.21) 

According to (5.9), 

,xU u y′ ′= − θ ,   ,xV ′= v . 

Inserting the above in the integrand of AB(v) and then integrating over the 
area of the bar’s cross-section gives 

AB(v) = – ( )2 2 2 2

02

l
N u r dxλ ′ ′ ′+ θ +∫ v ,    2 Ir

A
= . 

The final form of the Bryan–Treffz stability functional is 

B3(v,θ) =  2 2 2 2 2

0

1 ( ) ( )
2

l
EI GF N r dx′ ′ ′ ′⎡ ⎤θ + − θ + λ θ +⎣ ⎦∫ v v . (5.22) 

The Euler equations of this functional are 
2( ) ( ) ( ) 0EI GF Nr′ ′ ′ ′ ′− θ − − θ − λ θ =v , 

[ ]( ) ( ) 0GF N′′ ′ ′− θ + λ =v v . 

For the constant-section bar at 1N = − , we can write these equations as 
2EI r

GF
− λ′ ′′= − θ + θv ,                GF

GF
′′ ′= θ

− λ
v . (5.23) 

Hence an equation that contains only function θ: 
2

0EI r
GF GF
− λ λ′′′ ′θ + θ =

− λ
. 

                                                      
12 After Engesser, the formula (5.20) was given by many authors: A.S Volmir 

[22], S.P. Timoshenko [20], A.R. Rzhanitsin [18], N.A. Alfutov [1] etc.  
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In the designations of (5.15), 

2 2 0
(1 )( )a r

µ′′′ ′θ + θ =
−µ −µ

. 

The general solution of this equation is of the form (5.16) but 

2
2 2(1 )( )

k
a r
µ

=
−µ −µ

. (5.24) 

Putting (5.16) in the first equation of the system (5.23) and integrating 
the result gives 

( )
2 2

1 2 3 4
( ) 1 cos sina k C kx C kx C x C

k
−µ +

= − + + +v . 

The boundary conditions help find the integration constants: 

1 0C = ,  2 sin 0C kl = ,  3 0C = ,  4 0C = ,   

wherefrom kcr = π/l. To determine µcr, we use (5.24) and arrive at the 
quadratic equation 

2 11 0
t t t
ξ ξ⎛ ⎞µ − + + µ + =⎜ ⎟

⎝ ⎠
, (5.25) 

where we introduce additional dimensionless parameters 
2 2

2

a
l
π

ξ = ,   
2 2

2

rt
l
π

= . (5.26) 

The least root of the quadratic equation (5.25) determines µcr, 
21 1 1 11 1

2 4cr t t t t t
ξ ξ ξ⎛ ⎞ ⎛ ⎞µ = + + − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.    

So we have 

2

2

2

1 1 41 1

2cr
t t t t tEI

l

ξ ξ ξ⎛ ⎞ ⎛ ⎞+ + − + + −⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠λ =
ξ

. (5.27) 

Let us, for example, take a fairly typical value of t = π2r2/l2 = 0.02. Then 
the relation beteen the dimensionless factor at π2EI/l2 in the expression 
of λcr and the dimensionless parameter ξ = π2a2/l2 will look as shown in 
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Fig. 11.9 by curve 3. In the same figure, curve 1 conforms to the solution 
of (5.18) and curve 2 to the solution of (5.20). 
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Fig. 11.9.  The critical load vs. the dimensionless parameter ξ = π2a2/l2 for the 

Timoshenko bar 

As we can see, curve 2 and curve 3 are nearly coincident. This is not 
accidental; we can suggest an explanation. Parameter t is small comparing 
to one in any case because this is a purely geometrical parameter and we 
are dealing with a bar. Thus, we can omit this parameter when it is added 
to one and turn the formula (5.27) to 

   
( ) ( ) ( )2 22 2

2 2

21 1 11 1 4 (1 )
2 2cr

t
tEI EI

l t l t

⎡ ⎤ξ
+ ξ − +⎢ ⎥+ ξ − + ξ − ξ + ξπ π ⎣ ⎦λ =

ξ ξ
= 

2

2

1
1

EI
l

π
=

+ ξ
, 

which is an exact replica of the Engesser formula (5.20).  
In this regard, the stability functional (5.19) from which the Engesser 

formula follows, can be justified as follows. This functional is derived 
from the Bryan–Treffz functional (5.22) by removing the term 2 2r′θ . This 
simplification is legitimate because the following estimate holds: 

2 2 2 2 21 NEI N r EI EI
EA

⎛ ⎞λ′ ′ ′ ′θ + λ θ = θ + θ⎜ ⎟
⎝ ⎠

, (5.28) 

where the addition to one is the relative longitudinal strain in the bar’s 
cross-sections so it does not exceed the strain in the bar’s critical state. The 
latter value is greatly less than one by definition. 
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Thus, the Novozhilov functional is applicable to the Timoshenko bars 
made of an isotropic material; however, when G << E, it can produce 
significant errors. At the same time, the traditional functional (5.19) 
derived from the Bryan–Trefftz functional by omitting small values works 
for any case. 

11.5.3 Stability of equilibrium of a Kirchhoff–Love plate 

The state of plane stress in a sufficiently thin plate the bending of which is 
consistent with the Kirchhoff–Love theory has the following expression of 
the strain energy in the buckling mode v according to (5.1.21): 

E = 2 2 2
, , , , ,

1 2 2(1 )
2 xx xx yy yy xyD d

Ω

⎡ ⎤+ ν + + − ν Ω⎣ ⎦∫ w w w w w . (5.29)

We represent the vector function of displacements v, of an arbitrary 
point of the plate with the coordinates (x,y,z), that defines the buckling 
mode by its components as 

v = |[U,V,W]|T , 

where U,V,W  are components of vector v with respect to the system of 
axes (X,Y). Next, we denote 

u(x,y) = U(x,y,0),      v(x,y) = V(x, y,0),   w(x,y) = W(x, y,0). 

So, u,v,w are components of the displacement vector function of the points 
from the plate’s median surface.   

Using these designations and formulas (5.1.2)–(5.1.4), we can write 

U = u – zw,x ,        V = v – zw,y ,      W = w. (5.30) 

According to the engineering theory of plates, the only nonzero 
components of the initial strain tensor, е, are exx, eyy, exy. The respective 
nonzero components 11 xxτ = τ , 22 yyτ = τ , 12 xyτ = τ  of the initial unit 
stress tensor in the plane stress are 

xx
xx N

h
τ = ,   

yy
yy N

h
τ = ,     

xy
xy N

h
τ = . (5.31) 

Further, 
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11 0ω = ,  22 0ω = ,  33 0ω = , 

12 21 , ,
1 1 ( )
2 2 y x

U V u
y x

⎛ ⎞∂ ∂
ω = −ω = − = −⎜ ⎟∂ ∂⎝ ⎠

v , 

13 31 ,
1
2 x

U W
z x

∂ ∂⎛ ⎞ω = −ω = − = −⎜ ⎟∂ ∂⎝ ⎠
w , 

23 32 ,
1
2 y

V W
z y

⎛ ⎞∂ ∂
ω = −ω = − = −⎜ ⎟∂ ∂⎝ ⎠

w . (5.32) 

We insert this in (4.18) and integrate over the thickness of the plate, h. 
The result is 

     AN(v) = – ( ) ( )
/ 2

2 2 2 2
21 31 31 32 12 32

/ 2
2

2

h
xx xy yy

h
dzd

−Ω

λ ⎡ ⎤τ ω + ω + τ ω ω + τ ω + ω Ω⎣ ⎦∫ ∫ = 

   
2 2

2 2, , , ,
, , , ,

( ) ( )
2

2 4 4
y x y xxx xy yy

x x y y

u u
N N N d

Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞− −λ
− + + + + Ω⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

v v
w w w w . 

Removing the terms that depend on tangential displacements u and v 
from the expression of AN(v) gives the final equilibrium stability 
functional for the Kirchhoff–Love plates: 

N3(w) = 2 2 2
, , , , ,

1 2 2(1 )
2 xx xx yy yy xyD d

Ω

⎡ ⎤+ ν + + − ν Ω⎣ ⎦∫ w w w w w + 

( )2 2
, , , ,2

2
xx xy yy

x x y yN N N d
Ω

λ
+ + + Ω∫ w w w w . (5.33)

This functional is also known well and was used many times to analyze the 
stability of equilibrium of various plates [20]. 

11.5.4 Stability of equilibrium of a Reissner plate 

When working with the medium-thickness plates, we should replace (5.29) 
with (5.3.46). Inserting functions θx and θy instead of functions ϕx и ϕy as 
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in (5.3.15) gives the following expression of the plate’s strain energy in its 
buckling mode v13: 

E(w,θx,θy) = 2 2
, ,

5 ( ) ( )
24 1 x y y x

Eh d
Ω

⎡ ⎤+ θ + − θ Ω⎣ ⎦+ ν∫ w w + 

+ 2 2 2
, , , , , ,

1 12 ( )
2 2y x y x x y x y y y x xD d

Ω

− ν⎡ ⎤θ − νθ θ + θ + −θ + θ Ω⎢ ⎥⎣ ⎦∫ . (5.34)

where θx, θy are slopes of the normal to the plate’s median surface which 
are independent of lateral deflections w, D is a cylindrical stiffness of the 
plate.  

For the Reissner’s plate, the kinematical relationships (5.30) should be 
replaced with – see (5.3.6) – 

U = u + zθy ,    V = v – zθx ,      W = w , (5.35) 

therefore 

12 21
, , , ,( )1

2 2
y x x x y yu zU V

y x
− + θ + θ⎛ ⎞∂ ∂

ω = −ω = − =⎜ ⎟∂ ∂⎝ ⎠

v
, 

13 31 ,
1 1 ( )
2 2 y x

U W
z x

∂ ∂⎛ ⎞ω = −ω = − = θ −⎜ ⎟∂ ∂⎝ ⎠
w , 

23 32 ,
1 1 ( )
2 2 x y

V W
z y

⎛ ⎞∂ ∂
ω = −ω = − = −θ −⎜ ⎟∂ ∂⎝ ⎠

w . 

(5.36)

Thus, the proper substitution and integration over the thickness of the 
plate gives 

AN(v) = – ( ) ( )
/ 2

2 2 2 2
21 31 31 32 12 32

/ 2
2

2

h
xx xy yy

h
dzd

−Ω

λ ⎡ ⎤τ ω + ω + τ ω ω + τ ω + ω Ω⎣ ⎦∫ ∫ = 

=
2 2 2 2

, , , , ,( ) ( ) ( )
2 4 48 4

y x x x y y y xxx u h
N d

Ω

⎡ ⎤− θ + θ θ −λ
− + + Ω −⎢ ⎥

⎢ ⎥⎣ ⎦
∫

v w
 

 

                                                      
13 Chapter 5 uses the symbol of λ to denote a different quantity. The formula 

(5.3.29) defines it as λ = 5(1-ν)/h2. Therefore, in order to avoid the conflict of 
notation, we do not use this symbol in (5.34) up here.  
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2 2 2 2
, , , , ,( ) ( ) ( )

2 4 48 4
y x x x y y x yyy u h

N d
Ω

⎡ ⎤− θ + θ θ +λ
− + + Ω +⎢ ⎥

⎢ ⎥⎣ ⎦
∫

v w
 

, ,( )( )
2 2

y x x yxyN d
Ω

θ − θ +λ
+ Ω∫

w w
. 

Let us omit the quantities dependent on tangential displacements u and v 
because they are insignificant for the buckling. Also, we use the reasoning 
smilar to that concerning the Timoshenko bar to derive the estimates 

2 2 2 2
, , ,( ) ( )

12 4
x x y y y xhθ + θ θ −

<<
w

,    
2 2 2 2
, , ,( ) ( )

12 4
x x y y x yhθ + θ θ +

<<
w

.  

So, this is the final Novozhilov stability functional for the medium-
thickness plates: 

N3(w,θx,θy) = 2 2
, ,

5 ( ) ( )
24 1 x y y x

Eh d
Ω

⎡ ⎤+ θ + − θ Ω⎣ ⎦+ ν∫ w w + 

+ 2 2 2
, , , , , ,

1 12 ( )
2 2y x y x x y x y y y x xD d

Ω

− ν⎡ ⎤θ − νθ θ + θ + −θ + θ Ω⎢ ⎥⎣ ⎦∫ +  

2 2
, , , ,( ) ( ) 2 ( )( )

8
xx yy xy

y x x y y x x yN N N d
Ω

λ ⎡ ⎤+ θ − + θ + − θ − θ + Ω⎣ ⎦∫ w w w w  (5.37) 

If we base our consideration on the Bryan–Trefftz functional, we have 

AB(v) = – ( ) ( )
/ 2

2 2 2 2 2 2

/ 2
, , , , , ,2

h
xx yy

x x x y y y
h

U V W U V W dzd
−Ω

λ ⎡ ⎤τ + + + τ + + Ω −⎣ ⎦∫ ∫  

( )
/ 2

/ 2
, , , , , ,2

2

h
xy

x y x y x y
h

U U V V W W dzd
−Ω

λ
− τ + + Ω∫ ∫ . 

Inserting the expressions of (5.35), integrating over z from –h/2 to h/2, and 
removing terms that depend on tangential displacements u and v gives 

AB(w,θx,θy) =
2 2 2

2, ,
,

( )
2 12

y x x xxx
x

h
N d

Ω

⎡ ⎤θ + θλ
− + Ω −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ w  

2 2 2
2, ,
,

( )
2 12

y y x yyy
y

h
N d

Ω

⎡ ⎤θ + θλ
− + Ω −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ w  
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2
, , , ,

, ,
( )

2
2 12

y x y y x x x yxy
x y

h
N d

Ω

⎡ ⎤θ θ + θ θλ
+ Ω⎢ ⎥

⎢ ⎥⎣ ⎦
∫ w w , 

and this permits to build the Bryan–Trefftz functional by assuming 

B3(w,θx,θy) =  E(w,θx,θy) – AB(w,θx,θy)     

and taking the expression of E from (5.30). Again we have the estimates 
2 2 2

2, ,
,

( )
12

y x x x
x

hθ + θ
<< w ,       

2 2 2
2, ,
,

( )
12

y y x y
y

hθ + θ
<< w , 

2
, , , ,

, ,
( )

12
y x y y x x x y

x y

hθ θ + θ θ
<< w w , 

therefore the final form of the stability functional for the Reissner plate 
will be 

S(w,θx,θy) = 2 2
, ,

5 ( ) ( )
24 1 x y y x

Eh d
Ω

⎡ ⎤+ θ + − θ Ω⎣ ⎦+ ν∫ w w + 

+ 2 2 2
, , , , , ,

1 12 ( )
2 2y x y x x y x y y y x xD d

Ω

− ν⎡ ⎤θ − νθ θ + θ + −θ + θ Ω⎢ ⎥⎣ ⎦∫ + 

+ ( )2 2
, , , ,2

2
xx yy xy

x y x yN N N d
Ω

λ
+ + Ω∫ w w w w . (5.38)

The stability functional of the type(5.38) for the Reissner plate is a 
counterpart of (5.19) for the Timoshenko bar and works for any case 
including an anisotropic material with a weak shear rigidity. It goes 
without saying that the first two integrals in (5.38) which describe the 
potential strain energy E(w,θx,θy) should be written in a slightly different 
form for anisotropic plates (to account for anisotropy). Details are omitted. 

11.5.5 Stability of equilibrium of a thin-walled bar 

Equations of equilibrium stability derived for open-profile thin-walled bars 
by V.Z. Vlasov [21] provoked a vivid discussion in their time. The main 
inducement for that discussion was a poor decisivity of a method of 
derivation of the equilibrium stability equations that Vlasov chose to use. 

First, in his derivation Vlasov did not start from the formal conditions 
for an equilibrium to be stable, which produce homogeneous equations; 
instead, he based his consideration on so-called strain equations and then 
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eliminated the right-hand parts of those to determine the critical forces. 
Some of the arguments advanced by the participants of the discussion and 
the respective references are given in the often-cited book by Panovko and 
Gubanova [13]. 

Second, Vlasov borrowed a trick from Timoshenko based on the notion 
of the effective load to construct the equilibrium equations for the bar’s 
deformed state, but he did not give this notion a clear mathematical 
treatment. Therefore some people tried to revise Vlasov’s equations, 
mainly their parametric terms. A mathematically flawless, holeproof 
method for constructing the equations of stability for thin-walled bars, 
which did not leave any opportunities for subsequent argument about the 
decisivity of the derivation and was based exactly on the variational 
stability criterion, was suggested by V.V. Bolotin [5] back in 1965.  

We are not going to consider the stability of equilibrium of a general 
thin-walled bar; we confine ourselves to a simplest case of stability of a 
centrally compressed thin-walled bar14. Referring to the formulas of 
Chapter 6, here we present basic relationships of the theory of open-profile 
thin-walled bars which we need in this section. 

So, following the notation of Chapter 6, we define the components of 
the displacement vector v of an arbitrary point of the bar’s profile with 
respect to the global system of axes, X,Y,Z, as follows 

v = |[U, V, W]|T . 

These displacements, being functions of two coordinates – longitudinal 
coordinate x and arc coordinate s, are known to be defined by four 
functions of only the x coordinate: 

ξ = ξ (x),   η = η (x),   ζ = ζ (x),   θ = θ(x), 

where: 

• ξ is a longitudinal displacement of the center of gravity of the bar’s 
cross-section, which is imaginably rigidly connected to the zero point of 
the profile, О ; 

• η, ζ are lateral displacements (along the principal central axes of inertia 
of the bar’s cross-section, Y and Z respectively) of principal pole P of 
the profile which coincides with the bending center and is imaginably 
rigidly connected with the cross-section’s center of gravity; 

                                                      
14 The general analysis of equilibrium stability of thin-walled bars is by itself of 

great interest in both theory and applications. First of all, we should indicate 
original works by Vlasov [21] as a fountainhead. The same problems are 
discussed in a popular form in many other sources such as Volmir [22].     
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• θ is a slope of the bar’s cross-section with respect to the longitudinal 
axis X. 

The following relations take place: 

U = ξ – y z′ ′ ′η − ζ − θ ω , 

P( )V z z= η− − θ ,           P( )W y y= ζ + − θ , (5.39) 

where: 

• ω is a sectorial coordinate of the current point of the profile with the arc 
coordinate s; 

• y, z are global coordinate of the same point; 
• yP, zP are global coordinates of the pole, Р. 

Here and further a stroke means taking the derivative with respect to 
longitudinal coordinate x.  

The expression of the potential strain energy of the open-profile thin-
walled bar is as follows – see (6.2.71): 

E = ( )2 2 2 2 2

0

1
2

L

x z yEA GI EI EI EI dxω′ ′ ′′ ′′ ′′ξ + θ + η + ζ + θ∫ . (5.40)

The length of the thin-walled bar is denoted, as in Chapter 6, by L, and 
the l symbol will be reserved for the length of the profile. The initial 
normal strains, xxτ , in the cross-section of the centrally compressed bar 
are  

xx N
A

τ = . 

Meaning to use the Bryan–Treffz stability functional, we define the AB 
functional according to (4.18) 

AB(v) = ( )2 2 2

0
, , ,2

L
xx

x x x
l

U V W hdsdxλ
− τ + +∫ ∫ . 

We make use of the hypothesis of no moment in the bar’s shell 
longitudinally, so the normal stresses xxτ  are distributed evenly over the 
thickness of the profile, h. Obviously, we should substitute the expressions 
of the integrand terms from (5.39). Let’s calculate the internal integral by 
taking each of the three terms separately: 

( )22
,

xx
x

l l

NU hds y z hds
A

′ ′′ ′′ ′′τ = ξ − η − ζ − θ ω =∫ ∫  
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( )2 2 2 2 2 2 2
z yN r r rω′ ′′ ′′ ′′= ξ + η + ζ + θ , 

( )22
P,

xx
x

l l

NV hds z z hds
A

′ ′ ′τ = η + θ − θ =∫ ∫ 2 2 2
P( ) yN z r′ ′ ′⎡ ⎤η + θ + θ⎣ ⎦ , 

( )22 2 2 2
P P, ( )xx

x z
l l

NW hds y y hds N y r
A

′ ′ ′ ′ ′ ′⎡ ⎤τ = ζ − θ + θ = ζ − θ + θ⎣ ⎦∫ ∫ , 

where 

2 y
y

I
r

A
= ,      2 z

z
Ir
A

= ,      2 Ir
A
ω

ω = . 

Therefore 
AB(v) = 

2 2 2 2 2 2 2 2 2 2 2
P P

0
( ) ( )

2

L

z yN r r r z y dxω

λ ′ ′′ ′′ ′′ ′ ′ ′ ′ ′⎡ ⎤− ξ + η + ζ + θ + η + θ + ζ − θ + θ ρ⎣ ⎦∫  

where ρ is a polar radius of inertia of the cross-section, 2 2 2
y zr rρ = + . 

Considering obvious estimates 
2 2 2

zr′′ ′η << η ,    2 2 2
yr′′ ′ζ << ζ  

and omitting insignificant terms depending on ′ξ  gives the stability 
functional 

S = ( )2 2 2 2

0

1
2

L

x z yGI EI EI EI dxω′ ′′ ′′ ′′θ + η + ζ + θ +∫  

2 2 2 2 2 2
P P

0
( ) ( )

2

L
N z y r dxω

λ ′ ′ ′ ′ ′′ ′⎡ ⎤+ η + θ + ζ − θ + θ + θ ρ⎣ ⎦∫ . 

This functional can be simplified, too, if we notice that 

2 1 NEI Nr EI EI
EAω ω ω ω

⎛ ⎞λ
+ λ = −⎜ ⎟

⎝ ⎠
. 

So finally we have 
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S = ( )2 2 2 2

0

1
2

L

x z yGI EI EI EI dxω′ ′′ ′′ ′′θ + η + ζ + θ +∫  

2 2 2 2
P P

0
( ) ( )

2

L
N z y dxλ ′ ′ ′ ′ ′⎡ ⎤+ η + θ + ζ − θ + θ ρ⎣ ⎦∫ . (5.41)

The conditions of stationarity for that functional produce the following 
simultaneous equations: 

( ) P( ) 0zEI N z ′′′′′ ′ ′⎡ ⎤η − λ η + θ =⎣ ⎦ ,  ( ) P( ) 0yEI N y′′ ′′′ ′ ′⎡ ⎤ζ − λ ζ − θ =⎣ ⎦ , 

( ) ( ) P P P P( (xEI GI N z z N y yω
′ ′′′ ′′′ ′ ′ ′ ′ ′⎡ ⎤ ⎡ ⎤θ − θ − λ η + θ + λ ζ − θ −⎣ ⎦ ⎣ ⎦  

( )2 0N ′′−λ θ ρ = . (5.42)

These equations look like the following for a bar of a constant cross-
section subjected to a lengthwise-constant compressive force (we assume 

1N = − ): 

P( ) 0IV
zEI z′′ ′′η + λ η + θ = ,       P( ) 0IV

yEI y′′ ′′ζ + λ ζ − θ = , 

( )2
P P 0IV

xEI GI z y aω ′′ ′′ ′′ ′′θ − θ + λ η − ζ + θ = , (5.43) 

where we denote 
2 2 2 2

P Pa y z= + + ρ . (5.44) 

Integration of the system of equations (5.43) is not discussed here. Just 
not that this system is identical to a slightly more general one derived by 
Vlasov in another way and in other designations – see the equations (1.10) 
in page 249 of [21]. To assure yourself of it, assume the initial bending 
moments in Vlasov’s equations equal to zero. 

11.6 Mixed functionals in the stability analysis 

Variational formulations for the problems of equilibrium stability can be 
derived using mixed functionals just as well as any other ones. 

Let σ be a stress tensor that corresponds to displacements v, i.e. let 

σ = СAv. (6.1) 
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We introduce a mixed functional built similarly to the Reissner one. The 
quasi-static re-formulation of the problem will be convenient here, exactly 
as it was in the frequency spectrum problem for deriving the Reissner 
functional where the inertia forces were treated as external loads. The role 
of the inertia forces is played in the equilibrium stability problems by an 
equivalent load the concept of which was defined in Section 11.4.1. 
Therefore we can use immediately the formulas (10.4.2) and (10.4.3) 
replacing the work of the inertia forces with the work of the equivalent 
load. But the work of the equivalent load is nothing but the functional 
A(v) =  λ ( )vA . As a result, we have the following expressions for two 
forms of the Reissner-type functionals in application to the stability of 
equilibrium: 

R1(σ, v) = ½(C –1σ, σ) – (Au, σ) – λ ( )vA , (6.2) 

R2(σ, v) = ½( C –1σ, σ) – (ATσ, u) – λ ( )vA . (6.3) 

For the sake of simplicity, these functionals are assumed to act on 
homogeneously kinematically admissible displacement fields and 
homogeneously statically semi-admissible stress fields. This permits to 
exclude non-integral terms from the expressions of the mixed functionals. 
Also, the formulas (6.2) and (6.3) in comparison to (10.4.2) and (10.4.3) 
lack terms that depend on the elastic medium. We omit them, too, by 
assuming K  = О. 

We can also use the Ritz method for the mixed functionals, just as we 
did in the frequency spectrum analysis. The method of two functionals is 
equally applicable to the stability analysis, too. The technique of this 
procedure is borrowed from Chapter 10. However, theorems and estimates 
presented there do not work for the stability analysis. Clearly, the reason 
why those estimates cannot be extended onto the equilibrium stability 
analysis is again the lack of guaranteed positive definiteness of the 
geometric stiffness matrix for a finite-dimensional system made discrete 
by the Ritz method. 

Let us consider a classic problem of stability of equilibrium of a 
compressed bar, to take an example. We already know that 

A(v) = 2

02

l
N dxλ ′∫ v , 

so the first form of the Reissner functional becomes 
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2

1
0 0

1( , )
2

l lMM dx Mdx
EI

′′= +∫ ∫v vR 2

02

l
N dxλ ′− ∫ v  

where М are bending moments that develop in the bar’s cross-sections at 
the moment its stability is lost. 

By moving one derivative from the deflections onto the moments in the 
second of the integrals using integration by parts, we obtain the third form 
of the Reissner functional, 

2

3
0 0

1( , )
2

l lMM dx M dx
EI

′ ′= −∫ ∫v vR 2

02

l
N dxλ ′− ∫ v . (6.4)

This form is convenient in that all needed functions participate in the 
integrands with their derivatives no higher than first. Note that the non-
integral term in (6.4) vanishes again due to our limitation of the domain of 
the mixed functionals. 

The conditions of stationarity for this functional produce the following 
Euler equations: 

0M
EI

′′+ =v ,      ( ) 0M N ′′′ ′+ λ =v , 

or, after the М moments are excluded, 

( ) ( ) 0EI N ′′′′′ ′− λ =v v  

This coincides with the equation (5.7) derived earlier. 
Ann example of the application of the functional (6.4) to a problem of 

stability of equilibrium of a compressed bar (in the finite element analysis 
style) can be found in our paper [9]. The same paper demonstrates that the 
mixed forms of the finite element method are able, just as in the frequency 
spectral analysis, to bring about spurious critical loads in the semse 
discussed in detail in Section 10.4.3. 

11.7 Final comments to Chapter 11  

At the beginning of Section 11.3 we said that the geometrically linear 
(first-order) formulation was not sufficient for the equilibrium stability 
analysis. We used the principle of virtual displacements and the Lagrange 
variational principle based on it without any additional comments both in 
that place and in application to nonlinear problems. But this principle was 
formulated in Chapter 1, strictly speaking, as applicable to a purely linear 
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elastic analysis. However, the extended treatment of the principle of virtual 
displacements is also well-known, totally legitimate, and described in 
books on structural mechanics; see [12], for example. The only thing to do 
in order to extend this fundamental variational principle onto the nonlinear 
analysis is to re-formulate it in the following slightly modified form: 

For a deformed mechanical system to stay in equilibrium in a certain state, 
it is necessary and sufficient that the total virtual work of all external and 
internal forces of this state on any homogeneously kinematically admissible 
infinitesimal displacements be equal to zero. 

The displacement variations we worked with in this chapter actually 
belong to the said homogeneous kinematically admissible infinitesimal 
displacements. 

There is another issue worth metnioning. As we told at the beginning of 
Section 11.4, the application of the Lagrange–Dirichlet theorem to systems 
with an infinite number of degrees of freedom is a bit too formalistic. The 
matter is when we try to generalize the notion of the equilibrium stability 
onto systems with an infinite number of DOFs, we start having peculiar 
theoretical dfficulties. This fact is mentioned in the well-known book by 
H. Ziegler [23] where he refers to researches done by Shield, Green, and 
Koiter. However, that same Ziegler justifies the generalization by stating 
that “presently we don’t really have much of a choice”.  

Note also an important fact: our formulations of the equilibrium stability 
problems are confined to the case of dead load. Were it otherwise, the 
external load components with respect to the Euler coordinate system 
would be dependent on the displacements. But then we would have to vary 
the load, too, when varying the basic functionals. This formulation of the 
stability problems is unquestionably feasible and often encountered in 
practice, even if the load is conservative. A simplest example is a 
hydrostatic pressure always directed along the normal to the boundary 
surface of an elastic body in the latter’s deformed state. Of course, the load 
of this origin is conservative, but it is not a dead load. What 
generalizations need to be made in order to apply the equilibrium stability 
theory to the case of conservative but not dead external forces – this 
quesiton is beyond our scope of discussion. 
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CONCLUSION 

 The understanding of mathematics is not acquired in 
a painlessly entertaining way – nor you can acquire, for 
example, the sense of music by only reading journals 
(however bright and exciting) if you do not learn to 
listen attentively and intently. Similarly, you cannot 
advance in mathematics without actively touching the 
very essense of the living mathematical science.  
        Moiseyev NN (1979) Mathematics makes an 
experiment (in Russian). Nauka, Moscow    

 
 
 
Is it only mathematics that the words of the epigraph are applicable to? No, 
they seem to apply to a lot of other sciences and fields of knowledge 
equally well. However, in the author’s opinion, the science of mechanics is 
not the last to claim the right for the replacement mathematics → 
mechanics in the above, very relevant phrase.  

When writing, the author was in continuous imaginable conversation 
with the potential reader of this book and so did his best to not complicate 
the presentment where possible – on one hand. On the other hand, no 
bedtime entertainment was intended either. 

As the book was being written, its layout, contents, and structure of the 
knowledge presented were undergoing numerous changes. Many original 
intentions of the author taken by him as guidelines from the very 
beginning were afterwards altered or dropped, sometimes ruefully. Among 
the reasons are the limited volume of the book, pressure of time, re-
evaluation of a comparative educational value of particular theoretical 
aspects. It happens all the time that the intention is separated from the 
implementation by a long distance which does not leave the author’s 
design intact. The result is that I did what I did, no more, no less.1  

This is what I would like to notice from the original plan that ultimately 
was omitted from the book:  

                                                      
1 An immortal tag comes back unwittingly: We strived for the best, but did our 

usual. 
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• basics of theory of shells; 
• a theory of compound bars by A.R. Rzhanitsin;  
• thin-walled bars with a curvilinear axis;  
• dynamic problems not limited to the spectral analysis; 
• consideration of the stability of elastic equilibrium from a more general 

standpoint; 
• some aspects of the finite element method as a variation of the Ritz 

method where special coordinate functions are employed, in application 
to the problematics of structural mechanics. 

The author wishes he could present, in a form similar to this book, a 
discussion on at least some of the problems of mechanics of solids and 
structures which are formulated above. Anyway, this work is yet for the 
future. 

*   *    * 

The preface to the last book by A.I. Lurie says2: “I realize the 
shortcomings of this work quite clearly. No author is free from this feeling. 
I just did what I could ”. Let me join the words said by the outstanding 
mechanician.  

 
December 2004, 
Vladimir Slivker 

                                                      
2 Lurie AI (1980) Nonlinear Theory of Elasticity (English translation). New 

York: North-Holland 



APPENDIX 

А.  THE LEGENDRE AND FRIEDRICHS TRANSFORMS 

A.1 The Legendre transform in the finite-dimensional case 

Following I.I. Goldenblatt [4], [5], we consider a scalar function E = E(q) 
of a vector argument q = |[q1,…, qn]|T the total differential of which can be 
represented as 

dE = P1dq1 +…+ Pndqn  (A.1) 

where 

Pi = 
iq

∂
∂
E = Pi(q)       (i = 1,…, n) (A.2) 

are some functions of the same vector argument, q.   
We will call variables q1,…, qn principal with respect to function E, and 

the variables P1,…, Pn conjugate. The function E itself is called a 
generating function with respect to the principal variables. 

We assume the system of equations (A.2) to be solvable in terms of the 
principal variables. 

We can select another principal set of n variables from the 
comprehensive set of 2n variables q1,…, qn and P1,…, Pn with the only 
limitation: a combination of the variables is admissible if and only if for 
each index j from 1 to n the combination includes only one of the two 
variables: either qj or Pj. 

Any arbitrary combination of the variables which is acceptable as a 
principal one can be represented as P1,…, Pk, qk +1,…, qn, up to the 
renumbering of the variables. The set of such variables makes up a new 
vector, V, of the principal variables, 
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V = |[v1,…, vk, vk +1,…, vn]|T = |[P1,…,Pk, qk +1,…,qn]|T. (A.3) 

By solving the first k equations of the system (A.2) with respect to 
q1,…, qk, we can obtain expressions for q1,…, qk as functions of new 
variables P1,…, Pk, qk +1,…, qn: 

qj = f j(V)        (j = 1,…, k) . (A.4) 

The relation between vectors q and V can be represented as 

q = |[ f1(V),…, fk(V), vk +1,…, vn]|T= F(V). (A.5) 

The relationships (A.5) permit to treat E as a function of the new 
principal variables: 

 
E = E(F(V)). 

 
However, the E = E(F(V)) function is not a generating function for the 

new combination of the principal variables. To obtain a new generating 
function Ek = Ek(V) for the group of variables (A.3), we can make use of a 
so-called Legendre transform, 

Ek(V) = P1q1 +…+ Pkqk  – E(q) =   

= P1 f1(V) +…+ Pk f k(V) – E(F(V)). (A.6) 

And indeed, the full differential d Ek is 
 

d Ek = P1dq1 +…+ Pkdqk + q1dP1 +…+ qkdPk – d E = 

= q1dP1 +…+ qkdPk – Pk+1dqk+1 –…– Pndqn  
hence,  

k

iP
∂
∂
E = qi,     k

jq
∂
∂
E = – Pj     (i = 1,…, k;    j = k +1,…, n) . (A.7) 

Thus, Ek is really a generating function with respect to the new principal 
variables V. It is also clear that the vector of conjugate variables with 
respect to the new ones is the vector 

W = |[q1,…, qk, –Pk +1,…, –Pn]|T = |[w1,…, wk, wk +1,…, wn]|T. 

In particular, at k = n we have 

En = P1q1 +…+ Pnqn – E(q) = En(P) , (A.8) 

and 
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n

iP
∂
∂
E = qi   (i = 1,…, n) . (А.9) 

Thus, the Legendre transform at k = n produces such a generating 
function En for which the vector of principal variables and that of 
conjugate variables switch places. This particular case will be called a 
complete Legendre transform, to distibguish it from a partial Legendre 
transform for k < n. 

If we treat the q vector mechanically as a vector of generalized 
displacements and the generating function E as a strain energy, then the 
vector of conjugate variables P  will have the meaning of a vector of 
generalized forces that conform to the respective generalized 
displacements q1,…, qn. Then the relationships (А.2) constitute nothing but 
the Lagrange theorem, and (А.9) are the Castigliano theorem in application 
to a so-called complementary potential energy En. 

Let us discuss the field most interesting for us here, the linear structural 
analysis where the generating function E is a strain energy of a mechanical 
system and a homogeneous (assumed to be positive definite) quadratic 
form of generalized displacements q, 

E = ½ qTR q , (А.10) 

and 

P = R q . (А.11) 

The symmetric positive definite matrix R has the meaning of a stiffness 
matrix of the structure. 

The full Legendre transform from (A.8), i.e. at k = n, produces this in 
the linear analysis: 

En = PTq – ½ qTR q  = ½ PTR –1P = E , (А.12) 

so the strain energy of the system, E, and the additional potential 
energy En do not differ when their argument is the solution of the linear 
problem. 

Let us consider the Legendre transform (А.6) and find out how the 
matrix of the quadratic form changes if we replace the generating 
function E with the generating function Ek. We represent vector q of the 
principal variables and vector P of the conjugate variables as two 
subvectors оf the respective dimensions k and (n–k): 

q = |[ q1, q2]|T,     q1= |[q1,…, qk]|T, q2= |[qk+1,…, qn]|T, 
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P = |[P1, P2]|T,     P1= |[P1,…, Pk]|T, P2= |[Pk+1,…, Pn]|T, 

and matrix R of the quadratic form E in the block form 

R = 11 12

21 22

⎡ ⎤
⎢ ⎥
⎣ ⎦

R R
R R

. 

With these designations and the symmetry 21R = 12RT , the formulas (А.10) 
and (А.11) become 

E = ½ qTR q = ½ 1 11 1q R qT + 1 12 2q R qT + ½ 2 22 2q R qT  , 

P1 = 11 1 R q + 12 2R q ,   P2 = 21 1R q + 22 2R q . (А.13) 

Noting that q1 = 1 1
11 1 11 12
− −−R P R R q2 , we express vector q via the vector of 

the new principal variables, 

V = |[P1,…,Pk, qk +1,…,qn]|T =|[P1, q2]|T. 

We have 

q = 1

2

⎡ ⎤
⎢ ⎥
⎣ ⎦

q
q

= 
1 1

11 11 12
− −⎡ ⎤−

⎢ ⎥
⎣ ⎦

R R R
O I

1

2

⎡ ⎤
⎢ ⎥
⎣ ⎦

P
q

= HV,  

where      H = 
1 1

11 11 12
− −⎡ ⎤−

⎢ ⎥
⎣ ⎦

R R R
O I

. (А.14) 

With the new principal variables, the strain energy of the system, E, can be 
represented as a quadratic form: 

E = ½ qTR q = ½ VTHTR HV . (А.15) 

Now it turns out that the matrix of quadratic form E(V) has a block 
diagonal structure 

HTRH =
1

11
1

22 21 11 12

−

−

⎡ ⎤
⎢ ⎥−⎣ ⎦

R O
O R R R R

. (А.16) 

This is not accidental; there is a neat mechanical interpretation of this fact 
as a manifestation of the field orthogonality theorem – see Section 1.4.3. 

And indeed, the block diagonal structure of matrix HTRH permits to 
represent the strain energy of the system, E, as a sum of two energies, 
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E = EP + Eq  

where     EP = ½ 1
1 11 1

−P R PT ,   Eq = ½ 1
2 22 21 11 12 2( )−−q R R R R qT T . (А.17) 

Clearly, EP is the strain energy of the system subjected to purely force 
actions in the form of given external generalized forces P1,…, Pk. 
Consequently, this state is homogeneously kinematically admissible. At 
the same time, Eq is the strain energy of the same system subjected to 
purely kinematic actions in the form of given generalized displacements 
qk +1,…, qn, and thus this state is homogeneously statically admissible. 

Let us take a look at the structure of quadratic form Ek created by the 
partial Legendre transform. Based on (А.6), 

Ek(V) = P1q1 +…+ Pkqk – E(q) = 1 1P qT – ½ qTR q = 1 1P qT – ½ VTHTRHV . 

It is further clear that 

P1 = |[I O]|V,  q1 = |[I O]| HV. 

The 1 1P qT  expression is a scalar, so it does not change by transposition and 
permits the symmetrization 

1 1P qT = ½ 1 1P qT + ½ 1 1q PT = ½V T ⎡ ⎤
⎢ ⎥
⎣ ⎦

I
O

|[I O]| HV + ½VTHT ⎡ ⎤
⎢ ⎥
⎣ ⎦

I
O

|[I O]|V = 

= ½V T 11 12

21

2⎡ ⎤
⎢ ⎥
⎣ ⎦

H H
H O

V = ½V T
1 1

11 11 12
1

21 11

2 − −

−

⎡ ⎤−
⎢ ⎥−⎣ ⎦

R R R
R R O

V . 

Therefore 

( )k =VE  

1 1 1
11 11 12 11

1 1
21 11 22 21 11 12

21
2

− − −

− −

⎧ ⎫⎡ ⎤ ⎡ ⎤−⎪ ⎪= − =⎨ ⎬⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

R R R R O
V V

R R O O R R R R
T  

= ½V TGV , (A.18) 

and matrix G of quadratic form Ek(V) is1 

                                                      
1  It is interesting to notice that there is a close affinity between the partial 

Legendre transform and the so-called Gauss-Jordan elimination in the theory of 
matrices [11]. As is immediately clear from (А.19), matrix G is derived from the 
original matrix R by k successive Gauss-Jordan elimination steps with the 
governing elements on the main diagonal. The technique of the Gauss-Jordan 
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G = 11 12

21 22

⎡ ⎤
⎢ ⎥
⎣ ⎦

G G
G G

=
1 1

11 11 12
-1 1

21 11 22 21 11 12

− −

−

⎡ ⎤−
⎢ ⎥− − +⎣ ⎦

R R R
R R R R R R

. (A.19) 

The expanded quadratic form Ek(V) looks like 

Ek(V) = ½ 1
1 11 1

−P R PT – ½ 1
1 11 12 2

−P R R qT – 

– ½ 1
2 21 11 1

−q R R PT + ½ 1
2 22 21 11 12 2( )−− +q R R R R qT . (A.20) 

Recalling (A.7), we can derive matrix expressions for the subvectors of 
vector W = |[q1, P2]|T conjugate to vector V = |[P1, q2]|T, 

1

k∂
∂P
E = q1 = 1

11 1
−R P – 1

11 12 2
−R R q , 

–
2

k∂
∂q
E = P2 = 1

21 11 1
−R R P + 1

22 21 11 12 2( )−− RR R R q  . (A.21) 

In the source [4] mentioned above, I.I. Goldenblatt treats the set of all 
possible generating functions Ek as a set of various mixed potentials of 
structural mechanics for systems with a finite number of degrees of 
freeedom. Clearly, the full set of all possible variations of the Legendre 
transform for a system with n degrees of freedom permits to construct 
various potentials of structural mechanics for this system in the total 
number of 2n.   

A mixed method of analysis which is known in mechanics of bar 
structures as the Gvozdiov method can be described in its variational 
aspect as an implementation of the stationarity conditions for one of mixed 
potentials of structural mechanics. 

To see this, suppose we have chosen a principal system for the mixed 
method, and this system (structure) is subjected to unknown sought-for 
actions: generalized forces X1,..., Xk and generalized displacements 
Zk+1,..., Zn. In this system all generalized displacements qi in the directions 
of forces Xi (i = 1,..., k) must be zero. In the same principal system, all 

                                                                                                                          
elimination is a generally useful tool widely employed in structural analysis. For 
example, a generalized Gauss-Jordan elimination helps easily develop a unified 
procedure for constructing the stiffness matrix of an arbitrary finite element with 
partly removed constraints if the stiffness matrix is known for the same element 
with all constraints present [8]. The application of the Gauss-Jordan elimination to 
systems with unilateral constraints is peculiar and unexpected [6]. A detailed 
description of the Gauss-Jordan elimination and its use in structural mechanics can 
be found in [9].  
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forces Pj (j = k + 1,..., n) treated as reactions in the constraints of the 
principal system must be zero. So, according to (А.7) and with a possible 
replacement of the designations, we arrive at the following equations of 
the mixed method: 

k

iX
∂
∂
E = 0   (i = 1,…, k) ,      k

jZ
∂
∂
E = 0    ( j = k +1,…, n) . 

These equations are a corollary to the variational principle of 
stationarity of the mixed potential, Ek, in structural mechanics: 

1 1( ,..., , ,..., )k k k k nX X Z Z+=E E .    

The historical reason why the Legendre transform came up was not the 
needs of mechanics of solids and structures – it was invented to transform 
equations of analytical mechanics. The Legendre transform is used in 
analytical mechanics to handle equations of motion of particle systems – to 
validate a transition from the velocities as principal variables to the 
momenta as conjugate variables, and vice versa. This method is one of 
ways to establish a relation between the Lagrangian and Gamiltonian 
formalism in analytical mechanics. This can be learned in more detail from 
a brilliant-style book by C. Lanczos [7]. 

A.2 The Legendre transform in the general case 

Perhaps the most interesting thing about the Legendre transform is how it 
works for a general variational formulation of elastic problems. 

Following [10], we will demonstrate the use of the Legendre transform 
to switch from the Lagrange functional to the Reissner one. So, we begin 
with the Lagrange functional but write it in a slightly changed form – as 
one depending on the strains and displacements, 

L(ε,u) = ½(εT,Cε) – ( X ,u) – (Ep p , EpHuu)Г  . (А.22) 

The minimum of the Lagrangian functional, L, should be sought for under 
the additional conditions 

ε = Au ∈Ω ,         EuHuu  = u   ∈Г . (A.23) 

Using the method of undetermined Lagrange multipliers, we switch 
from the minimization of L from (А.22) under the conditions (А.23) to a 
free variational problem for functional J, 

J(ε,u,Λ,λ) =  
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( , ) ( ) ( ) ( ) ,p u u uM d d d
Γ Γ

Γ − Γ
Ω

⎡ ⎤= + − Ω − −⎣ ⎦∫ ∫ ∫u u u uA E H p E H uT T Tε Λ ε λ  

with the vector Lagrangian multipliers Λ and λ. Here we designate 

M(ε,u) = ½εTCε – uT X . (A.24) 

After taking the first variation of J(ε,u,Λ,λ) and equaling it to zero, we 
will have this, in particular: 

Λ = M∂
∂ε

= Cε ∈Ω ,           Ep(λ – HσΛ) = 0 ∈Г . (А.25) 

Now we can use (А.25) to exclude the Lagrangian multipliers from the 
J(ε,u,Λ,λ) functional. The result is a variational problem where we need to 
find stationarity conditions for functional F(ε,u) = J(ε,u,Λ(ε,u),λ(ε,u)), i.e. 

F(ε,u) ( , ) ( ) ( )p u
MM d d

Γ

Γ −
Ω

∂⎡ ⎤= + − Ω −⎢ ⎥∂⎣ ⎦∫ ∫u u uA E H pT Tε ε
ε

  

( ) .u u
M d

Γ

− Γσ

∂
−

∂∫ uE H u HT

ε
 

Along with function M(ε,u), we would like to introduce a new function, 
N(σ,u), 

N(σ,u) = σTε – M(ε,u), (A.26) 

where 

σ = Сε. 

But then, according to (А.26) and (А.24), 

N(σ,u) = σTС –1σ – M(ε,u) = ½ σTС –1σ + uT X . (A.27) 

The formulas (А.24) and (А.27) are the Legendre transform’s proper for 
two functions M(ε,u) and N(σ,u), and for variables ε and σ. This transform 
can be conveniently written as two mutually convertible relationships: 

σ = M∂
∂ε

, 

N(σ,u) = σTε – M(ε,u), 

ε = С –1σ , 

ε = N∂
∂σ

, 

M(ε,u) = σTε – N(σ,u), 

σ = Сε . (А.28) 
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The Legendre transform (А.28) permits now to reformulate the 
variational problem for functional F(ε,u). The integrand expression of this 
functional is transformed using (А.28) as follows: 

M(ε,u) + σT(Au – ε) = σTAu  – N(σ,u) ,  

and appropriate substitutions produce a functional G(σ,u), 

G(σ,u) =  

( , ) ( ) ( )p u u uN d d d
Γ Γ

Γ − Γσ
Ω

⎡ ⎤= − Ω − − =⎣ ⎦∫ ∫ ∫u u u uA E H p E H u HT T Tσ σ σ  

11 ( )
2 p ud d

Γ

Γ −−

Ω

⎡ ⎤= − Ω −⎢ ⎥⎣ ⎦∫ ∫u u uA C X E H pT T T Tσ σ σ −  

( ) .u u d
Γ

Γσ− −∫ uE H u HT σ  

As we can see now, functional G(σ,u) is nothing but the first form of the 
Reissner functional (up to the sign) – see (3.1.4). Thus, the Legendre 
transform of this kind turns the Lagrangian functional into the first form of 
the Reissner functional. 

A.3 The Friedrichs transform 

The theory of transforms of variational problems makes use of a 
transform developed by Friedrichs [3]. The Friedrichs transform became 
widely known, apparently, after a classic of mathematical physics [2] had 
been published.  This transform can be divided into two phases. The first 
phase is to supplement a functional, the stationarity of which is under 
consideration, with all or some additional relationships that the varied 
functions have to satisfy using the Lagrange multiplier technique. In this 
way the variational problem with additional conditions is transformed into 
an unconditional problem that depends on a larger number of the sought-
for functions. Conditions of stationarity of this new functional produce 
Euler equations and natural boundary conditions that establish a 
relationship between the old variables and the Lagrange multipliers. The 
second phase is to return to a conditional variational problem but in a 
different form where all (or some) old variables are excluded from the 
functional using the previous relationships. As a result, the functional 
keeps only the Lagrange multipliers, but now they also have to meet some 
additional requirements. 
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The Friedrichs transform in the finite-dimensional case 

We start by showing a sequence of operations to use the Friedrichs 
transform in a finite-dimensional variational problem. In order to do this, 
we consider a mechanical system with n degrees of freedom the full 
potential energy of which, L, is 

L = ½ qTR q – qTP . (А.29) 

The vector of displacements q and the vector of external forces Р have 
the dimensionality of n. Suppose the given system is transformed into a 
new mechanical system by imposing k additional constraints, the matrix 
equation of which is 

Bq = 0 . (А.30) 

Matrix B of the size (k×n) and the rank k is called a constraint matrix. 
To determine the state of equilibrium of this new system, we pose a 

problem of a conditional extremum of functional L under the additional 
conditions (А.30). After introducing a vector of Lagrangian multipliers, Λ, 
of the dimensionality k, we have a free variational problem for 
functional J(q, Λ): 

J(q, Λ) = ½ qTR q – qTP + ΛTBq . (А.31) 

The conditions of stationarity of J(q, Λ) produce the equations 

R q + BTΛ = Р,      Bq = 0 , (А.32) 

wherefrom 

q = – R–1BTΛ + R–1Р . (А.33) 

The obvious mechanical intepretation of the Lagrangian multipliers 
defines them as generalized forces S (reactions) in the new constraints, i.e. 

Λ = S . 

Replacing vector q in functional J(q, Λ) with its expression from (А.33) 
and Λ with the vector of reactions in the constraints, S, we get a functional 
that depends solely on the force vector S, which looks as follows (up to an 
additive constant): 

J(q(S), S) = – ½ ST(BR–1BT)S  + PTR–1BTS . (А.34) 

This functional can be treated (up to a sign) as a Castigliano functional that 
depends on the sought-for stresses/forces, S, in the constraints, that is, 

K(S) = ½ ST(BR–1BT)S  – PTR–1BTS . (А.35) 
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Functional K(S) is defined on the set of vectors S that satisfy the 
additional conditions 

BR–1BTS – BR–1Р = 0; (А.36) 

these conditions can be interpreted from the physical standpoint as 
equations of equilibrium for the reactions in the new constraints. The 
conditions (А.36) follow from the requirements (А.30) if vector q is 
replaced with its expression from (А.33). 

The Friedrichs transform in the general case 

Finally, we demonstrate the technique of the Friedrichs transform for an 
infinite-dimensional elastic problem using an elementary example and the 
Castigliano functional. For the simplicity of notation, we confine our 
consideration to only kinematical and homogeneous boundary conditions 
on the whole boundary Г of area Ω.  Then the standard Castiglianian 
formulation of the variational problem (no elastic foundation is present, 
K = O) requires that we search for a minimum of the following functional, 
see (2.3.1): 

K(σ) = ½ (C –1σ, σ) (А.37) 

under additional conditions which the sought-for stresses must satisfy: 

X  = ATσ  ∈Ω . (А.38) 

By introducing the vector of functional Lagrangian multipliers, Λ, we 
arrive at an unconditional variational problem that requires the search for a 
stationary point of functional J that depends both on stresses σ and on the 
Lagrangian multipliers, 

J(σ, Λ) = ½ (C –1σ, σ) + (Λ, X – ATσ)  . (А.39) 

The AT operator obeys the basic integral identity (1.2.17), i.e. 

(Λ, ATσ) = (AΛ, σ) – (Hσσ, HuΛ)Г  .  

This equality permits to turn functional J into 

J(σ, Λ) = ½ (C –1σ, σ) –  (AΛ, σ) +  (Λ, X ) + (Hσσ, HuΛ)Г  . (А.40) 

Clearly, the Euler equations for functional J(σ,Λ) are 

C –1σ = AΛ  ∈Ω ,    ATσ = X ∈Ω , (A.41) 

and its natural boundary conditions are 

HuΛ = 0  ∈Г . (А.42) 
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(А.41) and (А.42) make it clear that the Lagrangian multipliers, Λ, can 
be identified with displacements u.  

To begin the second phase of the Friedrichs transform, we replace the 
Lagrangian multipliers Λ in the J(σ,Λ) functional with displacements u, 
and stresses σ with their expressions from (А.41). This produces a 
functional, J(CAu,u), that depends on the Lagrangian multipliers, u, 
solely:  

J(CAu,u) = – ½ (CAu, Au)  +  (u, X ). 

The stationarity for this functional should be sought for among 
displacements u = Λ which satisfy the homogeneousl kinematical 
boundary conditions (А.42). Now it is clear that functional J(u) coincides 
(up to a sign) with the conventional Lagrange functional L. Thus, the 
Friedrichs transform permits to use a formal technique to switch from the 
Castiglianian variational formulation to the Lagrangian one.  

To give a slightly more complicated but illustrative example of using 
the Friedrichs transform, we recommend a paper by V.V. Bolotin [1] 
where this transform was used to derive a stability functional for an elastic 
body in a rigorous mathematical manner; this functional did not depend, 
formally, on the components of the initial stressed state. 

* * * 

To conclude the appendix, we would like to note that both the Legendre 
transform and the Friedrichs transform belong to the class of involutory 
transforms. It means that when either transformation is applied to the 
already transformed problem for the second time, we get back to the 
original formulation of the problem. 
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В.  TANGENTIAL STRESSES IN THE BENDING OF BARS 

В.1  Tangential stresses in the bending of straight bars 

It may seem there is no place for any peculiar and previously unnoticed 
effects on such a trodden spot of the science of strength as the law of 
distribution of the tangential stresses in a flexural beam. We agree there is 
not indeed. Therefore it is even more surprising that most courses on 
strength of material give the derivation of the well-known Zhuravsky 
formula, which looks like this in stadard designations: 

QS
Ib

τ = , (В.1) 

without even mentioning the limitations which have to be taken into 
account to make sure the formula works2. By the way, it is this formula 
that constitutes a basis for logical reasoning which is used to allow for 
shear components in the displacements of a flexural beam. 

We start by formulating those limitations explicitly; they are obviously 
independent and complementary with respect to three earlier propositions 

                                                      
2 There are, however, some exceptions such as [2] and [1]. Here (in 

Section В.1) we follow mainly the presentment of [4].  

redundant constraints (in Russian). In collected proceedings of IV All-Union 
conference on application of mathematical machines to strucutral mechanics. 

the element is nonrigidly fixed to nodes (in Russian). Bulletin of 
B.Vedeneyev’s All-Union Research Institute for Water Engineering, coll. 
papers, Vol. 164. Static and dynamic analysis of constructions of water, 

10. Rozin LA (1978) Variational formulations of problems for elastic systems (in 

11. Zukhovitsky SI, Avdeyeva LI (1967) Linear and convex programming (in 
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that constitute together a so-called planar-sections hypothesis (see 
Section 4.3).  

So, let X be the longitudinal axis of a bar that contains the centers of 
gravity of the bar’s cross-sections; let axes Y and Z be principal central 
axes of inertia of the cross-sections. We postulate that the Y and Z axes do 
not rotate between two adjacent cross-sections or, as it is sometimes said, 
the bar does not have a natural (immanent) twist. 

To be particular, we consider the bending in the (X,Y) plane and make 
the following assumptions: 

• the tangential stresses along the Y axis are distributed evenly over the 
width of the cross-section. In other words, we assume function 
τxy = τxy(x,y) to be independent of coordinate z. The τxz component is 
continuous in the elementary theory of bending;  

• the set of external actions upon the bar does not contain any distributed 
moment load m in the section of interest; 

• the cross-section of the bar does not change along it in the vicinity of the 
section of interest. 

For the beginning, let us take only the first of this assumption – that the 
tangential stresses, τxy, are evenly distributed over the width of the bar. The 
question how to find the “horizontal” tangential stresses, τxz, will be 
discussed later. 

 
Fig. В.1. 

The planar-sections hypothesis implies that each cross-section of the bar 
behaves like a perfectly rigid, non-deformable solid. This means the shear 
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strains, γ, are identical to zero and thus the respective tangential stresses, τ, 
cannot be determined from the physical relation between strains γ and 
stresses τ – Hooke’s law for a linear material. However, it is still possible 
to get the tangential stresses from the equilibrium equations. To do it, we 
extract an elementary piece of the bar between two cross-sections that have 
the respective coordinates x and x + ∆x, which is cut off from the rest of 
the bar by a horizontal plane at the distance y from the (X,Z)-plane. 
Fig. В.1 shows the extracted element of the bar hatched. 

The full force, Nx, in the left cross-section of the extracted element is 
given by a simplest consideration:  

Nx =
o

x

A

dAσ∫  =
o zA

My dA
I∫ =

oz A

M ydA
I ∫ = oz

z

MS
I

. 

Here Ao and Szo are the respective area and static moment of the left cross-
section of the cut-off piece of the bar with respect to the neutral axis Z of 
the whole cross-section. The full force Nx+∆x in the right cross-section 
(coordinate x + ∆x) is equal to 

Nx+∆x = Nx + xdN
dx

∆x. 

The resulting force created by normal stresses σx and applied to the 
extracted element of the bar will be 

xdN
dx

∆x . 

Assuming the length of the extracted piece, ∆x, to be a value of first order 
of smallness and dropping small values of higher orders, we can determine 
the resultant of the tangential stresses τxy that act on the horizontal section 
of the extracted piece as τxy b∆x where b = b(x,y) is the width of the bar’s 
crosss-section – generally, a function of two coordinates x and y. 

Supposing the exterior surface of the bar has no load component along X 
and making up an equation of equilibrium of the extracted element in the 
projection onto this axis, we come up with the formula 

τxy
  =

1 xdN
b dx

= o1 z

zb
MSd

dx I
⎛ ⎞
⎜ ⎟
⎝ ⎠

 . (В.2) 

Now, recalling  (4.5.11) that says M′ = Q + m we get 
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τxy =  o o( )1 z z

z z

Q m S SdM
b I dx I
⎡ ⎤⎛ ⎞+

+⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 . 

Let’s discuss the terms in this formula in more detail. First of all, note 
that we did not yet consider the way the moment load m is created; more 
exactly, we implied that such a load was created by force couples applied 
directly to the longitudinal axis. However, there is another, more natural 
method to create the moment load which, as we will see, will have the 
external distributed moment m completely excluded from the formula. 

To simplify the reasoning, we suppose that the Z axis is an axis of 
symmetry of the bar’s cross-section. Then the moment load m can be 
represented as a result of longitudinal load qx where qx is an intensity per 
unit of volume of the bar’s material. We postulate an even distribution of 
the load over the width of the cross-section. As for its distribution over the 
height, we will assume function qx = qx(x,y) to be an antisymmetric 
function of coordinate y, that is, 

qx(x,y) = – qx(x,–y) . (В.3) 

It is clear that 

m = –
/ 2

/ 2
( , ) ( )

h

x
h

q x y b y ydy
−∫  (В.4) 

where h = h(x) is the height of the cross-section. 
The qx load must be taken into account also in the equations of 

equilibrium of the extracted piece of the bar, so instead of (В.2) we have  

τxy
  =

/ 21 1 ( , ) ( )
h

x
x

y

dN q x y b y dy
b dx b

+ ∫ = 
/ 2

o1 1 ( , )
h

z
x

yzb
MSd q x y dy

dx I b
⎛ ⎞

+⎜ ⎟
⎝ ⎠

∫ ,  

wherefrom proper substitutions and transformations produce the final 
result: 

τxy =  
/ 2

o o o1 ( , ) ( )
h

z z z
x

yz z z

QS S mSdM q x y b y dy
b I dx I I
⎡ ⎤⎛ ⎞

+ + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ . (В.5)

If now we take qx = 0 and assume the bar to have a constant cross-section, 
therewith we will simplify the general formula (В.5) into the already 
familiar Zhuravsky formula (В.1). 

We can further show that the two last terms in brackets in (В.5) should 
be omitted under the assumptions of the Bernoulli–Euler theory of 
bending. We represent the longitudinal load qx = qx(x,y) as an expansion 
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into a power series over the y coordinate; the function is antisymmetric 
with respect to y, so the series will contain only terms of odd powers. We 
have 

qx(x,y) = α1(x)y + α3(x)y3 + … (В.6) 

The ellipsis denotes the other terms of the series, ones of higher powers 
of y. Actually, the Bernoulli–Euler theory of bending requires that only the 
first term (linear w.r. to y) should be kept and all the others omitted. 

According to the planar-sections hypothesis, each cross-section has only 
one degree of freedom in bending with respect to displacements u along X, 
which is a rigid rotation of the whole section by an angle θ about Z. In 
other words, 

u = –θy . 

This means the first term of the series (В.6) covers all generalized external 
forces allowed by the Euler–Bernoulli model and comprising the degrees 
of freedom of the sections which conform to the longitudinal 
displacements. So, within this theory of bending, we should assume 

qx(x,y) = α1(x)y . (В.7) 

The sought-for functional coefficient α1(x) can be calculated by 
multiplying the equality (В.7) by b(y)y and then integrating over the height 
of the section, which together with (В.4) gives 

α1(x) = –
z

m
I

. (B.8) 

The result is 
/ 2 / 2

o( , ) ( ) ( )
h h

z
x

y yz z

mSmq x y b y dy b y ydy
I I

= − = −∫ ∫ , 

and the two last terms in (B.5) cancel each other. Therefore 

τxy =  o o1 z z

z z

QS SdM
b I dx I
⎡ ⎤⎛ ⎞

+⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (B.9) 

It is easy to show that 

oz
z

A

S dA I
b

=∫  (B.10) 

where А is an area of the bar’s cross-section. 
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To see this, use the integration by parts:3 
/ 2 / 2

/ 2o o
o o / 2

/ 2 / 2

h h
hz z

z z h
A h h

S dSdA S dy S y y dy
b dy−

− −

= = −∫ ∫ ∫ . 

The static moment of the whole section with respect to axis Z is zero, that 
is, Szo(x,h/2) = 0 and Szo(x,–h/2) = 0, so the non-integral term in the right 
part of the formula vanishes. Next, 

/ 2

( , ) ( , )
h

zo

y

dS d b x y ydy b x y y
dy dy

= = −∫ , (B.11) 

which gives (B.10) after proper substitutions. 
The formula (B.9) is of course neater concerning the distribution of the 

tangential stresses over the section than the simpler Zhuravsky formula. 
However, if we want to know just an averaged shear in the section, then 
the second integral term in the advanced formula (B.9) can be shown to 
make a zero contribution to the total integral xy

A

dAτ∫ .  

We have 
/ 2

o
o

/ 2

1 1 1 0
( , )

h
z

z z
z z zA h

Sd d ddF S dy I
b x y dx I dx I dx I−

⎛ ⎞⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ . 

Thus, the integral contribution of the second term in (B.9) to the section-
averaged shear is zero. This is a key reason why the simple formula by 
Zhuravsky can be the basis for calculating the averaged shear in the 
planar-sections-based theory of bars. It is this consideration that permits us 
to use the Zhuravsky formula to derive equations of bending for a 
Timoshenko bar. However, popular books on strength of materials do not 
give any comments or explanations about their use of the Zhuravsky 
formula for constructing the theory of bending of Timoshenko bars. This 
fact can be treated only as a logical fault that can perplex an inquiring 
student. 

It is of interest to discuss briefly the question how the horizontal 
tangential stress, τxz, is distributed. It turns out the answer even to this 
question can be found in the elementary bending theory. Following a 
relatively new work by V.D. Kharlab [3], we determine those stresses from 
the differential equation of equilibrium: 

                                                      
3  Note that the y varies between –h/2 and h/2 because we assume the bar’s 

section to be symmetric with respect to axis Z. 
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xz x xy

z x y
∂τ ∂σ ∂τ

= − − =
∂ ∂ ∂

 

o oz z

z z z

QS SMy M d
x I y bI b dx I

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
= − − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

. (B.12) 

We transform the equation in this way: 

o1xz
z

z z z

SQ Qy My
z I x I I y b

⎛ ⎞∂τ ∂ ∂ ⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠
 

o1 z

z

SM
y b x I
⎡ ⎤⎛ ⎞∂ ∂

− ⎢ ⎥⎜ ⎟∂ ∂ ⎝ ⎠⎣ ⎦
. (B.13) 

Using (B.11) and denoting b′ = ∂b/∂y, we have 

o o
2

z zS S by
y b b

′∂ ⎛ ⎞ = − −⎜ ⎟∂ ⎝ ⎠
,    o o

2

1 z z

z z z

S Sb y b
y b x I b x I b x I
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′∂ ∂ ∂ ∂

= − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
, 

which, when inserted in (B.13) and transformed, gives 

1 1xz
xy

z z

b bMy
z b b x I x I

⎡ ⎤⎛ ⎞ ⎛ ⎞′∂τ ∂ ∂
= τ + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

Seeing that  
1 1 1

z z z z

b b b
x I x bI b x I bI x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, 

we have the following expression of the derivative ∂τxz/∂z: 
xz xy

z

b My b
z b y bI x

∂τ τ ∂ ∂
= +

∂ ∂ ∂
. (B.14) 

Noting that our assumption makes all the components in the right-hand 
part of (B.14) independent of z and assuming τxz(x,y,0) = 0 gives a simple 
final formula for the horizontal tangential stresses, 

( )xz xy xb b z
y x b
∂ ∂

τ = τ + σ
∂ ∂

 (B.15) 
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The formula (B.15) differs from the respective one in [3] by the last term 
that depends on stresses σx. In other words, Kharlab’s formula 

xz xy b z
y b
∂

τ = τ
∂

 (B.16) 

is a particular case of (B.15) and follows from (B.15) only when the cross-
section’s width does not change over the length of the bar. The reason is 
that V.D. Kharlab based his reasoning on the simplified Zhuravsky 
formula of tangential stress τxy rather than on the refined formula (B.9). 

We take as an example a round bar of a variable radius r = r(x). 
Obviously, b2(x,y) /4 + y2 = r2(x), so 

4b y
y b
∂

= −
∂

,          4b rr
x b
∂ ′=
∂

, 

where we denote r′ = ∂r/∂x.  
Next, it is easy to find that 

4

4
rI π

= ,          So = 
3

12
b , 

consequently, 
3

o
43

S b
I r
=

π
,   

2 2
o

4

4
3

S b b br b r r b
x I r x r I b r

′ ′∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ π ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

Inserting this in (B.9) gives 
2 12

12 3
xy b r r bQ M

I b b r
′⎡ ⎤⎛ ⎞τ = + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 

Now it is easy to find tangential stresses τxz, too, by using (B.15). The 
result is 

4
3

xz yz rQ M
I r

′⎛ ⎞τ = − +⎜ ⎟
⎝ ⎠

, 

which differs from the similar formula in [3] by the additional term that 
depends on the bending moment. 
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В.2 Tangential stresses in the bending of curvilinear bars 

Again, as with the rectilinear-axis bar, we extract an elementary piece from 
a curvilinear bar, located between the cross-section with the arc 
coordinate s on the left and the cross-section with the arc coordinate s+∆s 
on the right (Fig. B.2). This elementary piece of the bar, which hatched in 
Fig. B.2, is also cut off from the rest of the bar by a curvilinear surface 
z = Const where z is the normal coordinate as defined in Section 4.7. 

Z

s s+ sD

S

t
t

1

n n
1h

2 z

 
Fig. B.2. 

The left section of the extracted element is subjected to normal 
stresses σ which together create a longitudinal force Nо and a bending 
moment Mо with respect to the Y axis. The right section is respectively 
subjected to the normal stresses 

d s
ds
σ

σ + ∆ . 

Normal stresses σ can be represented as follows, depending on what 
theory of curvilinear bars is used: 

           Table B.1 
small-curvature 

bars 
medium-curvature bars big-curvature bars 

N Mz
A I

σ = +  
2N kM Mz kMz

A I I
+

σ = + −
1

N kM M z
A I kzρ

+
σ = +

+
 

Further we will find useful the following notation of the geometrical 
characteristics of the left-hand cross-section: 

Ao = 
/ 2h

z

bdz∫ ,     
o

o
A

S zdA= ∫ ,    
o

2
o

A

I z dA= ∫ , 

o

o 1A

zS dA
kzρ =

+∫ ,      
o

2

o 1A

zI dA
kzρ =

+∫ ,        
o

3
2o

A

I z dA= ∫ , (B.17) 
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where Ao is the area of the section. 
The following formulas hold: 

o

2A

A hdA A
b

=∫ ,       o

A

S dA I
b

=∫ ,      o 0
A

zS dA
b

=∫ ,      o

2A

I hdA I
b

=∫ . (B.18) 

The proof is based on the integration by parts and can be easily reproduced 
using two points: 

1)  the formulas of differentiation of the geometrical characteristics: 

o ( )dA b z
dz

= − ,    o ( )dS zb z
dz

= − ,     2o ( )dI z b z
dz

= − ; 

2)  the symmetry of the bar’s cross-section with respect to axis Y, hence 
/ 2

/ 2

0
h

n

h

z bdz
−

=∫    for any odd n. 

The following estimates for the comparative orders of magnitude take 
place: 

o

o

S h
A

< ,           o

o

I h
S

< ,          22o

o

I h
S

< . (B.19) 

It is convenient to use the equation of equilibrium for the extracted 
element of the curvilinear bar in moments rather than in projections onto 
the horizontal axis as we did for a straight-axis bar. More exactly, we set it 
down that the moments of all forces acting on the element with respect to 
the curvature center of the bar’s axis should be equal to zero4. So, denoting 
the s coordinate derivative by a stroke and recalling that k = 1/ρ, we have 

  
/ 2

( )
h

z

b z dz− σ ρ +∫ +
/ 2

[ ( ) ]( )
h

z

b b s s z dz′ ′σ + σ ∆ ρ + ρ ∆ +∫ – τszb(1+kz)(ρ+z) = 0. 

After canceling out, we keep only terms of at most first order of 
smallness with respect to ∆s and have 

/ 2

( ) ( )
h

z

b z dz′σ ρ +∫  +
/ 2h

z

b dz′σ ρ∫ – τszbρ(1+kz)2 = 0. 

                                                      
4  Generally, when the curvature varies along the bar, the locations of the 

curvature centers for the left and right sections are different. It can be shown, 
however, that ignoring this fact is equivalent to the removal of values of second 
and higher orders of smallness with respect to ∆s from the equation of moments. 
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The integrand in the first term of the above formula can be conveniently 
represented as 

( ) [ ( )]( )d b d b z dz b
ds ds ds
σ σ ρ + ρ

ρ + = − σ . 

This makes it possible to place the operation of taking the derivative with 
respect to s outside the integral. As the curvature of the bar’s axis, k, does 
not depend on z, we have this final general expression of the tangential 
stress in the cross-section of a variable-profile curvilinear bar: 

τsz = 
/ 2

2

1 (1 )
(1 )

h

z

k d b kz dz
b kz ds k

⎡ ⎤
σ +⎢ ⎥+ ⎣ ⎦
∫ . (B.20) 

After substitutions and integrations where we use formulas from 
Table B.1, we obtain the working formulas for tangential stress τsz 
depending on what theory is used to describe a particular curvilinear bar. 

Small-curvature bars (kh<<1) 

 τsz = o o o oA kS S kIk d N M
b ds kA kI

+ +⎛ ⎞+⎜ ⎟
⎝ ⎠

. 

In full accordance with the order of accuracy used in the theory of small-
curvature bars and with the estimates (B.19), this formula becomes simpler 
as 

τsz = o oA Sk d N M
b ds kA kI

⎛ ⎞+⎜ ⎟
⎝ ⎠

. (B.21) 

Now we use the Kirchhoff equations of equilibrium (4.7.30) for the 
curvilinear bars: 

N′ = – kQ – qt ,          kN = Q′ + qn ,          M′ = Q – m . (B.22) 

Taking the derivative in (B.21) and using the expressions of N′ and M′ 
from (B.22) gives 

τsz = o o o o o o1
t

' 'S kA A S A SQ Nk Mk q m
b I A A kI A I

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

. (B.23)

If now we calculate the integral characteristic of the tangential stresses, 
τsz, over the whole section of the bar, it should be apparently equal to the 
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shear force, Q. However, even the first term in (B.23) where (B.18) are 
substituted already gives as much as 

o o1 (1 )
2A

S kA khQ dA Q Q
b I A
⎛ ⎞− = − ≈⎜ ⎟
⎝ ⎠∫ , 

so all the other terms total to a zero contribution to the general shear force. 
Therefore we can confine ourselves to the same old Zhuravsky formula 
and determine the section-average shear γ as 

τsz = oQS
bI

. 

Obviously, the values of the tangential stress in particular ‘fibers’ of the 
cross-section can be calculated more precisely by the refined formula 
(B.21). 

Medium-curvature bars (k2h2<<1)  

Using (B.20) as a basis and considering the second column of Table B.1 
gives 

τsz = 
2

o o o o o 2o
2(1 )

A kS A kS S k Ik d N M
b kz ds kA A kI

⎡ ⎤⎛ ⎞+ + −
+ +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

. (B.24)

Within the scope of accuracy adopted for the medium-curvature bars, we 
assume 

2

1 1 2
(1 )

kz
kz

≈ −
+

, 

which permits, together with the estimates from (B.19), to simplify (B.24) 
into the following: 

τsz = o o o o o(1 2 ) A kS A kS Sk kz d N M
b ds kA A kI

⎡ ⎤+ +− ⎛ ⎞+ +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

. (B.25) 

Taking the derivative with respect to s in (B.25) and using the Kirchhoff 
equations (B.22) helps derive the final formula of the tangential stresses, 
τsz, in application to the medium-curvature bars: 
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τsz = 1 2kz
b
−

×

o o o o o o o o o o o
t

S A kS A kS S A kS A kS SQ Nk Mk q mk
I kA A kI A A kI

⎡ ⎤′ ′+ + + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥× + + + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

Integration of τsz  over the whole cross-section’s area, A, makes the first 
term of the above expression equal to 

 o1 2

A

SkzQ dA Q
b I

−
=∫ , 

where we take (B.18) into account. Thus, for the medium-curvature bars 
the Zhuravsky formula becomes 

τsz = o (1 2 )QS kz
bI

− . (B.26) 

Big-curvature bars  

Using (B.20) as a basis and considering the third column of Table B.1 
gives 

τsz = o o o o o
2(1 )

A kS A kS Sk d N M
b kz ds kA A kIρ

⎡ ⎤⎛ ⎞+ +
+ +⎢ ⎥⎜ ⎟⎜ ⎟+ ⎢ ⎥⎝ ⎠⎣ ⎦

. (B.27) 

By taking the derivative and considering the Kirchhoff equations (B.22), 
we transform the last formula into 

τsz = 2

1
(1 )b kz

×
+

 

o o o o o o o o o o o
t

S A kS A kS S A kS A kS SQ Nk Mk q mk
I kA A kI A A kIρ ρ ρ

⎡ ⎤′′ ⎛ ⎞ ⎛ ⎞+ + + +⎛ ⎞⎢ ⎥× + + + − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

. 

Integration of τsz  over the whole cross-section’s area A gives the 
following for the first term of the above expression: 

 
/ 2

o o
2 2

/ 2

1
(1 ) (1 )

h

A h

S SQQ dA dz
b kz I I kzρ ρ −

=
+ +∫ ∫ . 

Integration by parts makes the following out of the last integral: 
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/ 2/ 2 / 2
o o

2
/ 2 / 2/ 2

1
(1 ) (1 ) 1

hh h

h hh

S S zbdz dz
kz k kz k kz− −−

= − −
+ + +∫ ∫ . 

The non-integral term is zero because the static moment of the cut-off part 
of the section is zero at the upper and lower integration limits. The 
remaining integral is a static moment Sρ of the reduced section – see 
(4.7.38). The result is 

o
2

1
(1 )A

QSSQ dA Q
b kz I I k

ρ

ρ ρ

= − =
+∫ . 

Thus, for the big-curvature bars the Zhuravsky formula turns into 

τsz = o
2(1 )

QS
bI kzρ +

. (B.28) 
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chaarcteristics of the cross-sections of thin-walled bars, and in other 
situations. 

  

a
2

b
2

a
2

b
2

c
2

 

a
1

b
1

 
1 2 1 2[2 2

6
l a a b b+ +  

1 2 2 1]a b a b+ +  
1 2 1 2 2 1 1[ 2 ( )]

6
l a a b b c a b+ + +  

a
1

b
1

c
1

 

1 2 1 2[
6
l a a b b+ +  

1 2 22 ( )]c a b+ +  

1 2 1 2 1 2 2[2 2 ( )
6
l a a b b c a b+ + + +  

1 2 2 1
2 1 1 1 2( ) 8 ]

2
a b a bc a b c c+

+ + − +  

If functions f1 and f2 are arbitrary, we have to resort to numerical 
integration. However, in most typical situations the integrands are 
polynomials, and the integrals can be calculated analytically. In the case 
when the integrand multipliers are polynomials of second order at the 
most, the formulas become especially simple, so we think we should 
present them here as a table for the convenience of referencing. The 
figures and the formulas denote by с1 and с2 the values of the square 
parabolas in the middle point of the interval [0,l]. 

D.  CIRCULATION OF TANGENTIAL STRESSES 

Section 6.1.2 dedicated to the Saint-Venant problem of the pure torsion of 
a prismatic bar presents a well-known Bredt theorem of circulation of the 
tangential stress. We intend to formulate this theorem here is a slightly 
more general form5. 

D.1 The generalized Bredt theorem 

Let us consider a stressed state of a three-dimensional elastic body with its 
position in space defined in a right-hand Cartesian coordinate system 
(X,Y,Z) which we will call a global coordinate system. We choose an 
arbitrary point М of the body with a coordinate x and cut the body apart by 
a plane that passes through the M point and is orthogonal to the X axis. We 

                                                      
5 The contents of this appendix follows the article [5].  
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assume that a planar two-dimensional area created by this kind of 
intersection can have holes (orifices) in a general case, i.e. it does not have 
to be singly connected. 

In the two-dimensional area thus obtained, we choose a closed and 
sufficiently smooth curve Г that belongs wholly to the body. The area of 
the two-dimensional body contained within curve Г will be denoted by А, 
and the total area comprised by the closed curve Г will be denoted by Ω/2. 
It is clear that А ≤ Ω/2, and the equality is achieved when the Г curve does 
not have orifices inside – as shown in Fig. D.1.  

We can introduce a curvilinear orthogonal system of coordinates in the 
vicinity of curve Г on the (Y,Z)-plane and associate it with the curve – see 
Appendix F. The direction of the arc coordinate s on this curve is assumed 
positive when the closed contour is traced counterclockwise and we are 
looking from the positive direction of the X-axis.   

The stressed state of the body in an arbitrary point that belongs to area 
А, on the plane the normal to which is coincident with the X axis, is 
defined by a normal stress σ xx and a vector of tangential stress τ in the 
(Y,Z)-plane. 

We denote by τ xs the projection of the vector of tangential stress τ onto 
the direction of the tangent to Г; the positive direction of the tangent is 
defined by a unit vector t that looks towards the increasing arc 
coordinate s. To put it another way, τ xs = τ⋅t . 

Y

Z

n

t

Ã

Ã
0

 
Fig. D.1. Intersection between the body and the (Y,Z) plane 

The integral J such that 
xsJ ds

Γ

= τ∫  (D.1) 

is called a circulation of the tangential stress along the Г curve. 
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Let U,V,W be the components of the displacement of an arbitrary point 
of the body with respect to the global system of axes, X,Y,Z. 

For points of the body that belong to the planar area А in some vicinity 
of the Г curve, the displacement components can be specified also in a 
local coordinate system of axes with unit vectors (ix,n,t) where n is a unit 
vector of the external normal to the boundary Г (Fig. D.1). The 
displacement components in the local axes will be denoted by u,v,w. Thus, 
denoting the unit vectors of axes X,Y,Z as ix, iy, iz, we have 

uix + vt + wn = Uix + Viy + Wiz . (D.2) 

The connection between the components of the displacement vector in 
the global and local coordinate systems is established by the formulas 

u = U,          v = Vty + Wtz ,            w = Vtz – Wty , 

    U = u,          V = vty + wtz,              W = vtz – wty , (D.3) 

where ty and tz are cosines of the unit vector t with respect to axes Y and Z. 
Hooke’s law for the tangential stress τ xs gives 

τ xs = uG
s x
∂ ∂⎛ ⎞+⎜ ⎟∂ ∂⎝ ⎠

v . 

The requirement of unambiguous longitudinal displacements u implies the 
requirement of 

0u ds
sΓ

∂
=

∂∫ , 

which permits to write our circulation also in the form 

( )V Wy zJ G ds G ds G t t ds
x x xΓ Γ Γ

∂ ∂ ∂
= = = +

∂ ∂ ∂∫ ∫ ∫
v v . (D.4)

Suppose first that the process of deformation of the closed curve Г 
obeys the so-called rigid contour condition. We say the curve Г obeys the 
rigid contour condition when the projection of the curve in the deformed 
state onto the (Y,Z)-plane is identical to the original (undeformed)  curve Г, 
possibly moved and rotated as a rigid solid with respect to its undeformed 
position. 

Let v = v(s) be a vector of displacements of the Г contour’s points in the 
(Y,Z)-plane. The mathematical form of the rigid contour condition is 

v = vP + θ×ρ , (D.5) 

where: 
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• vP is a vector of translational displacements of the Г contour in the 
(Y,Z)-plane, which can be treated as a vector of displacements of an 
arbitrarily chosen point Р (a pole) of the (Y,Z)-plane rigidly attached to 
the curve Г;  

• θ = θix is a vector of slope of the Г curve with respect to the pole Р, 
where θ is an angle of this slope (rotation); 

• ρ = ρ(s) is a vector that goes from the pole Р to the current point of the 
curve Г . 

Obviously, the tangential displacement v introduced earlier is the 
projection of the v vector onto the direction of the t unit vector. To express 
it differently, 

v = v·t =  t·vP + t·(θ×ρ) = t·vP + θρ·(t×ix) = t·vP + θρ·n . (D.6) 

Here we use well-known properties of the mixed product of three vectors, 
a·(b×c) = c·(a×b) – see [2], for example. 

Now we have 

Pvd
x dx
∂

=
∂
v t ⋅ + θ′ρ·n (D.7) 

where θ′ is the derivative with respect to x of the slope θ.  
It can be easily seen that 

ds
Γ

=∫ 0t ,            ( )ds
Γ

= Ω∫ in ρ ,  

where Ω is the doubled area bounded by Г. 
Inserting the above in (D.4) gives a well-known Bredt formula for the 

circulation of the tangential stress [1], which looks as follows in the 
modern formulation: 

J = θ′GΩ (D.8) 

and is sometimes called a Bredt theorem. The tradition of courses on 
elasticity refers the Bredt formula to the torsion of bars solely. 

However, as we have just seen, the Bredt formula requires only the rigid 
contour condition to hold. The particular stress distribution is of no 
importance as long as the condition is met. For example, the rigid contour 
condition holds for an orthotropic solid the elasticity moduli of which in 
one of the orthotropy planes are so large that can be deemed infinite. 
Sometimes situations when the rigidity contour condition is met are caused 
by a kinematical hypothesis used to build a particular applied theory. For 
example, any variation of the engineering theory of thin-walled bars is 
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based on the assumption that the profile is nondeformable in its plane – 
which is the rigid contour condition. By the way, the Bredt formula shows 
that when there is no twist (θ′ = 0) the circulation of the tangential stresses 
around any closed contour is identical to zero. 

Now let us see whether we can generalize the Bredt theorem  onto the 
case when the rigid contour condition is no longer guaranteed. 

Let ωx be the X-axis component of the slope vector of an arbitrary 
infinitesimal solid element in the vicinity of the current point of the body. 
The theory of elasticity says [4] that 

ωx = 1 W V
2 y z
⎛ ⎞∂ ∂

−⎜ ⎟∂ ∂⎝ ⎠
. (D.9) 

We denote by Θ the average value of slope ωx in the А area, that is, 

Θ = 1
x

A

dA
A

ω∫∫ . (D.10) 

We denote by the symbol Г0 the interior boundary, i.e. the boundary of an 
orifice (or the united boundaries of all orifices) contained in the area which 
the Г contour comprises. The positive direction along the interior boundary 
traces Г0 clockwise if we look from the positive direction of the X-axis 
(Fig. D.1). 

By replacing ωx in (D.10) with its expression from (D.9) and using the 
Gauss–Ostrogradsky formula, we obtain the following, where our sign 
conventions for the contour tracing are used: 

  Θ = ( ) ( )
0

1 W V 1 W V W V
2 2 y z y z

A

dA n n ds n n ds
A y z A Γ Γ

⎡ ⎤⎛ ⎞∂ ∂
− = ⎢ − + − ⎥⎜ ⎟∂ ∂ ⎢ ⎥⎝ ⎠ ⎣ ⎦

∫∫ ∫ ∫ , 

ny and nz being the direction cosines of unit vector n with respect to axes Y 
and Z. 

Geometrical considerations make it clear that 

ny = tz,      nz = –ty, 

therefore, with designations of (D.3), 

Θ ( ) ( )
0

1 W V W V
2 z y z yt t ds t t ds

A Γ Γ

⎡ ⎤
= ⎢ + + + ⎥ =

⎢ ⎥⎣ ⎦
∫ ∫  
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0

1
2

ds ds
A Γ Γ

⎡ ⎤
= ⎢ + ⎥

⎢ ⎥⎣ ⎦
∫ ∫v v . (D.11) 

According to (D.4), we can write 

1ds J
x GΓ

∂
=

∂∫
v ,      

0

0
1ds J

x GΓ

∂
= −

∂∫
v , (D.12) 

where J0 is a circulation of the tangential stress around the contour Г0, and 
the minus sign stands there because the calculation of the circulation on Г0 
is based on the direction of contour tracing opposite to that shown in 
Fig. D.1. 

Thus, the following formula holds true for the general case: 

J – J0 = G(2A) Θ′, (D.13) 

which generalizes the Bredt formula. 
In a particular case when the area is singly connected and there is no 

boundary Г0, we have 2A = Ω, and the formula of circulation J becomes a 
usual Bredt formula, 

J = GΩ Θ′ , (D.14) 

where we should emphasize Θ is an average angle of slope in the area 
bounded by contour Г. 

Finally, when the rigid contour condition holds for any closed curve Г 
fully contained in the cross-section x = Const, the average slope Θ will be 
identical to slope θ of the cross-section in the (Y,Z)-plane as a rigid solid. 
Therefore  (D.13) will become 

J – J0 = G(2A)θ′ , (D.15) 

which corresponds to the earlier Bredt formula (D.8) because that gives the 
following when applied to each of the closed contours Г and Г0 separately:  

J = θ′GΩ,               J0 = θ′G(Ω – 2A) . 

To conclude the section, we would like to note that an inhomogeneous 
material of the body requires the Bredt theorem of circulation of the 
tangential stress to be generalized to a theorem of circulation of shear 
strains [3]. In this latter case the analytical form of the theorem is as 
follows instead of (D.8): 
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 θ′Ω 
xs

ds
GΓ

τ
= ∫ . 
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E.  CONSERVATIVE EXTERNAL FORCES 

The engineer encounters the notion of force everywhere and every moment 
without often thinking what are their sources and how the forces behave 
during the deformation of a mechanical system. Of course, major mistakes 
are mostly avoided, and the day is saved by intuition based on analogies 
and experience. 

The history of structural mechanics as a science, however, contains 
cautionary examples which show how the intuition and analogies can let 
one down. Let us recall an already classic problem of stability of a 
cantilever bar under a follower force. The primary conclusion that the bar 
was stable under any value of the force was a mistake, but it was confuted 
only after the follower force had been noticed not to belong to the class of 
conservative loads, so the static Euler method was not really legitimate in 
application to this problem [1]. 

The fundamental concept of the force is made familiar to the students of 
engineering early, when they study a course of theoretical mechanics. 
When this concept is introduced in the course, it presents also a 
classification of various forces that exist. In particular, here in structural 
mechanics we are interested with an important feature used to classify 
forces into conservative and nonconservative. 

Usually the conservative forces are such that can be found from an 
energy conservation condition, i.e. they have a potential. The very term 
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‘conservative’ implies they have an energy-conservative character in the 
mechanical sense because they are associated with the absence of external 
sources or consumers of energy. 

Further, the same course of theoretical mechanics shows that the work 
of a force having a potential which is spent to move the force’s application 
point from one spatial position to another does not depend on the path 
between these positions; it depends solely on the start and end positions of 
the material point to which the force is applied. 

Many courses of theoretical mechanics mistake this latter property of 
the force that has a potential for the definition of a conservative force. The 
fact that the two definitions are not totally equivalent is sometimes 
dissembled. To clear things up, imagine a force different from zero the 
work of which, nevertheless, is always zero and thus does not depend on 
the path. Obviously, this force does not have a potential. There are such 
forces in the nature; the simplest example is a Coriolis force. This 
circumstance is brightly explained by H. Ziegler [2]. 

The class of the conservative forces can be further divided into so-called 
dead forces and others (which do not have any special entitlement). A 
conservative force applied to a mechanical system is thought to be dead if 
in the course of deformation of the system the material point of its 
application remains the same, and so do both the direction and the absolute 
value of the force. In other words, a conservative force is a dead force if 
two following conditions are met: 

• the Lagrangian (material) coordinates of the force application point 
do not change in the course of deformation;  

• the projections of the force onto the axes of the Euler (spatial) 
coordinate system remain unchanged in the course of deformation. 

The simplest and most popular example of a dead force is the gravity 
force, i.e. the force caused by universe attraction. 

The dead forces are easiest to analyze. The reason is that the work of a 
dead force has the simplest form possible: a scalar product of the force 
vector by the vector of full displacement of the material point of its 
application. 

E.1 Some cases of the behavior of external forces 

Let us analyze the behavior of a force Р applied to a planar deformable 
solid. Let this force be applied to a node of the system in its undeformed 
state. The node is understood as a material body of an infinitesimal size 
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which, unlike a material point, has both two translational degrees of 
freedom and one rotational DOF. 

Now imagine how the node occupies a new position in the deformed 
state of the system by having acquired displacements u and v, and how it 
has rotated by an angle θ as shown in Fig. E.1.  

We will deem the behavior of force Р to depend on the displacements of 
the node. It is described by the following four functions: 

ξ = ξ( u, v, θ),  η = η( u, v, θ),   Рx = Рx( u, v, θ) ,  Рy = Рy( u, v, θ), (E.1) 

where the ξ and η parameters define a locus of points to which the force 
can be applied in the deformed state, and Рx and Рy are projections of the 
force in the deformed state onto the respective coordinate axes. Fig. E.1 
shows the new geometric position of force Р and the material node to 
which the force was applied initially (by dash lines). 

P

X

Y

P
x

P
y

v

u

h

x

q

 
Fig. E.1. The behavior of an external force that depends on displacements 

According to the above definition, the force Р can be classified as a 
dead load if and only if 

ξ =  u,       η = v,      Рx = 0 ,     Рy = Р . (E.2) 

However, right now we are more interested with general conditions that 
the functions in (E.1) must satisfy in order for the Р force to be 
legitimately conservative. Clearly, in the case of (E.2) the same conditions 
must be met because the dead load is a particular case of the conservative 
load. 

Let us calculate the increment of the work, dA, done by force Р on the 
increments of the node’s displacements. We carry the force over to the 
node and apply the horizontal force Рx, the vertical force Рy, and the 
moment М to it. In this carry-over we have 

M = Рx (v – η) – Рy (u – ξ), (E.3) 
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so the work can be also written as 

dA = Рx du + Рy dv + M dθ. (E.4) 

The Р force is conservative by definition if the increment of the work, 
dA, is a total differential. Mathematical analysis says that in order for the 
differential expression (E.4) to be a total differential, it is necessary and 
sufficient that functions Рx, Рy and M of three variables u, v, θ satisfy the 
conditions 

 yx PP
u

∂∂
=

∂ ∂v
,       yP M∂ ∂

=
∂θ ∂v

,       xPM
u

∂∂
=

∂ ∂θ
.   

Inserting the expression of moment М from (E.3) gives the following three 
analytical conditions for the Р force to be conservative: 

yx PP
u

∂∂
=

∂ ∂v
,      

  ( ) 1 ( )y yx
x y

P PP P u P
∂ ∂∂ ∂η ∂ξ⎛ ⎞= − η + − − − ξ +⎜ ⎟∂θ ∂ ∂ ∂ ∂⎝ ⎠

v
v v v v

,        

( ) ( ) 1yx x
x y

PP P P u P
u u u u

∂∂ ∂ ∂η ∂ξ⎛ ⎞= − η − − − ξ − −⎜ ⎟∂θ ∂ ∂ ∂ ∂⎝ ⎠
v . (E.5)

Let us take as an example some load transfer patterns on a cantilever bar 
shown in Fig. E.2.  

Let us do a formal analysis of these force transfer patterns based on the 
analytical criterion (E.5). 

Pattern а corresponds to the dead force Р which is obviously 
conservative because the functions (E.2) satisfy the conditions. 

Pattern b conforms to the behavior of a load directed toward a fixed 
point in space. This load can be implemented with a heavy weight, a rope 
and ideal pulleys to transfer the force to the upper end of the post. It is 
mechanically evident that the force is conservative. The formal 
mathematical expressions for the functions of the type (E.1) are 

ξ =  u,     η = v,    sinxP P= − ϕ ,  cosyP P= ϕ , (E.6) 

where 

tgϕ = u
h − v

 . (E.7) 
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(a) (b) (c) 

P

 P 

P

 
d) e) f) 

P

 

P

 

Pr

 

Fig. E.2. Various load patterns 

We can see immediately that the second and third conditions of (E.5) are 
met. Next, taking the derivatives of (E.7) with respect to u and v gives 

2

1 1
cos u h

∂ϕ
=

ϕ ∂ − v
,      2 2

1
cos ( )

u
h

∂ϕ
=

ϕ ∂ −v v
,     

so, consequently, 

      
3 2

2

cos sin coscos
( )

xP uP P P
h h

∂ ∂ϕ ϕ ϕ ϕ
= − ϕ = − = −

∂ ∂ − −v v v v
,     

2sin cossinyP
P P

u u h
∂ ∂ϕ ϕ ϕ

= − ϕ = −
∂ ∂ − v

. 

The first of the conditions in (E.5) is met, too. 
In the load pattern с (this force action pattern is known as a Reut 

problem), the force is always applied along the initial vertical axis. The 
physical implementation of such a force can be imagined as the pressure of 
a gas or liquid jet, the spatial deviation of which due to the bar’s 
deformation can be ignored. The behavior of the force is defined by the 
functions 
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ξ =  0,       η =  v – u tgθ,           0xP =  ,        yP P=  . (E.8) 

It is easy to check that the first and second requirements from (E.5) are 
met. However, the third relationship is equivalent to 0 = 1 for this case, 
which is not true. The conclusion is that the force is not conservative.  

Pattern d is different from the preceding one in that the force is 
transferred to the post via a rigid disk that slides in a holder and pushes a 
rigid frame on the upper end of the post with its edge. The edge of the disk 
is assumed to slide freely along the top frame, which is acceptable only if 
there is no friction between the frame and the disk. It means the actual 
force applied to the bar via the frame is always orthogonal to the axis of 
the frame; the slope of the latter is identical to that of the top section of the 
post. In this case, apparently, 

ξ =  0,           η =  v – u tgθ,           tgxP P= − θ  ,        yP P=  . (E.9) 

A direct substitution helps make sure all three requirements from (E.5) are 
met. the force is conservative. 

Pattern е is known as a follower force (Beck’s problem). The behavior 
of the force is described by the functions 

ξ =  u,       η =  v,      sinxP P= − θ ,     cosyP P= θ . (E.10) 

The check shows that the first and third conditions of (E.5)  for the force to 
be conservative are met; however, the second one is violated. The force is 
not conservative. 

According to pattern f, the force is applied always to the lowest point of 
the cup of the radius r, which is rigidly attached to the end of the post. The 
behavior of the Р force is described by the equations 

ξ =  u + r sinθ,       η =  v + r(1 – cosθ),      Рx = 0 ,     Рy = Р . (E.11) 

The conditions (E.5) are observed, so the force is conservative. 
Of course, with the force behavior patterns discussed above, we could 

check the conservative status of the external forces by simpler means on 
the basis of mechanical considerations. At the same time, the approach 
presented above is both general and analytically convincing. 

E.2 A remark on a hydrostatic load 

Sometimes the analysis can have pecularities under a load which is 
directed always along the normal to the surface of a body and remains so 
directed to the deformed surface, too. This kind of load is usually called a 
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hydrostatic load. In cases when such a load is really the pressure of a still 
fluid, its conservative nature is self-evident. However, there are worse 
known cases when this behavior of a load makes it nonconservative and 
thus it can no longer be implemented by the pressure of the fluid. This fact 
was indicated by V.V. Bolotin [1].  

To see this, let us consider a planar curvilinear bar loaded by a unifrom 
pressure q along the normal to the bar’s axis in the latter’s deformed state. 
The arc length element of this bar is ds before deformation and (1 + ε0)ds 
after that, where ε0 is a relative longitudinal strain at the level of the bar’s 
axis. But then the vector of distributed load can be written as follows, up to 
linear terms, after the deformation of the bar: 

sin
n

t

q q q
q q q
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥θ θ⎣ ⎦ ⎣ ⎦⎣ ⎦
q  (E.12) 

where θ is the slope of the bar’s cross-section. 
The formulas from Table 4.1 show that the following general relations 

hold independently of the order of smallness of the bar’s axis curvature: 

ε0 = v′ + kw   ,    θ = – w′ + kv . (E.13) 

Here, we use the notation of Chapter 4 according to which v is a tangential 
displacement of the bar’s axis, w is a normal displacement of the bar’s 
axis, k is an initial curvature of the bar’s axis. 

Now we can write the expression of the increment of the work of 
external forces on admissible variations of displacements δw and δv, and 
the result is as follows, up to terms linear with respect to the 
displacements: 

δA = [ ]2

1

(1 )
s

s
q ds0+ ε δ + θδ =∫ w v  

[ ]2

1

(1 ) ( )
s

s
q k k ds′ ′= + + δ + − + δ∫ v w w w v v . (E.14) 

Here s1 and s2 denote arc coordinates of the boundaries of the loaded part 
of the bar. 

Using integration by parts 

[ ]2 22

11 1

s ss

ss s
ds ds′ ′δ = δ − δ∫ ∫v w v w v w , 

we represent (E.14) as 
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δA = ( ) [ ]
2 2

2 2

11 2 2

s s

ss

k kq ds
⎡ ⎤⎛ ⎞ ⎛ ⎞

′δ + − δ + δ + δ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∫
w vw vw v w . (E.15)

Now it is clear that, when the non-integral term is zero, the increment of 
the work, δA, is the variation of the potential 

2 2
2

1 2 2

s

s

k kq ds
⎛ ⎞

′+ − +⎜ ⎟
⎝ ⎠

∫
w vw vw , 

and thus the load is conservative. 
As we can see, the key role in the classification of the hydrostatic load 

as a conservative force is played by the boundary conditions at s = s1 and 
s = s2. If either the normal displacement w or the tangential displacement v 
becomes zero on each end of the loaded part of the curvilinear bar, then the 
load is conservative because the non-integral term indicated above 
vanishes. But if there is a free edge on at least one end of the bar’s loaded 
part, then the hydrostatic load is generally nonconservative. Obviously, 
such a load cannot be implemented as the pressure of a still fluid. 
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F.  CURVILINEAR COORDINATES 

In the course of structural analysis activities, one often has to derive 
various formulas in curvilinear coordinates. The general theory of 
curvilinear coordinates and their applications to practical problems of 
mechanics of solids and structures are described in great detail in many 
well-known books6; however, we deem it convenient for the reader to 
make a short presentation of linear elasticity relationships related to the 
curvilinear coordinates in the context of this book. 

Let (X1,X2,X3) be a right-hand Cartesian coordinate system with its 
origin at a point О. This coordinate system will be further called a global 
coordinate system. The position of an arbitrary point М = М(x1,x2,x3)  is 
                                                      

6 See [1], [3], [4]. 
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defined in the three-dimensional space by three scalar parameters, x1,x2,x3. 
These scalars are components of a three-dimensional vector М that goes 
from point О to point М that we are interested with. To express it 
mathematically, 

М = x1i1 + x2i2 + x3i3 , (F.1) 

where i1 , i2 , i3 are vectors of the unit length codirectional with the 
respective coordinate axes. These unit vectors define the same basis as the 
X1,X2,X3 axes. 

In many application problems of mechanics of solids and structures it 
may be convenient not to use the Cartesian coordinates to describe the 
positions of points of the  medium; instead, a more general way of 
handling the coordinates can be used. This approach is based on the notion 
of a curvilinear coordinate system. 

We introduce three independent parameters α1,α2,α3 so that there can be 
a one-to-one mapping (bijection) between the three Cartesian coordinates 
x1,x2,x3 and the three parameters α1,α2,α3; the bijection is defined by the 
functional relationships: 

x1 = x1(α1,α2,α3),       x2 = x2(α1,α2,α3),        x3 = x3(α1,α2,α3), (F.2) 

or, inverted, 

α1 = α1(x1,x2,x3),       α2 = α2(x1,x2,x3),         α3 = α3(x1,x2,x3). (F.3) 

As we know from mathematical analysis, in order for the relationships 
(F.2) to be solvable with respect to α1,α2,α3, i.e. in order to be able to 
derive (F.3) from (F.2), it is necessary and sufficient that the determinant, 
J, of the Jacobi matrix, J, for the transformation (F.2), which is also called 
a Jacobian determinant,  

J = 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

x x x

x x x

x x x

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂α ∂α ∂α⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂α ∂α ∂α⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂α ∂α ∂α⎢ ⎥⎣ ⎦

,         J = det J ≡ 1 2 3

1 2 3

( , , )
( , , )

x x x∂
∂ α α α

≠ 0 

be different from zero. Together with the Jacobian determinant of the 
transform (F.2), the determinant J-1 of the inverse transform (F.3) is also 
nonzero and equal to 
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J–1 = 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

x x x

x x x

x x x

⎡ ⎤∂α ∂α ∂α
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂α ∂α ∂α
⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂α ∂α ∂α
⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

,        J–1 = det J–1 ≡ 1 2 3

1 2 3

( , , )
( , , )x x x

∂ α α α
∂

≠ 0. 

It can happen so that the transforms of this kind are not bijectional in the 
whole three-dimensional space 3  but only in some limited area Ω ⊂ 3 . 
Then the transforms (F.2) and (F.3) will be valid only in area Ω rather than 
the whole space because only there the bijection between the coordinates 
x1,x2,x3 and the three parameters α1,α2,α3 is guaranteed. In addition to this 
limitation of the domain, we will assume also the functions (F.2) and (F.3) 
to be smooth enough. More exactly, we will demand that the functions be 
at least twice continuously differentiable in area Ω. 

If we assume α1 = Сonst in (F.2), those formulas will define a surface in 
the three-dimensional space; such a surface is usually called a coordinate 
surface. In the same way we define two other families of the coordinates 
surfaces, α2 = Сonst and α3 = Сonst. These surfaces make up families of 
surfaces because each coordinate surface of one family conforms to a 
value of the constant. An intersection of two coordinate surfaces (such as 
α2 = Сonst and α3 = Сonst) is a curve in space which we usually call a 
coordinate curve, α1. The coordinate curves α2 and α3 are defined 
similarly. 

As the functions (F.2) and (F.3) are one-valued, each point М of the 
area Ω belongs to precisely one representative of each coordinate surface 
family. This is a geometrical image for the point М’s position to be 
definable unambiguously by the three introduced parameters, α1,α2,α3. 
The М vector can be treated now as a vector function of α1,α2,α3, 

М = М(α1,α2,α3) . (F.4) 

A set of parameters α1,α2,α3 that satisfies all the requirements listed above 
is called a curvilinear coordinate system. 

Let us introduce unit vectors e1, e2, e3 which are tangential to the 
coordinate curves at the point М and directed toward the increasing values 
of variables α1,α2,α3 (Fig. F.1). The triple of unit vectors e1, e2, e3 together 
is called a local basis, or a coordinate basis, or a moving basis. The latter 
means the directions of the local basis vectors changes together with the 
coordinates of the point М where this basis is defined. 
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Fig. F.1. Curvilinear coordinates and a local basis 

Let us take a partial derivative of the vector function М(α1,α2,α3) with 
respect to α1 at fixed values of α2 and α3. When the two parameters are 
fixed and only α1 varies, the М vector will slide along the coordinate 
curve α1, so the partial derivative ∂М/∂α1 will be tangential to the 
coordinate curve α1 toward bigger α17. It means 

1

∂
∂α
M = H1e1 , (F.5) 

where H1 is the length of the vector ∂М/∂α1. From (F.1) we have 

1

∂
∂α
M = 1

1

x∂
∂α

i1 + 2

1

x∂
∂α

i2 + 3

1

x∂
∂α

i3 , (F.6) 

and making scalar products of both parts of the equality (F.5) gives 
2 2 2

2 31 2
1

1 1 1

xx xH
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂∂ ∂

= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂α ∂α ∂α⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

Similar formulas can be obtained for the partial derivatives of М with 
respect to α2 and α3. So we have 

                                                      
7 In the nomenclature of vector analysis, the coordinate curve α1 is a hodograph 

of vector М at the fixed α2 and α3. 
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ei =
i iH
∂
∂α
M  ,      

2 2 2
2 31 2
i

i i i

xx xH
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂∂ ∂

= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂α ∂α ∂α⎝ ⎠ ⎝ ⎠ ⎝ ⎠
,   (i = 1,2,3). (F.7) 

The theory of curvilinear coordinates calls the above parameters 
H1, H2, H3 the Lame parameters; they play a most important part in the 
theory. 

Recalling the structure of the Jacobi matrix for the direct transform 
(F.2), we note that the square of i-th Lame parameter is equal to the sum of 
squares of the elements of i-th column of J. 

Further, if coordinate α1 gets an increment dα1 and the rest curvilinear 
coordinates of point М do not change, then the end of the М vector will 
move along the coordinate curve α1 by a distance ds1 such that 

ds1 = 1
1

d∂
α

∂α
M = H1dα1 . 

Hence a simple geometrical sense of the Lame parameters. Each Lame 
parameter Hi is a ratio between the arc length increment dsi on the 
coordinate curve αi and the respective increment of the curvilinear 
coordinate dαi. 

F.1  Orthogonal curvilinear coordinates 

When orthogonal curvilinear coordinates are used, the working formulas 
are especially simple, therefore we confine our consideration to this kind 
of coordinates only. 

A system of coordinates is called orthogonal if its coordinate curves 
cross one another at right angles. This means the unit vectors e1 , e2 , e3 are 
mutually orthogonal. In the vector form, the orthogonality means that the 
scalar product of any two different unit vectors of the basis is zero, 

ei · ej = δij ,  

where δij is Kronecker’s delta. From (F.5) and (F.6) we find that the 
condition of orthogonality between ei and ej (at i ≠ j) in coordinates is 

3 31 1 2 2

i j i j i j

x xx x x x ∂ ∂∂ ∂ ∂ ∂
+ +

∂α ∂α ∂α ∂α ∂α ∂α
= 0. (F.8) 
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In other words, the sum of pairwise products of the elements in two 
different columns of the Jacobi matrix for an orthogonal curvilinear 
coordinate system is zero. 

To be definite, we will assume further the triple of vectors e1 , e2 , e3 to 
be right-hand, i.e. 

e3 = e1 × e2 . 

This requirement is not vexatious for functions in (F.2) and (F.3); if the 
basis is left-hand, we need just to reorder the curvilinear coordinates or 
alter the sign of one of parameters α1,α2,α3.   

We have indicated that, although the length of the local basis vectors is 
always equal to one, their directions can change when the M point changes 
its location in space. Consequently, the local basis vectors are vector 
functions of the curvilinear coordinates, 

e1 = e1(α1,α2,α3) ,       e2 = e2(α1,α2,α3) ,         e3 = e3(α1,α2,α3) . (F.9) 

If we want to know how “fast” the local basis changes with the curvilinear 
coordinates of point М, we need to be able to take derivatives of its vector 
functions.  

The derivative of a vector function with respect to a scalar argument is 
again a vector, so it can be expanded oven the local basis. We take, for 
example, vector e1 and expand the derivatives of it over the axes of the 
basis by assuming 

1

1

∂
=

∂α
e

11 1 12 2 13 3a a a+ +e e e ,  

1

2

∂
=

∂α
e

21 1 22 2 23 3a a a+ +e e e ,  

1

3

∂
=

∂α
e

31 1 32 2 33 3a a a+ +e e e . (F.10) 

Now we have a problem how to determine 9 coefficients aij in the above 
expansions. More exactly, we would like to express these coefficients via 
the Lame parameters introduced earlier. First, we differentiate both parts 
of the equality e1 · e1 = 1  with respect to αi, to get 

1

i

∂
∂α

e
 · e1 = 0       (i = 1,2,3) . (F.11) 

Thus, the derivative of the basis vector with respect to a curvilinear 
coordinate is orthogonal to the vector itself. By making the scalar product 
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of each equality in (F.10) with vector e1 and considering the orthogonality 
of the vectors as in (F.11), we find immediately that 

a11 = a21 = a31 = 0 . (F.12) 

If we differentiate the equality e1 ·  e2 = 0 with respect to α1 (it holds 
because the basis vectors are orthogonal), we will have 

1

1

∂
∂α

e
 ·  e2 + 2

1

∂
∂α

e
 · e1 = 0 , 

or, using (F.7) and (F.10), 

a12 + 
1 2 2H
⎛ ⎞∂ ∂
⎜ ⎟∂α ∂α⎝ ⎠

M
 · e1 = 0 . (F.13) 

Now let us do a chain of transformations 

1 2 2H
⎛ ⎞∂ ∂
⎜ ⎟∂α ∂α⎝ ⎠

M =
2

1 2 2 2 1 2

1 1
H H

⎛ ⎞∂ ∂ ∂
+⎜ ⎟∂α ∂α ∂α ∂α⎝ ⎠

M M = 

= 2 1 1
2

2 1 2 2

( )1 1H H
H H

∂ ∂
− +

∂α ∂α
ee = 2 1 1 1

2 1
2 1 2 2 2 2

1 1H H H
H H H

∂ ∂ ∂
− + +

∂α ∂α ∂α
ee e . 

We make a scalar product of this equality with e1  and take into account 
that the ∂e1/∂α2 vector is orthogonal to e1 according to (F.11). The result is 

1 2 2H
⎛ ⎞∂ ∂
⎜ ⎟∂α ∂α⎝ ⎠

M
 · e1 = 1

2 2

1 H
H

∂
∂α

. 

Putting this expression in (F.13) produces an expression of coefficient a12 
via the Lame parameter, 

a12 = – 1

2 2

1 H
H

∂
∂α

. 

In the same way we find that 

a13 = – 1

3 3

1 H
H

∂
∂α

,   a22 = 2

1 1

1 H
H

∂
∂α

,  a23 = 0,   a32 = 0,   a33 = 3

1 1

1 H
H

∂
∂α

. 

The final form of the relationships (F.10) is 
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1

1

1

2

1

3

⎡ ⎤∂
⎢ ⎥∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥
∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥
∂α⎢ ⎥⎣ ⎦

e

e

e

= 

1 1

2 2 3 3

2

1 1

3

1 1

1 10

10 0

10 0

H H
H H

H
H

H
H

⎡ ⎤∂ ∂
− −⎢ ⎥∂α ∂α⎢ ⎥

⎢ ⎥∂
⎢ ⎥

∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂α⎢ ⎥⎣ ⎦

1

2

3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

e
e
e

. (F.14-1)

The formulas for differentiating the other two vectors of the local basis 
are derived in the same way. But these formulas can be written out 
immediately by shuffling the indexes in (F.14-1). Here are the formulas 
for e2 

2

1

2

2

2

3

⎡ ⎤∂
⎢ ⎥∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥
∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥
∂α⎢ ⎥⎣ ⎦

e

e

e

= 

1

2 2

2 2

1 1 3 3

3

2 2

1 0 0

1 10

10 0

H
H

H H
H H

H
H

⎡ ⎤∂
⎢ ⎥∂α⎢ ⎥
⎢ ⎥∂ ∂
− −⎢ ⎥

∂α ∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂α⎢ ⎥⎣ ⎦

1

2

3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

e
e
e

, (F.14-2)

and for e3 

3

1

3

2

3

3

⎡ ⎤∂
⎢ ⎥∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥
∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥
∂α⎢ ⎥⎣ ⎦

e

e

e

= 

1

3 3

2

3 3

3 3

1 1 2 2

1 0 0

10 0

1 1 0

H
H

H
H

H H
H H

⎡ ⎤∂
⎢ ⎥∂α⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂α⎢ ⎥
⎢ ⎥∂ ∂
− −⎢ ⎥

∂α ∂α⎢ ⎥⎣ ⎦

1

2

3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

e
e
e

. (F.14-3)

The formulas (F.14) establish rules for differentiating any arbitrary 
vector function V = V(α1,α2,α3) because any vector V can be represented 
by its expansion over the axes of the local basis, 

V = V1e1 + V2e2 + V3e3 . 
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F.2  Differentiation with respect to curvilinear coordinates  

Let an area Ω, in which the coordinate transformations (F.2) and (F.3) are 
defined, have a scalar function specified on it – say, function 
w = w(x1,x2,x3). We are interested here with the possibility to represent the 
derivatives ∂w/xi via the derivatives of the same function in an orthogonal 
curvilinear coordinate system, i.e. via ∂w/∂α1, ∂w/∂α2, ∂w/∂α3 and the 
cosines of mutual orientation angles for the local and global basis. 

We introduce a matrix Λ composed of the direction cosines of the local 
basis axes with respect to the global basis axes, i.e. 

Λ = 
11 12 13

21 22 23

31 32 33

λ λ λ⎡ ⎤
⎢ ⎥λ λ λ⎢ ⎥
⎢ ⎥λ λ λ⎣ ⎦

,      λij = ii · ej . (F.15) 

Knowing matrix Λ, we can write out an expansion of the global basis 
vectors over those of the local basis, 

    1 11 1 12 2 13 3= λ + λ + λi e e e , 

2 21 1 22 2 23 3= λ + λ + λi e e e , 

3 31 1 32 2 33 3= λ + λ + λi e e e . 

As the local basis varies along the curve (it is a moving basis), the 
components of matrix Λ will be different for different points of area Ω. 

The indirect differentiation rules give 

31 2

1 2 3i i i ix x x x
∂α∂α ∂α∂ ∂ ∂ ∂

= + +
∂ ∂α ∂ ∂α ∂ ∂α ∂
w w w w . (F.16) 

Therefore all we need is to establish a relation between derivatives ∂αi/∂xj 
and the direction cosines, λij, introduced above. 

Turning to formula (F.6) and making a scalar product of it with vector ii 
gives 

1

∂
∂α
M · ii = 

1

ix∂
∂α

  . 

According to (F.7), ∂M/∂α1 = H1e1, so we derive from here and (F.15) that 

1

ix∂
∂α

= H1λi1 . 
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This one is apparently true for both the first column of the Jacobi matrix 
and the the other two. All we need is to replace index 1 by 2 or 3. Thus, we 
have three relationships: 

1

ix∂
∂α

= H1λi1 ,        
2

ix∂
∂α

= H2λi2 ,         
3

ix∂
∂α

= H3λi3    (i = 1,2,3) . (F.17) 

If we take the M vector’s components in the global basis – see (F.1), we 
have 

1x
∂
∂
M = i1 . 

However, the derivative ∂M/∂x1 can be expanded also like this: 

i1 =
1x

∂
∂
M = 31 2

1 1 2 1 3 1x x x
∂α∂α ∂α∂ ∂ ∂

+ +
∂α ∂ ∂α ∂ ∂α ∂
M M M = 

31 2
1 1 2 2 3 3

1 1 1

H H H
x x x

∂α∂α ∂α
= + +

∂ ∂ ∂
e e e .  

By making the scalar products of both parts with ej, we get an expression 
for the derivative ∂αj/∂x1. The final formulas are 

1

1

j j

jx H
∂α λ

=
∂

,      2

2

j j

jx H
∂α λ

=
∂

,       3

3

j j

jx H
∂α λ

=
∂

    (j = 1,2,3),  (j !) . (F.18) 

Returning to (F.16), we rewrite it like this: 

1 2 3

1 1 2 2 3 3

i i i

ix H H H
λ λ λ∂ ∂ ∂ ∂

= + +
∂ ∂α ∂α ∂α
w w w w . (F.19) 

The formula (F.19) represents the derivatives of the scalar function w with 
respect to the global coordinates via the derivatives of the same function 
with respect to the local coordinates, provided the Lame parameters and 
the matrix of direction cosines, Λ, are known. 

Together with (F.19), it is useful to have an inverse formula that makes 
a transition in the differentiation procedure from the global coordinates to 
the local ones. We have 
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31 2

1 2 3i i i i

xx x
x x x

∂∂ ∂∂ ∂ ∂ ∂
= + + =

∂α ∂ ∂α ∂ ∂α ∂ ∂α
w w w w  

        1 2 3
1 2 3

i i i i i iH H H
x x x
∂ ∂ ∂

= λ + λ + λ
∂ ∂ ∂
w w w     (i !) . (F.20) 

The formulas (F.19) and (F.20) can be transformed to a conventional 
tensor form. To do it, we introduce the designations of p ij and q ij for the 
elements of the Jacobi matrix of the direct transformation (F.2) J = |[p ij]| 
and the inverse one (F.3) J–1 = |[q ij]|. By definition, 

p ij = i

j

x∂
∂α

= ij jHλ    (j !) ,           q ij = i

jx
∂α
∂

= ji

iH
λ

   (i !) . (F.21) 

With the tensors introduced above, the formulas (F.19) and (F.20) 
become convenient for tensor index transformations: 

ji

i j

q
x
∂ ∂

=
∂ ∂α
w w ,             ji

i j

p
x

∂ ∂
=

∂α ∂
w w . (F.22) 

Some problems require that we be able to transform second derivatives 
of the same function in addition to first ones. From (F.22) we have 

2 2
ki

ki
lj lj ki

j i l l

q
qq q q

x x

⎛ ⎞∂
∂⎜ ⎟∂α ⎛ ⎞∂ ∂ ∂ ∂⎝ ⎠= = +⎜ ⎟∂ ∂ ∂α ∂α ∂α ∂α ∂α⎝ ⎠

k

l k k

w
w w w  (F.23)

and 

2 2
ki

ki
ki lj

j i j j

p
x p p p

x x x

⎛ ⎞∂
∂⎜ ⎟∂∂ ∂ ∂ ∂⎝ ⎠= = +

∂α ∂α ∂α ∂α ∂ ∂ ∂
k

k l k

w
w w w . (F.24) 

In order to be able to apply these formulas to a particular problem, we 
would need first to obtain the expressions of the components of tensors 
{p ij} and {q ij} together with their derivatives in the curvilinear 
cordinates α1,α2,α3.  
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F.3  Formulas for strain components in a curvilinear 
orthogonal coordinate system 

We consider a deformation of a three-dimensional body the spatial 
position of which is defined in an orthogonal curvilinear coordinate 
system, α1,α2,α3. Let us find out the location of a selected point М after 
the deformation. Let the point get a displacement u when the body is 
subjected to the deformation. We consider the displacement vector, u, of 
the point М in the local basis: 

u = u1e1 + u2e2 + u3e3 . (F.25) 

After the deformation of the body, the spatial location of point М is 
defined by the vector М + u. Let the М point lie on a coordinate curve 
of α1. We take a point N on this curve that has the coordinates of 
(α1+dα1,α2,α3) and is immediately adjacent to М. The distance between 
the M and N points along this curve before the deformation is ds1 = H1dα1. 
After the deformation, the spatial positions of these two points will be 
defined by vectors М′ and N′ where 

М′ = М + u ,       N′ = N + u + du .  

The displacement vector for point N gets the increment of du due to the 
increment of α1 only, therefore 

du = 
1

∂
∂α

u dα1 . 

Considering the rules of differentiation of the basis vectors in (F.14),  
we get this by making proper substitutions: 

1 1 1
2 3 1 1

1 2 2 3 3

32 1 1
1 2 1 1 3 1

1 2 2 1 3 3

1 1

1 1 .

u H Hd u u d
H H

uu H Hu d u d
H H

⎛ ⎞∂ ∂ ∂
= + + α +⎜ ⎟∂α ∂α ∂α⎝ ⎠

⎛ ⎞⎛ ⎞ ∂∂ ∂ ∂
+ − α + − α⎜ ⎟⎜ ⎟∂α ∂α ∂α ∂α⎝ ⎠ ⎝ ⎠

u e

e e
 

(F.26)

As can be seen from (F.26), the distance between the points of interest in 
the direction of coordinate α1 has increased due to the deformation of the 
body by 

1 1 1
2 3 1

1 2 2 3 3

1 1u H Hu u d
H H

⎛ ⎞∂ ∂ ∂
+ + α⎜ ⎟∂α ∂α ∂α⎝ ⎠

. 
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Composing a ratio of this elongation to the original length ds1 = H1dα1 
helps determine (as far as the linear strain theory is concerned) the relative 
elongation ε11 in the direction of coordinate α1 

ε11 = 1 1 1
2 3

1 1 1 2 2 1 3 3

1 1 1u H Hu u
H H H H H

∂ ∂ ∂
+ +

∂α ∂α ∂α
. (F.27) 

Starting off by the same formula (F.26), we will find the projection of 
angle (1)

12γ  between the directions of coordinate curves α1 in the deformed 
and undeformed states onto the plane of vectors e1 and e2. Assuming the 
angles to be small and thus making the tangent of the sought-for angle 
identical to the angle itself, we have 

(1)
12γ = ( )2 1 2 1

1 1 1 1 1
1 2 2 1 1 1 2 2

1 1 1/u H u Hu d H d u
H H H H

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
− α α = −⎢ ⎥⎜ ⎟∂α ∂α ∂α ∂α⎝ ⎠⎣ ⎦

. 

Similarly, we put down an expression for the projection of angle (2)
21γ  

between the directions of the coordinate curves α2 onto the same plane 
(e1,e2) in both the deformed and undeformed states, 

(2)
21γ = 1 2

2
2 2 1 2 1

1 1u H u
H H H

∂ ∂
−

∂α ∂α
. 

Summing the (1)
12γ  and (2)

21γ  angles gives the full shear angle, γ12 , between 
the coordinate curves α1 and α2; after some transformations we have 

γ12 = 2 2 1 1

1 1 2 2 2 1

H u H u
H H H H

⎛ ⎞ ⎛ ⎞∂ ∂
+⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

. (F.28) 

Having the formulas (F.27) and (F.28) for the elongations in the 
direction of α1 and the shear angles between the coordinate curves α1 

and α2, it is easy to derive the rest of the formulas for the elongation and 
shear strains by permutation of the indexes. Here are all these formulas for 
the convenience of referencing: 
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   ε11 = 1 1 1
2 3

1 1 1 2 2 1 3 3

1 1 1u H Hu u
H H H H H

∂ ∂ ∂
+ +

∂α ∂α ∂α
, 

ε22 = 2 2 2
3 1

2 2 2 3 3 2 1 1

1 1 1u H Hu u
H H H H H

∂ ∂ ∂
+ +

∂α ∂α ∂α
, 

ε33 = 3 3 3
1 2

3 3 1 3 1 3 2 2

1 1 1u H Hu u
H H H H H

∂ ∂ ∂
+ +

∂α ∂α ∂α
, 

γ12 = γ21 = 2 2 1 1

1 1 2 2 2 1

H u H u
H H H H

⎛ ⎞ ⎛ ⎞∂ ∂
+⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

, 

γ13 = γ31 = 3 3 1 1

1 1 3 3 3 1

H u H u
H H H H

⎛ ⎞ ⎛ ⎞∂ ∂
+⎜ ⎟ ⎜ ⎟∂α ∂α ⎝ ⎠⎝ ⎠

, 

γ23 = γ32 = 3 32 2

3 3 2 2 2 3

H uH u
H H H H

⎛ ⎞⎛ ⎞∂ ∂
+ ⎜ ⎟⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

.  (F.29) 

F.4  Curvilinear coordinates on a plane, associated with a 
planar curve 

One particular case of an orthogonal curvilinear coordinate system defined 
on a plane is of special interest. Let the (X,Y)-plane have a sufficiently 
smooth curve Г defined on it 8. The equation of this curve can be specified 
in a variety of ways – for example, parametrically: 

x = X(s) ,      y = Y(s) . (F.30) 

Limiting the interval of the parameter variation to, say, 

s ∈ [0,L], 

defines our working segment of curve Г9. Of course, parameter s can have 
a lot of different meanings. We, however, prefer it to be the geometric 
length of curve Г counted from the origin (zero point) to the current point, 
                                                      

8 Here, we drop the indexing of the global Cartesian coordinates and switch to 
the traditional designations of the X,Y axes with unit vectors ix and iy. Also, we 
will complement the two-dimensional coordinates (X,Y) imaginably to get the 
three-dimensional right-hand triple (X,Y,Z).   

9 It is not unlikely that Г is a closed curve. In that case L is understood as a full 
length of this closed curve. 
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М(s), which belongs to the curve. Our origin point on the curve will be a 
point of the plane М0 that has global coordinates X(0), Y(0). We assume 
that when parameter s grows from zero to L, this is a positive direction of 
movement along curve Г. The s parameter can be treated now as a single 
coordinate that defines the position of the current point M on curve Г 
unambiguously. Therefore parameter s will be called an arc coordinate. 

In each point М(s), curve Г has such a characteristic value as curvature k 
which is one inverse to the radius of curvature, ρ = 1/k, of curve Г in the 
same current point М(s).  

Let a unit-length vector t be directed tangentially to curve Г. The 
positive direction for this vector will be the same as the positive one for 
moving along Г, that is, such that makes parameter s increase. Now we 
define vector n so that it satisfy a set of requirements: 

n · n = 1,       n · t  = 0,       n × t  = ix × iy . (F.31) 

Obviously, the unit vector n codirectional with the normal to Г and 
defined by the above requirements is unambiguous. Now we can define a 
sign convention for curvature k. We will deem it positive when a vector 
that goes from the curvature center to the current point М on curve Г has 
the same direction as the local unit vector n at the point М. 

An ordered couple of vectors (n, t) will be called a local basis 
associated with curve Г. The mutual orientation of the local basis and the 
global one is established by the relations 

n = nxix + nyiy ,        t = txix + tyiy , (F.32) 

or 

ix = nxn + txt ,        iy = nyn + tyt . (F.33) 

Here nx , ny are direction cosines of normal n, and tx , ty are direction 
cosines of unit vector t . 

Notice immediately from Fig. F.2 that the components of vectors n и t 
in the (X,Y) coordinate system are 

nx = cos ϕ,    ny = sin ϕ,      tx = – sin ϕ,    ty = cos ϕ,      

so 

tx = – ny ,            ty = nx . (F.34) 

Here ϕ is an angle between the X-axis and normal n, which is positive 
when the X-axis rotates about the Z-axis clockwise to coincide with axis n, 
if we look along the positive direction of Z.  
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Y

X

n
t

�

 
Fig. F.2. A local basis on curve Г 

We introduce a second-rank tensor, ω, referred to as a rotation tensor, 
with the components of ijω  defined as follows 

0,
1, 1 2
1, 2 1

ij

if i j
if i and j
if i and j

=⎧
⎪ω = − = =⎨
⎪ = =⎩

, (F.35) 

or, in the matrix form, 

ω =
0 1
1 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

. (F.36) 

The rotation matrix, ω, helps represent the connection between unit 
vectors n and t as defined by (F.34) in the form 

x

y

t
t
⎡ ⎤

=⎢ ⎥
⎣ ⎦

0 1
1 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

x

y

n
n
⎡ ⎤
⎢ ⎥
⎣ ⎦

,     or     t = ωn, (F.37) 

and the inverse matrix of ω coincides with the transposed matrix, ωT, 
which is in its turn the same as –ω, i.e. 

ω–1 = ωT = –ω,   and therefore  n = –ωt . (F.38) 

Manipulations with the tensors can be more convenient using the index 
form of the same relationships, 

ij ji
i j jt n n= ω = −ω ,    ij ji

i j jn t t= −ω = ω ; (F.39) 

this is used where appropriate in the main text of the book. Geometrically, 
the t vector is derived from the n vector by a simple rotation of the latter 
by angle π/2, hence the name of the rotation matrix (or tensor). 

Let us draw the normal, n, to curve Г at the point М(s) ∈ Г and consider 
a point N on this normal that has the coordinates of (n,s) in the local basis. 
Parameter n the meaning of which is the distance between the points М 
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and N will be called a normal coordinate of point N. The normal 
coordinate, n, is positive when the МN vector is codirectional with 
vector n (Fig. F.3).  

Let the N point have global coordinates (x,y).  

n

t

N

X

Y

Y s( )

X s( )

0

M

O
M

�

 
Fig. F.3. Orthogonal curvilinear coordinates 

associated with curve Г 

The following relation exists between these coordinates (Fig. F.3)  

x = X(s) + nnx ,      y = Y(s) + nny . 

The normal, n, and arc, s, coordinates can be used as orthogonal 
curvilinear coordinates, α1 and α2, in a certain area Ω in the vicinity of 
curve Г where the Jacobian determinant J of the transformation 

x = X(α2) + α1nx(α2) ,      y = Y(α2) + α1ny(α2) (F.40) 

is different from zero: 

J = 1 2

1 2

x x

y y

∂ ∂⎡ ⎤
⎢ ⎥∂α ∂α⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥∂α ∂α⎣ ⎦

= x x

y y

n X nn
n Y nn

′ ′+⎡ ⎤
⎢ ⎥′ ′+⎣ ⎦

,    J = det J. (F.41) 

Here the stroke denotes differentiation with respect to arc coordinate s. For 
some time, let’s not find out formal requirements for the Jacobian 
determinant J in (F.41) to be different from zero. We just note that for a 
sufficiently smooth curve Г there is always a vicinity of it where the 
correspondence between the Cartesian coordinates of its points and the 
above curvilinear coordinates α1,α2 is one-to-one. It is for this vicinity of Г  
that we deem the transformations (F.41) defined. 

The relevant name for the set of parameters α1, α2 will be orthogonal 
curvilinear coordinates associated with curve Г.  
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It is easy to notice that in these coordinates the Lame parameters are 
equal to H1 = 1 and H2 = 1+kn. To see this, consider how dα1 = dn = ds1 
when we move along the normal, so H1 = 1. The arc length element ds2 

along the coordinate curve α2 (at α1 = n = Const) is equal to 

ds2 = 2
n dρ +

α
ρ

= (1+kn)dα2  

where ρ = 1/k is a radius of curvature of curve Г at the point with the local 
coordinates (0,s)10. This length of the arc element is equal to ds only at 
α1 = n = 0, i.e. directly on Г. Thus, 

H1 = 1,          H2 = 1+kn. (F.42) 

It is easy to notice that in our designations we have 

λ11  = λxn = nx ,   λ21 = λyn = ny ,       λ12 = λxs = tx ,  λ22 = λys = ty , 

so, from (F.21) and (F.42) it follows that 

J = |[p ij]| = 
(1 )
(1 )

x x

y y

n t kn
n t kn

+⎡ ⎤
⎢ ⎥+⎣ ⎦

, J–1 = |[q ij]| = 
(1 ) (1 )

x y

yx

n n
tt

kn kn

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

. (F.43) 

By the way, these formulas immediately produce a simple expression of 
the Jacobian determinant J: 

J = (nx ty – ny tx)(1+kn) . 

Due to (F.34), nxty – nytx = nxnx + nyny = 1. Hence the Jacobian determinan, 
J, is nonzero for values of the normal coordinate n at which 1 + kn ≠ 0. 

Now let us consider the formulas (F.22) for mutual transitions between 
differentiation with respect to the curvilinear coordinates and to the 
original Cartesian ones. The first of the formulas is as follows for our case: 

11 21

1 2

q q
x

∂ ∂ ∂
= +

∂ ∂α ∂α
w w w

1
x

x
tn

n kn s
∂ ∂

= +
∂ + ∂
w w , 

12 22

1 2

q q
y

∂ ∂ ∂
= +

∂ ∂α ∂α
w w w

1
y

y

t
n

n kn s
∂ ∂

= +
∂ + ∂
w w , (F.44) 

 

                                                      
10 The curvature k = 1/ρ is positive when the vector OMM is codirectional with 

vector n (Fig. F.2). 
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To derive formulas for first derivatives at the points of curve Г (this case if 
of the biggest interest), we should assume n = 0 in (F.44) and in this way 
get 

x
∂

=
∂
w

x xn t
n s

∂ ∂
+

∂ ∂
w w ,        

y
∂

=
∂
w

y yn t
n s

∂ ∂
+

∂ ∂
w w . (F.45) 

Turning to the second of formulas in (F.22), we have 

11 21

1 2

p p
n x x

∂ ∂ ∂
= +

∂ ∂ ∂
w w w

x yn n
x y

∂ ∂
= +

∂ ∂
w w , 

          12 22

1 2

p p
s x x

∂ ∂ ∂
= +

∂ ∂ ∂
w w w (1 )x yt t kn

x y
⎛ ⎞∂ ∂

= + +⎜ ⎟∂ ∂⎝ ⎠

w w , (F.46)

so directly on curve Г we have 

n
∂
∂
w

x yn n
x y

∂ ∂
= +

∂ ∂
w w ,         

s
∂
∂
w

x yt t
x y

∂ ∂
= +

∂ ∂
w w . (F.47) 

If we introduce another rotation matrix which we denote by ωϕ and 
which rotates the vector by ϕ rather than π/2 (see Fig. F.2), 

ωϕ =
x x

y y

n t
n t
⎡ ⎤
⎢ ⎥
⎣ ⎦

= x y

y x

n n
n n

−⎡ ⎤
⎢ ⎥
⎣ ⎦

,              1−
ϕω = ϕ

Tω , (F.48) 

then the linear relationship between the differentiation operators on 
curve Г in the global and local coordinate systems from (F.45) and (F.47) 
can be written in the following symbolic matrix form: 

n

s

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎣ ⎦

 = ϕ
Tω  x

y

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎢ ⎥⎣ ⎦

,                x

y

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎢ ⎥⎣ ⎦

= ωϕ
n

s

∂⎡ ⎤
∂⎢ ⎥

⎢ ⎥∂
∂⎣ ⎦

. (F.49) 

Further, formulas (F.14-1) and (F.14-2) for differentiating the vectors of 
the local basis, n and t, become as follows after the proper substitutions: 

0 0
0

n
k

s

∂⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤∂ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥∂⎣ ⎦

n
n

n t
,          

0 0
0

n
k

s

∂⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤∂ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ −⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥∂⎣ ⎦

t
n

t t
. (F.50) 
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This is evident because when we move in the normal direction of n the unit 
vectors of the local basis, n and t, acquire only translational displacements 
(no rotation), so 

0y yx xn tn t
n n n n

∂ ∂∂ ∂
= = = =

∂ ∂ ∂ ∂
. (F.51) 

When we move along curve Г, these unit vectors rotate and the second 
rows in the matrix relationships (F.50) are well-known Frenet formulas [2] 
in application to the planar curves, 

k
s

∂
=

∂
n t ,      k

s
∂

= −
∂

t n . 

This is how it looks in components: 

x
x

n kt
s

∂
=

∂
,   y

y

n
kt

s
∂

=
∂

,       x
x

t kn
s

∂
= −

∂
,   y

y

t
kn

s
∂

= −
∂

. (F.52) 

From (F.43) we derive expressions of parameters p ij and q ij, which are 

1 n
∂ ∂

= =
∂α ∂

p p 0
0

x

y

kt
kt

⎡ ⎤
⎢ ⎥
⎣ ⎦

,      
2 s

∂ ∂
= =

∂α ∂
p p (1 )

(1 )

x x x

y y y

kkt kn kn nt
s
kkt kn kn nt
s

∂⎡ ⎤− + +⎢ ⎥∂⎢ ⎥
∂⎢ ⎥− + +⎢ ⎥∂⎣ ⎦

, 

and 

1 n
∂ ∂

= =
∂α ∂

q q

2 2

0 0

(1 ) (1 )
yx ktkt

kn kn

⎡ ⎤
⎢ ⎥
⎢ ⎥− −
⎢ ⎥+ +⎣ ⎦

,  

2 s
∂ ∂

= =
∂α ∂

q q

2 21 (1 ) 1 (1 )

x y

y yx x

kt kt
kn ntkn nt k k

kn kn s kn kn s

⎡ ⎤
⎢ ⎥

⎛ ⎞⎛ ⎞∂ ∂⎢ ⎥− − − −⎜ ⎟⎜ ⎟⎢ ⎥+ + ∂ + + ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

Now we are able to derive explicit formulas of transition from 
differentiation with respect to x and y to double differentiation with respect 
to coordinates n, s, and vice versa. We can either replace q ij and p ij in 
(F.23) and (F.24) with their new expressions or derive them directly. The 
second method is preferred here. We start by (F.44) and have 
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2

2 1 1
x x

x x
t tn n

x x x n kn s n kn s
∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞⎛ ⎞= = + + =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ + ∂ ∂ + ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

w w w w  

                      
22 2 2

2
2 2 2

2
1 (1 )

x x x
x

n t tn
n kn n s kn s

∂ ∂ ∂
= + + +

∂ + ∂ ∂ + ∂
w w w  

1 1 1 1
x x x x x

x
t t n t tn

n kn s kn s n kn s kn s
∂∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟∂ + ∂ + ∂ ∂ + ∂ + ∂⎝ ⎠ ⎝ ⎠

w w w . 

Next, 

21 (1 )
x xt kt

n kn kn
∂ ⎛ ⎞ = −⎜ ⎟∂ + +⎝ ⎠

,    
21 1 (1 )

x x xt kn t dkn
s kn kn kn ds
∂ ⎛ ⎞ = − −⎜ ⎟∂ + + +⎝ ⎠

, 

which turns into the following after substitutions and transformations: 
2

2x
∂

=
∂

w 22 2 2
2

2 2 2

2
1 (1 )

x x x
x

n t tn
n kn n s kn s

∂ ∂ ∂
+ + +

∂ + ∂ ∂ + ∂
w w w  

2

2 2
1 (1 ) 1

x x x
x

kt t nt dkkn
kn n kn kn ds s

∂ ∂⎛ ⎞+ − +⎜ ⎟+ ∂ + + ∂⎝ ⎠

w w . (F.53) 

The formula of ∂2w/∂y2 is derived from (F.53) by simply replacing 
subscript x with y . The only thing to get is the formula for second mixed 
derivative. We have 

2

1
x

x
tn

x y x y n kn s
⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ + ∂⎝ ⎠⎝ ⎠

w w
1

y
y

t
n

n kn s
⎛ ⎞∂ ∂

+⎜ ⎟∂ + ∂⎝ ⎠

w w = 

            =
2 2 2

2 2 21 (1 )
x y y x x y

x y

n t n t t t
n n

n kn n s kn s
+∂ ∂ ∂

+ + +
∂ + ∂ ∂ + ∂

w w w  

      
1 1 1 1

y y yx x
x

t n tt tn
n kn s kn s kn s kn

∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + +⎜ ⎟ ⎜ ⎟∂ + ∂ + ∂ ∂ + ∂ + ∂⎝ ⎠ ⎝ ⎠

w w w
n s

 . 

By using the substitutes 

21 (1 )
y yt kt

n kn kn
⎛ ⎞∂

= −⎜ ⎟∂ + +⎝ ⎠
,    

21 1 (1 )
y y yt kn t dkn

s kn kn kn ds
⎛ ⎞∂

= − −⎜ ⎟∂ + + +⎝ ⎠
, 

we transform the previous formula for the mixed derivative into 
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2

x y
∂

=
∂ ∂

w 2 2 2

2 2 21 (1 )
x y y x x y

x y

n t n t t t
n n

n kn n s kn s
+∂ ∂ ∂

+ + +
∂ + ∂ ∂ + ∂

w w w  

             2

1 ( )
1 (1 ) 1

x y x y
x y y x

kt t nt t dkk n t n t
kn n kn kn ds s

⎛ ⎞∂ ∂
+ − + +⎜ ⎟+ ∂ + + ∂⎝ ⎠

w w . (F.54)

And again, if we want to know the values of second derivatives right on 
the Г curve which is usually the case, then assuming n = 0 in (F.53) and 
(F.54) gives the following on Г: 

2

2x
∂

=
∂

w 2 2 2
2 2

2 22x x x xn n t t
n n s s

∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
w w w 2 2x x xkt kn t

n s
∂ ∂

−
∂ ∂
w w , 

 
2

2y
∂

=
∂

w 2 2 2
2 2

2 22y y y yn n t t
n n s s

∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
w w w 2 2y y ykt kn t

n s
∂ ∂

−
∂ ∂
w w , 

2

x y
∂

=
∂ ∂

w 2 2 2

2 2( )x y x y y x x yn n n t n t t t
n n s s

∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂
w w w  

( )x y x y y xkt t k n t n t
n s

∂ ∂
+ − +

∂ ∂
w w . (F.55) 

To complete the story, below we present also inverse formulas – those 
for finding second derivatives w,nn , w,ss , w,ns via the derivatives of the 
same function with respect to the global coordinates. We start by the 
general formula (F.46) to get 

2 2 2

2 x y x yn n n n
n n x y n x n y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + = + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

w w w w w  

2 2 2 2

2 2x y x x y yn n n n n n
x y x x y y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= + + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

w w w w  

2 2 2
2 2

2 22x x y yn n n n
x x y y

∂ ∂ ∂
+ +

∂ ∂ ∂ ∂
w w w  

and 
2

2 (1 )x yt t kn
s s x y

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
= + + =⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

w w w  
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2 2

(1 )x y x yt t k n k n kn
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2 2 2
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+ x y
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x y ds
⎛ ⎞∂ ∂

+⎜ ⎟∂ ∂⎝ ⎠

w w , 

and also 
2

(1 )x yt t kn
n s n x y

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
= + + =⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

w w w  

2 2
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n x n y x y
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= + + + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

w w w w  

2 2 2

2 2( ) (1 )x x y x x y y y x yn t n t n t n t kn t t k
x x y y x y
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= + + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
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We assume n = 0, and directly on the Г curve we have 
2 2 2 2

2 2
2 2 22x x y yn n n n

n x x y y
∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂

w w w w , 

2 2 2 2
2 2

2 2 22x x y yt t t t
s x x y y
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= + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

w w w w
x yn n k

x y
⎛ ⎞∂ ∂

+⎜ ⎟∂ ∂⎝ ⎠

w w , 

2 2 2 2

2 2( )x x y x x y y y x yn t n t n t n t t t k
n s x x y y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

w w w w w w . (F.56)

We would like to present also a tensor index form of the formula (F.45), 
(F.47), (F.55), and (F.56) which can be useful in transformations. 
Assuming X1 = X, X2 = Y, we can rewrite all the above as (F.57), (F.58) and 
(F.59), 

, , ,i n i s in t= +w w w ,           , ,
i

n in=w w ,           , ,
i

s it=w w , (F.57) 

, , , , , ,( ) ( )ij nn i j ns i j j i ss i j n i j s i j j in n n t n t t t k t t k n t n t= + + + + − +w w w w w w ,(F.58) 
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, ,
i j

nn ijn n=w w ,   , ,
i j

ss ijt t=w w – ,
i

ik nw ,     , , ,
i j i

ns ij in t k t= +w w w . (F.59) 

The above form is convenient to use and remember. 
There is a useful formula for the Laplace operator in coordinates (n,s). 

From (F.55) we have 
2 2 2 2

2
2 2 2 2 k

x y n s n
∂ ∂ ∂ ∂ ∂

∇ = + = + +
∂ ∂ ∂ ∂ ∂

w w w w ww  . 

F.4.1 Formulas for strains in the (n,s) coordinates 

We denote the components of the displacement vector, u, in the local basis 
as w and v by assuming 

u = wn + vt . (F.60) 

This notation for the displacements seems unusual because the first 
component is denoted by w and the second by v. The justification for it 
is our wish to stay consistent with the traditional notation of the 
displacements in the curvilinear bars where the v symbol is used 
commonly to denote tangential displacements and w to denote the 
displacements normal to the bar’s axis. 

Taking the general formulas (F.29) for the strain components in 
orthogonal curvilinear coordinates and doing all the needed substitutions 
and transformations will give 

εnn = 
n

∂
∂
w ,       

εss = 1
1 1

k
kn s kn

∂
+

+ ∂ +
v w ,      

  γns = γsn = 1
1 1

k
n kn kn s
∂ ∂

− +
∂ + + ∂
v wv . (F.61) 
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G.  SECTORIAL CHARACTERISTICS OF CROSS-
SECTIONS OF THIN-WALLED BARS 

G.1 Sectorial characteristics of thin-walled open profiles 

Back in Section 6.2, we introduced the notion of a sectorial coordinate ω 
(or, as it is sometimes referred to, a sectorial area) for a thin-walled open 
profile. With the designations of Section 6.2, the sectorial coordinate of the 
points of a bar’s profile is defined mathematically as the integral 

0
( )

s
s dsω = ρ∫  (G.1) 

with the variable upper limit; hence it is a function of the arc coordinate, s. 
First of all, we would like to return to the sign convention established in 

Section 6.2 for the increment of the sectorial coordinate, dω, along the 
profile. It is convenient, however, to reformulate this sign convention in an 
equivalent way:  

The increment of the sectorial coordinate, dω, is deemed positive if the RPM 
vector (see Fig. 6.4) rotates around the pole P counterclockwise as we 
move along the profile and look at the vector from the positive direction of 
the longitudinal axis, X. 

It can be checked easily that the above sign convention is indeed 
equivalent to that from Section 6.2.  

Further, as we indicated in Section 6.2, the position of the principal pole 
and the zero sectorial point are defined by the conditions (6.2.17), 

0
l

h dsω =∫ ,      0
l

h ydsω =∫ ,      0
l

h zdsω =∫ , (G.2) 

where we should remind l is a full length of the profile and y and z are 
current coordinates of the profile’s point in the system of axes (Y,Z). These 
axes are thought to be principal central axes of inertia of the thin-walled 
bar’s section. 
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G.1.1 Determining the location of the principal pole 

For the beginning, let us see how the sectorial coordinate varies when the 
location of the pole changes. 

We take two arbitrary poles, A and B, with the respective coordinates 
(yA, zA) and (yB, zB) as shown in Fig. G.1.  

A

B

M

Y

Z

G

O
R

AM

R
BM

R
AB

 
Fig. G.1. Variation of the sectorial coordinate when the pole is changing its 

location 

The origin of the arc coordinate s will be an arbitrary point О of the 
profile, with its coordinates (y0,z0). Each of the two poles defines for each 
point М of the profile with the arc coordinate s its particular sectorial 
coordinate, ωА or ωВ, so that 

A AM
0

( )
s

s dsω = ∫ iR n ,        B BM
0

( )
s

s dsω = ∫ iR n , (G.3) 

where RAM or RВM is a vector that goes from the respective pole А or 
pole В to the current point of the profile, М. Hence 

A B AB AB
0 0

( ) ( )
s s

s s ds dsω −ω = =∫ ∫i iR n R n , (G.4)

because AB BM AM+ =R R R , and vector ABR = (yВ – yА)iy + (zВ – zА)iz does not 
depend on the arc coordinate, s.  Further, 

n = ny iy + nz iz = tz iy – tyiz, 

so the integral of vector n is 

0 0
0 0 0

( ) ( )
s s s

y z z y y zds t ds t ds z z y y= − = − − −∫ ∫ ∫n i i i i , (G.5)
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and therefore 

A B B A 0 B A 0( ) ( ) ( )( ) ( )( )s s y y z z z z y yω −ω = − − − − − . (G.6)

First of all, we would like to show that the conditions (G.2) define the 
only possible location of the principal pole. It means that both points А 
and В cannot be principal poles at the same time. 

To prove this, we multiply (G.6) by hy and integrate over the arc 
coordinate along the whole contour l. Considering (G.2) and supposing 
that both points А and В are principal poles together, we have zero in the 
left-hand part. Therefore, recalling that the Y and Z axes are principal 
central axes of inertia of the bar’s cross-section, we have 

(zВ – zА)Iz = 0, 

hence zВ = zА because the moment of inertia Iz is not zero. The similar 
reasoning proves yВ = yА. 

Now let point В be the principal pole Р, i.e. yВ = yР  and zВ = zР where 
(yР,zР) are coordinates of the principal pole Р. At the same time, let point А 
remain a certain arbirtrarily chosen point in the (Y,Z)-plane. The equality 
(G.6) still holds, so again we can multiply it first by hz and then by hy and 
integrate over the arc coordinate along the whole profile to get 

A P A( ) ( ) y
l

s hzds y y Iω = −∫ ,       A P A( ) ( ) z
l

s hyds z z Iω = − −∫ ,         

therefore 

P A A
1 ( )

y l

y y s hzds
I

= + ω∫ ,         P A A
1 ( )

z l

z z s hyds
I

= − ω∫ . (G.7) 

The formulas (G.7) define the coordinates of the principal pole if we 
know:  

• the location of some arbitrarily selected point of the profile, О, which 
works as an origin for the arc coordinate s;  

• the sectorial area ωА(s) calculated with respect to an arbitrary pole А 
with its coordinates (yА, zА) and the given origin О; 

• the moments of inertia of the cross-section, Iy and Iz . 

As we can see, the coordinates of the principal pole are determined by 
the second and third conditions in (G.2) and do not depend on the first 
condition. 
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G.1.2 Determining the location of the profile’s zero point 

Let us show now that the first condition in (G.2), which has remained 
unused yet, is enough to determine the location of the zero point О on the 
profile. 

In order to do it, we want to see how the sectorial coordinate of the 
profile’s points varies vs. the change of the origin of the arc coordinate, i.e. 
when the zero point is moved. We choose two arbitrary points О1 and О2 
on the profile and denote the ‘arc coordinate distance’ between those by s12 
as shown in Fig. G.2.  

Let the arc coordinate of a certain (current) point М of the profile with 
its origin at О1 be s1, and let the coordinate of the same point with its 
origin at О2 be s2. Clearly, s12 = s2 – s1 . To be definite, we will assume 
point О2 to have a larger arc coordinate on the profile whatever the origin 
is, as shown in Fig. G.2. 

M O
2

O
1

P

2

ω
12

 
Fig. G.2. Changing the origin of the arc coordinate 

Note that the location of the principal pole Р is already known to us. We 
denote by ω1(М) and ω2(М) the sectorial coordinates calculated with the 
arc coordinate’s origin at the respective points О1 and О2. The definition of 
the sectorial coordinate gives 

1

M

1(M)
O

dsω = ρ∫ ,        
2

M

2 (M)
O

dsω = ρ∫ . (G.8) 

Now it turns out that changing the location of the arc coordinate’s origin 
and keeping the location of the pole Р makes the sectorial area just shift by 
a certain constant value because 

2

1
1 2 12(M) (M)

O

O
dsω −ω = ρ = ω∫ . (G.9) 
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Clearly, constant ω12 is a doubled area of the sector hatched in Fig. G.2. 
We want to select this constant in such way that the О2 point be a real zero 
point of the profile. This means we use the first condition in (G.2), 

2 (M) 0
l

h dsω =∫ ,   

and derive from (G.9) that 

1 12 12(M)
l l

h ds hds Aω = ω = ω∫ ∫  

where A is the cross-section’s area. Thus, for the point О2 to be the zero 
point of the profile, it suffices to assign the ω12 constant so as to satisfy the 
equality 

12 1
1 (M)

l

h ds
A

ω = ω∫ . (G.10) 

Having determined the ω12 constant from (G.10), we easily calculate the 
principal sectorial coordinate, ω(М), by shifting function ω1(М) by this 
constant. So we have 

1 12(M) (M)ω = ω −ω = 1 1
1(M) (M)

l

h ds
A

ω − ω∫ . (G.11) 

The principal zero point O of the profile can be any point where the 
sectorial coordinate ω(М) calculated by (G.11) is zero. It is easy to see 
that, unlike the principal pole, the zero point cannot be unambiguous under 
this condition. There can be multiple, or even an infinite number of, points 
of this kind. But this is not critical for us, so the zero point can be any one 
the sectorial coordinate of which is zero. 

If we know the coordinates of the principal pole, (yP,zP), and those of the 
zero point, (y0,z0), and if we also know the sectorial coordinate ωА(М) of 
an arbitrary point of the profile built for the pole А and the zero point О, 
then the principal sectorial coordinate of the same point, ω(М), can be 
determined from (G.6) that gives 

A P A 0 P A 0( ) ( ) ( )( ) ( )( )s s y y z z z z y yω = ω − − − + − − . (G.12) 

We would like to formulate some general properties of the cross-section 
concerning the locations of the principal pole and the principal zero point: 
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• if the cross-section of the bar is symmetric with respect to an axis, then 
the principal pole belongs to this axis, just as the center of gravity does. 
The zero point belongs to it either. 

• if there are two axes of symmetry, then both the principal pole and the 
zero point are at the intersection of the axes.    

The above propositions follow immediately from the conditions (G.2). 

G.1.3 The principal pole and the zero point as parameters of 
minimization of the sectorial moment of inertia of a bar’s 
profile 

The students of subjects related to strength of materials are supposed to 
know well the extreme properties of the principal central axes of inertia 
which make the moments of inertia of a cross-section take minimum and 
maximum values. The sectorial moment of inertia of a thin-walled bar’s 
cross-section seems to possess similar extremality properties, too, although 
the literature sources known to the author do not describe any for some 
strange reason.  

Let Iω be a sectorial moment of inertia of the cross-section calculated for 
the principal pole Р and the zero point О. We denote by IωА the sectorial 
moment of inertia of the same cross-section with the same zero point О but 
calculated for a pole located in some other point, А, 

2

l

I hdsω = ω∫ ,         2
A A

l

I hdsω = ω∫ . 

Using the equality (G.12), we obtain the following relationships between 
these quantities: 

A P A 0 P A 02 [( )( ) ( )( )]
l

I I y y z z z z y y hdsω ω= + ω − − − − −∫ + 

      + 2
P A 0 P A 0[( )( ) ( )( )]

l

y y z z z z y y hds− − − − −∫ . (G.13)

It is easy to see that 

P A 0 P A 0[( )( ) ( )( )] 0
l

y y z z z z y y hdsω − − − − − =∫ . 

This equality follows immediately from the conditions (G.2).  
We denote the last integral in the formula (G.13) by J. Direct calculation 

gives 
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J = 2
P A 0 P A 0[( )( ) ( )( )]

l

y y z z z z y y hds− − − − −∫ = 

= 2 2
P A 0 P A P A 0 0( ) ( ) 2( )( )yy y I z A y y z z y z A− + − − − +  

2 2
P A 0( ) ( )zz z I y A+ − + , 

where А is the area of the bar’s cross-section, Iy and Iz are moments of 
inertia of the section with respect to its principal central axes of inertia. 
The latter equation follows right from the condition that the (Y,Z)-axes 
should be principal central axes of inertia. 

Let b2 be the square of the length of vector RPA, i.e. 

b2 = (yP – yA)2 + (zP – zA)2. 

We denote by α the angle between vector RPA and the Y axis. Using these 
designations, we write the previous formula as 

J = 2 2 2 2 2
0 0 0 0[( )cos sin 2 ( )sin ]y zb I z A y z A I y A+ α − α + + α , (G.14)

and 

AI I Jω ω= + . (G.15) 

The expression in the parentheses in the formula (G.14) is a moment of 
inertia of the section taken with respect to an axis parallel to vector RPA 
and passing through the zero point, О, of the profile. So, we understand 
immediately that the value of J is not negative and is zero if and only if 
b2 = 0.  Therefore 

Iω < IωА. (G.16) 

Now, let Iω1 be a sectorial moment of inertia calculated for the principal 
pole, Р, and some point of the profile, О1, from which we count the arc 
coordinate s. According to (G.11), we can write 

2

1 1
1

l l

I hds hds
Aω

⎡ ⎤
= ω+ ω⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ =

2

1
1

l

I hds
Aω

⎛ ⎞
+ ω⎜ ⎟⎜ ⎟

⎝ ⎠
∫ .  

Now it becomes clear that if we assign a point О1 different from the zero 
point О to be the origin of the arc coordinate, the sectorial moment of 
inertia of the section will increase. In other words, the following estimate 
takes place: 
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Iω < Iω1. (G.17) 

Based on the estimates (G.16) and (G.17), we can formulate the 
following extremality property of the sectorial moment of inertia: 

Among all points of the plane of a thin-walled bar’s cross-section, the 
principal pole Р and the zero point О of the profile are peculiar in that the 
sectorial moment of inertia, Iω , based on these points takes the least value 
possible. 

G.1.4 A remark on a foil profile 

In Section 6.2.8 we noted that a foil (foliate) profile (Fig. 6.10) belongs to 
a class of non-warped profiles for which the sectorial coordinate is 
identical to zero, ω = 0.  

As an illustration of using the extremality property of the sectorial 
moment of inertia, we would like to show that the bending center Р of the 
foil profile is located at the cross-section of all its leafs (edges). If it is 
indeed so, the equality ω = 0 will become obvious. 

According to the definition of the sectorial moment of inertia, we have 
Iω  ≥ 0. If the pole Р is located at the intersection of the leafs, then Iω = 0, 
and this value is a minimum. Considering the extremality property of Iω 
and the uniqueness of the principal pole’s position, we conclude that the 
point P where all the leafs intersect is the center of bending. 

G.1.5 An example 

Our example will be a thin-walled profile in the shape of a circular arc of a 
radius R and with the opening angle of 2α (Fig. G.3). Let the thickness of 
the profile’s wall, h, be constant along the whole profile. The center of 
gravity, G, of this cross-section belongs to the axis of symmetry and lies at 
the distance of с from the center of the circle: 

с = sinR α
α

. (G.18) 

The area and the moments of inertia of the section with respect to its 
principal central axes are, respectively, 
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A = 2Rαh, 

Iy = 3 2 2

0
2 coshR d Ac

α

ϕ ϕ −∫ =
2 2

3 2 sin 2 4sin
2

hR α + α α − α
α

, 

Iz = 3 2

0
2 sinhR d

α

ϕ ϕ∫ = 3 2 sin 2
2

hR α − α . (G.19)

The most convenient point А is the center of circle. Obviously, 

ωА(М) = ϕR2. (G.20) 

The plus sign is taken because the radius vector AMR  rotates 
counterclockwise when we move in the positive direction of s. 

z
p

c

Z

Y

P

G
R

A

M

 
Fig. G.3. A thin-walled section of a round shape 

Using formulas (G.7) and seeing that zА = -с, we have 

P A A
1 ( )

z l

z z s hyds
I

= − ω∫ = sin cos sin2
sin cos

R α −α α α⎡ ⎤−⎢ ⎥α − α α α⎣ ⎦
. (G.21)

Also, the symmetry of the bar’s section with respect to axis Y makes the yP 
coordinate of the principal pole equal to zero. 

Now we can obtain the principal sectorial coordinate of each point М of 
the profile. To do it, we can use the formula (G.12) assuming y0 = 0,  
z0 = R – с. The result is 

2
P( ) ( )R z c yω ϕ = ϕ + + = 2 sin cos2 sin

sin cos
R α −α α⎡ ⎤ϕ − ϕ⎢ ⎥α − α α⎣ ⎦

. (G.22) 

The sectorial moment of inertia of the cross-section, Iω , is 
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2
5

0

sin cos2 2 sin
sin cos

I R h d
α

ω

α −α α⎡ ⎤= ϕ − ϕ ϕ⎢ ⎥α − α α⎣ ⎦∫ . (G.23) 

To complete the story, we are going to derive formulas for the 
geometric characteristics of the cut-off part of the section; these are 
sometimes needed for determining the tangential stresses by formula 
(6.2.61). So, from (6.2.30) we derive the following 

o ( ) ( )A s Rh d Rh
ϕ

−α
= ϕ = ϕ+ α∫ ,  

( ) 2
o

sin( ) cos sinyS Rh zd Rh R c d R h
ϕ ϕ

−α −α

α⎡ ⎤ϕ = ϕ = ϕ− ϕ = ϕ − ϕ⎢ ⎥α⎣ ⎦∫ ∫ , 

( )2 2
o ( ) sin cos coszS Rh yd R h d R h

ϕ ϕ

−α −α
ϕ = ϕ = − ϕ ϕ = ϕ− α∫ ∫ , 

o ( )S Rh d
ϕ

ω
−α

ϕ = ω ϕ =∫  

2 2
3 sin cos2 (cos cos )

2 sin cos
R h

⎡ ⎤ϕ − α α −α α
= + ϕ− α⎢ ⎥α − α α⎣ ⎦

. (G.24)

Having determined the geometrical characteristics of the cut-off part of 
the section from (G.24), we are already able to calculate the components of 
the matrix of shape factors for the section. Omitting elementary but 
toilsome transformations, we present final tabulated results (see Tables G.1 
and G.2) for some values of angle α.  

 Table G.1 
2α Iω/R5h  µzz µzy µzω µyy µyω µωω 
π/4 1.854×10-6  28.452 0 0 1.239 4.160 144.480 
π/2 2.473×10-4  7.634 0 0 1.365 1.694 31.540 
π 3.738×10-2  2.537 0 0 2 0 4.928 

3π/2 0.833  1.822 0 0 3.589 -1.113 1.556 
2π 8.104  2 0 0 6 -2 1.099 
 

 Table G.2 
2α Iy/R3h Iz/R3h νzz νzy νzω νyy νyω νωω 
π/4 4.060×10-4 3.915×10-2 0.035 0 0 0.893 -0.026 0.00766 
π/2 1.216×10-2 0.285 0.131 0 0 0.785 -0.042 0.034 
π 0.298 1.571 0.394 0 0 0.5 0 0.203 

3π/2 1.432 2.856 0.549 0 0 0.358 0.256 0.826 
2π 3.142 3.142 0.5 0 0 0.424 0.771 2.313 
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These results can be useful as validation data for testing software that 
calculates geometric properties of thin-walled profiles11. 

We present here, for the convenience of referencing, basic formulas for 
calculation of the sectorial characteristics of the combined-profile thin-
walled bars. Based on (8.1.4), (8.1.14), (8.1.15), (8.1.16), (8.1.17), 
(8.1.18), we have 

( ) ( ) ( )dIs p s sα = −ω
Ω

,     
0

( )
s dsp s

gh
κ

= ∫ ,       
2

dI ds
gh

Ω
=

∫
, (G.25) 

0
1 ( )

l

s ehds
A

ω = α∫ , (G.26) 

0ϖ = ω −α , (G.27) 

0
l

ehdsϖ =∫ , (G.28) 

0
l

ehydsϖ =∫ ,      0
l

ehzdsϖ =∫ . (G.29) 

G.2.1 Determining the position of the principal pole 

First of all, we would like to establish formulas for recalculating the 
generalized sectorial coordinate ϖ when the location of the pole is 
changed. 

Suppose we have two points, A and B, specified in the (Y,Z)-plane 
which can be treated as two different poles. Indexing the functions of the 
arc coordinate with the symbols of the respective poles, we can write the 
following on the basis of (G.25) and (G.6): 

αА – αВ = –(ωА – ωВ) = B A 0 B A 0( )( ) ( )( )y y z z z z y y− − − + − − . (G.30) 

                                                      
11 These calculations were done by the student D.V. Dereviankin at the author’s 

request. 

G.2 Cross-sections of a combined profile 



G.2 Cross-sections of a combined profile      777 

From (G.26) we determine constants ω0А and ω0В, or, more exactly, the 
difference between the constants: 

ω0А – ω0В = 0 B A 0 B A( ) ( )z y y y z z− − − . (G.31) 

Substracting (G.30) from (G.31) and using (G.27) gives the difference of 
the generalized sectorial coordinates calculated for the same current 
point М but for two different poles, 

ϖА – ϖВ = B A B A( ) ( )z y y y z z− − − . (G.32) 

Now let us superpose the В point and the principal pole P by assuming 
yB = yP, zB = zP. Multiplying (G.32) first by ehz and then by ehy, integrating 
over the whole profile, and taking the orthogonality conditions (G.29) into 
account gives the coordinates of the principal pole: 

P A A
1 ( )

y

y y s ehzds
I

= + ϖ∫ ,         P A A
1 ( )

z

z z s ehyds
I

= − ϖ∫ . (G.33) 

As we can see, these formulas are identical to (G.7) which we derived 
earlier for open profiles. After finding the coordinates of the principal pole, 
the diagram of the generalized sectorial coordinate ϖ can be determined 
easily from (G.32) where point В should be replaced by pole Р; this gives 

ϖ = ϖА – P A P A( ) ( )z y y y z z− + − . (G.34) 

G.2.2 The principal pole as a parameter for minimization of the 
sectorial inertia moment of a profile 

Exactly as in the case of an open profile, a general combined profile has 
the following property of extremality of the sectorial moment of inertia: 

Among all points of the plane of the combined profile of a thin-walled bar, 
the principal pole, Р, is peculiar in that the sectorial moment of inertia, Iϖ , 
based on it takes the least value possible. 

Let Iϖ be a sectorial moment of inertia of the section calculated for the 
principal pole Р. We denote by IωА a sectorial moment of inertia of the 
same section calculated for a pole which is placed in another point А. To 
put it another way, 

2

l

I ehdsϖ = ϖ∫ ,         2
A A

l

I ehdsϖ = ϖ∫ . 
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Using the equality (G.34) and taking the requirements of (G.29) into 
account, we obtain the following relationship between these values: 

[ ]2A P A P A( ) ( )
l

I z y y y z z ehdsϖ = ϖ + − − − =∫  

2 2
P A P A( ) ( )y zI y y I z z Iϖ + − + − . 

Now it is clear that 

AIϖ ≥ Iϖ , 

and the equality takes place only when the А point coincides with the 
principal pole, Р.  

Doing the same analysis as one for the foil profile in Section G.1.4, we 
derive a corollary – a simple proof of the fact that the bending center, P, 
coincides with the center of the inscribed circle for a class of closed 
profiles made of a homogeneous materials such as one presented in 
Fig. 7.3. To do the proof, it suffices to see that the generalized sectorial 
coordinate, ϖР, built on the center of the inscribed circle as a pole is 
identical to zero. 

We will not dwell any longer on the technique of calculation of the rest 
of physical and mechanical characteristics of the thin-walled sections. The 
calculations are fairly laborious and tiresome, so for practice we 
recommend to use available software where all the needed data are 
calculated automatically. This is the way to go with complicated multiple-
contour sections. The engineer, nonetheless, should have a clear 
understanding of principles that the algorithms for calculating the section’s 
properties are based on, in order to apply them consciously and to perform 
an evaluation check of the results obtained with computer software – at 
least qualitatively, at a glance. This is the reason why the current appendix 
is included in this book. 
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boundary conditions 
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– – of flows over contours 442 
– – of flows over segments 441 
 
condition of rigid contour 731 
 
constraints 
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introduced.  

– immobile 640 
– kinematic 61 
– – perfectly rigid 556 
– – posterior 640 
– – prior 640 
– of maximum rigidity 568 
 
contour 
– base closed 433 
 
coordinate 
– arc 756 
– curve 744 
– principal (normal) 550 
– sectorial 342 
– – generalized 405 
– surface 744 
– system 
– – curvilinear 744 
– – global 742 
– – local 744  
 
cut-off part of a section 351 
 
degree 
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effective 
– mass 550 
– stiffness 550 
 
eigenvalue (characteristic number) 545 
– k-fold 546 
– Lagrangian 576 
– Reissnerian 578 
– spurious 593 
 
eigenvector 545 

energy 
– of strain 34 
– scalar product 48 
– space 
– – Castiglianian 56 
– – Lagrangian 48 
– – parametrized 118 

The index gives only pages where  
definitions for the respective terms are 
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– of external actions 13 
– stress-and-strain 11 
– – difference 84 
– – homogeneously kinematically 
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generalized 
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graph 
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identity 
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law 
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mode  
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– of natural oscillations 541 
 
moment 
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– of constricted torsion 353 
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operator 
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– differential 2  
– Lame 136 
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parameter  
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potential  
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– Rayleigh-Weber 554 
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solution 
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static-geometric analogy 252 
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scalar product 
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theorem 
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method 
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theory 
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