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Preamble

Theoretical understanding of convective and advective heat transfer phenomena in
geological systems at the crustal scale is important to the understanding of con-
trolling processes involved in ore body formation and mineralization, hydrocarbon
maturation and accumulation, hot spot locations within the Earth’s crust, environ-
mental remediation and nuclear waste storage. Such an understanding provides use-
ful analytical and numerical tools for accurate and efficient modeling of many of
these important processes within the Earth’s crust, but also on the Earth’s surface
and in the atmosphere, so that the interaction between the lithosphere, hydrosphere
and atmosphere of the whole Earth system can be appropriately considered. To-
wards this end, multidisciplinary collaboration among mathematicians, engineers,
chemists, physicists and geoscientists is required.

Although convective and advective heat transfer during fluid flow in porous me-
dia have been studied and discussed for many years, a systematic and theoretical
treatment of these phenomena in geological systems at the crustal scale is lacking.
This monograph aims to provide state-of-the-art theoretical results in this particu-
lar research field, based on the authors’ own work during the last decade. For this
purpose, although some numerical results are provided to complement theoretical
ones, the main focus of this monograph is on theoretical aspects of the topic. This
means that the theoretical treatment contained in this monograph is also applicable
to a wide range of problems of other length scales such as engineering length scales.
To broaden the readership of this monograph, common mathematical notations are
used to derive the theoretical solutions. This enables this monograph to be used ei-
ther as a useful textbook for postgraduate students or as a valuable reference book
for mathematicians, engineers and geoscientists. In addition, each chapter is written
independently so that readers may read the chapter of interest separately.

In this monograph we investigate, both theoretically and numerically, the de-
tailed physical mechanisms related to pore-fluid pressure gradient distributions, the
critical conditions required to trigger convective pore-fluid flow and the effects of
geological heterogeneities on advective and convective heat transfer in the crust. We
also extend the numerical treatment of the convective heat transfer problem to ore
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vi Preamble

body formation and mineralization problems within the upper crust of the Earth.
The related theoretical and numerical results demonstrate that:

(1) For a stable (that is, non-deforming) continental crust, although the entrapped
pore-fluid pressure may reach or exceed the lithostatic pressure in an overpressured
system consisting of a permeable layer and two adjacent impermeable layers, the
pore-fluid pressure gradient cannot be maintained at or exceed the lithostatic pres-
sure gradient, even if thermal effects are neglected in the crust.

(2) Pure heat conduction may influence how pore-fluid pressure is distributed in
the lower part of the crust, but it has little influence on the distribution of pore-fluid
pressure in the upper part of the crust. Thus, for a fluid-saturated crust with mo-
tionless pore-fluid, the pore-fluid pressure gradient is very close to the hydrostatic
pressure gradient arising from the constant density of the pore-fluid, even though
heat conduction takes place.

(3) In the case of a thin crust, the thermal effect of heat advection on the distri-
bution of the pore-fluid pressure gradient is very limited, but in the case of a thick
crust, the thermal effect is significant. Generally, the effect of heat advection on
the distribution of the pore-fluid pressure gradient becomes more significant with
increased conductive thermal flux at the bottom of the system. For a thin crustal
model, the pore-fluid pressure gradient is very close to the lithostatic pressure gra-
dient. However, for a thick crustal model, the pore-fluid pressure gradient clearly
departs from the lithostatic pressure gradient, especially in the case where the base
has a large conductive thermal flux.

(4) If the Rayleigh number of the system is critical or supercritical, convective
pore-fluid flow can take place in the crust when the pore-fluid pressure gradient
is close to the hydrostatic pressure gradient. The resulting convective pore-fluid
flow has a significant effect on heat transfer, causing temperature localization within
the crust.

(5) If the pore-fluid pressure gradient is close to a lithostatic pressure gradient,
convective pore-fluid flow cannot take place in a crust that has constant temperature
and impermeable boundary conditions at both the top and the bottom of the crust,
but it can take place if the crust has a permeable top with constant pressure and
temperature, and a base with constant upward pore-fluid velocity and conductive
heat flux.

(6) The heterogeneity of both medium permeability and thermal conductivity has
a significant effect on convective heat transfer within the system. Material thermoe-
lasticity may also affect heat transfer, depending on the elastic hardness of rock
masses comprising the crust. In addition, the effect of temperature-dependent pore-
fluid viscosity is to destabilize convective flow in the crust. In other words, convec-
tive flow takes place more easily when temperature-dependent pore-fluid viscosity
is considered.

(7) In the case of strong pore-fluid inflow from the far field of the surrounding
rock, the inflow is highly focused within geological faults. The focused pore-fluid
flow can cause significant advective heat transfer within and around faults.

(8) Under certain boundary conditions, convective pore-fluid flow is possible
within both vertical and inclined three-dimensional fault zones. This conclusion is
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also valid when double-diffusion driven convective instability of pore-fluid flow is
considered within three-dimensional fault zones.

(9) Convective pore-fluid flow is very efficient for mixing reactive mineral carry-
ing fluids and, therefore, plays an important role in ore body formation and mineral-
ization within the upper crust of the Earth. Mineralization rates are useful to predict
precipitation and dissolution of minerals in convective hydrothermal systems. The
locations of both injected reactive fluids and geological structures can significantly
affect the distributions of pore-fluid flow and temperature as well as the zonation of
minerals within the upper crust of the Earth.

October 18, 2007 Chongbin Zhao
Bruce E. Hobbs

Alison Ord
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Nomenclature

The following symbols are commonly used with the attached definitions, unless
otherwise specified in the monograph.

A area of a finite element
C species concentration
C species concentration vector
C1 non-zero constant
C2 arbitrary constant
cp specific heat of pore-fluid
D mass diffusivity
g acceleration due to gravity
H reference length
K medium permeability
Kh reference medium permeability in the horizontal direction
L length of a problem domain
Le Lewis number
P pressure
P pressure vector
P0 hydrostatic pressure
qC mass flux on the boundary of a finite element
qT heat flux on the boundary of a finite element
Ra Rayleigh number
Racritical critical Rayleigh number
S boundary length of a finite element
T temperature
T temperature vector
t temporal variable
u Darcy velocity in the x direction
U Darcy velocity vector
v Darcy velocity in the y direction
w Darcy velocity in the z direction

xv



xvi Nomenclature

x, y, z spatial coordinates
λ thermal conductivity
λe0 reference thermal conductivity in the horizontal direction
φ porosity
ψ stream function
� shape function vector for the pressure of a finite element
ρ0 reference density of pore-fluid
μ dynamic viscosity of pore-fluid
β thermal volume expansion coefficient of pore-fluid
σ stress on the boundary of a finite element
� shape function vector for the temperature, species concentration and

Darcy velocity of a finite element
η permeability ratio of the underlying medium to its overlying

folded layer
ζ thermal conductivity ratio of the underlying medium to its overlying

folded layer
ε penalty parameter associated with the penalty finite element approach

Subscripts

f pertaining to pore-fluid
0 pertaining to reference quantities

Superscripts

e pertaining to equivalent quantities of a porous medium
e pertaining to quantities in a finite element level
∗ pertaining to dimensionless quantities
s pertaining to solid matrix



Chapter 1
Introduction

The study of heat transfer mechanisms in hydrothermal systems is important for
understanding the basic physics behind orebody formation and mineralization in the
upper crust (Bickle and Mckenzie 1987; Bjorlykke et al. 1988; Brady 1988; England
and Thompson 1989; Hoisch 1991; Connolly 1997). Generally, heat energy may be
transferred within the crust in the following forms: conduction, advection (including
forced convection) where the heat is carried by a moving mass of rock during defor-
mation or by a moving fluid, convection (i.e., free convection, natural convection,
buoyancy driven convection, temperature gradient driven convection) and a combi-
nation of these processes. Since advective flow is usually generated by a pore-fluid
pressure gradient, heat transfer due to advective flow is largely dependent on the
pore-fluid pressure gradient distribution in hydrothermal systems. A typical exam-
ple of this advective flow is the upward throughflow caused by lithostatic pore-fluid
pressure gradients within the lower crust. Extensive studies (Connolly and Ko 1995;
Etheridge et al. 1983; England et al. 1987; Fyfe et al. 1978; Walther and Orville
1982; Peacock 1989; Yardley and Bottrell 1992; Hanson 1992; Yardley and Lloyd
1995; Norton and Knapp 1970) have shown that lithostatic pore-fluid pressure can
be built up by metamorphic fluids arising from devolatilization and dehydration re-
actions, if the permeability is low enough to control fluid flow in the lower crust. It is
noted that the advective heat transfer mentioned in this study refers to the contribu-
tion of pore-fluid pressure gradient driven flow to heat transfer, whereas convective
heat transfer refers to the contribution of pore-fluid buoyancy driven flow to heat
transfer in a fluid-saturated porous medium. Although heat transfer due to both
conduction and convective flow arises from a vertical temperature gradient, there
are some significant differences between these two heat transfer mechanisms. First,
heat transfer due to pure conduction arises from a subcritical temperature gradient,
while heat transfer due to convective flow is caused by a critical or supercritical
temperature gradient. For a given hydrothermal system, the critical vertical temper-
ature gradient can be evaluated using the critical Rayleigh number, which is directly
determinable from classical theory in the field of convective flow in porous media
(Horton and Rogers 1945; Lapwood 1948; Nield 1968; Bories and Combarnous
1973; Caltagirone 1975; Phillips 1991; Nield and Bejan 1992; Zhao et al. 1997,
1998a, b, 1999a, b, 2000a, 2001a). The definition and physical implication of both
the Rayleigh number and the critical Rayleigh number for a given hydrothermal

C. Zhao et al., Convective and Advective Heat Transfer in Geological Systems, 1
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2 1 Introduction

system will be addressed in detail later. Second, in the case of heat transfer due to
conduction, both the rock mass and the pore-fluid in a porous medium play impor-
tant roles in transferring heat energy. However, in the case of heat transfer due to
convective flow, heat energy is predominantly transferred by the pore-fluid in the
porous medium (in the case of large Rayleigh numbers).

Pore-fluid flow in permeable rocks in the upper crust is a very complicated phe-
nomenon. Generally, such flow can be generated by mechanical process, thermal
process, chemical process or combinations of these. In the case of mechanical pro-
cess, pore-fluid flow mainly results from a pressure gradient in the porous medium
and, therefore, is called pressure gradient driven flow. This kind of pore-fluid flow
can cause advective heat transfer in the porous medium. Pore-fluid flow induced by
the uneven topography of a basin and the flow of pore-fluid squeezed out of a sedi-
mentary basin by the shortening of the upper crust are typical examples of pore-fluid
pressure gradient driven flow. In the case of thermal process, pore-fluid flow is pre-
dominantly caused by a temperature gradient in porous rocks. Thus, it is often called
temperature gradient driven flow (Phillips 1991; Nield and Bejan 1992; Zhao et al.
1997, 1998a, b, 1999a, b, 2000a, 2001a). Due to the nature of temperature gradient
driven flow, convective heat transfer takes place in the porous medium. In order to
generate convective flow in the upper crust with a flat top and bottom, the tempera-
ture gradient of the hydrothermal system must be equal to or greater than a critical
temperature gradient. Convective pore-fluid flow is important for ore body forma-
tion and mineralization in hydrothermal systems from the following three points
of view.

(1) Since the pore-fluid flows circularly within convecting hydrothermal systems,
consumption of the pore-fluid is a minimum within the system. This enables
convective flow to last for relatively long periods of time, if a high temperature
at the bottom of the system can be maintained.

(2) Since convective pore-fluid flow comprises a circular flow regime, it is an ef-
fective and efficient process for mixing different chemical species within a hy-
drothermal system.

(3) Convective pore-fluid flow may result in highly localized temperature distri-
butions in the hydrothermal system. This provides a favorable condition un-
der which highly-localized, high-grade, giant hydrothermal ore deposits may
be formed.

For these reasons, the study of convective pore-fluid flow instability in geolog-
ical systems has attracted ever-increasing attention in recent years. In the case of
chemical process, a species concentration gradient is the main driving force to trig-
ger pore-fluid flow. This kind of pore-fluid flow may be called chemical concen-
tration gradient driven flow. In particular, if convective pore-fluid flow is driven by
a pore-fluid density change due to the diffusion of both heat and chemical species
simultaneously, it is called double-diffusion driven convective flow, as considered in
Chap. 11. Otherwise, temperature gradient driven convective flow, which is caused
by heat diffusion only, is considered in the rest of this monograph when convective
pore-fluid flow is treated.
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Although the theoretical basis for convective flow in pore-fluid saturated porous
media has been well established in many scientific fields, the occurrence of convec-
tive pore-fluid flow in the crust has been debated for many years. The core issue of
the debate is the statement that traditional convective flow can only take place in a
porous medium, if the pore-fluid pressure gradient is hydrostatic. Strictly speaking,
this statement is not true even if pure heat conduction is considered in the porous
medium since the fluid density at the base of the system is less than at the top due
to thermal expansion. Thus even if the geothermal gradient is subcritical in a sin-
gle layered homogeneous crust, the buoyancy generated by the geothermal gradient
may cause a departure of the pore-fluid pressure gradient from hydrostatic in the
traditional geological sense. However, for a multiply layered crust, it is impossible
to maintain a pore-fluid pressure gradient at hydrostatic in the whole crust.

There are three major scientific methods, namely the experimental method, the
theoretical analysis method and the computer simulation method, which are widely
used to solve contemporary scientific and engineering problems. The experimental
method is used to produce data for establishing fundamental physical and chemical
laws, while theoretical analysis is used to establish the corresponding fundamental
physical and chemical laws as well as governing equations for describing inher-
ent characteristics of a problem. In addition, theoretical analysis can produce exact
theoretical solutions for some kinds of scientific and engineering problems. Due
to the complex and complicated nature of geo-scientific problems, the computer
simulation method has found more and more applications. This gradually changes
the traditional geoscience from a description-dominated empirical discipline into
a computer simulation-dominated scientific discipline. Since computer simulations
are usually based on an approximate numerical algorithm, it is necessary to verify
and validate the computer simulation method before it is used to solve any new kind
of scientific problem. In this regard, it is desirable to derive analytical solutions for
typical benchmark problems of simple geometry. Since analytical solutions can be
used to investigate the general behavior within the whole parameter space of the sys-
tem, they result in general conclusions for the problem. However, since it is often
impossible to use numerical solutions to investigate the general behaviors within the
whole parameter space, which is usually of infinite extent, numerical solutions can
only produce some kind of specific conclusion for the problem. Therefore, in order
to draw general conclusions for problems associated with convective and advective
heat transfer within the crust of the Earth, analytical solutions, if available, are al-
ways superior to numerical solutions. As mentioned above, analytical solutions to
benchmark problems provide an important and often unique tool for validating and
verifying numerical methods and algorithms used to solve problems with compli-
cated geometries, such as convective and advective heat transfer within the hetero-
geneous crust of the Earth. For those reasons, the main focus of this monograph is
on the development of analytical solutions for convective and advective heat transfer
problems within pore-fluid saturated porous rocks.

The nature of large scale convective flows of pore-fluids such as water and carbon
dioxide within the Earth’s crust is not only fundamental for understanding the gener-
ation and formation of giant hydrothermal ore and oil deposits, but is also important
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for understanding the release of heat and carbon dioxide from the deep Earth into the
hydrosphere and atmosphere. Thus, the understanding of such convective flow pro-
cesses has become closely involved in climate change related issues, such as finding
the most efficient ways and places to dispose of captured carbon dioxide, locating
and managing groundwater resources sustainably and exploring new geothermal re-
sources that can be used for desalination and to produce electricity. On the nuclear
power generation front, the understanding of convective and advective heat trans-
fer processes can help us find the most appropriate places, with stable geology and
negligible risk for convective and advective flow, for the safe long-term storage of
radioactive materials. Thus, the topic of this monograph is clearly of interest for the-
oretical understanding in the field of geoscience and for broad applications in many
other scientific and engineering fields.

We use both analytical and numerical methods to investigate convective and ad-
vective heat transfer in geological systems of the crustal scale. Because the pore-
fluid (i.e., water) considered is within the Earth’s crust, it is reasonable to assume
that the density of the pore-fluid (i.e., water) is a linear function of temperature,
which can be described by the Oberbeck-Boussinesq equation. In order to make a
systematic investigation of the major issues associated with convective and advec-
tive heat transfer in the crust, the conceptual models addressed in this monograph
gradually become more complicated. Discrepancies between the conceptual mod-
els are clearly stated so that the solutions can be compared with each other in the
related chapters. In this regard, the contents of this monograph are arranged as fol-
lows. A rigorous analysis of the distribution of pore-fluid pressure gradients in both
a homogeneous and layered crust without considering temperature effects is car-
ried out in Chap. 2. In Chap. 3, analytical solutions for both pore-fluid pressure
and its gradient are derived for a homogenous crust with the incorporation of heat
conduction and advection effects. The solutions presented in this chapter are valid
for a crust that is not hot enough to trigger convective pore-fluid flow. In Chap. 4,
convective heat transfer within the crust is addressed and, in particular, the con-
cepts of both the Rayleigh number and the critical Rayleigh number are discussed
in detail. A significant result in this section is the discussion of the potential occur-
rence of convective pore-fluid flow in a crust that has a non-hydrostatic pore-fluid
pressure gradient. Convective heat transfer in a heterogeneous crust is investigated
in Chap. 5. The focus of this chapter is the influence of material anisotropy, ther-
moelasticity and temperature-dependent viscosity on convective pore-fluid flow. In
Chaps. 6 and 7, focusing of pore-fluid flow within two-dimensional faults and cracks
of crustal scales is considered without including temperature effects. A complete set
of analytical solutions for excessive pore-fluid pressure, pore-fluid velocity and the
stream function within and around elliptical faults is derived and presented in both
a local elliptical coordinate system and a global Cartesian coordinate system. Based
on the theoretical work conducted in Chaps. 6 and 7, numerical models are tested
and used to investigate pore-fluid flow focused transient heat transfer within and
around two-dimensional faults and cracks of crustal scales in Chap. 8. To examine
convective instability of pore-fluid flow within three-dimensional fault zones, theo-
retical analysis of a vertical three-dimensional fault zone is conducted in Chap. 9,
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while the theoretical analysis of an inclined three-dimensional fault zone is carried
out in Chap. 10. In Chap. 11, the double-diffusion effect due to both temperature and
chemical species is considered theoretically to investigate convective instability of
pore-fluid flow within a vertical three-dimensional fault zone. In Chap. 12, convec-
tive heat transfer simulation is extended to investigate ore body formation and min-
eralization within the upper crust of the Earth. The precipitation and dissolution of
lead-, zinc- and iron-bearing minerals are considered to demonstrate the important
role that convective pore-fluid flow plays in hydrothermal systems. Finally, some
conclusions are given at the end of the monograph.



Chapter 2
Distribution of Pore-Fluid Pressure Gradient
in the Crust with Temperature Neglected

On the crustal scale, the rock mass of the crust may be treated as a porous mate-
rial, the pores of which are filled with pore fluid (e.g., water). From the analytical
point of view, it is assumed that the whole crust is comprised of layered materi-
als. At this point, it must be pointed out that analytical solutions, which are derived
from a purely mathematical analysis, are very important for scientific and engineer-
ing problems (Zhao and Steven 1996). First, an analytical solution can be used as
a powerful means to gain an understanding of the solution scenarios under some
extreme conditions for a given problem. Second, an analytical solution is often a
useful, or even in some circumstances, a unique measure in the assessment and ver-
ification of any numerical methods. However, most scientific and engineering prob-
lems are mathematically described by a set of partial differential equations with
complicated geometry and boundary conditions. This makes it extremely difficult to
obtain analytical solutions for such problems. Thus, the main purpose of this section
is to provide analytical solutions for problems with simple geometry and boundary
conditions. In order to enhance the broad readability of the material, simple math-
ematics is used as much as possible, together with a discussion of the geological
implications.

2.1 The Crust Comprised of a Single Homogeneous Layer

In order to demonstrate the concept of pore-fluid pressure gradient, we first con-
sider the simple case of the crust represented as a single homogeneous layer, as
shown in Fig. 2.1. We assume that the rock is rigid in this particular case. Under this
assumption, the steady-state (i.e., the long-term state in a geological sense) gov-
erning equations of the pore-fluid flow in the crust are expressed as (Bear 1972;
Scheidegger 1974):

�u
�x

+
�v
�y

= 0, (2.1)

u =
K
μ

(
−�P

�x

)
, (2.2)
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Fig. 2.1 Geometry of the
single layer homogeneous
crust

P = Ptop

P = Pbottom

0

y

Hg

x

v =
K
μ

(
−�P

�y
+ρ f g

)
, (2.3)

where u and v are the horizontal and vertical velocity components of the pore-fluid in
the x and y directions, respectively; P is the pore-fluid pressure; K is the permeability
of the porous medium; μ is the dynamic viscosity of the pore-fluid; ρ f is the density
of the pore-fluid and g is the acceleration due to gravity.

Note that (2.1) is the continuity equation that describes the mass conservation
of the pore-fluid in every spatial point of the crust. Equations (2.2) and (2.3) are
Darcy’s equations to describe the relationships between the pore-fluid velocity and
pressure gradient within the crust. Solutions to these three equations are dependent
on the boundary conditions of the problem to be considered. For this simple system,
the horizontal velocity of the pore-fluid is equal to zero. Thus, we only need two
boundary conditions to obtain the solutions for the pressure and vertical velocity
of the pore-fluid. Clearly, there are three sets of boundary conditions that are of
immediate geological significance.

The first set of boundary conditions is that the pore-fluid pressure at the surface
of the crust is equal to the atmospheric pressure, Ptop, while the pore-fluid pressure
at the bottom of the crust is equal to the atmospheric pressure plus the hydrostatic
pressure, Pbottom = Ptop + ρ f gH, where H is the thickness of the crust. In this par-
ticular case, the vertical velocity of the pore-fluid is also equal to zero. Both the
pore-fluid pressure and its gradient are hydrostatic:

P = Ptop +ρ f gy, (2.4)

�P
�y

= ρ f g. (2.5)

For the second set of boundary conditions, the pore-fluid pressure at the surface
of the crust is equal to the atmospheric pressure, Ptop, while the pore-fluid pressure
at the bottom of the crust is equal to the atmospheric pressure plus the lithostatic
pressure, Pbottom = Ptop + ρrgH, where ρr is the density of the rock mass in the
crust. Unlike the case of the first set of boundary conditions, the vertical velocity of
the pore-fluid is constant, but not equal to zero. In this situation, both the pore-fluid
pressure and its gradient are lithostatic:
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P = Ptop +ρrgy, (2.6)

�P
�y

= ρrg, (2.7)

v = −K
μ

(ρr −ρ f )g. (2.8)

Since the density of the rock mass is greater than that of the pore-fluid, the ver-
tical velocity of the pore-fluid has a negative value, indicating that the pore-fluid
flow is upward in this particular case. The geological implication of this non-zero
vertical velocity is that if the pore-fluid pressure gradient is lithostatic, there must
be an upward throughflow in the crust.

For the third set of boundary conditions, the pore-fluid pressure at the surface of
the crust is equal to the atmospheric pressure, Ptop, while the pore-fluid pressure at
the bottom of the crust is equal to the atmospheric pressure plus an arbitrary given
pressure, Pbottom = Ptop + ρcgH, where ρcgH is the arbitrary given pressure. Just
like the case of the second set of boundary conditions, the vertical velocity of the
pore-fluid is constant, but not equal to zero. In this situation, both the pore-fluid
pressure and its gradient are between hydrostatic and lithostatic under the constraint
of ρ f < ρc < ρr:

P = Ptop +ρcgy, (2.9)

�P
�y

= ρcg, (2.10)

v = −K
μ

(ρc −ρ f )g. (2.11)

Under the constraint of ρ f < ρc < ρr, the vertical velocity of the pore-fluid also
has a negative value, indicating that the pore-fluid flow is upward in this particu-
lar case. The geological implication of this non-zero vertical velocity is that if the
pore-fluid pressure gradient is between hydrostatic and lithostatic, there must be an
upward throughflow in the crust.

It is noted that if the pore-fluid pressure gradient in the crust is less than the
corresponding hydrostatic pressure gradient (i.e., ρc < ρ f ), the vertical velocity of
the pore-fluid is downward.

The outcome of this simple crustal model is that, in the absence of thermal ef-
fects, if the pore-fluid pressure gradient is hydrostatic, then the upward pore-fluid
velocity must be identical to zero. The reverse of this statement is also correct. If the
upward pore-fluid velocity is identical to zero, the pore-fluid pressure gradient must
be hydrostatic. On the other hand, in the absence of thermal effects, the existence
of the non-hydrostatic pore-fluid pressure gradient indicates that there must be an
upward or a downward throughflow in the crust. For these reasons, it is appropriate
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to assign a constant pressure boundary condition at the top surface of the crust and
a constant upward throughflow boundary condition at the bottom of the crust, if the
crust is comprised of multiple layers.

2.2 The Crust Comprised of Two Homogeneous Layers

For a crust comprised of multiple homogeneous layers, Zhao et al. (1998b) con-
ducted a theoretical analysis to determine both the pore-fluid pressure gradient and
the effective stress gradient distribution in the crust. The basic conclusion from that
analysis is that the intrinsic effective vertical stress gradient of the solid matrix can
be maintained at a value close to the lithostatic pressure gradient, but the pressure
gradient of the pore fluid cannot be maintained at a lithostatic pressure gradient in
all the layers. In a crust of multiple layers, the layer with the smallest permeabil-
ity acts as a valve to control the pore-fluid flow in the whole system. Due to the
existence of the least impermeable layer, the related geological constraint on the
mass conservation of the pore-fluid in the vertical direction indicates that although
the pore-fluid pressure gradient can be lithostatic in the least impermeable layer,
it must be between the hydrostatic and lithostatic gradient in other relatively per-
meable layers. In the following, we will consider a crust of multiple homogeneous
layers to demonstrate this conclusion.

The problem to be considered in this subsection is a two layer hydrodynamic
system shown in Fig. 2.2. It is assumed that the top layer (i.e., layer 1) is more
permeable than the bottom layer (i.e., layer 2). Layer 2 is the valve of this two
layer hydrodynamic system controlling the overall vertical throughflow. If the pore-
fluid pressure gradient in the bottom layer is lithostatic, then the pore-fluid pressure
gradient in the top layer must be between hydrostatic and lithostatic, depending on
the permeability ratio of the top layer to the bottom layer.

The mathematical model for this problem is exactly the same as that expressed
in (2.1), (2.2) and (2.3), except that there are two continuity conditions for the pore-
fluid flow velocity and pressure at the interface between the two layers. As men-
tioned above, a constant pressure boundary condition is applied at the top surface
of the model, while a constant upward velocity boundary condition is applied at

Fig. 2.2 Geometry of the two
layer crust model

P = Ptop0

V

y H1g K1 
,  μ1

K2 
,  μ2 H2

x

$
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the bottom of the model. Under these considerations, the analytical solution for the
pore-fluid pressure in the system can be derived and expressed as

Pf 1 = Ptop +ρ f gy− μ1

K1
V̂ y (0 ≤ y ≤ H1), (2.12)

Pf 2 = Ptop +ρ f gy− μ1

K1
V̂ H1 −

μ2

K2
V̂ (y−H1) (H1 ≤ y ≤ H1 +H2), (2.13)

where Pf 1 and Pf 2 are the pore-fluid pressures in the top and bottom layers; μ1 and
μ2 are the corresponding dynamic viscosities of the pore-fluid; K1 and K2 are the
permeabilities of the top and bottom layers, and H1 and H2 are the thicknesses of
the top and bottom layers respectively.

Accordingly, the analytical solution for the pore-fluid pressure gradient can be
expressed as

�Pf 1

�y
= ρ f g− μ1

K1
V̂ (0 ≤ y ≤ H1), (2.14)

�Pf 2

�y
= ρ f g− μ2

K2
V̂ (H1 ≤ y ≤ H1 +H2). (2.15)

In the case of upward throughflow in the crust, the upward pore-fluid veloc-
ity, V̂ , has a negative value. Thus, for a non-zero upward throughflow, (2.14)
and (2.15) clearly indicate that the corresponding pore-fluid pressure gradient in
both the top and the bottom layers must be greater than the hydrostatic pressure
gradient.

Since the bottom layer is the valve of this two layer system, the constraint con-
dition for maintaining the pore-fluid pressure gradient at lithostatic in the bottom
layer can be derived and expressed as

V̂control = −K2

μ2
(ρr −ρ f )g, (2.16)

where V̂control is the upward throughflow velocity to maintain the pore-fluid pressure
gradient at lithostatic in the bottom layer.

It needs to be pointed out that the above solutions are also valid for K1 ≤ K2

and 0 ≤
∣∣V̂ ∣∣ ≤ ∣∣V̂control

∣∣, where V̂control is the vertical Darcy velocity to maintain
the pore-fluid pressure gradient in the least permeable layer at a lithostatic pressure
gradient. In the case of K1 < K2, the top layer (layer 1) is the controlling valve of
the system instead of layer 2.

Clearly, in the case of 0 <
∣∣V̂ ∣∣ <

∣∣V̂control
∣∣, the intrinsic pore-fluid pressure

gradient in both layers is greater than hydrostatic, but less than lithostatic. How-
ever, in the case of V̂ = V̂control , the pore-fluid pressure gradient is equal to litho-
static in the less permeable layer, but less than lithostatic in the more permeable
layer.
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Using the above analytical results, we can investigate the pore-fluid pressure gra-
dient distribution in the following two extreme situations: (1) the bottom layer is the
valve of the whole system, and (2) the top layer is the valve of the whole system.
Without losing generality, we use the following dimensionless quantities to express
the related results:

P∗
f =

Pf −Ptop

ρ f gHtotal
, y∗ =

y
Htotal

, Htotal = H1 +H2. (2.17)

In the first case, K1 > K2 and the results can be expressed as follows:

P∗
f 1 =

(
1− K2μ1

K1μ2

)
y∗ +

(
K2μ1

K1μ2

)
ρr

ρ f
y∗

(
0 ≤ y∗ ≤ H1

Htotal

)
, (2.18)

P∗
f 2 =

ρr

ρ f
y∗ −

(
1− K2μ1

K1μ2

)(
ρr

ρ f
−1

)
H1

Htotal

(
H1

Htotal
≤ y∗ ≤ 1

)
. (2.19)

Similarly, in the second case, K1 < K2 and the results can be expressed as

P∗
f 1 =

ρr

ρ f
y∗

(
0 ≤ y∗ ≤ H1

Htotal

)
, (2.20)

P∗
f 2 =

[
1+

K1μ2

K2μ1

(
ρr

ρ f
−1

)]
y∗

+
(

1− K1μ2

K2μ1

)(
ρr

ρ f
−1

)
H1

Htotal

(
H1

Htotal
≤ y∗ ≤ 1

)
. (2.21)

If we assume that the density ratio of the rock to the pore-fluid is equal to 2.7,
the thickness ratio of the top layer to the whole crust is equal to 0.6, and that
K2μ1

/
(K1μ2) = 0.2, in the first case and K1μ2

/
(K2μ1) = 0.2 in the second case,

respectively, we can obtain the results shown in Fig. 2.3. It is clear that in case 1, the
pore-fluid pressure gradient is lithostatic in the bottom layer, but it is between hy-
drostatic and lithostatic in the top layer. Since the top layer is the valve of the whole
system in case 2, the pore-fluid pressure gradient is lithostatic in the top layer, while
it is between hydrostatic and lithostatic in the bottom layer. Nevertheless, the pore-
fluid pressure does not exceed lithostatic pressure in both the cases. This indicates
that although the pore-fluid pressure gradient can be maintained at lithostatic in a
single layer crust model, it cannot be simultaneously maintained at lithostatic in a
two layer crustal model.
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2.3 The Crust Comprised of Three Homogeneous Layers

The same procedure as above is followed to derive the analytical solutions for a
three layer hydrodynamic system (Fig. 2.4) in this subsection. To save space, only
the final results are given below.

The analytical solution for the pore-fluid pressure in a three layer hydrodynamic
system is as follows:

Fig. 2.4 Geometry of the
three layer crust model
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Pf 1 = Ptop +ρ f gy− μ1

K1
V̂ y (0 ≤ y ≤ H1), (2.22)

Pf 2 = Ptop +ρ f gy− μ1V̂
K1

H1 −
μ2V̂
K2

(y−H1) (H1 ≤ y ≤ H1 +H2), (2.23)

Pf 3 = Ptop +ρ f gy− μ1V̂
K1

H1 −
μ2V̂
K2

H2 −
μ3V̂
K3

[y− (H1 +H2)]

(H1 +H2 ≤ y ≤ H1 +H2 +H3), (2.24)

where Pf 1, Pf 2 and Pf 3 are the pore-fluid pressures in the top, middle and bottom
layers; μ1, μ2 and μ3 are the corresponding dynamic viscosities of the pore-fluid;
K1, K2 and K3 are the permeabilities of the top, middle and bottom layers, and
H1, H2 and H3 are the thicknesses of the top, middle and bottom layers, respectively.

From (2.22), (2.23) and (2.24), the corresponding pore-fluid pressure gradient
can be expressed as

�Pf 1

�y
= ρ f g− μ1

K1
V̂ (0 ≤ y ≤ H1), (2.25)

�Pf 2

�y
= ρ f g− μ2

K2
V̂ (H1 ≤ y ≤ H1 +H2), (2.26)

�Pf 3

�y
= ρ f g− μ3

K3
V̂ (H1 +H2 ≤ y ≤ H1 +H2 +H3). (2.27)

As expected, the same conclusions as drawn from the previous two layer hydro-
dynamic system can be drawn from the three layer hydrodynamic system consid-
ered here.

In summary, it can be concluded that although the entrapped pore-fluid pressure
may reach or even exceed lithostatic pressure in an overpressured system consisting
of a permeable layer and two adjacent impermeable layers (Powley 1990; Fisher
and Brantley 1992; Yardley 1997), the entrapped pore-fluid pressure gradient cannot
reach or exceed lithostatic pressure gradient from the following two points of view:

(1) If the permeable layer is bounded by two relatively impermeable layers, the
permeabilities of which are relatively very small, but are not equal to zero,
the overpressure (i.e., the pore-fluid pressure minus the hydrostatic pressure)
cannot reach steady state since this overpressure must be dissipated at the com-
pletion of the consolidation.

(2) On the other hand, if the permeable layer is bounded by two absolutely imper-
meable layers, the permeabilities of which are exactly identical to zero, the en-
trapped pore-fluid behaves just like the fluid in a pressure vessel. In this case, the
pore-fluid pressure gradient must be exactly equal to zero in the absolutely im-
permeable layers. Also, the pore-fluid pressure gradient must be exactly equal
to the hydrostatic pressure gradient in the permeable layer because the upward
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throughflow velocity is exactly identical to zero due to the constraint condition
provided by the two absolutely impermeable layers.

2.4 The Critical Crustal Thickness for a Hydrostatic Pore-Fluid
Pressure Gradient

The above-mentioned conclusions can be used to determine the critical thickness of
a crust that has a hydrostatic pore-fluid pressure gradient. Suppose there is a thin
impermeable seal of negligible thickness overlying the top surface of the crust and
that the crustal material has a tensile strength, σ̄tensile, and a compressive strength,
σ̄compressive. In order to maintain the overpressure in the crust, there should be no
cracks allowed within the overlying seal. This implies that the limit of the effective
stress within the overlying seal is equal to the corresponding tensile strength. Ac-
cording to Terzaghi (1925, 1943, 1960) and Garg and Nur (1973), the total stress is
equal to the effective stress plus the pore-fluid pressure so that the pore-fluid pres-
sure within the overlying seal needs to be considered. Since the lower limit of the
total vertical stress within the overlying seal of a negligible thickness is equal to
zero, the pore-fluid pressure within the overlying seal is of the same value in mag-
nitude as the tensile strength of the overlying seal. On the other hand, in order to
avoid the collapse of the pores within the crust, the upper limit of the corresponding
effective stress should be less than or equal to the compressive strength of the crustal
material. Hence, at the bottom of the crust, the upper limit of the corresponding ef-
fective stress is equal to the compressive strength of the crustal material. This is the
condition under which a critical thickness of the crust exists that has a hydrostatic
pore-fluid pressure gradient. Because the overlying seal is absolutely impermeable,
the pore-fluid pressure gradient is hydrostatic within the crust. As a result, the total
stress at the bottom of the crust is as follows:

σbottom
total = σ̄tensile +ρ f gHcritical + σ̄compressive, (2.28)

where Hcritical is the critical thickness of the crust that has a hydrostatic pore-fluid
pressure gradient. As shown in Fig. 2.5, Hcritical can be determined by considering
the vertical force equilibrium condition at the bottom of the crust as follows:

σ̄tensile +ρ f gHcritical + σ̄compressive = ρrgHcritical . (2.29)

Rearranging the terms in (2.29) yields the following equation:

Hcritical =
σ̄tensile + σ̄compressive

(ρr −ρ f )g
. (2.30)

This equation is easily used to determine the critical thickness of the crust that
has a hydrostatic pore-fluid pressure gradient. For instance, the sum of the tensile
and compressive strengths of the crustal material is about 170 MPa in magnitude,
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Fig. 2.5 Determination of the critical thickness of the crust

the density difference between the rock and pore-fluid is approximately 1700kg/m3

in magnitude, and the acceleration due to gravity is taken as 9.8m/s2. Substituting
these parameter values into (2.30) yields a critical crustal thickness of approximately
10 km in magnitude.

Equation (2.30) is derived under the assumption that the overlying seal is of negli-
gible thickness so it cannot be subject to bending. In geological reality, the overlying
seal may have a considerable thickness and, therefore, it acts as a thin plate overly-
ing the relatively thick crust. In this situation, the overlying impermeable seal can be
mechanically treated as an elastic thin plate overlying an elastic foundation (Zhao
et al. 2000b; Hetenyi 1980). If the maximum pressure which the elastic overlying
seal can sustain without crack failure is P̄additional , we need to write this additional
pressure into (2.30) instead of the tensile strength of the crustal material as follows:

Hnew
critical =

P̄additional + σ̄compressive

(ρr −ρ f )g
. (2.31)

Geologically, this additional pressure is the overpressure of the pore-fluid just
underneath the impermeable seal. Since the additional pressure P̄additional is mainly
dependent on the thickness and mechanical properties of the seal and crust, its value
is usually much greater than the value of the tensile strength of the crustal material.
This means that the critical crustal thickness obtained from (2.30) is not the maxi-
mum thickness of the crust that has a hydrostatic pore-fluid pressure gradient. Thus,
the statement that the hydrostatic pore-fluid pressure gradient can only exist in the
top a few kilometers (i.e., 10 km) may be too conservative in a situation where the
top impermeable seal has a considerable thickness. In this regard, further research
is needed to determine the value of the additional pressure, P̄additional , due to the
bending of the top impermeable seal.



Chapter 3
Pore-Fluid Pressure Gradients in the Crust
with Heat Conduction and Advection

Heat transfer in solids through conduction is an important phenomenon associated
with a broad range of scientific and engineering problems and, therefore, has been
extensively studied for many years (Carslaw and Jaeger 1959; van Genuchten and
Alvel 1982; Bear and Bachmat 1990). Heat conduction has also played an important
role in transferring heat energy from the mantle into the crust. In a porous medium,
heat transfer can take place through the relative movement of pore-fluid to the solid
matrix. Such pore-fluid movement can be caused by either advection or convection,
depending on the driving force producing pore-fluid flow. As a general rule, if pore-
fluid flow is driven by the temperature-dependent buoyancy of the pore-fluid, the
pore-fluid flow is called convective flow, or convection for short. Thus, convection
is always associated with some kind of thermal process within the whole system. On
the other hand, if pore-fluid flow is driven by mechanical processes, the pore-fluid
flow is called advective flow, or advection for short. In this section, we investigate
the effects of heat conduction and advection on the distribution of pore-fluid pres-
sure gradients in the crust. A detailed discussion of heat convection will be carried
out in Chap. 4. To investigate the effects of heat conduction and advection, the con-
servation of thermal energy needs to be added to the conceptual crustal model used
in the previous section. In other words, an energy equation, which describes the con-
servation of thermal energy within the crust must be added into the mathematical
model of the crust.

A conceptual model represents the major characteristics of a real system with
some degree of approximation, whereas a mathematical model describes the related
conceptual model using scientific principles and mathematical tools. As a result, the
mathematical model of a real system is often comprised of a set of simultaneous
partial differential equations and, if these equations are solved in a purely mathe-
matical manner, then we obtain analytical (i.e., mathematical) solutions. Otherwise,
if this set of simultaneous partial differential equations is solved using numerical
methods, such as the finite element method, finite difference method, boundary el-
ement method, spectral analysis method, particle simulation method and so forth,
then we can only obtain numerical solutions. Since an analytical solution can be
used to investigate the behaviors of a system within the whole parameter space of
the system, it results in general conclusions for the problem. However, since it is
often impossible to use a numerical solution to investigate the behaviors of a system
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within the whole parameter space, which is usually of infinite nature, a numerical
solution can only produce some kind of specific conclusion for the problem. There-
fore, in order to draw general conclusions for a real problem, analytical solutions, if
available, are always superior to numerical solutions. In this chapter, we will present
analytical solutions that investigate the effect of heat conduction and advection on
the distribution of pore-fluid pressure gradients in the crust.

3.1 The Effect of Heat Conduction on the Distribution
of Pore-Fluid Pressure Gradients

The first conceptual model of the crust considered in this section is shown in
Fig. 3.1. The basic characteristic of this model is that the boundary conditions are
applied so that pore-fluid flow does not occur in the model. For this reason, the
model can be regarded as a heat transfer through conduction problem. The corre-
sponding mathematical model of the crust in a steady state is expressed as follows:

�u
�x

+
�v
�y

= 0, (3.1)

u =
K
μ

(
−�P

�x

)
, (3.2)

v =
K
μ

(
−�P

�y
+ρ f g

)
, (3.3)

ρ f 0cp

(
u

�T
�x

+ v
�T
�y

)
= λe

(
�2T
�x2 +

�2T
�y2

)
, (3.4)

ρ f = ρ f 0[1−βT (T −T0)], λe = φλ f +(1−φ)λs, (3.5)

where u and v are the horizontal and vertical velocity components of the pore-fluid in
the x and y directions, respectively; P is the pore-fluid pressure; T is the temperature
of the crustal material; K is the permeability of the crustal material; μ is the dynamic

Fig. 3.1 Geometry of the
first conceptual model
(Conduction model)
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viscosity of the pore-fluid; ρ f is the density of the pore-fluid and g is the acceleration
due to gravity; ρ f 0 and T0 are the reference density and temperature; λ f and λs are
the thermal conductivities of the pore-fluid and rock mass; cp is the specific heat
of the pore-fluid; φ and βT are the porosity of the crustal material and the thermal
volume expansion coefficient of the pore-fluid, respectively.

In (3.5), the density variation is assumed to be dependent on temperature only,
without a direct consideration of excess pore-fluid pressure. Since the excess pore-
fluid pressure due to heat conduction in the crust is much smaller than the hy-
drostatic pore-fluid pressure, it is analytically acceptable to neglect the effect of
excess pore-fluid pressure on the density variation of the pore-fluid. For example, as
demonstrated later, the excess pore-fluid pressure due to heat conduction is about 5
percent of the hydrostatic pore-fluid pressure for a crust of more than 30 km thick.
This means that the influence of temperature on the pore-fluid density variation is
at least one-order magnitude less than that of the excess pore-fluid pressure induced
by heat conduction in the crust. Suppose the compressibility of the pore-fluid (i.e.,
water) is about 0.44 (1/GPa) and that the thermal expansion coefficient of water is
about 2× 10−4(1/◦C) at an ambient surface temperature of 20◦C, the pore-fluid
density variation due to thermal expansion at a depth of 30 km of the crust is:

ΔρT = −30×20×2×10−4ρ f 0 = −0.12ρ f 0, (3.6a)

where the temperature gradient of the crust is assumed to be 20◦C/km.
In this case, the pore-fluid density variation due to excess pore-fluid pressure can

be estimated as follows:

Δρep = −0.05× (30000×9.8×1000)× (0.44×10−9)ρ f 0 = −0.0065ρ f 0, (3.6b)

where the product in the first parentheses is the hydrostatic pore-fluid pressure.
Although the influence of excess pore-fluid pressure due to thermal expansion on

the variation of the pore-fluid density is negligible in the theoretical analysis, the in-
fluence of hydrostatic pore-fluid pressure on the variation of the pore-fluid density
needs to be considered, because it may have the same magnitude as the influence of
thermal expansion on the variation of the pore-fluid density. Nevertheless, the ther-
mal expansion of pore-fluid due to a temperature increase causes a decrease in the
pore-fluid density, while compression of the pore-fluid due to hydrostatic pore-fluid
pressure causes an increase in the pore-fluid density. As a result, the influence of ther-
mal expansion on the variation of pore-fluid density can be largely canceled by that of
compression due to hydrostatic pore-fluid pressure. This is one reason why the refer-
ence pore-fluid density is commonly used in the heat transfer equation (i.e., (3.4)).

As shown in Fig. 3.1, the boundary conditions of this problem are as follows:
constant temperature and pressure boundary conditions are applied at both the top
and bottom of the system. The constant value of the bottom pressure is appropri-
ately selected so that the reference pore-fluid pressure gradient is hydrostatic in the
system. Once the thermal effect is considered, the density of the pore-fluid is no
longer constant, but varies with temperature, as can be seen from (3.5). In this case,
the pore-fluid pressure gradient varies linearly with the depth of the crust, while the
pore-fluid pressure varies quadratically with the depth of the crust. Under the above
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boundary conditions, the pore-fluid velocity in both the horizontal and the vertical
directions is identical to zero. Thus, the first conceptual model of the crust shown in
Fig. 3.1 can be essentially treated as a one-dimensional problem, for which the an-
alytical solution is already available (Carslaw and Jaeger 1959; van Genuchten and
Alvel 1982; Bear and Bachmat 1990). If the top temperature is used as the reference
temperature, the related analytical solution can be expressed as follows:

u = v = 0, (3.7)

P = Ptop +ρ f 0gy− 1
2

(
Tbottom −Ttop

H
βT

)
ρ f 0gy2, (3.8)

�P
�y

= ρ f 0g−
(

Tbottom −Ttop

H
βT

)
ρ f 0gy, (3.9)

T = Ttop +
Tbottom −Ttop

H
y. (3.10)

If the temperature at the top is equal to that at the bottom of the system, the
third term on the right hand side of (3.8) vanishes so that the pressure solution is
identical to that presented previously (i.e., (2.4)) for the same conceptual model.
Equations (3.8) and (3.9) show that the pore-fluid pressure and its gradient vary
with the depth quadratically and linearly, respectively. Since the thermal volume
expansion coefficient is a small number of the order of 2×10−4/◦C in magnitude,
(3.8) indicates that the thermal effect on the distribution of the pore-fluid pressure is
significant in the lower part of the crust, but may not be significant in the upper part
of the crust, especially in the case of a thin crust.

To reduce the requirements for parameters, the following dimensionless quanti-
ties can be used to express the above analytical solution for the pore-fluid pressure:

P∗ =
P−Ptop

ρ f 0gH
, y∗ =

y
H

. (3.11)

Using these dimensionless quantities, (3.8) and (3.9) can be rewritten as

P∗ = y∗ − 1
2

(Tbottom −Ttop)βT y∗2, (3.12)

�P∗

�y∗
= 1− (Tbottom −Ttop)βT y∗. (3.13)

Given that the thermal volume expansion coefficient of the pore-fluid is approx-
imately constant, (3.12) and (3.13) indicate that both the dimensionless pore-fluid
pressure and its gradient are only dependent on the temperature difference between
the top and the bottom of the crust for the conceptual crustal model considered here.

Figure 3.2 shows the thermal effect of this heat conduction model on the dis-
tribution of the dimensionless pressure for two different cases. In this figure, the
reference hydrostatic pressure is labeled as R. H. Pressure. In case 1, the temper-
ature difference between the top and the bottom of the crust is 600 ◦C, whereas in
case 2, this temperature difference is 1000◦C. In order to examine the thermal effect
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Fig. 3.2 Thermal effect on distribution of dimensionless pressure

on the distribution of the dimensionless pressure, the reference hydrostatic pressure
resulting from a constant reference density of the pore-fluid is also shown in this
figure for comparison. The related results clearly demonstrate that pure heat con-
duction may have some influence on the distribution of the dimensionless pressure
in the lower part of the crust, but has little influence on the distribution of the di-
mensionless pressure in the upper part of the crust. Nevertheless, the effect of heat
conduction on the distribution of the dimensionless pressure in the lower part of the
crust also lies within a limited range. This implies that, for a saturated crust with
motionless pore-fluid, the pore-fluid pressure is very close to the reference hydro-
static pressure arising from the constant reference density of the pore-fluid, even
though heat conduction takes place in this crust.

3.2 The Effect of Heat Conduction and Advection on the
Distribution of Pore-Fluid Pressure Gradients

If the pore-fluid pressure gradient of the crust is lithostatic, there is an upward through-
flow in the crust that can cause heat transfer through heat advection within the crust.
In this case, heat conduction and advection take place simultaneously. To investigate
the combined effect of heat conduction and advection on the distribution of pore-fluid
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pressure in the crust, a second conceptual model shown in Fig. 3.3 is considered in
this section. Although the mathematical model expressed in (3.1), (3.2), (3.3), (3.4)
and (3.5) is equally applicable to both the first and the second conceptual models, the
boundary conditions for the second model are different. Since heat conduction and
advection take place in the second conceptual model, this model can be regarded as
a heat conduction-advection problem. For the second conceptual model, the temper-
ature and pressure are constant at the top boundary of the model. A vertical velocity
equal to the upward throughflow resulting from the lithostatic pore-fluid pressure gra-
dient is applied at the bottom of the model. In addition, a constant conductive thermal
flux boundary condition with a value of q0 is applied at the bottom of the model. Since
the conductive thermal flux can be expressed as q0 = −λe�T

/
�y in this instance,

an upward constant conductive thermal flux of q0 means that the temperature gradi-
ent, �T

/
�y = −q0

/
λe, is a positive constant, because the thermal conductivity of the

crustal material is constant here.
The analytical solutions for this heat conduction-advection problem can be de-

rived and expressed as follows:

u = 0, v = V̂ , (3.14)

T = Ttop +
q0

cpρ f 0V̂
e−

cpρ f 0V̂ H

λe

(
1− e

cpρ f 0V̂

λe
y

)
, (3.15)

P = Ptop +ρ f 0gy− q0

cpρ f 0V̂
e−

cpρ f 0V̂ H

λe

[
y+

λe

cpρ f 0V̂

(
1− e

cpρ f 0V̂

λe
y

)]
βT ρ f 0g− μ

K
V̂ y,

(3.16)

�P
�y

= ρ f 0g− q0

cpρ f 0V̂
e−

cpρ f 0V̂ H

λe

(
1− e

cpρ f 0V̂

λe
y

)
βT ρ f 0g− μ

K
V̂ . (3.17)

It is obvious that when advection is considered, the temperature, pore-fluid pres-
sure and their gradients vary non-linearly with the depth of the crust. Their distri-
bution patterns, in general, are different from those obtained in the previous section
where only heat conduction is considered, depending on the contribution of heat
advection to the total heat transfer in the system. In order to minimize the require-
ments for parameters, the following dimensionless quantities can be used to express
the above analytical solution for the pore-fluid pressure and temperature.

Fig. 3.3 Geometry of the
second conceptual model
(conduction and advection
model)

0

,ˆ q0V

y

H
g

x P = PtopT = Ttop
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P∗ =
P−Ptop

ρ f 0gH
, y∗ =

y
H

, (3.18)

Pe = −Hρ f 0cp

λe
V̂ , T ∗ = − (T −Ttop)λe

q0H
, (3.19)

where Pe is the Peclet number of the hydrothermal system considered here. From
the heat transfer point of view, the Peclet number is a dimensionless quantity in-
dicating the relative importance of heat advection to heat conduction in a given
hydrothermal system. If heat advection is mainly caused by upward throughflow (as
is considered in this section), the Peclet number also indicates the relative impor-
tance of the upward throughflow to heat conduction in the hydrothermal system.
For this reason, the value of the Peclet number can be used to judge the relative
role that heat advection plays in a given hydrothermal system. If the value of the
Peclet number is unity, both heat advection and conduction play an equal role in
transferring heat energy in the hydrothermal system. If the value of the Peclet num-
ber is greater than unity, heat advection plays a predominant role in transferring
heat energy. In contrast, if the value of the Peclet number is smaller than unity, heat
conduction plays a predominant role in transferring heat energy in the system.

To guarantee the Peclet number and dimensionless temperature expressed in
(3.19) will be positive, we must put a minus sign in their definitions because both the
upward throughflow velocity and the conductive thermal flux have negative values
in the coordinate system used here.

Using these dimensionless quantities, (3.15), (3.16) and (3.17) can be rewritten as

T ∗ =
1
Pe

ePe(1− e−Pey∗), (3.20)

P∗ = y∗ +
q0βT H

λePe
ePe [y∗ − 1

Pe
(1− e−Pey∗)]− μV̂

Kρ f 0g
y∗, (3.21)

�P∗

�y∗
= 1+

q0βT H
λePe

ePe(1− e−Pey∗)− μV̂
Kρ f 0g

. (3.22)

If the pore-fluid pressure gradient is lithostatic in the system, then we have the fol-
lowing formulae to express the upward throughflow velocity:

V̂ = −K
μ

(ρr −ρ f 0)g. (3.23)

Substituting (3.23) into (3.21) and (3.22) yields the following equations for the case
where the pore-fluid pressure gradient is lithostatic:

P∗ =
ρr

ρ f 0
y∗ +

q0βT H
λePe

ePe [y∗ − 1
Pe

(1− e−Pey∗)], (3.24)

�P∗

�y∗
=

ρr

ρ f 0
+

q0βT H
λePe

ePe(1− e−Pey∗). (3.25)
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Fig. 3.4 Distribution of dimensionless pressure in the thin crustal model (H = 10km)

To illustrate the usefulness of the analytical solutions, the following parameters
are used to produce numerical results. The reference density of the pore-fluid is
1000kg/m3. The thermal volume expansion coefficient is 2× 10−4/◦C. The ther-
mal conductivity coefficient of the porous medium is 3.0W/(m ·◦ C). The density
of the rock mass is 2700kg/m3. Two values of the crustal thickness, namely 10
and 50 km, are used. Also, two different values of the Peclet number (i.e., Pe = 0.2
and 2.0) and two different values of conductive thermal flux at the bottom of the
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Fig. 3.5 Distribution of dimensionless pressure in the thick crustal model (H = 50km)

crust (i.e., q0 = −0.03 and −0.09W/m2) are used to investigate their effects on the
distribution of the pore-fluid pressure.

Figures 3.4 and 3.5 show the distribution of the dimensional pressure in the thin
(i.e., H = 10km) and thick (i.e., H = 50km) crusts, respectively. In these figures,
the reference hydrostatic pressure is labeled as R. H. Pressure, while the reference
lithostatic pressure is labeled as R. L. Pressure.

It is clear that in the case of the thin crust, the thermal effect of heat advection on
the distribution of the pore-fluid pressure is very limited, but in the case of the thick
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crust, the effect is significant. Generally, the thermal effect of heat advection on the
distribution of the pore-fluid pressure becomes more significant with an increase of
the conductive thermal flux at the bottom of the system. For the thin model, the pore-
fluid pressure gradient is very close to the reference lithostatic pressure gradient.
However, for the thick model, the pore-fluid pressure gradient clearly deviates from
the reference lithostatic pressure gradient, especially where the lower boundary has
a large conductive thermal flux.



Chapter 4
Convective Heat Transfer
in a Homogeneous Crust

If the heat energy transferred from the mantle into the crust is large enough, the
hydrothermal systems described in the previous chapter may become unstable. In
this case, convective pore-fluid flow takes place and, therefore, may become a pre-
dominant mechanism to transfer heat energy from a lower part into the upper part of
the crust. Due to the interplay between convective pore-fluid flow and heat transfer,
the problem becomes much more complicated so that sophisticated mathematical
methods are often needed to obtain analytical solutions. To avoid involving com-
plicated and tedious mathematical deductions, only the final analytical results are
presented. In particular, the onset condition for convective pore-fluid flow, which
is useful in judging whether or not convection can take place in a given hydrother-
mal system, will be discussed here. Generally, the onset condition for convective
pore-fluid flow is expressed by the critical Rayleigh number of a given hydrother-
mal system. Hence, both the Rayleigh number and the critical Rayleigh number are
addressed in detail in this chapter.

The problem of convective pore-fluid flow in a porous medium with a flat top
and bottom was first treated analytically by Horton and Rogers (1945) as well as
by Lapwood (1948), and is often called the Horton–Rogers–Lapwood problem.
This kind of convection problem is found in many scientific and engineering fields.
For example, in geoenvironmental engineering, buried nuclear waste and industrial
waste in a fluid-saturated porous medium may generate heat and result in a verti-
cal temperature gradient. If the Rayleigh number, which is directly proportional to
the temperature gradient, is equal to or greater than the critical Rayleigh number,
natural convection will take place in the porous medium.This may severely contam-
inate the groundwater due to pore-fluid flow circulation. In geophysics, there exists
a vertical temperature gradient in the Earth’s crust. If this temperature gradient is
large enough, it will cause regional natural convection in the Earth’s crust. In this
situation, pore-fluid flow circulation can dissolve soluble minerals in some part of a
region and carry them to another part of the region. This is the mineralization prob-
lem. Since a natural porous medium is often of complicated geometry and composed
of many different materials, numerical methods are always needed to solve such
problems.

C. Zhao et al., Convective and Advective Heat Transfer in Geological Systems, 27
c© Springer-Verlag Berlin Heidelberg 2008
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4.1 Convective Heat Transfer in a Homogeneous Crust
without Upward Throughflow

The conceptual model to be considered in this section is shown in Fig. 4.1. If
convective pore-fluid flow is not allowed to occur, this conceptual model is es-
sentially the same as the conduction model that was discussed in Sect. 3.1. This
arises because there is no pore-fluid flowing across the top and bottom of both
the models. This means that the top and bottom boundaries are taken as imper-
meable for these two conceptual models. Since the onset of pore-fluid convective
flow is very sensitive to the boundary conditions, a hydrothermal system with dif-
ferent boundary conditions may result in totally different convective patterns. There-
fore, the onset condition of pore-fluid convective flow for a particular set of bound-
ary conditions cannot be directly applied to judge the onset of pore-fluid convec-
tive flow for similar hydrothermal systems, but with a different set of boundary
conditions.

In order to understand why pore-fluid convective flow can take place in the crust
of the Earth, it is necessary to introduce the concept of the Rayleigh number of a
hydrothermal system. The Rayleigh number is a dimensionless indicator used to rep-
resent the overall fundamental physical characteristic of the hydrothermal system.
Since the Rayleigh number is independent of the geometry and boundary conditions
of the system, the definition of the Rayleigh number is exactly the same for all hy-
drothermal systems where the same physical processes are taking place. If we only
consider the thermal buoyancy of the pore-fluid in a hydrothermal system comprised
of homogenous porous materials, the corresponding Rayleigh number of the system
is as follows:

RaT =
(ρ f 0cp)ρ f 0gβT ΔT KH

μλe
, (4.1)

where RaT is the Rayleigh number of the hydrothermal system due to thermal buoy-
ancy; K is the permeability of the crustal material; μ is the dynamic viscosity of the
pore-fluid; ρ f 0 is the reference density of the pore-fluid and g is the acceleration
due to gravity; βT is the thermal volume expansion coefficient of the pore-fluid;

Fig. 4.1 Geometry of the
convective model without
upward throughflow
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ΔT is the temperature difference between the top and the bottom of the hydrother-
mal system; H is the total thickness of the hydrothermal system; cp is the specific
heat of the pore-fluid; λe = φλ f + (1− φ)λs, in which λ f and λs are the thermal
conductivities of the pore-fluid and rock mass, and φ is the porosity of the crustal
material.

It is clear from (4.1) that the Rayleigh number of a hydrothermal system is de-
pendent only on the hydrodynamic and thermodynamic properties, but independent
of the specific boundary conditions of the system. In addition, the Rayleigh num-
ber is also directly proportional to both the thickness and the temperature difference
between the top and the bottom of the system. This means that, for a given hy-
drothermal system of the same hydrodynamic and thermodynamic properties, either
a thicker crust or a higher temperature difference between the top and the bottom
can result in larger Rayleigh numbers for the hydrothermal system. This is impor-
tant in understanding why pore-fluid convective flow is facilitated in relatively thick
and hot hydrothermal systems.

Now that we have the dimensionless indicator to represent the overall funda-
mental physical characteristic of a hydrothermal system, we need to determine its
corresponding threshold value, below which pore-fluid convective flow cannot take
place in the system. We call this threshold value the critical Rayleigh number of
the hydrothermal system. In this regard, the critical Rayleigh number represents
the onset condition for pore-fluid convective flow in a given hydrothermal system.
From extensive studies of convective instability in pore-fluid saturated porous me-
dia,1 it has become apparent that the critical Rayleigh number is dependent on the
specific boundary conditions of the hydrothermal system to be considered. Since
the critical Rayleigh number is the minimum value of the Rayleigh number to trig-
ger convective flow, it corresponds to the fundamental convective mode of the hy-
drothermal system. For an idealized hydrothermal system of a square box geometry,
if the Rayleigh number is much larger than the critical Rayleigh number defined
here, other convective modes and regimes known as stable periodic convection and
chaotic convection (Caltagirone 1975; Horne and Caltagirone 1980; Aidun 1987;
Kladias and Prasad 1990) are possible. However, whether or not the stable peri-
odic convection and chaotic convection regimes can actually occur in the crust of
the Earth remains a very important scientific problem that needs further detailed
research.

Owing to the importance of the critical Rayleigh number, it will be derived theo-
retically as follows. For the conceptual model of a two-dimensional fluid-saturated
porous medium shown in Fig. 4.1, if Darcy’s Law is used to describe pore-fluid flow
and the Oberbeck-Boussinesq approximation is employed to describe a change in

1 (i.e., Horton and Rogers 1945; Lapwood 1948; Elder 1967; Nield 1968; Palm et al. 1972; Bories
and Combarnous 1973; Yen 1974; Caltagirone 1975; Combarnous and Bories 1975; Buretta and
Berman 1976; Gasser and Kazimi 1976; Kulacki and Freeman 1979; Kvernvold and Tyvand 1980;
Horne and Caltagirone 1980; McKibbin and O’Sullivan 1980; Chan and Banerjee 1981; Bau and
Torrance 1982; Beukema and Bruin 1983; Kaviany 1984; Lebon and Cloot 1986; Aidum 1987;
Pillatsis et al. 1987; Poulikakos 1987; Prasad and Kulacki 1987; Salt 1988; Chen and Chen 1989;
Riley and Winters 1989; Impey et al. 1990; Islam and Nandakumar 1990; Kladias and Prasad 1990;
Phillips 1991; Nield and Bejan 1992; Zhao et al. 1997, 1998a, b, 1999a, b, 2000a, 2001a).
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pore-fluid density due to a change in pore-fluid temperature, the governing equa-
tions of natural convection for an incompressible fluid in a steady state can be ex-
pressed as:

�u
�x

+
�v
�y

= 0, (4.2)

u =
Kx

μ

(
−�P

�x
+ρ f gx

)
, (4.3)

ν =
Ky

μ

(
−�P

�y
+ρ f gy

)
, (4.4)

ρ f 0cp

(
u

�T
�x

+ν
�T
�y

)
= λex

�2T
�x2 +λey

�2T
�y2 , (4.5)

ρ f = ρ f 0[1−βT (T −T0)], (4.6)

λex = φλ f x +(1−φ)λsx, λey = φλ f y +(1−φ)λsy, (4.7)

where u and v are the horizontal and vertical velocity components of the pore-fluid
in the x and y directions, respectively; P is the pore-fluid pressure; T is the temper-
ature of the crustal material; Kx and Ky are the permeabilities of the crustal material
in the x and y directions, respectively; μ is the dynamic viscosity of the pore-fluid;
ρ f is the density of the pore-fluid; ρ f 0 and T0 are the reference density and tem-
perature; λ f x and λsx are the thermal conductivities of the pore-fluid and rock mass
in the x direction; λ f y and λsy are the thermal conductivities of the pore-fluid and
rock mass in the y direction; cp is the specific heat of the pore-fluid; gx and gy are
the gravity acceleration components in the x and y directions; φ and βT are the
porosity of the crustal material and the thermal volume expansion coefficient of the
pore-fluid.

It is noted that (4.2), (4.3), (4.4) and (4.5) are derived under the assumption that
the porous medium considered is orthotropic, in which the y axis is upward in the
vertical direction and coincides with the principal direction of medium permeability
as well as that of medium thermal conductivity.

In order to simplify (4.2), (4.3), (4.4) and (4.5), the following dimensionless vari-
ables are defined:

x∗ =
x
H

, y∗ =
y
H

, T ∗ =
T −T0

ΔT
, (4.8)

u∗ =
Hρ f 0cp

λe0
, v∗ =

Hρ f 0cp

λe0
ν , P∗ =

Khρ f 0cp

μλe0
(P−P0), (4.9)
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K∗
x =

Kx

Kh
, K∗

y =
Ky

Kh
, λ ∗

ex =
λex

λe0
, λ ∗

ey =
λ0

λe0
, (4.10)

where x∗ and y∗ are the dimensionless coordinates; u∗ and v∗ are the dimension-
less velocity components in the x and y directions, respectively; P∗ and T ∗ are the
dimensionless excess pressure and temperature; Kh is a reference medium perme-
ability coefficient in the horizontal direction; λe0 is a reference thermal conductivity
coefficient of the porous medium; ΔT = Tbottom −T0 is the temperature difference
between the bottom and top boundaries of the porous medium; H is a reference
length and P0 is the static pore-fluid pressure.

Substituting the above dimensionless variables into (4.2), (4.3), (4.4) and (4.5)
yields the following dimensionless equations:

�u∗

�x∗
+

�v∗

�y∗
= 0, (4.11)

u∗ = K∗
x

(
−�P∗

�x∗
+RaT T ∗e1

)
, (4.12)

v∗ = K∗
y

(
−�P∗

�y∗
+RaT T ∗e2

)
, (4.13)

u∗
�T ∗

�x∗
+ v∗

�T ∗

�y∗
= λ ∗

ex
�2T ∗

�x∗2 +λ ∗
ey

�2T ∗

�y∗2 , (4.14)

where e is a unit vector and e = e1i+e2 j for a two-dimensional problem; RaT is the
Rayleigh number, defined in this particular case as

RaT =
(ρ f 0cp)ρ f 0gβΔT KhH

μλe0
. (4.15)

Although analytical solutions for convective instability of pore-fluid in a hori-
zontal layer can be derived using conventional linear stability analysis (Zhao et al.
1997), it is highly desirable to derive the related analytical solutions for a porous
medium with a rectangular geometry, at least from the flowing two points of view.
First, most geological situations are comprised of complicated geometrical shapes
and material distributions so that numerical methods are needed to solve convec-
tive flow problems in real geological systems. In order to verify the applicability
of a numerical method for solving the Horton–Rogers–Lapwood convection prob-
lem, an analytical solution is needed for a benchmark problem, the geometry and
boundary conditions of which can be exactly modelled by the numerical method.
Second, the analytical solution derived from a problem involving a porous medium
of a rectangular shape can be directly or indirectly used to investigate the possibil-
ity of convective pore-fluid flow occurring in most sedimentary basins. For these
reasons, a benchmark problem of rectangular geometry is constructed and shown
in Fig. 4.2. Without losing generality, dimensionless governing equations given
in (4.11), (4.12), (4.13) and (4.14) are considered in this Section. The boundary
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Fig. 4.2 Geometry of a
benchmark problem

x*

0

y*

L*

1

conditions of the benchmark problem are expressed using these dimensionless
variables as follows:

u∗ = 0,
�T ∗

�x∗
= 0 (at x∗ = 0 and x∗ = L∗), (4.16)

v∗ = 0, T ∗ = 1 (at y∗ = 0), (4.17)

v∗ = 0, T ∗ = 0 (at y∗ = 1), (4.18)

where L∗ is a dimensionless length in the horizontal direction and L∗ = L/H, in
which L is the real length of the problem domain in the horizontal direction.

For ease of deriving an analytical solution to the benchmark problem, it is as-
sumed that the porous medium under consideration is fluid-saturated and isotropic.
This means that Kx = Ky = Kh and λex = λey = λe0. As a result, (4.11), (4.12), (4.13)
and (4.14) can be further simplified as follows:

�u∗

�x∗
+

�v∗

�y∗
= 0, (4.19)

u∗ = −�P∗

�x∗
+RaT T ∗e1, (4.20)

v∗ = −�P∗

�y∗
+RaT T ∗e2, (4.21)

u∗
�T ∗

�x∗
+ v∗

�T ∗

�y∗
=

�2T ∗

�x∗2 +
�2T ∗

�y∗2 . (4.22)

Using the linearization procedure for temperature gradient and a dimensionless
stream function ψ simultaneously, (4.19), (4.20), (4.21) and (4.22) are reduced into
the following two equations:

�2ψ
�x∗2 +

�2ψ
�y∗2 = −RaT

�T ∗

�x∗
, (4.23)
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�ψ
�x∗

=
�2T ∗

�x∗2 +
�2T ∗

�y∗2 . (4.24)

Since (4.23) and (4.24) are linear, solutions to ψ and T ∗ are of the follow-
ing forms:

ψ = f (y∗)sin(q
x∗

L∗ ) (q = mπ, m = 1, 2, 3, . . . . . .), (4.25)

T ∗ = θ(y∗)cos(q
x∗

L∗ )+(1− y∗) (q = mπ, m = 1, 2, 3, . . . . . .). (4.26)

Substituting (4.25) and (4.26) into (4.23) and (4.24) yields the following equations:

f ′′(y∗)−
( q

L∗

)2
f (y∗) =

q
L∗ RaT θ(y∗), (4.27)

q
L∗ f (y∗) = −

( q
L∗

)2
θ(y∗)+θ ′′(y∗). (4.28)

Combining (4.27) and (4.28) leads to an equation containing f (y∗) only:

f IV (y∗)−2(
q
L∗ )2 f ′′(y∗)− (

q
L∗ )2[RaT − (

q
L∗ )2] f (y∗) = 0. (4.29)

It is immediately noted that (4.29) is a linear, homogeneous ordinary differen-
tiation equation so that it has a zero trivial solution. For the purpose of finding a
non-zero solution, it is noted that the non-zero solution satisfying both (4.29) and
the boundary conditions in (4.16), (4.17) and (4.18) can be expressed as

f (y∗) = sin(ry∗) (r = nπ, n = 1, 2, 3, . . . . . .). (4.30)

Using this equation, the condition under which the non-zero solution exists for
(4.29) is derived and expressed as

RaT = (
L∗

q
r2 +

q
L∗ )2 = (

n2

m
L∗+

m
L∗ )2π2 (m = 1, 2, 3, . . . . . . , n = 1, 2, 3, . . . . . .).

(4.31)

It can be observed from (4.31) that in the case of L∗ being an integer, the min-
imum Rayleigh number is 4π2, which occurs when n = 1 and m = L∗. However,
if L∗ is not an integer, the minimum Rayleigh number is (L∗ + 1

/
L∗)2π2, which

occurs when m = 1 and n = 1. Since the minimum Rayleigh number determines
the onset of natural convection in fluid-saturated porous medium for the Horton–
Rogers–Lapwood problem, it is often labelled as the critical Rayleigh number,
RaT critical .

For this benchmark problem, the mode shapes for the stream function and re-
lated dimensionless variables corresponding to the critical Rayleigh number can be
derived and expressed as follows:
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ψ = C1 sin
(mπ

L∗ x∗
)

sin(nπy∗), (4.32)

u∗ = nπC1 sin
(mπ

L∗ x∗
)

cos(nπy∗), (4.33)

v∗ = −mπ
L∗ C1 cos

(mπ
L∗ x∗

)
sin(nπy∗), (4.34)

T ∗ = − C1√
RaT critical

cos
(mπ

L∗ x∗
)

sin(nπy∗)+(1− y∗), (4.35)

P∗ =
nL∗

m
C1 cos

(mπ
L∗ x∗

)
cos(nπy∗)− RaT critical

2
(1− y∗)2 +C2, (4.36)

where the values of m, n and RaT critical are dependent on whether L∗ is an integer
or not; C1 is a non-zero constant and C2 is an arbitrary constant. It is interesting to
note that since RaT critical is a function of L∗, it can vary with a non-integer L∗. This
implies that rectangular porous medium configurations may have different critical
Rayleigh numbers for different ratios of length to height.

For the conceptual model shown in Fig. 4.1, the corresponding critical Rayleigh
number of the system is as follows:

RaT critical = 4π2. (4.37)

This critical Rayleigh number is only applicable to a problem with imperme-
able boundaries and constant temperature at both the top and the bottom bound-
aries. If the top boundary is permeable, then the corresponding critical Rayleigh
number is reduced to 27.1, indicating that pore-fluid convective flow in this in-
stance is much easier, compared with the same system with an impermeable top
boundary.

Using the above problem as a benchmark problem, Zhao et al. (1997) developed
the progressive asymptotic approach algorithm to simulate pore-fluid convective
flow in the crust of the Earth. Since the progressive asymptotic approach algorithm
is a numerical algorithm and is based on the finite element method, it must be ver-
ified and validated before application. Detailed verification and validation of the
progressive asymptotic approach algorithm is available in an open reference (Zhao
et al. 1997). The progressive asymptotic approach algorithm was applied to simu-
late problems with the following parameters. The thickness of the crust is 13 km.
For the pore-fluid, dynamic viscosity is 10−3 N × s/m2; the reference density is
1000kg/m3; the volumetric thermal expansion coefficient is 2.07 × 10−4(1/◦C);
the specific heat is 4185J/(kg ·◦C); the thermal conductivity coefficient in both the
horizontal and the vertical directions is 0.6W/(m ·◦C). For the porous rock matrix,
the porosity is 0.1; the specific heat is 815J/(kg ·◦C); the thermal conductivity co-
efficient in both the horizontal and the vertical directions is 3.35W/(m ·◦C), and the
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permeability of the whole crust in the computational domain is 10−14 m2. Since the
computational model must be finite in size, the length of the crust is assumed to be
110 km. The following boundary conditions are applied to this problem: (1) temper-
atures at the top and the bottom of the computational domain are 20◦C and 150◦C
respectively; (2) both the lateral vertical boundaries are insulated and impermeable
in the horizontal direction, and (3) both the top and bottom boundaries are imper-
meable in the vertical direction. Using these parameters, the Rayleigh number of
the system is approximately equal to 46.6, which is greater than the corresponding
critical Rayleigh number of 4π2. Thus, pore-fluid convective flow can take place in
this crustal model.

Figure 4.3 shows the distributions of pore-fluid velocity, streamlines and temper-
ature in the crustal model. In the presentation for the streamlines, the core in blue
represents clockwise convection cells, while the core in red represents anticlockwise
convection cells. It is clear that each of the clockwise convection cells is separated
by an anticlockwise convection cell. What we can see from this example is that:
(1) multiple convection cells can be reasonably simulated in such a crustal model
using the finite element method, and (2) the distribution of temperature is highly
localized. This is a direct result of the coupling between the temperature and the
pore-fluid velocity within the convective pore-fluid flow.

(Pore-fluid velocity) 

(Streamline) 

(Temperature) 

Fig. 4.3 Distributions of pore-fluid flow, streamlines and temperature in the crustal model
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4.2 Convective Heat Transfer in a Homogeneous Crust
with Upward Throughflow

In the geological community, there has been an assertion that pore-fluid convective
flow can only take place in the top few kilometers of the crust, where the pore-
fluid pressure is hydrostatic or, strictly speaking, is close to hydrostatic. Based on
this assertion, it was concluded that pore-fluid convective flow cannot take place
in the crust where the pore-fluid pressure is lithostatic. This conclusion is correct
for a crust which has constant temperature and impermeable boundary conditions
at both the top and the bottom of the crust (Jones and Persichetti 1986), just like
the conceptual model shown in Fig. 4.1. However, if the crust has a permeable top
with a constant pressure and temperature, and a bottom with a constant upward
pore-fluid velocity and conductive heat flux, Zhao et al. (1999a) demonstrated in
both theoretical and the numerical analyses that the above-mentioned conclusion is
incorrect. The conceptual model used in the theoretical and numerical analyses is
exactly the same as that shown in Fig. 3.3 of Sect. 3.2.

As shown in Fig. 4.4, the temperature at the bottom of the conceptual crustal
model is not specified, but the conductive heat flux at this boundary is. Although the
Rayleigh number may have the same definition for hydrothermal systems in which
identical physical processes occur, it must be defined and expressed in terms of the
known parameters of the system. For this reason, the Rayleigh number defined in
(4.1) is inappropriate for the conceptual crustal model considered in this section. If
the upward direction is defined as positive for the constant conductive heat flux at
the bottom, we have the following general definition for the Rayleigh number for
this conceptual crustal model (Zhao et al. 1999a), instead of using (4.1):

RaT =
(ρ f 0cp)ρ f 0gβT qcKH2

μλ 2
e0

. (4.38)

Since the Rayleigh number expressed in (4.38) varies quadratically with the
thickness of the crust, pore-fluid convective flow is much easier in a relatively thick
crust where the pore-fluid pressure gradient is close to the lithostatic value.

Fig. 4.4 Geometry and
boundary conditions of the
hydrothermal system
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To derive the critical Rayleigh number of this particular system, we need to con-
sider the conceptual model shown in Fig. 4.4. The boundary conditions of this hy-
drothermal system consist of constant temperature and constant pressure at the top
of the layer, and constant vertical Darcy velocity and constant vertical conductive
heat flux at the bottom of the layer. This means that the layer is heated from below.
The steady state governing equations of this hydrothermal system are exactly the
same as those expressed in (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7). However, the
boundary conditions of this hydrothermal system are mathematically expressed as
follows:

T = T0, P = P1 (at y = H), (4.39)

v = V0,
�T
�y

= − q0

λe0
(at y = 0), (4.40)

where T0, P1, V0, λe0 and q0 are constants. Physically, q0 is the (constant) conduc-
tive thermal flux and λe0 is a reference conductivity for the porous medium.

Note that if the porous medium of the layer is homogeneous and isotropic, the
steady state governing equations of this hydrothermal system can be written in the
following dimensionless form:

�u∗

�x∗
+

�v∗

�y∗
= 0, (4.41)

u∗ = −�P∗

�x∗
+RaT T ∗e1, (4.42)

v∗ = −�P∗

�y∗
+RaT T ∗e2, (4.43)

u∗
�T ∗

�x∗
+ v∗

�T ∗

�y∗
=

�2T ∗

�x∗2 +
�2T ∗

�y∗2 . (4.44)

Equations (4.41), (4.42), (4.43) and (4.44) are exactly the same as (4.19), (4.20),
(4.21) and (4.22), except for introducing the following three new dimensionless
variables:

T ∗ =
T −T0

ΔT
,

�T ∗

�y∗
=

λe0

q0

�T
�y

, (4.45)

RaT =
(ρ f 0cp)ρ f 0gβKhq0H2

μ λ 2
e0

, (4.46)

where T ∗ is the dimensionless temperature; �T ∗/�y∗ is the dimensionless verti-
cal temperature gradient, and RaT is the modified Rayleigh number expressed in
terms of the conductive thermal flux rather than in terms of the conventional tem-
perature difference. Other quantities have the same meanings as defined before.

The boundary conditions of the problem in (4.39) and (4.40) can be written in
dimensionless form as follows:
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T ∗ = 0, P∗ = P∗
1 (at y∗ = 1), (4.47)

v∗ = Pe =
Hρ f 0cp

λe0
V0,

�T ∗

�y∗
= −1 (at y∗ = 0), (4.48)

where Pe is the Peclet number of the hydrothermal system.
For the hydrothermal system considered, the trivial solution for the horizontal

Darcy pore-fluid velocity is zero:

u∗ = 0. (4.49)

Substituting (4.49) into (4.41) yields the following equation:

�v∗

�y∗
= 0. (4.50)

It straightforwardly follows from (4.48) and (4.50) that

v∗ = Pe. (4.51)

This indicates that the vertical velocity, which is referred to as the upward
throughflow, is constant throughout the whole layer.

Substituting (4.49) and (4.51) into (4.44) yields the following equation:

Pe
�T ∗

�y∗
=

�2T ∗

�y∗2 . (4.52)

The solution for (4.52) can be expressed as

T ∗ = C1ePey∗ +C2, (4.53)

where C1 and C2 are two independent constants.
In order to determine C1 and C2 constants uniquely, we must use two thermal

boundary conditions, one of which must be a temperature boundary.
Inserting (4.53) into (4.47) and (4.48) yields

T ∗ =
1
Pe

(ePe − ePey∗). (4.54)

It is noted from (4.42) and (4.49) that P∗ is a function of y∗ only, hence,

�P∗

�y∗
=

dP∗

dy∗
= RaT T ∗ −Pe. (4.55)

Integrating (4.55) with respect to y∗ yields the following equation:

P∗ =
RaT

Pe

(
ePe y∗ − 1

Pe
ePey∗

)
−Pey∗ +C3, (4.56)
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where C3 is a constant which can be determined from (4.47):

C3 = P∗
1 +Pe −

RaT

Pe

(
ePe − 1

Pe
ePe

)
. (4.57)

It follows that the final solution for the dimensionless pressure can be ex-
pressed as

p∗ =
RaT

Pe

(
ePe y∗ − 1

Pe
ePey∗

)
−Pey∗ +P∗

1 +Pe −
RaT

Pe

(
ePe − 1

Pe
ePe

)
. (4.58)

Up to now, we have obtained the exact trivial solutions for the dimensionless
Darcy velocities (i.e., (4.49) and (4.51)), dimensionless temperature (i.e., (4.54))
and dimensionless pressure (i.e., (4.58)) of the hydrothermal system.

Next, the stability of the above trivial solution is investigated in a linear stability
analysis. Supposing the hydrothermal system is subjected to a small disturbance,
the total solutions for the dimensionless velocities, temperature and pressure of the
system can be expressed as

u∗t = u∗ + û∗, v∗t = v∗ + v̂∗, (4.59)

T ∗
t = T ∗ + T̂ ∗, P∗

t = P∗ + P̂∗, (4.60)

where û∗, v̂∗, T̂ ∗ and P̂∗ are the corresponding perturbation solutions due to the
small disturbance. From the linear stability theory point of view, if and only if all
these perturbation solutions are zero, then the exact solutions obtained in the previ-
ous analysis are stable. This implies that the stability of the exact solutions for the
hydrothermal system considered here can be judged by examining the existence of
the non-zero solutions for û∗, v̂∗, T̂ ∗ and P̂∗.

Note that the small disturbance may be caused by a small tremor of the Earth.
From the classical perturbation theory, we can introduce a small parameter, ε , to
express the consequence of this small disturbance. For example, using this small
parameter, it is possible to express the resulting perturbation velocity, temperature
and pressure of a system in the following form:

û∗ = ε(û∗(0) + ε û∗(1) + ε2û∗(2) + . . . . . .), (4.61)

v̂∗ = ε(v̂∗(0) + ε v̂∗(1) + ε2v̂∗(2) + . . . . . .), (4.62)

P̂∗ = ε(P̂∗(0) + εP̂∗(1) + ε2P̂∗(2) + . . . . . .), (4.63)

T̂ ∗ = ε(T̂ ∗(0) + εT̂ ∗(1) + ε2T̂ ∗(2) + . . . . . .). (4.64)

Substituting (4.59), (4.60), (4.61), (4.62), (4.63) and (4.64) into (4.41), (4.42),
(4.43) and (4.44), considering the linear perturbation terms only (i.e., ε terms only)
and then dropping the unnecessary superscripts, we obtain the following eigenvalue
problem:
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�û∗

�x∗
+

�v̂∗

�y∗
= 0, (4.65)

û∗ = −�P̂∗

�x∗
+RaT T̂ ∗e1, (4.66)

v̂∗ = −�P̂∗

�y∗
+RaT T̂ ∗e2, (4.67)

û∗
�T ∗

�x∗
+ v̂∗

�T ∗

�y∗
+Pe

�T̂ ∗

�y∗
=

�2T̂ ∗

�x∗2 +
�2T̂ ∗

�y∗2 , (4.68)

where
�T ∗

�x∗
= 0 and

�T
�y∗

= −ePey∗ . (4.69)

The corresponding boundary conditions for the perturbation solutions are:

T̂ ∗ = 0, P̂∗ = 0 (at y∗ = 1), (4.70)

v̂∗ = 0,
�T̂
�y∗

= 0 (at y∗ = 0). (4.71)

It is noted that P̂∗ = 0 in (4.70) implies that
�v̂∗

�y∗
= 0 at y∗ = 1 (Nield 1968).

Using the standard linear stability analysis, we have the following expressions:

v̂∗ = V (y∗)e−ik∗1x∗ , T̂ ∗ = θ(y∗)e−ik∗1x∗ . (4.72)

Inserting (4.72) into (4.65), (4.66), (4.67) and (4.68) yields:

V ′′(y∗)− (k∗1)
2V (y∗) = −(k∗1)

2RaT θ(y∗), (4.73)

θ ′′(y∗)−Peθ ′(y∗)− (k∗1)
2θ(y∗) = −V (y∗)ePey∗ , (4.74)

where k∗1 is the dimensionless wave number in the x∗ direction:

k∗1 = k1H, (4.75)

with k1 being the wave number in the x direction.
Using (4.72), (4.70) and (4.71) can also be rewritten as

θ = 0, V ′ = 0 (at y∗ = 1), (4.76)

V = 0, θ ′ = 0 (at y∗ = 0). (4.77)

Substituting (4.73) into (4.74) yields the following equation:

V (IV )(y∗)−PeV ′′′(y∗)−2(k∗1)
2V ′′(y∗)+Pe(k∗1)

2V ′(y∗)+(k∗1)
2[(k∗1)

2

−RaT ePey∗ ]V (y∗) = 0. (4.78)
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The analytical solution of (4.78) is troublesome because it contains all order
derivatives. Instead we solve (4.73) and (4.74) approximately through a single
member Galerkin ansatze. The quality of approximation is excellent for Peclet num-
ber less than one, as will be shown subsequently by comparison with numerical
solutions.

With V (y∗) = AV (y∗) and θ(y∗) = Bθ̄(y∗), (4.73) and (4.74) can be rewritten in
the Galerkin form as follows:

∫ 1

0
[AV̄ ′′(y∗)− (k∗1)

2 AV̄ (y∗)+(k∗1)
2 RaT Bθ̄(y∗)]V̄ (y∗)dy∗ = 0, (4.79)

∫ 1

0
[Bθ̄ ′′(y∗)−PeBθ̄ ′(y∗)− (k∗1)

2Bθ̄(y∗)+AV̄ (y∗)ePey∗ ]θ̄(y∗)dy∗ = 0, (4.80)

where A and B are independent constants; V (y∗) and θ̄(y∗) are trial functions for
V (y∗) and θ(y∗). They must be chosen so that all boundary conditions of the prob-
lem are satisfied identically.

From (4.79) and (4.80), it follows that
[
C11 C12

C21 C22

]{
A
B

}
=

{
0
0

}
, (4.81)

where

C11 =
∫ 1

0
[V̄ ′′(y∗)− (k∗1)

2V̄ (y∗)]V̄ (y∗)dy∗, (4.82)

C12 = RaT (k∗1)
2
∫ 1

0
θ̄(y∗)V̄ (y∗)dy∗, (4.83)

C21 =
∫ 1

0
ePey∗V̄ (y∗)θ̄(y∗)dy∗, (4.84)

C22 =
∫ 1

0
[θ̄ ′′(y∗)−Peθ̄ ′(y∗)− (k∗1)

2θ̄(y∗)]θ̄(y∗)dy∗. (4.85)

Clearly, the condition, under which (4.81) has a non-zero solution, is:

C11C22 −C12C21 = 0. (4.86)

In theory, any function, which satisfies the boundary conditions of the problem
considered, can be chosen as the candidate for the trial function. However, in prac-
tice, for the purpose of avoiding any unnecessary difficulty in the mathematics, it
is advantageous to use a polynomial function as the trial function because many
preliminary functions can be expressed as the combination of polynomial functions
using a Taylor expansion. For the hydrothermal system considered, we have tested
various candidate trial functions (Zhao et al. 1999a). The best result (minimum error
in horizontal wave number at Pe = 0) was obtained with:
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V̄ (y∗) =
1
2
(y∗)2 − y∗, (4.87)

θ̄(y∗) =
1
5
[(y∗)5 −1]. (4.88)

Substituting (4.87) and (4.88) into (4.82), (4.83), (4.84) and (4.85) yields the
following equations:

C11 = −
[

1
3

+
2

15
(k∗1)

2
]
, (4.89)

C12 =
17

336
RaT (k∗1)

2, (4.90)

C21 =
1

P8
e

[ePe(
1
2

P6
e −2P5

e +3P4
e +12P3

e −108P2
e +306Pe −504)

+(504+144Pe +
1
5

P5
e +

1
5

P6
e )], (4.91)

C22 = −
[

1
9

+
1

33
(k∗1)

2 − 1
50

Pe

]
. (4.92)

From (4.86), (4.89), (4.90), (4.91) and (4.92), the critical Rayleigh number, for
which temperature driven convective flow may occur, can be expressed as

Racritical =
366C11C22

17(k∗1)2C21
. (4.93)

Since Racritical is a function of (k∗1)
2, its minimum value is obtained from:

�Racritical

�[(k∗1)2]
= 0. (4.94)

Substituting the related equations (i.e., (4.89), (4.90), (4.91), (4.92) and (4.93))
into (4.94) leads to the following condition, under which Racritical has a minimum
value for a given Peclet number:

k∗1 =
(

55
6

) 1
4
(

1− 9
50

Pe

) 1
4

. (4.95)

Obviously, our approximate solution is only valid for

Pe <
50
9

. (4.96)

The above restriction is a consequence of the specific trial function we have used
in our linear stability analysis and convective solutions may exist (and indeed exist,
as demonstrated later in this chapter) for Pe ≥ 50

/
9.
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Unlike the conceptual crustal model that has constant temperature and imper-
meable boundary conditions at both the top and the bottom, the critical Rayleigh
number for the upward throughflow model is no longer a constant, but varies with
the value of the upward throughflow. As has been mentioned previously, the im-
portance of the upward throughflow can be represented by the dimensionless Peclet
number as defined in (4.48). Thus, it is logical to use the dimensionless Peclet num-
ber to express the critical Rayleigh number for the upward throughflow model (Zhao
et al. 1999a).

Figure 4.5 shows the variation of the critical Rayleigh number (Racritical) with
the velocity of the upward throughflow, which is represented by the dimension-
less Peclet number Pe. Within the range of the Peclet number considered (Pe <
50/9), Racritical decreases as Pe increases, that is, pore-fluid convective flow be-
comes easier when the velocity of the upward throughflow is increased. Conversely,
a decrease in the velocity of the upward throughflow makes the pore-fluid convective
flow difficult.

Based on the above recognition, Zhao et al. (1999a) also numerically simulated
pore-fluid convective flow in the crust with upward throughflow. However, from
the computational point of view, the problem domain must be finite in size. This
contradicts the conceptual crustal model that comprises horizontal layer of infinite
length. However, considering the periodic nature of the solutions for the critical
Rayleigh number makes it possible to overcome this difficulty. Theoretically, it is
appropriate to place two vertical boundaries of the finite element computational
domain at the convective cell boundaries, where both the horizontal velocity and
the normal thermal flux are identical to zero. Since there are two convective cells
(a clockwise cell and an anticlockwise cell) in one horizontal wavelength of the
solution, the length of a convective cell in the horizontal direction is equal to half the
horizontal wavelength of the system. This indicates that the minimum length of the

Fig. 4.5 Variation of the
critical Rayleigh number
with the Peclet number of
a conceptual model with
upward throughflow
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Fig. 4.6 Dimensionless total velocity distribution due to different upward throughflow

finite element computational domain should equal half the horizontal wavelength of
the system. For a conceptual crustal model with upward throughflow, the ratio of the
length to thickness of a computational model can be expressed as (Zhao et al. 1999a)

L
H

= π
(

55
6

)− 1
4
(

1− 9
50

Pe

)− 1
4

, (4.97)
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Fig. 4.7 Dimensionless perturbation velocity distribution due to different upward throughflow

where L and H are the length and thickness of the computational domain. The thick-
ness of the computational domain is also equal to the thickness of the conceptual
crustal model.

Figures 4.6 and 4.7 show the distributions of both the total and the perturbation
pore-fluid velocity under different conditions of upward throughflow. The pertur-
bation pore-fluid velocity is calculated by taking the upward throughflow velocity
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Fig. 4.8 Dimensionless temperature distribution due to different upward throughflow

from the total pore-fluid velocity. Therefore, the perturbation pore-fluid velocity is
essentially the convective pore-fluid velocity, while the total pore-fluid velocity is
the sum of the convective pore-fluid velocity plus the advective pore-fluid velocity.
In this situation, the upward throughflow velocity is essentially identical to the ad-
vective pore-fluid velocity. Since the size of the convection cell is dependent on the
Peclet number of the system with upward throughflow, the ratios of the length to
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thickness of the computational models are 1.8, 1.9 and 3.2 when the Peclet number
is 0.1, 1.0 and 5.0, respectively. It is obvious from Fig. 4.6 that the Peclet number
Pe has a significant effect on the pattern of total convective pore-fluid flow in the
hydrothermal system. Since the perturbation pore-fluid velocity is induced by the
thermal buoyancy only, the corresponding convection cells can be clearly exhibited
in Fig. 4.7.

Figure 4.8 shows the dimensionless temperature distribution in conceptual crustal
models with different values of the upward throughflow velocity. If temperature gra-
dient driven convective flow does not occur, the isotherms are horizontal lines. How-
ever, once temperature gradient driven convective flow takes place, the isotherms
become curved lines. Since the distance between two neighboring isotherms repre-
sents the magnitude of the temperature gradient, Fig. 4.8 shows that the temperature
gradient at the top of the layer becomes much larger than that at the bottom of the
layer. Generally, the temperature gradient at the top of the layer increases as the
Peclet number Pe increases.

In summary, a conceptual model with upward throughflow differs from a concep-
tual model without upward throughflow in the following aspects. First, the critical
Rayleigh number is a constant for a conceptual model without upward throughflow,
while it depends on the vertical input velocity value at the bottom for a concep-
tual model with upward throughflow. Second, the ratio of the length to thickness of
the convective cell is a constant for a conceptual model without upward through-
flow, whereas it varies with the Peclet number for a conceptual model with upward
throughflow. Third, the convective pore-fluid flow pattern for a conceptual model
without upward throughflow is clearly different from that of a conceptual model
with upward throughflow.



Chapter 5
Convective Heat Transfer
in a Heterogeneous Crust

The heterogeneity of crustal material may have many different manifestations: com-
prising, for instance, sedimentary layering, large folds, large faults and shear zones.
Also there may be nonuniform variations in material properties if a geothermal
gradient is present in the crust. Depending on the nature and scale of the hetero-
geneities, the convective flow patterns may be modified compared to those that take
place in a homogeneous model of the crust of the Earth. Nevertheless, the discus-
sions on convective heat transfer in a homogenous crust provide the theoretical ba-
sis for a fundamental understanding of possible heat transfer mechanisms at the
crustal scale. In this chapter, we will investigate how the heterogeneity of crustal
material may affect convective heat transfer in the crust. In particular, the follow-
ing three aspects, namely the effects of layering, of an uneven porosity distribution
due to thermoelasticity of crustal material and of temperature-dependent viscosity
of the pore-fluids, are considered either numerically or analytically to demonstrate
the corresponding effects on heat transfer in a heterogeneous crust.

5.1 The Influence of Layered Material Heterogeneity on
Convective Heat Transfer in a Heterogeneous Crust

In order to investigate both material heterogeneity and geometrical irregularity of
the crust, the finite element method has become a very useful tool in recent years. In
the finite element analysis of high Rayleigh number convective heat transfer prob-
lems, the full nonlinear term in the energy equation must be considered in the anal-
ysis because it usually dominates both the magnitude and the pattern of temperature
distribution within the system. In this kind of problem, the conventional finite ele-
ment method often suffers difficulties in discovering the nontrivial solution beyond
the bifurcation point, which corresponds with the critical Rayleigh number of the
problem. For this reason, the progressive asymptotic approach procedure associated
with the finite element method is used to investigate how geological heterogeneity
affects steady-state heat transfer in the crust.

The following dimensionless equations as described by (4.11) and (4.12) are used
to investigate the influence of both material heterogeneity and geometrical irregu-
larity on convective heat transfer within a heterogeneous crust.
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�u∗

�x∗
+

�v∗

�y∗
= 0, (5.1)

u∗ = K∗
x

(
−�P∗

�x∗
+RaT T ∗e1

)
, (5.2)

v∗ = K∗
y

(
−�P∗

�y∗
+RaT T ∗e2

)
, (5.3)

u∗
�T ∗

�x∗
+ v∗

�T ∗

�y∗
= λ ∗

ex
�2T ∗

�x∗2 +λ ∗
ey

�2T ∗

�y∗2 , (5.4)

where x∗ and y∗ are the dimensionless coordinates; u∗ and v∗ are the dimension-
less velocity components in the x and y directions, respectively; P∗ and T ∗ are the
dimensionless excess pressure and temperature; λ ∗

ex and λ ∗
ey are the dimensionless

thermal conductivities of the porous medium in the x and y directions; K∗
x and K∗

y
are the dimensionless permeabilities of the crustal material in the x and y directions,
respectively; e is a unit vector and e = e1i+e2j for a two-dimensional problem, and
RaT is the Rayleigh number. These dimensionless quantities have the same defini-
tions as those defined in (4.8), (4.9) and (4.10).

By considering the dimensionless velocity, pressure and temperature as basic
variables, (5.1), (5.2), (5.3) and (5.4) can be discretized using the conventional fi-
nite element method (Zienkiewicz 1977). For a typical 4-node quadrilateral element,
the velocity, pressure, temperature and species concentration fields at the elemental
level can be expressed as

u∗(x∗,y∗) = ϕT Ue, (5.5)

v∗(x∗,y∗) = ϕT Ve, (5.6)

p∗(x∗,y∗) = ψT Pe, (5.7)

T ∗(x∗,y∗) = ϕT Te, (5.8)

where Ue, Ve, Pe and Te are the column vectors of the nodal velocity, excessive
pressure and temperature of the element; ϕ is the column vector of the interpolation
functions for the dimensionless velocity and temperature fields within the element,
and � is the column vector of the interpolation functions for the excessive pressure
within the element. For the 4-node quadrilateral element, it is assumed that ϕ is
identical to � in the following numerical analysis.

The global coordinate components within the element can be defined as

x∗ = NT X, y∗ = NT Y, (5.9)

where X and Y are the column vectors of nodal coordinate components in the x and
y directions of the global coordinate system, respectively; N is the column vector of
the coordinate mapping function of the element. Based on the isoparametric element
concept, the following relationships exist:

N (ξ ,η) = ϕ (ξ ,η) = � (ξ ,η), (5.10)
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where ξ and η are the local coordinate components of the element.
Using the Galerkin weighted residual method, (5.1), (5.2), (5.3) and (5.4) can be

expressed, with consideration of (5.5), (5.6), (5.7) and (5.8), as follows:

∫
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�
�ϕT

�x∗
Ue dA+

∫
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�
�ϕT

�y∗
Ve dA = 0, (5.11)

∫
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ϕϕT Ue dA+

∫
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x
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∫
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ϕK∗

x RaT ϕT Te e1dA = 0, (5.12)
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y RaT ϕT Te e2dA = 0, (5.13)
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ϕ λ ∗

ey
�2ϕT

�y∗2 Te dA = 0.

(5.14)

Using the Green theorem and the technique of integration by parts, the terms
involving the second derivatives in (5.14) can be rewritten as

∫
A
ϕ λ ∗

ex
�2ϕT

�x∗2 Te dA = −
∫
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where q∗x and q∗y are the dimensionless heat fluxes on the boundary of the element,
and A and S are the area and boundary length of the element.

Note that (5.11), (5.12), (5.13) and (5.14) can be expressed in a matrix form as
follows:
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, (5.17)

where Ue and Ve are the nodal dimensionless velocity vectors of the element in the
x and y directions, respectively; Te and Pe are the nodal dimensionless temperature
and pressure vectors of the element; Ae

x, Ae
y, Be

x, Be
y Ce

x, Ce
y, Ee and Me are the

property matrices of the element, and Fe
x, Fe

y and Ge are the dimensionless nodal
load vectors due to the dimensionless stress and heat flux on the boundary of the
element. These matrices and vectors can be derived and expressed as follows:
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Khρ f 0cp

μλe0
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where ϕ is the shape function vector for the temperature and velocity components
of the element; ψ is the shape function vector for the pressure of the element; σi and
q are the stresses and heat flux on the boundary of the element, and A and S are the
area and boundary length of the element.

It is noted that since the full nonlinear term of the energy equation in the Horton–
Rogers–Lapwood problem is considered in the finite element analysis, matrix Ee is
dependent on the velocity components of the element. Thus, a prediction for the
initial velocities of an element is needed to have this matrix evaluated. Based on
the progressive asymptotic approach procedure (Zhao et al. 1997), the modified
Horton–Rogers–Lapwood problem needs to be solved to offer a good prediction
for the initial velocities of all elements in the system.

From the penalty finite element approach (Zienkiewicz 1977), the following
equation exists:

Ce
xUe +Ce

yVe = −εMpPe. (5.24)

Equation (5.24) can be rewritten as

Pe = −1
ε

M−1
p (Ce

xUe +Ce
yVe) (5.25)

Substituting (5.25) into (5.17) yields the following equation in the elemen-
tal level: [
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It needs to be pointed out that ε is a penalty parameter in (5.27). To obtain an
accurate solution, this parameter must be chosen small enough to approximate fluid
incompressibility well, but large enough to prevent the resulting matrix problem
from becoming too ill-conditioned to solve.

By assembling all elements in a system, the finite element equation of the system
can be expressed in a matrix form as

[
Q −B
0 E

]{
UF
T

}
=

{
F
G

}
, (5.31)

where Q, B and E are global property matrices of the system; UF and T are global
nodal velocity and temperature vectors of the system, and F and G are global nodal
load vectors of the system. Since (5.31) is nonlinear, either the successive substitu-
tion method or the Newton-Raphson method can be used to solve this equation.

The problem considered in this section is a vertical compartment with a top
folded layer. Without lose of generality, dimensionless quantities are used to present
the problem and related results (Zhao et al. 1998c). The dimensionless width of
the compartment is one. The total dimensionless height of the column is 1.2, in
which the dimensionless height of the top layer is 0.2. The finite element mesh for
the problem is shown in Fig. 5.1, where the top folded layer and its underlying
medium are discretized into 120 and 576 nine-node quadrilateral elements, respec-
tively. The mesh gradation technique is employed to satisfy the mesh size require-
ment for high velocity regions. In order to introduce the heterogeneous nature of the
porous medium, the medium permeability in the horizontal direction is assumed to
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Fig. 5.1 Problem definition and finite element mesh for convective heat transfer in a heteroge-
neous crust
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be three times that in the vertical direction for all calculations in this section. The
boundary conditions of the problem are shown in Fig. 5.1.

First, the thermal conductivity ratio of the underlying medium to its top folded
layer is fixed as a constant at unity. This focuses the investigation on the effect of
permeability ratios of the underlying medium to the top folded layer on heat and
mass transfer in the porous medium. For this purpose, three different permeability
ratios, namely η = 1, 10 and 100, are used in the corresponding calculations.

Figures 5.2 and 5.3 show the dimensionless pore-fluid velocity distribution and
dimensionless temperature contours within the whole column arising from differ-
ent permeability ratios between the underlying medium and the top folded layer.
With the continuous increase of the permeability ratio, the top folded layer becomes
relatively more and more impermeable so that the pore-fluid flow within the layer
becomes weaker and weaker. In the case of η = 100, the pore-fluid flow within the
top folded layer nearly vanishes for both Rayleigh numbers considered. Thus, the
heterogeneity of medium permeability has a significant effect on convective pore-
fluid flow within the system. Figure 5.3 shows that although the permeability ratio
has little effect on the temperature distribution in the case of Ra = 100, it has a con-
siderable effect in the case of Ra = 400, especially in the range between η = 1 and
η = 10. This is due to the fact that with an increase in the Rayleigh number, heat
convection plays a more important role than heat conduction in the whole process
of heat transfer in the system. As expected, the Rayleigh number does significantly
affect the velocity distribution and temperature contours within the medium.

The effect of thermal conductivity heterogeneity on heat transfer in the fluid-
saturated porous medium is investigated next. For this purpose, three different ther-
mal conductivity ratios, ζ , of the underlying medium to the top folded layer are
considered as ζ = 1, 3 and 5, respectively. The permeability ratio of the under-
lying medium to the top folded layer is set to a constant of 10 in all the related
calculations.

The dimensionless pore-fluid velocity distribution and dimensionless tempera-
ture contours are shown in Figs. 5.4 and 5.5 for three different thermal conductivity
ratios. Figure 5.4 shows that, although the thermal conductivity ratio has a negligible
effect on the pattern of the dimensionless velocity distribution, it has a significant
effect on the maximum amplitude of the dimensionless velocity within the system.
For example, in the case of Ra = 100, the maximum amplitudes of the dimensionless
velocity are 8.624 and 4.940 for ζ = 1 and ζ = 3, respectively. More importantly,
when the thermal conductivity ratio is increased to 5, Ra = 100 cannot trigger the
convective flow of pore-fluid so that Ra = 110 is used in this situation. Hence, when
the thermal conductivity ratio increases, the critical Rayleigh number increases for
the onset of the pore-fluid convective flow in the system because, with the contin-
uous increase in the thermal conductivity ratio, more and more isotherms reside in
the top folded layer. As a consequence, the vertical temperature gradient increases
in the top folded layer, but decreases in the underlying medium because the temper-
ature is kept constant on both the top surface and the bottom of the whole system
in the calculation. This phenomenon can be clearly seen from Fig. 5.5, in which
the isotherms become denser and denser in the top folded layer when the thermal
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Fig. 5.2 Effect of permeability ratio on convective pore-fluid velocity distribution
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Fig. 5.3 Effect of permeability ratio on the dimensionless temperature contour distribution. The
dimensionless temperature at the top and bottom are zero and unity, respectively, meaning that the
bottom is hotter than the top
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Fig. 5.4 Effect of thermal conductivity ratio on the convective pore-fluid velocity distribution



58 5 Convective Heat Transfer in a Heterogeneous Crust

Fig. 5.5 Effect of thermal conductivity ratio on the dimensionless temperature contour distribution.
The dimensionless temperature at the top and bottom are zero and unity, respectively, meaning that
the bottom is hotter than the top
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conductivity ratio increases from 1 to 5. Since the top folded layer is relatively im-
permeable with respect to the underlying medium, it is difficult to initiate convective
flow cells in this layer, even if the thermal conductivity ratio is increased to 5.

5.2 The Influence of Material Thermoelasticity on Convective
Heat Transfer in a Heterogeneous Crust

This section investigates the effects of material thermoelasticity on high Rayleigh
number convective heat transfer in a fluid-saturated porous medium when it is heated
from below. From the geoscience point of view, we are interested in a horizon-
tal layer of a porous medium. However, from the computational point of view, we
need to model a domain of finite size. This leads to a contradiction. Nevertheless,
considering the periodic nature of convective solutions (Zhao et al. 1997) for high
Rayleigh numbers makes it possible to overcome this difficulty. Theoretically, as
was mentioned previously, it is appropriate to place two vertical boundaries of a
computational domain at the cell boundaries, where the horizontal velocity, the hor-
izontal displacement and the normal thermal flux are identical to zero. Since there
are two cells (a clockwise cell and an anticlockwise cell) in a periodic cycle of the
solutions, the length of a cell in the horizontal direction is just equal to half the
wavelength of the layer. This means that the minimum computing length of a com-
putational domain should equal half the wavelength of the layer. It turns out that
half the wavelength of a horizontal layer is equal to the thickness of the layer if the
layer deformation is neglected.

We consider a horizontal layer of a fluid-saturated porous medium in a two-
dimensional domain. The temperature at the top of the layer is assumed to be lower
than that at the bottom of the layer. This means that the layer is heated from be-
low. The porous medium to be considered is a homogeneous, isotropic and elastic
medium. We use Darcy’s Law for describing pore-fluid flow and Fourier’s Law for
describing heat transfer, respectively. In addition, the Oberbeck-Boussinesq approx-
imation is employed to describe the change in pore-fluid density due to a change in
pore-fluid temperature. Under the above conditions, the corresponding governing
equations for the steady state pore-fluid flow and heat transfer (which we label the
first subproblem) in the porous medium can be expressed as follows:

�u
�x

+
�v
�y

= 0, (5.32)

u =
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(
−�P
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)
, (5.33)
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+ρ f g

)
, (5.34)
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ρ f 0cp
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= λex

�2T
�x2 +λey

�2T
�y2 , (5.35)

ρ f = ρ f 0[1−βT (T −T0)], (5.36)

λex = φλ f x +(1−φ)λsx, λey = φλ f y +(1−φ)λsy, (5.37)

where u and v are the horizontal and vertical velocity components of the pore-fluid
in the x and y directions, respectively; P is the pore-fluid pressure; T is the tempera-
ture of the crustal material; Kx and Ky are the permeabilities of the crustal material in
the x and y directions, respectively; μ is the dynamic viscosity of the pore-fluid; ρ f

is the density of the pore-fluid and g is the acceleration due to gravity; ρ f 0 and T0

are the reference density and temperature; λ f x and λsx are the thermal conductivities
of the pore-fluid and rock mass in the x direction; λ f y and λsy are the thermal con-
ductivities of the pore-fluid and rock mass in the y direction; cp is the specific heat
of the pore-fluid, φ and βT are the porosity of the crustal material and the thermal
volume expansion coefficient of the pore-fluid.

If a coupling problem involving pore-fluid flow and material thermoelasticity is
treated as a transient state problem, then a term involving strain dissipation that
is associated with the solid material needs to be added to the energy equation
(i.e., (5.35)). In this case, the strain dissipation caused by the thermoelasticity of
the solid is directly proportional to the product of the stress and thermoelastically
induced strain rate of the solid material. For a steady state problem, since the ther-
moelastically induced strain rate of the solid material is identical to zero, the corre-
sponding strain energy dissipation caused by the thermoelasticity of the solid must
be equal to zero. As a result, a term involving strain dissipation that is associated
with the solid material can be safely neglected in the energy equation (i.e., (5.35)).

As expected, the governing equations (i.e., (5.32), (5.33), (5.34), (5.35), (5.36)
and (5.37)) of the first subproblem are exactly the same as those expressed in (4.2),
(4.3), (4.4), (4.5), (4.6) and (4.7). For the purpose of coupling with the medium
elastic deformation, these equations are considered, rather than their dimensionless
counterparts from the previous analysis.

Since this study is focused on the medium deformation caused by thermal ef-
fects, body forces are neglected in the equilibrium equations. Thus, the governing
equations for static deformation (which is labeled as the second subproblem) in the
porous medium under plane strain conditions are:
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= 0, (5.38)
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τxy = τyx = 2Gγxy, (5.42)
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where σx and σy are normal stresses of the solid matrix in the x and y directions;
εx and εy are the normal strains of the solid matrix in relation to σx and σy; τxy and
γxy are shear stress and shear strain of the solid matrix; us and vs are the horizontal
and vertical displacements of the solid matrix; E and G are the elastic and shear
modulus, respectively; ν is the Poisson’s ratio of the solid matrix and α is the linear
thermal expansion coefficient of the solid matrix.

Note that (5.38) and (5.39) represent the equilibrium equations, whereas (5.40),
(5.41), (5.42) and (5.43) are the constitutive equations and strain displacement rela-
tionship equations, respectively.

To couple the first subproblem with the second subproblem, we need to establish
a relationship between the volumetric strain and the porosity of the porous medium.
For small strain problems, such a relationship can be expressed as (Itasca Consulting
Group 1995):

φ = 1− 1−φ0

1+ εv
, εv = εx + εy, (5.44)

where φ and φ0 are the porosity and initial porosity of the porous medium (i.e., the
crustal material), and εv is the volumetric strain of the solid matrix.

Using the Carman–Kozeny formula (Nield and Bejan 1992), the permeability of
an isotropic porous medium is expressed as a function of porosity as follows:

Kx = Ky =
K0(1−φ0)2φ 3

φ 3
0 (1−φ)2

, (5.45)

where K0 is the initial permeability corresponding to the initial porosity, φ0.
Clearly, the first subproblem is coupled with the second subproblem through the

medium temperature, T , and permeabilities, Kx and Ky. Within the first subprob-
lem, the pore-fluid flow is coupled with the thermal flow through the medium tem-
perature and pore-fluid velocity components, u and v. However, within the second
subproblem, the medium deformation (displacement) is coupled with the medium
temperature and permeability through the volumetric strain, εv, and the medium
porosity, φ .

When the Rayleigh number of a fluid-saturated porous medium is equal to or
greater than its corresponding critical value, it is difficult to derive an analytical
nontrivial solution to the coupled problem described by the above-mentioned equa-
tions. Thus, we will use a numerical method to solve the problem. Although a com-
puter program can be developed to solve this problem, it is desirable to make best
use of existing computer codes for the following reasons: (1) built-in preprocessing
and post-processing tools make it easy and attractive to prepare, input and output
data which are essential in a numerical analysis; (2) provision of movie/animation
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functions enables numerical results, the treatment of which is often a cumbersome
and tedious task, to be visualised via clear and colourful pictures, and (3) detailed
benchmark solutions and documentations as well as many embedded robust solu-
tion algorithms allow the codes to be used more easily, correctly, effectively and
efficiently for solving a wide range of practical problems. Therefore, two commer-
cial computer codes, FIDAP (Fluid Dynamics International 1997) and FLAC (Itasca
Consulting Group 1995), are used as two super subroutines in the solution method
of the coupled problem. Basically, FIDAP is used to solve the first subproblem,
while FLAC is used to solve the second subproblem. A simple interface program
has been developed to link FIDAP and FLAC (Zhao et al. 1999c). However, when
a fluid-saturated porous medium involves a geometry comprising a horizontal layer,
and is heated uniformly from the bottom of the layer, directly solving the first sub-
problem using the conventional finite element method (as in FIDAP) always leads
to a trivial solution of zero values for the velocity field of pore-fluid flow, even if
the Rayleigh number is high enough to trigger pore-fluid flow in the fluid-saturated
porous medium. To overcome this difficulty, the progressive asymptotic approach
procedure was developed (Zhao et al. 1997). The basic idea behind the procedure
is that, through solving a sequence of the modified problems in which gravity is
assumed to tilt a small angle away from vertical, an accurate nontrivial solution to
the first subproblem, with the tilted angle being zero, can be obtained. Although FI-
DAP, FLAC and the progressive asymptotic approach procedure (Zhao et al. 1997)
have been validated separately and extensively by many benchmark problems, it is
highly desirable to validate the proposed solution method because it links the above
three together. For this purpose, a benchmark problem will be constructed and an
analytical solution for this benchmark problem will be derived below.

Although, as we have indicated, it is very difficult to derive analytical nontrivial
solutions to (5.32), (5.33), (5.34), (5.35), (5.36), (5.37), (5.38), (5.39), (5.40), (5.41),
(5.42) and (5.43) when the Rayleigh number of a pore-fluid saturated medium is
supercritical, it is possible to derive analytical solutions for some special situations.
For example, when the porous medium is dry or when the Rayleigh number of
a fluid-saturated porous medium is subcritical, it is possible to derive analytical
solutions to (5.32), (5.33), (5.34), (5.35), (5.36), (5.37), (5.38), (5.39), (5.40), (5.41),
(5.42) and (5.43) with some simple geometric and boundary conditions.

Keeping the above in mind, a horizontal layer shown in Fig. 5.6 is considered
as the benchmark problem, the boundary conditions of which are free stresses and

Fig. 5.6 Geometry and
boundary conditions of a
benchmark system

T = T0, σy = 0

T = Tb, vs = 0

y

0
x

H
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constant temperature at the top of the layer, and zero displacements and constant
temperature at the bottom of the layer. The temperature at the bottom of the layer is
assumed to be higher than that at the top of the layer. The layer is comprised of a
fluid-saturated porous medium and the Rayleigh number of the medium is below its
critical value. This implies that the pore-fluid velocities in the layer are zero.

u = 0, v = 0. (5.46)

Substituting (5.46) into (5.35) and considering the nature of temperature distri-
bution in the horizontal layer yields the following equation:

�2T
�y2 = 0. (5.47)

The solution to (5.47) with the boundary conditions shown in Fig. 5.6 can be
expressed as follows:

T = Tb −
y
H

(Tb −T0). (5.48)

For the benchmark problem shown in Fig. 5.6, the displacement and strain of the
solid matrix in the horizontal direction, the normal stress of the solid matrix in the
vertical direction and the shear stress of the solid matrix should vanish:

us = 0, εx = 0, σy = 0, τxy = τyx = 0. (5.49)

Substituting (5.49) into (5.40), (5.41) and (5.42) yields the following equation:

�vs

�y
− 1+ν

1−ν
αT = 0. (5.50)

The solution to (5.50) with the corresponding boundary conditions in Fig. 5.6
can be expressed as

vs =
1+ν
1−ν

α
[
Tb −

y
2H

(Tb −T0)
]

y. (5.51)

The volumetric strain for the benchmark problem is

εv =
1+ν
1−ν

α
[
Tb −

y
H

(Tb −T0)
]
. (5.52)

Thus, the solution to the medium porosity and permeability can be straightfor-
wardly expressed as

φ =
φ0(1−ν)+α(1+ν)[Tb −

y
H

(Tb −T0)]

1−ν +α(1+ν)[Tb −
y
H

(Tb −T0)]
, (5.53)

Kx = Ky =
K0(1−φ0)2{φ0(1−ν)+α(1+ν)[Tb −

y
H

(Tb −T0)]}3

φ 3
0 [(1−φ0)(1−ν)]2{1−ν +α(1+ν)[Tb −

y
H

(Tb −T0)]}
. (5.54)
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Using the analytical solutions derived for the benchmark problem, the proposed
numerical method consisting of a combination of two separate commercial com-
puter codes, FIDAP and FLAC, can be verified. For this purpose, the benchmark
problem addressed above is solved numerically. Table 5.1 shows the parameters
used in the calculation. In addition, the thickness of the horizontal layer is 50 m;
temperatures at the top and the bottom of the layer are 0◦C and 10◦C, respectively.
For the parameters selected here, the Rayleigh number of the porous medium is
about 0.014, which is far below the corresponding critical value of 4π2 when the
deformation of the porous medium is neglected. This indicates that the benchmark
analytical solution derived above is valid for this particular problem.

Figure 5.7 compares the numerical solutions with analytical solutions for the
benchmark problem considered. In this figure, vs

/
vtop

s , where vtop
s is the vertical

displacement at the top of the layer, is the dimensionless vertical displacement of
the layer. ΔK

/
K0 is the ratio of a variation in permeability to its initial value, while

Δφ
/

φ0 is the ratio of a variation in porosity to its initial value. Clearly, all the numer-
ical solutions shown in Fig. 5.7 agree with the corresponding analytical solutions.
This demonstrates that the proposed solution method, especially the link between
FIDAP, FLAC and the progressive asymptotic approach procedure, works well in
obtaining a numerical solution.

It is interesting to note that the maximum volumetric strain takes place at the
bottom of the layer, where the relative temperature is the highest within the whole
layer. Generally, the higher the relative temperature, the larger the volumetric strain
in a porous medium. Since the volumetric expansion of a porous medium causes a
porosity redistribution, the maximum variation in porosity occurs at the region of
the highest relative temperature, i.e., at the bottom of the layer for this particular
problem. Although the maximum variation in porosity is about 0.45 percent, the

Table 5.1 Parameters used for the benchmark problem

Material type Parameter Value

dynamic viscosity 10−3 N× s/m2

reference density 1000kg/m3

pore-fluid volumetric thermal
expansion coefficient

2.07×10−4(1/◦C)

specific heat 4185J/(kg ·◦ C)
thermal conductivity

coefficient
0.6W/(m×◦ C)

initial porosity 0.1
initial permeability 10−14 m2

porous matrix elastic modulus 1010 Pa
Poisson’s ratio 0.25
linear thermal expansion

coefficient
3×10−5(1/◦C)

thermal conductivity
coefficient

3.35W/(m ·◦ C)
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Fig. 5.7 Comparison of numerical solutions with analytical solutions

maximum variation in permeability can reach about 1.45 percent. Thus, the porosity
and permeability of a porous medium may vary with the same relative temperature,
but at different rates. This finding implies that, for an elastic porous medium, a
region of relatively high temperature favors the formation of flow channels due to
increased porosity in the region arising from the medium thermoelasticity effect.

After the proposed numerical solution method is verified, it is used to inves-
tigate the effect of medium thermoelasticity on convective pore-fluid flow when
the hydrothermal system becomes supercritical. To this end, a square box of side
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10 km

10 km

Fig. 5.8 Finite element computational model for the convective heat transfer problem with
thermoelasticity

length H = 10km is considered as the computing domain in the forthcoming com-
putations. As shown in Fig. 5.8, this square box is discretized into 2,304 four-
node quadrilateral elements. Table 5.2 shows the parameters used for this prob-
lem. In addition, temperature at the top and the bottom of the layer is 20 ◦C and
220◦C, respectively. From these parameters, the Rayleigh number of the porous
medium is about 55.2, which is above the corresponding critical value of 39.48
when the medium deformation is neglected. This indicates that temperature buoy-
ancy driven convective pore-fluid flow definitely takes place in the porous medium
considered here.

Figure 5.9 shows the effects of material thermoelasticity on the distributions of
temperature contours for three different models. In the rigid medium model, the
medium deformation is excluded and, consequently, the material thermoelastic-
ity effect is eliminated. Thus, the numerical results from the rigid model can be
compared with those from the deformable medium models to identify the material
thermoelasticity effect on the solutions. The overall distribution patterns of the tem-
perature contours are very similar for these three models. This indicates that if one is
only interested in the overall pattern of temperature distribution in the Earth’s crust,
then material thermoelasticity effects are minimal and, therefore, can be excluded
in the analysis, especially for a porous medium consisting of elastically hard rock
masses. Even though the effect of material thermoelasticity on the overall pattern
of temperature distribution is minimal, the material thermoelasticity has a consider-
able influence on the local distribution of the solutions. For example, the maximum
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Table 5.2 Parameters used for the material thermoelasticity effect problem

Material type Parameter Value

dynamic viscosity 10−3 N× s/m2

reference density 1000kg/m3

pore-fluid volumetric thermal expansion
coefficient

2.07×10−4(1/◦C)

specific heat 4185J/(kg ·◦ C)
thermal conductivity coefficient 0.6W/(m ·◦ C)
initial porosity 0.1
initial permeability 10−14 m2

porous matrix elastic modulus for soft rock 1.78×109 Pa
elastic modulus for hard rock 1.78×1010 Pa
Poisson’s ratio 0.23
linear thermal expansion

coefficient for soft rock
7×10−5(1/◦C)

linear thermal expansion
coefficient for hard rock

7×10−6(1/◦C)

thermal conductivity coefficient 3.35W/(m ·◦ C)

values of convective pore-fluid velocities are 7.11× 10−10 m/s, 7.38× 10−10 m/s
and 1.24× 10−9 m/s for the rigid medium model, the deformable medium (hard
rock) model and the deformable medium (soft rock) model, respectively. This in-
dicates that if one is interested in the formation of minerals in the Earth’s crust,
then material thermoelasticity effects should be included in the analysis, because
it is the localizing effect of fluid flow that often influences mineralization in the
Earth’s crust.

Figures 5.10 and 5.11 display the distributions of porosity and permeability due
to different rock types in the deformable models. Clearly, the material thermoelas-
ticity affects both the porosity and the permeability distributions and, therefore, sig-
nificantly affects the local distribution of flow channels in the porous medium. Thus,
material thermoelasticity effects should be considered in the analysis of convective
heat transfer problems in a hydrothermal system.

Figures 5.12 and 5.13 show the effects of convective pore-fluid flow on the distri-
butions of deformation, porosity and permeability in the deformable medium (hard
rock) model. It is clear that the solutions corresponding to the post-convection sit-
uation are different from those corresponding to the pre-convection situation. This
means that convective pore-fluid flow plays an important role in the localization of
deformation, porosity and permeability in a deformable porous medium. Thus, an
error in finding a nontrivial solution to a hydrothermal system having supercritical
Rayleigh numbers will definitely result in some misunderstanding and misinterpre-
tation of convective heat transfer phenomena in the system.
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Fig. 5.9 Effect of material thermoelasticity on temperature distributions



5.2 The Influence of Material Thermoelasticity on Convective Heat Transfer 69

Fig. 5.10 Effect of material thermoelasticity on porosity distributions
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Fig. 5.11 Effect of material thermoelasticity on permeability distributions
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Fig. 5.12 Effect of material thermoelasticity on distributions of volume strain and vertical dis-
placement

5.3 The Influence of Pore-Fluid Viscosity on Convective Heat
Transfer in a Heterogeneous Crust

If the pore-fluid viscosity is dependent on temperature only, it can vary with depth
in the crust because of the depth-dependent temperature distribution. In this situa-
tion, heterogeneity within the crust is due to the variation of the pore-fluid viscosity
with depth. Since convective heat transfer within the crust is caused by convective
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Fig. 5.13 Effect of material thermoelasticity on distributions of porosity and permeability

instability of the pore-fluid, it is useful to investigate the effect of temperature-
dependent viscosity on convective instability (Lin et al. 2003).

5.3.1 Statement of the Problem

The hydrothermal system considered is a horizontal layer of infinite length and
thickness, H, with temperature-dependent viscosity in a fluid-saturated porous
medium. The boundary conditions are constant temperature and zero Darcy velocity
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Fig. 5.14 Geometry and
boundary conditions for a
hydrothermal system

H
y

x
0

T = T0 
, v = 0

v = 0, T = Tb

g

at both the top and bottom of the layer (see Fig. 5.14). The steady state governing
equations for this hydrothermal system are expressed as (Phillips 1991; Nield and
Bejan 1992):

�u
�x

+
�v
�y

= 0, (5.55)

u =
Kx

μ

(
−�P

�x

)
, (5.56)

v =
Ky

μ

(
−�P

�y
+ρ f g

)
, (5.57)

ρ f 0cp

(
u

�T
�x

+ v
�T
�y

)
= λex

�2T
�x2 +λey

�2T
�y2 , (5.58)

ρ f = ρ f 0[1−βT (T −T0)], (5.59)

λex = φλ f x +(1−φ)λsx, λey = φλ f y +(1−φ)λsy, (5.60)

μ = μ0e−α(T−T0), (5.61)

where u and v are the horizontal and vertical velocity components of the pore-fluid in
the x and y directions respectively; P is the pore-fluid pressure; T is the temperature
of the crustal material; Kx and Ky are the permeabilities of the crustal material in the
x and y directions, respectively; μ is the dynamic viscosity of the pore-fluid; μ0 is
the reference dynamic viscosity of the pore-fluid; ρ f is the density of the pore-fluid
and g is the acceleration due to gravity; ρ f 0 and T0 are the reference density and
temperature; λ f x and λsx are the thermal conductivities of the pore-fluid and rock
mass in the x direction; λ f y and λsy are the thermal conductivities of the pore-fluid
and rock mass in the y direction; cp is the specific heat of the pore-fluid; φ and βT

are the porosity of the crustal material and the thermal volume expansion coefficient
of the pore-fluid, and α is a material constant.

The boundary conditions of the problem can be expressed as

T = T0, v = 0 (at y = H), (5.62)
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T = Tb, v = 0 (at y = 0), (5.63)

where T0 and Tb are temperatures at the top and bottom of the hydrothermal system.
Note that if the porous medium comprising the layer is homogeneous and

isotropic, (5.55), (5.56), (5.57) and (5.58) can be written in the following dimen-
sionless form:

�u∗

�x∗
+

�v∗

�y∗
= 0, (5.64)

e−(αΔT )(1−y∗)u∗ = −�P∗

�x∗
+RaT T ∗e1, (5.65)

e−(αΔT )(1−y∗)v∗ = −�P∗

�y∗
+RaT T ∗e2, (5.66)

u∗
�T ∗

�x∗
+ v∗

�T ∗

�y∗
=

�2T ∗

�x∗2 +
�2T ∗

�y∗2 , (5.67)

where e is a unit vector and e = e1i+e2 j for a two-dimensional problem; RaT is the
Rayleigh number, defined in this particular case as

RaT =
(ρ f 0cp)ρ f 0gβΔT KhH

μλe0
. (5.68)

Other dimensionless variables are defined as

x∗ =
x
H

, y∗ =
y
H

, T ∗ =
T −T0

ΔT
, (5.69)

u∗ =
Hρ f 0cp

λe0
u, v∗ =

Hρ f 0cp

λe0
v, P∗ =

Khρ f 0cp

μλe0
(P−P0), (5.70)

ΔT = Tb −T0, (5.71)

where x∗ and y∗ are the dimensionless coordinates; u∗ and v∗ are the dimension-
less velocity components in the x and y directions, respectively; P∗ and T ∗ are the
dimensionless excess pressure and temperature; Kh is a reference medium perme-
ability coefficient in the horizontal direction; λe0 is a reference thermal conductivity
coefficient of the porous medium; ΔT is the temperature difference between the bot-
tom and top boundaries of the porous medium; H is a reference length, and P0 is the
static pore-fluid pressure.

It is noted that in (5.67), the conductive dimensionless temperature in the hy-
drothermal system was expressed as

T ∗ = 1− y∗. (5.72)

The boundary conditions of the problem in (5.62) and (5.63) can also be written
in the dimensionless form as
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T ∗ = 0, v∗ = 0 (at y∗ = 1), (5.73)

T ∗ = 1, v∗ = 0 (at y∗ = 0). (5.74)

5.3.2 Derivation of Analytical Solutions

Using the dimensionless streamline function, (5.64) can be automatically satisfied.
Note that (5.65) and (5.66) can be further expressed as follows:

e−(αΔT )(1−y∗) �u∗

�y∗
+(αΔT )u∗e−(αΔT )(1−y∗) +

�2P∗

�x∗�y∗
= 0, (5.75)

e−(αΔT )(1−y∗) �v∗

�x∗
+

�2P∗

�y∗�x∗
= RaT

�T ∗

�x∗
. (5.76)

Subtracting (5.76) from (5.75) yields the following equation:

e−(αΔT )(1−y∗)
[(

�u∗

�y∗
− �v∗

�x∗

)
+(αΔT )u∗

]
= −RaT

�T ∗

�x∗
. (5.77)

Equation (5.77) can be also expressed as follows:

e−(αΔT )(1−y∗)
[(

�2ψ∗

�y∗2 +
�2ψ∗

�x∗2

)
+(αΔT )

�ψ∗

�y∗

]
= −RaT

�T ∗

�x∗
, (5.78)

where

ψ∗ =
ρ0cp

λe0
ψ, u∗ =

�ψ∗

�y∗
, v∗ = −�ψ∗

�x∗
. (5.79)

It is noted that if the streamline function is used to replace the related governing
equations (i.e., (5.55), (5.56), (5.57) and (5.58)) in the beginning of this chapter,
the analytical procedure may be slightly simplified. However, since (5.55), (5.56),
(5.57) and (5.58) are the basic governing equations of the problem, the streamline
function concept is only employed at this stage.

Using the dimensionless streamline function, (5.67) can be expressed as

�ψ∗

�x∗
=

�2T ∗

�x∗2 +
�2T ∗

�y∗2 . (5.80)

Solutions to ψ∗ and T ∗ in (5.78) and (5.80) are of the following forms:

ψ∗ = f (y∗)sin

(
q

x∗

L∗

)
(q = mπ,m = 1,2,3, . . . . . .), (5.81)

T ∗ = θ(y∗)cos

(
q

x∗

L∗

)
+(1− y∗) (q = mπ,m = 1,2,3, . . . . . .), (5.82)
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where f (y∗) and θ(y∗) are two functions to be determined; L∗ = L
/

H is the di-
mensionless half wavelength in the horizontal direction, while L is the physical half
wavelength in the horizontal direction. Substituting (5.81) and (5.82) into (5.78) and
(5.80) yields the following equations:

e−(αΔT )(1−y∗)
[

f ′′(y∗)−
( q

L∗

)2
f (y∗)+(αΔT ) f ′(y∗)

]
=

q
L∗ RaT θ(y∗), (5.83)

q
L∗ f (y∗) = −

( q
L∗

)2
θ(y∗)+θ ′′(y∗). (5.84)

Combining (5.83) and (5.84) leads to an equation containing θ(x∗2) only:

θ IV (y∗)+αΔT θ ′′′(y∗)−2
( q

L∗

)2
θ ′′(y∗)−αΔT

( q
L∗

)2
θ ′(y∗)+

( q
L∗

)4
θ(y∗)

= RaT

( q
L∗

)2
eαΔT (1−y∗)θ(y∗).

(5.85)
To solve (5.85) analytically, the following equations are needed:

θ = θ0 +αθ1 +O(α2), RaT = RaT 0 +αRaT 1 +O(α2), (5.86)

eαΔT (1−y∗) = 1+αΔT (1− y∗)+O{[αΔT (1− y∗)]2}. (5.87)

Substituting (5.86) and (5.87) into (5.85) yields the following two equations for
α0 and α1 terms, respectively.

θ IV
0 (y∗)−2

( q
L∗

)2
θ0

′′(y∗)+
( q

L∗

)4
θ0(y∗) = RaT 0

( q
L∗

)2
θ0(y∗), (5.88)

θ IV
1 (y∗)−2

( q
L∗

)2
θ1

′′(y∗)+
( q

L∗

)4
θ1(y∗)−RaT 0

( q
L∗

)2
θ1(y∗)

= −ΔT θ ′′′
0 (y∗)+ΔT

( q
L∗

)2
θ ′

0(y
∗)+ [RaT 0ΔT (1− y∗)+RaT 1]

( q
L∗

)2
θ0(y∗).

(5.89)

It is clear that (5.88) and (5.89) can be solved sequentially. Once a non-zero
solution for θ0(y∗) is obtained, it can be substituted into (5.89) to find a non-zero
solution for θ1(y∗). For this purpose, it is noted that the non-zero solution satis-
fying both (5.88) and the related boundary conditions in (5.73) and (5.74) can be
expressed as

θ0(y∗) = sin(ry∗) (r = nπ,n = 1,2,3, . . . . . .). (5.90)

Using this equation, the condition under which the non-zero solution exists for
(5.88) is derived and expressed as
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RaT 0|critical =
(

L∗

q
r2 +

q
L∗

)2

=
(

n2

m
L∗ +

m
L∗

)2

π2 (m = 1,2,3, . . . . . . ,n = 1,2,3, . . . . . .).

(5.91)

Note that the zero-order critical Rayleigh number expressed in (5.91) is exactly
the same as that of a hydrothermal system with constant viscosity (Zhao et al. 1997).
Therefore, the effect of temperature-dependent viscosity on temperature gradient
driven convective flow can be determined by the first-order critical Rayleigh number
of the hydrothermal system with temperature-dependent viscosity.

Next, we will deduce the first-order critical Rayleigh number of the hydrothermal
system with temperature-dependent viscosity. Substituting (5.90) into (5.89) yields
the following equation:

θ1
IV (y∗)−2

( q
L∗

)2
θ1

′′(y∗)+
( q

L∗

)4
θ1(y∗)−RaT 0

( q
L∗

)2
θ1(y∗)

=
[

r3 +
( q

L∗

)2
r

]
ΔT cos(ry∗)+ [RaT 0ΔT (1− y∗)]

( q
L∗

)2
sin(ry∗)

+RaT 1

( q
L∗

)2
sin(ry∗). (5.92)

In order to determine the first-order critical Rayleigh number, we need to find a
non-zero solution for θ1(y∗). For this purpose, it is noted that the non-zero solution
satisfying both (5.92) and the related boundary conditions in (5.73) and (5.74) can
be expressed as

θ1(y∗) = a1y∗ sin(ry∗)+a2y∗(1− y∗)cos(ry∗). (5.93)

Substituting (5.93) into (5.92) yields the following equations:

8a2

[
r3 +

( q
L∗

)2
r

]
= RaT 0

( q
L∗

)2
ΔT, (5.94)

4

[
3r2 +

( q
L∗

)2
]

a2 −4a1

[
r3 + r

( q
L∗

)2
]

=
[

r3 +
( q

L∗

)2
r

]
ΔT, (5.95)

4a2r

[
r2 +

( q
L∗

)2
]

= (RaT 0ΔT +RaT 1)
( q

L∗

)2
. (5.96)

It is noted that (5.94), (5.95) and (5.96) are obtained by considering the coeffi-
cients in front of y∗ sin(ry∗) term, cos(ry∗) term and sin(ry∗) term, respectively.

From (5.94), (5.95) and (5.96), a1, a2 and RaT 1; can be straightforwardly ex-
pressed as follows:

a2 =

[
r2 +

( q
L∗
)2
]

ΔT

8r
, (5.97)
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a1 =
4
[
3r2 +

( q
L∗
)2
]

a2 −
[
r3 +

( q
L∗
)2

r
]

ΔT

4r
[
r2 +

( q
L∗
)2
] , (5.98)

RaT 1|critical = −1
2

RaT 0ΔT. (5.99)

Finally, the total critical Rayleigh number of the hydrothermal system with
temperature-dependent viscosity is expressed as

RaT |critical = RaT 0|critical +α RaT 1|critical +O(α2). (5.100)

If the viscosity of pore-fluid is constant, namely α = 0, (5.100) degenerates to
the previous solution for a hydrothermal system with constant viscosity (Zhao et al.
1997). Since RaT 1|critical is less than zero, it is immediately recognized that the ef-
fect of temperature-dependent viscosity is to destabilize temperature gradient driven
convective flow in a hydrothermal system. In other words, temperature gradient
driven convective flow is easier when temperature-dependent viscosity is consid-
ered in a hydrothermal system.

It is also noted that if the coefficient, α , is large enough, the effect of the second
term on the right-hand side of (5.100) may become very important, indicating that
some new physical phenomenon may occur in the corresponding case. However, for
real geological systems in the upper crust of the Earth, the coefficient, α , is usually
a very small number, so that the first term on the right-hand side of (5.100) always
plays a dominant role in real geological systems.

From the previous analytical solutions (Zhao et al. 1997), the hydrothermal sys-
tem with constant viscosity has a minimum critical Rayleigh number of 4π2. This
will happen when L∗ = 1 and q = r = π . However, for the same hydrothermal system
but with temperature-dependent viscosity, the minimum critical Rayleigh number is
reduced to about 36 if the product of α and ΔT is 0.2 in the system. This recog-
nition can be used to test the progressive asymptotic approach procedure (Zhao
et al. 1997) associated with the finite element method (Zienkiewicz 1977; Lewis and
Schrefler 1998) when it is used to solve this kind of convective instability problem.
For this purpose, a square domain of unit length is discretized by finite elements
(see Fig. 5.15). This means that symmetrical boundary conditions are considered
between two fundamental convective cells. If periodic boundary conditions are used
to consider the general aspect of multiple fundamental convective cells, the horizon-
tal length of the model should be extended, but this is beyond the range of this study.
The Rayleigh number used in the computation is 36. Two cases are considered: one
is with constant viscosity and another is with temperature-dependent viscosity, in
which the product of α and ΔT is 0.2. As expected, in the case of the hydrothermal
system with constant viscosity, convective pore-fluid flow does not take place, but in
the case of the same system with temperature-dependent viscosity, convective pore-
fluid flow does take place. This indicated that the previously developed progressive
asymptotic approach is also applicable to the solution of convective pore-fluid flow
problems in hydrothermal systems with temperature-dependent viscosity.
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Fig. 5.15 Finite element
mesh for the problem
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Fig. 5.16 Distributions of the dimensionless pore-fluid velocities
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Next, the progressive asymptotic approach procedure (Zhao et al. 1997) associ-
ated with the finite element method (Zienkiewicz 1977; Lewis and Schrefler 1998)
is used to examine the effect of temperature-dependent viscosity on the distribution
patterns of pore-fluid flow, streamlines and temperature in a hydrothermal system.
The same computational model as in Fig. 5.15 is used, but the Rayleigh number is
40 for the forthcoming computations. Two cases, one with constant viscosity and
another with temperature-dependent viscosity, are also considered in the numerical
analysis. The product of α and ΔT is 0.5 for the case of temperature-dependent
viscosity.

Figures 5.16, 5.17 and 5.18 show the distributions of the dimensionless pore-fluid
velocity, streamlines and temperature for the hydrothermal systems with constant
viscosity and temperature-dependent viscosity, respectively. Although convective
pore-fluid flow takes place in both cases, convective pore-fluid flow in the case of

(Constant viscosity)  

(Temperature-dependent viscosity) 

Fig. 5.17 Distributions of dimensionless streamlines
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(Constant viscosity)  

(Temperature-dependent viscosity) 

Fig. 5.18 Distributions of dimensionless temperature

temperature-dependent viscosity is stronger than that in the case of constant vis-
cosity. For instance, in the case of temperature-dependent viscosity, the maximum
dimensionless velocity which occurs only at the bottom part of the system is 4.909,
while in the case of constant viscosity, the equivalent maximum dimensionless ve-
locity is 2.301. This further indicates that temperature-dependent viscosity destabi-
lizes convective pore-fluid flow in hydrothermal systems. In other words, since the
viscosity of the pore-fluid decreases with an increase in the temperature, the viscos-
ity of the pore-fluid in the bottom part of a hydrothermal system becomes smaller
than that in the top part of the system. As a result, convective pore-fluid flow be-
comes much stronger in the bottom part of the hydrothermal system.



Chapter 6
Pore-Fluid Focusing within Two-Dimensional
Faults and Cracks of Crustal Scales with No
Temperature Effects: Solutions Expressed
in a Local Coordinate System

Large cracks and faults play an important and diverse role in controlling pore-fluid
flow patterns in pore-fluid saturated porous rocks (Toth 1962; Person and Baum-
gartner 1995; Wieck et al. 1995; Zhao and Valliappan 1994a, b; Person et al. 1996;
Roberts et al. 1996; Connolly 1997; Jamtveit and Yardley 1997; Zhao et al. 1999b,
2001b, 2002a; Hoaglund and Pollard 2003; Matthai 2003). Examples of fault-related
fluid flow include (1) geological structural controls on groundwater flow and con-
taminant transport, (2) formation and localization of some valuable mineral deposits
around and within fault zones, (3) impacts of heterogeneous fault zone hydraulic
properties on the formation and location of petroleum reservoirs through fault seal-
ing, compartmentalization and variability in pore-fluid flow pathways and (4) in-
duced rupture and failure processes by the interaction between material deformation
and pore-fluid flow around and within faults through cycles of brittle deformation
and seismicity. For these reasons, a better understanding of the pore-fluid flow pat-
tern around and within large cracks and faults in pore-fluid saturated porous rocks
has become an important research topic in numerous Earth science disciplines.

To understand pore-fluid flow patterns around and within large cracks and faults,
it is fundamentally important to understand and recognize the underlying physical
processes that influence pore-fluid flow patterns around and within these structures.
Toward this end, fundamental scientific principles can be used to describe the pore-
fluid flow process in pore-fluid saturated porous rocks. Since analytical solutions
can be used to investigate the general behavior of pore-fluid flow patterns around
large cracks and faults within the whole parameter space of the system, general
conclusions can be drawn about the problems associated with pore-fluid flow pat-
terns around and within these structures. However, since it is often impossible to use
numerical solutions to investigate the behaviors of pore-fluid flow patterns around
large cracks and faults within the whole parameter space, which is usually of infinite
nature, numerical solutions can only produce specific conclusions for the problem.
Therefore, in order to draw general conclusions for the problem associated with
pore-fluid flow patterns around and within large cracks and faults, analytical solu-
tions, if available, are always superior to numerical solutions. On the other hand,
analytical solutions to benchmark problems provide an important and often unique
tool for validating and verifying numerical methods and algorithms, which are used
to solve problems with complicated geometries. However, it is always difficult, if not
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impossible, to mathematically derive analytical solutions to a set of simultaneous
partial differential equations, even with simple geometry and boundary conditions.
For this reason, numerical methods have been widely used to investigate pore-fluid
flow patterns around and within large cracks and faults in pore-fluid saturated porous
rocks (Ohnishi et al. 1985; Jiao and Hudson 1995; Person and Baumgartner 1995;
Wieck et al. 1995; Person et al. 1996; Roberts et al. 1996; Bower and Zyvoloski
1997; Thomas et al. 1998; Zhao et al. 1997, 1998c; Hoaglund and Pollard 2003;
Matthai 2003).

For a prolate spheroid embedded in a full space, an analytical potential function
solution is available for the three-dimensional Laplace’s equation (Webster 1897;
Morse and Feshbach 1953). This analytical solution was applied to the steady state
heat conduction problem (Carslaw and Jaeger 1959) and steady state pore-fluid
flow problem (Toth 1962) around such a spheroid. Although the embedded prolate
spheroid and the surrounding rocks can have different permeabilities, the analytical
solution to such a prolate spheroid may only be suitable for describing the pore-fluid
pattern around a geological lens, both the short axes of which can be assumed to be
approximately the same length. Since the length of a geological fault in the strike
direction is significantly different from that in its thickness direction, it is reasonable
to treat the fault as an elliptical inclusion in a two-dimensional full plane, at least
from the mathematical point of view. Toward this end, Lamb (1975) and Phillips
(1991) presented the analytical solutions for the steady state pore-fluid flow prob-
lem around both a perfectly permeable elliptical fault and a perfectly impermeable
elliptical fault embedded in a two-dimensional full plane. Because the fundamen-
tal solution (i.e., the Green’s function) of a three-dimensional Laplace’s equation is
significantly different from that of a two-dimensional one, a full set of analytical
solutions is not available for pore-fluid flow around and within an elliptical fault,
which has any finite, but non-zero value of permeability and is embedded in a two-
dimensional full plane. Therefore, the major purpose of this chapter is to derive a
full set of analytical solutions for pore-fluid flow patterns around and within an in-
clined elliptical fault with any value of the permeability in a two-dimensional full
plane (Zhao et al. 2006a, b).

6.1 Description of the Problem

To derive analytical solutions, large cracks and faults are assumed to be of ellipti-
cal shape so that they can be treated as embedded elliptical inclusions in pore-fluid
saturated porous rocks. Both the pore-fluid flow channeling and sealing effects of
an elliptical inclusion can be considered by allowing the material properties of the
inclusion to be different from those of the surrounding rocks. For instance, if the
permeability of an elliptical inclusion is greater than that of the surrounding rock,
the inclusion will function as an enhanced pore-fluid flow channel. On the contrary,
if the permeability of an inclusion is smaller than that of its surrounding rock, the in-
clusion will function as an isolated pore-fluid flow seal. Since the size of an elliptical
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inclusion is a free parameter, the derived analytical solution to pore-fluid flow pat-
terns around and within the elliptical inclusion is valid for dealing with pore-fluid
flow patterns around and within large cracks and faults. This is one of the main ad-
vantages of an analytical solution over a numerical one in dealing with pore-fluid
flow problems in pore-fluid saturated porous rocks.

As shown in Fig. 6.1A, we consider an isolated elliptical inclusion in pore-fluid
saturated porous rocks to derive the analytical solution. We assume that the problem
domain is comprised of pore-fluid saturated porous rocks, although the permeabil-
ity of the inclusion is different from that of the surrounding rock. We also assume
that the pore-fluid flow in the far field away from the inclusion is uniform and is
parallel to the long axis of the elliptical inclusion in the first case (i.e., Fig. 6.1A).
This implies that pore-fluid pressure gradients are constant and zero in the x and y
directions, if the system is not disturbed by the elliptical inclusion. If the pore-fluid
is incompressible, the steady state governing equations for such a problem can be
expressed in the Cartesian coordinate system as

0
η

ξ

y 

xux

A (The long axis of the inclusion is parallel to the inflow in the far field) 

B (The short axis of the inclusion is parallel to the inflow in the far field) 

0
η

ξ

y 

x 

uy

Fig. 6.1 Description of an elliptical inclusion in two coordinate systems
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�ux

�x
+

�uy

�y
= 0, (6.1)

ux = −K
μ

�p
�x

, (6.2)

uy = −K
μ

�p
�y

, (6.3)

where ux and uy are the velocity components in the x and y directions; p is the
excess pore-fluid pressure (i. e., the total pore-fluid pressure minus the hydrostatic
pressure); μ is the dynamic viscosity of pore-fluid, and K is the permeability of the
porous rock mass. Note that K = Kin for the elliptical inclusion and K = Kout for the
surrounding rock, where Kin and Kout are the permeabilities of the inclusion and the
surrounding rock, respectively.

Equation (6.1) is the continuity equation of the pore-fluid, while (6.2) and (6.3)
are Darcy’s equations to describe the pore-fluid flow in porous media. Since ex-
cess pore-fluid pressure is used, gravity is not included in (6.3). If the xy plane is
a horizontal one, there is no need to consider gravity in (6.3), because gravity is
perpendicular to this xy plane. If the xy plane is a vertical one, it is not necessary
to consider gravity in (6.3), as long as the inflow in the far field is driven by non-
buoyancy mechanisms such as topography, metamorphic reaction, devolatilization
and so forth (Person et al. 1996). However, if the xy plane is vertical and the inflow
is driven by the buoyancy of the pore-fluid, it is necessary to consider gravity in
(6.3). This may be one deficiency of this theoretical investigation.

Substituting (6.2) and (6.3) into (6.1) leads to

�2 p
�x2 +

�2 p
�y2 = 0. (6.4)

6.2 Derivation of Governing Equations of the Problem
in a Local Elliptical ξ η Coordinate System

To facilitate the derivation of analytical solutions for the problem considered, we
rewrite (6.4) in a local elliptical ξ η coordinate system using the following coordi-
nate mappings:

x = ccoshξ cosη , y = csinhξ sinη , (6.5)

where c is an arbitrary non-zero positive constant, the physical meaning of which, as
can be demonstrated, is half the focal distance of an ellipse. This means that different
sizes of similar ellipses can be represented by choosing different values of c.

Since c is an arbitrary non-zero positive constant, instead of a constant of unity,
the analytical solutions derived in this section are suitable for investigating pore-
fluid flow focusing within elliptical faults and cracks of any length scales. This is the
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main difference between the present analytical solutions and previous ones (Zhao
et al. 2006a), because the previous solutions were derived under the assumption that
the focal distance of the ellipse is a constant of 2.

Because the coordinate mapping expressed by (6.5) is a conformal one, the form
of the governing equation expressed in (6.4) remains the same when it is trans-
formed into the local elliptical ξ η coordinate system. For the sake of completeness,
the transformation of (6.4) from the Cartesian coordinate system into the local ellip-
tical ξ η coordinate one is given below. However, if one is familiar with conformal
mapping, the rest of this section may be skipped.

Using the coordinate mapping relationship expressed in (6.5), the following
equation can be obtained in a matrix form:

⎧⎪⎨
⎪⎩

�p
�ξ
�p
�η

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

�x
�ξ

�y
�ξ

�x
�η

�y
�η

⎤
⎥⎦
⎧⎪⎨
⎪⎩

�p
�x
�p
�y

⎫⎪⎬
⎪⎭ = [A]

⎧⎪⎨
⎪⎩

�p
�x
�p
�y

⎫⎪⎬
⎪⎭ , (6.6)

where

�x
�ξ

= csinhξ cosη ,
�x
�η

= −ccoshξ sinη ,

�y
�ξ

= ccoshξ sinη ,
�y
�η

= csinhξ cosη . (6.7)

Using (6.7), the determinant value of matrix A in (6.6) can be expressed as

|A| = �x
�ξ

�y
�η

− �x
�η

�y
�ξ

= c2 (sinh2 ξ cos2 η + cosh2 ξ sin2 η
)
�= 0. (6.8)

This indicates that matrix A is invertible so that
⎧⎪⎪⎨
⎪⎪⎩

�p
�x
�p
�y

⎫⎪⎪⎬
⎪⎪⎭

=

[
sinhξ cosη −coshξ sinη
coshξ sinη sinhξ cosη

]

sinh2 ξ cos2 η + cosh2 ξ sin2 η

⎧⎪⎪⎨
⎪⎪⎩

�p
�ξ
�p
�η

⎫⎪⎪⎬
⎪⎪⎭

. (6.9)

Mathematically, we have the following relationship:

�2 p
�x2 =

�

�ξ

(
�p
�x

)
�ξ
�x

+
�

�η

(
�p
�x

)
�η
�x

, (6.10)

�2 p
�2y

=
�

�ξ

(
�p
�y

)
�ξ
�y

+
�

�η

(
�p
�y

)
�η
�y

. (6.11)

If we could determine the first derivative terms such as �ξ
/

�x, �ξ
/

�y, �η
/

�x
and �η

/
�y in the full xy plane, then we would determine the second derivative

terms, �2 p
/
(�x2) and �2 p

/
(�y2), in (6.10) and (6.11). Due to the singularity of

�ξ
/

�x, �ξ
/

�y, �η
/

�x and �η
/

�y in the full xy plane, the second derivative terms,
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�2 p
/
(�x2) and �2 p

/
(�y2), in (6.10) and (6.11) need to be determined in the follow-

ing manner.
Using the chain rule in mathematics, we have

�2 p
�ξ 2 =

�2 p
�x2

(
�x
�ξ

)2

+2
�2 p
�x�y

�x
�ξ

�y
�ξ

+
�2 p
�y2

(
�y
�ξ

)2

+
�p
�x

�2x
�ξ 2 +

�p
�y

�2y
�ξ 2 , (6.12)

�2 p
�η2 =

�2 p
�x2

(
�x
�η

)2

+2
�2 p
�x�y

�x
�η

�y
�η

+
�2 p
�y2

(
�y
�η

)2

+
�p
�x

�2x
�η2 +

�p
�y

�2y
�η2 , (6.13)

�2 p
�ξ �η

=
�2 p
�x2

(
�x
�ξ

�x
�η

)
+

�2 p
�x�y

(
�x
�ξ

�y
�η

+
�x
�η

�y
�ξ

)
+

�2 p
�y2

(
�y
�ξ

�y
�η

)

+
�p
�x

�2x
�ξ �η

+
�p
�y

�2y
�ξ �η

. (6.14)

The product of (6.12) and (�x
/

�η)(�y
/

�η) minus that of (6.13) and (�x/�ξ )
(�y/�ξ ) yields the following equation:

�2 p
�ξ 2

�x
�η

�y
�η

− �2 p
�η2

�x
�ξ

�y
�ξ

=
�2 p
�x2

�x
�ξ

�x
�η

(
�x
�ξ

�y
�η

− �x
�η

�y
�ξ

)

+
�2 p
�y2

�y
�ξ

�y
�η

(
�x
�η

�y
�ξ

− �x
�ξ

�y
�η

)
+

�p
�x

(
�2x
�ξ 2

�x
�η

�y
�η

− �2x
�η2

�x
�ξ

�y
�ξ

)

+
�p
�y

(
�2y
�ξ 2

�x
�η

�y
�η

− �2y
�η2

�x
�ξ

�y
�ξ

)
. (6.15)

From (6.7), we have

�x
�ξ

�y
�ξ

=
�y
�ξ

�y
�η

= − �x
�η

�y
�η

= − �x
�ξ

�x
�η

= c2 sinhξ coshξ sinη cosη , (6.16)

�2x
�ξ 2 = ccoshξ cosη ,

�2x
�η2 = −ccoshξ cosη , (6.17)

�2y
�ξ 2 = −csinhξ sinη ,

�2y
�η2 = −csinhξ sinη , (6.18)

Substituting (6.16), (6.17) and (6.18) into the last two terms in the right hand side
of (6.15) yields the following equations:

�2x
�ξ 2

�x
�η

�y
�η

− �2x
�η2

�x
�ξ

�y
�ξ

= 0,
�2y
�ξ 2

�x
�η

�y
�η

− �2y
�η2

�x
�ξ

�y
�ξ

= 0. (6.19)
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Therefore, (6.15) can be written into the following form:

�2 p
�ξ 2 +

�2 p
�η2 =

(
�2 p
�x2 +

�2 p
�y2

)(
�x
�ξ

�y
�η

− �x
�η

�y
�ξ

)
. (6.20)

Considering (6.4), (6.8) and (6.20) simultaneously yields the following equation:

�2 p
�ξ 2 +

�2 p
�η2 = 0. (6.21)

Equation (6.21) is the governing equation of the excess pore-fluid pressure in the
ξ η coordinate system.

6.3 Derivation of Analytical Solutions when the Long Axis of an
Elliptical Inclusion Is Parallel to the Inflow in the Far Field

In this case, it is assumed that the pore-fluid flow in the far field away from the
elliptical inclusion is uniform and parallel to the long axis of the elliptical inclusion
in the first case (i.e., Fig. 6.1A). This implies that pore-fluid pressure gradients are
constant in the x direction and zero in the y direction, respectively, if the system is
not disturbed by the inclusion.

The boundary condition of the pore-fluid flow problem can be expressed in the
following form:

pin = pout (at ξ = ξ0), (6.22)

Kin
�pin

�ξ
= Kout

�pout

�ξ
(at ξ = ξ0), (6.23)

lim
ξ→∞

pout = −ωxccoshξ cosη , (6.24)

where pin and pout are the excess pore-fluid pressures inside and outside the ellip-
tical inclusion, respectively; ξ0 is the boundary of the elliptical inclusion; Kin and
Kout are the permeabilities of the porous media inside and outside of the inclusion,
and ωx is the amplitude (i.e.,

∣∣�p
/

�x
∣∣ in this particular case) of the excess pore-fluid

pressure gradient in the far field of the inclusion.
The general solution to the excess pore-fluid pressure inside and outside the el-

liptical inclusion can be expressed as

pin = −ωxcC1 coshξ cosη , (6.25)

pout = −ωxccoshξ cosη +ωxC2e−(ξ−ξ0) cosη , (6.26)

where C1 and C2 are two constants to be determined by the boundary conditions of
the problem.



90 6 Pore-Fluid Focusing: Solutions Expressed in a Local Coordinate System

Substituting (6.25) and (6.26) into (6.22) and (6.23) yields:

c(1−C1)coshξ0 −C2 = 0, (6.27)

c(
Kin

Kout
C1 −1)sinhξ0 −C2 = 0. (6.28)

Solving (6.27) and (6.28) simultaneously, C1 and C2 are determined as

C1 =
β +1
β +α

, C2 =
(α −1)a

β +α
, (6.29)

where β is the aspect ratio of the elliptical inclusion; α is the permeability ratio of
the inclusion to the surrounding rock; a is the half-length of the long axis of the
elliptical inclusion. These quantities can be defined as

α =
Kin

Kout
, β =

a
b

=
ccoshξ0

csinhξ0
=

coshξ0

sinhξ0
, a = ccoshξ0 =

cβ√
β 2 −1

,

(6.30)
where a and b are the half-lengths of the long and short axes of the elliptical
inclusion.

Note that the half-lengths of the long and short axes of the elliptical fault are
represented by a = ccoshξ0 and b = csinhξ0 in the ξ η coordinate system, respec-
tively. Since a2 −b2 = c2, the physical meaning of c is half the focal distance of the
elliptical fault. This means that the aspect ratio of the fault can be represented by
the ratio of ccoshξ0 to csinhξ0. For the convenience of expression, we define this
ratio as β = a

/
b = (ccoshξ0)

/
(csinhξ0) = (coshξ0)

/
(sinhξ0) hereafter.

Consideration of (6.2), (6.3), (6.9), (6.25) and (6.26) results in the corresponding
analytical solution for the pore-fluid velocity:

uin
x =

ωxC1Kin

μ
(ξ ≤ ξ0), (6.31)

uin
y = 0 (ξ ≤ ξ0), (6.32)

uout
x =

ωxKout

μ

[
1+

C2(sinhξ cos2 η − coshξ sin2 η)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
(ξ ≥ ξ0),

(6.33)

uout
y =

ωxKout

μ

[
C2(coshξ sinη cosη + sinhξ sinη cosη)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
(ξ ≥ ξ0),

(6.34)
where the superscripts, in and out, represent the inside and outside domains of the
inclusion, respectively.

To quantitatively describe the flow focusing effect, a pore-fluid flow focusing
factor due to this elliptical inclusion is defined as
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λx =
uin

x

lim
ξ→∞

uout
x

=
α(β +1)

β +α
, (6.35)

where λx is the pore-fluid flow focusing factor due to the inflow being parallel to the
long axis of the elliptical inclusion.

The pore-fluid flow focusing factor of an elliptical inclusion is dependent only
upon the aspect ratio representing its specific geometry and the permeability ra-
tio representing the hydrodynamic system, but is independent of the specific length
scale of the inclusion used in the theoretical analysis. If the aspect ratio of an el-
liptical inclusion is equal to unity, then the inclusion becomes circular so that the
corresponding pore-fluid flow focusing factor degenerates into that of a circular one,
as obtained in a previous study (Zhao et al. 1999b).

From potential flow theory (Gerhart et al. 1993), the following relationship be-
tween the stream function ψ and the pore-fluid velocity exists:

�ψ
�y

= ux,
�ψ
�x

= −uy. (6.36)

Similar to (6.9), we have:

⎧⎪⎪⎨
⎪⎪⎩

�ψ
�x
�ψ
�y

⎫⎪⎪⎬
⎪⎪⎭

=

[
sinhξ cosη −coshξ sinη
coshξ sinη sinhξ cosη

]

sinh2 ξ cos2 η + cosh2 ξ sin2 η

⎧⎪⎪⎨
⎪⎪⎩

�ψ
�ξ
�ψ
�η

⎫⎪⎪⎬
⎪⎪⎭

. (6.37)

Consideration of (6.2), (6.3), (6.9), (6.36) and (6.37) yields the analytical solution
for the stream function as

ψin =
ωxKinC1

μ
csinhξ sinη +C, (6.38)

ψout =
ωxKout

μ

[
csinhξ sinη +C2e−(ξ−ξ0) sinη

]
+C, (6.39)

where ψin and ψout are the stream functions inside and outside the elliptical inclu-
sion, respectively; C is an arbitrary constant.

Substituting the expressions for C1 and C2 yields the analytical solution to the
stream functions inside and outside the elliptical inclusion, the long axis of which is
parallel to the inflow direction in the undisturbed far field:

ψin =
ωxKin

μ

(
β +1
β +α

)
csinhξ sinη +C, (6.40)

ψout =
ωxKout

μ

[
csinhξ sinη +

(α −1)a
β +α

e−(ξ−ξ0) sinη
]

+C. (6.41)

In summary, in the case of the long axis of an elliptical inclusion being paral-
lel to the inflow direction in the undisturbed far field, the analytical solutions for
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the excess pore-fluid pressure and velocity around and within the inclusion can be
expressed as

pin = −ωx

(
β +1
β +α

)
ccoshξ cosη (ξ ≤ ξ0), (6.42)

pout = −ωxccoshξ cosη +ωx
(α −1)a

β +α
e−(ξ−ξ0) cosη (ξ ≥ ξ0), (6.43)

uin
x =

ωxKoutα
μ

(
β +1
β +α

)
(ξ ≤ ξ0), (6.44)

uin
y = 0 (ξ ≤ ξ0), (6.45)

uout
x =

ωxKout

μ

[
1+

(
(α −1)a
(β +α)c

)
(sinhξ cos2 η − coshξ sin2 η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]
(ξ ≥ ξ0),

(6.46)

uout
y =

ωxKout

μ

[(
(α −1)a
(β +α)c

)
(coshξ sinη cosη + sinhξ sinη cosη)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]
(ξ ≥ ξ0).

(6.47)
Note that since the intrinsic permeability must have a value between zero (in

the case of perfectly impermeable) and one (in the case of perfectly permeable),
α → 0 results in Kin → 0. In such a case, (6.44) indicates that as the inclusion be-
comes perfectly impermeable, the pore-fluid velocity within the elliptical inclusion
approaches zero.

In order to compare the present analytical solution with a previous one (Phillips
1991), it is necessary to examine the behavior of (6.41) in the limiting case. If an
elliptical inclusion is perfectly permeable relative to the surrounding rock, the per-
meability ratio of the inclusion approaches infinite (i.e., α → ∞). If this perfectly
permeable inclusion is also very thin but very long, then the aspect ratio of the
inclusion approaches infinite (i.e., β → ∞). In this particular case, (6.41) can be
rewritten as follows:

lim
α→∞,β→∞

ψout =
ωxKout

μ
lim

α→∞,β→∞

[
csinhξ +

(
(α −1)a

α +β

)
e−(ξ−ξ0)

]
sinη

=
ωxKout

μ
sinη lim

β→∞

[
csinhξ + c

(
β

β −1

)
e−ξ

]

=
ωxKout

μ
ccoshξ sinη = Uxccoshξ sinη . (6.48)

Since Phillips (1991) used a conformal mapping of the form x = d coshξ cosη
and y = d sinhξ sinη (note that d, instead of a, is used here to avoid unnecessary
confusion) in deriving the previous solutions, the value of d needs to be set to c so
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that the present solution can be compared with the previous solution (Phillips 1991)
in the limiting case. Clearly, (6.48) is identical to the previous solution derived for
the limiting case of a perfectly permeable and very thin, but very long, inclusion
(Phillips 1991).

6.4 Derivation of Analytical Solutions when the Short Axis of an
Elliptical Inclusion Is Parallel to the Inflow in the Far Field

To understand the effect of cross-formational flow along large cracks and faults,
the inflow in the far field is assumed to be parallel to the short axis of an elliptical
inclusion (see Fig. 6.1B). In this case, the boundary condition of the pore-fluid flow
problem can be mathematically expressed in the following form:

pin = pout (at ξ = ξ0), (6.49)

Kin
�pin

�ξ
= Kout

�pout

�ξ
(at ξ = ξ0), (6.50)

lim
ξ→∞

pout = −ωycsinhξ sinη , (6.51)

where pin and pout are the excess pore-fluid pressures inside and outside the ellip-
tical inclusion, respectively; ξ0 is the boundary of the inclusion; Kin and Kout are
the intrinsic permeabilities of the porous medium inside and outside the inclusion,
and ωy =

∣∣�p
/

�y
∣∣ is the amplitude of the excess pore-fluid pressure gradient in the

y direction of the far field.
Equation (6.49) expresses the excess pore-fluid pressure continuity at the bound-

ary between the inclusion and the surrounding rock, while (6.50) expresses the pore-
fluid flux continuity in the normal direction of this boundary. Equation (6.51) is used
to express the distribution of the excess pore-fluid pressure in the far field, namely
the boundary condition of the excess pore-fluid pressure at infinity.

The general solution to the excess pore-fluid pressure inside and outside the ellip-
tical inclusion due to an inflow in the y direction of the far field can be expressed as

pin = −ωyC1csinhξ sinη , (6.52)

pout = −ωycsinhξ sinη +ωyC2e−(ξ−ξ0) sinη , (6.53)

where C1 and C2 are two constants to be determined by the boundary conditions of
the problem.

Substituting (6.52) and (6.53) into (6.49) and (6.50) yields the following
equations:

(1−C1)csinhξ0 −C2 = 0, (6.54)

(
Kin

Kout
C1 −1

)
ccoshξ0 −C2 = 0. (6.55)
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Solving (6.54) and (6.55) simultaneously yields the following expressions for C1

and C2:

C1 =
1+β

1+αβ
, C2 =

(α −1)a
1+αβ

, (6.56)

where

β =
a
b

=
ccoshξ0

csinhξ0
=

coshξ0

sinhξ0
, α =

Kin

Kout
, (6.57)

where α is the permeability ratio of the elliptical inclusion to the surrounding rock;
β is the aspect ratio of the elliptical inclusion, and a = coshξ0 and b = sinhξ0 are
half the length of the long and short axes of the elliptical inclusion.

Note that the following mathematical equalities exist for the elliptical inclusion:

eξ0 = coshξ0 +sinhξ0 =
a+b

c
, eξ0 =

1

e−ξ0
=

1
coshξ0 − sinhξ0

=
c

a−b
. (6.58)

Using these two equalities yields the following equations:

a2 −b2 = c2, a =
cβ√

β 2 −1
, b =

c√
β 2 −1

. (6.59)

Considering (6.2), (6.3), (6.9), (6.52), (6.53), (6.56) and (6.57) yields the corre-
sponding analytical solution to the pore-fluid velocity as follows:

uin
x = 0 (ξ ≤ ξ0), (6.60)

uin
y =

ωyKin

μ

(
1+β

1+αβ

)
(ξ ≤ ξ0), (6.61)

uout
x =

ωyKout

μ

[(
(α −1)a
1+αβ

)
(sinhξ + coshξ )sinη cosηe−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
(ξ ≥ ξ0),

(6.62)

uout
y =

ωyKout

μ

[
1+

(
(α −1)a
1+αβ

)
(coshξ sin2 η − sinhξ cos2 η)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
(ξ ≥ ξ0),

(6.63)
where the superscripts, in and out, represent the inside and outside domains of the
inclusion, respectively.

Equation (6.61) indicates that, as the inclusion becomes perfectly impermeable,
the intrinsic permeability of the inclusion goes to zero so that the pore-fluid ve-
locity within the inclusion approaches zero. Since the intrinsic permeability must
have a value between zero (in the case of perfectly impermeable) and one (in the
case of perfectly permeable), α → 0 as Kin → 0. This implies that if α → ∞, then
the surrounding rock must be perfectly impermeable so that Kout → 0. In this case,
(6.61) can be rewritten as uin

y = (ωyαKout)(1+β )
/
[μ(1 + αβ )], which tends to a

value of ωyKout(1+β )
/
(μβ ) as α →∞. Clearly, uin

y → 0 as Kout → 0. This indicates
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that if the surrounding rock is perfectly impermeable, the pore-fluid velocity within
the inclusion expressed by (6.61) approaches the far field velocity, which has a lim-
iting value of zero. If the surrounding rock is not perfectly impermeable (i.e., the
inclusion is not perfectly permeable), the pore-fluid velocity within the inclusion
is, strictly speaking, not equal to the far field velocity unless the aspect ratio of
the elliptical inclusion approaches infinite (i.e., β → ∞). This is consistent with the
previous solutions for perfectly permeable and very thin, but very long inclusions
(Phillips 1991).

In order to quantitatively describe the flow focusing effect, a flow focusing factor
due to this elliptical inclusion is defined as

λy =
uin

y

lim
ξ→∞

uout
y

=
α(1+β )
1+αβ

, (6.64)

where λy is the pore-fluid flow focusing factor of the inclusion in the case of the
inflow being in the y direction in the far field of the local xy coordinate system.

The pore-fluid flow focusing factor of an elliptical inclusion is dependent on the
aspect ratio representing the specific geometry of the inclusion and the permeability
ratio representing the hydrodynamic system associated with the inclusion. If the
aspect ratio of an elliptical inclusion is equal to unity, then the inclusion becomes a
circular one so that the pore-fluid flow focusing factor of the inclusion degenerates
into that of a circular inclusion, as obtained in a previous study (Zhao et al. 1999b).

Considering (6.2), (6.3), (6.9), (6.36) and (6.37) yields the analytical solution for
the stream function due to the elliptical inclusion as follows:

ψin = −ωyKin

μ

(
1+β

1+αβ

)
ccoshξ cosη +C (ξ ≤ ξ0), (6.65)

ψout = −ωyKout

μ

[
ccoshξ cosη +

(
(α −1)a
1+αβ

)
e−(ξ−ξ0) cosη

]
+C (ξ ≥ ξ0),

(6.66)
where ψin and ψout are the stream functions inside and outside the elliptical inclu-
sion, respectively; C is an arbitrary constant.

For a perfectly permeable inclusion relative to the surrounding rock, the per-
meability ratio of the inclusion approaches infinite (i.e., α → ∞). If this perfectly
permeable inclusion is very thin, but very long, then the aspect ratio of the inclusion
approaches infinite (i.e., β → ∞). In this particular case, (6.66) can be rewritten as
follows:

lim
α→∞,β→∞

ψout = −ωyKout

μ
lim

α→∞,β→∞

[
ccoshξ cosη +

(
(α −1)a
1+αβ

)
e−(ξ−ξ0) cosη

]

= −ωyKout

μ
cosη lim

β→∞

[
ccoshξ + c

(
1

β −1

)
e−ξ

]

= −ωyKout

μ
ccoshξ cosη = Uyx. (6.67)
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Note that (6.67) is exactly the same as the previous solution derived for the
limiting case of a perfectly permeable and very thin, but very long inclusion
(Phillips 1991).

6.5 Derivation of Analytical Solutions when the Inflow of the Far
Field Is Parallel to the X Direction of the Global XY
Coordinate System

In this case, the inflow of the far field is not parallel to either the long or the short
axes of the elliptical inclusion. Due to mathematical complexities in describing the
problem of pore-fluid flow around an inclined elliptical inclusion of any inclined
angle, three different coordinate systems are used to mathematically derive the an-
alytical solution for the problem. As shown in Fig. 6.2, these three different co-
ordinate systems are a global Cartesian (XY) coordinate system, a local Cartesian
(xy) coordination system and a local elliptical ξ η coordinate system, respectively.
Both the pore-fluid flow in the unperturbed far field and the dip angle of an inclined
elliptical inclusion are described in the global XY coordinate system. The perturbed
pore-fluid flow around the inclined elliptical inclusion is described in the local xy
and ξ η coordinate systems. As previously demonstrated, using a local ξ η coor-
dinate system enables boundary conditions between the inclined inclusion and the
surrounding rock to be easily described. If the pore-fluid flow in the unperturbed far
field is horizontal, its corresponding components in the local xy coordinate system
can be expressed as follows:

ux

uy

UX

UY

0
X

Y

θ
ηξ

0

y

x

Fig. 6.2 Description of an inclined elliptical inclusion in three coordinate systems
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Ux = UX cosθ , Uy = −UX sinθ , (6.68)

where Ux and Uy are the pore-fluid velocity components of the far field in the x and y
directions of the local xy coordinate system; UX is the horizontal pore-fluid velocity
component of the far field in the X direction of the global XY coordinate system, and
θ is the dip angle of the inclined elliptical inclusion relative to the global coordinate
system.

Since the governing equation of excess pore-fluid pressure in a pore-fluid satu-
rated porous medium is described using (6.4), which is a linear second-order partial
differential equation, the superposition principle is valid in deriving analytical solu-
tions for pore-fluid flow around an inclined elliptical inclusion when the inflow of
the far field is parallel to the X direction of the global XY coordinate system.

Substituting Darcy’s Law into (6.68) yields the following equations:

−Kout

μ
ωx = −Kout

μ
ωX cosθ , −Kout

μ
ωy =

Kout

μ
ωX sinθ , (6.69)

where ωx and ωy are the amplitudes of the excess pore-fluid pressure gradient in the
x and y directions of the local xy coordinate system in the far field, and ωX is the
amplitude of the excess pore-fluid pressure gradient in the X direction of the global
XY coordinate system in the far field.

Equation (6.69) can be straightforwardly written as follows:

ωx = ωX cosθ , ωy = −ωX sinθ . (6.70)

Superposing the analytical solutions derived in the previous two sections yields
the analytical solutions for pore-fluid flow around an inclined elliptical inclusion
when the inflow of the far field is parallel to the X direction of the global XY coor-
dinate system.

ψin =
ωX Kin

μ

[(
β +1
β +α

)
csinhξ sinη cosθ

+
(

1+β
1+αβ

)
ccoshξ cosη sinθ

]
+C (ξ ≤ ξ0), (6.71)

ψout =
ωX Kout

μ

[
csinhξ +

(
(α −1)a

β +α

)
e−(ξ−ξ0)

]
sinη cosθ

+
ωX Kout

μ

[
ccoshξ +

(
(α −1)a
1+αβ

)
e−(ξ−ξ0)

]
cosη sinθ +C (ξ ≥ ξ0),

(6.72)

pin = −ωX

(
β +1
β +α

)
ccoshξ cosη cosθ

+ωX

(
1+β

1+αβ

)
csinhξ sinη sinθ (ξ ≤ ξ0), (6.73)
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pout = −ωX

[
ccoshξ −

(
(α −1)a

β +α

)
e−(ξ−ξ0)

]
cosη cos

+ωX

[
csinhξ −ωX

(
(α −1)a
1+αβ

)
e−(ξ−ξ0)

]
sinη sinθ (ξ ≥ ξ0),

(6.74)

uin
x =

ωX Kin

μ

(
β +1
β +α

)
cosθ (ξ ≤ ξ0), (6.75)

uin
y = −ωX Kin

μ

(
1+β

1+αβ

)
sinθ (ξ ≤ ξ0), (6.76)

uout
x =

ωX Kout

μ

[
1+

(
(α −1)a

β +α

)
(sinhξ cos2 η − coshξ sin2 η)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
cosθ

−ωX Kout

μ

[(
(α −1)a
1+αβ

)
(sinhξ + coshξ )sinη cosηe−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
sinθ (ξ ≥ ξ0),

(6.77)

uout
y =

ωX Kout

μ

[(
(α −1)a

β +α

)
(coshξ sinη cosη + sinhξ sinη cosη)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
cosθ

−ωX Kout

μ

[
1+

(
(α −1)a
1+αβ

)
(coshξ sin2 η − sinhξ cos2 η)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
sinθ (ξ ≥ ξ0).

(6.78)

In order to derive the pore-fluid flow focusing factor of the inclined elliptical
inclusion in the case of the inflow being parallel to the X direction in the far field of
the global XY coordinate system, the following equality needs to be considered:

λX =
uin

x cosθ −uin
y sinθ

UX
=

uin
x cos2 θ

UX cosθ
−

uin
y sin2 θ

UX sinθ
=

uin
x cos2 θ
lim

ξ→∞
uout

x
+

uin
y sin2 θ
lim

ξ→∞
uout

y
.

(6.79)
Inserting (6.35) and (6.64) into (6.79) yields the following equation:

λX = λx cos2 θ +λy sin2 θ , (6.80)

where λx and λy are the pore-fluid flow focusing factors of the inclined elliptical
inclusion in the case of the inflow being parallel to the x and y directions in the far
field of the local xy coordinate system, and λX is the pore-fluid flow focusing factor
of the inclined elliptical inclusion in the case of the inflow being parallel to the X
direction in the far field of the global XY coordinate system.
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Clearly, (6.80) indicates that if the inflow of the far field is not parallel to either
the long axis or the short axis of an inclined elliptical inclusion, the pore-fluid flow
focusing factor is also dependent on the dip angle of the inclined inclusion.

6.6 Derivation of Analytical Solutions when the Inflow
of the Far Field Is Parallel to the Y Direction
of the Global XY Coordinate System

In this case, the pore-fluid flow in the unperturbed far field is vertical, so that its
corresponding components in the local xy coordinate system can be expressed as
follows:

Ux = UY sinθ , Uy = UY cosθ , (6.81)

where Ux and Uy are the pore-fluid velocity components of the far field in the x and
y directions of the local xy coordinate system; UY is the vertical pore-fluid velocity
component of the far field in the Y direction of the global XY coordinate system, and
θ is the dip angle of the inclined elliptical inclusion.

Similarly, the superposition principle is valid in deriving analytical solutions for
pore-fluid flow around an inclined elliptical inclusion when the inflow of the far
field is parallel to the Y direction of the global XY coordinate system.

Substituting Darcy’s Law into (6.81) yields the following equations:

−Kout

μ
ωx = −Kout

μ
ωY sinθ , −Kout

μ
ωy = −Kout

μ
ωY cosθ , (6.82)

where ωx and ωy are the amplitudes of the excess pore-fluid pressure gradient in the
x and y directions of the local xy coordinate system in the far field, and ωY is the
amplitude of the excess pore-fluid pressure gradient in the Y direction of the global
XY coordinate system in the far field.

Equation (6.82) can be straightforwardly written as follows:

ωx = ωY sinθ , ωy = ωY cosθ . (6.83)

Superposing the analytical solutions derived in the previous two sections yields
the analytical solutions for pore-fluid flow around an inclined elliptical inclusion
when the inflow of the far field is parallel to the Y direction of the global XY coor-
dinate system.

ψin =
ωY Kin

μ

[(
β +1
β +α

)
csinhξ sinη sinθ

−
(

1+β
1+αβ

)
ccoshξ cosη cosθ

]
+C (ξ ≤ ξ0), (6.84)
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ψout =
ωY Kout

μ

[
csinhξ +

(
(α −1)a

β +α

)
e−(ξ−ξ0)

]
sinη sinθ

−ωY Kout

μ

[
ccoshξ +

(
(α −1)a
1+αβ

)
e−(ξ−ξ0)

]
cosη cosθ +C (ξ ≥ ξ0),

(6.85)

pin = −ωY

(
β +1
β +α

)
ccoshξ cosη sinθ

−ωY

(
1+β

1+αβ

)
csinhξ sinη cosθ (ξ ≤ ξ0), (6.86)

pout = −ωY

[
ccoshξ −

(
(α −1)a

β +α

)
e−(ξ−ξ0)

]
cosη sinθ

−ωY

[
csinhξ −ωX

(
(α −1)a
1+αβ

)
e−(ξ−ξ0)

]
sinη cosθ (ξ ≥ ξ0),

(6.87)

uin
x =

ωY Kin

μ

(
β +1
β +α

)
sinθ (ξ ≤ ξ0), (6.88)

uin
y =

ωY Kin

μ

(
1+β

1+αβ

)
cosθ (ξ ≤ ξ0), (6.89)

uout
x =

ωY Kout

μ

[
1+

(
(α −1)a

β +α

)
(sinhξ cos2 η − coshξ sin2 η)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
sinθ

+
ωY Kout

μ

[(
(α −1)a
1+αβ

)
(sinhξ + coshξ )sinη cosηe−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
cosθ (ξ ≥ ξ0),

(6.90)

uout
y =

ωY Kout

μ

[(
(α −1)a

β +α

)
(coshξ sinη cosη + sinhξ sinη cosη)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
sinθ

+
ωY Kout

μ

[
1+

(
(α −1)a
1+αβ

)
(coshξ sin2 η − sinhξ cos2 η)e−(ξ−ξ0)

c(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

]
cosθ (ξ ≥ ξ0),

(6.91)

In order to derive the pore-fluid flow focusing factor of the inclined elliptical
inclusion in the case of the inflow being parallel to the Y direction in the far field of
the global XY coordinate system, the following equality needs to be considered:
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λY =
uin

x sinθ +uin
y cosθ

UY
=

uin
x sin2 θ

UY sinθ
+

uin
y cos2 θ

UY cosθ
=

uin
x sin2 θ
lim

ξ→∞
uout

x
+

uin
y cos2 θ
lim

ξ→∞
uout

y
.

(6.92)
Inserting (6.35) and (6.64) into (6.92) yields the following equation:

λY = λx sin2 θ +λy cos2 θ , (6.93)

where λx and λy are the pore-fluid flow focusing factors of the inclined elliptical
inclusion in the case of the inflow being parallel to the x and y directions in the far
field of the local xy coordinate system, and λY is the pore-fluid flow focusing factor
of the inclined elliptical inclusion in the case of the inflow being parallel to the Y
direction in the far field of the global XY coordinate system.

6.7 Application Examples of the Present Analytical
Solutions for Pore-Fluid Focusing Factors within
Inclined Elliptical Inclusions

The present analytical solutions provide a useful tool for fundamentally understand-
ing the general behavior of pore-fluid flow around a buried inclined fault or crack
within the crust of the Earth. For instance, the simple and elegant analytical solution
for the flow focusing factor within a buried inclined fault can be used to understand
how the pore-fluid flow is focused into buried inclined faults with any dip angles.
Since the pore-fluid flow focusing factor is dependent on the angle between the long
axis of the inclusion and the inflow direction in the unperturbed far field, we can
consider all possible flow focusing situations by setting the inflow parallel to the
X direction in the far field of the global XY coordinate system and varying the dip
angle of the inclusion.

In the case of the dip angle being zero, Fig. 6.3 shows the variation of analyti-
cal flow focusing factors with the aspect ratio of the inclusion for several different
permeability ratios (i.e., PR in this figure) of the inclusion to the surrounding rock,
while Fig. 6.4 shows the variation of analytical flow focusing factors with the per-
meability ratio of the inclusion to the surrounding rock for several different aspect
ratios (i.e., AR in this figure). Clearly, for a given aspect ratio of the inclusion in
the case of the dip angle being zero, the flow focusing factor increases as the per-
meability ratio of the inclusion to the surrounding rock increases until it reaches the
corresponding limiting value. Similarly, for a given permeability ratio of the fault
to the surrounding rock, the flow focusing factor increases as the aspect ratio of the
inclusion increases until it reaches its corresponding limiting value. At this point, it
is interesting to compare the present results with previous ones in the limiting case
(Phillips 1991). For a perfectly permeable inclusion, the previous result indicated
that the flow focusing factor (λ ) is equal to the aspect ratio (β ), namely λ = β . In
the case of the aspect ratio (AR) being 10, 100, 1,000 and 10,000, the asymptotes
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Fig. 6.3 Variation of flow focusing factor with aspect ratio due to different permeability ratios
(inflow parallel to the long axis of the inclusion)

of the corresponding logarithmic values of the flow focusing factor are 1, 2, 3 and
4, respectively. Since the present results of the flow focusing factor approach the
previous ones, it has been demonstrated that when the inflow is parallel to the long
axis of the inclusion, the present results are consistent with the previous results for
perfectly permeable inclusions.
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Fig. 6.4 Variation of flow focusing factor with permeability ratio due to different aspect ratios
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Fig. 6.5 Variation of flow focusing factor with aspect ratio due to different permeability ratios
(inflow parallel to the short axis of the inclusion)

If the dip angle of the inclusion is 90◦, the horizontal inflow in the unperturbed
far field is parallel to the short axis of the inclusion. Figure 6.5 shows the variation
of analytical flow focusing factors with the aspect ratio of the inclusion for several
different permeability ratios (i.e., PR in this figure) of the inclusion to the surround-
ing rock, while Fig. 6.6 shows the variation of analytical flow focusing factors with
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Fig. 6.6 Variation of flow focusing factor with permeability ratio due to different aspect ratios
(inflow parallel to the short axis of the inclusion)
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the permeability ratio of the inclusion to the surrounding rock for several differ-
ent aspect ratios (i.e., AR in this figure) of the inclusion. Since the logarithm of
the flow focusing factor is shown in the direction of the vertical axis (in Figs. 6.5
and 6.6), a logarithmic value of zero corresponds with the flow focusing factor of
one. It is obvious that, for a given permeability ratio, the pore-fluid flow focusing
factor approaches unity as the aspect ratio of the inclusion increases. This is be-
cause, when the aspect ratio of an elliptical inclusion is infinite or very large, the
inclusion behaves as an interface between surrounding rocks, so that the pore-fluid
flow focusing factor must be unity, as required by the pore-fluid mass conservation
in the pore-fluid flow direction. For a given aspect ratio of the inclusion, the pore-
fluid flow focusing factor can also approach a limit value. Although this limit value
may vary with different aspect ratios of the inclusion, it goes to unity as the aspect
ratio approaches infinite. Thus, for a perfectly permeable and very thin but very long
inclusion, the flow focusing factor approaches one, implying that when the inflow is
parallel to the short axis of the inclusion, the perfectly permeable inclusion does not
perturb the flow field. This conclusion is consistent with that obtained from a pre-
vious study in the limiting case (Phillips 1991). Comparing the analytical results in
Figs. 6.3 and 6.4 with those in Figs. 6.5 and 6.6, clearly, the pore-fluid flow focusing
factors in the case of the inflow parallel to the short axis of the inclusion are much
smaller than those in the case of the inflow parallel to the long axis of the inclusion.
This indicates that the relative direction of the inflow in the far field to the long axis
of an elliptical inclusion has a significant influence on the pore-fluid flow focusing
factor of the inclusion.

In order to further examine the effect of the relative direction of the inflow in the
far field to the long axis of an elliptical inclusion on the pore-fluid flow focusing
factor, three different intermediate dip angles, namely 30◦, 45◦ and 60◦, are con-
sidered to produce the related analytical solutions. Figures 6.7, 6.9 and 6.11 show
the variation of analytical flow focusing factors with the aspect ratio of the inclu-
sion for several different permeability ratios (i.e., PR in these figures) due to the
three different dip angles. Figures 6.8, 6.10 and 6.12 show the variation of analyt-
ical flow focusing factors with the permeability ratio of the inclusion to the sur-
rounding rock for several different aspect ratios (i.e., AR in these figures) due to
the three different dip angles. Clearly the maximum value of the pore-fluid flow
focusing factor decreases as the dip angle of the inclusion increases. For example,
if the permeability ratio is 10,000, the maximum logarithm value of the pore-fluid
flow focusing factor can reach 2.969 in the case of θ = 30◦, while it decreases
to 1.979 and 0.99 in the case of θ = 45◦ and θ = 60◦, respectively. The previ-
ous findings, such as the variation trend of pore-fluid flow focusing factors with
either different permeability ratios or different aspect ratios of the inclusion, can be
also observed from the analytical solutions shown in Figs. 6.7, 6.8, 6.9, 6.10, 6.11
and 6.12.
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Fig. 6.7 Variation of flow focusing factor with aspect ratio due to different permeability ratios
(inflow parallel to the X axis, θ = 30◦)
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Fig. 6.8 Variation of flow focusing factor with permeability ratio due to different aspect ratios
(inflow parallel to the X axis, θ = 30◦)
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Fig. 6.9 Variation of flow focusing factor with aspect ratio due to different permeability ratios
(inflow parallel to the X axis, θ = 45◦)
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Fig. 6.10 Variation of flow focusing factor with permeability ratio due to different aspect ratios
(inflow parallel to the X axis, θ = 45◦)
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Fig. 6.11 Variation of flow focusing factor with aspect ratio due to different permeability ratios
(inflow parallel to the X axis, θ = 60◦)

0

1

2

3

4

0 1 2 3 4 5
Log (Permeability Ratio)

L
o

g
 (

F
lo

w
 F

o
cu

si
n

g
 F

ac
to

r)

AR = 5
AR = 10
AR = 100
AR = 1000
AR = 10000

Fig. 6.12 Variation of flow focusing factor with permeability ratio due to different aspect ratios
(inflow parallel to the X axis, θ = 60◦)



Chapter 7
Pore-Fluid Focusing within Two-Dimensional
Faults and Cracks of Crustal Scales with No
Temperature Effects: Solutions Expressed
in a Global Coordinate System

The analytical solutions derived in the local elliptical coordinate system as derived
in Chap. 6 are not convenient to investigate pore-fluid flow patterns around and
within an elliptical inclusion. It is necessary to convert the analytical solutions
expressed in the local elliptical coordinate system into those expressed in a con-
ventional Cartesian one. Toward this goal, we need to deal with an inverse problem
between the local elliptical coordinate system and the conventional Cartesian coor-
dinate system. Specifically, we need to solve ξ and η from (6.5) in Chap. 6 through
inverse mappings so that ξ and η can be expressed using x and y coordinates.

7.1 Derivation of Inverse Mappings between the Elliptical
and the Cartesian Coordinate Systems

From (6.5) in Chap. 6, the following relationships exist mathematically:

x2

c2 cos2 η
− y2

c2 sin2 η
= 1, (7.1)

x2

c2 cosh2 ξ
+

y2

c2 sinh2 ξ
= 1. (7.2)

Equation (7.1) can be written into the following form:

sin4 η +
(

x2

c2 +
y2

c2 −1

)
sin2 η − y2

c2 = 0. (7.3)

The algebraic solution to (7.3) can be expressed as follows:

sinη = sgn(
y
c
)

√√√√√
(

1− x2

c2 − y2

c2

)
+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2
, (7.4)

where sgn(y
/

c) is the sign function, with a value of sgn(y
/

c) = −1 if y
/

c < 0 and
sgn(y

/
c) = 1 otherwise.
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Thus, (7.4) results in the following inverse mapping of η :

η = sin−1

⎡
⎢⎢⎢⎢⎣sgn(

y
c
)

√√√√√
(

1− x2

c2 − y2

c2

)
+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2

⎤
⎥⎥⎥⎥⎦ , (7.5)

where sin−1 is the inverse of the sine function.
From (7.4) and the identity sin2 η + cos2 η = 1, the following expression exists:

cosη = sgn(
x
c
)

√√√√√
(

x2

c2 + y2

c2 +1
)
−

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2
, (7.6)

where sgn(x/c) is the sign function, with a value of sgn(x/c) = −1 if x/c < 0 and
sgn(x/c) = 1 otherwise.

Similarly, (7.2) yields the inverse mapping of ξ as follows:

ξ = ar sinh

⎡
⎢⎢⎢⎢⎣

√√√√√
(

x2

c2 + y2

c2 −1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2

⎤
⎥⎥⎥⎥⎦ , (7.7)

where ar sinh is the inverse of the hyperbolic sine function.
Using (7.7), the following equation can be straightforwardly obtained:

sinhξ =

√√√√√
(

x2

c2 + y2

c2 −1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2
. (7.8)

From (7.8) and the identity cosh2 ξ − sinh2 ξ = 1, the following equation holds:

coshξ =

√√√√√
(

x2

c2 + y2

c2 +1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2
. (7.9)

Another expression for coshξ can be also derived by considering (7.2) and the
identity cosh2 ξ − sinh2 ξ = 1 directly as follows:

cosh4 ξ −
(

x2

c2 +
x2

c2 +1

)
cosh2 ξ +

x2

c2 = 0. (7.10)

Solving (7.10) yields the following alternative expression for coshξ :
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coshξ =

√√√√√
(

x2

c2 + y2

c2 +1
)

+

√(
x2

c2 + y2

c2 +1
)2

−4 x2

c2

2
. (7.11)

As expected, it can be demonstrated that (7.9) and (7.11) are mathematically
identical, even though they are expressed in different forms. For this reason, (7.9) is
used hereafter.

Using the above inverse mappings, the following expression exists:

e−(ξ−ξ0) =
a+b

c

⎛
⎜⎜⎜⎜⎝

√√√√√
(

x2

c2 + y2

c2 +1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2

⎞
⎟⎟⎟⎟⎠

−a+b
c

⎛
⎜⎜⎜⎜⎝

√√√√√
(

x2

c2 + y2

c2 −1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2

⎞
⎟⎟⎟⎟⎠

, (7.12)

where a and b are the half-lengths of the long and short axes of the elliptical fault,
respectively.

7.2 The Long Axis of an Elliptical Inclusion Is Parallel
to the Inflow in the Far Field

Substituting the inverse mappings into (6.40), (6.41), (6.42), (6.43), (6.44), (6.45),
(6.46) and (6.47) in Chap. 6, the following analytical solutions, which are expressed
in a conventional Cartesian coordinate system for the excessive pore-fluid pressure,
pore-fluid velocity and stream function around an elliptical fault, can be obtained
when the long axis of the fault is parallel to the inflow direction in the undisturbed
far field.

pin(x,y) = −ωx

(
β +1
β +α

)
x, (7.13)

pout(x,y) =−ωxx

+ωxsgn
( x

c

) (α −1)(a+b)a
(β +α)c

⎛
⎜⎜⎜⎜⎝

x
c

sgn
( x

c

)
−

√√√√√
(

x2

c2 − y2

c2 −1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2

⎞
⎟⎟⎟⎟⎠ ,

(7.14)
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uin
x (x,y) =

ωxKin

μ

(
β +1
β +α

)
, (7.15)

uin
y (x,y) = 0, (7.16)

uout
x (x,y) =

ωxKout

μ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+
(α −1)(a+b)a

(β +α)c2

( x
c

sgn
( x

c

))
√√√√√√√

(
x2

c2 − y2

c2 −1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2
(

x2

c2 + y2

c2 −1
)2

+8 y2

c2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

+
ωxKout

μ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(α −1)(a+b)a
(β +α)c2

⎛
⎜⎜⎜⎜⎝

y
c

sgn
( y

c

)
√√√√√√√

(
− x2

c2 + y2

c2 +1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2
(

x2

c2 + y2

c2 −1
)2

+8 y2

c2

−1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7.17)

uout
y (x,y) =

ωxKout

μ

⎛
⎜⎜⎜⎜⎝

(α −1)(a+b)a
(β +α)c2

( x
c

sgn
( y

c

))
√√√√√√√

(
− x2

c2 + y2

c2 +1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2
(

x2

c2 + y2

c2 −1
)2

+8 y2

c2

⎞
⎟⎟⎟⎟⎠

,

− ωxKout

μ

⎛
⎜⎜⎜⎜⎝

(α −1)(a+b)a
(β +α)c2

( y
c

sgn
( x

c

))
√√√√√√√

(
x2

c2 − y2

c2 −1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2
(

x2

c2 + y2

c2 −1
)2

+8 y2

c2

⎞
⎟⎟⎟⎟⎠
(7.18)

ψin(x,y) =
ωxKin

μ

(
β +1
β +α

)
y+C, (7.19)

ψout(x,y) =
ωxKout

μ

⎛
⎜⎜⎜⎜⎝y+ sgn

( y
c

) (α −1)(a+b)a
(β +α)c

√√√√√
(
− x2

c2 + y2

c2 +1
)

+

√(
x2

c2 + y2

c2 −1
)2

+4 y2

c2

2

⎞
⎟⎟⎟⎟⎠

− ωxKout

μ

(
sgn

( y
c

) (α −1)(a+b)a
(β +α)c

(
sgn

( y
c

) y
c

))
+C (7.20)

If two elliptical faults have the same aspect ratio β , then these two faults are referred
to as similar faults geometrically. For these faults, the following relationships exist:
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a
c

=

√
β 2

β 2 −1
,

b
c

=

√
1

β 2 −1
. (7.21)

In the case where the inflow is parallel to the long axis of an elliptical crack,
Fig. 7.1 shows the effect of the permeability ratio on streamlines and excess
pore-fluid pressure distributions around and within the crack. In this figure, except

(Kin / Kout = 10)

(Kin / Kout = 0.1)

(Kin / Kout = 1)

Fig. 7.1 Effect of permeability ratio on streamline and pressure patterns around and within an
elliptical inclusion (inflow is parallel to the long axis)
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for the domain boundaries, thick lines are used to show streamlines, while thin lines
are used to show the equal value lines of the excess pore-fluid pressure (i.e., isopo-
tential lines). Dot points are used to show the outline of the elliptical crack. The
aspect ratio of the crack is assumed to be 10 and three different permeability ratios,
namely α = 10, α = 1 and α = 0.1, are used to produce the numerical results. The
present analytical solution clearly indicates that although the amplitude of the ex-
cess pore-fluid pressure gradient of the inflow may affect the absolute values of the
excess pore-fluid pressure and stream function, it does not affect their distribution
patterns around and within large cracks and faults. For this reason, the amplitude
of the excess pore-fluid pressure gradient of the inflow is assumed to be unity to
produce the numerical results shown in Fig. 7.1. It is obvious that in the case of the
crack being permeable, the inflow is focused into the crack, while in the case of the
crack being impermeable, the pore-fluid flow within the crack becomes weaker than
the inflow from the far field. As expected, if the permeability of the crack is exactly
the same as that of its surrounding rock, the crack has no influence on the inflow
field within the whole problem domain.

It can be recognized, from the present analytical solutions that, within an elliptical
crack, both the excess pore-fluid pressure distribution and the pore-fluid flow pattern,
which are expressed by either excess pore-fluid pressure distributions or streamlines,
are only dependent on the aspect and permeability ratios of the crack, and are indepen-
dent of the specific size of the crack (see (7.13) and (7.19)). This is because a and b,
which are used to define the aspect ratio of an elliptical crack, are specified as a fraction
of L, where L is the length of the crack. Thus, if we define cracks of the same aspect
and permeability ratios as similar cracks, then excess pore-fluid pressure distributions
and pore-fluid flow patterns are exactly the same within similar cracks. We call this
conclusion the similarity theory for a crack. This theory lays an important theoret-
ical foundation of extending the present analytical solutions to deal with pore-fluid
flow patterns within large cracks and faults in pore-fluid saturated porous rocks.

7.3 The Short Axis of an Elliptical Inclusion Is Parallel
to the Inflow in the Far Field

Following the same procedures as those used in the previous sections, analytical
solutions for the stream function, excess pore-fluid pressure and velocity around and
within an elliptical inclusion can be obtained in a conventional Cartesian coordinate
system.

uin
x (x,y) = 0, (7.22)

uin
y (x,y) =

ωyKin

μ

(
β +1

1+αβ

)
, (7.23)
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uout
x (x,y) =

ωyKout

μ

⎡
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(7.24)
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where ωy is the amplitude (i.e.,
∣∣�p

/
�y

∣∣ in this particular case) of the excess pore-
fluid pressure gradient in the far field of the elliptical inclusion. Other quantities have
the same meanings as defined before.

To compare the analytical results in the case of the inflow being parallel to the
short axis with those in the case of the inflow being parallel to the long axis, the
aspect ratio of the elliptical crack remains equal to 10. The same three permeability

(Kin / Kout = 10)

(Kin / Kout = 0.1)

(Kin / Kout = 1)

Fig. 7.2 Effect of permeability ratio on streamline and pressure patterns around and within an
elliptical inclusion (inflow is parallel to the short axis)
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ratios, namely α = 10, α = 1 and α = 0.1, are used to produce the numerical results
in this section. Figure 7.2 shows the effect of the permeability ratio on streamlines
and excess pore-fluid pressure distributions around and within the crack. It is ob-
served that in the case of the crack being either permeable or impermeable, the
crack only has a small local effect on the inflow that is parallel to the short axis
of the crack. The influence of the crack on the inflow parallel to the short axis is
much weaker than that on the inflow parallel to the long axis of the crack. This is
illustrated by comparing the results of Fig. 7.1 with those in Fig. 7.2.

In addition, the analytical solutions expressed in (7.26) and (7.28) also indicate
that both the pore-fluid flow pattern and the excess pore-fluid pressure distribution
within a large crack are only dependent on the aspect and permeability ratios of the
crack, but independent of the specific size of the crack. This demonstrates that the
similarity theory of a crack is valid when the inflow (in the far field) is parallel to
the short axis of the crack in pore-fluid saturated porous rocks.

7.4 The Inflow of the Far Field Is Parallel to the X Direction
of the Global XY Coordinate System

Superposing the analytical solutions derived in the previous two sections yields the
analytical solutions for pore-fluid flow around and within an inclined elliptical in-
clusion when the inflow of the far field is parallel to the X direction of the global XY
coordinate system.
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7.5 The Inflow of the Far Field Is Parallel to the Y Direction
of the Global XY Coordinate System

Similarly, superposing the analytical solutions derived in the previous two sections
(i.e. Sections 7.2 and 7.3) yields the analytical solutions for pore-fluid flow around
and within an inclined elliptical inclusion when the inflow of the far field is parallel
to the Y direction of the global XY coordinate system.
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The pore-fluid pressure gradient can be close to a hydrostatic pressure gradient
within a permeable fault (Zhao et al. 1998b; Flemings et al. 2002). For the first time,
the present analytical solution has shown that the pore-fluid pressure gradient is ex-
actly equal to the hydrostatic pressure gradient within a fault if the fault is perfectly
permeable, implying that the permeability ratio of the fault is infinite. This can be
clearly demonstrated from (7.40), where the excess pore-fluid pressure gradient is
identical to zero when the permeability ratio (i.e., α in this equation) of a fault of
finite size is approaching infinity. However, if a fault is not perfectly permeable, the
value of the excess pore-fluid pressure gradient within the fault is non-zero and de-
pendent on the permeability ratio, aspect ratio and dip angle of the inclined fault.
This finding demonstrates that the pore-fluid pressure gradient is close to the hy-
drostatic pressure gradient within a permeable fault of finite size. In this case, the
specific value of the pore-fluid pressure within a permeable fault is dependent on
the permeability ratio, aspect ratio and dip angle of the inclined fault.

7.6 Application Examples of the Present Analytical Solutions

Since the present analytical solutions are expressed in a conventional Cartesian co-
ordinate system, they provide a useful tool for fundamentally understanding the
general distribution pattern of pore-fluid flow and excess pore-fluid pressure around
and within a buried inclined fault or crack within the crust of the Earth. From this
point of view, the present analytical solutions are used to show the distribution pat-
terns of the excess pore-fluid pressure and stream function around and within an
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elliptical inclusion in fluid-saturated porous rocks. Since both the excess pore-fluid
pressure and the stream function are dependent on the dip angle, permeability and
aspect ratios, several examples are used to show the distribution patterns of the ex-
cess pore-fluid pressure and stream function around and within the inclusion. As
shown in Fig. 6.2 in Chap. 6, the different dip angles of the elliptical inclusion can
be considered by setting the inflow parallel to the X direction in the far field of the
global XY coordinate system and varying the dip angle of the inclusion. This means
that the analytical solutions expressed in (7.30) and (7.31) can be used to show the
distribution pattern of the stream function, while (7.32) and (7.33) can be used to
show that of the excess pore-fluid pressure.

In order to investigate the effect of the dip angle on the distribution pattern of both
the excess pore-fluid pressure and the stream function, three different dip angles,
namely θ = 30◦, θ = 45◦ and θ = 60◦, are considered in the first example, in which
the aspect ratio of the inclusion has a constant value of 5 and the permeability ratio
of the inclusion to the surrounding rock has a fixed value of 10,000. Figure 7.3
shows the effect of the dip angle on the distribution pattern of the streamlines and
excess pore-fluid pressure around and within the elliptical inclusion. In this figure,
except for the domain outline expressed using thick lines, the streamlines are shown
using thick lines, while the equal value lines of the excess pore-fluid pressure are
shown using thin lines. Apart from the near field of the elliptical inclusion, the
streamlines are horizontal parallel lines, while the equal value lines of the excess
pore-fluid pressure are vertical parallel lines. Dot points are used to show the outline
of the elliptical inclusion. This indicates that the inclusion has only a local effect on
the overall pore-fluid flow in the fluid-saturated porous rock. Within the elliptical
inclusion, the streamlines are parallel to each other. The slope of the streamline is a
little smaller than the dip angle of the elliptical inclusion in the case of the inclusion
being more permeable (i.e., α = 10,000). Clearly, the dip angle of the inclusion can
significantly affect the distribution patterns of both the streamlines and the excess
pore-fluid pressure around and within the inclusion.

Five different permeability ratios, namely α = 10,000, α = 10, α = 1, α =
0.1 and α = 0, are considered to examine the effect of the permeability ratio on
the distribution patterns of both the streamlines and the excess pore-fluid pressure
around and within the elliptical inclusion. In this exercise, the aspect ratio of the
elliptical inclusion is kept as a constant of 5, while the dip angle of the inclusion
is taken to have three different values (i.e., θ = 30◦, θ = 45◦ and θ = 60◦). In the
case of α = 10,000, the inclusion is almost perfectly permeable, while in the case
of α = 0, the inclusion is perfectly impermeable. Compared with the case of α = 1,
which indicates that the permeability of the inclusion is exactly the same as that
of its surrounding rock, α = 10 and α = 0.1 represent moderately permeable and
impermeable inclusions, respectively.

Figures 7.4, 7.5, 7.6 and 7.7 show the effect of permeability ratios on the distribu-
tion patterns of both the streamlines and the excess pore-fluid pressure around and
within the elliptical inclusion due to three different dip angles. In these figures, thick
lines are used to show the streamlines, while thin lines are used to show the equal
value lines of the excess pore-fluid pressure. Dot points are used to show the outline
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(θ = 60°)

(θ = 45°)

(θ = 30°)

Fig. 7.3 Effect of dip angle on streamline and excess pressure patterns around and within an ellip-
tical inclusion (α = 10000)

of the inclusion. The permeability ratio of the inclusion to the surrounding rock has
a significant influence on the distribution patterns of both the streamlines and the
excess pore-fluid pressure around and within the inclusion. Generally, the slope of
the streamlines within the elliptical inclusion gradually decreases to zero when the
permeability ratio decreases from 10,000 into 1. This slope becomes negative when
the inclusion is moderately impermeable (i.e., α = 0.1). If the inclusion is perfectly
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(θ = 60°)

(θ = 45°)

(θ = 30°)

Fig. 7.4 Effect of dip angle on streamline and excess pressure patterns around and within an ellip-
tical inclusion (α = 10)

impermeable (i.e., α = 0), no streamlines exist within the inclusion, as can be seen
from the results shown in Fig. 7.7. The slope of the equal value line of the excess
pore-fluid pressure is a little greater than the dip angle of the elliptical inclusion
in the case of the inclusion being perfectly impermeable (i.e., α = 0). In addition,
the results shown in Fig. 7.5 indicate that if the permeability of the inclusion is ex-
actly the same as that of the surrounding rock, the inclusion has no influence on the
overall pore-fluid flow field.
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(θ = 60°)

(θ = 45°)

(θ = 30°)

Fig. 7.5 Effect of dip angle on streamline and excess pressure patterns around and within an ellip-
tical inclusion (α = 1)

To examine the effect of the aspect ratio of an elliptical inclusion on the distri-
bution patterns of both the streamlines and the excess pore-fluid pressure around
and within the inclusion, the dip angle of the inclusion is kept as a constant value
of 30 degrees, while the permeability ratio is set to be a constant value of 10.
Three different aspect ratios, namely β = 2.5, β = 5.0 and β = 7.5, are consid-
ered to produce the numerical results. Figure 7.8 shows the effect of the aspect
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(θ = 60°)

(θ = 45°)

(θ = 30°)

Fig. 7.6 Effect of dip angle on streamline and excess pressure patterns around and within an ellip-
tical inclusion (α = 0.1)

ratio of an elliptical inclusion on the streamlines and excess pore-fluid pressure pat-
terns around and within the inclusion. The aspect ratio of an elliptical inclusion
can significantly affect both of these distribution patterns. Since the density of the
streamlines reflects the magnitude of the pore-fluid flow, when the aspect ratio in-
creases, the pore-fluid flow velocity increases within the inclusion. The maximum
values of the pore-fluid flow focusing factor, which is defined as the ratio of the
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(θ = 60°)

(θ = 45°)

(θ = 30°)

Fig. 7.7 Effect of dip angle on streamline and excess pressure patterns around and within an ellip-
tical inclusion (α = 0)

pore-fluid velocity within the inclusion to that of the inflow in the far field, are ap-
proximately 2.44, 3.29 and 3.92 for aspect ratios of 2.5, 5.0 and 7.5, respectively.
The total flux of the pore-fluid across the elliptical inclusion is also dependent on
the aspect ratio of the inclusion. For example, the pore-fluid enclosed by about 11
streamlines passes across the inclusion of an aspect ratio of 2.5, while the pore-fluid
enclosed by about eight streamlines flows across the inclusion of an aspect ratio
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(β = 5)

(β = 7.5)

(β = 2.5)

Fig. 7.8 Effect of aspect ratio on streamline and excess pressure patterns around and within an
elliptical inclusion (α = 10 and θ = 30◦)

of 7.5. This indicates that the smaller the aspect ratio of an elliptical inclusion, the
larger the total flux across the inclusion. Moreover, since the quality of ore body
formation and mineralization is controlled by the pore-fluid velocity within faults
and large cracks (Zhao et al. 1998a), an elliptical inclusion with a large aspect ra-
tio is more favorable for high-grade ore formation and mineralization within the
inclusion.
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The present analytical solutions provide important and often unique tools for
validating and verifying numerical methods and algorithms used to solve problems
characterized by complicated geometries. To demonstrate this point, the finite el-
ement method (Zienkiewicz 1977) is used to simulate pore-fluid flow around and
within a vertical crack embedded in a pore-fluid saturated porous rock. Figure 7.9
shows the geometry of the problem to be modeled using the finite element method.
The height and length of the computational model are 4 m and 10 m, respectively.
The inflow of the excess pore-fluid pressure gradient being unity in the far field is
assumed to be vertical, while the aspect ratio of the crack is 10. The permeability
values of the crack and its surrounding rock are 10−12 m2 and 10−13 m2, so that the
permeability ratio of the crack to the surrounding rock is 10. The dynamic viscos-
ity of the pore-fluid is 10−3 N · s/m2. To appropriately simulate the pore-fluid flow
around and within the vertical crack, a fine mesh of small element sizes is used to
simulate the crack, while a mesh gradation scheme is used to simulate the surround-
ing rock by gradually changing the mesh size from the outline of the crack within
the computational model. As a result, the whole computational domain is simulated
by 233,214 three-node triangle elements.

Figure 7.10 shows the numerical and analytical solutions for the streamline dis-
tribution around and within the vertical crack. Since the inflow is uniformly and
vertically injected into the system at the lower boundary, the pore-fluid flow con-
verges into the crack at the inlet (i.e., the lower end) of the crack, but diverges out
of the crack at the outlet (i.e., the upper end) of the crack. This phenomenon can be
clearly observed from Fig. 7.10. The numerical solution obtained from the compu-
tational model is in good agreement with the analytical one (i.e., (7.38) and (7.39)
with θ = 90◦). The numerical solution for pore-fluid flow can be quantitatively val-
idated through the theoretical flow focusing factor within the crack. Since the flow
focusing factor of the crack is equal to the ratio of the maximum velocity within the
crack to that of the injected fluid at the bottom of the computational model, it can
be straightforwardly calculated from the related numerical results. The computed

Fig. 7.9 Geometry of a vertical crack
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(Numerical solution)

(Analytical solution) 

Fig. 7.10 Comparison of the numerical solution with the analytical solution for the stream function

Fig. 7.11 Geometry of two parallel inclined cracks
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(θ = 60°)

(θ = 30°)

Fig. 7.12 Effect of dip angle on streamline patterns around and within two parallel inclined cracks
(Kin/Kout = 10)

flow focusing factor of the crack from the computational model is 5.25, while the
analytical value of the flow focusing factor of the crack is 5.5, which is obtained
from (6.35) in Chap. 6. Since the relative error of the flow focusing factor from the
numerical simulation is within 4.5 percent, it quantitatively demonstrates that the fi-
nite element mesh used in the computational model can produce accurate numerical
solutions for pore-fluid flow around and within the crack. In this regard, the present
analytical solutions have provided a useful tool to validate numerical models so that
the overall accuracy of the corresponding numerical solutions can be quantitatively
evaluated by the relative error.

Having validated the finite element method by the present analytical solution, it
is now used to investigate the effect of two parallel inclined cracks on the pore-fluid
flow pattern around and within these two cracks. Figure 7.11 shows the geometry of
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the problem. Two different dip angles, namely θ = 30◦ and θ = 60◦, are considered
in the resulting computational models. The height and length of the computational
model are 4 m and 8 m, respectively. The inflow of the excess pore-fluid pressure
gradient being unity in the far field is assumed to be vertical, while the aspect ratio
of the crack is 20. The permeability values of the crack and its surrounding rock
are 10−12 m2 and 10−13 m2, implying that a permeability ratio of the crack to the
surrounding rock is 10. The dynamic viscosity of the pore-fluid is 10−3 N · s/m2.
The whole computational domain is simulated using 194,208 and 206,200 three-
node triangle elements in the case of θ = 30◦ and θ = 60◦, respectively.

Figure 7.12 shows the effect of the dip angle on the streamline distribution around
and within two parallel inclined cracks in the pore-fluid saturated porous rock. The
dip angle has a significant influence on the streamline distribution around and within
these two parallel inclined cracks. Since the cracks are more permeable than the
surrounding rock and the inflow is vertically injected at the lower boundary of the
computational model, more pore-fluid is focused into the cracks as the dip angle
of the crack increases from 30◦ to 60◦. Note that the injected inflow arises from
the application of an excess pore-fluid pressure gradient, the amplitude of which is
unity, to the lower boundary of the computational model. In terms of the streamline
distribution between the two parallel inclined cracks, there exists an interaction be-
tween these two parallel cracks, especially when they are close to each other. This
indicates that the distance between two parallel inclined cracks may significantly
affect the pore-fluid flow pattern.



Chapter 8
Pore-Fluid Flow Focused Transient Heat
Transfer within and around Two-Dimensional
Faults and Cracks of Crustal Scales

Geological faults and large cracks play an important and diverse role in pore-fluid
flow focused heat transfer within fluid-saturated porous media (Toth 1962; Person
and Baumgartner 1995; Wieck et al. 1995; Zhao and Valliappan 1994a, b; Roberts
et al. 1996; Person et al. 1996; Jamtveit and Yardley 1997; Connolly 1997; Zhao
et al. 1999b, 2001b, 2002a; Hoaglund and Pollard 2003). A typical example of
pore-fluid flow focused heat transfer is the formation of hot spots around and within
geological fault zones in the upper crust of the Earth. In terms of clean energy de-
velopment and utilization, these hot spots are favorable locations for the storage and
utilization of geothermal energy. On the other hand, the formation of such hot spots
may be closely associated with the formation of high-grade ore deposits within the
upper crust of the Earth. As modern mineralization theory indicates, the mineraliza-
tion rate for a particular mineral is dependent on the scalar product of the pore-fluid
flow velocity and temperature gradient at the location of the mineral (Phillips 1991;
Zhao et al. 1998a). Since geological fault zones and large cracks are favorable loca-
tions for pore-fluid flow focusing and temperature localization to take place simulta-
neously, they become favorable locations for hot spots to form in the upper crust of
the Earth. For this reason, a better understanding of the transient process associated
with pore-fluid flow focused heat transfer around geological faults and large cracks
has become an important research topic in the field of geoscience. Compared with
steady state solutions that describe the extreme state of a system, transient solutions
are useful for describing the specific process in which the system reaches a steady
state.

As has been mentioned previously, analytical solutions to benchmark problems
provide an important and often unique tool for validating and verifying numer-
ical methods and algorithms, which can be used to solve problems of compli-
cated geometries, such as pore-fluid flow focused heat transfer problems within
the upper crust of the Earth (i.e., Ohnishi et al. 1985; Jiao and Hudson 1995; Per-
son and Baumgartner 1995; Wieck et al. 1995; Roberts et al. 1996; Person et al.
1996; Bower and Zyvoloski 1997; Thomas et al. 1998; Zhao et al. 1997, 1998c;
Hoaglund and Pollard 2003). On the engineering length scale, Booker and Savvi-
dou (1985) developed an analytical solution for a simplified consolidation problem
around a heat source in thermoelastic soils. It is assumed that the heat source con-
sidered in their study is caused by a canister of radioactive waste, which is buried
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in a saturated soil. If the temperature field is uncoupled from the determination
of displacements and pressure by neglecting mechanical contributions to both the
energy balance and the convective terms, then an analytical solution can be de-
rived for the fundamental problem of a point heat source buried deep in a satu-
rated soil (Booker and Savvidou 1985). Based on this analytical solution, Lewis
and Schrefler (1998) have verified that the finite element method can be used
to solve thermoelastic consolidation problems in more complicated engineering
situations.

Since the length of a geological fault in the strike direction is significantly differ-
ent from that in its thickness and height directions, it is reasonable, from the mathe-
matical point of view, to treat the fault as an elliptical inclusion in a two-dimensional
full plane, which is perpendicular to the strike direction of the geological fault. Thus,
the elliptical inclusion to be considered in this study is a cross section perpendicular
to the strike direction of the geological fault, hereafter referred to as the elliptical
fault. To this end, Lamb (1975) and Phillips (1991) presented the analytical solu-
tions for the steady state pore-fluid flow problem around either a perfectly perme-
able elliptical fault or a perfectly impermeable elliptical fault, which is embedded
in a two-dimensional full plane. Obdam and Veling (1987) derived the analytical
solutions for the pore-fluid flow around and within elliptical inhomogeneities using
the complex variable function approach. Zimmerman (1996) also extended Obdam
and Veling’s solutions to the solution of pore-fluid flow in a more complicated situ-
ation. Wallstrom et al. (2002) extended the two-dimensional potential solution from
an electrostatic problem (Stratton 1941) into a steady state pore-fluid flow prob-
lem around an ellipse using a special elliptical coordinate system. Using elementary
algebraic functions only, Zhao et al. (2006a) derived a complete set of analytical
solutions for pore-fluid flow around an elliptical fault of specific size, which has any
finite, but non-zero value of the permeability and is embedded in a two-dimensional
full plane. To remove the size limitation of the previous analytical solutions (Zhao
et al. 2006a), it is necessary to derive the analytical solutions for an elliptical fault
of any size, so that the solutions are suitable for investigating pore-fluid flow fo-
cused heat transfer problems of any length scales within fluid-saturated porous
media.

8.1 Statement of the Problem

To investigate the influence of a geological fault on pore-fluid flow focused transient
heat transfer around the fault, a fully coupled problem comprising pore-fluid flow
and transient heat transfer needs to be solved for the fluid-saturated porous medium.
Since it is very difficult, if not impossible, to derive analytical solutions for this
fully coupled problem, the finite element method (Zienkiewicz 1977) is used to ob-
tain numerical solutions for the fully coupled problem. One of the main purposes
of this chapter is to validate the computational model before it is used to inves-
tigate the effect of the dip angle of a geological fault on pore-fluid flow focused
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transient temperature distribution around a geological fault. By adding a time-
dependent term reflecting transient heat transfer into the energy equation presented
in previous chapters, the mathematical model for the fully coupled problem can be
described below.
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ρ f = ρ0[1−βT (T −T0)], λ e
0 = φλ f

0 +(1−φ)λ s
0 , (8.5)

where u and v are the velocity components of pore-fluid in the x and y directions;
P and T are the pore-fluid pressure and temperature; μ is the dynamic viscosity
of pore-fluid; ρ0 and T0 are the reference density of pore-fluid and the reference
temperature of the medium; cp f and cps are the specific heats of the pore-fluid and

solid matrix, respectively; λ f
0 and λ s

0 are the thermal conductivity coefficients for
the pore-fluid and solid matrix in the porous medium; φ and βT are the porosity of
the medium and the thermal volume expansion coefficient of the pore-fluid; ρ f and
ρs are the densities of the pore-fluid and solid matrix in the porous medium; K is
the permeability of the isotropic porous medium and g is the gravity acceleration
component in the vertical direction, which is assumed to be opposite to the positive
direction of the y axis.

In the above-mentioned mathematical model, the pore-fluid is also assumed to
be incompressible and that the Oberbeck-Boussinesq approximation (Phillips 1991;
Zhao et al. 1997, 2005a) is employed to describe the change in pore-fluid den-
sity due to a change in the pore-fluid temperature. Since a transient heat trans-
fer problem is considered to investigate the detailed warming up process within
the upper crust of the Earth, the time variable is clearly involved in the energy
equation (i.e., (8.4)).

Consider the pore-fluid pressure within the crust of the Earth as background to
the numerical model considered in this section. Many authors consider this pressure
to be lithostatic. It is then the lithostatic pore-fluid pressure gradient that drives the
pore-fluid flow and the corresponding focused heat transfer. This is a fundamental
issue associated with understanding high-grade ore deposits within the upper crust
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of the Earth. For instance, it has been postulated that the pore-fluid pressure gra-
dient was lithostatic in the Yilgarn craton, Western Australia (Korsch et al. 1998;
Sorjonen-Ward et al. 2002). Extensive studies (Connolly and Ko 1995; Etheridge
et al. 1983; Fyfe et al. 1978; Walther and Orville 1982; Peacock 1989; Yardley
and Bottrell 1992; Hanson 1992; Yardley and Lloyd 1995; Norton and Knapp 1970)
have shown that lithostatic pore-fluid pressure can be built up by metamorphic fluids
due to devolatilization and dehydration reactions, if the permeability is low enough
to control the fluid flow in the lower crust. Since the Yilgarn craton has undergone
several heating and cooling cycles during ore body formation and mineralization
(Korsch et al. 1998; Sorjonen-Ward et al. 2002), it is of interest to investigate how
the dip angle of a geological fault affects the transient thermal structure around
a geological fault within the upper crust during a heating process through some
generic models. With this in mind, we will use a generic model to examine the ef-
fects of a geological fault of different dip angles on pore-fluid flow focused transient
heat transfer around the fault within the upper crust, where the pore-fluid pressure
gradient is lithostatic, during a heating cycle.

8.2 Validation of the Numerical Models

Figure 8.1 shows the geometry of the generic problem for simulating pore-fluid flow
focused transient heat transfer around geological faults of different dip angles. For
this generic problem, the pore-fluid pressure is assumed to be lithostatic, implying
that there is an upward throughflow in the computational model. The height and
width of the computational model are 10 km and 20 km, respectively. The length
of the fault is 5 km, with an aspect ratio of 20. The permeability of the fault is
about 43 times that of the surrounding rock, which is assumed to have a perme-

20 km

10 km

Fig. 8.1 Geometry of a fault with an arbitrary dip angle
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ability of 10−16 m2. The top temperature is 25 ◦C, while the initial temperature at
the bottom is 125◦C, implying that the initial geothermal gradient is 10 ◦C/km. In
order to simulate the warming up process within the crust, the bottom temperature
is first increased to 325◦C at the start of the computational model and then kept at
a constant temperature boundary of 325◦C. A flow boundary condition consisting
of a vertical flux of injected fluid due to the lithostatic pore-fluid pressure gradi-
ent equal to 1.6× 10−9 m/s is applied at the bottom, while a pressure boundary
condition, which has a prescribed constant pressure of zero, is applied at the top
of the computational model. The following parameters are used in the numerical
simulation. For the pore-fluid, dynamic viscosity is 10−3 N · s/m2; reference density
is 1000kg/m3; volumetric thermal expansion coefficient is 2.1×10−4(1/◦C); spe-
cific heat is 4184J/(kg ·◦C), and thermal conductivity coefficient is 0.59W/(m ·◦C).
For the porous matrix, porosity is 0.35 and 0.1 for the fault and the surrounding
rock, respectively; thermal conductivity coefficient is 2.9W/(m ·◦C); specific heat
is 878J/(kg ·◦C), and reference rock density is 2600kg/m3. In order to examine the
effect of the dip angle on the pore-fluid flow focused temperature distribution around
the geological fault, three different dip angles, namely 90◦ (i.e., a vertical fault), 60◦

and 30◦, of the fault are considered in the finite element computation. In the case
of the dip angle being 90◦, the computational model is simulated by 306,818 three-
node triangle elements, while in the case of the dip angles being 60◦ and 30◦, the
computational model is simulated using 212,918 and 234,598 three-node triangular
elements, respectively.

Figure 8.2 compares the numerical solution with the analytical one for the
streamline distribution for a hydrothermal system with a vertical fault. Since the
pore-fluid flow is uniformly and vertically injected into the system at the lower
boundary of the computational model, the pore-fluid flow converges into the fault at
the inlet (i.e., the lower end) of the fault, but diverges out of the fault at the outlet
(i.e., the upper end) of the fault (see Fig. 8.2). Note that the numerical result ob-
tained from the computational model is in good agreement with the analytical result
predicted from the theoretical analysis in the previous chapter, indicating that the
finite element mesh used in the computational model is qualitatively suitable for
simulating pore-fluid flow focusing in the larger length scale geological fault. The
numerical solution for pore-fluid flow can be quantitatively validated through the
theoretical flow focusing factor within the fault. The vertical velocity of the injected
fluid due to the lithostatic pore-fluid pressure gradient is equal to 1.6× 10−9 m/s
and the numerical solution for the maximum vertical velocity within the equivalent
elliptical fault is equal to 2.37×10−8 m/s. The corresponding flow focusing factor
for the fault is equal to the ratio of the maximum velocity within the fault to that of
the injected fluid at the bottom of the computational model. This results in a flow
focusing factor of 14.16. The analytical value of the flow focusing factor for the
elliptical fault is 14.33, which is calculated from the related equation in Chap. 6.
Since the relative error of the flow focusing factor from the numerical simulation is
within 1.2 percent, it is quantitatively demonstrated that the finite element mesh used
in the computational model can produce accurate numerical solutions for the pore-
fluid focusing around the geological fault, because we have used a large number
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(Numerical solution)

(Analytical solution)

Fig. 8.2 Comparison of the numerical solution with the analytical result for the stream function

of fine finite elements to simulate the geological fault and its surrounding rocks in
the near field around the fault. In this regard, the present analytical solutions have
provided a useful tool to verify numerical models so that the overall accuracy of the
corresponding numerical solutions can be quantitatively evaluated by the relative
error.

8.3 Numerical Simulation Results

In order to investigate the influence of focused pore-fluid flow on the transient tem-
perature distribution around the vertical fault, the temperature evolution within the
computational model has been simulated and the related numerical results are shown
in Fig. 8.3. Since the simulated heat transfer is a transient process, the thermal
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(Temperature, t = 0 years)

,

(Temperature, t = 2,000 years)

(Temperature, t = 6,000 years) (Temperature, t = 10,000 years)

(Temperature, t = 20,000 years) (Temperature, t = 40,000 years)

(Temperature, t = 60,000 years) (Temperature, t = 70,000 years)

Fig. 8.3 Temperature evolution due to flow through a vertical fault
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(Whole system view)

Fig. 8.4 Streamline distributions due to pore-fluid flow in an inclined fault of 60 degrees dip

structure around the fault is clearly dependent on the computational time. For exam-
ple, it takes about 40,000 years to warm up the lower quarter of the computational
model, while it takes about 70,000 years to warm up the lower half of the compu-
tational model. Thus, the thermal structure around the fault is strongly dependent
on the heating history of the crust under the influence of the lithostatic pore-fluid
pressure gradient. Due to the heat advection of the focused pore-fluid flow, the up-
per crust just above the vertical fault becomes much hotter (up to 100◦C) than the
surrounding rock after 40,000 years.

In the following text, the influence of the fault dip angle on the pore-fluid flow
pattern and temperature distribution is examined. Figure 8.4 shows the streamline
distribution of the hydrothermal system with an inclined fault of 60 degrees dip.
Similarly, the pore-fluid flow is uniformly and vertically injected into the system at
the lower bottom of the computational model so that the pore-fluid flow converges
into the fault at the inlet (i.e., the lower end) of the fault, but diverges out of the
fault at the outlet (i.e., the upper end) of the fault (see Fig. 8.4). To investigate the
influence of focused pore-fluid flow on the temperature distribution around the in-
clined fault of 60 degrees dip, the temperature evolution process has been simulated
and the related numerical results are shown in Fig. 8.5. The focused pore-fluid flow
causes the upper crust just above the inclined fault to become much hotter than the
surrounding rock after 40,000 years. Compared with the numerical results shown in
Figs. 8.2 and 8.3, the numerical solutions shown in Figs. 8.4 and 8.5 demonstrate
that the dip angle of the fault can have a remarkable influence on the pore-fluid
flow pattern and temperature distribution. At a time of 40,000 years, the tempera-
ture differences relative to the ambient temperature vary from about 100◦C above a
vertical fault with a lithostatic pore-fluid pressure gradient, to a maximum of about
60◦C above a fault dipping at 60 degrees.



8.3 Numerical Simulation Results 141

(Temperature, t = 0 years) (Temperature, t = 2,000 years)

(Temperature, t = 6,000 years) (Temperature, t = 10,000 years)

(Temperature, t = 20,000 years)

,

(Temperature, t = 40,000 years)

(Temperature, t = 60,000 years) (Temperature, t = 70,000 years)

Fig. 8.5 Temperature evolution due to pore-fluid flow in an inclined fault of 60 degrees dip
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(Whole system view)

Fig. 8.6 Streamline distributions due to pore-fluid flow in an inclined fault of 30 degrees dip

An inclined fault of 30 degrees dip is considered next. Figure 8.6 shows the
streamline distribution of the hydrothermal system, while Fig. 8.7 shows the veloc-
ity distributions at both the inlet and outlet of this fault. The maximum amplitude
of the velocity vector shown in Fig. 8.7 is equal to 1.46×10−8 m/s. The arrow size
is used to reflect the amplitude of the velocity vector. The temperature evolution
is shown in Fig. 8.8. Compared with the previous numerical solutions for both a
vertical fault and an inclined fault of 60 degrees dip, it can be clearly seen (from
Figs. 8.3, 8.5 and 8.8) that the effect of the focused pore-fluid flow on the localized
temperature distribution within the upper crust decreases considerably with decrease
of the fault dip angle, especially in the early stage of the warming up process. At a
time of 40,000 years, the temperature differences relative to the ambient temperature
vary from about 100◦C above a vertical fault with a lithostatic pore-fluid pressure
gradient, to a maximum of about 25 ◦C above a fault dipping at 30 degrees. Since
a fault of any dip angle draws the pore-fluid from the bottom of the fault and ex-
pels the pore-fluid on the upper side of the fault, there are some areas where the
transport of the pore-fluid flow is relatively strong, and other areas where there is
relatively little pore-fluid movement near the fault. For a vertical fault, the areas of
relatively slow movement of the pore-fluid are located on either side of the fault,
while for the dipping faults, the areas of relatively slow movement of the pore-fluid
are located near both the bottom of the fault within the hanging wall and near the
top of the fault within the footwall. Thus, the dip angle of a geological fault can sig-
nificantly affect the pore-fluid flow and transient heat transfer patterns around the
fault.
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(Zoom-in view at the inlet of the fault, maximum velocity = 1.46 × 10−8
 m/s) 

(Zoom-in view at the outlet of the fault, maximum velocity = 1.46 × 10−8
 m/s) 

Fig. 8.7 Pore-fluid flow velocity distributions due to an inclined fault of 30 degrees dip
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(Temperature, t = 0 years) (Temperature, t = 2,000 years)

(Temperature, t = 6,000 years) (Temperature, t = 10,000 years)
,

(Temperature, t = 20,000 years) (Temperature, t = 40,000 years)

(Temperature, t = 60,000 years) (Temperature, t = 70,000 years)

Fig. 8.8 Temperature evolution due to pore-fluid flow in an inclined fault of 30 degrees dip



Chapter 9
Convective Heat Transfer within
Three-Dimensional Vertical Faults
Heated from Below

Over the past decade, great efforts have been made to understand the basic physical
and chemical processes behind ore body formation and mineralization in hydrother-
mal systems. On the scientific development side, analytical solutions have been de-
veloped to answer the following scientific questions (Zhao et al. 1998b, 1999a):

(1) Can the pore-fluid pressure gradient be maintained at the value of the lithostatic
pressure gradient in the upper crust of the Earth?

(2) Can convective pore-fluid flow take place in the upper crust of the Earth if there
is fluid/mass leakage from the mantle to the upper crust of the Earth?

On the modeling development side, numerical methods have been developed to
model the following problems: (1) convective pore-fluid flow in hydrothermal sys-
tems (Zhao et al. 1997); (2) coupled reactive pore-fluid flow and multiple species
transport in porous media (Zhao et al. 1999d); (3) precipitation and dissolution of
minerals and rock alteration in the upper crust of the Earth (Zhao et al. 1998a);
(4) double-diffusion driven reactive flow transport in deformable fluid-saturated
porous media with particular consideration of temperature-dependent chemical re-
action rates (Zhao et al. 2000c); (5) pore-fluid flow patterns near geological lenses in
hydrodynamic and hydrothermal systems (Zhao et al. 1999b); (6) dissipative struc-
ture of non-equilibrium chemical reactions in fluid-saturated porous media (Zhao
et al. 2000d); (7) convective pore-fluid flow and related mineralization in three-
dimensional hydrothermal systems (Zhao et al. 2001a), and (8) fluid-rock interaction
problems associated with rock alteration and metamorphic process in fluid-saturated
hydrothermal/sedimentary basins (Zhao et al. 2001c). Rice and Cleary (1976) as
well as McTigue (1986) amongst others have also studied different aspects of this
problem. In addition, we have developed numerical methods to model various as-
pects of the fully coupled problem involving material deformation, pore-fluid flow,
heat transfer and species transport/chemical reactions in pore-fluid saturated porous
rock masses. The above-mentioned work has significantly enriched our knowledge
of the physical and chemical processes related to ore body formation and miner-
alization in the upper crust of the Earth. However, convective instability of three-
dimensional geological fault zone systems has not been well studied so far. Since
geological fault zones and their surrounding rocks are favorable locations for ore
body formation and mineralization to take place, it is important to gain a theoretical
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insight into convective flow structures in three-dimensional geological fault zones
when they are heated uniformly from below.

The study of convective instability in fluid-saturated porous media was initiated
by Horton and Rogers (1945) as well as Lapwood (1948) about one-half century
ago. Since then, a large number of publications have been produced on this partic-
ular research topic. Nield and Bejan (1992) as well as Phillips (1991) have summa-
rized the related research results in their books. Although research on the general
aspects of the topic is extensive, it is very limited with respect to convective instabil-
ity within three-dimensional geological fault zones when they are heated uniformly
from below. In this regard, a geological fault zone is usually represented by a ver-
tically oriented thin finite slab, which is comprised of fluid-saturated porous media.
The large and small vertical surfaces of the slab are called the sidewalls and end
walls, respectively. Beck (1972) and Zebib and Kassoy (1977) first solved the prob-
lem without considering the sidewall heat loss, so their solution is of little value for
a vertically oriented geological fault. Considering the sidewall heat loss, Lowell and
Shyu (1978) as well as Murphy (1979) used the Galerkin and simplified methods to
obtain approximate solutions, which may only be used to qualitatively judge some
kinds of convective flow structures in the system. To overcome the shortcomings
of the approximate solutions presented by Lowell and Shyu (1978) as well as Mur-
phy (1979), Kassoy and Cotte (1985) used the linear stability approach to produce
asymptotic solutions for the above system. Since the asymptotic solutions are only
valid when the thickness of the fault approaches zero, it is impossible to use such
asymptotic solutions to predict the different critical Rayleigh numbers, under which
different convective flow structures, such as two-dimensional slender-circle convec-
tive flow, three-dimensional standard convective flow and three-dimensional finger-
like convective flow, may occur because the critical Rayleigh numbers of these flows
are very close to each other, especially when the fault thickness to height ratio is
very small. Therefore, exact solutions for the system must be developed so that dif-
ferent convective flow structures can be predicted exactly in a three-dimensional
fluid-saturated geological fault zone system. The main purpose of this chapter is to
develop these solutions for different critical Rayleigh numbers. This then enables
different convective flow structures to be predicted based on the Rayleigh number
of the fault system.

9.1 Statement of the Problem

We consider a three-dimensional fluid-saturated geological fault zone where the
thickness is much smaller than both its length and height, as shown in Fig. 9.1.
The fault zone is assumed to be much more permeable than the surrounding rocks.
Numerical simulations (Zhao et al. 2006c) have demonstrated that if the permeabil-
ity of the fault zone is three orders of magnitude higher than that of the surrounding
rocks, the resulting convective pore-fluid flow in the surrounding rocks is much
smaller than that in the fault zone, so that the interaction between the fault zone and
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Fig. 9.1 Geometry of the
problem

H3

H2 

H1

y

x
0

z 

the surrounding rocks is negligible, from a theoretical analysis point of view. Thus,
the fault zone is separated from the surrounding rocks in the following theoretical
analysis. The length of the fault may be infinite in the x direction, but we consider
the size of convection cells as H1 in this direction so that insulated and imperme-
able boundary conditions can be added at both x = 0 and x = H1. In the thickness
direction, both the geothermal gradient and a hydrostatic pore-fluid pressure gradi-
ent are considered and, therefore, both these gradient conditions need to be added
at both y = 0 and y = H2. This means that any perturbation due to temperature
within the geological fault zone has little influence on the initial thermal and flow
pattern distributions of the surrounding rocks. It is assumed that the fault zone is
uniformly heated from below so that constant temperature and impermeable bound-
ary conditions are added at both y = 0 and y = H3. In order to facilitate the following
theoretical analysis, the material of the fault zone is assumed to be a homogeneous
and isotropic porous medium. If Darcy’s Law is used to describe pore-fluid flow and
the Oberbeck-Boussinesq approximation is employed to describe a change in pore-
fluid density due to a change in pore-fluid temperature, the governing equations of
natural convection for incompressible fluid in a steady state can be expressed as

�u
�x

+
�v
�y

+
�w
�z

= 0, (9.1)

u =
Kx

μ

(
−�P

�x
+ρ f gx

)
, (9.2)

v =
Ky

μ

(
−�P

�y
+ρ f gy

)
, (9.3)

w =
Kz

μ

(
−�P

�z
+ρ f gz

)
, (9.4)

ρ f 0cp

(
u

�T
�x

+ v
�T
�y

+w
�T
�z

)
= λex

�2T
�x2 +λey

�2T
�y2 +λez

�2T
�z2 , (9.5)

ρ f = ρ f 0[1−βT (T −T0)], (9.6)

λex = φλ f x +(1−φ)λsx, λey = φλ f y +(1−φ)λsy, λez = φλ f z +(1−φ)λsz,
(9.7)
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where u, v and w are the velocity components of the pore-fluid in the x, y and z
directions, respectively; P is the pore-fluid pressure; T is the temperature of the
crustal material; Kx, Ky and Kz are the permeabilities of the porous material in the
x, y and z directions, respectively; μ is the dynamic viscosity of the pore-fluid; ρ f is
the density of the pore-fluid; ρ f 0 and T0 are the reference density and temperature;
λ f x and λsx are the thermal conductivities of the pore-fluid and rock mass in the x
direction; λ f y and λsy are the thermal conductivities of the pore-fluid and rock mass
in the y direction; λ f z and λsz are the thermal conductivities of the pore-fluid and
rock mass in the z direction; cp is the specific heat of the pore-fluid; gx, gy and gz are
the gravity acceleration components in the x, y and z directions, and φ and βT are
the porosity of the crustal material and the thermal volume expansion coefficient of
the pore-fluid.

For a homogeneous and isotropic porous medium, the following expressions
exist:

Kx = Ky = Kz = K0, (9.8)

λex = λey = λez = λe0, (9.9)

where K0 is the permeability of the porous medium, and λe0 is the thermal conduc-
tivity coefficient of the porous medium.

The corresponding boundary conditions of the problem are as follows:

u = 0,
�T
�x

= 0 (x = 0 and x = H1), (9.10)

P = ρ0gz(H3 − z), T =
Tb −To

H3
(H3 − z)+T0 (y = 0 and y = H2), (9.11)

w = 0, T = Tb (z = 0), (9.12)

w = 0, T = T0 (z = H3). (9.13)

Since the perturbed temperature is much smaller than the base temperature on
the two vertical surfaces (i.e., y = 0 and y = H2), it is neglected in (9.11). However,
the effect of this small perturbed temperature due to convective flow can be offset by
using the effective thickness of the fault zone. Generally, the effective thickness of
the fault zone should be a little larger than the physical thickness of the fault zone.

In order to simplify (9.1), (9.2), (9.3), (9.4) and (9.5), the following dimension-
less variables are defined:

x∗ =
x
H

, y∗ =
y
H

, z∗ =
z
H

, (9.14)

H∗
1 =

H1

H
, H∗

2 =
H2

H
, H∗

3 =
H3

H
, (9.15)

u∗ =
Hρ f 0cp

λe0
u, v∗ =

Hρ f 0cp

λe0
v, w∗ =

Hρ f 0cp

λe0
w, (9.16)

T ∗ =
T −T0

ΔT
, P∗ =

K0ρ f 0cp

μλe0
(P−P0), (9.17)
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where x∗, y∗ and z∗ are the dimensionless coordinates; u∗, v∗ and w∗ are the dimen-
sionless velocity components in the x, y and z directions, respectively; H∗

1 , H∗
2 and

H∗
3 are the dimensionless length, thickness and height of the fault zone; P∗ and T ∗

are the dimensionless excess pressure and temperature; K0 is the reference medium
permeability coefficient in the horizontal direction; λe0 is the reference conductiv-
ity coefficient of the porous medium; ΔT = Tb − T0 is the temperature difference
between the bottom and top boundaries of the porous medium; H is the reference
length, and P0 is the static pore-fluid pressure. In the following analysis, H3 is cho-
sen as the reference length (i.e., H = H3).

Substituting the above dimensionless variables into (9.1), (9.2), (9.3), (9.4) and
(9.5) yields:

�u∗

�x∗
+

�v∗

�y∗
+

�w∗

�z∗
= 0, (9.18)

u∗ = −�P∗

�x∗
+RaT T ∗e1, (9.19)

v∗ = −�P∗

�y∗
+RaT T ∗e2, (9.20)

w∗ = −�P∗

�z∗
+RaT T ∗e3, (9.21)

u∗
�T ∗

�x∗
+ v∗

�T ∗

�y∗
+w∗ �T ∗

�z∗
=

�2T ∗

�x∗2 +
�2T ∗

�y∗2 +
�2T ∗

�z∗2 , (9.22)

where e is a unit vector, and e = e1i + e2j + e3k for a general three-dimensional
problem. For the particular problem considered in this chapter, e1 = e2 = 0 and
e3 = 1 since the acceleration due to gravity is only exerted on the vertical direction.
RaT is the Rayleigh number, defined as

RaT =
(ρ f 0cp)ρ f 0gβΔT K0H

μλe0
. (9.23)

Using the dimensionless variables, the corresponding boundary conditions can
be expressed as

u∗ = 0,
�T ∗

�x∗
= 0 (x∗ = 0 and x∗ = H∗

1 ), (9.24)

P∗ = 0, T ∗ = (1− z∗) (y∗ = 0 and y∗ = H∗
2 ), (9.25)

w∗ = 0, T ∗ = 1 (z∗ = 0), (9.26)

w∗ = 0, T = T0 (z∗ = 1), (9.27)

The linear stability theory has been used to deal with the convective instability
problem in fluid-saturated porous media for many years (Horton and Rogers 1945;
Lapwood 1948; Nield and Bejan 1992; Phillips 1991), but an analytical solution
to the convective instability problem in three-dimensional geological fault zones
is seldom considered. Although Kassoy and Cotte (1985) used the linear stability
approach to produce asymptotic solutions for a problem similar to that stated here,
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their solutions are only valid when the thickness of the fault zone tends to zero.
Therefore, it is desirable to develop exact analytical solutions for this problem so
that the onset conditions of the convective flow in the three-dimensional fault zones
can be rigorously investigated.

From the mathematical point of view, the study of convective instability in a
three-dimensional fault zone, in essence, involves finding nontrivial solutions for the
partial differential equations expressed in (9.18), (9.19), (9.20), (9.21) and (9.22),
with the given boundary conditions in (9.24), (9.25), (9.26) and (9.27). The condi-
tions, under which the nontrivial solutions for the partial differential equations can
exist, are the onset conditions for pore-fluid convective flow in the fault zone, while
the nontrivial solutions are the convective flow modes of the fault zone. These onset
conditions are often expressed as non-dimensional parameters, that is, the critical
Rayleigh numbers, of the system. The nontrivial solution corresponding to the min-
imum critical Rayleigh number is called the fundamental convective flow mode of
the system. Keeping this in mind, conventional linear stability theory is used, in
this chapter, to deal with convective instability in a three-dimensional fault zone
in a much more flexible, but logical manner. However, the linear stability analysis
is only valid in determining the onset of the convective instability because, once
the convective instability occurs, the perturbation approach fails and the nonlinear
terms in the governing equations cannot be neglected. In this regard, if only the lin-
ear stability theory is used the first triggered convective flow mode of the system
is meaningful. Since the geometric characteristics of a three-dimensional fault zone
are that the lengths of the fault zone in both the thickness and the height directions
(i.e., H2 and H3) are finite, and that the ratio of fault thickness to height (i.e., H2

/
H3)

is very small, convective flow structure is mainly controlled by the fault height to
thickness ratio. As a result, several different convective flow structures may have
the same chance to occur, even if the linear stability theory is used. This means that
linear stability theory can be used to predict several different convective flow struc-
tures because the differences in the critical Rayleigh numbers are very small, as will
be demonstrated in the next section.

9.2 Analysis of Convective Instability of the Fault Zone System

This section investigates the condition under which three-dimensional convective
flow can take place in the fault zone system defined in the previous section. Specifi-
cally, the main purpose is to determine the critical Rayleigh number, for which con-
vective instability within the fault zone system can be initiated. This can be achieved
using the linear stability analysis below.

If the hydrothermal system is subjected to a small disturbance, then the total
solutions for the dimensionless velocities, temperature and pressure of the system
can be expressed as

u∗t = u∗ + û∗, v∗t = v∗ + v̂∗, w∗
t = w∗ + ŵ∗, (9.28)

T ∗
t = T ∗ + T̂ ∗, P∗

t = P∗ + P̂∗, (9.29)
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where u∗t , v∗t , w∗
t , T ∗

t and P∗
t are the total solutions of the problem; u∗, v∗, w∗, T ∗

and P∗ are the base solutions prior to the onset of the convective pore-fluid flow, and
û∗, v̂∗, ŵ∗, T̂ ∗ and P̂∗ are the corresponding perturbation solutions due to the small
disturbance.

From the linear stability theory point of view, if and only if all these perturbation
solutions are zero, then the base solutions of the problem are stable. This implies that
the stability of the base solutions for the hydrothermal system considered here can
be judged by examining the existence of the non-zero solutions for û∗, v̂∗, ŵ∗, T̂ ∗

and P̂∗.
Note that the small disturbance may be caused by a small tremor of the Earth.

From the classical perturbation theory, we can introduce a small parameter, ε , to
express the consequence of this small disturbance. For example, using this small
parameter, it is possible to express the resulting perturbation velocity, temperature
and pressure of a system in the following form:

û∗ = ε(û∗(0) + ε û∗(1) + ε2û∗(2) + . . . . . .), (9.30)

v̂∗ = ε(v̂∗(0) + ε v̂∗(1) + ε2v̂∗(2) + . . . . . .), (9.31)

ŵ∗ = ε(ŵ∗(0) + εŵ∗(1) + ε2ŵ∗(2) + . . . . . .), (9.32)

P̂∗ = ε(P̂∗(0) + εP̂∗(1) + ε2P̂∗(2) + . . . . . .), (9.33)

T̂ ∗ = ε(T̂ ∗(0) + εT̂ ∗(1) + ε2T̂ ∗(2) + . . . . . .). (9.34)

Substituting (9.28), (9.29), (9.30), (9.31), (9.32), (9.33) and (9.34) into (9.18),
(9.19), (9.20), (9.21) and (9.22), considering the linear perturbation terms only (i.e.,
ε terms only) and then dropping the unnecessary superscripts, we obtain the follow-
ing eigenvalue problem:

�û∗

�x∗
+

�v̂∗

�y∗
+

�ŵ∗

�z∗
= 0, (9.35)

û∗ = −�P̂∗

�x∗
+RaT T̂ ∗e1, (9.36)

v̂∗ = −�P̂∗

�y∗
+RaT T̂ ∗e2, (9.37)

ŵ∗ = −�P̂∗

�z∗
+RaT T̂ ∗e3, (9.38)

û∗
�T ∗

�x∗
+ v̂∗

�T ∗

�y∗
+ ŵ∗ �T ∗

�z∗
=

�2T̂ ∗

�x∗2 +
�2T̂ ∗

�y∗2 +
�2T̂ ∗

�z∗2 . (9.39)

The corresponding boundary conditions for the perturbation variables can be ex-
pressed as

û∗ = 0,
�T̂ ∗

�x∗
= 0 (x∗ = 0 and x∗ = H∗

1 ), (9.40)

P̂∗ = 0, T̂ ∗ = 0 (y∗ = 0 and y∗ = H∗
2 ), (9.41)
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ŵ∗ = 0, T̂ ∗ = 0 (z∗ = 0 and z∗ = 1). (9.42)

Inserting (9.36), (9.37) and (9.38) into (9.35) yields the following equation:

�2P̂∗

�x∗2 +
�2P̂∗

�y∗2 +
�2P̂∗

�z∗2 −RaT
�T̂ ∗

�z∗
= 0. (9.43)

Substituting (9.36), (9.37) and (9.38) into (9.39) yields another equation as fol-
lows:

�P̂∗

�z∗
−RaT T̂ ∗ =

�2T̂ ∗

�x∗2 +
�2T̂ ∗

�y∗2 +
�2T̂ ∗

�z∗2 . (9.44)

For the given fault zone configuration shown in Fig. 9.1, since the lengths of the
fault zone in all three directions are finite, the well-known separation of variables
method in mathematics is useful to solve this problem. As we mentioned before,
the study of convective instability in a three-dimensional fault zone involves find-
ing nontrivial solutions for the partial differential equations expressed in (9.43) and
(9.44), with the prescribed boundary conditions in (9.40), (9.41) and (9.42). The
conditions, under which the nontrivial solutions for the partial differential equations
can exist, are the onset conditions of the pore-fluid convective flow in the fault zone,
and the nontrivial solutions are the convective flow structures of the fault zone. This
means that any useful mathematical method can be used to solve the convective
instability problem considered in this study as long as the onset conditions of the
pore-fluid convective flow can be found. From the general expression of the derived
onset conditions, we need to find the most possible onset condition, which corre-
sponds to the minimum critical Rayleigh number of the system in the conventional
linear stability analysis sense. For the above reasons, the solutions that satisfy the
boundary conditions in the x∗ and y∗ directions are expressed as follows:

P̂∗ = f (z∗)cos(k∗1x∗)sin(k∗2y∗), (9.45)

T̂ ∗ = θ(z∗)cos(k∗1x∗)sin(k∗2y∗), (9.46)

where k∗1 and k∗2 are the dimensionless wave numbers in the x∗ and y∗ directions,
respectively:

k∗1 =
mπ
H∗

1
(m = 1,2,3, . . . . . .), (9.47)

k∗2 =
nπ
H∗

2
(n = 1,2,3, . . . . . .). (9.48)

Using (9.45) and (9.46), the boundary conditions in the z∗ direction can be ex-
pressed as

RaT θ(z∗)− f ′(z∗) = 0 (z∗ = 0 and z∗ = 1), (9.49)

θ(z∗) = 0 (z∗ = 0 and z∗ = 1). (9.50)
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Substituting (9.45) and (9.46) into (9.43) yields the following equation:

−(k∗2
1 + k∗2

2 ) f (z∗)+ f ′′(z∗)−RaT θ ′(z∗) = 0. (9.51)

Inserting (9.45) and (9.46) into (9.44) yields another equation as follows:

f ′(z∗) = (RaT − k∗2
1 − k∗2

2 )θ(z∗)+θ ′′(z∗). (9.52)

Differentiating (9.52) with respect to z∗ twice yields the following equation:

f ′′′(z∗) = (RaT − k∗2
1 − k∗2

2 )θ ′′(z∗)+θ (IV )(z∗). (9.53)

Differentiating (9.51) with respect to z∗ once yields another equation as follows:

−(k∗2
1 + k∗2

2 ) f ′(z∗)+ f ′′′(z∗)−RaT θ ′′(z∗) = 0. (9.54)

Substituting (9.52) and (9.53) into (9.54) yields the following equation:

θ (IV )(z∗)−2(k∗2
1 + k∗2

2 )θ ′′(z∗)− (k∗2
1 + k∗2

2 )(RaT − k∗2
1 − k∗2

2 )θ(z∗) = 0. (9.55)

Inserting (9.52) into (9.49) yields the boundary conditions depending on
θ only:

(k∗2
1 + k∗2

2 )θ(z∗)−θ ′′(z∗) = 0 (z∗ = 0 and z∗ = 1), (9.56)

The following function satisfies the boundary conditions expressed in (9.50) and
(9.56).

θ(z∗) = sin(k∗3z∗), (9.57)

where k∗3 is the dimensionless wave number in the x∗3 direction:

k∗3 = qπ (q = 1,2,3, . . . . . .). (9.58)

Substituting (9.57) into (9.55) yields the critical Rayleigh numbers for different
convection modes as follows:

RaT =
(k∗2

1 + k∗2
2 + k∗2

3 )2

k∗2
1 + k∗2

2

. (9.59)

Substituting the dimensionless wave number into (9.59) yields the following
equation:

RaT =

[(
mH3
H1

)2
+

(
nH3
H2

)2
+q2

]2

π2

(
mH3
H1

)2
+

(
nH3
H2

)2 . (9.60)

Note that (9.60) is a general expression for the critical Rayleigh numbers of the
three-dimensional fault zone. These critical Rayleigh numbers describe the onset
conditions of the convective flows in the system. Since the linear stability concept is
used in the analysis, it is important to find the minimum critical Rayleigh number,
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which corresponds to the most possible convective flow structure in the system. For
the given fault zone configuration shown in Fig. 9.1, since the lengths of the fault
zone in all three directions are finite, we can set m = n = q = 1 and allow H1 to vary
in the fault length direction. This means that both the height and the thickness of
the fault zone are fixed as constants, but the length of the fault zone can change as a
variable of the system. Through selecting the appropriate value of H1, the minimum
critical Rayleigh number of the system can be determined. For this purpose, the
critical Rayleigh number for three-dimensional convection flow to take place can be
expressed as

Ra3D
T critical =

[(
H3
H1

)2
+(H3

H2
)2 +1

]2

π2

(
H3
H1

)2
+

(
H3
H2

)2 . (9.61)

Differentiating (9.61) with respect to H1 yields the following equation:

dRa3D
T critical

dH1
= −2π2

H2
3

{[(
H3
H1

)2
+(H3

H2
)2

]2

−1

}

H3
1

[(
H3
H1

)2
+(H3

H2
)2

]2 ≈−2π2 H2
3

H3
1

. (9.62)

Note that (9.62) is valid when H3
/

H2 >> 1 and H1
/

H2 >> 1, which are true
for the fault zone considered in this study. Equation (9.62) indicates that the min-
imum critical Rayleigh number of the system is obtained only when H1 tends to
infinity. In such a case, the wave number in the x direction is zero and convec-
tive flow is essentially two-dimensional convective flow, which is the degenerated
case of three-dimensional convective flow. We call this kind of convective flow
two-dimensional slender-circle convective flow with the following minimum crit-
ical Rayleigh number:

Ra2D
T critical =

[(
1+

(
H3
H2

)2
]2

π2

(
H3
H2

)2 . (9.63)

Equation (9.62) also indicates that when H3
/

H1 << 1, the critical Rayleigh num-
ber of the system changes very slowly so that the differences between the corre-
sponding critical Rayleigh numbers and the minimum critical Rayleigh number of
the system are very small. This means that several convective flow structures may
have almost the same chance to take place in the system. Since the three-dimensional
standard convective flow structures are only of interest here, we consider the case
of H3 = H1 and determine the corresponding critical Rayleigh number below. If
H3 = H1, we have the following equation:

Ra3D
T critical =

[(
2+

(
H3
H2

)2
]2

π2

1+
(

H3
H2

)2 . (9.64)
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Thus, the critical Rayleigh number for three-dimensional standard convective
flow to occur is proportional to the ratio of the fault height to thickness.

The relative difference between Ra3D
T critical and Ra2D

T critical can be expressed from
(9.63) and (9.64) as follows:

Δ̄1 =
Ra3D

T critical −Ra2D
T critical

Ra2D
T critical

=
(H3

H2
)4 +(H3

H2
)2 −1[(

H3
H2

)2
+1

]3 . (9.65)

Since H3
/

H2 >> 1, (9.65) can be approximately written as

Δ̄1 ≈
(

H2

H3

)2

. (9.66)

Equation (9.66) indicates that the relative difference between Ra3D
T critical and

Ra2D
T critical is a second-order small quantity, provided that H2

/
H3 is very small, just

as considered in this study. For example, if H2
/

H3 = 0.01, the relative difference
between Ra3D

T critical and Ra2D
T critical is about 0.0001, which is a very small number

indeed. In this case, Ra3D
T critical ≈ 98716.2, while Ra2D

T critical ≈ 98726.1. The rela-
tive difference between Ra3D

T critical and Ra2D
T critical approaches zero as H2

/
H3 tends

to zero.
Similarly, for the three-dimensional finger-like convective structure, the corre-

sponding critical Rayleigh number can be expressed as

Ra3D− f inger
T critical =

[
(m2 +

(
H3
H2

)2
+1

]2

π2

m2 +
(

H3
H2

)2 (m ≥ 2). (9.67)

In the case of m = 3 and H2
/

H3 = 0.01, the corresponding Ra3D− f inger

T critical
≈ 98805.

Again, this value is also very close to the minimum critical Rayleigh number of
the system, Ra2D

T critical ≈ 98726.1, indicating that three-dimensional finger-like con-
vective flow can also take place in three-dimensional fault zones. As a recent nu-
merical simulation of convective flow in a vertically oriented geological fault zone
has demonstrated, three-dimensional finger-like convective flow does occur in such
systems (Rabinowicz et al. 1999).

The occurrence of three-dimensional finger-like convective flow has a signif-
icant geological implication for ore body formation and mineralization within
three-dimensional geological fault zones. Since down-temperature convective flow
may result in mineral precipitation and up-temperature convective flow may result
in mineral dissolution, periodic mineral zonation can be produced within three-
dimensional geological fault zones. Such a quasiperiodic distribution of mineraliza-
tion phenomenon has been observed in the Yilgarn ore deposits, Western Australia
(Zhao et al. 2008).
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It is noted that the following relation exists:

k∗i = kiH (i = 1,2,3), (9.68)

where ki is the dimensional wave number in the real physical system.
For the three-dimensional fault zone considered in this study, the dimensional

wave numbers are as follows:

k1 =
mπ
H1

, k2 =
nπ
H2

, k3 =
qπ
H3

. (9.69)

Finally, the dimensionless perturbation solutions for pore-fluid velocity, temper-
ature and pressure can be derived and expressed as

û∗1 = −k∗1k∗3(k
∗2
1 + k∗2

2 + k∗2
3 )

k∗2
1 + k∗2

2

sin(k∗1x∗)sin(k∗2y∗)cos(k∗3z∗), (9.70)

û∗2 =
k∗2k∗3(k

∗2
1 + k∗2

2 + k∗2
3 )

k∗2
1 + k∗2

2

cos(k∗1x∗)cos(k∗2y∗)cos(k∗3z∗), (9.71)

û∗3 = (k∗2
1 + k∗2

2 + k∗2
3 )cos(k∗1x∗)sin(k∗2y∗)sin(k∗3z∗), (9.72)

T̂ ∗ = cos(k∗1x∗)sin(k∗2y∗)sin(k∗3z∗), (9.73)

P̂∗ = cos(k∗1x∗)sin(k∗2y∗) f (z∗), (9.74)

where f (z∗) can be determined by integrating (9.52) with respect to z∗ as follows:

f (z∗) = −RaT − (k∗2
1 + k∗2

2 + k∗2
3 )

k∗3
cos(k∗3z∗). (9.75)

9.3 Possibility of Convective Flow in Geological Fault
Zone Systems

In this section, the analytical solution derived in the previous section is used to inves-
tigate the possibility of convective flow in geological fault zones. Using an idealized
geological fault zone as an illustrative example, the following parameters are used
in the subsequent analysis. For pore-fluid, dynamic viscosity is 10−3 N · s/m2; ref-
erence density is 1000kg/m3; volumetric thermal expansion coefficient is 2.07×
10−4(1/K); specific heat is 4185J/(kg ·K), and thermal conductivity coefficient is
0.6W/(m ·K). For the porous matrix, porosity is 0.1; thermal conductivity coef-
ficient is 3.35W/(m ·K); specific heat is 815J/(kg ·K); permeability is 10−12m2,
which is assumed as a representative value for a fractured environment (Berryman
and Wang 1995); height and thickness of the fault are 10 km and 0.5 km, respec-
tively, and temperature at the top and bottom is 25 ◦C and 225◦C, respectively.
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Substituting the related parameters into (9.23) yields the Rayleigh number for
the system:

RaT =
(ρ f 0cp)ρ f 0gβΔT K0H

μλe0

=
1000×4185×1000×9.8×2×10−4 ×200×10−12 ×104

10−3 ×3
≈ 5380.

(9.76)

The corresponding minimum critical Rayleigh number of the fault zone of infi-
nite length is

Ra2D
T critical =

[(
1+

(
H3
H2

)2
]2

π2

(
H3
H2

)2 =
(1+202)2π2

202 ≈ 3967.6. (9.77)

The corresponding critical Rayleigh number for three-dimensional standard con-
vective flow is

Ra3D
T critical =

[(
2+

(
H3
H2

)2
]2

π2

1+
(

H3
H2

)2 =
(2+202)2π2

1+202 ≈ 3977.5. (9.78)

In the case of m = 3, the corresponding critical Rayleigh number for three-
dimensional convective flow is

Ra3D− f inger
T critical =

[(
m2 +

(
H3
H2

)2
+1

]2

π2

m2 +
(

H3
H2

)2 =
(10+202)2π2

9+202 ≈ 4056.5. (9.79)

Because the three critical Rayleigh numbers described above are very close to
each other and RaT > Ra3D− f inger

T critical , the three kinds of convective flow have very
similar possibilities of occurring in the geological fault zone considered here.

The two-dimensional slender-circle structure of convection cells can only take
place when the length of the fault zone is infinite (i.e., H1 approaches infinite). This
means that no convection cell takes place in the x direction and the two-dimensional
slender-circle flow structure is obtained in the plane perpendicular to the x axis.
However, if the length of the fault zone is finite, the corresponding convective flow
must be three-dimensional. Even if the length of the fault zone is infinite, since
the minimum critical Rayleigh number of the system (i.e., 3967.6) for the two-
dimensional slender-circle flow structure is so close to the critical Rayleigh number
(i.e., 3977.5) for three-dimensional standard convective flow structure, the system
may have a high probability of developing a three-dimensional convective flow
structure. Since the convection modes are so close for three-dimensional convective
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flow structures, convective flow may also evolve into the three-dimensional finger-
like structure (i.e., m ≥ 2). These conclusions demonstrate the beautiful aspects of
the present analytical solution for convective instability within three-dimensional
geological fault zones, because this analytical solution is valid for any value of
the ratio of the fault height to thickness. Using the present analytical solution, the
conditions, under which different convective flow structures may occur in a three-
dimensional fault zone, can be easily determined.

Figures 9.2 and 9.3 show the theoretical fundamental mode (m = 1) and finger-
like mode (m = 3) for the perturbed pore-fluid velocity on three particular cross
sections in a pore-fluid saturated geological fault zone. The length and height of
the fault zone are 10 km, while the thickness of the fault zone is 1 km. Convective

(y = 500 m) (z = 5000 m)  

(x = 1000 m) 

Fig. 9.2 Convective flow mode in a three-dimensional fault (theoretical fundamental mode)
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(y = 500 m) (z = 5000 m) 

(x = 3300 m) 

Fig. 9.3 Convective flow mode in a three-dimensional fault (theoretical finger-like mode)

pore-fluid flow takes place strongly in the vertical direction. Indeed, the horizontal
pore-fluid velocity is negligible on both the sidewalls (i.e., y = 0 and y = H2) of
the fault zone, although a hydrostatic pore-fluid pressure gradient condition is used
in the analysis. In the case of the finger-like mode, the pore-fluid flow channeling
can be clearly observed. This pore-fluid flow channeling phenomenon can signifi-
cantly influence ore body formation and mineralization patterns within geological
fault zones.



Chapter 10
Convective Heat Transfer within
Three-Dimensional Inclined Faults
Heated from Below

Extensive studies on the governing processes behind ore body formation and min-
eralization in hydrothermal systems (Walther and Orville 1982; Etheridge et al.
1983; Garven and Freeze 1984; Bjorlykke et al. 1988; England and Thompson
1989; Deming and Nunn 1991; Hoisch 1991; Hanson 1992; Yardley and Bottrell
1992; Zhao et al. 1998a, 2000c, 2002b; Gow et al. 2002; Ord et al. 2002; Schaubs
and Zhao 2002) have demonstrated that pore-fluid flow in permeable rocks in the
upper crust of the Earth is a very complicated phenomenon, from both physical
and chemical points of view. Generally, pore-fluid flow can be generated by the
following main processes: mechanical process, thermal process, chemical process,
or any combination thereof. In the case of mechanical process, pore-fluid flow is
mainly caused by a pressure gradient in the porous basin and is, therefore, called
pressure gradient driven flow. Pore-fluid flow induced by uneven topography of a
basin and pore-fluid flow squeezed out of a sedimentary basin by shortening of the
upper crust of the Earth are typical examples of pressure gradient driven flow. In
the case of thermal process, pore-fluid flow is dominantly caused by the tempera-
ture gradient in porous rocks. Thus, it is often called temperature gradient driven
flow (Horton and Rogers 1945; Lapwood 1948; Phillips 1991; Nield and Bejan
1992; Zhao et al. 1997, 1999a, 2001a; Lin et al. 2003). Note that, in order to gen-
erate temperature gradient driven flow in the upper crust with a flat top and bot-
tom to the system, the temperature gradient of the hydrothermal system must be
equal to or greater than a critical temperature gradient. Pore-fluid flow driven by
the critical or supercritical temperature gradient in a hydrothermal system is of-
ten called convective pore-fluid flow (Horton and Rogers 1945; Lapwood 1948;
Phillips 1991; Nield and Bejan 1992; Zhao et al. 1997, 1999a, 2001a; Lin et al.
2003). This kind of convective pore-fluid flow is significant for ore body forma-
tion and mineralization in hydrothermal systems from the following three points
of view.

(1) Since the pore-fluid flows circularly within hydrothermal systems, the con-
sumption of the pore-fluid is a minimum within the system.

(2) Since convective pore-fluid flow comprises a circular flow regime, it is an ef-
fective and efficient tool for mixing different chemical species within the hy-
drothermal system.

C. Zhao et al., Convective and Advective Heat Transfer in Geological Systems, 161
c© Springer-Verlag Berlin Heidelberg 2008



162 10 Convective Heat Transfer within Three-Dimensional Inclined Faults

(3) Convective pore-fluid flow may result in the highly localized distribution of
temperature in a hydrothermal system. This provides a favorable condition un-
der which highly localized, high-grade, giant ore deposits may be formed.

For these reasons, the study of convective pore-fluid flow instability in geological
systems has attracted ever-increasing attention in recent years. In the case of chem-
ical process, a chemical species concentration gradient can be the main driven force
to trigger pore-fluid flow. This kind of pore-fluid flow is called chemical species
concentration gradient driven flow.

The study of convective instability of pore-fluid flow in fluid-saturated porous
media was initiated by Horton and Rogers (1945) as well as Lapwood (1948) about
one-half century ago. Since then, a large number of publications have been produced
on this particular research topic. Nield and Bejan (1992) as well as Phillips (1991)
have summarized the related research results in their books. Although research on
the general aspects of the topic is extensive, it is very limited with respect to con-
vective instability of pore-fluid flow in three-dimensional geological fault zones
when they are heated uniformly from below (Beck 1972; Zebib and Kassoy 1977;
Shyu 1978; Murphy 1979; Kassoy and Cotte 1985). In particular, Tournier et al.
(2000) used a numerical method, which considers pore-fluid convection in the fault
plane and the heat conduction in the rocks surrounding the fault zone using two-
dimensional and three-dimensional computational models, respectively, to investi-
gate the onset of natural convection of pore-fluid in vertical fault planes. In order to
couple the two-dimensional convection simulation with the three-dimensional heat
conduction simulation, they assumed that the fault zone is very thin and that the
pore-fluid flow is slow within the fault plane, so that the temperature field within
the fault zone is smooth enough to be correctly described by their computational
model. It is well-known that, compared with analytical solutions, numerical solu-
tions usually have the following intrinsic drawbacks. Since it is often impossible to
use numerical solutions to investigate the behaviors of a system within the whole
parameter space, which is usually of infinite nature, numerical solutions can only
produce some kind of specific solution and conclusion for a particular problem.
Therefore, in order to draw general conclusions for a problem, analytical solutions,
if possible and available, are always superior to numerical solutions. More impor-
tantly, since numerical solutions always involve approximations, numerical solu-
tions are often of doubtable value unless they are well validated and verified. On
the other hand, analytical solutions to benchmark problems provide an important,
and often unique, tool for validating and verifying the numerical methods and al-
gorithms, which may then be extended to solve the same kind of problem, but with
complicated geometries and complex material properties. For the above reasons, an
analytical solution is always preferred for investigating the onset condition of natu-
ral convective pore-fluid flow in three-dimensional geological fault zones. Since the
asymptotic solutions presented by Kassoy and Cotte (1985) are only valid when the
thickness of the fault zone approaches zero, it is impossible to use such asymptotic
solutions to predict the different critical Rayleigh numbers, under which different
convective flow structures can take place in the system. Keeping this in mind, Zhao
et al. (2003a, b) have recently derived exact solutions for different critical Rayleigh
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numbers. Using these exact solutions, different convective flow structures can be ac-
curately defined in vertically oriented geological fault zones that contain geothermal
gradients at both sidewalls.

Although significant achievements have been made in the study of convective
flow instabilities in pore-fluid saturated porous media, theoretical work to study
the onset condition of convective flow in an inclined three-dimensional geological
fault zone that is heated uniformly from below has yet to be done. Since inclined
three-dimensional geological fault zones are much more common than their verti-
cally oriented counterpart, the main purpose of this chapter is to derive the exact
critical conditions which can be used to examine convective flow instability in such
inclined three-dimensional geological fault zones. However, from the mathematical
analysis point of view, considering inclined three-dimensional fault zones with any
arbitrary values of the dip angle results in some serious difficulties in deriving the
critical onset condition for convective pore-fluid flow. Compared with the previous
study (Zhao et al. 2003a), a combination of the variable separation method and the
integration elimination method has been used, in logical and flexible ways, to derive
the critical onset condition for convective pore-fluid flow in such a system (Zhao
et al. 2004).

10.1 Governing Equations of the Problem

Consider an inclined and fluid-saturated three-dimensional geological fault zone; its
thickness is much smaller than both its length and height, as shown in Fig. 10.1. The
fault zone with dip angle, ϕ , is assumed to be much more permeable than the sur-
rounding rocks. Numerical simulations (Zhao et al. 2006c) have demonstrated that
if the permeability of the fault zone is three orders of magnitude higher than that

g 

H

H2

H3

z

H1

y

ϕ

0

x

Fig. 10.1 Geometry of the problem



164 10 Convective Heat Transfer within Three-Dimensional Inclined Faults

of the surrounding rocks, the resulting convective pore-fluid flow in the surround-
ing rocks is much smaller than that in the fault zone, indicating that the interaction
between the fault zone and its surrounding rocks is negligible. Thus, from a theo-
retical analysis point of view, the fault zone can be separated from the surrounding
rocks in the following theoretical analysis. Under this assumption, only the fault
zone with appropriate boundary conditions is considered to derive the analytical so-
lutions. Hence, the global rotation with respect to the different far fields does not
affect the theoretical analysis carried out in this investigation.

The length of the inclined fault zone may be infinite in the x direction, but we
consider a finite length for the fault zone of H1 in this direction so that insulated
and impermeable boundary conditions can be applied at both x = 0 and x = H1.
In the thickness direction, both the geothermal and background pore-fluid pressure
gradients are considered and, therefore, the geothermal gradient and the background
pore-fluid pressure gradient before convection need to be applied at both y = 0 and
y = H2. This means that any perturbation of the temperature within the geological
fault zone has little influence on the initial thermal and pore-fluid pressure distribu-
tions of the surrounding rocks. It is assumed that the inclined fault zone is uniformly
heated from below so that constant temperature and impermeable boundary condi-
tions are applied at both z = 0 and z = H3. In order to facilitate the forthcoming
theoretical analysis, the material of the inclined fault zone is assumed to be ho-
mogeneous and isotropic. If Darcy’s Law is used to describe pore-fluid flow and the
Oberbeck-Boussinesq approximation is employed to describe a change in pore-fluid
density due to a change in pore-fluid temperature, the governing equations of natural
convection for incompressible fluid in a steady state can be expressed as

�u
�x

+
�v
�y

+
�w
�z

= 0, (10.1)

u =
K0

μ

(
−�P

�x
+ρ f gx

)
, (10.2)

v =
K0

μ

(
−�P

�y
+ρ f gy

)
, (10.3)

w =
K0

μ

(
−�P

�z
+ρ f gz

)
, (10.4)

ρ f 0cp

(
u

�T
�x

+ v
�T
�y

+w
�T
�z

)
= λe0

(
�2T
�x2 +

�2T
�y2 +

�2T
�z2

)
, (10.5)

ρ f = ρ f 0[1−βT (T −T0)], (10.6)

λe0 = φλ f 0 +(1−φ)λs0, (10.7)

where u, v and w are the velocity components of the pore-fluid in the x, y and z di-
rections, respectively; P and T are pressure and temperature of the porous material;
ρ f 0 and T0 are the reference density of pore-fluid and the reference temperature of
the inclined fault zone; μ and cp are the dynamic viscosity and specific heat of the
pore-fluid; λ f 0 and λs0 are the thermal conductivity coefficients for the pore-fluid
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and solid matrix in the inclined fault zone; φ and β are the porosity of the inclined
fault zone and the thermal volume expansion coefficient of the pore-fluid; K0 is the
permeability of the inclined fault zone, and and gx, gy and gz are the gravity accel-
eration components in the x, y and z directions.

The corresponding boundary conditions of the problem to be considered are as
follows:

u = 0,
�T
�x

= 0 (x = 0 and x = H1), (10.8)

P = Pb, T =
Tb −T0

H
(zsinϕ)+T0 (y = 0 and y = H2), (10.9)

w = 0, T = T0 (z = 0), (10.10)

w = 0, T = Tb (z = H3), (10.11)

where Pb is the background pore-fluid pressure before convection occurs.
Although the onset of natural convective flow in a thin layer of the similar ge-

ometry as that considered in this chapter has been theoretically investigated in pre-
vious studies (Caltagirone 1975 and 1976; Caltagirone and Bories 1985; Ormond
and Genthon 1993; Chevalier et al. 1999), the boundary conditions of the prob-
lem considered here are different from those in these previous studies. Since both
the critical Rayleigh number and the corresponding pore-fluid convective mode are
strongly dependent on the boundary conditions of a problem, the solutions for these
two characteristics can be different for a problem with the same geometry, but with
different boundary conditions. Nield and Bejan (1992) presented a useful compar-
ison for the onset conditions of natural convective flow in a horizontal layer with
different boundary conditions. For example, for a horizontal layer with constant
temperature and impermeable boundary conditions at both the top and the bottom
of the layer, the critical Rayleigh number of the system is 4π2 and the corresponding
convective flow mode is of a closed cellular shape. However, for a horizontal layer
with constant temperature and impermeable boundary conditions at the bottom of
the layer, but with constant temperature and permeable boundary conditions at the
top of the layer, the critical Rayleigh number of the system is reduced to 27.1 and
the corresponding convective flow mode is of an open U-shape. Since the tempera-
ture at the sidewalls (i.e., at both y = 0 and y = H2) of the fault zone was assumed to
be constant, the related previous results (Caltagirone 1975, 1976; Caltagirone and
Bories 1985; Ormond and Genthon 1993; Chevalier et al. 1999 and the references
therein) have extensively demonstrated that the predominant convective flow modes
can only take place in the planes perpendicular to the fault plane. Although some
preliminary analytical results (Lowell and Shyu 1978; Murphy 1979; Kassoy and
Cotte 1985; Tournier et al. 2000) indicated possible predominant convective flow
modes occurring in the fault plane, theoretical work has recently studied the onset
condition of convective flow in an inclined three-dimensional geological fault zone
that is a pore-fluid saturated porous medium and has been heated uniformly from
below (Zhao et al. 2004).

Another important characteristic of this study is that the thickness of the fault
zone is finite. This means that variations of both the temperature and the pore-fluid
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velocity in the thickness direction (i.e., in the y direction) are considered in deriving
the analytical solutions for the onset condition of convective flow in the inclined
fault zone. Indeed, as demonstrated later in this chapter, both the temperature and
the pore-fluid velocity vary in the thickness direction of the fault zone, even though
the predominant convective flow modes occur in the fault plane. This new recogni-
tion, again, sets this study apart from the previous studies (Lowell and Shyu 1978;
Murphy 1979; Kassoy and Cotte 1985; Tournier et al. 2000).

The assumption of a geothermal gradient at the sidewalls (i.e., at both y = 0 and
y = H2) of the fault zone implies that the perturbed temperature within the fault
zone is much smaller than the initial temperature at the sidewalls and, therefore, the
effect of the perturbed temperature within the fault zone on the initial temperature
at the sidewalls can be neglected. Nevertheless, the above-mentioned effect can be
considered by using the effective thickness of the fault zone. The effective thickness
of the fault zone should be a little larger than the physical thickness of the fault
zone. This may be considered as a limitation of the analytical solutions presented in
this study.

In order to simplify (10.1), (10.2), (10.3), (10.4) and (10.5), the following dimen-
sionless variables are defined:

x∗ =
x

Hr
, y∗ =

y
Hr

, z∗ =
z

Hr
, (10.12)

H∗
1 =

H1

Hr
, H∗

2 =
H2

Hr
, H∗

3 =
H3

Hr
, (10.13)

u∗ =
Hρ f 0cp

λe0
u, v∗ =

Hρ f 0cp

λe0
v, w∗ =

Hρ f 0cp

λe0
w, (10.14)

T ∗ =
T −T0

ΔT
, P∗ =

K0ρ f 0cp

μλe0
(P−Pb), (10.15)

where x∗, y∗ and z∗ are the dimensionless coordinates; u∗, v∗ and w∗ are the di-
mensionless velocity components in the x, y and z directions, respectively; H∗

1 , H∗
2

and H∗
3 are the dimensionless length, thickness and height of the fault zone; P∗

and T ∗ are the dimensionless excess pressure and temperature; ΔT is the tempera-
ture difference between the bottom and top boundaries of the porous medium; Hr

is a reference length and pb is the background pore-fluid pressure before the occur-
rence of convection. In the following analysis, H3 is chosen as the reference length
(i.e., Hr = H3).

Substituting the above dimensionless variables into (10.1), (10.2), (10.3), (10.4)
and (10.5) yields

�u∗

�x∗
+

�v∗

�y∗
+

�w∗

�z∗
= 0, (10.16)

u∗ = −�P∗

�x∗
+RaT T ∗e1, (10.17)
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v∗ = −�P∗

�y∗
+RaT T ∗e2, (10.18)

w∗ = −�P∗

�z∗
+RaT T ∗e3, (10.19)

u∗
�T ∗

�x∗
+ v∗

�T ∗

�y∗
+w∗ �T ∗

�z∗
=

�2T ∗

�x∗2 +
�2T ∗

�y∗2 +
�2T ∗

�z∗2 , (10.20)

where e is a unit vector and e = e1i + e2 j + e3k for a general three-dimensional
problem. For the particular problem considered in this chapter, e1 = 0, e2 = cosϕ
and e3 = sinϕ since the acceleration due to gravity is only exerted on the vertical
direction that is not parallel to either the y or z axis (see Fig. 10.1). RaT is the
Rayleigh number, defined as

RaT =
(ρ f 0cp)ρ f 0gβΔT K0Hr

μλe0
. (10.21)

Using the dimensionless variables, the corresponding boundary conditions can
be expressed as

u∗ = 0,
�T ∗

�x∗
= 0 (x∗ = 0 and x∗ = H∗

1 ), (10.22)

P∗ = 0, T ∗ = z∗ (y∗ = 0 and y∗ = H∗
2 ), (10.23)

w∗ = 0, T ∗ = 1 (z∗ = 0), (10.24)

w∗ = 0, T ∗ = 0 (z∗ = 1). (10.25)

10.2 Analysis of Convective Instability of Pore-Fluid Flow
in an Inclined Three-Dimensional Fault Zone System

This section investigates the condition under which three-dimensional convective
flow can take place in the inclined fault zone system defined in the previous section.
Specifically, the main purpose is to determine the critical Rayleigh number, with
which convective instability can be explored. From linear stability theory, the first-
order perturbation equations of the hydrothermal system considered here can be
expressed as follows:

�û∗

�x∗
+

�v̂∗

�y∗
+

�ŵ∗

�z∗
= 0, (10.26)

û∗ = −�P̂∗

�x∗
+RaT T̂ ∗e1, (10.27)

v̂∗ = −�P̂∗

�y∗
+RaT T̂ ∗e2, (10.28)
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ŵ∗ = −�P̂∗

�z∗
+RaT T̂ ∗e3, (10.29)

ŵ∗ �T ∗

�z∗
=

�2T̂ ∗

�x∗2 +
�2T̂ ∗

�y∗2 +
�2T̂ ∗

�z∗2 , (10.30)

where û∗, v̂∗ and ŵ∗ are the dimensionless perturbation velocity components (i.e.,
dimensionless convective velocity components), and P̂∗ and T̂ ∗ are the dimension-
less perturbation pressure and temperature. Note that �T ∗/�z∗ = 1 in (10.30).

The corresponding boundary conditions for the perturbation variables can be ex-
pressed as

û∗ = 0,
�T̂ ∗

�x∗
= 0 (x∗ = 0 and x∗ = H∗

1 ), (10.31)

P̂∗ = 0, T̂ ∗ = 0 (y∗ = 0 and y∗ = H∗
2 ), (10.32)

ŵ∗ = 0, T̂ ∗ = 0 (z∗ = 0 and z∗ = 1). (10.33)

Inserting (10.27), (10.28) and (10.29) into (10.26) yields the following equation:

�2P̂∗

�x∗2 +
�2P̂∗

�y∗2 +
�2P̂∗

�z∗2 +RaT
�T̂ ∗

�y∗
cosϕ +RaT

�T̂ ∗

�z∗
sinϕ = 0. (10.34)

Substituting (10.27), (10.28) and (10.29) into (10.30) yields another equation as
follows:

−�P̂∗

�z∗
−RaT T̂ ∗ sinϕ =

�2T̂ ∗

�x∗2 +
�2T̂ ∗

�y∗2 +
�2T̂ ∗

�z∗2 . (10.35)

Given the fault zone configuration shown in Fig.10.1, since the lengths of the
fault zone in all three directions are finite, the well-known variable separation
method in mathematics is useful to solve this problem. The aim of this analysis of
convective instability in an inclined three-dimensional fault zone is, in essence, to
find the existence conditions of nontrivial solutions for the partial differential equa-
tions expressed in (10.34) and (10.35), with the prescribed boundary conditions in
(10.31), (10.32) and (10.33). The conditions under which such nontrivial solutions
for the partial differential equations can exist are the onset conditions for pore-fluid
convective flow in the inclined fault zone; the nontrivial solutions represent the con-
vective flow structures of the fault zone. From the general expression of the onset
conditions, we need to find the most probable onset condition, which corresponds
to the minimum critical Rayleigh number of the system in the conventional linear
stability analysis sense. For the above reasons, a combination of the variable sep-
aration method and the integration elimination method is used to derive the onset
conditions of pore-fluid convective flow. Using the variable separation method, the
solutions that satisfy the boundary conditions in the x∗ and y∗ directions are ex-
pressed as follows:

P̂∗ = A1 f (z∗)cos(k∗1x∗)sin(k∗2y∗), (10.36)

T̂ ∗ = A1θ(z∗)cos(k∗1x∗)sin(k∗2y∗), (10.37)
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where A1 is an arbitrary non-zero constant and k∗1 and k∗2 are the dimensionless wave
numbers in the x∗ and y∗ directions, respectively.

k∗1 =
mπ
H∗

1
(m = 1,2,3, . . . . . .), (10.38)

k∗2 =
nπ
H∗

2
(n = 1,2,3, . . . . . .). (10.39)

Note that since the main purpose of this chapter is to investigate the critical con-
dition under which three-dimensional fundamental convective flow may take place
in the inclined geological fault zone, the case of m = 1 and n = 1 is only considered
in the following analysis.

Using (10.36) and (10.37), the boundary conditions in the z∗ direction can be
expressed as

RaT θ(z∗)sinϕ + f ′(z∗) = 0 (z∗ = 0 and z∗ = 1), (10.40)

θ(z∗) = 0 (z∗ = 0 and z∗ = 1). (10.41)

Substituting (10.36) and (10.37) into (10.34) yields the following equation:

A1[−(k∗2
1 + k∗2

2 )sin(k∗2y∗) f (z∗)+ sin(k∗2y∗) f ′′(z∗)+ k∗2RaT cosϕ cos(k∗2y∗)θ(z∗)
+RaT sinϕ sin(k∗2y∗)θ ′(z∗)] = 0. (10.42)

Inserting (10.36) and (10.37) into (10.35) yields another equation as follows:

A1[ f ′(z∗)+(RaT sinϕ − k∗2
1 − k∗2

2 )θ(z∗)+θ ′′(z∗)] = 0. (10.43)

Differentiating (10.43) with respect to z∗ twice yields the following equation:

A1[ f ′′′(z∗)+(RaT sinϕ − k∗2
1 − k∗2

2 )θ ′′(z∗)+θ (IV )(z∗)] = 0. (10.44)

Differentiating (10.42) with respect to z∗ once yields another equation as follows:

A1[−(k∗2
1 + k∗2

2 )sin(k∗2y∗) f ′(z∗)+ sin(k∗2y∗) f ′′′(z∗)+ k∗2RaT cosϕ cos(k∗2y∗)θ ′(z∗)
+RaT sinϕ sin(k∗2y∗)θ ′′(z∗)] = 0. (10.45)

Substituting (10.43) and (10.44) into (10.45) yields the following equation:

A1{[θ (IV )(z∗)−2(k∗2
1 + k∗2

2 )θ ′′(z∗)− (k∗2
1 + k∗2

2 )(RaT sinϕ − k∗2
1

− k∗2
2 )θ(z∗)]sin(k∗2y∗)− k∗2RaT cosϕθ ′(z∗)cos(k∗2y∗)} = 0. (10.46)

Note that if the dip angle is equal to 90◦, then the last term involving the first
derivative with respect to z∗ in (10.46) vanishes. In this special case, the onset condi-
tion for convective pore-fluid flow in a vertically oriented three-dimensional geolog-
ical fault zone can be directly obtained using the variable separation method alone.
However, if the dip angle of the fault zone is not equal to 90◦, it is troublesome
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to directly obtain the onset condition for convective pore-fluid flow from (10.46)
alone. In this case, the integration elimination method needs to be used further. For
this purpose, another set of the solutions that satisfy the boundary conditions in the
x∗ and y∗ directions are expressed as follows:

P̂∗ = A2 f (z∗)cos(k∗1x∗)sin(2k∗2y∗), (10.47)

T̂ ∗ = A2θ(z∗)cos(k∗1x∗)sin(2k∗2y∗), (10.48)

where A2 is another arbitrary non-zero constant.
Substituting (10.47) and (10.48) into (10.34) and (10.35) and repeating the same

procedures as used above yields the following equation:

A2{[θ (IV )(z∗)−2(k∗2
1 +4k∗2

2 )θ ′′(z∗)− (k∗2
1 +4k∗2

2 )(RaT sinϕ − k∗2
1

−4k∗2
2 )θ(z∗)]sin(2k∗2y∗)−2k∗2RaT cosϕθ ′(z∗)cos(2k∗2y∗)} = 0.

(10.49)

Joining (10.46) and (10.49) together leads to the following equation:

2

∑
r=1

Ar{[θ (IV )(z∗)−2(k∗2
1 + r2k∗2

2 )θ ′′(z∗)− (k∗2
1 + r2k∗2

2 )(RaT sinϕ − k∗2
1

− r2k∗2
2 )θ(z∗)]sin(rk∗2y∗)− rk∗2RaT cosϕθ ′(x∗3)cos(rk∗2y∗)} = 0. (10.50)

Inserting (10.36), (10.37), (10.47) and (10.48) into (10.40) yields the boundary
conditions depending on θ only:

2

∑
r=1

Ar[(k∗2
1 + r2k∗2

2 )θ(z∗)−θ ′′(z∗)] = 0 (z∗ = 0 and z∗ = 1). (10.51)

Multiplying (10.50) by sin(k∗2y∗) and then integrating with respect to y∗ yields
the following equation:

2

∑
r=1

Ar

∫ H∗
2

0
{[θ (IV )(z∗)−2(k∗2

1 + r2k∗2
2 )θ ′′(z∗)− (k∗2

1 + r2k∗2
2 )(RaT sinϕ − k∗2

1

− r2k∗2
2 )θ(z∗)]sin(rk∗2y∗)− rk∗2RaT cosϕθ ′(z∗)cos(rk∗2y∗)}sin(k∗2y∗)dy∗ = 0.

(10.52)

Similarly, multiplying (10.50) by sin(2k∗2y∗) and then integrating with respect to
y∗ yields another equation as follows:

2

∑
r=1

Ar

∫ H∗
2

0
{[θ (IV )(z∗)−2(k∗2

1 + r2k∗2
2 )θ ′′(z∗)− (k∗2

1 + r2k∗2
2 )(RaT sinϕ − k∗2

1

− r2k∗2
2 )θ(z∗)]sin(rk∗2y∗)− rk∗2RaT cosϕθ ′(z∗)cos(rk∗2y∗)}sin(2k∗2y∗)dy∗ = 0

(10.53)
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Equations (10.52) and (10.53) can be rewritten in a matrix form as
[

a11 a12

a21 a22

]{
A1

A2

}
=

{
0
0

}
, (10.54)

where

a11 =
H∗

2

2

[
θ (IV )(z∗)−2(k∗2

1 + k∗2
2 )θ ′′(z∗)− (k∗2

1 + k∗2
2 )

(RaT sinϕ − k∗2
1 − k∗2

2 )θ(z∗)
]
, (10.55)

a12 =
4
3

RaT cosϕθ ′(z∗), (10.56)

a21 = −4
3

RaT cosϕθ ′(z∗), (10.57)

a22 =
H∗

2

2

[
θ (IV )(z∗)−2(k∗2

1 +4k∗2
2 )θ ′′(z∗)

− (k∗2
1 +4k∗2

2 )(RaT sinϕ − k∗2
1 −4k∗2

2 )θ(z∗)
]
. (10.58)

The condition, under which (10.54) has non-zero solutions (i.e., A1 and A2), re-
quires that the determinant of the matrix in the left-hand side of the equation be
equal to zero. This results in the following equation:

a11a22 −a12a21 = 0. (10.59)

Substituting (10.55), (10.56), (10.57) and (10.58) into (10.59) yields the follow-
ing equation:

H∗2
2

4
[θ (IV )(z∗)−2(k∗2

1 + k∗2
2 )θ ′′(z∗)− (k∗2

1 + k∗2
2 )(RaT sinϕ − k∗2

1 − k∗2
2 )θ(z∗)]

[θ (IV )(z∗)−2(k∗2
1 +4k∗2

2 )θ ′′(z∗)− (k∗2
1 +4k∗2

2 )(RaT sinϕ − k∗2
1 −4k∗2

2 )θ(z∗)]

+
16
9

Ra2
T cos2 ϕθ ′(z∗) = 0. (10.60)

Note that the condition, under which convective pore-fluid flow just begins in
the inclined three-dimensional geological fault zone, is called the onset condition
for convective pore-fluid flow. From a mathematical point of view, the condition
mentioned above is exactly the same as the condition under which (10.60) with the
related boundary conditions has non-zero solutions. Based on this recognition, we
can use the inverse method to derive the condition under which (10.60) with the
related boundary conditions has non-zero solution. In other words, we need to find
a non-zero solution to (10.60) first and then substitute this non-zero solution into
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(10.60) to find the expected condition. In the context of investigating convective
instability of pore-fluid in the fluid-saturated porous medium, the onset condition of
convective pore-fluid flow is often expressed using the critical Rayleigh number of
the system.

A pair of the functions, θ(z∗), that satisfy the boundary conditions expressed in
(10.41) and (10.51) are expressed as follows:

θ(z∗) = B1 sin(k∗3z∗), θ(z∗) = B2 sin(2k∗3z∗), (10.61)

where B1 and B2 are two arbitrary non-zero constants.
Clearly, (10.61) can be written into the following form:

θ(z∗) =
2

∑
s=1

Bs sin(sk∗3z∗), (10.62)

where k∗3 is the dimensionless wave number in the x∗3 direction:

k∗3 = qπ (q = 1, 2, 3, . . ....). (10.63)

Again, since the main purpose of this chapter is to investigate the critical con-
dition under which three-dimensional fundamental convective flow may take place
in the inclined geological fault zone, the case of q = 1 is only considered in the
following analysis.

Inserting (10.62) into (10.60) yields the following equation:

2

∑
s=1

Bs[G1(sz∗)sin2(sk∗3z∗)+G2(sz∗)cos2(sk∗3z∗)] = 0, (10.64)

where

G1(z∗) =
H∗2

2

4
[k∗4

3 +2(k∗2
1 + k∗2

2 )k∗2
3 − (k∗2

1 + k∗2
2 )(RaT sinϕ − k∗2

1 − k∗2
2 )]

[k∗4
3 +2(k∗2

1 +4k∗2
2 )k∗2

3 − (k∗2
1 +4k∗2

2 )(RaT sinϕ − k∗2
1 −4k∗2

2 )],
(10.65)

G2(z∗) =
16
9

k∗2
3 Ra2

T cos2 ϕ, (10.66)

G1(2z∗) =
H∗2

2

4
[16k∗4

3 +8(k∗2
1 + k∗2

2 )k∗2
3 − (k∗2

1 + k∗2
2 )(RaT sinϕ − k∗2

1 − k∗2
2 )]

[16k∗4
3 +8(k∗2

1 +4k∗2
2 )k∗2

3 − (k∗2
1 +4k∗2

2 )(RaT sinϕ − k∗2
1 −4k∗2

2 )],
(10.67)

G2(2z∗) =
64
9

k∗2
3 Ra2

T cos2 ϕ. (10.68)
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Multiplying (10.64) by sin2(k∗3z∗) and then integrating with respect to z∗ yields
the following equation:

2

∑
s=1

Bs

∫ 1

0
{[G1(sz∗)sin2(sk∗3z∗)+G2(sz∗)cos2(sk∗3z∗)]}sin2(k∗3z∗)dz∗ = 0. (10.69)

Similarly, multiplying (10.69) by sin2(2k∗3z∗) and then integrating with respect
to z∗ yields:

2

∑
s=1

Bs

∫ 1

0
{[G1(sz∗)sin2(sk∗3z∗)+G2(sz∗)cos2(sk∗3z∗)]}sin2(2k∗3z∗)dz∗ = 0.

(10.70)
Equations (10.69) and (10.70) can be rewritten in a matrix form as

[
b11 b12

b21 b22

]{
B1

B2

}
=

{
0
0

}
, (10.71)

where

b11 =
1
8
[G1(z∗)+3G2(z∗)], (10.72)

b12 =
1
4
[G1(2z∗)+G2(2z∗)], (10.73)

b21 =
1
4
[G1(z∗)+G2(z∗)], (10.74)

b22 =
1
8
[G1(2z∗)+3G2(2z∗)]. (10.75)

Considering the existence condition of non-zero solutions to (10.71) yields the
following equation:

F(RaT ,ϕ) = 3G1(z∗)G1(2z∗)+G2(z∗)G1(2z∗)+G1(z∗)G2(2z∗)−5G2(z∗)G2(2z∗) = 0.
(10.76)

Note that (10.76) is the characteristic equation of the Rayleigh number and the
dip angle of the three-dimensional fault zone. If ϕ = 90◦ (i.e., in the case of a verti-
cally oriented three-dimensional geological fault zone), the critical Rayleigh number
associated with a different convective mode can be derived from (10.76) exactly as
follows:

RaT critical =
(k∗2

1 + k∗2
2 + k∗2

3 )2

k∗2
1 + k∗2

2

. (10.77)

As expected, the resulting critical Rayleigh number (i.e., the one expressed in
(10.77)), which is directly derived using the variable separation method combined
with the integration elimination method in this analysis, is exactly the same as that
previously derived for a vertically oriented three-dimensional geological zone (Zhao
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et al. 2003a). This indicates that the characteristic equation of the Rayleigh num-
ber and the dip angle of the inclined three-dimensional fault zone, as expressed in
(10.76), is correct and useful for investigating convective instability of pore-fluid
flow in inclined three-dimensional geological fault systems. Since the main purpose
of this study is to derive the minimum critical Rayleigh number that is associated
with the first modal function of the system, only the first two modal functions, in-
stead of the entire Fourier series expansion, are used. Even though only the first two
exact modal functions are used, the resulting minimum critical Rayleigh number
is very accurate, as demonstrated in the case of ϕ = 90◦. However, if the critical
Rayleigh numbers associated with higher modes are of interest, more modal func-
tions or even the entire Fourier series expansion needs to be used in the theoretical
analysis.

Note that if H2 tends to infinity, the problem degenerates into a two-dimensional
one. Thus, the theoretical solution for the critical Rayleigh number in a horizontal
isotropic porous layer (Phillips 1991; Nield and Bejan 1992) can be used to validate
the current solution for this degenerated case. Substituting H2 → ∞ into (10.77)
yields the critical Rayleigh number of a value of 4π2, which is exactly the same as
the theoretical solution previously presented (Phillips 1991; Nield and Bejan 1992).

In terms of the Rayleigh number expression, the height of the fault zone (i.e., H3

in Fig. 10.1) is used as the characteristic length of the system in the above analysis.
If the thickness of the stratum (i.e., H in Fig. 10.1) is used as the characteristic length
of the system, the corresponding Rayleigh number of the system is expressed as

RaH−re f erence
T =

(ρ f 0cp)ρ0gβΔT K0H

μλe0
. (10.78)

Obviously, the following equation exists between the two Rayleigh numbers de-
fined by using different characteristic lengths for the system:

RaH−re f erence
T = RaT sinϕ. (10.79)

10.3 Effect of the Dip Angle on Convective Instability of an
Inclined Three-Dimensional Geological Fault Zone

In this section, (10.76) is used to investigate the effect of the dip angle on con-
vective instability of the inclined three-dimensional geological fault zone. Except
for a vertically oriented three-dimensional fault zone (i.e., ϕ = 90◦), it is difficult
to obtain an explicit expression for the critical Rayleigh number for an inclined
three-dimensional geological fault zone. Alternatively, (10.76) is solved numer-
ically to obtain the critical Rayleigh number for three-dimensional fundamental
convective flow in an inclined geological fault zone system. For this purpose,
m = n = q = 1, H∗

2 = 0.1 and different values of H3
/

H1 are used in the related
calculations. Equation (10.76) is valid for any of the fault thickness to height ratio
values (i.e., any values of H∗

2 ); the selection of H∗
2 = 0.1 here is only for the purpose
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of demonstrating that (10.76) can be used to obtain the critical Rayleigh number for
three-dimensional fundamental convective flow in inclined geological fault zones. It
is also noted that from a mathematical point of view, (10.76) is valid for any values
of the dip angle of the fault zone, if the boundary conditions of the problem are un-
changed. However, for small values of the dip angle of the fault zone in geological
reality, the boundary conditions considered in this study may be violated and, in this
case, further detailed study is needed to investigate the possible onset conditions for
natural convective flow.

Figure 10.2 shows the distribution of the normalized function, F∗ (Ra,ϕ), for
several different groups of dip angles for the geological fault zone. The normalized
function in this figure is defined as the ratio of the function, F(Ra,ϕ), to the corre-
sponding value, F(0, 90◦), in the case of Ra = 0 and ϕ = 90◦. It can be seen from
Fig. 10.2 that, for a given dip angle, there are at least two real roots for the related
normalized function. This indicates that three-dimensional fundamental convective
flow does exist in the inclined three-dimensional geological fault zone system. Since
the main purpose of this chapter is to investigate the effect of dip angle on the on-
set of three-dimensional fundamental convective flow in an inclined geological fault
zone system, only the smallest real root of the normalized function is of interest.
For a given dip angle, the smallest real root of the normalized function is defined as
the critical Rayleigh number for three-dimensional fundamental convective flow to
occur in the inclined three-dimensional geological fault zone.

Figure 10.3 shows the effect of the dip angle on the critical Rayleigh number for
three-dimensional fundamental convective flow structure (i.e., H3

/
H1 = 1) in the in-

clined three-dimensional geological fault zone. Obviously, if the height of the fault
zone (i.e., H3 in Fig. 10.1) is used as the characteristic length of the system, with the
decrease of the dip angle, the critical Rayleigh number for three-dimensional fun-
damental convective flow to take place increases considerably (see the correspond-
ing results marked as H3-constant in Fig. 10.3). For example, the critical Rayleigh
number for three-dimensional fundamental convective flow to take place is equal to
1016.7 in the case of ϕ = 90◦, while it increases to 1543.8 in the case of ϕ = 30◦. In
this case it indicates that a decrease in the dip angle stabilizes the fundamental con-
vective system. The geological significance of this observation is that if the height
of the inclined fault zone (i.e., H3 in Fig. 10.1) is kept constant, a decrease in the dip
angle of the fault zone results in a decrease in the thickness of the stratum (i.e., H
in Fig. 10.1). Since the temperature at the bottom of the inclined fault zone system
is directly proportional to the thickness of the stratum, a decrease in the thickness
of the stratum results in a decrease in the geothermal temperature at the bottom of
the inclined fault zone so that the total temperature difference between the top and
bottom of the inclined fault system decreases. Since the total temperature difference
between the top and bottom of the inclined fault system is the main driving force to
trigger convective pore-fluid flow in the system, a decrease in the total temperature
difference between the top and bottom of the system reduces the possibility for the
convective pore-fluid flow to take place in the system. In other words, a decrease
in the dip angle of the inclined fault zone stabilizes three-dimensional fundamental
convective flow.
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Fig. 10.2 Distribution of the dimensionless function

However, if the thickness of the stratum (i.e., H in Fig. 10.1) is kept constant,
a decrease in the dip angle destabilizes three-dimensional fundamental convective
flow in inclined three-dimensional geological fault zones (see the corresponding re-
sults marked as H-constant in Fig. 10.3). For instance, the critical Rayleigh number
for three-dimensional fundamental convective flow to take place is equal to 1016.7
in the case of ϕ = 90◦, while it decreases to 771.9 in the case of ϕ = 30◦. In this
case, a decrease in the dip angle of the fault zone has the following two significant
effects. First, it results in an increase in the height of the fault zone, indicating that
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Fig. 10.3 Effect of the dip
angle on the critical Rayleigh
number for three-dimensional
fundamental convective flow
(H3/H1 = 1)
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the space for the convective pore-fluid flow to take place becomes larger. Secondly,
it results in a decrease of the gravity component in the fault height direction (i.e., in
the z direction), indicating that the gravity effect becomes less important in this par-
ticular direction. Due to these two significant effects, a decrease in the dip angle of
the inclined fault zone destabilizes three-dimensional fundamental convective flow
in the inclined three-dimensional geological fault zone.

If we define HR = H3
/

H1 and set HR equal to 3, 5 and 7, respectively, the effect
of the dip angle on the critical Rayleigh number for three-dimensional convective
flow to take place in each of the different shapes for the inclined three-dimensional
geological fault zone may also be examined using (10.76). Figure 10.4 shows the
results when the height of the fault zone (i.e., H3 in Fig. 10.1) is used as the char-
acteristic length of the system. It is clear that with an increase in the dip angle,
the corresponding critical Rayleigh number for convective flow to take place de-
creases for the three different shaped geological fault zones. This further confirms
that if the height of the fault zone (i.e., H3 in Fig. 10.1) is used as the character-
istic length of the system, a decrease in the dip angle stabilizes convective flow in
inclined three-dimensional geological fault zones, even though the inclined three-
dimensional geological fault zone may have different shapes (i.e., different values
of H3

/
H1). Another important phenomenon, which can be derived from the results

in Fig. 10.4, is that for a given dip angle, the value of the critical Rayleigh number
increases as the value of H3

/
H1 increases. This means that a slender shape for the

inclined fault zone relatively reduces the possibility for convective pore-fluid flow
to take place in the system, compared with inclined three-dimensional geological
fault zones with more equant shapes (i.e., H3

/
H1 = 1).

With an inclined geological fault zone taken as an illustrative example, we
can examine the possibility of convective flow. These parameters were used in
the following examples. For the pore-fluid, dynamic viscosity is 10−3 N · s/m2;
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Fig. 10.4 Effect of the dip
angle on the critical Rayleigh
number arising from different
values of HR = H3/H1
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reference density is 1000kg/m3; volumetric thermal expansion coefficient is 2.07×
10−4(1/K); specific heat is 4185J/(kg ·K), and thermal conductivity coefficient is
0.6W/(m ·K). For the porous matrix, porosity is 0.1; thermal conductivity coeffi-
cient is 3.35W/(m ·K); specific heat is 815J/(kg ·K); permeability is 2×10−12 m2;
height and thickness of the inclined fault zone are 5 km and 0.5 km, respectively;
temperature at the top and bottom is 25◦C and 125◦C, respectively, and the dip
angle of the fault zone is 50◦.

Substituting the related parameters into (10.21) yields the Rayleigh number for
the system:

RaT =
(ρ f 0cp)ρ f 0gβΔT K0Hr

μλe0

=
10002 ×4185×9.8×2.07×10−4 ×200×10−12 ×5×103

10−3 ×3.08
≈ 2756.5.

(10.80)

As can be seen from Figs. 10.3 and 10.4, in the case of ϕ = 50◦, the correspond-
ing critical Rayleigh numbers are 1204.8, 1289.7, 1456.5 and 1699.9 for H3

/
H1 = 1,

3, 5 and 7, respectively. Because RaT > RaT critical for all four of these cases,
three-dimensional fundamental convection flow can take place in the inclined three-
dimensional geological fault zone for the four different shapes considered here.



Chapter 11
Double-Diffusion Driven Convective
Heat Transfer within Three-Dimensional
Vertical Faults Heated from Below

In a fluid-saturated porous medium with stagnant pore-fluid, heat can be transferred
in both the pore-fluid and the matrix through thermal diffusion, while chemical
species can only be transported in the pore-fluid through chemical species diffu-
sion. Since at least the upper part of the Earth’s crust is usually considered as a
fluid-saturated porous medium, the onset of convective flow of stagnant pore-fluid
within the Earth’s crust has been an important topic in the field of geoscience for
many years (Horton and Rogers 1945; Lapwood 1948; Phillips 1991; Nield and
Bejan 1992; Zhao et al. 1997, 1999a). If the onset of convective flow of the stagnant
pore-fluid is driven by either thermal diffusion or chemical species diffusion sepa-
rately, the resulting convective flow is referred to as either thermal diffusion driven
convective flow or chemical species diffusion driven convective flow. However, if
the onset of convective flow of stagnant pore-fluid depends on both thermal diffusion
and chemical species diffusion simultaneously, the resulting convective flow is re-
ferred to as double-diffusion driven convective flow. In the case of double-diffusion
driven convective flow, the diffusion of chemical species can have two important,
but different effects: namely stabilization or destabilization of the convective flow,
when compared with thermal diffusion driven convective flow alone. If the concen-
tration of dense chemical species at the top of the system is greater than that at the
bottom (i.e., cold saline fluid is located above relatively hot fresh water), diffusion
of chemical species enhances the possibility of thermal diffusion driven convec-
tive flow alone and, therefore, destabilizes the resulting convective flow. However,
if the concentration of dense chemical species at the top of the system is smaller
than that at the bottom (i.e., hot saline fluid is located under relatively cold fresh
water), diffusion of chemical species reduces the possibility of thermal diffusion
driven convective flow alone and, therefore, stabilizes the resulting convective flow.

The double-diffusion driven convective flow problem, in which the density of
pore-fluid varies with both temperature and chemical species concentrations, even-
tually belongs to a class of variable density flow problems in pore-fluid saturated
porous media. This kind of problem has been encountered in many scientific and
engineering fields. For example, in geoenvironmental engineering, the diffusion and
dispersion of buried industrial waste and nuclear waste in soil and/or rock masses
are typical problems of this kind. In exploration geosciences, ore body formation
and mineralization in the upper crust of the Earth can also be closely associated
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with this kind of problem. Although a considerable amount of research has been
carried out on double-diffusion driven convective flow instability problems in a
large block of pore-fluid saturated porous medium with similar dimensions in two
or three dimensions (Nield and Bejan 1992; Alavyoon 1993; Gobin and Bennacer
1994; Nguyen et al. 1994; Nithiarasu et al. 1996; Goyeau et al. 1996; Mamou et al.
1998; Zhao et al. 2000c), little, if any, research exists on double-diffusion driven
convective flow instability problems in a three-dimensional pore-fluid saturated ge-
ological fault zone. Since there is clear evidence that many ore deposits are located
around and within geological fault zones, there is a clear need to investigate double-
diffusion driven convective instability in a three-dimensional fault zone, so that the
basic physical process behind ore body formation and mineralization can be further
understood. Thus, the main purpose of the present study is to gain theoretical in-
sight into double-diffusion driven convective flow instability in three-dimensional
geological fault zones when they are heated uniformly from below.

In terms of convective instability in three-dimensional fluid-saturated geologi-
cal fault zones, previous research in this particular field has concentrated mainly on
thermal diffusion driven convective flow problems (Beck 1972; Zebib and Kassoy
1977; Lowell and Shyu 1978; Murphy 1979; Kassoy and Cotte 1985). In addition,
Zhao et al. (2003b) have recently presented the exact solutions for the same system
so that the onset of thermal diffusion driven convective flow can be predicted ex-
actly in a three-dimensional fluid-saturated geological fault zone system. The main
purpose of this chapter is to develop the exact solutions for critical Rayleigh num-
bers, so that the onset of double-diffusion driven convective flow can be accurately
identified in three-dimensional fault systems (Zhao et al. 2005b).

11.1 Governing Equations of the Problem

Consider a three-dimensional fluid-saturated geological fault zone; its thickness is
much smaller than both its length and height, as shown in Fig. 11.1. The fault zone is
assumed to be much more permeable than the surrounding rocks. Through numeri-
cal simulations (Zhao et al. 2006c), it has been demonstrated that if the permeability

Fig. 11.1 Geometry of the
problem
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of the fault zone is three orders of magnitude higher than that of the surrounding
rocks, then the resulting convective pore-fluid flow in the surrounding rocks is much
smaller than that in the fault zone, indicating that the interaction between the fault
zone and its surrounding rocks is negligible. Thus, the fault zone can be separated
from the surrounding rocks in the following theoretical analysis.

The length of the fault may be infinite in the x direction, but we consider the size
of convection cells as H1 in this direction so that insulated and impermeable bound-
ary conditions can be added at both x = 0 and x = H1. In the thickness direction the
following conditions exist: a geothermal gradient, a chemical species concentration
gradient and the baselevel pore-fluid pressure gradient that is very close to a hydro-
static pore-fluid pressure gradient before convection develops. Therefore, these con-
ditions need to be added at both y = 0 and y = H2. This means that any perturbation
due to both temperature and chemical species concentration within the geological
fault zone has little influence on the initial thermal, chemical species and pore-fluid
pressure distributions of the surrounding rocks. It is assumed that the fault zone is
uniformly heated from below so that constant temperature and impermeable bound-
ary conditions are added at both z = 0 and z = H3. In addition, a constant chemical
species concentration boundary condition is applied at both z = 0 and z = H3.

In conventional analyses of convective flow instability problems, the system is
assumed to be in a steady state. The basic characteristic of the steady state is that
all the variables in the system do not evolve with time and, therefore, they are time-
independent. In order to investigate the stability of a steady state system, the conven-
tional method used in stability analysis is to perturb the system slightly and discover
its stability characteristics in a time evolution frame. Because of this consideration
of perturbation evolution with time, the conventional method can be called the tran-
sient state perturbation method. The slightly perturbed system must have one of the
following three reactions. If the system returns to the initial steady state, the system
is said to be stable. If it remains in the slightly perturbed state, the system is said
to be neutral or marginal. However, if the disturbance is amplified and the slightly
perturbed system evolves into some different state, the system loses its initial steady
state and, therefore, is said to be unstable. It is important to note that the neutral or
marginal state of a system belongs to a steady state so that all the variables do not
evolve with time in the system. Thus, if the onset of convective flow is the only issue
of interest, we can use the neutral steady state of a system directly to derive the onset
condition under which the system starts to lose its initial steady state condition.

From a mathematical point of view, the study of convective instability, in essence,
consists of finding a nontrivial bifurcation solution for an initial steady state system.
The state of the initial system is usually described by simultaneous partial differ-
ential equations and appropriate boundary conditions. The condition under which a
nontrivial bifurcation solution for the partial differential equations can exist is the
onset condition of the convective pore-fluid flow in the initial steady state system.
This onset condition is often expressed by a non-dimensional parameter, namely the
critical Rayleigh number of the system. The nontrivial solution corresponding to the
minimum critical Rayleigh number is called the fundamental convective flow mode
of the system. This means that any useful mathematical methods can be used to
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solve the convective instability problem as long as the onset condition for pore-fluid
convective flow can be found. Keeping this in mind, the steady state perturbation
method in which the neutral steady state system is considered can be used in a very
flexible, but logical way to derive the onset condition for convective pore-fluid flow
in hydrothermal systems (Zhao et al. 1997, 1999a). This allows the onset condition
for convective pore-fluid flow in a hydrothermal system to be directly derived with-
out considering time-dependent terms in the governing partial differential equations
of the system. The use of the steady state perturbation method in deriving the onset
condition for convective pore-fluid flow can be justified as follows. Since the neu-
tral or marginal state of a system is a steady state, not only does the total steady
state solution of the system exist, but such a solution can also be divided into the
following two parts: first, the original steady state solution before convection initi-
ates and, secondly, the slightly perturbed steady state solution due to the initiation
of convection. From a mathematical point of view, no matter how small the slight
perturbation is, it gives a nontrivial steady state bifurcation solution for the system
in the neutral steady state. This shows that we can use the neutral steady state of a
system to derive the onset condition, under which a slight perturbation can be main-
tained in the neutral steady state of the system. Mathematically, previous studies
(Zhao et al. 1997) have shown that the transient state perturbation method and the
steady state perturbation method result in identical solutions for the onset condition
of convective pore-fluid flow in a hydrothermal system.

In order to facilitate the following theoretical analysis, the material comprising
the fault zone is assumed to be homogeneous and isotropic. If Darcy’s Law is used to
describe pore-fluid flow and the Oberbeck-Boussinesq approximation is employed
to describe a change in pore-fluid density arising from a change in both the pore-
fluid temperature and chemical species concentration, the governing equations for
the natural convection of incompressible fluid in a neutral steady state can be ex-
pressed as

�u
�x

+
�v
�y

+
�w
�z

= 0, (11.1)

u =
K0

μ

(
−�P

�x
+ρ f gx

)
, (11.2)

v =
K0

μ

(
−�P

�y
+ρ f gy

)
, (11.3)

w =
K0

μ

(
−�P

�z
+ρ f gz

)
, (11.4)

ρ f 0cp

(
u

�T
�x

+ v
�T
�y

+w
�T
�z

)
= λe0

(
�2T
�x2 +

�2T
�y2 +

�2T
�z2

)
, (11.5)

u
�C
�x

+ v
�C
�y

+w
�C
�z

= De0

(
�2C
�x2 +

�2C
�y2 +

�2C
�z2

)
, (11.6)
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ρ f = ρ f 0[1−βT (T −T0)+βC(C−C0)], (11.7)

λe0 = φλ f 0 +(1−φ)λs0, (11.8)

De0 = φD0, (11.9)

where u, v and w are the velocity components of the pore-fluid in the x, y and z
directions, respectively; P, T and C are pressure, temperature and chemical species
concentration; ρ f 0, T0 and C0 are the reference density of pore-fluid, reference tem-
perature of the medium and reference concentration of the chemical species; μ and
cp are the dynamic viscosity and specific heat of the pore-fluid; λ f 0 and λs0 are
the thermal conductivity coefficients for the pore-fluid and solid matrix in the fault
zone; φ and βT are the porosity of the porous rock and the thermal volume expan-
sion coefficient of the pore-fluid; D0 is the diffusivity of the chemical species; βC

is the concentration expansion coefficient of the chemical species; K0 is the perme-
ability of the fault zone, and gx, gy and gz are the gravity acceleration components
in the x, y and z directions.

The corresponding boundary conditions are as follows:

u = 0,
�T
�x

= 0,
�C
�x

= 0 (x = 0 and x = H1), (11.10)

P = Pbase, T =
Tb −To

H3
(H3 − z)+T0, C =

Cb −Co

H3
(H3 − z)+C0

(y = 0 and y = H2), (11.11)

w = 0, T = Tb, C = Cb (z = 0), (11.12)

w = 0, T = T0, C = C0 (z = H3). (11.13)

C0 > Cb indicates that the concentration of chemical species is relatively high at
the top surface of the system. On the contrary, C0 < Cb indicates that the concentra-
tion of chemical species is relatively low at the top surface of the system.

The base solutions for the above steady state system before convection is initiated
can be derived and expressed as follows:

ubase = vbase = wbase = 0, (11.14)

Tbase =
Tb −To

H3
(H3 − z)+T0, (11.15)

Pbase = ρ f 0g(H3 − z)− 1
2

(
Tb −T0

H3
βT − Cb −Co

H3
βC

)
ρ f 0g(H3 − z)2, (11.16)
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Cbase =
Cb −Co

H3
(H3 − z)+C0, (11.17)

where ubase, vbase and wbase are the base solutions for the Darcy velocity component
in the x, y and z directions before convection is initiated; Pbase, Tbase and Cbase are
the base solutions for the pressure, temperature and chemical species concentration
before convection is initiated, respectively, and g is the acceleration due to gravity
in the vertical direction. Since the positive direction of the gravity acceleration (g)
is in the downward direction, gz = −g in the derivation of the above base solutions.

In order to simplify (11.1), (11.2), (11.3), (11.4), (11.5) and (11.6), the following
dimensionless variables are defined:

x∗ =
x
H

, y∗ =
y
H

, z∗ =
z
H

, (11.18)

H∗
1 =

H1

H
, H∗

2 =
H2

H
, H∗

3 =
H3

H
, (11.19)

u∗ =
Hρ f 0cp

λe0
u, v∗ =

Hρ f 0cp

λe0
v, w∗ =

Hρ f 0cp

λe0
w, (11.20)

T ∗ =
T −T0

ΔT
, C∗ =

C−C0

ΔC
, (11.21)

P∗ =
K0ρ f 0cp

μλe0
(P−P0), (11.22)

where x∗, y∗ and z∗ are the dimensionless coordinates; u∗, v∗ and w∗ are the dimen-
sionless velocity components in the x, y and z directions, respectively; H∗

1 , H∗
2 and

H∗
3 are the dimensionless length, thickness and height of the fault zone; P∗, T ∗ and

C∗ are the dimensionless pressure, temperature and chemical species concentration;
ΔT and ΔC are the temperature and chemical species concentration differences be-
tween the bottom and top boundaries of the porous medium, respectively; H1, H2

and H3 are the length, thickness and height of the fault zone; H is a reference length;
P0 is the reference static pore-fluid pressure and this reference pressure in the porous
medium has a hydrostatic pressure gradient. This means that P−P0 is the excessive
pore-fluid pressure of the system. In the following analysis, H3 is chosen as the
reference length (i.e., H = H3).

Substituting the above dimensionless variables into (11.1), (11.2), (11.3), (11.4),
(11.5) and (11.6) yields

�u∗

�x∗
+

�v∗

�y∗
+

�w∗

�z∗
= 0, (11.23)

u∗ = −�P∗

�x∗
+RaT T ∗e1 −NRaTC∗e1, (11.24)

v∗ = −�P∗

�y∗
+RaT T ∗e2 −NRaTC∗e2, (11.25)
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w∗ = −�P∗

�z∗
+RaT T ∗e3 −NRaTC∗e3, (11.26)

u∗
�T ∗

�x∗
+ v∗

�T ∗

�y∗
+w∗ �T ∗

�z∗
=

�2T ∗

�x∗2 +
�2T ∗

�y∗2 +
�2T ∗

�z∗2 , (11.27)

u∗
�C∗

�x∗
+ v∗

�C∗

�y∗
+w∗ �C∗

�z∗
=

1
Le

(
�2C∗

�x∗2 +
�2C∗

�y∗2 +
�2C∗

�z∗2

)
, (11.28)

where e is a unit vector and e = e1i + e2j + e3k for a general three-dimensional
problem. For the particular problem considered in this chapter, e1 = e2 = 0 and
e3 = 1 since the gravity acceleration is only exerted on the vertical direction. RaT

is the Rayleigh number due to thermal diffusion only and N is the buoyancy ratio
of the chemical species concentration to the temperature. Le is the Lewis number of
the system. These dimensionless numbers are defined as

RaT =
(ρ f 0cp)ρ f 0gβT ΔT K0H

μλe0
, N =

βCΔC
βT ΔT

, Le =
λe0

De0ρ f 0cp
. (11.29)

In some hydrothermal systems within the upper crust of the Earth the thermal
diffusion scale is much larger than the chemical species diffusion scale so the Lewis
number of the system is a large one in this analysis. This may result in some prob-
lems in the numerical analysis of the double-diffusion driven convective instability
problem. From the physical point of view, this problem belongs to a multi-scale
physical problem. Although numerical analysis may often meet some difficulty in
dealing with a multi-scale physical problem, theoretical analysis can avoid the dif-
ficulty because it is the parameters rather than the specific numbers that are consid-
ered in such a purely theoretical analysis. This is the well-known advantage of using
the analytical method and the reason why an analytical solution is always superior
to a numerical solution for a given problem.

Using the dimensionless variables, the corresponding boundary conditions can
be expressed as

u∗ = 0,
�T ∗

�x∗
= 0,

�C∗

�x∗
= 0 (x∗ = 0 and x∗ = H∗

1 ), (11.30)

P∗ = P∗
base, T ∗ = (1− z∗), C∗ = (1− z∗) (y∗ = 0 and y∗ = H∗

2 ),
(11.31)

w∗ = 0, T ∗ = 1, C∗ = 1 (z∗ = 0), (11.32)

w∗ = 0, T ∗ = 0, C∗ = 0 (z∗ = 1). (11.33)

It is noted that from a mathematical point of view, the study of double-diffusion
driven convective instability in three-dimensional fault zones is, in essence, an
exercise to find nontrivial solutions for the partial differential equations expressed
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in (11.23), (11.24), (11.25), (11.26), (11.27) and (11.28), with the given boundary
conditions in (11.30), (11.31), (11.32) and (11.33). The conditions, under which the
nontrivial solutions for the partial differential equations can exist, are the onset con-
ditions of convective pore-fluid flow in a fault zone, while the nontrivial solutions
are the convective flow modes of the fault zone. These onset conditions are often
expressed by non-dimensional parameters, such as the critical Rayleigh numbers of
the system. The nontrivial solution corresponding to the minimum critical Rayleigh
number is labeled the fundamental convective flow mode of the system. Keeping
this in mind, the steady state perturbation method, which is based on the conven-
tional linear stability theory, is used to deal with double-diffusion driven convective
instability in three-dimensional fault zones.

11.2 Analysis of Double-Diffusion Driven Convective Instability
for Three-Dimensional Fault Zones

This section will investigate the conditions under which three-dimensional double-
diffusion driven convective flow can take place in the fault zone system defined
in the previous section. Specifically, the main purpose is to determine the criti-
cal Rayleigh number. This enables the exploration of the double-diffusion driven
convective instability of the fault zone system. From linear stability theory, the first-
order perturbation equations of the hydrothermal system in the marginal steady state
can be expressed as follows:

�û∗

�x∗
+

�v̂∗

�y∗
+

�ŵ∗

�z∗
= 0, (11.34)

û∗ = −�P̂∗

�x∗
+RaT T̂ ∗e1 −NRaTĈ∗e1, (11.35)

v̂∗ = −�P̂∗

�y∗
+RaT T̂ ∗e2 −NRaTĈ∗e2, (11.36)

ŵ∗ = −�P̂∗

�z∗
+RaT T̂ ∗e3 −NRaTĈ∗e3, (11.37)

−ŵ∗ =
�2T̂ ∗

�x∗2 +
�2T̂ ∗

�y∗2 +
�2T̂ ∗

�z∗2 , (11.38)

−ŵ∗ =
1

Le

(
�2Ĉ∗

�x∗2 +
�2Ĉ∗

�y∗2 +
�2Ĉ∗

�z∗2

)
, (11.39)

where û∗, v̂∗ and ŵ∗ are the dimensionless perturbation velocity components (i.e., di-
mensionless convective velocity components), and P̂∗, T̂ ∗ and Ĉ∗ are the dimension-
less perturbation pressure, temperature and chemical species concentration.
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The corresponding boundary conditions for the perturbation variables can be ex-
pressed as

û∗ = 0,
�T̂ ∗

�x∗
= 0,

�Ĉ∗

�x∗
= 0 (x∗ = 0 and x∗ = H∗

1 ), (11.40)

p̂∗ = 0, T̂ ∗ = 0, Ĉ∗ = 0 (y∗ = 0 and y∗ = H∗
2 ), (11.41)

ŵ∗ = 0, T̂ ∗ = 0, Ĉ∗ = 0 (z∗ = 0 and z∗ = 1). (11.42)

Inserting (11.35), (11.36) and (11.37) into (11.34) yields the following equation:

�2P̂∗

�x∗2 +
�2P̂∗

�y∗2 +
�2P̂∗

�z∗2 −RaT
�T̂ ∗

�z∗
+NRaT

�Ĉ∗

�z∗
= 0. (11.43)

Substituting (11.35), (11.36) and (11.37) into (11.38) yields another equation as
follows:

�P∗

�z∗
−RaT T̂ ∗ +NRaTĈ∗ =

�2T̂ ∗

�x∗2 +
�2T̂ ∗

�y∗2 +
�2T̂ ∗

�z∗2 . (11.44)

Substituting (11.35), (11.36) and (11.37) into (11.39) yields the following
equation:

�P̂∗

�z∗
−RaT T̂ ∗ +NRaTĈ∗ =

1
Le

(
�2Ĉ∗

�x∗2 +
�2Ĉ∗

�y∗2 +
�2Ĉ∗

�z∗2

)
. (11.45)

Comparing (10.44) with (10.45) yields the following equation:

Ĉ∗ = LeT̂ ∗. (11.46)

In Fig. 11.1, since the lengths of the fault zone in all three directions is finite,
the well-known variable separation method in mathematics is useful to solve this
problem. As we mentioned before, the study of double-diffusion driven convective
instability in three-dimensional fault zones is, in essence, an attempt to find nontriv-
ial solutions for the partial differential equations expressed in (11.43), (11.44) and
(11.45), with the prescribed boundary conditions in (11.40), (11.41) and (11.42).
The conditions under which these nontrivial solutions can exist are the onset condi-
tions for double-diffusion driven convective pore-fluid flow in the fault zone, and the
nontrivial solutions correspond to double-diffusion driven convective flow structures
of the fault zone. This means that any useful mathematical method can be used to
solve the double-diffusion driven convective instability problem considered in this
study as long as the onset conditions of the double-diffusion driven convective pore-
fluid flow can be found. From the general expression of the derived onset conditions,
we need to find the minimum critical Rayleigh number of the system in the conven-
tional linear stability analysis sense. For the these reasons, the solutions that satisfy
the boundary conditions in the x∗ and y∗ directions are expressed as follows:
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P̂∗ = f (z∗)cos(k∗1x∗)sin(k∗2y∗), (11.47)

T̂ ∗ = θ(z∗)cos(k∗1x∗)sin(k∗2y∗), (11.48)

Ĉ∗ = γ(z∗)cos(k∗1x∗)sin(k∗2y∗), (11.49)

where k∗1 and k∗2 are the dimensionless wave numbers in the x∗ and y∗ directions,
respectively.

k∗1 =
mπ
H∗

1
(m = 1,2,3, . . . . . .), (11.50)

k∗2 =
nπ
H∗

2
(n = 1,2,3, . . . . . .). (11.51)

Using (11.46), (11.47), (11.48) and (11.49), the boundary conditions in the z∗

direction can be expressed as

RaT θ(z∗)−NRaT Leθ(z∗)− f ′(z∗) = 0 (z∗ = 0 and z∗ = 1), (11.52)

θ(z∗) = 0 (z∗ = 0 and z∗ = 1). (11.53)

Substituting (11.46), (11.47), (11.48) and (11.49) into (11.43) yields the follow-
ing equation:

−(k∗2
1 + k∗2

2 ) f (z∗)+ f ′′(z∗)−RaT θ ′(z∗)+NRaT Leθ ′(z∗) = 0. (11.54)

Inserting (11.46), (11.47), (11.48) and (11.49) into (11.44) yields:

f ′(z∗) = (RaT −NRaT Le− k∗2
1 − k∗2

2 )θ(z∗)+θ ′′(z∗). (11.55)

Differentiating (11.55) with respect to z∗ twice yields the following equation:

f ′′′(z∗) = (RaT −NRaT Le− k∗2
1 − k∗2

2 )θ ′′(z∗)+θ (IV )(z∗). (11.56)

Differentiating (11.54) with respect to z∗ once yields:

−(k∗2
1 + k∗2

2 ) f ′(z∗)+ f ′′′(z∗)− (RaT −NRaT Le)θ ′′(z∗) = 0. (11.57)

Substituting (11.55) and (11.56) into (11.57) yields the following equation:

θ (IV )(z∗)−2(k∗2
1 + k∗2

2 )θ ′′(z∗)− (k∗2
1 + k∗2

2 )(RaT −NRaT Le− k∗2
1 − k∗2

2 )θ(z∗) = 0.
(11.58)

Inserting (11.55) into (11.52) yields the boundary conditions depending on θ
only:

(k∗2
1 + k∗2

2 )θ(z∗)−θ ′′(z∗) = 0 (z∗ = 0 and z∗ = 1). (11.59)
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The following function satisfies the boundary conditions expressed in (11.53)
and (11.59):

θ(z∗) = Asin(k∗3z∗), (11.60)

where k∗3 is the dimensionless wave number in the z∗ direction, and A is an arbitrary
constant to be determined.

k∗3 = qπ (q = 1,2,3, . . . . . .). (11.61)

Using the sinusoidal perturbation solutions expressed by (11.47), (11.48), (11.49)
and (11.60), the original differential equations (i.e., (11.34), (11.35), (11.36), (11.37),
(11.38) and (11.39)) with the corresponding boundary conditions (i.e., (11.40),
(11.41) and (11.42)) have been converted into the following linear homogeneous
algebraic equation:

[k∗4
3 +2(k∗2

1 + k∗2
2 )k∗2

3 − (k∗2
1 + k∗2

2 )(RaT −NRaT Le− k∗2
1 − k∗2

2 )]A = 0. (11.62)

It is well-known from an elementary theorem in linear algebra that (11.62) only
has a zero solution for the arbitrary constant A, if and only if this linear homoge-
neous algebraic equation is nonsingular. However, if and only if (11.62) is singular,
this elementary theorem in linear algebra also says that this linear homogeneous
algebraic equation has non-zero solutions for the arbitrary constant A. In the latter
case, the perturbation solutions can be maintained so that the system under consid-
eration is in a neutral steady state. As a result, the total critical Rayleigh numbers for
different convection modes due to the double-diffusion can be derived and expressed
as follows:

Racritical = (RaT +RaC)critical =
(k∗2

1 + k∗2
2 + k∗2

3 )2

k∗2
1 + k∗2

2

, (11.63)

where Racritical is the total critical Rayleigh number of the system. This is the sum of
the critical Rayleigh numbers arising from thermal diffusion and chemical species
diffusion of the system. RaC is the Rayleigh number due to chemical species diffu-
sion of the system and is expressed as

RaC = −NRaT Le = −ρ f 0gβCΔCK0H

μDe0
. (11.64)

Substituting the dimensionless wave number into (11.63) yields the following
equation:

Racritical =

[(
mH3
H1

)2
+

(
nH3
H2

)2
+q2

]2

π2

(
mH3
H1

)2
+

(
nH3
H2

)2 . (11.65)

Note that (11.65) is a general expression for the total critical Rayleigh number of
the three-dimensional fault zone. If m = n = q = 1, the critical Rayleigh number for
three-dimensional standard convection flow to take place can be expressed as
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Ra3D
critical =

[(
H3
H1

)2
+

(
H3
H2

)2
+1

]2

π2

(
H3
H1

)2
+

(
H3
H2

)2 . (11.66)

If H3 = H1, (10.66) can be rewritten as

Ra3D
critical =

[
2+

(
H3
H2

)2
]2

π2

1+
(

H3
H2

)2 . (11.67)

It is clear that the critical Rayleigh number for three-dimensional standard con-
vective flow to occur is proportional to the ratio of the fault height to thickness.

Similarly, if m is considered as a variable, the corresponding critical Rayleigh
number for three-dimensional finger-like convective structure due to double-diffusion
can be expressed as

Ra3D− f inger
critical =

[
m2 +

(
H3
H2

)2
+1

]2

π2

m2 +(H3
H2

)2
(m ≥ 2). (11.68)

Figure 11.2 shows the variation of the critical Rayleigh number expressed by
(11.68) with the fault height to thickness ratio H3

/
H2. With an increase of the fault

height to thickness ratio, the critical Rayleigh number increases significantly. This
means that, for a given fault height, a decrease in the fault thickness stabilizes con-
vective flow in three-dimensional fault zones so that convective flow becomes more
and more difficult as the fault thickness becomes smaller and smaller. Although the
value of m may have some influence on the critical Rayleigh number, its overall
influence is not significant within the scope of this investigation.

The total critical Rayleigh number of the system due to double-diffusion ex-
pressed by (11.63) is dependent only on the geometry and boundary conditions of
the system, while the total Rayleigh number (i.e., Ra = RaT + RaC) of the system
due to double-diffusion expressed by (11.29) and (11.64) is mainly dependent on
the thermal dynamic properties and characteristic length of the system. Once the
total Rayleigh number of the system is equal to or greater than the correspond-
ing total critical Rayleigh number of the system, double-diffusion driven convective
flow can take place in three-dimensional fluid-saturated geological faults. Since the
total Rayleigh number of the system is the sum of the Rayleigh numbers due to
thermal diffusion and chemical species diffusion of the system, the effect of chem-
ical species diffusion on the onset of double-diffusion driven convective flow in
three-dimensional fluid-saturated geological fault zones can be straightforwardly
investigated through the relationship, Ra = RaT +RaC. If the chemical species con-
centration at the top surface of the system is greater than that at the bottom surface
(i.e., ΔC = Cb −C0 <0), then RaC >0, so the total Rayleigh number of the system
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increases. In this case, chemical species diffusion destabilizes the convective insta-
bility of the system, compared to thermal diffusion driven convective flow alone.
However, if the chemical species concentration at the top surface of the system is
smaller than that at the bottom surface of the system (i.e., ΔC = Cb −C0 >0), then
RaC < 0, so that the total Rayleigh number of the system decreases. This means
that chemical species diffusion stabilizes the convective instability of the system,
compared with thermal diffusion driven convective flow alone.

An important characteristic of three-dimensional geological fault zones is that
the total critical Rayleigh number expressed by (11.68) varies very slightly with the
convection cell number, m, in the x direction. For example, with H2

/
H3 = 0.01 the

corresponding total critical Rayleigh numbers of the system are 98726.2, 98755.7,
98805.0 for m = 1, 2 and 3, respectively. Compared with the total critical Rayleigh
number of the system in the case of m = 1, the relative differences between the
total critical Rayleigh numbers of the system are 0.04 percent and 0.09 percent
for m = 2 and 3, respectively. Such a relative difference between the total critical
Rayleigh numbers of the system diminishes with decrease in the ratio, H2

/
H3, of the

three-dimensional geological fault zone. This indicates that double-diffusion driven
convective flow modes of three-dimensional geological fault zones are very close
to each other and, as a result, the system has similar chances to pick up different
double-diffusion driven convective flow modes, especially in the case of H2

/
H3

approaching zero.

11.3 The Possibility of Double-Diffusion Driven Convective Flow
in Three-Dimensional Geological Fault Zones

In this section, the analytical solution derived in the previous section is used to
investigate the possibility of double-diffusion driven convective flow in geologi-
cal fault zones. Using an idealized geological fault zone as an illustrative exam-
ple, these parameters are used in the following analysis. For pore-fluid, dynamic
viscosity is 10−3 N · s/m2; reference density is 1000kg/m3; volumetric thermal
expansion coefficient is 2.1 × 10−4(1/K); concentration expansion coefficient is
0.001m3/kg; specific heat is 4185J/(kg · K); thermal conductivity coefficient is
0.6W/(m ·K), and diffusivity of the chemical species is 0.736×10−6 m2/s. For the
porous matrix, porosity is 0.1; thermal conductivity coefficient is 3.35W/(m ·K);
specific heat is 815J/(kg ·K); permeability is 10−12 m2; height and thickness of
the fault zone are 1 km and 0.05 km, respectively, and temperature at the top and
bottom is 20◦C and 50◦C, respectively. The approximate concentrations of the
brine (NaCl) in seawater at the top and bottom are 0.5mol/l (i.e. 29.25kg/m3)
and zero.

Substituting the related parameters into (11.29) yields the Rayleigh number of
the system due to thermal diffusion only:
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RaT =
(ρ f 0cp)ρ f 0gβT ΔT K0H

μλe0

=
1000×4185×1000×9.8×2.1×10−4 ×30×10−12 ×103

10−3 ×3.08
≈ 83.89.

(11.69)
Similarly, substituting the related parameters into (11.64) yields the Rayleigh

number of the system due to chemical species diffusion only:

RaC = −ρ f 0gβCΔCK0H

μDe0

=
1000×9.8×10−3 ×29.25×10−12 ×103

10−3 ×0.1×0.736×10−6 ≈ 3894.7.

(11.70)

Adding (11.69) and (11.70) together yields the total Rayleigh number of the sys-
tem due to double-diffusion:

Ra = RaT +RaC = 83.89+3894.7 = 3978.59. (11.71)

The corresponding total critical Rayleigh number for the three-dimensional stan-
dard convective flow is

Ra3D
critical =

[(
2+

(
H3
H2

)2
]2

π2

1+
(

H3
H2

)2 =

(
2+202

)2 π2

1+202 ≈ 3977.5. (11.72)

Because Ra > Ra3D
critical , double-diffusion driven convective flow may take place

in the three-dimensional geological fault zone considered here. However, if we con-
sidered either thermal diffusion or chemical species diffusion alone, convective flow
cannot take place. Since RaC > RaT , chemical species diffusion plays a more im-
portant role in double-diffusion driven convective instability of a shallow three-
dimensional geological fault zone. If we increase the concentration of the brine
(NaCl) at the top of the system from 0.5mol/l to 0.6mol/l, the Rayleigh number of
the system due to chemical species diffusion only becomes 4673.64, which is greater
than the corresponding total critical Rayleigh number of the three-dimensional stan-
dard convective. This implies that seawater intrusion into the surface waters of
the Earth is a potential mechanism to trigger convective flow in shallow three-
dimensional geological fault zones.

In summary, this theoretical analysis demonstrates that:

(1) Higher concentrations of chemical species at the top of three-dimensional ge-
ological fault zones can destabilize convective flow of the system, while lower
concentrations of chemical species at the top of three-dimensional geological
fault zones can stabilize convective flow of the system.

(2) The double-diffusion driven convective flow modes of three-dimensional geo-
logical fault zones are very close to each other and, therefore, the system may
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have similar chances to pick up different double-diffusion driven convective
flow modes, especially in the case where the fault thickness to height ratio ap-
proaches zero.

(3) The significant influence of chemical species diffusion on convective instability
of three-dimensional geological fault zones implies that seawater intrusion into
the surface waters of the Earth is a potential mechanism to trigger convective
flow in shallow three-dimensional geological fault zones.



Chapter 12
Convection Induced Ore Body Formation
and Mineralization within the Upper Crust
of the Earth

Convective pore-fluid flow can efficiently mix reactive fluids containing metal
species in solution within hydrothermal systems and, therefore, plays an important
role in ore body formation and mineralization in the Earth’s upper crust. Generally,
pore-fluid is the sole agent carrying metals in solution from one part of the Earth’s
crust to another. Once two or more different compositions of reactive metal car-
rying fluids meet under appropriate temperature and pressure conditions, chemical
reactions may take place and an appropriate environment for ore body formation
and mineralization is created. For instance, when fluids containing reduced sulfur
(H2S, HS−, S=, etc.) and sulfates (SO=

4 , HSO−
4 , NaSO−

4 , etc.) meet, an appropriate
pH/redox environment may be created to favor the precipitation of several miner-
als such as those containing zinc, lead and iron. Therefore, numerical modeling of
convection induced mixing processes between reactive metal carrying fluids is very
important in understanding mechanisms of ore body formation and mineralization in
hydrothermal systems in the upper crust of the Earth. From a thermodynamic point
of view, the equilibrium concentration of an aqueous metal species is a function of
temperature, pressure, space variables and other relevant aqueous species concen-
trations. Thus, it is necessary to solve a fully coupled problem between pore-fluid
flow, heat transfer, species transport and chemical reactions (including dissolution
and precipitation) in fluid-saturated hydrothermal systems in order to understand the
mineralization process.

On the geochemical modeling front, it is commonly assumed that the reactive
mineral of interest constitutes only a small fraction of the whole rock matrix and
that the solutions of aqueous metal species are in an equilibrium state, or near an
equilibrium state (Phillips 1991). Under these assumptions, the main task of con-
ventional geochemical modeling is to analyze the constituents of minerals in a rock
matrix, without directly considering fluid flow within or through the rock matrix.
That is to say, in conventional geochemical modeling, the distribution of miner-
als in porous rocks is determined from an equilibrium point of view. Thus, con-
ventional geochemical modeling is usually referred to as equilibrium geochemical
modeling. Although geochemical modeling can be used to approximately determine
the constituents of minerals in a rock matrix, it cannot be used to answer the fol-
lowing fundamental question regarding the mineralization process: Why and how
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are metals transported, precipitated and dissolved in porous rocks? To answer this
fundamental question, pore-fluid flow within and/or through permeable rocks must
be considered. It is pore-fluid flow that carries metals from one place to another
in permeable rocks. This means that the precipitation and dissolution of minerals
in hydrothermal/sedimentary basins should be considered from a dynamic, not an
equilibrium, point of view. Towards this goal, the rock alteration index (RAI), which
is defined as the dot product of the pore-fluid velocity and the temperature gradient
(Phillips 1991; Zhao et al. 1998a), has been presented to predict possible precipi-
tation and dissolution regions in hydrothermal systems. Predicting mineral precip-
itation and dissolution regions using the RAI is both approximate and qualitative
because only the temperature gradient (i.e., the influence of temperature) is consid-
ered to determine the region of ore body formation and mineralization. In order to
improve the accuracy of predicting mineral precipitation and dissolution regions,
an improved rock alteration index (IRAI) is presented to consider the dependence
of mineralization on temperature and the equilibrium concentration variation with
temperature for a particular kind of metal. The IRAI is defined as the product of
the RAI and the first derivative of the equilibrium concentration of a metal species
with respect to temperature (Zhao et al. 2000a). Although the IRAI can be used to
predict the most possible regions of precipitation and dissolution for a specific min-
eral, the prediction result is still approximate and qualitative. The reason for this is
that the kinetics of the chemical reactions related to the mineral assemblage were
neglected in the development of the IRAI. For the purpose of quantitatively predict-
ing the mineralization regions in hydrothermal systems, there is a need to further
develop mineralization theory by including the kinetics of the relevant chemical
reactions.

The mixing of reactive fluids is by no means relevant only to ore body formation
and mineralization. There are a large number of reactive fluid mixing problems
in other scientific and engineering fields. For example, in geoenviromental engi-
neering, the reclamation and rehabilitation of polluted soils by injecting a reac-
tive acid and/or base into the polluted soil site is an example of reactive fluid
mixing problems (Zhao et al. 1999d). In chemical engineering, the mixing of re-
active fluids is often used as an effective tool to produce new substances. Thus,
the general ideas and discussions presented in this chapter may be helpful in
solving reactive fluid mixing problems within other scientific and engineering
fields.

The finite element method (Zienkiewicz 1977; Zhao et al. 1994c) is used in this
section to solve reactive fluid mixing and related ore body formation and mineraliza-
tion problems. After stating the problem the related governing equations are given,
and the concept of the mineralization rate is presented and discussed. Particular
attention is paid to considering the kinetics of the reactions between reduced and
oxidized sulfur bearing fluids mixing in hydrothermal systems. Using the present
theory of the mineralized rate, the precipitation and dissolution of several metals
such as zinc, lead and iron under conditions of the mixing of sulfide and sulfate
bearing fluids in permeable rocks is considered.



12.1 Statement of the Problem and the Concept of Mineralization Rate 197

12.1 Statement of the Problem and the Concept
of Mineralization Rate

Pore-fluid flow in permeable rocks in the Earth’s upper crust is a complicated phe-
nomenon, from both the physical and chemical points of view. Although pore-fluid
flow can be generated by mechanical process, thermal process, chemical process,
or a combination of these, convective pore-fluid flow is significant for ore body for-
mation and mineralization in hydrothermal systems from the following three points
of view.

(1) Since pore-fluid flows circularly within hydrothermal systems, consumption of
the pore-fluid is a minimum within the system. This enables the convective flow
to last for relatively long periods of time, provided that the high temperature at
the base of the system is maintained.

(2) Since convective pore-fluid flow comprises a circular flow regime, it is an effec-
tive and efficient tool to mix different species within a hydrothermal system.

(3) Convective pore-fluid flow may result in the highly localized distribution of
temperature in a hydrothermal system. This provides a favorite condition under
which highly localized, high-grade, giant ore deposits may be formed.

For these reasons, the mixing of reactive metal carrying fluids is considered be-
low within a convective pore-fluid flow regime. This means that a fully coupled
problem between pore-fluid flow, heat transfer, species transport and chemical reac-
tions needs to be solved.

For the modeling of pore-fluid flow at a hydrothermal system scale, the govern-
ing equations for the problem involve the following. Darcy’s Law is used to de-
scribe pore-fluid flow in porous rocks. Fourier’s Law and Fick’s Law are used to
describe heat transfer and mass (chemical species) transport, respectively. In addi-
tion, the Oberbeck-Boussinesq approximation is employed to describe changes in
pore-fluid density arising from changes in pore-fluid temperature. Using these laws,
the corresponding governing equations for steady state pore-fluid flow, heat trans-
fer and mass (chemical species) transport in two-dimensional porous rocks can be
expressed as

�u
�x

+
�v
�y

= 0, (12.1)

u =
K0

μ

(
−�P

�x
+ρ f gx

)
, (12.2)

v =
K0

μ

(
−�P

�y
+ρ f gy

)
, (12.3)

ρ f 0cp(u
�T
�x

+ v
�T
�y

) = λe0

(
�2T
�x2 +

�2T
�y2

)
, (12.4)



198 12 Convection Induced Ore Body Formation and Mineralization

u
�Ck

�x
+ v

�Ck

�y
= De0

(
�2Ck

�x2 +
�2Ck

�y2

)
+φRk, (k = 1,2, . . .n) , (12.5)

ρ f = ρ f 0[1−βT (T −T0)], (12.6)

λe0 = φλ f 0 +(1−φ)λs0, (12.7)

De0 = φD0, (12.8)

where u and v are the velocity components of the pore-fluid in the x and y direc-
tions, respectively; P and T are pressure and temperature; Ck is the concentration
of chemical species k; ρ f 0 and T0 are the reference density of pore-fluid and the
reference temperature of the porous rock; μ and cp are the dynamic viscosity and
specific heat of the pore-fluid; λ f 0 and λs0 are the thermal conductivity coefficients
for the pore-fluid and solid matrix; φ and βT are the porosity of the porous rock and
the thermal volume expansion coefficient of the pore-fluid; D0 is the diffusivity of
the chemical species; K0 is the permeability of the porous rock; gx and gy are the
gravity acceleration components in the x and y directions, and n is the total number
of chemical species in the system.

Note that a positive value of Rk means that a certain amount of chemical species
k is added into the system due to the relevant chemical reactions, while a negative
value of Rk means that a certain amount of chemical species k is taken away from the
system due to the relevant chemical reactions. In the former case, Rk is referred to
as a source term and, in the latter case, Rk is referred to as a sink term. The specific
value of Rk is determined by the chemical reactions considered in the hydrothermal
system.

For the mixing of reactive sulfide- and sulfate-bearing fluids, the corresponding
chemical formula can be expressed, in an ionic form, as

H2S +2O2
kR⇔SO=

4 +2H+ (12.9)

where kR is the overall reaction rate constant, which is strongly dependent on tem-
perature.

For the mixing of sulfide- and sulfate-bearing fluids, the experimental rate law
has the following form (Ohmoto and Lasaga 1982):

R = kRCH2SCSO=
4

(12.10)

where R is the experimental reaction rate of the mixing between the sulfide and
sulfate fluids, and CH2S and CSO=

4
are the concentrations of the sulfide and sulfate,

respectively.
In the geochemical modeling of ore body formation and mineralization, it is

common practice to assume that the solutions of aqueous minerals are in a chem-
ical equilibrium state or near a chemical equilibrium state (Philllips 1991). This is
true for most hydrothermal systems because the process of mineralization may last
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millions of years. Even though the reaction rates between the pore-fluid and rocks
are very small, an equilibrium concentration of a mineral can be reached during
such long periods of time. If there is no pore-fluid flow in a hydrothermal system,
one can calculate the unknown concentration of a mineral using the concentrations
of the other relevant minerals and the equilibrium constant of the particular chem-
ical reaction under consideration. This is commonly called the equilibrium method
of geochemical modeling in the geoscience. However, if there is pore-fluid flow in
a hydrothermal system, the flow can transport solutions containing aqueous metal
species either from a high temperature region to a low temperature region or vice
versa. To maintain the equilibrium state of a mineral, precipitation and/or dissolu-
tion of minerals must take place in the hydrothermal system. In the following, we
will deduce the mineralization rate of a mineral in a hydrothermal system. The min-
eralization rate of a mineral is defined as the variation in the mineral weight per unit
volume rock per unit time during mineralization. Using this definition, a positive
value of the mineralization rate of a mineral means the dissolution of the mineral
in the hydrothermal system, while a negative value of the mineralization rate means
the precipitation of the mineral.

The mineralization rate of a metal can be derived from a mass conservation point
of view. For this purpose, a particular metal species (i.e., species q) is considered
in an equilibrium state and a pore-fluid flow regime. The mass (chemical species)
transport equation for this particular species reads:

u
�Ce

q

�x
+ v

�Ce
q

�y
= De0

(
�2Ce

q

�x2 +
�2Ce

q

�y2

)
+φRq, (12.11)

where Ce
q is the equilibrium concentration of species q, and Rq is the source/sink

term. Other quantities have the same meaning as defined in (12.5).
In ore body formation and mineralization problems, the diffusion term on the

right-hand side of (12.11) is usually much smaller than the advection term. Thus,
(12.11) can be approximately expressed as

MRq = φRq = u
�Ce

q

�x
+ v

�Ce
q

�y
, (12.12)

where MRq is the mineralization rate associated with species q.
Generally, the equilibrium concentration of a particular metal species is a func-

tion of temperature, pressure and other relevant chemical species as follows:

Ce
q = f (T,P,C1,C2 · ··,Cn), (12.13)

where n is the number of the relevant chemical species needed to determine the equi-
librium concentration of chemical species q in the chemical reaction. Substituting
(12.13) into (12.12) yields the following equation:
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�Ce
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�T
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�Cr

(
u

�Cr

�x
+ v

�Cr

�y

)
.

(12.14)
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The influence of temperature on the mineralization rate expressed in (12.12) can
be explained as follows. Since the equilibrium concentration of a chemical species
is strongly dependent on the local temperature, a temperature variation in a hy-
drothermal system may provide a favorite environment for mineralization to take
place. For example, the equilibrium concentration of NaCl increases with an in-
crease in temperature because NaCl’s solubility in water is dependent on temper-
ature. Thus, if a saturated NaCl solution is transported from a high temperature
region into a low temperature region by advection/convection in a hydrothermal
system, the NaCl solution will become supersaturated and, therefore, NaCl will be
precipitated in the porous rock. On the contrary, if a saturated NaCl solution is
transported from a low temperature region into a high temperature region, it will
become undersaturated and, therefore, NaCl will be dissolved from the porous rock.
The precipitation/dissolution of NaCl due to a variation in temperature can be bet-
ter demonstrated by the following experiment. Suppose we have two beakers filled
with water of different temperatures, one at a temperature of 20◦C, and the other
100◦C. First, we add NaCl to these two beakers until the NaCl solution becomes
saturated in both beakers. This step is equivalent to a NaCl solution becoming sat-
urated in porous rocks after an extended period of time. Secondly, we cool the sat-
urated NaCl solution in the beaker of the higher temperature from 100◦C to 20◦C.
As a result, NaCl is precipitated gradually as the temperature of the saturated NaCl
solution is decreased. This step is equivalent to that when a saturated NaCl solu-
tion is transported from a high temperature region into a low temperature region
by convection/advection of pore-fluid: NaCl is precipitated in the low temperature
region within the hydrothermal system. Thirdly, we heat the saturated NaCl solu-
tion in the beaker at the lower temperature from 20 ◦C to 100◦C. Then NaCl is
added to the beaker to keep the NaCl solution saturated. This step is equivalent
to when a saturated NaCl solution is transported from a low temperature region
to a high temperature region: NaCl is dissolved from the surrounding rocks in the
hydrothermal system. Equation (12.12) clearly indicates that convective pore-fluid
flow also plays an important role in ore body formation and mineralization. With-
out pore-fluid flow, the velocity of pore-fluid is zero and so is the mineralization
rate of the mineral in a hydrothermal system. In order to maintain the equilibrium
state of a metal species in a pore-fluid flow regime, precipitation and/or dissolution
of minerals must take place in the hydrothermal system. Similar discussions follow
for the influence of pressure and of other chemical species upon the mineraliza-
tion rate.

It is also important to note that the derivatives �Ce
q

/
�T , �Ce

q

/
�P, �Ce

q

/
�Cr in

(12.14) are not constants and are strongly dependent on the variables T, P and Cr.
These derivatives can be positive for some ranges of these variables, and zero or
negative for other ranges. Examples of the NaCl concentration’s influence, temper-
ature and fluid pressure upon the equilibrium concentration of Zn at a fixed pH and
redox condition are given in Murphy et al. (2008). We will return to this issue in the
examples of this chapter.
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12.2 Precipitation and Dissolution of Zinc, Lead and Iron
in Hydrothermal Systems

As application examples of the present mineralization theory, the precipitation and
dissolution of zinc, lead and iron in hydrothermal systems is considered in this
section. In the following, convection is the driver for pore-fluid flow as the carrier
of aqueous metal species in hydrothermal systems.This means that the temperature
gradient in the system must be high enough to trigger convective pore-fluid flow. On
the other hand, mixing reduced (H2S) and oxidized (SO=

4 ) fluids is assumed to cre-
ate an appropriate environment for the mineralization of zinc, lead and iron within
the hydrothermal systems.

The relevant chemical reactions describing the deposition of zinc, lead and iron
minerals can be expressed as follows:

Zn2+ +H2S ⇔ ZnS +2H+, (12.15)

Pb2+ +H2S ⇔ PbS +2H+, (12.16)

Fe2+ +H2S ⇔ FeS +2H+. (12.17)

Using the related chemical equilibrium reaction constants of these equations,
the equilibrium concentration of the corresponding metals in solution can be ex-
pressed as:

Ce
Zn2+ =

C2
H+

KZnCH2S
, (12.18)

Ce
Pb2+ =

C2
H+

KPbCH2S
, (12.19)

Ce
Fe2+ =

C2
H+

KFeCH2S
, (12.20)

where Ce
Zn2+ , Ce

Pb2+ and Ce
Fe2+ are the equilibrium concentrations of zinc, lead

and iron in the solution, respectively; KZn, KPb and KFe are the chemical equilib-
rium reaction constants for the chemical reactions expressed by (12.15), (12.16)
and (12.17), and CH+ and CH2S are the concentrations of H+ and H2S in the hy-
drothermal system. Note that the equilibrium constants for chemical reactions are
dependent on both temperature and pressure. Their values can be determined from
a relevant thermodynamic database.

The first example (i.e., Case 1) considered is a square box measuring 10×10km.
The box is filled with porous rock and modeled by 2,500 four-node quadrilateral
elements. As shown in Fig. 12.1, a reduced fluid (i.e., H2S) and an oxidized fluid
(i.e., SO=

4 ) are injected at the left quarter and right quarter of the bottom of the
computational domain. The concentrations in solution of the injected H2S and SO=

4
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Fig. 12.1 Geometry of the
pore-fluid mixing problem
(Case 1)

y

x0 

10 km 

2.5 km 

H2S 

2.5 km 

10 km

SO4 
= 

are 0.1kmol/m3. The temperatures at the top and bottom boundaries are 25◦C
and 325◦C, respectively. This means that the hydrothermal system is uniformly
heated from below. The following parameters are used in the computations. The dy-
namic viscosity of pore-fluid is 10−3 N · s/m2; the reference density of pore-fluid is
1,000kg/m3; the specific heat of pore-fluid is 4,185J/(kg ·◦C); the thermal conduc-
tivity coefficient of pore-fluid is 0.6W/(m ·◦ C); the volumetric thermal expansion
coefficient of pore-fluid is 2.07× 10−4(1/◦C); the diffusivity of chemical species
in the porous medium is 3× 10−7 m2/s; the porosity of the porous medium is 0.1;
the specific heat of the porous rock is 815J/(kg ·◦ C); the thermal conductivity co-
efficient of the porous rock is 3.35W/(m ·◦ C), and the permeability of the porous
medium is 10−13 m2.

Figure 12.2 shows the distributions of the pore-fluid velocity, streamlines and
temperature in the hydrothermal system. Since the Rayleigh number of the
hydrothermal system is supercritical, convective pore-fluid flow takes place. This
convective pore-fluid flow can be clearly observed from the distributions of the
pore-fluid velocity and streamlines, as shown in Fig. 12.2. Due to this convec-
tive pore-fluid flow, the distribution of temperature is highly localized in the sys-
tem. The localization of temperature may provide one of the appropriate con-
ditions for ore body formation and mineralization in some regions of the
system.

Figure 12.3 shows the concentration distributions of H2S, SO=
4 and H+ in

the hydrothermal system. Again, the localization of these chemical species is
clearly shown in this figure. This indicates that convective pore-fluid flow can
result in highly localized distributions of chemical species in a hydrothermal
system.
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Fig. 12.2 Distributions
of pore-fluid velocity,
streamlines and temperature
(Case 1)

(Pore-fluid Velocity)

(Streamline)

(Temperature) 

Figure 12.4 shows the mineralization rate distributions of lead, zinc and iron in
the hydrothermal system. Both the minimum negative value and maximum positive
value of the mineralization rate are shown in this figure. Since a negative value of
the mineralization rate of a mineral reflects the precipitation of the mineral and a
positive value of the mineralization rate reflects the dissolution of the mineral, the
precipitation and dissolution regions of lead, zinc and iron in the hydrothermal sys-
tem are clearly shown here although it should be noted that the regions delineated
as dissolution areas would only act in that manner if lead, zinc or iron were actually
present in the pore spaces. The precipitation pattern for lead is very similar to that for
zinc. However, the precipitation pattern for iron is quite different. This indicates that
chemical kinetics may influence the zonation of minerals in a hydrothermal system.
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Fig. 12.3 Distributions of
concentrations of H2S, SO=

4
and H+ (Case 1)
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At this point we need to reconsider the derivatives �Ce
q

/
�T , �Ce

q

/
�P, �Ce

q

/
�Cr in

(12.14). For temperatures above approximately 200◦C, derivatives such as �Ce
Pb

/
�T

and �Ce
Zn

/
�T may be small so that even though large regions of precipitation for Pb

and Zn are delineated within Fig. 12.4, only the low temperature regions may show
appreciable mineralization for these metals. This same issue needs to be considered
in the next two examples presented in this section.

Equation (12.12) states that the mineralization rate is directly proportional to the
porosity. This means that as precipitation in the initial pore space proceeds during
mineralization the porosity is continuously decreased. This process has not been
built into these models, but in nature (12.14) would describe a process where the
porosity and, hence, the permeability of the porous medium, continuously decreased
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Fig. 12.4 Distributions of
precipitation rates of lead,
zinc and iron (Case 1)

(Precipitation of Lead)

(Precipitation of Zinc)

(Precipitation of Iron)

as the mineralization proceeded. This means that the Darcy fluid velocity would also
decrease leading to a decrease in the mineralization rate. Thus (12.14) describes po-
tential mineralization sites only. In order to generate a high-grade deposit through
this process porosity must be continuously generated at the mineralization site by
other mechanical or chemical processes. These processes would include deforma-
tion enhanced dilation and chemical dissolution. Such processes have not been in-
cluded here.

The second example (i.e., Case 2) considered is a layered hydrothermal system,
the geometry of which is shown in Fig. 12.5. The main purpose of this example
is to investigate the effects of geological structures on ore body formation and



206 12 Convection Induced Ore Body Formation and Mineralization

Fig. 12.5 Geometry of the
pore-fluid mixing problem
(Case 2)
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mineralization in hydrothermal systems. For this purpose, the parameters used in
Case 2 are exactly the same as those used in Case 1, except that the middle layer
is less permeable than the upper and lower layers. The permeability of the middle
layer is 10−14 m2. Thus, by comparing the results from Case 2 with the results from
Case 1, the effects of geological structures can be examined.

Figure 12.6 shows the distribution of the pore-fluid velocity, streamlines and tem-
perature in the layered hydrothermal system. Due to the influence of the middle
layer, the distributions of the pore-fluid velocity, streamlines and temperature in the
layered hydrothermal system (i.e., Case 2) are different from those in Case 1. The
existence of the middle layer clearly influences the concentration distributions of
chemical species in the hydrothermal system as shown in Fig. 12.7 which illustrates
the concentration distributions of H2S, SO=

4 and H+. The difference in the zonation
of lead, zinc and iron minerals can be seen by comparing the results in Fig. 12.8
(i.e., Case 2) with those in Fig. 12.4 (i.e., Case 1). This indicates that geological
structures may influence the precipitation and dissolution patterns of minerals in
hydrothermal systems.

The third example (i.e., Case 3) considered is a simplified example of a magma
intrusion problem in hydrothermal systems. Figure 12.9 shows the geometry of the
problem. The central part at the base of the system is modeled as an intruded magma
measuring 2×4km. The temperature within the whole magma body is the same as
that at the bottom of the system. The reduced (H2S) fluid is injected at the middle
part of the base, while the oxidized (SO=

4 ) fluid is injected at the left and right parts
of the base, except for the injected region of the reduced fluid. The temperatures
at the top and base are fixed at 25◦C and 325◦C, respectively. Other parameters
used in this example are exactly the same as those used in the first two examples.
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Fig. 12.6 Distributions of pore-fluid velocity, streamlines and temperature (Case 2)
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Fig. 12.7 Distributions of concentrations of H2S, SO=
4 and H+ (Case 2)



12.2 Precipitation and Dissolution of Zinc, Lead and Iron in Hydrothermal Systems 209
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Fig. 12.8 Distributions of precipitation rates of lead, zinc and iron (Case 2)
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Fig. 12.9 Geometry of the
pore-fluid mixing problem
(Case 3)
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The main purpose of this example is to investigate how the locations of the injected
reactive fluid sources and geological structures influence ore body formation and
mineralization in this hydrothermal system.

Figure 12.10 shows the distributions of the pore-fluid velocity, streamlines and
temperature in the hydrothermal system. Clearly, all distribution patterns are differ-
ent from those shown in Fig. 12.2 (Case 1) and Fig. 12.6 (Case 2). Not surprisingly,
the concentration distribution patterns of H2S, SO=

4 and H+, as shown in Fig. 12.11,
are also different from those in the former two examples (see Figs. 12.3 and 12.7).

Figure 12.12 shows the mineralization rate distributions of lead, zinc and iron in
the hydrothermal system. As expected, the precipitation regions of these three met-
als shown in Fig. 12.12 (i.e., Case 3) are also different from those shown in Fig. 12.4
(i.e., Case 1) and Fig. 12.8 (i.e., Case 2). Therefore, not only can the locations of
both the injected reactive fluids and geological structures influence pore-fluid flow
and temperature distributions, but they can also influence the zonation of minerals
within hydrothermal systems.
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Fig. 12.10 Distributions of pore-fluid velocity, streamlines and temperature (Case 3)
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Fig. 12.11 Distributions of concentrations of H2S, SO=
4 and H+ (Case 3)
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Fig. 12.12 Distributions of precipitation rates of lead, zinc and iron (Case 3)
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In this monograph, convective and advective heat transfer phenomena in geological
systems of crustal scales are investigated in a systematic manner. Using both theoret-
ical and numerical methods, the detailed physical mechanisms related to pore-fluid
pressure gradient distributions, the critical conditions required to trigger convec-
tive pore-fluid flow and the effects of geological heterogeneities on advective and
convective heat transfer in the crust of the Earth are thoroughly examined. The fol-
lowing conclusions have been drawn from the theoretical and numerical results.

(1) For a stable (that is, non-deforming) continental crust, although the entrapped
pore-fluid pressure may reach or exceed the lithostatic pressure in an overpressured
system consisting of a permeable layer and two adjacent impermeable layers, the
pore-fluid pressure gradient cannot be maintained at or exceed the lithostatic pres-
sure gradient, even if thermal effects are neglected in the crust.

(2) Pure heat conduction may have some influence on the distribution of pore-
fluid pressure in the lower part of the crust, but it has little influence on the distribu-
tion of pore-fluid pressure in the upper part of the crust. Thus, for a fluid-saturated
crust with motionless pore-fluid, the pore-fluid pressure gradient is very close to the
hydrostatic pressure gradient resulting from a constant density of the pore-fluid.

(3) In the case of a thin crust, the thermal effect of heat advection on the distribu-
tion of pore-fluid pressure gradient is very limited, but in the case of a thick crust,
the thermal effect of heat advection is significant. Generally, the thermal effect of
heat advection on the distribution of pore-fluid pressure gradient becomes more sig-
nificant with an increase in the conductive thermal flux at the base of the system.
For a thin crustal model with an impermeable seal at the top, the pore-fluid pres-
sure gradient is very close to a lithostatic pressure gradient. However, for a similar
thick crustal model, the pore-fluid pressure gradient is less than a lithostatic pressure
gradient, especially in the situation where a high basal heat flux exists.

(4) If the Rayleigh number of the system is either critical or supercritical, convec-
tive pore-fluid flow can take place in the crust where the pore-fluid pressure gradi-
ent is close to the hydrostatic pressure gradient. The resulting convective pore-fluid
flow has a significant effect on heat transfer and can result in temperature local-
ization within the crust. This kind of convective pore-fluid flow is significant for
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ore body formation and mineralization in hydrothermal systems from the following
three points of view.

• Since the pore-fluid flows circularly within hydrothermal systems, the consump-
tion of the pore-fluid is minimal within the system.

• Since convective pore-fluid flow comprises a circular flow regime, it is an effec-
tive and efficient tool to mix different chemical species within the hydrothermal
system.

• Convective pore-fluid flow may result in highly localized temperature distribu-
tions in a hydrothermal system. This provides a favorable condition under which
highly localized, high-grade, giant ore deposits may be formed.

(5) If the pore-fluid pressure gradient is close to a lithostatic pressure gradient,
convective pore-fluid flow cannot take place in a crust that has constant temperature
and impermeable boundary conditions at both the top and the bottom of the system,
but it can take place if the crust has a permeable top with constant pressure and
temperature, and a base with constant upward pore-fluid velocity and conductive
heat flux.

(6) The heterogeneity of either the medium permeability or the thermal conduc-
tivity has a significant effect on convective heat transfer within a system. Material
thermoelasticity may also affect the heat transfer, depending on the elastic hardness
of the rock masses within the crust. In addition, the effect of temperature-dependent
pore-fluid viscosity is to destabilize convective flow in the crust. In other words,
convective flow takes place more easily when temperature-dependent pore-fluid vis-
cosity is considered within the Earth’s crust.

(7) In the case of strong pore-fluid inflow from the far field in the surrounding
rock, the inflow is highly focused within existing geological faults. The focused
pore-fluid flow can result in significant advective heat transfer within and around
these faults. The strength of pore-fluid focusing can be measured by the pore-fluid
focusing factor, which depends on the dip of the fault, the aspect ratio of the fault
and the permeability ratio of the fault to the surrounding rock. For the first time, the
theoretical solution has shown that the pore-fluid pressure gradient is exactly equal
to hydrostatic pressure gradient within a fault if the fault is perfectly permeable.
However, even if a fault is not perfectly permeable, the pore-fluid pressure gradient
is close to the hydrostatic pressure gradient within a permeable fault of finite size.
This is true even if the surrounding rocks contain fluid with a lithostatic pressure
gradient.

(8) Under certain boundary conditions, convective pore-fluid flow is possible
within both vertical and inclined three-dimensional fault zones. This conclusion is
also valid when double-diffusion driven convective instability of pore-fluid flow is
considered. If the length of a fault zone is infinite, the critical Rayleigh number has a
minimum value, which corresponds to a two-dimensional slender-circle convective
flow geometry. This slender-circle convective geometry develops in the plane per-
pendicular to the strike of the fault. However, if the length of a fault zone is finite,
the corresponding convective flow structure must be three-dimensional. Even if the
length of a fault zone is infinite, since the minimum critical Rayleigh numbers of
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the system are very close to each other, several three-dimensional convective flow
geometries may have similar probabilities of existing, especially when the ratio of
fault thickness to height is very small.

(9) Convective pore-fluid flow is very efficient for mixing reactive mineral car-
rying fluids and, therefore, plays an important role in ore body formation and min-
eralization within the upper crust of the Earth. A key issue associated with ore body
formation and mineralization is to predict the precipitation and dissolution regions
in hydrothermal systems. This can be addressed using the concept of the mineraliza-
tion rate of a mineral. The mineralization rate can be used to predict the precipitation
and dissolution regions of a mineral in hydrothermal systems. The locations of both
injected reactive fluids and geological structures can significantly affect the distribu-
tions of pore-fluid flow and temperature as well as the zonation of minerals within
the upper crust of the Earth.

(10) One of the important values of this monograph is that the derived theoret-
ical solutions are useful, as benchmark solutions, to verify and validate numerical
methods and models that can be used to simulate more complicated and complex
situations within the Earth’s crust. Because of their intrinsic approximate nature,
numerical methods need to be verified and validated before they are used to solve
geoscience problems. In this aspect, theoretical solutions play an important role in
ensuring the accuracy and reliability of numerical solutions obtained from numeri-
cal simulation of geoscience problems.
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Zhao C, Hobbs BE, Mühlhaus HB, Ord A and Lin G (2003a) Convective instability of three-
dimensional fluid-saturated geological fault zones heated from below. Geophysical Journal In-
ternational 155:213–220
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Zhao C, Hobbs BE, Ord A, Peng S, Mühlhaus HB and Liu L (2005b) Double diffusion-driven
convective instability of three-dimensional fluid-saturated geological fault zones heated from
below. Mathematical Geology. 37:373–391

Zhao C, Hobbs BE, Ord A, Hornby P, Peng S and Liu L (2006a) Theoretical and numerical analyses
of pore-fluid flow patterns around and within inclined large cracks and faults. Geophysical
Journal International 166:970–988
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Verification, 7, 34
Vertical stress, 10, 15
Viscosity, 4, 8, 19, 28, 30, 34, 49, 60, 64, 67,

71, 72–73, 77–81, 86, 129, 132, 135,
137, 148, 156, 164, 177, 183, 192, 198,
202, 216

Volumetric strain, 61, 63–64

Zones, 4, 49, 83, 133, 145–146, 149–150,
155–156, 158–159, 162–163, 175–177,
180, 185, 186–187, 190, 192–194, 216
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