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Preface

In this book a number of ideas and results related to the field of cybernet-
ical physics – the scientific area aimed at the study of physical systems by
cybernetical means – are presented. Although some publications in physical
journals related to control problems appeared long ago, formation of a sepa-
rate self-sustained area started as late as in the 1990s due to the explosion-like
development of research in control of chaos, quantum control, and other areas.
The number of publications has reached several thousands by the end of the
century and it continues to grow very rapidly.

This book is, perhaps, the first attempt to present a unified exposition
of the subject and methodology of cybernetical physics as well as solutions
to some of its problems. A part of this book presents the limits of system
transformation by means of control both for conservative and for dissipative
systems based on Hamiltonian description of system dynamics.

A survey of various control applications in physics is given: control of
chaos, controlled synchronization, control of spatiotemporal systems, control
of molecular and quantum systems. An approach for building models of system
dynamics based on control methods is discussed. The presented methods and
results are illustrated by examples of new approaches to classical problems:
Stephenson–Kapitsa pendulum, escape from a potential well, synchronization
of coupled oscillators, control of chemical reaction with phase transition, con-
trolled dissociation of molecules, controlled oscillations of complex crystalline
lattices. Controlled pendulums appear in many parts of the book since pen-
dulum models can be thought of as the “atoms of nonlinear physics”.

The book is intended for a multidisciplinary audience: mostly only the
understanding of basic concepts and results in linear algebra, calculus, and
differential equations is needed. However, the style of exposition and the lan-
guage used in cybernetics is somewhat more mathematically oriented than
many physicists are accustomed to. Thus, a deeper understanding of the book
may sometimes require an extra effort from the reader. A certain degree of fa-
miliarity with the basic concepts of control theory, dynamical systems theory,
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and information theory would facilitate reading. Concise and very readable
exposition of those areas can be found in [58, 176, 177, 227, 419].

A difficulty of writing such books is the orientation toward a broader
audience preventing a deepening of the exposition. Perhaps, physicists will
not be satisfied with some places in the book, while control audience will not
be satisfied with others. The author kindly asks readers for understanding
and tolerance: the field is still very young, its common language is still under
construction and solutions to many problems are yet to appear. Some open
problems are mentioned in the text.

Although explanations of some basic concepts of control theory are given in
the book, they cannot substitute for a good textbook for people with physical
background which is yet to appear. References to the existing textbooks are
included into the text.

It is the author’s opinion that the area of cybernetical physics has been
basically formed and it is the right time to get scientific communities, espe-
cially young scientists, acquainted with and interested in a new field. Such an
opinion was encouraged by many of my colleagues during invited lectures
to cybernetical and physical audiences in 1998–2004 in a number of uni-
versities and scientific centers, including the universities of Berlin, Bochum,
California (San Diego), Duisburg, Eindhoven, Kumamoto, Kyoto, Linkoping,
Melbourne, Moscow, Potsdam, Princeton, Seville, Southern California, St.
Petersburg, Tokyo, Valencia; research institutes for Problems in Mechanics
(Moscow), Control Sciences (Moscow), Santa Fe (USA), CESAME (Mexico),
INRIA (France), RIKEN (Japan), SUPELEC (France); CNRS Center of The-
oretical Physics in Marseille (France). I am grateful to colleagues and friends
for invitation and encouragement.

The main content of the book is a result of author’s research in the Lab-
oratory “Control of Complex Systems” in the Institute for Problems of Me-
chanical Engineering of Russian Academy of Sciences (RAS) in St. Petersburg,
supported by the RFBR grants 99-01-00672, 02-01-00765, 05-01-00869, by the
programs for basic research of the Presidium of RAS # 19, # 22, NWO-RFBR
program (project 047.011.2004.004) and by the program of support of young
scientists and leading scientific schools (grant NSh-2257.2003.1).

The author takes a pleasant opportunity to thank colleagues and co-
workers whose results got a reflection in the book: E.L. Aero, M.S. Ananyevskiy,
B.R. Andrievsky, Yu.A. Astrov, I.I. Blekhman, P.Yu. Guzenko, A.A. Efimov,
R.J. Evans, S.M. Khryaschev, A.M. Krivtsov, S.A. Kukushkin, A.V. Osipov,
A.Yu. Pogromsky, V.V. Shiegin, A.S. Shiriaev. A sincere gratitude is expressed
to an anonymous referee for numerous deep and helpful comments. Author
is grateful to B.N. Wicks for his valuable help in proofreading and would be
indebted to anyone with constructive comments or suggestions.

Saint Petersburg, Alexander Fradkov
May, 2006
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1

Introduction: Physics and Cybernetics

1.1 Looking into the past

Encyclopedias define physics as the science studying Nature, specifically its
most basic and universal properties. The age of physics transcends two mil-
lennia: the term “Physics,” meaning “Nature” in Greek was introduced by
Aristotle.

Cybernetics is much younger and the date of its birth is known precisely.
Although the term was coined in Ancient Greece, the foundation of cybernet-
ics as a science is associated with the publishing of Norbert Wiener’s seminal
book [446] in 1948. Wiener defined cybernetics as “the science of control and
communication in the animal and the machine.” Today cybernetics is un-
derstood as control theory in a broad sense, including different methods and
approaches, such as identification, estimation, filtering, information theory,
optimization, pattern recognition, etc. [432].

In the 20th century both physics and cybernetics experienced tremen-
dous growth and contributed a lot into the development of modern science.
However, cybernetical terms were rarely referred to in physical journals un-
til recently and its influence on physical research has been negligible. The
reason lies, perhaps, in the difference in methodologies of the two sciences.
On the one hand, physics (e.g., mechanics) is a classical descriptive science.
On the other hand, cybernetics (e.g., control theory) represents a paradigm
for prescriptive sciences [89]. In other words, the main aim of physics is to
describe and analyze a natural system or its behavior, while the aim of cy-
bernetics is to find methods of transforming a system by means of controlling
action in order to achieve its prescribed behavior. At first sight combining
a phenomenon-oriented science with a methodology-oriented science seems
hard if not impossible. Fortunately, developments of the last decade provide
numerous evidences of the opposite. To present the most important of them
will be the main task of this book.

It is worth noting that automatic and automated systems have been used
in physical experiments for a long time and at present no serious physical
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experiment is performed without the use of automated equipment. However,
an automatic system usually plays a secondary role, just providing a mean
to achieve the desired mode of the experiment. Until recently no creative in-
teraction of physics and control theory has been seen and no control theory
methods have been directly used for discovering new physical effects and phe-
nomena. Surprisingly, the situation changed in the 1990s when two new areas
emerged: control of chaos and quantum control.

1.2 Control of chaos

A new avenue of research in physics began in the 1990s through results in
control and synchronization of chaos. Chaotic system is a deterministic dy-
namical system exhibiting irregular, seemingly random behavior. Two trajec-
tories of a chaotic system starting close to each other will diverge after some
time (so-called “sensitive dependence on initial conditions”).1 Despite chaotic
behavior seems unpredictable, it was found to be controllable. Edward Ott,
Celso Grebogi, and James Yorke [331], from the University of Maryland dis-
covered that even small feedback action can dramatically change behavior of a
nonlinear system, e.g., turn chaotic motions into periodic ones and vice versa.
The idea became popular in the physics community almost immediately and
since 1990 hundreds of papers were published demonstrating the ability of
small control, with or without feedback, to change dynamics of real or model
systems significantly.

By 2003, the Ott, Grebogi, and Yorke’s paper [331] has been quoted over
1300 times whilst the total number of the papers relating to control of chaos
exceeded 4000 by the beginning of the 21st century. The number of papers
published in peer-reviewed journals achieved 300–400 papers per year, see
Fig. 1.2.1(a). The method proposed in [331] is now called the OGY-method
after the authors’ initials.

It is worth to note that in the 1980s the group of physicists from Moscow
State University has demonstrated the possibility to transform a chaotic
process into a periodic one by means of an external harmonic excitation [9,
10, 123, 249, 250]. For example, still in 1983 the possibility of transforming
chaotic behavior of the Lorenz system into a periodic one under harmonic
excitation was discovered [123]. Same property was discovered in [9, 10] for
a model ecological system of fourth order by means of computer simulations.
Nonetheless, the papers [9, 10, 123, 249, 250] did not trigger any stream of
publications despite being translated and published in the West.

It is important that the results obtained were interpreted as discovering
new properties of physical systems. Thousands of papers were published that
examined and predicted properties of systems based on using control, identi-
fication, and other cybernetical methods. Notably, an overwhelming part of
1 The definitions of chaos and main properties of chaotic systems will be given in

Section 6.2.
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Fig. 1.2.1. Dynamics of publications in peer-reviewed journals (a) Control of chaos;
(b) Quantum control (based on Science Citation Index data).

those papers were published in physical journals, its authors were representa-
tives from the physical departments of the universities. This provides evidence
for the existence of the new emerging field of research related to both physics
and control, that of Cybernetical Physics [140, 141].

At that stage the potential of modern nonlinear control theory was still
not realized, although the key role of nonlinearity was definitely appreciated.
On the other hand, control community was not very active in discovering a
new application area. The reason, perhaps was in that new problems often
differed from conventional engineering control problems. Indeed, instead of a
classical regulation problem (driving a controlled system trajectory to a de-
sired point) or tracking problem (driving a controlled system trajectory to
a desired motion) other control goals are of interest for physicists, such as
creation of modes with partially specified properties (synchronization, trans-
formation of a chaotic motion into a periodic one, etc.) At the same time,
more strict restrictions are imposed on controlling action which correspond to
the physically motivated requirement of minimum intervention in the natural
evolution of the physical system (“small control” requirement).

It has become clear that such type of control goals are important not
only for control of chaos, but also for control of a broader class of oscillatory
processes. This lead to development of a unified control framework for oscilla-
tory (including chaotic) systems [25, 164]. The next step was to pose a general
control problem of studying properties of physical systems that can be created
or modified by means of (small) feedback actions [139–141, 144, 148].

Recently, an interest in the application of cybernetical methods to the
search of new physical effects has been observed in other fields of physics and
mechanics, such as control of quantum systems, control of lasers, control of
plasma, vibration control, control of particle beams, control in thermody-
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Fig. 1.2.2. Dynamics of publications in the journals of American Physical Society
(Physical Review A, B, C, D, E; Physical Review Letters), having the term “control”
in the title of the paper.

namics, etc. As a consequence, a number of control-related papers in physical
journals is growing rather rapidly, see Fig. 1.2.2. Especially fast growth dur-
ing last decade is observed in control of molecular and quantum systems, see
Fig. 1.2.1(b).

1.3 Control of molecules

It is conceivable that molecular physics was the area where ideas of control
appeared first. One may trace its roots back to the Middle Ages, where al-
chemists were seeking ways to change a natural course of chemical reactions
whilst attempting to transform lead into gold. The next milestone was put by
the famous British physicist James Clerk Maxwell. In 1871, he introduced a
hypothetical being with ability to measure velocities of gas molecules and to
direct fast molecules to one part of the vessel, keeping slow molecules in the
other part. It produces a temperature difference between the two parts of the
vessel which seems to contradict the Second Law of thermodynamics. Now this
being is known under the name “Maxwell’s Demon” introduced by another fa-
mous physicist William Thomson (Lord Kelvin). The apparent breaking of the
Second Law helps to its better understanding. Now, after more than a century
of fruitful life, Demon is even more active than in the past. In the 20th century
Demon was exploited by L. Szillard, D. Gabor, L. Brillouin, and others who
studied the interplay between energy and information [88, 263, 355, 423]. It
has helped humanity to realize that any measurement or computation requires
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some dissipation of energy. Attempts to diminish dissipation led to the idea
of quantum computers [122, 234, 314]. In recent papers the issues of experi-
mental implementation of the Maxwell’s Demon are discussed, particularly at
the quantum–mechanical level [52, 275].

In the end of the 1980s–beginning of the 1990s rapid development of laser
industry led to appearance of ultrafast, the so-called femtosecond lasers. A new
generation of lasers have the ability to generaste pulses with duration of about
a few femtoseconds and even less (1 fs = 10−15 s ). The duration of such a pulse
is comparable with the period of a molecule’s natural oscillation. Therefore,
femtosecond laser can be, in principle, used as a means, for controlling single
molecules and atoms. A consequence of such an application is a possibility
of realizing an alchemist’s dream to change the natural course of chemical
reactions. Besides, control is an important part of many recent nanoscale
applications: nanomotors, nanowires, nanochips, nanorobots, etc.

Using the apparatus of modern control theory, new horizons in studying
interaction of atoms and molecules may open new ways and possible limits
for intervention into intimate processes of the microworld may be discovered.

1.4 Physics and information

1.4.1 Information is physical

The exchange of matter and exchange of energy are the two types of interac-
tion between systems and their environment commonly studied in physics. In
the second half of the 20th century a lot of interest was attracted by the third
type of interaction, namely, exchange of information. N. Wiener considered
study of information and communication as a part of his cybernetics [446]. Sys-
tematic development of the information theory started with the seminal work
of Claude Shannon [401]. However, importance of the notion of information
was recognized well before the beginning of the computer revolution [196, 321].

First attempts to understand the relations between information and other
characteristics of physical systems started when attempting to elucidate
Maxwell’s Demon [423]. It turned out that the Maxwell’s Demon has become a
helpful being to clarify interrelation of information with other physical quanti-
ties. It was Leo Szillard [423] who first established connection between entropy
and information by means of some quantitative measure of information, closely
related to what was later proposed by Shannon. Obviously, decrease of the
system entropy due to the ordering (control) of molecules requires some mea-
surements, i.e., extraction of information about state of molecules. Szillard
showed that in order to receive information one needs to increase entropy and
its increase cannot be less than its decrease caused by the ordering of mole-
cules. Later, this conclusion was extended to more general physical processes
and finally a universal conservation law for the sum of entropy and information
was established [88, 220, 236, 355, 356].
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A history of relations between information and energy is somewhat dra-
matic. An importance of understanding interrelations between energy ex-
change and information transmission was recognized still in the 1940s. It was
Shannon who derived in 1948 that at least kT ln 2 units of energy is needed
to transmit a unit (1 bit) of information in a linear bosonic channel with ad-
ditive noise [401], where T is absolute temperature and k is the Boltzmann
constant. This is just an energy required to make a signal distinguishable
above the thermal background. In 1949 John von Neumann extended that
statement to the following principle: any computing device, natural or arti-
ficial must dissipate at least kT ln 2 energy per elementary transmission of 1
unit of information [313]. Next contribution into linking energy and informa-
tion was made by Rolf Landauer: “ Data processing operation has irreducible
thermodynamic cost if and only if it is logically irreversible” [257]. Thus,
existence of reversible communications and computation would apparently
contradict the von Neumann’s principle. However, it was not clear how to
transmit information with minimal energy.

A clarification was made again by Landauer who considered the case of
nonlinear channels in which information is carried in the internal state of a
material body (e.g., a bistable molecule with two states separated by a high-
energy barrier). He established both for classical [258] and for quantum [260]
case that a bit can be transmitted without minimal unavoidable cost. It means
that a communication network with only a small loss of transmitted informa-
tion may require only a small amount of energy for information transmission.
However, the problem of organizing an efficient transmission is still to be
solved, since the solution proposed by Landauer resembles an existence theo-
rem and does not suggest a way to design such a transmitter.

For example, how to put a carrier of a bit of information into one or
another well of a bistable potential? It is a control problem which is not
easy to solve on a molecular level. Despite existence of publications arguing
against Landauer’s principle (see, e.g., [319]) it is clear that there exist physical
limits for information transmission and sophisticated methods are needed to
approach them. Some hints how to solve the problem can be made based on
the energy control methods described below, see Section 10.2.

As an outcome of discussions an importance of another principle advo-
cated by Landauer has been widely recognized: information should be treated
as a physical quantity, like energy or entropy [259, 261]. Quoting Landauer,
“Information is tied to a physical representation and therefore to restrictions
and possibilities related to laws of physics.” By the end of the 20th century
a new area of physics has been shaped named information physics. A num-
ber of surveys and monographs has been published, treating information as
a measure of interaction between physical systems [176, 221, 263, 356]. Spe-
cial attention is focused on the issues of quantum information and quantum
computation [122, 234, 314].
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1.4.2 Physics from information

Thermodynamics is another field of physics where methods of information
theory and control theory are actively applied for several decades. Even its
classical results can be interpreted in “cybernetical spirit.” Let us trace the
brief history of the thermodynamic ideas from the cybernetic viewpoint, fol-
lowing [215].

The basics of thermodynamics were stated by Sadi Carnot in 1824. He
considered a heat engine which operates by drawing heat q1 from a source
which is at thermal equilibrium at temperature Thot, and delivering useful
work W . Carnot saw that, in order to operate continuously, the engine requires
also a cold reservoir with the temperature Tcold < Thot to which some heat q2

can be discharged. By simple logic he established the famous
Carnot’s Principle. No heat engine can be more efficient than a reversible

one operating between the same temperatures.
It implies that maximal efficiency of any heat engine depends only on

the temperatures Tcold < Thot. In fact, it was nothing but the solution to
an optimal control problem: maximum work can be extracted by a reversible
machine and the value of extracted work depends only on the temperatures of
the source and the bath. Later, Kelvin introduced his absolute temperature
scale (Kelvin scale) and accomplished the next step, evaluating the Carnot’s
reversible efficiency

ηCarnot = 1 − Tcold

Thot
. (1.4.1)

Being motivated with the fact that any irreversible process has smaller
efficiency, Rudolph Clausius introduced a new function of the system state –
entropy – in 1865 and interpreted the Carnot’s principle as follows: in the
change from one thermal equilibrium state to another, the total entropy of all
bodies involved cannot decrease:

Sfin ≥ Sini. (1.4.2)

Such a formulation is known as the fundamental Clausius’ statement of
the Second Law of thermodynamics. Later, Josiah Willard Gibbs and Maxwell
extended the scope of applicability as well as the meaning of the Second Law
(1.4.2). It has become a fundamental physical law establishing the general
direction in which an irreversible process will go. Instead of Clausius’ weak
statement that the total entropy of all bodies involved “tends” to increase,
Gibbs made the strong prediction that it will increase, up to the maximum
value permitted by whatever constraints (conservation of energy, volume, mole
numbers, etc.) are imposed by the experimental arrangement and the known
laws of physics [215]. Note that this prediction was formulated by Gibbs only
implicitly. Its explicit formulation first appeared in 1957 in the famous paper
by Edwin T. Jaynes [214] under the name of

Maximum Entropy Principle (MEP). A system evolves to a state with
maximum value of entropy compatible with all imposed constraints.
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The procedure of MEP usage is simple and basically consists in application
of the Lagrange multipliers method. MEP has obviously a cybernetic spirit,
since it relates the model of physical system with information available to the
researcher. In the following years MEP was triumphantly applied in different
areas of natural science, social science and engineering [193, 225, 289, 449].
It was used for building and analysis of mathematical models for numerous
systems of different origin outside thermodynamics. It was applied to exam-
ination of self-organization and complexity phenomena [194]. However, most
works were devoted to study of stationary systems over infinite time interval,
while for practical purposes it is important to know possibilities and limita-
tions of the system evolution for finite times as well as under other types of
constraints caused by a finite amount of resources available.

The pioneer works devoted to evaluation of finite time limitations for heat
engines were published by I. Novikov in 1957 [320] and F.L. Curzon and B.
Ahlborn in 1975 [113]. It was shown independently in [113, 320] that the
efficiency at maximum power per cycle of a heat engine coupled to its sur-
roundings through a constant heat conductor is

ηMaxP = 1 −
√

Tcold

Thot
. (1.4.3)

Relation between (1.4.3) and classical Carnot efficiency is seen from Fig. 1.4.3.

Fig. 1.4.3. Extracted power as a function of efficiency for a simple Novikov–Curzon–
Ahlborn-type heat engine.

Note that the Novikov–Curzon–Ahlborn process is also optimal in the
sense of minimal dissipation. Otherwise, if the dissipation degree is given,
the process corresponds to the maximum entropy principle. Later, the re-
sults of [113, 320] were extended and generalized for other criteria and for



1.4 Physics and information 9

more complex situations based on the modern optimal control theory. As a
result the whole direction in thermodynamics arose known under the names
optimization thermodynamics, finite-time thermodynamics, or control thermo-
dynamics, see monographs and surveys [17, 22, 59, 67, 297, 387, 410]. Control
thermodynamics is certainly a part of cybernetical physics. Recently a move
in the opposite direction has become noticeable: thermodynamics is used for
design of new control algorithms [13, 195, 454]. Mutual influence of control
and thermodynamics is growing rapidly.

The maximum entropy principle has been generalized to take into account
a prior information about the probability distribution of the system. Its gen-
eralized version employs the concept of relative entropy (or cross-entropy or
Kullback–Leibler divergence) [248]. The divergence between discrete distrib-
utions ρ(x) and ρ̄(x) is defined as follows:

K(ρ, ρ̄) =
N∑

i=1

ρ(xi) ln
ρ(xi)
ρ̄(xi)

. (1.4.4)

It is easy to see that K(ρ, ρ̄) ≥ 0 and K(ρ, ρ̄) = 0 if and only if ρ = ρ̄. Let
ρ̄ be the distribution characterizing the initial knowledge about the system
state. Then a reasonable way to predict the real distribution of the state is
to choose ρ providing minimal value of K(ρ, ρ̄) consistent with other physical
constraints, e.g., with conservation laws. If a priori information about the state
is absent, then the plausible choice of ρ̄ is the uniform distribution ρ̄(xi) =
1/N . In this case, obviously, I(ρ, ρ̄) = −S(ρ)+ ln(N) and minimization of the
divergence (1.4.4) yields the same result as maximization of the entropy of
the distribution ρ, i.e., standard MEP is recovered.

Interesting versions of MEP-like variational principles are the principle of
Minimum Fisher Information (MFI) and the principle of Extreme of Physical
Information (EPI) proposed recently by B. Roy Frieden [167–169]. They have
a more broad field of applicability than MEP and are sometimes advocated
as unifying principles of physics.

The Fisher information for continuous distribution with smooth density
ρ(x) is defined as follows

F (ρ) =
∫

[ρ(x)
′
]2

dx

ρ(x)
=
∫

[ln ρ(x)
′
]2ρ(x)dx.

The two important quantities are closely related [439]: for ρ̄(x) = ρ(x+∆x)
the cross-entropy 2K(ρ

′
, ρ̄)/(∆x)2 is an approximation of F (ρ) for ∆x → 0.

Therefore, in many cases extremization of the cross-entropy is equivalent to
extremization of the Fisher information.

The history of aforementioned principles shows another way for penetra-
tion of cybernetical ideas into physics. These ideas, first born in thermody-
namics due to intimate relations of the concepts of entropy and information
are now expanding far beyond thermodynamics and influence the very foun-
dations of physics. The slogan “It from bit” proclaimed in 1989 by famous
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American physicist, inventor of “black holes” John Archibald Wheeler [445]
attracts more and more followers who are eager to derive physical laws from
information-related postulates. Being not able to resist this temptation we
suggest an alternative path in the same direction. In Chapter 9, the deriva-
tion of some physics-related results from the control-related speed-gradient
method of Section 2.4.2 will be described following [135, 147].

1.5 Physics, animal, and machine

Application of cybernetic methods in biological physics is very important and
deserves a special discussion. A plenty of articles dedicated to this topic can
be found in physical journals. Cybernetic methods are also applied in re-
lated areas: neuroscience, medicine, etc. A substantial part of research deals
with analysis of biological and biomedical time series. A number of methods
of spectral analysis, smoothing and filtering, pattern recognition developed
in cybernetics literature are used for analysis of electrocardiograms (ECG),
electroencephalograms (EEG), and other biorhythm records. Methods of iden-
tification and parameter estimation are often used for building mathematical
models of organisms and their parts.

N. Wiener started his research in this area a few years before he proclaimed
the birth of cybernetics. With his colleagues he studied analogies between
behavior of living beings and engineering systems [373]. His findings provided
a basis for the understanding of new science. Later it was reflected in the title
of his book: “Cybernetics or control and communication in the animal and the
machine.” Such analogies proved to be useful for extracting common features
of signal processing, coordination and control in biological and engineering
systems. In the 1960s a new scientific area emerged: biological and medical
cybernetics. The biomedical cybernetics is still an area of active research.
Its results can be found in the journals and conference proceedings entitled:
“Biological Cybernetics,” “Medical Cybernetics,” “Neuroscience,” and others.

Methods of cybernetics and nonlinear dynamics are recently intensively
applied for the investigation of complex behavior in biological systems [307,
396]. It is shown by many authors that such phenomena as synchronization
and chaos play important role in signal processing and regulation in neural
system and brain activity [2, 350].

A large body of research is devoted to natural or artificial neural networks.
Analysis and control of chaotic dynamics of neural networks are of consider-
able interest. Neural nets in chaotic modes are used to model information
storage and pattern recognition functions of the brain [237, 309, 424]. Such
networks may consist of not only artificial neurons, but also of other nonlinear
systems with controllable chaotic behavior, e.g., natural neurons or chemical
oscillators, see [198]. A fundamental question concerns mechanisms which ex-
plain how a population of neurons, whose individual activity is chaotic and
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uncorrelated can form functional circuits with regular and stable behavior.
This has been addressed both theoretically and experimentally in [2, 364, 365].

Among other interesting problems, synchronization of respiratory and car-
diac rhythms is worth mentioning [350, 389]. Studying synchronization and
coordination of muscular activity is very important for control of motion and
posture of animals and humans [60, 61, 291, 317, 374].

Joint functioning of mechanism and organism, of natural and artificial, of
a robot and a human being is the problem of utmost importance for future.
We know about artificial muscles, artificial human arms and legs. Implanted
pacemakers and microchips for stimulating and monitoring of the human body
subsystems are becoming a part of the medician’s toolbox. All mentioned ex-
amples are nothing but preliminary examples of cyborgs – cybernetical organ-
isms, born at the pages of science fiction books.

The aforementioned researches have a number of practical applications.
One of the most exciting and promising of early applications of the control of
chaos was treating cardiac arrhythmia see [121, 173, 429]. Development of a
smart feedback pacemaker seemed to create a novel approach in cardiology.
Another prospective area is study and treating of epilepsy by the methods
of chaos control [391]. It is based upon the well-known correlation between
epileptic seizure and appearance of extra synchronies between neuronal spike
sequences. Concepts of phase synchronization was used for analysis of elec-
troencephalograms (EEG) [306].

Application of cybernetic methods in biophysics and life sciences is an area
of rapidly growing activity. However, we do not have time and place enough
to discuss this issue further.

1.6 Types of control

Certainly, some studies based on cybernetic methods were going on in physics
well before the 1990s. For example, investigation of parameter-dependent
models in nonlinear dynamics demands for examination of bifurcation modes
(bifurcation means qualitative change in system behavior with quantitative
change of its parameters). It looks like the input parameter (denote it by u)
becomes a variable rather than a constant quantity: u = u(t). The terminol-
ogy reflecting this fact suggests to call such a new input a control parameter or
control variable (The term control variable would fit better since the quantity
u = u(t) may vary in time).

Actually, creating or eliminating a bifurcation can be interpreted as a
lower, trivial form of control. However, in this case the control variable is
constant in time: u(t) = const, see Fig. 1.6.4(a). Solutions to this kind of
problems usually provide information about possible limits of control, i.e.,
shows possible behaviors of the system for different parameter values.

Optimization problems where the goal is to find the value of control (in-
put) parameter providing a minimum or maximum value for the given system
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Fig. 1.6.4. Types of control. (a) Constant (trivial) control; (b) feedforward control;
(c) feedback control.

performance index also fall into this class. Again, admissible control functions
should be constant in time: u(t) = const.

Another class of physical problems is the study of a system under ac-
tion of input variables (disturbances) depending only on time: u = u(t), see
Fig. 1.6.4(b). Problems of such kind include spectroscopic studies, vibration
analysis in mechanics and acoustics, some parts of oscillation and wave theo-
ries where inputs are harmonic functions: u(t) = A sin(ωt). In the second half
of the 20th century a new branch of mechanics – vibrational mechanics, study-
ing behavior and properties of mechanical systems and materials under fast
oscillating action was developed [73]. An advantage of such kind of control is
that one does not need any measurements of the system state or observables.
It is most important for fast processes at microscopic, e.g., molecular level
where any measurement is hard if not impossible to perform.

The areas where similar problems are intensively studied are control theory
and control engineering. For example, frequency response of a linear dynamical
system is used by engineers to analyze controlled systems since it reflects
behavior of a system under harmonic input signal or force. In order to evaluate
frequency response experimentally, harmonic signals with different frequencies
are applied to a system and its output oscillation amplitude and phase shift
with respect to the input are measured. The theory of vibrational control
studies how to change a system behavior by means of applying fast oscillating
signal or force [62, 292]. A control action not using feedback (nonfeedback
control) is usually called open loop or feedforward control. It is interesting to
note that the principle of phase stability operating in accelerators, proposed
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independently by Veksler and McMillan in 1944–1945, can be seen as control
by means of an oscillating action with a slowly varying frequency. Such a
method of control (sometimes called the dynamic autoresonance [130, 311]
or chirping [274]) makes it possible to accumulate the energy of a nonlinear
system while the system remains in the resonant mode, and at present is used
to excite atoms, plasma, molecular systems, etc.

However, the choices of control action in form u = const or u = u(t) by no
means cover all possible ways of controlling a system. Moreover, there exists
much more powerful way, namely, feedback control. Feedback control is based
on using measurements of the system output y = y(t), see Fig. 1.6.4(c). It
can be expressed in the form u(t) = U(y(t)) or u(t) = U(y(t), t). It is not an
exaggeration to say that outstanding achievements of control theory during
last half of century have become possible owing to development of efficient
feedback design methods.

Note that internal feedback can be found in many physical systems and
plays an essential role in modeling of a system. However, feedback as a mean of
investigation of a system requires an external feedback. Such usages of feedback
have drawn the attention of physicists just recently. Perhaps, it was the area
of controlling chaos where feedback was first systematically used for studying
possibilities of changing behavior of the systems. Unlike conventional usage
of feedback for engineering applications, where most efficient way to achieve
the desired behavior is sought, a physical study is aimed at evaluation and
explanation of a class of possible behaviors of a physical system achievable by
applying a feedback.

Feedback control is a very powerful means of changing a systems behavior.
It may even cause an antipathy to feedback-based study: one may think that
the object of study is changed if feedback is applied. To avoid confusions, seri-
ous restrictions should be imposed on controlling action, e.g., a small control
requirement. On the other hand, apparently any experiment with a physical
system leads to some change in it, no matter if a feedback is used or not.
For example, it is well known in quantum mechanics that an observation may
even destroy a system. Appealing to physical intuition should help to find
proper interpretation of experimental data avoiding erroneous inference and
discovering artefacts.

One of the main goals of this book is to examine possible ways of using
feedback for exploration of physical system properties. In other words, an
alternative subtitle of the book could be: “What can be done by feedback?”

1.7 What is the use of control in physics?

1.7.1 Opinion of physicists

It is interesting to know what is the opinion of physicists about a new area
and what specific features and advantages they find. It is easy to extract such
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an information scanning the control-related papers in physical journals. Let
us quote a few papers to provide a sample of a few opinions.

The aim of the researches is twofold: – to create a particular product
that is unattainable by conventional chemical means; – to achieve a
better understanding of atoms and molecules and their interactions.
(Rabitz H. et al. Whither the Future of Controlling Quantum Phe-
nomena? Science, 2000, 288, 824–828.)

There are two fields of application of controlling friction. Obviously
there will be technological applications for reducing vibration and
wear. But controlling friction experiments can also be used to increase
our understanding of the physics of dry friction. For example, using
these methods one can measure the effective friction force as a func-
tion of the sliding. ( Elmer F.J. Controlling friction. Physical Review
E, V. 57, 1998, R490–R4906.)

We have summarized some recently proposed applications of control
methods to problems of mixing and coherence in chaotic dynamical
systems. This is an important problem both for its own intrinsic in-
terest and also from the point of view of applications. Those methods
provide insights also into the origin of mixing and unmixing behavior
in natural systems. (Sharma A., Gupte, N. Control methods for prob-
lems of mixing and coherence in chaotic maps and flows. Pramana –
J. of Physics, V. 48, 1997, 231–248.)

We develop novel diagnostics tools for plasma turbulence based on
feedback. This . . . allows qualitative and quantitative inference about
the dynamical model of the plasma turbulence. (Sen A.K. Control and
diagnostic uses of feedback. Physics of Plasmas, V. 7, 2000, 1759–
1766.)

In a world dominated by electronics, the ability not only to remove
chaos where it is not wanted, but also to make more flexible circuitry
by exploring chaos and its control could have a tremendous impact
on our lives (Ditto W.L., Spano M.L., Lindner J.F. Techniques for
control of chaos. Physica D, V. 86, 1995, 198–211.)

We believe that controlled stochastic resonance may be useful in appli-
cations as diverse as the cancellation of power-line frequencies in very
sensitive magnetic sensing, applications with super-conducting quan-
tum interference devices and vibration control in nonlinear mechanical
devices, as well as in the context of electromagnetic field interactions
with neuronal tissue, where control of internal thresholds is possible
and the selective suppression of specific frequencies could potentially
be beneficial. (Loc̈her M., et al. Theory of controlling stochastic reso-
nance. Phys. Review E, V. 62, 2000 (1), 317–327.)
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We have analyzed synchronization in a system describing acoustic
gravity waves which arises in atmospheric physics. By using the mech-
anism of adaptive controller which requires minimum knowledge about
the structure of the system, we have found that the system synchro-
nizes with its error converging to zero. Applications to Lorenz sys-
tem and Chua circuits have been done and it is expected that such
analysis will be helpful in revealing the relation between two differ-
ent non-linear processes in plasma or two similar non-linear processes
under varied spatio-temporal situation. (S. Banerjee, P. Saha, A.R.
Chowdhury. On the application of adaptive control and phase syn-
chronization in non-linear fluid dynamics. International Journal of
Non-Linear Mechanics. V. 39, 2004, 25–31)

1.7.2 Opinion of cyberneticians

The opinion of physicists have much in common with the views of control
theorists and engineers working in the same area.

Cybernetic concepts describe physico-chemical, biological, and social
phenomena with equal success. (V. Turchin. The Phenomenon of Sci-
ence. A cybernetic approach to human evolution. Columbia University
Press, 1977)

The fact that control and dynamical systems communities had funda-
mentally different aims led to some misunderstanding, in which control
theorists saw the dynamical systems work as naive and dynamical sys-
tems workers thought that control theorists only knew how to control
using elephants instead of butterflies. (G. Chen, X. Dong, From Chaos
to Order, World Scientific, 1998)

The control of chaos is one of the most popular topics in the complexity
research. Physicists play major role in this area. Motivated by deeper
study of chaos control, they learned seriously nonlinear control theory.
They appreciated its potential and try to expand the boundary of
physics and control beyond the chaos control. (H. Kimura. A Personal
View of Control in Future. ACPA Newsletter No. 7. Oct 1999)

Quantum Control is emerging as a challenging discipline, with appli-
cations ranging from quantum computation, to metrology and spec-
troscopy. Its typical tasks, state steering and quantum operation real-
ization, have been effectively reformulated in terms of classical control
problems. Thus, not only physicists but an increasing number of con-
trol engineers start to work in the field, applying their well established
methods to these newborn problems. (F. Ticozzi, A. Ferrante. Linear
algebraic techniques for quantum dynamical decoupling. Proc. IEEE
Conf. Decision and Control - Europ. Control Conf. Seville, 2005.)
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The above quotations give a nice idea of what is going on. Both respectable
scientific communities – physicists and cyberneticians are excited about the
prospects of a new field. New challenges and new horizons make a new field
equally attractive for people coming from different areas.

At the same time the cooperation of experts in different areas face a num-
ber of challenges, the main being mutual understanding of people with quite
a diverse scientific backgrounds. To work out a common language in the area
some basic problems should be considered from a unified viewpoint. An at-
tempt to do so is undertaken in the next chapters for a class of energy control
and related problems.



2

Subject and Methodology
of Cybernetical Physics

Now we are in position to define Cybernetical Physics as the branch of science
studying physical systems by cybernetical means [140, 141, 147, 148]. In this
chapter its subject, particularly control problems for physical systems will
be discussed. In order to characterize control problems related to cybernetical
physics, the main classes of controlled plant models, control objectives (goals),
and admissible control algorithms will be specified. In order to outline the
methodology of cybernetical physics, some typical methods used for solving
the problems and typical results in the field will be described.

The term “cybernetical” rather than “cybernetic” is suggested by analogy
with other fields in the crosses of sciences: mathematical physics, chemical
physics, etc. However, an aposcopic (truncated) version “cybernetic” is also
acceptable since it is already in use in engineering with other nouns: cybernetic
methods, cybernetic systems, etc.

2.1 Models of controlled systems

A formal statement of any control problem begins with a model of the system
to be controlled (plant) and a model of the control objective (goal). Even if
the plant model is not given (like in many real world applications) it should be
determined in some way. The system models used in cybernetics are similar
to traditional models of physics and mechanics with one difference; the inputs
and outputs of the model should be explicitly specified. The following main
classes of models are considered in the literature related to control of physical
systems.

The most common class consists of continuous systems with lumped pa-
rameters described in state space by differential equations

ẋ = F (x, u), (2.1.1)
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where x is n-dimensional vector of the state variables1; ẋ = d/dt stands for the
time derivative of x; u is m-dimensional vector of inputs (control variables).
Components of the state vector x are denoted as x1, x2, . . . , xn, while the
components of controlling vector u are denoted as u1, u2, . . . , um. Therefore,
(2.1.1) is a compact notation for the system of ordinary differential equations

dxi

dt
= Fi(x1, x2, . . . , xn, u1, u2, . . . , um), i = 1, 2, . . . ,m. (2.1.2)

Vector–function F (x, u) is usually assumed continuously differentiable to
guarantee existence and uniqueness of the solutions of (2.1.1) at least at some
time interval close to the initial point t = 0. However, a time interval where
the model (2.1.1) is considered is usually not predefined and some additional
requirements may be needed to guarantee that solutions of (2.1.1) are well
defined for all t ≥ 0.

It is important to note that model (2.1.1) encompasses two physically
different cases:

A. Coordinate (force) control. The input variables represent some physical
variables (forces, torques, intensity of electrical or magnetic fields, etc.)
For example a model of a controlled oscillator (pendulum) can be put into
the form

Jϕ̈ + rϕ̇ + mgl sinϕ = u, (2.1.3)

where ϕ = ϕ(t) is the angle of deflection from vertical; J,m, l, r are physical
parameters of the pendulum (inertia moment J = ml2/2, mass, length,
friction coefficient); g is gravity acceleration; u = u(t) is the controlling
torque. The description (2.1.3) is transformable into the form (2.1.1) with
the state vector x = (ϕ, ϕ̇)T as follows:

{
ẋ1 = x2

ẋ2 = −rJ−1x2 −mgl/J sinx1 + 1/Ju(t).
(2.1.4)

B. Parametric control. The input variables represent change of physical pa-
rameters of the system, i.e., u(t) = p − p0, where p0 is the nominal value
of the physical parameter p. For example, let the pendulum be controlled
by changing its length: l(t) = l0 + u(t). If l(t) is a slowly varying variable
then the model, instead of (2.1.3), becomes

1 Hereafter the following notations are used: R
n, C

n are real and complex n-
dimensional vector spaces, respectively; x ∈ R

n is a real n-dimensional vector
(column); x = col(x1, x2, . . . , xn) stands for a column vector with the compo-
nents x1, x2, . . ., xn; the Euclidean norm of the vector x ∈ R

n is denoted as
|x| = (x2

1 + x2
2 + . . . + x2

n)1/2; if X is the vector (matrix), then XT stands for
the transposed vector (matrix). Particularly, if X is the column vector, then XT

is the row vector. Notation In stands for n× n unity matrix; � marks the end of
definition, example, or remark; marks the end of the proof.
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Jϕ̈ + rϕ̇ + m(l0 + u(t)) sinϕ = 0. (2.1.5)

If the rate of the length change l̇(t) cannot be neglected, it is natural to
choose it as a new controlling variable v(t):

l̇(t) = v(t). (2.1.6)

In this case the dynamics model derived from Euler–Lagrange equation
takes, instead of (2.1.5), the form

m(l(t))2ϕ̈ + 2ml(t)u(t)ϕ + rϕ̇ + mgl(t) sinϕ = 0 (2.1.7)

and the plant model is described by equations (2.1.6), (2.1.7).

Although in some papers the difference between the cases A and B is em-
phasized, for the purpose of studying a nonlinear system (2.1.1) the difference
is not very important.2

If external disturbances are present, we need to consider more general
time-varying models

ẋ = F (x, u, t). (2.1.8)

On the other hand, many nonlinear control problems can be described using
more simple affine in control models:

ẋ = f(x) + g(x)u. (2.1.9)

The model should also include the description of measurements, i.e., the
l-dimensional vector of output variables (observables) y should be defined, for
example, as a function of the system state:

y = h(x). (2.1.10)

If the outputs are not defined explicitly, it will be assumed that all the state
variables are available for measurement, i.e., y = x. Using notation y = h(x, u)
means that some input variables are also available for measurement.

An important example of output for physical systems is energy. For exam-
ple, the energy of the pendulum (2.1.3) is defined as follows: H = 0.5J(ϕ̇)2+
mgl(1 − cosϕ). Therefore it is not sufficient to consider only linear functions
h(x) as it is accustomed in conventional control theory.

Note that using notation (2.1.10) implicitly implies that the measurement
does not influence the dynamics of the physical system, or that such an in-
fluence is negligible. Of course, such an assumption does not hold for many
2 It makes sense to treat differently the case of coordinate control and the case

of parametric control only for linear systems. The reason is that a linear system
with a linear coordinate feedback remains linear, while a linear system with linear
parametric feedback leaves the class of linear systems and the system becomes
bilinear. However the class of nonlinear systems (2.1.1) is closed with respect
to all nonlinear feedbacks, and both coordinate and parametric controls can be
treated in a similar way.
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physical processes, especially for quantum processes where macroscopic mea-
surement may even destroy a microscopic system. All such problems need
individual consideration.

Note also that the notion of the state in control theory differs from the
notion of the state used in thermodynamics. Hereafter we understand the
state as a set of variables such that their dynamics are described by a system
of first order differential equations. All other observables are assumed to be
expressed as functions of the state variables. Among examples are mechanical
systems where state can be defined as the set of coordinates and velocities of
all particles, or quantum–mechanical system where the state may be defined
as the wave function obey the first order Shrödinger equation in the Hilbert
space. In some problems the description of the controlled system requires
differential equations on the manifolds. However, such problems will not be
addressed in this book.

For many systems discrete-time state–space models are used:

xk+1 = Fd(xk, uk), (2.1.11)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
l, are state, input, and output vectors at

kth stage of the process. Then the model will be defined by the mapping Fd.
Using a discrete-time model may be convenient even if the process x(t) is a
continuous-time one, but the measurements are taken at discrete-time instants
(sampling times) tk, k = 1, 2, . . . . Then xk = x(tk), uk = u(tk), yk = y(tk).

The natural correspondence between the continuous-time and discrete-
time systems may be established if some time instant tk is specified for each
kth step of the discrete-time system. It induces the correspondence xk =
x(tk), uk = u(tk). The connection between the right-hand side of the discrete-
time and continuous-time models is not uniquely defined in general and may
be specified by additional conventions [177]. The most common way is to
assume that tk = k∆t, where ∆t > 0 is the discretization step (sampling
interval) and to define the input u(t) of the continuous-time system as follows:
u(t) = uk for tk ≤ t < tk+1. It means that the input to the continuous-time
system is piecewise constant which is usually the case for computer-controlled
systems having sampler as discrete-to-analog (D-A) converter. However the
exact expression for x(tk) is still not available since it requires integration of
the differential system over the sampling interval. The simplest approximate
solution is given by the Euler numerical integration formula:

x(tk+1) ≈ x(tk) + ∆tF (x(tk), u(tk), tk).

Setting Fd(x, u, k) = x + ∆tF (x, u, k∆t), hd(x, u, k) = h(x, u, k∆t) we obtain
the discrete-time model with a local error of the order ∆t2. The error over
the time interval [0, T ] can be evaluated as eLT∆t, where L is the Lipschitz
constant of F (x, u, t) in x along the solution x(t), 0 ≤ t ≤ T .

Note that for the linear systems (2.1.1) is possible to achieve the exact
discretization using the Cauchy formula for exact solution of the linear differ-
ential equations with piecewise constant inputs:
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Fd(x, u) = Px + Qu, hd(x, u) = h(x, u), (2.1.12)

where P = exp(A∆t), Q = A−1(P − In)B. However, it involves computation
of the matrix exponential which in general can only be approximated.

In Chapter 7 control problems for distributed (spatiotemporal) systems
described by partial differential equations or their discrete analogs will be
examined. Finally, we will need delay–differential models

ẋ = F (x(t), x(t− τ), u(t), u(t− τu)), (2.1.13)

and delay–difference models

xk+1 = Fd(xk, xk−1, ..., xk−τ , uk, ..., uk−τu
). (2.1.14)

To determine solutions of system (2.1.13) on some time interval [t0, t1) it is
necessary to specify the initial state function X0 = {x(s), t0 − τ ≤ s ≤ t0}
in addition to the input function U0 = {u(s), t0 − τ ≤ s ≤ t0}. Delay may
appear in the system model for different reasons. Typically, it may be caused
by spatially extended system location (transport delay) or by artificial delay
introduced by control (delayed feedback, see Section 6.4.3.)

In what follows we will assume that all the models under consideration
satisfy conditions guaranteeing existence of their solutions at least at some
interval starting from given initial conditions for all t ≥ t0. For simplicity we
will also assume that t0 = 0 whenever possible.

2.2 Control goals

It is natural to classify control problems by their control goals. We list here
five kind of goals.

A. Regulation. Regulation (often called stabilization or positioning) is the
most common and simple control goal. Regulation is understood as driving
the state vector x(t) or the output vector y(t) to some equilibrium state x∗
(respectively, y∗). Due to presence of various uncertainties, it is convenient
to eliminate time from formulation of the control goal and to consider an
idealized control goal as the limit relation

lim
t→∞

x(t) = x∗ (2.2.15)

or limit relation
lim

t→∞
y(t) = y∗. (2.2.16)

In the presence of additive disturbances achievement of the control goals
(2.2.15) and (2.2.16) is impossible in general and one should replace them
by the limit relations for the upper limit (maximum limit over all subse-
quences) of the error:
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lim
t→∞

|x(t) − x∗| ≤ ∆ (2.2.17)

or
lim

t→∞
|y(t) − y∗| ≤ ∆, (2.2.18)

where ∆ is the maximum value of admissible error. If the controlled sys-
tem is under action of stochastic disturbances (noise), it is reasonable to
introduce the averaged goal

lim
t→∞

M|x(t) − x∗| ≤ ∆ (2.2.19)

or
lim

t→∞
M|y(t) − y∗| ≤ ∆, (2.2.20)

where M (mean) is the symbol of mathematical expectation (averaging).
The goals (2.2.15)–(2.2.20) are harder to achieve if the desired equilib-

rium state x∗ is unstable in the absence of control action. Such a case is
typical for control of chaotic systems. It is also possible that in the absence
of control action the goal state x∗ is not an equilibrium. However it does
not introduce extra complication; it just means that control action may
not disappear when the trajectory approaches x∗.

Note that it is not necessary to use Euclidean norm in the formulations
(2.2.15)–(2.2.20). Other norms in the vector space R

n are also possible,
e.g., weighting different coordinates of x or y differently. More generally,
any nonnegative function Q(x, t) ≥ 0 can be used in the formulations
(2.2.15)–(2.2.20) instead of a norm:

lim
t→∞

Q(x(t), t) ≤ ∆, (2.2.21)

lim
t→∞

MQ(x(t), t) ≤ ∆. (2.2.22)

Formulations (2.2.21), (2.2.22) allow to express goals related to conver-
gence of only a part of the state coordinates, so-called partial stability, or
stability with respect to a function [157, 437].

B. Tracking. State tracking is driving a solution x(t) of (2.1.1) to the pre-
specified function of time x∗(t), i.e., fulfillment of the relation

lim
t→∞

[x(t) − x∗(t)] = 0 (2.2.23)

for any solution x(t) of (2.1.1) with initial conditions x(0) = x0 ∈ Ω, where
Ω is given set of initial conditions. Similarly, output tracking is driving the
output y(t) to the desired output function y∗(t), i.e.,

lim
t→∞

[y(t) − y∗(t)] = 0. (2.2.24)

The desired output function y∗(t) may be interpreted as the command or
reference signal. It may be either given explicitly before the system starts
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functioning or it may be measured online by some measurement device.
Alternatively, y∗(t) may depend on the motion of some auxiliary system
called reference model or model of the goal. In the latter case the problem
of finding a controller ensuring the goal (2.2.23) or (2.2.24) is referred to
as model reference control problem.

For example, a typical problem of chaos control can be formulated as
tracking of an unstable periodic solution (orbit). In this case x∗(t) is the
T -periodic solution of the free (uncontrolled, i.e., u(t) = 0) system (2.1.1)
with initial condition x∗(0) = x0

∗, i.e., x∗(t + T ) = x∗(t) for all t ≥ 0.
The key feature of the control problems for physical systems is that the

goal should be achieved by means of sufficiently small control. A limit case
is stabilization of a system by an arbitrarily small control. Solvability of
this task is not obvious if the trajectory x∗(t) is unstable, like for the case
of chaotic systems, see [331].

A special case of the above problems is stabilization of the unstable
equilibrium x0

∗ of system (2.1.1) with u = 0, i.e., stabilization of x0
∗, sat-

isfying F (x0
∗, 0) = 0. Again, it is similar to a usual regulation problem

with an additional restriction that we seek for “small control” solutions.
However, such a restriction makes the problem far from standard: even
for a simple pendulum. Nonlocal solutions to the stabilization problem
for the upright equilibrium by means of small control were obtained just
recently, see [408]. The class of admissible control laws can be extended
by introducing dynamic feedback described by differential or time-delayed
models. Similar formulations hold for discrete and time-delayed systems.

C. Generation (excitation) of oscillations. The third class of control goals
corresponds to the problems of excitation or generation of oscillations.
Here, it is assumed that the system is initially at rest. The problem is to
find out if it is possible to drive it into an oscillatory mode with the desired
characteristics (energy, frequency, etc.) In this case the goal trajectory of
the state vector x∗(t) is not prespecified. Moreover, the goal trajectory
may be unknown, or may even be irrelevant to the achievement of the
control goal. Such problems are well known in electrical, radio engineering,
acoustics, laser, and vibrational technologies – wherever it is necessary to
create an oscillatory mode for the system. Such a class of control goals can
be related to problems of dissociation, ionization of molecular systems,
escape from a potential well, chaotization, and other problems related to
growth of the system energy and its possible phase transition. Sometimes
such problems can be reduced to tracking, but the reference trajectory
x∗(t) in these cases are not necessarily periodic and may be unstable.

To formalize the excitation of oscillation problems it is convenient to
introduce a scalar goal function G(x) and specify the goal as achieving the
limit equality

lim
t→∞

G(x(t)) = G∗ (2.2.25)

or inequality for the lower limit of the goal function value
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limt→∞G(x(t)) ≥ G∗. (2.2.26)

In many cases the total energy of mechanical or electrical oscillations can
serve as the goal function G(x).

D. Synchronization. The fourth important class of control goals corresponds
to synchronization (more accurately, controlled synchronization as dis-
tinct from autosynchronization or self-synchronization). Generally speak-
ing, synchronization is understood as concurrent change of the states of
two or more systems or, perhaps, concurrent change of some quantities
related to the systems, e.g., equalizing of oscillation frequencies [73–75]. If
the required relation is established only asymptotically, one speaks about
asymptotic synchronization. If synchronization does not exist in the system
without control ( for u = 0) we may pose the problem as finding the control
function which ensures synchronization in the closed-loop system, i.e., syn-
chronization may be a control goal. Synchronization problem differs from
the model reference control problem in that some phase shifts between
the processes are allowed that are either constant or tend to constant val-
ues. Besides, in a number of synchronization problems the links between
the systems to be synchronized are bidirectional ones. In such cases the
limit mode (synchronous mode) in the overall system is not known in ad-
vance. A detailed discussion of synchronization problem statements will
be presented in Chapter 5.

A simple way to formulate the control goal, corresponding, e.g., to as-
ymptotic synchronization of the two system states x1 and x2 is to express
it as the limit relation:

lim
t→∞

[x1(t) − x2(t)] = 0. (2.2.27)

In the extended state space x = {x1, x2} of the overall system, relation
(2.2.27) implies convergence of the solution x(t) to the diagonal set {x :
x1 = x2}. Asymptotic identity of the outputs or, more generally, of the
values of some quantity G(x) for two systems can be formulated as follows

lim
t→∞

[G(x1(t)) −G(x2(t))] = 0. (2.2.28)

Often it is convenient to rewrite the goals (2.2.23), (2.2.24), (2.2.25),
(2.2.27), or (2.2.28) in terms of appropriate goal function Q(x, t) as follows:

lim
t→∞

Q(x(t), t) = 0. (2.2.29)

For example, to reduce goal (2.2.27) to the form (2.2.29) one may choose
Q(x) = |x1 − x2|2. Instead of Euclidean norm other quadratic functions
can also be used. In the case of the goal (2.2.23) the goal function Q(x, t) =
[x−x∗(t)]TΓ [x−x∗(t)], where Γ is positive definite symmetric matrix can
be used. The freedom of choice of the goal function can be utilized for
design purposes.
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E. Modification of the limit sets (attractors) of the systems. The last class of
the control goals is related to modification of some quantitative charac-
teristics of the limit behavior of the system. It includes such specific goals
as
– changing the type of the equilibrium (e.g., transformation of an unstable

equilibrium into a stable one or vice versa);
– changing the type of the limit set (e.g., transformation of a limit cycle

into a chaotic attractor or vice versa, changing fractal dimension of the
limit set, etc.);

– changing the position or the type of the bifurcation point in the para-
meter space of the system.

Investigation of the above problems started in the end of the 1980s with the
works on bifurcation control [3, 442] and continued in the works on control of
chaos. Ott, Grebogi, and Yorke [331] and their followers introduced a new class
of control goals, not requiring any quantitative characteristic of the desired
motion. Instead, the desired qualitative type of the limit set (attractor) was
specified, e.g., control should provide the system with a chaotic attractor.3

Development of new approaches to such problems is stimulated by new
applications to laser and chemical technologies, in telecommunications, in bi-
ology and medicine. For example, functioning of the laser after its transition
into a chaotic (multimode) regime can be restored by means of introducing
a small optical feedback. This leads to increase of the power of coherent ra-
diation. On the contrary, in chemical technologies the chaoticity property is
important for good mixing in chemical reactors, leading to faster reaction and
better quality of products. In this case a reasonable goal is to increase the
degree of chaoticity. An example from medical research is applying control
of chaos to treatment of some type of arrhythmias using feedback pacemak-
ers [87, 173]. Irregularity degree of the cardiac rhythm is adjusted by means of
applying stimulating pulses in appropriate time instants. In this case the con-
trol goal is maintaining the desired degree of irregularity. The goal functions
expressing the desired chaoticity degree can be constructed based on standard
chaoticity measures like Lyapunov exponents, fractal dimensions, entropy, etc.

In addition to the main control goal some additional goals or constraints
may be specified. A typical example is the “small control” requirements: con-
trol function should have small power or should provide small expenditure of
energy. Such a restriction is needed to avoid “violence” and preserve inherent
properties of the system under control. This is important to ensure elimination
of artefacts and adequate study of the system.

Mathematically the small control requirement may be expressed as re-
striction ‖u(·)‖ < ∆, where ‖u(·)‖ is some norm of the control function, while
∆ > 0 is a prespecified value (threshold).

3 Definitions of chaos, attractor, and main properties of chaotic systems will be
introduced in Section 6.2.
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The possibility to achieve the goal may depend also on initial conditions.
If the goal is achieved for any initial conditions, one may speak about global
achievability of the goal. Otherwise, a set of admissible initial conditions Ω
should be given, so that the goal is achieved for any solution x(t) of the
system (2.1.1) with admissible controls and initial conditions from Ω, i.e., for
x(0) ∈ Ω. Note that standard control goals in conventional control theory are
regulation and tracking. The rest of the aforementioned goals are not typical
for conventional control theory because they do not completely specify the
desired behavior of the system. These classes of control problems belong to
the area of the so-called partial control which has rapidly developed recently
[157, 437]. It is important that the above goals should be achieved without
significant intervention to the system dynamics, i.e., the design of the control
algorithms should meet the small control or weak control requirement.

Let us now discuss some methods of control problems solution.

2.3 Control algorithms

Through the perusal of physical journals, many articles may be found using
the terms “control,” “controllable” in the following intuitive sense. Let exam-
ination of a system be made via variation of one parameter, called control,
input or bifurcation parameter. Let examination of the system be performed
for different values of input parameter which itself is constant as a function
of time. Changes of such a parameter create changes to some characteris-
tics of the system behavior, sometimes called output parameter. The system
is called controllable if the range of changes of an output parameter under
admissible changes of input parameters covers the values, corresponding the
desired regimes of the system behavior.

Strictly speaking, “control” in the above-mentioned sense can hardly be
called “control” in conventional control theory. It is just a possibility of con-
trol, a preliminary study of the system aimed at right control problem state-
ment. Such a study may results in finding the value of the input parameter
corresponding to the desired value of output. In reality however, even if the
value of the input parameter is properly evaluated, keeping such a constant
parameter value may be ineffective for achievement of the goal for a dynamical
system.

For example, consider again the problem of stabilizing the unstable equi-
librium ϕ = π of the pendulum (2.1.3). Let the control action be constant:
u(t) ≡ 0. Equilibrium condition for the point ϕ = π implies u(t) = 0. How-
ever, because of instability of the equilibrium ϕ = π any deflection of initial
conditions or any external disturbance leads to violation of the control goal,
no matter how small is a disturbance.

To find a more efficient way of control, one may try a time-dependent
(time-varying) control action. To be precise, if a control parameter is time-
varying, it cannot be called a parameter, it should be called a variable. Any



2.4 Methodology 27

rule allowing to calculate the value of the control action u(t) in each time
instant t is usually called a control algorithm. A number of control algorithms
that can be found in the literature provide control variable depending solely
on time: u = u(t). Such kind of control action is called program or command
control action, and the rule itself belongs to the class of so-called open-loop
or feedforward control algorithms. The feedforward control may also depend
on initial state of the system:

u(t) = U(t, x0), (2.3.30)

where x0 = x(0).
Still more possibilities are provided with control algorithms using results

of the system state or output measurements. Such an algorithm may have the
form of state feedback

u(t) = U(x(t)) (2.3.31)

or the form of output feedback

u(t) = U(y(t)). (2.3.32)

All three types of control (constant, feedforward, and feedback) may be
helpful in physical problems. Implementation of a feedback control requires
additional measurement devices working in real time which are often hard to
install. Therefore, studying the system may start with application of inferior
forms of control: time-constant and then feedforward control. The possibilities
of changing the system behavior by means of feedback control can then be
studied.

2.4 Methodology

The methodology of cybernetical physics is based on control theory. Typically,
some parameters of physical systems are unknown and some variables are not
available for measurement. From the control viewpoint this means that con-
trol design should be performed under significant uncertainty, i.e., methods of
robust or adaptive control should be used. A variety of design methods have
been developed by control theorists and control engineers for both linear and
nonlinear systems [157, 245, 464]. Methods of partial control, control by weak
signals, etc. have also been developed [164, 437]. Below a few fairly general
yet simple approaches to control of complex nonlinear systems are described
briefly. Firstly, the gradient method applicable to discrete-time control is pre-
sented. Secondly, the speed-gradient method applicable to continuous-time
systems is described. Thirdly, the feedback linearization method allowing in
some cases to reduce nonlinear problems to linear ones is outlined. All three
approaches can be used for nonlinear, robust, and adaptive control. They will
be used in consequent chapters of this book.
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2.4.1 Gradient method

Numerous systems in physics, biology, economics, and other areas can be de-
scribed by discrete-time dynamical models. Even if a natural system is func-
tioning in continuous time, its variables are often available for measurement
or control only at some discrete sampling time instants and therefore, system
model can be presented in a discrete-time form. Consider a class of controlled
systems described by the discrete-time state–space model:

xk+1 = F (xk, uk), yk = h(xk, uk), (2.4.33)

where xk ∈ R
n is the value of the state vector at the kth step of system

functioning, yk ∈ R
l is the corresponding value of the output, uk ∈ R

m is
the kth value of the input (control) action. The vector functions F and h are
assumed to be well defined for all values of states and inputs. In the case when
the model (2.4.33) describes behavior of a continuous-time system measured
at some sampling instants k = 0, 1, 2, . . ., the variables can be interpreted as
follows: xk ∈ R

n is the value of the state vector x(t) at the sampling instant
tk; yk ∈ R

l is the value of the output measured at the sampling instant tk,
uk ∈ R

m is the value of the input (control) applied to the system at the
sampling interval tk ≤ t < tk+1, k = 0, 1, 2, . . ..

Let the goal function Q(x) ≥ 0 be given and the control goal be specified
as

Q(xk+1) ≤ ∆, when k > k∗ (2.4.34)

where ∆ > 0 is the prespecified threshold value. The gradient method of
control algorithm design consists of two stages. At the first stage, the reduced
goal function depending on the number of the step is calculated, substituting
(2.4.33) into (2.4.34):

Qk(u) = Q(Fk(xk, u)) (2.4.35)

The reduced goal function directly depends on u. At the second stage the
gradient vector

∇uQk(u) = col
(
∂Qk(u)
∂u(1)

, . . . ,
∂Qk(u)
∂u(m)

)

is calculated and the control algorithm

uk+1 = uk − γk∇uQk(uk), (2.4.36)

where γk ≥ 0, is the algorithm parameter (step size) is derived.
The algorithm (2.4.36) makes the current control correction ∆uk =

uk+1 − uk along the descent direction of the current goal function Qk(u).
The idea of the gradient method comes from optimization theory. However,
in optimization problems the objective function does not depend on k. It is
worth noting that there is no reason to use more complicated algorithms for
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control of a dynamical system because at every step the goal function may
change.

A simple algorithm does not necessarily have simple applicability condi-
tions. To formulate such conditions we use the so-called method of the re-
cursive goal inequalities proposed by V.A. Yakubovich in 1966 [85, 132]. The
key point of the method is to introduce a deadzone into the algorithm, i.e.,
to choose γk = 0 if the goal inequality (2.4.34) is fulfilled. The precise for-
mulation of the applicability conditions can be found in [85, 164]. Essentially,
three main conditions should be fulfilled: (A) the function Qk(u) is convex
in u; (B) there exists a common solution u = u∗ to the system of the goal
inequalities Qk(u) < ∆, k = 0, 1, 2, . . .; (C) the choice of the gain γk takes
into account the deadzone: if the current inequality Qk(uk) ≤ ∆ holds, then
γk = 0 is chosen.

Note that it often happens that the right-hand side of the algorithm
(2.4.36) depends on the whole nonmeasurable state vector xk. There are two
standard ways to treat such problems. The first is to include an additional
dynamical system (so called observer), which performs an online estimation
of the unknown state vector. The second is to replace the state–space model
(2.1.11) of the controlled system by the input–output model:

yk+1 = Φ(yk, . . . , yk−n, uk, . . . , uk−n+1). (2.4.37)

Then at the kth step one will need to evaluate control in the form uk =
U(yk, . . . , yk−n, uk−1, . . . , uk−n+1) which is easier to design.

2.4.2 Speed-gradient method

A continuous-time counterpart of the gradient method is the so called speed-
gradient (SG) method. Like the gradient method for discrete-time systems,
SG-method is intended for control problems where control goal is specified by
means of a goal function.

Consider a nonlinear time-varying system

ẋ = F (x, u, t) (2.4.38)

and control goal
lim

t→∞
Q(x(t), t) = 0, (2.4.39)

where Q(x, t) ≥ 0 is a smooth goal function.
In order to design control algorithm the scalar function Q̇ = ω(x, u, t) is

calculated, that is, the speed (rate) of changing Qt = Q(x(t), t) along trajec-
tories of (2.4.38): ω(x, u, t) = ∂Q(x, t)/∂t + [∇xQ(x, t)]

T

F (x, u, t). Then it is
needed to evaluate the gradient of ω(x, u, t) with respect to input variables:
∇uω(x, u, t) = (∂ω/∂u)

T

= (∂F/∂u)
T

∇xQ(x, t). Finally, the algorithm of
changing u(t) is determined according to the differential equation
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du

dt
= −Γ∇uω(x, u, t), (2.4.40)

where Γ = Γ
T

> 0 is a positive definite gain matrix, e.g., Γ = diag {γ1, . . . ,
γm}, γi > 0. The algorithm (2.4.40) is called speed-gradient (SG) algorithm,
since it suggests to change u(t) proportionally to the gradient of the speed of
changing Qt.

The origin of the algorithm (2.4.40) can be explained as follows. In order to
achieve the control goal (2.4.39) it is desirable to change u(t) in the direction
where Q(x(t), t) decrease. However, it may be a problem since Q(x(t), t) does
not depend on u(t) directly. Instead one may try to decrease Q̇, in order to
achieve the inequality Q̇ < 0, which implies decrease of Q(x(t), t). The speed
Q̇ = ω(x, u, t) generically depends on u explicitly which allows to write down
(2.4.40). The speed-gradient algorithm can be also interpreted as a continuous-
time counterpart of the gradient algorithm, since for small sampling step size
the direction of the gradient is close to the direction of the speed-gradient.

Let us illustrate speed-gradient design methodology for a class of tracking
control problems for controlled systems linear in the inputs:

ẋ = A(x, t) + B(x, t)u, (2.4.41)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is vector of controlling variables
(inputs) which may be either physical quantities or adjustable parameters,
A(x, t) is n-vector, B(x, t) is n×m-matrix. Let the control goal have the form

lim
t→∞

[y(t) − y∗(t)] = 0, (2.4.42)

where y(t) = h(x(t)) ∈ R
l is l-vector of regulated variables (outputs), y∗(t) ∈

R
l is the goal trajectory (desired trajectory) of the outputs. It is clear that

the goal (2.4.42) has equivalent form (2.4.39) if the goal function Q(x, t) is
chosen as follows:

Q(x, t) =
1
2
[y − y∗(t)]

T
P [y − y∗(t)], (2.4.43)

where P is symmetric positive-definite l × l-matrix.
For the purpose of control algorithm design rewrite equation (2.4.41) in

the form

ẋ = A(x, t) +
m∑

i=1

Bi(x, t)ui, (2.4.44)

where ui are components of the vector u ∈ R
m and Bi(x, t) ∈ R

n are columns
of the matrix B(x, t). Then the rate (speed) of changing Q(x(t), t) along tra-
jectories of the system (for constant u) is as follows:

ω(x, u, t) = [y − y∗(t)]
T
P [CA(x, t) + CB(x, t)u− ẏ∗(t)], (2.4.45)
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where C = C(x, t) = ∂G(x, t)/∂x. Taking the gradient of (2.4.45) in u we
obtain the speed-gradient and the speed-gradient algorithm in the following
form

∇uω(x, u, t) = B(x, t)
T
C

T
P [y − y∗(t)], (2.4.46)

du

dt
= −ΓB(x, t)

T
C

T
P [y − y∗(t)]. (2.4.47)

To simplify design, the gain matrix Γ is often chosen as diagonal matrix (Γ =
= diag {γi}) or scalar matrix (Γ = γI) where (γi, γ) are positive numbers. For
special case of the system linear in inputs the algorithm (2.4.47) is nothing
but the classical integral control law.

In a similar way the so-called speed-gradient algorithm in finite form is
designed

u(t) = u0 − Γ∇uω(x(t), u(t), t), (2.4.48)

where u0 is some initial value of control variable, e.g., u0 = 0). Algorithm
(2.4.48) is a generalization of classical proportional control law.

More general form of speed-gradient algorithms is sometimes useful:

u(t) = u0 − γψ(x(t), u(t), t), (2.4.49)

where γ > 0 is the scalar gain parameter and vector-function ψ(x, u, t) satisfies
the so-called pseudogradient condition

ψ(x, u, t)
T∇uω(x, u, t) ≥ 0 (2.4.50)

for all x, u, t. Special case of (2.4.49) is called sign-like or relay-like algorithm:

u(t) = u0 − γ sign∇uω(x(t), u(t), t), (2.4.51)

where sign of a vector is understood component-wise: for a vector z =
col (z1, . . . , zm) sign z is defined as sign z = col (sign z1, . . . , sign zm).

In order to make a reasonable choice of the control algorithm parameters
the applicability conditions should be verified. The main conditions are: con-
vexity of the function ω(x, u, t) in u and existence of “ideal” control u∗ such
that ω(x, u∗, t) ≤ 0 for all x (attainability condition). More precise formula-
tions and mathematical proofs can be found in [29, 134, 135, 157, 164].

The speed-gradient algorithms can be modified to take into account con-
straints. For example, let the equality constraint be given

g(x(t), u(t), t) = 0, (2.4.52)

where g is a smooth scalar function, and a scalar control function u(t) is to be
chosen such that (2.4.52) is satisfied for all t ≥ 0. The modified (constrained)
SG-algorithm in differential form is as follows:

u̇(t) = −γ∇uω(x(t), u(t), t) − λ(t)∇ug(x(t), u(t), t), (2.4.53)
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where the Lagrange multiplier λ(t) is chosen to satisfy condition ġ = 0, that
is,

λ(t) =
−γ∇uω(x(t), u(t), t) + ∇xg

T
F (x(t), u(t), t) + ∂g/∂t

|∇ug(x(t), u(t), t)|2 . (2.4.54)

Initial condition u(0) should satisfy constraint too: g(x(0), u(0), t) = 0. The
case of SG-algorithms in finite form and the case of inequality constraints are
considered in a similar way.

The speed-gradient algorithm is tightly associated to the concept of Lya-
punov function V (x) – a function of the system state nonincreasing or nonde-
creasing along its trajectories. Lyapunov function is an abstraction for such
physical characteristics as energy and entropy. In nonlinear dynamical systems
theory it provides a powerful tool for analyzing stability-like properties [227,
316, 380, 419]. It is important that Lyapunov function can be used not only
for analysis but also for system design. In particular, for the speed-gradient
algorithms in the finite form the goal function itself may serve as the Lya-
punov function : V (x) = Q(x). The Lyapunov function for differential form of
SG-algorithms is as follows: V (x, u) = Q(x)+0.5(u−u∗)TΓ−1(u−u∗), where
u∗ is the desired “ideal” value of controlling variables. Note that in order
to justify discrete-time gradient algorithm one may use Lyapunov function
as square distance between the current and the “ideal” controlling variables
V (u) = |u− u∗|2.

2.4.3 Feedback linearization

The gradient and the speed-gradient methods represent a family of goal-
oriented methods which allow the designer of control system to create the
control algorithm for a nonlinear controlled system as soon as the control
goal is formulated by means of a goal function. However, it is not a unique
approach to control system design. A number of other more sophisticated ap-
proaches can be found in control literature, see [157, 164, 210, 227, 245, 464].
Below, one of the most popular methods: feedback linearization will be briefly
presented.

Consider the systems affine in control:

ẋ = f(x) + g(x)u. (2.4.55)

Definition 2.1. System (2.4.55) is called feedback linearizable in the open
domain Ω ∈ R

n if there exist a smooth coordinate change z = Φ(x), x ∈ Ω
and a feedback transformation

u = α(x) + β(x)v (2.4.56)

with smooth functions α, β such that Φ and β are smoothly invertible in Ω
and the closed loop system (2.4.55)–(2.4.56) is linear, i.e., there exist constant
matrices A ∈ R

n×n and B ∈ R
n×m so that
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f(x) + g(x)α(x) = A, g(x)β(x) = B, x ∈ Ω. (2.4.57)

Feedback linearizability of the system means that it is equivalent to the
system

ż = Az + Bv, (2.4.58)

where z(t) ∈ R
n is the new state vector and v(t) ∈ R

m is the new input, which
contains the nonlinearities.

Definition 2.2. System (2.4.55) is said to have relative degree r, r ≤ n at
point x0 ∈ R

n with respect to the output

y = h(x), (2.4.59)

if for any x ∈ Ω, where Ω is some neighborhood of x0, the following conditions
are valid:

LgL
k
fh(x) = 0, k = 0, 1, . . . , r − 2, LgL

r−1
f h(x) 	= 0.

Recall that Lψφ(x) =
∑n

i=1
∂φ
∂xi

ψi(x) stands for the Lie derivative of the
vector function φ along the vector field ψ. Relative degree r is exactly equal
to the number of times one has to differentiate the output in order to have
the input explicitly appearing in the equation which describes the evolution
of y(r)(t) in the neighborhood of x0.

Theorem 2.1 (Criterion of feedback linearizability for single-input /single-
output systems). System (2.4.55) is feedback linearizable in the neighborhood
Ω of a point x0 ∈ R

n if and only if there exists a smooth scalar function h(x)
defined in Ω such that the relative degree r of (2.4.55), (2.4.59) is equal to n.

In the case r = n the state transformation z = Φ(x) and the feedback law
reducing (2.4.55) to the chain of integrators ẏ1 = y2, ẏ2 = y3, . . . , ẏn = u (so
called Brunovsky form) can be chosen as follows:

Φ(x) = col(h(x), Lfh(x), . . . , Ln−1
f h(x)) (2.4.60)

u =
1

LgL
n−1
f h(x)

[
−Ln

fh(x) + v
]
. (2.4.61)

Example 2.1. Consider a simple pendulum without friction

ϕ̈ + sinϕ = u. (2.4.62)

The system (2.4.62) can be transformed to the form (2.4.55) by introducing
the state vector x = col(ϕ, ϕ̇) ∈ R

2, i.e., x1 = ϕ, x2 = ϕ̇. In this case
f(x) = col(x2, − sinx1), g(x) = col(0, 1). Choose y = ϕ, i.e., h(x) = x1.
Then

Lgh(x) = [0 1] [0 1]T = 0, Lfh(x) = [1 0]f(x) = x2, LgLfh(x) = 1.
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Therefore, r = 2 which means that the system (2.4.62) is feedback linearizable.
The linearizing feedback (2.4.61) is as follows

u = − sinx1 + v. (2.4.63)

This feedback reduces the system (2.4.62) to the form of double integrator

ẋ1 = x2, ẋ2 = v. (2.4.64)

Note that although the system is linearized by feedback, it is not stabilized
yet! If our primary goal is stabilization of the system at the point x0 we still
need more effort to achieve it. It is more or less clear that the system (2.4.64)
cannot be asymptotically stabilized at the origin by a smooth output feedback.
On the other hand the stabilization problem can be easily solved if the second
state variable x2 is available for measurement. In this case the stabilizing
feedback is v = −µx2 for any µ > 0, or u = −µx2 − sinx1. However, for
higher order systems, introducing the derivatives into the feedback law may
be hard to implement.

2.5 Results: Laws of cybernetical physics

According to the previous discussion, a typical control problem is to find a
control function (feedback operator) from the given class of functions (opera-
tors) ensuring the given control goal for the given class of systems. However,
for physics or other natural science such a formulation may play only an aux-
illary role, since a control goal is rarely specified a priori. For physics it would
be more natural to find what properties or what behaviors of a system can
be achieved or changed by means of applying control function from the given
class. How to express solutions to such problems in a manner that physicists
are more accustomed to?

A great deal of the results in many areas of physics are presented in the
form of conservation laws, stating that some quantities do not change during
evolution of the system. However, the formulations in cybernetical physics
are different. Since the results in cybernetical physics establish how the evo-
lution of the system can be changed by control, they should be formulated as
transformation laws, specifying the classes of changes in the evolution of the
system attainable by control function from the given class, i.e., specifying the
limits of control.

Let us provide a few examples of transformation laws. The first example
is related to control of an invariant (constant of motions) for a conservative
system. In this case transformation law should provide an answer to the ques-
tion: “What can be done with an invariant by means of a feedback?” A typical
result (see, e.g., [407] and Chapter 3) can be loosely formulated as follows:

The value of any controllable invariant can be changed for arbitrary
quantity by means of an arbitrarily small feedback.



2.5 Results: Laws of cybernetical physics 35

The meaning of the term “controllable” depends on a specific situation
and, in principal, includes some conditions ensuring solvability of the problem.
Examples will be given in Chapter 3.

The second transformation law relates to dissipative systems. The results,
presented in Chapter 4 demonstrate that the smaller the dissipation in the
system the larger efficiency of a small feedback. A typical quantitative result
may be expressed as follows:

The level of energy achievable by means of control of the power γ for
controllable Hamiltonian or Lagrangian system with small dissipation
of the degree ρ has the order (γ/ρ)2.

The third example of transformation law relates to control of chaos. It was
first articulated in the seminal paper [331] and can be termed the OGY-law :

Any controllable chaotic trajectory can be transformed into a periodic
one by means of an arbitrarily small control.

Note that the chaoticity requirement can be significantly weakened, being
replaced by some form of recurrency. Again the term “controllable” in the
above context means principal solvability of the problem.

To provide more elaborated formulation of the law some sufficient condi-
tions ensuring controllability may be checked or imposed. It may be a matter
of further mathematical investigation; some results will be presented in the
following chapters of this book.

Summarizing this chapter, note that the subject of cybernetical physics
includes system models and control goals. Its problems are studying behav-
ior of physical systems under external (feedforward or feedback) purposeful
actions. So, defined subject has many similarities with that of the theory of
open systems [236]. The main difference is that feedbacks are not prespecified
and need to be designed.

The methodology of feedback design is borrowed from cybernetics (control
theory). It is based upon methods of controlled system model’s building, meth-
ods of system states and parameters estimation (identification), and methods
of feedback synthesis. The models of controlled system used in cybernetics
differ from conventional models of physics and mechanics in that they have
explicitly specified inputs and outputs. Unlike conventional physics results,
often formulated as conservation laws, the results of cybernetical physics are
formulated in the form of transformation laws, establishing the possibilities
and limits of changing properties of a physical system by means of control.

Thus, in this new research area a synthesis of descriptive and prescriptive
sciences is accomplished. Such an extension of conventional physical study,
scope, and methodology helps to achieve its ultimate goal: better understand-
ing of the Nature.
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Control of Conservative Systems

In a number of control problems in physics the control goal is expressed in
terms of a quantity that is invariant (first integral) of an uncontrolled sys-
tem. The most important class of such problems is control of energy where
the control goal can be formulated in terms of the system energy. Below for-
mal statements of energy control problems and designs of control algorithms
are presented for systems with Hamiltonian and Lagrangian dynamics. Con-
trol algorithms are proposed using the speed-gradient method. Mathematical
conditions ensuring achievement of the control goal with arbitrarily small in-
tensity of control and extensions to control of several first integrals are given.

3.1 Control of energy for Hamiltonian systems

Hamiltonian formalism is used in physics to describe dynamics of various sys-
tems, from motion of planets to motion of molecules. It is also a convenient
mathematical description for controlled oscillatory systems, since it allows for
explicit description of surfaces of constant energy which unforced oscillatory
motions belong to. Energy is the unforced system invariant (first integral,
constant of motion), and a measure of interaction of the system with its en-
vironment.

The problem of controlling the change of the system energy is of utmost
importance. Not only it has a fundamental theoretical value, it also allows
a number of practical problems related to energy saving technologies to be
solved. Therefore, we start studying control problems in physics from control
of energy based on Hamiltonian description of system dynamics.

Assume that the system is conservative: dissipation and losses are negligi-
ble. The Hamiltonian form of controlled system equations is as follows:

ṗi = −∂H(p, q, u)
∂qi

, q̇i =
∂H(p, q, u)

∂pi
, i = 1, . . . , n, (3.1.1)
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where p = col(p1, . . . , pn), q = col(q1, . . . , qn) are the vectors of generalized
coordinates and momenta constituting the state vector col(p, q) of the system.
H = H(p, q, u) is the controlled Hamiltonian function, u(t) ∈ R

m is the input
(generalized force).1 The model (3.1.1) can be rewritten as follows

{
ṗ = −∇qH(p, q, u),
q̇ = ∇pH(p, q, u).

(3.1.2)

Following [138] the control goal is formalized as approaching a given energy
surface of the free (unforced) system

col(p(t), q(t)) → S, (3.1.3)

where S = {(p, q) : H0(p, q) = H∗}, H0(p, q) = H(p, q, 0) is the “internal”
Hamiltonian describing the unforced system

{
ṗ = −∇qH0(p, q),
q̇ = ∇pH0(p, q).

(3.1.4)

A slightly different formulation of control goal is the following

H0(p(t), q(t)) → H∗, when t → ∞. (3.1.5)

The goal (3.1.5) means convergence of the value of the system energy to the
desired value H∗. Formally, is not equivalent to (3.1.3), meaning convergence
of the arguments of the energy function. Indeed, (3.1.3) implies (3.1.5) but
(3.1.5) does not imply (3.1.3) if S is not compact. Conversely, (3.1.5) implies
(3.1.3) for Lagrangian systems with uniformly positive definite inertia matrix.
In this chapter the mathematical difference between (3.1.5) and (3.1.3) will
be ignored which influences neither physical nor engineering applications.

Introduce the following objective function

Q(x) =
1
2

(H0(p, q) −H∗)
2
, (3.1.6)

where x = col(p, q). Then the control goal (3.1.5) takes the form

Q(x(t)) → 0 when t → ∞. (3.1.7)

In what follows we assume that the Hamiltonian is linear in control:

H(p, q, u) = H0(p, q) + H1(p, q)Tu,

where H0(p, q) is the internal Hamiltonian and H1(p, q) is an m-dimensional
vector (column) of interaction potentials [316].
1 Hereafter the variables are assumed to be dimensionless quantities if the opposite

is not specified.
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Define the Poisson bracket of smooth functions f(p, q) and g(p, q) in a
standard manner

[f, g] =
n∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
.

If f and g are the vector-functions then the Poisson bracket is defined compo-
nentwise. For example, if the function f is scalar and g is an m-dimensional
vector (column) then [f, g] is an m-dimensional co-vector (row). More gener-
ally, if f and g are an l-dimensional and m-dimensional vectors, respectively,
then [f, g] is an l ×m matrix.

Now let us apply the speed-gradient (SG) method described in Chapter 2
to solve the posed problem. To design the SG algorithm calculate Q̇:

Q̇ = (H0 −H∗)
(
∂H0

∂p
ṗ +

∂H0

∂q
q̇

)
= (H0 −H∗)[H0,H

T
1 ]u (3.1.8)

and the speed-gradient: ∇uQ̇ = (H −H∗)[H0,H1].
The differential SG algorithm can be represented in the form

u̇ = −γ(H0 −H∗)[H0,H1], (3.1.9)

while the linear and relay finite forms (2.4.48), (2.4.51) are as follows:

u = −γ(H0 −H∗)[H0,H1], (3.1.10)

u = −γsign {(H0 −H∗)[H0,H1]} , (3.1.11)

where γ > 0 is the gain factor. We may consider also the general speed-
pseudogradient algorithm

u = −ψ ((H0 −H1)[H0,H1]) , (3.1.12)

where ψ is a smooth vector function with values in R
m which satisfies the

strict pseudogradient condition ψ(z)Tz > 0 for z 	= 0.
To analyze the behavior of the system with algorithms (3.1.9)–(3.1.11) we

need conditions guaranteeing achievement of the control goal. Let us establish
such conditions.
Theorem 3.1. [164]. Let the first and second derivatives of the functions
H0,H1 be bounded on the set Ω0 = {x : Q(x) ≤ Q0} for some Q0 > 0.

Then the algorithm (3.1.12) with x(0) ∈ Ω0 ensures u(t) → 0 when t → ∞
and ensures either the goal (3.1.5) or convergence [H0,H1](x(t)) → 0 when
t → ∞.

Let, additionally, the following two conditions hold:
H1. For any c 	= H∗ there exists ε > 0 such that any nonempty connected
component of the set Dε,c = {x : |[H0(x),H1(x)]| ≤ ε, |H0(x) − c| ≤ ε} ∩
Ω0 is bounded.
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H2. The largest invariant set M ⊂ D0 of the free system (i.e., the set M
of whole trajectories of (3.1.4) contained in D0), where D0 = {x : [H0(x),
H1(x)] = 0} ∩Ω0, consists of finite or countable number of isolated points.

Then any solution of the system (3.1.2), (3.1.12) either achieves the goal
(3.1.5) or tends to a point of the set D0 which is an equilibrium of the free
system (3.1.4). Besides, the set of initial conditions from which the solution
of (3.1.2), (3.1.12) tends to unstable2 equilibrium of the free system has the
zero Lebesgue measure.
Corollary 3.1. If D0 is empty, i.e., [H0,H1](x) 	= 0 for x ∈ Ω0, then the
control goal is achieved for all x(0) ∈ Ω0.

Proof of Theorem 3.1. Calculation of the time derivative of Qt = (H0(p(t),
q(t)) −H∗)2/2 along the solution of (3.1.2), (3.1.12) yields

Q̇t = −ψ(z(t))Tz(t), (3.1.13)

where z(t) = [H0(x(t)),H1(x(t))]T(H0(x(t))−H∗). Hence Q̇t ≤ 0 and Qt does
not increase, i.e., Qt ≤ Q0. It means that the solution of the whole system
will never leave the set Ω0. Boundedness of the right-hand side of the system
(3.1.2), (3.1.12) ensures that x(t) is well defined for all 0 ≤ t < ∞. Therefore,
there exist limt→∞ Qt = Q∞ and limt→∞ H0(x(t)) = H∞. If H∞ = H∗ then
the theorem is proved.

Suppose H∞ 	= H∗. The boundedness condition gives that z(t), ψ(z(t)),
Q̇t and Q̈t are bounded for x(t) ∈ Ω0. It follows from the Partial Stability
Theorem [157] that Q̇t → 0. By virtue of the strict pseudogradient condition
and continuity of ψ one can deduce that u(t) → 0 and z(t) → 0 when t → ∞.
By assumption H∞ 	= H∗. Hence [H0,H1](x(t)) → 0. The first part of the
theorem is proved.

To prove the second part choose ε > 0 from Assumption H2. For suf-
ficiently large t > 0 the solution x(t) enters the set Dε,H∞ and does not
leave one of its connected components which is bounded and therefore its
closure is compact. By virtue of compactness there exists a limit point of
x(t) and all limit points of x(t) satisfy [H0,H1] = 0, i.e., x(t) converges to
the set D0 = {x : [H0,H1] = 0} ∩ Ω0. According to the LaSalle theorem
(see, e.g., [157, 380]) x(t) tends to the largest invariant set of the free sys-
tem in D0. Taking into account condition H2, we conclude that there exists
limt→∞ x(t) = x∞ ∈ D0 and x∞ is an equilibrium point of (3.1.2), (3.1.12).
Let A∞ be the Jacobi matrix calculated at the point x∞ and Ms,Mu,M0

be stable, unstable, and central manifolds of the system in x∞. Then it fol-
lows from the Center Manifold Theorem [189, 210] that x(t) → x∞ only for
x(0) ∈ Ms ⊕ M0 if |x(0) − x∞| is sufficiently small. Let x∞ be an unstable
equilibrium, i.e., Mu is not empty. Then dimMs⊕M0 < 2n. Making backward
shift along trajectories of the free system, it is easy to show that all initial
2 Instability of an equilibrium is understood here in the sense of mechanics, i.e., it

means that the Jacobi matrix of the system calculated at the equilibrium point
has at least one eigenvalue with positive real part.
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conditions x(0) such that x(t) → ∞ belong to a some manifold of dimension
less than 2n. Since the set of all possible unstable limit points is either finite
or countable, the set of corresponding initial conditions has the zero Lebesgue
measure in R

2n.

The proved theorem shows that algorithm (3.1.12) ensures the goal (3.1.5)
almost always unless there are “false” goals: stable or neutral equilibria of the
free system which are reachable from the initial point within the energy layer

Ω0 = {(p, q) : |H0(p, q) −H∗| ≤ |H0(p(0), q(0)) −H∗|} .

In other words, the goal (3.1.5) will be achieved for almost all initial conditions
from the set Ω0 if it does not contain local potential wells.

Moreover, it is clear from the proof that the set of exceptional initial
conditions is contained within a finite or countable number of manifolds, i.e.,
the complement of this set is open dense in the set Ω0.

Remark 3.1. Suppose that the Hamiltonian Description of the controlled sys-
tem (3.1.2) originates from controlled Euler–Lagrange equations, i.e., its in-
ternal Hamiltonian and interaction potentials are

H0(p, q) =
1
2
pTA−1(q)p + Π(q), H1(p, q) = q, (3.1.14)

where p(t), q(t) ∈ R
n, A(q) is the positive definite matrix of kinetic energy

and Π(q) is the function of potential energy. In this case, equilibria of the
unforced system have the form (0, q̂), where q̂ is a stationary (critical) point
of the potential Π(q). Suppose that all the stationary points of Π(q) are
isolated. Then it follows from Theorem 3.1 that almost all solutions of the
closed loop system (3.1.2), (3.1.12) satisfy the goal (3.1.5). In addition, if the
matrix A(q) is uniformly positive definite, i.e., zTA(q)z ≥ µ|z|2 for some µ > 0
and all q ∈ R

n, z ∈ R
n, then it is easy to show that almost all solutions of

the system approach the goal set S = {(p, q) : H0(p, q) = H∗}. �
Remark 3.2. The sign control algorithm

u = −γsign {(H0 −H∗)[H0,H1]} (3.1.15)

formally does not satisfy the conditions of the previous theorem because of
the discontinuity of the function ψ in this case. However, the similar result can
be proved for the system (3.1.2), (3.1.15), except for the property u(t) → 0.
Additionally, it can be proved that if the goal surface S is compact, then
solutions of the system (3.1.2), (3.1.15) achieve it in a finite time. �

3.2 Example: Controlled pendulum

In order to demonstrate application of the obtained result, consider a simple
pendulum model (see Chapter 1). It can be transformed into the Hamiltonian
form with the energy (Hamiltonian) function
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H0(p, q) =
p2

2J
+ mgl(1 − cos q), (3.2.16)

where q(t) ∈ R
1 is the angular coordinate, p = Jq̇ is the momentum of the

system. The Hamiltonian form of the controlled system can be written
{
q̇ = J−1p

ṗ = −mgl sin q + u(t),
(3.2.17)

where u(t) is the controlling torque. In this example the interaction poten-
tial has the form H1(p, q) = q. The goal (3.1.5) corresponds to swinging the
pendulum up or down to the amplitude

q∗ = arccos
(

1 − H∗
mgl

)
for 0 ≤ H∗ < 2mgl.

In the case of larger desired energy level: H∗ > 2mgl the goal corresponds to
the rotatory motion of the pendulum. The value H∗ = 2mgl is exceptional.
It corresponds to a motion along separatrix – the set consisting of a number
of smooth curves separating domains of oscillatory and rotatory motions in
the phase plane. Speed-gradient algorithms (3.1.10), (3.1.11) for pendulum
(3.2.17) take a very simple form:

u̇ = −γ(H0 −H∗)q̇, (3.2.18)

u = −γ sign
(
(H0 −H∗)q̇

)
. (3.2.19)

Applying Theorem 3.1 and Remark 3.1 to the pendulum (3.2.17) it can
be concluded that if the initial energy layer between the levels H0(p(0), q(0))
and H∗ does not contain an equilibrium of the unforced system, then the goal
level H∗ will be achieved in the controlled system (3.1.2), (3.1.12) from all
initial conditions. If the initial energy layer contains only unstable equilibria
(π(2k + 1), 0), k = ±1,±2, . . . , then the goal (3.1.5) will be achieved from
almost all initial conditions.

3.3 The swinging (small control) property

Most applications of oscillation control systems require the control action to be
small. The reason is that the lifetime of the system is usually large compared
with the typical period of oscillations, and therefore the control power (or
energy spent over one cycle) should be small.

This gives rise to the problem: What kind of control goals can be achieved
by small control? For problems of control of Hamiltonian systems the question
is: What values of energy H∗ can be achieved by small control? Keeping in
mind the problem of swinging a simple pendulum the following terminology
is introduced.
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Definition 3.1. The system

ẋ = F (x, u, t)

is called swingable with respect to the goals

lim
t→∞

Qt = g∗, g ∈ G ⊂ R
1, (3.3.20)

if for any ε > 0 and any g ∈ G there exists the control law

u(t) = Ug,ε[x(s), 0 ≤ s ≤ t], (3.3.21)

such that |u(t)| < ε and for the closed loop system the goal (3.3.20) is achieved.
The control law (3.3.21) in that case is called swinging control with respect
to G.

It follows from Theorem 3.1 that any Hamiltonian controlled system sat-
isfying H1, H2 is swingable for almost all initial states (p, q) if its potential
Π(q) has only isolated stationary points and g ≥ ĝ, where ĝ = supi[Π(qi)]
and qi are local minima of Π(q). Under the conditions of Theorem 3.1, the
swinging control can be determined by Eq. (3.1.10) for

γ < ε(h|H0(p(0), q(0)) −H∗|)−1,

where
h = sup

Ω0

|[H0(p, q),H1(p, q)]|,

Ω0 = {(p, q) : |H0(p, q) −H∗| ≤ |H(p(0), q(0)) −H∗|}.
If there are no equilibria of the free system in the set Ω0, then the goal is
achieved for any trajectory of the system.

The above result can be applied to a variety of control problems for oscil-
latory systems. Some examples will be given in the subsequent chapters. Note
that the smaller the level of control the longer the transient time required to
achieve the goal. Transient time is important for engineering and other prac-
tical applications. However, the possibility to achieve the goal in principle is
important for evaluation of limits of control.

3.4 Control of first integrals

One may wonder if it is possible to achieve more complex goals than approach-
ing a given energy surface. The natural extension of the control goal (3.1.5)
could be achieving the desired level of several first integrals (conserved quan-
tities) of the unforced system. The speed-gradient algorithms apply to this
more general situation as well. In this section we formulate a formal result
following [158].
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Let x = col(p, q) ∈ R
2n be the state vector of the Hamiltonian system

(3.1.2) and the smooth functions Gi : R
2n → R

1, i = 1, . . . , k be the first
integrals of the free system (3.1.2), i.e.,

[H0, Gi] ≡ 0, i = 1, . . . , k, (3.4.22)

where H0(p, q) = H(p, q, 0). Let the control goal be

Gi(x(t)) → G∗
i , i = 1, . . . , k, when t → ∞ (3.4.23)

where G∗
i , i = 1, . . . , k are prespecified numbers.

Assume again that the Hamiltonian is affine in control (although the re-
sults can be extended to the nonaffine case, see [404]) and consider the system

q̇ = ∇pH0(q, p) +
∑m

j=1 ∇pHjuj ,

ṗ = −∇qH0(q, p) −
∑m

j=1 ∇qHjuj ,
(3.4.24)

where H0 is the Hamiltonian function of the unforced system (3.4.24); Hj , j =
1, . . . ,m are the interaction potentials being independent functions (in the
sense that the corresponding one-forms dHj are linearly independent) [316];
uj , j = 1, . . . ,m are controlling inputs of the system.

To solve the posed problem we again use the speed-gradient method and
construct the following control algorithm

u(q(t), p(t)) = −γ∇uQ̇(q(t), p(t)), (3.4.25)

or, more generally

u(q(t), p(t)) = −ψ(∇uQ̇(q(t), p(t))), (3.4.26)

where Q(q, p) is the goal functional, Q̇ is the full derivative of Q(q, p) along
the solutions of (3.4.24) and ψ(z) is a vector-function forming an acute angle
with z, i.e., ψ(z)Tz > 0 for z 	= 0. Take the goal functional as follows

Q(q, p) =
1
2
(G(q, p) −G∗)T R (G(q, p) −G∗), (3.4.27)

where G(q, p) = (G1(q, p), . . . , Gk(q, p))T, G∗ = (G∗
1, . . . , G

∗
k)T and R is

symmetric positive definite constant matrix. Then the corresponding speed-
gradient control algorithm (3.4.25) has the following form

u = −γ[H̄,Q] = −γ[H̄,G](q, p)R(G(q, p) −G∗), (3.4.28)

where H̄ stands for the column vector with components Hj .
The general algorithm (3.4.26) is as follows

u = −ψ([H̄,Q]). (3.4.29)
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Introduce the set

S(q, p) = span{ads
H0

[H̄,G], s = 0, 1, . . . }.

where for every H,G ∈ C∞ we define inductively ad0
H G = G, ad1

H G =
[H,G], ads+1

H G = [H, ads
H G].

Theorem 3.2. [158, 164]. Consider the controlled Hamiltonian system (3.4.24)
defined on a smooth 2n-dimensional manifold M2n with Hamiltonians H0,
Hj bounded together with their first and second partial derivatives in the set
Ω0 = {(p, q) : Q(p, q) < ε} for some ε > 0. Let Gi, i = 1, . . . , k be C∞-smooth
conserved quantities of the unforced system (3.4.24). Assume that there exists
δ > 0 such that each connected component of the set

Dδ = Ω0 ∩ {(p, q) : detATA ≤ δ}

is bounded, where A = [H̄, F ] and

dimS(q, p) ≥ k ∀(q, p) ∈ Ω0, (3.4.30)

Then the control goal (3.4.23) is achieved for any trajectory of the system
(3.4.24), (3.4.29) with the initial conditions from the set Ω0.

Remark 3.3. The condition (3.4.30) was introduced by A. Shiriaev [158, 164].
It is of utmost importance for the achievement of the goal set. In case when
the goal set is a single point Shiriaev’s condition (3.4.30) implies zero-state
detectability3 which, in turn ensures stabilization of the origin [96]. In general
case the condition (3.4.30) can be thought of as a set detectability condition
or condition of controllability with respect to the vector output G. �
Remark 3.4. If the condition (3.4.30) holds everywhere in Ω0 except some
set M0 of isolated points (p∗, q∗) then (p∗, q∗) ∈ M0 is an equilibrium of the
unforced system. It follows from the Center Manifold Theorem [189, 210] that,
if the unforced system has only isolated equilibria (p∗, q∗) in Ω0 and each of
them is hyperbolically unstable (in sense that the corresponding Jacobi matrix
has at least one eigenvalue with the positive real part) then the Lebesgue
measure of the initial conditions for which the control goal is not achieved is
equal to zero. �

In fact, Theorem 3.2 states that, if we have avoided convergence to the
stable equilibrium, then the control goal will be achieved for almost all initial
conditions under the controllability-like condition (3.4.30).

When the goal functions Q are radially unbounded, the explicit conditions
ensuring the goal (3.4.23) can be given.
Corollary 3.2. Let Q be a radially unbounded function, i.e., the set {(p, q)
: Q(p, q) ≤ c} is compact for all c ∈ R

1. Let dimS(p, q) ≥ k for all (p, q) ∈ Ω0,

3 The system ẋ = F (x), y = h(x) is called zero-state detectable if the relation
y(t) → 0 when t → ∞ implies x(t) → 0 when t → ∞.
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where Ω0 = {(p, q) : Q(p, q) ≤ Q0}. Then the goal (3.4.23) is achieved in the
system (3.4.24), (3.4.28) for all initial conditions (p(0), q(0)) ∈ Ω0.

Remark 3.5. The simple condition eliminating convergence to a stable equi-
librium is just the absence of stable equilibria in the connected component
of the set {(q, p) : Q(q, p) ≤ Q(q(0), p(0))}. To satisfy it the proper choice
of the goal function Q(q, p), i.e., the proper choice of the values G∗

i and the
weighting matrix R, may help. �
Remark 3.6. In case when k = n and each pair of the functions Gi are in
involution, i.e.,

[Gi, Gj ] = 0, i, j = 1, . . . , k, (3.4.31)

it can be proved that each solution of the closed loop system tends to some
solution of the unforced system which is either a quasiperiodic one, or an
equilibrium point [37]. Hence, the behavior of the closed loop control system
(3.4.24), (3.4.29) cannot be chaotic. �

3.5 Control of generalized Hamiltonian systems

The proposed approach applies also to the so-called generalized Hamiltonian
systems [390] which can be described in the canonical local coordinates as
follows 


q̇ = ∇pH0(q, p, s) + gq(q, p, s)u,
ṗ = −∇qH0(q, p, s) + gp(q, p, s)u,
ṡ = gs(q, p, s)u,

(3.5.32)

where q(t) ∈ R
n, p(t) ∈ R

n, s(t) ∈ R
l are the state variables and H0, gq, gp, gs

are some smooth functions.
Obviously, the function H0 in (3.5.32) is an invariant of the unforced sys-

tem 


q̇ = ∇pH0(q, p, s),
ṗ = −∇qH0(q, p, s),
s = const.

(3.5.33)

Suppose that some set of the invariants H1, . . . , Hm of the unforced system is
given. Then we may pose the problem of achieving the goal

lim
t→∞

Hi(q(t), p(t), s(t) = Hi∗, i = 1, . . . , k (3.5.34)

and design the speed-gradient algorithm (3.4.26) as follows. Choose the partial
goal functional

Qi = (Hi −Hi∗)2/2.

Then calculate its derivative along (3.5.32)
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Q̇i = (Hi −Hi∗)
[
∂Hi

∂p
ṗ +

∂Hi

∂q
q̇ +

∂Hi

∂s
ṡ

]

and the speed-gradient

∇uQ̇i = (Hi −Hi∗)
[
∂Hi

∂p
gp +

∂Hi

∂q
gq +

∂Hi

∂s
gs

]T

.

Therefore the algorithm (3.4.25) reads

u = −γ

m∑
i=1

∇HT
i g(Hi −Hi∗), (3.5.35)

where g = col(gq, gp, gs). The conditions which guarantee achievement of the
goal (3.5.34) look similar to those of Theorem 3.2.

A special case of (3.5.32) is a mechanical system with kinematic con-
straints. Consider the Lagrange–Euler system with the Hamiltonian

H =
1
2
q̇TM(q)q̇ + Π(q), (3.5.36)

where M(q) is the positive definite matrix of kinetic energy, Π(q) is potential
energy. Suppose there are k kinematic constraints on the generalized velocities:
A(q)Tq̇ = 0, where the k×n matrix A(q) has rank k. Applying the elimination
procedure for k-dependent generalized coordinates (see [390]) we arrive at a
generalized Hamiltonian description in the space of reduced dimension 2n−k.
The control algorithm ensuring the goal (3.5.34) can be derived similarly to
(3.5.35).

The results presented in this section establish the possibilities as well as
some of the limitations of SG algorithms for organizing oscillatory behavior of
nonlinear Hamiltonian systems. The proposed algorithms ensure the control
goal for arbitrary G∗

i , and therefore for arbitrary energy levels of the system.
Moreover, the goal can be achieved with arbitrary small γ > 0, i.e., for an ar-
bitrary low control level (swinging property). The results have been extended
to the generalized Hamiltonian systems and systems with constraints.

It is interesting to compare the above results with the KAM-theory
[37] which in essence analyzes the behavior of a system with the uncon-
trolled perturbed Hamiltonian. One of the core results of the KAM-theory
can be interpreted as follows: the perturbed system with the Hamiltonian
Hε(q, p) = H0(q, p) + εHd(q, p) generically becomes chaotic as ε grows. Our
results show that the controlled perturbed system with the Hamiltonian
H(q, p) = H0(q, p) +

∑m
j=1 Hj(q, p)uj and SG feedback with k = m = n

will never create chaos since the trajectories of the closed loop system for
arbitrary gain tend to quasiperiodic motions.
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Note that if m < n, i.e., the system is “underactuated,” then the SG
algorithm may produce chaos even for the case of energy control problem
for double pendulum (n = 2,m = 1) [240]. Moreover, as shown in [240] by
numerical computer experiments the change of the goal energy value H∗ leads
to the change of the upper Lyapunov exponent of the closed system in a wide
range.
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Control of Dissipative Systems

For control of energy in the case of system with dissipation the limits of energy
transformation by means of control are established. To this end the notion of
excitability index is introduced and analyzed. The resonance-like behavior
of systems under feedback excitation (phenomenon of feedback resonance) is
studied.

4.1 Excitability analysis of dissipative systems

Let us study energy control problems for systems with dissipation. Departing
from the Hamiltonian description consider a system with dissipation modeled
as follows:

q̇i =
∂H(q, p, u)

∂pi
, ṗi = −∂H(q, p, u)

∂qi
−Ri(q, p), i = 1, . . . , n, (4.1.1)

where q = col(q1, . . . , qn), p = col(p1, . . . , pn) are vectors of generalized
coordinates and generalized momenta forming the state vector of the sys-
tem x = col(q, p); H = H(q, p, u) is the Hamiltonian of the controlled sys-
tem; u(t) ∈ R

m is input (vector of external generalized forces); R(q, p) =
col(R1(q, p), . . . , Rn(q, p)) is the dissipation function satisfying the inequality

R(q, p)
T ∂H0(q, p)

∂p
≥ 0, (4.1.2)

where H0(q, p) = H(q, p, 0) is the energy of the free system. The fulfillment
of inequality (4.1.2) means dissipation of energy along the trajectories of the
free system: Ḣ0 ≤ 0.

In the case when the Hamiltonian is affine in control: H(q, p, u) =
H0(q, p) + H1(q, p)u the dissipation inequality is more explicit:

Ḣ0 = [H0,H1]u−R(q, p)
T ∂H0(q, p)

∂p
(4.1.3)
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Apparently, dissipation complicates the control of the system energy, es-
pecially energy pumping and makes swingability of the system infeasible. It is
of interest to evaluate the limits of possible energy change for given levels of
control and dissipation. Such a limit would provide a law of energy transfor-
mation under control action. The case of a small dissipation (weakly damped
systems) is of special interest since in this case the system may exhibit oscilla-
tion and resonance phenomena. In order to evaluate limits of energy control,
we introduce the measure of the system’s ability to be excited by a bounded
control: the excitability index. Then it will be shown how excitability index
can be used for creation of resonance modes in nonlinear systems.

4.1.1 Excitability index

The measure of the system excitability depends on the choice of its input and
output. In our case we study excitability with respect to the energy output of
the system and examine the asymptotic (limit) value of the energy achievable
in the system excited with a control of the given level γ. To realize maximum
possible excitation, u(t) should depend on the state of the system x(t) =
(q(t), p(t)) or on the current measurements y(t), which means introducing a
state feedback u(t) = U (x(t)) or output feedback u(t) = U (y(t)) . Now the
problem is: how to find the feedback law in order to achieve the maximum
limit amplitude of output? In [142] this problem was formulated as that of
optimal control as follows. Find

χ(γ) = lim sup
|u(s)|≤γ,
0≤s≤t,
x(0)=0,

t≥0

H0(x), (4.1.4)

in the case when the limit in (4.1.4) exists, where H0(x) = H0(q, p) is the
energy of unforced system. In order to ensure χ(γ) to be well defined, it
is assumed that the state of the system (4.1.7) is bounded for bounded in-
puts and x = 0 is an equilibrium of the unforced system (∂H0/∂p(0) = 0,
∂H0/∂q(0) = 0,H0(0) = 0). It is also assumed that energy function H0(x) is
nonnegative.

It is well known in control theory that the signal providing a solution to an
optimal control problem should depend not only on time but also on system
state, i.e., input signal should have a feedback form. If the system (4.1.7) is
linear, then due to superposition property the value of the problem (4.1.4)
depends quadratically on γ. Since the energy is proportional to the squared
amplitude of the output oscillations for natural outputs q(t), p(t), it is also
proportional to γ2. Therefore, it seems natural to introduce the normalized
excitability index (EI) for the system (4.1.7) as the following quantity:
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E(γ) =
1
γ

√
χ(γ), (4.1.5)

where χ(γ) is the optimum value of the problem (4.1.4).
It is clear that for linear asymptotically stable systems E(γ) = const.

For nonlinear systems, E(γ) is a function of γ that characterizes excitability
properties of the nonlinear system. It was introduced in [142] for χ(γ) as in
(4.1.4), i.e., for the energy output of the system. However, it can be defined
in more general cases if H0(x) in (4.1.4) is replaced by any other output
function of the system. For systems with several inputs and several outputs
the excitability indices Eij(γ) are introduced in a similar way for every pair
of input ui and output yj . The concept of EI is related to the concept of
input–output gain, popular in the modern control theory. Input–output gain
is defined as the norm of the operator transforming input function into output
function for a dynamical system [227, 414]. If the input–output gain exists,
it provides an upper bound for EI. Conversely, if EI is finite, it estimates the
minimal value of input–output gain. However, EI cannot be reduced to the
input–output gain, since the gain provides the maximum achievable value for
upper bound of output, while EI evaluates maximum achievable value for the
asymptotic lower bound.

The solution to the problem (4.1.4) for nonlinear systems is quite compli-
cated in most cases. However, we can use approximately a locally optimal or
speed-gradient solution

u(x) = γ sign [H0,H1], (4.1.6)

where g(x) = ∂F (x,u)
∂u

∣∣∣
u=0

, obtained by maximizing the principal part of Ḣ0 –

the instant growth rate of H0. It follows from the results of [106] that for small
γ the value of |y(t)| achievable with input (4.1.6) for sufficiently large t ≥ 0
differs from the optimal value χ(γ) by the amount of order γ2. An important
consequence is that excitability index can be estimated directly by applying
input (4.1.6) to the system. For real world systems it can be done experimen-
tally. Otherwise, if a system model is available, computer simulations can be
used.

4.1.2 Properties of excitability index

Since the excitability index of a system characterizes its sensitivity to a feed-
back excitation, it is important to relate excitability to inherent dynamical
properties of a system. Such bounds for a more general class of strictly passive
systems were established in [147]. We present here a slightly modified result.

Consider a system described by state–space equations

ẋ = F (x, u), y = h(x) (4.1.7)
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Fig. 4.1.1. Energy dynamics of the damped pendulum Jϕ̈ + �ϕ̇ + mgl sin ϕ = u
under control u = γ sign ϕ̇.

where x ∈ Rn is state vector, u, y are scalar input and output, respectively.
Recall that the system (4.1.7) is called strictly passive with dissipation rate
ρ(x) ≥ 0 if there exists continuous nonnegative function V (x) ≥ 0 (storage
function) such that for all t ≥ 0 and any solution x(t) of the system (4.1.7)
the following identity holds

V (x(t)) = V (x(0)) +

t∫
0

(y(s)
T
u(s) − �(x(s)))ds. (4.1.8)

The storage function V (x) is an analog of energy for the systems of general
form (4.1.7), i.e., identity (4.1.8) can be interpreted as the generalized energy
balance equation. Concepts of passivity and dissipativity are widely used in
modern nonlinear control theory [324–326, 390, 448].

Computational experiments show that the limit for t → ∞ may not exist
even for simple systems, see Fig. 4.1.1, where the process of evolution of
the damped pendulum under excitation u = γ sign ϕ̇ is shown. Therefore,
one needs to consider upper and lower limits simultaneously. Introduce the
following definition.

Definition 4.1. Let the set of admissible control consist of bounded functions
u(t), 0 ≤ t < ∞ such that the corresponding trajectories x(t) are bounded.
Define upper and lower excitability indices χ+

V (γ), χ−
V (γ), 0 ≤ γ < ∞ of the

system (4.1.7) with respect to the output V (x) as follows:

χ+
V (γ) = lim

t→∞
sup

|u(·)|≤γ
x(0)=0

V (x(t)), (4.1.9)

χ−
V (γ) = lim

t→∞
sup

|u(·)|≤γ
x(0)=0

V (x(t)). (4.1.10)

�
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The normalized upper and lower excitability indices E+
V (γ), E−

V (γ) are
introduced as follows

E±(γ) =
1
γ

√
χ±(γ), (4.1.11)

where
χ+(γ) = lim

t→∞
sup

|u(·)|≤γ
x(0)=0

H(q(t), q̇(t)). (4.1.12)

To define the excitability indices χ+
y (γ), χ−

y (γ) with respect to any output
y = h(x) the function V (x) in (4.1.9), (4.1.10) should be replaced by h(x). In
the case when the input is vector, u = col{u1, . . . , um} the value of input is also
specified as the vector of maximum values of components γ = {γ1, . . . , γm},
where γi = supt|ui(t)| and excitability indices are defined as multi-indices. In
a more general case of the system with m inputs and l outputs the excitability
indices χ+

y (γ), χ−
y (γ) are l×m-matrix functions, depending on m arguments.

Their (i, j) elements χ+
y,i,j(γ), χ−

y,i,j(γ) are excitability indices “from the input
ui to the input yj .” Note that technical assumption of boundedness of x(t)
is not necessary and can be weakened. The main result of this section is the
following statement.

Theorem 4.1. Let the system (4.1.7) be strictly passive with the storage func-
tion V (x) and dissipation rate �(x) satisfying inequalities

α0|y|2 ≤ V (x) ≤ α1|y|2 + d, (4.1.13)

�0|y|2 ≤ �(x) ≤ �1|y|2 (4.1.14)

for some positive α0, α1, �0, �1, d. Let the set

Ω− =

{
x : h(x) = 0, V (x) < α0

(
γ

�1

)2
}

not contain whole trajectories of the free system ẋ = F (x, 0).
Then excitability indices χ+

V (γ), χ−
V (γ) with respect to V (x) satisfy in-

equalities

α0

(
γ

�1

)2

≤ χ−
V (γ) ≤ χ+

V (γ) ≤ mα1

(
γ

�0

)2

+ d, (4.1.15)

In addition, the lower bound is realized for the speed-gradient control

u(t) = γ sign y(t). (4.1.16)

We see that the action (4.1.6) creates a sort of resonance mode in a nonlinear
system: for weakly damped systems even a small action having form (4.1.6)
leads to large oscillations of the output and can insert a substantial amount
of energy into the system.
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4.1.3 Case of Euler–Lagrange systems

The above bounds for excitability indices are expressed in terms of the ratio
“(excitation amplitude)/(dissipation).” It is possible to make them more ex-
plicit for a class of physical systems described by Euler–Lagrange equations
with dissipative forces, if the output is specified as the energy of the system.

Consider an Euler–Lagrange system with dissipation

d

dt
(A(q)q̇) + R(q̇) + ∇Π(q) = u, (4.1.17)

where q ∈ R
m is vector of generalized coordinates, u = u(t) ∈ R

m is vector of
controlling forces (torques), A(q) is matrix of kinetic energy, Π(q) is potential
energy, R(q̇) is vector of dissipative forces. Let H(q, q̇) be total energy of the
system:

H(q, q̇) =
1
2
q̇TA(q)q̇ + Π(q). (4.1.18)

Normalized upper and lower excitability indices E+(γ), E−(γ) are introduced
as follows

E±(γ) =
1
γ

√
χ±(γ), (4.1.19)

where
χ+(γ) = lim

t→∞
sup

|u(·)|≤γ
x(0)=0

H(q(t), q̇(t)), (4.1.20)

χ−(γ) = lim
t→∞

sup
|u(·)|≤γ
x(0)=0

H(q(t), q̇(t)), (4.1.21)

Theorem 4.2. Let
0 < α− ≤ λi(A(q)) ≤ α+,

�−|q̇|2 ≤ R(q̇)T q ≤ �+|q̇|2,
0 ≤ Π(q) ≤ d.

Then

α−

2
(
γ

�+
)2 ≤ χ−(γ) ≤ χ+(γ) ≤ mα+(

γ

�−
)2 + d. (4.1.22)

Corollary 4.1. If R(q̇) = �q̇ and � → 0, then

E±(γ) ∼ C±
�

. (4.1.23)

Remark 4.1. Locally optimal control is

u = γsign(q̇). (4.1.24)
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It will be suboptimal for small γ > 0. Action (4.1.24) creates a resonance
regime of the system (4.1.17) because the order of the estimate (4.1.23) co-
incides with the order of magnitude frequency response for linear systems.
Relations (4.1.22) or (4.1.23) can be considered as transformation of energy
laws for dissipative Euler–Lagrange systems which can be loosely formulated
as follows:

The level of energy achievable by means of control of the power γ for
controllable Hamiltonian or Lagrangian system with small dissipation
of the degree ρ has the order (γ/ρ)2

4.1.4 Example: Excitation of the dumped pendulum

For systems with one degree of freedom the previous results simplify.
Again consider the example of the Chapter 3 taking into account the linear

viscous friction with friction coefficient �. It follows from Theorem 4.2 that

0.5
(
γ

�

)2

≤ H0 ≤
(
γ

�

)2

+ 2ω2
0 , (4.1.25)

where H̄0 is the limit value of achievable energy.
The control law realizing the estimate (4.1.25) takes the form

u = γ sign(ϕ̇). (4.1.26)

More accurate estimates can be obtained under additional assumptions.
For example, assume that the steady oscillation mode in the closed-loop sys-
tem is close to harmonic one (such an assumption holds for small γ). In the
steady mode the energy lost due to dissipation during the period of oscilla-
tion is equal to the energy supplied by control. Evaluation of the energies as
integrals over the period yields the following estimate of the balanced energy

H ≈ 8
π2

(
γ

�

)2

, (4.1.27)

The estimate (4.1.27) agrees with (4.1.25), since 0.5 < 8/π2 < 1. Note that
in the above derivation no assumption concerning the shape of the potential
is needed. Therefore approximate bound (4.1.27) can be used for oscillators
with different shape of nonlinearity.

The obtained estimates allow to evaluate the excitability degree and reso-
nance properties of nonlinear systems and to obtain an additional information
about their dynamical characteristics.

4.1.5 Example: Excitation of the Duffing system

Note that for the derivation of the estimates (4.1.15) the boundedness of
potential (assumption (4.1.13) ) is essential. However, a careful choice of the
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storage function in Theorem 4.1 sometimes may help. For example, consider
the Duffing system

ϕ̈ + �ϕ̇− aϕ + bϕ3 = u(t), (4.1.28)

where a > 0, b > 0, � > 0. The Duffing system describes dynamics of buckled
beams, plates, magnetic devices, and many other physical processes. It has
become one of paradigmatic models in the area of nonlinear dynamics. The
model (4.1.28) belongs to the class of Euler–Lagrange systems with dissipation
and can be represented as the system of two differential equations

ϕ̇ = y, ẏ = −�y + Π ′(ϕ) + u(t), (4.1.29)

where potential Π(ϕ) has the form

Π(ϕ) =
b

4
ϕ4 − a

2
ϕ2. (4.1.30)

The potential (4.1.30) has two wells with minima in the points ϕ1,2 =
±
√

a/b and the saddle point ϕ = 0. The energy function of the free Duffing
system is

1
2
ϕ̇2 + Π(ϕ) (4.1.31)

and for its excitation the speed-gradient algorithm

u(t) = γsignϕ̇ (4.1.32)

can be used. Though the potential (4.1.30) is unbounded and Theorem 4.1
does not apply, the left inequality in (4.1.22) is still fulfilled and the following
lower bound for normalized excitability index of Duffing system holds:

E−(γ) ≥ 1
�
√

2
.

To obtain an upper bound the modified storage function

V (ϕ, ϕ̇) = ϕ̇2/2 + Π(ϕ) + εϕϕ̇ (4.1.33)

for small ε can be used. With the function (4.1.33) it is possible to prove
boundedness of the system solution under bounded control. Consider a more
general class of oscillators (4.1.29) with potentials satisfying inequalities

Π(ϕ) ≥ c0|ϕ|2 − d0, ϕΠ ′(ϕ) ≥ c1Π(ϕ) − d1. (4.1.34)

Obviously, the Duffing potential (4.1.30) satisfies (4.1.34) with c0 = a/2, d0 =
2a2/b, c1 = 4, d1 = a2/b. It can be shown that for oscillators (4.1.29) with po-
tentials satisfying inequalities (4.1.34) the upper bound for excitability index
is as follows:

χ+(γ) ≤ R1

(
γ

�

)2

+ R0, (4.1.35)
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where R1 = max{2c1, c21}, R0 > 0. Particularly, for Duffing system R1 = 16
and the bound for normalized excitability index for small ρ is

E+(γ) ≤ 4
�
.

More tight estimate for excitability index can be obtained using harmonic
balance of energy. Since in the derivation of (4.1.27) no assumption concerning
the shape of the potential is used, the following approximation holds

E±(γ) ≈ 2
√

2
π�

≈ 0.9/�.

4.2 Feedback resonance

The concept of resonance has numerous applications in physics and mechanics.
In essence it is that small resonant force applied to a system leads to significant
changes in system behavior. First clear description of resonance phenomenon
was given by Galileo Galilei in “Discorsi a Dimostrazioni Matemaci,” pub-
lished in 1638 (see [405]):

...Pendulum at rest although very heavy, can be put into motion, and
very significant if we stop our breath when it is coming back and blow
again at the instant, corresponding to its swing.

The resonance phenomenon is well understood in its application to linear
systems. However, if the dynamics of the system is nonlinear, the resonance
is much more complicated because interaction of different harmonic signals in
nonlinear system may create complex and even chaotic behavior [77, 253, 385].
The reason is, that the natural frequency of a nonlinear system depends on
the amplitude of oscillations.

In [140, 142] the idea to create resonance in a nonlinear oscillator by chang-
ing the frequency of external action as a function of oscillation amplitude was
pursued. Consider the controlled 1-DOF oscillator modeled after appropriate
rescaling by the differential equation

ϕ̈ + Π(ϕ)′ = u, (4.2.36)

where ϕ is the phase coordinate, Π(ϕ) is potential energy function, u is con-
trolling variable. The state vector of the system (4.2.36) is x = (ϕ, ϕ̇) and
its important characteristics is the total energy H(ϕ, ϕ̇) = 1

2 ϕ̇
2 + Π(ϕ). The

state vector of the uncontrolled (free) system moves along the energy sur-
face (curve) H(ϕ, ϕ̇) = H0. The behavior of the free system depends on the
shape of Π(ϕ) and the value of H0. For example, for simple pendulum we
have Π(ϕ) = ω2

0(1 − cosϕ) ≥ 0. Obviously, choosing H0 : 0 < H0 < 2ω2
0

we obtain oscillatory motion with amplitude ϕ0 = arccos(1 − H0/ω
2
0). For
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H0 = 2ω2
0 the motion along the separatrix including upper equilibrium is ob-

served, while for H0 > 2ω2
0 the energy curves become infinite and the system

exhibits permanent rotation with average angular velocity < ϕ̇ >≈
√

2H0.
Let us ask, whether it possible to significantly change the energy (i.e.,

behavior) of the system by means of arbitrarily small controlling action.
The answer is well known when the potential is quadratic, Π(ϕ) = 1

2ω
2
0ϕ

2,
i.e., system dynamics are linear:

ϕ̈ + ω2
0ϕ = u. (4.2.37)

In this case we may use harmonic external action

u(t) = u sinωt (4.2.38)

and for ω = ω0 watch the unbounded resonance solution ϕ(t) = −ut/
2ω0 cosω0t.

However for nonlinear oscillators the resonant motions are more compli-
cated with interchange of energy absorption and emission. It is well known
that even for simple pendulum the harmonic excitation can create chaotic mo-
tions. The reason is, that the natural frequency of a nonlinear system depends
on the amplitude of oscillations.

Therefore the question is: how to create a fully resonance mode in a nonlin-
ear oscillator? One possible answer is: the frequency of external action should
be changing as a function of oscillation amplitude. In order to implement such
a solution one may choose u(t) as a function of the current measurements
ϕ(t), ϕ̇(t) which exactly means introducing a feedback

u(t) = U (ϕ(t), ϕ̇(t)) . (4.2.39)

The problem can be reformulated as follows: find the feedback law (4.2.39)
allowing to achieve the given energy surface H(ϕ, ϕ̇) = H∗. Such a problem
falls into the field of control theory. To solve it we suggest to use speed-gradient
method, see Section 2.4.2. For the system (4.2.36) the speed-gradient method
with the choice of the goal function Q(x) = [H(x) − H∗]2 produces simple
feedback laws:

u = −γ (H −H∗) ϕ̇, (4.2.40)

u = −γ sign (H −H∗) · sign ϕ̇, (4.2.41)

where γ > 0, sign(H) = 1, for H > 0 , sign(H) = −1 for H < 0 and sign(0) =
0. It follows from Theorem 3.1 that the goal H(x(t)) → H∗ in the system
(4.2.36), (4.2.40) (or (4.2.36), (4.2.41)) will be achieved from almost all initial
conditions provided that the potential Π(ϕ) is smooth and its stationary
points are isolated. It is worth noting that since the motion of the controlled
system belongs to the finite energy layer between H0 and H∗, the right-hand
side of (4.2.40) is bounded. Therefore, choosing sufficiently small gain γ we
can achieve the given energy surface H = H∗ by means of arbitrarily small
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control. Of course this seemingly surprising result holds only for conservative
(lossless) systems.

Let now losses be taken into account, i.e., system is modeled as

ϕ̈ + �ϕ̇ + Π(ϕ)′ = u, (4.2.42)

where � > 0 is the damping coefficient. Then it is not possible any more to
reach an arbitrary level of energy. The lower bound H of the energy value
reachable by a feedback of amplitude u can be calculated using Theorem 4.1
as

H =
1
2

(
u

�

)2

. (4.2.43)

In order to achieve the energy (4.2.43) the parameters of feedback should
be chosen properly. Namely, parameter values of the algorithm (4.2.40) provid-
ing energy (4.2.43) under restriction |u(t)| ≤ u are as follows: H∗ = 3H, γ =
�/(2H). For the algorithm (4.2.41) with γ = u any value H∗ exceeding H is
appropriate as follows from Theorem 4.1.

Note that H∗ does not have the meaning of the desired energy level in
presence of losses. It leaves some freedom of parameter choice. Exploiting this
observation we may take H∗ sufficiently large in the algorithm (4.2.41) and
arrive to its simplified form

u = −γ signϕ̇, (4.2.44)

that looks like introducing negative Coulomb friction into the system.
It is worth to compare the bound (4.2.43) with the energy level achievable

for linear oscillator
ϕ̈ + �ϕ̇ + ω2

0ϕ = u(t), (4.2.45)

where � > 0 is the damping coefficient, by harmonic (nonfeedback) action.
The response of the model to the harmonics u(t) = u sinωt is also harmonics
ϕ(t) = A sin(ωt + ϕ0) with the amplitude

A =
u√

(ω2 − ω2
0)2 + �2ω2

. (4.2.46)

Let � be small, �2 < 2ω2
0 . Then A reaches its maximum for resonant frequency:

ω2 = ω2
0 − �2/4, and the system energy averaged over the period is

H =
1
2

(
u

�

)2

+ O(�2), (4.2.47)

A comparison of (4.2.43) and (4.2.47) shows that for a nonlinear oscillator
affected by feedback, the change of energy can reach the limit achievable for
linear oscillator by harmonic (nonfeedback) action, at least in the case of small
damping. Therefore, feedback allows a nonlinear oscillator to achieve as deep
a resonance as can be achieved by harmonic excitation for the linear case.
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Since such a mode is not achievable without feedback for nonlinear sys-
tems, the phenomenon can be called feedback resonance (f-resonance) [140]. It
should be noted that the understanding of resonance in physics has remained
practically the same since the time of Galileo. In most works on the subject,
the input action is assumed to be harmonic (periodic, at the most). In the
classical book by Andronov et al. [31], whose first edition was published in
1937, the authors introduce the concept of autoresonance as “resonance gen-
erated by a force caused by the motion of the system,” i.e., the possibility of
actions in a feedback form was pointed to. However, in [31] the authors only
considered the case of a linear system of the second order with a relay in the
feedback loop. For that case the existence of limit cycles and estimates of their
size were established. The system was assumed to be closed, i.e., what was
really studied was the internal resonance in the system. It probably explains
the origin of the term “autoresonance.”

Autoresonance modes were also analyzed in [47, 48]. Particularly, it was
proposed in [47] to use SG-algorithms for the tuning of a nonlinear system
parameters in order to keep its resonance mode. In a number of papers [35,
130, 274, 294] the term “autoresonance” was used in the case of the external
excitation close to a periodic function, with slowly (“adiabatically”) varying
frequency. On the contrary, the feedback resonance phenomenon occurs under
external excitation that changes its spectrum in the course of the process.

It is interesting that Galileo’s description of resonance in fact admits a
possibility of feedback. Even more, it suggests how feedback can be used to
force the pendulum into the resonant mode: one simply needs to blow “stop
our breath when it is coming back and blow again at the instant, corresponding
to its swing.”

4.3 Excitability index of pendulum systems

The excitability index allows to measure the stabilizing properties of a system
and its closeness to the stability margin. In that sense the excitability index
may be used as a substitute of magnitude frequency response in absolute
stability criteria for nonlinear systems [142, 143].

Excitability index can be measured in the course of simulation or experi-
mental study of the system, like standard frequency-domain response is used
by many control engineers. However, there is a significant difference. In order
to evaluate frequency-domain response the input of the system is affected with
the harmonic excitation signal (4.2.38) having constant magnitude and vari-
able frequency. In order to evaluate excitability index the magnitude (level)
of the input signal is variable, while the signal itself is designed as a feedback
and does not have any specific frequency.

Exact evaluation of the indices E±(γ) is complicated because of involved
optimal synthesis required. However, to obtain their lower bounds, the output
of the system affected with the speed-gradient signal (4.1.16) can be measured.
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Fig. 4.3.2. Excitability index of pendulum (4.3.48) for � = 0.1 c−1, ω2
0 = 10 c−2

(simulation).

Such a signal is locally optimal and, similarly to [106] it can be shown that
for small γ the action (4.1.16) provides an approximate value for E(γ) with
accuracy of the order γ.

Below are a few examples of the excitability index graphs for pendulum
systems. First, evaluate the excitability index of simple pendulum with the
model

ϕ̈(t) + �ϕ̇(t) + ω2
0 sinϕ(t) = u(t) (4.3.48)

with respect to energy output for locally optimal speed-gradient action

u = γ sign ϕ̇. (4.3.49)

The results for parameter values ω2
0 = 10.0 s−2, � = 0.1 s−1, and initial

conditions ϕ(0) = 0, ϕ̇(0) = 10−10 s−1 are shown in Fig. 4.3.2. It is interesting
to note that the graph of Fig. 4.3.2 agrees reasonably with the results of the
Example 4.1, where E(γ) → 20

π

√
2J1/2 ≈ 9.0 J1/2 when γ → 0. In Fig. 4.3.3

the experimental results of excitability index measurements are presented. The
experiments were carried out on the mechatronic pendulum system developed
in the Institute for Problems of Mechanical Engineering in St. Petersburg
[111]. It is seen that simulation and experimental results qualitatively coincide.
The peak of the graph E(γ) corresponds to the level of input signal swinging
the pendulum to the upright position. It means that observing the curve E(γ)
one can estimate critical levels of the system potential energy. A typical plot
of the system output ϕ̇(t) is shown in Fig. 4.3.4.

The excitability plots for complex systems may look very intricate. It con-
tains information about delicate dynamical properties of a system but it may
not be easy to extract such an information. Consider, for example, the system
of two-coupled pendulums

ϕ̈1 + �1ϕ̇1 + ω2
1 sinϕ1 + k(ϕ1 − ϕ2) = u(t),

ϕ̈2 + �2ϕ̇2 + ω2
2 sinϕ2 + k(ϕ2 − ϕ1) = 0, (4.3.50)
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Fig. 4.3.3. Excitability index of pendulum (experiment).

Fig. 4.3.4. Typical trajectory of the controlled pendulum (4.3.48), (4.3.49) for
γ =1.25.

where k > 0 is coupling coefficient. Let the system output be its energy

H =
1
2
(
ϕ̇2

1 + ϕ̇2
2

)
+ ω2

1 (1 − cosϕ1) + ω2
2 (1 − cosϕ2) +

k

2
(
ϕ2

1 + ϕ2
2

)
,

and let the system be excited with the action similar to (4.3.49):

u = γ sign ϕ̇1. (4.3.51)

Let us start from the case k = 0 and ϕ2(0) = ϕ̇2(0) = 0. Then the excitabil-
ity plot E(γ) coincides with the excitability plot of a single pendulum, see
Fig. 4.3.2. As the coupling k grows, the dynamics of the nonlinear system
(4.3.50) becomes more complex which is seen from the graph of E(γ). The ex-
citability plots for k = 0.25, 0.5, 1.0, 5.0 are shown in Figs. 4.3.5, 4.3.7, 4.3.9,
4.3.11. In Fig. 4.3.6, 4.3.8, 4.3.10, 4.3.12 the graphs of typical processes ϕ̇1(t),
ϕ̇2(t). are presented. Initial conditions for simulation and parameter values
were chosen as follows: ϕ1(0) = ϕ2(0) = 0, ϕ̇1(0) = 10−10 s−1, ϕ̇2(0) = 0 s−1,
�1 = �2 = 0.1 s−1, ω2

1 = ω2
2 = 10 s−2. Simulation time for evaluation of E(γ)

was taken 500 s. For averaging the moving average method was used with the
window of 500 samples and sampling interval 0.05 c.
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Fig. 4.3.5. Excitability index of the two-pendulum system (4.3.50) for k = 0.25.

Fig. 4.3.6. Typical trajectory of the system (4.3.50), (4.3.51) for k = 0.25, γ = 1.25.

Fig. 4.3.7. Excitability index of the two-pendulum system (4.3.50) for k = 0.5 .
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Fig. 4.3.8. Typical trajectory of the system (4.3.50), (4.3.51) for k = 0.5, γ = 1.25.

Fig. 4.3.9. Excitability index of the two-pendulum system (4.3.50) for k = 1.0.

Fig. 4.3.10. Typical trajectory of the system (4.3.50), (4.3.51) for k = 1.0, γ = 1.25.
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Fig. 4.3.11. Excitability index of the two-pendulum system (4.3.50) for k = 5.0.

Fig. 4.3.12. Typical trajectory of the system (4.3.50), (4.3.51) for k = 5.0, γ = 1.25.

It is seen from the pictures that growth of the coupling coefficient k implies
that the excitability plot E(γ) becomes more and more twisted and jagged and
the number of its extremums increases. Extremums of E(γ) correspond to the
bifurcations (qualitative change of the system trajectories), caused by changes
of the number of the pendulum swings before a rotatory motion occurs and
changes of the number of pendulum relative slippings. For γ corresponding to
the multiextremum plots E(γ) the motion of pendulums looks irregular and
even chaotic.

Excitability plots with respect to other output provide additional informa-
tion about the system dynamics. In Fig. 4.3.13 and Fig. 4.3.14 the excitability
plots of the system (4.3.48), (4.3.50) with respect to “velocity” output ϕ̇2 and
with respect to ϕ̇2

1 + ϕ̇2
2 (kinetic energy), respectively are shown. Deep holes

correspond to predominance of trajectories, “freezing” near upper (unstable)
equilibrium.
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Fig. 4.3.13. Excitability index of the pendulum (4.3.48) with respect to the output
ϕ̇2 for k = 1.0.

Fig. 4.3.14. Excitability index of the two-pendulum system (4.3.48), (4.3.49) with
respect to the output ϕ̇2

1 + ϕ̇2
2 for k = 1.0.

To conclude, the excitability index plays the same role of a measure of res-
onant properties for nonlinear systems, as the magnitude frequency response
plays for linear systems. Evaluation of its analytic bounds can provide a pre-
liminary estimate. More accurate estimates can be obtained via numerical or
physical experiments. Such an approach may be helpful for study of complex
oscillatory processes.
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Controlled Synchronization

In this chapter, general definitions of synchronization notion covering both
controlled and uncontrolled synchronization are given. Different types of syn-
chronization are exemplified and discussed. Several approaches to controlled
synchronization systems design are described: observer-based synchronization
including Pecora–Carroll scheme, passification-based adaptive synchroniza-
tion, and speed-gradient synchronization of two-pendulum systems.

5.1 Definitions of synchronization

The term synchronization in scientific colloquial use means coordination or
agreement in time of two or several processes or objects. For example, it
may be coincidence or closeness of the observable variables for two or several
systems. Synchronization may also manifest itself as correlated in time changes
of some quantitative characteristics of the systems.

In some cases the synchronous regime arises due to natural properties of
the processes themselves and their natural interaction. A well-known example
is frequency synchronization of oscillating or rotating bodies. Such a phenom-
enon is called self-synchronization. In other cases, to achieve synchronization
one needs to introduce special actions or impose special constraints. Then we
will speak about forced or controlled synchronization understood as the stage
in the time history of the system required to achieve a synchronous regime.

The synchronization phenomenon has numerous applications in vibrational
technologies [71–73], in electronics and telecommunications [266, 272], and in
other fields [350].

Since the middle of the 1980s there had been significant interest in the so-
called chaotic synchronization, when the synchronized subsystems continue
to perform complex chaotic oscillations even after the synchronous mode is
achieved [7, 81, 164, 170, 343, 350]. A broadly discussed topic is the use of
chaotic synchronization for improving security and reliability of the informa-
tion
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transmission. A number of special issues of the international journals are de-
voted to those problems [101, 102, 206–209, 287, 422].

Recently an increasing interest is observed in the controlled synchroniza-
tion where additional actions or feedbacks are used to achieve synchronization
mode. Earlier such problems were studied mainly for linear systems [197, 298].
Controlled synchronization allows to extend the class of the systems possess-
ing synchronous modes and increase their stability and robustness.

Some work is being pursued on studying the synchronization of oscilla-
tor arrays and lattices, with applications to synchronization of the biological
systems, artificial and/or natural neurons, etc. [64, 350, 364].

Due to emerging interest in synchronization from different scientific com-
munities, a paradoxical situation has arisen: some groups of researchers are
not aware of results obtained by the researchers working in other directions.
Consequently, achievements of one group may not be used by the other ones.
Moreover, understandings of the term “synchronization” may differ signifi-
cantly from one group to another one.

In order to study different problems from a unified viewpoint it seems
useful to formulate a general definition of synchronization, encompassing the
main existing definitions. Perhaps, the first definition of such kind, covering
both controlled and noncontrolled synchronization was proposed in [75] and
extended in [76, 111].

In this section a modified definition is given, following [74, 147]. A number
of examples demonstrating features of the proposed definition and its relation
to the other existing definitions are presented.

5.1.1 Evolution of the synchronization concept

First versions of the general definition for periodic processes were proposed
in [71] (coincidence or multiplicity of the average frequencies of oscillatory or
rotatory motions) and in [190] (existence of an asymptotically stable invariant
torus of the dimension n−m, where m is the degree of synchronization). In [71]
it was also pointed out that synchronization can be understood as coincidence
of some functionals depending on the systems coordinates (for example, time
when some coordinate crosses some level, or time when some coordinate takes
its extremum value).

Studies of synchronization for chaotic processes led to a number of new ver-
sions of the synchronization concept: coordinate (identical) synchronization,
[7, 170, 343], generalized synchronization [384], phase synchronization [375],
master–slave synchronization [343], and others. According to [7] synchroniza-
tion is understood as the existence of a homeomorphism g : π1(Ac) → π2(Ac),
such that g

(
π1

(
x1(t)

))
→ π2

(
x2

(
t + α(t)

))
, where A(c) is attractor of the

interconnected system, π1 and π2 are projectors to the state spaces of the
partial processes, α(t) is asymptotically constant phase shift.

The general definition of synchronization covering both controlled and
noncontrolled synchronization was proposed in [75] and extended in [76, 111].
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Some related definitions were proposed later in [82, 90]. In [219] the definition
based upon the concept of the invariant manifold of dynamical system was
studied which covers both coordinate and generalized synchronization. Below
a modified version of the definition of [75, 76, 111] is described. It allows the
reader to easily obtain different existing definitions as its special cases. The
definition consists of two levels. The first one deals with observable processes
(functions of time) irrespective of the mechanisms (systems) generating them
and/or controlling them.

5.1.2 Synchronization of processes

Consider a number of processes (functions of time), the state of each at the
time t being described by some vector x(i)(t), i = 1, 2 . . . , k where 0 ≤ t < ∞.
The processes x(i) may represent the states or observable output functions of
some systems, but in this section the mechanism generating the processes is
inessential. Assume for simplicity that all the processes belong to the same
functional space X .

Let a certain characteristic of the processes be defined as the time-
dependent family of mappings Ct : X → C, where C is the set of possible
values of Ct. The characteristic Ct will be called the synchronization index. It
is important that the index Ct is the same for all the processes. The value of
Ct may be a scalar, a vector or a matrix, as well as a function (e.g., spectrum
of the process).

Let, finally, the set of vector-functions Fi : C → R
m, i = 1, . . . , k be given.

The functions Fi are called comparison functions.
Definition 5.1. We will say that the synchronization of the processes
x(i)(t), i = 1, . . . , k with respect to the index Ct and comparison functions
Fi occurs (or the processes are synchronized with respect to the index Ct and
comparison functions Fi) if there exist real numbers τi, i = 1, . . . , k (called
time shifts or phase shifts) such that the following relations hold for all t:

F1 (Ct+τ1 [x1]) = F2 (Ct+τ2 [x2]) = . . . = Fk (Ct+τk
[xk]) . (5.1.1)

In addition, approximate synchronization (ε-synchronization) is understood
as approximate fulfillment of the relations (5.1.1), with accuracy of ε:

∥∥Fi (Ct+τi
[xi]) − Fj

(
Ct+τj

[xj ]
)∥∥ ≤ ε ∀i, j, t ≥ 0. (5.1.2)

Asymptotic synchronization is understood as fulfillment of (5.1.1) when
t → ∞:

lim
t→∞

∥∥Fi (Ct+τi
[xi]) − Fj

(
Ct+τj

[xj ]
)∥∥ = 0. (5.1.3)

In a similar way other versions of synchronization notion can be defined.
For example, asymptotic approximate synchronization is defined as asymptotic
fulfillment of the relations (5.1.1) with accuracy of ε:
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limt→∞
∥∥Fi (Ct+τi

[xi]) − Fj

(
Ct+τj

[xj ]
)∥∥ ≤ ε ∀i, j, t ≥ 0, (5.1.4)

where ε is the asymptotic accuracy threshold.
In the case when some averaging operator 〈·〉t on 0 ≤ s ≤ t is specified,

the synchronization in the average can be defined as fulfillment of relations

〈Qs〉t < ε, (5.1.5)

for all t ≥ 0, where Qt is a certain scalar function (desynchronization measure),
evaluating the deflection from the synchronous mode. Often the averaging
operator is specified as an integral operator 〈Qs〉t = 1

t

∫ t

0
Qsds, while the

desynchronization measure Qt is defined as mean square deviation from the
synchronous mode:

Qt =
k∑

i,j=1

∥∥Fi (Ct+τi
[xi]) − Fj

(
Ct+τj

[xj ]
)∥∥2

. (5.1.6)

The possibility of introducing a scalar measure of desynchronization is an
important feature of general definition. It opens a way to regular procedures of
the control synchronization algorithms design. For example, such a measure
can be used as the goal function for gradient design (for discrete time) or
speed-gradient design (for continuous time).

Remark 5.1. Sometimes it is convenient to write (5.1.1) in the form

Fi

(
Ct[x(i)(t + τi)]

)
− Fk

(
Ct[x(k)(t + τk)]

)
= 0, i = 1, 2, . . . , k − 1. (5.1.7)

The introduced definition encompasses most existing forms of the synchro-
nous behavior of the processes. Let us consider some examples.

5.1.3 Examples

Example 5.1. (Frequency (Huygens) synchronization). This most well known
kind of synchronization is defined for the processes possessing well-defined
frequencies ωi, e.g., periodic (oscillatory or rotatory) processes. Introduce the
characteristics (synchronization index) Ct as the average velocity over the in-
terval 0 ≤ s ≤ t, i.e., Ct = ωt =< ẋ >t. Since the frequency synchronization
criterion is defined by relations ωt = niω

∗, where for some integer ni (syn-
chronization multiplicities), ω∗ is the so-called synchronous frequency, it is
natural to introduce comparison functions as Fi(ωt) = ωt/ni. For the case
ni = 1, i = 1, . . . , k the simple (multiplicity 1) synchronization is obtained.

Example 5.2. (Extremal synchronization). Extremal synchronization is un-
derstood as a kind of behavior of scalar processes when the processes take
their extremum (i.e., maximum or minimum) values simultaneously or with a
certain time-shift [75, 111]. The synchronization index in this case is defined
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as the time of passing through the last extremum: Ct = t∗(t) (i = 1, 2, . . . , k),
where t∗(t) is the time when the process x(t) takes its last extremum value in
the interval 0 ≤ s ≤ t. In this case the intervals between the first extremum
times of xi(t) and x1(t) can play the role of the time-shifts τi. For vector-
valued processes extremal synchronization of any component of the vector
x(i)(t) or of any scalar function of x(i)(t) can be considered.

Synchronization of such kind is important for a number of chemical or
biological systems.

Example 5.3. (Phase synchronization). Systems of phase synchronization
(phase locking) are well known in electronics and telecommunications [266,
272]. However, conventional engineering applications deal with periodic
processes with constant or periodically changing frequencies. In the 1990s
there were growing activities in the synchronization of chaotic processes. It
led to appearance of new definitions of phase and phase synchronization suit-
able for chaotic processes [375]. It is natural to introduce the phase of a chaotic
process considering its behavior between time of crossings of a certain surface
(Poincaré section). The synchronization index can then be introduced as the
value of the phase ϕt of the process x(t) that belongs to the interval from 0
to 2π and defined as follows:

Ct[x] = ϕt = 2π
t− tn

tn+1 − tn
+ 2πn, tn ≤ t < tn+1, (5.1.8)

where tn is the time of the nth crossing of the trajectory with the Poincaré
surface [375].

For k = 2 the choice of comparison function F1(ϕt) = F2(ϕt) = ϕt,
yields the in phase synchronization. Otherwise, one may choose F1(ϕt) =
ϕt, F2(ϕt) = ϕt + π, that corresponds to the antiphase synchronization.

A slightly more general concept of synchronization may be obtained if
the synchronization index is chosen as follows: Ct = t∗(t), where t∗(t) is the
latest time not exceeding t, of crossing the Poincaré section see [75]. Such a
concept encompasses the cases that differ from phase synchronization because
no physically reasonable notion of phase can be introduced owing to significant
irregularity of the processes. For example, let the Poincaré surface be chosen
so that its equation defines zero value of time derivative of a certain scalar
function of the process state. Then the corresponding synchronization concept
is just the extremal synchronization (see above). The notion of the phase can
be extended further, see [330].

Example 5.4. (Coordinate synchronization). In the middle of the 1980s the
definition of synchronization for aperiodic processes as coincidence of the co-
ordinates of the interacting subsystems was introduced [7, 170]. This defin-
ition has become especially popular after the publishing of the paper by L.
Pecora and T. Carroll concerning master–slave synchronization of chaotic sys-
tems [343]. Obviously, the coordinate synchronization fits the above definition
with the following synchronization index Ct(xi) = xi(t), where xi(t) stands
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for the value of the state vector of the ith subsystem at the time instant t.
Comparison functions can be chosen identical: Fi(x) = x, i = 1, . . . , k. In
the case when the two processes are generated by two systems, the coordinate
synchronization means that the point (x1(t), x2(t)) in the extended state space
of two systems belongs to the diagonal set {(x1(t), x2(t)) : x1(t) = x2(t)}.
Example 5.5. (Generalized (partial) coordinate synchronization). The co-
ordinate synchronization from the previous example is often called full or
identical to underline coincidence of all phase coordinates of the systems. In
practice a more general case may take place, when only a part of all phase
coordinates or certain functions of them Gi(xi) coincide. The corresponding
definition was introduced in [384] and termed generalized synchronization.
Obviously, the generalized synchronization fits the above scheme under the
choice Ct(xi) = xi(t), and Fi(x) = Gi(x), i = 1, . . . , k. Still more gen-
eral property is called cluster synchronization. It means that there are sev-
eral groups (clusters) of coinciding variables. The variables within each group
oscillate synchronously while synchronism between different groups may be
absent [63–65, 352].

Example 5.6. (Lag synchronization). According to the Definition 5.1 time
shifts τi may be arbitrary. If the attention is focused on their value, more
specific types of synchronization may occur. For example consider coordinate
synchronization of two systems (Ct(xi) = xi(t),) and assume that the time
shifts τ1 and τ2 are known. Such a synchronization type, meaning a coincidence
of shifted in time states of two systems for all t, i.e., fulfillment of the identity
x1(t) = x2(t − τ1 + τ2) was called lag synchronization with the lag τ1 −
τ2 in [376]. Lags (delays) in the controlled systems or controller may create
different effects. For example, an approach named anticipated synchronization
[438] has attracted a lot of attention because of its potential applications
for predicting the dynamics of chaotic systems. Anticipated synchronization
describes the situation when the slave system becomes synchronized with the
future output of the master system by appropriately including some delay
times in feedback terms. It is worth noting that such a possibility is known
in the control theory since 1957 as Smith predictor [334, 413]. For periodic
lag-synchronized oscillations of two generators the point (x1(t), x2(t)) belongs
to an ellipse rather than the diagonal in the extended state space and for
multiple synchronization case draws Lissajous curves. Delayed feedback may
be an efficient algorithm for control of chaos [362] as shown in the Section
6.4.3.

5.1.4 Synchronization of systems

Further specification of the above definition is based on specifying the dynam-
ical models of the processes involved and introducing mechanisms of control.
Below we will describe this formalized definition and also introduce its “con-
trolled” version, following [75]. In order to formalize the model of the process
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any definition of a dynamical system can be employed. Following [75] we will
use the input-state-output definition which is standard in control theory [222].
Consider k dynamical systems

Si = {T,Ui,Xi, Yi, φi, hi}, i = 1, . . . , k

where T is common set of time instances, Ui,Xi, Yi are sets of inputs, states
and outputs, respectively; φi : T × Xi × Ui → Xi are transition maps, hi :
T ×Xi × Ui → Yi are output maps.

First assume that all Ui are just singletons, i.e., inputs may be dropped
from formulations.

Suppose l functionals gj : Y1×Y2×. . .×Yk×T → R
1, j = 1, . . . , l, are given.

Here Yi are the sets of all functions from T into Yi, i.e., Yi = {y : T → Yi}.
In the sequel, we take as time set T either T = R

1 = t : 0 ≤ t < ∞ (con-
tinuous time) or T = 0, 1, 2, . . . (discrete time). For any τ ∈ T the shift
operator στ : Yi → Yi is defined as follows (στy)(t) = y(t + τ) for all y ∈ Yi

and all t ∈ T . Let x(1)(t), . . . , x(k)(t) be solutions of the systems §1, . . . , §k,
x(i)(·) ∈ Xi with initial states x(1)(0), . . . , x(k)(0), respectively well defined
for all t ∈ T .
Definition 5.2. We call the processes x(1)(t), . . . , x(k)(t) synchronized with
respect to the functionals g1, . . . , gl if

gj(στ1y1(·), . . . , στk
yk(·), t) ≡ 0, j = 1, . . . , l (5.1.9)

is valid for all t ∈ T and some τ1, . . . , τk ∈ T , where yi(·) denotes the output
function of the system Si: yi(t) = h(xi(t), t), t ∈ T, i = 1, . . . , k.

We say that the processes x(1)(t), . . . , x(k)(t) are approximately synchro-
nized with respect to the functionals g1, . . . , gl, if there are an ε > 0 and
τ1, . . . , τk ∈ T such that

|gj(στ1y1(·), . . . , στk
yk(·), t)| ≤ ε, j = 1, . . . , l (5.1.10)

for all t ∈ T .
We call the processes x(1)(t), . . . , x(k)(t) asymptotically synchronized with

respect to the functionals g1, . . . , gl, if for some τ1, . . . , τk ∈ T

lim
t→∞

gj(gj(στ1y1(·), . . . , στk
yk(·), t)) = 0, j = 1, . . . , l. (5.1.11)

We call the processes x(1)(t), . . . , x(k)(t) asymptotically approximately syn-
chronized with respect to the functionals g1, . . . , gl if

limt→∞|gj(στ1y1(·), . . . , στk
yk(·), t)| ≤ ε, j = 1, . . . , l (5.1.12)

for some ε > 0 and for some τ1, . . . , τk ∈ T.
Finally, if the accuracy threshold ε and time shifts τ1, . . . , τk ∈ T are

specified in advance, we speak about synchronization with accuracy ε and
time shifts τ1, . . . , τk ∈ T.
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In many practical synchronization problems the spaces Yi are identical
and the functionals {gj} have the form:

gj(ys(·), yr(·)) = dist(Jj(ys(·)), Jj(yr(·))),

where r, s = 1, . . . , k, j = 1, . . . , l and Jj : Yi → Jj , is some mapping (syn-
chronization characteristics) which depends on the (output) trajectory yi(·)
of each of the system S1, . . . , Sk, and Jj is some metric space. In this case we
will talk about synchronization with respect to the functionals {gi} and char-
acteristics {Jj} . For example, Jj may be chosen as the jth component of the
state of the system, or as the output function evaluated at some specified time
instant. Another choice Jj =< ϕ̇ > (the average of rotational velocity (fre-
quency) of some coordinate ϕ) corresponds to the above-mentioned frequency
(Huygens) synchronization.

The specific choice of the synchronization characteristics depends on the
essence of the mathematical, physical or engineering problem. The same is
valid for the phase shifts τi and accuracy threshold ε which may be fixed in
some problems and may be arbitrary in others.

Remark 5.2. Note that instead of the set of the functionals it is always possible
to take one functional which expresses the same synchronization phenomenon.
For example, one can take the functional G as follows

G(y1(·), . . . , yk(·), t) =
l∑

j=1

g2
j (y1(·), . . . , yk(·), t). (5.1.13)

In many practical cases the sets Ui,Xi, Yi are finite-dimensional vector
spaces and the systems Si can be described by ordinary differential equations.
First consider the simplest case of disconnected systems without inputs:

Si : ẋi = Fi(xi, t), (5.1.14)

where Fi, i = 1, . . . , k are vector fields. Sometimes synchronization may oc-
cur in disconnected systems (5.1.14). For example, all precise clocks are syn-
chronized in the frequency sense. More realistic situations arise when several
identical systems are subjected to a single excitation (control) action f(t),
e.g., cases of vibrational synchronization [73] and noise-induced synchroniza-
tion [33, 182, 253, 462, 463] described by mathematical model

Si : ẋi = F (xi) + f(t). (5.1.15)

The model (5.1.15) can be interpreted as the equation of a single system
with a set of initial conditions. Then existence of a single synchronous mode
corresponds to the convergence property, see below, Section 5.2.1.

The most interesting and important case, however, is synchronization of
interconnected systems. In this case the local subsystem models are augmented
with interconnection models:
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{
ẋi = Fi(xi, t) + F̃i(x0, x1, . . . , xk, t), i = 1, . . . , k
ẋ0 = F0(x0, x1, . . . , xk, t)

(5.1.16)

where the vector field F0 describes the dynamics of the interconnection system,
F̃i are vector fields of the interconnections.

A remarkable and widely used observation is that the synchronization
may exist, i.e., identity (5.1.9) may be valid in the interconnected system
(5.1.16) without any external action, i.e., without inputs. In this case the
system (5.1.16) is called self-synchronized with respect to the functionals
g1, . . . , gl. Similar definitions are introduced for approximate and asymp-
totic self-synchronization. Usually in this case the systems S1, . . . , Sk are au-
tonomous.

In many important application cases the interconnections between the
systems S1, . . . , Sk are weak, for instance, when (5.1.16) can be represented
as {

ẋi = Fi(xi, t) + µF̃i(x0, x1, . . . , xk, t), i = 1, . . . , k
ẋ0 = F0(x0, x1, . . . , xk, t)

(5.1.17)

where µ is a small parameter. Therefore, finding conditions for self-synchroni-
zation in systems with small interactions is of special interest. Such conditions
were found for a large class of dynamical systems (5.1.17) with time-periodic
functions Fi in the right-hand sides [71, 73]. However, in many cases self-
synchronization is not observed and the question arises: is it possible to affect,
and thus to control the systems in such a way that the goal (5.1.10) or (5.1.11)
can be achieved?

The above definitions do not yet include the possibility of controlling the
system. Assume for simplicity that all Si, i = 0, . . . , k are smooth finite dimen-
sional systems, described by differential equations with a finite-dimensional
input:

{
ẋi = Fi(xi, t) + F̃i(x0, x1, . . . , xk, u, t), i = 1, . . . , k
ẋ0 = F0(x0, x1, . . . , xk, u, t)

(5.1.18)

where u = u(t) ∈ R
m is the input (control variable) which has physical

meaning.
The problem of controlled synchronization with respect to the functionals

gj , j = 1, . . . , l is to find a control u as a feedback function of the states
x0, x1, . . . , xn and time providing that (5.1.9) holds for the closed-loop sys-
tem. The problems of controlled asymptotic synchronization and controlled
approximate synchronization with respect to the functionals gj , j = 1, . . . , l
are formulated similarly, replacing (5.1.9) by (5.1.10) or (5.1.11). Note that
that solving controlled synchronization problems makes sense only if synchro-
nization is not observed at the beginning of the controlled system evolution.
It means that typical synchronization goals are asymptotic synchronization
(5.1.10) or asymptotic approximate synchronization (5.1.12).
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Sometimes the goal can be ensured without measuring any variables of the
systems, for instance, by time-periodic forcing (vibrational synchronization).
In this case control function u does not depend on system states and the
problem of finding such a control is called an open-loop-controlled (asymptotic)
synchronization problem.

However, the most powerful approach assumes the possibility of measuring
the states or some function of the system variables. Finding a control function
in this case is called a closed-loop or feedback synchronization problem.

The simplest form of feedback is static feedback where the controller equa-
tion is as follows

u(t) = U(x0, x1, . . . , xk, t) (5.1.19)

for some function U : R
n0 × R

n1 , . . . ,Rnk × R → R
m

A more general form is dynamic state feedback:

ẇ = W (x0, x1, . . . , xk, w, t) (5.1.20)
u(t) = U(x0, x1, . . . , xk, w, t) (5.1.21)

with w ∈ R
ν , W : R

n0 × R
n1 × . . . × R

nk × R
ν × R → R

ν , U : R
n0 × R

n1 ×
. . .× R

nk × R
ν × R → R

m.
Now the problem of state feedback synchronization can be posed as fol-

lows. Find a control law (5.1.19), (or (5.1.20), (5.1.21)) ensuring the asymp-
totic synchronization (5.1.11) in the closed-loop system (5.1.18), (5.1.19) (or
respectively, (5.1.18), (5.1.20), (5.1.21)).

In a variety of practical problems complete information about the states
of the systems S0, S1, . . . , Sk is not available and only some output variables

ys, s = 1, . . . , r,

are available for using in the control law. In case when the Si are smooth
finite-dimensional systems the problem of output feedback synchronization
can be posed as follows: find static control law

u(t) = U(y1, . . . , yr, t) (5.1.22)

or dynamical control law

ẇ = W (y1, . . . , yr, w, t) (5.1.23)
u(t) = U(y1, . . . , yr, w, t) (5.1.24)

where w ∈ R
ν , ys ∈ R

ps W : R
p1 × . . . × R

ps × R
ν × R → R

ν , U : R
p1 ×

. . .× R
ps × R

ν × R → R
m, such that the goal (5.1.11) in the system (5.1.18),

(5.1.22) (or (5.1.18), (5.1.23), (5.1.24)) is achieved.

5.1.5 Discussion

The proposed definitions allow the researcher to formalize different properties
of processes and systems intuitively related to synchronization by means of
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proper choice of the synchronization index and comparison functions. For ex-
ample, in order to define coordinate synchronization of processes that change
in a correlated manner but with different amplitudes one may use the nor-
malized synchronization index:

Ct[x] =
x(t)

max
0≤s≤t

|x(s)| .

If one of the two T -periodic processes is corrupted by an irregular noise, in
order to reveal possible synchronization one may use a moving average-based
index:

Ct[x] =
2
T

t∫
t−T/2

x(s)ds.

A different way of using moving average allows the elimination of trends.
For example, introducing the synchronization index of the form

Ct[x] = x(t) − 1
T

t∫
t−T

x(s)ds

allows the description of a synchronous behavior modulo a linear trend.
The above general definitions can be further generalized. For example,

the time-shifts τi, i = 1, . . . , k are not constant in many practical problems.
It seems reasonable to extend the definition of synchronization in order to
capture the problems where time-shifts are not constant but tend to some
constant values instead (so-called “asymptotic phases”). In such cases one
may replace time-shift operators for each process by time change operators
defined as follows:

(στi
)x(t) = x(t′i(t)),

where t′i : T → T, i = 1, . . . , k are some homeomorphisms such that

lim
t→∞

(t′i(t) − t) = τi. (5.1.25)

Note that in [7] a milder condition lim
t→∞

(
t′i(t)/t

)
= 1, was proposed instead of

(5.1.25). Since the definition in [7] admits infinitely large time shifts, it may
describe processes that intuitively do not seem synchronized.

The definition of the synchronization may be modified to include the cases
when the processes xi belong to different functional spaces Xi (e.g., x1(t) ∈
R

3 is described by the Lorenz model while x2(t) ∈ R
2 obeys the Van der

Pol equation). To this end we introduce so-called precomparison functions
F

′

i : Xi → X , which map all the processes into a single space. Based on
such a transformation the equalities defining the synchronous mode take the
following form:
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F1

(
Ct+τ1 [F

′
(x1)]

)
=F2

(
Ct+τ2 [F

′
(x2)]

)
= . . .=Fk

(
Ct+τk

[F
′
(xk)]

)
∀t ≥ 0.
(5.1.26)

Note that for the case of two processes (k = 2) the precomparison functions
generate a “rectifying” transformation F , introduced in the paper [82] as
follows F = (F

′

1, F
′

2). Let the synchronization index be chosen as in Example
5.5: Ct(xi) = xi(t). Let one of the postcomparison functions be chosen identity.
Then the definition of synchronization will coincide with the one given in
[82]. Moreover, in this case the second comparison function plays the role
of synchronization function of the paper [82]. In summary, the definition of
[82] describes a more general concept than the generalized synchronization of
Example 5.5, yet still less general than the definition introduced in the Section
5.1.1.

It is worth to note in the conclusion that the introduced definitions not
only provides the terminology and the conceptual tools for discussion of dif-
ferent synchronization-like properties, but also allows the question of the ap-
plicability area for the term “synchronization” to be addressed. For example,
according to the above definition the property defined as reduction of the
fractal dimension of the overall process with respect to the sum of the dimen-
sions of its components [255] is not a synchronization property, because it is
defined via characteristics (dimensions) that do not depend on the behavior
of the processes in time. In this case the terms “ordering” or “synergy” would
seem more preferable.

Similarly, it seems not appropriate to term two processes as synchronized
if they are strongly correlated:

∣∣�(x1, x2)
∣∣ > 1 − ε, where

�(x1, x2) =
〈x1 · x2〉√
〈x2

1〉 · 〈x2
2〉

is the correlation coefficient.
Finally, introduction of the scalar synchronization measure (e.g., (5.1.6))

opens the possibility for systematic design of controlled synchronization sys-
tems where the synchronization mode is created or modified artificially. Such
design may be based, for example, upon the speed-gradient algorithms

u(t) = −γ∇uQ̇t, γ > 0,

where u(t) is the vector of the controlling parameters or variables, see [26, 76,
164] and Section 2.4.2. The issue of controlled synchronization systems design
will be addressed in the next section.

5.2 Controlled synchronization design

The existing methods of dynamical systems theory and control theory can
be used to analyze and design a variety of synchronization systems. Below
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we consider some design problems of asymptotic coordinate synchronization
understood as fulfillment of the relation

lim
t→∞

∣∣x1(t) − x2(t)
∣∣ = 0, (5.2.27)

where x1, x2 are state vectors of the subsystems to be synchronized.
Control methods for other types of synchronization can be found in the

literature. For example, classical phase-locked loops [272] can be interpreted
as phase synchronization control systems and studied by control theory tools
[266]. Control method for phase synchronization in coupled complex oscillators
was proposed in [66]. Multiple synchronization control was studied in [76].
Synchronization control methods for spatiotemporal systems can be found,
e.g., in [79, 238, 450].

5.2.1 Synchronization and convergence

In the stability theory of dynamical system an analog of the synchronization
property known as convergence is well known.

A system of differential equations is called convergent [117], if it has a
unique bounded solution which is globally asymptotically stable, i.e., all mo-
tions of a system converge to a certain limit mode. Consider two identical
systems:

ẋ1 = F (x1, t), ẋ2 = F (x2, t). (5.2.28)

If x1(t) and x2(t) are arbitrary solutions of the systems (5.2.28), then they can
be interpreted as two solutions of the single system ẋ = F (x, t) at different
initial conditions. Therefore the convergence of the system ẋ = F (x, t) implies
coordinate synchronization of identical systems (5.2.28). The sufficient con-
dition for convergence (and for synchronization) is the so-called Demidovich
condition [117]: all eigenvalues of the symmetrized Jacobi matrix of the system

J(x, t) = ∂F (x,t)
∂x +

[
∂F (x,t)

∂x

]T

should be uniformly negative:

λi

(∂F (x, t)
∂x

+
[
∂F (x, t)

∂x

]T )
≤ −δ (5.2.29)

for some δ > 0 and for all t ≥> 0, x ∈ Ω, where Ω is a set covering the
trajectory x(t). The condition (5.2.29) can be understood as a strengthened
stability of free motions of the system. Oscillatory systems, however, are often
close to the stability border. Moreover, they may travel beyond the stability
region, as in the case of chaotic oscillations. In such cases the problem of
controlled synchronization arises and synchronization system design is needed.

One way to achieve synchronization is to achieve fulfillment of the Demi-
dovich condition by applying an external action. However, it was observed
in some cases that it is not necessary to ensure stability in the whole state
space in order to achieve synchronization. Synchronization may occur even
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the system trajectories spend sufficiently large part of time in the stability
region. The related problem of capture (called also entrainment or external
synchronization) of trajectories of nonlinear oscillatory system driven by an
external harmonic signal is a classical problem of oscillation theory [30, 34,
73, 253, 433]. Recently it was discovered that noise or chaotic signals can also
lead to synchronized behavior of decoupled systems [33, 123, 182, 249, 250,
253, 462, 463].

Perhaps, the first mathematical treatment of convergence (capture) phe-
nomenon for unstable systems was made by G.A. Leonov [264]. In [264] a
class of Lurie systems dissipative yet unstable near origin was considered and
the frequency-domain conditions ensuring that for large excitation amplitude
the system trajectory spends enough time in the stability region to ensure
synchronization were proposed. The approach was extended to other classes
of systems and nonperiodic excitations [108, 156, 174]. Properties of more
weak synchronization property – phase synchronization – were investigated
in [349, 462, 463].

5.2.2 Synchronization and stabilization

Let us illustrate some of the peculiarities of the controlled synchronization for
the special case when the models of the synchronized systems are linear both
in states and in controls:

ẋ1 = Ax1 + f(t) + Bu1, (5.2.30)

ẋ2 = Ax2 + f(t) + Bu2, (5.2.31)

where u1, u2 are controlling actions, f(t) is the external action or disturbance
which is assumed to be a bounded function of time. The matrices of coefficients
A,B are of size n × n, n × m, respectively. In this case the synchronization
error e = x1 − x2 obeys the linear equation:

ė = Ae + B(u1 − u2) (5.2.32)

and the problem of asymptotic synchronization of the subsystems (5.2.30)
and (5.2.31) is reduced to asymptotic stabilization (establishing asymptotic
stability for the error equation (5.2.32). Obviously, the dynamics of the syn-
chronization error depends only on the difference between controls u = u1−u2.
Therefore, it is sufficient to study the case of only one control and to seek a
linear feedback control of the form u1 = Ke, u2 = 0. For such a case the
control does not influence the system (5.2.31) and its motions play the role
of command (reference) motions for the system (5.2.30). The systems with
reference models are well known in the control theory. In physical literature
they are called master–slave or drive-response systems. To achieve the syn-
chronization goal the feedback matrix K should be chosen in such a way that
the matrix A + BK is to be Hurwitz (stable), i.e., all the roots of its char-
acteristic polynomial det(λI − A − BK) would have negative real parts. It
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is a well-known fact of the control theory that if the pair of matrices A,B is
controllable1 then it is possible to choose the feedback matrix K providing
any desired eigenvalues of the matrix A+BK. In addition, it is easy to show
that if the matrix A does not have “right” eigenvalues, then the synchronizing
control can be arbitrarily small (Indeed, to achieve synchronization one needs
only to shift the eigenvalues lying in the imaginary axis to the left, and that
can be achieved by a small control owing to continuous dependence of the
coefficients of a polynomial from its roots).

Similar conclusions hold in the symmetric case u1 = −u2 = u/2, when con-
trol acts on both subsystems. Such problems are not typical for control theory,
since in this case the desired motion of the overall system is not predefined.
In the control theory a related problem was studied: the so-called coordinated
control [299]. In the coordinated control problem two controls (u1, u2) are
used to achieve an additional goal: stabilization of the base (averaged) mo-
tion x1 + x2)/2. It is interesting that the same methods can be used both for
coordinated control and for synchronization, since the error equations coin-
cide.

Thus, the problem of feedback design for synchronization of linear systems
with full state measurements is well understood. However, the problems with
incomplete measurements are much more complicated. Let, instead of the
state vectors x1, x2, only the output vectors y1 = Cx1, y2 = Cx2, where C
is rectangular l×n-matrix, l < n, be available for measurement. The existing
criteria for output feedback stabilization are rather involved. No simple final
solution of the problem is obtained even for linear systems. Below we formulate
some simple sufficient conditions. To this end let us introduce the transfer
matrix of a linear system ẋ = Ax+Bu in a standard manner: W (λ) = C(λI−
A)−1B. Assume for simplicity that l = m = 1, i.e., both input and output are
scalars. In this case W (λ) = b(λ)/a(λ), where b(λ), a(λ) are polynomials of
degree n1, n, respectively, n1 < n, a(λ) is the characteristic polynomial of the
matrix A. The error equation can be transformed to the differential equation of
nth order a(p)y = b(p)u, where p = d/dt is symbol of differentiation. Without
further loss of generality we may assume that the coefficient an at λn is equal
to one, an = 1.

A sufficient condition for stabilizability of a linear system by output
feedback u=Ky was established as early as in the end of the 1940s by M.V.
Meerov (see [293] and references therein): there exists a stabilizing feedback
K if the polynomial b(λ) is Hurwitz (all its roots have negative real parts),
and the value d=n−n1 (difference between the degrees of denominator and
numerator of the transfer function, the so-called relative degree of the sys-
tem) is equal to one or two, for d = 2 the coefficient at λn−1 being positive
an−1 > 0. If the Meerov condition holds, then any K with sufficiently large
1 The necessary and sufficient condition for controllability of A, B is the so-called

Kalman criterion rank{B, AB, . . . , An−1B} = n.
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absolute value and the sign opposite to the sign2 of the coefficients of the
numerator b(λ) of the transfer function W (λ): b0K < 0. Besides, it was es-
tablished by Meerov that if d ≥ 3 or d = 2, but an−1 ≤ 0, then stabilization
of an unstable system by an output feedback is impossible. In such a case the
output feedback synchronization problem also cannot be solved.

5.2.3 Synchronization and observers

More possibilities for synchronization arise when the structural restrictions
for control are absent in one of subsystems. This is the case when one of
the subsystems to be synchronized should be implemented as an analogue or
digital device. Let the whole system be described by the equations

ẋ1 = Ax1 + f(t), y1 = Cx1, (5.2.33)

ẋ2 = Ax2 + u(t). (5.2.34)

The problem of controlled coordinate synchronization in this case is to find
a controlling function u = U(y1, x2, t), ensuring the relation (5.2.27) in the
closed-loop system. It can be interpreted as reconstruction of the state x1 of
the system (5.2.33) by means of its estimate x2. Such a problem is well studied
in the field of control theory where it is called the observation problem. Its
solution is provided with the so-called linear observer

ẋ2 = Ax2 + K(y1 − Cx2) + f(t), (5.2.35)

where matrix K is to be found. Obviously, the observation error e(t) = x1(t)−
x2(t) obeys the equation

ė = (A−KC)e.

It is well known that the eigenvalues of the matrix A − KC can be chosen
arbitrarily by means of the proper choice of the matrix K if the so-called
observability condition holds.3

The synchronization systems based on the linear error equation described
above possess such important properties as roughness and robustness. Rough-
ness means that the small changes in the system model (taking into account
nonidentity or nonlinearity of subsystems, interactions, external actions, etc.)
result in only small changes in the system behavior. In the context of stabil-
ity it coincides with structural stability property. Robustness is the stronger
property requiring additional quantitative estimates for changes in the system
behavior as a function of changes of the system model. For example, it can be
shown that if the functions describing these additional changes of the model
appear additively in the right-hand sides of the system equations and their
2 All the coefficients of Hurwitz polynomial b(λ) are of the same sign.
3 Observability condition for the pair of matrices A, C is rank{C, A

T
C, . . . ,

(A
T
)n−1C} = n. It is dual to controllability condition
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norms are bounded by some quantity ∆, then the limit (for t → ∞) norm
of the error is bounded by the value R∆ for some R > 0, where R does not
depend on ∆. It means that the error is of the same order as the disturbing
factors.

A peculiarity of the roughness and robustness properties in this problem is
in that the roughness and robustness take place with respect to synchroniza-
tion error rather than with respect to the behavior of each subsystem. The
perturbed subsystems may loose stability or some of their variables may grow
infinitely (e.g., pendulums may turn into a rotation mode) but deflection from
the synchronous mode (synchronization error) will remain bounded.

5.2.4 Synchronization of affine nonlinear systems

In physics the most interesting synchronization problems arise in nonlinear
systems. Let us briefly describe a few methods of synchronization design in
nonlinear systems. For the sake of simplicity consider two systems described
by the models affine in control.

ẋ1 = f1(x1) + g1(x1)u1,
ẋ2 = f2(x2) + g2(x2)u2.

(5.2.36)

Initially the systems are separate, i.e., not linked. Let us pose the problem of
coordinate synchronization design as follows. Find a control algorithm

ui = Ui(x1, x2), i = 1, 2, (5.2.37)

such that the control goal (5.2.27) is attained. The solution of the problem
is trivial in the case when the right-hand sides of (5.2.36) can be changed
independently and arbitrarily, i.e., if m = n, g1(x1) = g2(x2) = In, where In

is identity n× n-matrix. Then, taking, for instance, u1 = 0, u2 = K(x1 − x2),
where K > 0 is the gain coefficient, we obtain the error equation in the form

ė = f(x1(t)) − f(x1(t) − e) −Ke, (5.2.38)

where x1(t) is a given function of time, satisfying the first equation in (5.2.36)

for u1 = 0. Suppose that the Jacobian matrix A(x) =
∂f

∂x
(x) is bounded

in some region Ω, containing the initial condition x(0) of (5.2.36). Then the
eigenvalues of the symmetric matrix A(x) +AT (x)− 2KIn have negative real
parts for x ∈ Ω for sufficiently large K > 0. It follows from Demidovich
condition that the system possesses convergence property in Ω, , i.e., all its
solutions starting in Ω, converge to a unique bounded solution for t → ∞.
Since the solution e(t) ≡ 0 is nothing but such a solution, all other solutions
tend to it when t → ∞. Therefore the synchronization of two subsystems is
observed if the coupling strength between them increases. At the same time
the behavior of each subsystem may remain complex, e.g., chaotic. Note that
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smoothness of the right-hand sides and existence of the Jacobian matrix are
not needed for synchronization: it is sufficient to verify the Lipschitz condition:
|f(x1) − f(x2)| ≤ L|x1 − x2| for some L > 0.

Similarly, for Lipschitz systems it is possible to design a nonlinear observer,
so-called high-gain observer:

ẋ2 = f2(x2) + Kg2(x2)(y1 − Cx2), (5.2.39)

where y1 = Cx1. Applicability conditions for high-gain observers can be found,
e.g., in [268]. Particularly, it is required that the Lipschitz constant L is suf-
ficiently small.

5.2.5 Pecora–Carroll scheme

An interesting observer design scheme was proposed by L. Pecora and T. Car-
roll in 1990 and soon has become very popular [343]. The scheme is applicable
if the dynamics equations can be split into two groups, corresponding observed
variables y1 and nonobserved variables z1 in the following way:

ẏ1 = Fy(y1, z1), (5.2.40)

ż1 = Fz(y1, z1), (5.2.41)

the second subsystem (5.2.41) possessing the convergence property with re-
spect to z1. Then the vector y1 may be introduced directly into the observer
with the state vector z2, described by the equation

ż2 = Fz(y1, z2). (5.2.42)

It follows from the convergence property that z1(t) − z2(t) → 0 as t → ∞
and, therefore the vector col(y1, z2) may serve as the estimate of the state
vector of the system (5.2.40), (5.2.41). As for applicability condition for this
scheme, the Demidovich sufficient condition of convergence can be used: the
eigenvalues of the matrix

∂Fz(y, z)
∂z

+
[
∂Fz(y, z)

∂z

]T

,

are uniformly negative for all y, z. Such a condition is easier to check than
negativity of conditional Lyapunov exponents, proposed in [343]. Justification
for a more general case can be found in [164].

The Pecora–Carroll scheme can be represented as the limit case of the
high-gain observer, having the structure

ẏ2 = Fy(y2, z2) + K(y1 − y2), (5.2.43)

ż2 = Fz(y2, z2). (5.2.44)
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Indeed, rewriting (5.2.43) in the form

εẏ2 = εFy(y2, z2) + (y1 − y2), (5.2.45)

where ε = 1/K is the small parameter, one can notice that the system (5.2.43),
(5.2.44) belongs to the class of so-called singularly perturbed systems, exhibit-
ing fast and slow motions. Make a standard reduction to extract a reduced
system, describing slow motions. To this end one should set ε = 0 and obtain
the reduced system in the form: y1 = y2, ż2 = Fz(y1, z2) coinciding with
(5.2.42). Since the fast subsystem (5.2.43) is asymptotically stable for suffi-
ciently large K > 0, its solution y2(t) is close to y1(t) for sufficiently large
K > 0 and t > 0, i.e., the dynamics of the observer (5.2.43), (5.2.44) are
determined by the dynamics of the reduced system (5.2.42).

Let us show an example of application of the Pecora–Carroll scheme to
synchronization of the Lorenz system.

Example 5.7. The Pecora–Carroll scheme was applied by a number of au-
thors to signal transmission with a chaotic carrier. In the pioneering work of K.
Cuomo, A. Oppengeim, and S. Strogatz [112] a signal transmitter was based
on the Lorenz system transformed after rescaling to the following equations


u̇ = σ(v − u),
v̇ = ru− v − 20uw,

ẇ = 5uv − bw.

(5.2.46)

The choice of parameter values σ = 16, r = 45.6, b = 4.0 provides the system
with a chaotic behavior.

The equations of the receiver are chosen according to the Pecora–Carroll
scheme as follows 


u̇s = σ(vs − us),
v̇s = ru− vs − 20uws,

ẇs = 5uvs − bws.

(5.2.47)

The equations of (5.2.47) are similar to (5.2.46), with the only exception:
the right-hand side of (5.2.47) depends on the variable u, instead of us, which
is considered as the receiver input signal coming from the transmitter. The
system (5.2.46), (5.2.47) fits the Pecora–Carroll scheme for y = u, z = (v, w).

Using the Lyapunov function V = V (e2, e3) = 0.5e2
2 + 4e2

3 a simple proof
is given in [112] for the fact that the state variables of the systems (5.2.46)
and (5.2.47) are synchronized, i.e., the vector of state error tends to zero. To
prove this result, the error equation can be written as follows:{

ė2 = −e2 − 20ue3,

ė3 = 5ue2 − be3.
(5.2.48)

Calculating the derivative of the function V along trajectories of the system
(5.2.48) one arrives at the expression
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V̇ = e2(−e2 − 20ue3) + 4e3(5ue2 − be3) == −e2
2 − 4be2

3. (5.2.49)

Therefore, V̇ ≤ −kV, where k = min{2, 2b} > 0 does not depend on the value
of the input signal u = u(t), and the error variables e2(t), e3(t) tend to zero
exponentially. In view of ė1 = σ(e2 − e1), σ > 0, the variable e1 also tends to
zero exponentially, i.e., (5.2.47) may serve as asymptotic observer for (5.2.46).

In order to transmit a binary message the coefficient b of the transmitter
(5.2.46) was changed to attain the value b = 4.4, corresponding to the message
value “1”, while the initial value b = 4.0 corresponded to the binary “0”. When
the value of b in (5.2.46) is changed to b = 4.4, the level of the discrepancy
signal e = u − us, in the system (5.2.47) is increased dramatically. It allows
the detection of the transmitted message. �

5.2.6 Synchronization and speed-gradient

To design control algorithms for synchronization problems one may use the
speed-gradient algorithms, see section 2.4.2.

Let the controlled system be described by the equations: (5.2.36). Intro-
duce the goal functional

Q(x) =
1
2
|x1 − x2|2 (5.2.50)

and evaluate the rate of its changing along trajectories of the system:

Q̇(x) = (x1 − x2)
T
(f1 + g1u1 − f2 − g2u2).

Then evaluate the speed gradient

∂Q̇

∂u1
= (x1 − x2)

T
g1,

∂Q̇

∂u2
= −(x1 − x2)

T
g2,

and write down the speed-gradient algorithm for the functional (5.2.50) as
follows:

u1 = −γ(x1 − x2)
T
g1(x1),

u2 = −γ(x2 − x1)
T
g2(x2).

(5.2.51)

As it was mentioned in [137] all the above synchronization schemes can be
obtained as special cases of the equation (5.2.51). For example, linear feed-
back synchronization algorithm (5.2.38) can be obtained letting g1(x1)= In,
g2(x2) = 0, γ = K. The high-gain observer (5.2.39) can be obtained, letting
g1(x1) = 0, g2(x2) = g2C, γ = K, and the Pecora–Carroll scheme (5.2.42)
for the case when the output y1 appears in (5.2.42) linearly (Fz(y1, z2) =
f(z2) + y1ḡ(z2)) letting g1(x1) = 0, g2(x2) = gC, γ = 1.

The conditions ensuring synchronization for the algorithm (5.2.51) can be
derived from general results establishing attainment of the goal in the speed-
gradient systems, see [135, 157, 164].
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5.3 Adaptive synchronization

5.3.1 Problem formulation

The dynamics of many physical system depend on a number of parameters
which are unknown to the system researcher. To design synchronization al-
gorithms in such cases the adaptive control approach can be used. Adaptive
control is based on extracting information about unknown parameters during
the process of a normal system functioning. It is well-developed branch of the
control theory both for linear and for nonlinear systems [132, 135, 157, 245].
However, application of adaptive control to synchronization problems has been
systematically studied only recently. Below a general approach to adaptive
synchronization based on the so-called passification method is presented, fol-
lowing [25, 137, 159].

Consider k-interconnected subsystems whose dynamics are described by
equations

ẋi = Fi (x1, . . . , xk, u, θ, t) i = 1, . . . , k, (5.3.52)

where θ ∈ R
M is the vector of unknown parameters. Let a nonnegative goal

function Q(x1, . . . , xk, t) be defined in such a way that its small values cor-
respond to the achievement of the synchronous mode. The choice of the goal
function may also reflect the desired type of synchronization. For instance,
the goal function can be chosen in the form (5.1.6), (5.1.13), or (5.2.50). The
problem is to find the adaptive control algorithm of the form

u = U(x1, . . . , xk, t, θ),

where θ ∈ R
M is the vector of adjustable parameters and the adaptation

algorithm of the form
θ̇ = Θ(x1, . . . , xk, t, θ),

such that the control goal

lim
t→∞

Q(x1(t), . . . , xk(t), t) = 0 (5.3.53)

is achieved for all θ∈Ξ, where Ξ is the set of all possible values of θ.
Note that the right-hand sides Fi in (5.3.52) may be different and, there-

fore, the posed problem encompasses the case of nonidentical subsystems
which attracts the most interest in the controlled synchronization problems.

5.3.2 Adaptive synchronization of two subsystems

Below the case of two subsystems will be examined in detail. Let k = 2,
xi∈R

n and the control action be scalar: u ∈ R
1. Let the standard coordinate

synchronization goal be specified:

lim
t→∞

|x1(t) − x2(t)| = 0. (5.3.54)
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Introduce the error vector e = x1−x2 and subtract the equation of the second
subsystem from the equation of the first one to obtain the equation for error.
Assume that it is possible to separate linear and nonlinear parts in the error
equation and represent it in the form:

ė = Ae + B
N∑

i=1

θiϕi(x1, x2, t) + Bu, (5.3.55)

where A is a constant n×n-matrix; B is a constant n-dimensional vector; θi are
constant but unknown coefficients and functions ϕi are known or available for
measurements. It means that the parametrization is assumed to be (A) linear
and (B) matched: both unknown parameters and control appear linearly in
the error equation and, moreover, they appear proportionally to the constant
vector B. A typical class of the systems when the introduced assumptions are
satisfied corresponds to the case when both nonlinearities and control appear
only in one of the system equations.

The error model (5.3.55) encompasses both conventional situation for con-
trol design problems when control appears only in one of the two subsystems
(5.3.52), and a nonconventional case when control may influence both subsys-
tems. In the latter case the limit motion of the controlled system is, generally
speaking, unknown, even if the error has achieved zero.

Let, in addition to the functions ϕi(x1, x2, t), the output variables yi =
Cxi, i = 1, 2 be available for measurement. The problem is to design control
algorithm and adaptation algorithm ensuring convergence of the system error
to zero, i.e., ensuring the goal (5.3.54).

To solve the problem the speed-gradient method can be employed. Define
the main loop of the system in the form

u = −θ̂0(y1 − y2) +
N∑

i=1

θ̂iϕi(x1, x2, t), (5.3.56)

where θ̂0, θ̂i are some adjustable parameters. Such a choice is motivated by
the hope that it is able to solve the problem in principle. Indeed, with such a
choice there exist the “ideal” values of adjustable parameters θ̂i, i = 1, . . . , N ,
such that the control goal is achieved. Obviously, one can choose the values

θ̂i∗ = −θi, i = 1, . . . , N, (5.3.57)

as “ideal” parameters. Then, substituting the above values of parameters θ̂i∗

and control u into the error equation (5.3.55), we achieve cancellation of all
the nonlinearities and the resulting equation takes form

ė = [A− θ0BC] e. (5.3.58)

If there exists θ0∗ such that the equation (5.3.58) is asymptotically stable
then the feedback control law (5.3.56), (5.3.57) ensures synchronization in
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principle. However one cannot use the control law (5.3.56), (5.3.57) since it
depends on the unknown parameters.

To design the adaptation algorithm let us use the speed-gradient method.
Taking into account that the system contains a linear in e part, choose the
quadratic function Q(e) = e

T
Pe, e = x1 − x2, where P = P

T
> 0 is some

symmetric positive-definite matrix. Evaluating the rate of changing the func-
tion Q along trajectories of the system (5.3.55), and then its gradient with
respect to adjustable parameter, we obtain

Q̇ = e
T
P ė = e

T
P

[
Ae + B

N∑
i=1

θiϕi + Bu

]
=

= e
T
P
[
A− θ̂0BC

]
e + e

T
PB

N∑
i=1

(θi − θ̂i)ϕi,

∂Q̇

∂θ̂0

= −e
T
PB(y1 − y2),

∂Q̇

∂θ̂i

= −e
T
PBϕi.

To achieve a feasible solution of the problem, one needs to ensure that all
the variables in the algorithm are available for measurement. By assumption,
the functions ϕi(x1, x2, t) are available for measurement. Then one needs to
guarantee availability of the value e

T
PB, which is a linear combination of the

state error variables. Obviously, this variable can be measured if it is a linear
combination of some outputs error variables: e

T
PB=(y1 − y2)

T
g= e

T
C

T
g

for some number g, which is equivalent to the relation PB = C
T
g. If such a

relation holds, then the adaptation algorithm, obtained by the speed-gradient
method in differential form takes the following form

˙̂
θi = −γi(y1 − y2)ϕi(x1, x2, t), i = 1, . . . , N, (5.3.59)

˙̂
θ0 = −γ0(y1 − y2)2, (5.3.60)

where γi, i = 1, . . . , N are adaptation gains. Adaptation gains may have
arbitrary absolute value and their sign should coincide with the sign of g.

In a more general case when the measured outputs are l-dimensional vec-
tors, the gain g ∈ R

l is also a vector and the adaptation algorithm takes the
form

˙̂
θi = −γig

T
(y1 − y2)ϕi(x1, x2, t), i = 1, . . . , N, (5.3.61)

˙̂
θ0 = −γ0[g

T
(y1 − y2)](y1 − y2), (5.3.62)

where γi > 0, i = 1, . . . , N .

5.3.3 Conditions for control goal achievement

Next we will derive the conditions ensuring achievement of the goal (5.3.54).
We need some definitions and results of control theory.
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Definition 5.3. ([ [135]]) A linear system ẋ = Āx + B̄u, y = C̄x with the
transfer matrix W (λ) = C̄(λI − Ā)−1B̄, where u, y ∈ R

l and λ ∈ C is called
minimum-phase if the polynomial ϕ(λ) = det(λI − Ā) detW (λ) is Hurwitz.
The system is called hyper-minimum-phase if it is minimum-phase and the
matrix C̄B̄ = limλ→∞ λW (λ) is symmetric and positive definite.

Note that for l = 1 the system of nth order is hyper-minimum-phase, if
the numerator of its transfer function is the Hurwitz polynomial of degree
n − 1 with positive coefficients (it is equivalent to the case d = 1 in Meerov
conditions, see section 5.3.

Lemma 5.1 (Passification lemma) [132, 135, 157]. Let the matrices Ā, B̄,
C̄, g of size n × n, n × m, l × n, m × l be given and the full-rank condition
rank(B̄) = m holds. Then for existence of a positive-definite n × n-matrix
P = P T > 0 and a l ×m-matrix θ∗ such that

PA∗ + A
T

∗P < 0, P B̄ = C̄
T
gT, A∗ = Ā + B̄θ∗GC̄

it is necessary and sufficient, that the system ẋ = Āx + B̄u, y = GC̄x would
be hyper-minimum-phase.

It follows from the lemma, see, e.g., [157], that for hyper-minimum-phase
system there always exists an output feedback u = θ0Gy + ū, where ū is a
new auxiliary input, such that the closed-loop system is strictly passive with
respect to the output ȳ = Gy. Besides, the storage function can be chosen as
a quadratic form: V (x) = x

T
Px. In other words, the hyper-minimum-phase

property is necessary and sufficient for passifiability of a linear system by an
output feedback.
Definition 5.4. Vector-function f : [0,∞) → R

m is called persistently ex-
citing (PE) on the interval [0,∞), if it is bounded on [0,∞) and there exist
α > 0, T > 0 such that

t+T∫
t

f(s)f(s)T ds ≥ αIm

for all t ≥ 0. �
The essence of the notion of persistent excitation is in that a persis-

tently exciting vector-function does not approach any hyperplane in the m-
dimensional space.

Lemma 5.2 (Persistent excitation lemma) [132, 157]. Consider vector-
functions f, θ̃ : [0,∞) → R

m. Let θ̃(t) be a continuously differentiable func-
tion, such that dθ̃(t)/dt → 0 for t → ∞. Let f be persistently exciting and
θ̃(t)Tf(t) → 0 for t → ∞. Then θ̃(t) → 0.

Now it is possible to formulate conditions providing adaptive synchroniza-
tion. A concise formulation has the form of a theorem.
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Theorem 5.1. [159]. Let the trajectories of the systems to be synchronized
(5.3.52) for k = 2, affected by control (5.3.56) be bounded and the linear
system with the transfer function W (λ) = gC(λI−A)−1B be hyper-minimum-
phase.

Then all the trajectories of the system (5.3.55), (5.3.56),(5.3.59), (5.3.60)
are bounded and the synchronization goal (5.3.54) holds. In addition, if the
PE condition holds for the vector-function col (ϕ1(x1, x2, t), . . . , ϕN (x1, x2, t)),
then the adjustable parameters tend to their ideal values:

lim
t→∞

(
θ̂(t) − θ

)
= 0. (5.3.63)

The main condition of the theorem is the hyper-minimum-phaseness of the
error equation which ensures the possibility of its passification by an output
feedback. By Lemma 5.1, the hyper-minimum-phaseness means that the real
parts of the transfer function W (λ) = gC(λI − A)−1B numerator zeros are
negative. In addition, it needs the relative degree one condition: the relative
degree4 of the linear part of the transmitter should be equal to one. The hyper-
minimum-phaseness is equivalent to asymptotic stability of zero dynamics
[135, 157] which, in turn, is analogous to negativity of transverse Lyapunov
exponents condition introduced in [343]. More information about passivity,
passification, and hyper-minimum-phaseness of systems can be found in [157,
164].
Proof of Theorem 5.1. Consider the Lyapunov function candidate of the form

V (x, θ̂0, θ̂) =
1
2
eTPe +

N∑
i=0

1
2γi

|θ̂i − θi|2 + |θ̂0 − θ∗0|2/(2γ0), (5.3.64)

where a matrix P = P T > 0 and a number θ∗0 are to determine. Calculation
of the value of V̇ shows that the inequality V̇ < 0 holds for e 	= 0 if and only
if the following relations hold:

{ ˙̂
θ0 = −γ0e

TPBgCe,
˙̂
θi = −γie

TPBϕi(x1, x2, t),
(5.3.65)

and the matrix P satisfies Lyapunov inequality PA∗+A∗P <0, where A∗ =
A + Bθ0C. Recall that all the variables needed for the adaptation algorithm
can be measured if and only if PB = C

T
g. Applying the lemma 5.1, we

obtain that V̇ < 0 for e 	= 0 if and only if the adaptation algorithm has
the form (5.3.59), (5.3.60) and the system ẋ = Ax + Bu, y = gCx is hyper-
minimum-phase, that holds by the theorem conditions. Therefore the function
V (t) = V (x(t), θ̂0(t), θ̂(t)) is bounded. Therefore, the functions e(t), θ̂i(t) are

4 Relative degree of a linear system is the difference between degrees of denominator
and numerator polynomials of the system transfer function
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also bounded in view of boundedness of ϕi(x1, x2, t), i = 1, . . . , N . It follows
from (5.3.65) that V̇ = eT (PA∗ + AT

∗P )e ≤ −µ|e(t)|2 for some µ > 0. Now
we fall under conditions of the LaSalle theorem [380], where the function V
is of the form (5.3.64). Since the boundedness of V (t) implies boundedness of
all the system states, it follows from the LaSalle theorem that e(t) → 0 for
t → ∞.

To prove (5.3.63) first of all note that it follows from (5.3.54) and (5.3.59)
that ˙̃

θ(t) → 0 for t → ∞. Differentiating (5.3.55) and taking into account
boundedness of the functions e, θ̃, ϕd, ỹ, θ̂0 and their time-derivatives we con-
clude that ë(t) is bounded. Applying the Barbalat lemma [157] yields ė(t)→0
for t → ∞. Having in mind (5.3.59) we obtain that that θ̃(t)Tϕd(t)→0 for
t → ∞. Finally, (5.3.63) follows from the PE condition and Lemma 5.2.

Remark 5.3. Theorem 5.1 actually provides necessary and sufficient conditions
for existence of the Lyapunov function of the form (5.3.64) with the properties

{
V (x, θ̂0, θ̂, t) > 0 for e 	= 0,
V̇ (x, θ̂0, θ̂, t) < 0 for e 	= 0.

(5.3.66)

It means that it is not possible to find another adaptation algorithm using
any Lyapunov function of form (5.3.64) with properties (5.3.66). �

5.3.4 Synchronization and adaptive observers

In the previous section the problem of adaptive control of synchronization was
studied. In a similar way one can solve the problem of adaptive observer-based
synchronization [160]. Let us first formulate the problem, following [160]. Let
the model of the uncontrolled system (transmitter) have the form

ẋd = Axd + ϕ0(yd) + B

N∑
i=1

θiϕi(yd), yd = Cxd, (5.3.67)

where xd ∈ R
n is the state vector of the transmitter; yd ∈ R

l is the vector of
outputs (transmitted signals); θ = col (θ1, . . . , θN ) is the vector of the trans-
mitter parameters. It is assumed that the nonlinearities ϕi(·), i = 0, 1, . . . , N ,
matrices A,C and vector B are known.

The problem is to design an adaptive observer (receiver) which is a dynam-
ical system with input vector yd(t) and output vector w(t) = col

(
x̂(t), θ̂

)
,

consisting of the vector of the transmitter state estimate x̂(t) and transmitter
parameter estimate θ̂, ensuring the observation goal – convergence to zero of
the estimation errors:
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lim
t→∞

(x̂(t) − xd(t)) = 0, (5.3.68)

lim
t→∞

(
θ̂(t) − θ

)
= 0. (5.3.69)

Adaptive observer is designed in the form

˙̂x = Ax̂ + ϕ0(yd) + B
( N∑

i=1

θ̂iϕi(yd) + θ̂0G(yd − y)
)
,

y = Cx, (5.3.70)

˙̂
θi = ψi(yd, y), i = 0, 1, . . . , N, (5.3.71)

where x ∈ R
n, yd ∈ R

l, θ̂i ∈ R, and G ∈ R
l is the vector of the weighting

coefficients. The adaptation algorithm (5.3.71) needs to be found. Though
formally the observation problem differs from the control problem, the error
equation can be transformed to the form (5.3.55), after introducing notations

e = xd − x̂, ϕi = ϕi(yd), u = −θ0(yd − Cx̂) +
N∑

i=1

θiϕi(yd).

The adaptation algorithm designed by the speed-gradient method has the
following form:

˙̂
θi = −γi(y − yd)ϕi(yd), i = 1, . . . , N, (5.3.72)

˙̂
θ0 = −γ0(y − yd)2, (5.3.73)

where γi > 0.
Similarly to Theorem 5.1, the following statement providing conditions of

adaptive synchronization can be proved.

Theorem 5.2 [160]. Let the trajectories of the system (5.3.67) be bounded
and the linear system with the transfer matrix W (λ) = C(λI − A)−1B be
hyper-minimum-phase.

Then all the trajectories of the system (5.3.70), (5.3.72),(5.3.73) are
bounded and the observation goal 5.3.68) holds. In addition, if the PE con-
dition is fulfilled for the vector-function (ϕ1(yd(t)), . . . , ϕN (yd(t))), then the
estimation goal (5.3.69) holds: the adjustable parameters tend to their ideal
values.

An important problem is taking into account the measurement noise. Let
the received signal be yr(t) = yd(t) + ξ(t), where ξ(t) is channel noise. In
presence of noise the algorithm (5.3.72), (5.3.73) may not guarantee synchro-
nization and has to be regularized (robustified). One way of regularization is
introducing the parametric feedback. It provides the following form of adaptive
algorithm
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˙̂
θi = −γi(y − yr)ϕi(yr) − αiθ̂i, i = 1, . . . ,m, (5.3.74)

˙̂
θ0 = −γ0(y − yr)2 − α0θ̂0, (5.3.75)

where αi > 0 (i = 0, 1, . . .m) are regularization gains.
The following Theorem describes properties of the receiver with regularized

adaptation algorithm (5.3.74), (5.3.75).

Theorem 5.3. Let the noise function ξ(t) be bounded: |ξ(t)| ≤ ∆ξ; all the tra-
jectories of the transmitter 5.3.67 be bounded and linear system with transfer
function W (λ) = GC(λI −A)−1B be hyper-minimum-phase.

Then all the trajectories of the system (5.3.67), (5.3.70), (5.3.74), (5.3.75)
are bounded and the goals

limt→∞ (x̂(t) − xd(t)) ≤ ∆x, (5.3.76)

limt→∞
(
θ̂(t) − θ

)
≤ ∆ (5.3.77)

hold for some ∆ > 0, ∆x > 0. If, in addition, ∆ξ > 0 is sufficiently small, and
gains αi > 0, i = 0, 1, . . . ,m are chosen sufficiently small, then the values ∆x

in (5.3.76) and ∆ in (5.3.77) can be chosen arbitrary small.
Theorem 5.3 follows from the results of [160] and [157].
In the works [25, 160] it was proposed to apply the adaptive observer

for information transmission based on a chaotic carrier signal. The idea of
the application is to encode the transmitted message by change (modulation)
of the transmitter parameters θi, i = 1, . . . , N and use the estimates of the
parameters θ̂i, i = 1, . . . , N on the receiver side to reconstruct the message. An
advantage of such an adaptive receiver compared to that described in Example
5.7 is its potentially better robustness to the faults. Indeed, the breaks of
synchronization caused by changes of the transmitter parameters (sending
the message signal) lead to the corresponding changes in the parameters of
the receiver and will not break synchronization. However, other faults (e.g.,
sudden faults in transmitter or in the communication channel) will lead to
synchronization breaks and can be recognized by the receiver. Example of
application of the above results to the information transmission is given in
the next section. Further analysis of the transmission accuracy under bounded
errors in the communication channel can be found in [23].

Finally, note that an important feasibility condition for the above adaptive
synchronization schemes is the possibility of the error equation passification.
By Lemma 5.1, passification needs fulfillment of the relative degree one condi-
tion: the relative degree of the linear part of the transmitter should be equal to
one. In the paper [161] some new schemes of adaptive synchronization based
on the notions of augmented error and high-order tuner allowing to weaken
the relative degree condition are proposed and justified.
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5.3.5 Example: Information transmission using chaotic Chua
system

Consider a model information transmission system based on adaptive chaotic
synchronization, where both transmitter and receiver system are implemented
as Chua’s circuits, following [25, 160].

Let the transmitter model be the Chua system (in dimensionless form)
[116]

ẋd1 = p(xd2 − xd1 + f(xd1) + sf1(xd1))
ẋd2 = xd1 − xd2 + xd3 (5.3.78)
ẋd3 = −qxd2

where f(z) = M0z +0.5(M1 −M0)f1(z), f1(z) = |z +1| − |z− 1|, M0,M1, p, q
are the transmitter parameters, s = s(t) is the signal to be reconstructed in
the receiver. Assume that the transmitted signal is yr(t) = xd1(t), and the
values of the parameters p, q are known. It is well known that for some value
of the system parameters the system (5.3.78) may exhibit a chaotic behavior.

The parameters M0, M1 are assumed to be a priori unknown which moti-
vates the use of an adaptation for the receiver design. The receiver designed
according to the results of the previous section is modeled as

ẋ1 = p(x2 − x1 + f(yr) + c1f1(yr) + c0(x1 − yr)),
ẋ2 = x1 − x2 + x3, (5.3.79)
ẋ3 = −qx2,

where c0, c1 are the adjustable parameters. The adaptation algorithm (5.3.74),
(5.3.75), takes the form

ċ0 = −γ0(yr − x1)2 − α0c0,
ċ1 = −γ1(x1 − yr)f1(yr) − α1c1,

(5.3.80)

where γ0, γ1 are the adaptation gains, α0 ≥ 0, α1 ≥ 0 are the regularization
gains.

First, we examine the ability of the system (5.3.79), (5.3.80) to receive and
to decode messages without noise. To this end we verify the conditions of the
Theorem 5.2 assuming that s(t) = const and α0 = α1 = 0. Clearly, if s(t) is a
time-varying binary signal, we can only expect that the results of Theorem 5.2
can be used if the parameter estimation is fast enough, at least much faster
than the actual parameter modulation. Writing the error equations yields


ė1 = p(e2 − e1 + (c1 − s)f1(yr) + c0e1)
ė2 = e1 − e2 + e3

ė3 = −qe2,
(5.3.81)

where ei = xi−xdi
, i = 1, 2, 3. The system (5.3.81) is, obviously in Lur’e form

with
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A =


−p p 0

1 −1 1
0 −q 0


 , B =


1

0
0


 , C = [1 0 0],

θ̂1 = c1, θ1 = s, θ0 = c0.
The transfer function of the linear part is

W (λ) =
λ2 + λ + q

λ3 + (p + 1)λ2 + qλ + pq
(5.3.82)

We see that the order of the system is n = 3, while the numerator polynomial
is Hurwitz and has degree 2 for all q > 0 and all real p. Therefore, the hyper-
minimum-phase condition holds for q > 0 and any p, M0, M1. Thus, Theorem
5.2 yields the boundedness of all receiver trajectories x(t) and convergence of
the observation error: e(t) → 0. In particular, yr(t)−x1(t) → 0. Furthermore,
to be able to reconstruct the signal s(t) the receiver should provide conver-
gence c1(t)− s → 0 for constant s. According to Theorem 5.2, this will be the
case if the PE condition (see Definition 5.4) holds, which reads as

t0+T∫
t0

f2
1 (yr(t)) dt ≥ � (5.3.83)

for some T > 0, � > 0 and all t0 ≥ 0. To verify (5.3.83), we note that condition
(5.3.83) basically means that the trajectory of the transmitter xd(t) does not
converge to the plane xd1 = 0 when t → ∞. This is not the case, at least
when the system (5.3.78) exhibits chaotic behavior. Indeed, in this case the
value xd1(t) leaves the interval (−1, 1) (where f1(z) is linear) infinitely many
times, say at tk, k = 1, 2, . . . . The time intervals ∆tk = tk+1 − tk between tk
can be overbounded by constant, if the trajectory does not converge to the
set xd1 = 0.

We may also evaluate a lower bound for � in (5.3.83):

�0 = limT→∞
1
T

T∫
0

f2
1 (xd1(t)) dt. (5.3.84)

The value of �0 characterizes the parameter convergence rate. It follows from
the adaptive control theory results (see, e.g., [388]) that if �0 > 0, then the
convergence c1(t)−s → 0 is exponential, with rate γ1�0, at least for sufficiently
small γ1 > 0. Ergodicity arguments suggest that

�0 ≥
x2

d1

µ
, (5.3.85)

where x2
d1

is the average value of x2
d1

(t) over the attractor Ω, and µ =
sup
x∈Ω

|xd1(t)|.
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Let the channel be subjected to white noise ξ(t) added to the transmitter
output, so that the received signal yr(t) is modeled as

yr(t) = yd(t) + ξ(t), (5.3.86)

where ξ(t) is a Gaussian white noise with zero average value and intensity σ.
5 In the noisy case the robustified adaptation algorithm with α0 > 0, α1 > 0
should be applied. Boundedness of all errors follows from Theorem 5.3.

Theoretical analysis provided by Theorems 5.2, 5.3 is usually not sufficient
for practice. In order to evaluate the system performance computer simula-
tions should be performed. Simulation results for the above scheme are shown
below. Parameter values are selected as p = 9; q = 14.286;M0 = 5/7;M1 =
−6/7. For these parameter values the system (5.3.78) possesses a chaotic at-
tractor, see Fig. 5.3.1 resembling that of the system used in [116] (after some
rescaling of space and time variables).

Fig. 5.3.1. Double scroll attractor of Chua curcuit.

The initial conditions for the transmitter were taken as xd(0)=[0.3 0.3 0.3].
For the receiver zero initial conditions were chosen for the state x0 as well as
for the adjustable parameters c0(0), c1(0). In order to eliminate the influence
of initial conditions no message was transmitted during the first 20 time units
(“tuning” or “calibration” of the receiver), i.e., s(t) ≡ 1 for 0 ≤ t ≤ 20.
The time history of observation errors and parameter estimates during tuning
show that all observation errors and parameter estimation error c1(t)−s tend
to zero rapidly. The value c0(t) tends to some constant value.
5 More precisely, ξ(t) is modeled as a piecewise constant random process with

sample time ∆t and ξ(tk) = ζk

√
∆t, (k = 0, 1, 2, . . . , tk = k∆t), where ζk are

Gaussian random numbers, having zero mean and the standard deviation σ.
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After the tuning period the square wave message

s(t) = s0 + s1 sign sin
(

2πt
T0

)
, (5.3.87)

where s0 = 1.005, s2 = 0.005 was sent. Received signal yr(t) is shown on the
Fig. 5.3.2.

Fig. 5.3.2. Received signal yr(t).

The simulation shows, that the reconstructed signal y(t) coincides with the
transmitted signal yr(t) with very good accuracy. However, both observation
errors and estimation errors do not decay completely during the interval when
s(t) is constant. Nevertheless, a reliable reconstruction of the signal s(t) is
very well possible. The accuracy of estimation can be easily improved by
increasing the adaptation gain γ1. The achievable information transmission
rate depends on the highest frequencies in the carrier spectrum. Fig. 5.3.3
a shows the message signal s(t) (with the period T0 = 10), its estimate via
adaptive observer algorithm (5.3.79), (5.3.80) ŝ(t) and output of the first-order
low-pass filter sf (t). This filter is used for separation the message in the case
of the noisy channel. In the simulation were taken following parameters of the
algorithm: γ0 = 10, α0 = 1 γ1 = 5, α1 = 0.2, filter pass band is equal to 3.5.
Fig. 5.3.3 b illustrates the influence of the noise with σ = 10−3 in the channel.
One can notice, that the message can be recognized in this case too.

5.4 Synchronization of two coupled pendulums

Consider the special case of the diffusively coupled oscillator model, namely,
two pendulums connected with the torsion spring:
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Fig. 5.3.3. Parameter estimation by means of the adaptive observer (5.3.79),
(5.3.80).

{
ϕ̈1 + ρϕ̇1 + ω2 sinϕ1 + k

(
ϕ1 − ϕ2

)
= u(t),

ϕ̈2 + ρϕ̇2 + ω2 sinϕ2 + k
(
ϕ2 − ϕ1

)
= 0,

(5.4.88)

where ϕi(t) are the rotation angles of pendulums (i = 1, 2); u(t) is the external
torque (control action) applied to the first pendulum; ω, k, ρ are the system
parameters: ω is the natural frequency of small oscillations, k is the coupling
parameter (e.g., stiffness of the string), ρ is the viscous friction gain.
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The total energy of the system (5.4.88) H(x) can be written as follows

H(x) =
1
2
ϕ̇1 + ω2(1 − cosϕ1) +

1
2
ϕ̇2

2

+ ω2(1 − cosϕ2) +
k

2
(
ϕ1 − ϕ2

)2 (5.4.89)

where x(t)∈ R
4 stands for the state vector x(t) = (ϕ1, ϕ2, ϕ̇1, ϕ̇2)

T
.

Consider the problem of excitation of synchronous oscillations with the
desired amplitude by means of small feedback. The problem can be under-
stood as achieving the given energy level of the system with the additional
requirement that pendulums should have either coincident or opposite phases
of oscillation.

In order to apply the speed-gradient procedure of Section 2.4, let us intro-
duce two auxiliary goal functions as follows

Qϕ(ϕ̇1, ϕ̇2) =
1
2
(
δϕ

)2
,

QH(x) =
1
2
(H(x) −H∗)2,

(5.4.90)

where δϕ = ϕ̇1 + σϕ̇2, σ ∈ {−1, 1}; H∗ is the prescribed value of the total en-
ergy. The minimum value of the function Qϕ meets the “coincident/opposite
phases” requirement (at least for small initial phases ϕ1(0), ϕ2(0)) : Qϕ(ϕ̇1,
ϕ̇2) ≡ 0 if and only if ϕ̇1 ≡ −σϕ̇2. Hence option σ = 1 sets anti phase desired
pendulums oscillations, while σ = −1 sets in phase oscillations. The minimiza-
tion of QH means achievement of the desired amplitude of the oscillations.

In order to design the control algorithm, the weighted objective function
Q(x) is introduced as the weighted sum of Qϕ and QH , namely

Q(x) = αQϕ(ϕ̇1, ϕ̇2) + (1 − α)QH(x), (5.4.91)

where α, 0 ≤ α ≤ 1 is a given weighting coefficient.
According to the speed-gradient procedure of Section 2.4, the following

control law is obtained:

u(t) = −γ
(
αδϕ(t) +

(
1 − α

)
δH(t)ϕ̇1(t)

)
,

δϕ(t) = ϕ̇1(t) + σϕ̇2(t),
δH(t) = H

(
x(t)

)
−H∗,

(5.4.92)

where σ ∈ {−1, 1} is a phase sign parameter; α is a weighting coefficient; γ > 0
is a gain coefficient. The existing analytical results, see Chapters 3, 4 and
[164] do not apply to this problem. Therefore the problem of finding sufficient
conditions for the achievement of the control goal Q(x(t))→0 remains open.

By analogy with (4.2.41), the following relay speed gradient control law
can be written:

u(t) = −γ sign
(
αδϕ(t) +

(
1 − α

)
δH(t)ϕ̇1(t)

)
. (5.4.93)
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The control law (5.4.92) has been proposed and numerically examined
in [26].

Let us study the properties of the system with the algorithm (5.4.93). At
the first stage let us assume α = 0, i.e., consider the closed-loop system with
a pure energy-control algorithm

u = −γ sign(H −H∗) sign ϕ̇1(t), (5.4.94)

where the total energy H is given by (5.4.89), H∗ is a desired value of H. Note
that the control law (5.4.94) has the same form as the law (4.2.41).

The question under consideration is: if no requirement on the phase shift
is given (i.e., it is taken α = 0 in (5.4.93)), what will be the phase shift in the
steady-state oscillation mode? To answer that question the system (5.4.88),
(5.4.94) has been numerically studied by means of computer simulations. The
following parameter values and the initial conditions were chosen: ω2 = 10 s−2,
ρ = 0.1 s−1, γ = 1 s, H∗ = 20 s−2, ϕ1(0) = π/2, ϕ̇1(0) = ϕ̇2(0) = 0. Initial
value ϕ2(0) was varied in the segment [−3/4π, 3/4π], the coupling coefficient
k changed from 0.1 to 2 s−2. The simulation time was equal to 450 s; the fixed-
step Dormand–Prince method with a step 0.025 s was used. Some results are
shown in Fig. 5.4.4. In Fig. 5.4.4 the plots of the frequency of oscillation Ω and
the phase shift ∆ψ in the steady-state mode versus the coupling parameter k
and the initial condition ϕ2(0) are pictured. It is shown that in some domain
of the plane

(
k, ϕ2(0)

)
the steady phase shift is about zero, i.e., the pendulums

fall into in phase synchronous oscillations, while in the complement domain the
phase shift is about π – the motions are anti phase. Note, that the oscillation
frequencies for anti phase motion exceed those ones for the in phase motion.

Fig. 5.4.4. Oscillations frequency Ω0 and the phase shift ∆ψ versus k, ϕ2(0). The
control law (5.4.94), γ = 1 s.
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Fig. 5.4.5. Excitation of anti phase oscillations of coupled pendulums.

Fig. 5.4.6. Controlling signal u(t).

Fig. 5.4.7. Time history of the synchronization goal function Qϕ( ˙ϕ(t)1,
˙ϕ(t)2).

This effect has a clear physical explanation: in the anti phase mode the spring
torque is added to the torque of a gravitational force.

Let us consider now the general form (5.4.93). The simulation results for
α = 0.7 are shown in Figs. 5.4.5–5.4.9. Two cases of the damping parameter
ρ were considered: ρ = 0 (the lossless case), and ρ = 0.1 s−1. The following
initial conditions were chosen: ϕ1(0) = ϕ2(0) = 0, ϕ̇1(0) = ϕ̇2(0) = 10−5 s−1.
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Fig. 5.4.8. Time history of the oscillations energy Ht.

Fig. 5.4.9. Time history of synchronization in presence of dissipation.

It is seen that both pendulums fall in anti phase oscillations if σ = 1 and in
phase oscillations if σ = −1. The relation between transient times for H and
for Qϕ can be changed by means of changing the weight coefficient α. In the
lossless case the control amplitude can be arbitrarily decreased by decreasing
the gain γ.
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Control of Chaos

The field related to control of chaotic systems was rapidly developing during
the 1990s. Its state-of-the-art in the beginning of the 21st century is presented
in this chapter, following [27, 28, 145, 153]. Necessary preliminary material
is given related to notion and properties of chaotic systems, models of the
controlled plants and control goals. Several major branches of research are
discussed in detail:

– feedforward or “nonfeedback” control (based on periodic excitation of the
system);

– OGY method (based on linearization of Poincaré map);
– Pyragas method (based on time-delay feedback);
– traditional control engineering methods of linear, nonlinear, and adaptive

control.

Some unsolved problems concerning the justification of chaos control meth-
ods are presented. Other directions of research are outlined such as chaotic
mixing, generation of chaos (chaotization), etc. Areas of existing and potential
applications in science and engineering are pointed out.

6.1 Introduction

Chaotic system is a deterministic dynamical system exhibiting irregular, seem-
ingly random behavior. Two trajectories of a chaotic system starting close to
each other will diverge after some time (such an unstable behavior is often
called “sensitive dependence on initial conditions”). Mathematically, chaotic
systems are characterized by local instability and global boundedness of the
trajectories. Since local instability of a linear system implies unboundedness
(infinite growth) of its solutions, chaotic system should be necessarily nonlin-
ear, i.e., should be described by a nonlinear mathematical model.

Control of chaos, or control of chaotic systems is the boundary field be-
tween control theory and dynamical systems theory studying when and how it
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is possible to control systems exhibiting irregular, chaotic behavior. Control
of chaos is closely related to nonlinear control, many methods of nonlinear
control are applicable to chaotic systems. However, control of chaotic systems
has some specific features.

A key property of chaotic systems is its instability: sensitive dependence on
initial conditions. An important consequence is high sensitivity with respect
to changes of input (controlling action). It means that small changes of control
may produce large variations in systems behavior. Such a phenomenon and
its implications in physics were described in the seminal paper [331] that
triggered an explosion of activities and thousands of publications.

A typical control goal when controlling chaotic systems is to transform
a chaotic trajectory into a periodic one. In terms of control theory it means
stabilization of an unstable periodic orbit or equilibrium. A specific feature of
this problem is the possibility of achieving the goal by means of an arbitrarily
small control action. Other control goals like synchronization and chaotization
can also be achieved by small control in many cases.

Since 1975, when the term “chaos” was coined by Li and Yorke [267],
chaotic phenomena and chaotic behavior have been observed in numerous nat-
ural and model systems in physics, chemistry, biology, ecology, etc. Paradigm
of chaos allows to better understand inherent properties of natural systems.
Engineering applications are rapidly developing in areas such as lasers and
plasma technologies, mechanical and chemical engineering, and telecommuni-
cations. Possibilities of controlling complex behavior by means of small control
open new horizons both in science and in technology.

Development of new methods for control of chaos or “control by tiny cor-
rections” [103, 164, 403] may be of utmost importance for sustained develop-
ment of humanity. They may be efficient for solving problems where applying
stronger control is not possible either because of lack of resources (like in
many large scale systems: economies, energy systems, weather control, etc.)
or because intervening natural dynamics is undesirable (e.g., in biological and
biomedical applications, ecology systems).

It is worth noticing that, in spite of the enormous number of published
papers, not many rigorous mathematical results are so far available. A great
deal of results are justified by computer simulations rather than by analytical
tools and many problems remain unsolved. Main approaches to controlling
chaotic behavior are described below. Before exposition of the methods some
mathematical preliminaries are given concerning system models, control goals,
and properties of chaotic systems.

6.2 Notion of chaos

6.2.1 Definitions of chaos

There exist different definitions of chaotic system and chaotic behavior. The
following quotation gives an idea of the situation.
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There are many possible definitions of chaos. In fact, there is no gen-
eral agreement within the scientific community as to what constitutes
a chaotic dynamical system. (R. Devaney. A first course in chaotic
dynamical systems. Addison-Wesley, 1992.)

In most of definitions chaotic processes are treated as solutions of nonlinear
differential or difference equations, characterized by local instability and global
boundedness. It means that solutions with close initial conditions will diverge
to some finite distance after some time (so called “sensitive dependence on
initial conditions”). Below a typical definition and a typical criterion of chaos
are introduced. More detail and discussions see e.g. in [223, 304, 312, 332, 419].

Consider the system
ẋ = f(x), (6.2.1)

where x ∈ R
n is n-dimensional state vector, ẋ = d/dt stands for the time

derivative of x.
To define chaotic system the notions of attracting set, attractor, and a

chaotic attractor are used.

Definition 6.1. A set B0 is called the attracting set for the system (6.2.1) if
there exists an open set B such that B0 ⊂ B and

lim
t→∞

dist(x(t), B0) = 0 (6.2.2)

for any solution x(t) of (6.2.1) with x(0) ∈ B.

Definition 6.2. A closed attracting set B0 is called the attractor if it is
minimal, i.e., there is no smaller attracting subset of B0. The set of initial
conditions B for which (6.2.2) holds is called basin of attraction.

The minimality property of attractor expresses the fact that the trajectory
will pass through any vicinity of any point of attractor. Such a property is
also known as transitivity.

Definition 6.3. An attractor B0 is called chaotic if it is bounded and all
the trajectories starting from it are Lyapunov unstable. The system (6.2.1) is
called chaotic if it possesses at least one chaotic attractor.

Although the above definition is used very often, some alternatives have
been suggested in the literature. For example, the definition due to R.L.
Devaney [118] requires additionally that periodic trajectories are dense in the
attractor. Note that this requirement is often redundant because it follows
from the recurrence property inherent for both periodic and chaotic trajec-
tories (see the Anosov lemma below). Some authors prefer to use the term
“strange attractor” instead of “chaotic attractor.” The term “strange attrac-
tor” introduced by D. Ruelle and F. Takens [383] in 1971 means that the
attractor is a porous (fractal) set that cannot be represented as a piece of
manifold and therefore has a noninteger dimension (see the discussion of frac-
tal dimension below). Though the concepts of “strange attractor” and “chaotic
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attractor” are indistinguishable in many applications, there exist also strange
nonchaotic attractors proven theoretically and experimentally.

An important property of chaotic trajectories for control purposes is re-
currence: they return to any vicinity of any past value. A general definition
of recurrence is as follows.

Definition 6.4. The function x : R
1 → R

n is called recurrent if for any ε > 0
there exists Tε > 0 such that for any t ≥ 0 there exists T (t, ε), 0 < T (t, ε) < Tε

such that |x(t + T (t, ε)) − x(t)| < ε.

Introduction of recurrence property can be traced back to the end of the
19th and the beginning of the 20th century and related to the names of H.
Poincaré and G. Birkhoff. The recurrent function necessarily returns to any
vicinity of any previous value at least once and, therefore, infinitely many
times. Although time intervals between the returns are not equal, they are
bounded, i.e., cannot grow infinitely with time.

Recurrent trajectories possess two important properties formulated in
Pugh lemma and Anosov lemma in the 1960s and providing formal support of
the claim that chaotic attractor is the closure of all the periodic trajectories
contained in it, see [226].

Lemma 6.1. (C.C. Pugh). Let x̄(t), t ≥ 0 be the recurrent trajectory of the
system (6.2.1) with smooth f(x). Then for any ε > 0 there exists smooth
function f1(x) such that ||f1(x)||∞ + ||Df1(x)||∞ < ε and the solution x(t)
of the system ẋ = f(x) + f1(x) with same initial condition x(0) = x̄(0) is
periodic.

Lemma 6.2. (D.V. Anosov). Let x̄(t), t ≥ 0 be the recurrent trajectory of
the system (6.2.1) with smooth f(x). Then for any ε > 0 there exists x∗ such
that ||x∗ − x̄(0)|| < ε and the solution x(t) of the system (6.2.1) with initial
condition x(0) = x∗ is periodic.

Lemma 6.1 states that a recurrent trajectory can be transformed into a
periodic one by means of arbitrarily small change of the right-hand side of
the differential equation. Lemma 6.2 states that a recurrent trajectory can be
transformed into a periodic one by means of arbitrarily small change of initial
conditions.

The notion of attractor is related to the criterion of recurrence formulated
by G. Birkhoff in 1927.

Theorem 6.1. (G. Birkhoff). Any trajectory contained in the compact mini-
mal invariant set is recurrent. And any compact minimal invariant set is the
closure of some recurrent trajectory.

Recall that the point which is the limit point of a trajectory for t → +∞
is termed ω-limit point of this trajectory [226]. It follows from the Birkhoff
theorem that any solution starting from its ω-limit set (the set of all ω-limit
points) is recurrent. Under additional assumption that ω-limit set of x̄(t) is
attractor, any chaotic trajectory, starting from its ω-limit set is recurrent.
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In other words, a steady-state behavior of a dynamical system is typically
recurrent. On the contrary, the transient behavior cannot be recurrent.

6.2.2 Criteria of chaos

Since formal verification of chaoticity of a system behavior is usually very
difficult, various numerical criteria are used. The most standard criterion of
chaotic behavior is based on computation of the largest Lyapunov exponent.
For a linear system

ẋ = A(t)x (6.2.3)

the largest Lyapunov exponent is defined as follows

�L = lim
t→∞

ln|Φ(t, t0)|
t− t0

, (6.2.4)

where Φ(t, τ) is the transition matrix of the system (6.2.3) (square matrix,
generating solutions of (6.2.3) as x(t) = Φ(t, τ)x(τ) for all t, τ ∈ R

1. For
a nonlinear system the largest Lyapunov exponent along a solution x̄(t) is
defined as the largest Lyapunov exponent of the system (6.2.1), linearized
along x̄(t) (i.e., A(t) = ∂f(x̄(t))/∂x )

If the trajectory x̄(t) of (6.2.1) is bounded and �L > 0, then x̄(t) is chaotic.
Note that it is only sufficient condition. Necessary conditions are formulated
using more subtle characteristics: the so-called Bohl exponents. The value of
�L > 0 indicates the degree of exponential instability of the system.

To verify chaoticity of discrete-time systems the Sharkovsky–Li–Yorke cri-
terion and Marotto theorem can be used. At first we formulate a simple and
beautiful criterion of chaos for one-dimensional maps established in 1975 by
T. Li and J. Yorke [267].

Theorem 6.2. (Li-Yorke). If F is a continuous map of a segment of the real
axis to itself, and F has a periodic point of period 3, then F is chaotic (in the
sense of Definition 6.3).

The periodicity result of Li and Yorke can be derived from a more general
theorem established in 1964 by A. Sharkovsky [400]. Introduce the following
ordering in the set of natural numbers:

3 � 5 � . . . � 3 · 2 � 5 · 2 � . . . � 3 · 22 � 5 · 22 � . . . � 2n � . . . � 22 � 2 � 1

Theorem 6.3. (Sharkovsky). Consider a continuous map F : R
1 → R

1. If F
has a periodic point of period k, then F has a periodic point of any period n,
where k � n.

There are no direct analogs of the above results for multidimensional
systems. One sufficient condition of chaos was suggested by F. Marotto in
1978 [286].
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Theorem 6.4. (Marotto). Let F : R
n → R

n be a smooth map and x be
its fixed point. Suppose that for some ε > 0 and for some natural number
n there exists y such that ||y − x|| < ε, Fny = x, det(DFny) 	= 0 and
||Fx1−Fx2|| > ||y1−y2|| for all y1, y2, satisfying ||y1−x|| < ε, ||y2−x|| < ε.
Then F is chaotic in the sense of Definition 6.3.

6.2.3 Delayed coordinates and Poincaré map

Two other important tools to work with chaotic systems are delayed coordi-
nates and Poincaré map.

Delayed coordinates. Let only a scalar output y(t) = h(x(t)) of the system
(6.2.1) be available for measurement. It is often convenient to rewrite the
model of a nonlinear system in terms of measured output variables. To this
end the vector of delayed coordinates is defined as

X(t) = [y(t), y(t− τ), . . . , y(t− (N − 1)τ)]T ∈ R
N .

The initial system model (6.2.1) can be transformed in the delayed coordi-
nates as Ẋ = F̄ (X(t)). Embedding theorems claim that if N > 2n, where n
is dimension of the initial system (6.2.1) then generically there exists a diffeo-
morphism (smooth and smoothly invertible mapping) between the state space
of initial system and a subspace of the state space of the transformed system
such that if the initial system has an attractor of some dimension then the
transformed system will have an attractor of the same dimension.

Poincaré map. Poincaré map allows to consider discrete-time system in-
stead of continuous-time one and to reduce by 1 its dimension. To define
Poincaré map assume that x̄(t) be T -periodic solution (6.2.1) starting from
x0, i.e., x̄(t + T ) = x(t) for all t ≥ t0, x(t0) = x0. Let S be a smooth sur-
face (transverse surface or cross-section across x0), defined by the equation
s(x) = 0 where s : R

n → R
1 is a smooth scalar function such that it intersects

the trajectory in x0 transversely, i.e., s(x0) = 0,∇s(x0)TF (x) 	= 0. It can be
shown that the solution starting from x ∈ S = {x : s(x) = 0} close to x0 will
cross the surface s(x) = 0 again at least once. Let τ = τ(x) be the time of the
first return and x(τ) ∈ S be the point of the first return.

Definition 6.5. The mapping P : x �→ x(τ) is called the Poincaré map or
return map.

Since S lies in a n− 1-dimensional manifold, where n is dimension of x(t),
a coordinate chart can be introduced in S and after a coordinate change the
discretized system model can be written as follows:

xk+1 = P (xk), k = 0, 1, 2, . . . ,

where xk are n − 1-dimensional vectors. Behaviors of the initial continuous
system and of the discretized one are qualitatively the same. It motivates
study of the system dynamics by means of Poincaré map.
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For controlled systems described by models ẋ = F (x, u), instead of (6.2.1)
Poincaré section itself may depend on the control variable u and therefore
Poincaré map also depends on control: P : (x, u) �→ x(τ). In this case the
map, called controlled Poincaré map is formally defined and studied in [164].

6.3 Models of controlled systems and control goals

Let us recall material of Sections 2.1 and 2.2, focusing on models and goals,
typical for control of chaos.

Models of controlled systems. A formal statement of a control problem typ-
ically begins with a model of the system to be controlled (controlled system
or controlled plant) and a model of the control objective (control goal). If the
plant model is not given a priori (as in many real life applications) some ap-
proximate model should be determined in some way. Several classes of models
are considered in the literature related to control of chaos. The most com-
mon class consists of continuous systems with lumped parameters described
in state space by differential equations

ẋ = F (x, u), (6.3.5)

where x is n-dimensional vector of the state variables; u is m-dimensional
vector of inputs (control variables). The vector-function F (x, u) is usually
assumed continuously differentiable which guarantees local existence and
uniqueness of solutions of (6.3.5). The model should also include the de-
scription of measurements, i.e., the l-dimensional vector of output variables y
should be defined, for example

y = h(x). (6.3.6)

If the outputs are not defined explicitly, it is assumed that all the state vari-
ables are available for measurement, i.e., y = x.

More detail concerning different classes of controlled system models and
their peculiarities can be found in Chapter 2.

Control goals: Stabilization. A typical goal for control of chaotic systems
is stabilization of an unstable periodic solution (orbit). Let x∗(t) be the T -
periodic solution of the free (u(t) = 0) system (6.3.5) with initial condition
x∗(0) = x∗0, i.e., x∗(t + T ) = x∗(t) for all t ≥ 0. If the solution x∗(t) is
unstable, a reasonable goal is stabilization or driving solutions x(t) of (6.3.5)
to x∗(t) in the sense of fulfillment of the limit relation

lim
t→∞

[x(t) − x∗(t)] = 0 (6.3.7)

or driving the output y(t) to the desired output function y∗(t), i.e.,

lim
t→∞

[y(t) − y∗(t)] = 0 (6.3.8)
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for any solution x(t) of (6.3.5) with initial conditions x(0) = x0 ∈ Ω, where
Ω is a given set of initial conditions.

The problem is to find a control function in the form of either an open-loop
(feedforward) control

u(t) = U(t, x0) (6.3.9)

or in the form of state feedback

u(t) = U(x(t)) (6.3.10)

or output feedback
u(t) = U(y(t)) (6.3.11)

to ensure the goal (6.3.7) or (6.3.8).
Such a problem is nothing but a tracking problem standard for control

theory. However, the key feature of the control of chaotic systems is to achieve
the goal by means of sufficiently small (ideally, arbitrarily small) control.
Solvability of this task is not obvious since the trajectory x∗(t) is unstable.

A special case of the above problem is stabilization of the unstable equi-
librium x∗0 of system (6.3.5) with u = 0, i.e., stabilization of x∗0, satisfying
F (x∗0, 0) = 0. Again, this is just the standard regulation problem with an
additional restriction that “small control” solutions are sought. Such a re-
striction makes the problem far from standard: even for a simple pendulum,
nonlocal solutions of the stabilization problem with small control are non-
trivial. The class of admissible control laws can be extended by introducing
dynamic feedback described by differential or time-delayed models. Similar
formulations hold for discrete and time-delayed systems.

Chaotization. A second class of control goals corresponds to the problems
of excitation or generation of chaotic oscillations (also called chaotization,
chaotification, or anticontrol). Sometimes these problems can be reduced to
the form (6.3.8), but the goal trajectory x∗(t) is no longer periodic, while
the initial state is equilibrium. The goal trajectory may be specified only
partially. Otherwise, the goal may be to meet some formal criterion of chaos,
e.g., positivity of the largest Lyapunov exponent.

Synchronization. Third important class of control goals corresponds to
synchronization (more accurately, controlled synchronization as opposed to au-
tosynchronization or self-synchronization). Generally speaking, synchroniza-
tion is understood as concordance or concurrent change of the states of two
or more systems or, perhaps, concurrent change of some quantities related
to the systems, e.g., alignment of oscillation frequencies. If the required re-
lation is established only asymptotically, one may speak about asymptotic
synchronization. If synchronization does not exist in the system without con-
trol (u = 0) the following controlled synchronization problem may be posed:
find a control function u(t) ensuring synchronization in the closed-loop sys-
tem. In this case synchronization is the control goal. For example, the goal
corresponding to asymptotic synchronization of the two system states x1 and
x2 can be expressed as follows:
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lim
t→∞

[x1(t) − x2(t)] = 0. (6.3.12)

In the extended state space x = {x1, x2} of the overall system, relation (6.3.12)
implies convergence of the solution x(t) to the diagonal set {x : x1 = x2}.

Asymptotic identity of the values of some quantity G(x) for two systems
can be formulated as

lim
t→∞

[G(x1(t)) −G(x2(t))] = 0. (6.3.13)

Goal functions. To solve a control problem it is often convenient to rewrite
the goals (6.3.7), (6.3.8), (6.3.12), or (6.3.13) in terms of appropriate goal
function Q(x, t) as follows:

lim
t→∞

Q(x(t), t) = 0. (6.3.14)

For example, to reduce goal (6.3.12) to the form (6.3.14) one may choose the
squared Euclidean distance between state vectors of the subsystems as a goal
function:

Q(x) = |x1 − x2|2.
Instead of Euclidean norm other quadratic functions can also be used, e.g.,

for the case of the goal (6.3.7) the goal function

Q(x, t) = [x− x∗(t)]TΓ [x− x∗(t)],

where Γ is a positive definite symmetric matrix can be used. The choice
of the matrix Γ provides the possibility of weighting different components
of the system state vector to take into account differences in their scale or
importance.

In the case of chaotization problem, a goal function G(x) may be intro-
duced such that the goal is to achieve the limit inequality

limt→∞G(x(t)) ≥ G∗. (6.3.15)

Typical choice of the goal function for chaotization is the largest Lyapunov
exponent: G = λ1 with G∗ > 0. In some cases the total energy of mechanical
or electrical oscillations can serve as G(x).

In terms of goal functions more subtle control goals can be specified, e.g.,
the control goal may be to modify a chaotic attractor of the free system in the
sense of changing some of its characteristics (Lyapunov exponents, entropy,
fractal dimension, etc). The freedom of choice of the goal function can be
utilized for design purposes.

6.4 Methods of controlling chaos: Continuous-time
control

6.4.1 Feedforward control by periodic signal

Methods of feedforward control (also called nonfeedback or open-loop control)
change the behavior of a nonlinear system by applying a properly chosen input
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function u(t) – external excitation. Excitation can reflect influence of some
physical action, e.g., external force/field/signal, or it can be some parameter
perturbation (modulation). In all cases the value u(t) depends only on time
and does not depend on current measurements of the system variables. Such
an approach is attractive because of its simplicity: no measurements or extra
sensors are needed. It is especially advantageous for ultrafast processes at
the molecular or atomic level where no possibility of system variable online
measurements exists.

The possibility of significant changes to system dynamics by periodic ex-
citation has been known, perhaps, since the beginning of the 20th century.
A. Stephenson discovered in 1908 that a high-frequency excitation can stabi-
lize the unstable equilibrium of a pendulum [417]. Later theoretical results and
experiments of P.L. Kapitsa, N.N. Bogoljubov in the 1940s–1950s triggered
the development of vibrational mechanics and vibrational control. Analysis
of general nonlinear systems affected by high-frequency excitation is based
on the Krylov–Bogoljubov averaging method [83]. According to the averaging
method stability analysis of a periodically excited system is reduced to analysis
of the simplified averaged system. The method provides conditions guaran-
teeing approximate stabilization of the given equilibrium or the desired (goal)
trajectory. A related form of averaging method deals with systems excited
by stochastic disturbance (dither). Accuracy of averaging method increases if
excitation contains high-frequency harmonics. For physical systems it implies
high forcing amplitudes.

In control theory, high-frequency excitation and parameter modulation
were studied within the framework of vibrational control [62, 292] and dither
control [459]. However, the above-mentioned works dealt only with the prob-
lem of stabilizing a given equilibrium or the desired (goal) trajectory. In [305,
308], the use of piecewise constant dither control to modify system dynamics
(nonlinearity shape, equilibrium points, etc.) for systems in Lur’e form was
proposed. In particular, the creation and elimination of chaotic behavior was
studied using heuristic conditions for chaos suggested by [175] . A vast liter-
ature is devoted to excitation with medium frequencies – those comparable
with the natural frequencies of the system.

The possibility of transforming a periodic motion into chaotic one and
vice versa by means of periodic excitation of medium level was demonstrated
still in mid-1980s by a group of researchers from Moscow State University [9,
10, 123, 249, 253, 312]. In 1983, K. Matsumoto and I. Tsuda demonstrated
the possibility of suppressing chaos in a Belousov–Zhabotinsky reaction by
adding a white noise disturbance [288]. Those results were based on computer
simulations. In 1988 M.Pettini [347] and in 1990, R. Lima and M. Pettini [270]
studied Duffing–Holmes oscillator

ϕ̈− cϕ + bϕ3 = −aϕ̇ + d cos(ωt) (6.4.16)

by Melnikov method. The right-hand side of (6.4.16) was considered as a small
perturbation of the unperturbed Hamiltonian system. The Melnikov function
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related to the rate of change of the distance between stable and unstable mani-
folds for small perturbations was calculated analytically and parameter values
producing chaotic behavior of the system were chosen. Then additional exci-
tation was introduced into the parameter of nonlinearity b → b(1 + η cosΩt)
and a new Melnikov function was computed and studied numerically. It was
shown that if Ω is close to the frequency of initial excitation ω then chaos
may be destroyed. Experimental confirmation of this phenomenon was pre-
sented in 1991 using a magnetoelastic device with two permanent magnets,
an electromagnetic shaker and an optical sensor.

Recent investigations, see e.g. [98, 99, 271, 278] were aimed at better sup-
pression of chaos with smaller values of excitation amplitude and providing
convergence of the system trajectories to the desired periodic orbit (limit cy-
cle), better justification of theoretical results. Control of discrete-time systems
(maps) and autonomous systems were also studied. Since Melnikov method
leads to intractable calculations for state dimensions greater than two, analyt-
ical results are known only for periodically excited systems with one degree of
freedom. For higher dimensions computer simulations are used. The general
problem of finding analytic conditions for creation or suppression of chaos by
feedforward periodic excitation of small or medium level still remains open.

In a number of papers the choice of excitation function is based on tailor-
ing it to the system nonlinearity. Let the controlled system be described by
equations:

ẋ = f(x) + Bu, x ∈ R
n, u ∈ R

m. (6.4.17)

Now let m = n and detB 	= 0. If the desired solution of the controlled system
is x∗(t) then an intuitively reasonable choice of excitation is

u∗(t) = B−1(ẋ∗(t) − f(x∗(t)), (6.4.18)

because x∗(t) will satisfy the equations of the excited system, see [203]. The
equation for the error e = x − x∗(t) is then ė = f(e + x∗(t)) − f(x∗(t)). If
the linearized system with matrix A(t) = ∂f(x∗(t))/∂x is uniformly stable
in the sense that A(t) + A(t)T ≤ −λIn for some λ and for all t ≥ 0 then all
solutions of (6.4.17), (6.4.18) will converge to x∗(t) (more general convergence
conditions can be found in [164]. In the case when m < n and B is singular
the same result is valid under matching conditions: vector ẋ∗(t) − f(x∗(t))
is in the span of the columns of B. Then the control can be chosen to be
u∗(t) = B+(ẋ∗(t) − f(x∗(t)), where B+ is the pseudoinverse matrix. Despite
the fact that the uniform stability condition rules out chaotic (i.e., unstable)
trajectories, it is claimed in a number of papers that some local convergence
to chaotic trajectories is observed if the instability regions are not dominating.

The applications of feedforward control of chaos to control of CO2 lasers,
Josephson junctions, liquid crystal models, bistable mechanical devices, cir-
cular yttrium-ion-garnet films, Murali–Lakshmanan–Chua electronic circuit,
FitzHugh–Nagumo equations describing propagation of nerve pulses in a neu-
ronal membrane etc. were reported, see [27, 28].
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An interesting application is related to control of the dipole domains.
As was demonstrated in [392], propagation of the dipole domains in the
GaAs/AlAs-superlattice can be controlled by an external high-frequency field.
The doped GaAs/AlAs-superlattice manifests negative conductivity, which
leads to propagation of the dipole domains. Various, including chaotic, modes
of domain propagation occur depending on the frequency of external action.
Frequency locking was shown to be realizable by maintaining the external field
frequency within a certain range which extends with the amplitudes of high-
frequency voltage. Outside this range, quasiperiodic and chaotic oscillations
occur.

Summarizing, a variety of different open-loop methods have been pro-
posed. Most of them were evaluated by simulation for special cases and model
examples. However, the general problem of finding conditions for creation or
suppression of chaos by feedforward excitation still remains open.

6.4.2 Linearization of Poincaré map (OGY method)

A real burst of interest in the control of chaotic systems was caused by the
paper by E. Ott, C. Grebogi, and J. Yorke [331] published in 1990. In this
paper two key ideas were introduced:

1 To use the discrete system model based on linearization of the Poincaré
map for controller design.

2 To use the recurrence property of chaotic motions and apply control action
only at time instants when the motion returns to the neighborhood of the
desired state or orbit.

Numerous extensions and interpretations have been proposed by different au-
thors in subsequent years and the method is commonly referred to as the
“OGY method.” The essence of the OGY method is as follows.

Let the controlled system be described by the state space equations

ẋ = F (x, u), (6.4.19)

where x ∈ R
n, u ∈ R

1. Let the desired (goal) trajectory x∗(t) be a solution of
(6.4.19) with u = 0. The goal trajectory may be either periodic or chaotic: in
both cases it is recurrent. Draw a surface (Poincaré section)

S = {x : s(x) = 0} (6.4.20)

through the given point x0 = x∗(0) transversely to the solution x∗(t) (i.e.,
∂s(x)/∂x F (x, 0) 	= 0). Consider the map x �→ P (x, u) where P (x, u) is the
point of first return to S of the solution to (6.4.19) with constant input u
started from x. The map x �→ P (x, u) is called the controlled Poincaré map. It
is well defined at least in some vicinity of the point x0 owing to the recurrence
property of x∗(t). Iterating the map leads to a discrete-time system
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xk+1 = P (xk, uk), (6.4.21)

where xk = x(tk), tk is the time of the kth crossing and uk is the value of
u(t) between tk and tk+1. Another way of creating a discrete-time model of
controlled system is applying a pulse control action rather than a piecewise
constant one: u(t) = uk/ε for tk ≤ t ≤ tk + ε, u(t) = 0 for tk + ε < t < tk+1.
For small ε > 0 it leads to an affine in control model xk+1 = f(xk)+ g(xk)uk.

The next step of the control law design is to replace the initial system
(6.4.19) by the linearized discrete system

x̃k+1 = Ax̃k + Buk, (6.4.22)

where x̃k = xk − x0 and to find a linear stabilizing controller uk = Cx̃k for
(6.4.21) by means of one of standard methods of linear control theory. Finally,
the control law is endowed with the switching off rule applied when the error
exceeds some threshold value ∆ as follows:

uk =

{
Cx̃k, if |x̃k| ≤ ∆,

0, otherwise.
(6.4.23)

A key point of the method is to apply control only in some vicinity of the
goal trajectory by introducing the switching off threshold (“outer” deadzone).
This has the effect of bounding control action and allows to respect small
control restriction, based on the special recurrence feature of chaotic motions.

Efficiency of such an approach has been confirmed by numerous simula-
tions performed by different authors. However, the convergence rate may be
low that is the price of achieving nonlocal stabilization of a nonlinear system
by small control.

There are two important problems making implementation of the method
difficult: lack of information about the system model and incomplete mea-
surements of the system state. The second difficulty can be overcome by re-
placing the initial state vector x by the so-called delayed coordinates vector
X(t) = [y(t), y(t−τ), . . . , y(t− (N−1)τ ]T ∈ R

n, where y = h(x) is the output
(e.g. one of the system coordinates) available for measurement and τ > 0 is
delay time. Then the control law has the form:

uk =



U(yk, yk,1, . . . , yk,N−1),

if |yk,i − y∗| ≤ ∆, i = 1, . . . , N − 1,
0, otherwise,

(6.4.24)

where yk,i = y(tk−iτ), ∆ is the switching off threshold, U(yk, yk,1, . . . , yk,N−1)
is the control law designed using one of the methods of linear control theory.

A special case of algorithm (6.4.24) introduced by E. Hunt [204] in 1991 was
termed occasional proportional feedback (OPF). The OPF algorithm is used
for stabilization of the amplitude of a limit cycle and is based on measuring
local maxima (or minima) of the output y(t), i.e., the Poincaré section S is
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defined as in (6.4.20) with s(x) = ∂h/∂x F (x, 0). Obviously, crossing of S
occurs when ẏ(t) = 0. If yk is the value of the kth local maximum, then the
OPF method suggests a simple control law

uk =

{
Kỹk, if |ỹk| ≤ ∆,

0, otherwise,
(6.4.25)

where ỹk = yk − y∗ and y∗ = h(x0) is the desired upper level of oscillations.
To overcome the first problem – uncertainty of the linearized plant model

it was suggested by Ott–Grebogi–Yorke and their followers to estimate para-
meters of the Poincaré map (in state-space form or in the form depending on
the delayed coordinates).

The problem of parameter estimation (identification) falls within the scope
of the identification theory. It is well known that using identification algo-
rithms in closed-loop (i.e., together with control algorithms) may prevent
from “good” estimation. Therefore, justification of the algorithms (6.4.24)
and (6.4.25) is hard.

A new version of identification algorithm allowing for its justification was
proposed by A. Fradkov and P. Guzenko in 1997 [150, 152, 164] for the special
case when yk,i = yk−i, i = 1, . . . , n. In this case the outputs are measured and
control action is changed only when the trajectory crosses the surface. The
input–output model has the following form:

yk + a1yk,1 + · · · + aN−1yk,N−1 = b1uk + · · · + bN−1uk−N−1. (6.4.26)

The model (6.4.26) contains fewer coefficients than the state-space model
(6.4.22). It facilitates the controller design. For estimation, the method of re-
cursive goal inequalities due to V.A. Yakubovich was used, allowing to resolve
the problem of identification in the closed-loop by means of introducing an ad-
ditional inner deadzone. An inner deadzone combined with outer deadzone of
the OGY method provides robustness of the identification-based control with
respect to both model errors and measurements errors. The Fradkov–Guzenko
algorithm suggests the standard model reference based linear control law

ūk = b−1
1

(
(a1−g1)yk,1 + · · ·+(aN −gN )yk,N−1−b2uk−1−· · ·−bN−1uk−N−1

)
,

(6.4.27)
where gi, i = 1, 2, . . . , N − 1 are coefficients of the reference model, chosen
to ensure stability of the polynomial G(λ) = λN−1 + g1λ

N−2 + · · ·+ gN−1. In
a more compact vector form the law (6.4.27) is as follows:

ūk = θT
kX(tk), (6.4.28)

where θk ∈ R
2(N−1) is the vector of the current estimates of the controller

(6.4.27) parameters, X(tk) is the vector of the delayed coordinates. Parameter
estimates are adjusted according to the adaptation algorithm
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µk+1 =




1, if|yk+1 − y∗| > ∆y and
|yk−i − y(tk−i)| < ∆, i = 0, . . . , N − 1,

0, else;

θ′k+1 =




θk − γ(signb0)(yk+1 − y∗)wk/‖wk‖2,

if µk+1 = 1,
θk else;

u′
k+1 = θT

k+1wk+1

θk+1 =




θ′k+1 if |u′
k+1| ≤ u and µk+1 = 1,

θ′k+1 − (u′
k+1 − u)/‖wk‖2, if u′

k+1 > u and µk+1 = 1,
θ′k+1 − (u′

k+1 + u)/‖wk‖2, if u′
k+1 < −u and µk+1 = 1,

θk, if µk+1 = 0.
(6.4.29)

where γ > 0 is the adaptation gain, u is maximum admitted value of control;
∆y is maximum admitted value of the difference between yk and y∗. The
value of the threshold ∆ is related to the size of the “tube” around the base
trajectory x(t), where the input–output model (6.4.26) is defined.

The above adaptive control algorithm is justified for recurrent systems
under the so-called n-observability condition, ensuring that the state remains
small is the output of the controlled system is small at some n consecutive
crossings.

Further modifications and extensions to the OGY method have been re-
cently proposed extending the basin of attraction and reducing the transient
time: a multi-step version; a quasicontinuous extension; iterative refinement,
etc.

Efficiency of the OGY method has been demonstrated by physical ex-
periments with magnetoelastic ribbon [120], glow discharge, nonautonomous
RL-diode circuit. The OPF method has been used for stabilization of the fre-
quency emission from a tunable lead-salt stripe geometry infrared diode laser
and implemented in an electronic chaos controller, see references in [27].

6.4.3 Delayed feedback (Pyragas method)

The method of time-delayed feedback suggests to find and stabilize a
τ -periodic orbit of the nonlinear system (6.3.5) by a simple control action

u(t) = K[x(t) − x(t− τ)] (6.4.30)

where K is feedback gain, and τ is time-delay. If τ is equal to the period of
an existing periodic solution x̄(t) of (6.3.5) for u = 0 and the solution x(t) to
the closed-loop system (6.3.5), (6.4.30) starts from Γ = {x̄(t)}, then it will
remain in Γ for all t ≥ 0. A puzzling observation was made however, that x(t)
may converge to Γ even if x(0)∈̄Γ .
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The law (6.4.30) applies also to stabilization of forced periodic motions
in system (6.3.5) with a T -periodic right-hand side. Then τ should be chosen
equal to T . The formulation of the method for stabilization of fixed points and
periodic solutions of discrete-time systems is straightforward. The method was
proposed by Lithuanian physicist K. Pyragas in 1992 and is also called the
Pyragas method [362].

An extended version of the Pyragas method has also been proposed with

u(t) = K

M∑
k=0

rk[y(t− kτ) − y(t− (k + 1)τ ] (6.4.31)

where y(t) = h(x(t)) ∈ R
1 is the observed output and rk, k = 1, . . . ,M are

tuning parameters. For rk = rk, |r| < 1, and M → ∞ the control law (6.4.31)
tends to

u(t) = K[y(t) − y(t− τ)] + Kru(t− τ) (6.4.32)

Despite simplicity of the algorithms (6.4.30)–(6.4.32), analytical study of
the closed-loop behavior is difficult. T. Ushio [431] established a simple nec-
essary condition (“oddness limitation”) for stabilizability with a Pyragas con-
troller (6.4.30) for a class of discrete-time systems. Proofs for more general
and continuous-time cases were given independently in [217, 310]. The result
is as follows. Let Φ(t) be the fundamental matrix of the system (6.3.5) lin-
earized along given τ -periodic solution x∗(t). Evaluate the matrix Φ(τ) (called
monodromy matrix or Floquet matrix) and then the eigenvalues of Φ(τ) (called
multipliers) µi, i = 1, 2, . . . , n that are linked to the Lyapunov exponents �i

of the τ -periodic solution x∗(t) by the relations �i = τ−1 ln |µi|.
The above-mentioned necessary condition is that the number of real un-

stable multipliers (eigenvalues of the matrix Φ(τ) with absolute value exceed-
ing 1) should not be odd.

Just et al. [218] gave a more detailed analysis and established approximate
bounds for a stabilizing gain K. It is worth to notice that the set of the
values of K providing stablization [217, 218] includes small values of K for
small instablity degree max �i, and vanishes for sufficiently large instablity
degree max �i of the linearized system. H. Schuster and M. Stemmler [393]
showed that the “oddness limitation” can be relaxed by means of a periodic
modulation of the gain K.

More information about dynamics of the control system is available for
a generalized Pyragas controller, proposed by M. Basso, R. Genesio, and
A. Tesi [55, 56]:

u(t) = G(p)[y(t) − y(t− τ)] (6.4.33)

where G(p) is transfer function of the linear time-invariant filter, p = d/dt.
System (6.3.5), (6.4.33) was considered as a Lurie system (system repre-
sented as feedback connection of a linear dynamical part and a (static or
dynamic) nonlinearity) and studied by the methods of absolute stability the-
ory [265, 266, 451]. It allowed to obtain sufficient conditions on the transfer
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function of the linear part and on the slope of nonlinearity under which there
exists stabilizing law (6.4.33). In [56], the procedures for “optimal” controller
design, maximizing the stability bound as well as extension to systems with
a nonlinear nominal part were proposed.

Choosing |r| > 1, in (6.4.32) one obtains the algorithm with an unstable
internal dynamics. However, such an algorithm is realizable if the closed-loop
system is stable. It was shown by K. Pyragas [363] that using an unstable
controller allows to significantly weaken limitations for the monodromy matrix
Φ(t) and, particularly, to remove the “oddness” limitation.

The Pyragas method was extended to coupled (open flow) systems, mod-
ified for systems with symmetries, and extended to include an observer es-
timating the difference between the system state and the desired unstable
trajectory (fixed point).

Reported applications include stabilization of coherent modes of lasers,
magnetoelastic systems, control of cardiac conduction model, control of stick-
slip friction oscillations, traffic models, PWM controlled buck converter, paced
excitable oscillator described by the FitzHugh–Nagumo model, catalytic re-
actions in bubbling gas–solid fluidized bed reactors.

A drawback of the control law (6.4.30) is its sensitivity to parameter choice,
especially to the choice of the delay τ . Apparently, if the system is T -periodic
and the goal is to stabilize its forced T -periodic solution, then the choice
τ = T is mandatory. If the period T is unknown, a heuristic trick can be used:
to simulate the unforced system with initial condition x(0) until the current
state x(t) approaches x(s) for some s < t, i.e., until |x(t) − x(s)| < ε with a
sufficiently small ε. Then the choice τ = t− s will give a reasonable estimate
of a period and the vector x(t) will be an initial condition to start control.
However, such an approach often gives overly large values of the period.

An alternative is to introduce the adaptation of the delay time τ . A. Kittel,
J. Parisi, and K. Pyragas proposed in [235] the following adaptive delayed
feedback for the case when the Poincaré section S transverse to the desired
trajectory is additionally given: u(t) = K[y(t)−y(t−τk)], where τk = tk−tk−d

is changing at the time tk of the kth crossing of S (e.g., time of the kth
maximum of the output y(t)). Specifying an integer d one may stabilize a
d-periodic orbit of the Poincaré map.

Since chaotic attractors contain periodic solutions of different periods, an
important problem is to find and to stabilize (with small control) the solution
with the smallest period. This problem remains open.

6.4.4 Linear and nonlinear control

Many standard control engineering notions and techniques are suitable for the
control of chaos. In some cases even the simple proportional feedback,

u(t) = KB+(x− x∗(t)), (6.4.34)

or more sophisticated open-plus-closed-loop (OPCL) algorithm [212]
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u(t) = B+[ẋ∗(t) − f(x∗(t)) −K(x− x∗(t))]. (6.4.35)

where K is gain matrix, x∗(t) is the desired (reference) trajectory, B+ is
pseudoinverse matrix, allow to achieve the desired control goal for controlled
systems ẋ(t) = f(x(t)) + Bu. If the goal trajectory has bounded velocity, the
necessary condition for its stabilization is the stability of the matrix A(t) +
B KB+, where A(t) = ∂F

∂x (x̄∗(t)) is the matrix of the system model linearized
near the desired trajectory. If the matrix A(t) is unstable (which is common
for chaotic systems), then stability of A(t) + B KB+ can be easily ensured
for dimx = dimu.

However, in most practical applications the number of controls is less than
the number of system states. Then numerous methods of modern nonlinear
control can be applied. Below two large classes of nonlinear control methods
will be presented: feedback linearization and goal-oriented techniques.

Feedback linearization. To perform feedback linearization means to find a
smooth coordinate change z = Φ(x), x ∈ Ω and a feedback transformation of
the control variable u = α(x)+β(x)v, such that in new variables the controlled
system dynamics is described by a linear state space model ż = Az+Bv. The
theory of feedback linearization was briefly presented in Section 2.4.3. Below
we illustrate it by example: control of the Lorenz system.

Example 6.1. (Feedback linearization control of the Lorenz system). Con-
sider the controlled Lorenz system with control appearing in the third equa-
tion:

ẋ1 = σ(x2 − x1),
ẋ2 = rx1 − x2 − x1x3,

ẋ3 = −βx3 + x1x2 + u.

Let y = x1. Then

Lfy = ẏ = ẋ1 = σ(x2 − x1),

L2
fy = Lf (Lfy) = ẍ1 = σ(ẋ2 − ẋ1) = σ

[
(r + 1)x1 − 2x2 + x1x3

]
,

and, therefore, relative degree is equal to 3 everywhere except the plane x1 = 0.
New coordinates can be chosen as follows:

z = Φ(x) : z1 = x1,

z2 = σ(x2 − x1),

z3 = σ
[
(r + 1)x1 + 2x2 + x1x3

]
,

x = Φ−1(z) : x1 = z1,

x2 =
1
σ
z2 + z1,

x3 =
1
x1

[
1
σ
z3 − (r − 1)z1 −

2
σ
z2

]
.
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It is seen that the system is feedback linearizable for x1 	= 0. Thus for Lorenz
system there is no globally defined smooth feedback linearizing transforma-
tion. Feedback linearization allows to stabilize the system to any fixed point
in any half-space

{
x1 < 0

}
,
{
x1 > 0

}
is not suitable for global stabilization

of the Lorenz system.
Feedback linearization was applied to control of chaotic systems, e.g., in

[14, 49, 105, 456]. Its drawback is in that the approach ignores the internal
dynamics of the system and formally allows to achieve any desired dynamics
of the closed-loop system. In fact, the achievement of arbitrary dynamical
behavior may require significant power of control, e.g., if the initial state
is far from the desired one or the desired motion is rapidly changing. Such
a drawback is typical for a number of works based on conventional control
theory approaches.

Another problem is that of incomplete measurements. Standard approach
to output feedback control is using an observer-based controller that allows
for systematic use of dynamic output feedback. Proportional feedback in the
extended space (x, u) (i.e., dynamic feedback) aimed at achievement of the
desired dynamics of the closed-loop system was proposed and examined in
[282, 461].

The potential of dynamic feedback can be better exploited using an
observer-based framework that allows for systematic use of output feedback.
A survey of nonlinear observer techniques can be found in [315] (see also
Section 5.2). Linear high-gain observer-based control for globally Lipschitz
nonlinearities was studied in [268].

Note that models of chaotic systems often do not satisfy a global Lipschitz
condition owing to the presence of polynomial nonlinearities x1x2, x2, etc.
Although trajectories of chaotic systems are bounded, this is not necessarily
the case when the system is influenced by control. Therefore, special atten-
tion should be paid to providing boundedness of the solutions by appropriate
choice of controls. Otherwise the solution may escape in finite time and it
does not make sense to discuss stability and convergence issues. The possibil-
ity of escape in nonlinear controlled systems is often overlooked in application
papers.

Goal-oriented techniques. A number of methods are based on reduction
of the current value of some goal (objective) function Q(x(t), t). The current
value Q(x(t), t) may reflect the distance between the current state x(t) and
the current point of the goal trajectory x∗(t), such as Q(x, t) = |x − x∗(t)|2,
or the distance between the current state and the goal surface h(x) = 0,
such as Q(x) = |h(x)|2. For continuous-time systems the value Q(x) does
not depend directly on control u and decreasing the value of the speed
Q̇(x) = ∂Q/∂xF (x, u) can be posed as immediate control goal instead of
decreasing Q(x). This is the basic idea of the speed-gradient (SG) method,
see Section 2.4.2 that was first used for control of chaotic systems in [137, 162,
163].
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Example 6.2. (Stabilization of the equilibrium point of the thermal convec-
tion loop model). One of the simplest experimental setup which can demon-
strate complex oscillatory behavior is the chaotic thermal convection loop.
In the literature the following controlled thermal convection loop model was
considered [411]:

ẋ = σ(y − x),
ẏ = −y − xz,

ż = −z + xy − r + u,

(6.4.36)

where u is the control variable which is a fluctuation in the heating rate super-
imposed on the nominal rate r, σ is the Prandtl number and r is the Raleigh
number. This model can be obtained from the Lorenz system [276] by replacing
z− r with z and assuming that r = const and b = 1. For u = 0 and 0 < r < 1
the system has one stable globally attracting equilibrium (0, 0,−r) that cor-
responds to the no-motion state of the thermal convection. At r = 1, two
additional equilibrium points C+ and C− emerge: x = y = ±

√
r − 1, z = −1.

The convection equilibria lose their stability in the Andronov–Hopf bifurca-
tion at r = σ(σ + 4)/(σ − 2). For larger values of the parameter r the system
has no more equilibrium points.

In [411], the on–off controller was proposed to stabilize the inherent un-
stable equilibrium point of this system:

u = −γsgn(z + 1). (6.4.37)

Practical experimentation showed that the controller (6.4.37) stabilizes the
thermal convection in either clockwise or counterclockwise direction that cor-
responds to the stabilization of one of the equilibria C+ or C−.

It is easy to see that the controller (6.4.37) is a special case of the speed-
gradient algorithm in finite form (2.4.51) for the objective function

Q(x, y, z) = (x−
√
r − 1)2/σ + (y −

√
r − 1)2 + (z + 1)2.

Indeed, calculating the time derivative of Q along trajectories of (6.4.36) yields

Q̇(x, y, z, u) = ω(x, y, z, u) = −(x− y)2 +
(√

r − 1(x−
√
r − 1) + u

)
(z + 1).
(6.4.38)

Evaluating partial derivative of (6.4.38) with respect to u and choosing ψ(z) =
εsgn(z + 1) one can notice that the control law (6.4.37) is a particular case of
the relay algorithm (2.4.51). It was shown in [164] that any trajectory of the
overall system tends to some rest point contained in the set of points (x, y, z)
such that

{
x = y,

∣∣(x +
√
r − 1)(x−

√
r − 1)

∣∣ ≤ γ, z = −1
}
. (6.4.39)

It yields convergence of the solution to the vicinity of one of the inherent
equilibrium points C+ or C−. The size of the limit vicinity is of order γ.
Hence for small γ the limit point can be put arbitrarily close to the desired
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equilibrium. However, the price of good accuracy is long transition time which
is inversely proportional to γ for small γ.

Other methods. For stabilization of a goal point or manifold other methods
of modern nonlinear control theory have been used, e.g., center manifold the-
ory backstepping iterative design or the method of macrovariables; passivity-
based design; absolute stability theory; H∞ control; combination of Lyapunov
and feedback linearization methods, see surveys [27, 28, 153].

A number of papers is devoted to application of variable structure systems
(VSS) and sliding modes [239, 453, 457]; Note that VSS algorithms for the
switching surface h(x) = 0 coincide with the speed-gradient algorithms for
the goal function Q(x) = |h(x)|.

A fruitful direction is the use of frequency-domain methods applied to
nonlinear control. In particular, approximate methods of harmonic balance for
evaluation and prediction of chaotic modes can be used together with rigorous
absolute stability theory [57]. An interesting method within this framework
employs a selective (“washout”) filter which damps all signals with frequencies
beyond some narrow range [295]. If such a filter is included in the feedback
loop of a chaotic system and the base frequency of the filter coincides with
the frequency of one of the existing unstable periodic solutions, then it is
plausible that the system will be in a periodic motion rather than in chaotic.
This approach was applied to control of lasers.

The majority of nonlinear control approaches can be grouped into two large
classes: Lyapunov approaches (speed-gradient, passivity-based methods) and
compensation approaches (feedback linearization, geometric methods, etc.).
The interrelation between these classes can be illustrated as follows. Let the
control goal be stabilization of some output variable y = h(x) of the affine
system ẋ = f(x)+g(x)u, at zero level. Lyapunov (or speed-gradient) methods
introduce a goal function Q(x) = |h(x)|2 and gradually decrease its derivative
Q̇ according to the condition hT∂h/∂x(f + gu) < 0, e.g., moving along the
speed-gradient (antigradient of Q̇):

u = −γgT(∇h)h.

To respect the “small control” requirement it is necessary to choose sufficiently
small gain γ > 0 .

On the other hand, the compensation approaches introduce an auxiliary
macrovariable α(x) = ẏ + �y with some � > 0 and immediately force it to
zero with the control:

u = −fT(∇h) + �h

gT(∇h)
.

Note that α = 0 if and only if Q̇ = −2�Q, i.e., compensation is equivalent to
specifying a rate decrease of Q(x). As a result, any desired “instantaneous”
transient rate can be achieved at the cost of loss of flexibility and loss of the
“small control” property.

Therefore using the well-developed machinery of modern linear and non-
linear control theories often does not take full account of the special aspects
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of chaotic motions. This often means that the “small control” requirement is
violated. To respect the “small control” requirement the gain γ > 0 should be
sufficiently small. An outer deadzone may be introduced in terms of the goal
function, e.g.,

u(t) =

{
−γ∇uQ̇(x, u), if |Q(x(t))| ≤ ∆,

0, otherwise.
(6.4.40)

Another peculiarity of chaotic systems is that the models of chaotic sys-
tems often do not satisfy global Lipschitz condition owing to the presence of
polynomial nonlinearities x1x2, x2, etc. Although trajectories of chaotic sys-
tems are bounded, it is not necessarily the case when the system is influenced
by control. Therefore a special attention should be paid to providing bound-
edness of the solutions by special choice of controls. Otherwise the solution
may escape in finite time and it will not make sense to discuss stability and
convergence issues.

6.4.5 Adaptive control

In a variety of physical applications parameters of the system under control
are unknown. Information about the structure of the model may also be in-
complete. It makes adaptive control schemes very promising. Most methods
belong to either direct or indirect (identification based) parametric adaptive
control schemes. It means that the model of the system is represented in a
parametric form:

ẋ = F (x, θ, u), y = h(x), (6.4.41)

where θ is a vector of unknown parameters. Based on (6.4.41), a parametric
representation of the controller is

u = U(x, u, ξ), (6.4.42)

where ξ depends on θ, i.e., ξ = Φ(θ) for some mapping Φ(·).
Measured time series of states {x(t)} or outputs {y(t)} are utilized (offline

or online) to evaluate adaptation (tuning) parameters which are estimates of
either the system parameters θ̂(t), or the controller parameters ξ̂(t).

Two approaches can be used for choosing the adaptation parameters: direct
and indirect (identification based) ones. In the direct approach the adaptation
parameters are the parameters θ in (6.4.41); in the identification approach the
vector of adjustable parameters is the estimates ξ̂ of the unknown parameters
ξ. In the identification approach the equation of the tunable model is often
used:

ẋm(t) = F (xm, u, t, ξ̂). (6.4.43)

For design of adaptation algorithms an auxiliary control objective which ex-
presses the desired dynamics of the plant (6.4.41) and tunable model (6.4.43)
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can be used. For example, to formalize the goal “variable xm must tend to
x,” the goal functional

Q(xm, x, t) = Q(x− xm(t)), (6.4.44)

can be used which includes explicitly the solution xm(t) of (6.4.43) (the case
of explicit tunable model). Instead of (6.4.44), it is also possible to choose the
goal function

Q̃(x, ξ̂, t) = Q̃(F (x(t), u(t), t, ξ) − F (xm(t), u(t), t, ξ̂)) (6.4.45)

(the case of implicit tunable model). In both cases (direct and indirect
schemes) Q(x, ξ̂, t) is a nonnegative smooth scalar function. In both cases
one can write out the so-called generalized plant equation:

˙̃x = F̃ (x̃, t, θ) or ˙̃x = F̃ (x̃, t, ξ̂), (6.4.46)

which can be obtained by substitution of (6.4.42) into (6.4.41) and assuming
that ϕ ≡ 0. In the direct approach the adaptation algorithm is given by

θ(t) = Θ′[x(s), u(s), θ(s), 0 ≤ s ≤ t]. (6.4.47)

In the identification approach the parameter update law has the following
form:

ξ̂(t) = Θ′′[x(s), u(s), ξ̂(s), 0 ≤ s ≤ t]. (6.4.48)

It is worth mentioning that sometimes it is difficult to distinguish direct
and identification approaches. Moreover, the designer may combine direct and
identification approaches in order to improve the system performance.

For the adaptation (tuning) of parameters a variety of existing methods
can be used such as gradient, speed-gradient, least-squares, weighted least-
squares, etc. For the continuous-time case a wide class of adaptation al-
gorithms are encompassed by speed-gradient algorithm in differential form
(2.4.40). The input data for the design procedure are the generalized plant
equation (6.4.46) and the control objective (in the case of the identification
approach one has to take the new objective (6.4.44) or (6.4.45)). If the in-
fluence of the disturbances cannot be neglected, robustified versions of the
algorithms may be used.

Most existing results are based on linearly parameterized models (6.4.41)
or linearly parameterized controllers (6.4.42). The controller (6.4.42) is usually
designed using model reference or feedback linearization approaches. Proofs
are typically based on Lyapunov functions, quadratic in original or in some
transformed variables.

6.5 Discrete-time control

Some discrete-time algorithms were already mentioned in Section 6.4.2 (when
discussing methods based on the Poincaré map) and in Section 6.4.3. They can
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be considered as some kind of sample-data control. There are many results on
stability of sample-data feedback control systems in the literature that may
be employed for chaos control.

Although many authors use the term “optimal control,” in most cases
only locally optimal solutions are proposed, based on minimization over u
of one-step-ahead losses Q(Fd(xk, u), u), where Fd comes from plant model
(2.1.11) and Q(x, u) is a cost function, e.g., Q(x, u) = |x−x∗|2 +κ|u|2, see [1].
The choice of a large weight κ > 0 allows enforcement of the “small control”
requirement. For large κ locally optimal control is close to the gradient uk+1 =
−γ∇uQ(Fd(xk, u), u), with small γ > 0 [164].

A substantial number of the papers devoted to discrete-time control of
chaos deal with low-order examples. The variety of discrete-time examples of
chaotic systems seems even broader than that of continuous-time ones owing
to a number of one- and two-dimensional systems that do not have continuous-
time counterparts (this follows from Poincaré–Bendixon theorem stating that
a smooth autonomous differential system evolving on a two-dimensional man-
ifold may have only equilibria or limit cycles as ω-limit sets, i.e., cannot be
chaotic). Among popular examples for discrete-time control of chaos are sys-
tems described by the logistic map [110, 128, 427]:

xk+1 = axk(1 − xk);

the Hénon system [191]

xk+1 = 1 − ax2
k + yk, yk+1 = −Jxk;

the tent map [351]

xk+1 = rxk, 0 ≤ xk < 0.5;xk+1 = r(1 − xk), 0.5 ≤ xk ≤ 1

the standard (Chirikov) map [251]

vk+1 = vk + Ksinφk, φk+1 = φk + vk.

Only a few results are available for multidimensional systems. They are based
upon the gradient method [1, 164], variable structure systems [269], general-
ized predictive control [335].

6.6 Generation of chaos (chaotization)

The problem of chaotization of a given system by feedback (called also chaos
synthesis, chaos generation, anticontrol of chaos or chaotification) appears
when it is necessary to design (generate) chaotic signals, e.g., for informa-
tion encryption, broadband communications, computation with pseudoran-
dom numbers (Monte-Carlo method), etc. Studying ways of creating chaotic
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signals with prescribed properties may shed light upon mechanisms of biolog-
ical systems, e.g., cardiac, and brain activities. The problem was first consid-
ered by A. Vanecek and S. Celikovsky [434] in 1994, who proposed scenario of
chaotization for Lurie systems represented by a transfer function with poles
s1, . . . , sn, zeros z1, . . . , zn−1 and an odd monotone nonlinearity in a feedback
circuit. Vanecek–Celikovsky scenario suggests to choose poles and zeros in
order to provide the characteristic polynomial

(λ− s1) · · · (λ− sn) + k(λ− z1) · · · (λ− zn−1)

of the linear part closed by a linear feedback u = ky for all k : 0 < k < ∞,
with the following properties: partial instability (roots with both negative
and positive real parts are present); hyperbolicity (no roots have zero real
part); dissipation (sum of the poles is negative); nonpotentiality (some poles
have nonzero imaginary parts). Chaos under such conditions is related to the
Shilnikov theorem [189, 402] (Shilnikov chaos).

A different approach was proposed by G. Chen and D. Lai [104] in 1998
and then by X. Wang and G. Chen [444] in 1999. It is based on the Marotto
theorem, providing generalization of Sharkovsky–Li–Yorke criterion of chaos
to multidimensional discrete systems (see Section 6.2). For discrete systems
of the form xk+1 = f(xk) + uk a feedback uk = εg(σxk) is sought, where
ε > 0, σ > 0, and the graph of g(x) has a saw-toothed or sinusoidal shape. Let
x = 0 be the stable equilibrium of the free system (|f ′(x)| < 1 for x ∈ ∆ =
(−�, �) for some � > 0 ). Then choosing sufficiently large σ one can make the
equilibrium x = 0 of the closed-loop system xk+1 = fc(xk), where fc(x) =
f(x) + εg(σx), unstable (|f ′

c(x)| > 1 for x ∈ ∆), at the same time providing
convergence to zero of at least one trajectory in finite time: fm

c (x0) = 0 for
some x0 ∈ ∆ and some integer m > 0 with (fm(x0))′ 	= 0. Chaoticity follows
from the Marotto theorem. It is important that the maximum value of |uk|
can be made less than any positive constant by means of proper choice of ε.
This method was applied, e.g., to design of chaotic neural networks.

6.7 Time and energy needed for control of chaos

An important open problem is to evaluate time and energy required for con-
trol. Despite the common belief that small control allows the suppression of
strong chaos, only a few analytic results are available. The first result of such
kind was obtained in the pioneer paper [331], where the time required for
stabilizing an unstable trajectory with low intensity control was evaluated
for second-order systems. It was shown that required time depends on control
intensity according to power law. Later a new control algorithm based on sym-
bolic dynamics was proposed [229] ensuring a logarithmic law for hyperbolic
systems and power law for neutral systems [230, 231].

Below some estimates of time and energy required for control of chaotic
motions are outlined, including estimates of transient time and traveling time
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over attractor. It is shown that existing results provide either power or loga-
rithmic dependence of transient time on control intensity.

Consider a dynamical system described by differential equation

ẋ = f(x, u), (6.7.49)

where x is n-dimensional vector of the state variables; Let x(t, u, x0) be the
solution of the system (6.7.49) with initial condition x(0) = x0. Let the system
(6.7.49) for u(t) ≡ 0 possess a chaotic trajectory x̃(t), x̃(0) = x̃0. A typical
“control of chaos” problem is to transform x̃(t) into a periodic trajectory
x̄(t), x̄(0) = x̄0, i.e., to satisfy the inequality

|x(t, u, x0) − x̄(t)| < ∆x (6.7.50)

for sufficiently large t, where control u = u(t) satisfies inequality

|u(t)| < ∆u. (6.7.51)

As was previously mentioned, the goal trajectory x̄(t) may be either known,
or not. The control action should be designed either as a function of time
(feedforward or program control) or as a function of the state x(t) (state
feedback) or as a function of an output y(t) = h(x(t)) (output feedback).

Starting with the seminal paper [331] an outer deadzone approach is used
by many authors. Its key point is that no control is applied if the current
state if far from the target one, i.e., if the inequality (6.7.50) holds. Otherwise
control function is calculated according to some stabilizing control law (e.g.,
linear feedback stabilizing Poincaré map in OGY or OPF methods). Obvi-
ously, for small ∆x the constraint (6.7.51) will be valid too, if ∆u and ∆x are
of the same order: ∆x ∼ l∆u.

To estimate the time required for control two terms should be taken into
account: estimate of time t1 required to achieve inequality (6.7.50) and esti-
mate of remaining time t2 when (6.7.50) holds. Since in the vicinity of the
target point or trajectory the convergence rate is, in general, exponential, the
time t2 required to achieve the desired accuracy δ depends logarithmically on
the ratio ∆u/δ, i.e., t2 ∼ ln(∆u/δ). The main problem is to estimate t1.

An estimate for t1 was given by [331] who treated the first part of tra-
jectory as a chaotic transient and used an estimate for wandering time of
a chaotic trajectory approaching attractor when some parameter of the sys-
tem approaches its critical bifurcation value [184]. It was noticed in [331]
that t1 depends sensitively on the initial condition and, if an initial condi-
tion is random, t1 has exponential distribution. It means that the average
time is < t1 >∼ 1/p, where p is the probability of entering in the set in the
state space determined by the relation (6.7.50). In the case of a discrete-time
two-dimensional system the power scaling was suggested for the probability:
p ∼ ∆γ

u, where γ = 1 + 1/2 ln |λu|/ ln |λs|−1.
Arguments explaining exponential distribution are rather simple. Let the

system be described by discrete-time model xt+1 = f(xt, ut) with sampling
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interval equal to the desired cycle period, i.e., the goal for discrete-time model
is to stabilize a fixed point x̄. Then by ergodicity of the chaotic process the
frequency of entering a set Ω during some time is proportional to the prob-
ability of the set and the length of the interval. Besides, if the probability p
is small, the events consisting in entering the set are rare and can be con-
sidered as independent ones. Hence, the time tΩ before entering the set Ω is
distributed exponentially (geometrically in discrete time case) with probabil-
ities P{tΩ = k} = p(1 − p)k, k = 1, 2, . . . and average < tΩ >= 1/p. Since
u(t) = 0 outside the strip in the state space determined by inequality (6.7.51)
and the probability p of the set Ω is proportional to its volume, the value of p
is of order ∆u, i.e., p ∼ ∆u. For different shape of the deadzone, determined
by the inequality (6.7.50), the value of p is of order (∆u)n, i.e., p ∼ (∆u)n.
Therefore in all cases the power law holds:

< t1 >∼ (∆u)−γ . (6.7.52)

It is possible to speed up control if we pass from passive to active control
strategy between entries into Ω. Control intended to drive the system to the
attractor faster is known as “targeting” or “directing,” see [339, 340, 369].
Various control algorithms for the first stage of the process are proposed for
special cases and their efficiency is demonstrated by means of simulation.
However, analytical estimates are not presented. It is worth to note that the
problem of global control of chaos is nonconvex (likewise the problem of global
control of general nonlinear systems) and therefore hard to solve. Solutions
that are good for special cases may lose efficiency for other cases.

In the paper [452], the power law for transient time T for OGY method
was obtained T ∼ 1

∆x
, (it is easy to see that control level ∆u is of the same

order as ∆x). Besides, in [452] a modification of OGY method was proposed
for one-dimensional unimodal maps, possessing control time T ∼ 2

h2 log2
1

∆u
,

where h is the entropy of the map.
A more general control algorithm was proposed in [229, 327]. It is based on

symbolic dynamics approach and allows for analytical bounds of control time
both for hyperbolic and for neutral systems to be obtained. Below a simplified
version of the algorithm of [229, 327] will be described and some estimates for
its control time for different classes of systems (maps) will be presented.

To start the algorithm a partition of a compact set D, containing both the
goal attractor and the initial point into a finite number of cells D1, . . . , DN

having sizes of order ∆u should be found. The next step is to associate the
system (6.7.49) with an oriented graph (called “skeleton” or symbolic image
of the system). The vortex vi corresponds to the cell Di and the edge vi → vj

exists if there exists a trajectory of (6.7.49) with u(t) = 0, starting within
the cell Di and leaving it through the cell Dj . Then the shortest route on
the graph from the cell, containing the initial point x0 to the cell, containing
the end point xf is sought. The movement between the cells of the chosen
route is organized by means of “local” controls, providing smooth transitions
between the neighbor cells. It is shown in [230, 231] that there exists control
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chosen by the above procedure, satisfying the bound (6.7.51) and providing
the transient time which depends logarithmically on the cell size:

< t1 >∼ | ln∆u|. (6.7.53)

The main assumption allowing to prove (6.7.53) is hyperbolicity condition
(exponential growth of the volumes along the trajectories of (6.7.49) with u ≡
0). If hyperbolicity is replaced by conservation of volumes (neutral system),
then the logarithmic law should be replaced by the power law [230, 231].

Though hyperbolicity is just a mathematical assumption, it describes a
model class of systems exhibiting strong chaotic behavior. For example, Hamil-
tonian systems having both homoclinic and heteroclinic trajectories possess
some properties of hyperbolic systems.

Another problem related to control of chaos is that of driving a trajec-
tory from the initial point x0 to the end point xf , both within an attractor.
Only driving with small control intensity, ideally with arbitrarily small con-
trol action is of interest in context of chaos control. Principal solvability of
the problem follows from the fact that any chaotic trajectory is dense in its
closure coinciding with the whole attractor. Similarly, it can be verified that
if control is switched off during traveling along a chaotic trajectory, then the
estimate of the required time has the power order (6.7.52).

A more efficient algorithm for this problem was proposed in [230, 231]. As
in the previous case it consists of three stages. At the first stage the trajectory
should be driven to a prespecified dense chaotic trajectory of the unforced
system (local control). At the second stage, using symbolic dynamics approach
a sequence of piecewise smooth control actions is chosen driving the trajectory
according to the shortest route in the skeleton graph to a vicinity of the
final point. It is shown in [230, 231] that under hyperbolicity assumption
the transport time depends logarithmically on the control intensity ∆u, see
(6.7.53), while for neutral systems logarithmic law should be replaced by the
power one.

The above estimates of the time required for control have interesting con-
sequences for estimation of required energy. If the control action has physical
nature of force or torque, then to obtain power of control it should be multi-
plied by the output which is bounded. Therefore, the power of control has the
order ∆u and the energy has the order ∆u(t1 + t2). Based upon the algorithm
of [230, 231] for hyperbolic case the estimate of energy E has the order

E ∼ ∆u| ln∆u|. (6.7.54)

It follows from (6.7.54) that choosing small ∆u control of a chaotic trajectory
can be achieved with arbitrarily small energy expenditure. Note that it is
not the case for neutral systems where only the required power can be made
arbitrarily small.
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6.8 Applications in physics

Below a number of applications of chaos control in various fields of physics
will be surveyed briefly. Time and space limits do not allow us to discuss many
other interesting applications, e.g. in electronics [322], physical chemistry [68,
232, 346], semiconductors [50, 409], etc.

6.8.1 Control of turbulence

Description and control of turbulence remains one of the main physical prob-
lems already over an entire century [171]. The infinite-dimensional description
of the turbulent flow as a solution of the Navier–Stokes partial equation is
known to be often reducible to the finite-dimensional description. If the di-
mensionality of the flow attractor in the phase space is relatively small, then
the turbulent flow may be regarded as chaotic, and methods of chaos control
can be applied to it. The Taylor–Couette flow of liquid between two rotating
concentric cylinders exemplifies such flows.

The approximating dimension in wall-bounded flows like turbulent
Poiseuille flows appears to be rather high – typical values are over several hun-
dred. In contrast in closed, absolutely unstable flows, such as Taylor–Couette
systems, the number of degrees of freedom can be small [171]. Recently, ap-
plicability of chaos control method to such a class of turbulent motion was
confirmed experimentally.

Experimental control of the dynamics of the chaotic structures arising in
the Taylor vortex flow with globoid (hourglass) geometry is described in [447].
This flow is a variant of the Taylor–Couett system. In the experiment, the
internal cylinder was rotated by a computer-controlled step motor. A water–
glycerol mix with 1.5 volume percent of the Kalliroscope suspension added for
visualization was used. An increase in the rotation velocity leads to a greater
Reynolds number R = 2πfad/ν, where f is the rotation frequency, a is the
globoid radius at the central part, d is the gap at the center, and ν is the
kinematic viscosity. For R > Rps, where Rps is the critical Reynolds number
for which phase slip occurs, pairs of vortices arise: first, periodic, then chaotic.
The intervals In between phase slips were measured by a TV camera. Control
was exercised by varying the reduced Reynolds number ε = (R/Rps) − 1 =
(f/fps) − 1 by means of the algorithm

δεn+1 = K(In − IF ) + Rδεn, (6.8.55)

where δεn = εn − ε and ε corresponds to the periodic unstable motion with
the interval IF between the phase bands. The control signal was fed only if
the condition |δεn+1| < 0.01 was satisfied, which corresponds to the general-
ized OPF-algorithm (see Section 6.4.2). The parameters IF , K, and R of the
control law were selected experimentally. It was established that in order to
suppress chaos for ε = 0.417 (corresponding to the chaotic process) it suffices
to vary ε at most by 2%. Luthje et al. demonstrated that similar results can
be obtained by time-delayed feedback [279].
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6.8.2 Control of lasers

Suppression of chaotic (so-called multimode) behavior in lasers was one of the
first reported applications in the field [381]. This work presented experimental
data on feedback leading which enabled a substantial (by an order of mag-
nitude) increase in the radiation power owing to more powerful pumping. In
1997–2000 a few dozen journal papers related to the control of chaos in laser
and optical devices were published. Recent research has focused on attempt-
ing to control a range of instabilities in different types of lasers by a variety
of methods. The most common methods are feedforward and delayed feed-
back. Experimental suppression of Lorenz-like instability in ammonia lasers
by delayed feedback was demonstrated in [124].

The methods of control by open loop and time-delayed feedback for the
CO2-lasers with modulation of losses and also for the doped Nd fiber laser were
compared in [179] which numerically predicted for the lasers of the class B
that their stability domain would be extended (shift of the period duplication
bifurcation) for the control based on the models with two degrees of freedom.
Analytical facts were corroborated by models and experiments.

6.8.3 Control of chaos in plasma

A number of papers reported successful control of chaos in the so-called Pierce
diode [166, 228, 348]. A Pierce diode is the simplest model to analyze the sta-
bility of current flow in a plasma diode, where both virtual kinetic cathode
oscillations and hydrodynamic plasma oscillations appear. The OGY method
was used in [348] to stabilize cycles of periods 1 and 2. The signal of time-
delayed feedback by measurements of the space charge density at a fixed space
point was used in [228] to suppress chaos by modulating the difference of po-
tentials between the input and output diode grids. The results can be applied
to bring the Pierce diode into a well-defined state of microwave oscillations.

Recent results on multimode feedback control of magnetohydrodynamic
modes and a variety of diagnostic uses of feedback in plasma were summarized
in [397]. Their primary goal is an experimental methodology for the determi-
nation of dynamic models of plasma turbulence, both for better transport
understanding and more credible feedback controller designs. In [397], a new
method for direct experimental determination of nonlinear dynamical models
of plasma turbulence using feedback is reported. The results are confirmed
experimentally in the Columbia Linear Machine and can be extrapolated to
fusion machines as neutron beam suppressors.

Interaction of the laser radiation with plasma which plays an important
role in the problems of controlled thermonuclear fusion was studied in [382]. It
is noted that on the whole the process of this interaction is very complicated
and its mathematical model has not yet been obtained, but it is known that
two types of phenomena are observed at interaction. One lies in occurrence
of stable soliton-like structures, and the other, in occurrence of extremely
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unstable chaotic processes. It is assumed that these phenomena can be studied
separately. The authors of [382] examine the means of reducing the chaotic
process to periodic oscillations or steady state, respectively, by the controls
of two types: by open-loop periodic variation of a system parameter or by
the so-called “proportional pulse control.” The paper focuses on the following
model: 


ẋ = −gx− b1(x + z)y2,

ẏ = −g0y + b2(x2 − z2)y,
ż = −g0z + b3(x + z)y2,

where x, y, and z are, respectively, the dimensionless field amplitudes for anti-
Stokes, pump, and Stokes modes and g, g0, b1, b2, and b3 are the parameters.
Differentiation is carried out with respect to the spatial coordinate along the
direction of wave propagation. The open-loop control lies in varying the para-
meter g0 according to g0(t) = ḡ0−a cosω0t. For ḡ0 = 1 and a = 0 (no control),
chaotic behavior is observed. The system process can be driven to periodic by
an appropriate choice of the amplitude a and frequency ω0 of modulation of
the parameter g0. Proportional pulse control lies in discontinuous variation of
the state variables at certain time instants.

The results of experimental studies of the chaotic processes in n-conducti-
vity germanium oscillators can be found in [205]. Behavior of Kadomtsev–
Nedopasov instability in electron-hole plasma at temperatures 77◦K and
300◦K under the action of external electrical and magnetic fields was studied.
Pictures of space-time development of chaotic processes were obtained from
the measurements at various points of specimens. Bifurcation diagrams show-
ing the boundaries of domains with double period, quasiperiodicity, chaoticity,
and intermittence were obtained. Several attractors having each its own di-
mension and energy response were shown to be feasible simultaneously in
specimens for certain conditions.

Synchronization of the chaotic space-time structures (patterns) in the spa-
tially distributed models of semiconductor heterostructures by means of the
time-delayed feedback was considered in [409] where control with the diagonal
feedback matrix, global control, and their combination were compared. Con-
sideration was given to two models of semiconductor nanostructures that are
of current interest: superlattice and two-barrier diode with resonance tunnel-
ing. Quality of control in these systems was shown [16] to improve by several
orders of magnitude owing to suitable filters and couplings based on the Flo-
quet eigenmodes of the unstable orbits. For the mechanism resulting in a
better control on the basis of phase synchronization of the desired process
and that in the control loop, an explanation was given.
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6.9 Other problems

From the problems relating to control of chaos, the following ones remain the
most important.

Controllability. Although controllability of nonlinear systems is well stud-
ied, few results are available on reachability of typical control goals by small
control [11, 152]. Among basic tools are Pugh lemma and Anosov lemma, see
Section 6.2. A general idea, illustrated by many case studies is that the more
a system is “unstable” (chaotic, turbulent) the “simpler,” it is to achieve its
exact or approximate controllability. In other words, “chaos facilitates con-
trol” [84, 273, 435].

Other control goals. Among alternative control goals such as achieving
the desired period [133], the desired fractal dimension of the attractor [371]
the desired invariant measure [84, 183] desired Kolmogorov entropy [336] are
studied in the literature. A method for the so-called tracking chaos problem:
following a time-varying unstable orbit, based on the continuation method for
solving equations was proposed by I. Schwartz and I. Triandaf [394] as early
as in 1992.

Chaos in control systems. Control of chaos should not be mixed up with
chaos in control systems. The results in the latter area, providing conditions
for chaotic behavior in conventional feedback control systems were published
since the 1970s [51, 281, 284]. They are related to chaos in linear delayed
systems [281], nonlinear systems [51], adaptive systems [284]. In the recent
publications conditions for chaotic behavior are provided for mechanical con-
trol systems [15, 127], systems with hysteresis [357], systems with pulse-width
modulation [233], to mention a few.

Conclusions. Apparently, the publication rate in control of chaos has
achieved saturation by the end of the 20th century, see Fig. 1.2.1. However,
it is seen from the statistics that the field is again rapidly developing in the
beginning of the 21st century. Today, there are many efficient methods for con-
trol of chaos in the literature. Three major and historically the first schemes
are feedforward (“nonfeedback”) control, the OGY method and the Pyragas
method. Using the methods of nonlinear and adaptive control is very promis-
ing. However, special care should be taken to respect “small control” require-
ment. Some important problems of justification of existing methods remain
unsolved and provide challenges both for physicists and for control theorists.
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Control of Interconnected
and Distributed Systems

7.1 Models of controlled spatiotemporal systems

Among infinite-dimensional (distributed) systems the main classes are spa-
tially extended (spatiotemporal) systems and retarded or delayed systems.
Methods of oscillations and chaos control in infinite-dimensional systems are
mainly based upon ideas developed for finite-dimensional (lumped) systems.
Moreover, finite-dimensional models are often used for control system analysis
and design.

Finite-dimensional models of spatially extended controlled systems are
obtained by spatial discretization of distributed models described by par-
tial differential equations (PDE). Such simplified models consist of ordinary
differential equations (ODE) describing separate space elements called cells,
particles, compartments. In both cases elements (cells) interact by means of
links reflecting the spatial structure of the overall system (e.g., array, lattice).

A broad class of controlled spatiotemporal systems are described by con-
trolled reaction–diffusion equations

∂x

∂t
= ε∆x + F (x, u), (7.1.1)

where x = x(r, t) is a function of space variables r ∈ D ⊂ R
n and time t (pos-

sibly, vector-valued), determining the state of a physical system, ∆ =
n∑

i=1

∂2

∂ri

is Laplace operator, specifying diffusion type of space elements interaction, ε
is diffusion coefficient. Boundary conditions can be specified as periodic ones
(e.g., x(a, t) = x(b, t) for D = [a, b] ⊂ R

1) or “no flow across the boundary”
conditions

(
∂x
∂r

)∣∣
r=a

=
(

∂x
∂r

)∣∣
r=b

= 0.
For ε = 0 equation (7.1.1) reduces to a ODE which may exhibit chaotic be-

havior. A natural approach to studying equation (7.1.1) is its approximation
by a set of ODE by means of discretizing over the space D. It means replac-
ing continuum D by a finite number of points (nodes) ri, i = 1, 2, . . . , N .
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The dynamics of each state xi depends on both its internal (local) dynam-
ics F (xi, ui) and interactions with neighbor nodes. For example, if the space
variable is one-dimensional: r ∈ [a, b], and interactions are of diffusive type,
then the space-discretized model has the form

ẋi = ε(xi−1 − 2xi + xi+1) + F (xi, ui), i = 1, 2, . . . , N − 1. (7.1.2)

Additionally, boundary conditions should be specified, e.g., as periodic (x0 =
xN (t), or “no-flow” x0(t) = x1(t), xN−1(t) = xN (t). Sometimes the models
that are discretized both in space and in time are used. They are called coupled
maps or cellular automata models:

xi(n + 1) = xi(n) + ε [xi−1(n) − 2xi(n) + xi+1(n)] + hF (xi(n), ui(n)) ,

i = 1, . . . , N − 1, n = 0, 1, 2, . . .
(7.1.3)

It can be seen that control in the models (7.1.1), (7.1.3) influences the
dynamics of each cell that corresponds to the case of space-distributed (field)
control. Another class of boundary control problems arises when right-hand
sides in (7.1.2)–(7.1.3) do not depend on control, i.e., F (x, u) ≡ F (x), while
control enters only equations of boundary cells, e.g.,

ẋ0 = ε(x1 − x0) + F0(x, u), (7.1.4)

The situation may be further generalized to consider space-nonhomogenious
systems. For the one-dimensional case they are described by the following
model:

ẋi = Fi(xi, xi−1, xi+1, u), i = 1, 2, . . . , N − 1,
ẋ0 = F0(x0, x1, u),
ẋN = FN (xN , xN−1, u).

(7.1.5)

Control goals can be straightforward extensions of the goals formulated
for lumped systems (see Section 2.2). In addition, specific goals can be posed
formalizing a specific type of interrelation between neighbor cells.

Among specific spatiotemporal control goals the following ones should be
mentioned:

– stabilization of the given uniform (homogeneous) or space-periodic field
(standing wave) – such goals are well studied in conventional control theory
[93];

– stabilization of the given time-periodic motion (traveling wave);
– creation or suppression of spiral wave (for space dimension not less than

two);
– creation or suppression of the given nonhomogenious field (contrast or dis-

sipative structure, clusters, patterns);
– control of self-organization or disorganization of systems.
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Control problems for distributed systems were systematically studied as
early as in the 1960s [93]. However the interest of physicists has become ap-
parent as late as in the middle of the 1990s. Perhaps, it was motivated by the
interest in control of chaos in distributed systems. A brief survey of results in
control of chaos in distributed systems will be presented in Section 7.5.

7.2 Control of energy in sin-Gordon
and Frenkel–Kontorova models

Let us study possibilities of the speed-gradient method for control of energy
in sin-Gordon-like systems. Using the following notations: xt = ∂x

∂t , xtt = ∂2x
∂t2 ,

xri
= ∂x

∂ri
, xrit = ∂2x

∂ri∂t xriri
= ∂2x

∂r2
i
, consider the system, described by sin-

Gordon equation with dissipation

Jxtt = k∆x− E sinx− ρxt, (7.2.6)

where x = x(r, t) is the function of the system state; r ∈ X ⊂ R
n is the

spatial variable, taking values from a set X; ∆ is Laplace operator; ∆x =
n∑

i=1

xriri
; J , k, ρ are parameters of the system; E = E(t) is the external action

(e.g., external force or intensity of the external electrical field). Assume that
E = E0 + u(t), where E0 is the base level of the intensity of the force or
field; u(t) is the controlling variable. The system (7.2.6) can be considered as
a model of diffusively coupled oscillators (e.g., pendulums, magnetic domains
liquid crystals), each being positioned in the spatial point r. Then x(r, t) is
the deflection angle of rth oscillator at time t. Such a system belongs to a
class of reaction-diffusion systems, but its study is of independent value.

Let us pose the problem of controlling the energy of the free system

H =
1
2

∫
X

(
J

(
∂x

∂t

)2

+ k |∇rx|2 + 2E0

(
1 − cosx

))
dr (7.2.7)

to the prespecified level H∗. It means that we introduce the control goal as
follows:

lim
t→∞

H(t) = H∗. (7.2.8)

First, let ρ = 0 and evaluate the rate of changing the energy along trajec-
tories of the system (7.2.6) assuming that the controlling variable is frozen:
u(t) = u:

dH

dt
=
∫
X

Jxt · xtt − k∆xxt + E0 sinx · xt dr

=
∫
X

xt

(
− E sinx + E0 sinx

)
dr = −u(t)

∫
X

xt sinx dr.

(7.2.9)
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It is easy to see that the choice of the control in the form

u(t) = −γ

∫
X

xt sinx dr, (7.2.10)

where γ > 0, guarantees that the energy H(t) will not decrease in time.
Introducing the goal function V (t) = 1

2

(
H(t) − H∗

)2
, and evaluating the

time derivative of V (t), we obtain

V̇ =
dV

dt
= −u(t)

(
H(t) −H∗

) ∫
X

xt sinx dr, (7.2.11)

and V̇ ≤ 0 for

u(t) = γ
(
H(t) −H∗

) ∫
X

xt sinx dr. (7.2.12)

Thus, if the system is affected by the action (7.2.12) it will have a tendency
to approach the goal.

Consider in more detail the spatially one-dimensional, spatially discrete
version of the problem, described by equations

Jẍj =
k

h2

(
xj+1−2xj+xj−1

)
−
(
E0+u(t)

)
sinxj−ρẋj , j=1, 2, . . . ,N. (7.2.13)

It corresponds to a continuous system

Jxtt = kxrr −
(
E0 + u(t)

)
sinx− ρxt (7.2.14)

defined in the set X = [a, b], if the correspondence is defined by the relations
xj = x(a + j(b− a)/(N + 1)), j=0, 2, . . . ,N + 1.

The system (7.2.13) is suggested to be a controlled version of the classical
Frenkel–Kontorova chain, proposed in 1939 and studied in numerous works,
see, e.g., [253].

Before designing the control law, let us discuss the choice of boundary
conditions. Usually when studying an uncontrolled system (7.2.14) two types
of boundary conditions are used: either zero boundary conditions x(a, t) =
x(b, t) = 0, corresponding in the discrete system (7.2.13) to the relations

x0(t) ≡ xN+1(t) ≡ 0, (7.2.15)

or periodic (no flux across the boundary) conditions xr

∣∣
r=a

= xr

∣∣
r=b

= 0,
corresponding to the relations

x0 = x1, xN = xN+1. (7.2.16)

The control problem for energy control of the chain can be solved based
on the results of the Chapter 3. The speed-gradient energy control algorithm
looks as follows:
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u(t) = γ
(
H(t) −H∗

) N∑
j=1

ẋj sinxj , (7.2.17)

where γ > 0. It follows from Theorem 3.1 that the control goal (7.2.8) in
the system (7.2.13), (7.2.17) for � = 0 is achieved if the energy layer in the
system phase space between the energy levels H(0) and H∗ does not contain
equilibria satisfying conditions sinxj = 0, j = 1, . . . , N .

For the special case N = 2 with the boundary conditions (7.2.16) the
system takes the form


Jẍ1 =

2k
h2

(
x2 − x1

)
−
(
E0 + u(t)

)
sinx1 − ρẋ1,

Jẍ2 =
2k
h2

(
x1 − x2

)
−
(
E0 + u(t)

)
sinx2 − ρẋ2.

(7.2.18)

For this special case the energy control problem is close to the energy/syn-
chronization control problem examined in Section 5.4. The discretized version
of the control algorithm, corresponding to (7.2.12) is as follows:

u(t) = γ
(
H(t) −H∗

)(
x2 − x1)

(
sinx1 − sinx2

)
, (7.2.19)

where H(t) has discretized form (7.2.7)

H =
J

2
(
ẋ2

1 + ẋ2
2

)
+

k

2
(
x1 − x2

)2 + E0

(
2 − cosx1 − cosx2

)
. (7.2.20)

The proposed algorithms can be used to explore oscillatory properties of
nonlinear systems in various problems. For example, they can be used to
control orientation of the oscillating particles, e.g., liquid crystals, where the
control goal is to change the orientation from longitudinal to transverse or
vice versa, see Fig. 7.2.1.

Suppose that the orientation angles x(r, t) of the particles obey the equa-
tion (7.2.6). Then it is possible to transform the longitudinally oriented struc-
ture (a) into the transversely oriented structure (b) by means of changing
the orientation (polarization) of the external constant field E. However, for
this purpose the required intensity of the field may be significant. At least its
change δE should exceed the intensity of the initial field E0.

Fig. 7.2.1. Nontransparent (a) and transparent (b) structures of liquid crystal
array.
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At the same time using a feedback control algorithm (7.2.12) makes
the particles perform an oscillatory pendulum-like motion, and may signif-
icantly reduce the intensity required for control. To this end the desired en-
ergy H∗ is chosen as the value close to energy of the configuration b, i.e.,
H∗ = H̄ = E0(b − a). Then, if the dissipation � > 0 is sufficiently small,
the algorithm (7.2.12) makes the particles spend most part of their time near
the configuration b, i.e., makes the crystal highly transparent. According to
the results of Chapter 4 (Theorem 4.1) the required controlling field intensity
γ should be of order �

√
H∗, i.e., it may be small provided the dissipation � > 0

is small.

7.3 Control of wave motion in the chain of pendulums

7.3.1 Modeling the chain of the pendulums

Consider, following [111], the problem of controlled excitation of oscillations
in the chain of N coupled mathematical pendulums. Such a model may arise
when studying different physical and mechanical systems, see, e.g., [211, 253]).
In the absence of the friction the system of coupled pendulums is described
by the equations




ϕ̈1(t) + ω2
0 sinϕ1(t) = k

(
ϕ2(t) − ϕ1(t)

)
+ u(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕ̈i(t) + ω2

0 sinϕi(t) = k
(
ϕi+1(t) − 2ϕi(t) + ϕi+1(t)

)
,

(i = 2, 3, . . . , N − 1),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕ̈N (t) + ω2

0 sinϕN (t) = k
(
ϕN−1(t) − ϕN (t)

)
,

(7.3.21)

where ϕi(t) (i = 1, 2, . . . , N) are the pendulum deflection angles; u(t) is
the controlling action: external torque, applied to the first pendulum. It is
assumed that the torque is measured in the units of angular acceleration. The
values ω, k are parameters of the system: ω0 is the natural frequency of small
oscillations of isolated pendulums, k is the parameter of coupling strength, for
example, stiffness of the spring connecting the pendulums.

Introduce the state vector of the system x(t) ∈ R
2N as follows: x(t) =

col {ϕ1, ϕ̇1, ϕ2, ϕ̇2, . . . , ϕN , ˙ϕN}. The total energy of the system (7.3.21)
H(x) is defined by the expression

H(x) =
N∑

i=1

Hi(x), where




Hi(x)=0.5ϕ̇2
i +ω2

0(1−cosϕi) + 0.5 k
(
ϕi+1−ϕi

)2
(i = 1, 2, . . . , N − 1),

HN (x) = 0.5ϕ̇2
1+ω2

0(1−cosϕN ).
(7.3.22)
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In the absence of control the model in question coincides with the Frenkel–
Kontorova model described in the previous section, with the only exclu-
sion that the friction is neglected. However, it is distinct from the Frenkel–
Kontorova model in the type of the control appearance: here control is local-
ized and affects only one pendulum. In terms of control of distributed systems
it corresponds to boundary control.

In addition, we will consider the system of cyclically coupled pendulums,
similar to (7.3.21), except the presence of the elastic link between the first
and the last pendulums:




ϕ̈1(t)+ω2
0 sinϕ1(t)=k

(
ϕ2(t)−2ϕ1(t)+ϕN (t)

)
+u(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕ̈i(t)+ω2

0 sinϕi(t)=k
(
ϕi+1(t)−2ϕi(t)+ϕi+1(t)

)
(i = 2, 3, . . . , N − 1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕ̈N (t)+ω2

0 sinϕN (t)=k
(
ϕN−1(t)−2ϕN (t)

)
+ϕ1(t)).

(7.3.23)

The expression for the total energy changes correspondingly:

H(x) =
N∑

i=1

Hi(x), where




Hi(x)=0.5 ϕ̇2
i +ω2

0(1−cosϕi) + 0.5 k
(
ϕi+1−ϕi

)2
(i = 1, 2, . . . , N − 1),

HN (x)=0.5 ϕ̇2
1+ω2

0(1−cosϕN ) + 0.5 k
(
ϕ1−ϕN

)2
.

(7.3.24)

The equations (7.3.23) are symmetrical with respect to the free motion of the
pendulums. Such a symmetry allows the achievement of an additional control
goal: synchronization of the pendulum motions.

7.3.2 Problem statement and control algorithm design

Let us interpret the problem of the excitation of a wave as achievement of
the given level of the system energy with additional requirement that the
neighbor pendulums have opposite oscillation phases. Let us use the speed-
gradient method for the control algorithm design.

To apply the speed-gradient method introduce two auxiliary goal func-
tions.

Qϕ(ϕ̇1, ϕ̇2) = 0.5 δ2
ϕ,

QH(x) = 0.5(H(x) −H∗)2, (7.3.25)

where δϕ = ϕ̇1 + ϕ̇2; H(x(t)) is the total energy of the system; H∗ is the
desired value of energy.

Apparently, the minimum value of the function Qϕ corresponds to the
anti-phase motion of the first and second pendulums since the identity



144 7 Control of Interconnected and Distributed Systems

Qϕ(ϕ̇1, ϕ̇2) ≡ 0 holds only if (ϕ̇1 ≡ −ϕ̇2). The minimization of QH corre-
sponds to achievement of the desired oscillation amplitude.

Let us introduce the total goal function Q(x) as the weighted sum of Qϕ

and QH , namely

Q(x) = αQϕ(ϕ̇1, ϕ̇2) + (1 − α)QH(x), (7.3.26)

where α (0 ≤ α ≤ 1) is the weighting coefficient (design parameter).
Evaluation of the speed of changing the goal function Q(x) along trajec-

tories of the controlled system and then its partial derivative in control leads
to the following speed-gradient algorithm in finite form

u(t) = −γ
(
αδϕ(t) +

(
1 − α

)
δH(t)ϕ̇1(t)

)
,

δϕ(t) = ϕ̇1(t) + ϕ̇2(t),
δH(t) = Ht −H∗.

(7.3.27)

Note that calculation of the control action according to the equation
(7.3.27) requires the possibility of the measurement of the angular veloci-
ties of the first and second pendulums, as well as the measurement of the
total energy of the system.

7.3.3 Simulation results

In Figs. 7.3.2–7.3.10 the results of computer simulations for the process of
oscillations excitation by means of control law (7.3.27) for the chain of N = 50
pendulums are presented.

Figures 7.3.2–7.3.8 are related to the control of the system (7.3.21) by
the control algorithm (7.3.27) for γ = 0.8 and various values of weighting
coefficient α. Figures 7.3.2–7.3.4 correspond to the value α = 0, when the
control goal is stabilization of the given total energy level.

It is seen that the control goal Ht → H∗ (H∗ = 4) is achieved but the
motion of the pendulums is irregular (chaotic) and the second goal (synchro-
nization) is not achieved, see Fig. 7.3.3. It is seen also that the control intensity
decays as soon as the goal is achieved.

Fig. 7.3.2. Transient processes in ϕ1, ϕ2 and the control signal. N =50, α=0.
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Fig. 7.3.3. The goal functions Qϕ and Ht. N =50, α=0.

The reason of the irregular behavior is clear from Fig. 7.3.4. It is seen
that the forward wave of oscillations propagates ahead and reaches the last
pendulum at the time t ≈ 30. Then the backward wave arises and after some
time the picture of oscillations becomes complicated owing to interference of
the waves. Excitation of oscillations for α = 1 is shown in Figs. 7.3.5, 7.3.6.
Again, it is seen that the antiphase motion of the pendulum is not achieved.
For the choices of intermediate values of the weighting coefficient, 0 <α< 1,
the behavior of the process is qualitatively the same as in Figs. 7.3.2–7.3.4
and the goal is not achieved.

A possible explanation of the control failure with respect to the goal func-
tion Qϕ is in that the antiphase free motion may not invariant, i.e., for u(t) ≡ 0
such a motion, if it arises once, may be destroyed in future. To verify this hy-
pothesis consider Fig. 7.3.7 which is showing free oscillations in the system of
N = 50 pendulums at anti-phase initial conditions (ϕi+1(0) = −ϕi(0), i =
= 1, 2, . . . , N −1). One can see the boundary effects of wave reflection leading
to corruption of smooth oscillations after some time. It is interesting that the
first pendulums to exhibit corruption of the wave (dislocation) are the first
and the last ones.

The reason of appearance of the reflected wave is in the symmetry breaking
of equations (7.3.21): the elasticity forces acting on the first and the last
pendulums differ from the force acting on the internal pendulum in the chain.

Let us examine the system of cyclically coupled pendulums (7.3.23). It is
seen from Fig. 7.3.8 that such a system exhibits no boundary effects. Note
that the initial conditions for Fig. 7.3.8 coincide with those for Fig. 7.3.7.

The previous considerations justify that the controlled system of cycli-
cally coupled pendulums may possess antiphase synchronous behavior at the
specified energy level. The results of the simulation confirm such a conjecture.
Figuress. 7.3.9, 7.3.10 demonstrate the results of application of the algorithm
(7.3.27) to the system (7.3.23). The algorithm design parameters are as fol-
lows: γ = 0.8, α = 0.7. It is seen, that the combined goal function tends to its
minimum value.
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Fig. 7.3.4. Wave of oscillations. N =50, α=0.

Fig. 7.3.5. Excitaton of oscillations. N =50, α=1.
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Fig. 7.3.6. Synchronization goal function Qϕ and control signal. N =50, α=1.

Fig. 7.3.7. Free oscillation of the chain. N =50, u(t)≡0.

Fig. 7.3.8. Free oscillations of the cyclic chain. N =50.
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Fig. 7.3.9. Control of oscillation excitation for cyclic chain.

Fig. 7.3.10. Total energy and control action for cyclic chain.

7.4 Control of oscillations in a complex crystalline lattice

Properties of complex oscillatory systems such as atomic lattices are deter-
mined by the interaction of the large number of degrees of freedom. Studying
such properties as structure and phase transitions, formation of defects, shock
waves, requires consideration of strongly nonlinear phenomena. Some nonlin-
ear effects may arise spontaneously and can be studied based on free oscil-
lations theory. However, purposeful changes of the crystal state demand for
development of the methods of controlling its properties, particularly, control
of its nonlinear oscillations.

In this section, two models of complex crystalline lattice are described and
the problem of excitation of oscillations is posed. The speed-gradient control
algorithm is developed and the dynamics of the closed-loop system is analyzed.
Presentation is based on the results of [5, 6].
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7.4.1 Modeling interaction of acoustic and optical modes

In the paper by E. Aero [4] the following system of equations describing in-
teraction of acoustic and optical modes in a nonlinear continuum model of
crystal without center of symmetry (Aero model) is proposed:

ρÜi = cikjuk,j + λikjmUk,jm;

(.)k,j → ∂(.)k/∂xj ; (.)k,jn → ∂2(.)k/∂xj∂xn (7.4.28)

µüi = − ∂Φ

∂ui
− ckijuk,j + κikjmuk,jm. (7.4.29)

Here, Ui(x1, x2, x3, t), ui(x1, x2, x3, t) are unknown functions describing
the components of the displacements due to acoustic and optical modes in
crystal, respectively. The vector Ui(xj , t) represents the displacement of the
center of inertia of each elementary cell (pair of atoms), while the vector
ui(xj , t) represents the mutual displacement for pair of atoms within the el-
ementary cell of relative displacement of sublattices. Hereafter the following
standard notations are used: repeated indices assume summation, upper dot
stands for the time derivative, spatial derivatives are denoted by means of
comma in the indices as it is shown in (7.4.28). The coefficients cijk, c̄ijk,
κikjm, λikjm are the components of the tensors describing elastic properties
of the lattice. They possess a certain symmetry under permutation of in-
dices [4]. The nonlinearities in the system are specified by the scalar energy
function, Φ(ui), describing the interaction of atoms in an elementary cell. It
also reflects internal translational symmetry in a complex lattice – the relative
displacement of sublattices for a period or for an integer number of periods
does not imply change of the complex lattice structure. In a more general case
the function Φ(ui) may be replaced by another vector periodic function of the
argument u. Note that using approximation Φ ≈ uiui, Eqs. (7.4.28), (7.4.29)
are transformed into a continuum analog of the well-known linear Carman–
Born–Kun Huang model [86]. In the case of media with a center of symmetry
the second spatial derivatives appear instead of the first ones in both Aero
equations [4].

The system (7.4.28), (7.4.29) possesses the conservation law with the fol-
lowing energy integral:

E =
∫
Ω

(1
2
(
ρU̇iU̇i + µu̇iu̇i + λikjmUk,jUi,m

+ κikjmuk,jui,m

)
+ cikjukUi,j + c̄ikjukui,j + Φ

)
d3x. (7.4.30)

In (7.4.30) the symmetries under permutation of indices for material ten-
sors are taken into account.
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The existence of a single integral of motion is not sufficient for describing
the general solutions behavior when t → ∞. However, it becomes possible
after introducing dissipative terms in Eqs. (7.4.28), (7.4.29) proportional to
the first time derivatives. Since the system energy is bounded from below for
small values of the coupling c between modes, it is possible to justify existence
and uniqueness of the system solutions for all t > 0 and their convergence to
the stationary solutions of Eqs. (7.4.28), (7.4.29).

Below only the most interesting and physically natural case Φ′ = −a sinφ
with a > 0 will be studied. Assume for simplicity that only one component
of u and only one component (x or y) of U are distinct from zero and all the
solutions depend on only one coordinate x = x1 and on time t.

After adding dissipative terms containing first time derivatives
Eqs. (7.4.28), (7.4.29) take the following form:

ρÜ + ρ1U̇ = cu,x + λU,xx,

u,x = ∂u/∂x, U,xx = ∂2U/∂x2 (7.4.31)
µü + µ1u̇ = −a sinu− cU,x + κu,xx. (7.4.32)

If ρ1 = µ1 = 0 then the system (7.4.31), (7.4.32) possesses the conservation
law with the following energy integral:

E =
∫
Ω

(1
2
(
ρU̇2 + µu̇2 + λU2

,x + κu2
,x

)

+ cUu,x + a(1 − cosu)
)
d3x. (7.4.33)

If c = 0 then the system split into two independent equations: the equa-
tion for optical mode becomes a nonlinear wave equation, while dynamics of
acoustical mode are described by a linear equation.

Consider the initial-boundary problem for Eqs. (7.4.31), (7.4.32) on the
bounded interval 0 ≤ x ≤ h with the initial conditions

U(χ, 0) = U0(χ), u(χ, 0) = u0(χ),
∂U/∂τ(χ, 0) = V (χ), (7.4.34)
∂u/∂τ(χ, 0) = ν(χ), χ = x/h, (7.4.35)

and the boundary conditions

(A1U + B1∂U/∂χ)(0, t) = F1(t),
(a1U + b1∂u/∂χ)(0, t) = f1(t),
(A2U + B2∂U/∂χ)(0, t) = F2(t),
(a2U + b2∂u/∂χ)(0, t) = f2(t), (7.4.36)

In Fig. 7.4.11 the numerical solution of the system (7.4.31), (7.4.32) is
shown for the case of triangular initial distribution of the acoustic displace-
ments U(χ) (dashed line), zero initial optical displacements u(χ) (dashed line)
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Fig. 7.4.11. Free evolution of optical and acoustic modes.

and zero initial velocities of both variables. Zero values of both functions are
also given in the ends of the interval (0, 1). In fact, in the initial time instant,
t = 0, the deformations (2ε = U,x) have opposite signs in the left and right
parts (domains) of the interval. A sharp boundary between domains is inter-
preted as a defect. The evolution of the deformations for several values of the
finite time, t = T1 is shown with solid lines.

Simulations demonstrate strong interaction of the oscillation modes. An
inherent structure u(χ) emerges in the form of two domains of opposite signs
(bold solid line). It is interpreted as emergence of the two phases with different
values of the order parameter +u and −u. Since a strong dependence of the
system motion on initial conditions and, certainly, on the coefficients of the
equations is observed. In order to eliminate dependence on initial conditions,
control theory will be applied.

7.4.2 Control law design

Application of the control methods allows not only the elimination of de-
pendence of solutions on initial conditions, but also it allows the creation of
purposeful energy exchange between modes leading to the rebuilding of the
lattice structure and to phase transitions. The control goal may correspond to
either excitation or to suppression of specific oscillation modes. Let us study
the possibility of the optical mode excitation by means of changing the torque
applied to the ends of the rod (undimensional lattice) according to a feedback
mechanism. To design appropriate feedback the speed-gradient method, Sec-
tion 2.4.2, will be employed.

Suppose that the bending torque applied to the ends of the rod is consid-
ered as the control action. It is assumed that the torque applied to the left
end is balanced by the torque applied to the right end, i.e., compression force
is identically zero. Then the boundary conditions (7.4.36) read F1 = F2 = 0,
f1(t) = −f2(t) = f , where f is the control variable. Let the control goal be
formulated as an increase of the optical mode energy E. According to the
speed-gradient method the goal function Q should be introduced such that
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the achievement of the control goal corresponds to maximization of the goal
function. In this case the total energy can be chosen as the goal function, i.e.,
Q = E, where E is defined in (7.4.30).

K = (hs/2)
n∑

i=1

u̇2
i . (7.4.37)

According to the speed-gradient method, the asymptotic maximization of the
functional (7.4.37) can be achieved by choice of the controlling action’s sign
which coincides with the sign of the speed-gradient (gradient of the speed of
changing Q along the solutions of the system)

f = −R
(
∇fQ̇(x, f)

)
(7.4.38)

where x is the state vector (function) of the controlled system (7.4.31),
(7.4.32), f is the vector of controlling variables, R is a vector-function form-
ing an acute angle with its argument, e.g., multiplying by a positive factor or
taking sign of each component of the vector argument.

For the sake of simplicity the problem is discretized by means of replacing
the first and second derivatives in the system equations (7.4.31), (7.4.32) and
in the expression for the energy (7.4.30) by their finite differences as follows:
(ui+1 − ui)/h; (ui+1 − ui)/T ; (ui+1 − 2ui + ui−1)/h2; (ui+1 − 2ui + ui−1)/T 2.

Direct calculation yields the following form of the speed-gradient function:

ψ =
(
1/h

)(
u̇1/a1 − u̇n/an

)
(7.4.39)

Therefore, the control algorithm for excitation of the optical mode may have
for example, the “relay” form

f = γ sign
(
u̇1/a1 − u̇n/an

)
(7.4.40)

Numerical results are obtained for the excitation of oscillations in the
discrete version of the system consisting of n = 50 atoms. The following
constants in the equations are chosen: ρ = 0.9, ρ1 = 0, µ = 2.5, µ1 = 1, c = 5,
a = 1.5, λ = κ = 1, A1 = A2 = 1, a1 = a2 = 1, B1 = B2 = b1 = b2 = 0.

The control algorithm f = 0.5 sign
(
u̇1/a1 − u̇n/a2

)
is used. In Fig. 7.4.12,

the shapes of the acoustic mode U(χ) and the optical mode u(χ) are shown
for time t = 15. In the initial time t = 0 both functions are equal to zero. The
evolution of the energy of the modes is shown in Fig. 7.4.13. The effect of the
control leads to a strong excitation of the optical mode.

An important question in crystalline lattice dynamics is sensitivity to
changes of initial conditions. A number of simulations have been performed
to examine dependence of the limit energy of modes on the initial conditions.
Figure 7.4.14 shows the results for two different triangular functions U(χ),
like in Fig. 7.4.11. At the initial time t = 0 zero optical displacements u(χ),
U(χ)|χ=0.5 = 1 (line a) and U(χ)|χ=0.5 = 10 (line b) are taken. Initial veloci-
ties of both variables are zeroed. It is seen that changes of initial displacement
in order of magnitude leads in 3÷ 5% changes of limit energy of each mode.
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Fig. 7.4.12. Controlled excitation of optical mode.

Fig. 7.4.13. Evolution of energy of the modes in the controlled system.

7.4.3 Nonfeedback control

For the study of microscopic systems the problem of physical realization of
control arises. The main difficulty is to implement the feedback exploiting
measurements of the microscopic phase variable deflections. To solve analo-
gous problems in the area of molecular and quantum control [53, 91, 147] the
idea of using a program (feedforward, nonfeedback) control was proposed. In
our case the idea is to first calculate controlling action f(t) as a function of
time during the simulation of the system with the feedback algorithm (7.4.40).
Then the precalculated function f(t) is applied to the physical system during
the experiment. At the second stage neither measurements nor feedback is
used.

To analyze the efficiency of such an approach the simulation of the sys-
tem with a nonfeedback control action was performed. The results are shown
in Fig. 7.4.15. Initial conditions were chosen to be the same as for feedback
control, both for calculation of program control f(t) and for its testing. It
is seen that nonfeedback control designed using the proposed method pro-
vides qualitatively the same results as with feedback algorithm (7.4.40) (cf.
Fig. 7.4.14).

Conclusions. The possibility of purposeful excitation of the optical mode
by means of torque applied to the ends of the lattice (rod) in a broad range
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Fig. 7.4.14. Dependence of energy of the modes on the initial conditions in the
controlled system.

Fig. 7.4.15. Dependence of energy of the modes on the initial conditions in the
nonfeedback system.

of initial conditions on the steady-state oscillations has been demonstrated. It
means that application of control may allow the elimination or reduction of the
influence of initial conditions. A nonfeedback control algorithm is described
possessing similar properties.

Another consequence stems from the well-known fact that static strains
(deformations) influence the phase state of smart materials. It implies that
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application of control of energy exchange between macroscopic deformation
and microscopic degrees of freedom allows the control of dynamics of phase
transitions and, particularly, the effect of the memory shape which is charac-
teristic for smart materials.

7.5 Control of chaos in distributed systems

7.5.1 Spatiotemporal systems

Methods of early works on spatiotemporal control of chaos were similar to
the finite-dimensional case: OGY/OPF, delayed feedback and others, see sur-
vey [200]. In the consequent papers other approaches were introduced and
investigated (mainly numerically).

In the paper [338] a one-dimensional array of N = 100 cells, described
by logistic maps (F (x, u) = 1αx2 + u), where the value of the parameter α
ensured chaotic behavior of each cell for u ≡ 0 was considered. It was shown
by numerical experiments that local feedback:

ui(n) = γ

[
xi(n) − 1

N + 1

N∑
j=0

xj(n− 1)
]

i = 1, 2, . . . , N − 1 (7.5.41)

provides stability of the spatially uniform distribution xi ≡ x∗, i = 0, 1,
2, . . . , N for sufficiently large gain γ > γ0. For γ < γ0 a nonuniform distrib-
ution consisting of several clusters of uniformity is stabilized, while each cell
is still periodically oscillating. Similar behavior has been observed with local
feedback in error:

ui(n) = γ [xi(n) − x∗] , (7.5.42)

or with the so-called global feedback depending on observable average values
of variables:

ui(n) = − γ

N + 1

N∑
j=0

[xj(n) − xj(n− 1)] , (7.5.43)

or

ui(n) = −γ

[
1

N + 1

N∑
j=0

xj(n) − x∗

]
. (7.5.44)

The latter ones look more realistic. The above results were justified analyti-
cally in [172]. Cluster synchronization for the chains of chaotic oscillators was
also reported in [328, 329].

In 1997 L. Kocarev et al. [238] studied pinning control for one-dimensional
lattice of Lorenz systems, for control interacting with every p-th cell. Attrac-
tivity of the spatially uniform (coherent) yet chaotic in time motion under
discrete-time control (7.5.42) with γ = 1 applied to the first equation of
the Lorenz system was established. Similar result for two-dimensional lattice
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of Lorenz systems was obtained in [412] using an integral feedback (called
“adaptive” by the authors). Analogous results were established for the com-
plex Ginzburg–Landau equation:

Ȧ = A + (1 + iµ1)
∂2A

∂r2
− (1 + iµ2)|A|2A, (7.5.45)

see [303] and for the Swift–Hohenberg equation describing dynamics of some
types of semiconductor lasers [70]. Complex Ginzburg–Landau equation may
describe a number of phenomena in laser physics, hydrodynamics, chemi-
cal turbulence. It can exhibit different forms of complex behavior, includ-
ing Andronov–Hopf bifurcation, chaotic turbulent modes, contrast structures.
Complex Ginzburg–Landau equation with pinning control, applied only in a
finite number of points was studied in [79, 450]. The maximum distance be-
tween nodes of control ensuring achievement of the control goal was found
numerically. A similar result for boundary control was obtained later in [450].

A possibility of stabilization of solutions to the Kuramoto–Sivashinsky
equation

∂ϕ

∂t
+ ϕ

∂ϕ

∂r
+

∂2ϕ

∂r2
+

∂4ϕ

∂r4
= u (7.5.46)

by periodic-delayed velocity feedback

u = εt ∂ϕ

∂t
(t− τ), (7.5.47)

where τ is time delay was demonstrated in [393].
Pinning controls (local injections) were also applied in the paper [201] to

stabilization of the trivial solution (xi(t) ≡ 0) of coupled oscillators systems
with diffusion-gradient coupling:

ẋi = f(xi) +
ε

2
(xi−1 − 2xi + xi+1) +

ρ

2
(xi−1 − xi+1) + ui, (7.5.48)

as well as to the CGL equation evolving initially in a chaotic mode. Linear
high-gain feedback in each lth oscillator was employed. Stability analysis was
performed based on linearized models near the goal solution.

Minimal density of the local control nodes and the optimal allocation
were determined in [185] for one-dimensional array of coupled logistic sys-
tems: f(x) = ax(1 − x) in (7.5.48), using a linear feedback for stabilization.
The method of stabilization of space-homogenious solution of the reaction–
diffusion equation was proposed in [283] for the complex Kuramoto–Suzuki
equation. In [443] the method of chaos and spiral waves suppression by a weak
distributed perturbation for Maxwell–Bloch equation with difraction coupling
was proposed.

Some interesting control problems arise when studying cluster synchroniza-
tion of two- or three-dimensional arrays of nonlinear oscillators. For example,
in [63–65, 352] the conditions, guaranteeing splitting the array into a given
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number of synchronously oscillating clusters are proposed. Based on Lyapunov
functions of special form it is shown that growth of the coupling strength k
leads to an increase of the number of the clusters, up to complete synchro-
nization. Though the authors of the aforementioned papers do not mention
control explicitly, their results can be interpreted as design of the coupling
strength k to ensure the given number of clusters. Future studies could be
devoted to the design of adaptive control of clustering by means of changing
the coupling strength online, during the experiments with the system.

Control can promote or suppress even more complex spatiotemporal be-
havior. Intricate patterns of wave propagation in a chemical reaction–diffusion
system with spatiotemporal feedback were found in [386]. Wave behavior is
controlled by feedback-regulated excitability gradients that guide propagation
in specified directions. In [68, 232] it was demonstrated that chemical turbu-
lence can be completely or partially suppressed by the feedback, giving rise to
stable uniform oscillations, intermittent regimes with reproduction cascades of
amplitude defects, or regular patterns of clusters and standing waves. Similar
effects are expected for other reaction–diffusion systems of different origins.
Moreover, experiments show possibility of control for other sophisticated types
of behavior, e.g., control of polarization switching in vertical cavity surface
emitting lasers [285, 337].

7.5.2 Delayed systems

Delayed (or more generally retarded) systems are described by infinite-
dimensional models, typically by delay-differential systems, e.g.,

ẋ = F (x(t), x(t− T ), u(t), u(t− T )), (7.5.49)

where T is a time delay. Model (7.5.49) can be reduced either to discrete
finite-dimensional system of type (7.5.49) if delay time is a multiple of the
sampling interval. Otherwise, it can be converted into a spatiotemporal model
by transformation t = σ + θT , where 0 ≤ σ ≤ T is a continuous space-like
variable, and θ is a discrete temporal variable. An example of delayed models
is CO2 laser.

Delay may also appear due to introducing a delayed feedback (see Section
6.4.3). A typical example of a chaotic delayed system is the Mackey–Glass
system:

ẏ = −γy + βy(t− T )/(α + y(t− T )n)) ,

with positive parameters α, β, γ, n, T . This system was studied by C. Mackey
and L. Glass [281] in 1977 as a model of biological chaotic processes.

In papers [78] two version of adaptive control procedure have been pro-
posed based on results of perturbing the value of delay time for the Bénard–
Marangoni time-dependent convection. Both procedures are based on results
of [36]. An experiment showed that both procedures ensure suppression of
phase defects and stabilization of regular oscillations. M. Ciofini et al. [109]
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proposed a control method for a delayed dynamical system exhibiting high-
dimensional chaos. The control is based on a negative feedback loop with
adaptive filtering consisting of a selective filter centered at the frequency of
the orbit to be stabilized with the addition of a time-derivative correction.

7.5.3 Chaotic mixing

An important practical field of research is chaotic mixing, particularly the
mixing of fluids and granular flows. Mixing properties of flows are important in
a variety of applications, such as chemical production in continuously stirred
chemical reactors, production of powders, polymers, design of combustion
processes, and heat exchangers. A typical control goal is to increase the rate
and quality of mixing. Thorough mixing is of utmost importance in chemical
engineering; it is recognized that 80% of the costs of chemical products falls
into their purification. After quality mixing the amount of nonreacted species
in the product decreases and, therefore, the impurity of the product decreases
too.

In 1997, A. Sharma and N. Gupte [399] proposed a method of enhancing
the rate of mixing of chaotic flows by increasing their chaoticity. Chaoticity
is measured by local Lyapunov exponents which estimate the average rate
of stretching. Using the Lagrangian description of two-dimensional fluid dy-
namics, fluid particle trajectories are described by the corresponding two-
dimensional Hamiltonian equations. In [399] a generalized description of mix-
ing by a nonlinear dynamical system is considered:

ẋ = F (x(t), u(t)), (7.5.50)

where x(t) ∈ R
n is state vector, u(t) is controlling parameter of the flow,

together with its variational system

ẇ = M(x, u)w, (7.5.51)

where M = ∂F/∂x(x, u) is Jacobian. Sharma and Gupte suggested to measure
the local stretching rate by increase rate of the w squared norm: ∂

∂t |w|2 =
2wTM(x, u)w and to change the parameter according to the rule

∆u = γsign(wT ∂M

∂u
w), (7.5.52)

where γ > 0. Control is activated in the regions where the largest local Lya-
punov exponent is less then its average value. It is easy to see that algorithm
(7.5.52) is a special case of the speed-gradient algorithm (see Section 2.4.2),
the goal function to be maximized being Q(x) = |x|2. In [399] a discrete-time
control algorithm that turns out to be a special case of gradient algorithm
(see Section 2.4.1) is also described. It is applied to enhance chaoticity of the
Chirikov (standard) map. A disadvantage of this approach is that in both
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continuous-time and discrete-time versions the state vector of the system is
supposed to be available for measurement and the system parameters should
be known, which is difficult to provide in practice.

Mixing of granular materials provides fascinating examples of pattern for-
mation and self-organization. For example, more mixing action (increasing the
forcing with more vigorous shaking or faster tumbling) does not guarantee a
better-mixed system. This is because granular mixtures of different materials
segregate according to density and size and, in fact, the very same forcing
used to mix may lead to unmixing. Self-organization results from two com-
peting effects: chaotic advection or chaotic mixing, as in the case of fluids,
and flow-induced segregation. The rich array of behaviors is ideally suited for
nonlinear dynamics-based inspection. In fact, these systems may constitute
the simplest example of coexistence between chaos and self-organization that
can be studied in the laboratory.

The dependence of mixing quality on various parameters has been studied
(numerically or experimentally) by many authors. It has been demonstrated
that the flow in elliptical and square mixers is time periodic and results in
chaotic advection and rapid mixing unlike the flow in circular mixers. As
for control by external forcing, most authors consider the case of open-loop
(feedforward) periodic control. Perhaps the most elaborated treatment of the
control problem for optimal mixing was performed in [115] where a proto-
typical mixing problem in an optimal control framework was formulated. The
objective in [115] is to determine the sequence of fluid flows maximizing the en-
tropy. By developing appropriate ergodic-theoretic tools for the determination
of entropy of periodic sequences, the authors derive the form of the protocol
maximizing entropy among all of the possible periodic sequences composed of
two shear flows orthogonal to each other.
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Control of Molecular and Quantum Systems

8.1 Laser control of molecular dynamics

The interest of humanity in control of microworld processes has a rich history.
We already mentioned briefly the history of Maxwell Demon starting from
the end of the 19th century. In the 20th century numerous control problems
in chemical reactors and nuclear reactors have been studied. Control goals
in conventional applications are usually formulated as regulation of process
intensity in cases when the normal functioning of the process is in principle
possible even without control. Challenging problems, however, are to change
the natural course of the process, to intervene the motion of single atoms and
molecules, to break existing chemical bonds and to create new ones [91, 114,
367]. In the 20th century implementation of these goals has become a matter
of serious discussion owing to the invention of such fine instruments as lasers.

Major difficulties when controlling processes at the atomic or molecular
level are caused by the tiny spatial size of the controlled objects and the fast
speed of the processes in the microworld. Indeed, an average size of a molecule
of a chemical substance (monomer) is of the order of 10−8 m = 10 nm. An
average interatomic distance in the molecule is of order 1 nm, an average speed
of atoms and molecules at the room temperature is about 102–103 m/s, and an
average period of natural oscillation of a molecule is 10–100 fs (1 fs = 10−15 s).
Development of devices for measurement and control at such spatiotemporal
scales is an enormously hard scientific and technological problem.

The situation changed in the end of the 1980s with invention of ultrafast
femtosecond lasers generating pulses of the order of tens or now even units
of femtoseconds as well as the methods of computerized control of the laser
pulses shape. Control is performed by changing the shape of laser pulses by
means of liquid crystal or acousto-optical computer-controlled modulator. A
new avenue of chemical research, the so called femtochemistry, arose. A. Ze-
wail was awarded the 1999 Nobel Prize for the progress in this area [460].
The advances of femtosecond lasers applications gave rise to the term “fem-
tosecond technologies” or “femtotechnologies”. These technologies are used,
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in particular, to solve the problems of selective dissociation where one needs to
break certain molecular bonds without affecting, wherever possible, the rest.

Several approaches to the control of molecular systems were suggested. M.
Shapiro and P. Brumer [398] used control on the basis of interference of two
laser beams of different frequencies, amplitudes, and phases (the pumping-
damping scheme). D.J. Tannor and S.A. Rice [425] suggested two-pulse
schemes of pumping-damping in the time domain. Methods of optimal control,
based, in particular, on the V.F. Krotov method [241, 243, 244] were later used
in pulse optimization. H. Rabitz and his collaborators [114, 216, 344, 366] con-
sidered various versions of optimal control under the classical and quantum
descriptions of the dynamics of molecular motion. H. Rabitz put forward [216]
the idea of realizing the adaptive laser control of chemical reactions by means
of the methods of search optimization (genetic algorithms). Feasibility of the
approach was corroborated experimentally [38, 54, 342].

Since the beginning of the 1990s there has been a growing interest in
the control problems for molecular systems in classical and quantum formula-
tion [114, 262, 366, 372, 455]. One of the benchmark problems in the field is the
dissociation problem for diatomic molecules [180, 181, 188, 242, 274, 455]. The
possibilities of the dissociation of a molecule by monochromatic (single fre-
quency) laser field have been explored for the case of a hydrogen fluoride (HF)
molecule using Chirikov’s resonance overlap criterion in the paper [180]. The
case of a two-frequency (two-laser) control field was investigated in [181, 188].
It was shown that the intensity of a bichromatic field required for dissociation
can be reduced compared to the monochromatic case. In [274] the possibility
of further reduction of the control field intensity by means of chirping (fre-
quency modulation) of the laser frequency with constant chirping rate has
been demonstrated.

New possibilities for the changing of physical and chemical properties are
provided by using feedback for control design. In [114, 455] methods based
on geometric control theory (inverse control) were proposed for control of
molecular systems, including dissociation problems for diatomic and triatomic
molecules. In a number of papers the possibility of optimal control design is
discussed [241, 344]. Two methods for dissociation of diatomic molecules de-
sign by feedback control based on resonance curve and speed-gradient prin-
ciple were proposed in [154, 155]. The common feature of the methods lies
in that they are used to design the control action as a time function from
the given model of the molecular system. In the computer experiments, one
may assume that all the necessary signals are measured and the design al-
gorithm is realized by the computer. As a result, the control signal will be
generated as a time function. At the second stage the implementation of con-
trol as applied to the real system is done without measurements and feedback.
Numerous uncertainties hinder the practical application of the methods: the
initial system state is not known precisely; the constructed control function
is calculated inaccurately and realized with error; the model of the molecule
itself is imprecise because its parameters are not known precisely. Even the
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very choice between the classical and quantum descriptions is the matter of
repeated discussions.

First results on control of quantum-mechanical systems were published in
the late 1970s [46, 94] and in the 1980s [95, 202, 345]. Recently, interest in
the control of quantum systems was growing rapidly. According to the Science
Citation Index, by the beginning of this century more than 500 papers were
published annually in peer-reviewed journals. In addition to applications in
chemical technologies, studies related to the quantum computers motivate
the development of the field [234]. The state-of-the-art is presented in books
and collections of papers [53, 92, 360]. Some open problems are listed in the
surveys [91, 280, 368]. There is also a number of recent experimental works
on quantum control devoted, e.g., to control of coupled spin dynamics in
NMR [280], to manipulating the quantum state of trapped ions via lasers and
electric fields [370], to open-loop control in superconducting circuits [441].

Instead of trying to make a survey of an avalanche of publications, we
describe below a new approach to control of molecular and quantum systems
based on speed-gradient method with energy-related goal functions. Such a
version of speed-gradient method has already been used several times in this
book. The proposed algorithms feature robustness because they are indepen-
dent of the shape of the potential of intermolecular interaction. They enable
one to achieve dissociation with a smaller intensity of the control field than in
the case of chirping and, as compared with the methods of optimal control,
are easier to design and calculate.

First, we describe the algorithms based on classical models of molecular
dynamics. Classical models are often used instead of the quantum ones in
dynamics calculations of molecular motion [180, 181, 395, 430, 440]. It has
been shown previously [180, 181, 440] that the results provided by classical
and quantum models are close for model systems with one or two degrees of
freedom. Even when the expectation values of the quantum wave packet do
not exactly correspond to the averages over classical trajectories, observables
such as dissociation probabilities are shown to be quite similar for mono-
chromatic [180, 440] and bichromatic [181] excitation. In the next section we
further investigate the possibility of using classical models for control algo-
rithm design. To this end the comparison of the results obtained by simulation
of classical and quantum-mechanical ensembles is performed.

In the final section of the chapter we describe an alternative control design
based on quantum-mechanical system description. Again it turns that the
speed-gradient method can be used to design a feedback control law generating
an open loop control action as a function of time.
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8.2 Controlled dissociation of diatomic molecules
(classical design)

8.2.1 Control algorithm design

The first step of the approach is to reformulate the controlled dissociation
problem as the one of achieving the given level of the molecular energy (dis-
sociation threshold). To simplify study assume that the given energy level is
slightly less than the dissociation threshold, i.e., the predissociation problem
is considered. The goal function is chosen as the squared deflection of the
current energy from the desired one. Then the standard speed-gradient con-
trol algorithm, see Section 2.4.2 is designed and the control system with the
“reference” molecule is simulated during some time T1, sufficient for its dis-
sociation. Being applied to a real molecular system such an action will cause
dissociation of only a fraction of all molecules, namely, those with initial states
close to the initial state x0 of the reference molecule. Now assume that control
is implemented as a series of repeating pulses of length T1 and the intervals
between pulses are large enough. During the pauses between pulses the states
of some portion of molecules will approach the point x0 in the state space
in the course of their chaotic thermal motion. Then the next pulse after the
pause will lead to dissociation of that portion of molecules. Such behavior of
the controlled system will take place if the closed-loop system is sufficiently
rough (robust). Robustness of the molecular system depends on the shape of
the pulse. If the system is robust enough, then each pulse will cause dissocia-
tion of a substantial portion of molecules and a proper quality of control will
be achieved. Let us consider this approach in more detail, following [18, 126].

Controlled system model. Let us start with classical description of a di-
atomic molecular system under the action of the external laser field. Dy-
namics of such a system can be described by the following controlled Hamil-
tonian [188, 455]

H =
p2

2m
+ Π(r) − µ(r) u(t) , (8.2.1)

where the coordinate r(t) is the interatomic distance, p is momentum, Π(r)
is potential of interatomic interaction, m is the mass of the molecule, µ(r) is
dipole moment of the molecule, u(t) is intensity of external field. The value
u(t) serves as control variable. Substitution of (8.2.1) into the Hamiltonian
equations

∂r

∂t
=

∂H

∂p

∂p

∂t
= −∂H

∂r
(8.2.2)

yields the following equation of molecular motion

mr̈ = −Π ′(r) + µ′(r)u(t) . (8.2.3)

For description of intermolecular interaction we use the standard Morse in-
teratomic potential model
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Π(r) = D
(
1 − e−α(r−a)

)2

−D = D
(
e−2α(r−a) − 2e−α(r−a)

)
, (8.2.4)

where D is the bond energy, a is the equilibrium interatomic distance. For the
dipole moment a linear approximation is often used [188, 455]

µ(r) = Are−ξr4
µ′(r) = A

(
1 − 4ξr4

)
e−ξr4

, (8.2.5)

where A, ξ are constant parameters. Thus the equation of motion in the La-
grange form reads

mr̈ = 2αD
(
e−2α(r−a) − e−α(r−a)

)
+ Au(t) . (8.2.6)

Adopting such a description we consider only one-dimensional motion of
the molecules, and assume that the symmetry axis of the molecule is oriented
along the force lines of the controlling external field. It means that we neglect
the effects of the rotation and changing orientation of the molecules.

Control goal. In the case of the dissociation problem the natural goal of
control can be expressed in terms of the molecule free energy. Note that as
the molecule energy approaches the level Π∗ = limr→∞ Π(r), the dissociation
is getting more probable. In the case of the Morse potential (8.2.4), obviously
Π∗ = 0.

Let us choose the goal function as the squared error in terms of energy:
Q(q, p) = 0.5(H0(q, p) −H∗)2, where

H0(q, p) =
p2

2m
+ Π(r)

is the total energy of the free molecule, H∗ is the prespecified value, slightly
less than the dissociation threshold Π∗.

Control algorithms. Evaluating the rate of change of the goal function
for constant u and then the speed-gradient as previously we arrive at simple
feedback control laws

u = −E (H0(q, p) −H∗) ṙ, (8.2.7)

u = −E sign (H0(q, p) −H∗) sign ṙ, (8.2.8)

where E > 0; sign(H) = 1 for H > 0, sign(H) = −1 for H < 0 and sign(0) =
0.

In what follows we use a simplified version of the algorithm (8.2.8) obtained
under following assumption: the current energy of the molecule is always less
than its goal value H∗:

u = E sign ṙ . (8.2.9)

The algorithm (8.2.9) does not require exact knowledge of the goal value H∗
and acts as introduction of a negative Coulomb friction into the system. The
method can be applied to other problems, e.g., localization of the molecule in
the region of higher energy.
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8.2.2 Simulation results (classical model)

A series of computer experiments for the system (8.2.6), (8.2.9) were per-
formed. Parameter values were chosen corresponding to the hydrogen fluo-
ride (HF) molecule [188, 455]: m = 1732, D = 0.2101, α = 1.22, a = 1.75,
A = 0.4541, ξ = 0.0064, E = 0.1. The values are indicated in Hartree atomic
units (a.u.). Initial values of the “reference molecule” for calculation of the
controlling function u(t), 0 ≤ t ≤ T1 were taken near equilibrium state r = a,
ṙ = 0. The intensity of the field was chosen sufficiently small: E = 0.005 a.u.

The designed controlling function u(t) was applied to the ensemble of the
molecules consisting of N = 1000 molecules. The interaction between mole-
cules and interaction between molecules and the boundary were neglected.
Initial conditions for the ensemble were chosen randomly and distributed uni-
formly over the given energy surface H0 = −0.8689D. Control was applied
as a series of repeating pulses with the period T2. The value of T2 should
be chosen large enough in order to allow the molecules to mix during pauses
between pulses. A typical value was T2 = 200 T0, where T0 is the period of
small oscillations of the molecule near equilibrium.

The efficiency of control was measured as the ratio of the number of disso-
ciated molecules over the total number of molecules (in percent). A molecule
was considered as dissociated1 if its energy exceeded the level H∗ = −0.1185D.

The efficiency of the proposed algorithm (8.2.9) was compared with the
efficiency of the standard chirping algorithm

u(t) = E cos(φ0 + Ω0t−
εt2

2
) (8.2.10)

The time dependence of the portion of the dissociated molecules when control-
ling with a linearly chirped field is shown in the Fig. 8.2.1(a). The chirp rate
ε was tuned to achieve maximum portion of dissociated molecules. The final
choice was ε = 0.01Ω0/T0. Similar time dependence for the speed-gradient
algorithm (8.2.9) is shown in the Fig. 8.2.1(b). It is seen from the figures that
the speed-gradient algorithm provides several times higher efficiency than the
chirping algorithm. It is important to notice that chirping control is very sen-
sitive to the changes of the chirping rate ε. The choice of the value of ε requires
time-consuming computations and more precise knowledge of the molecular
Hamiltonian and dipole moment than it is needed for efficient work of the
algorithm (8.2.9).

8.2.3 Comparison of classical and quantum simulations

An interesting and still disputable issue is the possibility of using classical
modeling of molecular processes instead of quantum-mechanical ones. In the
1 Since the value H∗ is less than the dissociation threshold H∗ = 0, such a state

can be termed predissociation. However, we will not discuss this difference further,
because the goal of the research is just evaluation of the feasibility of the approach.
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Fig. 8.2.1. Controlled dissociation of the classical ensemble (a) – linearly chirped
pulses, (b) – pulses calculated by the speed-gradient method. The portion of the
dissociated molecules is shown in percent, time is shown in the units of T0.

case of a diatomic molecule described classically by the model (8.2.6) it is
known that its dynamics can be described more adequately by the quantum-
mechanical (more precisely, semiclassical) model represented as the time-
varying (controlled) Schrödinger equation

i�
∂Ψ

∂t
=

�
2

2M
∂2Ψ

∂r2
+ Π(r)Ψ + Aru(t)Ψ, (8.2.11)

where Ψ = Ψ(t, r) is the wave function, Π(r) is the Morse potential (8.2.4).
Recall that the squared absolute value of the wave function |Ψ(t, r)|2 defines
the probability density of the molecule in the given state. The probability
of dissociation is defined as the probability of the molecule to have energy
greater than the dissociation threshold H∗.

It turns out, however, that the classical calculations give in many cases
the result close to that of the quantum-mechanical ones. Therefore, numerical
comparison of the controlled dissociation rates for classically and quantum-
mechanically modeled systems has been performed.

To analyze the quantum-mechanical model (8.2.11) a finite-level approx-
imation of the model was developed based on the expansion of the solution
to the time-varying Schrödinger equation over the eigenfunctions of the free
Schrödinger equation (with u(t) = 0). Eigenvalues and eigenfunctions of the
free Schrödinger equation with the Morse potential can be evaluated analyti-
cally [131]. The controlling function and the final simulation time were chosen
the same as in the classical case. The initial system state was chosen as the
pure state with the energy equal to the energy of the second energy level,
while the dissociation threshold H∗ was chosen as the 15th energy level for
the HF molecule, which also corresponds to the classical case.

The results of the quantum-mechanical simulation are shown in the
Fig. 8.2.2. It is seen that the speed-gradient algorithm provides a dissociation
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Fig. 8.2.2. Dissociation probability for quantum-mechanical modeling for E =
0.005 a.u.: (a) – linearly chirped pulses, (b) – pulses calculated by the speed-gradient
method. The portion of the dissociated molecules is shown in percent, time is shown
in the units of T0.

probability of 14% after 5 pulses which exceeds the dissociation probability for
the chirped pulse significantly and corresponds to the results for the classical
case (10–12%).

8.3 Control of finite-level quantum systems

An approach to control of observables for a class of quantum-mechanical sys-
tems and its application to controlled dissociation of diatomic molecules based
on quantum-mechanical description are described below. The exposition fol-
lows [19, 20].

Let the dynamics of the controlled system satisfy the finite-dimensional
controlled Schrödinger equation:

i�Ψ̇(t) = [H0 +
r∑

k=1

ukHk]Ψ(t), Ψ(t) ∈ C
n, (8.3.12)

where i =
√
−1 is imaginary unit, � is Planck constant, H0 is the Hamiltonian

operator (energy operator), defining the dynamics of the free (noncontrolled)
system, uk are real-valued scalar control functions and the terms ukHk are
interaction Hamiltonians. The operators Hk for k = 0, . . . , r are self-adjoint.
The phase space of this system is represented by the unit sphere of the n-
dimensional complex space C

n. The following control problem is posed: to
construct functions uk(Ψ), ensuring that the average of the given observable
Z tends to its goal value Z∗. Precisely,

lim
t→+∞

Ψ(t)∗ZΨ(t) = Z∗ (8.3.13)
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for all initial conditions Ψ(t0), where Z is a self-adjoint operator. Recall that
the term “observable” in quantum mechanics is used to denote an operator in
the state space of the system, corresponding to some characteristic of the sys-
tem: the system energy, velocity, angular momentum, etc. Any measurement
results in a specific number – the value of the observable which is a random
number. Then the value Ψ(t)∗ZΨ(t) has the meaning of its average at time t.

To design a control algorithm for the problem (8.3.12), (8.3.13) we use
the speed-gradient method, see Section 2.4.2. Introduce the following goal
function:

Q(Ψ) = (Ψ∗ZΨ − Z∗)2. (8.3.14)

Then the goal (8.3.13) is reformulated in the form

lim
t→+∞

Q(Ψ(t)) = 0.

Assume that the observable Z commutes with the operator H0, i.e., the
goal observable is a function of the system energy. Evaluate the speed Q̇ of
changing the function (8.3.14) along trajectory of the system (8.3.12) and
then the partial derivatives of Q̇ with respect to uk, k = 1, . . . , r:

∇uQ̇ = −γ∇uk
{2(Ψ∗ZΨ − Z∗)(Ψ̇∗ZΨ + Ψ∗ZΨ̇)} =

−γ∇uk

{
2i
�

(Ψ∗ZΨ − Z∗)Ψ∗[H0Z − ZH0 +
r∑

k=1

uk(HkZ − ZHk)]Ψ

}
.

We arrive at the following control algorithm in the finite form:

uk(Ψ) = −γ
2i
�

(Ψ∗ZΨ − Z∗)(Ψ∗[H0Z − ZH0 + (HkZ − ZHk)]Ψ). (8.3.15)

Thus, we have designed the feedback algorithm of controlling the average
value of observable Z for the quantum system with finite-dimensional state
space. Note that the commutator of self-adjoint operators multiplied by i/h
can be interpreted as quantum Poisson bracket, i.e. algorithm (8.3.15) is anal-
ogous to the energy control algorithm (3.1.10). Algorithm (8.3.15) can be used
for control of the systems with infinite-dimensional state space as well.

To formulate conditions ensuring achievement of the control goal, impose
the following restrictions on the operators Z, H0, and H1:

A1) zk − zm 	= 0, k 	= m, k,m = 1, n where zk are eigenvalues of Z in
ascending order;

A2) (λk − λm) 	= (λr − λs), (k,m) 	= (r, s), k,m, r, s = 1, n, where λk are
eigenvalues of H0 in ascending order;

A3) for any pair (k,m) there exists a number l ∈ {1, ..., r} such that
hkH1hm 	= 0, k,m = 1, n, where hk, k = 1, n are linearly independent
unit eigenvectors of H0.
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The following theorem, established in [19, 20] provides the mathematical
basis for using the algorithm (8.3.15).

Theorem 8.1. Consider the system (8.3.12) with feedback control law
(8.3.15), where Z and H0 commute, the assumptions (A1), (A2), (A3) hold
and zk < Z∗ < zk+1. Then for any initial condition Ψ0 from the set
M = {φ : zk < φ∗Zφ < zk+1} the goal (8.3.13) is achieved.

The condition (A1) means that different values of the observable Z cor-
respond to different pure states. The condition (A2) means that for different
pairs of pure states the frequencies of transitions between them are different as
well. Finally, the condition (A3) means that for any two pure states there exists
a nonzero probability of transition between them for any (nonzero) control.
For control of the molecule observables, the conditions imposed by Theorem
8.1 are not unnecessarily restrictive. For example, they are satisfied for the
model of the hydrogen fluoride molecule discussed previously. The theorem
remains true if a more general control algorithm is used u = −F (∇uQ̇(t)),
where the function F (x) is continuous, F (x) = 0 ⇐⇒ x = 0, F (x)x > 0.

Note that since the control function is continuous and the sphere in C
n

is compact and the theorem holds with arbitrarily small positive gain γ in
(8.3.15), the goal is achieved for arbitrarily small intensity of control.

Some related results were also obtained by the method of Lyapunov func-
tions, see [186, 187, 300, 301]. However, in [186, 300, 301] only the problem
of stabilization (preparation) of the pure state was considered. Besides, the
conditions A1–A3 are more mild than the conditions of [186, 300, 301] and
allow for degeneracy of the energy levels. Particularly, it means that Theorem
8.1 applies to control of spin systems.

Let us apply the algorithm (8.3.15) to the problem of controlled dissocia-
tion of the hydrogen fluoride molecular ensemble. Algorithm (8.3.15) was ap-
plied to energy control of molecule HF, described by equation (8.2.11), (8.2.4).

Fig. 8.3.3. (a) Energy evolution (horizontal lines are energy levels); (b) control
function u(t).
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The constants for HF molecule are as follows [242]: M = 1732, A = 0.4541,
D = 0.2101, α = 2.1350, r0 = 1.75 (Hartree units). The observable of interest
is the energy H0 with the average value E(t) = φ(t)∗H0φ(t). Molecular en-
ergy levels are energies of pure states. The initial value of the phase vector is
uniformly distributed between 3rd and 4th energy levels. The initial value of
the energy is −0.1571 in atomic units. The goal value for energy is −0.06, it
lies between 10th and 11th energy levels. The control function has the linear
form F (x) = Kx with the gain factor K equal to 200. The simulation time
is 50 femtoseconds. The figures (Fig. 8.3.3) display evolution of energy (E(t))
and control function (u(t)). The simulation results confirm efficiency of the
speed-gradient algorithm (8.3.15) for quantum control of diatomic molecule
observables. More extensive simulations confirm that the set of initial condi-
tions ensuring achievement of the control goal are broader then the one for
which the theorem was proved.



9

Control Algorithms and Dynamics
of Physical Systems

In this chapter, the links between control laws in technical systems and laws
of dynamics in physical systems are examined. It is shown that the methods of
control system design can be applied to the interpretation and explanation of
dynamics laws for physical systems. The proposed approach is illustrated by
the examples: motion of a particle in the potential field; wave, diffusion, and
heat transfer equations; viscous flow equation. Applications to nonstationary
nonlinear thermodynamics are presented: the derivation of the speed-gradient
transient dynamics of the entropy maximization and an alternative proof of
the extended Onsager principle.

9.1 Integral and differential variational principles

Consider a class of physical systems described by systems of differential equa-
tions

ẋ = f(x, u, t), (9.1.1)

where x ∈ R
n is the vector of the system state, u is the vector of free (input)

variables, t ≥ 0. The problem of system evolution modeling can be posed
as the search of a law of changing u(t) in order to satisfy some criterion of
“natural,” or “reasonable” behavior of the system.

The equations of motion for either physical (natural) or technical (ar-
tificial) systems are often derived from variational principles (e.g., princi-
ple of least action, principle of least dissipation, maximum entropy princi-
ple) [168, 193, 252]. They are based on specification of a functional (usually,
integral functional) and determination of real system motions {x(t), u(t)} as
points in an appropriate functional space providing the extrema of the spec-
ified functional. In order to explicitly describe either a control law or system
dynamics the powerful calculus of variations or optimal control machinery is
used.

In addition to integral principles, differential (local) ones were proposed:
Gauss principle of least constraint, principle of minimum energy dissipation
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and others. It has been pointed out by Max Planck [353] that the local prin-
ciples have some preference with respect to integral ones because they do
not fix dependence of the current states and motions of the system on its
later states and motions. One more local evolution principle is motivated by
the speed-gradient method, see Section 2.4.2. It can be formulated as fol-
lows [135, 136, 146].

Speed-gradient (SG) principle. Among all possible motions only those are
realized for which the input variables change proportionally to the speed gra-
dient of an appropriate goal functional. If there are constraints imposed on
the system motion, then the speed-gradient vector should be projected onto
the set of admissible (compatible with constraints) directions.

In the next section the use of the speed-gradient principle will be illustrated
by examples.

9.2 Examples of speed-gradient laws of dynamics

Suppose that the model (9.1.1) has a simple form

ẋ = u. (9.2.2)

The relation (9.2.2) means that we are seeking for law of change of the state
velocities. According to the speed-gradient principle, first we need to introduce
the goal function Q(x). The choice of Q(x) should reflect the tendency of
natural behavior to decrease the current value Q(x(t)).

Example 9.1. (Motion of a particle in the potential field). In this case the vec-
tor x = col (x1, x2, x3) consists of coordinates x1, x2, x3 of a particle. Choose
smooth Q(x) as the potential energy of a particle and derive the speed-gradient
law in the differential form. To this end, calculate the speed gradient

Q̇ = [∇xQ(x)]T u, ∇uQ̇ = ∇xQ(x).

Then, choosing the diagonal positive definite gain matrix Γ = m−1I3, where
m > 0 is a parameter, I3 is the 3 × 3 identity matrix, we arrive at familiar
Newton’s law u̇ = −m−1∇xQ(x) or

mẍ = −∇xQ(x). (9.2.3)

Note that the speed-gradient laws with nondiagonal gain matrices Γ can
be incorporated if a non-Euclidean metric in the space of inputs is introduced
by the matrix Γ−1. Admitting dependence of the metric matrix Γ on x one
can obtain evolution laws for complex mechanical systems described by La-
grangian or Hamiltonian formalism.
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The SG-principle applies not only to finite-dimensional systems, but also
to infinite-dimensional (distributed) ones. Particularly, x may be a vector of a
Hilbert space X and f(x, u, t) may be a nonlinear operator defined in a dense
set DF ⊂ X (in such a case the solutions of (9.1.1) should be understood as
generalized ones).

Example 9.2. (Wave, diffusion, and heat transfer equations). Let x = x(r),
r = col (r1, r2, r3) ∈ Ω be the temperature field or the concentration of a
substance field defined in the domain Ω ⊂ R

3. Choose the goal functional as
the following nonuniformity measure of the field

Qt(x) =
1
2

∫
Ω

|∇rx(r, t)|2 dr, (9.2.4)

where ∇rx(r, t) is the spatial gradient of the field. Assuming zero boundary
conditions for simplicity, we have

Q̇t = −
∫
Ω

∆x(r, t)u(r, t) dr, ∇uQ̇t = −∆x(r, t),

where ∆ =
3∑

i=1

∂2

∂r2
i

is the Laplace operator. Therefore, the speed-gradient

evolution law in differential form is

∂2

∂t2
x(r, t) = −γ∆x(r, t), (9.2.5)

which corresponds to the D’Alembert wave equation, while its finite form is

∂x

∂t
(t) = −γ∆x(r, t) (9.2.6)

and coincides with the diffusion or heat transfer equation.
Note that the differential form of the speed-gradient laws corresponds to

reversible processes while the finite form generates irreversible ones.

Example 9.3. (Viscous flow equation). Let v(r, t) ∈ R
3 be the velocity field

of fluid, p(r, t) be the pressure field, i.e., x = col (v(r, t), p(r, t)). Introduce the
goal functional as follows

Qt =
∫
Ω

p(r, t) dr + ν

∫
Ω

|∇rv(r, t)|2 dr, (9.2.7)

where ν > 0. Calculation of the speed-gradient with respect to (9.2.2) yields
∇uQ̇t = ∇rp− ν∆v. Then, the differential form of speed gradient is just the
Navier–Stokes equation for viscous fluid motion

ρ
∂v

∂t
(r, t) = −∇rp(r, t) + ν∆v(r, t), (9.2.8)

where ν > 0 is the viscosity coefficient, ρ = γ−1 is density.
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Other examples of reproducing dynamical equations for mechanical, elec-
trical, and thermodynamic systems can be found in [135]. The SG-principle
applies to a broad class of physical systems subjected to potential and/or
dissipative forces. On the other hand, nonpotential systems with presence of
vortex motions (e.g., mechanical systems affected by gyroscopic forces) cannot
be derived by the SG-method.

9.3 Speed-gradient entropy maximization

It is worth noticing that the speed-gradient principle provides an answer to
the question: how the system will evolve? It differs from the principles of
maximum entropy, maximum Fisher information, etc. providing and answer
to the questions: where? and how far? Particularly, it means that SG-principle
generates equations for the transient (nonstationary) mode rather than the
equations for the steady-state mode of the system. It allows one to study
nonequilibrium and nonstationary situations, stability of the transient modes,
maximum deviations from the limit mode, etc. Let us illustrate this feature
by example of entropy maximization problem.

It was mentioned in Section 1.4 that, according to the 2nd thermodynam-
ics law and to the Maximum Entropy Principle of Gibbs–Jaynes the entropy
of any physical system tends to increase until it achieves its maximum value
under constraints imposed by other physical laws. Such a statement provides
knowledge about the final distribution of the system states, i.e., about as-
ymptotic behavior of the system when t → ∞. However, it does not provide
information about the way how the system moves to achieve its limit (steady)
state.

In order to provide motion equations for the transient mode we employ the
SG-principle. Assume for simplicity that the system consists of N identical
particles distributed over m cells. Let Ni be the number of particles in the ith
cell and the mass conservation law hold:

m∑
i=1

Ni = N. (9.3.9)

Assume that the particles can move from one cell to another and we are
interested in the system behavior both in the steady-state and in the transient
modes. The answer for the steady-state case is given by the Maximum Entropy
Principle: if nothing else is known about the system, then its limit behavior
will maximize its entropy. Define, according to the deterministic style of this
book, the entropy of the system as logarithm of the number of possible states:

S = ln
N !

N1! · · · · ·Nm!
. (9.3.10)

If there are no other constraints except normalization condition (9.3.9) it
achieves maximum with N∗

i = N/m. For large N an approximate expression
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is of use. Namely, if the number of particles N is large enough, one may use
the Stirling approximation Ni! ≈ (Ni/e)Ni . Then

S ≈ N ln
N

e
−

m∑
i=1

Ni ln
Ni

e
= N lnN −

m∑
i=1

Ni lnNi = −
m∑

i=1

Ni ln
Ni

N

which is proportional to the standard stochastic entropy S = −
∑m

i=1 pi ln pi,
if the probabilities pi are understood as frequencies Ni/N .

To get the answer for the transient mode let us apply the SG-method
choosing the approximate entropy Ŝ(X) = N lnN−

∑m
i=1 Ni lnNi as the goal

function to be maximized, where X = col(N1, . . . , Nm) is the state vector of
the system (here the state is understood in the systems theory sense). Assume
for simplicity that the motion is continuous in time and the numbers Ni are
changing continuously, i.e., Ni are not necessarily integer (for large Ni it is
not a strong restriction). Then the sought law of motion can be represented
in the form

Ṅi = ui, i = 1, . . . ,m, (9.3.11)

where ui = ui(t), i = 1, . . . ,m are controls – auxiliary functions to be de-
termined. According to the SG-method one needs to evaluate first the speed
of change of the entropy (9.3.10) with respect to the system (9.3.11), then
the speed-gradient (gradient of the speed with respect to the vector of con-
trols ui considered as frozen parameters) and finally define actual controls
proportionally to the projection of the speed-gradient to the surface of con-
straints (9.3.9). In our case the goal function is the entropy S and its speed
coincides with the entropy production Ṡ. In order to evaluate Ṡ let us again
approximate S from the Stirling formula Ni! ≈ (Ni/e)N :

Ŝ = N lnN −N −
m∑

i=1

(Ni lnNi −Ni) = N lnN −
m∑

i=1

Ni lnNi. (9.3.12)

Evaluation of ˙̂
S yields

˙̂
S = −

m∑
i=1

((ui lnNi + Ni
ui

Ni
) = −

m∑
i=1

ui(lnNi + 1).

It follows from (9.3.9) that
∑m

i=1 ui = 0. Hence ˙̂
S = −

∑m
i=1 ui lnNi. Evalua-

tion of the speed-gradient yields ∂
˙̂
S

∂ui
= − lnNi and the SG-law is as follows:

ui = γ(− lnNi + λ), i = 1, . . . ,m, (9.3.13)

where Lagrange multiplier λ is chosen in order to fulfill the constraint∑m
i=1 ui = 0, i.e., λ = 1

m

∑m
i=1 lnNi. The final form of the system dynam-

ics law is as follows:
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Ṅi =
γ

m

m∑
i=1

lnNi − γ lnNi, i = 1, . . . ,m. (9.3.14)

According to the SG-principle the equation (9.3.14) determines transient
dynamics of the system. To confirm consistency of the choice (9.3.14) let us
find the steady-state mode, i.e., evaluate asymptotic behavior of the variables
Ni. To this end note that in the steady-state Ṅi = 0 and

∑m
i=1 lnNi =

lnNi. Hence, all Ni are equal: Ni = N/m which corresponds to the maximum
entropy state and agrees with thermodynamics.

The next step is to examine stability of the steady-state mode. It can be
done by means of the entropy Lyapunov function

V (X) = Smax − S(X) ≥ 0, (9.3.15)

where Smax = N lnm. Evaluation of V̇ yields

V̇ = −Ṡ =
m∑

i=1

ui lnNi =
γ

m

[
(

m∑
i=1

lnNi)2 −m

m∑
i=1

(lnNi)2
]
.

It follows from the Cauchy–Bunyakovsky–Schwarz inequality that V̇ (X) ≤ 0
and the equality V̇ (X) = 0 holds if and only if all the values Ni are equal, i.e.,
only at the maximum entropy state. Thus the law (9.3.15) provides global
asymptotic stability of the maximum entropy state. The physical meaning
of the law (9.3.15) is moving along the direction of the maximum entropy
production rate (direction of the fastest entropy growth).

Let in addition to the mass conservation law (9.3.9) the energy conserva-
tion law hold. What can be said about transient and steady-state modes? The
case of more than one constraint can be treated in the same fashion. Let Ei be
the energy of the particle in the ith cell and the total energy E =

∑m
i=1 NiEi

be conserved. The energy conservation law

E =
m∑

i=1

NiEi (9.3.16)

appears as an additional constraint. Acting in a similar way, we arrive at the
law (9.3.14) which needs modification to ensure conservation of the energy
(9.3.16). According to the SG-principle one should form the projection onto
the surface (in our case – subspace of dimension m−2) defined by the relations

m∑
i=1

uiEi = 0,
m∑

i=1

ui = 0. (9.3.17)

It means that the evolution law should have the form

ui = γ(− lnNi) + λ1Ei + λ2, i = 1, . . . ,m, (9.3.18)



9.4 Onsager relations 179

where λ1, λ2 are determined by substitution of (9.3.18) into (9.3.17). The
obtained equations are linear in λ1, λ2 and their solution is given by formulas




λ1 = γm
∑m

i=1 Ei ln Ni)−γ(
∑m

i=1 Ei)(
∑m

i=1 ln Ni)

m
∑m

i=1 E2
i −(

∑m
i=1 Ei)2

,

λ2 = γ
m

∑m
i=1 lnNi − λ1

m

∑m
i=1 Ei.

(9.3.19)

The solution of (9.3.19) is well defined if m
∑m

i=1 E2
i − (

∑m
i=1 Ei)2 	= 0 which

holds unless all the Ei are equal (degenerate case).
Let us evaluate the equilibrium point of the system (9.3.11), (9.3.18) and

analyze its stability. At the equilibrium point of the system the following
equalities hold: γ(− lnNi) + λ1Ei + λ2 = 0, i = 1, . . . ,m. Hence

Ni = C exp(−µEi), i = 1, . . . ,m, (9.3.20)

where µ = λ1/γ and C = exp(−λ2/γ).
The value of C can also be chosen from the normalization condition

C = N(
∑m

i=1 exp (−µEi)). We see that equilibrium of the system with con-
served energy corresponds to the Gibbs distribution which agrees with classi-
cal thermodynamics. Again it is worth to note that the direction of change of
the numbers Ni coincides with the direction of the fastest growth of the local
entropy production subject to constraints.

As before, it can be shown that (9.3.15) is Lyapunov function for the
system and that the Gibbs distribution is the only stable equilibrium of the
system in nongenerate cases. Therefore again the SG-principle allows to easily
determine transient modes of the system. It complements the framework of
classical thermodynamics.

Similar results are valid for continuous (distributed) systems even for more
general problem of minimization of relative entropy (Kullback divergence). In
this case to evaluate the speed of change of the goal function one needs to use
the Pavon–Ticozzi formula [341].

9.4 Onsager relations

The speed-gradient approach provides a new insight for various physical facts
and phenomena. For example, we will give evidence for an extended version
of the symmetry principle for kinetic coefficients (Onsager principle) in ther-
modynamics [178, 318, 323] (it is also called the Maxwell–Betti theorem in
elasticity theory). Consider an isolated physical system whose state is char-
acterized by a set of variables (thermodynamic parameters) ξ1, ξ2, . . . , ξn. Let
xi = ξi − ξ∗i be deviations of the variables from their equilibrium values
ξ∗1 , ξ

∗
2 , . . . , ξ

∗
n. Let the dynamics of the vector x1, x2, . . . , xn be described by

the differential equations

ẋi = ui(x1, x2, . . . , xn), i = 1, 2, . . . , n. (9.4.21)
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Linearize equations (9.4.21) near equilibrium

ẋi = −
n∑

k=1

λikxk, i = 1, 2, . . . , n. (9.4.22)

The Onsager principle [178] claims that the values λik (so-called kinetic
coefficients) satisfy the equations

λik = λki, i, k = 1, 2, . . . , n. (9.4.23)

In general, the Onsager principle is not valid for all systems or far from equilib-
rium. Its existing proofs (see, e.g., [256]) require additional postulates. Below
the new proof is given, showing that it is valid for irreversible speed-gradient
systems without exceptions.

First of all, the classical formulation of the Onsager principle (9.4.23)
should be extended to nonlinear systems. A natural extension is the following
set of identities:

∂ui

∂xk
(x1, x2, . . . , xn) =

∂uk

∂xi
(x1, x2, . . . , xn). (9.4.24)

Obviously, for the case when the system equations (9.4.21) have linear form
(9.4.22) the identities (9.4.24) coincide with (9.4.23). However, since lineariza-
tion is not used in the formulation (9.4.24) there is a hope that the extended
version of the Onsager law holds for some nonlinear systems far from equilib-
rium. The following theorem specifies a class of systems for which this hope
comes true.

Theorem 9.1. Assume that there exists a smooth function Q(x) such that
equations (9.4.21) represent the speed-gradient law in finite form for the goal
function Q(x).

Then, the identities (9.4.24) hold for all x1, x2, . . . , xn.

Proof of Theorem 9.1. The proof is very simple. Since (9.4.21) is the
speed-gradient law for Q(x), its right-hand sides can be represented in the
form

ui = −γ
∂Q̇

∂ui
, i = 1, 2, . . . , n.

Therefore, ui = −γ(∂Q/∂xi) (in view of Q̇ = (∇xQ)Tu). Hence

∂ui

∂xk
= −γ

∂2Q

∂xi∂xk
=

∂uk

∂xi
,

and identities (9.4.24) are valid.

Thus, for speed-gradient systems the extended form of the Onsager equa-
tions (9.4.24) hold without linearization, i.e., they are valid not only near the
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equilibrium state. It is worth mentioning that the above derivation is valid
only under the assumption that all the derivatives exist, i.e., all the involved
functions are smooth. It excludes a number of nonsmooth physical problems,
like description of shock waves. In a special case the condition (9.4.24) was
proposed in [129].

Note that the condition (9.4.24) is necessary and sufficient for potentiality
of the vector-field of the right-hand sides of (9.4.21), i.e., existence of a scalar
function Q̄ such that ui = γ∇xQ̄ = γ∇u̇̄Q. It means that generalized Onsager
relations (9.4.24) are necessary and sufficient for the thermodynamics system
to obey the SG-principle for some Q̄. On the other hand, it is known that
different potential functions for the same potential vector-field can differ only
by a constant: Q̄ = Q + const and their stationary sets coincide.

It means, in turn, that if the system tends to maximize its entropy and
at every time instant it tends to maximize its entropy production rate (Pri-
gogine principle) then the generalized Onsager principle (9.4.24) holds and
vice versa. Indeed, in the case the entropy can serve as the goal function
for the speed-gradient evolution law. Note that for special case the rela-
tion between Prigogine principle and Onsager principle was established by
D. Gyarmati [192].

For the speed-gradient systems some other properties can be established.
Let, for example, a system is governed by SG-law with a convex entropy goal
function S. Then the decrease of the entropy production Ṡ readily follows
from the identities

S̈ = dṠ/dt = (∇xṠ)
T
ẋ = γ(∇x||∇xS||2)

T∇xS = 2γ(∇xS)
T
[∇2

xS](∇xS).

If the entropy S(x) is convex then its Gessian matrix ∇2
xS is negative

semidefinite: ∇2
xS ≤ 0. Hence S̈(x) ≤ 0 and Ṡ cannot increase [135].

9.5 Discussion: Dynamics and the purpose

It is shown in this chapter that the SG-principle previously used for control
system design, is applicable to the interpretation and explanation of dynamics
laws for physical systems. The SG-principle belongs to a family of extremal
(variational) principles and its peculiarity is in active using the concept of
the goal. Although using extremal principles is by no means a new approach,
most of previous applications belong to the engineering area where optimal-
ity is a goal of creating an artificial engineering system. In the contrast, the
goal-seeking in physics was many times criticized as a way of scientific de-
scription of nature.

It is interesting to link the speed-gradient approach to the views of Howard
Rosenbrock [377–379] who demonstrated how to obtain the Schrödinger’s
equation and some other results from the elementary theory of quantum
mechanics by means of the optimality principle of dynamic programming.
In [379], Rosenbrock quotes Albert Einstein [125]:
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For the scientist there is only “being,” but no wishing, no valuing, no
good, no evil; no goal.

Rosenbrock characterizes such an opinion as outdated, arguing that the
goal-seeking is natural for much broader class of systems than just living
organisms. His arguments are as follows [379]:

As an example, living organisms exhibit clear purposes, and if the
substrate of quantum mechanical particles from which life evolves is
described as purposeless the question arises “how can purpose arise
from a purposeless substrate?”

The speed-gradient principle described in this chapter as a local (differ-
ential) extremal principle relies upon the goal-seeking idea even more heavily
than integral variational principles and it may add arguments into the dis-
cussion. In the cases where obtaining physical results is easier from extremal
principle than from system equations (see [379]), using simple speed-gradient
formulation may further facilitate analysis of a physical system and provide
further insights about its properties. It may be especially helpful in the cases
when the idea of the goal is intrinsic to the system and formation of a goal
function does not look artificial. By the way, it correlates with one of the fun-
damental biological principles: organisms and populations evolve in such way
that the rate of increase of their biomass is maximized [421]. Therefore, it may
be helpful in development of unifying views of both animated and inanimate
nature.
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Examples

10.1 Controlled Stephenson–Kapitsa pendulum

In the beginning of the 20th century, Scottish professor P. Stephenson has
shown mathematically that the upper unstable equilibrium of a mathematical
pendulum can be stabilized by fast vibration of its suspension point [417]. In
about 40 years, in the end of the 1940s Russian physicist, future Nobel prize
winner Piotr Kapitsa surprised his colleagues by experiment with a rod ec-
centrically mounted on a horizontal motor shaft. The demonstration showed
that the upper unstable equilibrium of the swinging rod (pendulum) can be
made stable by sufficiently fast vibrations of the pivot. The experimental re-
sults were explained both by Kapitsa himself who developed his method of
“effective potential” [224] (see also [71, 73]) and by mathematician Nikolai Bo-
goliubov by means of the method of averaging (history and explanations see,
e.g., in [72]). The above mentioned and other results started the development
of a new field in mechanics called “Vibrational mechanics” with numerous ap-
plications in science and technology [73]. Similar ideas formed the basement
of a corresponding branch of the control theory: vibrational control [62, 292].
It is important to stress that Kapitsa’s experiment was, perhaps, the first one
clearly demonstrating the possibility and physical consequences of changing
properties of a physical system by means of control.

Let us revisit Kapitsa’s experiment from the feedback point of view. The
mathematical model of Kapitsa’s pendulum differs from the one mentioned
in Chapter 2 in that the controlling action is the vertical acceleration of the
pivot rather than the applied torque, see Fig. 10.1.1. Therefore, the model of
the system under control is as follows

Jϕ̈ + �ϕ̇ + mgl sinϕ = mlu sinϕ, (10.1.1)

where ϕ = ϕ(t) is the angle of deflection of the pendulum from its lower
vertical position; u = u(t) is the vertical acceleration of the suspension point;
J = ml2 is the moment of inertia of the pendulum; � ≥ 0 is the friction
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Fig. 10.1.1. Pendulum with vibrating pivot.

coefficient. Since acceleration of the pivot is proportional to the applied force,
we assume that it plays a role of the controlling variable. Kapitsa studied
behavior of the pendulum under harmonic law of the pivot motion with the
frequency ω and the amplitude A. For that case control function u(t) has the
form

u(t) = Aω2 sinωt. (10.1.2)

Kapitsa’s experiments discovered an effect of stabilization of the pendulum
near the upper unstable equilibrium. Numerous theoretical investigations both
before and after Kapitsa’s work show that stabilization of the unstable equi-
librium occurs at sufficiently large excitation frequency ω, i.e., in the case
when control function (10.1.1) is large [73, 224]. In this case the changes of
the pendulum pivot position may remain small, strengthening paradoxical-
ness of the phenomenon. However, the magnitude of the applied controlling
force required for stabilization of the upper equilibrium by a high-frequency
excitation should be large.

Now, let us address the following question: Is it possible to achieve a
similar behavior of the pendulum (10.1.1) by applying control u(t) of smaller
magnitude if it is allowed to use feedback laws for vibration of the pivot?

A conventional approach of automatic control theory to find a control law
is based on linearization of the controlled system model. However, in our case
linearization does not work. Indeed, linearization provides good approximation
of the model only near an equilibrium position or near a reference trajectory,
i.e., initial conditions should be close to such a trajectory. In our case no
reference trajectory of the pendulum is specified and the problem is to examine
a global behavior of the pendulum for all initial conditions.
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Let us introduce an auxiliary control goal

lim
t→∞

H(t) = H∗, (10.1.3)

where
H =

J

2
(ϕ̇)2 + mgl(1 − cosϕ) (10.1.4)

is the total energy of the pendulum. The goal (10.1.3) differs from conventional
control goals (regulation and tracking). It rather reminds the goal of a man
swinging the swings or the goal of a monkey swinging the liana. Similar goals
may also be posed when design of a walking robot, a pendulum clocks, etc.

A common sense suggests that one needs much less power to swing the
pendulum than to fix it in a given position, if not in an equilibrium. So, the
question is: Is it possible to swing the swings up to the upper position by
means of small control?

Let us apply the speed-gradient method, choosing the goal function as the
square error between the current and the desired energy values: Q = (H −
H∗)2/2, where H∗ = 2mgl is the energy of the upper equilibrium. Evaluate
the speed of changing the value of Q along trajectories of the system (10.1.1)
with frozen u, and then evaluate the gradient of the speed with respect to
control. In our case control is scalar and the gradient is just single partial
derivative in u. We arrive at simple algorithms

u = −γ(H −H∗)ϕ̇ sinϕ, (10.1.5)

u = −γ sign [(H −H∗)ϕ̇ sinϕ] . (10.1.6)

Let us choose the algorithm (10.1.6). Then it follows from Theorem 4.2
(see Example 4.1) that the energy level achievable in the system (10.1.1),
(10.1.6) is not less than

H =
1
2

(
γ

�

)2

. (10.1.7)

Therefore, the energy level H∗ = 2mgl will be achieved for γ > 2�ω0. Particu-
larly, for � = 0, the stabilization of the energy surface H = H∗ is achieved for
arbitrarily small amplitude of control γ. Moreover, if the damping � is small,
than the control magnitude γ may be chosen small too.

Achievement of the desired energy level does not imply stabilization of
any equilibrium point belonging to this level. However, it was shown in the
papers [407, 408] that in the case � = 0, the algorithm (10.1.6) for H∗ = 2mgl
ensures convergence H(ϕ(t), ϕ̇(t)) → H∗ and convergence (ϕ(t), ϕ̇(t)) → (π, 0)
when t → ∞ at any initial conditions except lower equilibrium. Besides, the
control magnitude γ > 0 can be chosen arbitrarily small. Although in the case
ρ > 0 no stabilization of all (or almost all) trajectories near the points (±π, 0)
in conventional sense can be observed, the portion of trajectories staying near
(±π, 0) tends to unity as t → ∞ (see Fig.10.1.2). Therefore, stabilization of
the upper equilibrium occurs in statistical sense.
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Fig. 10.1.2. Distribution of the pendulum deflection angle for the pendulum (10.1.1)
affected by control (10.1.6) for J = 1, � = 0.025, m = 1, l = 1, g = 9.81, γ =
0.1. Gistogramme is made for 1000 trajectories, initial distribution is uniform on
[−π/4, π/4].

The problem of stabilizing the pendulum by motion of the suspension
point has the following interesting feature. Since we consider acceleration of
the suspension point u(t) as control, it follows from general properties of
speed-gradient algorithms that u(t) → 0 when t → ∞. However, nothing
definite can be concluded about the behavior of the speed and position of the
suspension point. Formal model may admit that the speed of the suspension
point and the deflection of its position from initial value do not approach
zero, and even may increase infinitely. Of course, such a behavior does not
have either physical or practical meaning.

Let us now describe a modification of the control algorithm, free from
above-mentioned drawback [165]. To this end, introduce an extended goal
function

Q1 = Q +
1
2
zTPz, (10.1.8)

where z = col(ζ, ζ̇), P = PT ≥ 0 is a positive semidefinite weighting matrix,
ζ, ζ̇ are height and speed of the suspension point, respectively. Then the
relation ζ̈ = u can be interpreted as an additional equation of motion, i.e.,
the system turns into a system with two degrees of freedom and the state
x = col(ϕ, ϕ̇, ζ, ζ̇).

According to the speed-gradient method, evaluation of the speed of chang-
ing the goal function yields

Q̇1 = Q̇ + zTP

[
ζ̇
0

]
+ zTP

[
0
1

]
u, (10.1.9)

where ∇uQ̇1 = (H0 − H∗)ϕ̇ sinϕ + p22ζ̇ + p12ζ, p11, p22 are the elements of
the second column of the matrix P . Therefore, the modified algorithm looks
as follows:

u = −γ(H0 −H∗)ϕ̇ sinϕ− µζ̇ − νζ, (10.1.10)

where γ > 0, µ > 0, ν > 0 are control gains.
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Fig. 10.1.3. Simulation of the pendulum with the algorithm (10.1.10) for µ = 2
and ν = 0.

The results of Chapter 3 are not applicable to the obtained system since
the initial controlled system is not Hamiltonian. Nevertheless, employing more
general results about the properties of the speed-gradient control [157, 165],
one can show that the new control goal is achieved and ζ(t) → const for
almost all initial conditions, if ν = 0. Simulation results of the system with
control law (10.1.10) for m = 1, l = 1,H∗ = mgl = 9.81, γ = 0.7, µ = 2, ν = 0
are shown in Fig. 10.1.3.

Additionally, if we choose µ > 0, ν > 0, then the closed-loop system
possesses a more strong property ζ(t) → 0, i.e., deflection of the suspension
point from its initial position asymptotically vanishes. Such a behavior is
illustrated by Fig 10.1.4, where ν = 2, and other parameters are same as in
the previous case.

In a similar way one may solve the swinging control problems for the cases
when the suspension point is moving along horizontal or inclined line, rather
than vertically. However, more complex cases may require more efforts to cope
with. For example, additional difficulties may be caused by incomplete or noisy
measurements, e.g., in the case when the angular velocity ϕ̇(t) is not available
for measurement. In such cases one may need to introduce additional filters
(observers) into the system. Another difficulty may arise due to incompleteness
of control, e.g., one cannot neglect inertia properties of the motor driving the
pendulum. In this case the dynamics of the controlled system are described
by equations

Jϕ̈ + mgl sinϕ = mlu sinϕ, T u̇ + u = v, (10.1.11)
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Fig. 10.1.4. Simulation of the pendulum with the algorithm (10.1.10) for µ = 2
and ν = 2.

where v = v(t) is a new control signal. The problem in this case is that
the control variable v(t) does not appear in the right-hand side of the first
equation (10.1.11) and direct calculation of the speed-gradient yields zero.

Fortunately, the modern theory of nonlinear and adaptive control provides
a broad arsenal of methods to overcome the above-mentioned difficulties as
well as many other ones, see [157, 164, 245].

Other examples of advantageous properties of feedback are provided in the
literature on control of chaos where highly unstable orbits are shown to be
stabilizable by tiny corrections, see Chapter 6 and [27, 103, 164, 403]. It is
also worth to notice that the swinging of the pendulum has become a kind
of benchmark example both in mechanics and in control literature [8, 45, 69,
107, 138]. An advantage of the speed-gradient method used in this section is
its applicability to more general, higher-dimensional systems, see Chapter 7.

10.2 Escape from a potential well
and lossless communications

The study of escape from a potential well is important in many fields of physics
and mechanics [253, 385, 436]. Sometimes escape is an undesirable event and
it is important to find conditions preventing it (e.g., buckling of the shells,
capsize of the ships, etc.). In other cases escape is useful and the conditions
guaranteeing it are needed. Escape may correspond to a phase transition in
the system. For crystalline lattices an escape corresponds to a dislocation,
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see Chapter 7, while in the area of information physics briefly described in
Chapter 1, escape may correspond to transition from the state “0” to state
“1” of the information system, i.e., to creation of a bit of information. In all
cases the conditions of achieving escape by means of as small external force
as possible are of interest. Usually, such conditions are obtained by extensive
computer simulations for the case when external force is a periodic and even
a harmonic function of time. Below, following [140, 147] we study properties
of escape achieved by means of a feedback excitation.

Consider nonlinear oscillators with one degree of freedom, modeled as

ϕ̈ + �ϕ̇ + Π(ϕ)′ = u, (10.2.12)

where � > 0 is the damping coefficient. Equation (10.2.12) can be transformed
to the Hamiltonian form with coordinate and momentum q = ϕ, p = ϕ̇, the
Hamiltonian function (energy) H0(ϕ, ϕ̇) = 1

2 ϕ̇
2 + Π(ϕ) and passivity output

ϕ̇.
In [418], such a problem (optimal escape) has been studied for typical non-

linear oscillators (10.2.12) with a single-well potential Πe(ϕ) = ϕ2/2 − ϕ3/3
(so-called “escape equation”) and a twin-well potential ΠD(ϕ) = −ϕ2/2 +
ϕ4/4 (Duffing oscillator). The least amplitude of a harmonic external forcing
u(t) = u sinωt for which no stable steady-state motion exists within the well
was determined by intensive computer simulations. For example, for escape
equation with � = 0.1 the optimal amplitude was evaluated as u ≈ 0.09, while
for Duffing twin-well equation with � = 0.25 the value of amplitude was about
u ≈ 0.21. We performed computer simulations for the case of Duffing oscilla-
tor. The results agree with those of [418]. The typical time histories of input
and output for u = 0.208 are shown in Fig. 10.2.5(a). It is seen that escape
does not occur.

Using feedback forcing we may expect reducing the escape amplitude. In
fact, using the formula (4.2.43), the amplitude of feedback (4.2.40) or (4.2.41)
leading to escape can be easily calculated, just substituting the height of
potential barrier max

Ω
Π(ϕ) − min

Ω
Π(ϕ) for H into (4.2.43) where Ω is the

well corresponding to the initial state. For example, in the case of escape
equation H = 1/6, � = 0.1, and u = 0.0577, while for Duffing oscillator
with H = 1/4, � = 0.25 escape amplitude is estimated as u = 0.1767. The
obtained values are substantially smaller than those evaluated in [418] for
harmonic excitation. The less the damping, the bigger the difference between
the amplitudes of feedback and nonfeedback signals leading to escape. Simu-
lation exhibits still stronger difference: escape for Duffing oscillator occurs for
u = γ = 0.122 if the feedback (4.2.41) or (4.2.44) is applied, see Fig. 10.2.5(b).
Note that the oscillations in the feedback systems have both variable frequency
and variable shape.

We also studied the dependence of escape amplitudes on the damping by
means of computer simulations in the range of damping coefficient � varying
from 0.01 to 0.25. Simulations confirmed theoretical conclusion that the feed-
back escape amplitude is proportional to the damping, see Fig. 10.2.6(a). We
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Fig. 10.2.5. Escape from a potential well for the Duffing system. (a) Harmonic
excitation; (b) speed-gradient excitation.

may evaluate the efficiency of feedback µ as the ratio of escape amplitudes for
harmonic (uh) and feedback (uf ) forcing:

µ =
uh

uf
. (10.2.13)

Figure 10.2.6(b) shows that the efficiency of feedback is inversely proportional
to the damping for small values of damping.

The feedback approach can possibly be applied to implementation of “al-
most reversible” communication proposed by Landauer [258, 260]. It was
pointed out in [258, 260] that in order to transmit a bit of information one may
just change the state of a bistable device and transport it. The physical origin
of a device does not matter: it may be a mechanical relay, magnetic domain, or
a molecule. Information storage and transmission with molecular size devices
is of special interest for design of molecular computers. A number of attempts
to implement elementary acts of information processing with atoms and mole-
cules have been reported recently [333, 420, 426]. As suggested in [420], the
ammonia (NH3) molecule can be a promising candidate for achieving molecu-
lar control due to a number of its useful properties, e.g., the isolated ammonia
molecule can be confined in a fullerene without any large interactions with
the inner wall. It also has two stable states, see Fig. 10.2.7.
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Fig. 10.2.6. Efficiency of feedback versus excitation degree for escape from a Duff-
ing potential well. (a) Level of control action required for escape (A – harmonic
excitation; B – feedback excitation by means of speed-gradient algorithm, estimate
evaluated numerically; C – feedback excitation by means of speed-gradient algo-
rithm, estimate evaluated analytically from Theorem 4.1). (b) Efficiency of feedback:
ratio of (A) over (C).

Fig. 10.2.7. Two configurations of ammonia molecule.
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The previously described method of controlled escape from a potential well
can be used for energy saving information processing at a molecular level. To
design laser pulses performing transition of a molecule from one potential well
to another one an approach developed in Chapter 8 can be employed. The two
wells may correspond, for example, to upper and lower positions of N atom
in the NH3 molecule. The approach of Chapter 8 suggests to design a proper
laser pulse by means of computer simulation of the closed loop speed-gradient
control system for a single molecule (so-called reference molecule). Then the
designed pulse (controlling function u(t)) is applied to a real physical system in
a nonfeedback manner. Efficiency of such an approach has been demonstrated
for a number of molecular tasks [18, 19, 21, 149, 155]. Perspectives of usage
these results in real molecular computer applications depend on progress in
laser technologies (development of blue and UV lasers) aimed at achieving the
lateral size of the laser beam compatible with the size of a single molecule or a
small group of molecules. The proposed approach could provide and efficient
and realizable alternative to the technique of “deapening” and “lawering” of
a bistable potential proposed in [258, 260].

10.3 Feedback spectroscopy

The conventional spectroscopy is based upon applying a harmonic signal to
the physical system under examination. Though the energy eigenvalues in the
spectroscopy theory are predicted by quantum mechanical calculations, to ex-
plain the dynamics of resonant interaction between radiation and matter the
classical harmonic oscillator model is usually used [119]. Real multi-DOF sys-
tem has a variety of natural modes with different natural frequencies and dif-
ferent losses. The most interesting are the resonant frequencies, corresponding
to small damping which produce the resonant peaks (lines) on the spectro-
gram. The resonant peaks can be evaluated by scanning over the frequency
range of input signal. What is the role of nonlinearity?

The conventional methods treat anharmonicity as perturbation changing
resonance conditions for large deviations from equilibrium. As a result some
energy is reflected instead of being absorbed by the system and the energy
value (10.1.1) cannot be achieved for larger u.

Let us try feedback. Applying the signal of form (4.2.40) and using the
nonlinear oscillator model (10.2.12) we can achieve the energy level (4.2.43)
coinciding with (10.1.1). Thus we get an opportunity of giving full degree of
excitation to the system and evaluating its energy absorbing ability at higher
energy levels. Since the nonlinearity is essential only for small damping �,
i.e., near linear resonances, the “feedback” spectroscopy techniques should
incorporate the conventional ones in order to determine the near resonant
regions and to give initial excitation to the system.

It is important that for excitation we may use simple feedback (4.2.41)
which does not require measuring energy and looks like just introduction of



10.4 Control of chemical reaction with phase transition 193

a negative damping into the system. Therefore, the obtained resonant energy
value does not depend on the shape of potential, i.e., the kind of anharmonicity
does not matter.

Of course the feedback excitation is not easy to implement because it
should depend not only on the intensity but also on the phase of the radia-
tion. However, the development of ultrafast controlled lasers [460], growth of
the computers productivity, and increase of measurements speed and accu-
racy give hope for the experimental verification of the approach. It is already
quite realistic for the fields dealing with lower frequencies, e.g., for ultrasonic
investigations. Another approach to nonlinear resonance spectroscopy which
does not use energy considerations was suggested in [100].

10.4 Control of chemical reaction with phase transition

The discovery of oscillatory Belousov–Zhabotinsky chemical reaction in the
1950s has drawn an interest in oscillatory behavior in chemistry. Usage of os-
cillatory and even chaotic regimes opens new horizons in chemical technology.
Recently, the possibility of an oscillatory mode in a chemical reaction with
phase transition was established by S. Kukushkin and A. Osipov [246, 247].
The models suggested in [246, 247] can be applied to the deposition of thin
films with a chemical reaction. Regulation of the desired oscillatory regime
(amplitude or frequency) is important to produce a film with the desired
structure and properties. However, to design a good controller one needs to
overcome the difficulties caused by nonavailability of some variables for mea-
surement and uncertainty in the system model.

In this section, following [151, 164] we employ the method of adaptive
control based on linearization of the Poincaré map and solving the goal in-
equalities discussed in Section 6.4.2 to control a chemical reaction with phase
transition.

10.4.1 Problem statement

Consider a chemical reaction of the type A + B ↔ C. Let the rate of the
reaction be equal to kAC2, where A and C denote the concentrations of the
corresponding substances, and k is the reaction constant (the inverse reaction
rate is assumed to be zero). As it was shown by Kukushkin and Osipov [246]
the chemical reaction and nucleation processes are described by the simplified
model 


dA/dt = J0 − kAC2

dC/dt = kAC2 − γNC
dN/dt = β0(C − Ce),

(10.4.14)

where J0 is the arrival rate of component A at a substrate (evaporation of
A and C from the substrate is neglected), N is the concentration of new
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phase islands, Ce is the equilibrium concentration, γ and β0 are constants
of proportionality. We introduce dimensionless constants J = kJ0/β0γ and
y0 = Cek

2/3β
−1/3
0 γ−1/3 and new dimensionless variables as follows

x = Ak2/3β
−1/3
0 γ−1/3,

y = Ck2/3β
−1/3
0 γ−1/3,

z = Nk1/3β
−2/3
0 γ1/3,

τ = tk−1/3β
2/3
0 γ2/3

Then the system (10.4.14) reads


dx/dτ = J − xy2

dy/dτ = xy2 − yz
dz/dτ = y − y0 (z ≥ 0).

(10.4.15)

Computer simulations show that in the case when the constant flow J is less
than J1 ≈ 0.888 (with a precision of 0.0002), then the system behaves in an
ordinary way (Fig. 10.4.8); that is, C(t) tends to Ce, N(t) tends to J0/γCe,
A(t) tends to J0/γC

2
e when t → ∞ and the growth of the film continues

due to an increase of the nucleus sizes. With J1 < J < J2 ≈ 1.049 such
behavior becomes locally unstable, which results in oscillations and functions
C(t), N(t), A(t) turn out to be periodic (a stable limit cycle, Fig. 10.4.9).
For J > J2 this limit cycle disappears and the film grows in the unstable
“accumulative” mode (Fig. 10.4.10).

In this situation an important problem is control of the size of oscillations
because the structure and properties of the film depend on the amplitude and
the period of oscillations. Particularly, the following question is of interest:
how to change the external flow J(t) in order to make the local maximum
concentration of new phase islands in the oscillating mode zmax close to the
given value z∗.

The control goal can be formalized as follows

|zk − z∗| ≤ ∆, ∆ > 0, (10.4.16)

where zk=z(tk), tk is the time when z(t) achieves its kth local maximim, ∆ is
the given accuracy threshold. Since n = 3, the linearized discrete model has
the second-order form

zk+1 + a1zk + a2zk−1 = b0Jk + b1Jk−1 + ϕk (10.4.17)

where Jk is the control action at the kth step, a1, a2, b0, b1 are unknown
coefficients, ϕk is the bounded disturbance.

10.4.2 Adaptive control algorithm

The adaptive control algorithm includes the main loop algorithm which cal-
culates the new value of the control action Jk, and the adaptation algorithm
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Fig. 10.4.8. Plot of z(t) versus t for the normal growth mode (J = 0.7).

Fig. 10.4.9. Plot of z(t) versus t for the oscillatory growth mode (J = 0.9).

which updates the estimates of the system (10.4.17) parameters â1k, â2k,

b̂0k, b̂1k. According to the results of Section 6.4.2, the main loop algorithm
can be designed as follows

Jk = [z∗ + â1kzk + â2kzk−1 − b̂1kJk−1]/b̂0k. (10.4.18)

This algorithm is chosen to provide achievement of the goal in one step if
the estimates coincide with the true plant model parameters. The parameter
update algorithm adjusting the estimates is chosen by the method of the goal
inequalities and takes the following form

âi,k+1 = âi,k − αϑkzk−i+1, i = 1, 2,
b̂i,k+1 = b̂i,k − αϑkJk−i, i = 0, 1,

ϑk =
{

zk+1 − z∗, |zk+1 − z∗| > ∆,
0, |zk+1 − z∗| ≤ ∆,

(10.4.19)
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Fig. 10.4.10. Plot of z(t) versus t for the unstable accumulative growth mode
(J = 1.2).

where α > 0 is the adaptation gain.
It follows from the results of Section 6.4.2 that if |ϕk| ≤ ∆ϕ < ∆ and the

value of α is small enough, then the control goal (10.4.16) is achieved after
a finite number of steps, i.e., the relation (10.4.16) holds for any k > k∗ for
some k∗.

Fig. 10.4.11. Phase plot for z∗ = 0.9.

10.4.3 Simulation results

Investigation of accuracy and convergence rate of the algorithm (10.4.19) was
performed by computer simulation. In Figs. 10.4.11, 10.4.12, and 10.4.13 show
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Fig. 10.4.12. Plot of z(t) versus t for z∗ = 0.9.

Fig. 10.4.13. Plot of J(t) versus t for z∗ = 0.9.

Fig. 10.4.14. Phase plot for z∗ = 1.5.
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Fig. 10.4.15. Plot of z(t) versus t for z∗ = 1.5.

Fig. 10.4.16. Plot of J(t) versus t for z∗ = 1.5.

the phase plot and the plots of z(t) and J(t) versus t for the control goal
(10.4.16) with z∗ = 0.9. The following initial conditions and parameter values
were chosen: J(0)=0.9; x(0)=0; y(0)=2.6; z(0)=0; y0=5/4. It is seen that
J(t) is close to 0.96 at large time values. Note that the amplitude of new
phase island concentration oscillations decreases significantly and becomes
approximately twice less than the amplitude of oscillations for the constant
J(t)=0.96. Figures 10.4.14, 10.4.15, and 10.4.16 show the similar results for the
case z∗=1.5. As would be expected, in this case the amplitude of oscillations
increases and also J(t) → 0.96 when t → ∞. This confirms the efficiency of
the proposed method.

The numerous simulations discovered some phenomena that need further
investigation. For example, it has been seen that the system behavior at large
time values depends not only on the asymptotic values of the external parame-
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ters, but also on the way of their changing at the earlier stages of the process.
This effect is analogous to the frequency capture phenomenon in the oscillating
system with two degrees of freedom, which is well known in the oscillations
theory [253]. It has been also noticed that using more complex discretized
model of the third-order instead of (10.4.17) allows one to increase the con-
vergence rate of adaptation. Additionally, a small change in the initial values
of the adaptation parameters may lead to a significant change of the limit
cycle without violation of the control goal.

10.5 Energy-like control of predator–prey system

In this section, we study a problem of controlling oscillations in a population
consisting of two interacting species, following [164]. We employ the simplest
and most popular model of population dynamics, so-called Lotka–Volterra
model. Consider a system of two species (preys and predators) interacting with
each other. Let the populations be large, so that the number of individuals
can be treated as real numbers.

Let x1(t) be the number of preys measured at time t and x2(t) be the
number of predators measured at the same time. In the absence of predators
(x2 = 0) the population of preys increases infinitely (ẋ1 = ax1), where a > 0
is the birth rate of preys. On the other hand, predators need preys to survive.
Therefore, in the absence of preys the predators starve to death (ẋ2 = −dx2),
where d > 0 is the death rate of the predators.

The famous Lotka–Volterra model is described by the following differential
equations: {

ẋ1 = ax1 − bx1x2

ẋ2 = −dx2 + cx1x2

(10.5.20)

where b > 0, c > 0. Thus, if the number of predators is large the number of
preys decreases while if the number of preys is small the number of predators
decreases as well, and the system (10.5.20) has infinite number of periodic
motions (cycles) [380].

Introduce the controlled version of the model (10.5.20), assuming that the
birth rate of preys can be controlled. Then the model (10.5.20) is modified as
follows: {

ẋ1 = ax1 − bx1x2 + x1u

ẋ2 = −dx2 + cx1x2

(10.5.21)

where u is the control action.
The uncontrolled system (u(t) ≡ 0) has the following first integral:

H(x1, x2) =
(
cx1 − d− d log

cx1

d

)
+
(
bx2 − a− a log

bx1

a

)
(10.5.22)

Indeed, easy calculations show that
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Ḣ(x1, x2) = 0

along any solutions of (10.5.20) (x1(0) > 0, x2(0) > 0) that means that the
quantity H preserves constant value. The first integral (10.5.22) can be in-
terpreted as a “total energy” of the “predator–prey” system and the control
goal can be posed in terms of achieving of a desired level of the quantity H:

H(x1(t), x2(t)) → H∗ as t → ∞ (10.5.23)

where H∗ ≥ 0 is the desired level of the first integral. The less the value H∗,
the smaller the size of the corresponding periodic cycle.

Similarly to many of previous examples, we use the speed-gradient method
to design the control algorithm. To this end, introduce the following objective
function Q:

Q(x1, x2) =
1
2

(H(x1, x2) −H∗)2

Evaluation of its time derivative with respect to system (10.5.21) yields

Q̇(x1, x2, u) = (H(x1, x2) −H∗) (cx1u− du) .

Evaluating gradient in u we get

∂Q

∂u
(x1, x2) = (H(x1, x2) −H∗) (cx1 − d)

and arrive at the following speed-gradient control algorithm

u(t) = −γ (H(x1(t), x2(t)) −H∗) (cx1(t) − d), γ > 0 (10.5.24)

Applying the results of the Section 3.5, it is easy to show that the goal (10.5.23)
is achieved for arbitrary γ > 0 and for all initial conditions x1(0) > 0, x2(0) >
0. The proof is based on the Lyapunov function

V (x1, x2) = Q(x1, x2)

which decreases along any solution of the controlled system. It is worth
mentioning that the choice H∗ = 0 corresponds to the control algorithm
which asymptotically stabilizes the system (10.5.21) in its inherent equilib-
rium (x10 = d/c, x20 = a/b), and the limit cycle collapses to a point.

Theoretical results are illustrated by computer simulation for the following
predator–prey model:

{
ẋ1 = 4x1 − 2x1x2 + x1u

ẋ2 = x1x2 − x2

(10.5.25)

This system has nonisolated periodic solutions which correspond to the fol-
lowing first integral
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H(x1, x2) = (x1 − 1 − log x1) +
(
2x2 − 4 − 4 log

x2

2

)
.

The phase trajectory of the system (10.5.25) corresponding to the initial con-
ditions x1(0) = 4, x2(0) = 3 is shown in Fig. 10.5.17.

The control algorithm (10.5.24) for the system (10.5.25) has the following
form

u(t) = −γ (H(x1(t), x2(t)) −H∗) (x1(t) − 1)

The results of computer simulation are presented in Fig. 10.5.18 for the fol-
lowing parameters γ = 1, x1(0) = 3, x2(0) = 3. Plots (a), (b), (c) show the
transient behavior which corresponds to the desired level of H equal to 0,1,3,
respectively. In the picture Fig. 10.5.18 (d) transient processes in “energy”
are shown. It is seen that choosing various values of the desired “energy” level
H∗ we can achieve various oscillatory behavior of the controlled system.

The proposed approach can be extended to the systems of many interacting
species with populations x1, . . . , xn, described by controlled version of the
equations [380]{

ẋi = xi(di −
∑n

j=1 aijxj + bi(x)ui, i = 1, . . . , n. (10.5.26)

The speed-gradient method is designed for the goal function Q(x) = (H(x)−
H∗)2, where H(x) has the form

H(x1, . . . , xn) =
n∑

i=1

x∗
i

(
xi

x∗
i

− d ln
xi

x∗
i

)
, (10.5.27)

Fig. 10.5.17. Phase portrait of the uncontrolled predator–prey system
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where x∗ = A−1D is the vector of the system nontrivial equilibrium. It is
known [380] that H(x) is the first integral of the system if x∗

i > 0. If b(x) > 0
than the speed-gradient algorithm

u(t) = −γ (H(x) −H∗) b(x)

is well defined and ensures the achievement of the goal H(x(t)) → H∗.

10.6 Control of noise-induced transition

It is well known that the behavior of many nonlinear dynamical systems is in-
fluenced by noise. Noise may cause a number of interesting phenomena which
cannot be observed in noiseless systems. A characteristic example is the non-
linear stochastic resonance [32, 199, 254]. In some cases the noise plays the
constructive role, e.g., sensitivity of detection of weak signals by some systems
can be notably increased due to the presence of noise [199]. Besides, nonlinear
oscillators may undergo a phase transition at the presence of noise. That is,
there can be observed a qualitative change of the dynamic of a system when
the amplitude of noise reaches some critical value [458]. The well-known ex-
ample is the emergence of oscillations of a large amplitude due to noise in a
system that is stable at the absence of noise. The oscillations appear as the

Fig. 10.5.18. Transient behavior of the controlled predator–prey system.
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response of the system to the modulation of some of the system’s parameter
by noise. In this case, the macroscopic dynamic of the system to a large extent
is determined by noise (which, in a real system, originates from microscopic
processes). Such a phenomenon – parametric noise resonance – is, essentially,
a variant of the nonlinear stochastic resonance.

The appearance of the parametric noise resonance is undesirable when it
destroys the normal functioning of a dynamic system. As an example, this
may take place in converters of optical images that are used for recording of
high speed processes in the optical infrared range [39]. The operation of the
converters is based on electronic properties of the structure “semiconductor –
gas-discharge gap.” It has been found that, at a small current density, the in-
trinsic noise of the device can initiate the oscillations of such a large amplitude
that the gas discharge in the gap is spontaneously interrupted [39]. In other
words, there is observed the transition from a conductive state of the system
to the dielectric one. In a dielectric state, the device becomes insensitive to
an incoming pulse of light and is not able, therefore, to convert an image.

It is of the practical importance to investigate, whether it is possible to
provide the proper control of the considered (and similar) systems while ap-
plying a low amplitude action that varies in time. The purpose of such a
control is to suppress the escape of the dynamic system from the area of the
phase space where the main function of the system is ensured.

Below a realization of such an approach is demonstrated, following [44].
The nonlinear model of the device introduced in [39] (Astrov model) is used
for control design and simulation. Control is provided by the proper variations
of one of the parameters of the model. In the real device, it corresponds to the
feeding voltage. To design the feedback control algorithm, the speed-gradient
method is again implemented. The dynamic of the system at the presence
of control is analyzed in the work by numerical solving of the corresponding
equations.

For the parameters chosen in the present analysis, the positive result of
control is obtained at a rather small value of the control amplitude that can
equal only a small fraction of the main feeding voltage. It is revealed that the
efficiency of control depends, in a nonmonotonic way, on the amplitude of the
control parameter, and exemplifies a resonance-like regularity. In our opinion,
this indicates relation of the obtained results to the nonlinear stochastic res-
onance phenomenon, the essence of which is the nonmonotonic response of a
system to the deterministic signal as dependent on the amplitude of stochastic
(noise) input.

10.6.1 The system model and problem statement

We study the model of the device dynamics proposed by Yu. Astrov [39]:

dE/dt = a1(Em − E) − b1NE , (10.6.28)
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dN/dt =
N

τ
(
E

Ec
− 1) , (10.6.29)

where E is the electric field strength in the discharge gap and N is the density
of free charge carriers in the gap. The first equation describes the charging of
the capacity of the discharge gap from a source of the feeding voltage and its
discharging due to the presence of free carriers in the gap. The characteristic
time of the charging process is τE = 1/a1, b1 is a coefficient. The maximum
value of E in the gap that can be provided by the source of constant voltage,
is Em. For its value we have the obvious relationship Em = Um/d, where
Um is the voltage of the feeding source and d is the length of the gap in the
direction of the electric current flow.

The second equation describes the dynamics of density of free carriers
in the gap which is governed by processes of their generation and decay. It is
supposed that the process of carriers generation prevails over their recombina-
tion when E value is larger than some critical electric field Ec. The parameter
τ defines the rate of temporal variation of charge carriers density when the
electric field in the gap is not equal to the critical value.

The Astrov model (10.6.28, 10.6.29) has been successfully used for in-
terpretation of some peculiarities in dynamics of the experimental devices
[39–41], such as the appearance of oscillations at low current density and
the spontaneous interruption of the discharge glow. The latter effect can be
identified as the noise-induced transition. When such a transition is realized,
the converter cannot process an incoming image.

In the absence of noise, the stationary solution of the system (E0, N0)

E0 = Ec, N0 =
a1

b1

(
Em

Ec
− 1

)
(10.6.30)

is stable. The linear analysis of stability of the solution reveals that it is
the stable focus for large enough values of τE . If τE increases further, the
oscillatory properties of the system become more pronounced: that is, its Q-
factor grows. In its turn, the value of N0 decreases which means the lowering
of electrical current in the device modeled with (10.6.28), (10.6.29).

It should be stressed that generation of free carriers in the gas discharge
gap is provided by the avalanche ionization of gas atoms and molecules. The
efficiency of this process is known to fluctuate in time, which serves as a source
of the intrinsic noise of the experimental nonequilibrium system. In a simple
approach, the influence of the intrinsic noise on dynamics of the system can
be modeled with using (10.6.28), (10.6.29) when stochastically changing the
parameter Ec in time [39]. It has been found in the cited work that such an
approach can give the growth of oscillations in time and be the reason of
interruption of the discharge glow in the device.

It is of interest to study whether it is possible, by introducing a proper
control of the amplitude of the feeding voltage, to suppress the tendency of
the system to find itself in the dangerous domain of the phase space. The next
section is devoted to the elaboration of an algorithm for such a control.
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10.6.2 Control algorithm design

First of all note that physical principles of the device in question suggest that
the role of controlling action can be played either by supply voltage or conduc-
tance of the semiconductor component. The latter option can be implemented
in an experiment due to the photoelectrical effect in the semiconductor – by
means of its optical excitation. By applying such a method, one can vary the
coefficient a1 in the system model (10.6.28).

In this example, the first option is adopted and the device is controlled
by changing the supply voltage. It is assumed that all the state variables
E(t), N(t) of the model (10.6.28), (10.6.29) are available for measurement. To
construct the control algorithm, the speed-gradient method is used.

The first step of the speed-gradient method procedure is the choice of the
goal function Q(x) where small values correspond to achievement of the con-
trol goal. Since the control goal is to maintain the system trajectories near the
nominal mode (10.6.30), the goal function can be chosen as square norm of the
deflection ∆X = X(t) −X0, where X(t) = col[E(t), N(t)], X0 = col[E0, N0].
To simplify design we use the linearized model of (10.6.28), (10.6.29). The
linearization near X0 yields

Ẋ = A(X −X0), (10.6.31)

where

A =
[−a1 − b1N0 −b1E0

N0/(τEc) 0

]
.

Obviously, A is a stable (Hurwitz) matrix if a11 > 0 and −a21 ∗ a12 > 0. In
our case, these inequalities are valid.

Now let us choose the goal function as a quadratic form: Q(X) = (X −
X0)

T
P (X −X0), where P is the symmetric positive definite 2x2 matrix that

is the solution to the Lyapunov equation PA + A
T
P = −I. Let the control

variable be u = Em−Emnom. Then one needs to evaluate the partial derivative
of dQ/dt in control which is dQ/dt = −(X − X0)

T
(X − X0). Taking into

account that control u(t) appears both in X and X0, yields

∂Q̇

∂u
= µ− ηu,

where µ = a1p11(E − E0) + a1p21(N −N0) −
a1p21

b1E0
·

·[a1(Em −E) − b1NE]

η = 2
a2
1

b1E0
p21

Choosing the speed-gradient algorithm in the finite form, see Section 2.4.2, we
obtain the following control algorithm:
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u = − γµ

1 − γη
, (10.6.32)

where γ > 0 is the design parameter (gain). It is convenient to analyze a
modification of (10.6.32) having the fixed amplitude of control:

u = −u sat
(

γµ

u(1 − γη)

)
, (10.6.33)

where u>0 is the new design parameter,

sat(z) =
{

z, |z| ≤ 1,
sign z, |z| ≥ 1.

If the deviation ∆X is small, and the noise is absent, the convergence of the
algorithm (the achievement of the control goal) follows from the stability of the
linearized system. Otherwise, the behavior of the closed control loop system
(10.6.28), (10.6.29), (10.6.33) is studied by means of computer simulation.

10.6.3 Control system analysis

The goal of the analysis is to study the possibility to suppress the noise-
induced transition by means of the control mechanism introduced above and
to examine the quantitative dependence of the efficiency of the control on the
amplitude of the control action.

For simulation, the following values of the model (10.6.28),(10.6.29) para-
meters that correspond to parameters of the real device [39, 40], were chosen:
a1 = 104, b1 = 5 × 10−3, τ = 1.5 × 10−9, Em = 8 × 104, Ec = E0 = 4 × 104,
N0 = 2 × 106. The amplitude of the uniformly distributed stochastic noise
was 1% of Ec.

The first stage of the analysis is to study the dynamics of the uncontrolled
system at the presence of noise while varying the main parameter of the system
(a1). The problem is to determine how the value a1 influences the time tc of
the transition of the system into the nonconductive (dielectric) state. In the
present calculations, this time is specified as the time of the first crossing of the
level N∗ = 100 by the trajectory N(t) (Remark that the value N∗ = 100 is in
the correspondence to the minimum discharge current in the device: Reaching
of the state with the carriers density less than N∗ = 100 would mean to find
less than one electron in the gap, which is, in reality, a nonconducting case.
So, the discharge interrupts when the state N∗ = 100 is reached). The found
dependence of the time before discharge interruption tc on a1 is shown in
Fig. 10.6.19. Based on the obtained results, the value a1 = 104 was chosen as
the starting value for further experiments.

The next step is to study a possibility to maintain the discharge by means
of control. Since the system trajectories are random functions, the minimum
value of the discharge current N∗ = min N(t) is chosen as the measure of the
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Fig. 10.6.19. Plot of tc versus a1.

Fig. 10.6.20. Plot of N∗ versus u.

Fig. 10.6.21. Typical realization of process without control (u = 0).
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Fig. 10.6.22. Typical realization of process with control (u = 0.2Em).

Fig. 10.6.23. Excitation index χ = N∗/u versus ū.

Fig. 10.6.24. Plot of ratio max {Nmin}/min {Nmin} versus u.
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discharge stability (reliability). The minimum is taken over the time interval
0 ≤ t ≤ T , where T is significantly larger than the typical time tc.

Simulation results are shown in Fig. 10.6.20, where the scaling along the
abscissa axis is chosen in percentage of the nominal voltage Em. Typical time
histories without of control (u = 0) and with control (u = 0.2Em) are shown
in Figs. 10.6.21 and 10.6.22. It is seen that the phase transition (the discharge
failure) does not occur already for control amplitude greater than 5% of Em.
The further increase of the control amplitude u = 0 leads to the increase of
N∗. However, when u = 0 reaches 20% of Em, the growth is slowing down, and
a further growth of N∗ leads to the decrease of N∗. The effect of the sharp
change of the current growth rate is better seen in Fig. 10.6.23 where the
relative growth rate χ = N∗/u normalized by the control amplitude is shown.
The value of χ may be interpreted as the stochastic version of the excitability
index introduced in Chapter 4 as a measure of ability of a system to absorb
the energy from an external control. The ratio of the maximum to minimum
of N(t) over 10 trajectories (a measure of randomness of the effect) is shown
in Fig. 10.6.24.

In the simulation of the system with the algorithm (10.6.33) it was assumed
that the state of the system is available for measurement at each instant of
numerical integration of the system (10.6.28,10.6.29), i.e., the system was
considered as a continuous-time one. Since the integration step was chosen as
∆t = 2.5×10−9 and time of one cycle of phase trajectory was about 2×10−6,
one cycle contained about 1000 measurements.

Implementation of frequent measurements in a real experiment may be
rather involved. Therefore, it is interesting to study the possibility of more rare
measurements. The properties of the system were examined for frequencies of
measurements that are 20, 30, 40, and 50 times lower as compared to that
used in getting the above data. The results are shown in the table and in
Fig. 10.6.25.

Coefficient minN(t) × 105 ratio

1:1 2.2471 1.6534
1:20 2.2004 1.7453
1:30 2.1668 1.8253
1:40 1.9828 1.8971
1:50 1.8822 1.9151
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Fig. 10.6.25. Control signal plots for frequent (solid line) and rare (dashed line)
measurements.

It is seen from these data that even 50 times less frequent measure-
ments do not influence significantly the performance of the system: the min-
imum value of N(t) decreases by 16%, while the measure of randomness
max {Nmin}/min {Nmin} increases only by 15%.

10.6.4 Discussion

According to the obtained results, while applying the suggested algorithm of
the feedback control, one can keep the studied nonlinear system in a state
where the tendency of the system to make a noise-induced transition to the
dielectric state is suppressed. When introducing the control technique through
variation in time of the voltage feeding the system, the pronounced positive
result of the control has been revealed in computer simulations. It has been
found that the effect can be observed at a rather low amplitude of the control
action that, for the system parameters considered in the present work might
be less than 5% of the nominal voltage feeding the device.

Similar control algorithm can be implemented to “correct” the dynamics
of other systems which behavior can become undesirable due to the influence
of stochastic forces. The suggested procedure can also be applied to control
some model ecological systems with the intention to develop a technology of
protecting the survival of threatened species. It might be of interest to ex-
tend the approach to the problems of controlling spatially extended systems
which dynamics can produce spatiotemporal structures due to noise-induced
resonance phenomena. As an experimental system which dynamics might be
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modeled, the “semiconductor – gas discharge gap” device could again be im-
plemented. We add to the point that, being spatially extended, the device
exemplifies a number of scenarios of self-organized behavior at some sets of
experimental parameters [41]. Some patterns that arise in the device can be
interpreted with a relatively simple theoretical model [42, 43] which is an
extension of the lumped Astrov model (10.6.28, 10.6.29).



11

Conclusions: Looking into the Future

Modern physical studies are becoming more focused on the demands of prac-
tice. This means that a modern research project is a race for reaching a prac-
tical goal rather than a surfing over the ocean of knowledge. Another stimulus
for pursuing practical goals is the grant-oriented system of funding; it is al-
most impossible nowadays to get funding for a research project driven by a
curiosity. As a result, the concept of the goal is becoming more significant in
physics.

In addition to direct problems (analysis) inverse problems (synthesis) also
attract great interest. When solving synthesis or design problems an important
auxiliary goal is to find a way to achieve a certain behavior of the system
under investigation. Therefore, it is no surprise that the term “control” and
the methods of modern control theory are becoming more frequent in physical
journals. Such methods provide a number of tools for either analytically or
numerically solving design problems for various dynamical systems. On the
other hand, more applied studies stimulate a lot of basic research.

Systematic usage of the methods of modern control theory to study phys-
ical systems is a key feature of a new research area in physics that may be
called cybernetical physics. The subject of cybernetical physics is focused on
studying physical systems by means of feedback interactions with the envi-
ronment. Its methodology heavily relies on the design methods developed in
cybernetics. However, the approach of cybernetical physics differs from the
conventional use of feedback in control applications (e.g., robotics, mecha-
tronics) aimed mainly at driving a system to a prespecified position or a
given trajectory. The cybernetical methodology may also be used to gain new
insights into chemistry, biology, and environmental studies. Perhaps the future
will provide new important contributions in this exciting field.

In this book some features of the control problems arising in physics were
analyzed, and some general approaches to the solution of problems relating to
energy control were presented. Energy transformation laws were established
for two main classes of physical systems: conservative and dissipative. New
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problems demand for new notions (excitability index) and lead to the discov-
ery of new phenomena (feedback resonance). Principles of the new area were
illustrated by a number of examples showing efficiency of new approaches
for the exploration and control of different phenomena in macroworld and
microworld.

An attempt was made to show that nonlinear control design methods de-
veloped in control theory (cybernetics) may provide new interpretations and
new insights for dynamical modeling and analysis of physical systems. Exis-
tence of strong analogies between dynamics of physical systems and control
systems seems not very surprising – both are driven by similar variational
principles.

Because of time and space constraints it was not possible to include a
number of interesting and important applications of cybernetical methods in
physics. For instance, the problem of controlled fusion – one of the biggest
unsolved problems inherited by the 21st century from the 20th century, un-
doubtedly belongs to the area of cybernetical physics. Recent ground-breaking
applications of control methods in other natural sciences (biology, chemistry),
e.g., [415, 416] also need to be mentioned, as well as applications of other
cybernetical methods: identification, pattern recognition, neural nets, and op-
timization.

There is a strong need for a lecture course on control methods for physi-
cists. Although systematic textbooks are still missing, some surveys already
exist. It is worth here to quote from a very readable recent survey [58]:

Feedback and its big brother, control theory, are such important con-
cepts that it is odd that they usually find no formal place in the edu-
cation of physicists. On the practical side, experimentalists often need
to use feedback. Almost any experiment is subject to the vagaries of
environmental perturbations. Usually, one wants to vary a parameter
of interest while holding all others constant. How to do this properly
is the subject of control theory. More fundamentally, feedback is one
of the great ideas developed (mostly) in the last century, with par-
ticularly deep consequences for biological systems, and all physicists
should have some understanding of such a basic concept. (J. Bechhoe-
fer. Feedback for physicists: A tutorial essay on control. Reviews of
Modern Physics, V. 77, July 2005, 783–836.)

On the author’s opinion, future course of cybernetical physics should cover,
in addition to basic material and material of this book, such topics as con-
trol thermodynamics [67, 297, 410], control of particle beams [296], theory
of dynamical materials [73, 406], laser control of processes in solids [302],
control of stochastic systems [12, 50, 213, 277], studying universal structure
and robustness properties of complex physical systems by means of control
methods [63, 66, 97].

The horizons of a new interdisciplinary area look almost infinitely broad
and interest in it is growing rapidly. Applied studies stimulate a lot of
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basic research and cybernetical physics is an excellent example for this. At the
present stage of its evolution it is important to increase the information ex-
change and dissemination of ideas between experts from different background
and research areas. Evidence for this was provided by the success of the 1st In-
ternational conference “Physics and Control” (Physcon 2003) that took place
in August, 2003 in St. Petersburg, Russia with 250 experts from 32 countries
participating. The four volumes of the conference proceedings contain more
than 200 papers of total size about 1500 pages [358–361]. It was the opinion
of many participants that it was necessary to organize another conference de-
voted to the same area. Then the 2nd International conference “Physics and
Control” (Physcon 2005) took place in August, 2005, again in St. Petersburg,
Russia. Information about the conference programs and Proceedings as well
as further information about the area of cybernetical physics is available from
the information website “Physics and Control Resources” at www.physcon.ru
and the papers are available from the IEEE electronic library IEEE Xplore.

The author hopes that the publication of this book serves to the develop-
ment of this new field and aid in its recognition by scientific communities.
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controlled Schrödinger equation 167,

168
controlled synchronization 67, 112
convergence 83
convergent system 79
coordinate synchronization 72
coordinated control 81

cross-entropy 9
cybernetical physics 3, 17, 27, 213

delayed coordinates 110, 117
delayed feedback 120
Demidovich condition 79
direct adaptive control 126
dissipation rate 52

entropy 7, 176
ε-synchronization 69
excitability index 50
external synchronization 80

feedback control 13
feedback linearization 32
feedback resonance 57
feedforward control 113
feedforward control 27
femtochemistry 162
femtotechnologies 162
Floquet matrix 120
forced synchronization 67
Frenkel-Kontorova model 140
frequency synchronization 67, 70

generalized synchronization 72
global feedback 155

high-gain observer 84, 86
Hurwitz matrix (polynomial) 80
Huygens synchronization 70, 74
hyper minimum phase 90, 91, 96
hyper-minimum-phaseness 90



240 Index

identification-based adaptive control
126

indirect adaptive control 126
information physics 6

Kalman controllability criterion 81
Kapitsa pendulum 183
Kukushkin-Osipov model 193
Kullback-Leibler divergence 9

lag synchronization 72
Lipschitz condition 84
Lotka-Volterra model 199
Lurie system 120
Lyapunov equation 204
Lyapunov exponent 25, 49, 109, 120,

148
Lyapunov function 32, 85, 91, 92, 127,

157, 179
Lyapunov inequality 91
Lyapunov instability 107
Lyapunov stability 107

Marotto theorem 110
master-slave synchronization 80
Maximum Entropy Principle (MEP)

7, 176
Meerov condition 80, 81
Melnikov method 115
minimum phase 90, 91
monodromy matrix 120

nonfeedback control 105, 113, 136,
153, 189

normalized excitability index 50

observability 82
observer 29, 82, 86, 121, 123, 187
occasional proportional feedback (OPF)

117
oddness limitation 120
OGY method 116
OGY-law 35
Onsager principle 180
open loop control 27
output feedback 27

partial synchronization 72
passification 87, 91
passivity 52

Pecora-Carroll synchronization scheme
84

persistent excitation 90
phase synchronization 71
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