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Introduction: Linking Earth Sciences and Mathematics

A. G. CAMACHO,1 J. I. DÍAZ,2 and J. FERNÁNDEZ1

Knowledge of the Earth’s structure and dynamics calls for a multi-disciplinary study that

makes use of the most advanced methods of Physics, Chemistry, Mathematics and

Information Technology, in the framework, or in a close collaboration with, the different

branches of Earth Sciences such as Geology, Geophysics and Geodesy. The research to

be developed includes subjects ranging from data acquisition, both with traditional

techniques and with the most advanced resources of our time; data treatment and

processing; to the development of new modelling methodologies for the simulation and

reproduction and prediction of the terrestrial processes on a local, regional and, by far the

most ambitious, global scale.

The large amount of (geological, geophysical and geodetic) high precision

observation data about the Earth available acquired both from the planet itself and

from space, grows increasingly. Currently one can obtain huge amounts of high

precision data that cover the widest areas desired. Often the time or space distribution

of these data are almost continuous, and considerable of data has been obtained by

unconventional techniques. In view of the privileged situation at present, we must

reconsider the connection and utilization of that abundant data with the more theoretical

studies that offer new and more refined mathematical models, capable of making the

most of the technological breakthroughs in observation. In the words of Jacques-Louis

Lions (1928–2001): ‘‘If we accept that any mathematical models isolated of any

experimental data have no predictive value, similarly, we must recognize that the most

abundant data banks without good mathematical models produce nothing more than

confusion’’.

What is required is to develop new mathematical, analytical and numerical, models

and methods for data processing and interpretation, considering their ever-increasing

quality, variety in origin (terrestrial and space), type (it is becoming more and more

possible to measure larger numbers of parameters simultaneously that can be related to

1 Instituto de Astronomı́a y Geodesia (CSIC-UCM), Fac. C. Matemáticas, Ciudad Universitaria, Plaza de

Ciencias, 3, 28040 Madrid, Spain. E-mail: antonio_camacho@mat.ucm.es, jose_fernandez@mat.ucm.es
2 Instituto de Matemática Interdisciplinar (IMI) and Departamento de Matemática Aplicada, Fac. C.

Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza de Ciencias, 3, 28040 Madrid,
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Pure appl. geophys. 165 (2008) 997–1001 � Birkhäuser Verlag, Basel, 2008
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one another), time (data acquired sporadically or continuously) and space extension

(going from disperse spots to almost continuous observation in space).

The generalized use of the data obtained in observing the Earth from space (ESA,

2008, NASA, 2008), the ever-increasing number of problems in which they are

applicable, and the need to combine them with the data acquired on Earth, poses new

problems both in the field of the statistical processing of the data and in their use by

society. All of this requires the involvement of specialists in such differing subjects as

decision-making support, operational research and artificial intelligence.

Furthermore, the efficient use of all this terrestrial and space data also requires the

help of the most sophisticated mathematical models that permit the correct interpretation

of these data together. At present, numerous problems remain to be solved in this field,

and there is huge demand for inversion models and techniques, and for other

mathematical tools, among the community of Earth Sciences specialists. One very

illustrative example of that interaction with sophisticated mathematical techniques refers

to the application of the latest mathematical developments on complex systems and chaos

theory to the specific case of Earth Sciences. Inversely, Geosciences gives to

mathematicians new and difficult problems which some times need new developments

to be at least partially solved. Therefore a closer cooperation between researchers from

both fields became day by day more necessary and is a basic aspect integral to carrying

out many works devoted to understand and solve problems related with geodynamics,

natural hazards, global change, etc.

From the approach of the need for a greater application and integration of

mathematics in the study of the Earth, the name of Geomathematics has been put forward

to combine the research and works that seek to develop and incorporate new methods,

approaches and solutions from different areas of mathematics, such as Statistics,

Operational Research, Artificial Intelligence and more in general from Applied

Mathematics, with special emphasis on its Modelling, Analysis, Numerical and

Computational Approximation methods and processes, and its Control Theory tech-

niques.

Yet that mathematical study of the Earth could never be carried out successfully

without the close collaboration with the specialists of all branches (Geology, Geophysics

and Geodesy) of Earth Sciences. The international (not to mention planetary) dimension

at which these contacts must be maintained is evident (see e.g., IUGS, 2008; IUGG,

2008). This philosophy, many aspects of which are already in place, will make it possible

to tackle the most current and ambitious scientific challenges that our society requires and

will also trigger important advances in the frontier of knowledge and culture that will

redound positively to the welfare of society.

Geomathematical research involves such diverse studies as flow models (porous

means, glaciers, etc.), sedimentation and diagenesis, global change models, wave

propagation, classification of the Earth’s surface, riskmap analysis, parameter sensitivity

analysis in inverse problems, stochastic models for processing terrestrial and space data,

direct deterministic models, chaos theory applied to Earth Sciences, geostatistical
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software, poor, incomplete or truncated information problems, time series analysis,

information dimension reduction, information representation, interfaces for reports in

specific fields, handling linguistic information, nonlinear processes in Earth Sciences,

study of geological structures and phenomena with invariance of scale by means of self-

organized criticality methods and fractal-type space distributions, etc.

Considering this perspective of the evolution of Earth Sciences and with the idea of

fostering the aforementioned collaboration, the Complutense International Seminar on

‘‘Earth Sciences and Mathematics’’ was organized and held in Madrid at the Faculty of

Mathematical Sciences of the Universidad Complutense de Madrid from 13–15

September 2006. Scientists from both fields, Mathematics and Earth Sciences, took part

in this International Seminar, addressing scientific problems related with our planet from

clearly complementary approaches, seeking to gain and learn from this dual approach and

proposing closer collaboration in the near future.

This volume is the first Topical Issue on ‘‘Earth Sciences and Mathematics’’ and

contains 11 papers, most of which were presented at the International Seminar. They

address different topics as are deformation modelling applied to natural hazards, inverse

gravimetric problem to determine 3D density structure, advanced differential SAR

interferometry, climate change, geomagnetic field, Earthquake statistics, meteorological

studies using satellite images, climate energy balance models, study of soils properties,

multifractal data sets, etc.

HOLLIDAY et al. present a well-written and concise review of the literature and some

of the recent work by the group about the probabilistic risk of earthquake occurrence. The

paper introduces a very interesting stochastic model for seismicity, alternative to the

popular ETAS model: The branching aftershock sequence (BASS) model. It is

accompanied by tutorial-type examples.

The paper by BERMEJO et al. introduces a numerical algorithm for the study of some

climate energy balance models which consists of a two-dimensional nonlinear parabolic

problem on the 2-sphere with the albedo terms formulated according to Budyko as a

bounded maximal monotone graph in R2. The numerical model combines the first order

Euler implicit time discretization scheme with linear finite elements for space

discretization given by quasi-uniform spherical triangles.

EFF-DARWICH et al. outline an interesting data supply option: The employment of

tiltmeter records from a solar telescope (THEMIS) in Tenerife (Canary Islands) as a

complementary technique to the geodetic system for continuous monitoring of ground

deformation in this volcanic island. Authors describe the wavelet procedure used for the

data analysis, and show significant signal tilts, which are interpreted as associated with a

major submarine fault.

The paper by ÁLVAREZ et al. proposes a mathematical model (of a variational nature

and leading then to some nonlinear Partial Differential Equations) to analyze sequences

of a two-dimensional multichannel meteorological satellite image including visible,

temperature and water vapor channels of great relevance in the study of cloud structures

and their displacements.
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The paper by BERRINO and CAMACHO presents a structural study of the Mt. Vesuvius

volcano, its magmatic system and the entire Neapolitan area by applying a new 3D

method for gravity inversion to the available Bouguer map. The method describes the

subsurface structures in terms of several sub-horizontal layers, each representing a

specific geological formation.

GARCÍA-GUTIERREZ and MARTı́N develop the log-self-similar model which may be a

useful tool to simulate particle size distribution in solids by using some fractal techniques

which can be useful for the construction of pedotransfer functions related to other soil

properties when textural information is limited to modest textural data.

RODELSPERGER et al. examine the impact of steric sea-level change on the gravity field

in the next 2000 years according to two scenarios of CO2 emissions. As expected, the

authors find that this impact is negligible compared to mass changes in the ocean.

Nonetheless this study seems to be the first one providing numerical evidence of that

result, and the methodology presented here could be modified to be applied to other

studies.

The paper by MARTı́N and REYES deals with the interaction of irregular, winding,

dragging paths through soil complex distributions. A mathematical modelling of the

interplay between multifractal distributions of mineral/pollutants in soil and fractal pore

networks is presented. A Hölder path is used as a model of soil pore network and a

multifractal measure as a model of soil complex distribution. They show that the Hölder

exponent of the path and the entropy dimension of the distribution may be used to

quantify such interplay.

BLANCO et al. present an overview of the advanced differential SAR interferometry

(DInSAR) technique referred to as Coherent Pixel Technique (CPT). Besides an

interesting improvement (multi-layer processing), the authors present several valuable

deformation results of wide areas using the differential SAR technique, showing that

this tool has major potential to be used for detecting and monitoring deformation

phenomena, as well as to better understand the geological mechanisms that provoke

them.

The paper by BOGACHEV et al. analyzes the statistics of return intervals to better

understand the occurrence of extreme events. The major issue is to determine some

general ‘‘scaling’’ relations between the return intervals at low and high thresholds, which

then allow extrapolation of the results to very large, extreme thresholds. They review

former results for long-term correlated data sets and their most recent findings for

multifractal data sets.

PAVóN et al. extend an interesting and potentially very useful application of

geomagnetic field modeling to archaeomagnetic dating, through the introduction of

intensity data. The resulting regional archaeomagnetic model SCHA.DI.00-F, valid for

the last 2000 years in the European region, is considered a valuable contribution to

current discussions regarding the relationship between changes in the geomagnetic field

and climate parameters.
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A second volume will be published later in 2008 with more selected and reviewed

papers presented at the Complutense International Seminar on ‘‘Earth Sciences and

Mathematics’’.

We appreciate the splendid and generous work carried out by the many referees. They

have worked in most of the cases, in the difficult intersection of two different fields as Earth

Sciences and Mathematics. The reviewers have been: J. Almendros, M. Badii, M.

Bebbington, A. Beliaev, P. Berardino, A. Bru, D. Chambers, D. F. Cook, A. Corral, A.

Correig, D. Dong, B. Enescu, D. Garcı́a, G. Gagneux, F. Giraldo, J. Gottsmann, G. Hetzer,

R. C. A. Hindmarsh, A. Hooper, G. Houseman, T. Jahr, G. Jentzsch, E. Kerre, L. Kuchment,

M. Laba, R. Lanari, J. Langbein, A. Lodge, A. Lombard, I. Main, V. C. Manea, S. McNutt,

T. Mikumo, P. Moczo, M. Pacella, Y. Pachepsky, J. W. Parker, A. Peresan, P. Prats, J. M.

Rey Simó, T. Sagiya, U. Schlink, C. Schoof, D. Seber, R. Shcherbakov, E. Sturkell, D.

Salstein, K. F. Tiampo, D. Tarling, C. Vázquez Cendón, G. Wadge, C. Wicks, G. Zoeller,

and D. Zupanski.
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Research, the Interdisciplinary Mathematical Institute (IMI), and the Royal Spanish

Academy of Sciences for their support in organizing the International Seminar. This

International Complutense Seminar was also partially supported with funds from research

projects CGL-2004-21019-E and CGL2005-05500-C02-01. The editors also thank

Renata Dmowska for the help, suggestions and support received during the editing

process of this topical issue. And finally we wish to thank all the authors of this volume

for their contributions.
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A Review of Earthquake Statistics: Fault and Seismicity-Based Models,

ETAS and BASS

JAMES R. HOLLIDAY,1,2 DONALD L. TURCOTTE,3 and JOHN B. RUNDLE
1,2,3

Abstract—There are two fundamentally different approaches to assessing the probabilistic risk of

earthquake occurrence. The first is fault based. The statistical occurrence of earthquakes is determined for

mapped faults. The applicable models are renewal models in that a tectonic loading of faults is included. The

second approach is seismicity based. The risk of future earthquakes is based on the past seismicity in the region.

These are also known as cluster models. An example of a cluster model is the epidemic type aftershock sequence

(ETAS) model. In this paper we discuss an alternative branching aftershock sequence (BASS) model. In the

BASS model an initial, or seed, earthquake is specified. The subsequent earthquakes are obtained from statistical

distributions of magnitude, time, and location. The magnitude scaling is based on a combination of the

Gutenberg-Richter scaling relation and the modified Båth’s law for the scaling relation of aftershock magnitudes

relative to the magnitude of the main earthquake. Omori’s law specifies the distribution of earthquake times, and

a modified form of Omori’s law specifies the distribution of earthquake locations. Unlike the ETAS model, the

BASS model is fully self-similar, and is not sensitive to the low magnitude cutoff.

1. Introduction

Deformation of the Earth’s crust is responsible for the generation of earthquakes over a

wide range of scales. In terms of the resulting seismicity, the Earth’s crust is clearly a self-

organizing complex system (MAIN, 1996; RUNDLE et al., 2003). Despite this complexity,

seismicity satisfies a number of universal scaling laws. These scaling laws have important

implications for probabilistic seismic hazard analysis and earthquake forecasting. They

also form the basis for a variety of models and simulations of earthquake activity.

Examples include the epidemic type aftershock sequence (ETAS) model and the

branching aftershock sequence (BASS) model. A comparison of these models will be a

major focus of this paper.

Earthquakes constitute a major hazard on a worldwide basis. Although the locations

of large earthquakes are concentrated near plate boundaries, they can occur within plate

interiors. A specific example is the three large (magnitude *7.7) earthquakes that

occurred near New Madrid, Missouri in 1810 and 1811. A number of very large cities are

1 Center for Computational Science and Engineering, University of California, Davis.
2 Department of Physics, University of California, Davis.
3 Department of Geology, University of California, Davis.
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located very close to plate boundaries. Examples include Tokyo, Los Angeles, San

Francisco, Seattle, Lima, Jakarta, and Santiago. Much of China is a diffuse plate

boundary, and major earthquakes have caused large losses of life throughout this region.

A recent example was in the 1976 Tangshan earthquake with some 500 000 deaths.

A major goal of earthquake research is to quantify the risk of occurrence of an

earthquake of a specified magnitude, in a specified area, and in a specified time window.

This is done and results in hazard maps. Historic and paleoseismicity are major

constraints on seismic hazard assessments. Slip rates and recurrence intervals of

earthquakes on recognized faults are specified in so far as data are available. Examples

are the sequence of studies carried out by the working groups on California earthquake

probabilities (FIELD, 2007b). These reports have formed the basis for establishing rates of

earthquake insurance in California.

A second major goal of earthquake research is to specifically forecast or predict

earthquakes. Many attempts have been made, but with only marginal success. A number

of published forecasting algorithms involve the use of past seismicity. The occurrence of

recent smaller earthquakes is extrapolated to forecast the occurrence of future larger

earthquakes. We first consider the relative roles of fault-based models and seismicity-

based models. These alternatives will be discussed in Sections 2 and 3.

A specific type of seismicity-based forecast models is the ETAS model. This model is

discussed in Section 4. In Section 5 we introduce the BASS model, and in Section 6 we

compare BASS to ETAS. We conclude that BASS is preferable because it is fully scale-

invariant and satisfies the major accepted scaling laws of seismicity. In Section 7 we

introduce a deterministic version of the BASS model and show that it exhibits Tokunaga

scale-invariant, side-branching statistics. These statistics are also satisfied by river

networks, diffusion-limited aggregation (DLA) clusters, branching in biology, and cluster

growth in site percolation. In Section 8 we present a numerical simulation of an

aftershock sequence using the BASS model. Finally, we state our conclusions in Section

9 and discuss the future of seismic hazard assessment.

2. Fault-Based Models

Fault-based models consider the earthquakes that occur on recognized active faults.

These models are also known as renewal models. Renewal models require that the stress

on an individual fault is ‘‘renewed’’ by the tectonic drive of plate tectonics. The simplest

renewal model would be that of a single planar strike-slip fault subjected to a uniform

rate of strain accumulation (plate motion). In this case, ‘‘characteristic’’ earthquakes

would occur periodically. Clearly the Earth’s crust is much more complex with faults

present at all scales and orientations. This complexity leads to chaotic behavior and

statistical variability.

An important question is whether the concept of quasi-periodic characteristic

earthquakes is applicable to tectonically active areas. There is extensive evidence that
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‘‘characteristic’’ earthquakes do occur quasi-periodically on major faults. Many studies

have been carried out to quantify the recurrence time statistics of these characteristic

earthquakes (UTSU, 1984; OGATA, 1999; RIKITAKE, 1982). Recurrence time statistics can

be characterized by a mean value, l, and a coefficient of variation, Cv. The coefficient of

variation is the ratio of the standard deviation to the mean. We have Cv = 0 for periodic

characteristic earthquakes and Cv = 1 for a random distribution of recurrence times.

ELLSWORTH et al. (1999) reviewed many examples of recurrence time statistics and

concluded that Cv&0.5 for characteristic earthquakes. Many probability distribution

functions have been proposed for recurrence times, including the Weibull, lognormal,

Brownian passage time, and gamma distributions.

Two major renewal simulation models have been developed. The first is ‘‘Virtual

California’’ (RUNDLE et al., 2004, 2005, 2006). This is a geometrically realistic numerical

simulation of earthquake occurring on the San Andreas fault system and includes all

major strike-slip faults in California. The second model is the ‘‘Standard Physical Earth

Model’’ (SPEM) developed by WARD (1992) and applied to characteristic earthquakes

associated with subduction at the Middle American trench. This model was further

developed and applied to the entire San Andreas fault system by GOES and WARD (1994),

to the San Andreas system in southern California by WARD (1996), and to the San

Andreas system in northern California by WARD (2000).

Both simulation models utilize backslip, with the accumulation of a slip deficit on

each fault segment prescribed using available data. Ideally the tectonic drive would be

applied directly to the edges of a region, say 200 km on each side of the San Andreas

fault system. But the long-term evolution of this approach requires that faults become

longer as slip accumulates. The resulting geometrical incompatibility leads to serious

numerical problems. In the backslip models, continuous displacements are applied to all

faults until the frictional constraints result in backslip (an earthquake). Both models

‘‘tune’’ the prescribed static friction to give recurrence times that are consistent with

available data. In both models fault segments are treated as dislocations where

characteristic earthquakes occur, and all fault segments interact with each other

elastically utilizing dislocation theory. These chaotic interactions result in statistical

distributions of recurrence times on each fault. The resulting coefficients of variation are

measures of this interaction.

YAKOVLEV et al. (2006) utilized the Virtual California model to test alternative

distributions of recurrence times. They concluded that the Weibull distribution is

preferable and based its use on its scale invariance. The hazard rate is the probability

distribution function (pdf) that a characteristic earthquake will occur at a time t0 after the

last characteristic earthquake. The Weibull distribution is the only distribution that has a

power-law (scale-invariant) hazard function. YAKOVLEV et al. (2006) found that the

coefficient of variation of the recurrence times of 4606 simulated great earthquakes on the

northern San Andreas fault is Cv = 0.528. GOES and WARD (1994) using the SPEM

simulator found that Cv = 0.50 – 0.55 on this fault. The two simulations are quite

different, so the statistical variability appears to be a robust feature of characteristic
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earthquakes. A similar simulation model for New Zealand has been given by ROBINSON

and BENITES (1995, 1996.)

Renewal models have also formed the basis for three formal assessments of future

earthquake probabilities in California. These assessments were carried out by the United

States Geological Survey (WORKING GROUP ON CALIFORNIA EARTHQUAKE PROBABILITIES,

1988, 1990, 1995, 2003). A major problem with renewal models is that large earthquakes

often occur on faults that were not previously recognized. Recent examples in California

include the 1952 Kern County earthquake, the 1971 San Fernando Valley earthquake, the

1992 Landers earthquake, the 1994 Northridge earthquake, and the 1999 Hector Mine

earthquake. At the times when these earthquakes occurred, the associated faults were

either not mapped or were considered too small to have such large earthquakes. To

compensate for this problem, renewal models often include a random level of background

seismicity unrelated to recognized faults.

3. Seismicity-Based Models

An alternative approach to probabilistic seismic hazard assessment and earthquake

forecasting is to use observed seismicity. The universal applicability of Gutenberg-

Richter frequency-magnitude scaling allows the rate of occurrence of small earthquakes

to be extrapolated to estimate the rate of occurrence and location of large earthquakes.

This type of extrapolation played an important role in creating the national seismic

hazard map for the United States (FRANKEL et al., 1996).

A more formalistic application of this extrapolation methodology is known as a

relative intensity (RI) forecast. This type of forecast was made on a worldwide basis by

KOSSOBOKOV et al. (2000) and for California by HOLLIDAY et al. (2005). A related

forecasting methodology is the pattern informatics (PI) method (RUNDLE et al., 2002;

TIAMPO et al., 2002a, b; HOLLIDAY et al., 2006a, b, 2007). This method was used by

RUNDLE et al. (2002) to forecast m = 5 and larger earthquakes in California for the time

period 2000–2010. This forecast successfully predicted the locations of 16 of the 18 large

earthquakes that have subsequently occurred.

KEILIS-BOROK (1990, 2002) and colleagues utilized patterns of seismicity to make

formal intermediate term earthquake predictions. Two notable successes were the 1988

Armenian earthquake and the 1989 Loma Prieta, California, earthquake. However, a

number of large earthquakes were not predicted and the approach remains controversial.

More recently, this group has used chains of premonitory earthquakes to make

intermediate term predictions (SHEBALIN et al., 2004; KEILIS-BOROK et al., 2004). Again,

moderate success was achieved.

It has also been proposed that there is an increase in the number of intermediate-sized

earthquakes prior to a large earthquake. This proposal has been quantified in terms of an

accelerated moment release (AMR) prior to a large earthquake. This approach has shown

considerable success, retrospectively (BUFE and VARNES, 1993; BOWMAN et al., 1998;
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SAMMIS et al., 2004) but has not evolved into a successful prediction algorithm as of yet

(GROSS and RUNDLE, 1998; MAIN, 1999).

Seismicity-based models are often referred to as clustering models. That is, clusters of

small earthquakes indicate the future occurrence of larger earthquakes. The RI, PI, and

AMR models clearly belong to this class. A rational for the application of clustering

models is that the clustering is related to families of foreshocks, main shocks, and

aftershocks. This rational forms the basis for the use of both the ETAS and the BASS

models. It should be emphasized that neither model introduces renewal, the tectonic drive

responsible for the energy input dissipated in earthquakes. One way to overcome this

problem has been to introduce a random background seismicity to excite aftershocks. An

alternative approach is to couple a clustering model, such as ETAS or BASS, to a fault-

based model, such as Virtual California or SPEM.

4. ETAS

A clustering model that has been widely studied is the ETAS model. This approach

was first formulated by KAGAN and KNOPOFF (1981). It is a statistical model based on

applicable scaling laws. This model was further developed by OGATA and colleagues

(OGATA, 1988, 1989, 1992, 1998, 1999, 2001a, b, 2004; OGATA et al., 1993, 2003; GUO and

OGATA, 1997; OGATA and ZHUANG, 2006; ZHUANG and OGATA, 2006; ZHUANG et al., 2002,

2004; VERE-JONES, 2005). Modified versions of ETAS were introduced by HELMSTETTER,

SORNETTE, and colleagues (HELMSTETTER, 2003; HELMSTETTER et al., 2003a, b, 2004, 2006;

HELMSTETTER and SORNETTE, 2002a, b, 2003a, b, c, d; SAICHEV et al., 2005; SAICHEV and

SORNETTE, 2004, 2005a, b, 2006a, b, c, 2007a, b; SORNETTE and HELMSTETTER, 2002;

SORNETTE and WERNER, 2005a, b) and by LEPIELLO et al. (2007). Related models have been

developed by Felzer and colleagues (FELZER et al., 2002, 2003, 2004), by Console and

colleagues (CONSOLE and MURRU, 2001; CONSOLE et al., 2003, 2006), and by Gerstenberger

and colleagues (GERSTERBERGER et al., 2004, 2005). Before discussing the details of the

ETAS model, we will first introduce the BASS model.

5. BASS

An alternative to the ETAS model is the BASS model (TURCOTTE et al., 2007). As in

the ETAS model, the BASS model recognizes that each earthquake has an associated

sequence of aftershocks. Each main shock produces a sequence of primary aftershocks.

Each of these aftershocks, in turn, produces second-order aftershocks. Each second-order

aftershock can produce third-order aftershocks, and so forth. Statistically, a primary

aftershock can be larger than the initial main shock. In this case the initial main shock

becomes a foreshock, and the larger primary aftershock becomes the main shock of the
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sequence. In principal, a higher-order aftershock could be the main shock. The

probability of this occurring, however, is extremely small.

It has been demonstrated by many authors that the frequency-magnitude distribution

of aftershocks satisfy the Gutenberg-Richter (GR) relation to a good approximation

(GUTENBERG and RICHTER, 1954; SHCHERBAKOV et al., 2005). In the BASS formulation, we

require that the frequency-magnitude distribution of each order of aftershocks satisfies

the GR relation in the form

log10½Ndð�mdÞ� ¼ ad � bdmd; ð1Þ

where md is the magnitude of a daughter earthquake, Nd( C md) is the number of daughter

earthquakes with magnitudes greater than or equal to md, and ad and bd are the a- and b-

values of the distribution, respectively. Note that the b-value bd for each sequence of

aftershocks is not necessarily equal to the b-value for all aftershocks. This is due to the

superposition of many generations of aftershock sequences for each parent earthquake

and will be discussed in detail later in the paper.

In order to fully specify the frequency-magnitude distribution of a family of

aftershocks, we apply the modified form of Båth’s law (SHCHERBAKOV and TURCOTTE,

2004). As shown by SHCHERBAKOV et al. (2005), this formulation is closely related to

that given by REASENBERG and JONES (1989), YAMANAKA and SHIMAZAKI (1990), and

FELZER et al. (2002).

In its original form, Båth’s law (BÅTH, 1965; VERE-JONES, 1969) states that the

magnitude difference between a main shock and its largest aftershock Dm is nearly

constant with a value near 1.2. SHCHERBAKOV and TURCOTTE (2004) introduced a new way

of defining this difference and obtained a value Dm* based on the entire distribution of

aftershocks, not just the largest aftershock. It is required that the magnitude of the largest

aftershock inferred from the GR relation is a fixed value Dm* less than the magnitude of

the parent earthquake, mp:

Ndð� ðmp � Dm�ÞÞ ¼ 1: ð2Þ

With this condition we require (using Eq. (1) that ad = bd (mp - Dm*) so that

log10½Ndð�mdÞ� ¼ bdðmp � Dm� � mdÞ: ð3Þ

This relation fully specifies the frequency-magnitude distribution of each family of

aftershocks (daughter earthquakes). However, this distribution implies an infinite number

of small earthquakes. To eliminate this singularity, it is necessary to prescribe a minimum

magnitude earthquake mmin that is to be considered.

We obtain this total number of aftershocks in a family by setting md = mmin in Eq. (3):

NdT ¼ Nð�mminÞ ¼ 10bdðmp�Dm��mminÞ: ð4Þ

This relation is the essential feature of the BASS model. Utilizing Eqs. (3) and (4), we

obtain the cumulative distribution function PCm for the magnitudes of the daughter

earthquakes:
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PCm ¼ Ndð�mdÞ
NdT

¼ 10�bdðmd�mminÞ: ð5Þ

The magnitude md of each daughter earthquake is selected from this distribution. For each

daughter earthquake a random value for PCm in the range 0 < PCm < 1 is generated, and

the magnitude of the earthquake is determined from Eq. (5). Note that there is a finite

probability that a daughter earthquake can be larger than the parent earthquake. The

probability that this occurs is obtained by substituting Eq. (4) into Eq. (5) and setting md

= mp with the result

PCmðmd [mpÞ ¼ 10�bdDm�
: ð6Þ

Taking bd = 1 and Dm* = 1, we have PCm(md > mp) = 10%. With these values, a well

defined foreshock would be expected about 10% of the time. This is in reasonable

agreement with observed values of 13 ± 5% (REASENBERG, 1999). It should be emphasized

that this value is independent of the choice for mmin. The selection of a mmin is necessary,

but the choice does not significantly influence the distribution of magnitudes above this

cutoff.

Having specified the magnitude md of each daughter earthquake by selecting a

random number PCm in the range 0 < PCm < 1 and using Eq. (5) in the form

md ¼ � 1

bd
logPCm þ mmin; ð7Þ

we next specify the time of occurrence of the daughter earthquakes.

We require that the time delay td until each daughter earthquake after the parent

earthquake satisfies a general form of Omori’s law (SHCHERBAKOV et al., 2004):

RðtdÞ ¼
dNd

dt
¼ 1

sð1þ td=cÞp
; ð8Þ

where R(td) is the rate of aftershock occurrence and s, c, and p are parameters. The

number of daughter aftershocks that occur after a time td is then given by

Ndð� tdÞ ¼
Z 1

td

dNd

dt
¼ c

sðp� 1Þð1þ td=cÞp�1
: ð9Þ

The total number of daughter earthquakes is obtained by setting td = 0 in Eq. (9) with the

result

NdT ¼ c

sðp� 1Þ : ð10Þ

It should be emphasized that this result is only valid for p > 1. If p B 1, the integral is not

convergent and a maximum time must be specified. From Eqs. (9) and (10) we obtain the

cumulative distribution function PCt for the times of occurrence of the daughter

earthquakes:

Vol. 165, 2008 A Review of Earthquake Statistics 1009



PCt ¼
Ndð� tdÞ

NdT
¼ 1

ð1þ td=cÞp�1
: ð11Þ

The time of occurrence td of each daughter earthquake is selected from this distribution.

For each daughter earthquake a random value for PCt in the range 0 < PCt < 1 is

generated, and the time of occurrence of the earthquake is determined using Eq. (11) in

the form

td ¼ cðP�1=ðp�1Þ
Ct � 1Þ: ð12Þ

The distribution of times is dependent only on the fitting parameters c and p. In this

paper, these parameters for each generation of aftershocks are assumed to be equal. The

values for the superposition of many generations of aftershocks, however, may be

different. In general, the parameter p should be in the range 1.1 B p B 1.3.

Finally, we specify the location of each daughter earthquake relative to its parent.

There are a wide variety of distributions that we could choose from, but in this paper we

assume that a daughter earthquake occurs at a randomly chosen radial distance from the

parent earthquake in a randomly chosen direction. Based on results given by FELZER and

BRODSKY (2006), we assume a power-law dependence of the radial position in direct

analogy to Omori’s law. The cumulative distribution function PCr for the radial distance

rd of each daughter earthquake from the parent earthquake is given by

PCr ¼
Ndð� rdÞ

NdT
¼ 1

ð1þ rd=ðd � 100:5mpÞÞq�1
: ð13Þ

The dependence on the magnitude mp of the parent earthquake introduces a mean radial

position of aftershocks that scales with the rupture length of the parent earthquake. The

radial position rd of the daughter earthquake relative to the parent earthquake is selected

from this distribution. For each daughter earthquake a random value for PCr in the range

0 < PCr < 1 is generated, and the radial distribution is determined using Eq. (13) in the

form

rd ¼ d � 100:5mpðPCr
�1=ðq�1Þ � 1Þ: ð14Þ

In order to completely specify the location of the daughter earthquake, its direction

relative to the parent earthquake hd must be specified. The direction is therefore chosen

randomly from the uniform range 0 < hd < 2p.

6. BASS versus ETAS

There are many similarities between the BASS model and the ETAS model. More

importantly, however, there are also fundamental differences. In considering the ETAS

model, we will utilize the formulation given by HELMSTETTER and SORNETTE (2003a). Both
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models utilize the concept of multiple orders of aftershocks. The main shock generates a

sequence of primary aftershocks; these in turn generate families of secondary aftershocks,

and so forth.

The primary difference between the two models is the way in which the number of

daughter earthquakes is specified. In the ETAS model, the number of daughter

earthquakes produced by a mother earthquake NdT takes the form (SORNETTE and WERNER,

2005b, eq. 3)

NdT ¼ k � 10aðmp�mminÞ; ð15Þ

and the two constants k and a must be specified. In some formulations of ETAS, the mean

number n of direct aftershocks per earthquake, averaged over all magnitudes, is used to

specify k (SORNETTE and WERNER, 2005b, eq. 4). If Eqs. (4) and (15) are identical, then

ETAS is essentially identical to BASS. This is the case if

a ¼ bd ð16Þ

and

k ¼ 10�bdDm�
: ð17Þ

FELZER et al. (2002) argue that Eq. (16) is in fact satisfied. Proponents of ETAS, however,

require a < bd so that n is less than one. The BASS formulation utilizes the modified form

of Båth’s law as given in Eq. (3) to constrain the number of daughter earthquakes NdT

(productivity).

The general ETAS formulation does not satisfy Båth’s law. The association of

Båth’s law to ETAS has been discussed in some detail by HELMSTETTER and SORNETTE

(2003c). As shown in their Figure 1, Dm has strong magnitude dependence. In fact, the

values of Dm become negative in the vicinity of the minimum magnitude earthquakes

mmin. In this vicinity, the average largest aftershock is greater than the main shock.

This clearly violates scale-invariance and makes results very sensitive to the choice of

mmin. In the BASS model, the distribution of daughter earthquake magnitudes is fully

scale-invariant and is insensitive to the choice of the minimum size earthquake

considered.

In terms of the times and positions of daughter earthquakes, BASS and ETAS use

identical formulations. Both use Omori’s law for times and a modified form of Omori’s

law for radial positions.

7. Illustration of the BASS Model

We first illustrate the principals of the BASS model using a deterministic branching

formulation. We begin by considering the distribution of aftershocks associated with a

main shock of a prescribed magnitude. The application of Båth’s law introduces a

characteristic earthquake magnitude Dm, the magnitude difference between the main
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shock and the largest aftershock. For convenience, we take Dm = 1 and consider the

number of earthquakes with unit magnitudes, m = 1, 2, 3, ....

Our basic formulation introduces a branching ratio B into the prescription of the

number of smaller earthquakes of magnitude i generated by a larger earthquake of

magnitude j. The number of daughter earthquakes of magnitude i generated by a parent

earthquake of magnitude j, Nij, can be written

Nij ¼ Bj�i�1: ð18Þ

This basic branching is illustrated in Figure 1a for binary branching (B = 2). We take the

‘‘parent’’ to have a magnitude j = 5. From Eq. (18) we have one daughter earthquake

with magnitude i = 4, two daughter earthquakes with magnitude i = 3, four daughter

earthquakes with magnitude i = 2, and eight daughter earthquakes with magnitude i = 1.

That is N45 = 1, N35 = B = 2, N25 = B2 = 4, and N15 = B3 = 8.

TOKUNAGA (1978) introduced the basic branching ratio concept given in Eq. (16) for

river network branching. Extensive examples have been given by PECKHAM (1995) and

PELLETIER (1999). This branching was also found to be applicable to the structure of

diffusion limited aggregation (DLA) clusters (OSSADNIK, 1992), to examples in biology

(TURCOTTE et al., 1998), and to clustering (GABRIELOV et al., 1999). Deterministic

examples have been given by TURCOTTE and NEWMAN (1996) and by NEWMAN et al.

(1997). In this paper, we show that this same branching structure is applicable to

seismicity.

We extend the basic branching relation given in Eq. (18) to families of aftershocks.

That is, we consider the aftershocks of aftershocks. The number of daughter earthquakes

Figure 1

Illustration of our branching model using a discrete set. (a) The primary family of aftershocks is a generator for

the fractal construction; (b) the full Tokunaga structure of side-branching aftershocks.
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of magnitude i generated by a parent earthquake of magnitude j which was a daughter of

a parent earthquake of magnitude k, Nijk, ks given by

Nijk ¼ NjkNij; ð19Þ

where Nij is the number of magnitude j aftershocks generated by a parent of magnitude i.

Substituting Nij from Eq. (18) into Eq. (19). gives

Nijk ¼ NjkB
j�i�1: ð20Þ

The total number of aftershocks of magnitude i generated by a main shock of magnitude

k, Nik, is given by

Nik ¼
Xk
j¼iþ1

Nijk ¼ ðBþ 1Þk�i�1: ð21Þ

The validity of this result can be verified by noting that it gives

Njk ¼ 1 if j ¼ k

Njk ¼ ðBþ 1Þj�k�1
if j\k

: ð22Þ

Substitution of Eq. (22) into Eq. (21) and carrying out the sum verifies the validity of

Eq. (21). The side-branching structure of aftershocks of aftershocks is best illustrated by

an example.

The full binary (B = 2) side-branching structure of aftershocks for a magnitude 5

main shock is given in Figure 1b. The corresponding numbers Nij5 and Ni5 are given in

Table 1. From Eq. (21), we predict Ni5 = 34-i, which is what we find. A discrete form of

the Gutenberg-Richter frequency-magnitude scaling can be written:

logNik ¼ a� bi: ð23Þ

For the sequence given in Table 1, we have a = log81 and b = log 3 = 0.477, which is

low relative to actual aftershock sequences.

Table 1

Illustration of the deterministic BASS model for binary branching B = 2, main shock magnitude mk = 5,

modified Båth’s law Dm = 1, and minimum magnitude mmin = 1. The numbers of aftershocks Nij5

with magnitude i generated by a parent earthquake of magnitude j are given. The total numbers of

aftershocks Ni5 of magnitude i are also given

Aftershock

Magnitude

Parent Earthquake Magnitude Total Nij

j = 5 j = 4 j = 3 j = 2

i = 4 N455 = 1 N45 = 1

i = 3 N355 = 2 N345 = 1 N35 = 3

i = 2 N255 = 4 N245 = 2 N235 = 3 N25 = 9

i = 1 N155 = 8 N145 = 4 N135 = 6 N125 = 9 N15 = 27
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As a more realistic example, we take B = 9 and a main shock magnitude k = 8. The

corresponding numbers Nij8 and Ni8 are given in Table 2. We again assume that Dm = 1

and that mmin = 1. The numbers of aftershocks Nij8 with magnitude i generated by a

parent earthquake of magnitude j are given. The total numbers of aftershocks Ni8 of

magnitude i are also given.

From Eq. (21), we predict Ni8 = 107-i, which is what we find. From Eq. (23), we find

a = 7 and b = 1 which is a reasonable value for an aftershock sequence. The results

given in Table 2 are directly analogous to Table 1. The total families of aftershocks are

given. In Table 2 we have B = 9 and mms = 8. In Table 1 we have B = 2 and mms = 5.

We next determine the entire inventory of earthquakes in a region using our

deterministic model. In order to do this, we must specify the magnitude of the

largest earthquake in the region, mmax. For our example, we take mmax = 8. We first

specify the numbers of main shocks of magnitude i, Nim, using Gutenberg-Richter scaling

in the form

Nim ¼ B8�i: ð24Þ

Taking B = 9 and mmin = 1, the numbers of main shocks, Nim, are given in Table 3.

Utilizing the results given in Table 2, the numbers of aftershocks Nik with aftershock

magnitude i generated by a main shock with magnitude k are also given in Table 3. The

total numbers of aftershocks of each magnitude Nia and the total numbers of earthquakes

of each magnitude NiT are also given. It is seen that the total number of earthquakes, all

main shocks and their aftershocks, satisfy the scaling relation

NiT ¼ ðBþ 1Þ8�i: ð25Þ

The fraction of all earthquakes that are aftershocks increases systematically from 10% at

magnitude seven to 52% at magnitude one.

Table 2

Illustration of the deterministic BASS model for a branching ratio B = 9, main shock magnitude mk = 8,

modified Båth’s law Dm* = 1, and minimum magnitude mmin = 1. The numbers of aftershocks

Nij8 with magnitude i generated by a parent earthquake of magnitude j are given. The total number

of aftershocks Ni8 of magnitude i are also given. Note that the total numbers satisfy Gutenberg-Richter

frequency-magnitude scaling with b = 1

Aftershock

Magnitude

Parent Earthquake Magnitude Total Nij

j = 8 j = 7 j = 6 j = 5 j = 4 j = 3 j = 2

i = 7 1 1

i = 6 9 1 10

i = 5 81 9 10 100

i = 4 729 81 90 100 1000

i = 3 6561 729 810 900 1000 10000

i = 2 59049 6561 7290 8100 9000 10000 100000

i = 1 53144 59049 65610 72900 81000 90000 100000 1000000
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8. Probabilistic BASS Simulation

We now give a specific probabilistic simulation using the BASS model. A complete

stochastic aftershock sequence will be generated. In order to start the simulation, it is

necessary to choose a main shock amplitude, mk. In this example we take mk = 7.

A. We first determine the distribution of primary aftershocks generated by the main

shock by taking the main shock to be the parent earthquake.

1. The first step is to determine the total number of primary aftershocks from Eq. (4).

In addition to the parent earthquake magnitude mp = mk = 7 it is necessary to

specify a b-value for the daughter earthquakes, we take bd = 1 throughout the

simulation, and the modified Båth’s law magnitude difference Dm*, we take

Dm* = 1.0 for simplicity. It is also necessary to specify the minimum magnitude

considered. For this example, we take mmin = 2. With these values, we find from

Eq. (4) that the total number of primary aftershocks is NdT = 104.0 = 10000.

2. We generate NdT = 10000 random numbers for the PCm in the range 0 < PCm < 1,

and the magnitudes of the NdT = 10000 primary aftershocks are determined using

Eq. (7) and the parameter values given above.

3. We next utilize the generalized form of Omori’s law given in Eq. (8) to obtain the

time of occurrence of each aftershock. In order to specify the cumulative

distribution function PCt given in Eq. (11), we require the two parameters c and p.

Based on the results given by YAMANAKA and SHIMAZAKI (1990), FELZER et al.

(2003), and SHCHERBAKOV et al. (2004), we take c = 0.1 days and p = 1.25. We

again generate NdT = 10000 random numbers for PCt in the range 0 < PCt < 1,

and the times of occurrence of the NdT = 10000 primary aftershocks are

determined using Eq. (12) and the parameter values given above. Note that the

Table 3

Entire inventory of earthquakes in a region given by our deterministic model. We specify the largest earthquake to have
mmax = 8. The numbers of main shocks of magnitude i, Nim as obtained from Eq. (24) with B = 9 are given. The total
numbers of aftershocks of magnitude i generated by a main shock of magnitude k, Nik, are also given as well as the

numbers of aftershocks and total numbers of earthquakes of magnitude k

Earthquake

Magnitude

Number

of Main

shocks

Parent Earthquake Magnitude Total

Aftershocks

Total

Earthquakes
j = 8 j = 7 j = 6 j = 5 j = 4 j = 3 j = 2

i = 8 1 1

i = 7 9 1 1 10

i = 6 81 10 9 19 100

i = 5 729 100 90 81 271 1000

i = 4 6561 1000 900 810 729 3439 10000

i = 3 59049 10000 9000 8100 7290 6561 40451 100000

i = 2 531441 100000 90000 81000 72900 65610 59049 468559 1000000

i = 1 4782969 1000000 900000 810000 729000 656100 590490 531441 5217031 10000000
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times of occurrence of the aftershocks td are not correlated with their magnitudes

md.

4. Finally, we utilize the cumulative distribution function PCr given in Eq. (13) to

specify the radial distance of the daughter earthquakes from the parent earthquake.

For primary aftershocks, these distances are from the main shock. To fully specify

PCr, we require two parameters d and q. Based on the results given by FELZER and

BRODSKY (2006), we take d = 4 m and q = 1.35. We generate another

NdT = 10000 random numbers for PCr in the range 0 < PCr < 1, and the radial

distances of the NdT = 10000 primary aftershocks are determined using Eq. (14)

and the parameter values given above. Again, these radial positions of these

aftershocks are not correlated with either their magnitudes or their times of

occurrence. A final set of NdT = 10000 random numbers are generated in the range

0 < h < 2p. The value of h for each aftershock is taken as the angle of the

aftershock relative to some reference direction.

B. Each of the primary aftershocks are next treated as a parent earthquake, and steps A1

to A4 are repeated.

1. For each primary aftershock, the number of secondary aftershocks is obtained

using Eq. (4). This number has a strong dependence on the magnitude of the

primary aftershock under consideration. The magnitude of each secondary

aftershock is then determined using random numbers and the distribution given

in Eq. (7). Note that the magnitudes to be determined do not depend on the

magnitude of the parent earthquake (the primary aftershock).

2. The time of occurrence of each secondary aftershock is then determined using

random numbers and the distribution given in Eq. (12). Note that the time of

occurrence of each secondary aftershock is the time since the occurrence of the

parent earthquake (the primary aftershock).

3. The radial position of each secondary aftershock is determined using random

numbers and the distribution given in Eq. (14). Note that the radial position is

relative to the position of the parent earthquake (the primary aftershock). The

direction relative to the parent earthquake is also randomly selected. Note also that

the parent magnitude in Eq. (14) is the magnitude of the parent primary aftershock.

C. Each secondary aftershock is taken to be a parent earthquake, and a family of

daughter second-order aftershocks is generated using the procedure outlined in B1

through B3. The procedure is further repeated to higher orders until no more

aftershocks are generated.

The magnitudes of the aftershocks as a function of times of occurrence since the main

shock are given in Figure 2. There are 101015 aftershocks in the simulation spanning

twenty two generations. Since, as was pointed out, there are 10000 primary aftershocks,

this simulation generated 91015 second- and higher-order aftershocks. The magnitude of

the largest aftershock in this simulation is m = 6.6, thus Dm = 0.4. Note that the Dm in
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each simulation is different although we take Dm* = 1. It is clearly seen in Figure 1 that

large primary aftershocks generate their own sequences of higher-order aftershocks.

The positions of the aftershocks relative to the main shock are given in Figure 3.

Again, it is clearly seen that clusters of higher-order aftershocks surround the large

primary aftershocks. The cumulative Gutenberg-Richter frequency-magnitude statistics

of the aftershocks are given in Figure 4. The frequency-magnitude distribution for all

aftershocks is well approximated by the Gutenberg-Richter relation (Eq. (1) taking b = 1

and Dm* = 1.

9. Discussion

Probabilistic seismic hazard assessments play many roles. These include: 1) alerting

the public to the level of risk, 2) influencing seismic building codes and seismic

retrofitting, 3) setting earthquake insurance premiums, and 4) motivating earthquake

hazard preparations. We have discussed two distinct approaches to seismic hazard
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Figure 2

Plot of magnitudes as a function of time (in days) over the first year for the first four generations of an aftershock

sequence based on an initial m = 7.0 event at time t = 0. Note that large aftershocks generate their own

aftershocks sequences.
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assessment. The first uses fault-based models. The risk of an earthquake on mapped faults

is assessed. This can be done in several ways. The statistics of occurrence of a

characteristic earthquake on each fault is prescribed. This requires the magnitude, mean

recurrence time, coefficient of variation, and a distribution function for recurrence times.

Evidence favors the applicability of the Weibull distribution (YAKOVLEV et al., 2006).This

distribution includes Poisson (random) and periodic limits. Fault-based models can be

constrained using simulations. Two examples we have discussed are Virtual California

and SPEM. These models include a specified tectonic drive and interactions between fault

segments.
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Figure 3

Plot of aftershock positions for the first four generations of an aftershock sequence based on an initial m = 7.0

event at location r = 0. Note that each generation’s aftershocks are clustered about their respective main shocks.

Only plotted are aftershocks that fall within a 500 km radius surrounding the main shock.
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A major difficulty with fault-based models is that many large earthquakes occur on

faults that have not been mapped. This difficulty can be alleviated by introducing a

random background of seismicity. This background, however, should be correlated the

regional seismicity.

The second approach to seismic hazard assessment is to use seismicity-based models.

Future earthquakes are associated with past earthquakes. The simplest approach is

relative intensity (RI) models. The rates of occurrence of small earthquakes (say, m = 2)

in gridded cells (say, 0.1� 9 0.1�) are extrapolated to larger magnitudes using Gutenberg-

Richter frequency-magnitude scaling.

It is also possible to extrapolate past seismicity forward in time using aftershock

models. The ETAS model has been used extensively for this purpose. Each past

earthquake can be used as a parent earthquake, and future aftershocks can be determined.

In this paper we present the BASS model as an alternative to ETAS. The BASS model is

fully self-similar, satisfies all relevant scaling laws, and is simple to implement.

It is clear that there are many alternative approaches to probabilistic seismic hazard

assessment. In order to test alternative models for California earthquakes, a competition

for Regional Earthquake Likelihood Models (RELM) was sponsored by the Southern
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Figure 4

Plot of the Gutenberg-Richter frequency-magnitude relation for an aftershock sequence based on an initial

m = 7.0 event. Note that this particular realization consisted of twenty two generations (only the first twenty are

shown).
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California Earthquake Center (SCEC). Forecasts for m > 5 earthquakes during the

period 1 January, 2006 to 31 December, 2011 on a 0.1� 9 0.1� grid of cells were

solicited. Probabilities of occurrence were required for each grid. Nine competing

forecasts were submitted and have been summarized by FIELD (2007a). The contrasts

between the smeared fault based forecasts and the highly gridded seismicity-based

forecasts stands out. Several of the seismicity-based forecasts utilized ETAS models. At

the end of the five-year period, the forecasts will each be scored and a winner declared.

A direction for future work would be to drive a BASS simulation with a Virtual

California simulation. This would combine the fault based and seismicity based

approaches.
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A Finite Element Algorithm of a Nonlinear Diffusive Climate Energy

Balance Model

R. BERMEJO,1 J. CARPIO,1 J. I. DÍAZ,2 and P. GALÁN DEL SASTRE3

Abstract—We present a finite element algorithm of a climate diagnostic model that takes as a climate

indicator the atmospheric sea-level temperature. This model belongs to the category of energy balance models

introduced independently by the climatologists M.I. Budyko and W.D. Sellers in 1969 to study the influence of

certain geophysical mechanisms on the Earth climate. The energy balance model we are dealing with consists of

a two-dimensional nonlinear parabolic problem on the 2-sphere with the albedo terms formulated according to

Budyko as a bounded maximal monotone graph in R
2: The numerical model combines the first-order Euler

implicit time discretization scheme with linear finite elements for space discretization, the latter is carried out for

the special case of a spherical Earth and uses quasi-uniform spherical triangles as finite elements. The numerical

formulation yields a nonlinear problem that is solved by an iterative procedure. We performed different

numerical simulations starting with an initial datum consisting of a monthly average temperature field, calculated

from the temperature field obtained from 50 years of simulations, corresponding to the period 1950–2000, carried

out by the Atmosphere General Circulation Model HIRLAM.

Key words: Climate, nonlinear energy balance, finite elements.

1. Introduction

During recent decades there has been significant progress in climate modelling with

the construction and testing of several Atmosphere-Ocean-General-Circulation-Models.

These models are the ultimate tool that can be used to study and predict the Earth’s

climate system, in that they can include many phenomena taking part in it. However,

there remain difficulties for these numerical models to be fully reliable. The first type of

difficulty pertains to the lack of understanding of the physical nature of some of these

phenomena such as, for example, sub-grid scale processes; so that, they have to be

parameterized in order to be included in the models. However, one can argue that most of

the sub-grid scale processes can be handled by direct numerical simulation (DNS) of the

Navier-Stokes equations, the problem is that in the light of present and near future
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3 Dept. Matemática Aplicada, Universidad Politécnica de Madrid, E. T. S. Arquitectura. Av. Juan de

Herrera, 28040 Madrid, Spain.

Pure appl. geophys. 165 (2008) 1025–1047 � Birkhäuser Verlag, Basel, 2008
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computer power such an approach is not practical for the moment. A second source of

difficulty arises from the computational and numerical resources these models demand to

perform well designed experiments; although one may expect that this latter problem can

be partially alleviated with the continuous improvements and advances in computer

technology, as well as with the development of more accurate and efficient numerical

methods. In parallel with the development of general circulation models, the climatol-

ogists have developed simpler models intended to clarify the role of some phenomena,

whose influence on the evolution of the climate system is considered to be very

significant. This approach to the understanding of the climate phenomenology yields the

so-called hierarchy of climate models. Perhaps the simplest class of models which may

produce interesting results to understand the gross features of the past glacial and

interglacial epochs are the so called Energy Balance Models (hereafter, EBMs) which are

based on the balance between the incoming solar energy and the energy reflected to the

outer space. Although simple in construction, these models may yield under different

assumptions to nonlinear problems quite difficult to analyze; this being the reason why

these models have caught the attention of many mathematicians. The progress of the

mathematical analysis for the EBMs was a function of the different assumptions made on

the spatial domain and the nonlinear terms involved in the equation. Among the many

results that have appeared in the literature we mention here, in particular, the ones

concerning discontinuous co-albedo functions due to XU (1991) and DIAZ (1993) for the

one-dimensional case. The analysis of DIAZ (1993) was extended to two dimensions, but

with c(x): 1, in DIAZ and TELLO (1999) and HETZER (1990). Many other references can be

found in DIAZ (1996).

As for works on the numerical approximation of EBMs, we mention the contri-

butions of North and co-workers such as HYDE et al. (1990) and NORTH and COAKLEY

(1979), and HETZER et al. (1989), where some numerical experiments were carried out.

In North and co-workers model the numerical method consists of a first-order Euler

implicit scheme for time discretization combined with an spectral method (Legendre

polynomial expansion for latitude and trigonometric polynomial expansion for

longitude) for space discretization. On the other hand, HETZER et al. (1989) use a

stationary quasi-linear energy balance model in their study on multiparameter

sensitivity analysis of the solutions. In this model, the albedo function is continuous,

while the nonlinearity originates from the radiation term which is modelled according

to the Stefan-Boltzman radiation law. The model is formulated in spherical coordinates

and uses second-order finite differences to discretize the diffusion terms, dealing with

the singularities at the poles in an ad hoc manner. More recently, BERMEJO et al. (2007)

formulate and analyze a finite element model of a global nonlinear EBM of Budyko

type with a nonlinear diffusion term modelled by the so-called p-Laplacian and a non-

linear discontinuous co-albedo function. The advantages of this finite element model, as

well as the model of this paper, are the flexibility to use variable meshes, in particular,

if one wants to properly resolve the mushy regions which appear in the transition

between ice-covered and ice-free regions, and the form to avoid the singularities at the
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poles, which appear when the problem is formulated in spherical coordinates and

discretized by grid-point methods such as finite differences, and finite elements of

bounded finite volumes.

The layout of the paper is as follows. We introduce in Section 2 the model. In

Section 3 we present the mathematical formulation of the model as well as

mathematical properties and results concerning the existence and uniqueness of the

solution. Section 4 is devoted to the numerical formulation of the model, which is

carried out for the special case of a spherical Earth and uses quasi-uniform spherical

triangles as finite elements. Finally, Section 5 contains numerical experiments in

which we have taken as initial condition a temperature calculated by averaging

50 years of surface temperature data given by the atmospheric general circulation

model HIRLAM.

2. The Model

Roughly speaking, the energy balance on the Earth surface is established according to

the following law

Variation of internal energy ¼ Ra � Re þ D; ð1Þ

where Ra denotes the amount of solar energy absorbed by the earth, Re is the amount of

infrared energy radiated to the space and D is a term which represents the diffusion of heat

energy by atmospheric turbulence. Let u(t, x) be the atmospheric sea-level temperature in

Celsius degrees, i.e., u(t, x) is defined on ½0; TÞ �M; where M is a compact Riemannian

manifold without boundary approximating the Earth surface; in fact, M is a 2-sphere of

radius a. Under suitable conditions, the variation of internal energy can be expressed

as c(x)qu/qt, where c(x) is the heat capacity (we neglect the possible time dependence

of c). The constitutive assumptions for the terms on the right-hand side of (1) are the

following:

Ra ¼ QSðt; xÞbðx; uÞ; ð2Þ

where Q is the so-called solar constant which is the average (over a year and over the

surface of the Earth) value of the incoming solar radiative flux,Q is currently believed to be

Q ¼ 1
4
ð1360Wm�2 � 2Wm�2Þ; the function S(t, x) is the normalized seasonal distribu-

tion of heat flux entering the top of the atmosphere known as the insolation function. The

incident solar flux at the top of the atmosphere at time t and latitude h can be computed from

celestial mechanics (see, e.g., SELLERS, 1969); however, we shall use in our model the

approximated formulas derived from the exact Sellers formulas by NORTH and COAKLEY

(1979). Specifically, in our model

Sðt; xÞ ¼ S0ðtÞ þ S1ðtÞ sin hþ S2ðtÞ
3 sin2 h� 1

2

� �
; ð3aÞ
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with

S0ðtÞ ¼ 1þ 2e cosð2pt � kÞ;
S1ðtÞ ¼ S1 cos 2pt þ 2e sin k sin 2pt½ �;
S2ðtÞ ¼ S2 1þ 2e cosð2pt � kÞ½ �;

8><>: ð3bÞ

where h is the latitude of the point x 2 M; e denotes the eccentricity of the earth ’s orbit,

presently, e = 0.017; k is the angle formed by the lines connecting the Sun with the

position of the Earth at the Northern Hemisphere winter solstice and the perihelion, at

present k = - 20�; so that, the perihelion occurs shortly after the winter solstice in the

Northern Hemisphere. The coefficients S1 and S2 depend upon the obliquity, d, the
present value of d is 23.45� , so that S1 = - 0.796 and S2 = - 0.477. The unit of time t

is 1 year, with t = 0 corresponding to the Northern Hemisphere winter solstice.

The term b(x, u) is the so-called co-albedo function that takes values between 0 and 1.
b(x, u) represents the ratio between the absorbed solar energy and the incident solar

energy at the point x on the Earth surface; obviously, b(x, u) depends on the nature of the

Earth surface. For instance, it is well known that on ice sheets b(x, u) is considerably

smaller than on the ocean surface because the white color of the ice sheets reflects a large

portion of the incident solar energy, whereas the ocean, due to its dark color and high heat

capacity, is able to absorb a larger amount of the incident solar energy. We further

distinguish between ocean ice sheets and land ice sheets in our model. Following the

approach of BUDYKO (1969) we take b(x, u) as a nonlinear discontinuous function of the

spatial coordinates x and the temperature u of the form given by GRAVES et al. (1993):

bðx; uÞ ¼ a0 þ a1 sin hþ a2
3 sin2 h� 1

2

� �
þ aIðuÞ; ð4Þ

where the coefficients a0, a1 and a2 may depend on time and represent the background

albedo characterizing the U-shaped dependence of the albedo. The coefficient aI takes

care of the changes of the albedo in the presence of snow cover and is a function of the

temperature u. Table 1, borrowed from GRAVES et al. (1993), shows the average values of

a0, a1 and a2 calculated from the monthly values of these parameters tabulated in Table 1

of GRAVES et al. (1993)

The values of aI (u) are displayed in Table 2.

Notice that b(x, u) is only discontinuous at the level sets u = us1 and u = us2,

with us1 = - 2�C or - 5�C and us2 = - 7�C or - 12�C, due to the fact that aI (u) is

Table 1

Coefficients of the co-albedo function

Average Sky Clear Sky

a0 0.679 0.848

a1 - 0.012 - 0.020

a2 - 0.241 - 0045
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discontinuous at these sets. Moreover, b(x, u) is nonlinear because aI (u) is. To see that

this statement is true, we must recall the definition of a linear function; that is, if aI (u)

were a linear function then it would follow that given u1 and u2 and the real parameters

l1 and l2, aI (l1u1 + l2u2) = l1aI (u1) + l2aI (u2), but it is obvious from the definition of

aI (u) that the latter equality does not hold. Hence, aI (u) is a nonlinear function. It is

worth remarking that b(x, u) is not a single-valued function, rather, since for u = us1
(resp. u = us2) aI (u) [ [ - 0.14,0.0] or aI (u) [ [ - 0.5,0.0] (resp. aI (u) [ [ - 0.07,0.0]

or aI (u) [ [ - 0.25,0.0]) then for these values of u the only thing we know is that b(x, u)
is in bounded real intervals, but we do not know which points of these intervals are

b(x, u); this is the reason why we say that b(x, u) is a multi-valued relation, or by abuse of

mathematical language, it is said that b(x, u) is a multi-valued graph. So that, it makes

sense to write z [ b(x, u) as we do below.

The term Re(u) was modelled by Budyko by performing a linear regression fitting to

empirical data as

ReðuÞ ¼ Buþ C; ð5Þ

where B and C are empirical parameters relating the outgoing infrared flux to the surface

temperature. According to GRAVES et al. (1993) the values that fit best the observations in

a least square sense are shown in Table 3.

As for the diffusion term D, Budyko and Sellers proposed the expression

D ¼ divðkðxÞruÞ;

where k(x) is an eddy diffusion coefficient given by the formula (GRAVES et al., 1993):

Table 2

The values of aI(u)

Average Sky Clear Sky

aI(Land) (u)
�0:14 if u\� 2	C;
�½0:14; 0:0� if u ¼ �2	C;

0:0 otherwise,

�0:50 if u\� 5	C;
�½0:50; 0:0� if u ¼ �5	C;

0:0 otherwise;

aI(Ocean)(u)
�0:07 if u\� 7	C;
�0:07; 0:0½ �if u ¼ �7	C;
0:0 otherwise;

�0:25 if u\� 12	C;
�0:25; 0:0½ �if u ¼ �12	C;
0:0 otherwise;

Table 3

Coefficients of Budyko radiation energy Re(u) = Bu + C

Average Sky Clear Sky

C(Wm-2) 212.8 249.8

B(Wm-2� C-1) 1.9 2.26
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kðxÞ ¼ k0ð1þ k1 sin
2 hþ k2 sin

4 hÞ: ð6Þ

The coefficients k0, k1 and k2 are given in Table 4.

Finally, we show the values per unit area of the heat capacity c(x). This coefficient is

assumed to be a piecewise continuous function, depending on whether the local surface is

land, ice or sea. See Table 5.

By substituting the above expressions into (1) we obtain the following energy balance

model:

Pð Þ
cðxÞut � divMðkðxÞrMuÞ þ Buþ C 2 QSðt; xÞbðx; uÞ in ð0; TÞ �M
uð0; xÞ ¼ u0ðxÞ on M;

(

where the initial datum u0 always will be assumed to be bounded. More precise structural

assumptions to solve (P) are formulated in Section 3. A special feature of (P) is that the

presence of the co-albedo function b(x, u) may be responsible, in the case of a

discontinuous function, of both the existence of free boundaries at the level sets us1 and

us2, and multiple solutions for certain initial conditions (even if the problem is formulated

in terms of a parabolic type equation).

3. On the Existence and Uniqueness of Solutions of the Model (P)

To state the mathematical formulation of (P) we need to recall some basic concepts of

differential geometry because the spatial domain M is the 2-sphere of radius a. Given an

index set K and k [ K, let Wk be an open subset of M such that fWkgk2K is an open

covering of M; and wk : Wk ! wkðWkÞ 
 R2 a homeomorphism. For k 2 K; the pair

fWk;wkg is called a chart of M and the family of charts fWk;wkgk2K is called an atlas of

M: Given a point P 2 Wk 
 M; we set wkðPÞ ¼ ðw1
kðPÞ;w2

kðPÞÞ ¼ ðhk;ukÞ 2 R2: The

Table 4

Coefficients of the eddy diffusion coefficient

Average Sky Clear Sky

k0 1.1175 1.331

k1 - 0.957 - 2.258

k2 0 1.616

Table 5

Heat capacity coefficient values

cwater (Wm-2 � C-1year) 9.7

cland (Wm-2� C-1year) 0.016

cice (Wm-2� C-1year) 0.10
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tangent space at P is denoted by TPM . TPM is a vector space of dimension 2 with a

basis formed by the vectors e1 :¼ o=ohk; e2 :¼ o=ouk: The tangent bundle TM is defined

as TM :¼ [P2MTPM: A Riemannian metric g on M is defined from a family of scalar

products gP : TPM� TPM ! R:

For a differentiable function u : M ! R the tangent gradient rMu 2 TM; and for

v : M!T differentiable, the surface divergence divMv 2 R:We denote by L2ðMÞ the set
fu : M ! R measurable :

R
M juj2dA\1g: This set is a Hilbert space with inner product

ðu; vÞ ¼
Z
M

uvdA

and norm

uk kL2ðMÞ¼
Z
M

juj2dA
� �1=2

:

Analogously,

L2ðTMÞ ¼ fX : M ! TMmeasurable :

Z
M

\X;X[ dA\1g:

Also, we shall use the spaces L1ðMÞ and L1ðTMÞ defined as

L1ðMÞ ¼ fu : M ! R measurable : ess sup
M

uðxÞj j\1g

and

L1ðTMÞ ¼ fX : M ! TM measurable : ess sup
M

XðxÞj j \1g;

where ess sup is a shorthand notation for the essential supremum defined as

ess sup
M

uðxÞj j ¼ inf sup
x2S

uðxÞj j : S 
 M; withMnS of measure zero

� �
:

We also need the Sobolev space

H1ðMÞ ¼ fu 2 L2ðMÞ : rMu 2 L2ðTMÞg;

with inner product

u; vð Þð Þ ¼
Z
M

uvdA þ
Z
M

\rMu;rMv[ dA

and norm

uk kH1ðMÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u; vð Þð Þ

p
:

H1ðMÞ is the closure of the set of infinitely continuous functions, C1ðMÞ; in the H1-

norm. When m integer, m > 1, the Sobolev space of order m is the closure of C1ðMÞ in
the norm
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uk kHmðMÞ¼
Z
M

X
1� k�m

X
ij¼1;2 j¼1;::;k

Di1Di2 :::Dikuj j2þ uj j2
0@ 1AdA

0@ 1A1=2

;

where D1 ¼ De1 and D2 ¼ De2 : When m ¼ 0;H0ðMÞ ¼ L2ðMÞ:
Given a bounded and strictly positive function c(x), and Q > 0, we consider the

problem (P)

ðPÞ cðxÞut � divMðkðxÞrMuÞ þ Buþ C 2 QSðt; xÞbðx; uÞ þ f ðt; xÞ in ð0; TÞ �M;
uð0; xÞ ¼ u0ðxÞ onM;

�
under the following assumptions:

(A1) b(x,�) is a bounded maximal monotone graph of R2;

(A2) f 2 L1ðð0; TÞ �MÞ;
(A3) S : ½0; T � �M ! R; S 2 C1ð½0; T � �MÞ; 0\S0 � Sðt; xÞ� S1 a:e:x 2 M; for any t

[ [ 0,T],

(A4) c 2 L1ðMÞ; cðxÞ� c0 [ 0;

(A5) k 2 CðMÞ; kðxÞ� k0 [ 0;

(A6) u0 2 L1ðMÞ;
(A7) B > 0 and C > 0 constants.

Note the presence of a forcing term f(t, x) in the general statement of problem (P). We

do not expect the existence of classical solutions to (P) due to the possible discontinuity

of the co-albedo function. For this reason, we need the notion of weak solution to (P).

Definition 1. A function u 2 Cð½0; T�; L2ðMÞÞ \ L1ðð0; TÞ �MÞÞ \ L2ð0; T;H1Þ is

termed a bounded weak solution of (P) if there exists z 2 L1ðð0; TÞ �MÞ; zðt; xÞ 2
bðx; uðt; xÞÞ a.e. ðt; xÞ 2 ð0; TÞ �M such thatZ
M

cðxÞuðT ;xÞvðT ;xÞdA�
Z T

0

Z
M

cðxÞvtðt;xÞuðt;xÞdAdt

þ
Z T

0

Z
M

\kðxÞrMu;rMv[dAdtþ
Z T

0

Z
M
ðBuþCÞvdAdt

¼
Z T

0

Z
M

QSðt;xÞzðt;xÞvdAdtþ
Z T

0

Z
M

fvdAdt

þ
Z
M

cðxÞu0ðxÞvð0;xÞdA; ð7Þ

Vv [ L2(0,T;H1) such that vt [ L2(0,T;H-1). Here H-1 denotes the dual space of H1.

The main results on the existence and uniqueness of bounded weak solutions to

problem (P) are collected in Theorem 2 and Theorem 4; the proofs of which can be found

in BERMEJO et al. (2007).
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Theorem 2. Under the above assumptions there exists at least one bounded weak

solution of (P). Moreover, if u0 [ H1 then ut 2 L2ð0; T ; L2ðMÞÞ and divðkðxÞrMuÞ
2 L2ð0; T; L2ðMÞÞ.

Since b(x, u) is considered to be a multi-valued graph discontinuous at the level sets

u ¼ us1 and u ¼ us2 ; then there are cases for which problem (P), although parabolic, does

not have a unique solution. Nevertheless, it can be proved, BERMEJO et al. (2007), the

uniqueness of the bounded weak solution to (P) in the class of non-degenerate functions

which is introduced next.

Definition 3. Let u 2 L1ðMÞ: Given e0, 0 < e0 < 1, for e [ (0, e0) and i = 1,2 let

Bsiðu; usi ; �Þ ¼ fx 2 M : ju� usi j\�g

and

Bwi
ðu; usi ; �Þ ¼ fx 2 M : 0\ju� usi j\�g:

It is said that u is a non-degenerate function in a strong (resp. weak) sense if it satisfies

the following strong (resp. weak) non-degeneracy property: There exists a constant C > 0

such that for any e [ (0, e0)

areaðBsiðu; usi ; �ÞÞ�C� ðresp:areaðBwi
ðu; usi ; �ÞÞ�C�Þ:

Theorem 4. Let u0 2 L1ðMÞ: Then:
(i) If a bounded weak solution u(t) to (P) is a strong non-degenerate function for all t [

[0,T], then u is the unique bounded weak solution to (P).

(ii) For any t [ (0, T] there is at most one bounded weak solution u(t) to (P) in the class

of weak non-degenerate functions.

4. The Numerical Model

4.1. Preliminaries

We now proceed to formulate the numerical method to compute the bounded weak

solution to problem (P). This method consists of a combination of C0 - finite elements

for space discretization with a first-order Euler implicit scheme to discretize in time. This

time scheme is also used in HYDE et al. (1990). We must point out that we choose the

Euler implicit scheme for the main reason that our codes have been developed to

integrate problem (P) when the diffusion term is also a nonlinear term modelled by the so

called p-Laplacian, that is, as divMðjrujp�2ruÞ; p integer > 2; and according to

theoretical results of BARRET and LIU (1994), and JU (2000), one may conclude that the

optimal time discretization scheme (optimality must be understood here in the sense that

there is a balance between computational cost versus accuracy) combined with linear
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finite elements to integrate the time dependent p-Laplacian diffusion equation is the first-

order Euler implicit scheme. However, we are aware that for problem (P), in which the

diffusion terms are linear, it would be more convenient, as one of the reviewers has

pointed out to us, to use in combination with finite elements the second- order implicit

BDF2 (see Chap. III in HAIRER et al., 1993) because the good properties this scheme has

for stiff problems. The 2-sphere M is partitioned into quasi-uniform spherical triangles

using the scheme of BAUMGARDNER and FREDERICKSON (1985), which consists of taking as

the initial partition D0 the spherical icosahedron and then to generate a sequence of

partitions Dk, k = 1, 2,..., by joining the mid-points on the sides of the triangles of the

partition Dk-1. This procedure yields triangles with the following properties. Let Nk be the

number of triangles in the partition Dk, then (a) M ¼ [Nk

j¼1Tj; Tj 
 M; (b) for

i 6¼ j; Ti \ Ti is either empty or has one vertex xp, or Ti and Tj share a common edge

cij; (c) there exists a positive constant l such that for all Tj, hj/qj < l, where hj denotes the
diameter of Tj and qj is the diameter of the largest circle inscribed in Tj.

Following the approach of DZIUK (1988) to solve by finite elements the Poisson

equation on manifolds, it is convenient to view the spherical triangles of the partition Dk

of M as the radial projection onto M of 2-simplices Xj 
 R3; such that if Tj is the image

of X j, then for all j;Tj \ Xj ¼ fx1j; x2j; x3jg; where xij, i = 1, 2, 3, are the vertices of both

Tj and Xj. By analogy with the elements Tj, the simplices Xj form a partition Dhk of a

polyhedron Mh such that

Mh :¼ [jXj; Xj 2 Dhk:

We show in Figure 1 the initial icosahedron and the partition Dh after four refinements.

The radial projection is defined as

/ : Mh ! M

bx1bx2bx3
0@ 1A!

abx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbx1Þ2þðbx2Þ2þðbx3Þ2p

abx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbx1Þ2þðbx2Þ2þðbx3Þ2p

abx3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbx1Þ2þðbx2Þ2þðbx3Þ2p :

0BBBBB@

1CCCCCA ;

so that, we write

M ¼ [j/ðXjÞ

and denote the restriction of / on the element Xj by /j. Note that / is a Cm-

diffeomorphism, m C 1. We define the family of finite element spaces associated with the

partitions Dhk. bVh ¼ fbvh 2 C0ðMhÞ : bvhjXj
2 P1ðXjÞ; 1� j�Nkg;

where P1(Xj) is the set of polynomials of degree B 1 defined on Xj. Let M be the global

number of vertices in the partition Dk, and let falgMl¼1 be the set of global basis functions

for bVh; such that al 2 bVh and at the vertex bxj alðbxjÞ ¼ djl; any bv 2 bVh can be expressed as
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bvhðbxÞ ¼XM
l¼1

bvhðxlÞalðbxÞ:
We define a finite element space Vh 
 H1ðMÞ associated with the partition Dk via the

radial / - lifting as follows:

Vh ¼ fvh 2 C0ðMÞ : vhjTj ¼ bvh 	 /�1
j with bvh 2 bVhg:

The approximation spaces Vh and bVh satisfy:

For all u 2 L1ðð0; TÞ �MÞ
T
L2ð0; T ;VÞ; ut 2 L2ðð0; TÞ �MÞ

lim
h!0

inf
uh2Vh

ku� uhkL1ðð0;TÞ�MÞ ¼ 0:

Moreover, from computational and numerical analysis points of view it is convenient

to define the spaces HlðMhÞ; l� 0 (with the convention that for l ¼ 0;HlðMhÞ �
L2ðMhÞÞ as

HlðMhÞ ¼ fbv : Mh ! R : for a:e: x 2 M and v 2 HlðMÞ; bv 	 /�1ðxÞ ¼ vðxÞg:

In relation with the radial projection / defined on Mh we have the following results

(BERMEJO et al., 2007):

Proposition 5. Let J/j
and J/�1

j
denote the absolute values of the Jacobian determinants

of the mappings /j and /j
-1, respectively. Then, for h sufficiently small there exist

constants C1 and C2 independent of h such that

max
j

kJ/j
� 1kL1ðXjÞ �C1h

2 and max
j

kJ/j�1
� 1kL1ðTjÞ �C2h

2:

−1
0

1

−1

0

1
−1

0

1

−1
0

1

−1

0

1
−1

0

1
a) b) 

Figure 1

Initial Icosahedron and mesh after 4 refinements.
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Proposition 6. For 1 B p B ? there exist constants c1 and c2 such that

c1 bvk kLpðMhÞ � vk kLpðMÞ � c2 bvk kLpðMhÞ;

c1 bvk kH1ðMhÞ � vk kH1ðMÞ � c2 bvk kH1ðMhÞ;bvj jH2ðMhÞ � c2 vj jH2ðMÞþh vj jH1ðMÞ

� �
:

The relevance of these results, in particular Proposition 6, lies in the fact that by

virtue of it the approximation error in the family of finite element spaces bVh is of the

same order as the error in the family of spaces Vh associated to the partition Dk of

spherical triangles. In terms of the numerical calculations this means that one can

substitute the spherical triangles (curved triangles) by plane triangles in R3 and, therefore,

make use of the finite element technology for plane triangles. At this point, we must say

that the idea of approximating the 2-sphere by a R
3 polyhedra of triangular faces has a

long tradition in numerical computations of atmospheric flows. Just to cite a few, we

mention the works of SADOURNY et al. (1968), and WILLIAMSON (1968) at the end of the

sixties of the past century, and more recently the integration of the shallow water

equations via a Lagrange-Galerkin method carried out by HEINZE and HENSE (2002), and

GIRALDO and WARBURTON (2005).

Since the numerical solution to problem (P) is computed at a discrete set of time

instants tn, with n = 0, 1, ..., N, we choose a fixed time step Dt, such that for all n,

tn+1 = tn + Dt, and consider the discrete set IN = {0, t1, t2, ..., tN = T}. The numerical

solution to (P) is thus the map U:IN?Vh such that there exists Zn 2 L1ðMÞ
T

Vh; Z
n 2 bðx;UnÞ; verifying that for any vh[Vh

ðPh;DtÞ
R
M c Un�Un�1

Dt vhdAþ
R
M krMUn;rMvhh idAþR

MðBUn þ CÞvhdA ¼
R
M QSnZnvhdAþ

R
M f nvhdA;

(

where the notation b(tn,x) = bn is used unless otherwise stated.

An important property of the finite element space Vh is that if a function wh [ Vh is an

approximation to a function w 2 L1ð 0; Tð Þ �MÞ that belongs to the class of non-

degenerate functions (either strong or weak), then for h sufficiently small wh also belongs

to that class. Specifically, we have the following results. For i = 1 and 2, let Bsiðw; usi ; �Þ
and Bwi

ðw; usi ; �Þ be the sets introduced in Section 3, and we consider the level sets

Ai ¼ fx 2 M : wðt; xÞ ¼ usig; Ahi ¼ fx 2 M : whðt; xÞ ¼ usig;
M�

i ¼ fx 2 M : wðt; xÞ?usig and M�
hi ¼ fx 2 M : whðt; xÞ?usig:

Note that M ¼ Ai [Mþ
i [M�

i ¼ Ahi [Mþ
hi [M�

hi : It is easy to ascertain that for z [ b
(x,w) and zh 2 bðx;whÞ it holds

z� zhj j �max aIðuÞj j if x 2 Ai [ Ahi [ ðMþ
i \M�

hiÞ [ ðM�
i \Mþ

hiÞ;
z� zhj j ¼ 0 if x 2 ðMþ

i \Mþ
hiÞ [ ðM�

i \M�
hiÞ:

(

Moreover, the following lemma can be proved (BERMEJO et al. 2007):
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Lemma 7. Given a function v 2 L1ðð0; TÞ �MÞ \ L2ð0; T ;VÞ; and its approximation

vh [ Vh, for h depending on [ sufficiently small the relation

Ai [ Ahi [ ðMþ
i \M�

hiÞ [ ðM�
i \Mþ

hiÞ 
 Bsiðv; usi ; �Þ

holds for i = 1 and 2. Consequently, there exists a constant C > 0 such that

area Ai [ Ahi [ ðMþ
i \M�

hiÞ [ ðM�
i \Mþ

hiÞ
	 


�C�:

We are now in a condition to state the result on the existence and uniqueness of the

solution {Un}1
N to problem ðPh;DtÞ; whose proof is given in BERMEJO et al. (2007).

Lemma 8. For all n = 1,..., N, there exists a solution Un[Vh to problem ðPh;Dt Þ which is

unique in the class of strong (resp. weak) non-degenerate functions.

An important issue when calculating a numerical solution to a model is to estimate the

rate of convergence of the approximate solution to the exact one. Again, appealing to the

numerical analysis employed in BERMEJO et al. (2007) to prove its Theorem 3, we can

establish the rate of convergence of Un to u(tn,x) for all n.

Theorem 9. Let u(t,x) be the unique non-degenerate bounded weak solution to problem

(P), with u 2 L2ð0; T ;H2ðMÞÞ: Let fUngNn¼1 be the unique solution to problem ðPh; DtÞ
such that for n = 1, 2,..., N and t [ (tn-1, tn] we define

UðtÞ ¼ t � tn�1

Dt
Un � tn � t

Dt
Un�1:

Then, for Dt and h depending on [ being sufficiently small, there exists a constant C > 0

independent of Dt and h such that

ku� Uk2L1ð0;T ;L2ðMÞÞ �Cð�þ Dt2 þ h2Þ ð8Þ

4.2. The Finite element Solution

To calculate the numerical solution we recast problem ðPh;DtÞ as follows:
Given the initial condition U0[Vh, for n = 1,..., N, find Un[Vh such that for vh [ VhR

M cUnvhdAþ Dt
R
M krMUn;rMvhh idAþ Dt

R
MðBUn þ CÞvhdA ¼R

M cUn�1vhdAþ Dt
R
M QSnZnvhdAþ Dt

R
M f nvhdA;

(
ð9Þ

where Zn 2 L1ðMÞ
T
Vh; Z

n 2 bðx;UnÞ: Since Un is unknown so is Zn, which has to be

calculated in the process of determining the solution Un. To do so we use the following

iterative procedure:

Let Tol 2 Rþ; 0\Tol 
 1; for all n ¼ 1; . . .;N; set W0 ¼ Un�1 and do:

for k = 1, 2,...

pick up Zn;k�1 2 bðx;Wk�1Þ; Zn;k�1 2 Vh and solve
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R
M cWkvhdAþ Dt

R
M krMWk;rMvh
� �

dAþ Dt
R
MðBWk þ CÞvhdA ¼R

M cUn�1vhdAþ Dt
R
M QSnZn;k�1vhdAþ Dt

R
M f nvhdA; 8vh 2 Vh:

(
ð10Þ

Stop when

Wk �Wk�1


 



L2ðMÞ
W0k kL2ðMÞ

� Tol

and then set

UnðxÞ ¼ WkðxÞ:

By applying the same ideas of the proof of Theorem 1 of CARL (1992) one can prove that

this iterative procedure converges to Un when k??.

To find out the numerical solution Wk, and therefore Un, we approximate the

triangulated 2-sphere M by the polyhedron Mh and setting, bcðbxÞ ¼ c 	 /ðbxÞ;bkðbxÞ ¼ k 	 /ðbxÞ and bf nðbxÞ ¼ f n 	 /ðbxÞ; solve instead of (10) the following problem

defined on Mh :

For n = 1, 2,.., N do:bW 0ðbxÞ ¼ bUn�1ðbxÞ
for k = 1,2,...

pick up bZn;k�1 2 bðbx; bWk�1Þ; bZn;k�1 2 bVh and find bWk 2 bVh; such that for bvh 2 bVhR
Mh
bc bWkbvhdAh þ Dt

R
Mh

bkrMh
bWk � rMh

bvhdAh þ Dt
R
Mh

ðB bWk þ CÞbvhdAh ¼R
Mh
bc bUn�1bvhdAh þ Dt

R
Mh

QbSn bZn;k�1bvhdAh þ Dt
R
Mh

bf nbvhdAh:

8<:
ð11aÞ

Stop when

bWk � bWk�1



 




L2ðMhÞbW 0



 




L2ðMhÞ

� Tol

and set bUnðbxÞ ¼ bWkðbxÞ; ð11bÞ

and for x 2 M and bx 2 Mh; such that x ¼ /ðbxÞ;
UnðxÞ ¼ bUnðbxÞ: ð11cÞ

Next, we shall describe the method to implement rMh
buhðbxÞ for any buhðbxÞ 2 bVh:

Following DZIUK (1988) we write the tangent gradient rMu 2 L2ðTMÞ when

u 2 H1ðMÞ as
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rMu ¼ ru� ð n!M � ruÞ n!M;

where n!M is the unit outward normal vector on M and ru ¼ ou=oxið Þi¼1;2;3 denotes the

gradient of u considered as a function of the Cartesian coordinates (x1, x2, x3) referred to

the Cartesian coordinate system, the origin of which is at the center of the sphere.

Recalling that for bx 2 Mh; buðbxÞ is a lifting of u(x), i.e., x 2 M is such that x ¼ /ðbxÞ andbuðbxÞ ¼ u 	 /ðbxÞ; then rMu will be numerically approximated by the approximation to

rMh
buðbxÞ 2 L2ðTMhÞ; the expression of which is

rMh
buðbxÞ ¼ rbuðbxÞ � ð n!Mh

� rbuðxÞÞ n!Mh
for any bx 2 Mh;

where n!Mh
denotes the unit outward normal vector onMh; which is a constant vector on

each triangular face Xj of Mh; defining thus a piecewise constant approximation to n!M:buðbxÞ is approximated by buhðbxÞ 2 bVh satisfying buhðPÞ jXj
2 P1ðXjÞ; that is

buhðbxÞ jXj
¼
X3
m¼1

bUmkmðbxÞ;
where bUm ¼ buhðbxmÞ; and the local basis functions fkmðbxÞg3m¼1 are the so-called

barycentric coordinates defined by the relationsP3
m¼1 bxmikm ¼ bxi; for i ¼ 1; 2; 3;P3
m¼1 km ¼ 1 8P 2 Xj;

here bxi are the coordinates of any point bx 2 Xj and bxmi are the coordinates of the vertices
of Xj. Then, denoting by n!j the unit normal vector on Xj we have that for any bx 2 Xj

rMh
buhðbxÞ ¼X3

m¼1

bUmrkm �
X3
l¼1

njl
X3
m¼1

bUm
okm
obxl

 !
n!j:

We notice that by construction of the family of finite element spaces Vh; bUm are also the

values uh(xm), with xm ¼ /ðbxmÞ being the vertices of the spherical triangles. Moreover,

via the local basis functions fkmðbxÞg of the elements Xj we can define a set of global

basis functions falðbxÞgMl¼1 for the finite element space bVh that is characterized by the

following properties: (1) For each l; alðbxÞ 2 bVh; (2) for 1� i; l�M; alðbxiÞ ¼ dil; (3) for
1 B j B Nk, 1 B l B M and 1 B m B 3, the restriction of alðbxÞ on the element Xj, i.e.,

alðbxÞ jXj
¼ kmðbxÞ if the mesh node bxl coincides with the m-th vertex of the Xj. By

properties (1) and (2) the global basis functions alðbxÞ are piecewise linear polynomials of

compact support and each element buhðbxÞ 2 bVh is expressed as

buhðbxÞ ¼XM
l¼1

bUlalðbxÞ:
By property (3) we can evaluate the domain integrals in (11a) as the sum of element

integrals using the local basis functions {km}.
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Now, we calculate the integral
R
Mh

bkrMh
bunh � rMh

bvhdAh asZ
Mh

bkrMh
bunh � rMh

bvhdAh ¼
XNk

j¼1

Z
Xj

bkrMh
buh � rMh

bvhdAh; ð12aÞ

where the element integralZ
Xj

bkrMh
buh � rMh

bvhdAh ¼ bVSj bUT ;

with bV ¼ ð bV1; bV2; bV3Þ; bU ¼ ð bU1; bU2; bU3Þ; bVk and bUk being the values of bVh and buh at

the vertices of Xj respectively, and Sj is the Xj-element symmetric matrix the entries of

which are

sik ¼
Z
Xj

bkrWi � rkkdAh ¼
Z
Xj

bkðrki � ð n!j � rkiÞ n!jÞ � rkkdAh; 1� i; k� 3: ð12bÞ

Note that sik are the entries of the stiffness matrix corresponding to the two-dimensional

Laplace operator minus
R
Xj
ð n!j � rkiÞð n!j � rkkÞdAh: We are now in a condition to

describe how the evaluation of integrals of (11a) yields an algebraic system of equations

the solution of which is formed by the values of bWk at the vertices of the spherical

triangles.Z
Mh

bkrMh
bWk � rMh

bvhdAh ¼
XNk

j¼1

Z
Xj

bkrMh
bWk � rMh

bvhdAh ¼ bVTScWk;

Z
Mh

ðbc bWk þ DtB bWkÞbvhdAh ¼
XNk

j¼1

Z
Xj

ðbc bWk þ DtB bWkÞbvh ¼ bVTðM1 þ DtBM2ÞcWk;

DtC
Z
Mh

bvhdAh ¼ DtC
XNk

j¼1

Z
Xj

bvhdAh ¼ DtCbVTL;

Z
Mh

bc bUn�1bvhdAh ¼
XNk

j¼1

Z
Xj

bc bUn�1bvhdAh ¼ bVTM1
bUn�1;

DtQ
Z
Mh

bSn bZn;k�1bvhdAh ¼ DtQ
XNk

j¼1

Z
Xj

bSn bZn;k�1bvhdAh ¼ DtQbVT � bZn;k�1;

Dt
Z
Mh

bf nbvhdAh ¼ Dt
XNk

j¼1

Z
Xj

bf nbvhdAh ¼ DtbVT � Fn:

In these formulas the M-dimensional vector bVT :¼ ð bV1; . . . bVMÞ; bVi being the value ofbV 2 bVh at themesh point xi. Similarly,cWk :¼ ð bWk
1 ; . . . bWk

MÞ
T ;cWk�1 :¼ ð bWk�1

1 ; . . . bWk�1
M ÞT

and bUn�1 :¼ ð bUn�1
1 ; . . . bUn�1

M ÞT : S, M1 and M2 are sparse symmetric M 9 M matrices

obtained by assembling the corresponding element matrices. Thus,
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S ¼
[Nk

j¼1

Sj

where Sj is the element matrix whose entries are given by (12b).

M1 ¼
[Nk

j¼1

M1j;M2 ¼
[Nk

j¼1

M2j and L ¼
[Nk

j¼1

Lj

where M1j, M2j and Lj are element matrices with entries

m1ik ¼
R
Xj
bckikkdAh;

m2ik ¼
R
Xj
kikkdAh; ð1� i; k� 3Þ:

lii ¼
R
Xj
kidAh; lij ¼ 0when i 6¼ j

8><>:
The M-dimensional vector bZn;k�1 ¼ ð bZn;k�1

1 ; . . .; bZn;k�1
M ÞT is obtained by assembling the

element vectors bZn;k�1
j :

bZn;k�1 ¼
[Nk

j¼1

bZn;k�1
j ;

the entries of bZn;k�1
j being given by

bzn;k�1
l ¼

Z
Xj

bSn bZn;k�1kldAh; 1� l� 3:

Likewise, the vector Fn ¼ ðFn
1 ; . . .;F

n
MÞ

T
is obtained by assembling of the element

vectors Fj
n the entries of which are the values of the integralsZ

Xj

bf nkkdAh; 1� k� 3:

We use the 7 points Hammer quadrature rule for triangles, which is exact for

polynomials of degree 5, to calculate the integrals because the expressions for

Sðt; xÞ; bZn;k�1 and bkðbxÞ give integrands that are polynomials of degree 4.

Important features that make this formulation attractive for computations are the

absence of the so-called ‘‘pole problem’’ and the discretization of the Laplace-Beltrami

operator (i.e., the Laplace operator defined on an (d - 1)-dimensional manifold in R
d)

can be managed with the computer codes developed for the Laplace operator in a

Cartesian coordinate system.

The algebraic version of the iteration algorithm is then:

Iteration algorithm (algebraic version)

For n = 1, 2,..., N do:cW0 ¼ bUn�1

for k = 1, 2,... do:
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calculate bZn; k�1 2 bðbx; bWk�1Þ; bZn;k�1 2 bVh

and

bZn;k�1 ¼
Z
Mh

bSn bZn;k�1bvhdAh 8bvh 2 bVh;

then solve cWk ¼ M1
bUn�1 þ DtðQbZn;k�1 þ FnÞ � DtCL: ð13Þ

Stop when

cWk �cWk�1



 




l2cW0



 




l2

� Tol

and set

bWkðbxÞ ¼PM
l¼1

bWk
l alðbxÞbUn ¼ cWk

(
ð14Þ

5. Numerical Experiments

Starting with an initial condition that we may consider representative of the present

climate temperature, we shall run our model to predict the seasonal evolution of the

surface temperature as well as the influence of the concentration of CO2 on the increase

of such a temperature. All the numerical experiments are performed under the

hypothesis of average sky and with the co-albedo coefficients a0, a1 and a2 being

piecewise monthly constants; the values of which are borrowed from Table 1 of

GRAVES et al. (1993) .

The initial condition is obtained by averaging for every month of the year the surface

temperature data given by the general circulation model HIRLAM from the year 1950 up

to the year 2000. Figure 2 represents the distribution of the initial temperature which

corresponds to December. The computational mesh consists of 20480 triangles and 10242

mesh points, which means an average h = 0.0431 rads ^260 Kms. We calculate the

numerical solution taking a time step length Dt = 0.01 = 3.6 days, and solving (13) with

a tolerance of 0.001. Since S(t, x) depends periodically on time with a period of one year,

then after an initial transient state the solution of the model will also be periodic because

the coefficients of our model do not depend on time (e.g., BADII and DIAZ 1999). This can

be seen in Figure 7 where we represent the evolution of the temperature at a point near

Madrid (Spain) under different concentrations of CO2 in the atmosphere, see equation

(15) below.

1042 R. Bermejo et al. Pure appl. geophys.,



We have noted that the transient period of the model, also known as the spin-up

period, is about 9 years. After this, the solution becomes periodic with a period of about

1 year as long time numerical experiments (40 years) have shown. It seems that this

periodic state is stable for the parameters used in our calculations. This is the reason we
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Distribution of temperature at time t = 0.
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Distribution of January average temperature.
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have presented the results for 10 years of simulations. Figure 3 shows the distribution of

January temperature in the stationary periodic regime. Figure 4 displays the -2�C snow

lines for the Northern and Southern Hemispheres in January.

Figures 5 shows the distribution of temperature for the month of July, whereas the

snow line for this month in both hemispheres is represented in Figure 6.
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Distribution of average temperature for July.

Figure 4

- 2�C January snow line. Left: Northern Hemisphere; right: Southern Hemisphere.
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One can also simulate with our simple EBM the influence of CO2 on the increase of

temperature. We do so by considering that the concentration of CO2 plays the role of an a

additional forcing term f(t,x) in the governing equation. Following MYHRE et al. (1998)

we model such a forcing as

f ðt; xÞ ¼ 5:35ln
C

C0

� �
bðx; uÞ; ð15Þ

where C0 = 300 ppm represents the concentration of CO2 of preindustrial times and C is

the value of concentration of CO2 different of 300. Figure 7 displays the influence of the

concentration of CO2 on the temperature at a point near Madrid (Spain). We note that

doubling the levels of CO2 will produce an increase in the July and January average

temperatures larger than 1.5�C.

Figure 6

- 2�C July snow line. Left: Northern Hemisphere; right: Southern Hemisphere.
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CO2 influence on temperature at a point near Madrid. The box, showns the temperature corresponding to the

month of July.
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An Upper Limit to Ground Deformation in the Island of Tenerife, Canary

Islands, for the Period 1997–2006

ANTONIO EFF-DARWICH,1,2 OLIVIER GRASSIN,2 and JOSÉ FERNÁNDEZ3

Abstract—Continuous monitoring of ground deformation in the volcanic island of Tenerife, Canary Islands,

is based on GPS networks, since there are as yet no tiltmeter stations installed on the island. However, there is a

world-class astronomical observatory on the island, the El Teide Observatory, where four tiltmeters, two aligned

in the North-South and the other two in the East-West, are monitoring the movements of the solar telescope

THEMIS. THEMIS (Heliographic Telescope for the Study of Solar Magnetism and Instabilites) is among the

three largest solar telescopes in the world. Since THEMIS is located a few kilometers from the main volcanic

structures of the island, in particular the El Teide-Pico Viejo stratovolcano, and the precision of the

inclinometers is comparable to those used in geophysical studies, we carried out the analysis of the tilt

measurements for the period 1997–2006. The tiltmeters at THEMIS are placed in the seventh floor of a tower,

hence their sensitivity to geological processes is reduced compared to geophysical installations. However,

THEMIS measurements are the only terrestrial data available in Tenerife for such a long period of observations,

which include the sustained increase in seismic activity that started in 2001. In this sense, a significant change

was found in the East-West tilt of approximately 35 l-radians between the years 2000 and 2002. Some

theoretical models were calculated and it was concluded that such tilt variation could not be due to dike

intrusions, nor a volcanic reactivation below the El Teide-Pico Viejo volcano. The most likely explanation

comes from dislocations produced by a secondary fault associated to a major submarine fault off the eastern

coast of Tenerife. In any case, taking into account the nearly permanent data recording at THEMIS, they could

be considered as a complement for any ground deformation monitoring system in the island.

Key words: Ground deformation, Tenerife, volcanic activity, earthquake.

1. Introduction

Some of the best astrophysical observatories in the world, namely the Canarian,

Chilean and Hawaiian observatories, are located in active volcanic regions. This is not a

coincidence, since topography modelled by volcanic activity is a main factor controlling

the local atmospheric conditions and hence, the sky transparency that defines good

astronomical sites.
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The Canary Islands host two astrophysical observatories on two different active

volcanic islands: Observatorio del Teide on the Island of Tenerife and Observatorio del

Roque de los Muchachos in La Palma. Several volcanic eruptions have taken place on

both islands, the last ones being in 1971 and 1909 for La Palma and Tenerife, respectively

(CABRERA and HERNÁNDEZ-PACHECO, 1987).

Astrophysical observatories do not carry out geophysical monitoring programs,

however there are secondary products from astrophysical observations that could be

useful in geophysical studies. In particular, the pointing accuracy data collected by

telescopes could contain information on crustal deformation that may complement data

collected from geodetic techniques. Pointing accuracy should be in the order of the

optical aberration introduced by the atmosphere in astronomical observations, namely

lower than 2 arc-seconds or 9.7 l-radians. Hence, spurious tilting motions of the

telescope should be smaller than the optical aberration induced by the atmosphere. This

tilting includes structural effects of the telescope, thermal deformation on the telescope

building and geological activity, such as crustal deformation.

Geodetic techniques are being used extensively at active volcanoes and have provided

useful eruption precursors (e.g., NEWHALL and DZURISIN, 1988; FISKE and SHEPHERD, 1990;

DVORAK and DZURISIN, 1997; DZURISIN, 2007; FERNÁNDEZ et al., 2005). Geodetic signals

can play a key role in early detection of volcanic unrest due to the very high precision

attainable with present-day techniques and instruments.

In this work, we present tilt data collected at the solar telescope THEMIS located at

El Teide Observatory in the Canarian Island of Tenerife. We study the accuracy of these

data and the limitations of their potential use in the framework of crustal deformation

monitoring, complementing already existing geodetic networks and techniques.

2. Geological Setting

Tenerife is the largest island of the Canarian Archipelago and one of the largest

volcanic islands in the world. It is located between latitudes 28–29� N and longitudes

16–17� W, 280 km distant from the African coast. It conforms an active volcanic region,

its age varying from Middle Miocene to present, with no evidence of important gaps in its

volcanic activity history, at least in the last 3 to 4 Ma (ANCOCHEA et al., 1990, 1999).

This activity is still evident in stationary low temperature fumarolic activity at Teide

crater (< 85�C), diffusive gaseous emissions (VALENTÍN et al., 1990; ALBERT-BELTRÁN

et al., 1990; HERNÁNDEZ et al., 1998; PÉREZ et al., 1996), groundwater temperatures

reaching up to 50�C and volcanic contamination of groundwater in the subsurface of the

central region (BRAVO et al., 1976; CARRACEDO and SOLER, 1983; FARRUJIA et al., 1994).

The morphology of Tenerife (see Fig. 1) is the result of a complex geological

evolution: The subaerial part of the island was originally constructed by fissural eruptions

of ankaramite, basanite and alkali basalts that occurred between 12 and 3.3 Ma

(ANCOCHEA et al., 1990; ARAÑA et al., 2000; GUILLOU et al., 2004). These formations
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made up shield volcanoes that remain at present as three eroded massifs occupying the

three corners of the island (Teno, Anaga and Roques del Conde massifs). In the central

part of the island, from 3.5 Ma to present, the emission of basalts and differentiated

volcanics gave rise to a large central volcanic complex, the Las Cañadas Edifice (MARTÍ

et al, 1994). After a period of mafic volcanism, several periods of phonolitic activity took

place, culminating in the formation of a large elliptical depression measuring

16 9 9 km2, known as Las Cañadas Caldera. In the northern sector of the caldera, the

Teide-Pico Viejo complex was constructed as the product of the most recent phase of

central volcanism. Teide-Pico Viejo is a large stratovolcano that has grown during the

last 175 Ky. The post-shield basaltic activity, which overlaps the Las Cañadas Edifice, is

mainly found on two ridges (NE and NW), which converge on the central part of the

island (ANCOCHEA et al., 1990; CARRACEDO, 1994; ABLAY and HURLIMANN, 2000). Large-

scale lateral collapses, involving rapid mass movements of hundreds of cubic kilometers

of rock, are responsible for the formation of three valleys: La Orotava, Güimar and Icod.

Recorded eruptive activity has consisted of six Strombolian eruptions (CABRERA and

Figure 1

Simplified morphological map of Tenerife, including Teide-Pico Viejo stratovolcano (7), Las Cañadas Caldera

(8) and the recorded historical eruptions (dark areas indicate extension of the eruption), namely Arafo (1), Fasnia

(2), Siete Fuentes (3), Chahorra (4), Chinyero (5) and Arenas Negras (6). Black points indicate the approximate

location of the GPS network, whereas the geodetic and levelling networks are enclosed by a white square (11).

The subsidence areas detected by InSAR are represented by whites squares labelled as (9) for Garachico and

(10) for Chio, whereas the location of the solar telescope THEMIS is represented by an open circle labelled

as (12).
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HERNÁNDEZ-PACHECO, 1987), namely Siete Fuentes (1704), Fasnia (1705), Arafo (1705),

Arenas Negras (1706), Chahorra (1798) and Chinyero (1909). The last three eruptions

occurred at the NW axis system, the most active area of the island together with El Teide-

Pico Viejo Edifice for the last 50,000 years (CARRACEDO et al., 2003a, b).

It is important to mention, in the context of geodetic monitoring, the possible existence

of a shallow magma chamber underneath Teide-Pico Viejo. It is estimated from petrologic

analyses (ARAÑA 1985; ARAÑA et al., 1989) that the top of the magma chamber is located

at sea level, having a volume of approximately 30 km3 and a radius of 2 km (under the

supposition of spherical shape). Thermodynamical (DIEZ and ALBERT, 1989) and chemical

(ALBERT-BELTRÁN et al., 1990) modelling of the fumaroles at El Teide summit revealed

that the present temperature at the surface of the magma chamber would be approximately

350�C, whereas the top of the chamber coincides with that calculated from petrologic

analyses. However, ARAÑA et al. (2000) found long wavelength magnetic anomalies in the

central part of Tenerife that could be interpreted as the top of deep intrusive bodies or

magma chambers zone (&5.7 km b.s.l.). In this sense, the possible location of the top of

the magma chamber ranges from sea level to nearly 6 kilometers below sea level.

It is also important for geodetic studies that most recent eruptions (<3 Ma) have been

fed by dikes (FERNÁNDEZ et al., 2003). These dikes are associated to systems of deep

fractures that generally respond to regional tectonics. In other cases, the dikes are located

in shallow radial or circular fractures in large volcanic structures. Most of the visible

dikes are less than one meter thick in the shallowest sections. However, when erosion

exposes deeper sections, they are seen to be much thicker, especially those of a saline

composition. Regional fractures in Tenerife are mainly to be seen in the two ridges (NE

and NW) that converge in the central region of the island. There are also major radial

fractures associated to the eruptive systems of the Teide-Pico Viejo volcano, in the

central area of Tenerife.

3. Previous Geodetic Studies in the Island of Tenerife

In recent decades several observational and theoretical studies have been carried out

in the context of geodetic monitoring in the volcanic Island of Tenerife. A 17-benchmark

classical geodetic network and a levelling profile located in the area of Las Cañadas

Caldera (see Fig. 1) have been observed several times since 1982 (SEVILLA and MARTÍN,

1986; SEVILLA et al., 1996). No displacements were found from 1982 to 2000 during the

observation of both the geodetic network and the levelling profile (FERNÁNDEZ et al.,

2003, 2005). Theoretical analysis carried out by YU et al. (2000) demonstrated the need

to extend the existing geodetic network in Las Cañadas Caldera to cover the full island

for volcano monitoring purposes.

Ground displacement analyses have been carried out on the entire island by

means of classical DInSAR techniques for the period 1992–2000 (CARRASCO et al., 2000;

FERNÁNDEZ et al., 2002, 2005; ROMERO et al., 2002). These works did not reveal any
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significant ground deformation on Las Cañadas Caldera; however, two deformation areas

were detected for the period July 1993 to September 2000 (see Fig. 1), extending over

15 km2 with a ground subsidence of 10 cm (Garachico deformation) and 8 km2 with a

ground subsidence of 3 cm (Chio deformation). These subsidences were found closer to the

locations of themost recent eruptions in the island (ArenasNegras,Chahorra andChinyero).

Considering the results by YU et al. (2000) and to validate DInSAR results, a

22-station GPS network was designed and observed in August 2000, with more

densification in the two deformation areas (FERNÁNDEZ et al., 2003). The densified

network was re-observed in 2001 and 2002 (FERNÁNDEZ et al., 2004), confirming both

subsidences previously detected by DInSAR. Examination of the geophysical observa-

tions on the island, human activities underway and the results of the theoretical modelling

seem to indicate that at least part of the observed deformation may be caused by changes

in the groundwater level and therefore that part of the deformation should not be linked to

a volcanic reactivation. This result is important because it implies that, if geodetic

volcano monitoring is to be performed on the island, the system used must be capable of

discerning between various possible origins of the deformation by analyzing their

patterns and ancillary information from other sources. Another important result obtained

by FERNÁNDEZ et al. (2004) is a change in the deformation pattern in the period 2000–

2002 with respect to that observed by DInSAR for the period 1992–2000. This could

relate to the change in seismicity detected in the same period and could be a geodetic

precursor of the 2004 volcano-tectonic crisis (FERNÁNDEZ et al., 2006a).

4. Instrumental Setting and Data Acquisition

THEMIS (Heliographic Telescope for the Study of Solar Magnetism and Instabilites)

is among the three largest solar telescopes in the world. It is devoted to the analysis of

magnetism and the dynamics of the solar atmosphere. THEMIS belongs to a French-

Italian consortium (CNRS-CNR) and it is located at the Observatorio del Teide (Tenerife,

Canary Islands, Longitude: 16�3003500 W, Latitude: 28�1800000 N, Height: 2400 m.a.s.l.), a

world-class astrophysical observatory managed by the Instituto de Astrofı́sica de

Canarias. The observatory lies within 5 kilometers of Las Cañadas Caldera wall and it is

just 12 kilometers distant from El Teide-Pico Viejo volcano summit, 20 kilometers

distant from the NW ridge and within a few kilometers of La Orotava valley, Güimar

valley and the NE ridge. Hence, THEMIS and in general the observatory, is revealed as

an ideal location to monitor the main active volcanic areas of Tenerife.

As was mentioned in the previous section, pointing accuracy is one of the main

concerns when operating a telescope. THEMIS, as with many other solar telescopes,

consists of a tower on top of which the telescope is placed. Such design is intented to

reduce atmospheric turbulence induced by soil heating. However, the building could tilt

due to telescope operations, wind, temperature changes and/or geological variables such

as earthquakes and ground deformations. In an attempt to reduce meteorological tilting

Vol. 165, 2008 Ground Deformation in Tenerife 1053



effects, the telescope is divided into two mechanically-isolated cylindrical buildings (see

Fig. 2), namely an internal pillar where the telescope is placed and the external building

where the dome, laboratories and offices are located. The external building will also

absorb the effects of wind and large atmospheric temperature changes, whereas the

internal pillar will be mainly affected by telescope operations; geological variables will

affect both the internal and external buildings. In any case, both the pillar and the external

building are equipped with two North-South and East-West tiltmeters to continuously

monitor variations in the inclination of the building and hence, the pointing accuracy of

the telescope.

Figure 2

Sketch of the internal structure of THEMIS. Dark shaded areas represent the internal pillar, whereas light-grey

shaded areas correspond to the external building. The location of the inclinometers is also shown.
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The tiltmeters were designed and built at the Institute de Physique du Globe of

Paris, being based on the Blum pendulum (SALEH et al., 1991) and entirely built out of

monolithic silica to minimize temperature deformation. An opto-electronic sensor provides

a signal proportional to illumination, according to the pendulum position relative to a

vertical pseudo-axis. The tiltmeters are encased to protect them against light and

electrostatic effects. Both the pillar and the external building tiltmeters are grouped in so-

called tiltmeter units. The two units also provide continuous measurement of temperature

and conditioning of the analogical signal to filter out micro-seismic components and other

interferences.

The analogical signal provided by the inclinometer units is converted into digital

signal at a sampling rate of 1 measurement per minute. The accuracy of the tilt signal is

approximately 0.02 l-radians, whereas the accuracy for temperature measurements is

0.01�C.

5. Data Analysis

In the present work, we have only considered the data obtained from the pillar

tiltmeters, since the external building measurements are strongly affected by wind and

atmospheric temperature changes. Telescope observations also affect the tilt signal and

hence, we only used data recorded from midnight to 6:00 AM, corresponding to the

temporal interval in which the telescope is not observing and hence, it is not moving. The

original sampling rate of one measurement per minute was hence reduced to one

averaged measurement per day. Time series for daily averages of the tilt and temperature

signals for the entire observing range (1 January, 1997 to 20 May, 2006), as well as their

spectral response, are shown in Figures 3 and 4, respectively. Long-term (several days to

yearly) variations in the tilt signals are clearly modulated by temperature. This

modulation is responsible for the increment in the spectral amplitude of the tilt signals

with the period, as illustrated in Figure 4. Tilt measurements are clearly modulated by

temperature and hence, it is necessary to filter out this effect, in order to study the

possible influence of other variables, such as crustal deformation. However, at short

periods, the effect of temperature is negligible and the spectral amplitude of the tilt signal

lies below 1 l-radian (see Fig. 4). Hence, it is possible to carry out high accuracy

measurements of short-period variations in the tilt signal, like those expected by a distant

earthquake or a dyke injection (IRWAN et al., 2003).

Since long-term temporal variations in both tilt and temperature signals are similar,

we will perform a temperature filtering process from the tilt signal in the frequency

domain using wavelet analysis. A practical introduction and description to wavelet

analysis can be found e.g., in TORRENCE and COMPO (1998) and MEYERS et al. (1993).

Wavelets are mathematical functions, that in our case consist of wave packets, M(n, s),

defined as a plane wave of a given frequency modulated by a Gaussian function of a

given width (Morlet function). The correlation between the wavelet and our data (a time
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series X, with values of xn at time index n) gives a local measure of the projection of the

wave packet in our data, in other words it gives us a local measure of the relative

amplitude of activity at a given frequency of the wave packet. By sliding this wavelet

Figure 3

Temperature (upper panel), North-South tilt (central panel) and East-West tilt (lower panel) time-series recorded

by the pillar inclinometer unit for the period January 1, 1997 to January 1, 2006. Increasing North-South tilt with

time represents downward deformation to the North, whereas increasing East-West tilt with time represents

downward deformation to the East.

Figure 4

Temperature (upper panel), North-South tilt (central panel) and East-West tilt (lower panel) spectra of the time

series collected at THEMIS for the period 1997–2006.
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(with translation parameter n) along our time series, and varying the ‘‘scale’’ of the

wavelet by changing its width (with dilation parameter s) one can then construct a new

time series Wn(s) of the projection amplitude versus time,

WnðsÞ ¼
XN�1

n0¼0

xn0M
�ðn0; sÞ ðn

0 � nÞdt
s

; ð1Þ

where the asterisk denotes complex conjugate and dt is the constant time interval between

two values xn. From this definition, it is also possible to obtain xn at a given time step n,

from a linear combination of the wavelet functions Wn(s).

xn ¼
XS�1

s0¼0

Cðn; s0ÞWnðs0Þ; ð2Þ

where C(n,s’) are the coefficients for the linear combination (see TORRENCE and COMPO

1998 for details). The advantage of this representation for a series X is that we could filter

out unwanted oscillations (with period su) in the signal by excluding in the linear

combination (2) those coefficients associated to the dilation parameter s = su.

Let us perform wavelet analysis on the normalized time series for temperature P(n),

North-South tilt N(n) and East-West tilt E(n), as illustrated in Figure 5. In this figure, it

is clearly present the yearly (for periods of approximately 365 days) modulation of

both temperature and tilt signals. At each time step n the ratios RN (sj) and RE (sj) are

calculated:

RN sj
	 


¼ 1� abs
CN n; sj
	 


Wn sj
	 


� Cp n; sj
	 


Wn sj
	 


CN n; sj
	 


Wn sj
	 


þ Cp n; sj
	 


Wn sj
	 
 !

; ð3Þ

RE sj
	 


¼ 1� abs
CE n; sj
	 


Wn sj
	 


� Cp n; sj
	 


Wn sj
	 


CE n; sj
	 


Wn sj
	 


þ Cp n; sj
	 


Wn sj
	 
 !

; ð4Þ

where CP (n, sj), CN (n, sj) and CE (n, sj) are the linear coefficients defined in equation

(2) for temperature, North-South tilt and East-West tilt, respectively. If RN (sj) or RE

(sj) are larger than 0.95, the associated coefficient Cj (n, sj) in equation (2) are excluded

from the linear combinations to recover N(n) and E(n) from the corresponding wavelet

functions. In this way, we filtered out the temperature temporal modulation from the tilt

signals, as shown in Figure 6, 15 l-radians being the minimum level of detection for

the filtered signals.

6. Analysis of the Results

The origin of the temperature-filtered tilt signal is difficult to assess, recalling that the

tilt sensors are placed in the seventh floor of a building. In this sense, temperature dilation
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Figure 5

(a) Wavelet analysis for the time series associated to the North-South tilt. (b) Wavelet analysis for the time

series associated to the East-West tilt. (c) Wavelet analysis for the time series associated to the temperature.
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effects on the pillar and/or motion transmission from the external building through the

subsurface should not be disregarded.

In an attempt to relate the residual tilt signal to geological variables, the temporal and

spatial distributions of earthquakes detected by the Spanish Instituto Geográfico Nacional

(IGN) in and around Tenerife were calculated, as shown in Figures 7–9. Only

earthquakes with magnitudes equal to or larger than 2.3 (Richter scale) were considered,

since information on lower magnitude earthquakes could be inaccurate due to

reconfigurations in the local seismic network (M.J. Blanco from IGN, private

communication). The maximum magnitude recorded during the period 1997–2006 was

3.4, whereas the largest instrumental earthquake in this area was recorded on 9 May 1989,

reaching a magnitude of 5.2. The focal mechanism of this earthquake shows strike-slip

movements with two nodal planes oriented north-northeast-south-southwest and north-

west-southwest. The former agrees with the aftershock distribution and the strike of a

major submarine fault parallel to the eastern coast of Tenerife (BOSSHARD and

MACFARLANE, 1970; MEZCUA et al., 1990; GONZÁLEZ DE VALLEJO et al., 2006). Moreover,

a series of liquefaction-related structures (namely clastic dykes and tubular vents) were

discovered in Holocene sand deposits in southern Tenerife (GONZALEZ DE VALLEJO et al.,

2003), likely being the result of an estimated 6.8 magnitude earthquake in the submarine

fault. Starting in 2001, there is a significant increase in seismic activity that is primarily

taking place at the location of the submarine fault. However, part of the seismic activity

moved inland, following a SE-NW trend, as illustrated in Figure 8. During 2004, the

Figure 6

Residual time series for the North-South (central panel) and East-West (lower panel) tilt measurements after

filtering out temperature effects through wavelet analysis. The upper panel shows the number of earthquakes

with magnitude larger that 2.3 detected in and around Tenerife.
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increase in seismic activity continued, however part of the inland activity moved

westwards, to an area with no previous instrumentally recorded seismic activity (see

Fig. 9). Unlike the 1989 earthquake, there is no accurate information regarding the

location of the hypocenters and the focal mechanisms of the earthquakes that occurred

between 1997 and 2006.

A significant increment in diffuse gas emissions was also recorded in the NW

ridge during 2004, after several soil-gas sampling campaigns (PÉREZ et al., 2005). In

this work, however, we will study the sustained increase in seismic activity that

started in 2001, since this was proceeded and accompanied by a significant variation

in the East-West tilt signal of approximately 35 l-radians (between days 1000 and

2000 in Fig. 6).

We carried out a theoretical analysis in order to study the possible relation between

tilt variation and volcano-tectonic processes, namely activity associated to a magma

chamber, a dike injection and a dislocation induced by a fault. The first case we studied

was the sensitivity of the THEMIS tiltmeters (hereafter TT) measurements to reactivation

in the magmatic system associated to El Teide-Pico Viejo stratovolcano. We considered

the crustal structure model described in Table 1 and the elastic-gravitational deformation

model described by RUNDLE (1982), FERNÁNDEZ and RUNDLE (1994) and FERNÁNDEZ et al.

Figure 7

Spatial distribution of the earthquakes located in and around Tenerife for the period 1997–1999. Radius of the

circles is proportional to the magnitude of the earthquake. Only earthquakes with a magnitude larger or equal to

2.3 are represented. Black square shows the position of the Observatorio del Teide.

1060 A. Eff-Darwich et al. Pure appl. geophys.,



Figure 8

As in Figure 7, but for the period 2000–2002.

Figure 9

As in Figure 7, but for the period 2003–2006.
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(1997, 2006b). As was mentioned, the possible location of the magma chamber

underneath El Teide-Pico Viejo is uncertain, ranging from the position of the top of the

chamber from approximately sea level to 6 kilometers below sea level. In this sense,

several calculations were carried out for different cases of spherical intrusion, varying its

depth and the parameter Pa3, P and a being the pressure and radius of the magma

intrusion (FERNÁNDEZ et al., 1997), respectively. Figures 10 and 11 present absolute

ground displacement and tilt for intrusions located underneath El Teide-Pico Viejo

stratovolcano at 2, 6 and 10 kilometers depth, that are characterized by two different

values of Pa3, namely 103 and 104 MPa/km3. TT is located approximately 12 kilometres

Table 1

Tenerife crustal model (FERNÁNDEZ et al., 1999)

Layer Thickness (km) q (103 kg m-3) l (1010 Pa) k (1010 Pa)

1 3.5 2.1 0.7 0.8

2 2.5 2.3 1.3 1.7

3 19. 2.9 4.0 4.7

Mantle 3.3 6.4 8.3

Figure 10

Absolute value for the displacement (in millimeters) as a function of distance from the projection onto the

surface of different states of spherical magma intrusions (radius, depth and pressure). Upper and lower panels

present results for instrusion with Pa3 = 104 MPa/km3 and Pa3 = 103 MPa/km3, respectively (see text for

details). Solid, dotted and dashed lines correspond to the results obtained for magma intrusions located at a depth

of 2, 6 and 10 kilometers below sea level.
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eastwards of El Teide-Pico Viejo and hence, it is sensitive to some cases of magmatic

intrusions, namely at depths of up to 6 kilometers below sea level and Pa3 = 104 MPa/

km3. However, the detectable cases imply vertical displacements larger than 10 cm at TT

and larger than 1 meter at the summit of El Teide-Pico Viejo that have not been detected

with GPS or DInSAR observations during the studied time period (FERNÁNDEZ et al.,

2004, 2005). Moreover, it is expected that the North-South and East-West tilts were

similar, since we assume spherical symmetry. However, in the case presented in Figure 6,

the East-West tilt is significantly larger and hence, it is not likely that a magma intrusion

below El Teide-Pico Viejo volcano could induce the tilt measured by TT for the period

2000–2002.

The second case of the theoretical analysis corresponds to the other possible kind of

magmatic intrusion in Tenerife, namely dikes (MARINONI and GUDMUNDSSON, 2000; YU

et al., 2000). To explain the observed ground deformation, we use the conventional

assumption of dislocations buried in an elastic half space composed of a Poisson solid

(OKADA, 1985). We specified eight parameters describing the rectangular fault patch:

Three centroid coordinates X, Y, h, strike angle a and dip angle d along-strike length L

and down-dip width W, and the slip vector of the tensile component (thickness of the

dike) U3, as illustrated by FEIGL and DUPRÉ (1999). These authors developed the

Figure 11

Absolute value for the tilt as a function of distance from the projection onto the surface of different states of

spherical magma intrusions (radius, depth and pressure). Upper and lower panels present results for intrusions

with Pa3 = 104 MPa/km3 and Pa3 = 103 MPa/km3, respectively (see text for details). Solid, dotted and dashed

lines correspond to the results obtained for magma intrusions located at a depth of 2, 6 and 10 kilometers below

sea level. Thin continuous line indicates the sensitivity of the THEMIS tiltmeters.
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Figure 12

Absolute value for the vertical displacement (in millimeters) induced by a dike intrusion in the NE ridge of

Tenerife. Vertical and horizontal dashed lines cross at the position of the Observatorio del Teide.

Figure 13

Absolute value for the tilt induced by the dike intrusion illustrated in Figure 12. Vertical and horizontal dashed

lines cross at the position of the Observatorio del Teide.
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numerical code RNGCHN that was used to calculate the ground deformation due to

dike intrusion. Figures 12 and 13 show the effects produced by a dike located in the NE

ridge, extending from the mantle (about 25 km depth) to 1 km depth, 2L = 2 km,

U3 = 1 m, and d = 90�. Figure 14 presents the tilt along the dashed lines shown in

Figures 12 and 13 for the cases of a dike extending from the mantle to 2 km, 1 km and

0.5 km, respectively. The dike is intruding perpendicularly to ground surface and hence,

the amplitude of the displacement is proportional to U3, in the sense that a dike

2 meters thick will induce ground deformations twice those presented for a 1 meter

thick dike in Figures 12 to 14. Since the sensitivity of TT is approximately

15 l-radians, only shallow dikes (above 2 km in depth) located in the vicinity of the

telescope (at distances not exceeding 5 km) could be detected, even for dikes several

meters thick. However, tilt variations are not accompanied by an increase in seismic

activity (there are no epicenters in the area), as it could be expected during a dike

intrusion (e.g., YAMAOKA et al., 2005). Moreover, the duration of the change in the

East-West tilt spans more than two years, being an excessively long period to be caused

by a dike intrusion. Hence, it is unlikely the tilts in Figure 6 are due to a dike; however,

an interesting result could be extracted from Figures 12 to 14: A high precision

tiltmeter (in the order of nano-radians) is nearly sensitive to a dike intruding anywhere

within the island. In this sense, a network of at least 8 high precision tiltmeters

Figure 14

Tilts calculated along the vertical (upper panel) and horizontal (lower panel) dashed lines shown in Figure 13.

Solid, dotted and dashed lines represent the tilts calculated for a dike intrusion located 500 meters, 1 kilometer

and 2 kilometers from the surface, respectively.
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deployed throughout the island could be sufficient to infer the 8 parameters that

characterize a dike, namely coordinates X, Y, h; angles a and d along-strike length L

down-dip, width W and U3.

The third case in our theoretical analysis is represented by a dislocation induced by a

fault. Following FEIGL and DUPRÉ (1999), we specified nine parameters describing the

rectangular fault patch: Three centroid coordinates X, Y, h; strike a and dip d; along-
strike length L and down-dip width W; and the slip vector of the left-lateral U1 and up-

dip U2 components. Following the inland lineation of earthquakes for the period 2000

and 2002, that runs parallel to the existing volcanic seamount alignment described by

ROMERO-RUIZ et al. (2000), we surmised that the tilt variation detected at THEMIS

could be the result of a nearly strike-slip secondary fault associated to the major

submarine fault parallel to the eastern coast of Tenerife (Figures 15 and 16). As in the

case of the dike intrusion, it is not possible to find a unique solution, since there are nine

unknown parameters and only two observables, namely the North-South and the East-

West tilts. The results presented in Figures 15 and 16 correspond to a fault extending

from 5 km below the surface to a depth of 10 km with 5 cm of left lateral strike-slip and

10 cm of dip-slip. This is a simple solution about the effect of a fault that could explain

both the tilt measured at THEMIS and the seismic activity that took place along the

secondary fault line.

Figure 15

Absolute value for the vertical displacement (in millimeters) induced by a strike-slip fault perpendicular to the

main submarine fault off the coast of Tenerife. Thick dotted and solid lines represent the projection on the

surface of the major submarine fault and the secondary fault (see text for details). Filled circles represent

the location of the earthquakes detected between 2000 and 2002. Vertical and horizontal dashed lines cross at

the position of the Observatorio del Teide.
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7. Conclusions

The methodology used in the acquisition and processing of tiltmeter data at THEMIS

sets the minima detectable tilts to 15 l-radians. This limits the applicability of THEMIS

data for volcano monitoring in the island of Tenerife. In any case, a significant change

was found in the East-West tilt of approximately 35 l-radians between the years 2000

and 2002. From theoretical study, and recalling that all theoretical results are based on

simple homogeneous elastic half-space models that do not take into account topographic

effects or lateral heterogeneities, we can conclude that tilt produced by dike intrusions

could only be detected in cases of great shallow dikes in the NE ridge less than 5 km

distant from TT. The effects of dike intrusions in the NW ridge could not be detected with

the tiltmeters at THEMIS. If we consider a volcanic reactivation below the El Teide-Pico

Viejo volcano, only great (Pa3 >>103 MPa/km3) and shallow events (center of mass

located at 6 to 2 km depth) could produce effects measurable by these instruments. In the

case of tectonic processes, THEMIS tiltmeters could detect some cases of dislocation

produced by the faults associated to the major submarine fault located off the eastern

coast of Tenerife.

In summary, considering the limitations in the applicability of THEMIS data for

geodetic monitoring and considering their nearly permanent data recording for the

last ten years, tiltmeter monitoring at THEMIS could be considered complementary to

any monitoring system in the island, since they could detect (at least theoretically)

Figure 16

Absolute value for the tilt calculated from the vertical displacement calculated in Figure 15. Thick dotted and

solid lines represent the projection on the surface of the major submarine fault and the secondary fault (see text

for details). Filled circles represent the location of the earthquakes detected between 2000 and 2002. Vertical

and horizontal dashed lines cross at the position of the Observatorio del Teide.
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some cases of activity, mainly slow tectonic processes and massive magmatic

intrusions.
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FERNÁNDEZ, J., ROMERO, R., CARRASCO, D., LUZÓN, F., and ARAÑA, V. (2002), InSAR volcano and seismic

monitoring in Spain. Results for the period 1992–2000 and possible interpretations. Optics and Lasers in

Engin. 37, 285–297.
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VALENTı́N, A., ALBERT-BELTRÁN, J., and DIEZ, J. (1990), Geochemical and geothermal constraints on magma

bodies associated with historic activity, Tenerife (Canary Islands), J. Volcanol. Geotherm. Res. 44, 251–264.

YAMAOKA, K., KAWAMURA, M., KIMATA, F., FUJII, N., and KUDO, T. (2005), Dike intrusion associated with the

2000 eruption of Miyakejima Volcano, Japan. Bull. Volcanol 67, 231–242.
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Multi-Channel Satellite Image Analysis Using a Variational Approach

L. ALVAREZ, C. A. CASTAÑO, M. GARCÍA, K. KRISSIAN, L. MAZORRA, A. SALGADO

and J. SÁNCHEZ

Abstract—Currently, meteorological satellites provide multichannel image sequences including visible,

temperature and water vapor channels. Based on a variational approach, we propose mathematical models to

address some of the usual challenges in satellite image analysis such as: (i) the estimation and smoothing of the

cloud structures by decoupling them into different layers depending on their altitudes, (ii) the estimation of the

cloud structure motion by combining information from all the channels, and (iii) the 3D visualization of both

the cloud structure and the estimated displacements. We include information of all the channels in a single

variational motion estimation model. The associated Euler-Lagrange equations yield to a nonlinear system of

partial differential equations that we solve numerically using finite-difference schemes. We illustrate the

performance of the proposed models with numerical experiments on two multichannel satellite sequences of

the North Atlantic, one of them from the Hurricane Vince. Based on a realistic synthetic ground truth motion, we

show that our multichannel approach overcomes the single channel estimation for both the average Euclidean

and angular errors.

Key words: Variational methods, Partial Differential Equations, optical flow, spatio-regularization,

optimization, satellites images.

1. Introduction

Estimation of the cloud motion from satellite images has several applications in

meteorology and climate (HASLER, 1990). In particular, it is an important source of

information for numerical weather prediction (NWP) (BAKER, 1991). It is also useful in

understanding the structure and dynamics of hurricanes and severe thunderstorms.

Different classes of techniques have been used to estimate the cloud motion, among

them are techniques using the local cross correlation (LEESE et al., 1971; PHILLIPS et al.,

1972; SCHMETZ et al., 1993) and cross-correlation combined with relaxation labeling (WU,

1995; EVANS, 2006), motion analysis from stereoscopic images (YOUNG and CHELLAPPA,

1990; KAMBHAMETTU et al., 1995), neural networks (CÔTÉ and TATNALL 1995), block-

matching techniques (BRAD and LETIA, 2002), local fitting (ZHOU et al., 2001), scale-space

classification by matching contour points of high curvatures (MUKHERJEE and ACTON,
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2002), and variational techniques using Partial Differential Equations (PDE) also referred

to as Optical Flow techniques in the field of computer vision (CORPETTI et al., 2002). The

most widely used techniques are based on the local cross correlation. They have the

advantage of being robust to global intensity changes, but they are also computationally

expensive and they do not integrate a global regularization constraint. In this context,

regularization means including in the estimation model a constraint which ensures spatial

coherence of the results, that is, the motion field should be a smooth function. In

correlation-based techniques, the displacement motion is usually calculated on a discrete

regular lattice of the image domain. Also, local cross-correlation techniques are well

suited for rigid-motion but can fail in case of fast non-rigid displacements. Conversely,

methods based on variational optical flow impose a global smoothing constraint on the

estimated displacement and are calculated on the whole image domain, leading to a dense

estimation of the flow.

The tracking of cloud motion is usually computed from the infrared (IR: 10.5–

12.5 lm) channel (LEESE et al., 1971; SCHMETZ et al., 1993). Low-level cloud motion has

also been tracked from the visible channel (OTTENBACHER et al., 1997; ZHOU et al., 2001).

Recently, multispectral motion analysis has been investigated, first by visual superim-

position of the cloud motion estimated on each channel individually (VELDEN et al., 1998)

and more recently using a multichannel cross-correlation technique with the visible and

IR channels (EVANS, 2006). Recently, HÉAS et al. (2006) have also proposed a dense

multi-layer estimation of the cloud motion.

In this work, we introduce several models based on a variational approach to analyze

multichannel satellite images. First, we propose an energy minimization technique to

address the problem of cloud structure motion estimation, we combine the information of

several channels in order to improve the accuracy of the cloud motion estimation. Next,

we address the problem of cloud structure layer classification and channel smoothing.

Classifying the cloud structures in different layers following the different altitudes of the

clouds is an important issue. The meteorological satellites provide an initial layer

classification based on a combination of the channels. This initial layer classification is

noisy because of the semi-transparency of some clouds, covering part of the pixel area

(of 3 9 3 km in our images) and because of the noise introduced during the image

acquisition. Therefore, it requires some smoothing. We present a variational technique

based on a median-type filter to smooth the boundary of the initial cloud classification

layers. We also propose, using this layer classification, a technique to smooth the

different channels which works independently in each layer. The advantage of this

technique is to preserve the discontinuities of the channel signal across the boundaries of

the different layers.

The organization of the paper is as follows: in section 2, we describe the images

obtained from Meteosat Second Generation (MSG) satellite and we also describe

the initial optical flow technique (ALVAREZ et al., 2000) that will be the base of our

multichannel sequential motion tracking algorithm. In section 3, we explain how we

extend the variational optical flow method to deal with multichannel sequential data.
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In section 4, we present a technique to smooth the boundary of the cloud classification

layers and the channel signals. In section 5, we describe a procedure for three-

dimensional visualization of the data, including the different classes of clouds and the

motion vectors. Section 6 shows numerical experiments on two satellite image sequences

and finally, we conclude in section 7.

2. Background

In this section, we introduce the two satellite image sequences that we used in our

experiments and we also describe the variational optical flow technique that will be later

extended to deal with multichannel sequential images.

2.1. Satellite Images

Meteosat Second Generation satellites replaced in 2002 the former Meteosat,

providing a significantly increased amount of information as compared to the previous

version in order to continuously observe the whole Earth. In this sense, MSG generates

images every 15 min with a 10-bit quantization, a spatial sampling distance of 3 km at

subsatellite point in 11 channels, from the visible to the infrared channel, and 1 km in

the high resolution visible channel (SCHMETZ et al., 2002). All these channels provide

information that is used for different applications, summarized in Table 1. Among

the most important applications, numerical weather prediction combines the informa-

tion from different channels, mainly from the VIS 0.8, WV 6.2, WV 7.3 and IR 10.8

channels (SCHMETZ et al., 2002), to compute the displacement of the clouds between

two time instants, that constitute the most important source of information for this

application.

Table 1

Characteristics and main applications of the different MSG channels

Name of the Channel Central Wavelength Main Application

VIS 0.6 0.63 lm Cloud detection and tracking, surface identification

VIS 0.8 0.81 lm Cloud detection and tracking, surface identification

NIR 1.6 1.64 lm Discrimination snow/ice cloud/water cloud

IR 3.9 3.92 lm Detection of low cloud/fog at night

WV 6.2 6.25 lm Water vapor structures at medium-high level

WV 7.3 7.35 lm Water vapor structures at low-medium level

IR 8.7 8.70 lm Ice/water distinction

IR 9.7 9.66 lm Ozone detection in lower stratosphere

IR 10.8 10.80 lm Estimation of temperature of clouds and surface

IR 12 12.00 lm Estimation of temperature of clouds and surface

IR 13.4 13.40 lm Cloud height estimation

HRV 0.75 lm High spatial resolution
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The VIS 0.8 channel provides information on the visible zone of the spectrum, that

allows identification of cloud structures in the atmosphere, cloud tracking and land and

vegetation monitoring. Water Vapor channels, WV 6.2 and WV 7.3, allow us to observe

water vapor and winds, and also support height allocation of semi-transparent clouds

(SCHMETZ et al., 1993). Finally, IR 10.8 is essential for measuring temperatures at sea and

land surface and the top of clouds, and detection of cirrus clouds (INOUE, 1987). Another

important application, used in the visualization section 4, is cloud structure classification

which consists in an estimation of the cloud structure altitude using this multichannel

information, yielding to a segmentation of the pixels into different types of clouds

(SZANTAI and DÉSALMAND, 2005; AMEUR et al., 2004), as shown in Figure 2.

2.2. Optical Flow Techniques in Computer Vision

Numerous methods have been proposed in the computer vision community to address

the problem of motion estimation from a set of images. The projection of the 3D object

motion in the scene yields a 2D flow field in the image domain. Most of the methods deal

with the problem of estimating the 2D vector field between images based on the image

intensities. This problem is generally referred to as ‘‘optical flow estimation.’’ The optical

flow is the apparent displacement of pixels in a sequence of images.

During the last two decades many techniques for computing the optical flow have

appeared. These methods can be classified into three different categories: correlation–

based, gradient–based and phase–based techniques (BEAUCHEMIN and BARRON, 1995;

Figure 1

Images from different channels of the MSG satellite. From left to right, respectively, the VIS 0.8, WV 6.2, WV

7.3 and IR 10.8. Top row: Images from the Vince hurricane. Bottom row: Images from the sequence on June 5,

2004. Both sequences are from the North Atlantic area.
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MITICHE and BOUTHEMY, 1996). Different works have also evaluated the performance of

the most popular algorithms (BARRON et al., 1994; JÄHNE and HAUSSECKER, 2000; GALVIN

et al., 1998). The gradient–based techniques are amongst the most accurate and robust

strategies to calculate the 2D flow field. They rely on the so–called optical flow constraint

which relates to the brightness gradient with the vector field, h(x) = (u(x),v(x)).

The determination of optical flow is a classic ill–posed problem in computer vision

and it requires additional regularizing assumptions. The regularization by HORN and

SCHUNCK (1980) reflects the assumption that the optical flow field varies smoothly in

space. However, since many natural image sequences are better described in terms of

piecewise smooth flow fields, much research has been done to modify the Horn and

Schunck approach to permit discontinuous flow fields (NAGEL and ENKELMANN, 1986;

PROESMANS et al., 1994; AUBERT et al., 1999; BLACK and ANANDAN, 1996; DERICHE et al.,

1995; WEICKERT and SCHNÖRR, 2001; PAPENBERG et al., 2006).

2.3. Variational Formulation

The 2D flow computation is carried out using a PDE-based optical flow technique

described in ALVAREZ et al. (2000). It consists in minimizing an energy defined as a

weighted sum of two terms: A data term and a regularization term. The data term assumes

Figure 2

In this image, we illustrate, using different greyscale values, the original cloud structure layer classification

estimated from the meteorological satellite channels.
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that the images have similar intensities at the corresponding points and the regularization

term assumes smoothness of the fluid flow.

The regularization term uses the approach proposed by NAGEL and ENKELMANN (1986),

with the following improvements: (i) The formulation avoids inconsistencies caused by

centering the brightness term and the smoothness term in different images, (ii) it uses a

coarse to fine linear scale-space strategy to avoid convergence to physically irrelevant

local minima, and (iii) it creates an energy functional that is invariant under linear

brightness changes.

The energy to minimize is written as:

EðhÞ ¼
Z
R

2

I1ðxÞ � I2ðxþ hÞð Þ2dxþ C

Z
R

2

trðrhtDrhÞ dx; ð1Þ

where x is a point in R
2; h ¼ hðxÞ ¼ ðuðxÞ; vðxÞÞt is the displacement field that we

are looking for, (.)t is the transpose operator, I1 and I2 are the two input images, tr(.)

is the trace operator, C is a constant that weights the smoothing term, r is the

gradient operator, and D is a regularized projection matrix in the direction orthogonal

to rI1.

The matrix D is expressed as:

DðrI1Þ ¼
1

krI1k2 þ 2k2
nnt þ k2Id
	 


; ð2Þ

where n ¼ ðoI1=oy;�oI1=oxÞt is a vector orthogonal to rI1; k:k denotes the norm

operator, Id is the identity matrix, and k is a coefficient that determines the isotropic

behavior of the smoothing and inhibits blurring across the boundaries for gradients of

high magnitude: krI1k � k:
C and k are computed by means of two parameters a and s [ (0, 1) where

C ¼ a

max jðrGr � I1ÞðxÞj2
� � ; ð3Þ

s ¼
Zk
0

HjrGr�I1jðzÞdz ð4Þ

where Gr * I1 represents the convolution of I1 with a Gaussian of standard deviation

r;HjrGr�I1jðzÞ represents the normalized histogram of jrGr � I1j: s is called the isotropy

fraction. When s?0, the diffusion operator becomes anisotropic whereas s?1, it leads to

isotropic diffusion. This normalization of C and k allows the energy to be invariant under

grey level transformation of the form (I1, I2)?(kI1, kI2). In the tests, the input parameters

are a and s. C and k are computed as in equations (3) and (4). Thus, these parameters

are automatically adjusted to the dynamic image range. See ALVAREZ et al. (2000) for

more details.
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The associated Euler-Lagrange equations are given by the following PDE system:

C divðDruÞ þ ðI1ðxÞ � I2ðxþ hÞÞ oI2
ox

ðxþ hÞ ¼ 0 ð5Þ

C divðDrvÞ þ ðI1ðxÞ � I2ðxþ hÞÞ oI2
oy

ðxþ hÞ ¼ 0 ð6Þ

The system is numerically solved using an iterative Gauss-Seidel algorithm as detailed in

ALVAREZ et al. (2000).

3. Multi-channel Flow Computation

The variational methods proposed in the literature usually use information from a

single channel. Normally, these methods are targeted at solving the optic flow problem

using greyscale visual images (one channel). Although methods oriented to color (multi-

channel) images have been investigated, they are not very common. The satellites have

many sensors that capture images using different regions of the wave spectrum. This

information is very useful for the estimation of the cloud motion. The clouds produce

changes in the water vapor concentration, in the air pressure and in the thermal radiation

from the earth. Consequently, using the data given by these channels, we should be able

to compute a more robust and more accurate solution of the cloud motion. We have

extended the optical flow method described in section 2.3 to include information from

several channels captured by the satellite sensors. In this section, we explain in detail our

variational (energy) model and the corresponding numerical scheme.

3.1. Variational Formulation

Energy model. The energy model proposed for motion estimation using multichannel

data is, as in the case of a single channel, based on the addition of two terms: the data

term and the smoothness term. Our input data will be pairs of images of different

channels. Our energy has to combine the information from different channels. We have

included in the energy a set of weights that specifies the relevance of each channel. The

data term takes into account information from all the channels. Thus, it constitutes in a

combination of differences between two images weighted by positive real numbers qc,
where c [ [1, Nc] is the channel associated with this number and Nc is the number of

channels. In the single channel method, the Nagel-Enkelmann operator uses the image

gradient to decide the direction and the amount of diffusion. In the multi-channel method,

we want to keep this idea by combining the data from different channels.

The energy to minimize is written as:

EðhÞ ¼
Z
R

2

XNc

c¼1

qcðIc1ðxÞ � Ic2ðxþ hÞ2dxþ C

Z
R

2

trðrhtDrhÞdx; ð7Þ
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where I1
c and I2

c are the first and second images in the channel c. We follow the same

notation as section 2.3.

In the single channel method the matrix D is expressed as:

DðrIÞ ¼ 1

krIk2 þ 2k2
nnt þ k2Id
	 


; ð8Þ

where n ¼ ðorI=oy;�orI=oxÞt is a vector orthogonal to rI. In order to define matrix D

for the multi-channel method, we need to define a single vector �g which plays the role of

rI: To define �g; we propose two strategies:

– Maximum gradient. At each pixel location, �g is computed as the gradient of greatest

magnitude among the gradients of all the channels:

argmax k v!k; v!2 rIc; c 2 1;Nc½ �f g
� �

– Average gradient. �g is computed as a dominant direction in the set of the gradient

vectors for all channels. The usual way to estimate the dominant orientation �g is using

the so-called structure tensor. This structure tensor is defined as the matrixXNc

c¼1

qc rIci
	 


� rIci
	 
t

:

If we denote �emax the normalized eigenvector associated with the maximum eigenvalue

kmax of the above matrix, then we can define �g as:

�g ¼
ffiffiffiffiffiffiffiffiffiffiffi
kmaxPNc

c¼1

qc

vuuut �emax:

In fact, we can show that �g is the minimum, under the constraint �gk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax=

PNc

c¼1 qc

q
;

of the following energy :

Eð�gÞ ¼ �
XNc

c¼1

qc �gt � rIci
	 
2

:

3.2. Numerical Scheme

The Euler-Lagrange equations associated with the energy (7) are:

C divðDruÞ þ
XNc

c¼1

qcðIc1ðxÞ � Ic2ðxþ hÞ oI
c
2

ox
ðxþ hÞ ¼ 0 ð9Þ
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C divðDrvÞ þ
XNc

c¼1

qcðIc1ðxÞ � Ic2ðxþ hÞ oI
c
2

oy
ðxþ hÞ ¼ 0 ð10Þ

To discretize the above system of partial differential equations, we use an implicit

finite-difference scheme because it is more stable and converges faster than the usual

explicit schemes.

The matrix D, introduced above, is written in each pixel i as:

Di ¼
ai bi
bi ci

� �
We can discretize the differential operator in each pixel i, and we obtain:

divðDiruÞ ¼ aioxuþ bioyu
bioxuþ cioyu

� �
¼ ox aioxuð Þ þ ox bioyu

	 

þ oy bioxuð Þ þ oy cioyu

	 

We define Ni

* as the set of 3 9 3 neighbors around the pixel i excluding the pixel i

itself. Using a standard difference scheme we can write:

divðDiruiÞ ¼
X
n2N�

i

dnunð Þ þ diui ð11Þ

for suitable coefficients dn. The same expression with the same coefficients can be

obtained for div(Dir v).

The components of the vector displacement (ui,vi) are obtained asymptotically by

iterations of a Gauss-Seidel type scheme, where k denotes the iteration number. To this

end, the terms I(x + hk+1) are linearized by Taylor expansion:

Ic1ðxÞ� Ic2ðxþhkþ1Þ’ Ic1ðxÞ� Ic2ðxþhkÞ�oIc2
ox

ðxþhkÞðukþ1�ukÞ�oIc2
oy

ðxþhkÞðvkþ1�vkÞ:

Denoting Ic;k2;i;x¼oIc2=oxðxiþhkÞ and Ic;k2;i;y¼oIc2=oyðxiþhkÞ; we finally obtain:

ukþ1
i ¼

uki þdt C
P
n2N�

i

dnu
k
n

	 

þ
PNc

c¼1

qc Ic1ðxiÞ�Ic2ðxiþhkÞþuki I
c;k
2;i;x�ðvkþ1

i �vki ÞI
c;k
2;i;y

� �
Ic;k2;i;x

 !

1þdt Cdiþ
PNc

c¼1

qc Ic;k2;i;x

� �2� �

vkþ1
i ¼

vki þdt C
P
n2N�

i

dnv
k
n

	 

þ
PNc

c¼1

qc Ic1ðxiÞ� Ic2ðxiþhkÞþvki I
c;k
2;i;y�ðukþ1

i �uki ÞI
c;k
2;i;x

� �
Ic;k2;i;y

 !

1þdt Cdiþ
PNc

c¼1

qc Ic;k2;i;y

� �2� �
In order to increase the convergence rate of the algorithm and to avoid being trapped

in spurious local minima, we use a multi-resolution scheme, that is, we solve
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successively the system at different levels of image resolution, starting from the

coarsest grid.

4. Cloud Structure Smoothing

Meteorological satellites provide a cloud structure classification based on an

estimation of the cloud structure altitude computed using a combination of the multi-

channel satellite image values (see Fig. 2 for illustration). In practice, we can assume that

the classification areas Li (i = 1,…,NL) are estimated as a level set of as a classification

function fL: X?R, that is

Li ¼ �x 2 X : bi�1\ fLð�xÞ\ bif g;

where b0\b1\. . .. . .\bNL
: Each classification area Li represents a cloud structure layer.

Usually there are two main problems concerning the classification areas Li. The first one

is that the multi-channel satellite image values are noisy and therefore the classification

function fL(.) is also noisy and the layers Li require some kind of smoothing. The second

one is that, in order to analyze the cloud structures, we need to assume a model of

interaction between the different layers Li. In this paper, we will assume the simplest case

each layer Li is at a different altitude and there is no interaction between the different

layers. This assumption is usually true, but it obviously fails in the case of complex 3D

atmospheric phenomena as, for instance, the hurricanes.

In order to smooth the boundary of the cloud layers Li, we propose to use a median

type filter applied to the classification function fL(.) that is, for each �x; we define

medðfLÞð�xÞ as:

medðfLÞð�xÞ ¼ b :

Z
Bð�xÞ

fLð�yÞ � bj jd�y�
Z

Bð�xÞ

fLð�yÞ � mj jd�y m 2 R

8><>:
9>=>;

where Bð�xÞ is a neighborhood of �x: Thus we define the new classification layers Li
0
as

L0i ¼ �x 2 X : bi�1\medðfLÞð�xÞ\bif g

this filter smoothes the boundary of the layers Li and it removes the small isolated set in

Li, as depicted in Figure 3.

In order to smooth the multi-channel satellite image values I j
c(.), we use a variational

technique based on the following energy minimization

Eðucj Þ ¼
Z
L0i

ucj ð�yÞ � Icj ð�yÞ
� �2

d�yþ a
Z
L0i

rucj ð�yÞ



 


2d�y;

the parameter a represents the weight of the regularization process. Since we assume no

interaction between the different layers Li
0
, we will consider a homogeneous Neumann
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type boundary condition. The Euler-Lagrange equation associated to the above energy is

given by :

�aDucj ð�xÞ þ ucj ð�xÞ ¼ Icj ð�xÞ in L0i
oucj
o�n ð�xÞ ¼ 0 in oL0i

(
;

The solution uj
c(.) of the above differential equation represents the smoothed version of

the channel Icj ð�xÞ in the classification area Li
0
. We observe that, since we smooth I j

c(.) in an

independent way in each classification area Li
0
, the discontinuities across the boundary of

the cloud layers Li
0
of the satellite image value I j

c(.) are preserved. Figure 3 illustrates this

behavior. We observe the smoothing of the cloud structure layer boundary as well as the

smoothing of the height.

5. Visualization

The 3D visualization is based on OpenGL, using our software AMILab1. Figure 4

illustrates the different tasks and their inputs.

The height of the clouds is computed using the technique described in SZANTAI and

DÉSALMAND (2005), chapter 4: ‘‘Height assignment of motion vectors.’’ An approximation

of the height of the clouds is computed from an estimation of the temperature based on

Figure 3

On the left, we present the original cloud structure layer where the altitude is computed from the channel IR

10.8. On the right, we present the results obtained with the proposed methods. We observe the smoothing of the

cloud structure layer boundary as well as the smoothing of the height.

1 http://serdis.dis.ulpgc. es/*krissian/HomePage/Software/AMILab/
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the IR channel 10.8. Let us denote the infrared intensity at the current pixel position as C.

The radiance R (mW.m-2 . sr-1 . cm) is calculated as R = R0 + aC, where R0 and a
are included in the original MSG files. The brightness temperature Tb of the observed

object can be approximated from the infrared channel, using the formula:

Tb ¼
1

A

ðC2mcÞ
lnð1þ C1m3c

R Þ
� B

 !
; ð12Þ

where C1 = 1.19104.10-5 mW.m-2.sr-1. cm4, C2 = 1.43877 K.cm, and the central

wavenumber mc, the parameters A (dimensionless) and B (in Kelvin) are constants given

by Eumetsat for each satellite and channel. The altitude is then deduced from the

temperature as:

a ¼ T � T0
c

; ð13Þ

where T0 = 288.15K (15�C) is the approximate temperature at sea level, and c = -6.5

10-3K.m-3 is the standard temperature change with respect to the height.

Figure 5 illustrates our 3D visualization. Each pixel of the scene is drawn at its 3D

location based on its estimated height and on the parameters of the satellite. Using the

cloud classification provided by Eumetsat, low, medium, high and very high clouds are

displayed with different greyscale values. The estimated cloud motion is represented by

3D vectors which are displayed on a regular grid within the identified clouds. The 3D

vectors are proportional to the estimated displacement and have a vertical component

that represents the evolution of the clouds height. This component is based on the

height estimation of two successive frames of the sequence, and on the 2D motion

Figure 4

Processing and 3D visualization of satellite data
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field. A video that illustrates our results is also available on internet (ALVAREZ et al.,

2006)2.

6. Experimental Results

In this section, we present the experiments performed using the variational multi-

channel method presented in section 3 on two satellite sequences.

Since the real cloud motion is unknown for the multi-channel satellite sequences, we

have designed a synthetic experiment to compare the different methods. This synthetic

experiment is based on the real datasets and its generation is divided in the following

steps:

1. For each channel, and for four consecutive frames in the satellite sequence, we

compute a cloud motion estimation using correlation-based techniques. Thus, we will

obtain twelve different motion fields (3 motion fields for each channel).

2. We build a synthetic motion model taking at each pixel location, the median (for each

coordinate) of the twelve motion field values obtained for the different channels across

Figure 5

3D view of the hurricane Vince, including the clouds and 3D displacement vectors calculated from our multi-

channel motion estimation algorithm.

2 http://serdis.dis.ulpgc. es/*krissian/HomePage/Demos/Fluid/Video/CVPR_VIDEO_AMI.mpg
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the sequence. Since the synthetic motion model is obtained from estimation on a real

satellite image sequence, we expect it to be realistic. We used all channels at different

times and a correlation-based technique to estimate the cloud motion, so we consider

that the obtained synthetic model is not biased neither towards a particular channel,

nor a particular variational model. For these reasons, we believe that this model is

appropriate to compare different variational techniques.

3. A synthetic satellite sequence has been computed by warping the real satellite

sequence according to the synthetic motion model. For this synthetic satellite

sequence, the motion ground truth is the synthetic motion model, and a quantitative

comparison between different estimation algorithms can be performed.

The multichannel satellite data are used in different ways depending on the

application. The clouds are easily observable in the visible channel while the infrared

channels provide other types of useful and complementary information.

The weights qc, defined in (7), determine the importance of each channel. In order to

compare the amount of motion contributed by each channel in the multi-channel solution,

we also computed the flow in each channel separately.

In our tests, we used two satellite sequences from the North Atlantic area. The first

sequence corresponds to Hurricane Vince (October 8, 2005) and the second sequence

is from June 5, 2004. From these real sequences, we generate synthetic ones using

the above described procedure. The new synthetic sequences satisfy the following

properties:

– the pixel displacement is known,

– the motion is not biased toward a particular channel because the information of all

channels is used in the same way,

– the motion is not biased toward a particular variational method because the synthetic

motion model is obtained from cross-correlation techniques.

To evaluate the quality of our variational method, we used two error measures: the

Average Euclidean Error (AEE, eq. 14) and the Average Angular Error (AAE, eq. 15).

See BARRON et al. (1994) for more details.

AEE ¼ 1

N

XN
i¼1

jui � uref ij; ð14Þ

AAE ¼ 180

Np

XN
i¼1

arccos
uiuref i þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kuik2 þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kuref ik2 þ 1

q
0B@

1CA; ð15Þ

where N is the number of pixels in the image, ui and uref i are the flow fields in the pixel i

in the computed image and the ground truth, respectively.

In the experimental results, we compare two variational methods: SF (Simple Flow)

and MC (Multi-Channel). The main difference between them is that SF uses as input data
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a pair of images (single channel data) whereas the input data of MC is a set of a pair of

images (multi-channel data). In the comparison, we show two different versions of the

MC method. They correspond to the two criteria: Maximum gradient and Average

gradient, described in section 3.1. In the experiments, the SF method is applied to each

channel in order to show the contribution of each channel separately, whereas the MC

method is applied to the four channels. Results are presented in Tables 2 and 3,

comparing both methods. We output, from top to bottom, the four estimations obtained

with SF the method (one per channel) and the two estimations obtained with the MC

method and from left to right, the two quantitative error measures described previously.

In Figures 6 and 9, we show the solution obtained using each channel separately, for

each of the two sequences. Based on our experience, more coherent and robust results are

obtained by assigning a higher weight to the visible channel. In the experiments, we use

the weights 0.5 for the visible channel, 0.3 for infrared channel and 0.1 for each other

channel in Vince sequence and [0.5, 0.1, 0.2, 0.2] = (VIS, VP1, VP2, IR) for North

Atlantic sequence. Giving high weighting values to the vapor channels did not result in

coherent solutions and was usually subject to higher estimation errors, while the IR

channel contributes to the improvement of the visible channel estimation. In the energy,

the parameters C and k define the weights of the smoothing term and the amount of

anisotropic behavior of Nagel-Enkelmann operator, respectively. These parameters are

normalized and they depend on other two parameters, a and s. In the tests, the best

configuration for both sequences is a = 6.67 and s = 0.5 for multi-channel method and

Table 3

Comparison of the different methods for NAtl sequence

Method/Channel AEE AAE

SF, VIS 0.8 0.1704 4.4748

SF, WV 6.2 0.5813 15.1845

SF, WV 7.3 0.4776 12.6222

SF, IR 10.8 0.3064 7.7821

MC Avg. 0.1593 4.1831

MC Max. 0.1350 3.4246

Table 2

Comparison of the different methods for Vince sequence

Method/Channel AEE AAE

SF, VIS 0.8 0.2608 5.2055

SF, WV 6.2 0.5280 12.3891

SF, WV 7.3 0.4992 11.9396

SF, IR 10.8 0.3413 7.8710

MC Avg. 0.1926 3.8432

MC Max. 0.1895 3.7696
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a = 10 and s = 0.5 for single channel method. The a and s are very stable, small

changes in their values which do not lead to significant changes of the estimation errors.

Although variational methods compute dense solutions, we display the motion field

with arrows every 18 pixels to simplify the visualization.The MSG images we used in the

tests are 1024 9 1024, and cover the area over the North Atlantic (Figure 1). Regions of

interest have been selected in each image sequence.

6.1. Sequence 1. North Atlantic (October 8, 2005), Hurricane Vince

Vince was an extraordinary meteorological event, since it was the hurricane farther

east than any other currently known, and the first tropical cyclone to reach the Iberian

Peninsula. It started as a subtropical storm at 06:00 UTC on October 8, 2005 in the

southeast of the Azores Islands, reaching a category 1 hurricane on the Saffir-Simpson

Hurricane Scale at 18:00 UTC 9 October 2005, in the northwest of Funchal in the

Figure 6

Sequence 1. At the top: the vector field displacement for VIS 0.8 and WV 6.2 channels. At the bottom: The

vector field displacement for WV 7.3 and IR 10.8 channels.
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Madeira Islands. Then, it began to weaken and a few hours later, at 00:00 UTC on

October 10, it decayed back to a tropical storm. Vince weakened rapidly during that day

as it approached the Iberian Peninsula, where it arrived as a tropical depression during the

first hours of October 11 (FRANKLIN, 2006).

In Figure 1 top, we show the images provided by four different channels of the

Meteosat Second Generation (MSG) satellite, from Eumetsat, at two different time

instants of the Vince sequence. The left column shows the 0.81 lm visible channel, the

columns in the middle show, respectively, the 6.25 lm and 7.35 lm water vapor channels

and the column on the right the 10.8 lm infrared channel.

In sequence 1, we have selected a region of 642 9 559 pixels (Fig. 7). In this region

we can see the hurricane Vince and a wide cloud over the Northwest coast of Africa. Two

kinds of motion are predominant, a rotational by Vince and a translational given by the

cloud placed over Africa. In Figure 6, we show the cloud motion estimation of each

channel.

As we can see in Figure 7, the influence of hurricane Vince in the region is high. This

effect produces that the predominant motion in the region will be the rotation. The power

of the winds around the hurricane is high and this phenomenon produces a strong

vorticity of the estimated vector field. The second important motion moves upward from

Africa. This motion increases in magnitude when it is strengthened by the winds from

Vince. The motion obtained by the different IR channels is quite similar. There are

differences with respect to the visible channel. In the hurricane sequences a spinning

effect of the surrounding clouds appears. This effect is clearer in the visible channel than

in the others. For this reason, the contribution of this channel is higher.

Figure 7

Sequence 1. Flow field obtained with the multi-channel method (Max. gradient strategy).
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In Figure 7, we can see the results obtained using the information from the four

channels. In Table 2, the multi-channel method offers much better estimations than those

of the single channel. The improvement is 27.34% and 27.58% for the AEE and AAE,

respectively. There is a little difference (over 1.61% for AEE and 1.92% for AAE)

between the two criteria used in the multi-channel method.

In Figure 8, an image of the AEE between the ground truth and the best multi-channel

estimation is shown. As we can see, the estimation is good in the whole image except in

the boundary and the African coast.

6.2. Sequence 2. North Atlantic (June 5, 2004)

In figure 1 bottom, as was done in the previous case, we present images from the four

channels used in our experiments, provided by Eumetsat on June 5, 2004 over the same

geographical area. In this sense, we have from left to right the 0.81 lm visible channel, the

6.25 lm and 7.35 lmwater vapor channels and the 10.8 lm infrared channel, respectively.

In sequence 2, the size of the selected region is 559 9 575 pixels (Figure 10). Two

main clouds structures are present in the region. The first one is a squall approaching

from the Atlantic to the British Islands, placed at the top. The second one is a dense and

Figure 8

The Average Euclidean Error between the ground truth and the best estimation with the multi-channel method.
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wide cloud close to the Iberian peninsula, placed at the bottom. The predominant motion

is rotational. In Figure 9, we show the cloud motion estimation of each channel,

separately. The solutions obtained by each channel are similar in magnitude. However,

the visible channel makes more contribution to the orientation and to the detection of the

vorticity. In Figure 9 top, the visible channel is the only one that detects properly the

squall vorticity. In the other channels the motion detected is almost translational. A

similar effect develops in the cloud structure located in front of the Iberian peninsula. For

this reason, the visible channel more prominently higher contributes to the detection of

rotational motion. In Figure 10, we can see the result obtained applying the information

Figure 9

Sequence 2. At the top: the vector field displacement for VIS 0.8 and WV 6.2 channels. At the bottom: the vector

field displacement for WV 7.3 and IR 10.8 channels.
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from the four channels using the previously defined weights. Due to the weights, the

visible channel information will be predominant, although the rest of the channels

contribute to the solution smoothing it.

As we can see in table 3, the best estimation with the multi-channel and single

channel method is at least 20.77% better for the AEE. For the AAE the improvement

reaches 23.47%. As occurs in the Vince sequence, the differences in the errors between

the two strategies used in the multi-channel method are small. Figure 11 depicts an image

of the AEE between the ground truth and the best multichannel estimation.

7. Conclusions

Multi-channel meteorological satellite image analysis is a challenging problem. In

this paper, we propose use of a variational approach to deal with some of the standard

problems in this field.

First, we analyze the problem of cloud structure smoothing and classification: we

design several filters, based on variational techniques to smooth the boundary of the

provided cloud layer classification regions and also to smooth the different channels. In

order to preserve the discontinuities of the channels in the boundary of the classification

cloud layers, we perform the smoothing filter separately in each layer. Numerical

experiments illustrate the smoothing behavior of the filters.

Figure 10

Sequence 2. Motion estimation obtained with the multi-channel method (Max. gradient strategy).
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Second, in order to estimate the cloud structure motion across the satellite image

sequence, we extend a variational motion estimation technique to deal with multi-channel

satellite image sequences. The main idea is to combine the information of all channels in

order to estimate the cloud structure motion.

To illustrate our experiments, we have developed a freely available software which

performs 3D visualization of the cloud structure layers and of the 3D motion vectors. The

altitude component of the cloud structure layers is estimated from an estimation of the

temperature based on the infrared channel IR 10.8 lm.
In order to perform a quantitative comparison between the different motion

estimation methods, we designed a synthetic experiment using a realistic motion model.

We ascertained that, using the proposed multi-channel method, the accuracy of the

motion estimation is improved significantly as compared to a single channel motion

estimation.

Figure 11

The Average Euclidean Error between the ground truth and the best estimation with the

multi-channel method.
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3D Gravity Inversion by Growing Bodies and Shaping Layers

at Mt. Vesuvius (Southern Italy)

GIOVANNA BERRINO,1 and ANTONIO G. CAMACHO
2

Abstract—To improve our knowledge of the structural pattern of Mt. Vesuvius and its magmatic system,

which represents one of the three volcanoes located in the Neapolitan area (together with Campi Flegrei and

Ischia; southern Italy), we analyze here the Bouguer gravity map that is already available through its

interpretation by means of 2.5-dimensional modelling. We have carried out a three-dimensional interpretation

using a new and original algorithm, known as ‘Layers’, that has been especially processed for this purpose.

Layers works in an automatic and non-subjective way, and allows the definition of the structural settings in

terms of several layers, each representing a specific geological formation. The same data are also interpreted in

terms of isolated and shallow anomalous density bodies using a well tested algorithm known as ‘Growth’. We

focus our inversions on the Mt. Vesuvius volcano, while globally analyzing the entire Neapolitan area, in order

to investigate the deep structures, and in particular the deep extended ‘sill’ that has been revealed by seismic

tomography.

The final models generally confirm the global setting of the area as outlined by previous investigations,

mainly for the shape and depth of the carbonate basement below Mt. Vesuvius. The presence of lateral density

contrasts inside the volcano edifice is also shown, which was only hypothesized in the 2.5-dimensional

inversion. Moreover, the models allow us to note a high density body that rises from the top of the carbonate

basement and further elongates above sea level. This probably represents an uprising of the same basement,

which is just below the volcano and which coincides with the VP and VP/VS anomalies detected under the crater.

The three-dimensional results also reveal that the two inversion methods provide very similar models, where the

high density isolated body in the Growth model can be associated with the rising high density anomaly in the

Layers model. Taking into account the density of these modelled bodies, we would also suggest that they

represent solidified magma bodies, as suggested by other studies. Finally, we did not clearly detect any deep

anomalous body that can be associated with the sill that was suggested by seismic tomography.

Key words: Gravity, Bouguer anomaly, Mt. Vesuvius, three-dimensional inversion, model exploration,

algorithms.

1. Introduction

As already well known, the gravity method is a powerful tool for the exploration of

the subsoil. It is largely applied to understand volcanic activity too, and it can also be
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applied to volcanic areas where knowledge of the structural setting is helpful for the

outlining of routes of probable magma uprisings. This is the case for Mt. Vesuvius.

Together with Campi Flegrei and Ischia, Mt. Vesuvius is one of the three active

volcanoes that are located in the Neapolitan area (southern Italy; Fig. 1). These

Neapolitan volcanoes lie within the Campanian Plain, a graben that is bordered by a

Mesozoic carbonate platform that stretches from Mt. Massico, deepens to more than

3 km in its central part, and then re-emerges in the Sorrento Peninsula. The Campanian

Plain is bordered on the NE by NW-SE-trending faults, and on the S and the N by a horst

that is limited by NE-SW trending faults. This important graben is filled with volcanic

deposits and continental and marine clastic deposits (BALDUCCI et al., 1985). The buried

geometry of the carbonatic basement has been outlined through gravity data on land

(OLIVERI DEL CASTILLO, 1966; CARRARA et al., 1973; CAMELI et al., 1975; LUONGO et al.,

Figure 1

Distribution of the gravity stations (red points). The blue points indicate the values digitized on the Italian

Gravity Map (CARROZZO et al., 1986; see text for details). The two black rectangles show the two 3D inversion

areas (see text for details).
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1988; FERRI et al., 1990; CUBELLIS et al., 1995). Many studies have suggested that the

main feature of the central part of the Campanian Plain is a structural depression, known

as the ‘Acerra depression’ (BARBERI et al., 1978; SANTACROCE, 1987). Another important

depression, known as the ‘Pompei graben’, was detected by CASSANO and LA TORRE

(1987).

Mt. Vesuvius is a strato-volcano that lies about 15 km southeast of Naples, and it

consists of an older structure (Mt. Somma) with a nested younger structure (Mt.

Vesuvius). It is located on a NE-SW trending fault that borders the southeastern edge of

the Acerra depression (MARZOCCHI et al., 1993), and it lies on a sedimentary basement.

Gravimetry on land (CASSANO and LA TORRE, 1987) and seismic profiles at sea (FINETTI

and MORELLI, 1974; FINETTI and DEL BEN, 1986) have shown that this fault displaced the

more recent formations. Information about the sedimentary basement below Mt.

Vesuvius has been provided by the deep geothermal Trecase well that intercepts the

limestone layer at about 1,700 m below sea level (b.s.l.) (BALDUCCI et al., 1985).

Moreover, the inversion of both on-land and off-shore gravity data has suggested that the

sedimentary basement is 11 km thick, with the top at a depth of 2 km (BERRINO et al.,

1998). This was confirmed by a joint seismic tomographic inversion of first P-wave

arrivals along several profiles intersecting the crater, and from gravity data that provided

a clear image of the continuous structure of the Mesozoic carbonate basement top as well

as of a conduit structure 5 km wide that extends from the surface to the maximum depth

of the model (6 km) (TONDI and DE FRANCO, 2003, 2006). No significant evidence has

been seen for the existence of a shallow magma chamber embedded in the basement

(ROSI et al., 1987; CORTINI and SCANDONE, 1982).

A recent seismic tomography study was carried out to define the evidence within the

Vesuvius magmatic system of an extended (at least 400 km2) low-velocity layer at about

8 km in depth, which would represent an extended sill with magma interspersed in a solid

matrix (AUGER et al., 2001). This body was also modelled by new isotopic data (CIVETTA

et al., 2004) and by a new inversion of P-wave and S-wave arrival times for local

earthquakes, highlighting a lower Vs velocity below the Mt. Vesuvius cone in a 0.35-km-

thick layer (NUNZIATA et al., 2006). Moreover, a joint inversion of P-wave and S-wave

arrival times (from local earthquakes) and shot data collected during the TOMOVES

1994 and 1996 experiments showed the presence of a high Vp and Vp/Vs anomaly that is

located around the crater axis, between 0 km and 5 km in depth, which involves the

volcano edifice and the carbonate basement. This anomaly has been interpreted in terms

of magma quenching along the main conduit, because of the exsolution of magmatic

volatiles (DE NATALE et al., 2004).

To improve our knowledge of the structural pattern of Mt. Vesuvius and its magmatic

system, we analyze here the Bouguer gravity map that is already available through its

interpretion by means of 2.5-dimensional (2.5-D) modelling (BERRINO et al., 1998). We

have carried out a 3D interpretation using a new and original algorithm that was

specifically realized for this study and that starts from a known algorithm (CAMACHO

et al., 2000, 2002). We have focused our inversions on the Mt.Vesuvius volcano,
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although we also globally analyze the entire Neapolitan area to investigate the deep

structures, and particularly that known as the ‘sill’ that was revealed by a seismic

tomography study carried out by AUGER et al. (2001).

A description of this first version of the new algorithm is given, together with the

results obtained.

2. Gravity Data and Previous Interpretations

Here we use a Bouguer anomaly map that consists of both on-land and off-shore

gravity data. To complete the existing gravity map that was limited to on-land data, a sea-

gravity survey was carried out in the Gulf of Naples during five cruises that lasted from

1988 to 1994 (BERRINO et al., 1991, 1998), whereby 850 off-shore points where measured.

In this way the Bouguer map was created, and it provides a global set of 2,876 gravity

values (BERRINO et al., 1998, 2008). All of the data have been made uniform and globally

re-analyzed through the referencing of the gravity values to a new absolute gravity station

set up in Naples in 1986 (BERRINO, 1995), which also belongs to the new Italian ‘Zero

Order’ Gravity Net (BERRINO et al., 1995). Later, in the framework of a cooperation in the

TOMOVES Project (ACHAUER et al., 1999, 2000), additional gravity data became

available for the whole Campanian Plain (provided by P. Capuano). These data were

collected and combined with the previous dataset, such that after an additional revision

and data cleaning (SCALA, 2002), a new gravity dataset of 17,225 gravity values was

obtained, as shown as red points in Figure 1. In this case too the updated dataset was

recomputed and linked to the absolute gravity station in Naples. The detailed references

relating to the available on-land gravity data and the information as to how the offshore

gravity data were collected, integrated with the on-land data and globally analyzed, as

well as the information about the interpretation of some of the previous geophysical

investigations, are all given in BERRINO et al. (1998, 2008).

Two Bouguer gravity maps were obtained with reference to the 1980 Ellipsoid

(MORITZ, 1984), using the density values of 2,200 kg/m3 and 2,400 kg/m3, to calculate the

Bouguer and terrain effects. The first of these values is more suitable for volcanic areas

(BERRINO et al., 1998), while 2,400 kg/m3 is more appropriate for the global interpretation

of the whole Campanian Plain (SCALA, 2002). Moreover, this second case allowed the

area investigated to be enlarged through the addition of a border about 10 km larger,

which was obtained by digitizing 517 anomaly values (Fig. 1, blue points) from the

Italian Bouguer gravity map (CARROZZO et al., 1986).

Detailed descriptions of the Bouguer gravity maps are given in BERRINO et al. (1998,

2008) and SCALA (2002). However, their main features can be summarized as follows: A

strip of maximum gradient runs almost parallel to the Sorrento peninsula, turns towards

the southwest at the southern sector of Somma-Vesuvius, and ends in the southern part of

the Gulf of Pozzuoli, in a broad gravity minimum. The Somma-Vesuvius and Campi

Flegrei volcanoes are settled at the southern edge of the large gravity minimum, to the
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north of Naples. A well defined gravity minimum that spans Campi Flegrei is evident.

Strong gradients border the Island of Ischia. The Vesuvian area is characterized by a

Bouguer anomaly of small extension and amplitude, which follows a tortuous pattern due

to the presence of local minima and maxima. A vast gravity low southeast of Somma-

Vesuvius is the main feature in this area; it corresponds to the so called ‘Pompei graben’

(CASSANO and LA TORRE, 1987).

The Bouguer anomaly gravity map has already been interpreted by means of 2.5D

modelling (WON and BEVIS, 1987; FEDI, 1988) along a series of profiles that have provided

information about the main volcanic structures, and particularly about the shape and depth

of the limestone and crystalline basements (BERRINO et al., 1998, 2008; SCALA, 2002). This

kind of inversion has also allowed the building up of a pseudo-3D pattern of the limestone

basement and the delineation of themain tectonic structures under theNeapolitan volcanoes

(BERRINO et al., 1998, 2008).

In this way, no important information has been obtained about very shallow and

isolated bodies, and therefore a 3D interpretation using a new and original algorithm has

been used here, with the aim of better defining the shallow density distribution. We have

used the Bouguer anomaly map that has been reduced with the density value of 2,200 kg/m3

because we have limited our first investigation to the volcanic area. Therefore, we have

selected an area of about 20 km 9 20 km (see Figure 1, small black rectangle) centered

on Mt. Vesuvius, where 616 gravity stations lie. First, we focused our inversions on a

local and shallow body below the volcano, then we attempted to globally analyze the

entire Neapolitan area in order to investigate deep structures, and mainly the sill that was

revealed by the seismic tomography study. This second aspect was carried out by

analyzing the 6,203 gravity values inside the area (90 km 9 70 km) that is illustrated

with the larger black rectangle in Figure 1.

Although we aimed to design objective models without any subjective preliminary

information or input model, the information provided by the previous 2.5D interpretation

has been taken into account as a reference, if necessary and when possible.

The Bouguer anomaly map that has been reduced with a 2,200 kg/m3 reference

density and that spans the larger area of analysis is shown in Figure 2.

3. The 3D Gravity Inversion Method

3.1. Introduction to the Gravity Method

Very extensive results have been obtained for gravity modelling by methods of ‘trial

and error’. For instance, the IGMAS method is an interactive, graphical computer system

for the interpretation of potential fields (gravity and magnetic) by means of numerical

simulations (GöTZE and LAHMEYER, 1988). These direct methods are based on strong

personal experience and a priori knowledge of the structure at depth, and they have a

more or less subjective character.
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We look for the determination, in a non-subjective way, of a model of the subsoil

density distribution that can reproduce the observed gravity anomaly. Taking into account

the information coming from other geophysical investigations (mostly seismic informa-

tion), we wanted to describe the 3D anomalous density structures mainly by means of

several sub-horizontal discontinuity layers (density discontinuities) with irregular

boundaries. This is a traditional use of gravity inversion (e.g., studies of sedimentary

basins). Considering only one irregular discontinuity surface, the inversion process is not

hard to detect, and many studies that have been providing suitable procedures to obtain

inversions for just one discontinuity surface are available (e.g., RADHAKRISHNA MURTHY

and JAGANNADHA RAO, 1989; RAMA RAO et al., 1999; GALLARDO-DELGADO et al., 2003). A

more problematic question is to obtain a non-subjective inversion model when several

discontinuity layers are simultaneously considered. In this case, the assignment of the

anomalous density structures among the several layers is not so easy to determine. In

general terms, short wavelength features of the gravity anomaly should be assigned to
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Figure 2

Bouguer anomaly map, reduced with a 2,200 kg/m3 reference density, for the large selected area (see Fig. 1 and

text for details).
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shallow surfaces, and long wavelength features should be mostly assigned to deep

discontinuity surfaces. In this sense, several studies have addressed the inversion process

in a frequency domain (e.g., CHAKRABORTY and ARGAWAL, 1992), similar to studies in

magnetic prospecting.

Clearly, short wavelength features will correspond to shallow structures; long

wavelength features can instead be associated to deep structures, although they can be

also associated to extensive enough and not very deep structures. The classical non-

uniqueness problem in potential fields requires some additional constraints, which will

possibly come from good geological and/or geophysical data, or from general

mathematical hypotheses.

On the other hand, gravity inversion by means of the adjustment of sub-horizontal

surfaces falls into the nonlinear inversion problems. This requires using some iterative or

exploratory approaches to obtain a solution.

To face these problems, we adapted the basic ideas of a previous method for 3D

inversion (CAMACHO et al., 2002), which we modified for use in our new context. In the

previous method (the Growth method), the anomalous model is described as being

composed of isolated anomalous bodies, which are constructed in a very free growth

process as 3D aggregations of cells (see Fig. 3, left). This method is very interesting for

gravity anomalies due to isolated bodies. In a versatile and non-subjective form, and with

few constraints, the process can produce 3D models of the anomalous structure (position,

depth, size, shape), which are more valuable if suitable values for the density contrast are

previously defined. Conversely, some application problems can arise when the causative

structure cannot be clearly associated with isolated bodies. In this case, the inversion

model will provide a simplified, rather indicative, solution to the inversion problem, that

needs further analysis to reach any realistic conclusions. This is the case, for instance, of

anomalies due to small distortions of sub-horizontal layers in the subsoil.

Now we want to describe the subsoil model as sub-horizontal layers, where the

irregular discontinuity surfaces are constructed by displacing, step by step (according to a

system of connected cells, in a growth process), the original flat mean surface (Fig. 3,

right). Then, working with similar minimization conditions and similar constructive

processes, such as the aggregation of small filled cells in an explorative process of growth,

the methodology is modified to allow the aggregation of filled cells that are only

connected (up and down) to previous discontinuity surfaces. For a continuous structure

(a stratified structure), this looks more realistic than has been described by isolated bodies.

3.2. Inversion Method

The inverse gravimetric problem, namely the determination of a subsurface mass

density distribution corresponding to an observed gravity anomaly, has an intrinsic non-

uniqueness in its solution (e.g., AL-CHALABI, 1971). Moreover, the data must be

considered as insufficient and inaccurate. Nevertheless, particular solutions can be

obtained by including additional information about the model parameters (e.g.,
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subsurface structure) and about the data parameters (the statistical properties of inexact

data; e.g., a Gaussian distribution). The inversion methods looking for the geometrical

properties of anomalous bodies with prescribed density contrast (e.g., PEDERSEN, 1979;

BARBOSA et al., 1997) correspond to a nonlinear context and offer interesting results that

are limited by the validity of the hypothesis used. Unfortunately, linearized techniques

depend strongly on the accuracy of the initial estimates of the model parameters

(ROTHMAN, 1985). For a fully nonlinear treatment, the methods of random space model

exploration often provide the best option (TARANTOLA, 1988; SILVA and HOHMANN, 1983).

Figure 3

The step by step process in the design of the inversion models: As cells for the Growth model (left) and stratified

for the Layers model (right), for the distribution of density according to isolated bodies and sub-horizontal

layers, respectively. The geometry of the closed and isolated bodies, together with the discontinuity layers,

generates anomalous high and low density areas that are responsible for the anomaly seen.
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Here, we develop a nonlinear inversion method for the geometrical description of the

anomalous density structure as sub-horizontal layers. We have named it ‘Layers’.

This method starts from several horizontal layers (up to four in the initial version),

which can be introduced ad hoc, or conversely, they can be automatically selected in an

optimizing approach. Also, several corresponding density contrasts are previously

selected (or automatically chosen in a relatively optimizing process). Then, the algorithm

works according to a nonlinear explorative approach, to ‘deform’, or better, to ‘shape’,

the layers step by step, to finally obtain some irregular shapes that can fit the observed

anomaly satisfactorily (see Fig. 3, right).

A general tool to describe the geometry of the anomalous mass structure

corresponding to irregularities in the sub-horizontal layers is obtained through an

aggregation of small parallelepiped cells filled with anomalous mass close to the adopted

layers. This procedure can be used to describe general 3D models, as with CAMACHO et al.

(2000, 2002), although generates a very large number of degrees of freedom for the

model. Therefore, a general exploratory inversion approach would be ineffective. An

interesting idea was proposed by RENÉ (1986): He applied an exploratory method (in a

more restrictive context) not to the global model, but just to every step of its growth

process. Under these conditions, the number of degrees of freedom is drastically reduced

for each step of the model growth, consequently so the exploratory process becomes very

effective.

Let us consider n gravity stations Pi (xi,yi,zi), i = 1, . . ., n that are not necessarily

gridded, which are located on a rugged topography and which have observed anomalous

gravity values Dgi
obs (Bouguer anomaly). We assume a mostly Gaussian distribution for

the observation uncertainties given by a covariance matrix QD (as deduced from analysis

of the data). Let us also consider nh horizontal surfaces with depths dk and density

discontinuities Dqk (positive differences between the upper and lower media limiting

with this surface), for k = 1, . . ., nh.

Our goal is to construct a 3D model that is described as sub-horizontal layers for

prescribed mean depths and density discontinuities, and which is ‘responsible’ for the

anomaly observed. As previously indicated, the subsurface volume close to the survey

area is dismantled into a global discrete 3D partition of m prismatic elements. The desired

solution will be described as an aggregation of some of the prismatic cells filled with

prescribed density contrast close to the discontinuity surfaces, thus giving rise to ‘shaped’

layers. When the filled cell is just below the discontinuity surface, this means that there is

an intrusion of low density from the upper medium into the lower one. Conversely, when

the filled cell is close and above the discontinuity surface, this means there is an intrusion

of high density from the lower medium into the upper one (see Fig. 3, right).

The gravity attraction Aij at the i-th station Pi(xi,yi,zi) due to the j-th prism, per unit

density, can be found in PICK et al. (1973). Matrix A, with components Aij is the design

matrix of the physical configuration problem and includes the effects of rugged terrain,

station distribution, subsoil partition, etc. Now the calculated anomaly values for the

resulting model are:
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Dgcali ¼
X
j2Jþ

AijDqj �
X
j2J�

AijDqj þ Dgreg; i ¼ 1; :::;N; ð1Þ

where J+ , J- are the sets of indices that correspond to the cells that are filled and are

located up and down, respectively, with respect to the corresponding discontinuity

surfaces; Dgreg is a regional smooth trend to be simultaneously adjusted; and J+ , J- ,

Dgreg are the main unknowns to be determined in this inversion process. For the sake of

simplicity, we are going to adopt a linear expression for the trend:

Dgreg ¼ p0 þ px xi � xMð Þ þ py yi � yMð Þ; i ¼ 1; :::;N ð2Þ

where xM, yM are the coordinates of an arbitrary central point for the survey; p0, px, py are

three unknown values which fit a trend (a 1-degree polynomial surface, simplifying the

subsequent formulation).

To solve the inherent non-uniqueness problem, an additional condition of minimi-

zation of the model variation can be adopted. Thus, the solution is obtained through a

mixed condition between the gravity l2-fitness and the whole anomalous mass quantity,

using a k parameter for the suitable balance:

vTQ�1
D vþ k mT Q�1

M m ¼ E ¼ min; ð3Þ

where m = Dq11 ; :::;Dqm
	 
T

is the anomalous density vector for the m cells of the

subsoil partition (-Dqj or Dqj for the filled cells and zero for those not filled); k is a

positive factor that is empirically fixed and provides the balance between model fitness

and anomalous model magnitude (and complexity); QD is the covariance matrix

(usually a diagonal matrix) that corresponds to the estimated (Gaussian) inaccuracies of

the gravity data; and QM is a diagonal normalizing matrix whose non-null elements that

are the same as the diagonal elements of ATQD
-1A. The first addend of the minimization

functional (3) corresponds to the fit residues weighted with the data quality matrix. The

second addend is a weighted addition of the model densities. Nevertheless, taking into

account that the covariance matrix QM contains the prism volumes as a factor, this

second addend is connected with the anomalous mass or magnitude of the model.

v = (v1,...,vN)
T (T for transpose) is the vector for the gravity residuals for N stations.

These are defined as:

vi ¼ Dgobi � fDgcali ; ð4Þ

where f is a scale factor that allows the fitting of the calculated anomaly for a developing

model with respect to the observed values.

The k parameter governs the application of the minimization conditions with respect

to the balance between the total anomalous mass and the residual values. For low k
values, a good fit is obtained, although the anomalous mass may increase excessively and

includes some fictitious structures. Conversely, for high k values, the adjusted model can

be too slight, and a poor gravity fit is obtained.
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Thus, the inversion process seeks to determine a geometrically anomalous model that

is described as an aggregation of filled cells that is connected to discontinuity surfaces

and that verifies the minimization condition (3). As previously indicated, we have

addressed this nonlinear problem with a process that explores the model possibilities. The

exploration of the possibilities for the entire model is substituted by the exploration of

several possibilities of growth (cell by cell) for each step of the surface deformation.

Thus, the prismatic cells that are connected (up or down) to discontinuity surfaces are

systematically tested, step by step.

For one step, some cells have been previously filled to modify the geometry of the

initial discontinuity surfaces, although not enough to reproduce the anomaly observed.

Now every cell (up and down) that is connected to every actual discontinuity surface is

tested. For each cell considered, the linear least-squares problem connected to (3) is

solved for unknown parameters f, p0, px, py; then the value E of expression (3) is obtained.

Once a certain number of cells are randomly selected and verified, we chose to use the

smallest value E as the best option for incorporation into the growth approach for the

discontinuity geometry.

This process is repeated successively, including a detection of outliers (ROUSSEEUW

and LEROY, 1987). In the subsequent steps, the scale value f decreases, and the trend

parameters p0, px, py reach nearly stable values. The process will stop when f approaches

1, which is reached for a final geometry of the discontinuity surfaces and a final regional

trend.

Finally, the solution appears as a 3D distribution of prismatic cells filled with some of

the prescribed contrast densities. These prismatic cells are ordered to produce a model of

stratified density according to some distribution of the layers limited by sub-horizontal

discontinuity surfaces, as illustrated in Figure 3 (right). Moreover, a regional trend

supplementing this anomalous mass distribution is also obtained.

This inversion approach has been attempted for the gravity anomaly of the Mt.

Vesuvius area, to investigate the structural results that can be obtained in a non-subjective

3D inversion process. As standard for this kind of automatic modelling without a prior

hypothesis, the results are valuable as non-subjective information. Of course, some

further interpretative subjective work based on some of the initial geological/ geophysical

constraints is necessary to ‘translate’ the model into a more realistic structure.

4. Analyses, Results and Discussion

First of all, from the total of 616 points, for homogeneity purposes we selected 400

points with mutual distances greater than 350 m.

To investigate the shallow structures and possibly the magma system of Mt.

Vesuvius, at first the well tested Growth process was adopted. In this case, we did not

use any initial constraints and the models obtained are totally non-subjective. Later,

taking into account the information from previous geological and geophysical studies
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about several sub-soil layers with different lithologies, the Layers process was chosen.

We selected the following values for the initial depths and density discontinuities: From

a topographical level and Dq = 0 kg/m3 (very shallow deposits with a density range

from 2,000 kg/m3 to 2,200 kg/m3); 1,100 m b.s.l. and Dq = +200 kg/m3 (initial depth

for the top of the deeper volcano-sedimentary filling of the Campanian Plain—

q = 2,400 kg/m3); 2,700 m b.s.l. and Dq = +200 kg/m3 (initial depth for the top of the

carbonate formation - q = 2,600 kg/m3); 9,900 m b.s.l. and Dq = +200 kg/m3 (initial

depth for the top of the crystalline formation - q = 2,800 kg/m3). Starting with these

values, a 3D model was obtained in a nearly automatic process. The resulting residual

values show a standard deviation of 363 lGal for the Growth inversion, and 385 lGal
for that of the Layers; both show a pattern of non-autocorrelated noise (Figs. 4a, b,

respectively). The regional trend (Fig. 5a) obtained simultaneously in the inversion

process is characterized by a gravity increase of 1.312 mGal/km towards N170�E. In
Figure 5b, the consequent local anomaly is shown: It is generally positive, with very

small values of the order of 3–5 mGal around Mt. Vesuvius, and with a very short

wavelength, which is indicative of shallow and small isolated bodies. A negative

anomaly is seen at the W, S and E sides of the base of the volcanic structure. The

positions of the 400 points selected are also shown in Figure 5.

Finally, the resulting 3D models of the isolated bodies and sub-horizontal layers are

shown in Figures 6 and 7, respectively, by means of vertical versus depth profiles and

horizontal deep cross sections.

Figure 6 shows several horizontal cross sections from depths of 0 m to 5,000 m, as

six W-E, one N-S, one SE-NW and one SW-NE vertical sections. The vertical section c,

together with the N-S, SE-NW and SW-NE vertical sections, crosses the Vesuvius crater.

All of the profiles reach a depth of 6 km. They all indicate the presence of closed positive

and negative density bodies limited to a depth of about 3 km, which are more easily

detectable in the horizontal sections. The most significant anomalous density bodies are:

— A positive density body located beneath the crater, that extends towards the NE,

where it reaches its maximum depth. It is clearly visible in the a, b and c profiles, in

the N-S and mainly in the SW-NE vertical sections;

— a very shallow (from above sea level to some hundreds of meters b.s.l.) negative

density body inside the volcano edifice that is clearly visible in the c profile;

— several negative density bodies around Mt. Vesuvius, which are mainly W and SE

and which were also seen by TONDI and DE FRANCO (2006).

The first two density bodies have already been indicated in these same positions, by

BERRINO et al. (1998), along a 2.5D interpretive profile that coincides with our c vertical

section; they associated the denser body to lavas and hypothesized a shallow structure

that is characterized by density contrast just beneath the volcano edifice. However, they

also stressed that the density and the geometry of the bodies inside the volcano were

chosen only to obtain an acceptable fitting of the anomaly seen. Here, we highlight that

the algorithm produces this model in a very free, automatic and non-subjective way.
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Moreover, high velocity lateral contrast has already been indicated by 2D seismic

tomography (ZOLLO et al., 1996), as well as by a more recent study by DE NATALE et al.

(2004) on the inversion of several seismic signals.

Figure 4

Inversion residuals for (a) the Growth and (b) the Layers models, each including planar distributions, histograms

and autocorrelation analyses.
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The model obtained with the Layers procedure is shown in Figure 7, where the same

horizontal E-W and N-S vertical cross sections displayed in Figure 6 are shown. There

are many similarities to the Growth model regarding the density bodies distributed in the

horizontal sections. This interpretation confirms, as shown by BERRINO et al. (1998), that

the carbonate basement under the volcano (red body in the sections) appears very flat at a

depth of about 2.5 km. An uprising of the superimposed layer from about 2 km b.s.l. up

to sea level, with a density of 2,400 kg/m3 to 2,450 kg/m3 (likely a volcano-sedimentary

filling of the Campanian Plain) (BERRINO et al., 1998), is clearly detectable in the b, c and

N-S vertical sections, along with a negative density body inside the volcano. Both of

these bodies coincide in position with the high and low density bodies already detected

through the Growth process, suggesting that they might represent the same structures.

Moreover, in the N-S section, there is also an uprising of the carbonate basement. It is

surprising that this basement uprising shows the same shape as the high VP and VP/VS

anomaly detected under the crater by DE NATALE et al. (2004). Also, we should note here

that the model was created in an automatic and non-subjective way, and the only initial

constraint was the choice of density contrasts.

Finally, to argue about deep sill indicated by AUGER et al. (2001), let us analyze a

wider area, consisting of 6,203 gravity values (the larger black rectangle in Fig. 1),

through both the Growth and Layers processes. The first results here are shown in

Figure 8.

Using the Growth process (Fig. 8, left), a large low density body is detectable at a

depth of 8 km, which extends to about 12 km, NW of the Vesuvius area. This density

body also appears using the Layers approach (Fig. 8, right), although here it appears as a

Figure 5

(a) Regional and (b) local gravity anomalies in the small selected area (see Fig. 1 and text for details), as

computed by the new algorithm. The black points represent the 400 inversion stations selected.
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body that extends from 8 km down to 10 km, which is elongated mainly in the NW-SE

direction and which is in the form of a depression of the top of the crystalline basement

(Fig. 8, right, red layers). This depression is evident in the NW-SE vertical profile, but

Figure 6

Deep horizontal and vertical versus depth cross sections of the inversion model obtained with the cell-Growth

process.
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does not appear in the coinciding NE-SW profile analyzed by AUGER et al. (2001). The

depression detected also corresponds to displacements of the superimposed carbonatic

basement (see Fig. 8, right, NW-SE profile, orange layers) that occur in coincidence with

the Acerra depression (NW) and the Pompei graben (SE). Based on our current results,

the low density body is unlikely to represent the sill-like structure suggested by AUGER

et al. (2001) and NUNZIATA et al. (2006). Our results are more in support of the C shaped

negative velocity/density anomaly detected by TONDI and DE FRANCO (2006).

Figure 7

Deep horizontal and vertical versus depth cross sections of the inversion model obtained with the shaped-Layers

process.
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5. Conclusions

We have carried out a 3D interpretation of the available Bouguer gravity anomalies in

the Neapolitan area through a new and original algorithm, known as Layers, which was

realized to satisfy the aim of our study. This algorithm works in an automatic and non-

subjective way, and it has allowed us to define the structural setting below Mt. Vesuvius

in a very objective manner, in terms of several layers, each of which represents a specific

Figure 8

Comparisons along the selected deep horizontal layers (depth from 1 km to 12 km) and the selected vertical

versus depth profiles crossing the Vesuvius crater, modelled for the whole Neapolitan area with both the Growth

and the Layers processes (see text for details).
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geological formation. The same data have also been interpreted in terms of isolated and

shallow anomaly density bodies using a well tested algorithm, known as Growth, which

also furnished the basic idea for the Layers procedure.

The final models generally confirm the global setting of the area as outlined in previous

studies, mainly regarding the shape and the depth of the carbonate basement below

Mt.Vesuvius; they also show lateral density contrasts inside the volcano edifice that were

only hypothesized in the 2.5D inversion. Moreover, these models have allowed us to

indicate a high density body that rises from the top of the carbonate basement and elongates

further at sea level, which is probably a rising of the same basement, just below the volcano.

As already indicated, the space coincidence of this rising density anomaly with the VP and

VP/VS anomaly detected under the crater is surprising. However, since the conversion of

seismic velocities to densities and seismic depths is subject to errors, we have to assume

some ambiguity in this comparison between the gravity and seismic models.

The results obtained also reveal that the two inversion methods result in very similar

models, as the high density isolated body in the Growth model can be associated with

the rising high density anomaly in the Layers model. This is supported by comparing

the two models through the most significant, in our opinion, selected horizontal

(2-km depth) and vertical (SN and WE 4519000 [c] — crossing the Vesuvius crater)

profiles (see Figs. 6 and 7).

Taking into account that the density of these modelled bodies, at about 2,400 kg/m3

to 2,450 kg/m3, is similar to that assigned to the Vesuvian lavas (2,480 kg/m3) (CASSANO

and LA TORRE, 1987), we suggest that these modelled bodies represent solidified magma

bodies, as already indicated by BERRINO et al. (1998) and DE NATALE et al. (2004).

Finally, with regard to the analysis extended to the entire Neapolitan area to survey

the deeper structures, we did not detect any deep bodies that are clearly associable with

the sill suggested by AUGER et al. (2001).

The different ways in which these two algorithms operate (noting that one is aimed at

the detection of isolated and shallow masses, the other at the detection of deep subsoil

layered structures) is one of the limits of a unique and unambiguous interpretation, in

terms of the structural setting provided by the resulting models. This suggests that the

fusion of the two algorithms into one will allow the simultaneous modelling of isolated,

shallow, deep and layered structures, and this will provide both more information about

deep density stratification and a more global vision of the geological and structural setting

of the area investigated. We therefore hope to obtain a quasi-univocal model that will be

supported by the non-subjective interpretation, and this will be our next tool for further

analysis.
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Testing Logselfsimilarity of Soil Particle Size Distribution: Simulation

with Minimum Inputs

CARLOS GARCÍA-GUTIÉRREZ, and MIGUEL ÁNGEL MARTÍN

Abstract—Particle size distribution (PSD) greatly influences other soil physical properties. A detailed

textural analysis is time-consuming and expensive. Soil texture is commonly reported in terms of mass

percentages of a small number of size fractions (typically, clay, silt and sand). A method to simulate the PSD

from such a poor description or even from the poorest description, consisting in the mass percentages of only

two soil size fractions, would be extremly useful for prediction purposes. The goal of this paper is to simulate

soil PSDs from the minimum number of inputs, i.e., two and three textural fraction contents, by using a

logselfsimilar model and an iterated function system constructed with these data. High quality data on 171 soils

are used. Additionally, the characterization of soil texture by entropy-based parameters provided by the model is

tested. Results indicate that the logselfsimilar model may be a useful tool to simulate PSD for the construction of

pedotransfer functions related to other soil properties when textural information is limited to moderate textural

data.

Key words: Soil, particle size distribution, fractals, fragmentation, logselfsimilarity, iterated function

system.

1. Introduction

Soil PSD is a fundamental soil property that greatly influences soil porosity and

mechanical and hydraulic properties. Its description is usually made for soil particles with

sizes smaller than 2 mm. A comprehensive description of PSD within this small size

interval requires a sophisticated texture analysis, including novel techniques like laser

diffraction analysis (see MONTERO and MARTIN, 2003). These analyses have to be repeated

for every soil sample, and are highly time-consuming, and expensive.

Attempts to find an equation to simulate the PSD were published in HATCH and

CHOATE (1929), KRUMBEIN and PETTIJOHN (1938), OTTO (1939), INMAN (1952). In BUCHAN

et al. (1993) several equations for the distribution are compared and the authors showed

that the best one was a lognormal model.

Dpto. de Matemática Aplicada, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid,
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Another equation for soil PSD has been derived based on the observed scaling

behavior of the number N(R) (or mass) of particles of size greater than a given R:

Turcotte, in 1986, showed the scaling rule

NðRÞ � R�D; ð1:1Þ

D being a number called the scaling fractal dimension, which is at present known as

Turcotte’s Law.

Since then considerable work has been devoted to testing the fractality of the

soil PSD (see ANDERSON et al. 1998, for a review, and TURCOTTE, 1992; TYLER and

WHEATCRAFT, 1989; TYLER and WHEATCRAFT, 1992; WU et al., 1993 for specific

results).

Soil PSD is usually reported by providing only mass percentages of clay (particles

with sizes B 0.002 mm), silt (0.002-0.05 mm) and sand (0.05-2 mm). A method to

simulate the distribution from this poor description would be extremely valuable for

further use of PSD for various prediction purposes. To attain that objective, a hypothesis

on the distribution is needed.

The power scaling (1.1) implies the fractal behavior of the particle size distribution.

This fractal behavior of the PSD inspired the use of mathematical self-similar mass

distributions to simulate the entire distribution (MARTIN and TAGUAS, 1998). The self-

similarity hypothesis was further tested in TAGUAS et al. (1999).

In MARTIN and GARCIA-GUTIERREZ (2006), the model was revised by changing the

self-similar hypothesis into a logselfsimilarity assumption about the distribution, based

on the fact that the mass of the clay, silt and sand textural fractions is comparable but

the size ranges of these fractions (0.002, 0.048 and 1.95 mm) are only comparable in

the log-scale. Random logselfsimilar cascades were used to simulate soil distributions

beyond the available data, obtaining a surprising result: The best simulation results

are attained when the variance of the random factor is close to 0, this is, using only

exact logselfsimilarity.

The purpose of this paper is to test the strict logselfsimilarity of particle size

distributions by means of iterated function systems: We test the capability to simulate

the distributions with the minimum number of textural data inputs, that is, three or

even only two soil textural fractions. We make a detailed study using a large dataset

(USDA-SCS, 1975) and compare the results with those obtained following the

previous self-similar hypothesis (MARTIN and TAGUAS, 1998). We also test the

characterization of textures via heterogeneity parameters provided by the logselfsim-

ilar model.

The paper is organized as follows: In section 2 the logselfsimilar model is explained

in detail. In section 3, we present the materials which are used to test the model and the

way in which the model is applied. Section 4 contains the results and section 5 provides

the conclusions of this work.
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2. Theory

Soil PSD is viewed as a distribution or measure that assigns to any interval I = [a, b]

of R; the mass of soil particles whose size (equivalent diameters) is greater or equal to a

and less or equal to b. Next we present theory related with self-similar mass distributions

and the logselfsimilar model.

2.1. Selfsimilar Mass Distributions (Measures)

Given a set of functions (linear transformations)

ui : R ! R; uiðxÞ � uiðyÞj j ¼ ri x� yj j; ri\1; i ¼ 1. . .m

and a set of positive numbers (probabilities) pi C 0, i = 1 ... m,
Pm

i¼1 pi ¼ 1; a unique

mass distribution l exists such that lðRÞ ¼ 1 and

lðJÞ ¼
X

pilðu�1
i ðJÞÞ ð2:1Þ

for J 
 R (HUTCHINSON, 1981).

The set { ui, pi, i = 1 ... m } is called the iterated function system (IFS) and the mass

distribution is said to be the selfsimilar mass distribution of the IFS. The support of the

above distribution is the set I which verifies that

I ¼
[m
i¼1

uiðIÞ: ð2:2Þ

Moreover, one has that

lim
n!1

1

nþ 1

Xn
k¼0

f ðxkÞ ¼
Z
R

f ðxÞdlðxÞ ð2:3Þ

for all continuous functions f : R ! R; being xk ¼ uk 	 � � �u2 	 u1ðx0Þ; for all x0 2 R: In

particular this implies that, if I 
 R is an interval and m(n) is the number of points of

fx0; . . .; xkg \ I; then (see MARTIN and TAGUAS, 1998)

lðIÞ ¼ lim
n!1

mðnÞ
nþ 1

: ð2:4Þ

Self-similar measures are common examples of so-called multifractal measures, that is,

measures for which the local Hölder exponent of l at x defined by the limit

aðxÞ ¼ lim
r!0

log lðIrðxÞÞ
log r

ð2:5Þ

is not constant on the support, Ir(x) being the real interval [x - r, x + r].

The Hölder exponents for self-similar measures typically span the entire interval

between two extreme values amin and amax (see EVERSTZ and MANDELBROT, 1992 or
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FALCONER, 1997, for further details). The exponent provides a measure of mass

concentration around the point: The greater a(x) is, the smaller will be the mass

concentration and vice versa. However, for simulated self-similar measures (or

experimental measures with self-similar characteristics), the above theoretical approach

is replaced with a coarse version involving a scaling analysis of overall information

quantities instead of the pointwise local Hölder exponents lacking practical sense in a

natural setting. One common choice is to consider dyadic scaling down (EVERSTZ and

MANDELBROT, 1992), that is, succesive partitions of I of size L�e = L�2-k, L being the

length of I and k = 1, 2, 3,... At every size scale e, a number N(e) = 2k of subintervals

(cells) Ii, i = 1 ... N(e) are considered and their respective measures l(Ii) = li(e) assumed

to be provided by available data. Now, the ratio log li (e)/loge is called the coarse Hölder

exponent of interval Ii and the Hölder spectrum is defined via a parameter q such that

aðqÞ �
PNð�Þ

i¼1 liðq; �Þ log lið�Þ
log �

; ð2:6Þ

where

liðq; �Þ ¼
lið�ÞqPNð�Þ
i¼1 lið�Þq

and ‘‘� ’’ means that a suitable linear fitting holds for a range of scales (e values) where
we want to characterize the scaling regularity of the measure l (see EVERSTZ and

MANDELBROT, 1992; CHHABRA and JENSEN, 1989 for details).

For exact self-similar measures, ‘‘� ’’ in equation (2.6) may be replaced with the limit

when � ! 0: In such a case, the function a(q) for -? < q < +? parameterizes the

interval [amin, amax] of local Hölder exponents.

On the other hand, a suitable fitting of equation (2.6) applied to experimental data, for

a certain range of scales, may reveal that the measure concerned has self-similar features

within that range.

2.2. The Logselfsimilar Model

Soil PSD is defined by assigning to each interval I ¼ a; b½ � 
 R the mass l(I) of

particles whose size is in that interval. This distribution can be seen as the result of a

fragmentation process, this is, an iterative processs acting within a range of scales.

Experimental data on this distribution showed power scaling of the type reflected in

Section 1 (ANDERSON et al., 1998). This fact suggests that the distribution should have

scale-invariant behavior: If we zoom into the mass interval to see it at a finer scale, it

should resemble (statistically) the structure of the whole interval: A photograph of soil

looks similar at every scale; it is impossible to guess the size of elements in the picture.

Once the invariance with respect to the scale becomes a sensible hypothesis, the

problem that arises is to determine how this invariance-based model can be used. MARTÍN

1120 C. Garcı́a-Gutiérrez and M. Á. Martı́n Pure appl. geophys.,



and TAGUAS (1998) proposed a self-similar model generated by iterated function systems

(IFS) that was useful for simulating self-similar PSDs from the knowledge of common

textural data (clay, silt and sand mass proportions). This model generates a self-similar

mass distribution via an iterative process that allocates the relative mass proportions of

the elementary size classes in reduced linear copies of the size interval. Testing this

model showed that the use of the clay (soil particles smaller than 0.002 mm.), silt

(2–50 mm) and sand (50–2000 mm) fractions, for example, as inputs for the model lead

to a very unrealistic simulated PSD. The reason is that these three fractions (subintervals

of the mass size distribution) contain similar amounts of mass, however the respective

sizes of the intervals differ by orders of magnitude (viz. 0.002 mm, 0.048 mm and

1.95 mm, respectively). The simulations lead to vast amounts of soil mass accumulated in

very small linear copies of the size interval (specifically in the reduced linear copies of

the clay interval), which contradicts common pedological knowledge.

MONTERO and MARTIN (2003) computed the Hölder spectrum of soil texture data

obtained with laser diffraction, and the scaling behavior was excellent when the interval

of sizes was log-rescaled. In fact, using the log-rescaled interval instead of the usual

interval in scaling analysis is strongly supported by the nature of the data provided by

texture analysis instruments (see MARTÍN et al., 2001; MONTERO and MARTÍN, 2003).

These facts suggested a reconsideration of the selfsimilar model (MARTIN and GARCIA-

GUTIERREZ, 2006). The key idea is to view the PSD as the result of an iterative process that

spreads the mass in the log-rescaled particle size interval. Such property is called

logselfsimilarity. In MARTIN and GARCIA-GUTIERREZ (2006) random cascades were used to

simulate the PSD. The random factor of the model agglomerates all the causes different

to logselfsimilarity that could explain the PSD. When variance is 0, the random factor

disappears, and logselfsimilarity is the only explanation for the soil PSD. The best

simulation results were attained when the random factor was 0, therefore supporting the

logselfsimilar behavior of the distribution. This fact lead us to using strict logselfsim-

ilarity and simulating the PSD by utilizing the iterated function system (IFS).

Below we describe an IFS simulation for a PSD based on the logselfsimilarity

hypothesis. It is a simple algorithm by which we can obtain the mass of soil particles with

sizes within a given interval I 
 I0; being I0 = [0,2000] the textural interval.

Let pi be the mass proportions of soil particles corresponding to the size fractions Ii,

i = 1 . . . q. Thus I0 ¼ [q
i¼1Ii:

Let ni be the linear transformations that map I0 into Ii. That is, if Ii = [a, b], then

ni(x) = x(b - a)/2000 + a. Also let Ii
* = U(Ii) = [log (1 + a), log (1 + b)]. The new

linear transformations, ui, are the ones that transform I0
* into Ii

*, with the same

probabilities pi, i = 1, 2, 3.

Then begins the iteration procedure:

(1) Take any starting point x0 from the support I0
*.

(2) Choose randomly, with probability pi, one of the three linear transformations ui,

i = 1, 2, 3 and calculate the next point of the simulation: x1 = ui(x0).
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(3) Continue the process as in (2), obtaining all the points of the simulation: xk = ui(xk-1),

with probability pi, chosen randomly, i = 1, 2, 3.

This process defines a limit measure that is multifractal.

With the points x0, x1,. . ., xn we can obtain the measure at any interval I 
 I0; l(I), by

lðIÞ ¼ lim
n!1

mðnÞ
nþ 1

m(n) being the number of points of the orbit xi that fall within the interval I.

For this we have to calculate I* = U(I) and count m*(n), the number of points of the

orbit that fall within I� ¼ UðIÞ 
 I�0 : Then we calculate l (I*) = l (I).

The estimate of l(I) is obtained very quickly in the practice, since the convergence of

the algorithm is extremely rapid. In fact, computed l(I) did not change after n = 3000.

2.3. Heterogeneity Parameters

Soil PSD is used in most pedotransfer functions, that is, functions that estimate

certain soil properties that are difficult or expensive to measure, in an indirect way via

empiric correlations (VAN GENUCHTEN and LEIJ, 1992; WÖSTEN et al., 2001). For example,

soil hydraulic properties are estimated by using parameters that characterize the shape of

the PSD. Therefore PSD characterization and subsequently soil textral classification is an

important issue in soil sciences.

The USDA textural triangle is the most common way to classify soil textures. It uses

the standard PSD available data (clay, silt and sand mass fractions) to classify the soils in

13 different types (textural classes), according to specific mass fraction boundaries for

each class. Other classification systems (FOLK, 1954; SHEPARD, 1954; BAVER et al., 1972;

VANONI, 1980) follow the above scheme, only with variations of the mass fraction

boundaries, however these classifications are rather poor because soils with very different

physical properties may fall under the same class.

Also, the use of previously mentioned fractal dimensions in soil classification proved

useless, as texturally different soils can have the same dimension. There is a need to

develop additional parameters to characterize soil structure that might be better predictors

of soil properties.

The entropy dimension is a parameter that measures and characterizes the degree of

heterogeneity of a complex distribution. Is it difficult to obtain this parameter directly

from a distribution, but a well-known result from fractal geometry (YOUNG, 1982; DELIU

et al., 1991) allows one to compute this parameter with a simple formula when the

distribution is (or is assumed to be) self-similar. This assumption, earlier used to describe

and simulate the PSD, was later used in MARTIN et al. (2001) to parameterize the soil

texture with entropy dimensions. The textural triangle regions were changed for intervals

of values of entropy dimensions, thus obtaining a continuous parameterization of soil

texture.
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MARTIN et al. (2005) used the balanced entropy, which corrects the distortion of the

entropy when the size of the intervals are not equal, to parameterize soil texture and

predict soil volumetric water content.

Hölder exponents provide information about the mass of particles with sizes

within various ranges, and can be related to physical or hydraulic properties related to

the packing of particles, like soil water retention. These heterogeneity parameters

can be obtained from available texture data, using the model’s logselfsimilarity

hypothesis.

The Hölder spectrum a(q) of the measure m on the rescaled interval is given by (see

FALCONER, 1994, 1997)

aðqÞ ¼
Pm

i¼1 p
q
i r

b
i log piPm

i¼1 p
q
i r

b
i log ri

;

where b = b(q) is a positive number verifyingXm
i¼1

pqi r
bðqÞ
i ¼ 1:

The value

að0Þ ¼
P

i r
�
i log piP

i pi log r
�
i

would approach the average value of the coarse Hölder exponents for fine partitions of

the size interval and

að1Þ ¼
P

i pi log piP
i pi log r

�
i

is consistent with the entropy dimension of the distribution, m, mentioned above.

These heterogeneity parameters, obtained through the new logselfsimilarity

hypothesis (MARTIN and GARCIA-GUTIERREZ, 2006) can be used to characterize the

PSD heterogeneity, to quantitatively classify the soils, and potentially to estimate soil

hydraulic properties.

3. Materials and Methods

The data used to simulate and test the logselfsimilar theory corresponded to the upper

two horizons of soils reported by the Soil Conservation Service (1975). Soil data included

the mass proportions mi of particles in eight size classes (mm): clay (< 0.002), silt

(0.002–0.02) and (0.02–0.05), very fine sand (0.05–0.1), fine sand (0.1–0.25), medium

sand (0.25–0.5), coarse sand (0.5–1) and very coarse sand (1–2). In order to use these data

to construct an IFS, we shall denote by [a, b] the particles with sizes greater than or equal
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to a and less or equal to b. These size classes determine a set of seven intermediate cutoff

points 0.002, 0.02, 0.05, 0.1, 0.25, 0.5, 1 and eight consecutive intervals corresponding to

the eight size classes I1 = [0, 0.002], I2 = [0.002, 0.02], . . ., I8 = [1, 2].

These data offer the possibility of using some of them as inputs for the model and

simulate a fractal soil PSD associated with it. The simulated data then can be compared

with the real data, not used as input for the model to estimate the goodness-of-fit of the

simulation.

We also try to find which intervals, from all available in one soil, used as input values

for the model, yield the best simulation results.

The number of linear transformations in the simulation vary from 2 to 8, according to

the available data. With 2 linear transformations the number of cutoff points is 7, thus

there are 7 different input value possibilities. With 3 linear transformations the number of

input value possibilities is 21; with 4 linear transformations it is 35. Thus, the method

provides a great number of potential simulated PSDs.

To run most of the tests on the model we used 3 linear transformations. The reason for

this choice is that three is the number of the most commonly available textural data,

namely: the mass percentages of clay, silt and sand. In some cases additional simulations

were made following TAGUAS et al. (1999), in order to compare those results to the ones

obtained with the logselfsimilar cascade model. Both simulation methods use the same

soil data as inputs and for comparison with their simulated counterparts.

The model was also tested with two linear transformations and the results were

compared with the use of three linear transformations.

We constructed the three linear transformations with different possible logselfsimilar

IFS

u1;u2;u3; p1; p2; p3f g

by using the following procedure:

(1) Select two cutoff points a and b among the seven possible choices, a < b.
(2) Let p1, p2 and p3 be the mass proportions of the three constructed intervals I1 = [0, a],

I2 = [a, b] and I3 = [b, 2000].
(3) Obtain the log-rescaled intervals Ii

* = U(Ii), and assign them the same probability as

to the initial intervals. Also calculate the set I* = U(I)
(4) Let ui be the linear transformation which maps the interval I* into Ii

*.

These rules permit us to make up to 21 IFS simulations for each soil, depending on

the values of the two cutoff points (a and b). Another 21 simulations were performed in

accordance with the self-similar scheme of TAGUAS et al. (1999). The results obtained

with these methods were compared via the error of the respective simulations, defined as

� ¼
P

jmi � m
0
ij

2
; ð3:1Þ
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mi being the real mass proportion in the size class Ii, and mi
’ the mass proportion assigned

to the same size class by the simulation. This error was used in TAGUAS et al. (1999),

where the self-similar model was tested, therefore we use the same formula in order to

keep coherence on the testing method. A similar formula was employed earlier in VRSCAY

(1991). The rationale for dividing by two 3.1 in is the following: the formula adds mass

deviations for the intervals. A positive mass deviation in one interval derives from a

negative one in another, and vice versa. In some way, mass deviations are accounted two

times, therefore we divide by two.

For each soil 21 different simulations were created with the different input value

possibilities, and 21 different error values were obtained. We used the minimum one as

the error of the PSD simulation because it corresponds to the best simulation result with

the logselfsimilar model (using only three data).

The above scheme varies slightly when using 2 linear transformations (instead of 3).

In this case there is only one possible cutoff point choice, and the number of intervals is

only 2. The number of possible IFSs per soil is 7 when the first interval starts at zero, but

we also tested the IFS when the first interval starts at 0.002, this is ignoring the clay

fraction. The number of possible IFs in this case is 6, which is the number of possible

cutoff points {0.05, 0.1, 0.25, 0.5, 1}.

The error in this case was also calculated with 3.1.

4. Results and Discussion

Textural data of 171 soils have been studied. We excluded soils whose mass

proportions were polarized into any of the three classes (silt, clay or sand). Therefore,

the soils whose clay and sand content was more than 85% and those whose silt content

was more than 90% were eliminated from the list. The number of remaining soils was

158.

First we used three linear transformations (3 subintervals or mass proportions) as

input values for the model to compare it to the previous self-similar model (TAGUAS et al.,

1999). For 111 soils (70.3% of the selected soils) the error was smaller in the

logselfsimilar model than in the self-similar.

The average error of the logselfsimilar simulations was 10.9 whereas the average

error for the self-similar ones was 14.7.

With 3 linear transformations the error for each soil is the minimum of the errors of

the simulations with the 21 different input value possibilities. For the self-similar case the

minimum is attained with the 0-0.002-0.020-2 partition as input values on 90 out of

the 158 soils (57%). The next partition with the most minimums is 0-0.05-0.1-2. For the

logselfsimilar case the minimum is attained with the partition 0-0.002-0.02-2 in 34 soils

(21.5%) and with the partition 0-0.002-0.5-2 in the other 22 soils (13.9%).

Another test was to measure the error on all the soils for the clay, silt and sand

fractions, which are the most readily available soil data, in the logselfsimilar model
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and in the self-similar model. Clay particles have diameters between 0 and 0.002 mm,

silt particles have diameters between 0.002 and 0.02 mm in the ISSS classification, and

between 0.002 and 0.05 mm in the USDA classification. The particles with sizes

between the upper limit of the silt and 2 mm are considered to be sand particles.

Therefore the two input values tested were 0-0.002-0.02-2 (ISSS) and 0-0.002-0.05-2

(USDA). In the ISSS partition case the mean error was 20.0 for both cases. In 93 soils

(58.9%) the error was smaller in the logselfsimilar simulation. For the USDA partition

the mean error was 29.6 for the self-similar case and 23.9 for the logselfsimilar case.

In 127 soils (80.3%) the error was smaller in the logselfsimilar simulation of the soil

PSD.

By using 2 initial linear transformations (two input values), instead of 3, we

compared the results with the self-similar model using the same number of linear

transformations. This test was done in two ways: with the first interval starting from

size 0 and with the first interval starting from size 0.002, this is, not counting the clay

subinterval. The mean value of the error of all the soils tested (158, the selection

mentioned above) was 22.3 for the logselfsimilar model and 30.3 for the selfsimilar

one, when the first interval contained the clay fraction. When the clay fraction was not

included in the simulation, this is, when the first interval started at 0.002 mm., the

mean value of the error was 37.7 for the logselfsimilar case and 41.2 for the self-

similar case.

The results demonstrate that the logselfsimilarity hypothesis is more realistic than the

previous self-similar hypothesis when using only two linear transformations. The results

also show that the use of two linear transformations yields greater errors than when using

3 linear transformations. When increasing the number of inputs in the model, soil PSDs

are simulated better. The number of input values depends on the textural fractions that are

known from the soil, which is usually three. The results also show that the soil particles in

the clay fraction are also involved in the fractal logselfsimilar structure of the PSD. This

is a surprising and not expected result because clay particles are presumably formed not

as a result of a fragmentation process, which is the explanation for the fractal

logselfsimilar structure of the PSD.

The Hölder spectrum a(q) for all soils was calculated for several values of q. Table 1

shows the mean values of a(0), a(1) and a(1)/a(0) for the different textural classes of the
USDA textural triangle in all 171 soils. For this parameter the Loam, Sandy Loam and

Sandy Clay Loam classes are not distinguishable. The same is true for the Silt Loam and

Silty Clay Loam classes. Nonetheless, when varying the parameter q the Hölder spectrum

is capable of distinguishing between those classes: Table 2 shows the Hölder parameters

for the previous classes with q = 2, -2, 10, -10.

The heterogeneity parameter wellness depends on the chosen model. The better the

model, the more accurately the parameters will quantitatively characterize the texture

and, in addition, the better to establish regressions with soil physical properties or build

new pedotransfer functions.
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5. Conclusions

The fractal logselfsimilar hypothesis for the structure of the soil PSD was tested in

this work. The new model was compared to the previous self-similar one on quality data

and was found to substantially improve the simulation of the soil PSD.

When using 3 input values the errors of the logselfsimilar simulations were smaller

than the errors when using the self-similar model for 70% of soils and the average

error was 10.9, in contrast to 14.7, which was the average error with the previous

model. The error mean values when using just two input values were 22.3 and 30.6,

respectively.

The error of the simulations depended greatly on the input values used. The best input

values for the logselfsimilar model are the mass of particles with sizes in the following

intervals [0, 0.002], [0.002, 0.02] and [0.02, 2], which correspond to the clay, silt and

sand fractions under the ISSS classification.

The heterogeneity parameters provided by the model can quantitatively characterize

soil texture and may be used to build new pedotransfer function or be related to soil

physical properties related to PSD.

Table 1

Mean values of a(0), a(1) and a(1)/a(0) for the different textural classes

Textural Class a(0) a(1) a(1)/a(0)

Sand 1.65954067 0.624458 0.37994797

Loamy Sand 1.3023216 0.7883644 0.61170227

Sandy Loam 1.14006598 0.89193242 0.9493417

Silt Loam 1.37489666 0.77902314 0.59723171

Silt 1.56655933 0.646987 0.4217506

Loam 1.14928982 0.90012724 0.79933527

Sandy Clay Loam 1.137707 0.8940058 0.79315775

Clay Loam 1.19510946 0.87178831 0.73544949

Silty Clay Loam 1.3627452 0.77143413 0.58778276

Silty Clay 1.43659986 0.71459671 0.52387275

Clay 1.42989975 0.60704275 0.4406898

Table 2

Mean values of a(2), a(-2), a(10) and a(-10) for some textural classes

Textural Class a(2) a(-2) a(10) a(-10)

Sandy Loam 0.7787254 1.68533752 0.648082 1.82205762

Silt Loam 0.67265007 2.22231493 0.56712528 2.33494603

Loam 0.80783118 1.69722282 0.68345041 1.81338135

Sandy Clay Loam 0.785247 1.678321 0.6553278 1.7969594

Silty Clay Loam 0.65487927 2.03840833 0.56835773 2.15139607
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Steric Sea-Level Change and its Impact on the Gravity Field caused

by Global Climate Change

SABINE ROEDELSPERGER,1 MICHAEL KUHN,2 OLEG MAKARYNSKYY,2,3 and CARL GERSTENECKER
1

Abstract—It is sometimes assumed that steric sea-level variations do not produce a gravity signal as no net

mass change, thus no change of ocean bottom pressure is associated with it. Analyzing the output of two CO2

emission scenarios over a period of 2000 years in terms of steric sea-level changes, we try to quantify the

gravitational effect of steric sea-level variations. The first scenario, computed with version 2.6 of the Earth

System Climate Model developed at the University of Victoria, Canada (UVic ESCM), is implemented with a

linear CO2 increase of 1% of the initial concentration of 365 ppm and shows a globally averaged steric effect of

5.2 m after 2000 years. In the second scenario, computed with UVic ESCM version 2.7, the CO2 concentration

increases quasi-exponentially to a level of 3011 ppm and is hold fixed afterwards. The corresponding globally

averaged steric effect in the first 2000 years is 2.3 m. We show, due to the (vertical) redistribution of ocean

water masses (expansion or contraction), the steric effect results also in a small change in the Earth’s gravity

field compared to usually larger changes associated with net mass changes. Maximum effects for computation

points located on the initial ocean surface can be found in scenario 1, with the effect on gravitational attraction

and potential ranging from 0.0 to -0.7�10-5 m s-2 and -3�10-3 to 6�10-3 m2 s-2, respectively. As expected,

the effect is not zero but negligible for practical applications.

Key words: Global warming, climate model, sea level change, steric effect, gravity field change.

1. Introduction

Climate change and global warming due to increased emissions of carbon dioxide

(CO2) and other Greenhouse gases have a direct impact on global sea level (e.g., SOLOMON

et al., 2007). Melting ice and snow, changes in the hydrologic cycle and the warming of

ocean water alter the global mean sea level (e.g., DOUGLAS and PELTIER, 2002; HOUGHTON,

2004; BINDOFF et al., 2007). While the inflow of melt water from land-based ice masses

and the exchange with terrestrial water reservoirs directly influence the total ocean water

mass, ocean warming/cooling and freshening/salinification, the steric effect, causes the
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ocean water to expand/contract without altering its mass (e.g., MEIER and WAHR, 2002;

ANTONOV et al., 2002).

The Intergovernmental Panel of Climate Change (IPCC) estimated the sea-level rise

in the 20th century to be 1.7 ± 0.5 mm/year, based on analyses obtained by tide gauge

observations (CHURCH et al., 2004; HOLGATE and WOODWORTH, 2004; CHURCH and WHITE,

2006; BINDOFF et al., 2007). CAZENAVE and NEREM (2004) determined an accelerated rate

of 3.1 mm/year between 1993 and 2003 by satellite altimetry. Both estimates include the

combined influences of steric and non-steric effects.

Several studies conclude that in the second half of the last century the thermal

expansion accounts for about 25% of the 20th century global average sea-level rise given

by the IPCC (see Table 5.2 in BINDOFF et al., 2007). ANTONOV et al. (2005) estimate the

thermosteric effect between 1955 and 2003 based on in situ observations for the upper

700 m at 0.33 ± 0.04 mm/year. For the same time period and depth range, ISHII et al.

(2006) provide an estimate of 0.36 ± 0.07 mm/year. Studies over the last decade,

instead, show an accelerated thermosteric sea-level change becoming one of the major

contributors to contemporary sea-level change as observed by satellite altimetry.

ANTONOV et al. (2005) and ISHII et al. (2006) estimate a rate of 1.2 ± 0.5 mm/year for the

upper 700 m while WILLIS et al. (2004) and LOMBARD et al. (2006) provide for the same

time-period and depth range estimates of 1.6 ± 0.5 mm/year and 1.8 ± 0.4 mm/year,

respectively. The latter estimates account for more than 50% of the total sea-level rise as

observed by satellite altimetry (CAZENAVE and NEREM, 2004).

For projections on future sea-level changes for the 21st century, diverse climate

modelling outcomes are available. The fourth assessment report of the IPCC gives an

overview of the results until 2007 (MEEHL et al., 2007). Depending on the used emission

scenario, the projected sea-level rise is between 0.18 and 0.59 m with the thermosteric

contribution assumed 70 to 75%.

It is well known that a net ocean-mass change (e.g., due to melting ice) causes a

change in the Earth’s gravity field (e.g., FARRELL and CLARK, 1967; KUHN et al.,

submitted). It is not well known, however, that the thermosteric sea-level change also

causes changes in the gravity field. In this study we investigate the sea-level rise caused

by the thermosteric (temperature induced) and halosteric effect (salinity induced) over the

next 2000 years, using the output of two climate model runs of the UVic ESCM under

different CO2 scenarios. Based on the steric sea-level change, we quantify the impact on

the Earth’s gravity field and show that, despite the fact that no mass is added or removed,

the vertical redistribution of ocean watermasses (expansion or contraction) leads to

changes in Earth’s gravity field.

2. Climate Change Scenarios

The climate model used for this study is the Earth System Climate Model developed

at the University of Victoria, Canada (UVic ESCM) version 2.6 and 2.7. The resolution
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of the OGCM is 3.6� zonal by 1.8� meridional with 19 vertical layers with a maximum

depth of 5396 m. The UVic ESCM 2.6 includes a three-dimensional spherical Ocean

General Circulation Model (OGCM) coupled with a thermodynamic-dynamic sea-ice

model, an energy-moisture balance atmospheric model and a land-ice model (WEAVER

et al., 2001). Land-ice sheets are not included in this version. Version 2.7 additionally

includes a vegetation model, ocean biology and land surface processes (MAKARYNSKYY

et al., 2007). Land-ice sheets are included but do not melt and thus act mainly as large

coolers.

The computation of two CO2 emission scenarios for a period of 2000 years (2001–

4001) was performed at the Western Australian Centre for Geodesy (MAKARYNSKYY et al.,

2005). The first scenario, computed with the UVic ESCM 2.6, simulates a CO2 increase

of 1% per year (3.65 ppm/year), starting from the initial concentration of 365 ppm, which

is the observed CO2 concentration in 1998 (KEELING and WHORF, 2005). Due to the

continuous CO2 increase in the atmosphere, this scenario reaches a level of its

concentration, which is impossible to achieve even when burning all present day stored

CO2. However, this provides a good opportunity to study the behavior of the ocean due to

intense heating and thus provides maximum effects. Under this scenario, sea ice melts

almost completely and the total snow volume, accumulated on land and sea ice, reduces

by about 40% of its initial amount.

In the second scenario, computed with version 2.7 of the UVic ESCM, CO2 increases,

starting again from 365 ppm, until it reaches the level of 3011 ppm (after 423 years).

Afterwards it remains constant. The CO2 emission rate during the first 423 years

accelerates with time (6.3 ppm/year on average).

Due to the rigid-lid approximation, sea-level changes are not modelled explicitly.

Mass-induced sea-level changes caused by mass transports within the oceans can be

assessed by means of the surface water pressure under the lid (e.g., MAKARYNSKYY et al.,

2006). This study, however, only focuses on the steric sea-level change rather than mass-

induced changes.

3. Steric Sea-Level Change

The steric effect Dhz2z1 between height z1 and z2 is defined as the difference of

steric height hz2z1 of a specific water column with temperature T0 and salinity S0 and

the water column with temperature T0 + DT and salinity S0 + DS (e.g., LANDERER

et al., 2005):

Dhz2z1 ¼ hz2z1ðT0 þ DT ; S0 þ DSÞ � hz2z1ðT0; S0Þ: ð1Þ

The steric height is the height difference between the water column of a specified density

q(T,S,p) and the water column of an ideal density (i.e., temperature of 0�C, salinity of

35 psu) q(0,35,p),
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hz2z1 ¼
Z z2

z1

qðT ; S; pÞ � qð0; 35; pÞ
qð0; 35; pÞ dz: ð2Þ

To estimate separately the contribution of temperature and salinity, the steric effect

can be subdivided into the thermosteric and the halosteric effects (e.g., ANTONOV et al.,

2002; LANDERER et al., 2005). To compute the thermosteric effect, salinity is set constant

and to compute the halosteric effect, the temperature is set constant in eq. (1).

Due to the increasing CO2 concentration, the globally averaged surface air

temperature rises from 13.5�C to 27.2�C between 2001 and 4001 in the first scenario.

The global mean ocean temperature, averaged over all vertical layers, increases from 3.7

to 11.6�C. Melting sea ice and snow results in a global average decline of salinity from

34.748 to 34.694 psu.

Due to thewarming and freshening of the ocean and the resulting expansion of thewater,

the global mean sea level rises by 5.2 m in 2000 years (Fig. 1). In terms of a global average,

97% (5.0 m in 2000 years) of the sea-level rise is caused by the thermosteric effect, whereas

the halosteric effect instead, accounts only for 3% (0.2 m in 2000 years) and is positive due

to decreasing salinity, thus amplifies the thermosteric effect. However, the halosteric effect

can become more dominant in Polar Regions (see below).

In scenario 2 between 2001 and 4001, the globally averaged surface air temperature

increases from 14.0 to 24.8�C and the globally averaged ocean temperature rises from 5.1
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Figure 1

Globally averaged steric sea level change in scenario 1 (black line) and scenario 2 (grey line). The dashed line

indicates the halt of CO2 increase in scenario 2.
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to 10.4�C. Temperature and salinity in the year 2001 are different to scenario 1, because

the default initial settings in version 2.7 are different to version 2.6. While the surface air

temperature and the temperature in the surface layer of the ocean directly respond (within

a few decades) to the halt of CO2 increase after 423 years, the ocean temperature in the

deeper layers still rises during several hundred years more due to the inertial nature of the

oceanic processes. Globally averaged salinity in this scenario rises from 34.864 to

34.885 psu, even though great amounts of snow and ice melt. This is not yet understood

but may be caused by numerical problems in the salinity fluxes during the computation

(Michael Eby, personal communication). In this scenario, the globally averaged sea-level

rises by 2.3 m due to the steric effect (Fig. 1). That is almost twice the sea-level rise,

occurring during the time of CO2 increase (first 423 years), which is due to the warming

of the deeper ocean layers that continues well beyond the time of CO2 increase.

In the first 100 years, both scenarios did not differ significantly in global average with

a steric sea-level rise of 0.17 m. The regional steric effect, however, varies in scenario 1

between -0.03 and 0.46 m and in scenario 2 between -0.68 and 1.11 m. Figure 2 shows

the thermosteric and halosteric sea-level change of both scenarios. The strong rising sea

level in scenario 1 in parts of the Atlantic Ocean and south of Africa is in areas where the

heat penetrates rapidly into deeper layers (e.g., Landerer et al., 2005). Between 2001 and

4001, the regional steric sea-level change in scenario 1 ranges from 0.0 to 8.2 m and is

strongly correlated with the sea bottom topography, e.g., the Mid-Atlantic Ridge can be

clearly identified (Fig. 3). This is expected because due to the larger water masses

involved, the warming of deep water columns causes a higher steric effect than the

warming of shallow water columns.

In mid and low latitudes, the steric effect is mainly caused by warming, whereas in

the Arctic Ocean, where the ocean warming is less, between 40 and 90% of the total

effect is caused by decreasing salinity. The change of density due to salinity changes is

higher in colder water and thus the importance of salinity is growing for lower

temperatures, thus in the Polar Regions. This shows that the regional contribution of

salinity can be very important, which has already been observed using in situ data (e.g.,

ANTONOV et al., 2002; ISHII et al., 2006).

In scenario 2, the regional steric effect between 2001 and 4001 varies spatially

between -0.1 and 3.8 m (Fig. 3). The correlation with topography is not as noticeable as

in scenario 1, because the heat does not penetrate as deep as in scenario 1. In scenario 1,

the strongest sea-level rise takes place in the Pacific Ocean; in scenario 2, the Atlantic

Ocean sea level increases most.

4. Gravitational Attraction and Potential

The Earth’s gravitational field, which is produced by the Earth’s internal mass

distribution, reacts to any rearrangement of these masses. In case of the steric effect, there

is no mass change but a rearrangement due to expansion/contraction of seawater that
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mainly acts in a vertical direction. To obtain the gravitational effect caused by the steric

sea-level change here, the ocean surface in year 2001 is considered an equipotential

surface, e.g., the geoid. The expansion of ocean water masses due to the steric effect

causes spatially different vertical movement of the ocean surface and thus any

observation station, especially close to the expanding/contracting water masses, will

observe changes in gravitational attraction and potential.

In this study, the observation stations (e.g., computation points) are located on the

initial ocean surface, thus closest to the changing water masses. Therefore, the steric

effect will place water masses above the observation stations, thus the effect on gravity

will be negative. The steric effect is not uniform across the globe (Figs. 2–3), especially

due to the uneven distribution of continental landmasses and ocean depth. Thus, the

gravitational effect will differ as well and the assumed observation stations will no longer

be located on the initial ocean surface.

The vertical shift of the initial equipotential surface (e.g., geoid) DN can be derived

by the theorem of Bruns (e.g., TORGE, 2003)

DN ¼ DV
g

with DV ¼ V1 � V0; ð3Þ

with V0 being the gravitational potential induced by the initial ocean water mass

distribution. V1 is the gravitational potential of the ocean after its mass has been

redistributed by the steric effect and g is a mean gravity value (e.g., 9.81 m � s-2).

Newton’s law of gravitation (e.g., TORGE, 2003; HEISKANEN and MORITZ, 1967) can

derive the gravitational potential and attraction of any mass distribution. The

gravitational potential is defined as a volume integral over the complete volume v of

the masses considered

V ¼ G

ZZZ
v

1

l
q dv0; ð4Þ

whereas G is the gravitational constant, q the density and l the distance between

computation point and volume element dv0. The gravitational attraction is given by

b
*

¼ grad V ¼ oV
oX

;
oV
oY

;
oV
oZ

� �
: ð5Þ

It is possible to solve the integral given by eq. (4) for elementary bodies such as point

masses, spherical shells and prisms.

In a very simplistic model, the ocean water masses can be considered as a spherical

shell with constant density q0. Due to the steric effect the shell expands and the new

density q1 is given in spherical approximation by

Figure 2

Steric sea-level change between 2001 and 2101; (a) thermosteric effect in scenario 1; (b) thermosteric effect in

scenario 2; (c) halosteric effect in scenario 1; (d) halosteric effect in scenario 2.

b
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q1 ¼ q0 �
R3 � R� dð Þ3

Rþ hð Þ3� R� dð Þ3
; ð6Þ

whereas R is the mean radius of Earth, d the depth of the ocean and h the steric sea-level

rise.

The effect of the steric sea-level change on gravitational potential and attraction can

be calculated by subtracting the potential and attraction of the initial ocean from the

potential and attraction of the expanded ocean. For a spherical shell, the effect on

gravitational potential DV can be derived from eq. (4)

DV ¼ V1 � V0 ¼ pG � 2 q1 h � 2Rþ hð Þ þ q1 � q0ð Þ � d
R
� 2R� dð Þ2þ 1

3
d2

� �� �
: ð7Þ

The effect on gravitational attraction in vertical direction Db follows from eq. (5) by

Db ¼ b1 � b0 ¼ pG � q1 � q0ð Þ � d
R2

� 2R� dð Þ2þ 1

3
d2

� �
; ð8Þ

with b0 being the effect on gravitational attraction induced by the initial ocean water mass

distribution and b1 that of the ocean water masses changed by the steric effect.

Initial insight in to the magnitude of the corresponding effects can be obtained by

applying a spherical shell only (cf. eqs. 7 and 8). This very simplistic model neglects

continents and variations of the ocean depth. Applying eqs. (7) and (8) with radius

R = 6378137 m, density q0 = 1030 kg � m-3, depth d = 5000 m and a steric sea-level

change of h = 5 m, which corresponds to the global average steric effect in scenario 1 in

2000 years, provides the estimates

DV ¼ �1:078 � 10�5m2 � s�2; ð9Þ

Db ¼ �0:4314 � 10�5m � s�2: ð10Þ

With g = 9.81 m � s-2, the resulting shift DN in the geoid can be calculated using the

theorem of Bruns given by eq. (3)

DN ¼ 1:1 lm: ð11Þ

This shift is very small, especially when considering the time (2000 years) in which this

effect occurs. In case all ice would melt, the shift of an equipotential surface can be

almost 100 m (KUHN et al., submitted) and more than one centimeter for the cryospheric

ice-mass decline over the period of 2002 to 2007 (e.g., BAUR et al., submitted).

To obtain a spatial distribution of the effect, the new sea surface, given in the form

of a Digital Elevation Model (DEM) and a Digital Density Model (DDM), can be

Figure 3

Steric sea-level change between 2001 and 4001; (a) thermosteric effect in scenario 1; (b) thermosteric effect in

scenario 2; (c) halosteric effect in scenario 1; (d) halosteric effect in scenario 2.

b
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subdivided into elementary bodies. The DEM and DDM hold the sea surface height and

density information, respectively, in a regular two-dimensional geographic grid. The

most reasonable elementary bodies for a geographic coordinate system are spherical

tesseroids. A spherical tesseroid (Fig. 4) is a body bounded by two concentric spheres

defined by radius r1 and r2, two coaxial cones defined by colatitudes 01 and 02 and two

meridional planes defined by longitudes k1 and k2 (ANDERSON, 1976).

The gravitational potential V in P(0, k, r) of a tesseroid follows from eq. (4) (e.g.,

HECK and SEITZ, 2006)

V ¼ Gq �
Zk2

k0¼k1

ZJ2

J0¼J1

Zr2
r0¼r1

1

l
dv; ð12Þ

with

dv ¼ r
02 sinJ0dr0dJ0dk0; ð13Þ

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cosJ cosJ0 þ sinJ sinJ0 cos k0 � kð Þð Þ

q
: ð14Þ

This is an ellipsoidal integral and thus analytically not solvable. Different approaches can

be used to solve it (e.g., HECK and SEITZ, 2006; KUHN, 2000; ANDERSON, 1976):

Figure 4

Definition of a tesseroid.
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• Numerical integration

• Substitution of tesseroids by prisms having the same volume, density and height as the

tesseroids

• Analytical solution for a computation point P located at the polar axis of the

geographic coordinate system.

Here, only the latter two approaches are considered.

4.1. Substitution of Tesseroids by Mass Equal Prisms

Based on the following relations (e.g., ANDERSON, 1976; KUHN, 2000, 2003)

mtesseroid ¼ mprism; Dz ¼ Dr ¼ r2 � r1; ð15Þ

the dimensions Dx, Dy and Dz of the mass equal prism are obtained by

Dx ¼ rm DJ; Dy ¼ rm cosJm Dk; Dz ¼ Dr: ð16Þ

with

rm ¼ r1 þ r2
2

and Jm ¼ J1 þ J2

2
: ð17Þ

Here Dx, Dy, and Dz represent coordinate differences given with respect to a local

topocentric (3D Cartesian) coordinate system where the z-axis coincides with the local

zenith direction going through the center of the tesseroid.

For the gravitational potential of a homogeneous rectangular prism in a local

topocentric coordinate system (x, y, z) for a computation point P, located in the origin of

the coordinate system, eq. (4) transforms to (e.g., NAGY et al., 2000)

V ¼ G q �
Zx2

x¼x1

Zy2
y¼y1

Zz2
z¼z1

1

l
dv; ð18Þ

with

dv ¼ dx dy dz; l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: ð19Þ

The integration of eq. (18) can be performed analytically and delivers a closed formula

for the gravitational potential

V ¼ G q � xy ln zþ lð Þ þ yz ln xþ lð Þ þ zx ln yþ lð Þjjj

� x2

2
arctan

yz

xl
� y2

2
arctan

zx

yl
� z2

2
arctan

xy

zl
jx2x¼x1

��y2
y¼y1

���z2
z¼z1

;
ð20Þ

and for the vertical component of the gravitational attraction
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b ¼ G q � x ln yþ lð Þ þ y ln xþ lð Þ � z arctanjjj xy

zl
jx2x¼x1

��y2
y¼y1

���z2
z¼z1

: ð21Þ

4.2. Analytical Integration for a Computation Point at the Polar Axis

A closed formula for gravitational potential and attraction of tesseroids can be derived

from eq. (12) for a computation point P located at the polar axis (Z axis) of the

geographic coordinate system with 0 = 0� (HECK and SEITZ, 2006). In this case, the

distance l given by eq. (14) simplifies to

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cosJ0

p
: ð22Þ

To calculate gravitational potential and attraction at any arbitrary location on the

sphere it is necessary to introduce a local geographic coordinate system (essentially a

local polar coordinate system on the sphere) with the local polar axis being coincident

with the local zenith direction going through the computation point P (Fig. 5). Since

global DEM data are usually given with respect to a geographic coordinate system, a

transformation has to be performed for every combination between computation point

and mass element. The transformation of a mass element’s location P0(w0, a0) given with

respect to a local geographic coordinate system into the corresponding location P(u, k) of
the global geographic coordinate system is given by

cosJ0 ¼ cosJ cosw0 þ sinJ sinw0 cos a0; ð23Þ

tan k0 � kð Þ ¼ sin a0

cotw0 sinJ� cosJ cos a0
: ð24Þ

Utilizing the relations in eqs. (23) and (24) the steric sea-level change at point P0(u0, k0)
can be determined from a global grid given in geographic coordinates, e.g., through

interpolation. In spite of the high numerical effort, the results obtained by this method are

numerically accurate because no approximation error is made due to the use of closed

analytical formulas.

4.3. Computation of the Impact of the Steric Effect on the Gravity Field

We developed different FORTRAN codes for the computation of the effect on the

gravitational potential and attraction based on diverse elementary bodies (KUHN, 2000,

2003). The representation of the water masses is done with respect to a geographic

coordinate system by two DEMs containing the height of the lower and upper bound of

the water masses and one DDM containing the lateral variable density. Optionally,

several topographic grids with different spatial resolutions (finest resolution is closest to

the computation point) can be used in order to speed up the global integration.
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Here, the effect on gravitational potential and attraction is the difference between two

separate calculations (cf. eq. (3): DV = V1-V0). The computation of the effect of the

initial ocean is done by setting all elements of the DEM of the upper bound to 0 m, the

elements of the DEM of the lower bound to the bathymetric depth given by UVic ESCM

and all elements of the DDM to a density of 1030 kg � m-3. Although the OGCM

provides variable density information for the initial ocean, the choice is of minor

importance as we only deal with difference values. For the expanded ocean, the upper

bound is represented by the steric height and the density of each element is calculated

with eq. (6), whereas the lower bound remains the same corresponding to the sea bottom

topography.

To quantify the approximation error made by using prisms we compute the

gravitational attraction and potential of a homogeneous spherical shell represented by

global DEMs and DDMs of different spatial resolutions but of constant height and

density. The result is compared to the analytic solution for the spherical shell (cf. eqs. (9)

and (10)). The results in Table 1 were computed using a spherical shell with radius

R = 6378137 m, density q0 = 1030 kg � m-3, depth d = 5000 m and a steric sea-level

change of h = 5 m.

As can be seen in Table 1, the relative error in g0 (initial ocean) and g1 (expanded

ocean) as compared to the reference value for resolutions ranging between 3.6� 9 1.8�
and 0.4� 9 0.4� lies between 4.3�10-5 m s-2 (1.00%) and 0.5�10-5 m s-2 (0.12%). The

approximation error is getting smaller with higher resolutions. Here, only the difference

Dg = g1-g0 is of interest, which shows a much smaller relative error (B0.05%) as

Figure 5

Relation between the (global) geographic coordinate system (k, 0) and the local geographic coordinate system

(a0, w0). Here, the north pole is indicated by N, whereas the local zenith direction through point P is indicated

by N0.
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approximation errors made in g0 and g1 are very similar and thus almost cancel each other

out. Generally, a computation with a resolution of 1.0� 9 1.0� or finer provides an

adequate accuracy for the effect of the steric sea-level change on gravitational attraction.

As the effect on gravitational potential is very small, numerical problems in the

calculation using tesseroids substituted by mass equal prisms occur. The results for the

potential calculated using quadruple precision are shown in Table 1, generally showing

higher relative errors than for the gravitational attraction.

A better solution regarding accuracy and computation time can be found when using

several grids with resolutions dependent on the distance, since the gravitational potential

and attraction effects decrease rapidly with distance, thus a coarser resolution can be used

for more distant masses. For three grids, arranged around the computation point as shown

in Figure 6, the computation time is greatly reduced (about 1 min per point using a

256 MHz processor). The approximation error for V0 and V1 is higher than for a grid with

a resolution of 1.0� 9 1.0�, but the error for the difference DV is much smaller. The

relative error made in DV is at most 25% for a depth of 5000 m and a steric effect of 5 m

and gets smaller for smaller depths and smaller steric sea-level changes. This error level

is considered sufficient to provide the general spatial behaviour of the effect on

gravitational potential. However, it is prudent to treat the absolute magnitudes with care.

5. Results

In order to quantify the effect on gravitational potential and attraction due to steric

sea-level variations obtained from scenario 1, we employed three different computation

techniques. A rough approximation was done by calculating the effect through spherical

shells (cf. eqs. (7) and (8)) (hereafter referred to as ‘shell-method’). The dimension of the

Table 1

Gravitational attraction and potential of the initial ocean (g0/V0, first column) and the expanded ocean (g1/V1,

second column), as well as the difference (Dg/DV, third column) for a spherical shell and grids of different

resolutions. The value for the spherical shell provides the reference value.

Gravitational attraction

g0 [10
-5 ms-2] g1 [10

-5 ms-2] Dg [10-5 ms-2]

Spherical shell 431.4521 431.0208 -0.4314

3.6� 9 1.8� 427.1725 426.7409 -0.4316

1.0� 9 1.0� 429.9593 429.5278 -0.4315

0.4� 9 0.4� 430.9473 430.5158 -0.4315

Gravitational potential

V0 [m
2s-2] V1 [m

2s-2] DV [10-5 m2s-2]

Spherical shell 27518.6087 8077 27518.6087 6999 -1.078

3.6� 9 1.8� 27517.8543 1477 27517.8541 9584 -11.893

1.0� 9 1.0� 27518.5597 3922 27518.5596 8963 -4.959

0.4� 9 0.4� 27518.6084 9243 27518.6084 6736 -2.506

Three grids 27518.5491 3803 27518.5491 2437 -1.366

1144 S. Roedelsperger et al. Pure appl. geophys.,



spherical shell is defined by the depth and steric height of the ocean element directly

beneath each computation point, thus neglecting the spatial variation of steric sea level

around the computation point.

A more precise calculation was done for tesseroids expressed by mass equal prisms

according to eqs. (20) and (21) (hereafter referred to as ‘prism-method’). For the effect

on gravitational potential, the grid configuration shown in Figure 6 was used. Steric

height and ocean depth were interpolated from the original resolution of 3.6� 9 1.8�
given by UVic ESCM to the required resolutions using the cubic interpolation

algorithm provided by Matlab (MATHWORKS, 2002). The density was then calculated

applying eq. (6).

Furthermore, the effect on gravitational attraction and potential was calculated using

the closed formulas for tesseroids given by eqs. (12), (13) and (22) (hereafter referred

to as ‘tesseroid-method’). As discussed in paragraph 4.2, the data (density and steric

height), given in a global geographic coordinate system has to be transformed for each

computation point into a local geographic coordinate system. Since the tesseroid

formulas are analytical, a grid resolution of 1.8� 9 0.9� in the local coordinate system

is sufficient. The spherical coordinates of all elements in the local geographic

coordinate system were transformed into the global geographic coordinate system using

eqs. (23) and (24). Depth, steric height and density were then adopted from the nearest

neighbour.

Figure 7(a) shows the spatial distribution of the effect of the steric sea-level change

on gravitational attraction calculated with the prism-method in scenario 1. The

corresponding steric sea-level change was given in Figure 3(a).

The effect on gravitational attraction ranges from 0.0 to -0.7�10-5 m s-2. According

to the steric effect always being positive, the effect on gravitational attraction is always

negative (due to the expansion some water masses are located above the computation

point). The relation between the effect on gravitational attraction and the steric sea-level

change is practically linear. The main effect on gravitational attraction is caused by the

Figure 6

Configuration of three grids in different spatial resolutions.
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element near the computation point, and the influence decreases rapidly with distance.

It is practically zero for elements located at a spherical distance of more than 5�. Thus,
the effect over land is practically zero.

The dominating effect of the elements in the immediate vicinity of the computation point

can be seen as well, when the effect on gravitational attraction is calculated with the shell

method. The result is not shown here, since the figure is basically the same as Figure 7(a).

The mean deviation between the shell-method and the prism-method for the effect on

gravitational attraction is ±5�10-9 m s-2 with a maximum deviation of 7.0�10-8 ms-2

located in the Arctic Ocean. There, the dimensions of the prisms are smallest and therefore

the approximation with a spherical shell shows a higher approximation error. For the

absolute value of gravitational attraction (g0 or g1), the error is much higher with a mean

deviation of ±72�10-5 m s-2 and a maximum of 130�10-5 m s-2. Thus, for the absolute

value, elements in greater distances have a greater impact.

Calculating the effect on gravitational attraction with the tesseroid-method shows a

similar image as well. The difference between this method and the prism-method is with
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a mean deviation of ±5.7�10-8 m s-2 and a maximum deviation of 8.0�10-7 ms-2 about

one order of magnitude higher than the difference between the prism- and the shell-

method. However, for the single gravitational attraction of the water masses, the mean

deviation is ±23�10-5 m s-2 and the maximum difference amounts to 52�10-5 m s-2.

The differences are in part caused by the approximation error of the prism method,

although probably mostly by mass changes due to the very simple interpolation of the

DEM data (near-neighbor). Generally, the prism- and the shell-method show a good

accordance in terms of the gravitational effect caused by the steric sea-level change. For

the gravitational attraction of the water masses, the difference between the prism- and

tesseroid-method is smaller.

The computation with the shell-method for the effect on gravitational potential gives

values between 0.0 and 2.9�10-5 m2s-2 and the general behavior is similar to the effect

on gravitational attraction. Using the tesseroid-method, the effect ranges from

-3.2�10-3 m2s-2 to 6.1�10-3 m2s-2 (Fig. 7(b)). Generally, the effect on gravitational

potential is negative in continents or shallow water regions and positive in deep ocean

regions, with the highest effect coincident with the highest steric sea-level change. Thus,

the values are not only two orders of magnitude larger than the values obtained by the

shell-method, but also have different signs. The prism-method delivers a similar

distribution. The mean deviation between the prism- and the tesseroid-method is

1.2�10-4 m2s-2 with a maximum difference of 7.9�10-4 m2s-2.

The reason for the different magnitude between the value obtained from the shell-

method and the prism-method can be found by looking at the effect of a single small

element. Figure 8 shows the contribution of a small tesseroid with constant mass for the

expansion of a spherical shell in function of the distance from the computation point. For

a very small area around the computation point, the effect of the expansion on

gravitational potential is positive. Then a minimum with negative value is reached and

the effect converges to zero. For a homogeneous spherical shell, the contribution of

elements with a negative effect exceeds slightly. For an asymmetrical expansion, mostly

caused by the irregular distribution of land-masses, the effect on gravitational potential

can as well be positive and much larger.

In general, this shows that the effect on gravitational potential is not only dependent

on the magnitude of the sea-level change, but also highly dependent on the variability of

the steric effect in its immediate vicinity. An outstanding large steric change causes a

high positive effect on potential and an outstanding low steric change causes a high

negative effect on gravitational potential. This can be seen at the continents near the

coast, where the steric effect at the computation point is zero and nearby sea-level change

leads to a high negative potential difference. Therefore, for instance, Australia and

islands will undergo a stronger negative change in the potential difference than huge

land-masses like Europe and Asia.

Using Bruns theorem given by eq. (3) to calculate the effect on geoid heights delivers

values ranging between -0.3 and 0.6 mm, which is considerably higher than the effect

estimated with the spherical shell (cf. eq. 11), but still very small.
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6. Conclusion

This study analysed two climate model runs, performed with the UVic ESCM, in

terms of long-term changes of ocean temperature, salinity and steric sea level and the

impact of the latter on the Earth’s gravity field. They do not represent a prediction of the

future, since both should be considered as worst-case or even impossible scenarios

(especially scenario 1).

Over 2000 years, the steric effect causes a globally averaged sea-level rise of more

than 5 m and 2 m in scenario 1 and 2, respectively. The highest sea-level rise occurs in

the open and deep ocean. On a global average, about 97% of this sea-level rise is induced

by temperature changes. During the first 100 years, the globally averaged steric sea-level

rise is 0.17 m in both scenarios, which is in agreement with the fourth IPCC report

(MEEHL et al., 2007), although at the lower end of the projected sea-level changes.

For scenario 1, the impact of the steric effect on the gravity field was computed. The

change of gravitational attraction ranges from 0.0 to -0.7�10-5 m s-2. The relationship

of steric sea-level change and gravitational attraction is almost linear with a factor of

-0.086 � 10-5 ms-2 per 1 meter steric sea-level rise. While these effects are considerable

compared to other geophysical effects that have smaller signals, the change in geoid

height is rather small and ranges between -0.3 and 0.6 mm.
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For the computation of gravitational potential, the tesseroid-method is very efficient

and the calculation is much faster than the prism-method. However, in this case a very

simple interpolation without mass conservation was used. For a more accurate

interpolation, the computation time will increase considerably. The shell-method shows

a very good accordance with the prism-method in the effect on gravitational attraction but

cannot be used for the calculation of the effect on gravitational potential.

Since the steric sea-level change will be accompanied by mass changes due to water

exchange with landice and other terrestrial water storages, these effects will exceed the

effect on the gravitational potential and attraction due to steric effect in magnitude

several times (e.g., MAKARYNSKYY et al., 2006; KUHN et al., submitted; BAUR et al.,

submitted). For example Kuhn et al. (submitted) have shown that the maximum shift of

an equipotential surface can be almost 100 m if all currently land-based ice masses melt.

For cryospheric melting over the last 5 years BAUR et al. (submitted) show a maximum

shift of more than 1 centimeter.

The effects shown here have to be considered as maximum effects and are assumed to

occur over the rather long time period of 2000 years. Therefore, for the steric effect

expected in the next few hundred years the gravitational and potential effect will be much

smaller and can be safely neglected for the gravitational potential.

To the authors’ best knowledge, this study shows for the first time numerical evidence

that the gravitational effects caused by the steric effect are indeed very small but not zero.

The effects on gravitational attraction cannot be sensed by satellite missions such as

CHAMP, GRACE and in the future GOCE, but could be sensed with precise, absolute

gravimeters.

Acknowledgements

This study was funded by Australian Research Council (ARC) Discovery Project grant

DP0345583 and financially supported by the Frauenförderung of Darmstadt University of

Technology, Germany. This is TIGeR Publication number 106.

REFERENCES

ANDERSON, E.G. (1976), The effect of topography on solutions of Stokes’ problem, Unisurv. Report S.14, School

of Surveying and Spatial Information Systems, University of New South Wales, Australia, 252 pages.

ANTONOV, J.I., LEVITUS, S., and BOYER, T.P. (2002), Steric sea-level variations during 1957–1994: Importance of

salinity, J. Geophys. Res. 107 (C12). doi:10.1029/2001JC000964.

ANTONOV, J.I., Levitus, S., and BOYER, T.P. (2005), Thermosteric sea level rise, 1955–2003, Geophys. Res. Lett.

32, L12602. doi:10.1029/2005GL023112.

BAUR, O., KUHN, M., and FEATHERSTONE, W.E. (submitted), GRACE-derived ice-mass variations and their effect

on global sea-level change patterns. J. Geophys. res.

BINDOFF, N.L., WILLEBRAND, J., ARTALE, V., CAZENAVE, A., GREGORY, J., GULEV, S., HANAWA, K., LE QUéRé, C.,

LEVITUS, S., NOJIRI, Y., SHUM, C.K., TALLEY, L.D., UNNIKRISHNAN, A. (2007), Observations: Oceanic climate

Vol. 165, 2008 Steric Sea-Level Change 1149



change and sea level, In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I

to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M.

Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds.) (Cambridge University Press,

Cambridge, United Kingdom and New York, NY, USA).

CAZENAVE, A., and Nerem, R.S. (2004), Present-day sea level change: Observations and causes, Rev. Geophys.

42, RG3001. doi: 10.1029/2003RG000139.

CHURCH, J.A., WHITE, N.J., COLEMAN, R., LAMBECK, K., and MITROVICA, J.X. (2004), Estimates of the regional

distribution of sea-level rise over the 1950 to 2000 period, J. Clim. 17 (13), 2609–2625.

CHURCH, J.A., and WHITE, N.J. (2006), A 20th century acceleration in global sea-level rise, Geophys. Res. Lett.

33, L01602. doi: 10.1029/2005GL024826.

DOUGLAS, C.D., and PELTIER, W.R. (2002), The puzzle of global sea-level rise, Physics Today 55 (3), 35–40.

FARRELL, W.E., and CLARK, J.A. (1976), On postglacial sea level, Geophys. J. R. astr. Soc. 46, 647–667.

HECK, B., and SEITZ, K. (2006), A comparison of the tesseroid, prism and point-mass approaches for mass

reductions in gravity field modeling, J. Geodesy. doi: 10.1007/S00190–006-0094-0.

HEISKANEN, W.A., and MORITZ, H., Physical Geodesy (W.H. Freeman and Company, USA, 1967), 364 pages.

HOLGATE, S.J., and WOODWORTH, P.L. (2004), Evidence for enhanced coastal sea-level rise during the 1990s,

Geophys. Res. Lett. 31, L07305. doi: 10.1029/2004GL019626.

HOUGHTON, J. T., Global Warming, The Complete Briefing, Third Edition (University Press, Cambridge, 2004).

ISHII, M., KIMOTO, M., SAKAMOTO, K., and IWASAKI, S. (2006), Steric sea-level changes estimated from historical

ocean subsurface temperature and salinity analysis, J. Oceanog. 62 (2), 155–170.

KEELING, C.D., and WHORF, T.P. (2005), Atmospheric CO2 records from sites in the SIO air sampling network.

In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak

Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.

KUHN, M. (2000), Geoidbestimmung unter Verwendung verschiedener Dichtehypothesen. Deutsche Geodätische

Kommission, Reihe C, Heft 520, München.

KUHN, M. (2003), Geoid determination with density hypothesis from isostatic models and geological

information, J. Geodesy 77, 50–65.

KUHN, M., FEATHERSTONE, W.E., MAKARYNSKYY, O., and KELLER, W., Changes in the Earth’s gravity field, global

sea-level and land-ocean distribution from a simulated total melt of polar ice sheets, Global Planet Change,

submitted.

LANDERER, F.W., JUNGCLAUS, J.H., and MAROTZKE, J. (2005), Regional dynamic and steric sea-level change in

response to the IPCC-A1B scenario, J. Phys. Oceanog., in press.

LOMBARD, A. et al. (2006), Perspectives on present-day sea-level change: A tribute to Christian le Provost,

Ocean Dyn. 56 (5–6). doi: 10.1007/ s10236-005-0046-x.

MAKARYNSKYY, O., KUHN, M., and FEATHERSTONE, W.E. (2005), Modelling future sea-level change under

greenhouse warming scenarios with an Earth System Model of intermediate complexity. In Gravity, Geoid

and Space Missions Jekeli, C., Bastos, L., Fernandez J., (eds.), . IAG Symposia 129 (Springer Berlin,

Heidelberg, New York, 2005) pp. 260–265.

MAKARYNSKYY, O., KUHN, M., EATHERSTONE W.E. (2007), Long-term sea level projections with two versions of a

global climate model of intermediate complexity and corresponding changes to the Earth’s gravity field,

Comp. Geosci., 33 (8),1036–1051. doi: 10.1016/j.cageo.2006.11.003.

MATHWORKS (2002), Matlab, Version 6.5 Release 13, The MathWorks, Inc.

MEEHL, G.A., STOCKER, T.F., COLLINS, W.D., FRIEDLINGSTEIN, P., GAYE, A.T., GREGORY, J.M., KITOH, A., KNUTTI,

R., MURPHY, J.M., NODA, A., RAPER, S.C.B., WATTERSON, I.G., WEAVER, A.J., and ZHAO, Z.-C. (2007), Global

Climate Projections. In Climate Change 2007: The Physical Science Basis. Solomon, S., Qin, D., Manning,

M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., (Eds.), Contribution of Working Group I to

the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University

Press, Cambridge, United Kingdom and New York, USA.

MEIER, M.F., and WAHR, J.M. (2002), Sea level is rising: Do we know why? Proc. Nat. Acad. Sci. 99(10),

pp. 6524-6526.

NAGY, D., PAPP, G., and BENEDEK, J. (2000), The gravitational potential and its derivatives for the prism,

J. Geodesy 74, 552–560.

SOLOMON, S., QIN, D., MANNING, M., ALLEY, R.B., BERNTSEN, T., BINDOFF, N.L., CHEN, Z., CHIDTHAISONG, A.,

GREGORY, J.M., HEGERL, G.C., HEIMANN, M., HEWITSON, B., HOSKINS, B.J., JOOS, F., JOUZEL, J., KATTSOV, V.,

1150 S. Roedelsperger et al. Pure appl. geophys.,



LOHMANN, U., MATSUNO, T., MOLINA, M., NICHOLLS, N., OVERPECK, J., RAGA, G., RAMASWAMY, V., REN, J.,

RUSTICUCCI, M., SOMERVILLE, R., STOCKER, T.F., WHETTON, P., WOOD, R.A., and WRATT, D. (2007), Technical

Summary. In Climate Change 2007: The Physical Science Basis. Solomon, S., Qin, D., Manning, M., Chen,

Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., (Eds.), Contribution of Working Group I to the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,

Cambridge, United Kingdom and New York, USA, pp. 19–91.

TORGE, W., Geodäsie (Walter de Gruyter GmbH & Co KG, Berlin 2003), 369 pages.

WEAVER, A.J., EBY, M., WIEBE, C.E., BITZ, C.M., DUFFY, P.B., EWEN, T.L., FANNING, A.F., HOLLAND, M.M.,

MACFADYEN, A., MATTHEWS, H.D., MEISSNER, K.J., SAENKO, O., SCHMITTNER, A., WANG, H., and YOSHIMORI, M.

(2001), The UVic Earth System Climate Model: Model description, climatology, and applications to past,

present and future climates, Atmosphere-Ocean 39 (4), 361–428.

WILLIS, J.K., Roemmich, D., and Cornuelle, B. (2004), Interannual variability in upper-ocean heat content,

temperature and thermosteric expansion on global scales, J. Geophys. Res. 109, C12036. doi: 10.1029/

2003JC002260.

(Received January 23, 2007, revised February 26, 2008, accepted March 19, 2008)

Published Online First: July 11, 2008

To access this journal online:

www.birkhauser.ch/pageoph

Vol. 165, 2008 Steric Sea-Level Change 1151



A Fractal Interaction Model for Winding Paths through Complex

Distributions: Application to Soil Drainage Networks

MIGUEL ÁNGEL MARTÍN,1 and MIGUEL REYES
2

Abstract—Water interacts with soil through pore channels putting mineral constituents and pollutants into

solution. The irregularity of pore boundaries and the heterogeneity of distribution of soil minerals and

contaminants are, among others, two factors influencing that interaction and, consequently, the leaching of

chemicals and the dispersion of solute throughout the soil.

This paper deals with the interaction of irregular winding dragging paths through soil complex distributions.

A mathematical modelling of the interplay between multifractal distributions of mineral/pollutants in soil and

fractal pore networks is presented.

A Hölder path is used as a model of soil pore network and a multifractal measure as a model of soil complex

distribution, obtaining a mathematical result which shows that the Hölder exponent of the path and the entropy

dimension of the distribution may be used to quantify such interplay. Practical interpretation and potential

applications of the above result in the context of soil are discussed. Since estimates of the value of both

parameters can be obtained from field and laboratory data, hopefully this mathematical modelling might prove

useful in the study of solute dispersion processes in soil.

Key words: Hölder curves, multifractal distributions, soil drainage networks.

1. Introduction

River basins distribute water stored in the soil by releasing it gradually into a complex

network that involves a great disparity of length scales from the soil pore channels to the

river basin boundaries. Along the way, water interacts with the basin, putting mineral

constituent or soil pollutants into solution.

Percolation network theory and fractal models recently have been used for modelling

the spreading of solute through porous media during saturated flow. ADLER (1985)

considered dispersion in fractal capillary networks, REDNER et al. (1987) studied mech-

anical dispersion in a self-similar model of a porous medium, and MAZO (1998) studied

different aspects of dispersion in fractal media. Fractal curves and networks appear as
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natural models for irregular geophysical boundaries, river basins or percolation channels

(MANDELBROT, 1982; FEDER, 1988; RODRÍGUEZ-ITURBE and RINALDO, 1997).

On the other hand, distributions of nutrients and pollutants in soil demonstrate, as

many other soil properties, high spatial and temporal variability. KRAVCHENKO et al.

(1999) have shown that spatial distributions of soil phosphorus and potassium contents,

organic matter contents, calcium and magnesium contents, and cation exchange capacity

present highly heterogeneous patterns close to mathematical multifractal distributions.

Similarly, mineral deposits have been shown to follow multifractal features (CHENG et al.,

1994; AGTERBERG et al., 1996). These observations imply that the distributions are

generally sparse, and denser and rarer regions follow certain scaling regularity. Such

heterogeneity should have profound influence on leaching of metals and nutrients,

dispersion of solutes throughout the soil, and other transport processes. Both, pore space

geometry and the probability that particles or molecules have of being moved from the

soil matrix to flow into the pore space, will affect solute transport (PERFECT and SUKOP,

2001). Thus, it is worthwhile to consider modelling the interplay between the complex

geometry of pore networks and the heterogeneity of the mass distribution of soil

components able to be transported through pore channels during saturated flow.

The objective of this work was to model such mass-geometry interplay using fractal

dimension of branched transport pathways and the entropy dimension of spatial

distributions of solute concentrations. In section 2 the model is developed and a

mathematical result for the model is presented. A precise original mathematical proof of

the theoretical result, supporting the value of this modelling, is given. In section 3 the

practical interpretation and potential applications of the above result in the context of soil

are discussed.

2. A Fractal Interaction Model for Winding Dragging Paths through Soil

Complex Distributions

Mathematically speaking, a fractal network is a connected (possibly self-intersecting)

curve or path of fractal (Hausdorff) dimension D. In an abstract setting, this concept

directly corresponds with that of Hölder exponent of a continuous path. Since self-similar

connected sets of points can be parameterized by means of continuous (Hölder) paths of

the same Hausdorff dimension (REMES, 1998; MARTIN AND MATTILA, 2000) we shall model

winding pore channels as the image of a Hölder map f : A �! R
3; A 
 R; that is, a map

verifying jf ðxÞ � f ðyÞj � cjx� yja for all x, y [ A, with 0 < a B 1 and c < ?. This model

will allow us to obtain exact mathematical results that shall be interpreted later in a

practical setting.

On the other hand the entropy dimension is a classical parameter used to quantify

heterogeneity of mass distributions (RENYI, 1957) that may be estimated in real

distributions by means of multifractal analysis of field data (see next section).
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The above abstract modelling will allow us to give in this section a precise original

proof of the following result which shows how the entropy dimension D1 of the

distribution and the Hölder exponent a of the path, play an important role in measuring

the physical interplay between both structures.

Result: Let l be a multifractal measure being D1 the entropy dimension. Suppose

further that f : A �! R
n is an a-Hölder map such that c ¼ f ðRÞ 
 S and 1/a < D1.

Then l(c) = 0.

2.1. Preliminaries

The mathematical result is crucial for supporting the model. Next we present precise

definitions and previous results needed.

Given a finite measure l on R
n (or mass distribution), the local dimension (or local

Hölder exponent) of l at x 2 R
n is given by (see e.g., FALCONER, 1997)

dimloc lðxÞ ¼ lim
r#0

log l Bðx; rÞð Þ
log r

if this limit exists, where B(x,r) denotes the closed ball Bðx; rÞ ¼ fy 2 R
n :

jy� xj � rg; x 2 R
n and 0 < r < ?.

For 0 B s B n the s-dimensional Hausdorff measure of a set E 
 R
n is

HsðEÞ ¼ lim inf
d#0

X1
i¼1

dðSiÞs : E 

[1
i¼1

Si; dðSiÞ� d

( )
:

In particular, the Hausdorff measure Hn is a constant multiple of the Lebesgue measure

Ln:

If E is the support of the measure l and P ¼ fAi : i ¼ 1; . . .; ng is a partition of E, the

Shannon entropy of l with respect to P is given by (SHANNON, 1948)

HlðPÞ ¼ �
Xn
i¼1

lðAiÞ log lðAiÞ

If

HlðeÞ ¼ inffHlðPÞ : dðPÞ� eg

being dðPÞ ¼ max1� i� nfdðAiÞg; where d stands for the diameter, the entropy dimension

of l is defined by (RENYI, 1957)

D1 ¼ lim
e!0

HlðeÞ
� log e

The Hausdorff dimension of a set E 
 R
n is defined by
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dimH E ¼ inffs : HsðEÞ ¼ 0g ¼ supfs : HsðEÞ ¼ 1g:

If m B n, 0 < a B m, and A 
 R
m we shall denote by LipaðA;RnÞ the set of Hölder

continuous maps f : A �! R
n; that is

LipaðA;RnÞ ¼ ff : A �! R
n : 9L\1 with f ðxÞ � f ðyÞj j � Ljx� yja; 8x; y 2 Ag:

The number

L ¼ sup
jf ðxÞ � f ðyÞj

jx� yja : x; y 2 A; x 6¼ y

� �
is called the Hölder constant of f.

The next theorem plays an important role in the proof of our results (see MATTILA, 1995).

2.2. Theorem (Besicovitch’s Covering Theorem)

There are integers P(n) and Q(n) depending only on n with the following properties.

Let A be a bounded subset of Rn; and let B be a family of closed balls such that each point

of A is the center of some ball of B:

a) There is a finite or countable collection of balls fBig 
 B such that they cover A and

every point of Rn belongs to at most P(n) balls Bi, that is,

vA �
X
i

vBi
�PðnÞ

where vA denotes the characteristic function of A.

b) There are families B1; . . .;BQðnÞ 
 B covering A such that each Bi is disjoint, that is,

A 

[QðnÞ
i¼1

[
B2Bi

B and B \ B0 ¼ ; for B;B0 2 Bi with B 6¼ B0

A Hölder map f : A �! R
3; A 
 R; gives a parameterization of a fractal path

(MATTILA, 1995). If the image f(A) is embedded in the support S of a mass distribution,

one natural problem is to relate the heterogeneity of the mass distribution, being this

measured via the entropy dimension, with the Hölder exponent of the map, in order to

create the possibility that the image f (A) can catch a positive amount of mass. The next

theorem deals with this problem. It is presented in a general form for distributions in R
n:

2.3. Theorem

Let l be a measure supported on E 
 R
n; with entropy dimension D1, and

0 < s < D1. Then, for any (m/s)-Hölder map f : A �! R
n; A 
 R

m; we have
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l E \ f ðAÞð Þ ¼ 0:

Proof. We may assume that d(E) < 1. Since the entropy dimension is D1, then (YOUNG,

1982):

lim
r!0

log l Bðx; rÞð Þ
log r

¼ D1 at l� almost all points x 2 E:

If s < D1 is easy to show that

lim
r!0

l Bðx; rÞð Þ
rs

¼ 0 at l� almost all points x 2 E:

Presume now, contrary to the assertion, that for some s < D1 there exists an

(m/s)-Hölder map f : A �! R
n; A 
 R

m; with l E \ f ðAÞð Þ[ 0: Take d > 0 such that

l E \ f ðAÞð Þ[ d: By Egorov’s theorem, there is Ed, E such that l(Ed) > l(E) - d and

lim
r!0

l Bðx; rÞð Þ
rs

¼ 0 uniformly on Ed:

Moreover, since l E \ f ðAÞð Þ[ d; then l Ed \ f ðAÞð Þ[ 0:

Since Hölder maps can be extended (see VI.2.2 in STEIN, 1970) it may be surmesed

that A is open and that LmðAÞ\1:

Since l-almost all points of Ed \ f ðAÞ are l-density points (see, for example, 2.14 in

MATTILA, 1995), then for l-almost all x 2 Ed \ f ðAÞ one has

lim
r!0

l Ed \ f ðAÞ \ Bðx; rÞð Þ
l Bðx; rÞð Þ ¼ 1

and then

lim
r!0

l Ed \ f ðAÞ \ Bðx; rÞð Þ
rs

¼ 0

Let e > 0 arbitrary. Then there is R > 0 such that

l Ed \ f ðAÞ \ Bðx; rÞð Þ
rs

\e ð1Þ

for r B R and for l-almost all x 2 Ed \ f ðAÞ:
Let consider now the covering of Ed \ f ðAÞ formed by balls B(x,R), x[Ed. Applying

Besicovith covering theorem 2.2, we can get a sequence of balls {Bk} verifying (1) such

that

Ed \ f ðAÞ 

[
k

Bk

Moreover, that sequence may be grouped in a finite number of families B1; . . .;BQðnÞ
being Q(n) a constant depending only on n, such that B \ B0 ¼ ; for B;B0 2 Bj with

B = B0.
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It follows that there is at least one of these families, say Bj; such thatX
Bi2Bj

l Bi \ Ed \ f ðAÞð Þ� 1

QðnÞ l Ed \ f ðAÞð Þ

Since the balls Bi all have the same radius, the family of balls Bj is finite. Say

Bj ¼ fB1; . . .;BNg: Thus one has

N e Rs �
XN
i¼1

l Bi \ Ed \ f ðAÞð Þ� 1

QðnÞ l Ed \ f ðAÞð Þ

and thus

N� l Ed \ f ðAÞð Þ
eQðnÞ R�s

Let Bi = B(xi,Re) with xi 2 Ed \ f ðAÞ; Ai = f-1(Bi) and yi[Ai with f (yi) = xi. The Hölder

condition implies that

B0
i ¼ B yi; L

�s=mRs=m
� �


 Ai 
 A and LmðB0
iÞ� cmR

s:

Moreover, since the balls {B1,. . ., BN} are disjoints, the balls {B0
1,. . ., B

0
N} are also

disjoints. Then

LmðAÞ�
XN
i¼1

LmðB0
iÞ�

l Ed \ f ðAÞð Þ
eQðnÞ R�scmR

s ¼ l Ed \ f ðAÞð Þcm
eQðnÞ

Since l Ed \ f ðAÞð Þ[ 0; cm > 0 and e > 0 is arbitrary, then LmðAÞ ¼ 1 which is a

contradiction, and the statement follows. h

2.4. Remark

Notice that rectifiability properties are studied above through coverings formed by

balls of equal radius, due to the use of Besicovitch covering theorems instead of Vitali’s

type that render covering by balls of different sizes. For distributions coming from

computer simulation of dynamical systems or else experimental distributions, this seems

more convenient: one may not only be interested in limiting properties as rectifiability but

also in scaling properties of coverings of controlled size, as obtained in the proof of

theorem 2.3.

The entropy dimension thus appears as a degree of accessibility to the mass through

continuous paths, giving a measure of the tortuosity needed to catch an important amount

of mass.

Invariant measures of dynamical systems produce typical examples of multifractal

measures (PESIN, 1996). In the important case of self-similar measures, the result above

takes a specific parameterized formulation. Namely, if {f1,. . ., fN} are contractions in R
n
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and {p1,. . ., pN} are positive numbers such that
P

i=1
N pi = 1, there is a unique measure

verifying

l ¼
XN
i¼1

pil 	 f�1
i ;

which is called the invariant measure associated to the iterated function system {f1,. . .,fN;

p1,. . ., pN}. In the case that the {f1,. . ., fN} are similarities one has the following result.

2.5. Corollary

Let {f1,. . .,fN} be similarities in R
n with contraction ratios fr1; . . .; rNg; fp1; . . .; pNg

positive numbers such that
PN

i¼1 pi ¼ 1; and let l be the invariant measure with respect

to the iterated function system {f1,. . .,fN; p1,. . .,pN}. Suppose that l fiðEÞ \ fjðEÞ
	 


¼ 0 for

i = j being E the support of l. Then if

0\s\
PN

i¼1 pi log piPN
i¼1 pi log ri

for any (m/s)-Hölder map f : A �! R
n; A 
 R

m; we have l E \ f ðAÞð Þ ¼ 0:

Proof. It is a direct consequence of the fact that the entropy dimension of self-similar

measures is given by the formula (DELIU et al., 1991):

D1 ¼
PN

i¼1 pi log piPN
i¼1 pi log ri

h

3. Applications to Soil Drainage Networks

Field data corresponding to soil properties can be collected in one, two or three spatial

dimensions. The characteristics (i.e., shape, size and connectivity) of pore networks are

often studied by two-dimensional image analysis of thin sections. Similarly, information

on the spatial variability of soil properties is usually collected at different sites (points)

located along a transect or over a given area. Thus, fractal modelling of the boundaries of

pore channels and capillaries can be made by means of fractal curves and networks.

Analogously, mineral or contaminant concentrations in soil may be represented by means

of a mass distribution. We develop in this section a mass-geometric fractal modelling of

the interplay between pore space geometry and the mass distribution of nutrients and

contaminants.
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3.1. Fractal Pore Channel Networks

Soil is formed by an intricate arrangement of solid particles and voids (pores) with

connecting pore channels through which fluid flow and solute transport take place. A

number of different approaches have been used to model this situation (JURY and FLÜER,

1992), including those which apply fractal and percolation models (SAHIMI, 1993; ADLER,

1985; among others). The fractal nature of pore boundaries within a range of scales has

been demonstrated. The concept of tortuosity applied to pore channels, widely used in

soil sciences, has a precise meaning in terms of the scaling behavior of the length of

pores. Although a wide variety of models has been used to describe pore geometry

(PERFECT and SUKOP, 2001) an ideal pore channel may be modelled by a fractal curve.

In order to quantify pore channel tortuosity the boundary fractal dimension D is used

which is defined by means of the scaling equation (KAMPICHCHLER and HAUSER, 1993;

ANDERSON et al., 1998; PACHEPSKY et al., 1996):

LðeÞ � L1e
1�D

where L(e) is the measured length using a yardstick of normalized length e, and L1 is the

measured length when e is equal to unity.

Different values for the fractal dimension of pore boundaries ranging from 1.06 to

1.51 have been found. Also the effect of management practices on such values has been

studied (PACHEPSKY et al., 1996).

3.2. Parameterizing Heterogeneity of Soil Distributions

The distribution of soil mineral components and pollutants also show a high spatial

variability. Since water interacts with soil mineral constituents and pollutants through

soil pore channels, the spatial variability of their concentrations is a factor that should

be taken into account in the study of solute dispersion processes. Thus, the geometry of

the distribution of some soil minerals or contaminants is a crucial feature to determine

the accessibility of pore channels to disperse soil componentes. For studying those

distributions one may consider a measure or distribution that assigns to every region

E the quantity l(E) of a certain component located in that region. Typically l(E)
depends on the location of that region of the medium and varies widely with respect to

the volume of E, having the main features of multifractal measures. This implies that,

being sparse within the solid matrix, there exists denser and rarer regions following

certain scaling regularity. In order to characterize the complexity of the spatial

distribution, multifractal analysis may be used to estimate the Renyi spectrum of

dimensions which include the entropy dimension as a significant dimension (see

EVERSTZ and MANDELBROT, 1992).

Let S be the support of a distribution l (for methodological reasons we use a two-

dimensional model here). Let P ¼ fRigNi¼1 be a collection of squares of side length e (see
Fig. 1) that represent a partition of S.
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The Renyi dimensions are defined as

Dq ¼
1

q� 1
lim
e!0

log
PNðeÞ

i¼1 liðeÞq

log e
;

for q = 1, being D1 the entropy dimension computed by

D1 ¼ lim
e!0

PNðeÞ
i¼1 liðeÞ log liðeÞ

log e
:

The dimension D0 is called the capacity dimension which agrees with the fractal

dimension of the support S.

When Dq is a decreasing function of q, l is called a multifractal distribution.

3.3. Application to Soil Drainage

The theoretical result of section 2 may be interpreted in the practical context of soil. It

suggests to use the exponent D1 - D as an indicator that might reflect the likelihood of

leaching or dispersion of soil chemicals and minerals, based solely on the physical

interplay between the pore boundary and chemical molecules. The greater the index is the

higher is the probability of chemical molecules to be dispersed into the water pore

channel. This probability would diminish when the difference D1 - D approaches zero

and increases when it becomes negative. The greater the entropy dimension is, the more

tortuosity for the channel is needed, and thus this parameter may be used as a measure of

the risk of mineral loss by illuviation.

In the case of soil contaminants it would measure the risk of exporting pollution

to the surrounding areas. Particle size soil distributions have been shown to obey

fractal scaling laws (TURCOTTE, 1986; TYLER and WHEATCRAFT, 1990) and the power-

scaling exponent has been related with tortuosity (TYLER and WHEATCRAFT, 1989).

Figure 1
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Thus the knowledge of such exponent or other entropy-like quantities (MARTÍN et al.,

2001) characterizing texture, together with the entropy dimension of certain

distributions of soil mineral, provide valuable information that may be used for

the diagnosis of soils and eventually may be of help in implementing adequate

policies. In this sense, the potential application might be wide and have a real

value in a practical setting. It is well known that parameters and meaningful indexes,

such as those above, are strongly demanded by soil scientists (DORAN and PARKIN,

1994).

3.4. A Case Study

Soil samples corresponding to an agricultural field (vineyard) located in Central Spain

have been collected. A total number of 256 sampling points in an square lattice was

considered, being the distance between two neighboring points equal to 20 meters. At any

point of the lattice a sample at 25 cm. depth was taken and potassium, phosphorous and

organic matter contents were obtained by laboratory standard techniques. This produces

data sets {li : i = 1, 2,..., 256} corresponding to the respective potassium/phosphorous

and organic matter contents.

The probability measure or mass distribution l is constructed, assigning to any

subsquare R,S a measure or mass

lðRÞ ¼
P

xi2R liP
xi
li

At every li(e) for i = 1, 2,..., N(e) is computed.

The multifractal dimensions Dq are estimated by a least-square fitting of the

corresponding scalings endowed in equation (1), for e ranging from e = 16 to e = 1, and

q ranging from q = -10 to q = 10 with a lag of 0.5. The multifractal dimensions Dq are

plotted against q in Figures 2 and 3.

Coefficients of determination (R2) in those fittings and Dq values range from 0.993 to

0.999 for q values ranging from q = -10 to q = 10.

The estimated values of the entropy dimensions of potassium and phosphorous

distributions were 1.973 and 1.964 respectively which means that both distributions

have followed quite similar heterogeneity patterns. It would mean that both

minerals have a very similar probability to be in contact with soil water during

saturated flow.

Taking into account the increase of the pore boundary dimension value after

tillage and other management practices (PACHEPSKY et al., 1996) the exponent D1 - D

would be affected and consequently the probability of leaching of different minerals

by the effect of watering or rain events. It follows that the use of parameters proposed

here might be useful to assess the planning of management practices in agricultural

fields.
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4. Conclusions

Physical and chemical heterogeneities coexist together and interplay in soil. Under a

modelling of this interplay, the boundary of pore space may be characterized by the

fractal dimension D and the heterogeneity of soil minerals or contaminants chemical may

be characterized by the entropy dimension D1. A mathematical result is precisely derived

and interpreted in a practical context. If D << D1 the pore network has only a small

1,500

1,750

2,000

2,250

2,500

-10 -8 -6 -4 -2 0 2 4 6 8 10

D
q

q

Potassium

Figure 2

1,500

1,750

2,000

2,250

2,500

-10 -8 -6 -4 -2 0 2 4 6 8 10

D
q

q

Phosphorus

Figure 3

Vol. 165, 2008 A Fractal Interaction Model for Winding Paths 1163



probability of catching the chemical mass spread in a heterogeneous multifractal manner.

This probability would diminish when the difference D1 - D approaches zero and

increases when it becomes negative. Although this is a simple and schematic modelling

of a considerably more complex situation, this result relates to factors that influence

solute dispersion and appear unconnected in former studies. Since estimates of the value

of both parameters can be obtained from laboratory and field data, hopefully this

mathematical modelling might be useful in future studies
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The Coherent Pixels Technique (CPT): An Advanced DInSAR Technique

for Nonlinear Deformation Monitoring

PABLO BLANCO-SÁNCHEZ,1 JORDI J. MALLORQUÍ,1 SERGI DUQUE,1 and DANIEL MONELLS
1

Abstract—This paper shows the potential applicability of orbital Synthetic Aperture Radar (SAR)

Differential Interferometry (DInSAR) with multiple images for terrain deformation episodes monitoring. This

paper is focused on the Coherent Pixels Technique (CPT) developed at the Remote Sensing Laboratory (RSLab)

of the Universitat Politecnica de Catalunya (UPC). CPT is able to extract from a stack of differential

interferograms the deformation evolution over vast areas during wide spans of time. The former is achieved

thanks to the coverage provided by current SAR satellites, like ESA’s ERS or ENVISAT, while the latter due to

the large archive of images acquired since 1992. An interferogram is formed by the complex product of two

SAR images (one complex conjugate) and its phase contains information relative to topography, terrain

deformation and atmospheric conditions among others. The goal of differential interferometric processing is to

retrieve and separate the different contributions. The processing scheme is composed of three main steps: firstly,

the generation of the best interferogram set among all the available images of the zone under study; secondly,

the selection of the pixels with reliable phase within the employed interferograms and, thirdly, their phase

analysis to calculate, as the main result, their deformation time series within the observation period. In this

paper, the Coherent Pixels Technique (CPT) is presented in detail as well as the result of its application in

different scenarios. Results reveal its practical utility for detecting and reproducing deformation episodes,

providing a valuable tool to the scientific community for the understanding of considerable geological process

and to monitor the impact of underground human activity.

Key words: Orbital SAR, differential interferometry, deformation monitoring.

1. Introduction

A Synthetic Aperture Radar (SAR) is a coherent imaging sensor able to acquire high

resolution images from orbital platforms independently of the weather or sunlight

conditions (HANSSEN, 2001). All its capabilities have made this technique one of the

fundamentals for Earth observation over oceans as well as over land. The images

obtained from a SAR are complex. The amplitude depends on the scene reflectivity while

its phase, among others, is proportional to the two-way distance from satellite to ground

and therefore to the geometry of the scene. The combination of two SAR images of the

same scene acquired from different orbits, i.e., incidence angles, produces an
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interferogram. The interferogram is obtained by multiplying one image by the complex

conjugate of the other and contains, on a pixel by pixel basis, the phase difference

between the two acquisitions (MASSONET et al., 1993). There is the agreement of calling

one of the images as master and the other as slave. This phase difference can be exploited

in combination with the orbital information for each acquisition to derive a Digital

Elevation Model (DEM) of the scene. This interferometric processing of SAR data

(InSAR) was used for instance by NASA/DLR/ASI for the Shuttle Radar Topographic

Mission (SRTM) to obtain elevation data on a near-global scale for generating the most

complete high-resolution digital topographic database of the Earth. SRTM consisted of a

specially modified radar system that flew onboard the Space Shuttle Endeavour during an

11-day mission during February 2000 (NASA).

The next step in SAR interferometry has been the detection of Earth surface

movements with Differential Interferometry (DInSAR) that has shown excellent results

in the last years of research. Initial single interferogram DInSAR techniques

(MASSONET, 1993; PELTZER, 1995) have evolved to multi-image techniques which

are able to retrieve the deformation movement of the studied areas with, at least

theoretically, millimetric precision (BERARDINO et al., 2002; FERRETTI et al., 2000; MORA

et al., 2003; LANARI et al., 2004). The application of such techniques has extended to

many forms of surface deformation in seismology, volcanology, anthropogenic

subsidence or uplift and glacier monitoring. The latest achievements of these

techniques consist in merging data from different sensors, as ERS and ENVISAT

data (MONTI-GUARNIERI et al., 2000; BLANCO et al., 2005). DInSAR techniques present

three immediate advantages compared to other classical methods employed to measure

deformation episodes, such as the Differential Global Positioning System (DGPS) or

other instrumental methods. First, they provide at low cost wide coverage of the studied

area in opposition to the discrete point measurements supplied by the instrumental

techniques, which in general present a benchmark density and extension lower to the

DInSAR techniques. For instance, a single ERS or ENVISAT image covers an area of

100 km by 100 km. Secondly, the orbital sensors have an almost monthly revisit time,

which helps to perform continuous monitoring of the selected location. Finally, there is

an archive of images since 1992 that allows to study, at least in Europe, almost any

place since that date. Nevertheless, both techniques should be seen as complementary

rather than opposite.

The basic idea behind these techniques is to observe the area along time while

acquiring SAR images on a regular basis. These images are then combined to generate

a set of differential interferograms. A differential interferogram is just a regular

interferogram whose topographic component has been removed. The topographic

contribution is calculated using the orbital information of the pair and an external DEM.

In an ideal case, the differential interferogram should contain only the deformation during

the times of acquisition of the two images, however in practice there are other terms that

can hide the desired information. The goal of the different processing techniques is to

accurately isolate the deformation term from the rest in the set of interferograms. The
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interferometric phase of a single pixel, /, can be decomposed in several terms as shown

in the following expression (HANSSEN, 2001, MORA et al., 2003),

/kðT ;Bn;DfdcÞ ¼
4p
kk

� ðv � T þ bÞ þ 4p
kk

Bn

r0 sin h
� e� 2p

vs
Dfdc � azþ gatm þ n; ð1Þ

where k stands for the sensor type (for instance, ERS or ENVISAT), kk is the wavelength,
T and Bn(T) are respectively the temporal and perpendicular baselines (i.e., temporal gap

between acquisitions and spatial separation of the two orbits) of the ith-interferogram, v

the linear velocity of deformation, b the nonlinear deformation term, r0 the sensor-target

distance (range), h is the local incidence angle, e the DEM error, vs is the sensor velocity,

Dfdc is the Doppler centroid difference between the two images of the interferogram, az

the point scatter azimuth position with respect to the center of its pixel, gatm accounts for

the atmospheric phase artifacts and n the decorrelation noise.

The first term is the contribution to the interferometric phase of the deformation

experienced by the pixel during the time interval of the pair. It has been decomposed in

two terms, linear and nonlinear, because this is the model CPT uses to retrieve the

deformation from the available data. The second term stands for the phase due to the non-

compensated topography when generating the differential interferogram. Any inaccuracy

of the DEM leads to a residual topographic phase (called DEM error). It depends on the

spatial baseline and the larger the separation between the orbits the more sensitive is the

phase to the topography. The third term, the Doppler centroid phase term, is only

considered when working with Permanent Scatterers (FERRETTI et al., 2001), this is point-

like targets. When working with a coherence approach, with averaged (multi-looked)

interferograms, only the common part of the azimuth spectrum of the images is used and

consequently the filtering makes both images to share the same Doppler centroid. Under a

coherence approach only interferograms with low Dfdc are useful. The differences

between both approaches are analyzed in section 3. The fourth term is known as

atmospheric phase screen and it is caused by the different atmospheric propagation

conditions in both images, i.e., changes in the wave speed, causing something similar to a

ghost topography. Finally, the last term includes all sources of decorrelation and has to be

regarded as a degradation of the phase quality. Decorrelation can be defined as any noise

caused by error sources that have a small correlation length (few pixels). Among them,

the most important are the following. The baseline or geometric decorrelation is caused

by the difference in the incidence angles between the two acquisitions. It is inherent to

interferometry and worsens with the spatial baseline length. Baselines larger than the so-

called critical one lead to useless interferograms. The temporal decorrelation is caused

by physical changes in the terrain that affect the scattering characteristics of the surface.

It worsens with the temporal baseline, as terrain is more likely to change as time passes.

The volume decorrelation is caused by the penetration of the radar wave in scattering

media. It justifies why it is difficult to obtain good interferograms over forested areas

even with short temporal baselines. The Doppler centroid decorrelation is caused by the

differences of the Doppler centroids between the two acquisitions. The thermal or system
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noise is caused by the noise that any microwaves hardware adds to the measured signal.

Each source has assigned a coherence or correlation, which ranges from 0 (total

decorrelation or pure noise) to 1 (complete correlation or noiseless case). The total

correlation or coherence is simply the product of all terms (HANSSEN, 2001).

All DInSAR techniques share the same principles. In particular the Coherent Pixels

Technique (CPT) (MORA et al., 2003; BLANCO et al., 2006), will be presented as well as a

variety of results achieved under different scenarios and environmental conditions. CPT

can be divided in four main blocks. The first two refer to the interferogram set generation

and the quality pixels selection, this is how to properly select the data to be processed

from all the available. The last two refer to the way CPT extracts the useful information,

i.e., the deformation time series, from the available data, i.e., the differential

interferograms stack. Following a divide and conquer strategy, the linear and nonlinear

terms of the differential phase are calculated into two separate (but complementary)

blocks.

The paper is structured as follows. In section 2 different approaches for interferogram

set selection are presented. The different pixel selection criteria are presented in section

3, making a clear separation between amplitude and coherence-based approaches. In

section 4 the linear block is presented and in section 5 the nonlinear, which obtain the

linear term of deformation and the nonlinear one respectively. Section 6 presents some

results of deformation time-series obtained with CPT, processing datasets from different

sites. Finally, conclusions are outlined in section 7.

2. Interferogram Set Selection Method

The first option to create the set of interferograms would be to perform all the possible

combinations between the available images. Nevertheless, the huge number of resultant

combinations prevents us from doing so. In addition, some of the combinations may lead

to useless interferograms when working with coherence-based techniques due to

excessive spatial or temporal baselines or incompatible Doppler centroid frequencies of

the pair. In order to perform a more optimized selection, CPT uses a 3D Delaunay

triangulation (LEE et al., 1980) of the available images in the space defined by the spatial

baseline, the temporal baseline and the Doppler centroid frequency. This triangulation

relates all images with the minimum spatial and temporal baselines and Doppler

difference which maximizes the phase quality of the generated interferograms. As the

triangles cannot overlap each other, the total number of interferograms is clearly reduced.

Furthermore, the triangulation helps to achieve a uniform distribution of spatial and

temporal baselines that maximizes the quality of the results.

Once the triangulation has been performed it is advisable to remove all those

interferograms with spatial or temporal baselines or Doppler frequencies over a

maximum value in order to preserve their phase quality. For instance, in most of the

results included in this paper the maximum values have been of the order of Bn *300 m,
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T *3 years and Dfdc*500 Hz. As we will see, this is especially important when working

with coherence-based pixel selection criteria, while for amplitude-based these restrictions

can be relaxed or even skipped. The 3D triangulation for the Gardanne (South of France)

test site images is depicted in Figure 1(a). From this triangulation, 268 interferograms are

created (255 ERS-ERS and 13 ENVISAT-ENVISAT) out of 93 images (85 ERS and 8

ENVISAT). Four image subsets are obtained. Subsets are groups of interferograms

having no common images with the rest. Two of the subsets are due to the different

carrier frequencies of ERS and ENVISAT, as useful cross-interferograms can only be

done under very special conditions (GATELLI et al., 1994; MONTI-GUARNIERI et al. 2000),

while the other two are due to the commented restrictions.

Even with the 3D triangulation the number of interferograms is usually much larger

than the minimum number required, this is M - 1 linearly independent being M the

number of available images. Although redundant information helps to improve the

results, an excess of interferograms leads to larger computational and disk storage

requirements. For this reason an optimization over the 3D triangulation can be

performed. The goal is to obtain M - 1 linearly independent interferograms by

selecting the best combination in terms of phase quality. The proposed selection is

based on finding the Minimum Spanning Tree, MST (AHUJA et al., 1993), of the 3D

triangulation where the interferometric phase coherence will be used to compute a cost

function to minimize. The triangulation is treated as a graph where the nodes are the

images and the links the interferograms. A spanning tree of that graph is a subgraph

which is a tree and connects all the images together (a single graph can have many

different spanning trees). Each link has assigned a weight that represents how

unfavorable it is, and any spanning tree has a cost function obtained from the sum of all

weights of the links in it. A Minimum Spanning Tree or Minimum Weight Spanning tree
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Figure 1

(a) 3D representation of the temporal baseline, spatial baseline and Doppler frequency distributions of the 268

interferograms by means of the Delaunay’s triangulation. Lines connect the images which constitute the

interferograms and delineate image subsets and (b) 3D representation of the temporal baseline, spatial baseline

and Doppler frequency distributions of the minimum spanning tree of the initial 3D triangulation.

Vol. 165, 2008 CPT Advanced DInSAR for Deformation Monitoring 1171



is then a spanning tree with a cost function less than or equal to the cost function of

every other spanning tree. In order to implement this, the interferometric phase

coherence is theoretically calculated from the mathematical expressions of the different

correlation factors affected by the spatial and temporal baselines and the Doppler

centroid differences (HANSSEN, 2001). The Minimum Spanning Tree ensures that the

resultant set of interferograms connects all the available images with the low cost path,

similar to the travelling salesman problem. The different subsets have to be treated

as independent problems with this approach. In order to ensure a proper {Bn, T, Dfdc}
distribution, we can increase the initial MST set, choosing those best interferograms

which maximize the uniformity’s distribution.

Different test have been performed with real data, confirming the validity of the

proposed method. The resultant MST of the 3D image triangulation (Fig. 1(a)) of

the Gardanne test site is depicted in Fig. 1(b). Here, 88 interferograms out of the initial

268 have been selected. Deformation results from this scenario will be presented in

section 6.

3. Pixel Selection Criteria

The different sources of decorrelation presented have a non-uniform impact in the

interferogram. Depending on the terrain characteristics, presence of edifications, changes

due to human activity or natural disasters, ... some zones better preserve the coherence

than others. Or in plain words, some pixels of the interferogram will present better phase

quality than the others. Consequently, the differential algorithm cannot be applied to

all pixels within the area under study and a selection of the reliable ones in the

interferometric set has to be performed. Two different approaches are mainly employed

to make an estimation of the phase quality of the pixels and base a selection criterion: the

coherence stability and the amplitude dispersion.

3.1. Coherence Stability Criterion

The spatial coherence, c, is employed under the assumption of ergodicity (HANSSEN,

2001) to obtain the maximum likelihood estimator of the coherence magnitude over an

estimation window. It provides an estimation of the accuracy of the pixel’s phase for each

interferogram not dependent on the number of images available. The coherence estimator

is defined as,

c ¼
PML

n¼1 y
ðnÞ
1 y

�ðnÞ
2PML

n¼1 jy
ðnÞ
1 j2

PML
n¼1 jy

ðnÞ
2 j2

; ð2Þ

where y1 and y2 are the master and slave complex images, respectively. The phase of

this complex coherence is in fact the multi-looked (or averaged, ML) interferometric
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phase while its magnitude is the phase quality estimator. The size of the required

coherence estimation window worsens the spatial resolution. Typical values are 3 9 15

pixels or 4 9 20 pixels (range and azimuth, respectively) which lead to a 60 9 60

meters and 80 9 80 meters ground spatial resolution. Additionally, this approach

restricts the maximum perpendicular baselines up to the typical figures for classical

interferometry (despite good results have been obtained with baselines up to 300 m it

is recommended to keep the values as low as possible to maximize the number of

pixels detected). The standard deviation of the interferometric phase, r/, can be

mathematically calculated from the estimated coherence, c, and the multi-look

(HANSSEN, 2001) as shown in Figure 2. Depending on the maximum standard deviation

allowed a coherence threshold, cth, is fixed. A pixel will be selected if it presents a

coherence higher than the threshold in a certain percentage of interferograms, for

instance 50%.

3.2. Amplitude Criterion

This approach estimates the phase standard deviation of each pixel from its temporal

amplitude stability (FERRETTI et al., 2001, 2002). The objective of this selection method is

to find quality point-like targets, most commonly known as Persistent or Permanent

Scatters (PS), instead of finding stable distributed targets as is done with the coherence

stability method. A PS is a structure with an ideal isotropic response, so it is not affected

by geometrical, neither Doppler centroid nor temporal decorrelation and, at least

theoretically, there are no restrictions regarding the maximum spatial and temporal

baselines nor Doppler centroid differences allowed. It can be demonstrated that for a high

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

P
ha

se
 S

ta
nd

ar
d 

D
ev

ia
tio

n 
(d

eg
)

Coherence

ML=80
ML=25

ML=10

Figure 2

Phase standard deviation vs. coherence for a multi-look factor of 80, 25 and 10.
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signal-to-noise ratio the pixel’s phase stability can be associated with its amplitude

dispersion DA as follows:

r/ � rA
mA

� DA; ð3Þ

being r/ the phase dispersion, mA the mean and rA the standard deviation of the

amplitude values of the pixel along the image data set. The dispersion index is a good

approximation of the phase stability for high SNR values. The larger the number of

images the more reliable the statistical analysis is, being the desirable minimum number

of scenes around 30. Typically, only those targets exhibiting a DA < 0.25 (implying a

mean r/ of 14�) are considered. Before the statistical analysis it is compulsory to perform

the radiometric correction of the images.

As we have just commented, the usage of one selection criterion or another will

determine the nature of the targets to work with. While the amplitude dispersion

selects ideal point-like targets with functionable allowance at maximum spatial

resolution (that provided by the SAR image), the coherence stability implies an

averaging of a set of pixels, leading to a lower spatial resolution product. This

averaging may also cause the loss of isolated scatters which could be detected with

the amplitude dispersion criterion. Depending on the scenario, it would be more

interesting to increase the number of selected points employing a coherence approach,

rather than having maximum spatial resolution information. An example of this is the

volcanic scenarios, where the lava characteristics do not follow a PS behavior,

although attending to its spatial (large extension) and temporal (stable along time)

they fit perfectly for coherence based processing. In opposition to this, we may prefer

to apply amplitude processing in urban scenarios where man-made targets are more

likely to be found.

Another important issue in deciding which one to employ is the number of images

available from the study area. It is true that the historical archive is becoming increasing,

larger, but nevertheless, we may just get a few images solely because there was a poor

image disposability in the temporal period in which we are interested. If having a low

number of them, the DA estimator is not reliable. On the other hand, the coherence

estimator is more robust when dealing with a low number of interferograms (CPT has

obtained good results employing seven images under this criterion). Consequently, in this

situation we may be more restrictive on the DA estimator (lower threshold values)

however this may lead to a lower density of selected pixels, which is not at all desirable,

as the larger the spatial sampling among the set of interferograms, the better the

parameters estimation. Therefore, a coherence based selection will be preferred here. For

both criterions there is always a compromise between the number of pixels selected and

its reliability.

In order to perform multi-layer processing (which is explained in the follow-

ing section), selected pixels can be divided in different layers according to their

quality.
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4. CPT Linear Block

The phase of individual pixels is difficult to use due to the presence of different phase

offsets among the set of differential interferograms. Those offsets can be calculated over

high coherence stable areas not affected by deformation and atmospheric artefacts, but in

this case additional input information would be required. In CPT this problem has been

overcome by relating the neighboring selected pixels by means of a Delaunay

triangulation and cancelling then the offset effect. This kind of triangulation relates all

the neighboring pixels of irregularly gridded data generating non-overlapped triangles, as

shown in Figure 3. The selected pixels are the nodes of the grid and each pair defines an

arc of the triangulation.

In order to reduce the effects of the atmospheric artefacts on the estimation of the

linear component of deformation, a maximum arc length is set when performing the

Delaunay triangulation. This maximum distance between connected nodes depends on

the assumed value for the correlation distance of the atmosphere, usually 1 km.

Nevertheless, sometimes this restriction can be relaxed to avoid the existence of

disconnected areas.

After the triangulation, the phase increment between two neighboring pixels can be

expressed as

D/kðTi;Bn;Dfdc; xm; ym; xn; ynÞ ¼ D/kðTi;Bn;Dfdc; arcm;nÞ
¼ /kðxm; ymÞ � /kðxm; ynÞ;

ð4Þ

where k stands for the sensor (ERS or ENVISAT), (xm, ym) and (xn, yn) are the coordinates

of the nodes forming the arcm,n. If the maximum connecting distance between pixels has

been properly fixed, then the atmospheric term can be eliminated from equation (4). Since

the linear velocity term and DEM error are constants for each node (and arc) in the whole

set of differential interferograms, it is possible to retrieve a good estimation of them

adjusting the phase model, D/k
model, to the available data, D/k.
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Figure 3

(a) Example of Delaunay triangulation: Two nodes define an arc (b) triangulation of the selected pixels in the

city of Paris where darker colour means higher arc quality.
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D/k
modelðT;Bn;Dfdc; arcm;nÞ ¼

4p
kk

� T � Dvðarcm;nÞ þ
4p
kk

BnðTÞ
rðTÞ sin h � Deðarcm;nÞ

� 2p
vs

Dfdc � Dazðarcm;nÞ;
ð5Þ

The last term of equation (5) is only applied when working with Permanent Scatters.

In order to find the values Dv, De and Daz for each arc, a test function is minimized. This

function is called the model adjustment function C(arcm,n) and is defined as,

Cðarcm;nÞ ¼
XNERS

i¼1

exp½�jðD/ERS
i ðT ;Bn;Dfdc; arcm;nÞÞ� � exp½�jðD/ERS

i;modelðT ; arcm;nÞÞ�
��� ���2

þ
XNERSþNENVþ1

i¼NERSþ1

exp½�jðD/ENV
i ðT ;Bn;Dfdc; arcm;nÞÞ�

��
� exp½�jðD/ENV

i;modelðT ; arcm;nÞÞ�j
2; ð6Þ

where NERS and NENV are the number of ERS and ENVISAT interferograms, respectively,

so their addition conforms to the total number of employed interferograms N. The

minimization of C is equivalent to find the bidimensional (tridimensional if accounting

for the azimuth target’s subpixel position) frequency of the complex sinusoid derived

from the phase term in equation (5). The C minimization is done applying the Conjugate

Gradient Method (CGM) (PRESS et al. 2002). As the minimization is done in the complex

plane, there is no need to perform any kind of phase unwrapping on the interferograms. In

fact, with a good distribution of spatial and temporal baselines it is possible to derive the

linear terms of the model for an arc even when its interferometric phases were wrapped in

all interferograms. The larger the number of interferograms, the better will be the

estimation as the impact of atmospheric artefacts and decorrelation noise is reduced.

There is no clear minimum of images as results depend on the particularities of each case,

but CPT obtained successful results even with only seven images (MORA et al., 2003).

The noise sensitivity of the retrieved parameters depends on the range and distribution of

baselines available. The larger the spatial baselines, the more precise will be the

estimation of the DEM error. Similarly, uniform distributions of baselines provide better

results. The minimization of C has to be done carefully as it presents several local

minima.

Once the minimization process has been accomplished for each arc, the result is the

following set of velocity, DEM error and azimuth position increments.

D~vðxm; ym; xn; ynÞ ¼ ~vðxm; ymÞ � ~vðxn; ynÞ
D~eðxm; ym; xn; ynÞ ¼ ~eðxm; ymÞ � ~eðxn; ynÞ

D ~azðxm; ym; xn; ynÞ ¼ ~azðxm; ymÞ � ~azðxn; ynÞ:
ð7Þ

The minimization of C always provides a pair of velocity and DEM error values, even

if the phases were random values. Consequently it is necessary to evaluate the quality of

1176 P. Blanco-Sánchez et al. Pure appl. geophys.,



the solutions to discard those which are incorrect. The model quality function, cmodel is
used as a trustworthiness test to discard those arcs with non-reliable values. The cmodel is
defined for each arc as follows,

cmodelðarcm;nÞ ¼
1

N

XNERS

i¼1

exp½�jðD/ERS
i ðarcm;nÞ � D/ERS

i;modelðarcm;nÞÞ�
�����

þ
XNERSþNENVþ1

i¼NERSþ1

exp½�jðD/ENV
i ðarcm;nÞ � D/ENV

i;modelðarcm;nÞÞ�
�����;

ð8Þ

which is equal to one if the model perfectly fits the data, and tends to zero with total

decorrelation. Those arcs presenting a quality function below a threshold will be rejected.

Here it is necessary to consider the possibility of having a nonlinear movement term in

the phase increment, as it is a deterministic term and we risk considering it as noise. For

this reason, the fixed threshold cmodel th is set to a lower value than that corresponding to a

linear deformation pattern.

Finally, an integration process is necessary to obtain the absolute values for each

pixel. As the solution is obtained from the relations among the nodes, it is necessary

to include at least a control point of known linear velocity and height. In practice,

many stable points not affected by deformation are used, depending on the extent of

the area and the in-field information available. A good distribution of control points

helps to reduce the offsets that could appear among zones badly connected. CPT

performs the integration using the Conjugate Gradient Method (CGM), an iterative

and efficient method used for solving large systems of linear equations (SARKAR et al.,

1984).

Depending on the chosen coherence or amplitude threshold, selected pixels may

vary in a wide quality range, and consequently so it will the quality of the estimations

on the increments of the linear parameters. Furthermore, wrong arc estimations will

lead to wrong absolute values after the integration process. In order to maximize pixel

density but preserving result quality multi-layer processing has been implemented

(BLANCO et al., 2006). Selected pixels are divided in to different layers according to

their quality (expressed by their coherence or amplitude dispersion value). After that,

beginning with the top layer, the linear block (depicted in Fig. 4(a)) is iteratively

executed by adding successive layers, so the obtained absolute values of each layer act

as the seed values to the following integration process. By doing this, the results

obtained with the high quality layers are preserved and the estimation of the low quality

layers improves. Consequently, multi-layer processing improves linear results and rises

pixel density while providing a quality label for each one. Figure 5 illustrates this

process for a simple 3 quality layers case. As it is seen, the linear block is iteratively

applied adding quality layer pixels (from best quality black to lowest quality blue

pixels) at each iteration. At the end of each iteration the absolute velocity and DEM

error values of the corresponding layer pixels are fixed, serving as seed values in the

following iteration integration process.
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5. CPT Nonlinear Block

After calculating the linear deformation map, it is possible to obtain the nonlinear

component to complete the study of displacement. Adding this nonlinear deformation

component to the linear term, a detailed plot of the evolution of deformation is obtained.

The first step of the nonlinear block of CPT, whose layout is shown in Figure 4(b), is the

calculation of the phase residues /k
residue, obtained by subtracting the absolute linear phase

model /k
modelð~v;~e; ~azÞ; from the original interferometric phases /k for all selected pixels,

/k
residueðT; x; yÞ ¼ /kðT ; x; yÞ � /k

modelðT; x; yÞ; ð9Þ

where (x, y) stands for the selected pixel coordinates. The linear phase model is obtained

from the estimated linear terms with,

/k
modelðT; x; yÞ ¼

4p
kk

� T � ~vðx; yÞ þ 4p
kk

Bn

r sin h
� ~eðx; yÞ � 2p

v
� ~azðx; yÞ: ð10Þ

The residual phases are calculated only on the reliable pixels that have survived the

different quality tests. After this step, the phase residues can be expressed as

Figure 4

(a) CPT Linear block and (b) Nonlinear block layout.
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/k
residueðT; x; yÞ ¼ /k

atmosðT ; x; yÞ þ /k
nonlinearðT ; x; yÞ þ /k

noiseðT; x; yÞ; ð11Þ

where two essential phase terms have to be considered: the atmospheric artefacts, /k
atmos,

and the nonlinear displacement, /k
nonlinear. Both can be separated, taking advantage of

their different frequency characteristics in space and time:

• Atmospheric perturbations. This term can be considered as a low spatial frequency

signal in each image due to its approximately 1 km correlation distance. However for

each acquisition date atmospheric conditions can be considered random and,

consequently, the atmospheric contribution can be modelled as a white process in time.

• NonLinear deformation. On the other hand, this term can be assumed to present a

narrower correlation window in space (or at least much narrower than atmospheric

artefacts) and a low-pass behavior in time.

Taking into account all these considerations, the separation of the atmospheric artefacts

from the nonlinear deformation can be implemented with a filtering process in both

spatial and time domains.

Firstly, a spatial low-pass filtering using a two-dimensional moving averaging

window of 1 km 9 1 km (typical correlation distance of atmosphere (HANSSEN, 2001) is

applied to the residual phase, /k
residue. After this step two components should remain:

F1
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F2F1

F2 F3F2 F2F2
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F1 F2

F1

F1

Figure 5

Selected pixels map, best quality pixels in black, middle quality pixels in red and low quality pixels in blue. First

iteration where the linear block is applied to black pixels, second iteration where the linear block is applied to

black+red pixels and third block where the linear block is applied to black+red+blue pixels.
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/k
resSLRðT ; x; yÞ ¼ /k

atmosðT ; x; yÞ þ /k
nonlinearSLRðT ; x; yÞ; ð12Þ

where /k
res SLR is the nonlinear component of the displacement at Spatial Low

Resolution (SLR) and /k
atmos the atmospheric artefacts, which can be assumed not to be

affected by the spatial filter. The SLR residue is composed of the atmospheric

perturbations, which are signals with a low variation in space, and the spatial low

resolution version of the nonlinear displacement, which behaves in space similarly to

the atmospheric component. Some authors (BERARDINO et al., 2002) adopt another

spatial filtering strategy which consists in doing it on the phase image contribution (u in

equation 13) instead of doing it on the interferograms as CPT does. As it is explained in

the following, the image phase contribution (u eq.13) is calculated employing the

Singular Value Decomposition (SVD), which needs the interferometric phases to be

unwrapped. As these techniques have already unwrapped the phase up to this point, the

SVD can be applied on the interferometric phases, performing afterward the spatial

filtering on the image phase contribution, so the number of filtering operations is

reduced because the atmospherical interferometric phase component is a lineal

combination of the atmospherical image phase contribution. CPT unwraps the phases

at the present processing step (i.e., previously to image phase contribution), so the

heavily filtered interferograms resultant of this spatial filtering /k
res SLR are especially

easy to unwrap as they are usually very smooth and contain almost no fringes. At this

step the Conjugate Gradient Method is employed to unwrap the residual phases, similar

to the integration step.

The interferograms have been formed from the phases of two SAR images separated

in time and they do not follow the temporal order required by the temporal filter that has

to be applied. The interferometric phase can be expressed in the function of their forming

images,

/k
resSLRðT; x; yÞ ¼ uk

resSLRðTM; x; yÞ � uk
resSLRðTS; x; yÞ; ð13Þ

where TM and TS are respectively the acquisition time of master and slave images. The

Singular Value Decomposition (SVD) is used to obtain the phase of each image from

the stack of interferograms. Once the absolute temporal information (with respect to the

first image, strictly speaking) has been obtained, a high-pass temporal filter can be

applied in order to estimate the atmospheric contribution and isolate the nonlinear

deformation at low spatial resolution. In this step a triangular filter is employed with a

fixed temporal span. Talking in frequency terms, the main difficulty resides in the

selection of the cutoff frequency to discriminate the atmospheric component from the

nonlinear displacement, as the atmospheric effects appear in all frequencies while the

nonlinear displacement is expected to be a low-pass signal. Therefore, the cut frequency

should be placed on the considered highest frequency for the nonlinear displacement.

After the temporal filtering, the phase residue should contain only the SLR nonlinear

deformation, unon�linearSLR .
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The obtained deformation is not complete, because it has been calculated using

spatial low-pass filtered phases. The procedure to obtain the remaining Spatial High

Resolution (SHR) component is similar to the one described but starting from a better

phase model using all the available information, including the estimated linear and SLR

nonlinear deformation, the DEM error and the estimated atmospheric artefacts.

Consequently, a new SHR residue can be obtained by subtracting the improved model

/
0 k
model from the original interferometric phases. Then, this new residue is basically

composed of two terms:

/k
resSHR ¼ /k � /0k

model ¼ /k
nonlinearSHR þ /k

noise; ð14Þ

and from here forward the same SLR estimation schema (unwrapping+SVD+temporal

filtering) is followed to obtain the SHR nonlinear movement term. The temporal

deformation evolution is obtained by adding their three estimated components, i.e., the

linear deformation term and the low and high spatial resolution nonlinear deformation

terms,

qðtiÞ ¼ ~vestti þ
kk
4p

½uk
non�linearSLRðtiÞ þ uk

non�linearSHRðtiÞ�: ð15Þ

This deformation has been calculated on the so-called line-of-sight or slant-range

direction. The vertical deformation can be obtained using the local incidence angle h,

qvertðtiÞ ¼
qðtiÞ
cos h

; ð16Þ

6. Results

6.1. DEM Extraction

In order to test the extraction of the topography with CPT, we have processed the

Paris data set without cancelling its topography, consequently the calculated DEM error

should be the true topography of the scenario. The spatial and temporal baseline

distribution of the Paris set of interferograms is depicted in Figure 6. In it, each circle

represents the employed images while the arcs connecting them represent the employed

interferograms. The resulting set calculated out of 62 images (48 ERS and 14 ENVISAT)

has been achieved by the explained MST selection and is composed of 78 interferograms

with a maximum spatial baseline of 300 m, a maximum temporal baseline of 1000 days

and a maximum Doppler centroid difference of 500 Hz.

The results, obtained with different maximum spatial baselines (50 and 150 meters)

are compared to a 10 meter resolution DEM. Mean and standard deviation values of the

error are shown in Table 1. As expected, the higher the baseline the better the results, but

in any case, with a maximum standard deviation value of 4 meters, topography is well

extracted, as we can see in Figure 7.
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6.2. Linear Deformation

In order to show the performances of CPT when dealing with linear type deformation

movements, three different scenarios have been analyzed. The first one is the city of

Murcia (SE Spain). Here, long drought periods and the over-exploitation of their water

infiltration aquifer reserves have provoked a deformation episode. Figure 8 shows the

linear velocity map of the area obtained by CPT where four points have been selected to

display its temporal deformation. These results were obtained by the University of

Alicante (UA) in collaboration with the Instituto Geologico Minero de España (IGME)

and UPC (TOMAS et al., 2005). The employed data set constitutes 47 images (36 ERS and

11 ENVISAT) and 83 interferograms with a maximum baseline of 100 m, a maximum

temporal baseline of 1000 days and a maximum Doppler centroid difference of 300 Hz.

As we can see, the deformation pattern of the area is highly linear.

In Figure 9 an estimation of the land settlements of the same area of Murcia is

displayed, where the four selected points are also located. This estimation has been

carried out through theoretical-mathematical modelization considering land character-

istics and the drawing down of the water level (MULAS et al., 2003). By comparing

both DInSAR and theoretical results we want to show, rather than absolute

deformation values, the high correlation between both spatial deformation gradients.
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Figure 6

Spatial and temporal baseline distribution of (a) Paris and (b) Gardanne.

Table 1

Mean and Stdv of DEM real - DEM calculated

Maximum Baseline Mean (DEM-cal.DEM) Stdv (DEM-cal.DEM)

50 m 7.59 m 4.15 m

100 m 4.41 m 3.37 m

150 m 4.34 m 3.30 m

Mean and Standard deviation values of the error of the calculated DEM error when employing different data sets

with different maximum spatial baselines
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When doing so, it is possible to observe that there is a high correlation between the

estimated movement and the theoretical prediction when moving from different

colored areas. It is also interesting to comment that these results have been obtained

with a low number of images. Evidently, a linear deformation movement requires a

temporal sampling less demanding than a nonlinear pattern. In reference to the

presented study, a further study of the Metropolitan area of the city of Murcia has

recently been carried out. Results, concerning validation between CPT DInSAR series

and ground truth data are resumed in a forthcoming publication submitted to the

Journal of Photometry and Remote Sensing (HERRERA et al., 2008). Comparison

between CPT and extensometers deformation series reveals differences with standard

deviation values around 2.3 mm.

The second test site is the neighborhood of Mont-Martre in Paris. The employed data

set is the one depicted in Figure 6(a). This scenario was a mining area whose gypsum

Figure 7

(a) DEM of the city of Paris, (b) calculated height map of the same area for the selected pixels employing an

interferogram set with a maximum baseline of 50 meters and (c) 150 meters.
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mines were improperly filled once the activity finished. The gypsum dissolution and some

slope movements cause deformation phenomena, particularly specially in the hill of

Mont-Martre. If paying attention to the linear deformation map of this area (Fig. 10), the

hill is delimited by the darker coherent points which present a subsidence velocity.

Furthermore, the deformation evolution with coherence and amplitude method (left and

right side, respectively) for 3 points, 2 located on the hill (A and B) and one in the stable

area (C), are represented. As it is seen, the expected linear deformation behavior is

correctly reproduced with good agreement between amplitude and coherence results. In

order to better interpret a comparison between coherence and amplitude results, it is

important to remind that both criteria select different kinds of targets so their spatial

resolution is different. Nevertheless, as selection criteria in terms of phase standard

deviation have been similar, it is normal to achieve similar results.

The authors did not have access to ground-truth data of this area so no direct

evaluation of the CPT temporal series was performed. Nevertheless, CPT results show

great agreement to those presented in diverse articles (DEFFONTAINES et al., 2004;

SIMONETTO et al., 2005) where this area was analyzed.

Figure 8

Linear velocity map of the area of the city of Murcia where 4 points have been selected. Temporal deformation

series of the selected points with their corresponding theoretical deformation depicted in Figure 9.
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The third test site is the city of La Union (SE, Spain), which is located within a metal

mining area that has been exploited since the Roman Period, with a recent activity peak

in the second half of the 19th and throughout the 20th century until the 1980s. This

historic exploitation has left behind a high concentration of underground cavities due to

the abandoned mine galleries. This work was also carried out by UA, in collaboration

with the IGME and the UPC (HERRERA et al., 2007). In order to validate the CPT results in

this scenario, they have been compared to topographical leveling data. The topographical

leveling is comprised of 57 measurement points located towards the SW of La Union,

deployed in two measuring campaigns performed in April 2003 and July 2004 (CIMA,

2005). On the other hand, 14 images (6 ERS and 8 ENVISAT), acquired from April 2003

to 2004, forming 41 interferograms with a maximum spatial baseline of 150 m, a

maximum temporal baseline of 900 days and a maximum Doppler centroid difference of

300 Hz., have been processed with CPT.

Figure 11 shows the absolute deformation for the CPTs selected pixels as well as for

the topographical leveling measurement points. In it, pixel a is the DInSAR reference

control point while P1 is the control point for the topographical leveling network. The

DInSAR retrieved deformation value in the correspondent pixel of P1 is - 0.1 cm, which

confirms the good correlation between both data sets seen in Figure 11. Deformation of the

Insignificant
settlements

<2.00 cm

<2.00-2.20 cm

<2.20-2.40 cm

<2.40-3.00 cm

<3.00-4.00 cm

<4.00-5.00 cm

<5.00-6.00 cm

<6.00-7.00 cm

Damage
buildings

<7.00 cm

LEGEND

C

A

DB

Figure 9

Deformation results obtained by MULAS et al. (2003) using piezometric measurements and mathematic models.

The same four selected points in Figure 8 have been located.
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coincident pixels has been deployed in Figure 12 for comparison purposes. As is seen, the

absolute differences vary from 0 to 1.9 cm with an absolute mean difference of 0.7 cm and

the standard deviation is 0.5 cm. In addition to this, it is important to mention that as the

DInSAR pixels have a size of 80 9 80 m and some ground control points are located on

the same pixel. Taking into account the most similar deformation value of the ground

control points with respect to the pixel they are included in, the absolute mean difference

falls to 0.5 cm while the standard deviation falls to 0.3 cm.

Figure 10

Linear velocity map of the Mont-Martre area (Paris) where some points have been selected and their respective

deformation graphs (left) when using the coherence stability pixel selection criterion (3 9 15 ML factor) (right)

when using the amplitude dispersion criterion.
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Figure 11

DInSAR and topographical leveling deformation in the SW area of La Union.

Figure 12

Comparison between CPT estimated deformations and topographical leveling measured deformations projected

along the Line of Sight (LOS).
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6.3. Nonlinear Deformation

We now show the results obtained over areas which present a nonlinear deformation

movement pattern. Two scenarios have been selected, St. Lazare Railway Station in

Paris, and Gardanne, located in the South-East of France. Figure 13 shows the results

corresponding to the St. Lazare Railway station where underground works caused a

deformation movement. The employed data set is the one depicted in Figure 6(a). Again,

three points have been selected in the linear velocity map for showing their temporal

deformation. This movement is basically composed of a subsidence movement caused

when water was extracted in order to keep the works dry, a stability period and an uplift

period when the phreatic level was restored. On the left side the temporal deformation

obtained with the coherence method is depicted, while those with the amplitude criterion

are on the right side. For comparison purposes, both results have been obtained with the

interferometric data set in Figure 6(a). Nevertheless, more interferograms could have

been used in the amplitude case, as the baseline restrictions can be relaxed. As we can

see, the deformation plots are very similar in both methods and the expected deformation

pattern is well reproduced in form and in magnitude, yielding a maximum subsidence

value around - 2 cm.

Even though the authors did not have direct access to ground-truth data of this area,

CPT results show high matching to those present in diverse articles where this area was

analyzed (FRUNEAU et al., 2003 and 2005), carrying ground-truth data comparison.

The last results to presented correspond to the area of Gardanne (France). The spatial

and temporal baseline distribution of the Gardanne set of interferograms is depicted in

Figure 6(b). The resulting set calculated out of 97 images (89 ERS and 8 ENVISAT) has

been achieved by the explained MST selection and is composed of 91 interferograms

with a maximum spatial baseline of 300 m, a maximum temporal baseline of 1000 days

and a maximum Doppler centroid difference of 500 Hz. Mining activity in this area has

provoked a nonlinear subsidence movement whose changing rate is related to the

exploitation periods of the different mines. In Figure 14, the linear velocity map of the

total studied area is depicted, showing a very localized area where a subsidence

movement is occuring. Another area which presents stability has also been selected for

detailed study (both marked in yellow). Their corresponding velocity maps are displayed

in Figure 15. Different points have been selected on both maps in order to represent their

temporal deformation series. In Figure 15, 6 points are marked A-F, 5 points located on

the deformation area and 1 on the stable area. A general nonlinear pattern can be

distinguished in these plots. It consists of an initial slow subsidence movement (even

initial stability has been detected) followed by a rapid falling in a short period of time

(approximately a period of two years) to finally re-establish stability. The collapse instant

varies depending on the area where the pixel is placed as does the beginning of the final

stability. In the stable area one point has been selected.

This area has served as the test site of an intercomparison project promoted by ESA

called PSIC-4 where several DInSAR algorithms (were the CPT was also included)
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performances were compared to ground-truth data of the area. Documentation related to

this project containing ground-truth data can be found in ESA (2007).

7. Conclusion

In this paper we have presented the potentials of DInSAR interferometry as a valuable

tool for detecting and monitoring deformation movements as well as for furthering

Figure 13

Linear velocity map of the St. Lazare Railway Station (Paris) where some points have been selected and their

respective deformation graphs (left) when using the coherence stability pixel selection criterion (3 9 15 ML

factor) (right) when using the amplitude dispersion criterion.
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understanding of the geological mechanisms behind them. In particular, the CPT DInSAR

algorithm has been described pointing out their main characteristics as well as presenting

results over different areas. The presented results demonstrate the ability of CPT (which

is generally extendable to multiple images DInSAR techniques) to work and retrieve

deformation under a wide range of conditions (multi-looked or single-look data, linear

and nonlinear deformation patterns, urban and non-urban scenarios...).

Generally speaking of DInSAR techniques, an interesting DInSAR accuracy

assessment can be found in LANARI et al. (2007a and 2007b), FERRETTI et al., (2007)

revealing the power of these techniques to offer millimetric accuracies. CPT accuracies

have been mentioned whenever ground-truth data were available for comparison

purposes. Typical figures reveal millimetric precisions as described for the Vega Media

and La Union. Nevertheless, further efforts must be undertaken between the DInSAR

developers and the final users of these techniques in order to set ground-truth validation

campaigns so more conclusive CPT accuracy numbers will be given. A qualitative

comparison in which no ground-truth data were available has been provided, confirming

the accuracy revealed by in situ measurements as being comparable to other DInSAR

techniques.

Actual efforts are brought about to improve the existent algorithms by introducing

more sophisticated models in the differential processing with the aim of achieving better

accuracies. Interaction with the geophysical community also will be extremely important

to perform a critical evaluation and a notable development of these techniques. The

upcoming new SAR sensors (TerraSAR-X, ALOS-PALSAR, RADARSAT-2) will help

to increase temporal monitoring as well as spatial resolution. The exploitation of different

microwave bands with these new sensors may also register an increase of the DInSAR

capabilities in other environments as land-scape scenarios. Furthermore, the new future

acquisition configurations as the ground-based SAR (PIPIA et al., 2007) and the bistatic

SAR (SANZ-MARCOS et al., 2007) will aid study of deformation phenomena, avoiding the

Figure 14

Gardanne linear velocity map. Highlighted white box areas correspond to a stable are (upper) and a subsidence

(lower) area which are selected for a detailed study in Figure 15.

1190 P. Blanco-Sánchez et al. Pure appl. geophys.,



inherent space-borne geometrical limitations, adjusting their configuration according to

the particular scenario to be studied.
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On the Occurence of Extreme Events in Long-term Correlated and

Multifractal Data Sets

MIKHAIL I. BOGACHEV,1 JAN F. EICHNER,1 and ARMIN BUNDE
1

Abstract—We review recent studies of the statistics of return intervals (i) in long-term correlated

monofractal records and (ii) in multifractal records in the absence (or presence) of linear long-term correlations.

We show that for the monofractal records which are long-term power-law correlated with exponent c, the
distribution density of the return intervals follows a stretched exponential with the same exponent c and the

return intervals are long-term correlated, again with the same exponent c. For the multifractal record, significant

differences in scaling behavior both in the distribuiton and correlation behavior of return intervals between large

events of different magnitudes are demonstrated. In the absence of linear long-term correlations, the nonlinear

correlations contribute strongly to the statistics of the return intervals such that the return intervals become

long-term correlated even though the original data are linearly uncorrelated (i.e., the autocorrelation function

vanishes). The distribution density of the return intervals is mainly described by a power law.

Key words: Return intervals, long-term correlations, multifractal records, nonlinear correlations, stretched

exponential, power law.

1. Introduction

The understanding of the occurrence of extreme events is one of the major challenges

in science. An important quantity here is the time interval between successive extreme

events, and by understanding the statistics of these return intervals one aims to a better

understanding of the occurrence of extreme events. In many cases, the extreme events do

not appear to be independent, but instead they occur in clusters. Well-known examples in

nature are temperature anomalies, extreme rainfalls and floods (PFISTER, 1998; GLASER,

2001; MUDELSEE et al., 2003; BUNDE et al., 2005). A clustering of extreme events has also

been observed in processes related to human behavior, e.g., in stock prices or teletraffic in

large networks (see BUNDE et al., 2002 and references therein).

Since the statistics of the occurrence times between extreme events in real systems is

quite poor, one usually tries to extract information from events with rather smaller

magnitudes that occur quite often and thus have enough statistics. The major issue is to

find out some general ‘‘scaling’’ relations between the return intervals at low and high

1 Institut für Theoretische Physik III, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany.

E-mail: armin.bunde@uni-giessen.de

Pure appl. geophys. 165 (2008) 1195–1207 � Birkhäuser Verlag, Basel, 2008
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thresholds, which then allows extrapolation of the results to very large, extreme

thresholds.

The object of our review is the return intervals rj between single events xi that exceed

some fixed threshold Q (quantile). The process of retrieving a return interval series (rj)

with j = 1, 2, ..., NQ from a time series (xi) of N data points following a distribution P(x)

is illustrated in Figure 1. Sometimes, instead of specifying the threshold Q, one specifies

the mean return interval, or return period RQ, since there is a one-by-one correspondence

between both quantities, RQ = 1/$Q
? P(x) dx = N/NQ.

For a pure random process with statistically independent values with identical

distribution, i.e., ‘‘i.i.d.’’ data (e.g., Gaussian random white noise), also the return intervals

are independent, and follow a Poisson distribution with a simple exponential probability

density function PQ (r) = (1/RQ) exp( -r/RQ) (see, e.g., v. STORCH and ZWIERS, 2001).

On the other hand, many processes in nature show long-term correlated behavior,

either characterized by a single scaling exponent (‘‘monofractal’’ behavior, see BUNDE

and HAVLIN, 1991; KOSCIELNY-BUNDE et al., 1998; EICHNER et al., 2003; KANTELHARDT

et al., 2003), or by a multitude of scaling exponents (‘‘multifractal’’ behavior, see BUNDE

and HAVLIN, 1991; MANDELBROT, 1974; LOVEJOY and SCHERTZER, 1991; TURCOTTE, 1992;

KOSCIELNY-BUNDE et al., 2006; KANTELHARDT et al., 2006). Long-term correlations

strongly affect the statistics of extreme events, as was shown before in BUNDE et al.

(2005), and EICHNER et al. (2006a), while the influence of multifractality has not been

elaborated yet. In this work, we review former results for long-term correlated data sets

(BUNDE et al., 2003, 2004, 2005) and our most recent findings for multifractal data sets

(BOGACHEV et al., 2007; BOGACHEV et al., 2008; BOGACHEV and BUNDE 2008a, b).

2. Return Intervals in Long-term Correlated Data Series

We consider a record (xi), i = 1, 2,..., N and call the data long-term correlated, when

the corresponding (linear) two-point autocorrelation function Cx(s) decays by a power

law,
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Illustration of the return intervals between events above two thersholds Q1 and Q2.
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CxðsÞ ¼
1

r2xðN � sÞ
XN�s

i¼1

ðxi � hxiÞðxiþs � hxiÞ� s�c; ð1Þ

where rx denotes the standard deviation, hxi the mean, and c the correlation exponent,

0 < c < 1 of the data set. Such correlations are named ‘‘long-term’’ since the mean

correlation time T9 = $0
? Cx(s) ds diverges in the limit of an infinitely long series (BUNDE

and HAVLIN, 1991). For uncorrelated xi, Cx(s) = 0 for s > 0. If correlations exist up to a

certain correlation time s9 , then Cx(s) > 0 for s < s9 and Cx(s) = 0 for s > s9 .

To generate long-term correlated data, we have used the Fourier-filtering technique,

described, e.g., in MAKSE et al. (1996) and SCHREIBER and SCHMITZ, (1996). The power

spectrum P( f ) of an uncorrelated random series with Gaussian distributed values is

multiplied by f-b. The series obtained by inverse Fourier transform of this modified

power spectrum exhibits power-law correlations on all time scales.

Long-term correlated records are characterized by a distinct mountain-valley

structure. Large values are rather followed by large values and small vaules are rather

followed by small values. This feature of the correlated series (xi) produces more

numerous large intervals as well as substantially more small intervals, in comparison with

uncorrelated records, changing the probability density function of the return intervals

from an exponential to a ‘‘stretched’’ exponential, ln½PQðrÞ� � � ðr=RQÞc; where the

exponent c is the correlation exponent (see Fig. 2) (BUNDE et al., 2003, 2004, 2005;

ALTMANN and KANTZ, 2005). For small values of r/RQ the probability density function is

described by a power-law, with an exponent close to c - 1 (EICHNER et al., 2006b). When

the data are shuffled, the correlations are destroyed, but the number NQ of events above Q

remains the same. Accordingly, for both correlated and uncorrelated records, RQ is

simply RQ = N/NQ, i.e., the return period RQ is not affected by any correlations.
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Distribution of the return intervals: (a) Displays the normalized distribution densities of the return intervals for

three quantiles with RQ = 16 (circles) 44 (squares) and 162 (triangles) (b) When scaling both axes

appropriately, the curves collapse to a single curve, a stretched exponential of the form

RQPQðrÞ ¼ b exp½�aðr=RQÞc�; where c is identical to the correlation exponent c = 0.4 of the data. When

shuffling the data, the curves follow a simple exponential (straight line in the semi-log plot) according to the

Poisson statistics. Figure after … (Potsdam proc)
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The form of the distribution density PQ(r) reveals that very short and very long return

intervals are more frequent than in uncorrelated data, but PQ(r) does not quantify if the

return intervals themselves are arranged in a correlated fashion. In order to determine the

autocorrelation behavior of the return interval series for a given quantile Q, we calculate

the autocorrelation function Cr(s) of the return interval series. Figure 3(a) shows Cr(s) for

data characterized by c = 0.4 and three mean return periods RQ = 10, 50, and 250. All

curves exhibit a power-law decay s-c with the similar slope, the correlation exponent c,
indicating long-term correlations corresponding to those present in the original data.

Merely the curve for RQ = 250 is slightly affected by finite-size effects. Indeed, these

deviations clearly decrease with increasing data length N (not presented here). Due to the

long-term correlations in the interval series, large return intervals are rather followed by

large return intervals, and small return intervals are rather followed by small return

intervals, leading on one hand to epochs with only slight extreme activity and on the other

hand to a clustering of extreme events.

To quantify the effect of the long-range memory among the return intervals, we

consider the conditional return intervals, i.e., we regard only those intervals whose

preceding interval is of a fixed size r0. In Figure 3(b) the conditional return period RQ(r0),

which is the mean of all conditional return intervals, is plotted versus r0 in units of RQ. The

curves show a data collapse, similar as for the distribution densities, and display the

memory inherent in the return interval series. Obviously, in the case of long-term

correlations, the size of the expected return interval depends on the size of the preceding

interval r0. If the preceding interval r0 is much larger than RQ, the next return interval also

will be much larger than RQ, and vice versa for small intervals. This effect can cause huge
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Long-term memory inherent in the return-interval series: (a) Displays the autocorrelation function Cr(s) of the

return intervals (rj) achieved from long-term correlated Gaussian data with zero mean, unit variance, and

c = 0.4, for RQ = 10, 50, and 250. The shape of the curves indicates a power-law behavior with the same

exponent c as the original data (the deviations for large RQ and large scales s are due to finite-size effects.) A

quantification of the resulting clustering effect is shown in figure (b). The conditional return period RQ(r0), i.e.,

the mean return interval of all those r-values that immediately follow a return interval of a given size r0, is

plotted in units of RQ versus r0/RQ. Figure after BUNDE et al., (2004).
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differences when predicting the occurrence of extreme events. If there is no memory in the

data, i.e., no influence of the past r0 on the upcoming return interval, then RQ(r0)/RQ :1.

All these effects can be seen in real data like climate data (measured, historical, and

reconstructed) (BUNDE et al., 2004, 2005) or market volatility (YAMASAKI et al., 2005).

3. Generation of Multifractal Data Series

In multifractal data sets a single scaling exponent is not sufficient for a full

description of the correlation structure of the data set, but rather an infinite number of

exponents is needed (BUNDE and HAVLIN, 1991; FEDER, 1989). This happens, for example,

when events of different magnitudes follow different scaling laws. To create data with

such correlation structure, we employ a multiplicative cascade model, that allows us to

create multifractal data with and without linear long-term correlations, depending on the

parameters of the multipliers.

We consider a variant of the multiplicative random cascade process, described, e.g.,

in MANDELBROT et al., (1997). In the process, displayed in Figure 4, the data set is

obtained in an iterative way, where the number of data points doubles in each iteration.

We start with the zeroth iteration n = 0, where the data set ðxð0Þi Þ consist of one value,

e.g., x
ð0Þ
1 ¼ 1: In the n-th iteration, the data xi

(n), i = 1, 2,. . .,2n, are obtained from the

recurrent relation
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Illustration of the iterative random cascade process. After each iteration the length of the generated records is

doubled and after n = 21 iterations the multifractal set consists of N = 221 numbers. An extract is shown in

the bottom panel. Figure after BOGACHEV et al., 2008.
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x
ðnÞ
2l�1 ¼ x

ðn�1Þ
l m

ðnÞ
2l�1 and x

ðnÞ
2l ¼ x

ðn�1Þ
l m

ðnÞ
2l ; ð2Þ

where the multipliers m
ðnÞ
2l�1 and m

ðnÞ
2l are random numbers following a log-normal

distribution. Due to product stability the distribution of numbers, consisting of products

of several random numbers, converges to a log-normal distribution, as for sum stability

the distribution of the corresponding exponents converges to a Gaussian distribution. For

this reason, we concentrate on log-normal multipliers in this work1. By altering the

parameters hmi and rm, i.e., the mean and the standard deviation of the multipliers, the

strength of the multifractality and the correlation properties of the data (xi) are triggered.

There are several ways to characterize multifractal data sets. Here we chose the

multifractal detrended fluctuation analysis (MF-DFA), introduced by KANTELHARDT et al.

(2002). In the MF-DFA one considers the profile, i.e., the cumulated data series

Yj ¼
Pj

i¼1ðxi � hxiÞ; and splits the record into Ns (non-overlapping) segments of size s.

In each segment a local polynomial fit ym(j) of, e.g., second order is estimated. Then one

determines the variance

F2
m ðsÞ ¼

1

s

Xs
j¼1

ðY½ðm�1Þsþj� � ymðjÞÞ2 ð3Þ

between the local trend and the profile in each segment m and determines a generalized

fluctuation function Fq(s),

FqðsÞ �
1

Ns

XNs

m¼1

F2
m ðsÞ

� �q=2( )1=q

: ð4Þ

In general, Fq(s) scales with s as FqðsÞ� shðqÞ: For a monofractal time series, h(q) is

independent of q and identical to the Hurst exponent H (see, e. g., FEDER, 1989; HURST

et al., 1965)). For multifractal data, the generalized Hurst exponent h(q) depends on the

chosed moment q2. For q = 2, the relation h(2) = 1 - c/2 holds for both, the

monofractal and the multifractal case. In the absence of linear correlations (where Cx(s)

= 0 for sC1), h(2) = 0.5. In KANTELHARDT et al. (2002) it was shown, that h(q) is directly

related to the scaling exponent s(q) defined by the standard partition function-based

multifractal formalism (BUNDE and HAVLIN, 1991), via s(q) = qh(q) - 1.

To emphasize the presence or absence of linear correlations in the data series, we

consider Fq(s)/s
0.5 (see Figs. 5(a), (c) and (e)), for q = 0.5, 1, 2, and 5, respectively. For

multifractal data based on multipliers with hmi ¼ 0:0 (see Fig. 5(a)), the fitted slopes of

the generalized fluctuation function are h(q) - 0.5 = 0.67, 0.34, 0.0, and -0.29,

1 To create data with zero mean, we subtracted the mean of the generated log-normal record afterwards.
2 The q-dependence of the Hurst exponent can be either due to the effect of the broad distribution of the data, or

due to the nonlinear correlations inherent in the data, or due to both of the factors (KANTELHARDT et al. 2002). To

ensure that the multifractality is created by nonlinear correlations and is not an artifact of a heavy-tail, MF-DFA

can be applied after a rankwise exchange of the data with Gaussian distributed numbers (BOGACHEV et al., 2007).
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respectively. Hence, this data set is strongly multifractal but apparently linearly

uncorrelated (since h(2) - 0.5 = 0). To show that this result is not some kind of artifact

of the MF-DFA method, we have confirmed it also by a direct calculation of the

autocorrelation function Cx(s), which is shown in Figure 5(b). In the case of data based

on multipliers with hmi ¼ 1:0 and hrmi ¼ 0:5; the values for h(q), shown in Figure 5(c),

are 1.05, 0.98, 0.84, and 0.61, respectively. The corresponding autocorrelation function

Cx(s), shown in Figure 5(d), decays like a power-law with exponent c = 0.32,

corresponding to h(2) = 0.84 via h(2) = 1 - c/2. In the case of data based on

hmi ¼ 1:0 and hrmi ¼ 0:1; the multifractality is apparently weaker (the divergence of the

slopes for different moments q is much less pronounced, see Fig. 5(e)), but h(2) is close
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Figure 5

Detrended fluctuation analysis (MF-DFA) of the random cascade data. The left column contains results of the

MF-DFA of data with hmi ¼ 0:0 and rm = 1.0 (a), hmi ¼ 1:0 and rm = 0.5 (c), hmi ¼ 1:0 and rm = 0.1 (e).

The fitted slopes of the generalized fluctuation function Fq(s)/s
0.5 for the moments q = 0.5 (circles), 1 (squares),

2 (diamonds), and 5 (triangles) are shown. The right column presents autocorrelation functions for the three

relevant cases, (b), (d) and (f), respectively. Note different scales for Cx(s), depending on the kind of behavior

we like to emphasize with getting nearly straight lines in either linear or logarithmic scale. For comparison,

Fq(s)/s
0.5 and Cx(s) for monofractal long-term correlated data with c = 0.4 are given in (g) and (h), respectively.
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to 1, attesting to almost non-stationary behavior. In this case, the autocorrelation function

in Figure 5(f) decays logarithmically (straight line, fit: 0.34–0.03 ln(s)).

For comparison, we also show Fq(s)/s
0.5 and Cx(s) for the Gaussian distributed

monofractal data sets with c = 0.4 in Figures 5 (g) and (h), respectively. The solid

straight line in Figure 5 (h) represents the theoretical Cx(s)*s-0.4. Conversely to the

multifractal data sets, which are characterized by an infinite number of scaling exponents

h(q), the monofractal data sets are characterized by a single exponent. Hence, the

generalized fluctuation functions Fq(s) collapse after normalization, i.e., the exponents

are independent of q, and correspond one-by-one to the exponent c of the autocorrelation
function by hðqÞ � h ¼ 1� c=2: We like to note that the differences between the values

of the exponents of Fq(s) are a necessary, but not a sufficient quantifier of the nonlinear

correlations in the data, since they are also affected by the distribution of the data

(KANTELHARDT et al. 2002). Therefore, straighforward application of the MF-DFA is not

sufficient to distinguish between the distributional multifractality and nonlinear

correlations, when dealing with non-Gaussian distributed data. Here we are not interested

in the distributional part of multifractality, since it does not affect the statistics of return

intervals (BOGACHEV et al., 2007). We claim that extracting return interval series from a

data set is one of the ways to elucidate of the nonlinear long-term correlations inherent in

the multifractal data.

4. Return Intervals in Multifractal Data Series

Next, we consider the return intervals. We begin with the probability density function

PQ(r) of the return intervals. Figure 6 displays RQ PQ(r) for three fixed return periods,

RQ = 10, 70, and 500. Contrary to the results based on pure long-term correlated

(monofractal) data (see Fig. 2), the distribution densities for different RQ follow neither a

common curvature, nor a stretched exponential decay. For the multifractal data without

linear correlations, where hmi ¼ 0:0 (see Fig. 6(a)), the distribution of the return intervals

appears to decay by a clear power-law for all studied threshold values Q.

The fitted values of the exponents in Figure 6(a) are -1.35 for RQ = 500, -1.59

for RQ = 70, and -1.98 for RQ = 10. For multifractal data with long-term correlations

based on multipliers with hmi ¼ 1:0 and rm = 0.5 and rm = 0.1 (see Fig. 6(b) and (c)),

there exist some deviations from the power-law behavior, which appear to increase with

increasing linear long-term correlations (in Figure 6(c) the curvature of RQ PQ(r) is more

pronounced than in Figure 6(b), where the correlations are weaker). Rather, RQ PQ(r) is

some kind of superposition between a power-law and a stretched exponential, with

different exponents for different quantiles Q. This shows that events exceeding quantiles

of different sizes follow different statistical dependencies. After destroying the ordering

of the original data by shuffling, the distribution densities for all RQ-values display the

expected exponential behavior (shown by the filled symbols in Fig. 6), as for shuffled

monofractal data.
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We also studied the autocorrelation function Cr(s) of the return interval series for

multifractal data. In the absence of linear correlations, i.e., for data sets created with

hmi ¼ 0:0; we find that Cr(s) decays by a power-law (Fig. 7(a)), demonstrating the

presence of long-term memory, even in the absence of linear correlations in the original

data set. The exponents in the power-law exhibit a slight dependence on the size of the

quantile Q, such that the intervals between smaller events (e.g., RQ = 10) appear to be

stronger correlated (i.e., show a smaller exponent c) than the intervals between rather

large events (e.g., RQ = 500). This dependency on the quantile is a strong indicator for

the influence of the multifractality in the data. For the case with inherent long-term

correlations, i.e., data based on multipliers with hmi ¼ 1:0 and rm = 0.5, the return

intervals themselves exhibit only slightly stronger long-term memory in comparison with

the previous case (see Fig. 7(a)). It is not possible to characterize a scaling memory

among the return intervals with a single exponent related to the c of the autocorrelation

function of the original data, as it holds for monofractal data. When changing the

parameter rm to 0.1, the correlations in the original data approach the border of non-

stationarity, but Cr(s) displays only a weak effect on the values of the slopes (see caption

of Fig. 7(c)). The effect of the multifractality on the slopes of Cr(s) becomes slightly

weaker, too, but remains dominant.

We also note, that the generation procedure we used is not the only way to create

multifractal data. Another method, proposed in (BACRY et al. (2001), and usually referred
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Scaled probability density function PQ(r) of the return intervals for the random cascade model based on

multipliers with (a) hmi ¼ 0:0 and rm = 1.0, (b) hmi ¼ 1:0 and rm = 0.5, and (c) hmi ¼ 1:0 and rm = 0.1, for

three different quantiles Q with return periods RQ = 10 (open circles), 70 (open squares), and 500 (open

diamonds). The curves for RQ = 70 and 500 were shifted downwards by a factor of 10 and 100, respectively, to

avoid overlapping symbols. When shuffling the data first, i.e., destroying the multifractality in the ordering of

the data, the PQ(r) collapse to a single exponential curve (filled symbols, shifted downwards by a factor 105). All

results were averaged over 150 configurations of original data sets of length N = 221.
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to as multifractal random walk (MRW), is also suitable to create multifractal data with

vanishing linear ACF, but characterized by different values of the scaling exponents. We

have also studied this model and obtained qualitatively similar results (BOGACHEV et al.,

2007; BOGACHEV and BUNDE, 2008).

5. Conclusion

While for the monofractal long-term correlated data there is a direct relation

between the correlation exponent c of the data and both, distributional and time-

ordering properties of the return intervals over a fixed threshold Q, for the multifractal

data the situation is more complicated. For a multifractal data series without linear

long-term correlations, the distribution of return intervals decays as a power-law

with different exponents for different quantiles Q. When dealing with a data series

that contains a superposition of multifractality and linear long-term correlations

described by a correlation exponent 0 < c < 1, deviations from a power-law behavior

are found, and they become stronger with increasing correlations, i.e., decreasing

values of c.
The most intriguing result, from our point of view, is the linear long-term correlated

behavior of the return intervals for the multifractal data sets without any linear

correlations. This reveals that both linear and nonlinear correlations present in the data set

contribute to the linear correlations in the return intervals, such that even in the absence
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Autocorrelation analysis for the same data displayed in Figure 6, for the same three quantiles. Straight lines in

the log-log plot indicate long-term correlations among the return intervals. In (a), the corresponding slopes are
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of any linear correlations in the original data set the return intervals can be long-term

correlated.

In this brief review we focused on calculations based on numerical models. We

would like to mention that the results we described here also can be observed in real

records. The clustering of the extreme events as well as the stretched exponential

distribution that we described for long-term correlated records can be found, e.g., in

annual temperatures of the Northern Hemisphere or the water levels of the river Nile

(BUNDE et al., 2004, 2005). Furthermore, the multifractal cascade model, on which this

analysis was based, finds substantial applications in the simulation of returns in

financial markets (ARNEODO et al., 1998; BOUCHAUD et al., 2000; FILLOL 2002; MUZY

et al., 2006), and the results presented here can indeed be found in real economic data

series (BOGACHEV et al., 2007; BOGACHEV and BUNDE 2008a, b). We also wish to

mention that a substantial application of our results can be found in the analysis of

different physiological rhythms (BOGACHEV and BUNDE 2008b), which demonstrate

multifractal behavior (STANLEY, 1999; IVANOV et al., 2001; LOSA et al., 2005).
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A Regional Archaeomagnetic Model for the Palaeointensity in Europe

for the last 2000 Years and its Implications for Climatic Change

FCO. JAVIER PAVÓN–CARRASCO,1 MARIA LUISA OSETE,1 J. MIQUEL TORTA,2

and LUIS R. GAYA–PIQUÉ3

Abstract—The SCHA.DI.00 directional model for the geomagnetic field in Europe for the last 2000 years

(PAVóN–CARRASCO et al., 2008) has been updated by modelling the palaeointensity. This model, SCHA.DI.00,

was developed from available Bayesian European Palaeosecular Variation Curves using the regional Spherical

Cap Harmonic Analysis technique. The comparison of the palaeosecular variation curves, given by the regional

model, with available archaeomagnetic data not used in its development showed an improvement with respect to

the fit obtained by global archaeomagnetic models. In this paper advantage is taken of recently published

palaeointensity databases to develop a complete (direction and intensity) regional archaeomagnetic model for

the last 2000 years valid for the European region: the SCHA.DI.00–F model. Not only does this complete model

provide an improvement for example for archaeomagnetic data studies, but it is also shown that this new

regional model can be used to study the recently proposed link between the centennial secular variation of the

geomagnetic field and climate change. The pattern of the archaeosecular variation of the field intensity obtained

by SCHA.DI.00–F seems to verify the hypothesis presented by GALLET et al. (2005) about a possible (causal)

connection between changes in the geomagnetic field intensity and in climate parameters, opening the door for

more discussions on this challenging subject.

Key words: Palaeointensity, archaeomagnetism, geomagnetic secular variation, regional models, Europe.

1. Introduction

The long-term variation of the geomagnetic field extending over many years is called

secular variation (SV). The temporal change of the geomagnetic field is far from linear,

and abrupt changes in the rate of the secular variation change measured at the surface,

known as geomagnetic jerks, provide information about the dynamics of the currents

flowing in the Earth’s outer core (BLOXHAM et al., 2002). When moving into the past,

the Secular (or Palaeosecular) Variation Curves generated from archaeomagnetic
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measurements can be used for dating purposes (e.g., LANOS, 2004). Moreover, a link

between enhanced secular variation of the geomagnetic field and climate change over

centennial time scales recently has been proposed (GALLET et al., 2005, 2006; GALLET and

GENEVEY, 2007; COURTILLOT et al., 2007), challenging the role of solar forcing as the

unique factor provoking these climatic variations.

The secular variation has been recorded directly through observatory measurements

for the last two centuries. Declination (mostly) and inclination data are also available for

the last four centuries from shipboard and navigational records (e.g., JACKSON et al., 2000;

JONKERS et al., 2003). To extend our knowledge of the geomagnetic field variations into

the past, palaeomagnetic studies are needed. The palaeosecular variation (PSV) in a

region can be obtained from (a) heated archaeological structures, which are well-dated

and not disturbed (archaeomagnetic curves), (b) well–dated volcanic materials, and (c)

detailed sedimentary records (directional data or relative intensity). The use of

archaeological material is normally preferred for several reasons: 1) The stability and

origin of its remanence, commonly a thermo–remanence (TRM) or a partial thermo–

remanence (pTRM); 2) the absence of delays in the remanence acquisition mechanism; 3)

the stability of the carriers of the remanence; and 4) the facility of some archaeological

materials to be accurately dated.

Archaeomagnetic data sets (e.g., the recent compilation of KORTE et al., 2005)

comprise directional and palaeointensity observations. The number of directional data is

however higher (3787, about 7575 if we consider declination and inclination separately)

than the amount of palaeointensity measurements (3206). In addition to this, archaeo-

magnetic data are not homogeneously distributed around the globe; Europe is the region

where the highest record density is available.

Palaeomagnetic global models have been obtained during the last decade (e.g., OHNO

and HAMANO, 1993; HONGRE et al., 1998), and more recently by KORTE and CONSTABLE

(2003, 2005) by using archaeomagnetic and sedimentary data. Since they are intended to

represent the palaeofield on a global scale, these models are usually too smooth to record

rapid changes of the Earth’s magnetic field (i.e., archaeomagnetic jerks, GALLET et al.,

2005) which could be related to climatic changes. Recently the first directional regional

model (SCHA.DI.00) to describe the palaeomagnetic field in Europe was proposed

(PAVóN–CARRASCO et al., 2008), which seems to better reproduce the variability of the

geomagnetic field over this region for the last 2000 years. The SCHA.DI.00 model was

developed using the Spherical Cap Harmonic Analysis (SCHA) technique applied to five

of the Bayesian European Palaeosecular Variation Curves (PSVC) (GALLET et al., 2002;

SCHNEPP and LANOS, 2005; MARTON and FERENCZ, 2006; GÓMEZ–PACCARD et al., 2006a and

ZANANIRI et al., 2007), that are based on archaeomagnetic data. This model provided the

directional behavior of the Earth’s magnetic field, but no estimation about intensity was

supplied because input data only contained directional information. The first spherical

cap harmonic (SCH) coefficient, g0
0, was used to normalize the rest of the coefficients.

In this study the present palaeointensity data set in Europe is used to adjust the first

SCH coefficient, g0
0, of the SCHA.DI.00 model to obtain a regional model for Europe

1210 F. J. Pavón–Carrasco et al. Pure appl. geophys.,



which also provides palaeointensity values for the last 2000 years. The new model,

SCHA.DI.00–F, is compared to the existing global models of HONGRE et al. (1998),

JACKSON et al. (GUFM, 2000), and KORTE and CONSTABLE (CALS7K.2, 2005) and with

respect to real archaeointensity records. The use in the development of the regional model

of a large amount of data over a restricted region of the planet makes it possible to achieve

a higher spatial resolution compared to global models, and therefore the temporal variation

of the field can be more accurately accounted for in that particular region. Finally, this new

regional model can be used to study the recently proposed link between the centennial

secular variation of the geomagnetic field and climate change (GALLET et al., 2005).

2. The Previous SCHA.DI.00 Model

The SCHA.DI.00 model (PAVóN–CARRASCO et al., 2008) is based on the Spherical Cap

Harmonic Analysis technique that was originally presented by HAINES (1985) and applied

since to numerous geophysical studies (see Table 2 in TORTA et al., 2006, for a list of

references). Although this method has been recently revised by THÉBAULT et al. (2006),

the numerical problems are difficult to solve when only ground data are used, as in the

case of archaeomagnetic data sets. Consequently the SCHA.DI.00 model used the

classical approach of HAINES (1985), so the model cannot be extrapolated outside

the limits of the cap. The SCHA algorithms of HAINES (1988) were adapted to the

directional case by using Bauer’s method (BARRACLOUGH, 1974), that relates the

components X, Y and Z to the declination and inclination values. To produce a directional

model (without intensity information) PAVóN–CARRASCO et al. (2008) obtained a system

of equations that depend on the declination (D) and inclination (I) data:X
k;m

Gk;mðak;m� sinD� bk;m � cosDÞ ¼ 0X
k;m

Gk;mðak;m� sin I � ck;m � cosD cos IÞ ¼ c0;0 cosD cos IX
k;m

Gk;mðbk;m� sin I � ck;m � sinD cos IÞ ¼ c0;0 sinD cos I

ð2:1Þ

where ak;m; bk;m; ck;m include the radial power, the colatitudinal Legendre, and longitu-

dinal Fourier dependencies and Gk;m ¼ gmk =g
0
0 are the SCH coefficients normalized to the

first SCH coefficient g0
0. This system of equations was introduced in the SCHA routines of

HAINES (1988).

The input data of the SCHA.DI.00 model were the PSVC of Europe determined by

application of hierarchical Bayesian modelling based on roughness penalty (LANOS, 2004).

Five PSVC were used, which correspond to the regions of France, with its reference point

located in Paris (GALLET et al., 2002); Germany, in Göttingen (SCHNEPP and LANOS, 2005);

Hungary, in Budapest (MARTON and FERENCZ, 2006); Iberia, in Madrid (GÓMEZ–PACCARD

et al., 2006a); and the United Kingdom, in Meriden (ZANANIRI et al., 2007). The databases
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from Bulgaria (KOVACHEVA et al., 1998 and references therein), Italy (TEMA et al., 2006;

KORTE et al., 2005 and TANGUY et al., 2003) and Austria (SCHNEPP and LANOS, 2006) were

used to test the model.

The spherical cap expansion of SCHA.DI.00 extends up to Kint = 2 which, given the

size of the spherical cap used (40� half angle), is equivalent, in terms of spatial

wavelength, to a maximum degree of approximately 5 in the ordinary Spherical

Harmonic Analysis (SHA).

3. SCHA.DI.00–F

The palaeointensity data used as input values for the development of the model were

obtained from the global database of KORTE et al. (2005). This database was updated with

new data from GALLET et al. (2005) and GÓMEZ–PACCARD et al. (2006b) corresponding to

French and Spanish locations. 611 palaeointensity determinations were available from

different European countries for the time interval 0–1900 AD. The distribution of data in

Europe is inhomogeneous, with high concentrations in France, England, Bulgaria, and

Greece. Locations of the sites from which palaeointensity data have been used are shown

in Figure 1.

The temporal distribution of data (Fig. 1, in box) shows a high density in the Roman

period (between 100 and 300 AD). Similar to the archaeomagnetic directional database,

there is a decrease in the density of data for 600–1000 AD (the so called ‘‘Dark Ages’’).

The palaeointensity data in Europe range between 36 and 106 lT; the average

palaeointensity for 0–1900 AD is 60 lT. The mean palaeointensity error is 9 lT
(maximum error of 21 lT and minimum of 1 lT). The mean time error is 42 years, with

a minimum error of 0 and maximum of 300 years.

We have compared the palaeointensity data (F) compiled with the relative intensity

data ( f ) provided by the directional regional model SCHA.DI.00 (PAVóN–CARRASCO

et al., 2008):

f 2 ¼ x2 þ y2 þ z2 ¼
X
k;m

ak;m � Gk;m

 !2

þ
X
k;m

bk;m � Gk;m

 !2

þ
X
k;m

ck;m � Gk;m

 !2

ð3:1Þ

where x, y and z are the relative Cartesian components of the geomagnetic field expansion

in the SCH series, and Gk,m represents the spherical cap harmonic coefficients gk
m and hk

m

normalized to the first SCH coefficient, g0
0. The relative intensity error can be obtained by

applying the SCH coefficients errors to equation (3.1) (see PAVóN–CARRASCO et al., 2008,

Section 3).

From the relative intensity f calculated by the SCHA.DI.00 model at each location

(Fig. 1) and for every epoch, the first SCH coefficient g0
0 and its error were obtained as:
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g00 ¼
F

f
; Dg00 ¼

1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2Df 2 þ f 2DF2

p
; ð3:2Þ

where F is the palaeointensity data and DF its error of the database of KORTE et al. (2005)

and f is the relative intensity and Df its error given by the SCHA.DI.00 model according

to the equation (3.1). The g0
0 coefficient has temporal but not spatial dependence, so these

data sets were fitted using a time–dependent function. The temporal error of g0
0 was

considered to be equal to that of the palaeointensity data.

Considering that the mean time error of the palaeointensity data is 42 years, we have

used windows of 50 years. The g0
0 function was developed for each window by a

polynomial temporal expansion (cubic splines) with knot points every 50 years. A weight

function wi was added in the inversion and is inversely proportional to the intensity and

time errors:

Figure 1

Map showing locations of palaeointensity data (KORTE et al., 2005; GALLET et al., 2005 and GóMEZ-PACCARD

et al., 2006b); and the temporal distribution of the data (in box).
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wi ¼
1

qi þ si
; ð3:3Þ

where qi is the normalized error associated with the intensity and si is the time

normalized error. Once the g0
0 function for the entire time interval is obtained, the rms

(the square-root of the sum of the squared differences) was calculated by comparison

with the calculated g0
0 coefficient and input data.

Figure 2 shows the input data (the g0
0 coefficient for each palaeointensity data

measurement) and the g0
0 time function and its error. The average value of the g0

0

coefficient in Europe for the entire time interval is 41.5 lT, with a maximum at 800 AD.

This age corresponds to abrupt changes in the magnetic field of the Earth, as pointed out

by GALLET et al. (2005) and COURTILLOT et al. (2007).

Once the value of g0
0 is obtained, we can derive the rest of SCH coefficients by using

the expression gmk ¼ g00 � Gk;m: Figure 3 shows the SCH coefficients and their associated

errors. Coefficients g0
0 and g1

1 represent the main contribution to the Earth’s magnetic field

values. With this set of SCH coefficients it is possible to obtain the geomagnetic field

components and intensity for Europe for the last 2000 years. The declination, inclination,

and intensity values given by the SCHA.DI.00–F model for Europe every 100 years from

0 to 1900 AD are shown in the maps of Figure 4.

Figure 2

The first SCH coefficient, g0
0. Dots: g0

0 calculated by the global database (KORTE et al., 2005; GALLET et al., 2005

and GÓMEZ–PACCARD et al., 2006b) with error bars. Curves: Fitted g0
0 with error band.
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The new SCHA.DI.00–F and the previous directional SCHA.DI.00 models are

available from the web site: http://pc213fis.fis.ucm.es/scha_model_f.html (palaeomag-

netism group).

4. Discussion

4.1. The SCHA.DI.00–F Model

The palaeointensity values predicted by the SCHA.DI.00–F model have been

compared with the in situ input data (we refer to PAVÓN–CARRASCO et al., 2008, for

Figure 3

SCH coefficients (a) and their errors (b). The SCH coefficient errors are at 95% of confidence. Left scale

corresponds to the SCH coefficients g0
0 and g1

1, right scale for the other SCH coefficients.
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Figure 4

Declination, Inclination and Palaeointensity maps obtained by the SCHA.DI.00–F model at 100 year intervals.
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directional data comparisons) and with the estimations from global models (CALS7K.2,

KORTE and CONSTABLE, 2005–valid from 5000 BC to 1950 AD; GUFM, JACKSON et al.,

2000–from 1590 to 1990 AD and HONGRE et al., 1998–from 0 to 1700 AD). The GUFM

model only uses intensity data post 1840 AD and the authors assume a constant variation

of the first SH coefficient (Dg1
0 = 15 nT/year). Afterwards, GUBBINS et al. (2006) use the

palaeointensity database of KORTE et al. (2005) from 1590 to 1840 AD to obtain the first

SH coefficient g1
0 in the same way that we have obtained the SCH coefficient g0

0 in the

present study. In this case, these authors propose a constant value in the variation of

g1
0 = 2.28 nT/year. For the comparison with the regional model, we have used the GUFM

model with the new values of g1
0 of GUBBINS et al. (2006) for the time period 1590–1840.

The error distribution for all these models has been plotted (Figs. 5a and 5b) with

those obtained from SCHA.DI.00–F for comparison within the appropriate time period.

For the period 0–1900 AD, the CALS7K.2 (KORTE and CONSTABLE, 2005) and the

SCHA.DI.00–F models are compared. A total of 611 data have been used. The most

frequent error is 5 lT for this regional model. In contrast, the error distribution of the

global model exhibits a maximum at 7.5 lT. The mean quadratic error is very similar:

8.7 lT for the SCHA.DI.00–F model and 8.9 lT for CALS7K.2 model. The input data

used in both models are also very similar. Therefore, the explanation of differences

between the models resides in 1) the global model is also influenced by the data outside

Europe and 2) the smoothing parameters used by KORTE and CONSTABLE (2005) seem to be

too high to adequately describe brief, but significant Earth’s magnetic field variations

(this point is discussed later). The main differences between both models are the intervals

0–200, 800–950, and 1000–1100 AD, where the rms error of CALS model is higher than

the regional model. Around 1300 and close to 1800 AD, the global model fits the data

better than the regional model (Fig. 5b).

For the time interval 0–1700 AD, the distribution of errors of the SCHA.DI.00–F and

the global model proposed by HONGRE et al. (1998) are shown in Figures 5a (center) and

5b. The mean quadratic errors are 8.7 lT for the regional model and 9.7 lT for the global

model. In this case both distributions show a maximum in 5 lT, however the width of the

error distribution is higher for the global model. It is important to consider that the input

data for both models are very different in this case since many palaeointensity studies

have been published in the last decade. This global model presents a poor fitting in the

intervals 650–850 and 1400–1500 AD (Fig. 5b).

For the 1590–1900 AD interval the SCHA.DI.00–F model and the global GUFM

(JACKSON et al., 2000) model are compared. For 1590–1840 AD we have used the

modified GUFM model by GUBBINS et al. (2006). Mean quadratic error is 9.4 lT for the

regional and 8.1 lT for the global model. The rms errors (Fig. 5b) show that the com-

portment of this global model is similar to the CALS global model for the considerate

interval (1590–1900 AD), because the modified GUFM model also used the archaeo-

intensity database of KORTE et al. (2005). In this case the global model seems to represent

the behavior of the variation of intensity of the magnetic field better for this time period.

However the GUFM model does not accurately describe the directional variation of the
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geomagnetic field prior to 1700 AD (PAVóN–CARRASCO et al., 2008). JACKSON et al. (2000)

used historical directional observations of the magnetic field (from shipboards). The

number of data used in the GUFM model was much higher (e.g., 83000 observations of

magnetic declination before 1800 AD, Jackson et al., 2000) than those used in this study.

For a detailed representation of the Earth’s magnetic field a combination of both models

should be considered in the future.

Figure 5

Histograms of errors (a) versus number of data and (b) versus time. Comparison of the rms errors between the

SCHA.DI.00–F model and the global CALS7K.2 model (KORTE and CONSTABLE, 2005); the global model of

HONGRE et al. (1998) and the global GUFM model (JACKSON et al., 2000).* The GUFM model has been modified

according to GUBBINS et al. (2006).
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The SCHA.DI.00–F model suggests that the Earth’s magnetic field in Europe

reached 8 maximum peaks between 0–1900 AD at: 160, 320, 590, 820, 1070, 1310–

1400, 1570 and 1770–1850 AD. Such a detailed description of the intensity variations

of the geomagnetic field during the last 2000 years has not been achieved to date by

any other geomagnetic model. This suggests that the smoothing parameters commonly

used in constructing global models are too high to show such small wavelength

variations.

4.2. Palaeointensity Generated Curves by SCHA.DI.00–F for France and Bulgaria

Palaeointensity data from Europe are inhomogeneously distributed (Fig. 1), most of

the data being concentrated in France and Bulgaria. In Figure 6 the palaeointensity

curves generated by the SCHA.DI.00–F model are compared with the palaeointensity

data from France (KORTE et al., 2005 and references therein) after relocation to Paris, and

from Bulgaria (KORTE et al., 2005 and references therein), relocated to Sofia (by the

Virtual Axial Dipole Moment, VADM). The predicted palaeointensity curves generated

by global models (KORTE and CONSTABLE, 2005; HONGRE et al., 1998 and JACKSON et al.,

2000) are also shown.

The Bulgarian dataset suggests a higher variability in the intensity of the geomagnetic

field than the French dataset. However, the French and Bulgarian datasets are only a part

of the much larger amount of data used in the development of the models discussed in

this paper. Consequently, they are influenced by the neighboring regions (as is the case of

the regional model) or by data over the entire globe (global models). It also should be

kept in mind that not all intensity values are determined using a unique method, therefore

this could lead to variability in these datasets.

The CALS7K.2 global model (KORTE and CONSTABLE, 2005) is too smoothed to

describe fluctuations shown by the data in these two locations. The model proposed by

HONGRE et al. (1998) also seems to fail in isolating short–term fluctuations, whereas the

GUFM model (JACKSON et al., 2000; GUBBINS et al., 2006) seems to represent the

geomagnetic variations for the interval 1700–1900 AD most accurately.

The French and Bulgarian data appear to be in agreement with the SCHA.DI.00–F

model except for two intervals. First, between 800–1000 AD, when a maximum in

palaeointensity is predicted around 790–820 AD, which seems to be observed later in the

Bulgarian database (about 900 AD). This location is mostly influenced by data from

Ukraine (KORTE et al., 2005 and references therein). In addition, data from the Ukraine

and Moldavia regions determined the position of the previous minimum at 690 AD.

Second, a strong maximum is observed in the Bulgarian database around 1600–1650 AD

(KOVACHEVA, 1997; KOVACHEVA et al., 1998), which is not well represented in the rest of

the European database. The SCHA.DI.00–F shows a maximum at about 1570 AD but of

lower magnitude.

Taking into account the European dataset used, it is suggested that future

palaeointensity studies should be focussed in these two periods. The first one corresponds
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Figure 6

Palaeointensity curves for (a) Paris and (b) Sofia. Dots: Archaeointensity dataset from these regions with their

error bars. Solid curve: Palaeointensity curve given by SCHA.DI.00–F model (with the error band) and the

global geomagnetic models of HONGRE et al. (1998), CALS7K.2 (KORTE and CONSTABLE, 2005), and GUFM

(JACKSON et al., 2000).* The GUFM model has been modified according to GUBBINS et al. (2006).
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to the ‘‘Dark Ages’’ from which there is less palaeomagnetic information available (see

Fig. 1, in box). The second (the maximum around 1600 AD observed in the Bulgarian

database, KOVACHEVA, 1997; KOVACHEVA et al., 1998) seems to be poorly represented in

Western Europe data.

4.3. Palaeointensity during the last 2000 Years and the Climatic Record

The last section of this paper deals with a hot topic of research — the relationship

between the geomagnetic field and climate. Many studies have indicated that solar

variability is one of the main non–anthropogenic sources for climate alterations in the

past, because of the positive correlation between solar irradiance and the temperature at

the Earth’s surface (e.g., USOSKIN et al., 2005), at least until the decade of 1980 AD when

anthropogenic causes are assumed to play an important role in climate change (e.g., LE

MOUËL et al., 2005). The role of the Earth’s magnetic field as an agent connected to

climate variations has been discussed for decades, but recently the topic generated

interest because more archaeomagnetic information are now available (see COURTILLOT

et al., 2007 for a review). A plausible physical mechanism hypothesized to explain this

connection is as follows: A change in the strength of the magnetic field would induce

variability in the cosmic ray flux that reaches the troposphere, consequently modifying

the rate of production of clouds and therefore altering the temperature at the Earth’s

surface (GALLET et al., 2006; COURTILLOT et al., 2007). However, many unanswered issues

emerge when entering into details, such as the role of changes in the Earth’s magnetic

field compared either to CO2 concentration or to the variation in the cosmic ray flux

modulated by solar activity (COURTILLOT et al., 2007). GALLET et al. (2005) found a good

agreement for Western Europe between cooling periods and archaeomagnetic jerks,

defined as sharp increases in the intensity of the magnetic field contemporary to abrupt

changes in its direction. The authors hypothesize that this may be a causal link,

furthermore presenting these geomagnetic variations (a total of six possible archaeo-

magnetic jerks for the last two millennia) as the triggering events for climate variations

which produced cultural changes in societies world wide (GALLET et al., 2006; GALLET

and GENEVEY, 2007).

Figure 7 represents the palaeointensity curve for Paris generated by our model

SCHA.DI.00–F, its error band, and the palaeointensity data from Western Europe

(KORTE et al., 2005; GALLET et al., 2005 and GóMMEZ–PACCARD et al., 2006b) relocated

into the location of Paris by the VADM method. The errors associated with the

palaeomagnetic measurements correspond to uncertainties in the intensity (vertical bar)

and in the date (horizontal bar). The shaded stripes indicate cooling periods as deduced

from the advance of the Swiss Alps glaciers (after HOLZHAUSER et al., 2005). Following

the definition by GALLET et al. (2005), and taking into account the figures for the

temporal evolution of the magnetic field direction presented in PAVóN–CARRASCO et al.

(2008), up to 8 archaeomagnetic jerks can be deduced from this curve. All of these

coincide with a cooling period; in more detail, the rising part of each intensity
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maximum falls into a period of low temperature as shown by the shaded bands. Among

these jerks, some of them (those around 820–950 AD, 1540–70 AD, and 1850 AD) are

in good agreement with those found by GALLET et al. (2005), others (like the one for

1310–20 AD) precede the event detected by GALLET et al. (2005), but this event could

extend up to 1400. The single jerk detected by GALLET et al. (2005) around 200 AD

seems to split into two events as suggested by the new model, with maximum

intensities and directional changes around 160–190 AD and 320 AD. The event around

590 AD suspected by GALLET et al. (2005) is better defined in the new model, therefore

it is now considered to be a robust event. Finally, the low intensity maximum around

1070–1100 was not reported by GALLET et al. (2005) since no archaeointensity values

were available from France for that epoch. The fact that more data are now being used

helps to detect jerks more clearly, especially in the new model that incorporates data

from other European regions.

If these eight events are real, the repetition time for the archaeomagnetic jerks has

been about 250 years for the last 2000 years. This is usually assumed as the characteristic

time for the non–dipolar part of the secular variation (e.g., HULOT and LE MOUËL, 1994;

HONGRE et al., 1998). However, KORTE and CONSTABLE (2006) suggest a shorter–term

Figure 7

Palaeointensity curve at Paris (with error band) predicted by the SCHA.DI.00–F model. Archaeointensity data

from Western Europe (KORTE et al., 2005; GALLET et al., 2005 and GóMMEZ–PACCARD et al., 2006b) relocated to

Paris by VADM method. Climatic variations summarized by GALLET et al. (2005) deduced from retreats and

advances of the Alpine Glaciers for the past millennium studied by HOLZHAUSER et al. (2005). Cooling periods

are indicated by shaded bands. Modified from GALLET et al. (2005).
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variability of the dipole field, thus this characteristic time sheds no light on either the

dipolar or non–dipolar secular variation. The conclusion from this comparison is that

there seems to be a correlation between geomagnetic field variation and climate, although

a fuller cross correlation analysis is needed to test if this correlation is robust. This study

allows no inference whether the link is causal or not. Neither can it be inferred that the

archaeomagnetic jerks are of dipolar or non–dipolar origin. Such assessments require this

type of study to be extended to other areas of the world, enabling other regional models to

be developed to monitor the extent (global or regional) of this causal–noncausal

relationship.

5. Conclusions

This paper shows how the inclusion of in situ palaeointensity data improves a

regional archaeomagnetic model by providing a complete description of the geomag-

netic field over a restricted area for the last 2000 years. Following a similar procedure,

when substituting the PSVC directional input data by in situ directional data as well, the

overall fit will be further improved in the future when a dense compilation will be

finished.

The SCHA.DI.00–F model fits the present palaeointensity archaeomagnetic database

for Europe more accurately than the global models proposed by HONGRE et al. (1998) and

KORTE and CONSTABLE (2005) for the 0–1900 AD time interval. The regional model also

fits the directional data properly (PAVÓN–CARRASCO et al., 2008), and, regarding the

current data compilation, is the best model obtained to date over Europe for the 0–1900

AD time period. The model proposed by JACKSON et al. (2000) seems to represent most

accurately the geomagnetic variations for 1700–1900 AD interval.

The new SCHA.DI.00–F model suggests that the Earth’s magnetic field strength

reached 8 maxima in Europe at: 160, 320, 590, 820, 1070, 1310–1400, 1570 and 1770–

1850 AD. The complete model presented in this paper has also provided new insights into

a very new and controversial topic of research, i.e., the question of whether connections

exist between geomagnetic field changes and global (or regional) climate alterations.

Although our results seem to confirm, even amplify, previous studies, it cannot be

concluded that such relationships are statistically significant, nor can the existence of

causality between both phenomena be considered established.
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