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Preface

Extreme wave events occurring in seas and oceans almost every week are reported.
There are a number of physical mechanisms that focus the water wave energy into
a small area and produce the occurrence of extreme waves called freak or rogue
waves. These events may be due to wave instability (modulation or Benjamin-Feir
instability), chaotic behavior, dispersion (frequency modulation), refraction (pres-
ence of variable currents or bottom topography), soliton interactions, etc. These
giant waves are a real danger to ships and platforms, causing accidents resulting in
human loss. There are several examples of such events which occurred in 2007. The
freak surge striking East Anglia and Kent (UK) on November 12 missed the high
tide by minutes and forced the emergency services to evacuate more than 1,000 peo-
ple from their homes. Strong waves struck a group of 15 picnickers who had waded
far into the sea on October 15 at the Gadani beach about 40 km southwest of Karachi
(Pakistan). On October 1, nine houses were destroyed and 77 families displaced
when strong waves hit the coastal Davao City (Phillipine). The heavy rain and freak
tides on August 31 damaged and in some cases destroyed banks and walls along the
Saigon River (Vietnam). A 7–10-m wave hit many people in Mostaganem (Algeria)
killing 12 on August 3. One man was killed by a freak wave while fishing on the
rocks off the coast of Scotland (UK) on August 2. He was swept out to sea. A tourist
was killed by a giant wave as freak weather hit the French Mediterranean island of
Corsica on May 30. Great damage was caused to a large passenger ferry “L’Enez
Sun III” in the English Channel near Island Sein on May 19. Such events occur in
the English Channel each year. The ferry “La Déesse des Flots” was hit by a freak
wave of 10 m on August 3, 2006 near the French coast (Barfleur). The wave, esti-
mated as 12 m high crashed into the “Pont-Aven”, the flagship of the British Ferries
fleet on May 22, 2006, near the French port of Roscoff. The wave was of 12 m and
five passengers were injured. Of course, this list is not exhaustive. According to the
Lloyds “World Fleet Statistics”, the number of fatalities per year during 1978–2001
is estimated at 300–600.

Extreme waves have been intensively studied in the past few years, and the
European Geophysical Union organizes every year a special section on extreme
waves. This book, “Extreme Ocean Waves”, contains invited papers written mainly
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vi Preface

on the basis of works presented during the General Assembly of the European
Geosciences Union in Vienna (April 2007). The formation of freak waves in deep
water is investigated numerically in the paper “Freak Waves: Peculiarities of Nu-
merical Simulations” by V.E. Zakharov, A.I. Dyachenko and A.O. Prokofiev. They
assume that unusual waves are formed due to modulational instability of non-
linear wave field. Physical and statistical properties of rogue wave generation in
deep water are studied using various models of nonlinear water waves in the pa-
per “Rogue Waves in High-order Nonlinear Schrödinger Models” by C.M. Schober
and A. Calini. They demonstrate that a chaotic sea state appears to be an important
mechanism for both generation and increased likelihood of rogue waves. The occur-
rence of extreme waves in shallow water is investigated in the paper “Non-Gaussian
Properties of Shallow Water Waves in Crossing Seas” by A. Toffoli, M. Onorato,
A.R. Osborne and J. Monbaliu. They show that the interaction of two crossing wave
trains generates steep and high amplitude peaks, thus enhancing the deviation of
the surface elevation from the Gaussian statistics. The existence of various shapes
of rogue waves in shallow water is discussed in the paper “Modeling of Rogue
Wave Shapes in Shallow Water” by T. Talipova, C. Kharif and J.P. Giovanangeli.
They point out that the variable-polarity shape of a rogue wave is more proba-
ble than only one crest or one trough. The possibility of the appearance of freak
waves on a beach is analysed in the paper “Runup of Long Irregular Waves on Plane
Beach” by I. Didenkulova, E. Pelinovsky and A. Sergeeva. It is shown that the av-
erage runup height of waves with a wide spectrum is higher than that of waves with
a narrow spectrum. Special analysis of nonlinear resonances between water waves
is given in the paper “Symbolic Computation for Nonlinear Wave Resonances” by
E. Kartashova, C. Raab, CH. Feurer, G. Mayrhofer, and W. Schreiner. They discuss
the important role of nonlinear resonances in the wave dynamics that can be used
to simplify the governing equations. The relation between observations and freak
wave theories is examined in the paper “Searching for Factors that Limit Observed
Extreme Maximum Wave Height Distributions in the North Sea” by G. Burgers,
F. Koek, H. de Vries and M. Stam. Their observations indicate that steepness is
a limiting factor for extreme wave height and at shallow water locations, extreme
waves are not as frequently observed as at deep water locations. Average wave con-
ditions, their variations, and extreme wave storms in the northern Baltic Sea are
studied, based on long-term time series in the paper “Extremes and Decadal Varia-
tions of the Northern Baltic Sea Wave Conditions” by T. Soomere. Significant wave
heights of more than 4 m occur in this area of the Baltic Sea with a probability
of about 1% and the overall recorded maximum is 7.8 m. Data of storm surges
induced by cyclones in Guadeloupe, Lesser Antilles are given in the paper “Ex-
treme Waves Generated by Cyclones in Guadeloupe” by N. Zahibo, I. Nikolkina
and I. Didenkulova, in particular, the results of the field survey of the passing of
Hurricane Dean of category 5, which occurred in August 2007 in the Caribbean
Sea. Waves of huge amplitudes can appear in the deepest layers of the ocean and
the possible shapes of such waves in two-layer fluid is described in the paper “An
Analytical Model of Large Amplitude Internal Solitary Waves” by N.I. Makarenko
and J.L. Maltseva.
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The book is written for specialists in the fields of fluid mechanics, applied
mathematics, nonlinear physics, physical oceanography and geophysics, and also
for students learning these subjects.

Efim Pelinovsky
Christian Kharif
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Freak Waves: Peculiarities of Numerical
Simulations

V.E. Zakharov, A.I. Dyachenko, and A.O. Prokofiev

Abstract Numerical simulation of evolution of nonlinear gravity waves is pre-
sented. Simulation is done using two-dimensional code, based on conformal
mapping of the fluid to the lower half-plane. We have considered two problems:
(i) modulation instability of wave train and (ii) evolution of nonlinear Shrödinger
equation solitons with different steepness of carrier wave. In both cases we have
observed formation of freak waves.

1 Introduction

Waves of extremely large size, alternatively called freak, rogue, or giant waves, are
a well-documented hazards for mariners (see, for instance Smith 1976; Dean 1990;
Chase 2003). These waves are responsible for loss of many ships and many hu-
man lives. Freak waves could appear in any place of the world ocean (see Earle
1975; Mori et al. 2002; Divinsky et al. 2004); however, in some regions they are
more probable than in the others. One of the regions where freak waves are espe-
cially frequent is the Agulhas current of the South-East coast of South Africa (see
Grundlingh 1994; Gutshabash and Lavrenov 1986; Irvine and Tilley 1988; Lavrenov
1998; Mallory 1974). In the paper by Peregrine (1976) it was suggested that in ar-
eas of strong current such as the Agulhas, giant waves could be produced when
wave action is concentrated by reflection into a caustic region. According to this
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2 V.E. Zakharov et al.

theory, a variable current acts analogously to an optic lens to focus wave action.
The caustic theory of freak waves was supported since that time by works of many
authors. Among them were Smith (1976), Gutshabash and Lavrenov (1986), Irvine
and Tilley (1988), Sand et al. (1990), Gerber (1987, 1993), Kharif and Pelinovsky
(2003). The statistics of caustics along with application to calculation of the freak
wave formation probability was studied in the paper of White and Fornberg (1998).

In our opinion, connection between freak wave generation and caustics for swell
or wind-driven sea is the indisputable fact. However, this is not the end of the story.
Focusing of ocean waves by an inhomogeneous current is a pure linear effect. Mean-
while, there is no doubts that freak waves are essentially nonlinear objects. They are
very steep. In the last stage of their evolution, the steepness becomes infinite, form-
ing a “wall of water.” Before this moment, the steepness is higher than that for the
limiting Stokes wave. Moreover, a typical freak wave is a single event (see, for
instance Divinsky et al. 2004. Before breaking it has a crest, three–four (or even
more) times higher than the crests of neighbor waves. The freak wave is preceded
by a deep trough or “hole in the sea.” A characteristic life time of a freak wave is
short – ten of wave periods or so. If the wave period is 15 s, this is just few minutes.
Freak wave appears almost instantly from a relatively calm sea. Sure, these peculiar
features of freak waves cannot be explained by a linear theory. Focusing of ocean
waves creates only preconditions for formation of freak waves, which is a strongly
nonlinear effect.

It is natural to associate appearance of freak waves with the modulation insta-
bility of Stoke’s waves. This instability is usually called after Benjamin and Feir;
however, it was first discovered by Lighthill (1965). The theory of instability was
developed independently by Benjamin and Feir (1967) and by Zakharov (1967).
Feir (1967) was the first who observed the instability experimentally in 1967.

Slowly modulated weakly nonlinear Stokes wave is described by nonlinear
Shrödinger equation (NLSE), derived by Zakharov (1968). This equation is inte-
grable (see Zakharov and Shabat 1972) and is just the first term in the hierarchy of
envelope equations describing packets of surface gravity waves. The second term in
this hierarchy was calculated by Dysthe (1979), the next one was found a few years
ago by Trulsen and Dysthe (1996). The Dysthe equation was solved numerically by
Ablovitz and his collaborates (see Ablovitz et al. 2000, 2001).

Since the first work of Smith (1976), many authors tried to explain the freak wave
formation in terms of NLSE and its generalizations, like Dysthe equation. A vast
scientific literature is devoted to this subject. The list presented below is long but
incomplete: Peregrine (1983); Peregrine et al. (1988), Tanaka (1990), Trulsen and
Dysthe (1996), Trulsen and Dysthe (1997), Trulsen (2000), Trulsen et al. (2000),
Ablovitz et al. (2000), Onorato et al. (2000, 2001, 2002).

One cannot deny some advantages achieved by the use of the envelope equa-
tions. Results of many authors agree to one important point: nonlinear development
of modulation instability leads to concentration of wave energy in a small spatial
region. On the one hand, this is a “hint” regarding possible formation of freak wave.
On the other hand, it is clear that the freak wave phenomenon cannot be explained
in terms of envelope equations. Indeed, NLSE and its generalizations are derived by
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expansion in series on powers of parameter λ � 1/Lk, where k is a wave number,
L is a length of modulation. For real freak wave λ ∼ 1 and any “slow modulation
expansion” fails. However, the analysis in the framework of the NLS-type equations
gives some valuable information about formation of freak waves.

Modulation instability leads to decomposition of initially homogeneous Stokes
wave into a system of envelope solitons (more accurately speaking, quasi-solitons
Zakharov and Kuznetsov (1998); Zakharov et al. (2004)). This state can be called
“solitonic turbulence,” or, more exactly “quasisolitonic turbulence.” In the frame-
work of pure NLSE, solitonic turbulence is “integrable.” Solitons are stable, and
they scatter on each other elastically. However, even in this simplest scenario, spa-
tial distribution of wave energy displays essential intermittency. More exact Dysthe
equation is not integrable. In this model solitons can merge, and this effect increases
spatial intermittency and leads to establishing of chaotic intense modulations of en-
ergy density. So far this model cannot explain formation of freak waves with λ ∼ 1.

This effect can be explained if the envelope solutions of a certain critical ampli-
tude are unstable and can collapse. In the framework of 1D focusing NLSE solitons
are stable; thus solitons instability and the collapse must have a certain threshold in
amplitude. Instability of a soliton of large amplitude and further collapse could be a
proper theoretical explanation of the freak wave origin.

This scenario was observed in numerical experiment on the heuristic one-
dimensional Maida-McLaughlin Tabak (MMT) model (see Majda et al. 1997) of
one-dimensional wave turbulence (Zakharov et al. (2004)). At a proper choice of
parameters this model mimics gravity waves on the surface of deep water. In the
experiments described in the cited paper, instability of a moderate amplitude mono-
chromatic wave leads first to creation of a chain of solitons, which merge due to
inelastic interaction into one soliton of a large amplitude. This soliton sucks energy
from neighbor waves, becomes unstable, and collapse up to λ ∼ 1, producing the
freak wave. We believe that this mechanism of freak wave formation is universal.

The most direct way to prove validity of the outlined above scenario for freak
wave formation is a direct numerical solution of Euler equation, describing poten-
tial oscillations of ideal fluid with a free surface in a gravitational field. This solution
can be made by the methods published in several well-known articles (Dommermuth
and Yue (1987); West et al. (1987); Clamond and Grue (2001)). Here we use another
method, based on conformal mapping. It should be mentioned that idea to exploit
conformal mapping for unsteady flows was presented in Ovsyannikov (1973) and
later in Meison et al. (1981), Chalikov and Sheinin (1998). Method used in this
article has origin in Dyachenko et al. (1996), has been using in Zakharov et al.
(2002), and was finally formulated in Dyachenko (2001). This method is applicable
in 1 + 1 geometry; it includes conformal mapping of fluid bounded by the surface
to the lower half-plane together with “optimal” choice of variables, which guaran-
tees well-posedness of the equations (Dyachenko 2005) and existence of smooth,
unique solution of the equations for a finite time (Shamin 2006). Here we would
like to stress that one of the main goal of this paper is to demonstrate effectiveness
of the conformal variables to simulate exact 2D potential flow with a free boundary.
Earlier, fully nonlinear numerical experiments regarding wave breaking, freak wave
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formation, comparison with weakly nonlinear model (such as Nonlinear Shrodinger
equation) were done in the papers Dold and Peregrine (1986), Tanaka (1990), Ban-
ner and Tian (1998), Henderson et al. (1999), Clamond and Grue (2002). On the
other hand, using conformal approach we have studied in the paper Zakharov et al.
(2002) the nonlinear stage of modulation instability for Stokes waves of steepness
µ = ka � 0.3 and µ = 0.1.

In the present article we perform similar experiment for waves of steepness µ �
0.15. This experiment could be considered as a simulation of a realistic situation. If
a typical steepness of the swell is 0.06÷0.07, in caustic area it could easily be 2–3
times more. In the new experiment, we start with the Stokes wave train, perturbed by
a long wave with 20 times less amplitude. We observe development of modulation
instability and finally the explosive formation of the freak wave that is pretty similar
to waves observed in natural experiments.

2 Basic Equations

Suppose that incompressible fluid covers the domain

−∞ < y < η(x, t). (1)

The flow is potential, hence

V = ∇φ , ∇V = 0, ∇2φ = 0. (2)

Let ψ = φ |y=η be the potential at the surface and H = T +U be the total energy.
The terms

T = −1
2

∫ ∞

−∞
ψφn dx, (3)

U =
g
2

∫ ∞

−∞
η2(x, t)dx (4)

are correspondingly kinetic and potential parts of the energy, g is a gravity acceler-
ation, and φn is a normal velocity at the surface. The variables ψ and η are canoni-
cally conjugated; in these variables Euler equation of hydrodynamics reads

∂η
∂ t

=
δH
δψ

,
∂ψ
∂ t

= −δH
δη

. (5)

One can perform the conformal transformation to map the domain that is filled
with fluid

−∞ < x < ∞, −∞ < y < η(x, t), z = x+ iy

in z-plane to the lower half-plane

−∞ < u < −∞, −∞ < v < 0, w = u+ iv
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in w-plane. Now, the shape of surface η(x, t) is presented by parametric equations

y = y(u, t), x = x(u, t),

where x(u, t) and y(u, t) are related through Hilbert transformation

y = Ĥ (x(u, t)−u) , x(u, t) = u− Ĥy(u, t). (6)

Here

Ĥ( f (u)) = PV
1
π

∫ ∞

−∞

f (u′)du′

u′ −u
.

Equations (5) minimize the action,

S =
∫

Ldt, (7)

L =
∫

ψ
∂η
∂ t

dx−H. (8)

Lagrangian L can be expressed as follows,

L =
∫ ∞

−∞
ψ(ytxu − xtyu)du+

1
2

∫ ∞

−∞
ψĤψu du− g

2

∫ ∞

−∞
y2xu du

+
∫ ∞

−∞
f
(
y− Ĥ(x−u)

)
du . (9)

Here f is the Lagrange multiplier, which imposes the relation (6). Minimization
of action in conformal variables leads to implicit equations (see Dyachenko et al.
(1996))

ytxu − xtyu = −Ĥψu

ψt yu −ψuyt +gyyu + Ĥ(ψt xu −ψuxt +gyxu) = 0. (10)

System (10) can be resolved with respect to the time derivatives. Omitting the de-
tails, we present only the final result

Zt = iUZu,

Φt = iUΦu −B+ ig(Z−u). (11)

Here
Φ = 2P̂ψ (12)

is a complex velocity potential, U is a complex transport velocity:

U = 2P̂
(−Ĥψu

|zu|2
)

(13)
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and

B = P̂
( |Φu|2

|zu|2
)

= P̂
(|Φz|2

)
. (14)

In (12), (13), and (14) P̂ is the projector operator generating a function that is ana-
lytical in a lower half-plane

P̂( f ) =
1
2
(
1+ iĤ

)
f .

In (11)
z(w) → w, Φ(w) → 0, at v →−∞.

All functions z, Φ , U , and B are analytic ones in the lower half-plane v < 0.
Recently, we found that (11) were derived in Ovsyannikov (1973), and we call

them here Ovsyannikov’s equations, OE. Implicit equations (10) were not known
until 1994, so we call them DKSZ-equations.

Note, (10) can be used to obtain the Lagrangian description of surface dynamics.
Indeed, from (10) one can get

Ψ = ∂−1Ĥ(ytxu − xtyu). (15)

Plugging (15) to (8) one can express Lagrangian L only in terms of surface eleva-
tion. This result was independently obtained by Balk (1996). In Dyachenko (2001)
(11) were transformed to a simple form, which is convenient both for numerical
simulation and analytical study. By introducing new variables

R =
1

Zw
, V = iΦz = i

Φw

Zw
(16)

one can transform system (11) into the following one:

Rt = i(URw −RUw),
Vt = i(UVw −RBw)+g(R−1). (17)

Now complex transport velocity U and B

U = P̂(V R̄+V̄ R),
B = P̂(VV̄ ). (18)

Thereafter, we call (17) and (18) Dyachenko equations, DE.
Both DKSZ-equations (10) and OE (11) have the same constants of motion

H = −
∫ ∞

−∞
Ψ ĤΨu du+

g
2

∫ ∞

−∞
y2xu dy, (19)

the same total mass of fluid
M =

∫ ∞

−∞
yxu du, (20)
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and the same horizontal momentum

Px =
∫ ∞

−∞
Ψyu du. (21)

The Dyachenko equations (17) and (18) have the same integrals. To express them in
terms of R and V , one has to perform the integration

Z = u+
∫ u

−∞

du
R

, Φ = −i
∫ u

−∞

V
R

du. (22)

3 Numerical Instability with Respect to Small Scale Perturbation

The problem of stability of the equations of motion of the fluid with a free sur-
face goes back to the famous work of Taylor (1950). He has found the relationship
between the growth rate of the interface instability, the wave-length of the perturba-
tion, and the gravity acceleration. Today we would say that Taylor instability is the
manifestation of the ill-posedness of the Cauchy problem for the case when gravity
acceleration is directed out of the fluid.

The problem of well-posedness of the Cauchy problem for the potential irrota-
tional flows with a free surface was studied in many papers. First time it was studied
by Nalimov in Nalimov (1974).

3.1 Instability of Φ-Z Equations

Let us consider (11) with (13) and (14). Stability of the large-scale solution with
respect to short-scale perturbation will be considered. Let this large-scale solution
have subscripts 0, namely, Φ0(w, t) and Z0(w, t). Obviously, perturbed solution is
the following:

Φ = Φ0 +δΦ , Z = Z0 +δZ. (23)

Characteristic wavenumber k of δΦ and δZ is much larger than characteristic
wavenumber k0 of Φ0 and Z0. Let us expand arguments of U and B in (13 and
14) up to the first order in δZ′ and δΦ ′:

iΦ ′

Z′Z̄′ + c.c. � iΦ ′
0

Z′
0Z̄′

0
+(Φ̄ ′

0 −Φ ′
0)

iδZ′

Z′2
0 Z̄′

0
+

iδΦ ′

Z̄′
0Z′

0
+ c.c.

Φ ′

Z′
Φ̄ ′

Z̄′ � Φ ′
0

Z′
0

Φ̄ ′
0

Z̄′
0
− Φ ′

0
Z′

0

Φ̄ ′
0

Z̄′
0

δZ′

Z′
0

+
Φ̄ ′

0
Z̄′

0

δΦ ′

Z′
0

+ c.c. (24)
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Now we can calculate U and B:

U � U0 +
i

Z′2
0 Z̄′

0

(
Φ̄ ′

0 −Φ ′
0
)

δZ′ +
iδΦ ′

Z̄′
0Z′

0
,

B � B0 − Φ ′
0

Z′
0

Φ̄ ′
0

Z̄′
0

δZ′

Z′
0

+
Φ̄ ′

0
Z̄′

0Z′
0

δΦ ′. (25)

When deriving (25) we have to calculate projector of (24). To do this we deal
with products like A0δZ′ and A0δ Z̄′. It is easy to see that due to the scale separation
of A0 and δZ the following relations are valid:

P̂(A0δZ′) � A0δZ′,

P̂(A0δ Z̄′) � 0. (26)

Now we are ready to write down the linearized equations for perturbations.

δZt = i
(

U0 − i
Z′

0Z̄′
0

(
Φ ′

0 − Φ̄ ′
0
))

δZ′ − δΦ ′

Z̄′
0

,

δΦt =
Φ ′2

0

Z′2
0 Z̄′

0
δZ′ + i

(
U0 +

i(Φ ′
0 + Φ̄ ′

0)
Z′

0Z̄′
0

)
δΦ ′ + igδZ. (27)

Now we treat all functions with subscript . . .0 in (27) as constants. This is so-
called “method of frozen coefficient,” which is widely used in analysis of numerical
schemes.

Let δZ and δΦ ∼ exp(iωt − iku). Then the following dispersion relation can be
derived:

ω = kVD ±
√

gk
1
Z̄′

0
. (28)

Here VD has a meaning of Doppler frequency shift and is equal to

VD =
Ψ ′

0
Z′

0Z̄′
0
− Ĥ

ĤΨ ′
0

Z′
0Z̄′

0
. (29)

So, from (28) immediately follows that for gravity waves ω has imaginary part,
which grows as a function of k:

γ =
1
2

√
gk

η ′
x√
X ′ .

It means that large scale solution is unstable with respect to the perturbation.
This instability takes place only in the numerics when dealing with Ovsyannikov

equations.
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3.2 Stability of R-V Equations

Doing similar analysis for R-V equations one can easily derive the following set of
equations for perturbations:

δRt = VDδR′ − i|R0|2δV ′ +b11δR+b12δV,

δVt = VDδV ′ +b21δR+b22δV, (30)

with

b11 = −i(U ′
0 +R0V̄ ′

0 −R′
0V̄0),

b12 = i(R̄0R′
0 −R0R̄′

0),

b21 = g+ i(V̄0V ′
0 −B′

0) = g+ g̃,

b22 = i(R̄0V ′
0 −R0V̄ ′

0). (31)

Coefficient b21 = g+ g̃ is pure real. Indeed,

g̃− ¯̃g = i(V̄0V ′
0 −B′

0 +V0V̄ ′
0 − B̄′

0),

= i
∂
∂u

(V0V̄0 −B0 − B̄0) = 0.

Applying “method of frozen coefficient” one can obtain the following dispersion
relation:

ω = kVD + iΩ ± 1
|Z′

0|
√

(g+ g̃)k−Ω 2. (32)

while

Ω =
i
2

(
V̄ ′

0
Z′

0
− V ′

0
Z̄′

0

)
,

g̃ = i(V̄0V ′
0 −B′

0).

Note, VD, Ω , and g̃ are pure real values.
Although ω in (32) has imaginary part, it doesn’t grow as a function of k (of

course, if g̃ does not exceed g). This property makes the system of equation (17)
numerically stable with respect to small scale perturbation.

4 Freak Waves as a Result of Modulation Instability

Here we study modulation instability of uniform wave train of Stokes wave numeri-
cally. For time integration the standard Runge–Kutta method of the fourth order was
used.
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Question of great interest is the nonlinear stage of the instability. Here and every-
where below we do simulation in periodic domain L = 2π and

g = 1.

Wavetrain of the amplitude a with wavenumber k0 is unstable with respect to large
scale modulation δk. Growth rate of the instability γ is

γ =
ω0

2

((
δk
k0

)2

(ak0)2 − 1
4

(
δk
k0

)4
) 1

2

. (33)

Here ω0 is the linear dispersion relation for gravity wave

ω0 =
√

gk0.

• The shape of Stokes progressive wave is given by

y =
c2

2g

(
1− 1

|Zu|2
)

,

while Φ is related to the surface as

Φ = −c(Z−u), V = ic(R−1).

The amplitude of the wave h/L is the parameter for initial condition. (For the
sharp peaked limiting wave h/L � 0.141).

• Put 100 such waves with small perturbation in the periodic domain of 2π .

In such a way we prepared initial wave train with the steepness µ � 0.095. Main
Fourier harmonic of this wave train is k = 100. Similar problem was studied in
Song and Banner (2002). But instead of long wavetrain they studied evolution of
small group of waves.

For perturbation small value for Fourier harmonic with kp = 1 was set. So, that

Rk = Runperturbed
k +0.05R100 exp−ikpu .

Surface profile of this initial condition is shown in Fig. 1.
Fourier spectrum of the initial condition is shown in Fig. 2.
After sufficient large time, which is more than 1,300 wave periods, one can ob-

serve freak wave formation, as it is shown in Fig. 3. Freak wave grows from mean
level of waves to its maximal value for several wave periods, than vanishes or breaks.

Detailed view at the freak wave at the moment of maximal amplitude is shown
in Fig. 4. This set of experiments is similar to that of Dold and Peregrine (1986),
Tanaka (1990). The difference is that we were able to increase the accuracy of the
simulation, and consider much longer wavetrains. Also (due to using conformal
mapping) we can simulate breaking with multivalued surface profile. Accuracy in
the simulation is very important because the freak wave appears in a very subtle
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Fig. 2 Fourier coefficients |Rk| for initial condition (µ � 0.095)

manner on the phase relations between Fourier harmonics of the surface. Moreover,
for shorter wavetrains, threshold of modulation instability increases and breaking
does not happen even for large steepness. In our experiments we have observed
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Fig. 4 Zoom in surface profile at T = 802.07

threshold of steepness for wave breaking a little less than in Tanaka (1990), but
above µ = 0.1. Still, surface profile from Tanaka (1990) (Fig. 5) is very similar to
the picture in Fig. 4 with µ = 0.095.

During numerical simulation of the final stage of freak wave formation, resolu-
tion must be increased to resolve high curvature of the surface profile. To do this we
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Fig. 6 Profile of breaking wave

have been increasing number of Fourier harmonics, which reached 220 at the end
(T = 802.07). Fourier coefficients of Rk are shown in Fig. 5.

If amplitude of the wave train is large, then freak wave may eventually break.
Such a picture is presented in the Fig. 6, which corresponds to the other numerical
simulation with the initial steepness µ � 0.14.
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5 Exact Equations and Nonlinear Shrödinger Approximation

Evolution of weakly nonlinear Stokes wavetrain can be described by nonlinear
Shrödinger equation (NLSE), derived by Zakharov (1968). This equation is inte-
grable (see Zakharov and Shabat 1972) and is just the first term in the hierarchy of
envelope equations describing packets of surface gravity waves. The second term in
this hierarchy was calculated by Dysthe (1979), the next one was found a few years
ago by Trulsen and Dysthe (1996). The Dysthe equation was solved numerically by
Ablovitz and his collaborates (see Ablovitz et al. 2000).

Since the first work of Smith (1976), many authors tried to explain the freak
wave formation in terms of NLSE and its generalizations, like Dysthe equation. A
vast scientific literature is devoted to this subject. The list presented below is long
but incomplete: Ablovitz et al. (2000), Onorato et al. (2000, 2001, 2002), Peregrine
(1983); Peregrine et al. (1988), Trulsen and Dysthe (1996, 1997), Trulsen (2000),
Trulsen et al. (2000), Clamond and Grue (2002).

One cannot deny some advantages achieved by the use of the envelope equa-
tions. Results of many authors agree in one important point: nonlinear development
of modulation instability leads to concentration of wave energy in a small spatial
region. This is a “hint” regarding possible formation of freak wave. On the other
hand, it is clear that the freak wave phenomenon cannot be explained in terms of
envelope equations. Indeed, NLSE and its generalizations are derived by expansion
in series on powers of parameter λ � 1/Lk, where k is a wave number and L is a
length of modulation. For real freak wave λ ∼ 1 and any slow modulation expansion
fails. At this point interesting question rises: what happens to NLSE approximation
when increasing the steepness of the carrier wave? In particular, we study “exact”
soliton solutions for NLSE placed in the exact equations (17).

Such type of problem was considered in the Henderson et al. (1999), but with
low resolution, and small length of periodic carrier. Also in Clamond and Grue
(2002) numerical solutions for envelope equation was compared with “almost” exact
equations.

For (17) NLSE model can be derived for the envelope of R.

R = 1+R1 e−ik0u−ω0t + · · ·

iR1t +
1
8

ω0

k2
0

R1uu +
1
2

ω0k2
0|R1|2R1 = 0.

Initial conditions consist of “linear wave carrier” e−ik0u, modulated in accordance
with soliton solution for NLSE:

R(u) = 1+ s0
e−ik0u

cosh(λk0u)
,

V (u) = −ic0s0
e−ik0u

cosh(λk0u)
. (34)

Here s0 is the steepness of the carrier wavetrain, c0 is the phase velocity of the
carrier.



Freak Waves: Peculiarities of Numerical Simulations 15

First comparison of fully nonlinear model for water wave with NLSE was done
in Clamond and Grue (2002) for the wave carrier with the steepness µ � 0.091. For
such steepness there was a good agreement between two models, but only for the
short time. After finite time weakly nonlinear model (NLSE) ceases to be valid.

In our work we want to study the situation with larger and smaller steepness to
find out how NLSE approximation breaks.

5.1 Small Steepness

First experiment was intended to observe how NLSE works. In the initial conditions
(34) we used

s0 � 0.07, λ = 0.1, k0 = 100.

Initial surface of fluid is shown in Fig. 7.
After couple of thousands wave periods, soliton changes a little as it is seen in

Fig. 8. Also in the Figs. 9 and 10 Fourier spectra of the soliton at both moments of
time are presented.

So, one can see that for the steepness µ ≤ 0.07 NLSE model is quite reasonable.
Another numerical experiment showing effective simulation with (17) along with

applicability NLSE model for moderate steepness, µ � 0.085, is the collision of two
solitons.

In Fig. 11 initial condition is shown. Moment of collision is shown in the Fig. 12
and detailed view showing carrier wavetrain under the envelope is in the Fig. 13.
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Fig. 7 Initial surface profile like for NLSE soliton with µ � 0.07
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Fig. 8 Surface profile like for NLSE soliton with µ � 0.07 at T = 1,500
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Fig. 9 Fourier harmonics of the initial soliton with µ � 0.07

After second collision (recall that boundary conditions are periodic) solitons are
plotted in Fig. 14. Fourier spectra of these two solitons at the moments of time T =
0.05, 30.8, and 250.0 are shown in Figs. 15–17.
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Fig. 10 Fourier harmonics of the soliton with µ � 0.07 at T = 1,500
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Fig. 11 Initial surface profile of two NLSE solitons with µ � 0.085
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Fig. 14 Two NLSE solitons with µ � 0.085 after two collisions at T = 250.0
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Fig. 16 Fourier spectrum of two colliding NLSE solitons with µ � 0.085 at T = 30.8
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Fig. 17 Fourier spectrum of two NLSE solitons with µ � 0.085 at T = 250.0
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5.2 Large Steepness

Now let us turn to the higher steepness of the carrier,

µ = 0.1.

In the Fig. 18 there is initial condition. Again, after couple of thousand wave periods,
soliton changes a little as it is seen in Fig. 19. In Figs. 20 and 21 Fourier spectra of
the soliton at both moments of time are presented.

From this pictures one can see that for steepness µ � 0.10 some corrections to the
NLSE model are desirable. Dysthe equations are exactly intended for that situation.

But what happens when further increasing the steepness? Below we consider the
case of the steepness of the carrier

µ = 0.14.

In the Fig. 22 there is initial condition. Very fast, after couple of dozen wave pe-
riods, soliton drastically changes as it is seen in Fig. 23. One can see freak wave
at the surface (in Fig. 24). In the Figs. 25 and 26 Fourier spectra of the soliton at
both moments of time are presented. They demonstrate the quality of the numerical
simulation. The tail of the spectrum in Fig. 26 shows that the resolution decreases
(aliasing errors “go up”); however, the simulation remains stable.
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Fig. 18 Initial surface profile like for NLSE soliton with µ � 0.10
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Fig. 19 Surface profile like for NLSE soliton with µ � 0.10 at T = 2,345
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Fig. 20 Fourier harmonics of the initial soliton with µ � 0.10

From the last case, with the steepness µ = 0.14, one can see that envelope ap-
proximation completely fails. Such event as one single crest (freak wave) can not be
described in terms of wave envelope.
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Fig. 21 Fourier harmonics of the soliton with µ � 0.10 at T = 2,345
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Fig. 23 Surface profile like for NLSE soliton with µ � 0.14 at T = 38.4
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Fig. 26 Fourier harmonics of the soliton with µ � 0.14 at T = 38.4
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6 Do Freak Waves Appear from Quasisolitonic Turbulence?

Let us summarize the results of our numerical experiments. Certainly, they repro-
duce the most apparent features of freak waves: single wave crests of very high am-
plitude, exceeding the significant wave height more than three times, appear from
“nowhere” and reach full height in a very short time, less than ten periods of sur-
rounding waves. The singular freak wave is proceeded by the area of diminished
wave amplitudes. Nevertheless, the central question about the physical mechanism
of freak waves origin is still open.

In our experiments, the freak wave appears as a result of development of modu-
lation instability, and it takes a long time for the onset of instability to create a freak
wave. Indeed, the level of perturbation in our last experiment is relatively high.
The 2–3 inverse growth-rate is enough to reach the state of full-developed instabil-
ity, when the initial Stokes wave is completely decomposed. Meanwhile, the freak
wave appears only after 15th inverse growth-rates of instability. What happens after
developing of instability but before formation of freak wave?

During this relatively long period of time, the state of fluid surface can be char-
acterized as quasisolitonic turbulence, which consists of randomly located quasi-
solitons of different amplitudes moving with different group velocities. Numerical
study of interaction of envelope soliton was done in Clamond and Grue (2002). Such
interaction leads to formation of wave with large amplitude. Here we can think in
terms of quasisolitonic turbulence. Such turbulence was studied in the recent work
of Zakharov et al. (2004) in a framework of so-called defocusing MMT model:

i
∂Ψ
∂ t

=
∣∣∣∣ ∂
∂x

∣∣∣∣
1/2

Ψ +
∣∣∣∣ ∂
∂x

∣∣∣∣
3/4

⎛
⎝
∣∣∣∣∣
∣∣∣∣ ∂
∂x

∣∣∣∣
3/4

Ψ

∣∣∣∣∣
2 ∣∣∣∣ ∂

∂x

∣∣∣∣
3/4

Ψ

⎞
⎠ . (35)

This is a heuristic model description of gravity surface waves in deep water. In
this model, quasi-solitons of small amplitude are stable, interact inelastically, and
can merge. Above some critical level quasi-solitons of large amplitude are unstable.
They collapse in finite time forming very short wave pulses, which can be consid-
ered as models of freak waves. Equation 35 has the exact solution:

Ψ = Aeikx−iωt

ω = k1/2
(

1+ k5/2 A2
)

. (36)

This solution can be constructed as a model of the Stokes wave and is unstable
with respect to modulation instability. Development of this instability was stud-
ied numerically. On the first stage, the unstable monochromatic wave decomposes
to a system of almost equal quasi-solitons. Then, the quasi-solitonic turbulence is
formed: quasi-solitons move chaotically, interact with each other, and merge. Fi-
nally they create one large quasi-soliton, which exceeds threshold of instability and
collapses, creating a freak wave.
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One can think that a similar scenario of freak wave formation is realized in a
real sea. We like to stress that the key point in this scenario is the quasi-solitonic
turbulence and not the Stokes wave. The Stokes wave is just a “generator” of this
turbulence. The quasisolitonic turbulence can appear as a result of instability of
narrow spectral distributions of gravity waves.

The formulated above concept is so far a hypothesis, which has to be confirmed
by future numerical experiments.
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Rogue Waves in Higher Order Nonlinear
Schrödinger Models

Annalisa Calini and Constance M. Schober

Abstract We discuss physical and statistical properties of rogue wave generation
in deep water from the perspective of the focusing Nonlinear Schrödinger equation
and some of its higher order generalizations. Numerical investigations and analyt-
ical arguments based on the inverse spectral theory of the underlying integrable
model, perturbation analysis, and statistical methods provide a coherent picture of
rogue waves associated with nonlinear focusing events. Homoclinic orbits of unsta-
ble solutions of the underlying integrable model are certainly candidates for extreme
waves, however, for more realistic models such as the modified Dysthe equation two
novel features emerge: (a) a chaotic sea state appears to be an important mechanism
for both generation and increased likelihood of rogue waves; (b) the extreme waves
intermittently emerging from the chaotic background can be correlated with the ho-
moclinic orbits characterized by maximal coalescence of their spatial modes.

1 Introduction

Among the various mechanisms for wave amplification under different physical
conditions, the Benjamin–Feir (BF) instability and nonlinear self-focusing are often
proposed in relation to rogue wave generation in deep water. In particular, the work
of Henderson et al. (1999) suggests that excitation of certain breather-like solutions
of the focusing nonlinear Schr̈odinger (NLS) equation

iut +uxx +2|u|2u = 0, (1)
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Fig. 1 Time series of the surface elevation of the 1995 New Year Wave Event

triggers the formation of rogue waves. Trulsen and Dysthe’s analysis (Trulsen and
Dysthe 1997a) of the sea state during the famous New Year Wave event recorded
at the North Sea Draupner Platform in 1995 (see Fig. 1) shows a weakly nonlinear
wave train with a relatively narrow frequency bandwidth, thus supporting the use of
the focusing NLS equation as a basic model for studying rogue waves in deep water.

A stability analysis of solutions of the NLS equation shows that low frequency
modes may become unstable and that the number of unstable modes increases with
the amplitude of the carrier wave. Homoclinic orbits of unstable NLS solutions,
including those of an unstable Stokes wave, exhibit many of the properties observed
in rogue waves (Osborne 2000; Calini and Schober 2002; Karjanto 2006). However,
generic homoclinic orbits of unstable solutions of the NLS equation are unlikely
to be physically observable in more realistic models of deep water wave dynamics
(for example, those described by higher order generalizations of the NLS equation).
It is thus important to develop criteria for rogue wave formation for general sea
states, to investigate whether proximity to unstable solutions of the integrable model
can be correlated to rogue wave generation, and to determine the robustness of the
homoclinic orbits under physically meaningful perturbations.

A more realistic description of deep water wave dynamics is provided by the
modified Dysthe (MD) equation,

iut +uxx +2|u|2u+ iε1/2
(

1
2

uxxx −6|u|2ux +u2u∗x −2ui
[
H
(|u|2)]x

)

+ε
5
16

u4x + iε3/2 7
32

u5x = 0,
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introduced by Trulsen and Dysthe (1996, 1997a) by retaining higher order terms in
the asymptotic expansion of the surface wave displacement. (Here H( f ) denotes the
Hilbert transform of the function f .)

Laboratory experiments conducted in conjunction with numerical simulations by
the Schober and her collaborators (Ablowitz et al. 2000, 2001), established that, for
higher order generalizations of the NLS equations, the generic long-time dynamics
of initial data near an unstable Stokes wave with two unstable modes is chaotic. Fur-
ther numerical investigations of the MD equation revealed that for a general class
of such initial data, high amplitude coherent structures arise intermittently above
the chaotic background (Calini and Schober 2002). Remarkably, these emerging co-
herent structures are structurally similar to maximal homoclinic orbits of the unper-
turbed Stokes wave with coalesced spatial phases (which are also the homoclinic or-
bits of maximal amplitude). Such optimally phase modulated homoclinic solutions
of the NLS equation appear to be the only homoclinic solutions which persist under
perturbations, their persistence being independent of phase selection of the initial
conditions (Calini and Schober 2002; Schober 2006). In other words, a chaotic sea
state due to proximity to unstable NLS solutions appears to increase the occurrence
of rogue waves, enhance focusing effects, and select, among homoclinic solutions,
those that are good candidates for modeling physically observable rogue waves.

To analyze this phenomenon in more detail, we regard the MD equation as a per-
turbation of the NLS equation. A combination of tools from the integrable theory
of the NLS equation, and a formal extension of the Melnikov method for perturba-
tions of Hamiltonian systems with homoclinic structures are used to address both
structural and statistical properties of the observed rogue waves.

In Sect. 2, we review elements of the periodic theory for the integrable NLS equa-
tion, the analytical construction of homoclinic solutions (from low-dimensional to
maximal homoclinic manifolds) of the unstable Stokes wave, and discuss wave am-
plification due to phase coalescence, as well as the relation between phase singular-
ities, wave compression, and wave amplification.

In Sect. 3, we study the effects of homoclinic chaos on rogue wave generation,
and discuss numerical simulations of the MD equation (8) and its restriction to
spatially symmetric wave trains (see e.g. Fig. 5b.) “Noisy” rogue waves emerge in-
termittently above a chaotic background: we discuss how the likelihood of rogue
wave occurrence as well as wave focusing are found to increase in the chaotic
regime.

In Sect. 4, we present a formal Melnikov-type calculation aimed at explaining the
persistence of optimally phase modulated homoclinic orbits during the perturbed
chaotic dynamics. These persisting coherent structures are thus natural candidates
for the physically observable rogue waves.

The remaining sections use a statistical approach (in combination with the peri-
odic theory of the integrable NLS), to develop a criterion for rogue wave prediction,
and a statistical description of rogue waves associated with homoclinic chaos in both
the NLS and MD models.

In Sect. 5, we discuss rogue wave generation for random sea states characterized
by the Joint North Sea Wave Project (JONSWAP) power spectrum. The JONSWAP
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spectrum was introduced to describe developing sea states with ongoing nonlinear
wave–wave interactions (Ochi 1998; Bridges and Derks 1999). A spectral quantity,
the “splitting distance” between simple periodic points of the Floquet spectrum of
an initial condition in a neighborhood of an unstable NLS solution, is proposed as
a measurement of the proximity in spectral space to unstable waves and homoclinic
data. For regimes in which few (two or three) unstable modes are present, hundreds
of realizations of JONSWAP type initial data show that, in both the pure NLS and
the MD models, rogue waves develop for small splitting distance, and do not develop
when the splitting distance is large (Islas and Schober 2005).

In the final section, a statistical interpretation of rogue waves in both the NLS
and MD equations is provided. Using the third and fourth statistical moments of
the wave elevation for sea states characterized by JONSWAP spectra with ran-
dom phases, we examine dependence of skewness, kurtosis, and likelihood of rogue
waves on the proximity to unstable waves and homoclinic data. Extensive numerical
studies reveal that wave strength, skeweness, and kurtosis all increase as the spectral
splitting distance decreases, thus supporting the claim that modulational instability
is not only an important mechanism for rogue wave generation, but also a significant
source of non-Gaussianity in the water wave statistics. Finally, consistent with the
numerical and analytical studies described in the first part of this chapter, statisti-
cally, the NLS equation appears to under predict, as compared to the MD equation,
both the strength and likelihood of rogue waves.

2 Background

As is well-known, the nonlinear Schrödinger (NLS) equation is equivalent to the
solvability condition of the AKNS system, the pair of first-order linear systems
(Zakharov and Shabat 1972):

L(x)φ = 0, L(t)φ = 0 (2)

for a vector-valued function φ . The linear operators on the left-hand sides of (2) are

L(x) =
(

∂x + iλ −u
u∗ ∂x − iλ

)
, L(t) =

(
∂t + i(2λ 2 −|u|2) −2λu− iux

2λu∗ − iu∗x ∂t − i(2λ 2 −|u|2)
)

,

and depend on x and t through the NLS potential u and on the spectral parameter λ .
The nonlinear spectral decomposition of an NLS initial condition (or in general

of an ensemble of JONSWAP initial data) is based on the inverse spectral theory of
the NLS equation. For periodic boundary conditions u(x+L, t) = u(x, t), the Floquet
spectrum associated with an NLS potential u (i.e. the spectrum of the linear operator
L(x) at u) can be described in terms of the Floquet discriminant of u, defined as
the trace of the transfer matrix of a fundamental matrix solution Φ of (2) over the
interval [0,L] (Ablowitz and Segur 1981):
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∆(u;λ ) = Trace
(
Φ(x, t;λ )−1Φ(x+L, t;λ )

)
.

Then, the Floquet spectrum is defined as the region

σ(u) = {λ ∈ IC |∆(u;λ ) ∈ IR,−2 ≤ ∆ ≤ 2}.

Points of the continuous spectrum of u are those for which the eigenvalues of the
transfer matrix have unit modulus, and therefore ∆(u;λ ) is real and between 2
and −2; in particular, the real line is part of the continuous spectrum. Points of
the L-periodic/antiperiodic discrete spectrum of u are those for which the eigenval-
ues of the transfer matrix are ±1, equivalently ∆(u;λ ) = ±2. Points of the discrete
spectrum which are embedded in a continuous band of spectrum have to be critical
points for the Floquet discriminant (i.e., d∆/dλ must vanish at such points).

Since the transfer matrix only changes by conjugation when we shift in x or t, ∆
is independent of those variables. An important consequence of this observation is
that the Floquet discriminant is invariant under the NLS flow, and thus encodes an
infinite family of constants of motion (parametrized by λ ).

The continuous part of Floquet spectrum of a generic NLS potential consists
of the real axis and of complex bands terminating in simple points λ s

j (at which
∆ =±2,∆ ′ 	= 0). The N-phase potentials are those characterized by a finite number
of bands of continuous spectrum (or a finite number of simple points). Figure 2
shows the spectrum of a typical N-phase potential: complex critical points (usually
double points of the discrete spectrum for which ∆ ′ = 0 and ∆ ′′ 	= 0), such as the
one appearing in the figure, are in general associated with linear instabilities of u
and label its homoclinic orbits (Ercolani et al. 1990). Figure 8a shows spectrum
of an N-phase potential near the one shown in Fig. 2: the complex double point has
split into a pair of simple points; such a potential possesses no linear unstable modes
(simple points and real double points are in general associated with neutrally stable
modes).

λ−plane

Fig. 2 Spectrum of an unstable N-phase solution. The simple periodic eigenvalues are labeled by
circles and the double points by crosses
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2.1 Homoclinic Solutions of the NLS Equation as Candidates
for Rogue Waves

Modulationally unstable solutions of the NLS equation (e.g., N-phase solutions
whose Floquet spectra have complex double points) have homoclinic orbits that
can undergo large amplitude excursions away from their target solution. Such ho-
moclinic orbits can be used as models of rogue waves.

An important (and the simplest) example of unstable NLS solution is the plane
(or Stokes) wave potential

ua(x, t) = ae2ia2t . (3)

Elementary Fourier analysis shows that the plane wave is unstable when its am-
plitude a is sufficiently large: in fact, for 0 < πn/L < a, the solution of the lin-
earized NLS equation about ua has M linearly unstable modes (UMs) eσnt+2πnx/L

with growth rates σn given by

σ2
n = µ2

n (µ2
n −4a2), µn = 2πn/L,

where M is the largest integer satisfying 0 < M < aL/π.
One can also check (see e.g., Calini and Schober 2002) that for 0 < πn/L < 0

the Floquet spectrum of the plane wave potential ua has exactly M complex double
points, each “labelling” an associated unstable mode.

Using Bäcklund transformations (McLaughlin and Schober 1992; Matveev and
Salle 1991) one can in principle construct the family of homoclinic orbits of an
unstable NLS potential. In fact, this method gives explicit formulas for homoclinic
orbits of N-phase solutions, although their expressions become rather complicated
for N > 2. For NLS potentials with several unstable modes, iterated Bäcklund trans-
formations will generate their entire stable and unstable manifolds, comprised of
homoclinic orbits of increasing dimension up to the dimension of the invariant mani-
folds. Such higher-dimensional homoclinic orbits associated with two or more UMs
are also known as combination homoclinic orbits.

A single (i.e., lowest dimensional) homoclinic orbit of the plane wave potential
is given by

u(x, t) = ae−2ia2t 1+2cos(px)eσnt+2iφ+ρ +Ae2σnt+4iφ+2ρ

1+2cos(px)eσ1t+ρ +Ae2σnt+2ρ , (4)

where A = 1/cos2 φ , σn =±p
√

4a2 − p2, φ =sin−1(p/2a), and p=µn =2πn/L < a
for some integer n. Each UM has an associated homoclinic orbit characterized by
the mode p = µn.

Figure 3 shows the space–time plot of the amplitude |u(x, t)| of a homoclinic
orbit with one UM, for a = 0.5, L = 2

√
2 and p = 2π/L. As t →±∞, (4) limits to

the plane wave potential; in fact, the plane wave behavior dominates the dynamics
of the homoclinic solution for most of its lifetime. As t approaches t0 = 0, nonlinear
focusing occurs due to the BF instability and the solution rises to a maximum height
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Fig. 3 Analytical rogue wave solution of the NLS corresponding to one UM

of 2.4a. Thus, the homoclinic solution with one UM can be regarded as the simplest
model of rogue wave.

An almost equally dramatic wave trough occurs close to the crest of the rogue
wave as a result of wave compression due to wave dislocation. The amplitude am-
plification factor is given by

f =
maxx∈[0,L], t∈IR|u(x, t)|

limt→±∞ |u(x, t)| ≈ 2.4. (5)

In general, f depends upon the wavenumber of the modulation. As the wave number
decreases, the amplification factor increases to the limiting value

fmax = lim
κ→0+

f (κ) = 3, (6)

although the waves take longer to reach their maximum height since their growth
rate is smaller (Akhmediev et al. 1988).

2.2 Phase Modulated Rogue Waves

As the number of UMs increases, the space–time structure of the homoclinic solu-
tions becomes more complex. When two or more UMs are present the initial wave
train can be phase modulated to produce additional focusing.

The family of homoclinic orbits of the plane wave potential with two UMs is
given by an expression of the form

u(x, t) = ae2ia2t g(x, t)
f (x, t)

, (7)
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Fig. 4 Rogue wave solutions of the NLS corresponding to two unstable modes (a) without phase
modulation (ρ = −1) and (b) with phase modulation (ρ = −0.65)

where the expression for f (x, t) and g(x, t) depend on the two spatial modes
cos(2nπx/L), cos(2mπx/L), and on temporal exponential factors exp(σnt + ρn),

exp(σmt + ρm), with growth rates σl = µl

√
µ2

l −4a2, µl = 2πl/L. (The complete
formulas can be found in Calini et al. (1996); Calini and Schober (2002).)

As in the one-UM case, this combination homoclinic orbit decays to the plane
wave potential as t →±∞, and the associated rogue wave remains hidden beneath
the background plane wave for most of its lifetime. The temporal separation of the
two spatial modes depends upon a parameter ρ related to the difference ρn −ρm in
the temporal phases (Calini et al. 1996; Calini and Schober 2002).

In turn, ρ affects the amplitude amplification factor. Figure 4a, b shows the com-
bination homoclinic orbit (7) obtained with all parameters set equal except for ρ .
In Fig. 4a, ρ = 0.1, the modes are well separated, and the amplitude amplification
factor is roughly 3. In Fig. 4b, the value of ρ is approximately −0.65, correspond-
ing to the two UMs being simultaneously excited or coalesced. At such ρ-value the
amplitude amplification factor is maximal and the rogue wave rises to a height of
4.1 times the height of the carrier wave (whose maximum height is 2.1).

Note that Fig. 4a shows focusing due to only weak amplitude modulation of the
initial wave train; the growth in amplitude beginning at t ≈−5 and at t ≈ 10 is due
to the BF instability. However, in Fig. 4b focusing due to both amplitude and phase
modulation occurs. The amplitude growth at t ≈ −5 is due to the BF instability,
while the additional very rapid focusing at t ≈ 3.4 is due to the phase modulation.
In general, it is possible to select the phases in a combination homoclinic orbit with
N spatial modes so that any number n (2 ≤ n ≤ N) of modes coalesce at some
fixed time.
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3 Noisy Rogue Waves

The broad bandwidth modified NLS equation was introduced by Trulsen and Dysthe
as a higher order asymptotic approximation of slowly modulated periodic wave
trains in deep water, assuming that the wave slope ka (where k is the wave num-
ber, and a the size of the initial displacement) is O(ε), while the bandwidth |∆k|/k
and the quantity (kh)−1 (where h is the water depth) are O(ε1/2). The resulting MD
equation

iut +uxx +2|u|2u+ iε1/2
(

1
2

uxxx −6|u|2ux +u2u∗x −2ui
[
H
(|u|2)]x

)

+ε
5
16

u4x + iε3/2 7
32

u5x = 0, (8)

is the starting point of our numerical experiments, aimed at investigating the robust-
ness of homoclinic solutions of the NLS equation, as well as the likelihood of rogue
wave generation, when higher order terms are introduced in the wave dynamics.

We choose initial data for solutions with two and three UMs; for example, in the
two-UM regime, the initial condition has the form

u(x,0) = a
[

1+4i
(

ε1 sinφ1eiφ1 cos
(

2πx
L

)
+ ε2 sinφ2eiφ2 cos

(
4πx

L

))]
,

where the parameters φi’s are varied to explore a neighborhood of the unstable plane
wave potential.

Figure 5a illustrates a striking rogue wave solution of (8) for ε1 = 10−4 and
ε2 = 10−5. The solution rapidly becomes chaotic (around t = 31) and exhibits an
irregular dynamics for a long time afterwards. At t ≈ 471.2 a rogue wave rises from
the plane wave state, developing a crest of amplitude approximately equal to four
times the background wave height. The structure of this rogue wave is remarkably
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Fig. 5 Rogue waves solutions for the even MD equation when (a) two and (b) three unstable
modes are present
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similar to that of the combination homoclinic solution (7) with coalesced spatial
modes obtained when ρ = −0.65. (Compare Fig. 5a with Fig. 4b.)

Numerical simulations of the MD equation in the three-UM regime show a simi-
lar phenomenon: after the onset of chaotic dynamics, rogue waves rise intermittently
above the chaotic background (see Fig. 5b). At t ≈ 208 a rogue wave develops with a
wave amplitude amplification factor of almost five. Again, the emerging rogue wave
is close to the optimally phase modulated NLS homoclinic solution in the three-UM
regime.

Extensive numerical experiments were performed for both the full MD model
and its restriction to spatially even potentials (see Sect. 4) in the two- and three-
UM regime, varying both perturbation strength ε and the values of the parameters
φis in the initial data. In all cases, the coalesced homoclinic NLS solution emerges
generically as a structurally stable feature of the perturbed dynamics.

We observe how the chaotic regime produces additional focusing by effectively
selecting optimal phase modulation, and how the chaotic dynamics singles out the
maximally coalesced homoclinic solutions of the unperturbed NLS equation as
physically observable rogue waves. Moreover, (see e.g., Fig. 5) larger amplitude
waves, and more of them, are obtained for the MD equation, as also supported by
the diagnostics developed in Sect. 5, correlating wave strengths in the NLS and MD
models to proximity to homoclinic data. Thus, the underlying chaotic dynamics of
the MD equation appears to increase the likelihood of rogue wave generation and
to favor occurrence of large amplitude rogue waves, as compared to predictions
obtained from the NLS equation.

4 Melnikov Analysis

To better understand the emergence of the coalesced homoclinic orbit in the chaotic
dynamics described by the MD equation, we use perturbation methods to construct
appropriate measurements of the splitting distance of the stable and unstable mani-
folds of a plane wave solution with two unstable modes. In this section, we briefly
describe the main ingredients of the ensuing Melnikov analysis; the reader is re-
ferred to Calini and Schober (2002) for full details.

We consider the following restriction of the MD equation to spatially even po-
tentials u(x, t) = u(−x, t):

iut +uxx +2|u|2u = εuxxxx. (9)

Equation (9) can be regarded as a Hamiltonian dynamical system on an appropriate
Sobolev space of even, periodic functions, with Hamiltonian functional Hε(u) =∫ L

0
(|ux| − |u|4 − ε|uxx|2)dx, and an additional conserved functional given by the

L2-norm I(u) =
∫ L

0
|u|2 dx.
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For ε = 0, we consider a plane wave potential ua with two UMs (equivalently,
with two complex double points): linear analysis shows that ua possesses two-
dimensional stable and unstable eigenspaces and an infinite number of center modes
(characterized by complex conjugate pairs of imaginary eigenvalues). Its center-
stable and center-unstable invariant manifolds coincide and have codimension 2. (In
fact, they are explicitly parametrized in terms of the homoclinic solution (7).)

When ε 	= 0, the plane wave potential persists as a solution of the perturbed
equation, and its perturbed center-stable and center-unstable manifolds generically
split. In finite-dimensional situations, invariant manifolds of unstable solutions can
split under perturbation and intersect transversally. Such transversal intersections
are often associated with chaotic behavior and with persistence of homoclinic orbits
in the perturbed system. For PDEs the analogous situation is far more subtle, and
rigorous analysis has been performed only in a handful of cases (Haller and Wiggins
1992; Li et al. 1996; Zeng 2000; Cai et al. 1995).

If we assume that the perturbed invariant manifolds split transversally, we need
two independent measurements for their splitting distance (one for each direc-
tion transversal to the unperturbed invariant manifold). However, the perturbation
is Hamiltonian, so the splitting occurs within the codimension 1 energy surface
Hε = const., thus reducing the number of measurements to 1.

To define suitable measurements, we recall how the Floquet discriminant ∆(u;λ )
of an NLS solution u, viewed as a functional on the NLS phase space, encodes an
infinite family of constants of motion (Li and McLaughlin 1994). Given a solution
uc with a purely imaginary critical point λ c (such as, for example, an unstable plane
wave potential), regarding λ c as a functional on a neighborhood U of uc, the func-
tional F : U → IC,

F(u) := ∆(λ c(u);u) (10)

is locally smooth, provided
d2∆
dλ 2 (λ ,u) 	= 0 ,∀u ∈ U . Then, the sequence

Fj(u) = ∆(λ c
j (u),u),

generated as λ c
j varies among the critical points of the potential u, defines a natural

family of constants of motion, which identify the critical level sets of u by labelling
them in terms of the double points of its Floquet spectrum.

One of the main advantages of this representation of the constants of motion of
the NLS equation is that the gradient of Fj can be explicitly expressed in terms of
solutions of the AKNS system by means of the following remarkable formula (Li
and McLaughlin 1994):

δFj

δu
(u) = i

√
∆ 2 −4

W [ψ+,ψ−]

[
ψ+

2 ψ−
2

−ψ+
1 ψ−

1

]∣∣∣∣
λ=λ c

. (11)

In (11), u = (u,u∗), ψ±(x,λ ) are the Bloch eigenfunctions (common eigenfunctions
of the operator L(x) and the shift operator (Sψ)(x) = ψ(x+L)), and W denotes the
Wronskian.
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We observe that δFj/δu vanishes at a critical potential uc (such as the plane wave
solution), reflecting the fact that Fj is critical along the critical level set. On the other
hand, if uh is a homoclinic orbit of uc, then δFj/δu(uh) 	= 0; therefore δFj/δu(uh),
j = 1, . . .M, (M being the number of complex double points in the spectrum of uc)
define directions transversal to the homoclinic manifold.

Returning to the even restriction of the MD equation (9), the components of the
splitting distance of the perturbed stable and unstable manifolds of a plane wave
potential with two UMs along directions ∇Fj, j = 1,2 are expressed in terms of the
following Melnikov-type integrals:

d j = εMj(ρ)+O(ε2), Mj(ρ) =
∫ +∞

−∞
〈∇Fj, f 〉∣∣u=uh

dt, (12)

where f (u) = (uxxxx,u∗xxxx) is the vector of the perturbation, < , > is the standard
inner product in L2([0,L], IC), and uh is the homoclinic orbit (7). Both measurements
depend on parameter ρ , the same parameter that governs the temporal separation of
the spatial modes of the unperturbed homoclinic orbit (7) (see Sect. 2.2).

Consistent with the dimensional count for the splitting distance, numerical eval-
uation of the two Melnikov integrals show that M1 and M2 are mutually propor-
tional functions of the parameter ρ (i.e., a single measurement is sufficient). Figure 6
shows existence of a unique nondegenerate zero of M1, suggesting that a transversal
homoclinic structure persists under perturbation.

A truly remarkable fact, is that the nondegenerate zero of M1(ρ) coincides (up
to order ε) with the value of ρ at which the two spatial modes of the homoclinic so-
lution (7) coalesce, producing a homoclinic orbit of maximal amplitude. The same
structure is observed as the recurring structurally stable feature of the chaotic dy-
namics. (see Fig. 5)

M(ρ)

ρ
1 2 3 40−1−2

0

−30

30

Fig. 6 Graph of the Melnikov integral M1 as a function of parameter ρ . A transversal zero occurs
at ρ = −0.65
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A study of the analytical structure of single and combination homoclinic orbits,
together with the numerical experiments and the Melnikov analysis, supports the
following:

– Although homoclinic solutions of the NLS equation have many of the features
of rogue waves, not all can be regarded as good candidates for modeling actual
rogue waves, as not all are robust under perturbations that lead to more accurate
physical models.

– For sea states characterized by a finite number of unstable modes, the homoclinic
solutions that are robust under perturbation are the combination homoclinic or-
bits (1) with a maximal number of spatial modes excited (this should not be a
surprise, since the lower-dimensional homoclinic solutions are linear unstable);
and (2) for which the spatial modes are optimally coalesced.

– A chaotic sea state enhances the occurrence of rogue waves. One should note
that a homoclinic solution of the NLS will rise over the background wave only
once in its life time and for a relative brief time. However, in a chaotic evolution,
the maximally coalesced homoclinic orbit will occur repeatedly, although in an
unpredictable fashion.

5 Random Oceanic Sea States and the Proximity
to Homoclinic Data

To study the generation of rogue waves in a random sea state, we consider initial
data for the surface elevation to be of the form (Onorato 2001)

η(x,0) =
N

∑
n=1

Cn cos(knx−φn) , (13)

where kn = 2πn/L and the random phases φn are uniformly distributed on (0,2π)
and the spectral amplitudes, Cn =

√
2S( fn)/L, are obtained from the JONSWAP

spectrum (Ochi 1998):

S( f ) =
αg2

(2π f )5 exp

[
−5

4

(
f0

f

)4
]

γ r, r = exp

[
−1

2

(
f − f0

σ0 f0

)2
]

. (14)

Here f is spatial frequency, fn = kn/2π , f0 is the dominant frequency, determined
by the wind speed at a specified height above the sea surface, g is gravity, and
σ0 = 0.07 (0.9) for f ≤ f0 ( f > f0). In contrast to physical experiments, which
monitor the surface evolution at a given spatial point (probe) in time, here we take
time slices and examine the features in space.

JONSWAP spectra describe developing sea states since for γ > 1 the wave spec-
tra continues to evolve through nonlinear wave-wave interactions for very long times
and distances. As γ is increased, the spectrum becomes narrower about the dominant
peak (see Fig. 7). In this sense, γ is considered the “peak-shape” parameter.
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Fig. 7 The JONSWAP spectrum for γ = 1 (solid line), γ = 5 (dashed line), and γ = 10 (dash-dot
line) with f0 = 0.1 Hz and α = 0.0081

The scale parameter α is related to the amplitude and energy content of the wave-
field. Based on an “Ursell number,” the ratio of the nonlinear and dispersive terms of
the NLS equation (1) in dimensional form, the NLS equation is considered to be ap-
plicable for 2 < γ < 8 (Onorato 2001). Typical values of alpha are 0.008 < α < 0.02.

In the numerical experiments, the NLS and MD equations are integrated using a
pseudo-spectral scheme with 256 Fourier modes in space and a fourth-order Runge–
Kutta discretization in time (∆ t = 10−3). The nonlinear mode content of the data is
numerically computed using the direct spectral transform described above, i.e., the
system of ODEs (2) is numerically solved to obtain the discriminant ∆ . The zeros
of ∆ ±2 are then determined with a root solver based on Muller’s method (Ercolani
et al. 1990). The spectrum is computed with an accuracy of O(10−6), whereas the
spectral quantities we are interested in range from O(10−2) to O(10−1).

Under perturbation complex double points typically split into two simple points,
λ±, thus opening a gap in the band of spectrum (see Fig. 2). We refer to the distance
between these two simple points, δ (λ+,λ−) = |λ+ −λ−|, as the splitting distance.
As mentioned, homoclinic solutions arise as an appropriate degeneration of a finite
gap solution (Its et al. 1988), i.e. when the resulting double point, δ (λ+,λ−)→ 0, is
complex. Consequently, we can use δ to measure the proximity in the spectral plane
to homoclinic data, i.e. to complex double points and their corresponding instabil-
ities. Since the NLS spectrum is symmetric with respect to the real axis and real
double points correspond to inactive modes, in subsequent plots only the spectrum
in the upper half complex λ -plane will be displayed.

Our first step is to determine the spectrum of JONSWAP initial data given by
(13) for various combinations of α = 0.008,0.012,0.016,0.02, and γ = 1,2,4,6,8.
For each such pair (γ,α), we performed 50 simulations, each with a different set of
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Fig. 8 Spectrum and evolution of Umax (a) “near” and (b) “far” from homoclinic data

randomly generated phases. As expected, the spectral configuration depends on the
energy α and the enhancement coefficient γ . However, the extent of the dependence
of features of the spectrum, such as the proximity to complex double points, upon
the phases in the initial data is surprising.

Typical examples of the results are given in Fig. 8a, b which shows the nu-
merically computed nonlinear spectrum of JONSWAP initial data when γ = 4 and
α = 0.016 for two different realizations of the random phases.

We find that JONSWAP data correspond to “semi-stable” N-phase solutions, i.e.
JONSWAP data can be viewed as perturbations of N-phase solutions with one or
more unstable modes (compare Fig. 2 with the spectrum of an unstable N-phase
solution in Fig. 8). In Fig. 8a the splitting distance δ (λ+,λ−)≈ .07, while in Fig. 8b
δ (λ+,λ−) ≈ .2. Thus the JONSWAP data can be quite “near” homoclinic data as in
Fig. 8a or “far” from homoclinic data as in Fig. 8b, depending on the values of the
phases φn in the initial data. For all the examined values of α and γ we find that,
when α and γ are fixed, as the phases in the JONSWAP data are varied, the spectral
distance δ of typical JONSWAP data from homoclinic data varies.

Most importantly, irrespective of the values of the JONSWAP parameters α and
γ , in simulations of the NLS equation (1) we find that extreme waves develop for
JONSWAP initial data that are “near” NLS homoclinic data, whereas the JONSWAP
data that are “far” from NLS homoclinic data typically do not generate extreme
waves. Figure 8c, d shows the corresponding evolution of the maximum surface
elevation, Umax, obtained with the NLS equation. Umax is given by the solid curve
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and as a reference, 2.2HS (the threshold for a rogue wave) is given by the dashed
curve. HS is the significant wave height and is calculated as four times the standard
deviation of the surface elevation. Figure 8c shows that when the nonlinear spectrum
is near homoclinic data, Umax exceeds 2.2HS (a rogue wave develops at t ≈ 40).
Figure 8d shows that when the nonlinear spectrum is far from homoclinic data, Umax
is significantly below 2.2HS and a rogue wave does not develop. As a result, we can
correlate the occurrence of rogue waves characterized by JONSWAP spectrum with
the proximity to homoclinic solutions of the NLS equation.

The results of hundreds of simulations of the NLS and MD equations consis-
tently show that proximity to homoclinic data is a crucial indicator of rogue wave
events. Figures 9 and 10 provide a synthesis of 200 random simulations of the NLS
equation and of the MD equation for two perturbation strengths (ε = 0.005 and
ε = 0.01) for JONSWAP initial data with different (γ,α) pairs (with γ = 2,4,6,8,
and α = 0.012,0.016). For each such pair (γ,α), we performed 25 simulations, each
with a different set of randomly generated phases. We restrict our consideration to
semi-stable N-phase solutions near to unstable solutions of the NLS with one UM.
Each circle represents the strength of the maximum wave (Umax/HS) attained dur-
ing one simulation as a function of the splitting distance δ (λ+,λ−). The results for
the particular pair (γ = 4,α = 0.012) is represented with an asterisk. A horizontal
line at Umax/HS = 2.2 indicates the reference strength for rogue wave formation.
We identify two critical values δ1(ε) and δ2(ε) that clearly show that (a) if δ < δ1
(near homoclinic data) rogue waves will occur; (b) if δ1 < δ < δ2, the likelihood of
obtaining rogue waves decreases as δ increases and, (c) if δ > δ2 the likelihood of
a rogue wave occurring is extremely small.

This behavior is robust. As α and γ are varied, the strength of the maximum
wave and the occurrence of rogue waves are well predicted by the proximity to ho-
moclinic solutions. The individual plots of the strength vs. δ for particular pairs
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Fig. 9 Strength of Umax/HS vs. the splitting distance δ (λ+,λ−) for solutions of the NLS equation
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Fig. 10 Strength of Umax/HS vs. the splitting distance δ (λ+,λ−) for solutions of the MD equation
when (a) ε = 0.005 and (b) ε = 0.01

(γ,α) are qualitatively the same regardless of the pair chosen. As noted in Sect. 4
on the MD equation, enhanced focusing occurs in the chaotic regime. Figure 10
shows that as ε increases the average strength and the likelihood of rogue waves
increases. Clarification on the likelihood of rogue waves through an examination
of the kurtosis is provided in Sect. 6. These results give strong evidence of the rel-
evance of homoclinic solutions of the NLS equation in investigating rogue wave
phenomena for more realistic oceanic conditions and identifies the nonlinear spec-
tral decomposition as a simple diagnostic tool for predicting the occurrence and
strength of rogue waves.

6 Non-Gaussian Statistics and the Dependence of Kurtosis
on the Proximity to Homoclinic Data

In (Longuet-Higgins 1952) the probability distribution of crest-to-trough wave
heights was formulated to be given by the Rayleigh distribution when the wave
spectrum is narrow banded and the phases in the reconstruction of the surface ele-
vation are uniformly distributed. Various studies using experimental and field wave
data have shown that this can be a reasonable assumption for water waves in the
linear regime.

In the nonlinear regime, the relation of the probability density function of wave
heights to the nonlinear parameters describing various sea states is not generally
known. Simply assuming a Gaussian distribution can be risky. If the kurtosis is in
fact much greater than that for the Gaussian distribution, then the probability of an
extreme event will be underpredicted.
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The main questions we address in this section are whether the modulational in-
stability and the presence of coherent structures yield non-Gaussian statistics of
surface gravity waves in the nonlinear regime and whether this can be captured by
the spectral parameter δ . In our earlier work with the NLS equation, it appeared that
homoclinic chaos increases the likelihood of rogue waves. After a short time, the
waves become chaotic resulting in a sea state characterized by intermittent rogue
waves. To more precisely quantify rogue wave events, in our current numerical ex-
periments we monitor the evolution of the skewness, m3, and the kurtosis, m4, of
the wavefield which are related to the third and fourth statistical moments of the
probability density function of the surface elevation by

m3(η) =
N

∑
j=1

(η j − η̄)3

Nσ3 , m4(η) =
N

∑
j=1

(η j − η̄)4

Nσ4 ,

where σ is the standard deviation of the surface elevation, η̄ is the average surface
elevation and N is the number of data points sampled.

Skewness is a measure of the vertical asymmetry of the wavefield. Positive values
indicate the wavefield is skewed above the average height, i.e., the crests are bigger
than the troughs. Negative values indicate that the wavefield is skewed below the
average height.

The kurtosis is a measure of whether the distribution for the wavefield is peaked
or flat, relative to a Gaussian distribution and defines the contribution of large waves
to the wavefield. The kurtosis for a Gaussian distribution is 3. Wavefields with high
kurtosis (in excess of 3) tend to have a distinct peak near the mean, decline rapidly,
and have heavy tails. That is, fewer observations or events cluster near the average
and more observations populate the extremes either far above or far below the av-
erage compared to the bell curve of the normal distribution. For this reason, excess
kurtosis much above 3 indicates that the contribution of large waves is significant
and corresponds to a higher probability of a rogue wave event.

Figure 11a shows the plot of the kurtosis as a function of time for the analyt-
ical two unstable mode homoclinic solutions of the NLS (7) (the corresponding
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Fig. 11 For the two unstable mode homoclinic solution of NLS: (a) the evolution of the kurtosis
for the coalesced and uncoalesced cases and (b) the maximum of the kurtosis as a function of ρ
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waveforms are given in Fig. 4) in the uncoalesced case, ρ = −1, and in the coa-
lesced case, ρ = −0.65. Here we are using the kurtosis as a formal tool to obtain a
rough estimate of the peakedness of the waveform. In both cases, the kurtosis starts
to increase with the onset of the BF instability and reaches a maximum when the in-
stability saturates. In the uncoalesced case, there are two excursions in the kurtosis.
In the coalesced case, the increased height achieved by the waveform is reflected
in a significantly larger kurtosis. Figure 11b shows the plot of the maximum of the
kurtosis of the two unstable mode homoclinic orbit, as a function of the phase pa-
rameter ρ . Interestingly, the maximum of the kurtosis is optimized by the robust
coalesced homoclinic solution which also gives the zero of the Melnikov integrals
and is persistent in the MD equation.

Janssen (2003) formulated the relation between the kurtosis of the surface ele-
vation and the probability of rogue wave occurrence for 1D weakly non-Gaussian
waves. A is the envelope of the wavetrain and φ the phase. The PDF of the envelope
A follows from an integration of the joint probability distribution over the phase φ .
The first term gives the Rayleigh distribution while the terms involving the skewness
integrate to zero. The third term does give a contribution depending on the kurtosis
and they find that the narrow-band approximation of the PDF of the envelope is

p(A) = Ae−(1/2)A2
[

1+
1
3

m4

(
1−A2 +

1
8

A4
)]

.

The probability of the occurrence of a rogue wave as a function of N (the number of
waves) and the kurtosis is

Progue = 1− exp
[−e−8N (1+8m4)

]
.

In this way, as the kurtosis increases, the probability that rogue waves will occur
increases. We examine the evolution of the skewness and kurtosis for three ranges
of δ : (1) δ ≤ 0.1, (2) 0.1 < δ < 0.2, and (3) δ ≥ 0.2. The skewness and kurtosis
is computed at each time step, first as an average over space and then averaging
over the ensemble. As before, we begin by determining the nonlinear spectrum of
the JONSWAP initial data for various combinations of (α,γ). We used a sufficient
number of realizations of the random phases so that we would have 250 cases for
each range of values of δ . Figure 12 provides the evolution of the skewness and
kurtosis for three different values of the nonlinear spectral gap size δ . Both the
skewness and kurtosis grows initially and then relax to their asymptotic value. The
asymptotic value of the kurtosis is approximately (1) 3.5 when δ ≤ 0.1, (2) 3.2 when
0.1 < δ < 0.2, and (3) 3 when δ ≥ 0.2. It is clear in Fig. 12 the kurtosis is strongly
dependent on δ and attains larger values for JONSWAP data closer to homoclinic
data. The proximity to homoclinic data changes the wave statistics and increases the
likelihood of rogue waves.

Using the inverse spectral theory of the NLS equation, we have shown that the
development of extreme waves in random oceanic sea states characterized by JON-
SWAP power spectra is well predicted by the proximity to homoclinic data of the
NLS equation. We observe that the modulational instability generates a significant
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Fig. 12 Evolution of the (a) skewness and (b) kurtosis for JONSWAP initial data

deviation from Gaussianity. In particular we find (1) the kurtosis and wave strength
are found to be strongly dependent on δ , the proximity to instabilities and homo-
clinic structures; (2) the likelihood of rogue waves increases for JONSWAP data
near to homoclinic data of the NLS; (3) the NLS equation underpredicts, as com-
pared to the MD equation, both the wave strength and likelihood of rogue waves.

References

Ablowitz MJ, Hammack J, Henderson D, Schober CM (2000) Modulated periodic stokes waves in
deep water. Phys Rev Lett 84:887–890

Ablowitz MJ, Hammack J, Henderson D, Schober CM (2001) Long time dynamics of the modu-
lational instability of deep water waves. Physica D 152–153:416–433

Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Philadelphia
Akhmediev NN, Korneev VI, Mitskevich NV (1988) N-modulation signals in a single-mode optical

waveguide under nonlinear conditions. Sov Phys JETP 67:1
Bridges TJ, Derks G (1999) Unstable eigenvalues and the linearization about solitary waves and

fronts with symmetry. Proc R Soc Lond A 455:2427
Cai D, McLaughlin DW, McLaughlin KTR (1995) The nonlinear Schrödinger equation as both a

PDE and a dynamical system. Preprint.
Calini A, Schober CM (2002) Homoclinic chaos increases the likelihood of rogue waves. Phys

Lett A 298:335–349
Calini A, Ercolani NM, McLaughlin DW, Schober CM (1996) Mel’nikov analysis of numerically

induced chaos in the nonlinear Schrödinger equation. Physica D 89:227–260
Ercolani N, Forest MG, McLaughlin DW (1990) Geometry of the modulational instability. Part III:

Homoclinic orbits for the periodic Sine-Gordon equation. Physica D 43:349–384
Haller G, Wiggins S (1992) Orbits homoclinic to resonances: The Hamiltonian case. Physica D

66:298–346
Henderson KL, Peregrine DH, Dold JW (1999) Unsteady water wave modulations: Fully nonlinear

solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29:341
Islas A, Schober CM (2005) Predicting rogue waves in random oceanic sea states. Phys Fluids

17:1–4



Rogue Waves in Higher Order Nonlinear Schrödinger Models 51

Its AR, Rybin AV, Salle MA (1988) On the exact integration of the nonlinear Schrodinger equation.
Theoret. and Math. Phys. 74(1): 20–32

Janssen P (2003) Nonlinear four-wave interactions and freak waves. J Phys Oceanogr 33:863–884
Karjanto N (2006) Mathematical aspects of extreme water waves. Ph.D. Thesis, Universiteet

Twente
Li Y (1999) Homoclinic tubes in the nonlinear Schrödinger equation under Hamiltonian perturba-

tions. Prog Theor Phys 101:559–577
Li Y, McLaughlin DW (1994) Morse and Mel’nikov functions for NLS Pde’s discretized perturbed

NLS systems. I. Homoclinic orbits. Commun Math Phys 612:175–214
Li Y, McLaughlin DW, Shatah J, Wiggins S (1996) Persistent homoclinic orbits for a perturbed

nonlinear Schrödinger equation. Commun Pure Appl Math 49:1175–1255
Longuet-Higgins MS (1952) On the statistical distribution of the heights of sea waves. J Mar Res

11:1245
Matveev VB, Salle MA (1991) Darboux transformations and solitons. Springer, Berlin Heidelberg

New York
McLaughlin DW, Schober CM (1992) Chaotic and homoclinic behavior for numerical discretiza-

tions of the nonlinear Schrödinger equation. Physica D 57:447–465
Ochi MK (1998) Ocean waves: The stochastic approach. Cambridge University Press, Cambridge
Osborne A, Onorato M, Serio M (2000) The nonlinear dynamics of rogue waves and holes in

deep-water gravity wave trains. Phys Lett A 275:386
Onorato M, Osborne A, Serio M, Bertone S (2001) Freak wave in random oceanic sea states. Phys

Rev Lett 86:5831
Schober C (2006) Melnikov analysis and inverse spectral analysis of rogue waves in deep water.

Eur J Mech B Fluids 25:602–620
Trulsen K, Dysthe K (1996) A modified nonlinear Schrödinger equation for broader bandwidth

gravity waves on deep water. Wave Motion 24:281
Trulsen K, Dysthe K (1997a) Frequency downshift in three-dimensional wave trains in a deep

basin. J Fluid Mech 352:359–373
Trulsen K, Dysthe K (1997b) Freak waves – a three dimensional wave simulation. In: Rood EP (ed)

Naval hydrodynamics. Proceedings of the 21st symposium on nature. Academic Press, USA
Zakharov VE, Shabat AB (1972) Exact theory of two-dimensional self-focusing and one-

dimensional self-modulation of waves in nonlinear media. Sov Phys JETP 34:62–69
Zeng C (2000) Homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun Pure

Appl Math 53:1222–1283
Zeng C (2000) Erratum: Homoclinic orbits for a perturbed nonlinear Schrödinger equation.

Commun Pure Appl Math 53:1603–1605



Non-Gaussian Properties of Shallow Water
Waves in Crossing Seas

A. Toffoli, M. Onorato, A.R. Osborne, and J. Monbaliu

Abstract The Kadomtsev–Petviashvili equation, an extension of the Korteweg–
de Vries equation in two horizontal dimensions, is here used to study the statisti-
cal properties of random shallow water waves in constant depth for crossing sea
states. Numerical simulations indicate that the interaction of two crossing wave
trains generates steep and high amplitude peaks, thus enhancing the deviation of
the surface elevation from the Gaussian statistics. The analysis of the skewness and
the kurtosis shows that the statistical properties depend on the angle between the
two wave trains.

1 Introduction

Sea states characterized by two spectral peaks with different mean directions, also
known as mixed or crossing seas, are quite common in nature. Such conditions,
for example, can be easily observed when the wind direction suddenly changes or
a swell system coming from a distant source interferes with the local sea. A re-
cent study by Toffoli et al. (2006a), based on data collected from January 1995 to
April 1999 by the Lloyd’s Marine Information Service (Bitner-Gregersen and Eknes
2001), has also revealed that a large percentage of ship accidents, reported as being
due to bad weather conditions, has occurred in crossing sea states (see also Donelan
and Magnusson 2005; Greenslade 2001).

In that respect, mixed sea conditions are suspected to enhance the probability of
occurrence for extreme wave events (see, e.g., Lehner et al. 2005). For the case of
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deep water, theoretical studies on the influence of a second spectral peak (Onorato
et al. 2006; Shukla et al. 2006), which propagates with a mean direction that differs
from the principal wave system, showed that waves can be unstable in mixed seas.
Moreover, using second-order wave theory to simulate random time series of the
sea surface, Toffoli et al. (2006b) have shown that crossing sea state conditions may
modify the form of the wave crest distribution as an excess of large waves may occur
when two wave systems coexist.

In the case of shallow water, Peterson et al. (2003) and Soomere and Engelbrecht
(2005, 2006) have studied the interaction of multidirectional wave trains by con-
sidering soliton-like solutions of the Kadomtsev–Petviashvili equation (Kadomtsev
and Petviashvili 1970), which can be thought as an extension of the Korteweg–de
Vries equation in the case of propagation in the (x,y) plane. The most interesting
feature that arises from the interaction of two noncollinear solitons results in the for-
mation of a steep and high peak (Miles 1977a, 1977b). In particular, not only does
its amplitude exceed the value predicted by linear theory, but also assumes values
up to four times the amplitude of the incoming solitons.

Although directional, shallow water wave fields have recently been investigated
(see, e.g., Herbers 2003; Janssen et al. 2006), the evolution of shallow water waves
in crossing sea state conditions has not yet been addressed properly. The aim of
the present study is to discuss the case of possible nonlinear interactions that may
arise in shallow water when two sea states, with a certain frequency distribution and
directional spreading, coexist. We mainly concentrate on the occurrence of extreme
wave events and hence on the form of the probability density function of the surface
elevation and its third- and fourth-order moments.

To accomplish this task, the Kadomtsev–Petviashvili equation has been simu-
lated numerically. Our choice on such equation is not due to the fact that we believe
that the Kadomtsev–Petviashvili equation is the most accurate theoretical approach
to describe shallow water waves (higher order models based on the Boussinesq
equations are surely more appropriate to describe different effects that take place in
shallow water (Herbers, 2003)). We are motivated by the fact that the Kadomtsev–
Petviashvili equation is the leading order equation in the shallow water expansion of
the Euler equations where directionality is included. Our aim is to highlight a non-
linear mechanism described by the Kadomtsev–Petviashvili equation, that brings
the statistical properties of the surface elevations far from the Gaussian behavior.
The numerical solution of the Kadomtsev–Petviashvili equation, moreover, is fast.
Therefore, this facilitates the performance of many numerical experiments consid-
ering different random phases, different degrees of nonlinearity, and different angles
between the incoming wave systems. It should be mentioned, furthermore, that the
bottom topography has an important role in the evolution of shallow water waves
(Janssen et al. 2006). For convenience, however, we only discuss the case of flat
bottom.

The paper is organized as follows: we first begin with a general description of the
Kadomtsev–Petviashvili equation. In the following section we describe the numer-
ical experiment. In Sect. 4, the skewness and the kurtosis of the simulated surface
elevation are investigated as a function of the angle between the two wave systems.
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A direct analysis of the sea surface and the concurrent probability density function
is presented in Sect. 5. In Sect. 6, we discuss the statistical distribution of the wave
height. Some concluding remarks are presented in Sect. 7.

2 The Kadomtsev–Petviashvili Equation

The Korteweg–de Vries (KdV) equation describes nonlinear waves that propagate
in the x-direction. A periodic solution of such an equation is expressed by means
of a Jacobian elliptic function, which is known as cnoidal wave (see, e.g., Johnson
1997). To express the degree of nonlinearity of KdV-like wave trains, the Ursell
number (Ursell 1953) is often used:

Ur =
3
16

aλ 2

π2h3 =
3
4

ka
k3h3 . (1)

Small Ursell numbers indicate linear wave motion (Ur � 1); large values address
to increasing nonlinear effects (Osborne and Petti 1994).

One of the major shortcomings of cnoidal wave theory is its one-dimensional
nature, i.e., it describes long-crested waves. A real sea surface, however, has
two horizontal dimensions, and waves can be both long and short crested. The
y-dependence, for example, would not be trivial in the case of two crossing waves.
To describe the evolution of weakly directional waves in shallow water, a two-
dimensional generalization of the KdV equation was derived by Kadomtsev and
Petviashvili (1970); hereafter, we shall refer to this equation as the KP equation.
For an irrotational, inviscid fluid in constant depth, the KP equation can be ob-
tained from the Euler equations, if the following assumptions are satisfied (see,
e.g., Johnson 1997; Segur and Finkel 1985 for a review): (a) waves are of small
amplitude, i.e., δ = a/h � 1; (b) the water is shallow, i.e., β = (kh)2 � 1; (c) the
waves are weakly directional, i.e., ζ = (ky/kx)2 � 1, where kx and ky are the com-
ponents of the wave number vector k; (d) these three small effects are comparable,
i.e., ζ � O(δ ) � O(β ); (e) waves propagate only toward positive values of x. In
dimensional form, the KP equation can be written as follows:

∂
∂x

(
∂η
∂ t

+
3
2

C0

h
η

∂η
∂x

+
1
6

h2C0
∂ 3x
∂x3

)
+

1
2

C0
∂ 2η
∂y2 = 0, (2)

where C0 =
√

gh is the phase velocity, and h is the water depth.
Fornberg and Whitham (1978) developed a method for solving KdV-type wave

equations. The method uses a pseudo-spectral treatment of the space dependence
together with a leap-frog scheme in time. Here, we have extended this method to the
KP equation to perform numerical simulations. Boundary conditions are assumed to
be periodic and derivatives are performed using the Fast Fourier Transform (FFT)
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algorithm. The number of grid points in physical space was set to 128× 64. The
numerical method has been successfully tested against analytical soliton solutions
of the KP equation.

3 Numerical Experiment

A two-dimensional wave field is commonly described by a directional wave spec-
trum: E(ω,ϑ) = S(ω)D(ω,ϑ), where ω is the angular frequency and ϑ is the di-
rection. Here, we use a JONSWAP spectral formulation (Komen et al. 1994) with
dominant wavelength λp = 76.5 m, peak enhancement factor γ = 3.3 and Phillips pa-
rameter α = 0.004 to model the wave energy in the frequency domain (S(ω)); this
corresponds to a significant wave height Hs of 1.7 m (calculated as four times the
standard deviation). A cos2s(ϑ/2) spreading function (see, e.g., Hauser et al. 2005)
is then applied to model the energy in the directional domain (D(ω,ϑ)). The spread-
ing coefficient s is expressed as a function of the angular frequency (Goda 2000):

s(ω) =
(

ω
ωp

)5

smax if ω ≤ ωp (3)

s(ω) =
(

ω
ωp

)−2.5

smax if ω > ωp (4)

where ωp is the peak frequency. For the present study, we have chosen the spread-
ing coefficient such that at the peak frequency s(ωp) = 25, which corresponds to the
directional spreading of a short-decay swell (Goda 2000). Such a spectrum, how-
ever, is unimodal, i.e., single peaked. To describe crossing sea conditions, which
represent bimodal sea states, the wave field is defined by using two identical, afore-
mentioned, single peaked spectra with different mean directions, i.e., ϑ1 	= ϑ2. The
resulting sea state, Ẽ(ω,ϑ) = E(ω,ϑ −ϑ1) + E(ω,ϑ −ϑ2), is characterized by
λp = 76.5 m, and Hs = 2.4 m. Note that in case ϑ1 = ϑ2, such a spectrum reduces to
an unimodal energy distribution.

By means of the linear dispersion relation, the directional spectrum Ẽ(ω,ϑ) is
expressed as a function of the wave number vector k ≡ (kx,ky) (Tanaka 2001). For
a typical, bimodal, wave number spectrum Ẽ(k) used in this study, the two spec-
tral peaks are assumed to be symmetric with respect to the x-direction, such that
ϑ1 = −ϑ2 = ϑ ∗.

The spectrum Ẽ(k) is then used to generate a random sea surface η(x,y) at an
initial time t = 0 s as a linear superposition of Fourier modes. It is straightforward
to show that a linear surface, which will be our initial condition for the simulations,
can be expressed as follows:

η(x) =
N

∑
i=1

M

∑
j=1

ai j cos[(kx)i x+(ky) j y+ εi j], (5)



Non-Gaussian Properties of Shallow Water Waves in Crossing Seas 57

where x ≡ (x,y) is the position vector; εi j the random phase, which is selected from
a uniform distribution in the interval [0,2π]; N and M represent the number of wave
numbers in the x and y-direction, respectively and ai j is the spectral amplitude,
which is calculated as follow:

ai j =
√

2 Ẽ[(kx)i,(ky) j]∆kx ∆ky. (6)

Note that the use of a determinist amplitude may not include all natural variability
of waves. However, if a directional wave field is simulated, the addition of different
directional components automatically restores this variability (Forristall 2000).

The summations in (5) are performed by means of a two-dimensional inverse
Fast Fourier Transform. The input spectrum Ẽ(k) is defined by using equally spaced
wave numbers in both x and y-direction, i.e., ∆kx and ∆ky are constants; this automat-
ically generates periodic boundaries, which are required for numerical simulations
of the KP equation. The spatial domain is chosen such that the wave field measures
400 m in the x-direction and 200 m in the y-direction.

We now consider this linear surface in a shallow water environment at three dif-
ferent water depths. This defines three different degrees of nonlinearity as measured
by the Ursell number, (1), where a = Hs/2 and k = 2π/λp. The different water
depths and the concurrent Ursell numbers are presented in Table 1. Under these
conditions, the linear surface is then used as input in the KP model; the surface is
let evolve in time according to (2) until it reaches a statistically stationary condition.
The experiment is repeated for different values of the angles ϑ ∗ between a minimum
of 0◦ (unimodal spectrum) up to a maximum of 45◦ with a step size of 2.5◦. The
spectral energy is kept constant, i.e. Hs = const. and λp = const. for all repetitions
of the numerical experiment.

For each time step, ∆t = 0.001 s, the model produces a two-dimensional surface
as output; the skewness and the kurtosis have been computed from the space series
associated with each instant in time. For all spectral densities, the numerical exper-
iment is repeated 500 times with different random phases; this should in principle
stabilize the statistical information from the simulated samples. Furthermore, time
series have been recorded at four different grid points of the physical domain, start-
ing after the surface has reached a statistically stable condition.

Table 1 Water depths and degrees of nonlinearity: water depths h (m); relative water depth kh; and
Ursell number Ur

h (m) kh Ur

7.00 0.57 0.39
6.00 0.49 0.62
5.00 0.41 1.10
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4 Skewness and Kurtosis of the Simulated Surface Elevation

When the water depth is reduced, the nonlinear interaction becomes more and more
relevant. The most obvious manifestation of this nonlinearity is the sharpening of the
wave crests and the flattening of the wave troughs, which results in a departure from
the Gaussian statistics. The deviation is usually expressed in terms of the skewness,
λ3, and kurtosis, λ4, which represent the third- and fourth-order moments of the
probability density function, respectively. The first expresses the vertical asymmetry
of the wave profile and the second is an indication of extreme events. For waves in
shallow water, kh � 0, it is therefore expected that λ3 > 0 and λ4 > 3, where 0 and 3
are the values of skewness and kurtosis for a Gaussian random process.

In Fig. 1, we show the skewness and kurtosis of the simulated surface elevation
η(x,y) as a function of time for a single peaked sea state, i.e., ϑ ∗ = 0◦ and a degree
of nonlinearity Ur = 0.62. Note that, since the physical phenomenon is considered
a random process, the statistical properties of the wave field are retrieved by cal-
culating average values at each time step over the collection of simulated samples
(ensemble average).

The input, linear, surface evolves at each instant of time according to the KP
equation; the statistical properties of the wave surface show a rapid and significant
deviation from the Gaussian statistics. After about 600 s, the values of the skew-
ness and kurtosis reach a stationary condition (cf. Pelinovsky and Sergeeva 2006).
For the considered degree of nonlinearity (Ur = 0.62), for example, the moments
tend to stabilize around the following values: λ3 � 0.60; λ4 � 3.39. As one would
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Fig. 1 Skewness (upper panel) and kurtosis (lower panel) as a function of time from numerical
simulations with ϑ1 = −ϑ2 = ϑ ∗ = 0◦ and Ur = 0.62
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Fig. 2 Skewness (λ3) as a function of the mean direction (ϑ1 = −ϑ2 = ϑ ∗) of the spectral peaks
from numerical simulation: Ur = 0.39 (triangle); Ur = 0.62 (plus); and Ur = 1.10 (circle)

expect, the skewness and kurtosis vary in magnitude as the nonlinearity of the sys-
tem changes: for Ur = 0.39, λ3 � 0.44 and λ4 � 3.13; for Ur = 1.10, λ3 � 0.81, and
λ4 � 3.87. The vertical asymmetry (λ3), however, assumes remarkably high values
already at relatively low nonlinearity. A similar result was also obtained in unidirec-
tional condition using the KdV equation by Pelinovsky and Sergeeva (2006).

We now investigate how the statistical properties of the simulated surfaces can
change when two spectral peaks with different mean directions are considered. In
Figs. 2 and 3, we show the skewness and kurtosis as a function of the angle ϑ ∗.
The existence of a second spectral peak results in an increase of the skewness and
kurtosis as the angle between the spectra is increased. This enhancement, how-
ever, is almost nil when the systems are almost collinear (ϑ ∗ ≤ 5◦) and becomes
more relevant as the wave trains assume well-separated directions. The maximum
magnitudes of the third- and fourth-order moments are obtained for ϑ ∗ ≈ 30◦:
(1) for Ur = 0.39, λ3 � 0.47 and λ4 � 3.33; (2) for Ur = 0.62, λ3 � 0.63 and
λ4 � 3.65; (3) for Ur = 1.10, λ3 � 0.85 and λ4 � 4.30. It is important to remark
that the energy remains constant and hence this variation is only due to the non-
linear interaction of intersecting wave trains. When ϑ ∗ > 30◦, the increasing trend
decreases. For low and moderate nonlinearity, the kurtosis approximately conserved
the values found for ϑ ∗ ≈ 30◦; the skewness, in contrast, slowly decreases as ϑ ∗ ap-
proaches 45◦. For high degrees of nonlinearity, however, both skewness and kurtosis
show a decreasing trend for large ϑ ∗. Note that the angle at which the statistical mo-
ments of the surface elevation maximize is to some extent consistent with the critical
angle at which two noncollinear solitons with wavelength equal to λp and ampli-
tude equal to Hs/2 produce an intersection peak with maximum height and length



60 A. Toffoli et al.

0 10 20 30 40

3

3.5

4

4.5

θ*  [deg]

λ 4

Fig. 3 Kurtosis (λ4) as a function of the mean direction (ϑ1 = −ϑ2 = ϑ ∗) of the spectral peaks
from numerical simulation: Ur = 0.39 (triangle); Ur = 0.62 (plus); and Ur = 1.10 (circle)

(Peterson et al. 2003). For ϑ ∗ > 30◦, however, the condition of weak directionality,
i.e., ζ = (ky/kx)2 � 1, is no longer respected: ζ > 0.34 for ϑ ∗ > 30◦. Therefore,
the physical meaning of this critical angle is uncertain, and further investigations
using the Euler equations as well as laboratory experiments are needed to confirm
this finding.

It is now instructive to look at a normalized form of the skewness and kurtosis.
In this respect, we define two additional parameters, which describe how much the
skewness and kurtosis in bimodal systems differ from the one in unimodal condi-
tions: λ ∗

3 = λ3/λ3,ϑ∗=0; λ ∗
4 = λ4/λ4,ϑ∗=0, where λ3,ϑ∗=0 and λ4,ϑ∗=0 are the skew-

ness and kurtosis in unimodal condition, respectively. In Figs. 4 and 5, λ ∗
3 and λ ∗

4
are presented as a function of ϑ ∗. For low nonlinearity, Ur = 0.39, the bimodality of
the system produces waves which are about 8% more asymmetric than in unimodal
conditions (λ ∗

3 � 1.08). However, for higher nonlinearity, Ur = 0.62 and 1.10, the
second spectral peak has a weaker effect on the skewness though the behavior is
qualitatively identical; λ ∗

3 reaches, in fact, smaller values than in the case of lower
nonlinearity (λ ∗

3 max � 1.05).
For a small degree of nonlinearity, Ur = 0.39, the kurtosis increases up to 7%;

at such nonlinearity, the bimodality has an identical effect of both skewness and
kurtosis, i.e., λ ∗

4 ≈ λ ∗
3 . In contrast with the skewness, however, the effect of the

second spectral peak on the kurtosis does not diminish at higher degrees of nonlin-
earity: λ ∗

4 max = 1.09 for Ur = 0.62; λ ∗
4 max � 1.11 for Ur = 1.10. Note, in particular,

the relevant enhancement of kurtosis at high degrees of nonlinearity, at which very
large amplitudes may be expected.
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Fig. 4 Normalized skewness
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as a function of the mean direction (ϑ1 =−ϑ2 =
ϑ ∗) of the spectral peaks from numerical simulation: Ur = 0.39 (triangle); Ur = 0.62 (plus); and
Ur = 1.10 (circle)
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Fig. 5 Normalized kurtosis
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as a function of the mean direction (ϑ1 = −ϑ2 =
ϑ ∗) of the spectral peaks from numerical simulation: Ur = 0.39 (triangle); Ur = 0.62 (plus); and
Ur = 1.10 (circle)
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5 Surface Elevation and Probability Density Function

As waves propagate into shallow water, a definite excess of steep crests and shallow
troughs can be observed due to the increasing of nonlinearity; this is also expressed
by the high values of the skewness and kurtosis observed in Figs. 2 and 3. In Figs. 6
and 7, we show, as an example, two-dimensional shallow water wave fields, which
have been simulated by using unimodal (ϑ ∗ = 0◦) and bimodal (ϑ ∗ = 30◦) spectral
conditions.

Fig. 6 Nonlinear sea surface (η/σ ) from numerical simulations: ϑ ∗ = 0◦ (unimodal sea)

Fig. 7 Nonlinear sea surface (η/σ ) from numerical simulations: ϑ ∗ = 30◦ (bimodal sea)
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By using the KP equation, we observed that when two wave systems coexist, be-
sides the sharpening of the wave crests and the flattening of the wave troughs, steep
and large amplitude peaks arise in the intersecting region of two wave fronts similar
to what was observed in the case of the two-soliton solution of the KP equations (see,
e.g., Miles 1977a,1977b). Considering the case of two noncollinear solitons, the
geometrical properties of these peaks have already been described in details by many
authors (Peterson et al. 2003; Segur and Finkel 1985; Soomere and Engelbrecht
2005). It is important to note that the interaction peak of two noncollinear solitons
can, in principle, propagate unaltered for infinite distance. In a dispersive system,
however, the amplitude of the interaction peak arises and decreases within a distance
of a few wavelengths: two up to three times the dominant wavelength in the case of
not well-separated directions (e.g., ϑ ∗ ≤ 20◦); one dominant wavelength in case of
well-separated directions (e.g., ϑ ∗ > 20◦).

It is now instructive to investigate how the interaction peaks modify the prob-
ability density function for the surface elevation. In Figs. 8–10, we present, as an
a example, the probability density function in unimodal (ϑ ∗ = 0◦) and bimodal
(ϑ ∗ = 30◦) wave fields for different degrees of nonlinearity. The wave elevation
is expressed in normalized form by using the standard deviation σ of the surface
displacements. Note that the statistical distribution is calculated by only using the
surface elevation η(x,y) at the final time step of each random realization, because
at this stage the surface can be assumed statistically stationary (see, e.g., Fig. 1).
The distribution of the simulated elevation is compared with the normal probability
density function, which describes linear (Gaussian) waves.
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Fig. 8 Probability density function for a degree of nonlinearity Ur = 0.39: Gaussian distribution
(dashed line); simulated unimodal sea (circle); simulated bimodal sea with ϑ ∗ = 30◦ (plus)
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Fig. 9 Probability density function for a degree of nonlinearity Ur = 0.62: Gaussian distribution
(dashed line); simulated unimodal sea (circle); simulated bimodal sea with ϑ ∗ = 30◦ (plus)
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Fig. 10 Probability density function for a degree of nonlinearity Ur = 1.10: Gaussian distribution
(dashed line); simulated unimodal sea (circle); simulated bimodal sea with ϑ = 30◦ (plus)

We first look at the unimodal case ϑ ∗ = 0◦. As one would expect, the form of
the probability density function of simulated shallow water waves strongly deviates
from the Gaussian statistics. The excess of sharp crests and shallow troughs results
in a shift toward negative values of the peak of the distribution and a remarkable
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deviation of its tails. When crossing waves are considered, on the other hand, the
peaks arising at the intersection of the wave fronts produce a modification of the up-
per tail of the distribution. However, a significant deviation from the probability
density function of unimodal wave fields only occurs at low probability levels
(p(η) < 0.001). The interaction between two noncollinear wave systems, more-
over, seems not to have any particular effect on the form of the lower tail of the
distribution, which remains almost unchanged.

6 Wave Height Distribution

For an empirical analysis, the wave height H is normally defined as the difference
in surface elevation between the crest and trough of an individual wave (trough-to-
crest wave height). Although, it is straightforward to extract individual waves from
time series (see, e.g., Goda 2000), it is not clear how to define them from a certain
surface η(x,y). In the following, therefore, we make use of the recorded time series
to calculate the wave heights. In this respect, we assume that an individual wave
is the portion of a wave record between two consecutive zero-downcrossings. In
Fig. 11, the exceedance probability of the dimensionless wave height (the standard
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Fig. 11 Exceedance probability of wave height for different degree of nonlinearity: (a) Ur = 0.39;
(b) Ur = 062; (c) Ur = 1.10. The unimodal, ϑ = 0◦ (circle), and bimodal, ϑ = 30◦ (plus), cases
are compared with the Rayleigh distribution (dashed line)
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deviation σ is used as normalizing factor) is presented for the unimodal and bimodal
cases. For the latter, only the case with ϑ ∗ = 30◦ is shown, because the wave height
is expected to maximize for this angular condition. The statistical distribution of the
simulated wave heights is then compared with the Rayleigh density function, which
approximates the wave height distribution of Gaussian random processes (Longuet-
Higgins, 1952).

We first consider the unimodal spectral conditions. The analysis shows that the
simulated wave heights are systematically overestimated by the Rayleigh density
function. Although this deviation may be attributed to the skew non-Gaussian nature
of shallow water waves, it is more likely related to the finite bandwidth of the wave
spectrum, and the difference in definition between the trough-to-crest wave height
and the envelope-based representation, which is relevant for the Rayleigh distribu-
tion (Longuet-Higgins 1952; Tayfun 1981, 1980). When two spectral peaks coexist,
however, the wave height increases. For a low degree of nonlinearity (Ur = 0.39),
nevertheless, the bimodality of the wave spectrum does not lead to any significant
deviation of the wave height distribution; as indicated in Fig. 11a, the tail of the dis-
tribution only slightly changes. When higher degrees of nonlinearity are taken into
account, the interaction between noncollinear wave trains becomes more relevant
and the wave height tends to be significantly higher than in unimodal conditions.
As a result, the deviation of the tail of the distribution becomes more evident as
the Ursell number is increased (Fig. 11b, c). For high nonlinearity (Ur = 1.10), fur-
thermore, the tail of the distribution indicates that the wave height can overtake the
value expected from the Rayleigh distribution.

The numerical model, which is here used to describe the elevation of shallow wa-
ter waves, does not include wave breaking mechanisms. For a certain water depth
and wavelength, however, there is a maximum height above which the waves be-
come unstable and break. Since broken waves do not lose all of their energy, more-
over, the heights of individual random waves after breaking can slightly modify the
probability density function. To verify whether the wave breaking may affect the re-
sults presented herein, the limiting height for wave breaking, Hb, is compared with
the wave height expected at low probability levels (i.e., P(H) = 0.0001). To this
end, an estimation of the wave breaking height can be obtained as follows (see, e.g.,
Goda 2000): Hb = γbh, where the coefficient γb is typically between 0.7 and 0.9 for
spilling breakers (Battjes 1974); in this study, we assume γb = 0.78 as it is often
used for coastal applications (Demirbilek and Vincent 2002).

According to the aforementioned definition, the following (dimensionless) wave
breaking heights are to be expected: for Ur = 0.39, Hb/σ = 9.10; for Ur = 0.62,
Hb/σ = 7.80; for Ur = 1.10, Hb/σ = 6.50. The ratio of the wave height expected at
low probability levels (H0.0001) to the wave breaking height (Hb) is then presented in
Fig. 12. It is evident that, for low degrees of nonlinearity (Ur = 0.39 in this study),
the breaking limit is well above the largest wave height, which is obtained in cross-
ing seas. Therefore, the wave breaking should not have any significant effects on the
statistical properties of the surface elevation.

For a moderate nonlinearity (Ur = 0.62), the breaking limit approximately
matches the wave height at the probability level P(H) = 0.0001 (see Fig. 12).
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Fig. 12 Ratio of the simulated large wave height (H0.0001) to wave breaking height (Hb) as a
function of the Ursell number

However, since a very limited number of waves have been recorded to be higher
than H0.0001, we may expect that also for the case Ur = 0.62 the wave breaking
does not affect the probability density function of wave elevation and wave height
significantly. When Ur > 0.62, nevertheless, the breaking limit is rather small. Thus,
wave heights at probability levels lower than 0.01 would break. As a result, the prob-
ability density function and the statistical moments would be significantly different
than the ones obtained from the simulations.

7 Conclusions

The statistical properties of bimodal, shallow water wave fields have been dis-
cussed. A generalization of the Korteweg–de Vries equation in the (x,y) plane,
the Kadomtsev–Petviashvili equation, has been used to describe two-dimensional
waves in shallow water. The input spectra have been generated as a summation of
two equivalent single-peaked spectra with different mean directions. We have used
a JONSWAP spectral formulation to model the energy distribution in the frequency
domain and a cos-2s function to model the directional domain. Considering sev-
eral spectral cases with constant energy and different angles between the two peaks,
many realizations have been simulated with different random phases. Different de-
grees of nonlinearity, as measured by the Ursell number, have been investigated.
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Shallow water waves are characterized by an excess of high crests and shallow
troughs, which produces a deviation from the Gaussian statistics. The simulated
surface elevation, during single-peaked spectral conditions, shows a very skewed
probability density function. When two noncollinear wave trains are considered in
the wave field, their nonlinear interaction produces steep and high amplitude peaks.
These peaks yield a modification of the upper tail of the probability density func-
tion for the surface elevation η(x,y), which significantly deviates from the distrib-
ution of wave elevation in the unimodal condition. The coexistence of two spectral
peaks, therefore, enhances the nonlinearity of the wave field, which results in an
increase of the skewness and kurtosis. Whereas this enhancement is negligible for
nearly collinear waves, the skewness and kurtosis reaches high values when the two
spectral peaks have well separated directions. In particular, it has been observed
that for ϑ ∗ � 30◦ their magnitudes maximize. Beyond the threshold ϑ ∗ � 30◦, the
increasing trend of the skewness and kurtosis vanishes; for high degrees of non-
linearity, furthermore, skewness and kurtosis decrease. Formally speaking, the KP
equation results from an expansion in which the directionality is a small parame-
ter, therefore additional verification should be made with the Euler equations and
laboratory experiments to confirm this finding.

It is important to mention that the model does not consider wave breaking. How-
ever, for a certain water depth and wavelength, waves can actually break. In this
respect, the comparison between the wave height expected at low probability levels
(P(H) = 0.0001) and the breaking limit has shown that wave breaking may only
affect the statistical properties when large degree of nonlinearity (Ur > 0.62) and
large angle ϑ ∗ are accounted for.

This work was carried out in the framework of the F.W.O. project G.0228.02 and
G.0477.04., and the E.U. project SEAMOCS (contract MRTN-CT-2005-019374).
The numerical simulations were performed by using the K.U. Leuven’s High Per-
formance Computing (HPC) facilities.
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Modelling of Rogue Wave Shapes in Shallow
Water

T. Talipova, Ch. Kharif, and J.-P. Giovanangeli

Abstract Various shapes of rogue waves are discussed within the framework of the
mechanism of non-linear focusing of transient frequency modulated wave groups.
A particular attention is paid to the formation of troughs in front of high crests. The
conditions for appearance of the ‘three sisters’ are discussed too. It is important to
emphasize that this mechanism is not too sensitive to the variation of the shape of
transient frequency modulated wave groups. The variable-polarity shape of a rogue
wave is more probable than only one crest or one trough, because the generation of
the latter ones needs a specific phase relation between individual waves in the group.

1 Introduction

The interest in occurrence of abnormal huge waves on the sea surface has arisen a
long time ago and the physical mechanisms generating these giant water waves are
now well understood and documented (Kharif and Pelinovsky 2003). Rogue waves
are observed everywhere, both in deep and shallow waters and sometimes even on
beaches. The shapes of rogue waves are various. Sometimes they look like solitary
waves, sometimes they appear as a group of waves (the ‘three sisters’) or as a wall of
water (Mallory 1974; Torum and Gumestad 1990; Olagnon and Athanassoulis 2000;
Chien et al. 2002; Rosenthal 2003). In some descriptions (see, Lavrenov 2003), a
long shallow trough occurs in front of a very high crest (Fig. 1) and such a wave can
be very dangerous for shipping.

Indeed, there is no unique representation of rogue wave shapes. In theory, until
now main attention has been paid to the possible values reached by the amplitude or
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Fig. 1 Rogue wave collision with the ‘Taganrorsky Zaliv’ (from the book by Lavrenov (2003))
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Fig. 2 The Draupner New Year wave (from the paper by Haver and Jan Andersen (2000))

height of freak waves, but not to their shapes. One attempt to explain the shape of
the Draupner New Year wave (Fig. 2) from various non-linear water wave theories
has been made in the paper by Walker et al. (2004).

Here, we discuss theoretical shapes of rogue waves in a basin of moderate depth
due to the focusing of transient wave groups. As it is discussed in a review paper
(Kharif and Pelinovsky 2003), various mechanisms of wave group focusing may be
suggested by using (i) water wave amplitude and frequency variations in space due
to wind action, (ii) non-linear modulational instability and (iii) sea current or sea
bottom inhomogeneity. The simplest explanation of rogue wave occurrence due to
transient group focusing may be described as follows (Kharif et al., 2001; Slunyaev
et al., 2002). If initially short wave groups are located in front of longer wave groups
having larger group velocities, then during the stage of evolution, longer waves will
overtake shorter waves. A huge wave can occur at some fixed time because of the
superposition of waves merging at a given location. Afterwards, the longer waves
will be in front of the shorter waves and the amplitude of the highest wave will
decrease. Such a mechanism has been reproduced in various laboratory tanks (Bal-
dock and Swan 1996; Johannessen and Swan 2001; Brown and Jensen 2001; Clauss
2002; Shemer et al. 2006; Giovanangeli et al. 2005; Touboul et al. 2006; Kharif et al.
2008).

The elements of the non-linear dispersive theory of wave focusing are given in
Sect. 2 and the results of the numerical model are described in Sect. 3.
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2 Theoretical Model

The dynamics of non-linear long surface water waves on constant depth may be
described by the Korteweg-de Vries equation (Dingemans 1996)

∂η
∂ t

+ c
(

1+
3η
2h

)
∂η
∂x

+
ch2

6
∂ 3η
∂x3 = 0, (1)

where η is the water surface elevation, h is the undisturbed water depth, c =
√

gh is
the linear speed of long surface wave and g is the gravity acceleration. Equation (1)
may be reduced to dimensionless form (3) by the following transformations (2):
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∂ 3ζ
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The effective process to generate transient wave group focusing in a rogue wave
was suggested in a recent paper (Pelinovsky et al. 2000). It is based on the invariance
of the Korteweg-de Vries equation (3) with respect to reversal of time and abscissa.
It means that we may choose the expected form of freak wave ζfr(x) as the initial
condition for (3) and solve it for any time t = T . Solutions found analytically or
numerically after reversal of abscissa ζ (−x) describes the wave train whose evolu-
tion may lead to the occurrence of waves of abnormal amplitude with the chosen
shape ζfr(x) and time t = T . From (3) solved within the framework of a determin-
istic approach, with zero boundary conditions when |x| goes to ∞ and the shape of
the abnormal wave described by positive pulse with amplitude A0 and length L, we
show that the process is controlled by the Ursell parameter (Kharif et al. 2000). Fur-
thermore, it is shown in the paper by Pelinovsky et al. (2000) that for a single rogue
wave the Ursell parameter satisfies the following condition:

Ur = A0L2 � 1. (4)

The very steep wave appears due to the focusing of a group of waves of moder-
ate amplitude. For the sake of simplicity this wave may be approximated by the
δ -function

ςf(y) = Qδ (y). (5)

The coefficient Q in (5) is equal to wave “mass”

Mf =
∞∫

−∞

ςf(y)dy = Q. (6)
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The potential energy of this wave is infinite formally. Within the framework of (3),
which may be solved by using the method of inverse scattering transform (Drazin
and Johnson 1993), the delta-pulse (5) evolves into a solitary wave

ςs = Assech2 [γ (y− (1+As/2)τ)] , (7)

with dimensionless amplitude As and inverse width γ

As =
3
4

Q2 γ =

√
3
4

As =
3
4

Q. (8)

There is a dispersive tail spreading in space and damping in time. The solitary wave
mass Ms and its energy Es are conserved in time and equal to

Ms =
As

γ

∞∫
−∞

sech2z dz =
2As

γ
= 2Q, (9)

Es =
A2

s

γ

∞∫
−∞

sech4z dz =
4A2

s

3γ
= Q3. (10)

We emphasize that the solitary wave mass is larger than twice the rogue wave mass;
therefore, incipient dispersive tail has negative mass

Mt = −Q. (11)

The energy of dispersive tail goes to infinity as also the energy of the initial delta-
pulse. Hence, if the solitary wave is deleted from the wavefield, the energy of
dispersive tail is large enough to produce a wave of abnormal amplitude. Since dis-
persive tail mass is negative, it is reasonable to assume that the deep negative trough
prevails in the rogue wave generation. Dispersive wave tail, especially with small
amplitude, within the framework of the Korteweg-de Vries equation, evolves like
the Airy function, and because its mass Mt, according to (11), is proportional to the
mass of expected rogue wave Q, the waves in the dispersive tail contain the infor-
mation about both time (or position) of rogue wave occurrence and rogue amplitude
due to self-similarity of the Airy function.

When the initial rogue wave disturbance has negative polarity, solitary waves are
not generated irrespective of the Ursell parameter value, and the whole energy goes
into damping dispersive wave train. Let us mention that within the framework of
an idealized problem, solitary waves prevent the formation of rogue waves whose
amplitude has to be higher not only than the amplitude of the dispersive tail but also
higher than solitary wave amplitudes, constant in time. Hence, it is reasonable to
suggest that without solitary waves in dispersive tail, the formation of rogue wave
of variable-polarity is more probable. In this case, the condition about the Ursell
parameter is satisfied.
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3 Numerical Model

The numerical integration of the Korteweg-de Vries equation (3) is based on a
finite-difference scheme that satisfies the Courant criterion. The main goal of the
numerical simulations is to analyse the conditions of variable-polarity rogue wave
generation from transient wave groups without solitary waves.

Following Pelinovsky et al. (2000), we generate numerically transient wave
groups from a short Gaussian pulse given by Af exp(−y2/L2). The corresponding
Ursell parameter is sufficiently small. The transient group corresponds to a solitary
wave plus a damping dispersive wave train. After reversing of abscissa, this transient
wave group focuses again into the rogue wave with the Gaussian pulse shape. This
process is shown in Fig. 3 for two values of the Gaussian pulse amplitude 0.2 and
0.4 and the same width L = 0.55. In this case, the rogue wave occurs at τ = 2,000.
Amplitudes of generated rogue waves in both cases (Fig. 3b) are more than four
times larger than the amplitude of the corresponding solitary waves in initial wave
transient groups (Fig. 3a), and it is more than the criterion needed for the freak wave
occurrence: the amplitude of the freak wave has to be more than twice the amplitude
of background waves.

Note that amplitudes of generated solitary waves in both runs differ from one
another by a factor of 4 (0.025–0.092), whereas the amplitudes of dispersive tails
differ by a factor of 2. So, this simple numerical experiment confirms our theoretical
conclusions that influence of amplitude of the dispersive tail on the amplitude of the
rogue wave is strong (practically linear when the Ursell parameter is very weak).

Additional numerical simulations were run corresponding to truncated transient
wave groups: the solitary wave has been ignored. Hence, we consider the mech-
anism of rogue wave formation directly from the dispersive tail alone. Results of
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Fig. 3 Transient wave groups (a), leading to the formation of a Gaussian pulse of positive polarity
(b) with amplitude values 0.2 (black) and 0.4 (red). The width is 0.55
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Fig. 4 (a) Initial dispersive wave train; (b) rogue wave generated by dispersive focusing; (c) initial
wave train where one negative half-wave is deleted; (d) rogue wave generated by focusing of this
wave train

these runs are shown in Fig. 4. Because of dispersive focusing of the tail (Fig. 4a),
the variable-polarity high amplitude wave is generated (Fig. 4b) and its height (from
trough to crest) is equal to 0.4, that is the same height as that of the rogue wave gen-
erated from the full wave group, including the solitary wave. The excess of wave
height above the initial height of dispersive tail is about 6.7, and so such a wave
satisfies the amplitude criterion of rogue wave occurrence. It is evident that the neg-
ative trough of the rogue wave is longer than the positive crest, and negative total
mass described into Sect. 2 is conserved.
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So the evolution of the dispersive tail allows us to explain the appearance of the
long trough (which has a specific shape within the framework of an idealized model)
ahead of the positive pulse as it is described in the book by Lavrenov (2003).

The amplitude of oscillations in the dispersive tail varies significantly with wave
position, and the mass distribution here is very non-uniform. So, if we delete the
last high-energy negative half-wave (Fig. 4c), the mass of the tail is modified sig-
nificantly, and the rogue wave, which focuses from such a tail after reversing of
abscissa, consists of one high peak and moderately deep troughs (Fig. 4d). It is in-
teresting to note that the wave shape in Fig. 4d is similar to the New Year wave
(Fig. 2). Despite the fact that the rogue wave height becomes smaller (0.33 against
0.4 in the previous case), the excess of wave height above the initial height of the
dispersive tail is about 6.7 as in the previous case. Thus, the mass of dispersive wave
train influences significantly the shape of the rogue wave, but in any case we obtain
the variable-polarity rogue wave. A second series of numerical simulations has been
performed corresponding to a Gaussian pulse of negative polarity. Its focusing leads
to the occurrence of abnormal deep trough on the sea surface (Fig. 5). It is well
known that during the evolution of such a pulse, solitary waves do not occur and the
shape of the transient wave group is close to the Airy function profile, especially for
small values of the amplitude. The maximal wave height (from trough to crest) in
the tail in Fig. 4a is 0.1, while the pulse amplitude is 0.2. So, the amplitude criterion
of rogue wave is satisfied in this case too.

The removal of back long negative half-wave from the wave train is shown in
Fig. 5a (see Fig. 6a). The generation of a trough in front of the high positive pulse
is observed (Fig. 6b). However, in this situation the trough with larger amplitude
is behind the crest and following crests also. This is close to the wave packet of-
ten called in literature the three sisters. The decrease in elevation between the first
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Fig. 5 (a) Initial wave train; (b) its transformation into a Gaussian pulse of negative polarity
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Fig. 6 (a) Initial wave train; (b) transformation into ‘three sisters’

crest and following trough is equal to 0.33, that is more than three times the height
of the initial dispersive wave train, and the amplitude criterion is satisfied. Thus,
our assumption that any dispersive wave train without solitons may generate the
variable-polarity rogue wave is confirmed by the evolution of this class of transient
wave group also.

For the third series of numerical experiments, the rogue wave generation from a
transient wave group has been chosen as a wave with a shape close to that shown
in the book by Lavrenov (2003) (see Fig. 1). For this case, the solitary wave and
dispersive wave tail used are shown in Fig. 6a. The evolution of this wavefield is
the chosen ‘Lavrenov’s’ rogue wave (Fig. 7b). We fixed its amplitude large enough
to obtain a decrease in the elevation of the initial wave packet (Fig. 7a) more than
three times.

The main characteristic feature observed in the wavefield of the dispersive train
in comparison with cases shown above is a non-monotonic modulation, which may
be interpreted as an almost linear interference of both wave trains generated by
positive and negative parts of initial rogue wave in the direct simulation.

A more realistic situation has been suggested for the fourth series of runs. This
situation is closed to experimental results obtained in the Hannover tank and de-
scribed by Shemer et al. (2006). A dispersive wave tail shown in Fig. 8a has been
obtained from the wave packet given in Fig. 4a multiplied by a Gaussian envelope
Ag exp(−(y− b)2/L2), where Ag = 1, b = 800, L = 200. Evolution of this packet
also leads to the generation of the three sisters (Fig. 8b) and the maximal wave
height of this group is ten times larger than the maximal height of the initial wave
packet.
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Fig. 7 (a) Initial wave packet; (b) transformation into ‘Lavrenov’s’ wave
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4 Conclusions

Within the framework of non-linear-dispersive mechanism, relevant variety of
shapes of rogue waves may be obtained, including the Lavrenov’s wave, which
consists of a huge crest and a long trough in front of it. It is important to emphasize
that this mechanism is not too sensitive to the variation of the shape of transient
wave groups. The optimal focusing of transient wave groups which requires a spe-
cial phase relation gives the best conditions for rogue wave occurrence with huge
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amplitude. Nevertheless, the amplitude criterion is satisfied for conditions of strong
deformations of the wave group, initially leading to optimal focusing, as it is shown
in this work. It is clear from this simple theory that we can always get any natural
form of abnormal wave. Within the framework of this model the generation of the
Lavrenov’s wave and the three sisters is of equal probability. From our point of
view, today in situ data of abnormal waves does not mark out any preferable shapes
of rogue waves. The question about the more probable shapes of abnormal wave
is an open question. It seems that the shape of a rogue wave in the form of a crest
and a trough is more probable than only one crest or only one trough, because the
generation of the latter ones needs a specific phase relation. In future, we study
the shapes of rogue waves within the framework of direct numerical simulations of
random wind wave fields.
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Runup of Long Irregular Waves on Plane Beach

Ira Didenkulova, Efim Pelinovsky, and Anna Sergeeva

Abstract Runup of irregular waves, modeled as superposition of Furrier harmonics
with random phases, is studied in frames of nonlinear shallow water theory. The
possibility of appearance of freak waves on a beach is analyzed. The distribution
functions of runup characteristics are computed. An incident wave represents an
irregular sea state with Gaussian spectrum. The asymptotic of probability functions
in the range of large amplitudes for estimation of freak wave formation in the shore
is studied. It is shown that average runup height of waves with wide spectrum is
higher than that of waves with narrow spectrum.

1 Introduction

Descriptions of unusually high waves appearing on the sea surface for a short time
(freak, rogue, or killer waves) have been considered as a part of marine folklore
for a long time. A number of instrumental registrations have appeared recently
making the community to pay more attention to this problem and to reconsider
known observations of freak waves: some of them are collected in the paper by
Torum and Gudmestad (1990), by Olagnon and Athanassoulis (2001), by Kharif and
Pelinovsky (2003), and by Rosenthal (2003). Such unusual waves are also observed
in the coastal zone and the probability of their appearance is rather high. One of
the first works (Sand et al. 1990) already presents data of freak wave observations
in the shallow part of the North Sea (on the depth of 20 m). Chien et al. (2002) re-
port about 140 freak wave events in the coastal zone of Taiwan in the past 50 years
(1949–1999) that caused loss of 500 people and destruction of 35 ships. According
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Fig. 1 Freak wave attacks the breakwater in Kalk Bay, South Africa, on 26 August 2005

to Didenkulova et al. (2006a), two-third of the freak wave events that occurred in
2005 were observed onshore. Thus, a freak wave attacked the breakwater in Kalk
Bay (South Africa) on 26 August 2005 and washed off the breakwater people, and
some of them were injured (Fig. 1). Two months later on 16 October 2005, two
freak waves induced panic at Maracas Beach (Trinidad Island, Lesser Antilles),
when a series of towering waves, many more than 25 feet high (maximal height
of 8 m), flooded the beach, carried sea-bathers, venders, and lifeguards, running for
their lives.

Thus, analysis of freak waves on a coast is an important task for practice. Here
we investigate distribution functions of the runup height and velocity on a beach,
assuming that distribution functions in the coastal zone are known and waves do not
break. The analytical shallow water theory, described in Spielfogel (1976), Pedersen
and Gjevik (1983), Synolakis (1987), Pelinovsky and Mazova (1992), Tadepalli
and Synolakis (1994), Carrier et al. (2003), Tinti and Tonini (2005), Kânoǧlu and
Synolakis (2006), Didenkulova et al. (2006b, 2007a,b) is used as theoretical model.
The paper is organized as follows. The theoretical model of the long wave runup is
described in Sect. 2. The runup of irregular waves on a plane beach is discussed in
Sect. 3. Main results are summarized in Sect. 4.

2 Theoretical Model of the Long Wave Runup

The dynamics of a wave climbing the beach can be described in the framework of
the shallow water equations. The simplified geometry of the coastal zone is shown
in Fig. 2.

The wave comes onshore from the left. Sketchy, the incident wave is presented
as a single crest, but then we consider the incident wave as a continuous function
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x

h(x)

α

Fig. 2 Definition sketch for the wave runup problem

representing random crests and troughs. The basic equations for water waves in
shallow water are (η(x, t) is the vertical displacement of the sea level, u(x, t) is the
depth averaged velocity of the water flow)

∂η
∂ t

+
∂
∂x

[(h(x)+η)u] = 0,

∂u
∂ t

+u
∂u
∂x

+g
∂η
∂x

= 0, (1)

where h(x) = −αx. In this case, the nonlinear shallow-water equations (1) can be
solved with the use of Riemann invariants and the Legendre (hodograph) transfor-
mation (Carrier and Greenspan 1958). Let us introduce the Riemann invariants

I± = u±2
√

g(h+η)+gαt (2)

and rewrite system (1) in the following form:

∂ I±
∂ t

+ c±
∂ I±
∂x

= 0, (3)

where characteristic speeds are

c± =
3
4

I± +
1
4

I∓−gαt. (4)

The system (3)–(4) is still nonlinear, as characteristic speeds c± contain time t;
however, it can be reduced to linear by excluding the coordinate x. After introducing
new variables

λ =
I+ + I−

2
= u+gαt, σ =

I+ − I−
2

= 2
√

g(h+η), (5)

we obtain the linear wave equation to describe the long wave runup process
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∂ 2Φ
∂λ 2 − ∂ 2Φ

∂σ2 − 1
σ

∂Φ
∂σ

= 0, (6)

and all physical variables can be expressed through the function Φ(λ ,σ)

η =
1

2g

(
∂Φ
∂λ

−u2
)

, u =
1
σ

∂Φ
∂σ

, (7)

t =
1

αg

(
λ − 1

σ
∂Φ
∂σ

)
, x =

1
2αg

(
∂Φ
∂λ

−u2 − σ2

2

)
. (8)

The physical sense of the variable σ is the total water depth, and σ = 0
corresponds to the moving shoreline. Various calculations of the wave field and
runup characteristics using the Carrier–Greenspan transformation can be found in
Spielfogel (1976), Pedersen and Gjevik (1983), Synolakis (1987), Pelinovsky and
Mazova (1992), Tadepalli and Synolakis (1994), Carrier et al. (2003), Tinti and
Tonini (2005), Kânoǧlu and Synolakis (2006), Didenkulova et al. (2006b, 2007a,b).
Surprising result concluded here from linear equation (6) is that the extreme runup
characteristics (runup and rundown amplitudes, runup velocities) can be calculated
in the framework of linear shallow-water theory if the incident wave approaches to
the beach from the open sea. Particularly, the runup amplitude Rsin of incident sine
wave with amplitude A, wavelength λ , and frequency ω given at the point x = L
with the depth h is

Rsin

A
=
(

16π2ω2h
gα2

)1/4

= 2π
√

2L
λ

. (9)

Meanwhile, the water oscillation on shore will not have simple sine shape; see Fig. 3
for various values of the breaking parameter Br = Rsinω2/gα2 (condition Br = 1
corresponds to the wave breaking on shore).
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Fig. 3 Velocity and vertical displacement of the moving shoreline for incoming sine wave; the
breaking parameter Br = 0 (dotted line), 0.5 (dashed line), and 1 (solid line); time is normalized
by wave frequency ω−1, vertical displacement by Rsin, and shoreline velocity by ωRsin/α
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Fig. 4 Velocity and vertical displacement of the moving shoreline for incoming sin4(ωt) pulse;
the breaking parameter Br = 0 (dotted line), 0.5 (dashed line), and 1 (solid line); time is normalized
by wave frequency ω−1, vertical displacement by Rsin, and shoreline velocity by ωRsin/α
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Fig. 5 Velocity and vertical displacement of the moving shoreline for incoming soliton
sech2 (4t/T0); the breaking parameter Br = 0 (dotted line), 0.5 (dashed line), and 1 (solid line);
time is normalized by the duration of the pulse T0, vertical displacement by Rsin, and shoreline
velocity by ωRsin/α

The runup of waves of different types, for instance solitary waves, can be also
described by formulas (6)–(8). Water oscillations and velocities on shore for the
runup of a sine pulse and a soliton are presented on Figs. 4 and 5 for different values
of the breaking parameter Br.

3 Runup of Irregular Waves

Formulas (6)–(8) can be applied to describe the runup of irregular long waves as
well. Because of implicity of the Carrier–Greenspan transformation it is rather dif-
ficult to calculate wave characteristics. But for calculations of the extreme runup
characteristics, the linear approach can be applied (Synolakis 1991; Pelinovsky and
Mazova 1992), and in this case we need to find extremes of the Fourier series
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η (t,x = 0) =
∫ (

16π2h
gα2

)1/4

ω1/2A(ω)exp
[
i
(

ω (t − τ)+φ (ω)+
π
4

)]
dω ,

(10)

u(t,x = 0) =
1
α

∫ (
16π2h
gα2

)1/4

ω3/2A(ω)exp
[

i
(

ω (t − τ)+φ (ω)+
3π
4

)]
dω,

(11)

where A and φ are spectral amplitudes and phases, ω is the basic frequency of the
incident wave

η (t,x = L) =
∫

A(ω)exp [i(ωt +φ (ω))]dω , (12)

and τ is travel time to the coast. We wish to repeat that series (10)–(11) can be used
to calculate positive and negative runup amplitudes but not moments and distribution
functions of the water displacement at the shoreline. This approach has been used
in Didenkulova et al. (2007a) to study the runup of nonsinusoidal waves.

Now we consider the transformation of irregular waves when they climb a beach
and estimate distribution functions of the water displacement at the shoreline as-
suming distribution functions of the water displacement at the coastal zone to be
known and waves do not break.

The ensemble of realizations with random phases φ is taken for a numerical
simulation of irregular waves. For this purpose we quantize Fourier series (10)–(12)
and use real functions, whereupon equations for incoming wave, displacement, and
velocity of the shoreline in nondimensional variables can be rewritten as

η (t,x = L) =
N

∑
n=1

An cos(ωnt +φn), (13)

η (t,x = 0) =
N

∑
n=1

√
ωnAn cos

(
ωnt +φn +

π
4

)
, (14)

u(t,x = 0) =
N

∑
n=1

ω3/2
n An cos

(
ωnt +φn +

3π
4

)
, (15)

where An =
√

2S(ωn)∆ω are calculated through the frequency spectrum of incom-
ing wave S(ω), ∆ω = 2π/T is the sampling rate, T is the size of time calculated
domain, and ωn = n∆ω . Random spectral phases φn are distributed uniformly at the
interval (0, 2π).

First, let us consider random wave field with Gaussian statistics, where the fre-
quency spectrum of incoming wave S(ω) is

S(ω) = Q exp
[
− (ω −ω0)2

2l2

]
, (16)
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with the central frequency ω0 and the spectrum width l. Constant Q in (16) can be
found from the condition

σ2 = 2
∞∫

0

S(ω)dω, (17)

then

Q =
σ2

√
2πl erfc(−ω0/

√
2l)

, (18)

where

erfc(z) =
2√
π

∞∫
z

exp(−t2)dt (19)

is a complementary error function.
In this case, frequency spectra for the shoreline displacement Sr(ω) and the

shoreline velocity Su(ω) are

Sr(ω) =
4πLω

c
Q exp

[
− (ω −ω0)2

2l2

]
, (20)

Su(ω) =
4πLω3

cα2 Q exp
[
− (ω −ω0)2

2l2

]
. (21)

All these spectra in nondimensional variables for l = 0.5 are shown on Fig. 6. It is
obvious that spectra for the shoreline displacement Sr(ω) and the shoreline velocity
Su(ω) are asymmetric and shifted to the high-frequency area.

Distribution functions for maximal amplitudes (positive and negative) of the
wave field, defined as maximum (minimum) between two zero points, are impor-
tant for applications. Detailed calculations of the distribution functions of the runup
amplitudes are given in (Sergeeva and Didenkulova 2005). The Fourier series of
N = 512 harmonics and sampling rate ∆ω = 0.01 are used. Spectrum width l is
changed from 0.1 to 0.7. All statistical characteristics are obtained with the use of
ensemble averaging over 500 realizations.

The occurrence probability of the wave with amplitude A for a Gaussian narrow-
band process can be described by Rayleigh distribution (Massel 1996)

P(A) = exp
(−2A2) , (22)

where A is the wave amplitude normalized on significant amplitude As, which is
defined as As ≈ 2σ . For the numerical estimation of positive (negative) amplitude
distribution, the statistical “frequency” F (ratio of a number of waves m with fixed
amplitude a to a general number of waves)

F =
m
N

, (23)
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Fig. 6 Incident field, runup, and shoreline velocity spectra for l = 0.5

and statistical distribution function of amplitude (occurrence frequency of waves
with amplitude A larger than a)

P(a) = F(A > a). (24)

are calculated. For the narrow-band incident wave field (l = 0.1), the distribution
functions of the runup characteristics are described by the Rayleigh distribution, as
it is expected due to linearity expressions for extreme characteristics. If the spectrum
of incident wave is wider (l = 0.7), the asymmetry of displacement and velocity
spectra increases, but nevertheless distribution functions of the maximal shoreline
displacement (Figs. 7 and 8) and the maximal shoreline velocity (Fig. 9) differ from
the Rayleigh low weakly.

Knowing spectral and probability distributions of the wave field runup character-
istics on a beach can be calculated. Thus the significant runup height of the wave on
a beach is

Rs =

√
4πω0L

c
AsF

(ω0

l

)
= 2π

√
2L
λ

AsF
(ω0

l

)
, (25)

where function F(z) describes influence of the incident wave spectrum width

F(z) =

√
1+

exp(−z2/2)√
π/2zerfc(−z/

√
2)

. (26)
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Fig. 7 Distribution functions of maximal positive amplitudes for incident wave (triangles) and
shoreline displacement (circles) with the incident wave spectrum width l = 0.7; solid line corre-
sponds to the Rayleigh distribution

Fig. 8 Distribution functions of maximal negative amplitudes for incident wave (triangles) and
shoreline displacement (circles) with the incident wave spectrum width l = 0.7; solid line corre-
sponds to the Rayleigh distribution
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Fig. 9 Distribution functions of maximal velocities for incident wave (triangles) and shoreline
displacement (circles) with the incident wave spectrum width l = 0.7; solid line corresponds to the
Rayleigh distribution

Fig. 10 Function of an influence of the incident wave spectrum width on a runup height of the wave

The function F(z) is shown in Fig. 10. It tends to one (F = 1) for the narrow-
band process (l � ω0) and the significant runup height of the wave can be described
by the formula for the runup of a sine wave (Didenkulova et al. 2007b). Signifi-
cant runup height grows with the increasing of the spectrum width, especially when
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l >ω0. Thus, Gaussian approximation in a problem of the wave runup on a beach
works not only for the case of l � ω0 but also for l < ω0, when distribution function
differs from Gaussian.

Previous analysis used the wave field presenting as the superposition of the in-
dependent spectral components. Such approach is very popular to describe random
water waves. Meanwhile, the wave field in shallow water contains many coherent
wave components, and an idea to present it as random assembly of the solitary waves
is very popular, see, for instance Brocchini and Gentile (2001). The runup of solitary
wave on a plane beach is well studied (Synolakis 1987) and the runup amplitude can
be expressed through soliton amplitude

R
h

= 2.8312
1√
α

(
A
h

)5/4

. (27)

In fact, this formula can be derived from (10) taking into account the relation be-
tween the soliton amplitude and duration. If the wave field contains random sepa-
rated solitons, the runup of each individual soliton presents the independent random
process, and distribution function of runup amplitude can be found analytically if
the distribution function of the soliton amplitudes is known. Assuming for sim-
plicity the Rayleigh distribution for soliton amplitude and using (27), exceedance
frequency of runup amplitude is

P(R) = exp

[
−0.378α4/5 (R/h)8/5

(A/h)2

]
, (28)

and probability of appearance of big waves on the coast is high. In fact, this for-
mula is valid for independent solitons. More detailed computing of statistical runup
characteristics of the realistic “soliton” wave field is performed in Brocchini and
Gentile (2001).

So, the wave runup on a plane beach leads to increasing of the probability of the
large-amplitude waves, and freak wave phenomenon should be taken into account
in the coastal protection.

4 Conclusion

Distribution functions of the maxima wave characteristics at the point of shoreline
(displacement and velocity), caused by a wave coming from the open sea, are an-
alyzed in frames of nonlinear shallow water theory. Modeled (Gaussian) spectrum
is used for numerical simulations. It is shown that variations of distribution func-
tions for the maximal shoreline displacement and shoreline velocity are weak for
l < ω0. For this case the significant runup height of the wave can be described by
the formula for the runup of a sine wave. For the wide-band process, especially for
l > ω0, the significant runup height grows significantly.
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Symbolic Computation for Nonlinear
Wave Resonances

E. Kartashova, C. Raab, Ch. Feurer, G. Mayrhofer, and W. Schreiner

Abstract Extreme ocean waves are characterized by the energy concentration in a
few chosen waves/modes. Frequency modulation due to the nonlinear resonances is
one of the possible processes yielding the appearance of independent wave clusters
which keep their energy. Energetic behavior of these clusters is defined by (1) integer
solutions of the resonance conditions, and (2) coupling coefficients of the dynami-
cal system on the wave amplitudes. General computation algorithms are presented
which can be used for arbitrary 3-wave resonant system. Implementation in Mathe-
matica is given for planetary ocean waves. Short discussion concludes the paper.

1 Introduction

Resonance is a common thread that runs through almost every branch of physics,
and without resonance we would not have radio, television, music, etc. Resonance
causes an object to oscillate, sometimes the oscillation is easy to see (vibration in a
guitar string), but sometimes this is impossible without measuring instruments (elec-
trons in an electrical circuit). A well-known example with Tacoma Narrows Bridge
(at the time it opened for traffic in 1940, it was the third longest suspension bridge in
the world) shows how disastrous resonances can be: on the morning of 7 November
1940, the 4-month-old Tacoma Narrows Bridge began to oscillate dangerously up
and down, tore itself apart, and collapsed. Though designed for winds of 120 mph,
a wind of only 42 mph caused it to collapse. The experts did agree that somehow
the wind caused the bridge to resonate, and nowadays, wind tunnel testing of bridge
designs is mandatory.

Another famous example is the experiments of Tesla who in 1898 studied experi-
mentally vibrations of an iron column and noticed that at certain frequencies specific
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pieces of equipment in the room would start to jiggle. Playing with the frequency
he was able to move the jiggle to another part of the room. Completely fascinated
with these findings, he forgot that the column ran downward into the foundation
of the building, and the vibrations were being transmitted all over Manhattan.
The experiments had started sort of a small earthquake in his neighborhood with
smashed windows, swayed buildings, and panicky people in the streets. For Tesla,
the first hint of trouble came when the walls and floor began to heave (Cheney 1989).
He stopped the experiment as soon as he saw police rushing through the door.

The difference between resonances in a human made system and in some nat-
ural phenomena is very simple. We can change the form of a bridge and stop the
experiment by switching off electricity but we can not change the direction of the
wind, the form of the Earth atmosphere, or the sizes of an ocean. What we can try
to do is to predict drastic behavior of a real physical system by computing its res-
onances. While linear resonances in different physical systems are comparatively
well studied, to compute characteristics of nonlinear resonances and to predict their
properties is quite a nontrivial problem, even in the one-dimensional case. Thus,
the notorious Fermi–Pasta–Ulam numerical experiments with a nonlinear 1D-string
(carried out more than 50 years ago) are still not fully understood (Berman and
Israilev 2005). On the other hand, nonlinear wave resonances in continuous 2D-
media like ocean, space, atmosphere, plasma, etc. are well studied in the frame of
wave turbulence theory (Zakharov et al. 1992) and provide a sound basis for quali-
tative and sometimes also quantitative analysis of corresponding physical systems.
The notion of nonlinear wave interactions is crucial in the wave turbulence theory
(Zakharov et al. 2004). Excluding resonances allows to describe a nonlinear wave
system statistically by wave kinetic equations and power-law energy spectra of tur-
bulence (Zakharov and Filonenko 1967), and to observe this behavior in numeri-
cal experiments (Pushkarev and Zakharov 2000). Direct computations with Euler
equations (modified for gravity water waves (Zakharov et al. 2005)) show that the
existence of resonances in a wave system yield some additional effects, which are
not covered by the statistical description. The role of resonances in the evolution
of water wave turbulent systems has been studied profoundly by a great number of
researchers. One of the most important conclusions (for gravity water waves) made
recently in Tanaka (2007) is the following: The four-wave resonant interactions
control the evolution of the spectrum at every instant of time, whereas nonresonant
interactions do not make any significant contribution even in a short-term evolution.

The behavior of a resonant wave system can be briefly described (Kartashova
1998) as follows: (1) not all waves take part in resonant interactions, (2) resonantly
interacting waves form a few independent small wave clusters, such that there is no
energy flow between these clusters, (3) including some small but nonzero resonance
width into consideration does not destroy the clusters. A model of laminated wave
turbulence (Kartashova 2006a) allows to describe statistical and resonant regimes
simultaneously while methods to compute resonances numerically are presented
in Kartashova (2006b) (idea) and in Kartashova and Kartashov (2006, 2007a,b)
(implementation). Our main purpose here is to study the possibilities of a sym-
bolic implementation of these general algorithms using the computer algebra system
Mathematica.
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The implemented software can be executed with local installations of Mathemat-
ica and the corresponding method libraries; however, we have also developed a Web
interface that allows to run the methods from any computer in the Internet via a
conventional Web browser. The implementation strategy is simple and is based on
generally available technologies; it can serve as a blueprint for other mathematical
software with similar features.

We take as our principal example the barotropic vorticity equation in a rectan-
gular domain with zero boundary conditions, which describes oceanic planetary
waves, and show how (a) to compute interaction coefficients of corresponding dy-
namical systems, (b) to solve resonant conditions, (c) to construct the topological
structure of the solution set, and (d) to use the software via a Web interface over the
Internet. A short discussion concludes the paper.

2 Mathematical Background

Wave turbulence takes place in physical systems with nonlinear dispersive waves
that are described by evolutionary dispersive NPDEs. The role of the evolutionary
dispersive NPDEs in the theoretical physics is so important that the notion of disper-
sion is used for a physical classification of PDEs into dispersive and nondispersive.
On the one hand, the well-known mathematical classification of PDEs into elliptic,
parabolic, and hyperbolic equations is based on the form of equations and can be
applied to the second order PDEs on an arbitrary number of variables. On the other
hand, the physical classification is based on the form of solutions and can be applied
to PDEs of arbitrary order and arbitrary number of variables. To construct the phys-
ical classification of PDEs, two preliminary steps are to be made: (1) to divide all
variables into two groups – time- and space-like variables (t and x, respectively);
and (2) to check that the linear part of the PDE under consideration has a wave-like
solution in the form of Fourier harmonic

ψ(x, t) = A expi[kx−ωt],

with amplitude A, wave-number k, and wave frequency ω . The direct substitution
of this solution into the linear PDE shows that ω is an explicit function on k, for
instance:

ψt +ψx +ψxxx = 0 ⇒ ω(k) = k−5k3.

If ω as a function on k is real-valued and such that d2ω/dk2 	= 0, it is called a dis-
persion function and the corresponding PDE is called evolutionary dispersive PDE.
If the dimension of the space variable x is more than 1, that is, �x = (x1, . . . ,xp),
�k is called the wave-vector and the dispersion function ω = ω(�k) depends on the
coordinates of the wave-vector. This classification is not complementary to a stan-
dard mathematical one. For instance, though hyperbolic PDEs normally do not have
dispersive wave solutions, the hyperbolic equation ψtt −α2ψxx−β 2ψ = 0 has them.
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In the huge amount of application areas of NPDEs (classical and quantum
physics, chemistry, medicine, sociology, etc.), a nonlinear term of the corresponding
NPDE can be regarded as small. This is symbolically written as

L(ψ) = −εN(ψ), (1)

where L and N are linear and nonlinear parts of the equation respectively and ε
is a small parameter defined explicitly by the physical problem setting. It can be
shown that in this case the solution ψ of (1) can be constructed as a combination
of the Fourier harmonics with amplitudes A depending on the time variable and
possessing two properties formulated here for the case of quadratic nonlinearity:

• P1. The amplitudes of the Fourier harmonics satisfy the following system of
nonlinear ordinary differential equations (ODEs) written for simplicity in the
real form

Ȧ1 = α1A2A3,

Ȧ2 = α2A1A3, (2)
Ȧ3 = α3A1A2,

with coefficients α j being functions on wave-numbers;
• P2. The dispersion function and wave-numbers satisfy the resonance conditions{

ω(�k1)±ω(�k2)±ω(�k3) = 0,

�k1 ±�k2 ±�k3 = 0.
(3)

The transition from (1) to (2) can be performed by some standard methods (for
instance, multiscale method (Nayfeh 1981)), which also yields the explicit form of
resonance conditions.

Keeping in mind our main problem – to find a solution of (1) – one has to take
care of the initial and boundary conditions. This is done in the following way: the
case of periodic or zero boundary conditions yields integer wave numbers, otherwise
they are real. Correspondingly, one has to find all integer (or real) solutions of (3),
substitute corresponding wave-numbers into the coefficients α j, and then look for
the solutions of (2) with given initial conditions.

One can see immediately a big problem that appears as soon as one has to solve
a NPDE with periodical or zero boundary conditions. Indeed, dispersion functions
take different forms, for instance,

ω2 = k3, ω2 = k3 +αk, ω2 = k, ω = α/k, ω = m/n(n+1), . . . ,etc.,

with�k = (m,n), k =
√

m2 +n2, and α being a constant. This means that (3) cor-
responds to a system of Diophantine equations of many variables, normally 6–9,
with cumulative degrees 10–16. Those have to be solved usually for the integers of
the order ∼103, which means that computations has to be performed with integers
of order 1048 and more. Original algorithms to solve these systems of equations
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have been developed based on some profound results of number theory (Kartashova
2006b) and implemented numerically (Kartashova and Kartashov 2006, 2007a,b).

Further on, an evolutionary dispersive NPDE with periodic or zero boundary
conditions is called three-term mesoscopic system if it has a solution of the form

ψ̃ =
∞

∑
j=1

A j expi[�k j�x j −ωt]

and there exists at least one triple {A j1 ,A j2 ,A j3} ∈ {A j} such that P1 and P2 keep
true with some nonzero coefficients α j, α j 	= 0 ∀ j = 1,2,3.

3 Equations for Wave Amplitudes

3.1 Method Description

The barotropic vorticity equation describing ocean planetary waves has the form
(Kartashova and Reznik 1992)

∂�ψ
∂ t

+β
∂ψ
∂x

= −εJ(ψ,�ψ), (4)

with boundary conditions

ψ = 0 for x = 0, Lx; y = 0, Ly.

Here β is a constant called Rossby number, ε is a small parameter and the Jacobian
has the standard form

J(a,b) =
∂a
∂x

∂b
∂y

− ∂a
∂y

∂b
∂x

.

First we give a basic introduction on how a PDE can be turned into a system of
ODEs by a multiscale method. Using operator notation, our problem (4) is viewed as
a perturbed version of the linear PDE L(ψ) = 0. We pick a solution of this equation,
say ψ0, which is a superposition of several waves ϕ j, that is, ψ0 = ∑s

j=1 A jϕ j, each
being a solution itself. To construct a solution of the original problem we make the
amplitudes time-dependent. As the size of the nonlinearity in (1) is just of order
ε, the amplitudes will vary only on time-scales 1/ε times slower than the waves.
Hence we define an additional time-variable t1 := tε called “slow time” to handle
this time scale. So we look for approximate solutions of (1) that have the following
form

ψ0(t, t1,�x) =
s

∑
j=1

A j(t1)ϕ j(�x, t),
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which for ε = 0 is an exact solution. The exact solution of the equation is written
as power series in ε around ψ0, that is, ψ = ∑∞

k=0 ψkεk. In our computation it is
truncated up to maximal order m, which in our case is m = 1, that is,

ψ(t, t1,�x) = ψ0(t, t1,�x)+ψ1(t, t1,�x)ε.

Plugging ψ(t, t1,�x) one has to keep in mind that, since t1 = εt, we now have d
dt =

∂
∂ t + ε ∂

∂ t1
due to the chain rule. Equations are formed by comparing the coefficients

of εk. For k = 0 this gives back the linear equation, but we keep the equation for
k = 1. In particular, for (4) we arrive at

∂�ψ0

∂ t
+β

∂ψ0

∂x
= 0,

∂�ψ0

∂ t1
+

∂�ψ1

∂ t
+β

∂ψ1

∂x
= −J(ψ0,�ψ0).

To get (2), we have to get rid of all other variables. This is done by integrating against
the ϕ j’s, that is, 〈.,ϕ j〉L2(Ω), and averaging over (fast) time, that is, limT→∞

1
T
∫ T

0 .dt.

3.2 The Implementation

This method was implemented in Mathematica with order m = 1 in mind. So it
would not be immediately applicable to higher orders without some (minor) adjust-
ments. The ODEs are constructed by the function

ODESystem[L(ψ), N(ψ), ψ,
{x1,..,xn}, t, domain, jacobian, m, s, A, linwav,
{λ1,..,λp}, paramvalues].

Basically this function takes the problem together with the solution of the linear
equation as input and computes the list of ODEs for the amplitudes as output. Its
arguments are given in more detail:

• L(ψ),N(ψ): Linear and nonlinear part of (1), each applied to a symbolic func-
tion parameter. Derivatives have to be specified with Dt instead of D and the
nonlinear part has to be a polynomial in the derivatives of the function.

• ψ: symbol used for function in L(ψ), N(ψ)
• {x1,...,xn}, t: list of symbols used for space-variables, and symbol for

time-variable
• domain: The domain on which the equation is considered has to be specified

in the form {{x1,minx1,maxx1}, ..., {xn,minxn,maxxn}}, where the
bounds on xi may depend on x1,...,xi−1 only.

• jacobian: For integration the (determinant of the) Jacobian must also be
passed to the function. This is needed in case the physical domain does not coin-
cide with the domain of the variables above, it can be set to 1 otherwise.
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• m, s: maximal power of ε and number of waves considered
• A: symbol used for amplitudes
• linwav: General wave of the linear equation is assumed to have separated vari-

ables, that is, ϕ(�x, t) = B1(x1)· · ·Bn(xn) exp(iθ(x1, . . . ,xn, t)), and has to be given
in the form
{B1(x1),...,Bn(xn), θ(x1,...,xn,t)}.

• {λ1,...,λp}: list of symbols of parameters the functions in linwav depend
on

• paramvalues: For each of the s waves explicit values of the parameters
{λ1,. . . ,λp} have to be passed as a list of s vectors of parameter values.

ODESystem[linearpart_,nonlinearpart_,fun_Symbol,vars_List,
t_Symbol,domain_List,jacobian_,ord_Integer,num_Integer,
A_Symbol,linwav_List,params_List,paramvalues_List] :=

Module[{B,theta,eq,k},
eq = PerturbationEqns[linearpart,nonlinearpart,

fun,vars,t,ord];
eq = PlugInGenericWaveTuple[eq,fun,vars,t,A,B,theta,num]

/. fun[1]->(0&);
eq = Table[Resonance2[eq,linwav,vars,t,params,A,B,theta,

num,paramvalues,k],
{k,num}];

Map[Integrate[Simplify[#,And@@(Function[B,B[[2]]<B[[1]]<
B[[3]]]/@domain)]*jacobian,

Sequence@@domain]&,
eq,{2}]

]

Internally this function is divided into three subroutines briefly described below.

3.2.1 Perturbation Equations, General Form

The first of the subroutines is

PerturbationEqns[L(ψ), N(ψ), ψ, {x1,...,xn}, t, m].

As mentioned before we approximate the solution of our problem by a polyno-
mial of degree m in ε . This subroutine works for arbitrary m. In the first step we con-
struct equations by coefficient comparison. Additional time-variables will be created
automatically and labeled t[1],...,t[m]. The output is a list of m+1 equations
corresponding to the powers ε0, . . . ,εm. The implementation is quite straightfor-
ward. First set ψ = ∑m

k=0 ψk(t, t1, . . . ,tm,x1, . . . ,xn)εk in (1), where tk = εkt, that is,
d
dt = ∂

∂ t + ∑m
k=1 εk ∂

∂ tk
. Then extract the coefficients of ε0, . . . ,εm on both sides and

assemble the equations. Finally replace εkt by tk again.

PerturbationEqns[linearpart_,nonlinearpart_,fun_Symbol,
vars_List,time_Symbol,ord_Integer] :=

Module[{i,j,e,eq},
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eq = ((linearpart == -e*nonlinearpart)
/. {fun->Sum[eˆi*fun[i][time,Sequence@@Table[eˆj*

time,{j,ord}],Sequence@@
DeleteCases[vars,time]],

{i,0,ord}]});
eq = (eq /. ((Dt[#, __]->0)& /@ Join[vars,{time,e}]));
eq = (Equal@@#)& /@

Transpose[Take[CoefficientList[#,e],1+ord]& /@
(List@@eq)];

eq /. Table[eˆj*time->time[j],{j,ord}]
]

3.2.2 Perturbation Equations, Given Linear Mode

In step two we set ψ0(t, t1,�x) = ∑s
j=1 A j(t1)ϕ j(�x, t) as described earlier. This is done

by the function

PlugInGenericWaveTuple[eq, ψ, {x1,...,xn}, t, A, B, θ, s],

where the first argument is the output of the previous step. The symbols B and θ have
to be passed for labeling the shape and phase functions, respectively. The output
consists of two parts. The first part of the list formulates the assumption L(ϕ j) = 0
explicitly for each of the waves. This is not used in subsequent computations, but
is provided as a way to check the assumption. The second part of the list is the
equation corresponding to the coefficients of ε from the previous step, with ψ0 as
above. As the task of this step is so short, the implementation does not need further
explanation.

PlugInGenericWaveTuple[eq_List,fun_Symbol,vars_List,
t_Symbol,A_Symbol,B_Symbol,theta_Symbol,num_Integer] :=
Module[{i,j,waves,n=Length[DeleteCases[vars,t]]},
waves = Table[A[j][Slot[2]]*

Product[B[i][j][Slot[i+2]],{i,n}]*
Exp[I*theta[j][Sequence@@Table[Slot[i+2],

{i,n}],Slot[1]]],
{j,num}];

{Table[eq[[1]] /. fun[0]->Function[Evaluate[waves[[j]]]],
{j,num}],

Expand /@
(eq[[2]] /. fun[0]->Function[Evaluate[Total[waves]]])

}]

3.2.3 Time and Scale Averaging

Step three is the most elaborate. Under the assumption that interchange of averaging
over time and inner product is justified, an integrand
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h = lim
T→∞

1
T

∫ T

0
ψ0ϕk dt

is computed, which when integrated over the domain yields

∫
Ω

h = lim
T→∞

1
T

∫ T

0
〈ψ0,ϕk〉L2(Ω) dt.

Resonance conditions posed on the phase functions are explicitly used by

Resonance[eq, linwav, {x1,..,xn}, t,
{λ1,..,λp}, A, B, θ, s, cond, k],

which receives the output from the previous step in eq. Here cond specifies the res-
onance condition in terms of θ j, which have to be entered as θ[j][x1,..,xn,t],
respectively. The last argument is the index of the wave ϕk in the integral above. Al-
ternatively, Resonance2 uses explicit parameter settings paramvalues for the
waves instead of cond. This has been necessary because the general Resonance
does not give useable results (see Sect. 3.3 for more details). The main work in
this step is to find out which terms do not contribute to the result. We exploit the
fact that oscillating terms vanish when averaged over time by simply omitting those
summands of 〈ψ0,ϕk〉L2(Ω) that have a factor exp(iθ) with some time-dependent
phase θ . The code for Resonance is not shown here, but is quite similar to Res-
onance2.

Resonance2[eq_List,linwav_List,vars_List,t_Symbol,params_List,
A_Symbol,B_Symbol,theta_Symbol,num_Integer,
paramvalues_List,testwave_Integer] :=

Module[{e,i,j,n=Length[DeleteCases[vars,t]]},
e = Expand[(List@@Last[eq])*

Exp[-I*theta[testwave][Sequence@@
DeleteCases[vars,t],

t]]];
e = e /.

Table[
theta[j] ->
(Evaluate[(linwav[[n+1]] /.

(Rule@@#& /@
Transpose[{params,paramvalues[[j]]}]

)
) /. Append[Table[

DeleteCases[vars,t][[i]]
-> Slot[i],

{i,n}],
t -> Slot[n+1]]

]&
),

{j,num}];
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e = MapAt[
(Function[theta,If[FreeQ[theta,t],theta,0]

]
[Simplify[#]]

)&,
e,
Position[e,Exp[_]]];

e = Equal@@
(e*Conjugate[A[testwave]][t[1]]*
Product[Conjugate[B[i]

[testwave]
[DeleteCases[vars,t][[i]]]

],
{i,n}]

) /.
Flatten[

Table[B[i][j] ->
Function[
Evaluate[DeleteCases[vars,t][[i]]],
Evaluate[linwav[[i]] /.

(Rule@@#& /@
Transpose[

{params,paramvalues[[j]]
}]

)]],
{i,n},{j,num}]]

]

The integration of h is done by Mathematica and can be quite time-consuming.
So ODESystem simplifies the integrand first to make integration faster. Still the
expressions involved can be quite complicated. This is the most time-consuming
part during construction of the ODEs.

3.3 Obstacles

Mathematica sometimes does not seem to take care of special cases and conse-
quently has problems with evaluating expressions depending on symbolic parame-
ters. We give two simple examples to illustrate this issue:

• Orthogonality of sine-functions.
Indeed, it holds that

∀m,n ∈ N :
∫ 2π

0
sin(mx)sin(nx)dx = πδm,n.
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Computing this in Mathematica by

Integrate[Sin[m*x]Sin[n*x], {x,0,2π},
Assumptions → m∈Integers && n∈Integers]

yields 0 independently of m,n instead.
• Computation of a limit.

Mathematica evaluates an expression

∀n ∈ Z : lim
x→n

sin(xπ)
x

= πδn,0

and similar expressions in two different ways getting two different answers. On
the one hand

Limit[Sin[(m-n)π]/(m-n), m→n,
Assumptions → m∈Integers && n∈Integers]
gives 0. On the other hand, however, when the condition m,n ∈ Z is not used for
computing the result, Mathematica yields the correct answer π , as with

Limit[Sin[(m-n)π]/(m-n), m→n].

Unfortunately these issues prevented us from obtaining a nice formula for the coef-
ficients in symbolic form by Resonance. So we just compute results for explicit
parameter settings using Resonance2.

3.4 Results

3.4.1 Atmospheric Planetary Waves

For the validation of our program we consider the barotropic vorticity equation on
the sphere first. Here numerical values of the coefficients αi are available (Table 1,
Kartashova and L’vov (2007)). The equation looks quite similar

∂�ψ
∂ t

+2
∂ψ
∂λ

= −εJ(ψ,�ψ).

However, in spherical coordinates (φ ∈ [−π
2 , π

2 ], λ ∈ [0,2π]) the differential opera-
tors are different:

� =
∂ 2

∂φ 2 +
1

cos(φ)2
∂ 2

∂λ 2 − tan(φ)
∂

∂φ
,

J(a,b) =
1

cos(φ)

(
∂a
∂λ

∂b
∂φ

− ∂a
∂φ

∂b
∂λ

)
.
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The linear modes have in this case the following form (Pedlosky 1987):

Pm
n (sin(φ)) exp

(
i
(

mλ +
2m

n(n+1)
t
))

, (5)

where Pm
n (µ) are the associated Legendre polynomials of degree n and order m ≤ n,

so again they depend on the two parameters m and n. Also resonance conditions on
the parameters look different in this case.

Now we compute the coefficient α3 in (2). In Kartashova and L’vov (2007) we
find the following equation for the amplitude A3

n3(n3 +1)
∂A3

∂ t1
(t1) = 2iZ(n2(n2 +1)−n1(n1 +1))A1(t1)A2(t1),

so α3 = 2iZ n2(n2+1)−n1(n1+1)
n3(n3+1) . Parameter settings and corresponding numerical val-

ues for Z were taken from the table below (see Kartashova and L’vov (2007)). For
this equation and s = 3 results produced by our program have the form c1A3Ȧ3 =
c2A1A2A3, so α3 = c2/c1.

Testing all resonant triads from Table 1 from Kartashova and L’vov (2007), we
see that the coefficients differ merely by a constant factor of ±√

8, which is due to
the different scaling of the Legendre polynomials. In our computation they were nor-
malized s.t.

∫ 1
−1 Pm

n (µ)2 dµ = 1. With three triads, however, results were completely
different. Interestingly this were exactly those triads for which no ϕ0 appears in
the table.

Furthermore, for the other coefficients in (2) our program computes α1 = α2 = 0
in all tested parameter settings. This fact can be easily understood in the following
way. We checked only resonance conditions but not the conditions for the interaction
coefficients to be non-zero, which are elaborated enough:

mi ≤ ni, ni 	= n j ∀i = 1,2,3, |n1 −n2| < n3 < n1 +n2,

and
n1 +n2 +n3 is odd.

Randomly taken parameter setting does not satisfy these conditions.

3.4.2 Ocean Planetary Waves

Returning to the original example on the domain [0,Lx]× [0,Ly], we find explicit for-
mulae for the coefficients in Kartashova and Reznik (1992). According to Sect. 3.3
we can only verify special instances and not general formulae.

Linear modes have now the form (Kartashova and Reznik 1992)

sin
(

π
mx
Lx

)
sin

(
π

ny
Ly

)
exp

(
i
(

β
2ω

x+ωt
))

, (6)

with m,n ∈ N and ω = β
2π
√

( m
Lx )2+( n

Ly )2
.
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Parameter settings solving the resonance conditions were computed as in Sect. 4.
Unfortunately results do not match and we have no explanation for that. In particu-
lar, the condition α1

ω2
1
+ α2

ω2
2
+ α3

ω2
3

= 0 stated in Kartashova and Reznik (1992) does not

hold for the results of our program since we got α1 = α2 = 0 in all tested parameter
settings, just as in the spherical case.

For example, if we try the triad {{2,4},{4,2},{1,2}}, where Lx = Ly = 1,

our program computes α3 = 32
√

5
11 π

(
sin(3

√
5π)− i(1+ cos(3

√
5π))

)
, whereas the

general formula yields α3 = 19+7
√

5
11 π sin(3

√
5π). However, if we use a triad with

q = 1, e.g. {{24,18},{9,12},{8,6}}, both agree on α1 = α2 = α3 = 0.

4 Resonance Conditions

The main equation to solve is

1√(
m1
Lx

)2
+
(

n1
Ly

)2
+

1√(
m2
Lx

)2
+
(

n2
Ly

)2
=

1√(
m3
Lx

)2
+
(

n3
Ly

)2

for all possible mi,ni ∈ Z with the scales Lx and Ly (also ∈ Z ) and then to check the
condition n1±n2 = n3. In the following argumentation it will be seen that Lx and Ly
can be assumed to be free of common factors. Below we refer to Lx and Ly as to the
scale coefficients.

The first step of the algorithm implemented in Mathematica is to rewrite the
equation to 1√

m̃1
2+ñ1

2
+ 1√

m̃2
2+ñ2

2
= 1√

m̃3
2+ñ3

2
and transform it in the following

way: we factorize the result of each m̃i
2 + ñi

2 and obtain with ρ1 · · ·ρr being the
factors of m2

i +n2
i and α1 · · ·αr their respective powers:

m2
i +n2

i = ρα1
1 ·ρα2

2 · · ·ραr
r .

We now define a weight γi of the wave-vector (mi,ni) as the product of the ρ j’s
to the quotient of their respective α j and 2. The weight qi will be the name of the
product of the ρ j’s, which have an odd exponent:√

m2
i +n2

i = γi
√

qi.

Our equation then can be rewritten as

1
γ1
√

q1
+

1
γ2
√

q2
=

1
γ3
√

q3

and one easily sees that the only way for the equation to possibly hold is q1 =
q2 = q3 = q (see Kartashova (2006b) for details). Further, we call q an index of



108 E. Kartashova et al.

the corresponding wave-vectors. The set of all wave-vectors with the same index
is called a class of index q and is denoted as Clq. Obviously, the solutions of the
resonance conditions are to be searched for with separate classes only.

At this point one can also see that only such scales, Lx and Ly, without com-
mon factors are reasonable. If they had a common factor, it would cancel out in the
equation.

4.1 Method Description

The following five steps are the main steps of the algorithm:

• Step 1: Compute the list of all possible indexes q.

To compute the list of all indexes q, we use the fact that they have to be square-
free and each factor of q has to be different from 3 mod 4 (Lagrange theorem).
There exist 57 possible indexes in our computational domains q ≤ 300:

{1,2,5,10,13,17,26,29,34,37,41,53,58,61,65,73,74,82,85,89,

97,101,106,109,113,122,130,137,145,146,149,157,170,173,178,

181,185,193,194,197,202,205,218,221,226,229,233,241,257,

265,269,274,277,281,290,293,298}

• Step 2: Solve the weight equation 1
γ1

+ 1
γ2

= 1
γ3

.

For solving the weight equation, we transform it into the equivalent form:

γ3 =
γ1 γ2

γ1 + γ2
. (7)

The solution triples {γ1,γ2,γ3} can now be found by the two for-loops over γ1
and γ2 up to a certain maximum parameter and γ3 is then found constructively
with formula (7).

• Step 3: Compute all possible pairs (mi,ni) – if there are any – that satisfy m2
i

+n2
i = γ2

i q.

To compute our initial variables mi,ni, we use the Mathematica standard function
Sum Of Square Representation[d, x], which produces a list of all possible rep-
resentations of an integer x as a sum of d squares, that is, we can find all possible
pairs (a,b) with d = 2 such that they satisfy a2 +b2 = x. Therefore, checking the
condition m2

i +n2
i = γ2

i q is easy.
• Step 4: Sort out the solutions {m1,n1,m2,n2,m3,n3} that do not fulfill the con-

dition n1±n2 = n3.
• Step 5: Check if by dividing mi by Lx and ni by Ly there are still exist some

solutions.

Last two steps are trivial.
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4.2 The Implementation

Our implementation is quite straightforward and the main program is based on four
auxiliary functions shown in the following subsections.

4.2.1 List of Indexes

The function constructqs[max] produces the list of all possible indexes q up to the
parameter max. The first (obvious) q’s sol = {1} is given and the function checks the
conditions starting with n = 2. Every time n satisfies the conditions, it is appended
to the list sol. If one condition fails, the next n = n+1 is considered and so on until
n reaches the parameter max. Then the list sol is returned:

Clear[constructqs];

constructqs[n , sol List, max ]; n>max := sol (*6*)
constructqs[n ?SquareFreeQ, sol List, max ]
:= constructqs[n+1, Append[sol, n], max] (*5*)

constructqs[n ?SquareFreeQ, sol List, max ];
MemberQ[Mod[PrimeFactorList[n], 4], 3]
:= constructqs[n+1, sol, max] (*4*)

constructqs[n , sol List, max ]; !SquareFreeQ[n]
:= constructqs[n+1, sol, max] (*3*)
constructqs[1] := {1} (*2*)

constructqs[max ] := constructqs[3, {1}, max] (*1*)

4.2.2 Weight Equation

The function findγs[γmax] solves the weight equation in the following way. For
a fixed γ1 and γ2 running between 1 and γmax, it is checked if γ3 is an integer.
If it is, the triple {γ1,γ2,γ3} is added to the list sol, which is empty at the initial
moment. Once γ2 reaches γmax, it is set to 1 again and the search starts again with
γ1 = γ1 + 1. This is done as long as both γ1 and γ2 are lower than max. Finally, the
list sol is returned:

findγs[γmax , γ1 , γ2 , sol List];

γ1 > γmax := (Clear[γ3],sol) (*6*)

findγs[γmax , γ1 , γ2 , sol List]; (γ1 ≤ γmax && γ2>γmax &&
IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1+1, 1, Append[sol, {γ1, γ2, γ3}]] (*5*)

findγs[γmax , γ1 , γ2 , sol List];
(γ1 ≤ γmax && γ2>γmax &&
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!IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1 + 1, 1, sol] (*4*)

findγs[γmax , γ1 , γ2 , sol List];
(γ1 ≤ γmax && γ2 ≤ γmax && IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1, γ2+1, Append[sol, {γ1, γ2, γ3}]] (*3*)

findγs[γmax , γ1 , γ2 , sol List];
(γ1 ≤ γmax && γ2 ≤ γmax && !IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1, γ2 + 1, sol] (*2*)

findγs[γmax ] := findγs[γmax, 1, 1, {}]) (*1*)

For findγs[γmax] to be executable, the iteration depth of 212 is not sufficient and it
was set to ∞.

4.2.3 Linear Condition

The third auxiliary function makemns checks whether the linear condition
n1 ± n2 = n3 is fulfilled and structures the solution set into a list of pairs
{{m1,n1},{m2,n2},{m3,n3}} :

Clear[makemns];

makemns[m1 , n1 , m2 , n2 , m3 , n3 ] := {} (*3*)

makemns[m1 , n1 , m2 , n2 , m3 , n3 ];
(n1 + n2 == n3 ‖ n1 - n2 == n3) :=

{{m1, n1}, {m2, n2}, {m3, n3}} (*2*)

makemns[mn1 List, mn2 List, mn3 List] :=
Cases[Flatten[Table[makemns[mn1[[i,1]], mn1[[i,2]],

mn2[[j,1]], mn2[[j,2]], mn3[[k,1]], mn3[[k,2]]],
{i, 1, Length[mn1]}, {j, 1, Length[mn2]},
{k, 1, Length[mn3]}], 2],
{{x1 ,x2 }, {x3 ,x4 }, {x5 ,x6 }}] (*1*)

The function makemns is called three times:
In (*1*) from three lists of arbitrarily many pairs {mi, ni}, a three-dimensional

array is made combining entries of the three lists with each other. Each en-
try calls the same program with the parameters of the current combination of
{m1,n1,m2,n2,m3,n3}.

In (*2*) and (*3*) it is decided whether the condition n1± n2 = n3 is fulfilled.
If it is, a solution {{m1,n1},{m2,n2},{m3,n3}} is written in the array. The table is
then flattened to the level 2 in order to have a list of solutions. In the end, all empty
lists have to be sorted out, done by the function Cases, which keeps only those cases
that have the shape {{x1 ,x2 },{x3 ,x4 },{x5 ,x6 }}.
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4.2.4 Scale Coefficients

Finally, the function respectL[sol, Lx, Ly] divides each component of the solution
by the pair (Lx, Ly) and sorts out the result if any of the six components does not
remain an integer:

respectL[sol List, Lx , Ly ] :=
Map[solution[#]&,

Cases[Map[#/{Lx, Ly}&,
Map[#[[1]]]&, sol], {2}], {{ Integer, Integer},

{ Integer, Integer}, { Integer, Integer}}]]
The function respectL[sol, Lx, Ly] gets as an input the list of the form

{solution[{{m1,n1},{m2,n2},{m3,n3}}],...} and returns the list of the same form.

4.3 Results

All solutions in the computation domain m,n ≤ 300 have been found in a few
minutes. Notice that computations in the domain m,n ≤ 20 by direct search with-
out introducing indexes q and classes Clq took about 30 min. A direct search in the
domain m,n ≤ 30 has been interrupted after 2 h, since no results were produced.

The number of solutions depends drastically on the scales Lx and Ly, some data
are given below (for the domain m,n ≤ 50):

(Lx = 1,Ly = 1): 76 solutions;
(Lx = 3,Ly = 1): 23 solutions;
(Lx = 6,Ly = 16): 2 solutions;
(Lx = 5,Ly = 21): 2 solutions;
(Lx = 11,Ly = 29): no solutions (search up to 300, for both qmax and γmax).

Interestingly enough, in all tried possibilities, only an odd q yield solutions.

5 Structure of the Solution Set

5.1 Method Description

The graphical way to present 2D-wave resonances suggested in Kartashova (1998)
for three-wave interactions is to regard each 2D-vector �k = (m,n) as a node (m,n)
of integer lattice in the spectral space and connect those nodes which construct one
solution (triad, quartet, etc.). Having computed already all the solutions of (3) in
Sect. 4, now we are interested in the structure of resonances in spectral space. To
each node (m,n) we can prescribe an amplitude A(m,n, t1) whose time evolution
can be computed from the dynamical equations obtained in Sect. 3. Thus, solution
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set of resonance conditions (3) can be thought of as a collection of triangles, some
of them are isolated, some form small groups connected by one or two vertices.
Corresponding dynamical systems can be reconstructed from the structure of these
groups. For instance, a single isolated triangle corresponding to a solution with wave
vectors (m1,n1)(m2,n2)(m3,n3) and wave amplitudes {(A1, A2, A3)} corresponds
to the following dynamical system:

Ȧ1 = α1A2A3,

Ȧ2 = α2A1A3,

Ȧ3 = α3A1A2,

with αi being functions of all mi,ni (see Sect. 3).
If that two triangles share one common vertex {(A1, A2, A3),(A3, A4, A5)},

then the corresponding dynamical system is

Ȧ1 = α1A2A3,

Ȧ2 = α2A1A3,

Ȧ3 = α3,1A1A2 +α3,2A4A5,

Ȧ4 = α4A3A5,

Ȧ5 = α5A3A4.

If two triangles have two vertices in common {(A1, A2, A3),(A2, A3, A4)}, then
the dynamical system is quite different:

Ȧ1 = α1A2A3,

Ȧ2 = α2,1A1A3 +α2,2A3A4,

Ȧ3 = α3,1A1A2 +α3,2A2A4,

Ȧ4 = α4A2A3 =
α4

α1
Ȧ1.

Using the fourth equation, the formulae for Ȧ2 and Ȧ3 can be simplified to

Ȧ4 =
α4

α1
Ȧ1 ⇒ A4 =

α4

α1
A1 +β1,

Ȧ2 = A1A3

(
α2,1 +

α2,2α4

α1

)
+

α4β1

α1
,

Ȧ3 = A1A2

(
α3,1 +

α3,2α4

α1

)
+

α4β1

α1
.

This means that qualitative dynamics of the three-term mesoscopic system de-
pends not on the geometrical structure of the solution set but on its topological
structure. Constructing the topological structure of the solution set, we do not con-
sider concrete values of the solution but only the way how triangles are connected.
In any finite spectral domain we can compute all independent wave clusters and
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write out corresponding dynamical systems; thus obtaining complete information
about energy transfer through the spectrum. Of course, quantitative properties of
the dynamical systems depend on the specific values of mi,ni (for instance, values
of interaction coefficients αi, magnitudes of periods of the energy exchange among
the waves belonging to one cluster, etc.).

5.2 Implementation

To construct the topological structure of a given solution set we need first to find all
groups of connected triangles. This is done by the following procedure:

FindConnectedGroups[triangles_List] :=
Block[{groups = {}, tr = triangles, newgroup},

While[Length[tr] > 0,
{newgroup, tr} =

FindConnectedTriangles[{First[tr]}, Rest[tr]];
groups = Append[groups, newgroup];

];
groups

];

FindConnectedTriangles[grp_List,triangles_List]:=
Module[{points,newGrpMember,tr=triangles},

points=Flatten[Apply[List,grp,2],1];
newGrpMember=Cases[tr, _[___,#1,___]]&/@points;
(tr=DeleteCases[tr, _[___,#1,___]])&/@points;
newGrpMember=Union[Join@@newGrpMember];
If[Length[newGrpMember]==0,

{grp,tr},
newGrpMember=FindConnectedTriangles[newGrpMember,tr];
{Join[grp,First[newGrpMember]],
newGrpMember[[2]]}

]
];

The function FindConnectedGroups expects a list of triangles as input,
and three different types for data structure can be used. The first type is just a list
of three pairs, where each pair contains the coordinates of a node, for example,
{{1,2},{3,4},{5,6}}. An alternative type is like the type before just with
another head symbol instead of list, for example,

Triangle[{1,2},{3,4},{5,6}].

The function also works for vertex numbers instead of coordinates, for example,
Triangle[1,2,3]. In every case, the function returns a partition of the input
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list where all elements of a list are connected and elements of different lists have no
connection to each other.

The function FindConnectedTriangles is an auxiliary function, which
has two parameters. The first list contains all connected triangles. The second list
contains all other triangles that are possibly connected to one of the triangles in the
first list. The function FindConnectedTriangles returns a pair of lists: the
first list contains all triangles that are connected to the selected triangles, the second
list contains all the remaining.

The input list for FindConnectedTriangles is a list of three-element lists.
Before we can use the results produced in Sect. 4 as an input we have to transform
the data. This can be easily done by

TransformSolution[sol_List]:=
Flatten[Rest/@sol]/.solution[trs:{___List}]->trs.

Some remarks on the implementation

The function FindConnectedGroups selects a triangle, which is not yet in a
group and calls the function FindConnectedTriangles. Since the returned
first list always contains at least one triangle, the length of the list tr decreases in
every loop call, hence the FindConnectedGroups terminates. The question left
is how to find all triangles connected with a certain triangle. This has been done
in the following way. First we search for all triangles that share at least one node
with this triangle. Then we restart the search with all triangles found. For efficiency
reasons it is better to perform the search with all triangles we found in one step
together. If in one step no further triangles are found then we are ready and return
the list of connected triangles and the remaining list. In each step we remove all
triangles we found from the list of triangles that are not declared as connected. This
increases the speed because the search is faster if there are less elements to compare.
More important, this prevent us to search in loops and find some triangles more than
once. In general, search in a loop can be the reason for a termination problem but
due to shrinking the list of triangles to search for in every step the termination can
be guaranteed.

5.3 Results

In Fig. 1 the geometrical structure of the solution set is shown, for the case mi,
ni ≤ 50 and Lx = Ly = 1.

Below we show all the topological elements of this solution set.
1. Twenty-one groups contain only one triangle (obviously, they have isomorphic

dynamical systems):
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Fig. 1 The geometrical structure of the result in domain D = 50

{{3,18},{36,6},{2,12}} {{4,46},{14,44},{23,2}}
{{6,44},{36,26},{13,18}} {{6,48},{42,24},{3,24}}
{{8,26},{16,22},{13,4}} {{9,24},{48,18},{16,6}}
{{14,28},{28,14},{7,14}} {{18,36},{36,18},{9,18}}
{{22,16},{26,8},{11,8}} {{22,20},{28,10},{11,10}}
{{22,44},{44,22},{11,22}} {{22,48},{42,32},{21,16}}
{{24,18},{9,12},{8,6}} {{26,28},{28,26},{19,2}}
{{28,42},{42,28},{21,14}} {{28,46},{50,20},{7,26}}
{{36,22},{42,4},{11,18}} {{36,30},{15,18},{10,12}}
{{38,24},{42,16},{21,8}} {{44,18},{46,12},{23,6}}
{{48,36},{18,24},{16,12}}

2. Further nine groups also contain one triangle, but in each triangle two points
coincide (again, they have isomorphic dynamical systems):

{{8,2},{8,2},{1,4}} {{16,2},{16,2},{7,4}}
{{16,4},{16,4},{2,8}} {{24,6},{24,6},{3,12}}
{{32,8},{32,8},{4,16}} {{34,8},{34,8},{7,16}}
{{46,8},{46,8},{17,16}} {{48,6},{48,6},{21,12}}
{{48,12},{48,12},{6,24}}

3. There exist two groups with two triangles each (by observation of the geomet-
rical pictures it is easy to determine that both have isomorphic dynamical systems):

{ {{2,24},{18,16},{9,8}}, {{4,48},{36,32},{18,16}} }
{ {{12,26},{26,12},{3,14}}, {{26,12},{28,6},{13,6}} }
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4. Two further groups consist of two triangles each, but the common point is
contained twice in one triangle (the dynamical systems are isomorphic, but different
from the two groups above):

{ {{24,22},{32,6},{3,16}}, {{32,6},{32,6},{11,12}} }
{ {{8,38},{32,22},{11,16}}, {{38,8},{38,8},{11,16}} }

5. As we can see by inspecting their geometrical structures, further seven groups
are not isomorphic to any group found above:

{ {{6,12},{12,6},{3,6}}, {{12,24},{24,12},{6,12}},
{{24,48},{48,24},{12,24}} }

{ {{2,16},{14,8},{1,8}}, {{4,32},{28,16},{2,16}},
{{32,4},{32,4},{14,8}} }

{ {{2,4},{4,2},{1,2}}, {{4,8},{8,4},{2,4}},
{{8,16},{16,8},{4,8}}, {{16,32},{32,16},{8,16}} }

{ {{4,22},{10,20},{11,2}}, {{8,44},{20,40},{22,4}},
{{10,20},{20,10},{5,10}}, {{20,40},{40,20},{10,20}} }

{ {{10,40},{26,32},{19,8}}, {{26,32},{38,16},{13,16}},
{{32,26},{40,10},{13,16}}, {{40,10},{40,10},{5,20}} }
{ {{4,18},{14,12},{7,6}}, {{8,36},{28,24},{14,12}},
{{12,14},{14,12},{9,2}}, {{24,28},{28,24},{18,4}},
{{36,42},{42,36},{27,6}}, {{42,36},{21,18},{4,18}} }

{ {{2,36},{20,30},{17,6}}, {{4,6},{6,4},{3,2}},
{{8,12},{12,8},{6,4}}, {{12,18},{18,12},{9,6}},
{{16,24},{24,16},{12,8}}, {{18,12},{9,6},{4,6}},
{{20,30},{30,20},{15,10}}, {{20,30},{34,12},{1,18}},
{{24,36},{36,24},{18,12}}, {{30,20},{36,2},{1,18}},
{{32,48},{48,32},{24,16}}, {{34,12},{36,2},{15,10}},
{{36,24},{18,12},{8,12}}, {{45,30},{34,12},{12,18}} }

Geometrical interpretation of all topological elements is given below. In cases
when there exist more then one element with given structure, wave numbers are
written at the picture corresponding to the element chosen for presentation.

5.4 Important Remark

To compute all nonisomorphic subgraphs algorithmically is a nontrivial problem.
Indeed, all isomorphic graphs presented in previous section are described by similar
dynamical systems, only magnitudes of interaction coefficients αi vary. However, in
the general case graph structure thus defined does not present the dynamical system
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unambiguously. Consider Fig. 2 below where two objects are isomorphic as graphs.
However, the first object represents four connected triads with dynamical system

(A1, A2, A3), (A1, A2, A5), (A1, A3, A4), (A2, A3, A6), (8)

while the second three connected triads with dynamical system

(A1, A2, A5), (A1, A3, A4), (A2, A3, A6). (9)

This problem has been solved in Kartashova and Mayrhofer (2007) by introduc-
ing hypergraphs of a special structure; the standard graph isomorphism algorithm
used by Mathematica has been modified in order to suit hypergraphs.
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A3A4
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A6

A1 A2

A3A4 A6

�
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Fig. 2 Example of isomorphic graphs and nonisomorphic dynamical systems. The left graph cor-
responds to the dynamical system (8) and the graph on the right to the dynamical system (9). To
discern between these two cases we set a placeholder inside the triangle not representing a reso-
nance

6 A Web Interface to the Software

The previous sections have presented implementations of various symbolic com-
putation methods for the analysis of nonlinear wave resonances. These implemen-
tations are written in the language of the computer algebra system Mathematica,
which provides an appealing graphical user interface (GUI) for executing computa-
tions and presenting the results. For instance, the pictures shown in Sect. 4.3 were
produced by converting the computed hypergraphs to Mathematica plot structures
that can be displayed by the GUI of the system.

However, to run these methods the user needs an installation of Mathematica on
the local computer with the previously described methods installed in a local di-
rectory. These requirements make access to the software difficult and hamper its
wide-spread usage. To overcome this problem, we have implemented a Web inter-
face such that the software can be executed from any computer connected to the
Internet via a Web browser without the need for a local installation of mathematical
software.

This implementation follows a general trend in computer science, which turns
away from stand alone software (that is installed on local computers and can be
executed only on these computers via a graphical user interface) and proceeds to-
wards service-oriented software (Gold et al. 2004) (that is installed on remove
server computers and wraps each method into a service that can be invoked over
the Internet via standardized Web interfaces). Various projects in computer math-
ematics have pursued middleware for mathematical web services, see for instance
MathBroker (2007), MONET (2004), Baraka and Schreiner (2006). On the long
term, it is thus envisioned that mathematical methods generally become remote ser-
vices that can be invoked by humans (or other software) without requiring local
software installations.

However, even without sophisticated middleware it is nowadays relatively sim-
ple to provide (for restricted application scenarios) web interfaces to mathematical
software by generally available technologies. The web interface presented in the
following sections is deliberately kept as simple as possible and makes only use
of such technologies; thus it should be easy to take this solution as a blueprint for
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other mathematical software with similar features. In particular, the web interface is
quite independent of Mathematica as the system underlying the implementation of
the mathematical methods; the same strategy can be applied to other mathematical
software systems such as Maple, MATLAB, etc.

6.1 The Interface

Figure 3 shows the web interface to some of the methods presented in the previous
sections. Its functionality is as follows:

Create Solution Set: The user may enter a parameter D in the first (small) text
field and then press the button “Create Solution Set.” This invokes the method
CreateSolutionSet, which computes the set of all solutions whose values
are smaller than or equal to D. This set is written into the second (large) text field
in the form

{Solution[x1,y1,z1],...,Solution[xn,yn,zn]}.

Plot Topology: The user may enter into the second (large) text field a specific
solution set (or, as show above, compute one), and then press the button “Plot
Topology.” This first invokes the method Topology, which computes the topo-
logical structure of the solution set as a list of hypergraphs and then calls the

Fig. 3 Web interface to the implementation
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method PlotTopology, which computes a plot of each hypergraph. The re-
sults are displayed in the right frame of the browser window.

The web interface is available at the URL

http://www.risc.uni-linz.ac.at/projects/alisa
(Button “Discrete Wave Turbulence”)

To run the computations, an account and a password are needed.

6.2 The Implementation

The web interface is implemented in PHP, a scripting language for producing dy-
namic web pages (The PHP Group 2007). PHP scripts can be embedded into con-
ventional HTML pages within tags of form <php?...?>; when a Web browser
requests such a page, the Web server executes the scripts with the help of an embed-
ded PHP engine, replaces the tags by the generated output, and returns the resulting
HTML page to the browser. With the use of PHP, thus programs can be implemented
that run on a web server and deliver their results to a client computer which displays
them in a web browser. The web interface to the discrete wave turbulence package
is implemented in PHP as sketched in Fig. 4 and described below (the parenthesized
numbers in the text refer to the corresponding numbers in the figure).

Create Solution Set: The browser frame input on the left side contains essentially
the following HTML input form:

<form target="textarea"
action="https://apache2.../CreateSolutionSet.php"
method="post">

<input name="domain" size="3">
<input type="submit" value="Create Solution Set">

</form>

This form consists of an input field domain to receive a domain value and a
button to trigger the creation of the solution set. When the button is pressed, (1) a re-
quest is sent to the web server which carries the value of domain; this request asks
the server to deliver the PHP-enhanced web page CreateSolutionSet.php
into the target frame textarea, which is displayed internally to input.

The file CreateSolutionSet.php has essentially the content

<?php
$math="/.../math";
$cwd="/.../DiscreteWaveTurbulence";
$domain = $_POST[’domain’];
$mcmd =
"SetDirectory[\"" . $cwd . "\"]; " .
"Needs[\"DiscreteWaveTurbulence‘SolutionSet‘\"]; " .
"sol=DiscreteWaveTurbulence‘SolutionSet‘CreateSolutionSet[".
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Fig. 4 Implementation of the web interface

$domain . "]; ";
$command="$math -noprompt -run ’" . $mcmd .

"Print[StandardForm[sol]]; Quit[];’";
$result = shell_exec("$command");
echo
...
"<textarea name=\"sol\" cols=\"60\" rows=\"20\">" .
htmlspecialchars($result) .
"</textarea>" .

...;
?>
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After setting the paths $math of the Mathematica binary and $cwd of the direc-
tory where the DiscreteWaveTurbulence package is installed, the script sets
the local variable $domain to the value of the input field domain. Then the Mathe-
matica command $mcmd is constructed in order to load the file SolutionSet.m
and execute the command CreateSolutionSet to compute the solution set.
Now the system command $command is constructed to (2) invoke Mathematica,
which calls the previously constructed command, and (3) prints its result to the
standard output stream, which is captured in the variable $result. From this, the
script contstructs the HTML code of the result document, which is (4) delivered to
the Web browser.

Plot Topology: The browser frame textarea contains essentially the following
HTML input form:

<form target="result"
action="https://apache2..../PlotTopology.php"
method="post">

<textarea name="sol" cols="60" rows="20">...</textarea>
<input type="submit" value="Plot Topology">
</center>

</form>

This form consists of the textarea field sol to receive the solution set and a
button to trigger the plotting of the topology of this set. When the button is pressed,
(1) a request is sent to the web server which carries the value of sol; this request
asks the server to deliver the PHP-enhanced web page PlotTopology.php into
the target frame result on the right side of the browser.

The file CreateSolutionSet.php has essentially the content

<?php
$math="/.../math";
$basedir ="/.../DiscreteWaveTurbulence";
$baseurl ="http://apache2/.../DiscreteWaveTurbulence";
$sol = $_POST[’sol’];
... // create under $basedir a unique subdirectory $dir
$mcmd =
"SetDirectory[\"$basedir/$dir\"]; " .
"Needs[\"DiscreteWaveTurbulence‘Topology‘\"]; " .
"Needs[\"DiscreteWaveTurbulence‘SolutionSet‘\"]; " .
"top=DiscreteWaveTurbulence‘Topology‘Topology[$sol]; " .
"plots=DiscreteWaveTurbulence‘Topology‘PlotTopology1[top];";

$command="/usr/bin/Xvnc :20 & export DISPLAY=:20; " .
"export MATHEMATICA_USERBASE=$basedir/.Mathematica; " .
"$math -run ’" . $mcmd .
"Print[ExportList[plots,\"$image\"]]; Quit[];’";

$result = shell_exec("$command | tail -n 1");
for ($i=0;$i<$result;$i++)
echo "<img src=\"$baseurl/$dir/image-$i.png\"/>";

?>

For holding the images to be generated later, the script creates a unique di-
rectory $basedir/$dir, which is served by the web server under the url
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$baseurl/$dir. The script extracts the solution set $sol from the request
and sets up the Mathematica command to compute its topological structure and
generate the plots from which ultimately the image files will be produced.

For this purpose, however, Mathematica needs an X11 display server running;
since a Web server has no access to an X11 server, we start the virtual X11
server Xvnc (RealVNC Remote Control Software 2007) as a replacement and set
the environment variable DISPLAY to the display number on which the number
listens; Mathematica will subsequently send X11 requests to that display, which
will be handled by the virtual server. Likewise, Mathematica needs access to a
.Mathematica configuration directory; the script sets the environment variable
MATHEMATICA USERBASE correspondingly.

With these provisions, we can (2) invoke first the command to compute the plots
and then the (self-defined) command ExportList to generate for every plot an
image in the previously created directory. For this purpose the command uses (3)
the Mathematica command EXPORT[file,plot,"PNG"], which converts plot
to an image in PNG format and writes the image to file. ExportList returns the
number of images generated, which is (4) written to the standard output stream
which in turn is captured in the variable $result. From this information, the
script generates an HTML document, which contains a sequence of img elements
referencing these images. After this document has been (5) returned to the client
browser, the browser (6) requests the referenced images with GET messages from
the web server.

6.3 Extensions

As an alternative to the display of static images, the Web interface also provides an
option “Applet Viewer” with somewhat more flexibility. If this option is selected,
Mathematica is instructed to save all generated plots as files in the standard repre-
sentation. The generated HTML document then embeds (rather than img elements)
a sequence of applet elements that load instances of the “JavaView” applet (The
JavaView Project 2007). These applets run in the Java Virtual Machine of the Web
browser on the client computer, load the plot files from the web, and visualize them
in the browser. Rather than just displaying static images, the viewer allows to per-
form certain manipulations and transformations of the plots such as scaling, rotating,
etc. While this additional flexibility is not of particular importance for the presented
methods, they may in the future become useful for others.

To limit access to the software, respectively, to the computing power of the server
computer, it may be protected by authentication mechanisms. For example, on the
Apache Web server, it suffices to provide in the installation directory of the software
a file .htaccess with content

<Files "*.php">
SSLRequireSSL
AuthName "your account"
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AuthType Basic
Require valid-user

</Files>

With this configuration, the user is asked for the data of a valid account on the com-
puter running the Web server; other authentication mechanisms based, for example,
on password files may be provided in a similar fashion.

7 Discussion

Summing up all the results obtained, we would like to make some concluding
remarks.

• In general, coefficients αi can be computed symbolically by hand and only nu-
merically by Mathematica (see Sect. 3.3); at present we are not aware of the
possibility to overcome this problem.

• For the known case of spherical barotropic vorticity equation, values of coeffi-
cients αi coincide with known form of the literature for all triads except three.
These three triads, though satisfying resonant conditions, are known to be special
from the physical point of view in the following sense (see Kartashova and L’vov
(2007) for details). Though resonance conditions are fulfilled for the waves of
these triads, they, so to say, do not have a place in the physical space to interact
and their influence (if any) on the dynamics of the wave system has to be studied
separately from all other waves. Our results might indicate that also the coeffi-
cients αi of these triads have to be defined in some other way compared to other
resonant triads. For instance, another way of space-averaging has to be chosen.

• The results of Sect. 3.4.2 show that analytical formulae given in Kartashova and
Reznik (1992) for α j are not correct.

• The results of Sect. 4.3 show a crucial dependence of the number of solutions on
the form of the boundary conditions. In particular, some boundary conditions (for
example, (Lx,Ly) = (11,29)) yield no solutions, which is of most importance for
physical applications. From the mathematical point of view, an interesting result
has been observed: in all our computations (i.e., for m,n ≤ 300) indexes corre-
sponding to nonempty classes turned out to be odd. It would be interesting to
prove this fact analytically because if it is true, we can reduce the computational
time.

• The algorithm presented in Sect. 4 has been implemented before numerically in
Visual Basic, and our purpose here was to show that it works fast enough also in
Mathematica. The algorithms presented in Sects. 3 and 5 have never been imple-
mented before, the whole work is usually done by hand and some mistakes as in
Kartashova and Reznik (1992) are almost unavoidable: it takes sometimes a few
weeks of skillful researchers to compute interaction coefficients of dynamical
systems for one specific wave system.
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• All the algorithms presented above can easily be modified for the case of a four-
term mesoscopic system. The only problem left is a procedure to establish all
nonisomorphic topological elements for a quadruple graphs, similar to the proce-
dure given in Kartashova and Mayrhofer (2007) for a triangle graphs. The struc-
ture of quadruple graphs is much more complicated while some mechanisms of
energy transfer in the spectral space do exist (Kartashova 2007) that are absent
in three-term mesoscopic systems. A complete classification of quadruple graphs
is still an open question but in a given spectral domain it can be done directly (a
very time consuming operation).

• We have developed a Web interface for the presented methods, which turns the
implementations from only locally available software to Web-based services that
can be accessed from any computer in the Internet that is equipped with a Web
browser. The presented implementation strategy is simple and is based on gen-
erally available technologies; it can be applied as a blueprint for a large variety
of mathematical software. In particular, the results are not bound to the current
Mathematica implementation but can be adapted to any other computer algebra
system (e.g., Maple) or numerical software system (e.g., MATLAB) of similar
expressiveness.

• At present, an explicit form of eigen-modes (5) and (6) is used as one of
the input parameters for our program package. Theoretically, at least for some
classes of linear partial differential operators and boundary conditions, comput-
ing eigen-modes can also be performed symbolically based on the results in
Rosenkranz (2005). If this were done, not an eigen-mode but boundary condi-
tions would play role of input parameter.
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Searching for Factors that Limit Observed
Extreme Maximum Wave Height Distributions
in the North Sea

Gerrit Burgers, Frits Koek, Hans de Vries, and Martin Stam

Abstract The probability that individual waves are much larger than the significant
wave height is studied in a large set of observations. It is investigated whether steep-
ness and shallow water effects are limiting factors for extreme wave heights. The
relation between observations and a model freak wave index is examined.

Measurements from two locations in the North Sea are used, one with a depth
of 80 m, and another with a depth of 20 m. The data consist of the significant wave
height, wave period and maximum wave height of 20-min records. The total amount
of the records covers several years. The freak wave model index from the European
Centre for Medium-Range Weather Forecasts (ECMWF) wave model is collocated
with the observations.

The instrumental data show Rayleigh like distributions for the ratio of maximum
wave height to significant wave height. Our analysis is limited by uncertainties in
the instrumental response in measuring maximum wave height. The data indicate
that steepness is a limiting factor for extreme wave height. At the shallow water
location, extreme waves are not more frequently observed than at the deep water
location. The relation between the freak wave index of the ECMWF wave model
and enhanced extreme wave probability is studied.

1 Introduction

During the All Saints Day storm of November 2006, a waverider buoy recorded
extreme individual waves of 17 and 20 m, around twice the significant wave
height at the time (Fig. 1). For the same storm, the ECMWF (European Centre
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Fig. 1 Registration of maximum wave height at Schiermonnikoog Island (SMN) at (53◦35N,
6◦10E) during the night of 1 November 2006
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Fig. 2 WAM enhancement factor. This factor gives the ratio of the WAM model estimate to the
standard linear model probability for waves with a height more than twice the significant wave
height

for Medium-Range Weather Forecasts) wave model WAM indicated an enhanced
probability of extreme waves in the North Sea, see Fig. 2. For a water depth of 20 m,
a 20-m wave would be quite exceptional. Whether the record is correct remains
unclear: analysis of the buoy by the manufacturer showed that the measurement is
not reliable in these conditions (Datawell 2006), and in the same storm, damage
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was reported at a platform more than 15 above sea level (Bojanowski 2007). But
the buoy has been in place for years, so in principle we can determine multi-year
return times for wave extremes.

In this chapter, we study the following questions: how exceptional are extreme
waves in long records? Can the WAM model identify conditions with enhanced ex-
treme wave probability? More precisely, we focus on the ratio r = Hmax/Hs, where
Hs is the significant wave height and Hmax the maximum wave height in a 20-min
record, and from the WAM model we use the BFI index (Janssen 2003). Our study
differs from the one by Holliday et al. (2006) in that we do use the 20-min record
summary information instead of individual wave records, and that we have used data
that accumulate to a much longer time. However, because various instruments and
algorithms have been used, the interpretation as one single dataset is problematic.

Standard linear wave theory (see e.g. the textbook of Holthuijsen (2007) or the in-
troduction by Berg and Rhome (2005)) gives rise to a Rayleigh distribution for wave
height (Appendix). Freak waves are sometimes defined as waves that are higher than
twice the significant wave height. According to the Rayleigh distribution, about one
in 3,000 waves is a freak wave. For waves with a period of about 10 s, this is of the
order of once every 8 h. In practice, of course, usage of the term freak wave is often
restricted to cases where the absolute value is exceptionally high. Over the last few
years, several mechanisms have been proposed, that give rise to enhanced extreme
wave distribution compared with standard Rayleigh theory (Janssen 2003; Mori and
Janssen 2006). In Fig. 3, which is discussed in Appendix A, such an enhanced ex-
treme wave distribution is compared with the standard Rayleigh distribution. On
the one hand, the WAM model index is based on a non-linear effect that enhances
the extreme wave height distribution. On the other hand, for very large r, when

Fig. 3 Rayleigh and Janssen distribution of Hmax/Hs of the return time of the ratio of Hmax/Hs of
maximum wave height over significant wave height. Time is measured in 150-wave records. The
thick line is the Rayleigh distribution, the dashed line distribution according to Janssen theory for
the case that the kurtosis of the sea surface κ = 0.2, corresponding to BFI = 0.33
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steepness becomes a limiting factor, non-linear effects will lead to a suppression
with respect to the Rayleigh distribution. Moreover, in shallow water, the behaviour
might be quite different. So it is interesting to examine the behaviour of the observed
distribution.

In Sect. 2, we discuss the observational dataset as well as the WAM model index.
In Sect. 3, we present and analyse maximum wave height distributions, including
a comparison between model results and observations. It is clear from the results
that the maximum wave height as measured by an instrument depends on the sensor
used. In Sect. 4, we give a discussion of the results, and in Sect. 5, we present the
conclusions.

2 Data Sources

2.1 North Sea Data

The data consist of reports of the Meetnet Noordzee (MNZ), a network of measuring
instruments at a number of platforms and buoys in the North Sea set up by the Dutch
authorities in cooperation with platform operating companies. In this chapter, we use
data from the AUK platform located in the central North Sea at (56◦24N, 0◦02E) and
a depth of 80 m, and from the wave buoy near the coast of Schiermonnnikoog Island
(SMN) in the north of the Netherlands at (53◦35N,6◦10E) and a depth of 20 m.

A report consists of a set of wave parameters extracted from a 20-min record, the
frequency of the reports is 3 h. In this chapter, in addition to significant wave height
and wave period, also the maximum wave height of the record is used. The MNZ
data for wave height and wave period have been monitored for years by the Royal
Netherlands Meteorological Institute (KNMI), and we know them to be reliable.

The measurements have been made by several types of instruments (Table 1). The
radars operate from fixed platforms and measure surface elevation with a frequency

Table 1 Overview of instruments used in this study at the locations of Auk at 56◦24N, 0◦02E and
Schiermonnikoog Island (Schier) at 53◦35N, 6◦10E

Label Location Type Period

1 Auk Waverider 19840326–19861010
2 Auk Saab radar 19860413–19870714
A2 Auk Saab radar 19930616–19990625
A3 Auk Wavec 19901024–19991109
AUK1 Auk Saab radar 20000204–20050928
AUK2 Auk Wavec 20010718–20010925
AUK2 Auk Directional waverider 20020621–20030731
4 Schier Wavec 19901024–19930331
W4 Schier Wavec 19931101–19991109
SMN1 Schier Wavec 19931109–20031216
SMN1 Schier Directional waverider 20020220–20070831
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of 5.12 Hz. Wave buoys calculate wave data on the basis of acceleration measure-
ments. The sample frequency is 1.28 Hz. A linear time-domain filter is used to re-
construct a wave height record, and to estimate the maximum wave height from
these accelerations. The number of waves (from the estimated zero-upcrossing pe-
riod) in a record falls typically in the range 150–200. The results of Sect. 3 show that
wave buoys give systematically lower estimates for the maximum wave height than
the radar estimates, and that there are significant differences between the various
combinations of buoys and filters that have been used over the years.

Quality control included rejection of duplicates and the rejection of gross errors.
For example, for the radar altimeter, some short periods with on average unrealis-
tically high values were skipped. There are some features of the dataset we cannot
explain. For example, there seems to be a preference for ‘nice’ values of the ratio
Hmax/Hs such as 1.5 or 2. We have not been able to trace what part of the processing
is responsible for this feature.

2.2 WAM Model BFI

The Benjamin Feir index BFI proposed by Janssen (2003) is a measure of the
strength of the effect of non-linear interactions on wave height distribution. Non-
linear effects are stronger if (1) waves are steeper, and (2) the wave spectrum is
more narrow allowing for waves to travel longer together. For a narrow-band spec-
trum the definition of the BFI is

BFI =
√

2km1/2
o

(σ/ω)
, (1)

where k denotes the dominant wave number, ω the frequency of the spectrum, σ the
spectral width, and m1/2

o = 0.25Hs the amplitude of the spectrum. In the numerator,
km1/2

0 is the steepness, and the denominator is the narrowness of the spectrum.
For general spectra, the above expression for the spectral width is rather ambigu-

ous, and Janssen (2003) uses the following expression for the BFI:

BFI =
√

2πkm1/2
o Qp, (2)

with
Qp =

2
m2

0

∫
dωωE2(ω) (3)

where E(ω) is the spectral density.
The BFI was added as an output parameter to ECMWF’s wave model in the fall

of 2003. Since then all model forecasts have been archived and from these archives
BFI and significant wave height have been extracted from 6 October 2003 until 31
December 2006 in 6-hourly steps for model grid points near platform AUK and
Schiermonnikoog.
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3 Results

The first quantity we consider is the return period of r = Hmax/Hs for the deep-water
station AUK. In Fig. 4, this quantity is plotted as a function of return time (in units of
20-min records), for various instruments and periods. It appears that the differences
between the instruments and periods are large. The radar altimeter values are close
to those which one would expect from a Rayleigh, the wave-buoy data are generally
lower.

For situations where the average steepness ( Hs/λ ) is large, steepness may be a
limiting factor. First, we check in Fig. 5, which gives a plot of Hmax vs. T if wave
heights do not exceed the limiting steepness line of H = λ/7. This figure shows that
it is not uncommon that the steepness approaches the limiting steepness.

If steepness is a limiting factor, then one would expect that for a given significant
wave height, longer periods that go with less steep waves would lead to an enhanced
probability of high values of r. Figure 6, where the average value of r for records
with Hs ≈ 4m is plotted as a function of T , gives some evidence for this fact.

Now we turn to the shallow water results. In Fig. 7, the return periods for the
shallow-water station Schiermonnikoog (SMN) are shown. Comparing these results
to the deep water-data of AUK is hampered by the fact that different stations and
periods are hard to compare. Even when matching periods and instruments, there
remain problems: the SMN1 Wavec is much lower than the AUK2 Wavec, while
the SMN W4 is only slightly lower than the AUK A3. We checked that this also
holds when we restricted the comparison to periods that both instruments yielded
data, (not shown). We note that period of the W4 vs. A3 comparison is much

Fig. 4 Return times at the deep water station AUK. Time is measured in 20-min records. The labels
refer to different instruments and periods, see Table 1
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Fig. 5 Scatter plot of maximum wave height Hmax vs. mean period T in deep water for the radar
measurements at AUK

Fig. 6 The ratio r = Hmax/Hs as function of the mean period T , for radar measurements at AUK.
The histogram indicates the number of data in each bin. The solid line connects the average value
of r for bins with 9 or more entries

longer (19931101–19991109) than the period of the AUK2 vs. SMN1 comparison
(20010718–20010925). What we can conclude is that there is no indication that
outside the surf zone, values of r are higher in shallow water than in deep water

For this shallow water location, the constant steepness line (yellow) in a H-T
diagram has a different shape than for deep water. Figure 8, which gives a plot of



134 G. Burgers et al.

Fig. 7 Return times at the shallow water station Schiermonnikoog Island (SMN). Time is measured
in 20-min records. The labels refer to different instruments and periods, see Table 1

Fig. 8 Scatter plot of maximum wave height Hmax vs. mean period T at the shallow water station
Schiermonnikoog Island (SMN)

Hmax vs. T for SMN, shows that for this station maximum wave heights are not as
close to yellow line as for deep water waves. We checked in plots of Hs against
steepness, see Figs. 9 and 10, that although the general picture that high waves are
more often steep than low waves remains valid, for waves with HS > 2m, the limiting
steepness at the shallow water location decreases with significant wave height, while
it stays roughly constant at the deep-water location.
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Fig. 9 Scatterplot of wave steepness vs. Hs at the deep water station AUK

Fig. 10 Scatterplot of wave steepness vs. Hs at the shallow water station Schiermonnikoog Island

Finally, we checked whether there is a relation between the BFI index of WAM
of the ECMWF and the probability of high r values. To this end, average values of r
have been collocated with the model BFI. The results are shown in Fig. 11 for AUK
and Fig. 12 for SMN. During the period for which the model BFI was available,
there were many more observations at the shallow water station than at the deep
water station. The data for the deep water station AUK do not exclude a relation
between high r observations and high WAM model BFI indices. For the shallow
water location, there is hardly a correlation between high r observations and high
WAM model BFI indices.
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Fig. 11 Model BFI vs. measured Hmax/Hs in deep water at AUK. Observations have been binned
according to model BFI, the number of observations is indicated by the black number in each bar.
The length of the bar gives the average value of r for that bin, and the black line indicates the
standard deviation

Fig. 12 Model BFI vs. measured Hmax/Hs in shallow water at SMN. Observations have been
binned according to model BFI, the number of observations is indicated by the black number in
each bar. The length of the bar gives the average value of r for that bin, and the black line indicates
the standard deviation

4 Discussion

From the measurements it appears that there are systematic differences between
the various instruments. Because the radar has a higher sampling frequency, and
makes a more direct measurement than the accelerations measured by the buoys,
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we consider the radar measurements to be more reliable. Additional confidence in
the radar results comes from the fact that they are close to those predicted by stan-
dard Rayleigh theory. Apparently, the frequency of around 1 Hz of accelerations
by the buoys is not sufficient for capturing maximum wave heights well, making
that the buoy results are systematically below the radar results. That differences
between various periods are so large indicates that not only the instrument but also
the processing algorithm has a large impact on the distribution of the measurements.
This makes a comparison of the deep water station with the shallow water station far
from straightforward. What remains is a number of series of several months of data.
The most obvious result is that there is no change in behaviour for timescales rang-
ing from hours to months. There is neither evidence for an enhanced tail because of
non-linear enhancement effects nor for a damped tail because of limiting steepness
effects. Considering subclasses, steepness may have an effect: there is some indica-
tion that given the significant wave height and the period, extreme waves are more
likely in case long periods. In shallow water, wave energy can converge and give
rise to high waves. But our results do not indicate a higher probability of extreme
waves in shallow water than in deep water. If any, we observe the opposite effect:
extreme waves are less likely in shallow water. We do find a clear difference in plots
of steepness vs. wave height between deep water and shallow water: in deep water,
there is a limiting steepness that does not depend on wave height, in shallow water,
this limit decreases with wave height, probably because of bottom friction effects.

For deep water, Janssen theory expects an increase of the mean value of r of the
order of 0.1 if the BFI is varied from 0 to 0.5 (Peter Janssen, personal communi-
cation). Such an increase is compatible with our results for the deep water station
AUK in Fig. 11. Janssen theory does not expect a correlation between BFI and r in
shallow water, because in shallow water conditions for four-wave interactions differ
from deep water. This is confirmed by our shallow water results in Fig. 12.

5 Conclusion

The analysis has been hampered by the fact that the instruments report approxi-
mations for maximum wave height, and that those approximations differ between
different instruments and observing periods. Our main result is that the instrumental
data are consistent with a Rayleigh like extreme wave distributions up to return pe-
riods of many months. There is slight indication that for long waves steepness can
be a limiting factor for maximum wave height. In shallow water, there is some evi-
dence that extreme waves are less common than in deep water. The distributions of
wave height vs. steepness in shallow water and deep water are different, which may
be related to the overall damping effect of bottom friction that causes a reduction
of significant wave height in shallow water. As expected, in shallow water, there is
no relation between the WAM model BFI and the probability of extreme waves. For
deep water, such a relation cannot be ruled out.
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APPENDIX: Rayleigh Distribution

According to linear wave theory, see e.g. Holthuijsen (2007), the probability p(r)
that an individual wave has a height H = rHs is given by

p(r) = exp(−r2). (4)

From this expression it follows the probability P(r̄) that in a series of N waves all
waves have r < r̄ is

P(r̄) = (1− p(r̄))N . (5)

The exact number of waves in a 20-minute record is not determined. In the North
Sea, periods are shorter than in the open ocean and vary from 5 to 10 s, in very
severe storms the dominant period can be higher. So a typical number of waves in a
20-min record is about 150. In Fig. 3, return maximum wave height as a function of
the number of records is plotted as a solid line. The maximum wave height ratio r
reaches a value of 2 for about 20 records (about 6 h) and increases slowly with the
number of records. Even for 105 records, that is about 4 years, r is below 3.

For comparison, a distribution that follows from the theory of Mori and Janssen
(2006) is shown as well (dotted line). The case shown corresponds to a BFI of 0.33.
In Janssen theory, the BFI is directly related to κ , the kurtosis of the sea surface, by
κ = (π

√
3)BFI2, so the case of Fig. 3 corresponds to κ = 0.2.
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Extremes and Decadal Variations
of the Northern Baltic Sea Wave Conditions

Tarmo Soomere

Abstract Average wave conditions, their seasonal cycle and decadal variations, and
extreme wave storms in the northern Baltic Sea are studied on the basis of long-
term time series from Almagrundet (1978–2003) and Vilsandi (1954–2005), and
wave statistics from the middle of the northern Baltic Proper. The typical wave pe-
riods are 3–4 s in coastal areas and 4–6 s on the open sea. The monthly mean wave
height varies from about 0.4 (0.5) m in April–July to 0.8 (1.3–1.4) m in January
at Vilsandi (Almagrundet). The annual mean wave height varied insignificantly in
the 1960s–1970s, considerably increased in the 1980s, was at highest in the mid-
1990s, and rapidly decreases in 1998–2005. Significant wave heights HS ≥ 4m oc-
cur with a probability of about 1%. Extreme wave conditions with HS ≥ 7m have
been registered five times since 1978. The records overlook 2–3 such cases. The
overall recorded maximum HS is 7.8 m. The estimated maximum of HS was 9.5 m
in cyclone Gudrun in January 2005.

1 Introduction

The complexity of physics and dynamics of the Baltic Sea extend far beyond the
typical features of many other water bodies of comparable size (e.g. Alenius et al.
1998). The combination of a relatively small size and vulnerability of its ecosys-
tem makes this region extremely susceptible with respect to climate changes and
shifts. Numerous changes of the forcing conditions and of the reaction of the water
masses of the Baltic Sea have been reported during the latter decade. The apparently
increasing storminess in the Baltic Sea has already caused extensive erosion of de-
positional coasts (Orviku et al. 2003), although the changes in the wave climate have
been found marginal, at least, until the mid-1990s (WASA Group 1995; Mietus and
Storch 1997).
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Very rough seas measured twice in December 1999 reinforced the discussion
whether the wave conditions in the Baltic Sea have become rougher compared with
the situation a few decades ago. The exceptional storm Erwin/Gudrun of January
2005 highlighted inadequate awareness of extreme wave properties (Soomere
et al. 2008) and of the height and spatial extent of extreme water levels (Suursaar
et al. 2006).

Recognition of the wave climate changes, in particular, changes of extremes, pre-
sumes a thorough knowledge of the typical and extreme wave conditions The global
wave data set KNMI/ERA-40 Wave Atlas (09.1957–08.2002, Sterl and Caires 2005)
allows the production of reliable wave climatology for open ocean conditions, based
on 6-hourly means of wave properties over an average of 1.5◦×1.5◦ areas. This res-
olution is too sparse for the Baltic Sea conditions.

The wave properties in the Baltic Sea can be modelled with the use of local
models, because the waves from the rest of the World Ocean practically do not
affect this water body. The pattern of dominant winds (Mietus 1998; Soomere and
Keevallik 2001) and the geometry of the Baltic Sea suggest that the highest and
longest waves occur either at the entrance of the Gulf of Finland, off the coasts
of Saaremaa, Hiiumaa, and Latvia, or along the Polish coasts. Wave data from the
northern parts of the Baltic Sea Proper thus adequately represent both the average
and the roughest wave situations in the region.

Wave statistics for the Baltic Proper has been recently estimated with the use
of the second-generation spectral wave model HYPAS and wind data from 1999
to 2000 (Jönsson et al. 2002, 2005; Danielsson et al. 2007). The overall picture
of wave activity follows the above-described wind pattern. Several numerical wave
studies are performed for the southern part of the Baltic Sea (e.g. Gayer et al. 1995;
Paplińska 1999; Blomgren et al. 2001). Valuable wave data and statistics are pre-
sented in sources published in the former USSR (Rzheplinsky 1965; Rzheplinsky
and Brekhovskikh 1967; Davidan et al. 1978, 1985; Lopatukhin et al. 2006a, b).

Yet the information about long-term changes of wave properties is fragmentary
in the Baltic Sea. This water body is characterised by extremely complex geome-
try, highly varying wind fields, extremely rough wave conditions at times, extensive
archipelago areas with specific wave propagation properties, and the ice cover dur-
ing a large part of each year. The quality of wind information only allows reasonable
reproduction of wave patterns since 1990s. Although third generation wave models
(e.g. Komen et al. 1994) have been implemented for the northern Baltic Sea at the
turn of the millennium (e.g. Tuomi et al. 1999; Soomere 2001), wave statistics based
on such models is available only for limited areas (Soomere 2003, 2005).

An adequate long-term simulation of the Baltic Sea wave fields is still missing.
Also, no comprehensive description of the wave climate or statistical estimates of
extreme wave conditions exists in the whole Baltic Proper.

The central goal of this study is to present a systematic description of the ba-
sic properties of average and extreme wave conditions and to depict their durable
changes in the northern Baltic Proper on the basis of available long-term wave mea-
surements and numerical simulations of a specific event. The wave patterns in the
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Gulf of Finland (an elongated basin with a length of about 400 km and a maximum
width of about 135 km) are frequently connected with those in the Proper, and are
addressed to some extent as well.

The analysis is mostly based on instrumental measurements in 1978–2003 at
Almagrundet (located near the western coast of the northern Baltic Proper) and on
visual observations from the island of Vilsandi in 1954–2003 (the eastern coast of
the Baltic Proper). To a limited extent, data from waveriders in the middle of the
northern Baltic Proper and from Bogskär are used. The results predominantly rep-
resent Type A statistics in terms of the classification of Kahma et al. (2003): almost
no corrections have been made to compensate for missing values, for the uneven
distribution of data (except for the use of daily mean wave heights for certain para-
meters), or for ice cover. Modelled data are used in the estimates of extreme waves
in windstorm Gudrun in January 2005.

2 Wave Climate in the Northern Baltic Proper

2.1 Data from Almagrundet, Bogskär and from the Open Sea

Contemporary wave measurements were launched in the northern Baltic Sea in the
framework of wave power studies at the end of the 1970s near the lighthouse of
Almagrundet and south of Öland. A waverider buoy was simultaneously deployed
near Hoburg, south of Gotland. The measurements were mostly performed during a
few years (Mårtensson and Bergdahl 1987), but went on longer at Almagrundet.

The data from Almagrundet (1978–2003, 59◦09′N, 19◦08′E, Fig. 1, Broman
et al. 2006) form the longest instrumentally measured wave time series in this
region. The above-discussed anisotropy of the Baltic Sea wave fields has caused
some discussion about whether the data correctly represent the open-sea wave con-
ditions (Kahma et al. 2003). Almagrundet is a 14 m deep shoaling area about 10
nautical miles south-east of Sandhamn in the Stockholm archipelago. It is sheltered
from a part of dominating winds. The fetch length for winds from the south-west,
west, and north-west is quite limited. Yet the data constitute one of the most valuable
data sets for the Baltic Sea.

An upward-looking echo-sounder from Simrad was placed at a depth of about
30 m in 1978 (Mårtensson and Bergdahl 1987) and was active until mid-September
1995 at Almagrundet. An analogous device from WHM was installed in a neigh-
bouring location at a depth of 29 m in 1992 and produced usable data in 1993–2003
(Broman et al. 2006). The position of the water surface was sampled during 640 s
each hour. Wave components with periods of less than 1.5 s as well as the data prob-
ably reflecting wave interference and breaking waves and possibly very steep waves
were discarded (Mårtensson and Bergdahl 1987). Single waves were identified on
the basis of the classical zero-downcrossing method (IAHR 1989). An estimate of
the significant wave height H1/3 (the average height of 1/3 of the highest waves) was
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Fig. 1 Wave measurement sites, marked by crossed circle, at Almagrundet, at the Island of
Vilsandi, in the northern Baltic Proper (buoy 1), near Helsinki (buoy 2) and at the Island of Naissaar
(buoy 3)

found from the 10th highest wave H10 in a record of N waves under the assumption
that wave heights are Rayleigh distributed:

H1/3 =
H10√
1
2 ln N

10

.

The set of 95,458 measurements in 1978–1995 reliably describes the wave proper-
ties (Broman et al. 2006). Later 46,671 recordings in 1993–2003 have certain qual-
ity problems. The overall behaviour of the wave height apparently follows the sea
state; yet the data contain a number of modest but still evidently unrealistic peaks.
As the values of wave period are also unreliable, Broman et al. (2006) recommend
considering the data as merely indicative.

A non-directional waverider was operated in 1983–1986 near Bogskär at
59◦28.0′ N, 20◦21.0′ E (Kahma et al. 2003). The wave properties were measured
hourly. The total measuring time is 14,630 h, or about 2 years of uninterrupted mea-
surements. The measuring times, however, are concentrated in the autumn season
and thus well represent the wave climate during relatively windy months.

A directional waverider was deployed in the northern Baltic Proper at a depth
of about 100 m (buoy 1 in Fig. 1, 59◦15′ N, 21◦00′ E) in September 1996 and op-
erated since then during the ice-free seasons (Kahma et al. 2003). This device as
well as contemporary spectral wave models estimate the significant wave height as
HS = 4

√
m0 ≈ H1/3, where m0 is the zero-order moment of the wave spectrum (the

total variance of the water surface displacement, e.g. Komen et al. 1994). These
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data are the most representative of the Baltic Sea wave fields; however, to date, this
time series is not long enough for determining the climatological values of wave
properties (Guide 2001).

Directional wave measurements in the Gulf of Finland in 1990–1991, 1994,
and from November 2001 (59◦57.9′N, 25◦14.1′E, water depth about 60 m, buoy
2 in Fig. 1) during the ice-free seasons have considerably increased the aware-
ness of wave conditions in semi-enclosed sub-basins of the Baltic Sea (Kahma
and Pettersson 1993; Pettersson 2001; Kahma et al. 2003). Hardly any instrumen-
tal wave data are available from the coastal areas of Estonia and Latvia, except for
sporadic measurements made with pressure-based sensors (Soomere 2005).

2.2 Visual Observations from the Island of Vilsandi

A reasonable source of the open sea wave information form visual observations
from the ships (Hogben et al. 1986). Wave climate changes estimated from data
observed from merchant ships are consistent with those shown by the instrumental
records (Gulev and Hasse 1998, 1999). Visual observations from the coast are less
frequently used for wave climate studies. Although such observations frequently
represent only wave properties in the immediate vicinity of the observation point
(Orlenko et al. 1984), have a poor temporal resolution, may give a distorted impres-
sion of extreme wave conditions, have many gaps caused by inappropriate weather
conditions or by the presence of ice, etc., the data are one of the few sources for
detecting the long-term changes of wave climate.

The coastal site adequately reflecting the open sea wave conditions (except
for easterly winds) is located at the Island of Vilsandi (58◦22′59′′N, 21◦48′55′′E,
Fig. 1). Wave observations were performed there starting from 1954 up to three
times a day. The interval between subsequent observations is often much longer than
the typical saturation time of rough seas in the northern Baltic Proper (about 8 h,
Soomere 2001) or the duration of wave storms (that seldom exceeds 10 h, Broman
et al. 2006; Lopatukhin et al. 2006b). The data, however, well represent the gen-
eral features of the Baltic Sea wave fields: relatively low overall wave activity, short
wave periods, and substantial seasonal variation of wave conditions (Soomere and
Zaitseva 2007).

The observer noted the five highest waves during a 5-min time interval and filed
the highest single wave Hmax and the mean height H of these waves at Vilsandi.
Given the typical wave periods in the coastal zone 3–4 s (Broman et al. 2006), the
height H is approximately equal to the average height of 2.5–3% of the highest
waves. As the observers’ estimates well represent the significant wave height (Gulev
and Hasse 1998, 1999), we shall interpret H as an estimate of the significant wave
height and shall use it whenever given in the data set. Only when this measure is
missing, Hmax is used instead. As the difference between H and Hmax is about 6%
in average (Soomere and Zaitseva 2007), doing so apparently has a fairly minor
influence on climatological values of wave heights.
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The wave period was found as an arithmetic mean from three consecutive obser-
vations of passing time of 10 waves each time. Since the visually observed wave
periods are only a few tenths of seconds shorter than the peak periods (Gulev and
Hasse 1999), the results are interpreted as estimates of the peak period. All obvi-
ously erroneous, ambiguous, or inconsistent entries in the observation diaries were
omitted in the analysis of Soomere and Zaitseva (2007). At least one sensible obser-
vation of the wave height has been made on 15,038 days (coverage 79%). Most of
the gaps occur from January to March apparently owing to the presence of sea ice.

2.3 Wave Climate

2.3.1 Wave Statistics in the Northern Baltic Sea

The wave climate of the northern Baltic Sea is relatively mild (Table 1). The overall
average of the significant wave height at the open sea may slightly exceed the one
estimated from Almagrundet data, but apparently it is close to 1 m.

The overall average wave height calculated from the entire Vilsandi data set is
much smaller. The excess proportion of calms at Vilsandi (>30%, Soomere and
Zaitseva 2007) is evidently due to the absence of observable waves in many cases
of easterly winds. Removing a fraction of calms from this set is therefore roughly
equivalent to ignoring data inadequately reflecting the open sea wave fields in such
wind conditions. If the number of calms is reduced to 6% from the total number of
recordings (the level typical for the northern Baltic Proper, Fig. 2), the average wave
height at Vilsandi is 0.74 m.

The wave heights at Almagrundet in 1993–2003 (WHM data) may be slightly
overestimated because of certain small, but evidently unrealistic peaks. The analysis
of the Vilsandi data relies on the daily average wave height

The probability distributions of the occurrence of different wave heights at Alma-
grundet, Bogskär, and on the open sea (Fig. 2) resemble the Rayleigh distribution.
This distribution at Vilsandi resembles analogous distributions for wave heights in
semi-sheltered bays of the Baltic Sea (Soomere 2005).

Table 1 Basic properties of wave fields at Almagrundet and Vilsandi

Data set Overall average Median Most frequent
wave height wave height wave height wave period

Almagrundet 1978–95
(1993–2003)

0.876 (1.04) 0.7 (0.73) 0.25–0.5 3 (−)

Vilsandi 1954–2005
(6% calms kept)

0.575 (0.74) 0.3 (0.5) <0.25 (0.25–0.5) 3 (3)

Bogskär 1982–1986 – – 0.5–0.75 5
Northern Baltic Proper – – 0.25–0.5 5
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Fig. 2 Frequency of occurrence of wave heights at (a) Almagrundet 1978–1995, (b) Bogskär
1982–1986, (c) at buoy 1 in the northern Baltic Proper, (d) at Vilsandi

Fig. 3 Frequency of occurrence of wave periods: (a) Almagrundet 1978–1995 (white bars) and
Vilsandi 1954–2005 (filled bars), (b) Bogskär 1982–1986 (white bars) and buoy 1 in the northern
Baltic Proper 1996–2000 (filled bars)

Most frequently waves with periods of 4–6 s dominate in the middle of the Baltic
Proper whereas in the coastal regions waves with periods of 3–4 s predominate
(Fig. 3). Wave periods about 5–6 s also occur with an appreciable frequency in the
coastal areas. Periods up to 7 s are still common on the open sea. This difference
in periods apparently comes from a relatively large number of short-fetched wave
conditions at sheltered measurement sites.

The joint distributions of wave heights and periods (Fig. 4) suggest that the pro-
portion of relatively steep seas is quite large in the Baltic Sea. Periods of 2–3 s usu-
ally correspond to wave heights well below 1 m whereas waves with periods of 4–5 s
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Fig. 4 Scatter diagram of wave heights and periods: (a) Almagrundet 1978–1995, (b) Vilsandi in
1954–1994, (c) Bogskär 1982–1986, (d) buoy 1 in the northern Baltic Proper. The wave height step
is 0.25 m and the period step is 1 s. The range of periods is shown on the horizontal axis: 2 s stands
for 1.5 ≤ Tp < 2.5s, 3 s stands for 2.5 ≤ Tp < 3.5s, etc. Isolines for the probability of occurrence
of 0.0033%, 0.01%, 0.033%, 0.1% (dashed lines), 0.33%, 1%, 3.3%, and 10% (solid lines) are
plotted. Wave conditions with H1/3 > 6.5m at Almagrundet are shown as follows: circles – the
January 1984 storm, diamond – a storm in January 1988, square – a storm in August 1989. The
bold line indicates saturated wave conditions with a Pierson-Moskovitz spectrum. The bold grey
line in panel (b) indicates saturated wave situation in terms of the peak period

have a typical height of about 1 m. Periods 6–7 s usually correspond to wave heights
of about 1.5–2 m. In coastal areas, dominating periods are 7–8 s only when wave
heights are about 3 m or higher. Even longer waves are infrequent. Mean periods
over 8 s (peak periods ≥ 10s) dominate either in very rough seas (wave heights over
4 m) or in remote low swell conditions when the wave heights are well below 1 m.
For example, at Almagrundet the mean period never exceeded 9.5 s in very rough
seas and was about 10 s in one case of rough seas with H1/3 ∼ 4m. Even in the final
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Fig. 5 Annual variation of the monthly mean wave height at Vilsandi 1954–2005 (white bars,
based on the daily mean wave height) and at Almagrundet 1978–1995 (light grey bars) and 1993–
2002 (dark grey bars)

stage of the January 1984 storm when H1/3 ∼ 7m, the mean period was below 10 s.
At the location of buoy 1, the peak period of about 12 s has been registered about
twice a year and at Bogskär roughly once in two years.

The annual variation in the monthly mean wave height matches the similar vari-
ation of the wind speed (Mietus 1998). It is impressive at Almagrundet: from about
0.5 m during summer to 1.3–1.4 m in winter (Fig. 5). It is somewhat less pronounced
at Vilsandi: from about 0.4 m during summer to about 0.8 m in winter.

The highest monthly mean wave height occurs from November to January at
Almagrundet. Another wave height maximum may occur at Almagrundet in March
(Broman et al. 2006). It is apparently connected with easterly winds during late win-
ter and early spring (Mietus 1998), and the influence of which is not detectable at the
sheltered observation site of Vilsandi. The highest wave activity at Vilsandi gener-
ally occurs in January, but during October to December a comparable wave activity
is observed. The calmest period is the late spring and summer months from May to
July–August whereas a well-defined minimum in May is visible in Vilsandi data.

2.3.2 Extreme Conditions

Estimates of extreme wave conditions with the use of the WAM model forced by
homogeneous wind patterns suggest that the significant wave height generally does
not exceed 8–8.5 m in the northern Baltic Proper (Soomere 2001). This estimate is
confirmed by Lopatukhin et al. (2006a).

Seas in which HS > 7m are extremely rough in the Baltic Sea basin. This thresh-
old was not reached at Bogskär in 1982–1986. Waves of this height cannot be
observed from Vilsandi, because the depth of the observation area is about 4 m.
The most ferocious storm (the only one during which H1/3 ≥ 7m was registered
at the site) occurred at Almagrundet on 13–14 January 1984 when H1/3 reached
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7.82 m and the highest single wave was 12.75 m high1 (Broman et al. 2006). This
is, formally, the largest significant wave height ever recorded in the northern Baltic
Sea2. The wave periods remained fairly modest (Tm = 9.1s, Tp = 10.7s).

The wave height reached H1/3 = 6.9m in a relatively short but violent storm
in August 1989 and H1/3 = 6.73m in another severe storm on 30 January 1988 at
Almagrundet. The significant wave height on the open sea apparently exceeded
7 m during these events. No reliable data are available for a severe storm in
January 1993.

The significant wave height exceeding 7 m has been recorded only four times
by buoy 1: twice in December 1999 (whereas H1/3 was about 6 m at Almagrundet,
Kahma et al. 2003), on 22 December 2004 [when the roughest wave conditions
HS = 7.7m, and the highest single wave (14 m) were recorded for this site, see
http://www.fimr.fi] and on 9 January 2005 during windstorm Gudrun (Soomere et al.
2008). The peak periods during these events slightly exceeded 12 s.

Rough seas with the (observed or measured) wave heights over 4 m occurred
with a probability of 0.2% (about once a year) at Vilsandi, of 0.42% in 1978–1995
at Almagrundet, of 1% at Bogskär, and of 1.4% at buoy 1. Such seas usually occur
several times a year, each time during a few hours.

2.3.3 Gulf of Finland

The average and, in particular, the maximum wave heights in the Gulf of Finland
are much smaller than in the Baltic Proper. The ‘memory’ of wave fields is rela-
tively short, and the changes in the wind field are fast reflected in the wave pattern.
As a consequence, the wave fields in smaller sub-basins (such as Tallinn Bay or
Narva Bay) mimic the changes of the open-sea winds (Soomere 2005; Laanearu
et al. 2007).

On the basis of data from 1990–1991 and 1994, the maximum HS occurring once
in 100 years in the Gulf of Finland was estimated to be 3.8 m and the corresponding
single wave height 7.1 m. Wave conditions with HS > 4m occur extremely seldom
(Alenius et al. 1998; Pettersson 2001). The peak periods in rough seas (with HS ∼
4m) are 8–9 s (Kahma and Pettersson 1993).

Recent data show that considerably rougher seas may occur in this area. In
November 2001, seas with HS = 5.2m and TP ≈ 11s occurred (Pettersson and
Boman 2002). Wave systems with TP ≥ 10s, however, usually correspond to pen-
etration of long-period swell of moderate height into the gulf (cf. Broman et al.

1 The significant wave height, calculated directly from the wave spectrum, was HS = 7.28m.
2 The Almagrundet data set contains several contradicting extreme wave data. A severe storm
that affected nearly the whole Baltic Proper caused H1/3 = 7.83m, formally the all-highest of the
data set, in March 1997. Since HS estimated from the wave spectrum was 5.7 m and the highest
single wave reached 10.24 m, this value of H1/3 evidently overestimates the wave conditions. An
extremely high single wave (12.79 m) was recorded on 25 December 1996 when H1/3 = 6.37m.
Still the significant wave height, estimated from the wave spectrum, was only 3.8 m (Broman et al.
2006).



Extremes and Decadal Variations of the Northern Baltic Sea Wave Conditions 149

2006). Only a few observations reveal such long periods: TP ≈ 11s occurred only
three times in 1990–1994 and during a short time in another very strong storm in
November 2001 (Pettersson 2001).

The average wave directions are often concentrated along the gulf axis
(Pettersson 2001), although the wind directions are more evenly spread (Soomere
and Keevallik 2003). This phenomenon is attached to the slanting fetch conditions
in which the wind direction is oblique to the coastline (The SWAMP Group 1985,
Chap. 8). Shorter waves are usually aligned with the wind, while somewhat longer
and higher waves (that often dominate the wave field) propagate along the gulf axis
(Holthuijsen 1983; Kahma and Pettersson 1994; Pettersson 2004).

3 Interannual and Long-Term Variations

The most intriguing question is whether any long-term changes in the wave activity
can be identified in the Baltic Proper. The total duration of the measurements is
about 25 years at Almagrundet and 52 years at Vilsandi. The series thus are long
enough to extract climatological trends (Guide 2001).

The overall course of wave activity (Fig. 6) reveals a quasiperiodic variation.
The interval between subsequent periods of high or low wave activity is about 25
years. The sea was comparatively calm at the end of the 1950s, became slightly
rougher in 1965–1975, and calmer again at the end of the 1970s. A rapid increase in
the annual mean wave height occurred from the mid-1980s until the mid-1990s. The
increase was well over 1% per annum depending on the particular choice of the time
interval and the site (Almagrundet 1979–1992: 1.3%; 1979–1995: 1.8%; Vilsandi
1979–1995 as high as 2.8% per annum). This trend follows the analogous trends for
the southern Baltic Sea. Its magnitude is comparable with the one reported for the
North Atlantic (Bacon and Carter 1991; Kushnir et al. 1997), but it is much faster

Fig. 6 The annual mean wave height at Vilsandi 1954–2005 (bars, grey line: 3-year moving aver-
age since 1958) and at Almagrundet 1978–1995 (diamonds) and 1993–2003 (circles). The horizon-
tal line indicates the overall mean wave height at Vilsandi in 1958–2005. Notice that Almagrundet
data from 1978 reflect only windy months November and December (Broman et al. 2006) and
that the wave heights in 1954–1957 probably are overestimated at Vilsandi (Soomere and Zaitseva
2007). Data from Almagrundet for 1998 are missing
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than in the North Sea (where it was <1% per annum, Gulev and Hasse 1999; Vikebo
et al. 2003). The overall increase of wave heights is consistent with the increase of
wind speed over the northern Baltic Sea (Broman et al. 2006) that is frequently
associated with the increasing storminess since the middle of the twentieth century
(Alexandersson et al. 1998).

This trend only existed during about 1.5 decades and was replaced by a drastic
decrease of the mean wave height since 1997. The relevant data from Almagrun-
det were even estimated as doubtful by Broman et al. (2006), because the annual
mean wind speed continued to increase and intensification of beach processes was
reported along the downwind side of the coasts (Orviku et al. 2003). Although the
mean wind speed does not necessarily exactly match the average wave height, it is
intuitively clear that a larger wind speed generally causes greater wave activity. The
match of the long-term variation of wave properties at Almagrundet and Vilsandi
suggests that both data sets adequately reflect the changing wave situation.

The drastic changes of the mean wave height on the background of the gradual
increase of the mean wind speed (Broman et al. 2006) suggest that the local wave
generation conditions have substantially changed within relatively short time inter-
vals. In particular, the overall wave activity was exceptionally high at Almagrundet
in 1996–1997, but the wind data from Utö (a small island in the northern Baltic
Proper that well represents the open-sea wind conditions, Soomere 2003) suggest
that these years were relatively calm.

4 Extremes During Windstorm Gudrun

4.1 The Storm and Waves

The above estimates for extreme wave conditions turned out to be inadequate when
windstorm Gudrun, an extratropical cyclone, also known as Erwin in Ireland, the
United Kingdom, and Central Europe, attacked northern Europe on 7–9 January
2005 (Carpenter 2005). It reached the power of a hurricane, according to the Saffir-
Simpson hurricane scale (Simpson and Riehl 1981), in the North Sea region. In
the Baltic Sea, it remained slightly below the hurricane level; yet it was one of the
strongest storms in Denmark, Sweden, Latvia, and Estonia for at least 40 years.
It caused widespread property damage, exceptionally high coastal floods along the
Western Estonian coast and in the Gulf of Finland, and loss of 18 lives (Carpenter
2005; Suursaar et al. 2006; Bengtsson and Nilsson 2007). Substantial beach destruc-
tion occurred on exposed coasts (Orviku 2006).

The coastal wind data suffered from failures of meteorological equipment dur-
ing Gudrun (Suursaar et al. 2006). Forecast winds from the German Weather Fore-
cast Service (DWD, Deutscher Wetterdienst), the Danish Meteorological Institute
(DMI), and the Finnish Institute of Marine Research (FIMR) suggest that the max-
imum wind speed on the open sea (Fig. 7) was 28–29m s−1. Forecasts released on
6–7 January predicted the windstorm maximum to hit the entrance of the Gulf of
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Fig. 7 Modelled wind speed (m/s) and direction (arrows) 10 m above water surface at 06:00 GMT
on 9 January in the DMI 54-h forecast valid at 00:00 GMT on 9 January. Courtesy of the Danish
Meteorological Institute

Finland. The significant wave height was forecast to exceed 10 m at buoy 1, to reach
11–12 m at the latitudes of the Gulf of Finland, and to be >6m in the central part
of this gulf (Soomere et al. 2008). Such wave conditions were considerably rougher
than during any other storm in the northern Baltic Sea in the history of contem-
porary shipping (K. Kahma, personal communication on 8 January 2005). The area
with the largest wind speeds crossed the Baltic Sea somewhat more southwards than
originally forecast (Soomere et al. 2008) and the wave conditions were not so rough.

Buoy 1 adequately reflects extreme wave conditions in the case of SW winds,
but the Gudrun’s strongest winds were from W-WSW and occurred between Got-
land and Saaremaa. The wave sensors therefore were located much northwards from
the maximum of the wave storm. Even with these non-ideal conditions for wave
generation and detection of the roughest seas, the significant wave height reached
HS = 7.16m at 03:00 and 07:00 GMT on 9 January and was close to 7 m during
about 12 h. The peak period TP exceeded 10 s for nearly 24 h and was about 11–12 s
at the wavestorm maximum.

Very long (Tp up to 12 s) and high (HS > 4m) waves also occurred in the Gulf
of Finland during Gudrun. The significant wave height was close to 4 m in the early
morning of 9 January and exceeded 3 m during the rest of this day at buoy 2. The
peak periods were over 10 s during almost the whole day and reached 11–12 s at
noon. The wave height was about 4 m in the morning of 9 January at the location of
buoy 3 (a pressure sensor mounted north-westwards from the Island of Naissaar in
14 m deep water at 59◦37.1′N, 24◦29.1′E, see Fig. 1), and reached 4.5 m, the second
highest instrumentally registered wave height in the central part of the gulf, at 09:00
GMT. The peak periods were ∼12s during about 10 h (Soomere et al. 2008).
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The occurrence of long and high waves in the interior of the Gulf of Finland is an
important feature of this storm. The maximum wind speed in the northernmost part
of the Baltic Proper and at the entrance of the gulf apparently was about 20–24m s−1

(Fig. 7) and well below 20m s−1 during a large part of the storm in the gulf (see also
coastal data in Suursaar et al. 2006). Storms with a wind speed of about 20m s−1

may excite peak periods about 12 s only if the fetch length is ≥600km and the wind
duration ≥18h (Rosenthal 1986). Although growth curves of Kahma and Calkoen
(1992) suggest that somewhat shorter duration (∼15h) and fetch (∼350km) are
sufficient for generation of such seas, it is still probable that some other factors
eventually contributed to the occurrence of the observed wave system in the Gulf
of Finland. For example, topographic refraction caused by the coastal slopes of the
entrance of the gulf may gradually redirect a part of waves propagating from the
southern parts of the Baltic Proper.

4.2 Modelled Wave Fields

The operational centres of DWD, DMI, and FIMR run the wave model WAM cycle
4 (Komen et al. 1994) on a regular rectangular grid in shallow water mode with-
out data assimilation. The models use different sources of hourly to three-hourly
forecast winds at the standard height of 10 m above the surface level from different
atmospheric models. The land-sea masks, bathymetry, computational grid, spatial
and temporal resolution, and spectral range of the wave models are different as well
(Soomere et al. 2004, 2008). The mesh size varies from 1/10◦ along latitudes and
1/6◦ along longitudes (the DWD model) down to 0.08◦ ×0.08◦ (the FIMR model).
The DWD and FIMR models use 24 equally spaced wave propagation directions
whereas the DMI model uses 12 directions. The DWD and DMI models employ
25 frequency bands from 0.04177 in 10% steps. The FIMR model uses an extended
range of 35 bands up to 1.073 Hz. The models have demonstrated reasonable perfor-
mance in both typical and extreme wave conditions. For example, the mean relative
error of the forecast of the maximum wave height in the five strongest storms is
about 15% for 13 buoys operated by the DMI.

The models well reproduced the course of wave properties during windstorm
Gudrun. The overall maximum of HS at buoy 1 was overestimated by about 6% by
the FIMR model and by 12–20% by the models of the DWD and the DMI (Table 1,
Soomere et al. 2008). The wave models mostly followed the measured sea state
(somewhat overpredicted the wave heights and underpredicted the wave periods)
also in the Gulf of Finland.

4.3 Maximum of the Wave Storm

The overall maximum HS during this storm is estimated by Soomere et al. (2008)
by means of correcting the overall maximum of the modelled HS with the use of
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Table 2 Relative errors of operational wave models and the estimated overall maximum of the
significant wave height in the Baltic Sea during windstorm Gudrun

Model Overall maximum Overprediction Relative error Modelled overall Estimated overall
at buoy 1 (m) (%) maximum of maximum of

HS (m) HS (m)

FIMR 7.6 0.44 5.8 10.2 9.6
DMI 8.96 1.80 20 11.7 9.4
DWD 8.17 1.01 12.4 10.95 9.59

Fig. 8 Modelled significant wave heights (m) and wave propagation directions (arrows) at 06:00
GMT on 9 January in the DMI 54-h forecast valid at 00:00 GMT on 9 January. Courtesy of the
Danish Meteorological Institute

the relative errors of the models calculated from observed data (Table 2). Doing so
presumes that the wave models adequately represent the spatial patterns of wave
properties and that the relative errors of the models are roughly the same over the
entire area of intense waves. Since a large part of properties of the wave fields during
Gudrun were located within the ‘corridors’ formed by outputs of the three models,
a reasonable estimate of this maximum eventually lies between the values defined
by these models.

The overall maximum HS ≈ 9.5m during windstorm Gudrun evidently occurred
about 200 km south-eastwards from buoy 1, off the coast of Saaremaa (about
57◦N, 20.4◦E, Fig. 8). Such wave conditions are much rougher than those expected
to happen once in a century (Lopatukhin et al. 2006a). Waves were also remarkably
long: peak periods up to 13 s were forecast (and eventually occurred) in the eastern
part of the sea (Soomere et al. 2008).
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The described procedure can be applied to the Gulf of Finland only based on
results from buoy 2, because buoy 3 was located at a considerably smaller depth
at a distance of >10km from the closest model point. The significant wave height
evidently reached 5 m in the gulf but most probably did not exceed the historical
maximum HS = 5.2m.

5 Discussion

The most surprising outcome from the above analysis is that no overall increase of
the average wave height has occurred in the northern Baltic Proper within the second
half of the twentieth century. The annual mean wave height considerably increased
in the 1980s and was exceptionally high in the mid-1990s, but quickly decreased
starting from about 1997.

The long-term behaviour of the mean wave height matches neither the gradual
increase of the mean wind speed nor the behaviour of the annual amplitude of the
monthly mean sea level at the eastern coast of the Baltic Sea. This amplitude dras-
tically increased in the 1970s and the 1980s at the Finnish coasts, and decreased
again at the end of the twentieth century. Also, the short-term water level variability
had a local minimum in the 1960s, increased until the 1980s, and then decreased
until the end of the century (Johansson et al. 2001). The mismatch of the changes of
the wind, wave, and water level dynamics in the northern Baltic Proper is a highly
interesting feature and needs further investigation.

The qualitative match of the long-term variations of average wave properties at
Almagrundet and at Vilsandi proves that decadal changes in the dominating wind
directions cannot cause such long-term changes. Consequently, variations of certain
other properties of the wind fields such as the duration of winds from different direc-
tions or changes in wind patterns related to the shifts of the trajectories of cyclones
(Suursaar et al. 2006) may play a crucial role in the forming of long-term variations
of the Baltic Sea wave fields.

Extreme wave conditions with HS ≥ 7m were first observed in January 1984
in the northern Baltic Sea. Later on such seas occurred probably 1–2 times in late
1980s, once in 1990–1995, and four times since 1996. The frequency of extreme
wave storms, therefore, has been largely unchanged during the last 30 years: they
occur roughly twice a decade.

The strong reaction of the water surface is the most interesting feature of wind-
storm Gudrun that excited very high and long waves, although the maximum sus-
tained wind speed was not exceptional and the wind direction was not particularly
favourable for wave generation. Wave conditions with HS ∼ 9.5m are much rougher
than could be expected, based on the existing wave statistics (Lopatukhin et al.
2006a, b). Remarkably, long and high waves also appeared in the interior the Gulf
of Finland, in an area which generally is sheltered from long waves. Given the rapid
decrease of the mean wave height in 1997–2005, this event suggests that the de-
crease is accompanied by certain nontrivial changes of the forcing patterns.
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It might be speculated that a future storm of the same strength and duration, but
corresponding to more favourable wave generation conditions (e.g., a strong and
large cyclone travelling in the NNE direction), may create even higher waves. Since
only a few cyclones do so (Suursaar et al. 2006), such a ‘perfect storm’ is not likely
to occur. However, if it did happen, it probably would excite even rougher wave
conditions at the entrance of the Gulf of Finland and off the south-western coast of
Finland than Gudrun did near Saaremaa. The possibility of such rough seas within
the existing climatological conditions is of paramount importance for navigational
safety and design of offshore structures.

The future climate changes are quite likely to modify factors controlling the
volume of the water body, the mean temperature, salt water inflow conditions, the
overall transport scheme of waters, the distribution of upwelling and downwelling
patterns, the location of areas of the largest wave intensity and wave-induced mix-
ing (Myrberg et al. 2007), and therefore the vertical and horizontal distribution of
salinity, temperature, and other decisive constituents of the local ecosystem. In par-
ticular, the increased sea surface temperature leads to the reduction of ice cover in
the northern parts of the sea. The potential increase of wind stress at sea-surface dur-
ing relatively windy winter months may lead to further changes of wave climate; in
particular, to enhancing of the extremes in wave heights and sea levels. Timely de-
tection of such changes is a major challenge for scientists. Launching of adaptation
measures is an accompanying challenge of decision-makers.
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Extreme Waves Generated by Cyclones
in Guadeloupe

Narcisse Zahibo, Irina Nikolkina, and Ira Didenkulova

Abstract Cyclones produce some harm by terrific wind speed, abnormal precip-
itations, and sea motion. Historically, storm surge inundation has been the most
destructive and murderous. The extreme waves caused by cyclones on the coast
of Guadeloupe for a whole historic period are discussed. The first documented sea
damage during hurricane passage in Guadeloupe occurred in 1642. Data of extreme
waves induced by hurricanes from 1928 to 2007 in Guadeloupe are collected and
discussed. The heights of extreme waves for Caribbean and Atlantic coasts are com-
pared; the most dangerous regions are also evaluated.

1 Introduction

Cyclones known as hurricanes in North Atlantic and typhoons in North Pacific are
categorized according to their maximum wind speed and lowest central pressure. In
the Atlantic, the Saffir–Simpson Scale (SSS) is used to classify most of the tropical
cyclones that exceed the intensities of “tropical depressions” and “tropical storms.”
It is a scale with the range of 1–5 based on wind speed that shows expected damage
to structures, the effects of storm surge, and flooding (Table 1).
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Table 1 Saffir–Simpson hurricane scale

Category Wind speed (km h−1) Storm surge (m)

Tropical depression 0–62 0
Tropical storm 63–117 0–0.9
1 119–153 1.2–1.5
2 154–177 1.8–2.4
3 178–209 2.7–3.7
4 210–249 4–5.5
5 >250 >5.5

Various data of tropical storms and hurricanes in the Atlantic can be found now
in sites (NTC; UNISYS; Hurricanecity). The Atlantic tropical cyclones that resulted
in great loss of life during 1492–1996 are introduced and discussed in Rappaport
and Fernandez-Partagas (1997). Recently, Pielke et al. (2003) discussed the hurri-
cane vulnerability in Latin America and the Caribbean after catastrophic Hurricane
Mitch, which caused deaths of more than 10,000 people and resulted in property
damage at a valuation of more than $8.5 billion in Honduras and Nicaragua.

The French West Indies located in the Lesser Antilles, North Atlantic has a huge
experience of tropical cyclones. The most detailed catalogue of cyclone activity in
Martinique and Guadeloupe was compiled by Saffache et al. (2002, 2003) based
on historical documents. This data was used by Zahibo et al. (2007) to obtain the
statistical analysis of cyclone characteristics in Guadeloupe.

Cyclones produce some harm by terrific wind speed, abnormal precipitations,
and sea action. Historically, storm surge inundation has been the most destructive
and murderous. One of the most catastrophic recent natural disasters occurred in
Bangladesh in 1970; where more than 300,000 people were lost in storm surge
flooding during a powerful cyclone (Wolshon et al. 2005). Storm surges are created
by large wind speed (in cyclones category 1–5 SSS wind speed is less than 33m s−1)
and high atmospheric pressure fall (the maximum value of 5 h Pa in the Atlantic was
recorded in September 1966 when Hurricane Inez went over Guadeloupe).

A storm surge history is rather extensive; thus on 10 March 1899 during cyclone
Mahina (the most fatal natural disaster in Australian history) an extreme wave oc-
curred. Just before the eye of the cyclone passed overland to the north, a tidal wave
(caused by storm surge), variously reported as either 13 m or 48 ft (14.6 m) high,
swept inland for about 5 km, destroying anything that was left of the Bathurst Bay
pearling fleet along with the settlement. The analysis of this event made by Nott and
Hayne (2000) suggested that marine inundations have not exceeded 3–5 m elevation.

The analysis of the storm surge (up to 28 ft height) on American coast during
Katrina passage has been produced under the direction of the Federal Emergency
Management Agency (Knabb et al. 2005). Afterwards, numerical simulation was
performed for forecasting storm surges propagating up the Mississippi River (Reed
and Stucky 2005). Nowadays, the Atlantic Storm Surge and Tsunami System is a
work in progress, NOAA (O’Reilly et al. 2006).

Recently, Atlantic has been struck by a destructive event of category 5. The Hur-
ricane Dean was formed on 13 August 2007 over west coast of Africa. This powerful
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tropical cyclone is considered as the most intense event in the Atlantic basin since
Hurricane Wilma that occurred in 2005. Dean fell on the Lesser Antilles on the night
of 16th to 17th of August, 2007. The field survey has been performed by authors in
August 2007 in Guadeloupe after the attack of the Hurricane Dean.

The extreme waves caused by cyclones on the coast of Guadeloupe for a whole
historic period are discussed here. The paper is organized as follows. Data of ex-
treme waves induced by the last Hurricane Dean in Guadeloupe is given in Sect. 2.
Analysis of available historical data of storm surges is made in Sect. 3. The main
conclusions are summarized in Sect. 4.

2 Extreme Waves Induced by Hurricane Dean

2.1 Cyclone General Information

The Hurricane Dean crossed the center of an Antillean arc on 16–17 August 2007.
After traversing the channel Sainte-Lucie (south of Martinique), Dean reached
to the third stage of SSS; its average maximal wind speed was in the order of
160–180km h−1 with blasts of 200km h−1. Between 4 a.m. and 7 a.m. the center
of the hurricane passed several kilometers to south of Martinique (15 km to Sainte-
Anne, 30 km to Airport Lamentin) (Communique meteorogique de presse, 2007),
see satellite image and Guadeloupe map in Figs. 1 and 2.

Two deaths were caused by Dean in Martinique: an old man died because of
cardiac seizure and another man died because of a very strong wind. Great damages
occurred in French territories, trees were overthrown and root out (particularly coco-
wood of Faula au Vauclin, South-east of Martinique; and Sainte-Anne, South of
Martinique), roads were destroyed, some beaches of white sand in Sainte-Anne and
Diamant disappeared under the water. But the most considerable damage occurred
to bananas (100% of production in Martinique and 80% in Guadeloupe), tropical
fruits, and sugar-cane (70% of production in Martinique) (Sergent, 2007), see Fig. 3.

The Guadeloupe archipelago was 200 km far from the center of the hurricane;
since hurricane winds reached its maximum strength at 10–100 km from the cen-
ter, wind speed was not so violent there. The highest wind speed was observed in
the South: on the island Marie-Galante (119km h−1) and Les Saintes (126km h−1)
(Damase, 2007). In general, maximum wind speed in Guadeloupe was less than
100km h−1 on the plain and about 175km h−1 on the mountain Soufriere (Commu-
niqué météorologique de presse, 2007). According to SSS these wind speed values
correspond to storm surges of 0.09–2.4 m height in Grande-Terre and Basse-Terre,
respectively.

The wave height was about 6–10 m; surge waves were measured in Basse Poine,
North Atlantic of Martinique (10.4 m), and in the channel Sainte-Lucie (9 m). In the
vicinity of Guadeloupe surge waves were estimated to be 6–8 m, in the channel of Les
Saintes the heights exceeded 7 m (Communiqué météorologique de presse, 2007).
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Fig. 1 Observed wind speed during hurricane passage

Fig. 2 Hurricane Dean category 4 in the Caribbean, satellite image 17 August 2007, 5.15 a.m.
GMT (Les cyclones, typhons et autres ouragans, 2007)
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Fig. 3 About 80% of bananas were damaged in Guadeloupe

Field survey of the Guadeloupe Island was carried out 2 days after hurricane
passage by a survey team from the University of Antilles Guyane: Prof. Narcisse
Zahibo, MSc student Irina Nikolkina and Dr. Ira Didenkulova, which lasted for four
days (19–22 August 2007).

As hurricane passed from 200 km to the south from Guadeloupe (channel Sainte-
Lucie, south of Martinique), particular damage was caused on the southern shore of
Guadeloupe. The most damaged areas were observed from North West to South of
Basse-Terre and from South to South East of Grande-Terre. The expedition started
in Sainte-Rose (north-west of Basse-Terre) and finished in Sainte-Anne (south-east
of Grande-Terre).

2.2 Severely Damaged Territories

Authors performed the field survey and suggested that Grande-Terre was especially
damaged by storm surges. This amplification could be caused by bottom topogra-
phy as the beaches in Grand-Terre are the flattest. The most damaged territories were
located in the northern coast of the Caribbean shore, St Anne, St Félix, and Petit-
Havre. The main harm observed in Grande-Terre during the field survey included
soil degradation, inundation (Sainte-Anne), destruction of littoral buildings (Petit
Havre), and debris of marine origin up to 50–60 m inshore (Saint-Felix). North-
western part of Basse-Terre was damaged mainly by wind, as it reached its max-
imum speed near the volcano Soufriere (Communiqué météorologique de presse,
2007). The field survey results showed that the most significant damage was caused
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in north and north-western parts of Basse-Terre (Vieux-Habitants, Sainte-Rose,
Malendure, Vieux-Habitants). Here is the short description of the observed damage.

2.3 Gosier

In Center of Gosier the main beach was inundated with the marine (sea shells, algae,
grass-wrack) and anthropogenic (plastic bottles, bauchles) origin materials (Fig. 4).
The small beach near the central park was covered with sea-grass on a horizontal
distance of more than 5 m (Fig. 5). The central square of Gosier, which is situated on
the sea shore, was cluttered up with the rubbish of all sorts (Fig. 6). The horizontal
distance covered with the sea garbage exceeded 10 m. A berth to get to an island
Ile de Gosier was totally destroyed by the hurricane, and stone plates near the berth
were broken (Fig. 7).

2.4 Saint Félix

In Anse du Mont, Saint-Félix, garbage of marine origin was drifted in the water
100 m offshore (Fig. 8). Anse Canot was over covered by sea-grass along a distance
more than 40 m inland (Fig. 9), and trees were uprooted. This beach was washed
away, and thickness of a depredated layer exceeded 20 cm. The beach degradation
can be seen in Fig. 9.

Fig. 4 Local people gathering cockle-shell and sea plants, Gosier
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Fig. 5 A small beach covered with sea-grass, Gosier

Fig. 6 Garbage on the central square, Gosier
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Fig. 7 Destroyed berth, Gosier

Fig. 8 Yachts and sea garbage in Marina Saint-Felix (Anse du Mont)

Fig. 9 Beach of Saint-Felix (Anse Canot): before the hurricane, February 2007 (left); after the
Hurricane Dean, August 2007 (right)
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2.5 Petit Havre

According to an eye-witness, in the bay Petit Havre the wave of 6 m height
(Lapinard, 2007) destroyed a berth (Fig. 10). The small beach is totally ruined
(Fig. 11), sea garbage and rubbish of anthropogenic origin materials covered the
shore. The hurricane uprooted the trees and bent a stone more than 1 m height.
Along the beach of Petit Havre the soil was washed away for a distance about 45 m
(Fig. 12). A summerhouse and a table were broken and the trees were root out
because of beach degradation (Fig. 13). A metallic frame (probably a part of local
berth) was dragged by the waves.

2.6 Sainte-Anne

The local newspaper declaimed on the first day after the hurricane passage “The
Sainte-Anne beach doesn’t exist any more; the road, parking – everything is covered

Fig. 10 Destroyed berth in Petit Havre

Fig. 11 The beach of Petit Havre: January, 2006 (left) and August, 2007 (right)
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Fig. 12 Beach degradation

Fig. 13 Consequences of the hurricane: broken table (left), inclined summerhouse (right)

Fig. 14 Sainte-Anne beach: before the hurricane, December 2005 (left); after the Hurricane Dean,
August 2007 (right)

with sand up to apartment houses,” see Fig. 14 (Lapinard, 2007). The destroyed
berth (Fig. 15) and several tired up palms (Fig. 16) were observed. The diameter
of a rhizome is comparable with human height, mounts to 1.8 m with 30–40 cm
thickness. A layer of degraded soil was in 40 cm thickness (Fig. 17). The small
hidden beach Village Artisanal de Sainte-Anne near the main road was covered by
sea-grass (Fig. 18). The grass was spread out to a distance of 50 m.
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Fig. 15 Destroyed berth, Sainte-Anne

Fig. 16 Fallen palms, Sainte-Anne

Fig. 17 Soil degradation, Sainte-Anne
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Fig. 18 Sea grass on a small beach, Sainte-Anne

Fig. 19 Community of Marine Capture Fisheries was heavily damaged (Vieux-Habitants)

2.7 Basse-Terre Region

In Vieux-Habitants, run-up of severe storm surges of 3–4 m and heavy winds were
observed (Figs. 19 and 20). The beach in Malendure was covered by sea-grass,
placed out to several meters (Fig. 21). According to a local paper, some dam-
age was caused in the beach Sainte-Claire, Goyave (Fig. 22), sea damage was
drifted 30–40 m offshore, and terrific storm surges were recorded in Vieux-Habitants
(Fig. 23) (Lapinard, 2007).
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Fig. 20 Storm surges in Vieux-Habitants (France-Antilles Guadeloupe, samedi 18 et dimanche
19 août 2007)

Fig. 21 Extreme left sea-grass several meters inshore in Malendure (on the left photo: a member
of expedition Ira Didenkulova)

Fig. 22 Data of hurricane destruction in Sainte-Claire, Goyave (destroyed beach)

2.8 Tide-Gauge Data

Since 1984, the network of tide-gauges exits in Guadeloupe. It consists of six
mareographs nowadays (two of them are nonworking), Fig. 23 (Etude du risque
tsunami en Guadeloupe, 2006). According to the report of the Volcanic and Seismic
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Fig. 23 The location of the tide-gauges in Guadeloupe (triangles and squares indicate actual tide-
gauges and planned stations, respectively)

Fig. 24 Records of sea level and atmospheric pressure taken in August, 2007 in Deshaies

Observatory of Guadeloupe, the tide-gauges, which are available now, are located in
average depth of about 2 m in Deshaies, Bouillante, Vieux-Habitants and Gourbeyre.
The port in Deshaies was the only place where the tide-gauge record was available
(Fig. 24). According to the record, storm surges in Deshaies reached 3 m height.

The field survey results mark that, being nowadays well-protected by stone con-
structions, Deshaies was slightly damaged by wind and not by sea waves. However,
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there was some water inside the mareograph (about 2 m above mean water level).
This statement is in a good agreement with data from the western part of Basse-Terre
(Vieux-Habitants), where storm surges of 3–4 m height were observed. Apparently,
the amplitude of storm surges might have had similar order in all Basse-Terre.

The atmospheric pressure is in an obvious correlation with sea waves; here we
observe so-called rule of reverse barometer (Lamb, 1932). The experience of the
Volcanic and Seismic Observatory of Guadeloupe in 2006 showed that normally the
short-term atmospheric pressure variations have an order of 5 mb that causes sea
level variations of 5 cm (Etude du risque tsunami en Guadeloupe, 2006). During
the cyclone passage the short-term atmospheric pressure variations of 7 mb were
accompanied by sea level variations of about 40 cm.

Because of the large distance between the hurricane eye and Guadeloupe
(200 km), all mentioned phenomena were recorded by tide-gauge several hours
after hurricane passage.

The locations and amplitudes of the storm surges are given in Fig. 25. Accord-
ing to Fig. 25, the Caribbean coast, especially south of Grande-Terre and west of
Basse-Terre, was damaged significantly.

Fig. 25 Locations and amplitude of storm surges produced by Hurricane Dean (run-up height, big
underlined letters; run-up length, small letters)



174 N. Zahibo et al.

3 Historical Data of Storm Surges

The first mentioned sea-damage during hurricane passage in Guadeloupe occurred
in 1642. “Dead fish was partly dug in sand along the whole shore of Basse-Terre;
here a refugee was found from its natural world <the sea>.” In Table 2, events are
presented in the chronicle order. Here we give some description found in Saffache
(2003). Figure 26 presents data of extreme waves in Guadeloupe from 1928 to 2007.
Here we use only presided data for storm surge locations for several cyclones; the
description does not include the name of district, but a storm surge height for the
whole island is given. Thus, the terrible cyclone of 1928 (category 4) produced ex-
treme waves of 15 m height; the famous Hurricane Hugo (category 4) that traversed
the island from east to west causing huge damage by wind caused “small storm
surges” (“modest houle” in French). This phenomenon is discussed in Pagney and
Dalby (1991), where the authors suggested that the coast morphology could have re-
duced storm surge. During 2000–2006, cyclones produced extreme waves less than
2.5 m, except Hurricane Fabian (category 3) when 4 m storm surges were reported.

Table 2 Damaging cyclones in Lesser Antilles

Date Cyclone Category Storm surge (m) Location

1928 4 15 Guadeloupe coast
1966 Inez 3 “Probable storm surge” Saint-François, Pointe-a-Pitre

and Sainte-Rose
1979 David 4 4–5 Saint-François
1989 Hugo 4 “Minor storm surge” Guadeloupe coast
1995 Luis 4 “Strong storm surge” Moule, Port-Louis, Malendure,

Deshaies and Bouillante
1995 Marilyn 1 4–6 Caribbean coast of

Grande-Terre and on the shore
of Basse-Terre, between
Capesterre and Petit-Bourg

1998 Bonnie TS 1.5–2 South-east of Guadeloupe
1998 Danielle 2 2–2.5 Atlantic coast (east-north-east

and north-east)
1999 Jose 2 4–5 South-east of Guadeloupe
1999 Lenny TS 4–5 Caribbean coast

3 Deshaies
2000 Joyce TS 2 Guadeloupe coast
2001 Chantal TS “Storm surge” Guadeloupe coast
2003 Fabian 4 4 Guadeloupe coast
2003 Isabel 4 2.5 Guadeloupe coast
2004 Ivan 3 “Minor storm surge” Guadeloupe coast
2007 Dean 4 6–8 Petit Havre (Gosier)

3 Deshaies
3–4 Vieux-Habitants
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Fig. 26 Locations and dates of extreme waves in Guadeloupe in 1928–2007

The most important storm surges were recorded in 2007 (6–8 m, Petit-Havre),
in 1995 (4–6 m, Caribbean coast of Grande-Terre and south-eastern coast of Basse-
Terre), and in 1999 (4–5 m, Caribbean coast).

Both Atlantic and Caribbean coasts of the island are exposed to extreme waves;
the mean value of storm surge height for the Atlantic coast (2.2 m) is twice lower
than that for the Caribbean one (4.4 m). The most dangerous regions are observed
in the southern shore of Grande-Terre: Gosier, Sainte-Anne, and Saint-François.

The maximum runup was recorded in 1999 during Hurricane Lenny (category 4),
when waves of 3 m height in Deshaies flooded a local boulevard up to 200 m inland.
In 2007, after Dean passage, runup length in Anse du Mont, Gosier, reached 100 m.

4 Conclusion

Since 1928, several terrific hurricanes have occurred in the Caribbean, and extreme
waves produced by these cyclones damaged Guadeloupe. The tide-gauge record of
the first storm surge (hurricane Dean, August 2007) was presented and analyzed.
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According to it, the atmospheric pressure is in an obvious correlation with storm
surges; here we observe so-called rule of reverse barometer.

The maximal storm surges in Guadeloupe reached 15 m and were produced by
hurricane in 1928. The most important storm surges were recorded in 2007 (6–8 m,
Petit-Havre), in 1995 (4–6 m, Caribbean coast of Grande-Terre and south-eastern
coast of Basse-Terre), and in 1999 (4–5 m, Caribbean coast). Both Atlantic and
Caribbean coasts of the island felt extreme waves, and the mean value of storm surge
height for the Atlantic coast (2.2 m) is twice lower than that for the Caribbean one
(4.4 m). The most dangerous regions are located in the southern shore of Grande-
Terre: Gosier, Sainte-Anne, and Saint François.
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An Analytical Model of Large Amplitude
Internal Solitary Waves

Nikolay I. Makarenko and Janna L. Maltseva

Abstract The problem on steady internal waves in a weakly stratified two-layered
fluid is studied analytically. We consider the model with homogeneous fluid in the
lower layer and with exponentially stratified fluid in the upper layer. The long-wave
approximation is constructed by means of implementing a scaling procedure with a
small Boussinesq parameter. Extreme configurations of solitary waves such as broad
table-top waves are discussed.

1 Introduction

It is well known at present (Helfrich and Melville 2006; Pelinovsky et al. 2007)
that ocean internal waves can exhibit huge magnitude comparable with total fluid
depth. One of the most interesting extreme forms of nonlinear internal waves is
intimately related with the broadening effect. Broadening occurs when the phase
speed of solitary wave is close to the propagation speed of smooth internal bore.
Turner and VandenBroeck (1988) found this effect numerically by calculation of
interfacial table-top solitary waves in a two-fluid system.

Two-layer approximation is a standard model of sharp pycnocline in a stratified
fluid. In this description, the density is constant in each layer but has a disconti-
nuity at interface. At the same time, in several cases, one should take into account
slight continuous stratification of fluid layer in spite of the density jump at interface.
In this chapter, we consider a theoretical model of strongly nonlinear interfacial
waves in a two-layer fluid, which has a constant density in lower layer, and the den-
sity depends exponentially on the height in upper layer. The newly proposed model
equation generalizes the models suggested by Ovsyannikov et al. (1985) and Miyata
(1985) for a system with constant densities in both layers, as well as the “2.5-layer”
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model considered by Voronovich (2003). We demonstrate that perturbed model is
well consistent with the known results about table-top waves in the perfect two-fluid
system. We have also found the range of parameters where continuous stratification
in upper layer essentially affects the shape of solitary waves. In this view, the re-
sulting model takes into account the influence of weak stratification outside of the
pycnocline.

The method of derivation involves asymptotic analysis of the Dubreil-Jacotin –
Long equation, which is equivalent to the fully nonlinear Euler equations. Long-
wave scaling procedure uses small Boussinesq parameter, which characterizes small
slope of the density profile in upper layer. Our method combines approaches sug-
gested originally by Ovsyannikov and Miyata for a two-layer fluid with expansion
procedure developed by Long (1965) and Benney and Ko (1978) in the case of
continuous stratification. Previously, this method was used in theoretical study of
table-top solitary waves and internal bores in a weakly stratified fluid without ho-
mogeneous layers (Makarenko 1999; Maltseva 2003). Lamb and Wan (1998) inves-
tigated numerically flat-crested waves in a continuously stratified fluid, and Grue
et al. (2000) observed breaking and broadening of such solitary waves in laboratory
experiments.

2 Basic Equations

We consider a 2D motion of inviscid inhomogeneous two-layered fluid, which is
weakly stratified under gravity. The Euler equations describing steady flows are

ρ(uux + vuy)+ px = 0,
ρ(uvx + vvy)+ py = −ρg,
ux + vy = 0, uρx + vρy = 0,

(1)

where ρ is the fluid density, u and v are the velocity components, p is the pressure,
and g is the gravity acceleration. The flow is confined between the flat bottom y =
−h1 and the rigid lid y = h2 (Fig. 1), and the interface y = η(x) separates the layers
(the value η = 0 gives equilibrium level of this interface).

2

1

0

− 1

2

= (

Fig. 1 Scheme of motion
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We introduce the stream function ψ as usually by u = ψy, v = −ψx, so the mass
conservation implies the dependence ρ = ρ(ψ), and the pressure p can be found
from the Bernoulli equation

1
2
|∇ψ|2 +

1
ρ(ψ)

p+gy = b(ψ).

It is supposed that the fluid velocity (u,v) tends to the upstream velocity (c j,0) as
x →−∞ where c j is the wave speed with respect to j-th layer ( j = 1,2). In this case,
boundary conditions at the bottom, at the interface, and at the lid take the forms,
respectively

ψ = −c1h1 (y = −h1), ψ = 0 (y = η), ψ = c2h2 (y = h2). (2)

It is well known (Yih, 1980) that the system (1) can be reduced to the Dubreil-
Jacotin – Long (DJL) equation for a stream function

ρ(ψ)∆ψ +ρ ′(ψ)
(

gy+
|∇ψ|2

2

)
= H ′(ψ).

Here the function H(ψ) = ρ(ψ)b(ψ) involves the Bernoulli function b(ψ) and the
density ρ(ψ), which are specified by the condition ρ(ψ) = ρ∞(ψ/c j) in j-th layer.
In this chapter, we consider the upstream density profile

ρ∞(y) =
{

ρ1 (−h1 < y < 0),
ρ2 exp(−N2y/g) (0 < y < h2),

(3)

where N = const is the Brunt – Väisälä frequency, and the constants ρ1 and ρ2
are such that ρ2 < ρ1. The special case N = 0 gives a familiar two-fluid system
with a piece-wise constant fluid density ρ and the Bernoulli function b. In general
case N 	= 0, the function b(ψ) is constant in lower layer −h1 < y < η(x) only,
b(ψ) = c2

1/2. At the same time, we have in upper layer η(x) < y < h2

b(ψ) =
1
2

c2
2 +

gψ
c2

+
g2

N2

(
1− e

N2ψ
gc2

)
.

As a consequence, we obtain the Laplace equation for a stream function in the ho-
mogeneous layer

ψxx +ψyy = 0, (4)

and ψ should satisfy the nonlinear equation

ψxx +ψyy =
N2

gc2

{
g
(

y− ψ
c2

)
+

1
2
(
ψ2

x +ψ2
y − c2

2
)}

(5)

in the exponentially stratified layer. Note that Voronovich (2003) used the linear
Helmholtz equation

ψxx +ψyy +
N2

c2 (ψ − cy) = 0 (c = c1 = c2), (6)
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which is a simplified version of (5). By this approach, the nonlinearity appears due
to interfacial boundary condition

[ρ(ψ)(|∇ψ|2 +2gy−2b(ψ)] = 0, y = η(x), (7)

where the square brackets mean the discontinuity jump. The condition (7) provides
continuity of the pressure p everywhere in the flow domain. As Long (1965) noted,
nonlinear inertial terms of (5) are significant in the case when perturbation method
uses several parameters in addition to small quantity ∆ρ/ρ . Therefore, we take into
account all the nonlinearities appearing from exact Euler equations. In addition, we
reformulate the condition (7) by taking into account conservation of total momen-
tum due to the flow force integral

h2∫
−h1

(p+ρ ψ2
y ) dy = const.

Excluding the pressure p by the Bernoulli equation, we obtain the relation

ρ1

η(x)∫
−h1

(
c2

1 +ψ2
1y −ψ2

1x −2gy
)

dy+ρ2

h2∫
η(x)

e−
N2ψ2

gc2

×
{

c2
2 +ψ2

2y −ψ2
2x −

2g2

N2

(
e

N2ψ2
gc2 −1

)
+2g

(
ψ2

c2
− y

)}
dy = C, (8)

where the constant C depends on parameters of upstream flow as follows:

C = ρ1gh2
1 +2ρ1c2

1h1 +2ρ2c2
2h2 +2ρ2g

(
c2

2
N2 +

g2

N4

)(
1− N2h2

g
− e−

N2h2
g

)
.

It is easy to check by direct calculation that the integral relation (8) is equivalent
to the boundary condition (7), which is rather simple. However, (8) provides more
effectively the derivation of model describing solitary waves of finite amplitude.

3 The Model Equation

To formulate approximate model in a dimensionless form, we introduce now some
certain scales and parameters. The density profile (3) is clarified by the Boussinesq
parameters σ and µ defined by the formulae

σ =
N2h2

g
, µ =

ρ1 −ρ2

ρ2
. (9)
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Here the constant σ characterizes the slope of density profile in a continuously
stratified layer, and µ is the dimensionless density jump at interface. As usual, both
these parameters are small in the case of slight stratification. However, we expect
that the interfacial mode dominates modes of internal waves in stratified layer, when
µ � σ . Therefore, we fix the constant µ and use the parameter σ as the perturbation
parameter.

Further, we define the densimetric Froude number Fj as the scaled phase speed
c j in j-th layer,

F2
j =

ρj c2
j

g(ρ1 −ρ2)h j
( j = 1,2). (10)

The pair F = (F1,F2) is a distinctive mark for a two-fluid system in the presence
of a velocity jump at a sharp interface. We demand the difference between c1 and
c2 to be moderate in order to avoid the Kelvin – Helmholtz instability, at least in
accordance with long-wave limit criteria (Ovsyannikov et al. 1985):

|c1 − c2| <
√

g(ρ1 −ρ2)(ρ1h2 +ρ2h1)
ρ1ρ2

.

In addition to the Froude numbers Fj, we use also the parameter λ given by the
formula

λ 2 =
(

Nh2

c2

)2

=
σgh2

c2
2

=
σ

µF2
2

.

The constant λ characterizes the inverse densimetric Froude number defined for a
continuously stratified fluid in upper layer. Finally, the parameter r = h1/h2 is the
layer thickness ratio for the fluid at rest.

The derivation procedure involves the slow independent variable ξ =
√

σ x/h2,
the dimensionless variables (ȳ, η̄) = (y, η)/h2 and the stream function ψ =
cj h j ψ̄ ( j = 1,2), scaled separately in j-th layer. We are seeking for the func-
tion ψ̄ expanded in powers on σ as

ψ̄ = ψ(0) +σ ψ(1) +O(σ2),

where the coefficients ψ(k) are determined by the equations (4) and (5) under bound-
ary conditions (2) transformed to appropriate dimensionless form. Thus, in lower
layer −r < y < η we obtain the coefficients

ψ(0) =
y−η
r +η

, ψ(1) = −1
6

(
1

r +η

)
ξ ξ

{
(y+ r)3 − (r +η)2(y+ r)

}
(bar is omitted in notations of dimensionless variables here and later). Respectively,
in upper layer η < y < 1 the coefficients of perturbation series are

ψ(0) = y−η
sinλ (1− y)
sinλ (1−η)

,
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ψ(1) =
sinλ (1− y)

2λ

(
η

sinλ (1−η)

)
ξ ξ

{
(1−η)cotλ (1−η)−(1− y)cotλ (1− y)

}

+
1
6

η2
{

sinλ (η − y)+ sinλ (1−η)− sinλ (1− y)
sin3 λ (1−η)

+
sin2 λ (1− y)
sin2 λ (1−η)

− sinλ (1− y)
sinλ (1−η)

}

+
η(η − y)

2
sinλ (1− y)
sinλ (1−η)

.

Finally, we use the dimensionless version of integral relation (8) in the form

µr3F2
1

η∫
−r

(
ψ2

y −σψ2
ξ
)

dy+
1∫

η

e−σψ
{

µF2
2 (1+ψ2

y −σψ2
ξ )−2σ−1 (eσψ −1)

+2(ψ − y)
}

dy

= (1+ µ)η2 −µrF2
1 (η − r)+2µF2

2 +2
(
λ−2 +σ−2)(1−σ − e−σ) .

Substituting the power expansion for ψ and truncating the terms O(σ2), we obtain
the nonlinear ordinary differential equation for the wave shape η(x), which depends
on dimensionless variables x with scale unit h2:(

dη
dx

)2

=
η2

(
A0 +A1η +A2η2 +A3η3

)
B0 +B1η +B2η2 +B3η3 +B4η4 . (11)

Here the coefficients A j and B j are trigonometric polynomials depending on sn =
sinnλ (1−η) and cn = cosnλ (1−η) with integer or half-integer n,

A0 = 18rλ s2
1

{[
2(F2

1 −1)−σF2
2
]

s2
1 +λF2

2 s2

}
,

A1 = 2λ F2
2

{
s2

1
[
λ (9−2σr)s2 − s2

1(6rλ 2 +9σ)
]

−2s2
1/2
[
rσλ s1 +3rσλ 2(1+2c1)

]}−36λ s4
1,

A2 = 4λ 2F2
2 s2

1/2

{
3σλ (r−1)(1+2c1)−4

(
3λ s2

1 +σs2
)
c2

1/2 −σs1

}
,

A3 = 12λ 3σF2
2 s2

1/2(1+2c1),

B0 = 12λ r3F2
1 s4

1 +9rF2
2 (2λ − s2)s2

1,

B1 = 9F2
2

{
rλ (2λ − s2)s2 −

[
2(r−1)λ + s2

]
s2

1

}
,

B2 = 9λF2
2

{
λ
[
r(s2

1 −3)+2
]
s2 +4s4

1 +2rλ 2 −2(rλ 2 +3)s2
1

}
,
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B3 = −9λ 2F2
2

{
(c2

1 +2)s2 +2λ (r−1)c2
1

}
,

B4 = −18λ 3F2
2 c2

1.

Note that λ in above formulas is λ = O(
√

σ) for a fixed F2 	= 0. This is the case
when continuous stratification disappears in upper layer as σ → 0. In such a way,
the (11) reduces to the equation

(
dη
dx

)2

=
3η2

[
η2 +

(
F2

2 − rF2
1 −1+ r

)
η + r

(
F2

1 +F2
2 −1

)]
r3F2

1 (1−η)+F2
2 (r +η)

. (12)

as λ → 0. This simplified version of model equation was earlier obtained by
Ovsyannikov et al. (1985) and, in the case c1 = c2, by Miyata (1985) (Choi and
Camassa, 1999) for a two-fluid system with constant density in the both layers.
Recently, this model was thoroughly compared and validated with experimental ob-
servations and numerical calculations of solitary waves in the framework of fully
nonlinear Euler equations (Camassa et al. 2006).

For a fixed λ 	= 0 and small σ > 0, the Froude number F2 has the order F2 =
O(

√
σ), and the (11) takes the limiting form

r3F2
1 η2

x = 3η2 (r(F2
1 −1)−η

)
(13)

as σ → 0. This is the Boussinesq – Rayleigh equation known as the model of surface
solitary waves in homogeneous fluid layer with dimensionless depth r. In the case
under consideration, the Froude number F1 = c1/

√
g1h1 is defined by the reduced

gravity acceleration g1 = (ρ1 −ρ2)g/ρ1. This curious analogy also agrees with the
(12), which results to (13) as F2 → 0.

4 Solitary Waves

Parametric range of solitary waves is obtained as the domain in (F1,F2)-plane being
supercritical with respect to the spectrum of small amplitude sinusoidal waves deter-
mined by linearized (2), (4), (5), and (7). The dispersion relation of linear waves is

∆(k;F) = 0,

where k is a dimensionless wave-number and the function ∆ is defined by the for-
mula

∆ = F2
1 rk

√
σ cothrk

√
σ +F2

2

(√
λ 2 − σ2

4
− k2σ cot

√
λ 2 − σ2

4
− k2σ − σ

2

)
−1.

This dispersion relation determines real wave-numbers k if and only if the Froude
point F = (F1,F2) belongs to the shaded area on the Fig. 2.
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Fig. 2 The spectrum and supercritical domain: σ = 0.00008, µ = 0.003, r = 1.2

The boundary of this spectral domain is determined by the equation

F2
1 +F2

2

(√
σ

µF2
2
− σ2

4
cot

√
σ

µF2
2
− σ2

4
− σ

2

)
= 1. (14)

Note that a perfect two-fluid system with constant densities ρ1 and ρ2 in the layers
has one-modal spectrum bounded by the unit circle F2

1 + F2
2 = 1. The curve (14)

transforms to this circle in a weak-stratification limit σ → 0 by fixing µ . However,
it is clear that this transformation from a nonbounded spectral domain to compact
spectrum is not uniform in F1 as σ → 0.

Equation (11) has solitary-wave solutions when the point (F1,F2) is located be-
tween the spectrum and the curve Bλ , which gives the broadening limit of internal
waves. The line

√
rF1 +F2 =

√
1+ r (the dashed line on Fig. 2b) is the bore diagram

for (12), and it gives a limit form of the curve Bλ as λ → 0. Small amplitude solitary
waves bifurcate from upstream flow at the spectrum boundary (14), these waves are
described by weakly nonlinear version of the (11)

η2
x = η2 [γ0 + γ1η +O(η2)

]
. (15)

Here the lowest-order coefficient γ0 is positive in supercritical domain ∆(0;F) > 0
since

γ0 =
3∆(0;F)

r2F2
1 +F2

2
+O(σ2),

and the coefficient γ1(F,λ ) depends on parameters Fj and λ in a complicated way.
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Fig. 3 Profiles of solitary waves

The Fig. 2b presents an enlarged fragment of Fig. 2a near the positive semiaxis
OF1. This is a thin spectral layer for the perturbed problem, and it has the thickness
O(

√
σ) and therefore disappears as F1 > 1 and σ → 0. Similarly, Fig. 2c illustrates

scaled fragment of Fig. 3b, which is located close to the Froude point F = (1,0).
Branches of the curve Γ1(λ ) : γ1(F,λ ) = 0 shown on Fig. 2a and c indicate where
the balance of nonlinearities η3 and η4 is possible in the (15). It is really true in
the vicinity of the point P1 with the coordinates F1 = r/

√
(1+ r)r +O(λ ) and F2 =

1/
√

1+ r + O(λ ). This is the same effect as the balance of quadratic and cubic
nonlinearities in the KdV–mKdV model (Kakutani and Yamasaki 1978).

In contrast, the neighborhood of the point P2 with coordinates

F1 = 1+
1

2π

√
σ
rµ

+O(σ), F2 =
1
π

√
σ
µ

+
√

rσ
π2µ

+O(σ3/2)
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demonstrates one more case of exotic behavior of solitary waves. For example,
when the point F belongs to the curve Γ1(λ ) then the fractional scaling of variables
x = σ1/4x0, η = σ1/2η0 leads from (11) to model equation

(
dη0

dx0

)2

= η3
0

R2 +3R(πη0 +R)3 −3(πη0 +R)4

r3(πη0 +R)4 +3r2/(2π2µ2)
(R =

√
r/µ). (16)

This equation describes solitary waves with power decay as |x0| → ∞ (not exponen-
tial decay because of multiplier η3

0 at right-hand side).
The Fig. 3a–f presents the profiles of solitary waves calculated for (11)–(13).

Here the solid line corresponds to the (11), the dashed line corresponds to the (12),
and the dotted line corresponds to the (13). The point (a) gives the broad plateau-
shape solitary wave, which is precisely described by (11) and (12). The point (b)
demonstrates the location of Froude point (F1,F2) where all the equations (11)–(13)
are in good agreement. The point (c) is out of validity range of (12) but the solitary
wave solution for the equation (11) still exists here. The points (d)–(f) demonstrate
how the (13) loses its accuracy by moving along the curve Γ1(λ ). Solitary wave for
(11) seems to be broadening on the Fig. 3d–f. Indeed, it is the lost of exponential
decay near the point P2. The Fig. 3g illustrates good agreement of (11) (solid line)
and (16) (dashed line) for the point (g); here (13) fails to approximate at all.

Conclusion

In this chapter, we have considered the problem on permanent internal waves at the
interface between a homogeneous layer and exponentially stratified layer in a two-
fluid system. An ordinary differential equation describing large amplitude solitary
waves has been obtained using the long-wave scaling procedure. This equation ex-
tends the model suggested by Ovsyannikov et al. (1985) and Miyata (1985) for a
two-layer fluid with two homogeneous layers. Parametric range of solitary waves
is characterized, including extreme regimes such as broad plateau-shape solitary
waves.
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