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PREFACE

Electron magnetic resonance in the time domain has been greatly facilitated by 
the introduction of novel resonance structures and better computational tools, such 
as the increasingly widespread use of density-matrix formalism. This second vol-
ume in our series, devoted both to instrumentation and computation, addresses ap-
plications and advances in the analysis of spin relaxation time measurements. 

Chapters 1 deals with the important problem of measuring spin relaxation 
times over a broad temporal range. The author, Dr. Sushil Misra, has worked on a 
wide variety of solutions to problems in this area, with respect to both experimental 
and theoretical aspects, and Chapter 1 summarizes much of his recent work, which 
was enhanced by a fruitful collaboration with the late Professor Jacques Pescia. 
Chapter 2 presents solutions to the problem of measuring short spin relaxation 
times. Again, in collaboration and tribute to the late Jacques Pescia's laboratory, 
part of the chapter represents a translation of the amplitude modulation technique 
section from a doctoral thesis by Robert Lopez in 1993 to The Paul Sabatier Uni-
versity. Experimental data that appeared in the original thesis are placed at the end 
of subsections that correspond to the described technique. 

Chapter 3 takes up the problem of multi-frequency ENDOR and ESEEM, 
and illustrates how small stepwise increments of spectrometer operating parameters 
can enable one to better determine spin-Hamiltonian parameters via a graphical 
analysis. 

Chapters 4 and 5 address computational problems of EMR, particularly the 
treatment of high spin systems. Chapter 4, describes details of simulating Mn(II) 
EPR spectra in single crystals, polycrystalline, and amorphous materials. The ana-
lytical technique is based on eigenvalues of the spin-Hamiltonian matrix calculated 
to third order in perturbation for orthorhombic distortion, so as to estimate values 
of the zero-field splitting parameters — D, E — from forbidden hyperfine doublet 
separations in the central sextet of an Mn(II) EPR spectrum. Also included is a 
quick, precise simulation of EPR spectra in amorphous materials by matrix diago-
nalization using the method of homotopy, wherein the resonant field values are 
obtained by the method of least-squares fitting from the knowledge of their values 
at an infinitesimally close orientation of the external magnetic field. Several exam-
ples of computed spectra in amorphous materials are given and characteristics of 
amorphous spectra are discussed. 



x

Finally, Chapter 5 by Hiroshi Watari and Yuhei Shimoyama describes density-
matrix formalism for treating angular momenta in multi-quantum systems. The 
spectrum resolution theorem is used to obtain a linear combination representation 
of the spin Hamiltonian and greatly simplifies the manipulation of angular mo-
menta with high quantum numbers. 

C. J. Bender 
New York, New York 

L. J. Berliner 
Denver, Colorado 
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CHAPTER 1 

MICROWAVE AMPLITUDE MODULATION 

TECHNIQUE TO MEASURE SPIN–LATTICE (T1)

AND SPIN–SPIN (T2) RELAXATION TIMES 

Sushil K. Misra 
Physics Department, Concordia University, 1455 de Maisonneuve  
Boulevard West, Montreal Quebec H3G 1M8 Canada 

1.  INTRODUCTION 

The measurement of very short spin–lattice, or longitudinal, relaxation (SLR) 
times (i.e., 10–10 < T1 < 10–6 s) is of great importance today for the study of relaxa-
tion processes. Recent case studies include, for example, glasses doped with para-
magnetic ions (Vergnoux et al., 1996; Zinsou et al., 1996), amorphous Si (dangling 
bonds) and copper–chromium–tin spinel (Cr3+) (Misra, 1998), and polymer resins 
doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to 
measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led 
to an understanding of the role of exchange interaction in affecting spin–lattice 
relaxation, while the data on polymer resins doped with rare-earth ions provided 
evidence of spin–fracton relaxation (Pescia et al., 1999a,b). But such fast SLR 
times are not measurable by the most commonly used techniques of saturation- and 
inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin–lattice 
relaxation times longer than 10–6 s. A summary of relevant experimental data is 
presented in Table 1. 

It is possible to monitor relaxation times by modulating the microwave ampli-
tude at a rate close to the inverse spin-lattice relaxation time, T1

–1 (Misra, 2004). 
This is due to the fact that if the microwave amplitude is changed faster than that 
which the spins can follow as governed by the electron SLR time, the EPR signal is 
determined predominantly by T1. This modulation technique permits measurement 
of relaxation times in the interval between the values that are slow enough to be 
measured by the recovery techniques and the values that are too fast to have any 
significant impact on continuous wave (cw) lineshape. These latter relaxation times 
can be as short as 10–10 s, which is substantially shorter than those that can be 
measured by the saturation/inversion recovery techniques. 
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Table 1. Spin–Lattice Relaxation Rates Due to Exchange Interaction For Various  
Amorphous Mmaterials at Selected Temperatures (Misra, 1998). 

 1/T1 (s
–1) at temperature indicated 

 10 K 20 K 50 K 100 K 200 K 

Amorphous 
silicon 
(Gourdon  
et al., 1981) 

105 5×105 2×106 107 108

Amorphous 
silicon  
(Askew  
et al., 1986) 

5×104 (∼100 at 1 K)  

Borate glass, 
0.1% Fe2O3

(Zinsou et 
al., 1996) 

∼106 ∼7×106 2×107 4×107

Borate glass, 
0.5% Fe2O3

(Zinsou et 
al., 1996) 

∼107 3×107 4.5×107 5×107

MgO:P2O5,
0.2% Mn  
(Vergnoux 
et al., 1998) 

    2.5×106

Cu2xCr2x

Sn2-2xS4

(x = 0.8)  
(Sarda et al.,
1989) 

5×108 8×108 109 5×109 4×109

There have been extensive studies of fast relaxation time measurements using 
the amplitude modulation technique (Hervé & Pescia, 1960, 1963a,b; Pescia & 
Hervé, 1963; Ablart & Pescia, 1980; Ablart, 1978). In each of these studies the 
EPR signal along the z-axis (defined to be the direction of external magnetic field 
B0), which is proportional to magnetic moment Mz, was monitored by an electro-
motic force (emf) that is induced in a pickup coil. These original measurements, 
however, suffered from limitations, both instrumental and computational. As con-
cerns the instrument and the collection of data, the introduction of the pickup coil 
has a deleterious effect upon the signal-to-noise (S/N) ratio of the spectrometer and 
its associated sample resonator. And as regards the analysis of the data, the solu-
tions to the relevant differential equations require that one use asymptotic methods 
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(as opposed to an exact solution) and limit the experimental condition to small am-
plitude modulation depths (Pescia, 1965). 

The measurement of fast relaxation times via the amplitude modulation tech-
nique may be improved by recent technological advances (G. Eaton & S. Eaton, 
personal communication). These technologies include: (i) modern lock-in amplifi-
ers that operate at high frequency (e.g., 200 MHz, Stanford Research SR844) used 
together with (ii) a double-balanced mixer to provide high-speed modulation of the 
microwave amplitude, and (iii) the crossed-loop resonator (CLR) (Rinard et al.,
1994, 1996a,b). The CLR permits detection of the EPR signal in the x,y-plane (per-
pendicular to the direction of the external magnetic field), avoiding the need to use 
a pickup coil resonated at a single modulation frequency, which suffers from some 
serious drawbacks, as used in the Hervé and Pescia spectrometer. Moreover, the 
CLR permits one to use larger depths of amplitude, with a resultant enhancement 
in the signal-to-noise ratio. 

The purpose of this chapter is to review the amplitude modulation technique, 
address the limitations of the classic studies in the light of these recent technologi-
cal advances, and present equations that can be used to make predictions about 
both the EPR response in the z- and x,y-directions.  

And because the technology and desired data are optimized by using large 
modulation depths, the limitations of data analysis will be redressed by describing 
a quick matrix technique for the solution of Bloch’s phenomenological equations 
for the case when the amplitude of the microwave field is sinusoidally modulated 
with an arbitrary coefficient of modulation. The resultant solutions can then be 
used to calculate the signal obtained by either a classic pickup coil or cw-EPR sig-
nal in a resonator. With these solutions to the Bloch equations and analysis of de-
tected signals, one may evaluate relaxation times T1 and T2 accurately by the use of 
a rigorous least-squares fitting procedure. 

2. DESCRIPTION OF THE MICROWAVE AMPLITUDE 

 MODULATION TECHNIQUE 

As introduced, the method of measuring spin relaxation times via amplitude 
modulation employed a pickup coil for detecting the magnetization Mz and a dou-
ble modulation scheme in order to accommodate the relatively low operating fre-
quencies (ca. 1 kHz) of lock-in amplifiers at that time (Hervé & Pescia, 1960; 
Hervé & Pescia, 1963a; Hervé & Pescia, 1963b; Ablart & Pescia, 1980; Ablart, 
1978; Pescia, 1965). In practice, two orthogonal fields B0 (external magnetic field) 
and B1 (microwave magnetic field) are applied to the sample. The amplitude of B1

is modulated at the frequency Ω/2π (this frequency is on the order of 1-10 MHz ). 
This causes Mz, the component of the magnetization along B0, in a cw-EPR spec-
trometer to become modulated, which, in turn, induces an emf in a pickup coil 
placed close to the sample and having its axis directed along the external magnetic 
field. The induced signal is proportional to dMz/dt and is detected by a lock-in am-
plifier. 
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The modulation spectrometer is depicted as a block diagram in Figure 1 (Ver-
genoux, 1996; Ablart & Pescia, 1980; Ablart, 1978). A resonant continuous-wave 
signal is amplitude modulated by a high-frequency (HF) generator at frequency 

/2 . (The spectrometer is operable in bands at 0.2, 0.7, 4, or 8–12 GHz so as to 
observe the effect of B0 on the relaxation time (cf. Ablart & Pescia, 1980).) This 
high-frequency AM signal is, in turn, amplitude modulated at 1 kHz by a second 
(IF) oscillator in order to permit lock-in detection of the EPR signal. In other 
words, the high-frequency modulation causes |Mz| to oscillate within range ∆Mz

over period ( /2 )–1; the 1-kHz signal that is then imposed on the /2  signal (for 
the purpose of lock-in detection) serves to vary the range (i.e., ∆Mz = Mz,HI – Mz,LO)
over a 1-ms time ‘frame’.  

Figure 1. Block diagram of a spectrometer for conventional (connections 1) and ampli-
tude modulation (connections 2) EPR (after Vergnoux, 1996). 
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As described by Pescia and coworkers, pickup coils were devised to operate 
with sample resonators that operated at specific microwave frequencies, that is, a 
wire helix (0.2 GHz), a stripline (0.7 GHz), and a cavity (4, 8–12 GHz, operated in 
reflection mode). As a representative example, the cavity resonator that is used at 
X-band is illustrated in Figure 2 (detailed diagrams of the helix and stripline reso-
nators may be found in Ablart & Pescia, 1980). Here the saddle-shaped pickup coil 
is wound around the sample holder tube inside the cavity. In each case the pickup 
coil is tuned at frequency Ω/2π by a variable capacitor and connected to a selective 
receiver via a low-noise impedance matching circuit.  

Figure 2. Details of resonator contruction. Pick-up coils are wound around the sample 
holder tube, tuned to frequency Ω⁄2, and connected to a selective receiver via a low-
noise impedance matching circuit (after Ablart & Pescia, 1980).  
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But despite many attempts to optimize the use of a pickup coil (e.g., use of 
matched bucking coils to cancel noise), the AM measurement technique as de-
scribed in the preceding paragraphs suffers from the following disadvantages: (i) 
the S/N ratio is poor; (ii) many coil turns are needed to obtain a large induced volt-
age; (iii) the coil has to be placed outside the resonator where the EPR signal is 
small; (iv) the coil must be tuned to a high Q at a particular modulation frequency 
in order to get a large induced voltage; (v) the coil tends to pick up the modulation 
signal itself superimposed on the modulated EPR signal; (vi) any change in the 
magnetic field induces a voltage in the coil, imposing the requirement of having an 
extremely stable magnetic field; and (vi) coils tend to be microphonic. 

It is therefore desirable to eliminate pickup coils from the detection scheme. 
With conventional EPR spectrometers, the normal mode of detection is via the 
microwave power reflected from a tuned cavity resonator and, in principle, this 
same reflection mode detection may be used to monitor the change in EPR signal 
as a function of microwave modulation frequency ( /2π). But the desired signal is 
small and buried in the large reflected incident power modulated at the frequency 

 (Weidner & Whitmer, 1952). A bimodal sample resonator, however, supports 
two resonator modes that are orthogonal and therefore isolated. Separately used for 
sample excitation and signal detection, the two orthogonal modes enables one to 
isolate the microwave source (and its inherent noise) from the detected signal. The 
bimodal sample resonator therefore obviates the need for a pickup coil and avoids 
the problem of trying to extract a small signal from a large noise background. 

The problem with constructing bimodal resonators, however, has been the fact 
that the magnetic and electric fields are never truly isolated from each other. 
Lumped element resonators, such as the so-called loop-gap resonator (LGR), are 
better suited to accomplish separation of electric and magnetic fields, at least to 
regions which are recognizable primarily as inductors or capacitors. The resultant 
crossed loop-gap resonator (Rinard et al., 1996a,b (3 GHz); Rinard et al., 2000 (L-
band); Rinard et al., 2002 (250 MHz)) is based on this idea, wherein one uses two 
resonators arranged orthogonal to one another, with only the sample region being 
in common. This is equivalent to a transmission between the resonators wherein 
the input and output are coupled only by the spin system. Other bimodal resonators 
are cited by Rinard et al. (2000). An alternative design in which parallel or antipar-
allel fields achieve isolation within an S-band loop-gap resonator by tuning so that 
the integral over all the space of the scalar products of the two modes is zero is 
provided by Piasecki et al., 1996. 

The importance of a crossed-loop or other bimodal resonator is that they offer 
the opportunity to measure the x,y-components of the spin magnetization. The in-
centive for the development of the theory of modulation spectroscopy in this chap-
ter is (a) to extend it to deeper modulation than in prior treatments, and (b) predict 
the signals observable with x,y-detection as well as in the z-direction. Each may 
have its niche in measurements of spin relaxation times. 
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3. CALCULATION OF THE MODULATION SIGNAL BY  

 SOLVING BLOCH’S EQUATIONS IN THE PRESENCE  

 OF AMPLITUDE MODULATION  

3.1. Definitions and the Impact of Modulation on the Experimental  

 Arrangement for Detecting the Signal 

We wish to compare the signal, S, obtained under two experimental scenarios, 
namely, that of the pickup coil vs. the crossed-loop resonator. We shall begin by 
deriving the equations that describe the signal induced in a pickup coil during an 
amplitude modulation experiment. In the following discussion, it will be given that 
the coil is tuned to modulation frequency /2  and that the sample is small relative 
to the mean diameter of the coil. Under these preliminary assumptions, it can be 
stated that the induced signal in a pickup coil is (Ablart & Pescia, 1980; Ablart, 
1978): 

0
b (pickup)  

2
α

α
µ

=
dM

S nQ
R dt

; ( = z, y) (1) 

In eq. (1), Qb is the filling factor; n is the number of turns in the coil; Mz and My are 
the z and y components of the magnetization, respectively; 0 is the permeability of 
the free space; and R is the coil radius. By comparison, the induced continuous-
wave signals in a resonator are given by: 

(resonator)α αS M ; (α = z, y) (2) 

The amplitude-modulated microwave field is defined as (Hervé & Pescia, 
1960, 1963a,b; Pescia & Hervé 1963; Ablart & Pescia, 1980; Ablart, 1978): 

1 1( )  (1 cos ) /(1 )Ω= + +c cB t B m t m  (3) 

in which mc is defined as the coefficient of modulation for a pickup coil and as 
equal to the fractional depth of the modulation. Here Ω corresponds to the modula-
tion frequency, and in practice mc << 1. In order to describe deeper modulation, one 
must revise eq. (3): 

1 1

1
( )  1 (1 cos )

2
Ω= +dB t B m t  (4) 

The angular frequency at resonance is ω0 = γB0, where B0 is the external mag-
netic field magnitude; = 2 f, with f and  being the frequency of the microwave 
radiation and the free-electron gyromagnetic ratio, respectively. The Bloch equa-
tions in the rotating frame (Abragam & Bleaney, 1970) applicable to a spin packet 
at frequency  (= o − ) off resonance, under the action of an amplitude-
modulated microwave magnetic field described by eq. (3) are: 
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1

2

1
 - i (1 cos )

T (1 )

γ
∆ω Ω= + + +

+ c z
c

i Bm m m t M
t m

 (5)  

01

1

( *)
(1 cos )

2 (1 ) T

γ Ω= +
+

zz
c

c

M MM Bm m m t
t i m

 (6)  

In (5) and (6), m = Mx + iMy, and M0 is the equilibrium magnetization along the z-
axis. It is noted that over and above eqs. (5) and (6), the other effects that influence 
the measurement of relaxation times (e.g., unresolved hyperfine structure, overall 
spectral lineshape, spectral diffusion) are not taken into account here. 

In normal field-modulated spectra the modulation is kept smaller than the line 
width, and in careful work the effect of the modulation on the line shape is consid-
ered. However, the sidebands at 100 kHz or less are almost always within the enve-
lope of the line shape, except for very narrow lines. The fast modulation that is 
required to obtain a relaxation time-dependent response in modulation spectros-
copy inherently has more widely spaced sidebands. For example, at 200 MHz 
modulation the sidebands are approximately 71 G away from the center band. The 
modulation index and the d.c. offset can be varied to obtain a wide range of modu-
lation conditions (cf. Haworth & Richards, 1966; Losee et al., 1997; Reference 
Data for Radio Engineers, 1968). It should be noted that the finite bandwidth 
caused by resonator Q can attenuate effects of sidebands and resultant signal am-
plitude as the modulation frequency is increased. This calculation is beyond the 
scope of this chapter but needs to be performed for a given experimental arrange-
ment in order to be able to use the predictions of this chapter to actually measure 
relaxation times. 

3.2. Case 1: Condition of Negligible Saturation

When saturation factor 2 2
0 1 1 2T Tµ γ=a H  << 1, the differential expression for 

the emf induced in a pickup coil along the z-axis (eq. (1)) is solved by applying 
Fourier expansions for m and Mz at resonance in Bloch's equations (5) and (6). This 
leads to the following expression for the signal: 

1/ 22 2

0 2 2 2

1 / 4
( )

(1 )(1 )

+=
+ +

p XS X S X
X p X

 (7) 

where X = T1, p =  T2/T1, and 2
0 0 0 1( ) /[ (1 )]µ= +b c cS nQ m aM RT m .

The normalized signal, S/S0, as obtained from eq. (7) is plotted in Figure 3 for 
two values: p =  1.0 (denoted as "large") and p << 1.0 (negligible) as functions of X
( = T1). The data show that S/S0 is biphasic with respect to X, with an asymptotic 
limit of approximately 0.5 that increases to 1.0 when p << 1 (note that p is always 
less than 1). The tangents for X = 0 and the asymptote intersect at X =  0.5 and 1.0, 
respectively, for the two cases. This provides a graphical solution for determining 
the value of T1 as shown in Figure 3. 
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The spin–lattice relaxation times accessible to measurement by the modulation 
technique depend on one’s choice of the modulation frequency, /2 . For example, 
a typical value of /2  used for modulation and detection is 1 MHz. In the graphi-
cal determination of T1 (Figure 3), the asymptote intersects the tangent to S/S0 at 
small X = ΩT1 = 0.5 for values of p which are not too small, and this yields T1 =
10−6/(4 )  10−7 s. In order to plot S/S0 vs. X, one needs to vary Ω/2  from 
(0.33/4 ) × 10–6 to (3.0/4π) × 10−6, that is, in which case one should now have 30 
kHz < /2 <  17 MHz. Under these conditions, the resultant T1 (= (2 )−1) are in 
the range 10–6–10–8 s.  

The lower limit here can be extended downward by a factor of 100, that is, to 
10−10 s, by using the fact that the reflection type EPR signal, SEPR, as measured in a 
typical spectrometer does not vary with modulation frequency /2 , and therefore 
represents the asymptotic value experimentally. Furthermore, when T1 = 10−10 s it is 
not possible to obtain the asymptotic value because the requisite frequency be-
comes too high. At this point one is in the limit X = ΩT1 << 1 as T1 is very small. 
The observable curve for S(X) is then confined to the tangent part near the origin 
(small X, Figure 3). With the frequencies that are available in practice, one is then 

Figure 3. Graphical method of determining T1 times for the case p (= T2⁄T1) << 1 (negli-
gible) and p = 1.0 (after Fretier, 1979; Vergnoux, 1996). 
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always at the beginning of the S(Ω) curve for graphical determination of T1. To this 
end, one can use a free radical with a rather large T1 together with the sample to be 
studied and measure their respective EPR signals (i.e., RS  and S ) at a low modu-
lation frequency (low X). Now it can be shown that ratio EPR/S S  is independent of 
the properties of the sample and is the same for both the reference sample and the 
sample being investigated. In this case the asymptotic value for the sample be-
comes 

EPR
EPR

=
R

R

SS S
S

where superscript R refers to the reference sample.  

3.3. Case 2: Non-negligible saturation 

3.3.1. Homogeneous Broadening 

When the EPR line is homogeneously broadened, the signal can be expressed 
assuming negligible spectral diffusion (Hervé & Pescia, 1960, 1963a,b; Pescia & 
Hervé, 1963) as 

2 2 1/ 2

0 1/ 22 2 2 2 2

(1 / 4)
( )

1 2 (1 ) (1 )(1 )

+=
+ + + + +

a X p XS X S
a a a pX X p X

 (8) 

For this case, the tangent for X ~ 0 and the asymptote cross at point X = (1 + a)/2. 
T1 is then found by extrapolating the curves drawn for different values of a to a
0, from which one deduces T1 = /2. This is shown in Figure 4. 

3.3.2. Inhomogeneous Broadening 

When the EPR line is inhomogeneously broadened (Hervé & Pescia, 1960, 
1963a,b; Pescia & Hervé, 1963; Ablart & Pescia, 1980; Ablart, 1978), there are 
many spin packets to be considered, each one of which is characterized by a Lor-
entzian lineshape that is much narrower than the composite line. The signal for a 
single spin packet can be expressed as a function of X:

2 2 2
1

2 2 2
10

1

2 2 2
1

1 / 2

1 T

T
1( , )

1T

T
(1 ) 1

1

δ

δ
δ

δ

+ ×
+ +

+ ÷= +

+ + + +
+

c

ipX
a p

pm M a iXS X ipX

p
a iX ipX

ipX

 (9) 
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where  =  – 0 is the difference between the resonance frequency of one packet 
from that of the whole line. Taking into account all the spin packets together dis-
tributed all over the composite line shape, one now has for the signal: 

0 0( , ) ( , ) ( )ω δ ω ω
+

=S X S X f d  (10) 

In eq. (10), f( ) is the shape function of a spin packet. When the line is purely in-
homogeneous: 

0( , ) ( ) ( , )ω ω δ ω
+

=S X f S X d

which becomes, using the method of residues, 

0
0

1 2

( ) ( ) ( )
π

ω= cm M
S X f S X

T T

with 

0 2 2

1/ 2

2

2 1/ 2

(1 / 2)
( )

(1 ) (1 )(2 )

(1 )

{ (1 ) /(1 ) (1 ) }

+= ×
+ + +
+ +
+

+
+ + + +

iaX ipXS X
a ipX iX ipX a p X
a ipX

a
a ipX pX

a iX ipX iX

  (11) 

Figure 1. Determination of T1 times by extrapolation for the case of non-negligible satu-
ration for homogeneously and inhomogeneously broadened lines (after Fretier, 1979). 
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When using the graphical method to estimate T1, eq. (11) gives the condition 
where the asymptote intersects the tangent for small values of X at Xc to be 

Xc = cT1 = (1+a)[1+(1+a)1/2]/(2+a)

which yields T1 = 1/ c when extrapolated to a  0. 

3.4. Sensitivity and Precision in Typical T1 measurements 

The benchmark for the technique is taken to be the number of centers required 
to observe an EPR line that is 1 G wide and possessing a signal-to-noise ratio of 
unity. Typical values obtained at 77 K using the various spectrometers operating 
with a pickup coil are: 5 x 1015 (0.2 GHz), 1014 (0.7 GHz), 5 x 1013 (4.0 GHz), and 
1012 (8.2–12.4 GHz). In practice, one needs about 20 times these numbers to make 
a correct measurement of T1.

The precision that can be obtained in these measurements is about 4% in the 
range 10−8 s < T1 < 10−6 s. It changes to 15% for very short T1 times in the range 
10−10 s < T1 < 10−8 s. 

4. MATRIX TECHNIQUE TO SOLVE BLOCH’S  

 EQUATIONS IN A ROTATING FRAME  

 USING FOURIER-SERIES EXPANSION  

In order to compare the signal induced in a pickup coil with the continuous 
wave signal detected in a resonator, one needs to find a common route towards the 
solution of the Bloch equations. The asymptotic solutions described in the preced-
ing section are not applicable to the case in which the cw-EPR resonator is used. 
As an alternative, one may use a matrix technique.  

The Fourier-series expansion of magnetic moments Mz and m in terms of mag-
netization moments m(n) and Mz(n), and angular modulation frequency , are: 

(n)
n -

Ω

=

= in tm m e  (12)  

z(n)
n -

Ω

=

= in t
zM M e  (13) 

It is noted from (13) that *
( ) ( )=n nM M , since Mz is real. 

The moments of magnetization can be evaluated by the use of an appropriate 
matrix technique, which is described below. They can then be used to calculate the 
signals induced in a pickup coil, and the parallel and perpendicular components of 
the cw-EPR signals in a resonator.  

In order to solve Bloch’s equations using the matrix technique one introduces 
expansions (12) and (13) into Bloch equations (5) and (6), respectively. Using the 
relation cos t = ½(ei t + e−i t) and comparing the coefficients of einΩt on the two 
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sides of the equation leads to systems of coupled equations in terms of moments of 
expansion m(n) and Mz(n). These are: 

1
( ) 0n 0

12(1 )( / T )

γ
δ

Ω
= + ×

+ +z n
c

BM M
m n i

               
*

( 1) ( 1)*
( ) ( ) *

( 1) ( 1)

( )
( )

2 ( )+ +

+
+ n nc

n n
n n

m mm
m m

m m
 (14) 

In eq. (14), δ0n = 1 when n = 0, and 0 otherwise; 

{ }* 1 ( ) ( 1) ( 1)
( ) ( )

( )

2

2 2 (1 )

γ ++ +
= =

+

c
z n z n z n n

n n
y n

c

mB M M M Fm m
M

i i m
 (15) 

where 

2 2

1 1

/ T / TΩ ∆ω Ω ∆ω
= +

+nF
n i n i

 (16) 

4.1. Signals Induced in a Pickup Coil vs. Resonator. 

The signal that is induced in a pickup coil may be recovered by using a lock-in 
amplifier tuned to frequency Ω:

 (1) (pickup)    M ; ( , )α
α αΩ α= =

M
S z y

t
 (17) 

By contrast, the continuous wave signal that appears in a resonator is propor-
tional to the steady-state (long-time) value of Mz,MAX − Mz,MIN:

(1) (resonator) 2 M ; ( , )α α α =S z y  (18) 

One therefore needs the values of Mα(1) (α= x, y) in order to calculate the sig-
nals. To accomplish this, the solutions of coupled equations (5) and (6) in Mα(1) (α
= x, y) are required. Substitution of (15) into (14) gives: 
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2
1

( ) 0n 0 2
1

( )

2(1 ) ( / T )

γ
δ

Ω
= + ×

+z n
c

BM M
m n i

( )

( )

( ) ( 1) 1 ( 1) 1

2

( ) 1 1 ( 2) 1 ( 2) 1

{ } { }
2

{ }
2

+ +

+ + +

+ + + + +

+ + +

c
z n n z n n n z n n n

c
z n n n z n n z n n

m
ZM F M ZF F M ZF F

m
M F F M F M F

 (19) 

whereas substitution of (14) into (15) yields 

2
1

( ) 2

( )

2(1 )

γ
= ×

+
n

y n
c

B F
M

m

( )( ) ( 1) ( 1)
0 0

1 1

( 1) ( 2) ( )
0 0( 1)

1 1

( 1) ( ) ( 2)
0 0( 1)

1 1

(1 )2

( / T ) ( )

(1 )2
( 1) / T ( )

2
(1 )2

( 1) / T ( )

δ
Ω γ

δ
Ω γ

δ
Ω γ

+

+ + +

+ +
++

+ + +
+

+
+ + +

+ +
+

c
y n y n y n

n c

c
y n y n y n n c

c

c
y n y n y n n c

mZM M M
M m

n i i B
mZM M M M m

n i i Bm
mZM M M M m

n i i B

  (20) 

In (19) and (20), Fn is as defined by (16), and the expressions for Fn±1 can be 
obtained by substitution of n  ± 1 for n in the expression for Fn. It is noted that in 
(19) and (20) one substitutes Z = 1 when using the amplitude modulation expression 
given by eq. (3) (Herve & Pescia, 1960, 1963a,b; Pescia & Herve, 1963; Ablart & 
Pescia, 1980; Ablart, 1978). On the other hand, one substitutes Z = 1 − 1⁄2me and 
replaces (i) (1 + mc) by 1 and (ii) 1⁄2mc by −1⁄4me when using the amplitude modula-
tion expression given by eq. (4). 

Equation (19) and (20) are the key equations that provide the recursion rela-
tions among M (n+2), M (n+1), M (n), M (n–1), M (n–2) { = z, y) as expressed below by 
(21) and (22).  

, 2 ( 2) , 1 ( 1)

, ( ) , 1 ( 1) , 2 ( 2)

+ + + ++ +
+ + =

n n z n n n z n

n n z n n n z n n n z n n

A M A M
A M A M A M B

 (21) 

, 2 ( 2) , 1 ( 1)

, ( ) , 1 ( 1) , 2 ( 2)      
+ + + ++ +

+ + =
n n y n n n y n

n n y n n n y n n n y n n

C M C M
C M C M C M D

 (22)
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Equation (21) describes the recursion relation amongst Mz(n+2), Mz(n+1), Mz(n), Mz(n-1),
Mz(n-2), yielding a penta-diagonal matrix of complex elements. Similarly, (22) de-
scribes the recursion relation amongst My(n+2), My(n+1), My(n), My(n-1), My(n-2).

One can express (21) as a matrix equation: 

( )

matrix of matrix of matrix  of

coefficients
=

z n nM BA
  (23) 

where, Bn = δ0n M0. Likewise, from (22) one obtains the matrix equation 

( )

matrix of matrix of matrix  of

coefficients
=

y n nM DC
 (24) 

with  

( ) { }0 1
0 0, 1 0, 12 1 2

γ
δ δ δ+= + +

+
c

n n n n
c

M B m
D i

m

The explicit expressions for the real and imaginary parts of coefficients Apq,
Cpq, Bn, and Dn are listed in Appendix 1. 

The matrix equations given by (23) and (24) can be solved for Mz(n) and My(n),
using the expressions derived in Appendix 2 to calculate the left-hand inverse of a 
complex matrix, which are then substituted back into (17) and (18) to calculate Sz
(pickup), Sy (pickup), Sz (resonator), or Sy (resonator), respectively.  

Although the matrices appearing in (23) and (24) are of infinite dimensions, 
they are, in practice, truncated for numerical calculations by checking for conver-
gence so that the next term is less than a certain percentage of the sum up to the 
previous term. In the present calculations, terms containing n = 0, ±1, ±2, ±3, …,
±11, ±12 are retained (i.e., a 25×25 matrix) to permit calculation of signal intensity 
such that the contribution of the 26th term is less than 0.01%. It is seen that the 
solutions so obtained are consistent with those found numerically using the Runga-
Kutta method (Press et al., 1992). 

5. OUTLINE OF A LEAST-SQUARES FITTING PROCEDURE  

 TO EVALUATE T1 AND T2 FROM PICKUP AND CW-EPR 

 RESONATOR SIGNALS RECORDED AS FUNCTIONS OF 

The least-squares fitting (LSF) procedure that is used here is similar to that 
applied to the evaluation of spin-Hamiltonian parameters from cw-EPR line posi-
tions (cf. Misra, 1976, 1999). Relaxation times T1 and T2 are treated as components 
of parameter vector p , to be estimated from the values of the measured signal, 

M
iS , for various values of modulation frequency i (i = 1,  2, …, n). In the present 

case, the 2 value required in the LSF procedure, a function of parameters T1 and 
T2, is expressed as 
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( )22 2

1

/χ σ
=

=
n

C M
i i i

i

S S  (25) 

In eq. (25), C
iS , M

iS , and σi  are the calculated and measured values of the 
signal at modulation frequency i as given by (17) and (18), and the weighting 
factor (related to standard deviation) of the data point (measured signal), respec-
tively. One can now obtain the values of the best-fit parameters in an iterative 
manner starting with judiciously chosen initial values of parameter vector Ip  us-
ing the following equation:  

( ) ( ){ }1= II

f I
pp

p p D D  (26) 

In eq. (26), D  is the column matrix, with the two components being 2 /χ jp
(j = 1,2), while D  is the 2 × 2 matrix, with the four jk elements being 

2 2 /χ j kp p  (j = 1,2). The new set of parameters, fp , as obtained using eq. (26), 
are next used as initial values of parameters in place of Ip in (26), and the calcula-
tion is repeated, until such time that the new parameter values do not change sig-
nificantly from the previous ones as revealed by the insignificant change in the 
resulting 2  value.  

The first and second derivatives of 2 to be used in (26) are expressed as fol-
lows: 

( )( )2

2

/
2

χ
σ

=
C M C
i i i j

ij i

S S S p
p

 (27) 

( )
22 2

2

2χ
σ

= +
C C C

C Mi i i
i i

ij k j k j ki

S S SS S
p p p p p p

 (28) 

In order to evaluate (27) and (28), the first and second derivatives of C
iS with 

respect to the parameters are required. Since C
iS  is calculated using M (n); = z, y

as given by (19) and (20), the LSF calculation requires calculating the derivatives 
of M0(n) with respect to the parameters. The details are provided in Appendix 3. 

6. ILLUSTRATIVE EXAMPLES 

In order to illustrate the dependence of the modulation signals on spin–lattice 
(T1) and spin–spin (T2) relaxation times of spin packets, calculations are here car-
ried out for a spin packet both on and off resonance to take into account inhomoge-
neous broadening. The values of the various quantities used for numerical calcula-
tions are as follows. At resonance, the external magnetic field value is B0 = 2 f/ =
3283 G at X-band (f = 9.2 GHz), using = 1.7608 × 107 rad s–1G–1. The initial value 
of the magnetization is chosen to be that for 1 millimole of sample (number of S =
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½ spins: N = 6 × 1017 per cm3) at room temperature (T = 295 K). Under these condi-
tions the Curie susceptibility, ( ) ( )2 2

0 1 / 3χ γ= +N S S kT =  1.29 × 10−9, resulting in 
M0 = 0B0 = 4.169 × 10–6 G.

Three different sets of T1, T2, and B for the same coefficient of modulation, mc

(= 0.1), and T1 time (= 10–7 s) were used to illustrate the dependence of modulation 
signals on relaxation times at resonance, shown in Figures 5 and 6, respectively, 
for a pickup coil and resonator. Specifically, these values are: 

 Set a: T2 = 1 × 10−7 s, B1 = 0.5 G 
Set b: T2 = 3 × 10−8 s, B1 = 0.5 G 

 Set c: T2 = 1 × 10−9 s, B1 = 1.0 G 

6.1. Spin Packet at Resonance (  = 0)

It is seen from Figure 5, which illustrates the behavior of signal Sz (pickup) for 
each of these three sets of values, that indeed significantly different plots are ob-
tained for different T1, T2 values. Furthermore, as the value of X (= T1) increases, 
each signal achieves an asymptotic constant value for large X. For the case when p
(= T2/T1) << 1 (set c, p = 0.01), it is seen that the value of the signal increases 
monotonically with X, attaining an asymptotic value S0 for large X that depends on 
values of T1, T2, B1, mc, which is consistent with the data illustrated in Figure 3. 
These data also show that the value of the signal is S0/ 2 when X = 1.  

When p is not too small (sets a and b), the signal first increases to achieve a 
maximum, after which its value decreases, finally attaining a constant value for 
large X. In this case: (i) the asymptotic value (large X) for Sz  (pickup) is found to 
be S0/2; (ii) the tangent of the Sz (pickup) versus X plot at very small values of X,
where the curve is linear, intersects the extrapolated asymptotic value for large X at 
X = 0.5, and (iii) the maximum value of the signal is S0/ 3. These observations are 
also consistent with those exhibited in Figure 3. As for signal Sy (resonator), it is 
seen from Figure 6 that for significant values of p, that is, p = 1.0 (set a) and p =
0.3 (set b), the signal first increases with X up to about X = 1.213 and X = 1.623, 
respectively, and then drops off to a constant value with further increase in X,
whereas for very small values of p, that is, for set (c) (p =  0.01), the signal de-
creases monotonically with increasing , starting with the maximum value. 

6.2. Spin Packet Off Resonance (  0) 

Calculations of Sz (pickup) and Sy (resonator) were made for a spin packet for 
the same values of T1, T2, B1, mc, and M0 as those for set (a) listed above, off-
resonance by = 20 MHz. The resulting calculated signals are included in Figures 
5 and 6, respectively. The required initial value of magnetization, M0, off resonance 
is expected to be smaller than that at resonance, as it depends on deviation  and 
the EPR lineshape (e.g. Gaussian, Lorentzian) depending on the properties of the 
sample. But in order to demonstrate the dependence of the signals on T1, T2 and 
facilitate easy comparison with the situation when the spin packet is at resonance,
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the same value of M0 was used in the calculation as that at resonance. This does not 
change any conclusions, since as seen from eqs. (17) and (18) the signals are di-
rectly proportional to M0.

Figures 5 and 6 demonstrate that both Sz (pickup) and Sy (resonator) are quite 
sensitive to T1, T2. The relaxation times can thus be determined by using the LSF 
procedure to simultaneously fit a large number of data points for Sz (pickup) or Sy
(resonator) obtained using various values of the modulation frequency. Further-
more, it is seen from Figures 5 and 6 that there already exist significant changes in 
the signals off resonance even by as small as ~0.3% from f  ( = 20 MHz). Thus, 
in order to estimate T1 and T2 more accurately, additional data points, to be used in 
least-squares fitting, should be obtained by measuring signals of spin packets off 
resonance, achieved by setting the external magnetic field at an appropriate value. 

Figure 2. Plots of the signal induced in a pick-up coil, Sz, for a spin packet at resonance 
(∆ω = 0) for the following set of values: (a) T1 = 10−7 s, T2 = 10−7 s, B1 = 0.5 G; mc = 0.1; 
(b) T1=10−7 s, T2 = 3 × 10−8 s, B1 = 0.5G; mc = 0.1; (c) T1 = 10−7 s, T2 = 10−9 s, B1 = 1.0G; 
mc = 0.1; In addition, a plot is provided for a spin packet off resonance by 20 MHz cal-
culated using the values of set (a). 
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7.  CONCLUDING REMARKS 

The amplitude modulation technique has been used to measure spin–lattice re-
laxation times in the range 10−6−10−10 s by using a pickup coil (Hervé & Pescia, 
1960, 1963a,b; Pescia & Hervé, 1963; Ablart & Pescia, 1980; Ablart, 1978). This 
technique can be further improved with the help of modern technological advances 
to construct efficient microwave amplitude-modulated spectrometers, such as that 
using the crossed-field resonator. Alternatively, in the pickup coil technique one 
can use a dielectric resonator and place the pickup coil inside it (Forrer et al.,
2005). In this chapter, calculations are presented corresponding to the longitudinal 
(Mz) and transverse (My) signals that are induced in a pickup coil and, alternatively, 
the transverse signals (Mx and My) that might be detected by a resonator used in a 
cw-EPR experiment. Representative fast matrix calculations have been presented 
that demonstrate the dependence of the signal upon amplitude modulation using an 
arbitrary coefficient of modulation. Both T1 and T2 can be determined by simulta-

Figure 3. Plots of the signal induced in a pick-up coil, Sy, for a spin packet at resonance 
(∆ω = 0) for the following set of values: (a) T1 = 10−7 s, T2 = 10−7 s, B1 = 0.5G; mc = 0.1; 
(b) T1 = 10−7 s, T2 = 3 × 10−8 s, B1 = 0.5G; mc = 0.1; (c) T1 = 10−7 s, T2 = 10−9 s, B1 = 1.0G; 
mc = 0.1; In addition, a plot is provided for a spin packet off resonance by 20 MHz cal-
culated using the values of set (a). 
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neously fitting the data corresponding to a set of experimentally applied modula-
tion frequencies corresponding to spin packets on and off resonance. An accurate 
knowledge of relaxation times is necessary to unravel the nature of the relaxation 
processes in systems characterized by very short relaxation times of paramagnetic 
centres, such as amorphous silicon containing dangling bonds, spinels, glasses, and 
polymer resins.  

8.  APPENDICES  

8.1.  APPENDIX 1: LIST OF REAL AND IMAGINARY PARTS OF  

 COEFFICIENTS Apq, Cpq, Br, AND Dr

The expressions below  are derived for the amplitude modulation expression 
given by eq. (3), as defined by Hervé & Pescia (Hervé & Pescia, 1960, 1963a,b; 
Pescia & Hervé, 1963; Ablart & Pescia, 1980; Ablart, 1978). They can be specifi-
cally transformed to the case of strong modulation when the amplitude modulation 
expression is given by (4) by making the substitution  

Z = 1
2

dm

replacing  (1 + mc) by 1, and replacing / 2cm  by / 4dm .

The real (Re) and imaginary (Im) parts of the matrix elements of matrix [A] in 
eq. (23) that are used in the modulation expression (eq. (3)) with Z = 1: 
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In the preceding equations,  
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with 
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with  
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The elements of the right-hand side of eq. (23) are 
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As for the real and imaginary parts of the matrix elements of matrix [C] in eq. 
(24), they are listed below: 
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The real and imaginary parts of the right-hand side of (24) are 
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8.2.  APPENDIX 2: INVERSION THE COMPLEX MATRIX A = (A  + A )

Expressions are derived in this appendix to invert the matrices given by eqs. 
(23) and (24), with complex matrix elements to calculate moments Mz(n) and My(n)

for a system of coupled linear equations.  
The complex elements of matrix A, whose elements are constituted by the co-

efficients of M (n) ( = z, y) in (19) and (20),  can be separated into real and imagi-
nary parts: = +A A iA , where A  and A  are real matrices, with elements 
= +mn mn mnA A iA . Let A−1

L be the left inverse of matrix A, so that A−1
L = I, where I

is the unit matrix. It can be expressed as 1 = +LA F iF . Then  

( ) ( )+ × + = +F iF A iA I iO  (8.2.1) 

where I and O are the unit and null matrices, respectively. By comparing the real 
and imaginary parts, eq. (8.2.1) leads to 

+ =F A F A O  (8.2.2) 

and   

=F A F A I  (8.2.3) 

From (8.2.2),  

1=F F A A  (8.2.4) 

Substituting (8.2.4) into (8.2.3) for F , and solving for F , one obtains for the 
real part of matrix A-1

1 1( )= +F A A A A  (8.2.5) 

Then using (8.2.5) for F  in (8.2.4), one obtains for F  the imaginary part of 
A−1:

1 1 1( )= +F A A A A A A  (8.2.6) 

Finally, using (8.2.5) and (8.2.4), the left inverse of complex matrix A is ex-
pressed as 

1 1 1 1 1( ) ( ) ( )= + = +LA A iA A A A A I iA A  (8.2.7) 
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In (8.2.7) all matrices on the right-hand side are real. For inversion of a real 
matrix, one can use the LU-decomposition algorithm (Press et al., 1992). 

Finally, the vector of moments to various orders can be calculated from (19) 
and (20) as follows: 

1
( ) ( )

column vector matrix column vector 
  ; ,

 of ofofα α
α= =

n nL

z y
 M  BA

 (8.2.8) 

8.3.  APPENDIX 3: DERIVATIVES OF MAGNETIC MOMENTS

In order to calculate the derivatives of M (n);  = z,y, required for least-squares 
fitting of data, one begins by taking the derivatives of (23) and (24), which are 
formally the same. For example, it is noted that eq. (24) is formally expressed in 
matrix form as 

[ ] [ ] [ ]     =C M D  (8.3.1) 

where [C], [M], and [D] are the matrices constituted by elements Cpq, M (n), and Dn.
[The same manipulations as described below can be applied to eq. (23).] 

Now, by taking the first and second derivatives of (8.3.1) with respect to pa-
rameters pj (T1 and T2), and noting that D does not depend on the parameters, one 
obtains, after simplification, for the first and second derivatives of moments M (n);

= z, y:

[ ] [ ]1=
j j

M CC M
p p

 (8.3.2) 

and

[ ] [ ]
2 2

1= + +
j k j k j k k j

M C C M C MC M
p p p p p p p p

 (8.3.3) 

It is noted here that matrix [ ] 1−C has already been calculated when solving for 
the matrix of moments, [ ]M , as described in Appendix 2. 

Finally, it is seen from (8.3.2) and (8.3.3) that the task of calculating the first 
and second derivatives of M (n) reduces to calculating the first and second deriva-
tives of the elements of matrix [ ]C  with respect to the parameters listed in Appen-
dix 1. Details of how to calculate these derivatives are described below. 

8.3.1.  Calculation of First and Second Derivatives 
2/ , /j j kC p C p p

As seen from the expressions given in Appendix 1, each element,  f, of coeffi-
cient matrix C  can be expressed as a sum of two terms; each term is expressed as 
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a ratio wherein both the numerator and denominators are functions of ∆ω. The sec-
ond term is obtained from the first term by replacing ∆ω by −∆ω. Thus, 

( )
( )

( )
( )

∆ω ∆ω
∆ω ∆ω

= +n n

d d

y y
f

y y
 (8.3.4) 

Then the first derivative of each term can be expressed formally, suppressing 
∆ω in the notation, as 

1= d n

j d j j

y yf f
p y p p

 (8.3.5) 

and  

2

2 2

1

1=

+ +

d d n

d k j j

j k d d d n

k j j k j k

y y yf
y p p pf

p p y y y yf f
p p p p p p

 (8.3.6) 

An inspection of the elements of [C] , as listed in Appendix 1, reveals that yd
are either the product of two, three, or four, terms yd = yd1yd2, or yd = yd1yd2yd3, or yd
= yd1yd2yd3yd4. Then the first and second derivatives of yd with respect to the pa-
rameters in (8.3.5) and (8.3.6) can be calculated by the chain rule, and expressed in 
terms of 

2

,  ,  dn dn
dn

j j k

y yy
p p p

.

Similar considerations apply to yn. It is then straightforward, although time con-
suming, to derive specific expressions for these derivatives, which are not listed 
here due to their being too lengthy. (They can be obtained from the author.) 
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1.  INTRODUCTION 

The spin–lattice, or longitudinal, relaxation time T1 plays an important role in 
magnetic resonance because it provides significant information about the coupling 
of a paramagnetic ion with its environment via its dependence on such factors as 
temperature, frequency (Scott & Jefferies, 1962; Kurtz & Stapleton, 1980), spin 
concentration (Gill, 1962), and magnetic field (Albart & Pescia, 1980; Nogatchew-
sky et al., 1977). But the measurement of electronic spin–lattice relaxation times is 
problematic because the times span the range from the very short (10–15 s) to the 
very long (1 s; cf. Pescia, 1966). The one microsecond spin–lattice relaxation time 
demarcates “short” from “long” relaxation times, which traditionally have each 
required their own methods of measurement. For example, long relaxation times 
are measured by using cw-EPR spectrometers to record spectra at multiple power 
levels near and under the condition of saturation; the spin–spin and spin–lattice 
relaxation times are then calculated from lineshape parameters. But the so-called 
short relaxation times are not measurable on the time scale of common cw-EPR 
instrumental detection methods. Short spin–lattice relaxation times are therefore 
measured by resorting to different (i.e., transient) magnetic resonance techniques 
such as pulsed saturation, spin echo (cf. Poole & Farach, 1971), and amplitude 
modulation (Hervé & Pescia, 1960a,b). 

This chapter is a partial translation of the doctoral thesis of Robert Lopez entitled, “Amélio-
ration de la mesure du temps de relaxation spin-réseau T1 en résonance paramagnétique 
électronique: Application a l’acetat de cuivre calcium dilué et un verre boraté dopé Fe2O3,” 
Paul Sabatier University, Toulouse, France (1993) with permission. 



32 ROBERT LOPEZ 

Faced with a broad range of prospective spin–lattice relaxation times, the in-
vestigator needs two types of spectrometers, a situation that is further complicated 
if multi-frequency measurements are required. Furthermore, the phenomenological 
descriptions of measurements made by cw and transient spectrometers differ, as 
they correspond to separate solutions to Bloch’s equations. This chapter describes 
refinements of both instrumental and theoretical/computational techniques that 
facilitate the measurement of spin–lattice relaxation times.   

To begin, Bloch’s phenomenological equations will be solved via Laplace 
transformation, which yields a natural and generalized expression for T1. This 
computational solution, in turn, is put into practice via two instrumental improve-
ments that enable one to measure T1 over its entire range. In doing so, we have 
devised a simple technique for measuring long T1 using a conventional EPR spec-
trometer equipped with a fast sweep and, in addition, constructed a device that in-
creases the sensitivity and reliability of the modulation spectrometer for measure-
ments of short T1. Finally, this chapter concludes with practical measurements of 
spin relaxation times in two disparate spin systems using the modulation spec-
trometer. The first, a sample of calcium cadmium acetate hexahydrate doped with 
copper, is ideal for testing the temperature dependence of T1.  This sample material 
provides a large signal and, due to its weak exchange interaction, is expected to 
follow the theoretical dependence of T1 as predicted by Bloembergen and Wang 
(1954). It therefore seemed possible for us to examine the behavior of T1 at high 
temperature, that is, in the vicinity of the Debye temperature.  The second system, 
a borate glass doped with Fe2O3, for which the study of the temperature depend-
ence T1(T) does not appear to have been carried out before, was interesting due to 
coupling of the spin with its environment by a mechanism not well understood as 
of yet. 

2. RELAXATION TIMES VIA GENERAL SOLUTION OF  

 BLOCH’S EQUATIONS  

The spectroscopic dynamics problem was examined mathematically for the 
case of the (two-level) magnetic resonance transition by Bloch, who described the 
temporal evolution of the magnetization in terms of a first-order differential equa-
tion analogous to dn/dt = –k(n − n0), where n represents a time-dependent function 
that, in this case, represents a spin-state population difference. (In a two-level sys-
tem and in the form written, n would represent the population difference between 
the ground and excited states and the solution of the differential equation would 
correspond to the time course of the decay to the ground state.) The solution to this 
first-order differential equation is an exponential function in which a time constant 
is introduced and attributed to a characteristic relaxation time that is denoted by T1.
In other words, k  is proportional to T1

−1. This time constant T1 is called the spin–
lattice relaxation time, and is defined as the rate at which the electrons return to 
thermal equilibrium due to coupling with the lattice. 
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2.1.  Bloch’s Differential Equations of Motion 

The magnetic resonance experiment is defined by the interaction between an 
external magnetic field, H0, and the microscopic spin magnetic moments of a sam-
ple material, µ. The direction of the static field determines the coordinate frame (z-
axis defined parallel to field H0), and the experimental observables become the 
macroscopic magnetizations projected parallel and perpendicular to the z-axis. The 
quantum mechanics dictates that within the applied field the microscopic magnetic 
moments are spatially quantized with respect to the z-axis, and therefore macro-
scopic magnetization M  is a vector whose magnitude and direction is determined 
by the sum of microscopic moments iM  of the material extended over the total 
volume of the sample. In the case of a two-level model (the so-called spin-1⁄2
model), the individual moments are aligned parallel or antiparallel to the z-axis, 
and the corresponding (population) numbers, n+ and n−, are determined by Boltz-
mann statistics. Since the z-component of magnetization Mz will be determined by 
difference n = n+ − n−, the preceding analogy using differential dn⁄dt ∝ n becomes 
apparent, that is, 

0

1

= zz M MdM
dt T

where Mo = χHo and represents the equilibrium value of the macroscopic magneti-
zation. This process implies that the spins lose energy to the lattice characterized 
by spin–lattice relaxation time T1.

This first-order differential model suffices to describe the dynamical behavior 
of Mz. From a different perspective the applied field torques the microscopic mag-
netic moments, causing them to precess about the z-axis with an angular velocity 
defined as ω= (gβH0)/ . The resultant equation of motion for the magnetization of 
a system of free spins in a static magnetic field can be expressed as 

γ= ×dM M H
dt

where coefficient γ = gβ⁄  represents the gyromagnetic ratio.  
Since there is no quantization perpendicular to z, the microscopic magnetiza-

tion projected onto this plane is randomly oriented, and therefore macroscopic 
magnetization M⊥ = 0. Each individual microscopic moment, however, is in actual-
ity subject to a local field that differs slightly from the specified laboratory field 
because of spatial inhomogeneities in H0 and (relatively) weak fields of magneto-
chemical origin within the sample. The individual spins therefore precess with dif-
ferent angular velocities (designated as set {ωi | ωi =

gβHloc⁄ }) and phase. The field 
local to a given spin magnetic moment leads to its precession about it. This results 
in a spread of the resonance line when the ensemble of spins is taken into account. 
This spread attributes a linewidth to the resonance line.  

The spectroscopic dynamics is induced by subjecting the sample to a second 
oscillatory field, H1, with angular velocity ω. This field affects the phase angle of 
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the resonant precessing spins, causing their moments to become (very nearly) co-
herent, and rendering M⊥ nonzero. The dynamics of M⊥ is often faster than that of 
magnetization Mz, because this process does not involve exchange of energy with 
the lattice, and is characterized by spin–spin relaxation time T2:

2

=dM M
dt T

Vector quantity M  may now be resolved into its three components — Mx, My,
and Mz — incorporating both time constants, T1 and T2. When the amplitude of the 
radio-frequency field, Hl, is much smaller than that of static field H0, Bloch’s dif-
ferential equations may be written in the laboratory frame of reference (x,y,z):  

2

2
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= ×

= ×

= ×
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H M
dt T

M MdM
H M

dt T

Time constants T1 and T2 appearing here in the relaxation terms are called the lon-
gitudinal and transverse relaxation times.   

2.2.  The Steady-State Solution of Bloch’s Equations 

Bloch’s phenomenological equations were solved for the case of slow passage 
through the resonance, by which it is meant that the rate of varying field H0 is 
small compared to the time required to acquire a spectroscopic data point (H0 is 
assumed to remain constant over this period). In the laboratory frame of reference 
(x, y, z), magnetic moments are subjected to time-dependent field =H

1 1 0cos( ) sin( ))ω ω+ +iH t jH t kH , and so the evolution of vector product ( ×H M ) in 
Bloch’s equations gives rise to first-order differential equations 

1 0
2

0 1
2

0
1 1

1

[ sin( ) ]

[ cos( )]

[ cos( ) sin( )]

γ ω

γ ω

γ ω ω

=

=

=
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z y

y y
x z

zz
y x

dM M
M H t H M

dt T
dM M

H M M H t
dt T

M MdM
M H t M H t

dt T

The differential equations that are derived according to the axial symmetry of 
the laboratory coordinate frame may be simplified by switching to a coordinate 
frame that rotates (about the z-axis). The rotating frame of reference (x', y', z) is 
associated with field H1 of frequency , and rotates about field H0 with angular 
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velocity = 2πν. The equation of motion of the magnetization4 of a system of free 
spins can be expressed, in the rotating frame of reference, as 

ωγ
γ

= ×dM M H
dt

ω  is the vector associated with the change of basis.   
In the rotating frame, the magnetization therefore precesses about an effective 

field, eH , that is the vector sum of field H and fictitious field /ω γ . The equa-
tions of motion of magnetization M  of a system of spins subjected to effective 
field eH  in the rotating frame can then be expressed as:  

2
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∆ω ω

ω

= +

=

=

x x
y

y y
x z

zz
y

dM M M
dt T

dM M
M M

dt T
M MdM M

dt T

with ω1 = |γ|H1 and ∆ω= 2πν − |γ|H0 = ω− ω0.
Steady-state solutions of this system of equations are obtained when the mag-

netization no longer changes, that is, when the derivative of the magnetization with 
respect to time is zero: 

0= = =yx zdMdM dM
dt dt dt

resulting in the following solutions:  

2
1 2

22 2
2 1 1 2

1 2

22 2
2 1 1 2

2
2

22 2
2 1 1 2

1 ( )

1 ( )

1 ( )

1 ( )

∆ω γ

∆ω γ

γ

∆ω γ

∆ω
∆ω γ

=
+ +

=
+ +

+=
+ +

x o

y o

z o

H T
M M

T H TT

H T
M M

T H T T

TM M
T H T T

When there is no saturation ( 2 2
1 1 2γ H T T  << 1), the power absorbed by the spin 

system is 

                                                          
4 To facilitate presentation of calculations, the notations of Abragam (

zyx MMM ,
~

,
~

~~ )

(Abragam, 1961) will be used instead of the original notations of Bloch (u,v,Mz) (Bloch, 
1946).
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2
2 1 2

21 ( )

ωγ
∆ω

= =
+

e
o

dHP M M T H
dt T

The derivative of this power with respect to the field possesses a maximum when  

1/ 2
1/ 2

2

1∆ω
∆

γ γ
= =H

T

and this relation defines the half-width at half-maximum of the absorption line.  
During the course of a cw-EPR experiment DC magnetic field H0 is slowly 

swept across the resonance to record the spectrum. Ideally, one should ensure that 
passage across the resonance condition remains adiabatic, which means that the 
rate of field sweep is sufficiently slow so as to maintain a constant angle, , be-
tween magnetization M  and effective field 

eH  (cf. Figure 1). If the sweep is not 
performed under adiabatic passage, the interaction energy will be perturbed.  

Figure 1. Precession of magnetization vector M about effective magnetic field H0 in the ro-
tating frame associated with field H1.

Neglecting the relaxation terms, the equation of motion of the magnetization in 
the rotating frame associated with 

1H  can be expressed as:  

γ= ×e
dM H M
dt

According to the definition of adiabaticity given by Ehrenfest (Pake, 1962), adia-
batic passage through the resonance will occur when  

1 γ<<e
e e

dHH H
dt

Since the effective field is equal to 
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1
ˆω

γ
= +e oH H k H i

the left-hand side of the preceding inequality is maximum when He = H1 and = 0.
Thus, one can alternatively express the condition of adiabatic passage in the 

rotating frame as   

1
1 1

ω

γ<<
od H

kH H
dt

Physically, the condition for adiabatic passage implies that effective magnetic field 
He should turn negligibly during one period of precession of the magnetization. 

2.3.  Experimental Methods of Measuring the Spin–Lattice Relaxation Time 

From Bloch’s equations and their solution there follows several experimental 
(i.e., resonant) methods of measuring T1. For example, it is a common practice to 
plot both the peak-to-peak amplitude and the peak-to-peak linewidth of the deriva-
tive EPR signal as a function of the square root of the microwave power √P (cf.
Poole, 1967). The square root of the microwave power is proportional to H1, and so 
one has an experimental handle on the term 2 2

1 1 2γ H T T  that appears in the denomina-
tor of the Bloch equations and is responsible for specifying the condition of satura-
tion. The plot of signal amplitude vs. √P is linear at low powers (non-saturating) 
and reaches a (derived) maximum value at 2 2 1

1 1 2(1 ) 2 / 3γ+ =H T T , from which it is 
possible to compute T1 provided one knows both H1 and T2. The latter is obtained 
from the second plot of ∆Hpp vs. √P that yields a low-power limiting (as √P → 0) 
linewidth, ∆Hpp

0, that is proportional to T2. This still leaves the problem of accu-
rately determining H1, which requires a difficult measurement of the radio-
frequency field strength at the sample. This is typically done through the use of 
2,2-diphenyl-1-picrylhydrazyl (DPPH) as a standard for comparative signal ampli-
tude and linewidth vs. power studies (cf. Singer & Kommandeur, 1961). 

The saturation method of determining T1 has serious drawbacks, the most no-
table of which being the requisite measures of T2 and H1. Inhomogeneously broad-
ened lines present further challenges to the measurement because how one defines 
the spin packet lineshape greatly affects the saturation behavior of the system (cf.
Portis, 1953; Kittel & Abrahams, 1953). Lastly, the saturation factor, (1 + 

2 2 1
1 1 2 )γ H T T , will remain approximately unity (i.e., non-saturating) when T1 and T2

are both very short, thereby rendering saturation H1 inaccessible by cw-EPR spec-
trometers. And so time-domain EPR methods such as pulse saturation and electron 
spin echo are also used to measure T1 via direct measures of the bulk magnetization 
following a short, saturating pulse of field H1 (more facile than high-power cw-
sources because of pulsed high power — e.g., traveling wave tube — amplifiers 
that may be used with high spectral purity low-power sources). 
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The pulsed saturation method is modeled simply by our initial description of 
the state population difference, 

0

1

= n ndn
dt T

which has solution 

1/
0 (1 )= t Tn n e

In other words, a system of spins that have perturbed from their equilibrium state 
return to the equilibrium condition according to an exponential law characterized 
by time constant T1. We shall use this fact shortly as a rationale for invoking the 
Laplace transform and associated transfer functions.  

Figure 2. Temporal representation of the pulsed saturation experiment. The sample material 
is subjected to a saturating pulse, H1, and the recovery of magnetization, My, with time con-
stant T1, is recorded. 

A sample is set under the conditions of (non-saturating) resonance, and then 
subjected to a saturating pulse (Figure 2). During the saturating pulse, the spin 
populations equalize and transverse magnetization disappears. At the end of the 
pulse (i.e., 2 2

1 1 2 1γ <<H T T ) the signal (transverse magnetization) recovers with time 
constant T1.

Electron spin echo methods are similar to pulse saturation, but dispense with 
low-power monitoring field H1, and instead use multiple pulses to refocus the 
dephasing spins so that a magnetization “echo” is detected at some time after the 
high-power pulse sequence. In the single-pulse saturation method described above, 
as time constant T1 becomes short, it will become increasingly difficult to accu-
rately record the discrete points (i.e., EPR signal amplitude) along the exponential 
time scale; one needs a rapidly scanning boxcar averager or sampling oscilloscope 
with a very narrow gate window). But the spin echo methods allow one to tempo-
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rally fix the response, which is in the form of an echo, so that its amplitude may be 
accurately measured by a boxcar signal averager. The temporal profile, in which 
the echo amplitude decays according to the same spin relaxation time constants, is 
recorded as a series of discrete steps as the interpulse spacing is increased.  

It is apparent, however, that the three cited methods require different spec-
trometer configurations and have an optimal measurement range due to the techno-
logical limitations of the apparatus (response time of mixer diodes, rise/fall times 
of high power pulsed amplifiers, etc.). But, in principle, the magnetization recovery 
of the pulsed methods is attractive because it is conceptually simple and obviates 
the need for knowing H1. This, in turn, motivates introducing a time-domain per-
turbation of H1 and directly measuring the magnetization. Amplitude modulation 
methods of determining T1 have been described (Halbach, 1954; Hervé & Pescia, 
1960a,b; Look & Locker, 1968; Locker & Look, 1968) as an alternative to satura-
tion and high-power pulse methods. Of these, the amplitude modulation method, 
when used with an alternative detection scheme (i.e., a pickup coil to measure 
magnetization directly) provides the most versatile solution to measurement of T1

over its entire range. 

3. THE SOLUTION OF BLOCH’S EQUATIONS USING THE  

 LAPLACE TRANSFORM 

The method of determining T1 via amplitude modulation of H1 relies on varia-
tion of the modulation frequency, denoted by Ω/2π, until it exceeds T1

−1, at which 
point the magnetization cannot respond to the power variation and there is a loss in 
the detected EPR signal amplitude (Hervé & Pescia, 1960a). In a sense, this T1

measurement is analogous to that used to analyze the impedance of a nonlinear 
system, such as a passive filter. The precept is that the response of a system y(t) to 
some perturbation x(t) is determined by some differential equation of order n. In 
the case of a linear system and perturbation x(t) = A sin(ωt), one observes a re-
sponse y(t) = B sin(ωt + φ) and one defines a transfer function as the ratio of output 
to input (in the frequency domain) H(jω) = ⏐H(ω)⏐ejφ = y(ω)⁄x(ω), where y(ω) and x(ω)
are transforms of y(t) and x(t) in the frequency domain. Note that for this example 
describing a linear system H(ω) is independent of ω, and so a plot of  H(ω) vs. ω is 
a straight line; resistance, for example, when x(t) is a current and y(t) is a voltage.  

Transfer function H(ω), however, may be an explicit function of ω, as in the 
case of circuit impedance (again using the scenario described in the preceding 
paragraph). For example, when the system consists of a parallel RC circuit, the 
transfer function (again taken as the ratio of voltage out to current in) is given by 
the impedance, ⏐Z(ω)⏐ = (1⁄R + jCω)−1, and so a plot of this ⏐H(ω)⏐ vs. ω consists 
of two linear portions of different slope, their intersection occurring at the reso-
nance frequency of the system. The discontinuities in these plots of ⏐H(ω)⏐ vs. ω
enable one to graphically determine system parameters (i.e., time constants)  and 
are known as Bode plots.  
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The preceding application of the transfer function is not limited to sinusoidal 
functions of x(t) and y(t), but are theoretically applicable to any type of perturbing 
signal by invoking the Fourier transform in order to generalize, Y(ω) = H(ω)X(ω),
in which case the transfer function can be written 

H(ω) = ( )

( )

ω
ω

Y
X

The same applies to functions transformed under the Laplace operational calculus: 

H(p) = { ( )}

{ ( )}
o

i

U t
U t

where {Uo(t)} and {Ui(t)} denote the Laplace transform (defined as f(t) = F(p)
= f(t) exp(–pt)dt) of the output and input functions, respectively.  

The Laplace transform and the transfer function provide the theoretical justifi-
cation of Bode plots as a means to derive circuit parameters via the response of a 
circuit to some specified perturbation, for example, the analysis of passive filters. 
But the behavior of spin magnetization is analogous to that encountered when 
studying transient electrical phenomena. One can draw an analogy between the 
time-variant response of a spin system to that of an RC circuit: the descriptive dif-
ferential equations are very nearly the same and the observable parameters are 
analogous (e.g., voltage is replaced by magnetization and the time constant RC by 
the spectroscopic time constant T1). A Bode plot can therefore provide a graphical 
means of determining the time constants, namely T1, from a spin system provided 
that the relevant transfer function obtained from the Bloch equations has the same 
parametric characteristics as in the electrical engineering analogue. 

Consider, for example, the response of a spin system during a pulse-saturation 
experiment. A saturating pulse (H1) at resonance is applied to the sample, after 
which H1 is reduced (i.e., non-saturating, γ2H1

2T1T2 << 1) and the recovery of mag-
netization recorded (§2.3, Figure 2). The variation of the magnetization of the sam-
ple due to a pulse of microwave field is described by the function 

1
ns( ) 1=

t
TM t M e

where Mns is the equilibrium value of the non-saturated magnetization. The Laplace 
of M(t) is 

( )
1

ns1

1
1

( )=
+

MT
M p

pp T

This equation is identical to that which describes the charging of a capacitor 
through a resistor by applying a potential step denoted as Ve. In fact, the Laplace 
transform of voltage Ve across the terminals of the capacitor is equal to 



MEASUREMENT OF SPIN–LATTICE RELAXATION TIME  41

1

( )
1

=
+

e
c

V RCV p
p p

RC

This equation shows that the voltage across the capacitor increases exponen-
tially toward the final value, Ve, with a time constant RC. In circuit theory, one 
describes the response to a step potential in terms of a transfer function defined by 

1

( )
1

=
+

RCH p
p

RC

By replacing p by j , the definition of Vc is changed from time domain (in-
verse Laplace transform) to frequency domain (Fourier transform). One then char-
acterizes the electrical system by a representation in the Bode diagram of the 
modulus of the transfer function (cf. Figure 3): 

2
2

1

( )
1

ω

ω

=

+

RCH j

RC

The cutoff frequency of the transfer function is defined to be that correspond-
ing to the point of intersection of the asymptote and the tangent to the curve de-
scribing the inverse time constant. 

Figure 3. Bode diagram of H(j ), the modulus of the transfer function of a series RC cir-
cuit. 

3.1.  Solution of Bloch’s Equations in the Rotating Frame 

The rotating frame ( , , )x y z  associated with the radio frequency field is situ-
ated in such a way that the x  axis coincides with the axis of field H1.  As for the z-
axis, it is common to both reference frames, and is coincident with static field H0.
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Bloch’s equations can be expressed in matrix form as follows: 

∂
∂ t
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z

M
M
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= − γ
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M
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x

y
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M

where parameters τ1 and τ2 are the inverses of the spin–lattice and spin–spin re-
laxation times, respectively. 

In the moving frame, the differential equation of the first order can be ex-
pressed in the following form:  

[ ]( ) 1,2 1 0

∂
ω γ τ τ

∂
= × +

M
M H M M

t

Vector [ ]ω =

1

0

0

ω
 is the vector representing the change of basis. 

Figure 4. The rotating frame associated with the radio-frequency field. 

In the moving frame (Figure 4), vector 
~H
→

 is equal to 

H

H

1

0

0 , and vector 

~M0

→

 is equal to 

0

0

0M
.
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One can, therefore, factor the differential equation, which then reduces the 
time differential of the magnetization to 

M

t

∂

∂
= [ ]A M + 1τ 0M .

Matrix [A] is a square matrix with elements 

2

2 1

1 1

0

0

τ ∆ω
∆ω τ γ

γ τ
H

H

and the definitions of the parameters are the same as those given in §2.2.
The Laplace transform of the system is equal to 

[ ] [ ]( )p I A ( )M p  = 1 ( )τ oM p

where [I] is the unit matrix. 
The solution of this equation is obtained by diagonalizing matrix [ ] [ ]( )p I A

by using the Gaussian technique (cf. François et al., 1993) and square matrices 
[ ]1Q  and [ ]2Q  (Appendix I). The diagonalization of [ ] [ ]( )p I A  by operation 

[ ]2Q [ ]1Q [ ] [ ]( )p I A ( )M p  = [ ]2Q [ ]1 1τQ ( )oM p

enables one to rewrite the system of equations in the form  

( )M p = A −1 [ ]2Q [ ]1Q
1τ oM

p .

Matrix A = [ ]2Q [ ]1Q [ ] [ ]( )p I A  is the diagonalized matrix. 
The final form of the Laplace transform for the system of differential equa-

tions is 
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with ω γ=h IH .
The inverse transform of the solution is relatively complex. However, when 

2
1 2ω τ τ<<h  (unsaturated system), the common denominator becomes simple, be-

ing equal to 

( ) ( )2 2
1 2τ τ ∆ω+ + +p p

One thus obtains the transient and steady-state solutions of Bloch’s equations in the 
time domain as follows: 
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The linewidth of the EPR spectrum of a material provides the value of spin–
spin relaxation time T2 directly. On the other hand, the determination of spin–
lattice relaxation time T1 requires methods of indirect measurements.  
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3.2.  The Second-Order Transfer Function for a System at Resonance 

At resonance ∆ω is equal to 0 (i.e., | γ | H0 = 2πν), and this value leads to the 
disappearance of the x  component of magnetization. At resonance, the system of 
differential equation is expressed as 

( ) ( )
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When one applies the final-value theorem (the equations are multiplied by p,
and then one takes the limit as p approaches 0) used in the theory of electric cir-
cuits, the usual values of magnetization are obtained: 
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The change of yM  with time appears in a form that is well known in the the-
ory of electric circuits: 
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The first fraction in this equation represents a transfer function of the second order.  
This solution to the Bloch equations using the Laplace transformation and the 

resultant form of My in the rotating frame is analogous to the problem of a double 
RC unit low-pass filter (cf. Figure 5). The voltage VS corresponds to the output 
signal obtained from the filter in response to a voltage step Ve, that response being 
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2 2
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Figure 5. A double RC filter circuit, whose second-order transfer function representation 
models the response of a spin system in a pulsed saturation experiment. 

It follows that, by analogy, a paramagnetic material placed in a static magnetic 
field and excited by a radio-frequency field of frequency 

0

2

γ
ν

π
=

H

exhibits a behavior similar to that of a low-pass filter of second order, with the dif-
ference here being that the variables are those of magnetization rather than those of 
voltage. The response of this filter to a step of static magnetic field H0 is observed 
under these conditions. 

3.3. Parameters of the Second-Order Transfer Function for Magnetic  

 Resonance Calculations 

The general formula of a second-order transfer function in the frequency do-
main is 

( ) 2 2
0 02

ω
ω ω ζω ω

=
+
KH j

j

where ω0 denotes the undamped characteristic frequency of the system, and ζ is the 
damping factor.  We shall define a cutoff frequency, ωC, as the frequency at which 
the absolute value of the transfer function is equal to that evaluated at ω= 0 divided 
by √2; this also corresponds to the familiar point at which the output signal is at-
tenuated by –3 dB.

The transfer equation’s parameters, as defined in a magnetic resonance ex-
periment are identified as 

1
2
0

:
τ ω
ω

= hK      gain at zero frequency 

2
0 1 2ω τ τ ω= + h :     characteristic angular frequency 

1 2

2
1 2

1
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2
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τ τ ω
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     damping factor 
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Figure 6. Variation of the transfer function as a function of the damping coefficient (Bode 
diagram). 

The frequency-dependent behavior of the transfer function (i.e., the Bode diagram) 
takes on a characteristic shape that is largely determined by the damping factor, as 
illustrated in Figure 6. When ζ = 2−1⁄2 (= 0.707), the second-order transfer function 
resembles a first-order transfer function, and the Bode diagram consists of two 
linear portions of slope 0 and –40 dB/decade separated by an inflection point. For 
higher values ζ, the overall shape of the Bode diagram does not change, but the 
inflection point previously seen expands and assumes a characteristic slope of –20 
dB per decade. 

When the damping coefficient is less than 2−1⁄2, the shape of the Bode diagram 
changes and there appears a peak at resonant frequency 

2
0 1 2ω ω ζ=R

The corresponding Q factor, defined by the ratio of the amplitude of the absolute 
value of the transfer function at angular frequency ω= ωR and that at angular fre-
quency ω= 0, is equal to 

2

1

2 1ζ ζ

In the time domain, the damping factor determines the manner in which the 
system will attain its final value in the time domain.  The term “final” is used to 



48 ROBERT LOPEZ 

indicate the response of a system to a perturbation at the end of a time interval that 
is much longer than that of the transients. When this coefficient is less than one, 
called critical value, the transients possess a periodic character: the shape of the 
response function becomes a damped sinusoidal function. When the damping coef-
ficient is equal to or greater than the critical value, the behavior becomes aperiodic, 
and the system attains the equilibrium value in an exponential manner. 

The implications of this behavior with respect to a paramagnetic material will 
now be considered. The spin–spin relaxation time is always less than or equal to 
the spin–lattice relaxation time, and so one always has τ2 ≥ τ1.  In the absence of 
saturation, for which 1 2τ τ ω>> h , the damping factor falls within the range 

2

1

1
1

2

τ
ζ

τ

where the lower and upper limits of the inequality correspond to τ2 = τ1 and τ2 >> τ1,
respectively. 

Coefficient ζ is always greater than the critical value, which implies that: (1) 
the frequency response does not exhibit a peak in the transfer function, and (2) the 
transients are of the aperiodic type. These remarks are in conformity with the re-
sults obtained for pulsed saturation in which the magnetization grows exponen-
tially towards its final value. 

3.4.  Characteristics of the Transfer Function 

At the start of a pulse saturation experiment the sample is saturated, which is 
equivalent, in terms of parameter ωk, to setting the value of the transfer function 
equal to zero, that is, implying zero resultant magnetization. This is analogous to 
establishing a short circuit between the terminals of the second capacitor in the 
double RC-filter model. After the saturating pulse the amplitude of the microwave 
field, H1, does not saturate the material, and one then observes an exponential in-
crease in the value of the magnetization. 

In fact, and again drawing in analogy to the filter model, one observes a re-
sponse by the spin system to a step of magnetization. Since the time constant is 
equal to T1, a cutoff frequency equal to T1

−1 is found in the Bode plane. 
In the absence of saturation ( 2ωh  << 1τ 2τ ), the value of the characteristic fre-

quency of the transfer function depends only on τ1 and τ2: 0 1 2ω τ τ .
The corresponding gain, K, is equal to 2/ω τh , which depends only on T2, the 

spin–spin relaxation time. 
To complete the calculation, cutoff frequency cω  of the transfer function re-

mains to be determined at –3 dB. It is obtained by imposing condition 

( )
( )0
2 2

ω = =c

F KF j
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The solution of this equation (Appendix I) provides the relation between ωc
and the various parameters of the system: 

( ) ( )
22 22 2 2 4

1 2 0 1 2 0 0

1 1
2 2 4

2 2
ω τ τ ω τ τ ω ω= + + + +C

Taking into account the relative values of τ1  and τ2 , one obtains 

τ1 = τ2= τ: the cutoff frequency is given by 11 2 0.64ω τ τ= +c .

τ1 << τ2: the cutoff frequency is given by 1ω τ=c .

The second value clearly indicates that the spin–lattice relaxation time, ordinarily 
measured in the time domain, appears in the frequency-domain data. The variation 
of the absolute value of the transfer function is summarized in the Bode diagram 
(Figure 7), plotted for different values of ratio τ1/τ2, keeping the value of τ2 con-
stant. 

Figure 7. Variation of the cutoff frequency as a function of spin–lattice relaxation time T1

(constant spin–spin relaxation time held constant). 

3.5. Application of the Transfer Function to the Measurement of  

 Spin–Lattice Relaxation Time T1

The formalism of transfer functions will now be applied to the case of mag-
netic resonance. This theory shows that, in general, the system consisting of the 
sample at resonance is stable because all the poles of the transfer function possess 
real negative parts (−τ1 and −τ2), which is a necessary and sufficient condition. 
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Thus, when this system is perturbed by a step of magnetization, not only does the 
transfer function not diverge, it tends to a finite value. 

We begin by representing the spin system by a device subjected to a sinusoidal 
signal of variable frequency (Figure 8). The Bode diagram is then given as the plot 
of output signal Vs as a function of frequency ω.

Figure 8. An experimental representation of how one determines the transfer function of a 
four-terminal network. 

In the case of a conventional cw-EPR experiment, the field modulation applied 
along the z-axis may be varied, and one may measure the response of the system as 
the magnetization along the y  axis. But before we draw a Bode diagram for this 
type of experiment, we must first account for the resonance condition imposed by 
static field H0 and specify those conditions under which the transfer function is 
described, that is, an experimentally valid description of the effective field.  

The cw-EPR experiment is described in terms of a small-amplitude alternating 
field, 0h , that is superimposed upon static field H0. The transfer function should 
then be plotted in the Bode plane. Figure 9 illustrates the change of effective field 
He as a function of amplitude modulation of the static field. The projection of 

/edH dt  upon the y  axis is zero, whereas it does contribute to the variation of the 
z component of the magnetization. For this reason, only the behavior of magnetiza-
tion yM  has here been studied. 

When the total field is described as ( )0 0 0 0 cos Ω+ = +H h H h t the denomina-
tor that appears in the transfer function, that is, ( ) ( )2 2

1 2τ τ ∆ω+ + + +p p
( )2

2ω τ+h p  becomes 

( ) ( ) ( ) ( )
22 2

1 2 0 2τ τ γ ω τ+ + + + +hp p h p

The amplitude of the field modulation must be sufficiently small so as to keep the 
system at resonance, and therefore  

0 1γ τ<<h
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Figure 9. Variation of effective field He during the course of an amplitude modulation ex-
periment. 

Knowing that the half-width at half-maximum of the EPR absorption line is equal 
to (|γ|T2)

−1, it is deduced that the amplitude of the alternating field must be much 
smaller than the width of the line. 

Finally, the component along the x  axis, which is now nonzero, must be con-
sidered. Taking into account the preceding condition along with the condition of 
resonance in weak fields, transfer functions xF  and yF  of components xM and yM
can be expressed as 

( )
( ) ( )

( )
( )

0 1

2
2 1 2 1 2

1
2

1 2 1 2

γ τ ω
ω

τ ω τ τ ω ω τ τ

τ ω
ω

τ τ ω ω τ τ

=
+ + +

=
+ +

h
x

h
y

h
F j

j j

F j
j

The absolute values of these two functions for ω= 0 are equal to 

( )

( )

0

2
2

2

0

0

γ ω
τ

ω
τ

=

=

h
x

h
y

h
F

F

One can now calculate the ratio of the amplitudes: 
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( )
( )

2

0

0

0

τ
γ

=y

x

F

hF

Now, according to our assumption, 0γ h 2τ<< , which implies that ( )0yF
>> ( )0xF . The variation of the magnetization along the x  axis is negligible and 
will have no effect on the measurements of interest here. 

Since the term in 0h  can be neglected in the expression 0 0∆ω ω γ= H , ma-
trix [A], defined in §3.1, remains independent of time. The Laplace transform of 
the differential equations then has the value 

( ) [ ] ( ) ( )1 0τ= +p M p A M p M p

It follows therefore that only vector M0 changes. The component along the z-axis is 
equal to 

( ) ( ) 0
0 0 0 2 2

γ γ
Ω

= = +
+

H pM p H p h
p p

With the help of matrices of transformation [Q1 ] and [Q2], the same as those 
given in §3.1, the response of the system of spins to the above  perturbation is 
found to be 

( ) ( ) ( )0
0 2 2Ω

= +
+y

M pM p F p m F p
p p

.

Here, parameter F(p) and 0m are defined as 

( )
( ) ( )

1

2 2
2 1 1 2

0 0

τ ω
τ τ τ τ ω

γ

=
+ + + +

=

h

h

F p
p p

m h

It is now possible to obtain the characteristic curve of the transfer function as 
long as the alternating field is smaller than the width of the absorption line at half-
maximum, which is usually the case in an EPR experiment:  the small value of the 
spin–spin relaxation time, T2, causes the width of the lines to become greater than 
about 10 Gauss. 

There are, however, practical limitations to this method of determining T1.
First, it must be remembered that the modulation coil and its associated parasitic 
capacitance behave as a resonant circuit. The frequency range over which the coil 
may be used will therefore be limited. Second, the receiver diode and the associ-
ated selective amplifier also limit the applicable frequency range. And, finally, the 
typical cavity quality factor of approximately 104 imposes a rather narrow band-
pass to the measurement, typically 1 MHz. In practice, then, only spin–lattice re-
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laxation times greater than 3 µs can be measured by the field modulation tech-
nique. The sensitivity of the method depends on the width at half-maximum, ∆H1⁄2,
of the absorption line because the amplitude of the modulation field must be, at the 
most, 0.01∆H1⁄2.

4. AMPLITUDE MODULATION OF THE INCIDENT MICROWAVE 

 FIELD AS AN ALTERNATIVE MEANS OF DETERMINING T1:

 MEASUREMENT OF ULTRAFAST RELAXATION TIMES 

4.1.  Description of the Experiment 

Analysis of the spin relaxation parameters by using the Bode diagram run into 
practical limitations when one uses the field modulation frequency as system per-
turbation. This limitation comes in the form of the frequency range over which the 
system can be perturbed, with the result being that one is constrained with respect 
to those relaxation times that may be measured. We therefore seek an alternative 
modulation scheme that is not as severely limited with respect to the applied fre-
quency and so will be more generally applicable to the wide range of spin relaxa-
tion times. In this section we shall examine the method of H1 (i.e., the resonant 
microwave field) amplitude modulation method and its use with pickup coils to 
measure the variation of Mz.

In a conventional EPR spectrometer, the H1 field is perpendicular to DC field 
H0, resulting in effective field He (Figure 10). If the H1 field is now amplitude 
modulated at some frequency Ω, angle θ between static field H0 and effective field 
He will temporally vary, which will likewise cause a temporal variation in the 
magnetization. The effect of amplitude modulating H1 on He is confined to the so-
called ρ-axis of Figure 10, but this effect on He will be manifest on Mz, making it 
possible to observe this effect on Mz by using a pickup coil whose cylindrical axis 
is oriented along H0 because the projection of He along H0 is unaltered. Returning 
now to the Bode diagram analysis, the electromotive force (emf) induced in the 
pickup coil will be measured in response to the frequency variation of an amplitude 
modulation applied to the incident microwave field under the condition of electron 
paramagnetic resonance. 

We define the signal induced in the pickup coil as S(Ω), which will be propor-
tional to dMz/dt, that is 

0( )
2

µ
Ω = b znQ dMS

R dt

The terms in the proportionality constant correspond to familiar coil parameters: n
is the number of turns; Qb is the quality factor; R is the radius; and µ0 is the mag-
netic permeability of a vacuum.  

The amplitude-modulated radio-frequency field is given by the equation 

1 1( ) [1 cos( )]cos( )Ω ω= +H t H m t t

where m is the coefficient of modulation. 
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Figure 10. Vectorial representation of H1 amplitude modulation. 

The effect of amplitude modulation on magnetization is determined by substituting 
the modified expression for H1 into Bloch’s equations for the rotating field: 

1 2

1 1 0

[1 cos( )] | |
1

[1 cos( )] | | ( )
2(1 )

Ω γ τ

Ω γ τ

= +
+

= +
+

z

z
z

MdM i m t H M
dt m

dM M Mi m t H M M
dt m

Magnetization Mz is expressed as a Fourier series  

( )( ) Ω
+

=

= ik t
z z k

k

M t M e

by expressing S(Ω) as a function of both positive and negative values of Ω and 
noting that Mz(+1) = M*

z(−1), in which case S(Ω) ∝ Ω|Mz(+1)|. The emf induced in the 
pickup coil is then 

( )

1
2 2

2

0 2 2 2

1
4( )

(1 ) 1

+
=

+ +

Xp
S X S X

X p X

with the parameters defined as 
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1

2

1

0
0 0 2

1

2 2
1 2 1

(1 )

| |

Ω

µ

γ

=

=

=
+

=

b

X T
Tp
T

nQ mS aM
RT m

a H T T

Figure 11 depicts the variation of modulation signal S(X) as a function of fre-
quency for different values of ratio p. There are two distinct regions in this ensem-
ble of curves that are determined by the relative magnitude of Ω and T1. When Ω
<< T1

−1 (i.e.. X << 1), the signal in the coil reduces to S(X) = S0X ∝ Ω, that is, the 
spin system follows the modulation. The tangent at the origin, whose expression is 
independent of p, therefore represents the response of the system. 

Figure 11. Variation of modulation signal S(X=T1), which is proportional to dMz/dt, as a 
function of frequency for different values of p = T2/T1.

On the other hand, when Ω >> T1
−1 (X >> 1), the relaxation limits the ex-

change of energy between the spin system and the coil, and S(X) tends to an as-
ymptotic constant value equal to S0/2. An approximation of the curve is then ob-
tained by replacing it by the tangent at the origin together with its asymptote. The 
abscissa of the intersection point M relative to the ratio p is equal to    
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1
11 Ω= =X T

when p = 0 (T1 >> T2), or 

1

1

1

2 2

Ω= =X T

when p = 1 (T1 = T2). The profile of the curve therefore allows one to determine the 
spin–lattice relaxation time from the frequency at which the two lines constituting 
the profile intersect. 

In order to measure ultra-short relaxation times less than 10−8 s, again the case 
Ω << T1

−1 applies. The curve S(X) obtained in this case coincides with the tangent at 
the origin. One should then find the position of its asymptote. The modulation sig-
nal, S(X), is independent of frequency Ω when it tends towards its asymptote, S0

(value of the asymptote for p ≈ 0). The cw-EPR signal, S , is likewise constant, and 
it can be shown that the ratio 

0= SK
S

is then independent of the characteristics of the sample. This property is used to 
determine ratio K with the help of a reference sample that is subjected to the same 
experimental conditions and chosen such that its T1 time is greater than 10−8 s. 
With the help of the measured values of 0r

S and rS , one obtains 

0= r

r

S
K

S

where subscript r refers to the reference sample. 
Ordinate S0 of the asymptote of the material studied is thus determined from 

the knowledge of its cw-EPR signal, iS :

0

0 = = r

i i i
r

S
S K S S

S

And finally, the spin–lattice relaxation time to be determined is given by 

1 0
1 ( )

Ω= i

r i

S S
T

S S X

where 

0

0( )= = r

ii i
r

S
S X S X S X

S
.
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4.2.  Description of the Amplitude Modulation Spectrometer 

The first version of an amplitude modulation spectrometer (Hervé & Pescia, 
1960) has undergone many modifications (Pescia, 1965; Gourdon et al., 1973; Ab-
lart & Pescia, 1980). It resembles a conventional cw-EPR spectrometer (Figure 
12), except that a PIN-diode modulator and amplifier are inserted between the mi-
crowave source and the sample resonator. This arrangement enables one to modu-
late the microwave signal amplitude at frequencies ranging from 50 kHz to 30 
MHz. An in situ pickup coil is tuned to angular frequency Ω and connected to a 
frequency-selective microvoltmeter. 

Figure 12. Block diagram of an amplitude modulation EPR spectrometer using a pickup coil 
and frequency-selective microvoltmeter as a detector. 
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The signal provided by the pickup coil is of the form S(Ω) = S0 × S(X). In order 
to measure spin–lattice relaxation times, it becomes necessary to ensure that S0 is 
independent of Ω. This assumption, however, has not been verified experimentally.  
In fact, when Ω changes, the quality factor of the pickup coil (Qb), the coefficient 
of modulation (m) and the amplitude of the radio-frequency field (H1) all change, 
making it necessary to measure these parameters for each value of the frequency. 

The ratio of the coefficient of modulation determined outside (me) and inside 
(mi) the sample resonator cavity is 

12
2

1
Ω

ω
= +i

e

m Q
m

where parameters ω and Q denote the microwave frequency and resonator quality 
factor, respectively. Only the modulation coefficient inside the cavity varies with Ω
and Q. The external modulation coefficient, me, is determined by using an antenna 
coupled to a matched load; effective voltage Veff and DC voltage VDC across the 
load are then measured, and one obtains 

eff

DC

2
(%) 100= Vm

V

The pickup coil is affixed to the sample tube using a saddle-shaped configura-
tion (Figure 13). A Q-meter cannot be used to determine the quality factor of this 
device when it is inserted in the cavity resonator, and so Qb is determined by meas-
uring pass bandwidth ∆Ω at −3 dB while the coil is tuned to Ω by using an external 
coil weakly coupled to a variable-frequency oscillator (Pescia, 1965); it follows 
that Qb = Ω⁄∆Ω. Finally, because of the delicate nature of its measurement, H1 is not 
directly measured but rather steps are taken to ensure that it remains constant. 

4.3.  Signal Detection Using a Pickup Coil and Microvoltmeter 

The direct detection of magnetization via the use of a pickup coil within the 
sample resonator has to meet certain requirements with regards to response time, 
rejection of parasitic noise, and sensitivity. To begin, we shall define the range of 
Ω to be applied during an experimental measurement. This range of frequencies 
should optimally span (Ablart & Pescia, 1980) 

1

3 2

Ω
π

and  

3
2

Ω
π
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Figure 13. Saddle-shaped pickup coil used to detect magnetization changes in sample. 

but the diode used for modulation and the pass bandwidth of the cavity in practice 
is confined to the range 10 kHz to 50 MHz. This range is going to determine the 
range of frequencies to which the detector must respond. 

Second, the amplitude of signal collected by the pickup coil may reach 10 mV 
for those samples that contain a large number of magnetic moments, but for most 
materials the amplitude of the modulation signal is less than or equal to 10 µV. The 
sensitivity of the microvoltmeter employed in the modulation spectrometer (Figure 
12) is approximately 0.5 µV. If it turns out to be sufficient to plot the asymptote of 
the modulation curve, the same may not be true for the tangent at the origin lying 
in the low-frequency region, where the background noise is large, making it diffi-
cult to detect the signal. In practice, one can only measure relaxation times of those 
materials whose concentration of paramagnetic centers is more than 1015 centers 
per gauss. 

In order to meet these demands of the amplitude modulation experiment, we 
have devised a new voltmeter whose schematic description appears in Figure 14. 
The signal is first amplified in a manner similar to that employed in a radio re-
ceiver, after which the signal amplitude is measured by the use of synchronous 
detection. Data acquisition and control of this specialized detection device are 
made using a computer and RS-232 communication. 

The strategy entails the use of synchronous detection with phase-locking. The 
underlying idea is to convert what is otherwise an AC signal into a DC signal, 
which enables one to use low-pass filters, rather than bandpass filters, to filter out 
the background noise. Low-pass filters can be constructed with passbands much 
smaller than bandpass filters, thereby providing a signal-to-noise enhancement of 
4RC∆ f  for sinusoidal signals (Auvray, 1980). The input stage of the detector 
therefore consists of an impedance adapter followed by a wideband preamplifier 
and a mixer (Figure 15).  
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Figure 14. Block diagram of the microvoltmeter detection system, consisting of a frequency 
converter and a programmable amplifier. The processed signal may be monitored using an 
analog meter or LCD display during the setup and optimization stages of the experimental 
protocol. 

Figure 15. Schematic diagram of the frequency conversion stage of the microvoltmeter re-
ceiver, consisting of a wideband (pre)amplifier and mixer downconverter. 

4.3.1. Stage 1: Preamplifier and Frequency (Down) conversion

The pre-amplifier (Figure 16) is constructed of discrete components, which 
has the advantage of producing an extremely satisfactory noise factor. A junction 
field-effect transistor, T1, serves as the input because it has a large gate impedance 
(1012 Ω) and small parasitic capacitance, which allows it to be used over a broad 
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frequency range. The DC polarity of T1 is obtained by self-biasing via R3, R1, and 
inductance L1. With the transistor connected via a common source, one obtains a 
gain close to −gmR2 since R3 is shunted via capacitor C1 (gm is the transductance 
of the transistor and drain resistance is neglected; cf. Millman, 1979). 

Figure 16. Schematic diagram of the wideband (pre)amplifier that is part of the frequency 
(down)converter stage of the microvoltmeter detector (cf. Figure 15). 

The output impedance of T1 (equal to R2) is much higher than the 1.5-kΩ in-
put impedance of the frequency-conversion stage, and so bipolar transistor T2 is 
inserted in the emitter-follower (common collector) configuration. The voltage 
gain of T2 is close to unity, and its output impedance is equal to a few ohms (β =
100; cf. Millman, 1979). So configured, the amplifier stage behaves as a voltage 
source.  

The frequency response of the preamplifier is illustrated in Figure 17. This 
curve, plotted on a semi-logarithmic scale, shows the variation of the output signal, 
S, when a signal, E, of variable frequency and constant amplitude, is applied at the 
input. It is noted that the gain is constant between 5 kHz and 10 MHz, which cov-
ers the entire range of frequencies employed to measure relaxation times. Further-
more, it is independent of the impedance of the pickup coil.  

After preamplification the signal is up/down converted via a two-step super-
heterodyne process. The first stage converts the amplified input signal to a 10.7-
MHz signal that is filtered and passed to a second mixer that converts the first stage 
signal down to the desired 70-kHz intermediate frequency (Figure 18). The first 
stage is therefore tuned so as to ensure that beat frequency f0 + floc is equal to 10.7 
MHz.
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Figure 17. Variation of the preamplifier gain as a function of the input signal frequency for 
different values of the pickup coil inductance. 

Figure 18. Mixer portion of the frequency converter stage of the microvoltmeter detector. 
Circuit features a two-step conversion from f0 to 70 kHz. 

The rationale for using the two-stage conversion process may be understood 
by examining the selectivity of the one- vs. two-mixer configuration. In the former 
case, a single mixer is used with a variable local oscillator and a 70-kHz bandpass 
filter to the convert amplitude modulation signal (frequency between 100 kHz to 
10 MHz) to the IF of 70 kHz. The maximum and minimum frequencies passed by 
the 70 kHz filter are denoted by 

70
70M 70 2

∆
= +

f
f f

and 
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70
70m 70 2

∆= ff f

respectively. Parameters f70 and ∆f70 denote the center frequency and the passband 
(the latter given by the ±3 dB points). The requisite local oscillator frequencies that 
will attain f70M and f70m are

M M70 loc 0=f f f

and 

070 fff
mm loc −=

which means that the allowable dispersion of frequencies in the local oscillator is 
restricted to 

M m M mloc loc loc 70 70 70∆ ∆= = =f f f f f f

or, in other words, its quality factor corresponds to 

loc loc
1

loc 70∆ ∆
= =

f f
Q

f f

It is now necessary to determine how the selectivity of the detector will change 
as Ω is varied. Since the frequency of the local oscillator must equal f0 + f70 (f0

equivalent to Ω) the quality factor Q1 is expressed as  

0 70 70 0
1 70

70 70 70 70

1
∆ ∆

= + = +f f f fQ Q
f f f f

where Q70 is now the quality factor of the bandpass filter. This last expression 
shows that the frequency selectivity of the detector depends strongly on Ω, which 
in practice will always be greater than 70 kHz. 

In the case of a double mixer converter, the maximum and minimum frequen-
cies at the output stage are modified: 

70M 10.7m10.77 MHz= +f f

and 

70m 10.7m10.77 MHz=f f

Since f10.7M = flocM − f0 and f10.7m = flocm − f0, one finds that ∆floc = ∆f10.7 = ∆f70.
And since the pass bandwidth of the filter centered at frequency 70 kHz is nar-
rower than that of the filter centered at 10.7 MHz, one obtains again the relation 
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∆floc = ∆f70. Thus, taking into account the fact that f70 = 10.77 MHz − (floc − f0), the 
total selectivity of the ensemble of two mixers becomes 

0 70 70 0
2 70

70 70 70 70

10.77 MHz 10.77 MHz
1

∆ ∆
+ += =f f f fQ Q

f f f f

Quality factor Q2 is much greater than quality factor Q1 and varies insignificantly 
with the frequency of the input signal. 

This analysis demonstrates clearly that two-stage frequency conversion en-
ables us to increase the selectivity of our apparatus. It also makes it possible for us 
to reduce the f −1 and f −2 noise with the help of a very selective filter (e.g., a ce-
ramic filter centered at 10.7 MHz) inserted in between the two mixers. Figure 19 
shows the distribution of different frequencies available in the frequency domain at 
the inputs and outputs of a double-mixer circuit.  In order that the intervals do not 
overlap each other, an operating range of frequencies 500 kHz to 9 MHz has been 
chosen here. 

Figure 19. Representation of the frequency distribution of the double mixer converter cir-
cuit. 

4.3.2.  Stage 2: The Programmable Amplifier 

The next stage of the microvoltmeter detector consists of a programmable 
variable gain amplifier that amplifies the 70-kHz IF signal prior to filtering so as to 
compensate for signal amplitude losses incurred during the mixer stages. This am-
plifier is connected to the output of the filter (Figure 20). The 70-kHz IF filter con-
sists of a series RLC circuit (passive) because it offers certain advantages over an 
operational amplifier (active) filter; among these advantages are ease of construc-
tion and a satisfactory noise factor. Details of the IF filter and its associated ampli-
fiers are shown in Figure 21. The signal exiting the second mixer stage arrives at 
resistor R1 across capacitor C1 and is amplified by the first operational amplifier 
whose gain is equal to 14 because at resonance RL forms a voltage divider bridge 
along with the output impedance of the first op-amp. The current that passes the 
series RLC filter is converted into a voltage by the second operational amplifier,  
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Figure 20. Overview of the programmable decade amplifier module, consisting of a variable 
gain input amplifier, a 70-kHz filter, and an output amplifier with stepwise adjustable gain. 

Figure 21. Schematic diagram of the 70-kHz RLC filter. 

the amplitude of which is controlled via R4. Taking into account the properties of 
the operational amplifier, the current that passes series RLC filter is 

1ω
ω

=
+L

Ei
R j L

C

whereas the voltage output of the operational amplifier (i.e., signal S) is iRS 4−= .
Voltage E′ is thus amplified with the gain 
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2

2
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' 1 1
1 ω

ω

= =
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At resonance, the gain of the filter is equal to the ratio of the resistance values and 
its quality factor ( / )ω= c LQ L R  is independent of R4. One can thus modify the 
gain without changing the pass bandwidth, which, moreover, depends only on in-
ternal resistance LR  of the inductance itself. 

It remains to be determined whether the gain should be controlled by resis-
tance R4 or R2. Figures 22 and 23 depict simulations of the gain and signal-to-
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noise ratio as functions of frequency when R4 or R2 are varied, respectively. Fig-
ure 22 shows that the variation of the gain of the filter is proportional to the value 
of resistance R4. Furthermore, the signal-to-noise ratio is practically constant at the 
resonant frequency. On the other hand, it is noted that there appears a slight modi-
fication of this frequency, mainly for large values of R4. If the gain is controlled 
via R2, there no longer exists a linear relation between the gain and the resistance 
(Figure 23). This also affects the signal-to-noise ratio, whose variations are more 
significant than those in the preceding case. In addition, one should also note that 
there is a clear-cut shift in the resonant frequency. It therefore follows that the gain 
of the filter should be controlled by resistance R4. The values of the components 
used in the circuit lead to a pass bandwidth of about 4 kHz. 

Figure 22. Variation of gain and S/N ratio as R4 (cf. Figure 21) is varied. 
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Figure 23. Variation of gain and S/N ratio as a function of R2 (cf. Figure 21). 

At the intended frequency of operation, modern operational amplifiers cannot 
be used at a gain greater than a few multiples of 10. The amplification needs of the 
detector are therefore met by connecting three identical amplifiers in series, with 
each stage programmed to pass the signal with gain of unity or 10 (Figure 24). It is 
important, however, that the amplifiers and associated circuit components be care-
fully matched so as not to propagate errors. 

The structure of a single amplifier stage is illustrated in Figure 25. An ampli-
fier is connected in the non-inverter amplifier mode, in which the gain is equal to 1
+ R2/R1. A NAND gate is used to provide two-state amplifier control via a relay 
that switches the feedback loop of the operational amplifier from follower with 
unity gain to the amplifier with gain 10, as set by R2. The advantage of using the 
relay, as opposed to a solid-state switch, is that it provides a true zero resistance 
when closed and complete DC isolation between the digital and analog circuitry. 
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Figure 24. Overview of the stepwise (decade) programmable amplifier consisting of three 
sequential units. 

Figure 25. Schematic diagram of a single amplifier unit from the decade programmable am-
plifier depicted in Figure 24. 

4.3.3.  Stage 3: Synchronous Detection of the Signal 

The frequency downconverter and amplifier stages ensure that the signal am-
plitude coming from the pickup coil is at least 100 mV. But despite the narrow 
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bandwidth of the filters, the level of noise that passes receiver Stages 1 and 2 is still 
too high. The third and final stage of the microvoltmeter detector is therefore dedi-
cated to signal reception and further noise reduction, as well as data recovery and 
display. These functions are achieved by using a synchronous detection circuit to-
gether with a liquid-crystal display for reading and a view meter for the detection 
of the signal. These are depicted as a block diagram in Figure 26. 

Figure 26. Block diagram of the synchronous detector and data output stage of the micro-
voltmeter detector. The signal obtained from the programmable amplifier (stage 2) is used to 
create a stable reference signal via a phase-locked loop, which is multiplied against the sig-
nal in order to obtain the DC amplitude. 

The signal, Si, that is obtained at the output of the programmable-decades am-
plifier may be considered as the sum of the signal whose amplitude is to be meas-
ured and the voltage of the noise transmitted:   

cos( ) ( )ω= +i i sS A t e t

where Ai cos(ωst) is the desired information, and e(t) corresponds to the noise. 
As long as amplitude Ai is larger than the noise voltage, e(t), the signal remains 

distinct and can be measured. But if the two voltages are close to each other, the 
noise voltage completely masks the desired information, and only a filter possess-
ing an infinite value of the quality factor and centered at frequency ωs will enable 
determination of amplitude Ai.

Supposing now that one supplies a reference signal Sr of the same angular fre-
quency as the desired signal, that is, ωs, and possesses known amplitude Ar: Sr = Ar
cos(ωst + ϕ). By multiplying the two voltages, one obtains a signal equal to  

[ cos( ) ( )] cos( )ω ω ϕ× = + +i r i s r sS S A t e t A t

whose spectral decomposition can be expressed as follows: 

[cos( ) cos(2 )] ( )
2

ϕ ω ϕ× = + + + ×i r
i r s r

A A
S S e t S
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One thus obtains a term corresponding to a DC voltage: 

cos( )
2

ϕi rA A

a term of double frequency: 

cos(2 )
2

ω ϕ+i r
s

A A
t

and a term for the white noise: e t Sr( ) × .
The quality factor of a low-pass filter is much greater than that of a bandpass 

filter, and so a low-pass filter can be used to eliminate the noise by recovering the 
desired information in the DC component. Since the value of the amplitude of sig-
nal Sr is known and dephase angle ϕ can be determined, the unknown value of am-
plitude Ai of the signal can be directly obtained. This principle is familiar during 
the operation of a cw-EPR spectrometer, in which the receiver is tuned to the field 
modulation frequency and one adjusts the phase of the receiver to maximize the 
receiver voltage. 

Figure 27. Four-terminal voltage multiplier, which provides synchronous detection of signal 
amplitude. 

The product is accomplished with the help of a four-terminal multiplier (Fig-
ure 27). This circuit produces a voltage, = i rS k S S , regardless of the signs of iS
and rS . Factor k allows one to adjust the amplitude of the output voltage. In a prac-
tical synchronous detector one should add two circuits to the multiplier. The first is 
a low-pass filter to separate DC from AC voltage. This filter is simply an RC com-
bination whose time constant is equal to 300 ms, which represents a good com-
promise between high quality factor and rapid response time. The second addition 
is a phase corrector that allows one to adjust factor cos(ϕ) so as to allow one to 
maximize the output voltage.  
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For our purposes, the frequency that is used to modulate H1 is not suitable for 
synchronous detection because of the wide range of prospective frequencies and 
the associated technical demands of constructing a phase corrector. As an alterna-
tive, the reference signal is derived from the signal delivered at the output of the 
programmable decade amplifier (stage 2) via a phase-locked loop (PLL) circuit, as 
depicted in Figure 28. This PLL circuit consists of a sine-to-square wave converter, 
a frequency divider, and a conventional PLL that controls a digital voltage-
controlled oscillator (VCO). The stabilized output of this VCO serves as Sr at the 
multiplier input depicted in Figure 27. 

Figure 28. Block diagram of the circuit used to generate a stable reference signal from the IF 
signal coming from stage 2 (corresponds to the voltage generator block depicted in Figure 
26). A portion of this signal, Si, is converted to a square wave, has its frequency divided by 
2, and is then phase-locked to a VCO also running at the IF. 

The use of a PLL to provide a stable reference signal for synchronous detec-
tion has certain advantages for our application. The voltage-controlled oscillator is 
set to operate at the intermediate frequency of the detector stages 1 and 2, that is, 
70 kHz. The operating range of the VCO, namely fmin and fmax, provides noise re-
jection because any frequency outside of this range will be ignored by the PLL. It 
therefore stands to reason that one desires to minimize the operating range of the 
VCO (and hence the PLL). 

The digital VCO generates a square-wave TTL signal whose frequency can be 
adjusted by a continuous voltage (0 to 5 volts). We specify the center (operating 
range) frequency fc control voltage as ½Vcc, and the locking range as 2FL. A ca-
pacitor and two resistances fix the VCO frequency limits, and phase locking is 
achieved by a circuit that consists of three phase comparators (Philips Application 
Notes for the PLL 74HC/HCT4046A, p. 721 (1986)). These comparators are of the 
XOR (eXclusive OR) type and are coupled to a low-pass passive filter (Figure 29). 
The amplitude of the phase comparator S∆ϕ is adjusted so as to match the VCO 
operating control range (0 to Vcc).

The signal derived from the stage 2 output is sinusoidal, and that portion 
which is used to create Sr must therefore be converted to a square-wave signal in 
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order to be compatible with and locked to the VCO via the comparators described 
in the preceding paragraph. This is achieved using the circuit depicted in Figure 30; 
the gain pass-bandwidth of the amplifier is 500 MHz and the slew rate is 500 
V·µs−1. Provision for controlling the offset voltage enables one to compensate for 
dephasing between the input and output signals. 

Figure 29. Electrical schematic of a phase comparator: continuous voltage S  is propor-
tional to the phase difference between REF and SVCO.

Figure 30. Circuit for conversion of a sinusoidal signal of amplitude –5 to +5 V into a 
square wave signal of 0 to +5 V with phase correction. 

The frequency dividers shown in Figure 28 are necessary in order to ensure 
that the VCO output is nonzero. To create the reference signal for the synchronous 
detector, one begins by setting the VCO frequency to the intermediate frequency of 
stages 1 and 2. During signal detection, the output voltage from the filter (mixer 
circuit, Figure 18) grows during the period over which one approaches the fre-
quency of concurrence. The VCO synchronizes itself for those frequencies within 
its operating range and phase angle 0 to 180°. Under these conditions the voltage 
supplied by the synchronous detection circuit would be zero. But this latter prob-
lem is corrected by introducing the frequency dividers at each input of the phase 
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comparator (cf. Figure 31), which ensures that the dephasing angle between the 
signal and the VCO is always 180°.

Figure 31. Chronogram of the signals present in the circuit that is used to generate the refer-
ence signal. 

The inherent noise discrimination by the VCO, which was cited in a preceding 
paragraph, may be understood from the so-called cyclic overlap fraction of the 
PLL. With both the input (i.e., the now modified Si) and feedback signals of the 
loop taken to be square waves, a representative chronogram of the phase compara-
tor component of the PLL is shown in Figure 32.  The output is a periodic signal 

Figure 32. Variation of the output voltage of an XOR gate for two out-of-phase signals of 
the same frequency. 

whose frequency is twice that of the VCO. This sequence of pulses is converted to 
a square-wave signal that depends on the cyclic-overlap fraction, k, which is de-
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fined as the ratio of the time interval when the signal is nonzero and the half-period 
of the signal. It is represented by function 

cc( ) ; 0

( ) 0 ;

= <
= <

f t V t kT
f t kT t T

where T denotes the period of the signal.  
Only the DC component, cckV , of the Fourier series expansion, that is, 

cc
cc

1

4
( ) sin( ) cos( )π ω

π=

= +
n

V
f t kV nk n t

n

contains the information on the cyclic-overlap fraction, k, which, in turn, provides 
information on the dephase angle between the two signals. The nonzero compo-
nents of the frequency are then eliminated from the signal with the help of a low-
pass filter in order to retain only the useful voltage. 

Let ∆t be the time interval that separates the beginnings of the periods of the 
two signals (Figure 32). The dephase angle, ∆ϕ, is therefore equal to 2π∆t⁄T, where 
T is the period of the reference. The voltage at the output of the XOR gate is at a 
high level during interval ∆t. From the definition of the cyclic-overlap fraction, one 
therefore deduces: 

2
∆= tk
T

(The factor 2 appears because the frequency of the signal at the XOR gate is twice 
that of the VCO signal). 

By eliminating term ∆t between k and ∆ϕ, one obtains 

∆ϕ
π

=k

The amplitude of the DC (feedback) voltage, ∆ϕS , that determines the frequency, 

vcof , of the oscillator is equal to  

cc cc

∆ϕ
π

=kV V

From the voltage-frequency transfer curve, one obtains the expression for the fre-
quency as a function of the dephase angle: 

vco min min

2
( )∆ϕ

π
= +cf f f f
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It is important to note that a nonzero dephase angle between the VCO and  refer-
ence remains constant when their frequencies are the same. In fact, if one expresses 
the phase difference as a function of the frequency of VCO  

vco

2

π∆ϕ = m

c m

f f
f f

one finds that to each frequency there corresponds a unique value of the dephase 
angle. In the particular case when vco = cf f , the phase difference is equal to π/2. 

When the reference signal is absent, the XOR gate reproduces the signal of the 
VCO.  The phase comparator then provides voltage  

∆ϕS = cc 1

2 2
=

V
k

The frequency of the VCO that corresponds to this voltage is the central frequency, 
fc, and so it follows that this center frequency corresponds to the free-running fre-
quency of the VCO. 

4.3.4.  Signal Detection and Display 

At the onset of the experiment, one tunes the microvoltmeter to the signal 
whose frequency corresponds to the sum of the frequency of the coil and 10.7 MHz 
(flocal = fcoil + 10.7 × 106). The high degree of selectivity of the mixer circuit makes it 
difficult to detect this equality by a liquid-crystal display (LCD), and so the DC 
voltage supplied by the multiplier circuit is directed partly to an analog-to-digital 
converter and partly to a galvanometer with a needle (Figure 33). One thereby de-
termines by visual inspection of the galvanometer the moment when the micro-
voltmeter is tuned to the correct frequency. In order to fine-tune the control of the 
frequency of concurrence, one can also control the sensitivity of the view meter, 
regardless of the value of the gain programmed on the decade amplifier. Once one 
has obtained a maximum deviation of the galvanometer needle, the effective value 
of the amplitude of the signal may be read on the LCD display. 

The low-pass filter associated with the multiplier consists of an RC unit with 
the time constant equal to 300 ms. Two necessary conditions dictate the choice of 
the time constant. First, a very long duration results in a long reaction time of the 
galvanometer needle, which may lead to the risk of not being able to detect the 
concurrence. Second, too short a duration does not allow filtering out effectively 
the radio-frequency parasites, at which point the galvanometer needle becomes 
unstable and vibrates excessively. 

Conversion of the DC voltage supplied by the synchronous detector to a digital 
value is effected by a card built on the basis of an 8-bit MC6809 microprocessor. 
The A/D converter circuit also consists of a ROM that contains a control program 
(in assembler), a RAM for execution of the program and data storage, a PLA inter-
face to eliminate “fan-out” problems, an A/D converter, and an RS232 inter- 
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Figure 33. Circuit for detection of the signal induced in the measuring coil (galvanometer) 
and its direct reading via an A/D converter. 

face to the computer. The converter used requiring the use of an input voltage be-
tween 0 and 10 V possesses a resolution of 12 bits. In this manner one obtains a 
display of 4096 different values with an interval of 2.44 mV between successive 
points. This allows a reading of the amplitude with a precision better than 1%. 

The assembler language is subdivided into five main parts: keyboard manage-
ment, display of voltage reading (on the average of 50 values), control of the gain 
of the analog card, management of the RS232 connector. and, finally, test of cer-
tain parts (screen, keyboard, ADC). 

4.4.  Performance Tests of the Microvoltmeter Detector 

The detector is protected from external noise by enclosing it within a grounded 
metallic box, and power is supplied via a local filter. Those circuits that are sensi-
tive to electronic noise (mixers and preamplifiers) were isolated with the help of 
aluminum cases connected to the analog ground of the electronic assembly. The 
assembled selective microvoltmeter assembled detector was evaluated for its sensi-
tivity, linearity, and pass bandwidth. This study was carried out with the help of a 
calibrated HF generator that was attached to a calibrated attenuator and so provided 
a sinusoidal voltage of amplitude 0.1−500 µV and a frequency tunable between 0.5 
and 8 MHz. 

At signal amplitudes below 1 µV, large fluctuations prevent a correct reading 
of the signal amplitude. Nevertheless, the galvanometer of the microvoltmeter can 
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detect a signal as small as 0.1 µV. The linearity of a system expresses the confor-
mity of transformation between the input and output signals. In the case of our 
voltmeter, it allows to determine the exact level at which the voltage gain remains 
constant regardless of the amplitude of the modulation signal. A signal of fre-
quency 1 MHz was used to measure the voltage gain of our apparatus. It remains 
proportional (Figure 34) to the input voltage (at ±1 dB) when its value lies between 
1 and 500 µV. (The performance is better than this at higher frequencies. where 
there exists less electronic noise.) 

Figure 34. Variation of the amplifier gain with signal amplitude. 

The pass bandwidth allows one to determine the effective amount of the signal 
that will pass on to the mixers. It is necessary that it be wider in frequency than the 
range of frequencies of modulation signals, but it is also necessary that it does not 
allow the superfluous noise to pass through, especially, the background noise 
which is most important. In order to determine the pass bandwidth at −3 dB of our 
microvoltmeter, a voltage of 500 µV was applied whose frequency was varied be-
tween 0.5 and 8 MHz; the variation of the amplitude measured was 1.1 ± 0.2 dB 
over the entire frequency spectrum (Figure 35), and so the cutoff frequencies lie 
outside of this frequency interval. 

In summary, the performance of our apparatus enables measurement of the 
amplitude of a signal with a precision of 2 dB between 1 and 500 µV over a pass 
bandwidth larger than 8 MHz. The measurements carried out on a calibrated 
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sample (Varian pitch) permitted determination of new performances of the modula-
tion spectrometer. In particular, the improvement of the signal-to-noise ratio al-
lowed an increase in the sensitivity by a factor of 10, that is, 1014 centers per Gauss. 

Figure 35. Variation of the amplitude of the mixers as a function of the input signal fre-
quency. 

5.  CONCLUSIONS 

In this chapter we have dealt with the problem of measuring spin–lattice re-
laxation time from the very short to the very long using a modulation spectrometer. 
The measurement of spin–lattice relaxation times less than 1 µs is best performed 
by modulating the amplitude of the incident microwave field and following the 
magnetization of the spin system via a pickup coil surrounding the sample material. 
As described in §4 of this chapter, detection of Mz was optimized by modifying the 
receiver that is used with the pickup coil. This receiver measures the emf generated 
within the coil by the time-variant (i.e., modulated) magnetization, and it consists 
of a selective microvoltmeter that operates in the frequency range 0.2 to 9 MHz. 
The broad operating (frequency) range of the microvoltmeter is made possible by 
using a “superheterodyne” scheme with double-mixing of frequency associated 
with synchronous detection of the amplitude of the signal to be measured, achieved 
by a phase-locking loop. The ensemble of electronic circuits is controlled by a mi-
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croprocessor that permits a choice of sensitivity, a visual display of the signal am-
plitude, and communication between the spectrometer and a computer. 

The synchronous microvoltmeter detector allows linear (to ±1 dB) measure-
ments of signal amplitudes of 1 to 500 V with a band passing at −3 dB higher at 9 
MHz.  Between 0.1 and 1 V, significant noise prevents a precise reading of the 
amplitude, which however remains proportional to the signal to be measured, con-
trary to the situation with the unmodified spectrometer. 

On the other hand, we do not have available a simple efficient technique 
adapted to measure T1 times greater than 1 µs in our laboratory, apart from the 
method of continuous saturation, which possesses the disadvantages of sample 
heating, difficulty of measuring H1

2, and requisite measurement of T2. For these 
measurements we therefore developed an original technique that is based on 
Bloch’s phenomenological equations, whose solution by Laplace transform allows 
one to derive a particular form of the solution at resonance. This solution is a trans-
fer function of second order, with a quality factor of greater than unity and a cutoff 
frequency equal to (2T1)−1 at −3 dB, and this approach to data analysis allows one 
to design a method based on sweeping static field H0 with a small amplitude com-
pared to the linewidth. The variation of the modulus of transfer function so ob-
tained allows one to determine spin–lattice relaxation times longer than 3µs. 

A practical test of the spectrometer was performed on two sample materials, 
for which we examined the temperature dependence of the spin–lattice relaxation 
time, that is, T1

−1(Θ). In the first case study, we examined the T1 behavior of cal-
cium cadmium acetate tetrahydrate doped with 5% copper. This sample offered the 
advantage of providing a relatively strong signal despite an extremely weak ex-
change interaction (JN ~ 10−2 K), and the crystal undergoes a phase transition at a 
temperature that depends on the concentration of Cu+2 ions (Shields et al., 1992). 
At high temperatures (140 K < Θ < 300 K) T1

−1 varies linearly with respect to Θ2,
which indicates that the spin–lattice relaxation proceeds by a Raman process (van 
Vleck, 1940). We were facing particularly favorable circumstances here to observe 
the relationship T1

−1 ∝ Θ2 taking into account an exchange interaction quasi-
nonexistent and the opportunity of having at our disposal a technique well adapted 
to measuring very short T1 times. At lower temperatures (70 K < Θ < 120 K), the 
observed temperature dependence of T1

−1 varying as Θ4 indicated that the sample 
temperature is lower than the Debye temperature (the dependence T1

−1 varying as 
Θ9 could not be achieved since it would require a temperature lower than 2 K, 
where one would observe a Θn dependence, 2 < n < 9). 

From our data we deduced the Debye temperature of 135 K for the crystal, in 
good agreement with the value of 148 K found by Nusawa et al. (1975). At yet 
lower temperatures (less than 70 K), the curve indicates coexistence of two oppos-
ing effects: the Raman process and occurrence of antiferromagnetic ordering with a 
Néel temperature close to absolute zero. As a consequence, we could not confirm 
the influence of phase transition on relaxation mechanisms. 

A second case study was performed on a borate glass doped with 0.25% of 
Fe2O3. At lower temperatures (less than 130 K), the behavior of the curve T1

−1(Θ)
(T1

−1 ∝ Θ2 below 30 K and T1
−1 ∝ Θ above 30 K) is in good agreement with the 
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model of Kurt & Stapleton (1980) proposing modulation of the hyperfine interac-
tion by phonons. At higher temperatures (greater than 130 K), the asymptotic char-
acter of the curve T1

−1(Θ) suggests invoking the three-reservoir model (Zeeman, 
exchange, lattice) of Bloembergen & Wang (1954), but we could not determine the 
exact nature of the intervening reservoir. The result obtained for this glass differs 
entirely from that reported for silicate glasses by Θ (Bouchina et al. (1991). 

In the quest for optimizing the modulation spectrometer one could attempt to 
change the intermediate frequency of the “superhetrodyne” receiver of our micro-
voltmeter (455 kHz instead of 70 kHz).  One could also replace the present cavity 
by a dielectric cavity that will support the presence of the pickup coil better, and 
render automatic the process of acquisition of data. 
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1.  INTRODUCTION 

The physical principles that underlie organic reactions were established by a 
systematic study of chemical reaction dynamics that employed correlated meas-
urements of reaction rates and a physical parameter that could be related of the 
electronic properties of the molecules in question (Hammett, 1970). Today, mo-
lecular science emphasizes the concept of molecular device, which connotes a su-
pramolecular structure (the term “supramolecule” loosely means a molecule that 
has multiple functionalities associated with it; for example, an enzyme might be 
regarded as a supramolecule in the sense that it features a supported metal catalyst 
and a receptor site that recognizes a specific substrate upon which the catalyst acts) 
that acts in some specific fashion. A molecular device may be biological (e.g., en-
zymes, contractile proteins; cf. Tanford & Reynolds, 2001), or it may be produced 
by synthetic means (e.g., molecular wires, switches, machines, etc.; cf. Sauvage, 
2001; Balzani et al., 2003). Current synthetic chemistry provides the technical 
means that enable one to create and modify molecular devices so that structure may 
elicit some specific function, and so physical organic chemists are interested in 
reactions that involve engineered and structurally complex systems such as sup-
ported catalysts, protein active sites, or nanostructures (cf. Hamilton, 1996; Tidwell 
et al., 1997).  

Our understanding of small molecule reaction dynamics is made possible by 
combining the results of theoretical chemistry, spectroscopy, and mechanistic or-
ganic chemistry. This approach, which was successful when applied to small mole-
cules, is, in principle, applicable to supramolecular entities, but there arises in this 
latter case the question as to whether there can be obtained enough accurate infor-
mation from spectra in order to make meaningful correlations to chemical behav-
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ior. Magnetic resonance parameters, such as the chemical shift, nuclear hyperfine 
interaction, and nuclear quadrupole interaction, are useful probes of molecular 
electronic structure (cf. Memory, 1968; Semin et al., 1975; Harriman, 1978; Ando, 
1983; Kaupp et al., 2004), and they have consistently been used in correlated struc-
ture–function studies and probes of molecular interactions (cf. Ratajczak & Orville-
Thomas, 1982; Schuster et al., 1976). 

When applied to large molecular systems such as an enzyme or a su-
pramolecular entity, however, methods such as vibrational spectroscopy and mag-
netic resonance often suffer from an overload of information (too many spectral 
lines) and/or a loss of information (i.e., precision) due to line broadening. With 
large molecules, it is often not possible to obtain sample materials as single crystals 
or homogeneous solutions, and so one obtains spectra that represent an averaging 
over all possible molecular orientations (relative to a laboratory reference frame) 
and subject to certain long-range interactions, thus losing the ability to detect small 
changes in spectroscopic features. What is needed for these so-called supramolecu-
lar systems is a spectroscopic probe that is selective towards the chemically inter-
esting region of the molecule (i.e., self-editing) and has available a means to defeat 
the line-broadening effects that result in spectroscopic information loss. The prem-
ise behind this chapter is that two advanced methods of electron magnetic reso-
nance, namely, electron-nuclear double resonance (ENDOR) and electron spin 
echo envelope modulation (ESEEM), are ideal spectroscopic tools for correlated 
studies of chemical behavior involving such supramolecular entities. 

Many supramolecular entities, whether biological or synthetic, have some sort 
of paramagnetic species (transition metal, organic free radical) as its chemically 
reacting agent, the remainder of the structure serving as a kind of support or pack-
age. Electron magnetic resonance (EMR) is sensitive to changes in the electron 
spin state of paramagnets, and so in this sense it is self-editing the spectroscopic 
information obtained to the chemical agent of interest and its immediate environ-
ment (typically within 10 Å). The interaction between the unpaired electron and its 
local environment yields nuclear hyperfine interaction and nuclear quadrupole in-
teraction that are recovered from perturbations to the EMR (electronic Zeeman) 
spectrum and are manifestations of the magnetic interaction between the atomic 
nucleus and the valence electron orbitals, establishing their relevance as probes of 
electronic structure. But in conventional EMR spectra of large molecules one does 
not typically obtain the requisite spectral resolution to measure small changes in 
the hyperfine parameters. 

ENDOR and ESEEM are specialized EMR methods that, in effect, decouple 
the measurement of nuclear hyperfine interactions (broadly defined) from the elec-
tronic Zeeman transition. In other words, rather than viewing the paramagnet's en-
vironment as a perturbing influence on the electron spin “flip” (i.e., a small pertur-
bation on a much larger energy transition), one records the nuclear hyperfine 
spectrum of the environment indirectly as though it were an NMR experiment by 
using one of the electron spin states as an observer. So instead of so-called hyper-
fine lines in the oftentimes broadened spectral line corresponding to the Zeeman 
transition, one measures the nuclear hyperfine spectrum directly, and as a result, 
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one gains over three orders of magnitude better resolution and linewidths on the 
order of 10 kHz. Since many of the parameters we wish to measure have values on 
the order of 1–10 MHz, the ENDOR and ESEEM methods enable one to resolve 
differences, either as peak shifts or separate peaks, on the order of 10 kHz. And 
this means that, in principle, we can determine nuclear quadrupole interaction pa-
rameters, nuclear hyperfine coupling (contact and magnetic dipole), etc. to a preci-
sion that is suitable to our stated application.  

EMR spectra, including ENDOR and ESEEM, however, have the disadvan-
tage of the fact that the microwave source used in the typical spectrometer operates 
at a single frequency, for example, approximately 9.5 GHz for an X-band spec-
trometer. This is a problem because the spin-Hamiltonian description of the EMR 
spectrum is a sum of several parameters that are tensors, and so that interpreting 
and assigning these parameters from a single EMR, ENDOR, or ESEEM spectrum 
involves both energetic and geometric (i.e., crystallographic) parameters. These 
parameters are typically assigned in this case by comparing the experimental spec-
trum to simulated spectra obtained via a trial-and-error fitting of the spin-
Hamiltonian parameters and their respective tensor orientation. And so with only a 
single experimental spectrum one is faced with more independent theoretical pa-
rameters (i.e., spin-Hamiltonian terms and tensor angles) than there is information 
in the spectrum. The trial-and-error fitting of simulated to experimental spectra is 
subjective and detracts from the confidence one would have in assigning spectro-
scopic parameters in spite of the claims I have made in the previous paragraph 
concerning the resolution of the spectra themselves.  

The situation is improved by recording spectra at multiple spectrometer oper-
ating bands (e.g., C-, X-, P-, Q-, etc.) and simulating each of these spectra with the 
same set of spin-Hamiltonian parameters. But this type of multi-frequency ap-
proach leaves one with a series of experimental spectra that are often disparate in 
profile, making it difficult to discern trends. But it is possible to eliminate much of 
the ambiguity in assigning hyperfine terms by performing a multi-frequency re-
cording of spectra in small incremental steps (ca. 500 MHz) near the region where 
the nuclear hyperfine states of one electron spin manifold merge, which is the con-
dition of “exact cancellation” in the jargon of ESEEM (cf. Mims, 1972b,c; Singel, 
1989). This technique is analogous to those found in other branches of spectros-
copy, going by the name of, for example, quantum beats spectroscopy, level (anti-) 
crossing spectroscopy. The upshot is that the quantum beats phenomenon leads to 
extremely narrow lines, and that when these line positions are plotted against the 
nuclear Larmor frequency, a graphical procedure enables one to assign the energy 
terms of the nuclear hyperfine interaction more accurately (cf. Singel, 1989; 
Bender et al., 1997; Bender & Peisach, 1998).  

The purpose of the present chapter is twofold: first, to show that the EMR 
method is a powerful tool for the study of chemical reaction dynamics of large su-
pramolecular entities in the same experimental style that was used by physical or-
ganic chemists working with small molecules. This will be outlined in §2. Second, 
I hope to successfully convince the reader that ENDOR and ESEEM spectra can 
provide sufficiently accurate and reliable information so that derived parameters 
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such as nuclear hyperfine and quadrupole parameters can be applied in correlated 
studies of chemical dynamics involving supramolecular systems. This will be dem-
onstrated by taking a different approach to the multi-frequency measurement of 
ENDOR and ESEEM spectra, that is, one in which multiple spectra are recorded at 
identical g-values but at applied magnetic field strengths that vary in small incre-
mental steps, rather than single spectra in two or more bands; the spectral peak 
positions are then plotted as a function of the nuclear Zeeman energy. Doing so 
enables one to graphically identify the true condition of exact cancellation at which 
point zero-field nuclear quadrupole interaction (ZF–NQI) parameters may be as-
signed. The reason one needs this graphical approach (outlined in §5) is that dipo-
lar broadening of the EMR line, together with the broad bandwidth of the excita-
tion pulse (ESEEM), results in exact cancellation-like spectra over an extended 
range of nuclear Zeeman values, meaning that, unless one traces the movement of 
peaks as a function of nuclear Zeeman energy, it is impossible to determine the true 
point of exact cancellation. 

The remainder of this chapter is organized as follows. Section 2 reviews the 
logic behind the so-called Hammett sigma analysis and describes prospective 
analogous experiments on metalloproteins that can be studied via ESEEM and 
ENDOR. Section 3 reviews the terms of the spin Hamiltonian and their connection 
to electronic structure theory. Section 4 compares the ENDOR and ESEEM tech-
niques, examining their complementary qualities. Section 5 demonstrates how a 
graphical approach to the measurement of ESEEM or ENDOR peak position 
greatly facilitates the assignment of exact cancellation.  

2.  SPECTROSCOPY IN CORRELATED CHEMICAL DYNAMICS  

In principle, knowledge of an atom or molecule’s electronic structure (i.e., the 
quantum mechanical wavefunction) would enable one to predict both its physical 
properties and its chemical behavior, including the outcome of reactions with other 
atoms or molecules whose electronic structure are equally well known (cf. Daudel, 
1973; Daudel et al., 1982). But because the Schrödinger equation cannot be solved 
exactly for any system more complicated than the hydrogen atom, the wavefunc-
tion of atoms and molecules must be approximated. Spectroscopy provides us with 
an observational link between the macroscopic and microscopic realms of matter, 
and it has been both a guide to our conceptual understanding of matter and a means 
to approximate parameters that are used in semiempirical computational chemistry 
(cf. Segal, 1977). 

This same tactic was applied to the analysis of chemical reaction dynamics. 
Lacking a complete quantum mechanical description of molecules, chemists rec-
ognized that they could alter the electronic structure of a molecule by functionaliz-
ing it with nonparticipating substituents. The degree to which the substituents per-
turbed a molecule's electronic structure could be assessed via spectroscopy and 
made quantitative in the form of a so-called substituent parameter (cf. Hammett, 
1970). The principal requirement of the chosen spectroscopic parameter is that it be 
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rooted in the electronic structure of the molecule. The magnetic hyperfine terms 
that comprise the EMR spin Hamiltonian all qualify in this regard (Bowers, 1968; 
Viehe et al., 1986; Jiang, 1997). 

For small molecules, structure–reactivity analysis proceeds by synthesizing a 
series of substituted variants of the parent molecule (e.g., substituted benzenes, cf.
Brown & Goldman, 1962), which are then made to react in some identical manner. 
The information that one obtains consists of reaction rates for each of the molecu-
lar variants and some physical parameter, selected according to the criterion cited 
in the previous paragraph, measured for each variant. The interrelationship be-
tween chemical reaction rate and electronic structure is then parametrically written 
as  

 log kij − log k0j = σi ρj  (1) 

where term σi is denoted as the substituent constant, which is correlated to some 
physical property of the molecule(s), and ρj is the reaction parameter. Subscripts i
and j designate a specific substituent and type of reaction, respectively. Thus k0j is 
the rate constant of reaction j when the parent molecule lacks a substituent, and kij
is the reaction rate constant that is obtained when substituent i is attached to the 
parent molecule. 

This same analytical procedure is now, in principle, applicable to su-
pramolecular structures, including proteins. Many of the supramolecular devices of 
interest, natural and synthetic, are templated, and can therefore be modified in a 
systematic manner. For example, an enzyme is templated by a nucleic acid se-
quence and may be synthesized in large quantities in vitro by now routine molecu-
lar biology methods, such as the polymerase chain reaction (PCR). Site-directed 
mutagenesis enables one to selectively modify the nuclei acid sequence and there-
fore the protein in a controlled manner. And so it is possible (in fact, routine) to 
systematically modify the region local to the enzyme’s active site by replacing one 
amino acid (e.g., the wild type) by another (site-directed mutagenesis), and then 
observing changes in chemical behavior and physical properties. 

Consider cupredoxins, which are small metalloproteins that shuttle redox 
equivalents among membrane bound proteins of biological electron transport 
chains. The question of redox tuning (specifically, what manner of molecular inter-
actions within a protein (or its cofactors) determine its standard reduction potential) 
has been a long-term problem in bioenergetics, and so one might devise experi-
ments in which the amino acid ligands to copper or amino acids near the active site 
are modified and then observe the effect of these modifications on the electron 
transfer self-exchange rate. An experiment of this type was performed in order to 
determine the path of electron transfer between the copper ion and the periphery of 
azurin (cf. van de Kamp, et al., 1993), but in this precedent ESEEM was used only 
as a diagnostic tool to verify that the copper binding site had not been altered by an 
amino-acid substitution in the protein milieu. 

But even more ambitious probes of the structure–function correlation are af-
forded by molecular biology. There exist techniques that enable one to introduce 
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non-natural amino acids into a protein sequence (Cornish et al., 1995). This means 
that the chemical reactions of enzymes may be studied in precisely the same man-
ner as small molecule reactions were studied during the 1960s and 1970s. Using 
cupredoxin as a hypothetical example, the incorporation of non-natural amino acids 
makes it feasible to synthesize (for example) histidine with various substituents on 
the imidazole ring and use these to alter the copper binding site of a cupredoxin 
and systematically measure their impact on electron transfer. The significance of 
the non-natural amino acids is this: with site-directed mutagenesis one substitutes 
one amino acid for another, and thereby potentially changes the chemistry of the 
process; non-natural amino acids allow one to work with variants of the wild-type 
amino acid and merely perturb the chemical process. 

EMR is an excellent tool for correlated structure–function experiments and the 
analysis of chemical reactions. It may be used for the measurement of reaction ki-
netics (cf. Levanon & Möbius, 1997; Clancy et al., 1998; Grampp, 1998; Murai et 
al., 2000), (crystallographic) structural analysis (Box, 1977; Weltner, 1983), and as 
a probe of electronic structure (Harriman, 1978; Mabbs & Collison, 1992; Deligi-
annakis, et al., 2000). For many important chemical reactions, a paramagnetic 
metal ion, free radical, or organic molecule in its triplet state participates as a reac-
tant or intermediate, and EMR is very often the spectroscopic tool of choice for the 
analysis of such reactions because the EMR spectrum is only sensitive to the para-
magnet and a spatially limited number of magnetically coupled nuclei. In other 
words, EMR provides a spectroscopic “window” onto the chemical species of in-
terest and its immediate environment, and the technique is therefore minimally 
affected by molecular size and sample heterogeneity.  

The significance of this spectroscopic localization inherent to EMR may be 
appreciated by examining Figure 1, which depicts the ligand binding motif of a 
cupredoxin, namely azurin. The Cu(II) ion is the chemically interesting (paramag-
netic) entity whose EMR spectrum contains so-called “hyperfine structure” that is 
indicative of magnetic interactions between the unpaired electron (on copper) and 
nitrogen atoms in the coordination sphere. This hyperfine interaction is defined as a 
series of terms (i.e., the spin Hamiltonian), and one of these terms is the nuclear 
quadrupole interaction (NQI), which is regarded as one of the most useful probes 
of local electronic structure (Lucken, 1969a,b; Semin, 1975; Guibé & Jugie, 1981; 
Gordy & Cook, 1984). Looking at the representative Type I copper site, we see 
that, besides copper itself, there are several potential NQI probes of the metal site 
(14N, 33S). The table that accompanies Figure 1 catalogs the common amino-acid 
ligands to metals in metalloproteins (Adman, 1991), and again one notes that quad-
rupolar nuclei are prevalent. This means that EMR spectroscopic recovery of NQI 
information is generally applicable in metalloproteins and that this information 
may, in principle, be used for correlated analyses of enzymatic (or, in general, su-
pramolecular) reaction dynamics.  

One needs, however, to ensure that the spectroscopic probe of our system pro-
vides information (in the form of spectroscopic peaks) that is energetically com-
mensurate to the perturbations one expects to see as a result of inter- or in-
tramolecular interactions. And here it is worthwhile to examine the energetics of 
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Figure 1. Amino acid ligands to metal ions in proteins, and the quadrupolar nuclei that may 
be used as local probes of electronic structure (after Adman, 1991). On the right, a Type I 
copper site (azurin) as a representative example (after Baker, 1988). 

molecular interactions in general for a comparative sense of the various spectro-
scopies that one may use. First, one needs to define the interaction energy itself. 
Using ab initio quantum mechanics as a guide, one recognizes two states: one cor-
responding to the isolated atoms (or molecules), and a second describing the com-
plex of interacting atoms. The interaction energy is then defined as the difference 
between these two state energies, and this is computationally problematic because 
the small interaction energy is being defined as the difference between two large 
numbers and so leads to substantial error (cf. Boys & Bernardi, 1970).  

The difficulty of this definition (or detection) of interactions is one of scale; 
the perturbations that one is trying to observe are orders of magnitude smaller than 
actual measurements. Computationally, a better approach is to attempt evaluation 
of the individual perturbations directly, and then define the total interaction energy 
as a sum of the individual perturbation energies. In the case of EMR spectroscopy, 
this is exactly what we are doing by using ENDOR or ESEEM. We know that the 
effects that we expect to see will become manifest in the nuclear hyperfine terms, 
so rather than try to measure these from differences in the EMR spectrum, which 
includes the electron Zeeman term, we turn instead to the ENDOR and ESEEM, 
which detect the nuclear hyperfine interactions.  

Regarding a matching of energetic scale, we can look to representative data 
from the literature of molecular interactions. For example, a variational decomposi-
tion scheme for the ab initio calculation of specific interaction energies can be used 
as a starting point for determining the magnitude of interaction energies. In the 
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decomposition scheme of Morokuma and Kitaura (Morokuma, 1971; Kitaura & 
Morokuma, 1976), the (molecular) interaction energy may be written as a sum of 
electrostatic (∆WES), exchange (∆WEX), charge-transfer (∆WCT), polarization 
(∆WPL), and mixing (∆WMIX), with each of these terms corresponding to a 
unique integral expression (the Slater determinant). Table 1 lists computational 
data obtained by Morokuma and Kitaura (1980) comparing the changes in the in-
termolecular interaction energy (i.e., ∆∆W vs. ∆W) for several complexes follow-
ing a replacement of H– by a CH3−, in other words, the change of an interaction 
energy as a substituent effect. The energies are reported in units of cm−1 (converted 
from kcal·mole−1) in order to facilitate comparisons to spectroscopic data. 

Table 1. Changes in the Variational ab initio Interaction Energy Resulting from a Methyl 
Substitution (adapted with permission from Morokuma & Kitaura, 1980)

H3N−OH2 H3N−ClF H3N−BH3 H3N−Li+ H3N−H+

Re (Å) 2.93 2.717 1.705 2.01 1.705 
∆W
(cm−1)

−3150 −2870 −15644 −17779 −77662 

Methyl substituent effect 

∆∆W 70 105 −280 700 −2975 
%
Change 

+2% +4% −2% +4% −4% 

∆∆WES 105 105 −420 1470 1155 
∆∆WEX 70 175 1540 140 0 
∆∆WPL −35 0 −1750 −910 −4480 
∆∆WCT −70 −210 −490 −70 −1190 
∆∆WMIX −35 0 840 70 1540 

      

The molecular interaction energies are on the order of 103–104 cm−1, which 
corresponds well to peaks such as those seen in the vibrational spectroscopy of, for 
example, hydrogen-bonding complexes (cf. Bratos et al., 1980; Janoschek, 1976). 
The changes that accompany the replacement of H− by a CH3−, however, are one 
or two orders of magnitude smaller. In solids, the infrared and Raman half-widths 
of lines corresponding to weak hydrogen bonding interactions are typically 20 cm−1

(Janoschek, 1976), and so one is at perhaps an upper limit spectroscopically with 
respect to detecting weak interactions. As one moves to higher frequencies (sub-
millimeter, microwaves, radio waves), the perturbations become significantly lar-
ger than the energies of the spectroscopic transitions and differences more easily 
observed. 

Numerous spectroscopic probes are used to assess intra- and intermolecular in-
teractions (cf. Ratajcak & Orville-Thomas, 1980), of which the magnetic resonance 
methods give highest resolution. An early demonstration of the NMR-detected 
substituent effect was published by Gutowsky et al. (1952), which yielded shifts of 
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the 19F resonance lines ranging from −16 to +10 ppm subject to meta- and para-
substituents on fluorobenzene. Webb and Witanowski (1985) have extensively 
catalogued the molecular interaction effects on 14N shielding via NMR, with shifts 
often measured at 10–100 ppm with a precision of 0.1 ppm (in solution samples). 
Likewise, Guibé and Jugie (1980) catalog nuclear quadrupole spectral studies of 
molecular complexes; these typically measured on the 1–100 megahertz scale, with 
peak shifts due to interaction typically being about 10%.  

Since we are hoping to use quadrupolar nuclei near a paramagnetic chemical 
entity of interest, it follows from the preceding paragraphs that, on one hand, EMR 
spectroscopy, in general, is well matched energetically to weak forces between 
molecules. Second, the information (i.e., hyperfine parameters) obtained from ad-
vanced EMR methods such as ENDOR and ESEEM permit one to record nuclear 
hyperfine spectra (analogous to NMR or NQR) whose parameters are traceable via 
the spin Hamiltonian to electronic structure (§3). Furthermore, under optimal con-
ditions (coherence transfer, g-selection, etc.), both ENDOR and ESEEM yield 
powder-pattern spectra whose lines are resolvable to the tens of kilohertz (∼10–

7cm–1) and therefore sufficiently precise to detect small shifts in the nuclear quad-
rupole interaction. This matching of the spectroscopic energetics to that of the 
magnitude of the perturbations one expects to impose is important in order to make 
a quantitative evaluation of the substituent effect(s).   

3.  THE SPIN HAMILTONIAN 

3.1. Perturbational Expansion and Decomposition of Spin  

 Interaction Energies 

Electron magnetic resonance is a form of microwave spectroscopy, but elec-
tron magnetic resonance spectra correspond to transitions among states associated 
with a change in the molecular spin magnetic moment. The correlation of spectro-
scopic data to chemical properties is best described in terms of a spin-Hamiltonian 
model that is derived from the magnetic properties of the electron. This spin Ham-
iltonian is written as a perturbational expansion, and each of its terms may be cor-
related to a chemically relevant interaction of the electronic valence shell. The de-
convolution of individual spin-Hamiltonian terms may be complicated and prone to 
systematic error, but the magnetic field dependence of at least one contributing 
term can be used as a powerful tool in the sense that the spectrum can, in principle, 
be advantageously “tuned” so as to bring into play phenomena that greatly simplify 
its interpretation (§5). 

At moderate to high magnetic fields (i.e., H0 ~ 0.1 T), the electron Zeeman in-
teraction dominates the EMR spectrum, which at its simplest may be described by 
a single transition hν = ge βeH0, where ge and βe are the so-called g-value and the 
Bohr magneton (A fundamental unit of the electron’s magnetic moment, e /2me =
9.274 × 10−24 J·T−1), respectively. In atoms and molecules the g-value is replaced 
by a tensor and deviates from the scalar quantity of 2.0023 for a free electron. The 
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deviation between the observed g and ge reflects the spin–orbit interaction of the 
electron because the electron’s orbital motion produces a magnetic field opposing 
the applied field; detailed studies of these g-value variations are now conducted by 
using high (Zeeman) field EMR spectroscopy (cf. Budil et al., 1989; Un et al., 
1994; Prisner, 1997).  

Simple ge βeH0 Zeeman splitting is an inadequate model of the observed elec-
tron magnetic resonance spectrum in molecular systems because the unpaired elec-
tron spin interacts with its local magnetic and electrical environment, and the mag-
nitude of this interaction energy is significant on the scale of the electron Zeeman 
energy. Fine structure therefore appears in the microwave Zeeman spectrum, and 
the spin Hamiltonian is expanded as a sum of interaction energies. Common inter-
actions include those between the magnetic moments of the electron and nearby 
atomic nuclei (or other unpaired electrons), but internal magnetic and electric fields 
will likewise affect the fine structure spectrum. The expanded spin-Hamiltonian 
terms are best understood as the quantum mechanical or semiclassical analogues of 
electromagnetic interactions, which are expressed classically as vector product 
sums. The electron and nuclear spin magnetic moments are ge βeS and gn βnI, re-
spectively, where S and I are the electron and nuclear angular momentum, and the 
total energy is decomposed into several conceptually convenient terms, as is done 
classically (cf. Becker, 1964). For an electron coupled to one or more nuclei the 
spin wavefunction is written as a product of |mS  and all (coupled) |mI , and the two 
terms of the spin Hamiltonian account for the electron and nuclear Zeeman interac-
tions. Additional terms are added as needed in order to describe electromagnetic 
interactions between the electron and nuclei in a descending order of their magni-
tude, and the general form (Poole & Farach, 1987) of the spin Hamiltonian is there-
fore 

spinH = βeS·ge·S+βnI·gn·I + S·A·I + I·P·I (2)

where each term represents the product of second-order (i.e., rank) tensors ge, A,
and P, and Pauli spin matrices S and I. Figure 2 graphically depicts the hyperfine 
energy decomposition as per the spin-Hamiltonian formalism for the interaction 
between a single unpaired electron, S = 1⁄2, and a nucleus of spin I = 1, such as 14N. 
The spin states are designated by using the ket convention |mS, mI . From left to 
right in eq. (2), the terms are defined as the electron Zeeman, nuclear Zeeman, nu-
clear hyperfine (a sum of an isotropic and purely quantum mechanical contact in-
teraction and the anisotropic magnetic dipolar interactions), and nuclear quadru-
pole coupling interactions. Other terms may be added as appertains the spin system 
of study (cf. Poole & Farach, 1987), but the weak hyperfine terms involving elec-
tron–nuclear interactions are the subject of this review and will be described fully 
in turn. 

The energy splittings of Figure 2 are not drawn to scale. The electron Zeeman 
splitting in a 0.1 – T magnetic field is 2.8 GHz (∼0.1 cm−1). The nuclear Zeeman, 
Fermi contact, Quadrupole, and dipole interaction energies are several orders of 
magnitude smaller and measured on the megahertz energy scale. Conventional 
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Figure 2. Representative energy level diagram for an S=1/2, I=1 spin system, subject to the 
spin Hamiltonian. Transitions indicated correspond to those observed in a nuclear hyperfine 
spectrum, such as that obtained via ESEEM.

EMR spectra correspond to transitions among the electronic Zeeman levels, subject 
to selection rule ∆mS = ±1, ∆mI = 0 (for all mI of the system), and it follows that 
these comparatively large transition energies are difficult to correlate with weak 
molecular interactions or subtle changes in the nuclear hyperfine energies due to 
substituent effects. 

By contrast, however, the advanced EMR techniques ENDOR and ESEEM are 
subject to different selection rules, that is, ∆mS = 0, ∆mI = ±1, and so ENDOR and 
ESEEM spectra correspond to transitions among nuclear sublevels (indicated in 
Figure 2). These transitions occur on an energy scale that is orders of magnitude 
smaller than conventional (i.e., electronic Zeeman) EMR transitions and commen-
surate to the energies of the weak perturbations we desire to observe. The inher-
ently narrower lines and finer energy scale of ENDOR or ESEEM spectra better 
enable one to detect small shifts of the peak position that accompany weak pertur-
bations to electronic energy such as those that may accompany a substituent modi-
fication on a free radical or metal ion ligand.  

In effect, ENDOR and ESEEM spectra permit one to conceptually drop the 
electronic Zeeman term from the spin Hamiltonian and work on an energetic scale 
that is comparable to NMR spectroscopy. Both techniques can be used to obtain 
specific terms of the spin Hamiltonian provided that one has the means to experi-
mentally deconvolute the spectroscopic transition energies. The primary difference 
between ENDOR and ESEEM resides with the manner in which the electronic 
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Zeeman contribution is effectively taken out of the spectrum. In the remainder of 
this section, the chemically relevant spin-Hamiltonian terms will be described in 
the context of their chemically relevant origin. 

3.2. The Fermi Contact Interaction and Magnetic Resonance Parameters 

The fine structure of atomic line spectra and the hyperfine spectra of the elec-
tronic Zeeman effect is characterized by a symmetric splitting of the primary lines. 
The nuclear Zeeman interaction symmetrically splits the spectral line, and it is easy 
to predict from the well-established nuclear Zeeman relationship, gnβnH0, which 
kind of nuclei are involved, but deviations of the fine structure splitting pattern 
from the expected nuclear Zeeman splitting suggested that there exists other inter-
actions between the electron and atomic nucleus. This correction is derived from 
purely quantum mechanical considerations and is a scalar quantity that is defined 
as a measure of an atomic nucleus magnetic field (Fermi, 1930). This so-called 
contact energy is measured from the hyperfine splitting of the electron Zeeman 
transitions and is expressed as: 

28
3 ( 0)e n e na g g rπ β β Ψ= =  (3) 

where |Ψ2(r=0)| is defined as the probability of finding the unpaired electron (often 
called the electron density) at the atomic nuclear center. This interaction energy 
may, in principle, be numerically computed via quantum mechanics by represent-
ing Ψ as a radial wavefunction, and because Ψ is a radial wavefunction, the contact 
energy should vanish for situations in which the unpaired electron occupies an or-
bital of nonzero angular momentum (i.e., orbitals that are not s or σ). The contact 
interaction is therefore a measure of the s-character in the valence shell of the para-
magnetic species. 

The term |Ψ2(r=0)| in the definition of contact interaction is at odds with many 
observed EMR spectra of free radicals whose ground-state electronic configuration 
would necessarily put the unpaired electron unpaired electron in a p- or π-orbital. 
A similar argument holds for the d-orbitals of transition ions, whose EMR spectra 
are likewise interpreted by the occurrence of a contact interaction. The requisite s-
character is introduced via an admixture of excited-state orbitals that is known as 
configuration interaction (Weissman, 1956; McConnell, 1956; Jarrett, 1956). Al-
though the concept is now commonplace in ab initio quantum chemical technique, 
configuration interaction was introduced to account for the contact hyperfine inter-
action that was observed in the EMR spectra of π-radicals and paramagnetic ions. 
It follows, therefore, that the contact interaction can be used as one experimental 
measure of wavefunction accuracy in the specification of density matrices via con-
figuration interaction during ab initio quantum chemical procedures. 

In order to compute the contact interaction, the Slater determinants of the 
ground and possible relevant excited states (i.e., sets φi | i ≥ 1 are written and com-
bined as a symmetry-adapted sum: 
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0 1 1 2 2 3 3Φ φ λ φ λ φ λ φ= + + + +  (4) 

Coefficients λi are determined by applying perturbation theory, with the result that 
the φi terms are written as the product of an exchange integral (between occupied 
and virtual orbitals) and a quantity denoted as the spin density localized at the 
atomic center. The corresponding perturbational energy, the contact energy, is 
therefore expressed in terms of this spin density, that is, a = Qρ, where ρ represents 
the spin density. The integral terms of the solution to the perturbational solution for 
energy and other coefficients are lumped as a single constant, Q, that is typically 
used to describe a given class of contact interactions and therefore empirically de-
termined for such a class (cf. Gordy, 1980). 

3.3. The Magnetic Dipole Interaction 

The contact interaction energy is ordinarily combined with a tensoral energy 
that represents the dipole–dipole interaction between the magnetic moments of the 
unpaired electron (µS = geβe) and the (local) atomic nuclei (µI= gnβn). The scalar 
expression for the dipolar interaction energy is  

2

3

1 cos
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rµ
φβ β=  (5) 

where φi represents the angle that is formed between the vector connecting the nu-
cleus and unpaired electron and the vector that defines the direction of the applied 
magnetic field. This angle introduces an orientation dependence to the spin-
Hamiltonian term and permits one to assign spatial parameters r and ρi, the latter 
being the spin density assigned to atomic center i.

A very useful application of the dipole interaction tensor is the use of the elec-
tron–proton interaction to refine the spin density distribution in a delocalized sys-
tem and, in turn, accurately determining McConnell constant Q. For example, 
given an isotropic contact interaction a, one may only estimate ρ based on an aver-
age Q that is derived from a matched class. The dipolar tensor for a given hydrogen 
atomic center, however, is the sum of all dipolar interactions over extended spatial 
coordinates of the coupled nuclei. The individual dipolar coupling energies, Aµ,i,
may be computed and summed into a common tensor reference frame. A fitting 
procedure may therefore be used to refine the spin density distribution throughout 
the atomic nuclear centers, as first described by McConnell and Strathdee (1959) 
for aromatic systems. The procedure has been used with dipolar couplings culled 
from ENDOR powder spectra to assign spin density distributions in the semi-
quinone anion radical (O'Malley & Babcock, 1980) and the tyrosyl radical of ribo-
nucleotide reductase (Bender et al., 1989). In the latter study, the neutron diffrac-
tion structure of tyrosine was used to define the geometry over which the electron–
nuclear interactions were mathematically modeled, but an excellent fit to the ex-
perimental data within the error limits of the experiment could be obtained by us-
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ing a geometry predicted from standard bond lengths and angles. It follows that the 
principles of McConnell-Strathdee analysis are generally applicable even in cases 
when the precise geometry of the delocalized spin system is not known. 

The dipolar interaction of protons with nearby unpaired electron spin density 
is also useful as an aid to estimating orbital hybridization on carbon and nitrogen 
atomic centers. The McConnell Q tends to work well for interactions of a specific 
class, which among protons are the familiar α-, β-, and γ-proton classes, but Q may 
or may not be a single-valued scalar quantity. For example, hyperconjugation ef-
fects are manifest in the Q of β-protons as a sum: Q = B0 +B1 cos ϕ, where ϕ is the 
dihedral angle made between the Cβ−H bond and the Cα pz-orbital (Gordy, 1980). 
Orbital hybridization in the valence shell of carbon and nitrogen likewise affects 
the orbital character, and Q might be expressed as a sum of weighted terms Q i that 
correspond to various orbital types on a given atomic center (cf. Gordy, 1980). Un-
der these circumstances, estimates of spin density (and perhaps Q) may be im-
proved by examining the proton–dipole interactions, which provide a measure of 
the total spin density on the nearby center independent of quantum mechanical 
parameters (i.e., Q).

3.4. The Nuclear Quadrupole Interaction 

The fine structure of atomic line spectra and the hyperfine splittings of elec-
tronic Zeeman spectra are non-symmetric for those atomic nuclei whose spin 
equals or exceeds unity, I ≥ 1. The terms of the spin Hamiltonian so far mentioned, 
that is, the nuclear Zeeman, contact interaction, and the electron–nuclear dipolar 
interaction, each symmetrically displace the energy, and the observed deviation 
from symmetry therefore suggests that another form of interaction between the 
atomic nucleus and electrons is extant. Like the electronic orbitals, nuclei assume 
states that are defined by the total angular momentum of the nucleons, and the nu-
clear orbitals may deviate from spherical symmetry. Such non-symmetric nuclei 
possess a quadrupole moment that is influenced by the motion of the surrounding 
electronic charge distribution and is manifest in the hyperfine spectrum (Kopfer-
mann, 1958). 

The chemical relevance of the nuclear quadrupole interaction (NQI) becomes 
evident from a description of its phenomenological origin. The non-spherical nu-
clear charge distribution is coupled to the electronic charge distribution, and if the 
latter is likewise non-spherical, the interaction energy is subject to change if the 
nuclear (or electron) spin orientation is flipped. This non-spherical charge distribu-
tion is therefore a requisite condition for the nuclear quadrupole interaction (Evans, 
1955), and is the underlying reason that NQI is an aid in probing the electronic 
orbitals of molecules and the effect of molecular interactions (Meal, 1952; Guibé & 
Juglie, 1981; Weiss & Wigand, 1990). The requisite that both the nuclear and the 
electronic charge distributions deviate from spherical symmetry limits quadrupole 
coupling to interactions between the nucleus and the valence electrons, because 
closed shell atoms feature a spherical charge symmetry. This implies that s-orbital 
electrons do not contribute to a nuclear quadrupole coupling, and d- and f-orbitals 
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are too far extended to yield a nuclear quadrupole interaction (Wilson, 1952). In 
the context of spin-Hamiltonian formalism, we can recognize that the contact (s or 
σ character only) and nuclear quadrupole interaction (non-spherical valence orbi-
tals), in principle, provide complementary information and a useful spectroscopic 
tool for examination of orbital interactions in chemistry. 

The tensor component of the nuclear quadrupole interaction corresponds to an 
electric field gradient (EFG) that reflects the valence shell configuration of the 
atomic nucleus. The classical interaction energy is (Davies, 1967) 

1

3
i i i i

i iW e E qα α αβ αβφ µ Θ= +  (6) 

which is typically simplified for nuclei in an axial orbital system as 
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The resultant zero-field energy levels of 14N (I = 1) are (cf. Lucken, 1969b) 

21
4 [1 ]W e Qq η± = ±  (8a) 

and 

21
20W e Qqη=  (8b) 

From the experimental standpoint, a system such as 14N is well parameterized be-
cause there will, in principle, be three spectroscopic transitions from which it will 
be possible to determine the two NQI parameters, 2e Qq  and η. Other spin systems, 
such as 17O (I = 5⁄2), 33S, and 35Cl (I = 3⁄2) are more difficult to parameterize be-
cause there are fewer spectroscopic transitions than theoretical parameters, but 
techniques such as double resonance enable one to get the requisite information 
(Semin et al., 1975; Lucken, 1969b). Simple orbital descriptions of the nuclear 
quadrupole coupling parameters and orbital hybridization have been reported (Cot-
ton & Harris, 1966), and measures of the nuclear quadrupole interaction parameters 
and their tensor orientation can therefore be applied to solving problems of mo-
lecular structure and reactivity. 

In brief, the reason that NQI parameters are so useful is because the tenets of 
molecular structure and reactivity that are used to describe chemistry are based on 
models that describe an arrangement of atoms subject to “character” in the sense 
that some constituents are charged, neutral, or in some way polarized. For example, 
chlorine-containing molecules are useful subjects for testing the correlation be-
tween nuclear quadrupole interaction parameters and bond properties because both 
extremes of bond character are easily measured; a purely ionic character assigned 
to chlorine would yield a nearly complete shell associated with chlorine and no 
nuclear quadrupole coupling, whereas a covalent bond, such as that of Cl2, would 
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represent another extreme value because of electron sharing. It follows therefore 
that a direct comparison of the chlorine NQI parameters from a molecule such as 
methylene chloride with the NQI parameters of molecular Cl2 and NaCl would 
supply a relative measure of ionic and covalent character in the methylene chloride 
(Wilson, 1952). When applied in general terms, NQI parameters may be correlated 
to valence bond or molecular orbital descriptions of bonds (cf. Lucken, 1969b; 
Semin et al., 1975). Given the manner in which NQI parameters are rationalized in 
terms of orbital interactions, it seems that modern computational methods of va-
lence bond theory (cf. Gerratt et al., 1997) are ideally suited to correlation of spec-
troscopic data and a quantum mechanical description of bond order parameters. 

3.5. Non-Hamiltonian Factors that Influence EMR Spectra 

3.5.1.  Line Broadening & Selective Excitation 

The ideal sample for obtaining solid-state EMR spectra and measuring small 
perturbations due to chemical effects would be a single crystal of well-defined 
symmetry and orientation with respect to uniform H0 and H1 fields. Such a sample 
would yield inherently narrow lines whose width depended only upon dipole–
dipole interactions between like spins, spin–lattice relaxation, and molecular mo-
tion; so-called homogeneously broadened lines (Geschwind, 1967). For most prac-
tical situations, however, the sample material is either a magnetically dilute solid 
that cannot be crystallized or a solution that must be frozen and kept at low tem-
perature during the EMR experiment because the electron spin relaxation times 
must be slowed. These samples do not possess any orientation preference, and the 
resultant EMR spectrum is inhomogeneously broadened because of differences 
among the internal effective fields at various sites. Information in the hyperfine 
spectrum is often lost from the cw-EMR powder pattern line because of this inho-
mogeneous broadening, and one of the earliest recognized features of ENDOR was 
a resolution enhancement that corresponded approximately to the ratio of the in-
homogeneous line to the individual hyperfine lines (Hyde, 1967). 

The resonance condition hν = gβeH0 is oversimplified in its scalar form be-
cause, unless the atom or molecule bearing the unpaired electron has spherical 
symmetry, ge and H0 are replaced by tensor g and 1 × 3 matrix H, respectively. If 
the components of tensor g are not aligned with Hz, then the effective field is repre-
sented by projection g·H or |g| |H| cos θ, where θ is the angle made between the two 
vectors. It follows that in a sample comprised of randomly oriented paramagnets 
the resonance line will be broadened because of the distribution of angles θ. Each 
infinitesimal fraction of molecules oriented with angle δθ can be imagined as an 
individual homogenously broadened spin packet, and the complete broadened 
spectrum represents the superposition of the collection of homogeneously broad-
ened spin packets, that is, L = f(θ)δθ. The causes of inhomogeneous broadening are 
hyperfine interaction, anisotropy broadening, dipolar interactions between unlike 
spins, and magnetic field inhomogeneities. 



MAGNETIC HYPERFINE PARAMETERS & SUPRAMOLECULAR SYSTEMS 99

The g- and superhyperfine tensors, in general, are characterized on the basis of 
symmetry, and their relative orientation is fixed in the molecular reference frame 
(usually defined by molecular symmetry axes). The Hamiltonian that describes the 
electronic Zeeman interaction in a principal axis frame (no terms of the form gij,
where i ≠ j) is  

( )cos cos cosx x x y y y z z zH g S g S g Sβ θ θ θ= + +H  (9) 

where term θ i corresponds to the angle formed between the applied field and the 
gi-axis. It follows that selection of a specific g-value (in a homogeneous line or 
single spin packet) could be achieved by an appropriate orientation between H and 
the g-axes. In inhomogeneously broadened systems the spin Hamiltonian would be 
expressed as a sum over all the spin packets, which, when integrated over all pos-
sible orientations and angles theta, yields an average that may be statistically 
weighted with respect to spin packet distribution by varying H. In other words, one 
obtains a powder pattern cw-EMR spectrum whose shape features “turning points” 
that are indicative of high populations of each g-value orientations (i.e., population 
selective, see Mabbs & Collison, 1992). These turning points can be used to select 
and resolve hyperfine parameters and ESEEM spectra via the population selection 
method as outlined above. 

The classic study of g-orientation selection of hyperfine tensor parameters is 
that described by Rist and Hyde (1970) for the axially symmetric copper com-
plexes. Selection of nuclear hyperfine and quadrupole tensor terms in powder pat-
terns is effected by the same means as described in the preceding paragraph. First, 
a high proportion of similar spin packets are “selected” by performing the ENDOR 
experiment at a region near the “wings” of the cw-EMR spectrum, that is, at either 
the low or high field extremum where only a few θ values contribute. With the spin 
packets selected in this manner one has, in effect, reduced the number of transitions 
being pumped (in the ENDOR or ESEEM experiment), and one is now left with 
the angular dependence of the hyperfine terms of the spin Hamiltonian. For exam-
ple, in the preceding paragraph product S·g·H was written in terms of a principal 
axis and the angles between them; hyperfine term S·A·I is handled in a similar 
fashion, and in a g-selected ENDOR experiment one obtains single crystal-like 
hyperfine spectra because one is reducing the number of contributing orientations. 
The angular dependence among the tensors, from which g-selectivity arises, is de-
rived from an analysis of single-crystal EMR spectra (Rist et al., 1968). General 
procedures for analyzing powder pattern hyperfine spectra are based upon integra-
tion over angular representations of all possible tensor orientations within a sym-
metry framework (Dalton & Kwiram, 1972; Hoffman et al., 1984; Hurst et al., 
1985). 

The g-selection effect is also observed in the case of free radicals for which 
there is g-anisotropy. For example, the 1H-ENDOR hyperfine spectra of the tyrosyl 
radical of ribonucleotide reductase exhibits dramatic selectivity by the g-selection 
technique. Figure 3 depicts the selectivity obtained near the so-called matrix region 
of the ENDOR spectrum. At g = 1.99 the matrix region, which corresponds to pro-
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tons that are weakly coupled via dipolar interaction to the unpaired electron (as 
defined by Hyde et al., 1968), achieve very narrow, almost single-crystal quality, 
linewidths from which numerical values are easily recovered. Likewise, the axial 
line corresponding to the 2,6 α-protons (cf. Bender et al., 1989) is well-resolved at 
g = 1.99 and demonstrates profound g-selection (the 3,5 α-protons also demonstrate 
g-selection and also seem to be resolvable). These data clearly show that single-
crystal-like narrow lines can be achieved in powder pattern ENDOR spectra de-
spite a small g-anisotropy (and therefore one is not limited to large anisotropy 
cases such as Cu(II), as demonstrated in the Rist & Hyde 1970 study), and these 
lines can be “selected”; the key to such resolution is having the spectrometer band-
width close to the width of a spin packet. 

Figure 3. A proton (matrix) ENDOR spectrum of the tyrosyl radical of ribinucleotide reduc-
tase, illustrating both the high resolution of the technique and the ability to selectively en-
hance features in the spectrum by g-value (Bender et al., 1989).
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3.5.2.  Spin Relaxation 

Transitions among the various spin states are governed by rate equations that 
represent two counteracting probability functions. The first of these functions per-
tains to the radiation-induced transition and the probability that the time-dependent 
electric field of the incident radiation couples to the sample medium and induces 
transitions among the allowed spin states. The counterpart, spin relaxation, denotes 
the multifaceted dynamics of the spin population as it returns to thermal (i.e.,
Boltzmann) equilibrium. The relative rates of these two processes determine the 
EMR signal intensity, and the associated spin dynamic processes serve as the basis 
for advanced EMR techniques and their specialized niches for determining super-
hyperfine parameters. 

Spin–lattice relaxation denotes all direct relaxation processes subject to the se-
lection rules applied to EMR spectra, but more than one mechanism of spin relaxa-
tion is extant. It was experimentally established, for example, that the rate of return 
to a Boltzmann distribution following excitation depends upon the spacing of the 
spin system’s energy levels, and that the spin population distributed among equally 
spaced energy levels returned to its Boltzmann equilibrium distribution faster than 
the corresponding unequally spaced system. 

The more rapid relaxation rate, denoted as T2
−1, is related to the concept of 

spin temperature and spectral diffusion. In the case of an equally spaced three-level 
system the rapid return to the equilibrium state occurs because the routes of energy 
“disposal” are identical, and mutual flips induced by dipolar interaction among the 
members of the population are isoenergetic (Bloembergen et al., 1959). On the 
other hand, when energy levels are unequally spaced the spin system first comes 
into equilibrium with the lattice via electron–phonon interactions, and this slower 
spin–lattice relaxation rate is designated as T1

−1. But the measurements of spin re-
laxation dynamics as a function of field (Bloembergen et al., 1959) that led to the 
identification of these two relaxation processes also revealed an intermediate con-
dition that occurs as unequally spaced levels are manipulated so that they gradually 
approach the condition of equality. In such a situation there occurs an intermediate 
cross-relaxation rate T12

−1, such that T2
−1 > T12

−1 > T1
−1 (Bloembergen et al., 1959; 

Grant, 1964a–d). As will become apparent in the sections to follow, spin relaxation 
phenomena are important in governing the ability to observe the ENDOR effect 
and ESEEM. 

4.  ADVANCED EMR: ENDOR VS. ESEEM 

In the preceding section, spin Hamiltonian terms corresponding to weak hy-
perfine interactions and their chemical significance were described. Conventional 
cw-EMR spectroscopy measures these interactions as a small splitting of the lines 
corresponding to transitions among the mS states (i.e., the electron Zeeman transi-
tions), and these splittings are prone to being lost within the inhomogeneous line 
broadening of spectra derived from the random orientation of individual molecular 
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tensors with respect to the applied field (§3.5). The selection rules of cw-ENDOR 
spectra, that is, ∆mS = 0, ∆mI = ±1, obviate the electron Zeeman transitions and, in 
effect, directly measure the hyperfine interaction. ESEEM spectra appear as though 
subject to the same selection rules, but the two techniques differ profoundly with 
respect to the manner in which the spin dynamics of the spin system are manipu-
lated and the response detected. These differences, however, benefit the spectro-
scopist in regard to the type of information that is recovered. 

4.1.  cw-ENDOR

cw-ENDOR spectroscopy relies on a dynamic competition in populating the 
electronic states during continuous irradiation, but it is otherwise familiar in the 
manner of its execution because it is a swept-frequency experiment. One of the 
unique features of magnetic resonance spectroscopy is that the energy difference 
between the ground and excited states is so small that it is possible to easily satu-
rate the system and effectively burn a hole in the spectrum at moderate powers of 
electromagnetic radiation. In other words, the dynamical competition between the 
radiation-induced transition probability and the non-radiative relaxation rates can 
be very easily controlled and therefore balanced. ENDOR is a variant of the Over-
hauser spectroscopic technique in nuclear magnetic resonance because spectra are 
derived from a manipulation of the electron and nuclear spin dynamics and their 
interaction (Dwek et al., 1969). 

In order to prime the system for cw-ENDOR detection, an allowed EMR tran-
sition (∆mS = ±1, ∆mI = 0) is saturated in the sense that ground- and excited-state 
populations are equalized, which means that the signal detected by the EMR spec-
trometer is rendered transparent (a “hole is burned” in the EMR spectrum). Irradia-
tion of the sample with a second frequency that corresponds to the difference be-
tween nuclear substates will open up a new pathway for the spin transitions and 
depopulate one of the energy states participating in the saturated system. The radia-
tion-induced depopulation of one state breaks the impasse between the EMR transi-
tion and the spin–lattice interaction rate. As the NMR transition depopulates the 
saturated states, the EMR signal is recovered and one records an NMR spectrum 
that reflects the hyperfine splittings of the nuclear sublevels (selection rule: ∆mS =
0, ∆mI = ±1). A schematic description of the routes of spin-state transfer is often 
drawn in analogy to a four-terminal electrical circuit and may be found in most 
reviews on the subject (Dwek et al., 1969; Kevan & Kispert, 1976; Schweiger, 
1982). 

The principal advantage of ENDOR spectroscopy is the much finer energy 
scale upon which the state-to-state transitions are recorded. As discussed in §3, 
conventional cw-EMR spectroscopy detects the weak hyperfine interactions of the 
spin Hamiltonian as a perturbation of the electronic Zeeman effect; in many practi-
cal situations, inhomogeneous broadening will wash out the hyperfine structure of 
the spectrum. In such cases of inhomogeneously broadened EMR spectra, interac-
tion can only be deconvoluted for practical analysis via simulations (Hyde & Fron-
cisz, 1982). The ENDOR method, however, records a spectrum that represents the 
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hyperfine structure alone, and the spectral lines thus observed are inherently selec-
tive and more narrow than the parent EMR spectrum. Other advantages of ENDOR 
that affect the analysis of complicated electron nuclear interactions, such as the 
factoring of multiple lines, are covered in other reviews (Kevan & Kispert, 1976; 
Schweiger, 1982).  

Despite the technique’s advantages, ENDOR can be problematic in the practi-
cal sense. The ENDOR signal amplitude depends on the spin–lattice relaxation 
rates that must be exceeded in order to observe an enhancement of the saturated 
EMR signal, and any physical phenomenon that accelerates relaxation rates is a 
bane to ENDOR spectroscopists. The so-called “ENDOR enhancement” (propor-
tion of original EMR signal recovered by sweeping through the NMR transition) is 
strongly affected by such physical factors as the temperature and the viscosity (liq-
uid) or lattice structure (solid) of the medium. Other commonly encountered rate-
accelerating mechanisms that are inherent to the paramagnet itself might be dipole–
dipole interactions of type electron–electron (exchange interactions; Anderson & 
Weiss, 1953) or nuclear–nuclear (cross-relaxation; Grant, 1964a–d; Standley & 
Vaughan, 1966; Verstelle, 1968). 

4.2.  ESEEM 

Electron spin echo modulation spectroscopy (Norris et al., 1980; Dikanov & 
Tsvetkov, 1992) is sometimes called FT-ENDOR because the echo modulation 
time series yields a frequency spectrum that corresponds to transitions among nu-
clear sublevel (Rowan et al., 1965). The ESEEM technique is often said to be 
complementary to ENDOR (Tsvetkov & Dikanov, 1987) because ESEEM tends to 
yield well-resolved spectra in the low-frequency range (≤4 MHz) of the nuclear 
hyperfine spectrum, where cw-ENDOR is often problematic. The converse is like-
wise true: ESEEM tends to be problematic at recording hyperfine frequencies 
above 10 MHz. 

ESEEM spectroscopy is based on the spin echo phenomenon first described by 
Hahn (1950). Two or more saturating microwave pulses are applied at or near the 
resonance condition with a sample and thereby shift the net magnetization of a 
sample by altering the relative populations of the spin ground and excited states. 
The two common pulse sequences are comprised of 2- and 3-pulses, which for-
mally correspond to ½π− τ− π and ½π− τ− ½π− Τ− ½π excitation in the parlance 
of spin turning angles (cf. Freeman, 1997a;b), but pulses not exactly corresponding 
to the specified turning angles are acceptable (Hahn, 1950; Rowan et al., 1965). 
The two pulse sequences differ with respect to the echo’s response to spin–lattice 
relaxation and the manner of mixing two or more frequency components in the 
modulation pattern. In general, the three-pulse, or stimulated echo, technique is 
preferred because the echo amplitude persists for longer interpulse spacings and 
linear mixing terms in the spectrum are reduced in number, thus simplifying the 
interpretation of a multicomponent spectrum (Mims, 1968, 1972a). 

The echo method is valuable because it provides a second means of determin-
ing spin relaxation rates that is an alternative to spin induction decay. The ampli-
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tude of the echo decreases monotonically as the interpulse spacing increases, and 
one can record an echo amplitude “envelope” as a discrete time series. Such a plot 
of the echo amplitude as a function of interpulse spacing can be fit to a decay func-
tions (cf. Carr & Purcell, 1954) and be used to recover spin–lattice relaxation 
times, T1, that might otherwise be measured by direct detection time domain EMR 
(see Kevan & Schwartz, 1979; Dalton, 1985). Figure 4a schematically illustrates 
the method for a simplified two-level system, drawing the analogy between fluo-
rescence decay and spin echo decay. 

Figure 4. Excited state decay schemes from two- and three-level systems (a, and b, respec-
tively), compared as measured using fluorescence spectroscopy and spin echo methods. 
When measuring decay from a single excited state to the ground state, a fluorescence ex-
periment detects a single wavelength and decaying intensity; magnetic resonance, a spin 
echo of decreasing amplitude (a). Decay from two simultaneously driven excited states 
yields an oscillating intensity (fluorescence) or modulation of the spin echo amplitude – the 
so-called quantum beats phenomenon (b). In pulsed EMR the bandwidth of the high power 
pulse simultaneously drives all transitions of the six level diagram, the familiar beat pattern 
of weakly coupled 14N (c).
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If one modifies the state diagram by adding a third level, one could, in princi-
ple, measure two relaxation times (corresponding to the two radiation-induced 
transitions a → b and a → c, Figure 4b) independently. One merely needs to en-
sure that the excitation source of one’s spectrometer can independently select the 
two transitions, that is, the excitation source bandwidth is significantly less that the 
difference between the two transition energies. Decay from excited states b or c
might be measured as a fluorescence lifetime or echo decay, depending on the na-
ture of the system. 

As the difference between the two transition energies becomes less than the 
bandwidth of the source, the experiment can no longer be used to distinguish proc-
esses a → b and a → c, and the corresponding decays from the excited states begin 
to interfere classically, as would be described by light waves (cf. Michelson, 1903). 
This interference is manifest as a beat pattern that is superimposed onto the decay 
envelope, and the beat frequency corresponds (in the three-level model) to the en-
ergy difference between levels b and c, or, to put it more accurately, the difference 
between the transition energies of processes a → b and a → c (Alexandrov, 1964). 

The model is examined using a simple EMR state diagram, S = ½, I = ½, in 
Figure 5, and the echo modulation process may be described as follows. The split-
ting between the states (mS, mI) | +½, −½  and | +½, +½  is determined by the  

Figure 5. Four-level hyperfine diagram illustrating manifold with sign of nuclear hyperfine 
coupling opposite that of nuclear Zeeman term, making it possible to adjust the Zeeman field 
so that the spin manifold levels cross.
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nuclear Zeeman and contact hyperfine terms. The nuclear Zeeman term, gnβnH0, is 
determined by the applied field, and the splitting can therefore be experimentally 
controlled. If Fermi contact interaction a is positive, the spin quantum numbers 
render the signs of the nuclear Zeeman and contact terms opposite, and the levels 
corresponding to the states | +½, −½  and | +½,+½  can be made to cross by varying 
H0. The states | −½, −½  and | −½,+½  cannot be made to cross because the spin 
quantum numbers are the same sign; these latter states therefore diverge in a linear 
fashion as the applied field increases, but one should recognize here that the field 
can be used to experimentally manipulate and “tune” the transition frequencies. 
This condition and process of forcing the near-degeneracy of the transition energies 
is called “exact cancellation” (Mims & Peisach, 1976; Singel, 1989). 

EMR transitions | −½, −½ → | +½, −½  and | −½, +½ →| +½, +½  may be si-
multaneously driven by incident microwave field H1 if the energy difference of 
these transitions is less than the spectrometer bandwidth, which is affected by the 
modulation or excitation method. In such a case quantum beats or modulation ef-
fects will be detected on the decay profile. For example, a 20-ns square pulse will 
have an excitation bandwidth of approximately 50 MHz, which is quite broad rela-
tive to the EMR linewidths of many organic radicals, and one might expect to de-
tect the entire ENDOR spectrum of an organic radical in an echo modulation time 
series. The state diagram of the proton hyperfine (i.e., ENDOR, Bender et al., 
1989) spectrum of ribonucleotide reductase is readily encompassed by the 65-MHz 
pulse bandwidth of a standard high-power pulsed EMR spectrometer, yet the 
ESEEM and cw-ENDOR spectra of ribonucleotide reductase do not in any way 
resemble one another at 9.5 GHz (Bender, unpublished data). Such marked dispari-
ties between cw-ENDOR and ESEEM spectra are generally the rule and one of the 
reasons that the techniques are called complementary. 

The echo modulation frequencies are predicted classically, and the formulae 
are analogous to those found in descriptions of diode mixer circuits (cf. Carson, 
1990). Conditions for the echo phenomenon are twofold, namely, inhomogeneity in 
the spectral profile and some nonlinearity to the response of the system (cf. Hahn, 
1950; Chebotayev & Dubetsky, 1983). The first condition is readily met by most 
samples or spectrometers (Ramsey, 1950), and the latter may be deduced from the 
Bloch equations. Mims’ descriptive model (1968, 1972a–c) of the modulation ef-
fect relies on a classical inductive coupling between dipoles (precessing gyros). 
The electron gyroscope precesses with an angular velocity is approximately 1000 
times that of the nucleus. If the electron and nuclear gyroscopes are inductively 
coupled one can imagine that the otherwise circular trajectory of the electron's pre-
cession is made elliptical, and that the long axis of the ellipse (directed towards the 
nucleus) oscillates at the nuclear precession frequency. The echo that is recorded at 
2τ (Hahn echo) or 2τ + T (stimulated echo) amounts to a temporal “snapshot” of 
the primary magnetization vector, which is affected by both static field H0 and the 
precessing magnetic moments of the local nuclei, and the time series that is gener-
ated by varying τ or T is therefore an interferogram of the nuclear precession fre-
quencies (Hahn & Maxwell, 1951). In other words, the precessing electron, whose 
magnetization vector serves as an observable, acts as a linear mixer of these  
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Figure 6. Spectral diffusion and its role in ENDOR and ESEEM. Top left: The inhomogene-
ously broadened EMR line is represented by a superposition of (homogeneously broadened) 
spin packets that may be saturated so that a hole is burned in the line (Bottom Left). Spectral 
diffusion spreads the saturating power through portions of the spectrum and may collapse all 
or part of the EMR line (Top Right). In an ENDOR experiment, the population of a second 
spin packet is transferred to the portion of the spectrum where a hole has been burnt, and the 
whole is filled (recovery of saturated EMR signal). Cross-relaxation, via mutual dipole flips, 
fills the hole without the drive of the second rf frequency. This spontaneous hole-filling runs 
counter to the desired spin dynamics of a cw-ENDOR experiment, but provides the condi-
tions to detect quantum beats in the decay via ESEEM.

nuclear frequencies by virtue of magnetic dipole coupling among the collective 
magnetic moments. 

4.3.  ENDOR vs. ESEEM: Experimental Technique  

The need to drive spin transitions sufficiently fast to overcome the tendency of 
the relaxation rate to equilibrate spin state populations compromises the ENDOR 
technique. For example, the optimal rf drive conditions for observing protons of 
different type (i.e., α−, β−, γ−, etc.) by the ENDOR method vary (cf. Hyde et al.,
1968). Similarly, ENDOR transitions of nuclei whose gyromagnetic ratio is low 
tend to be inherently more difficult to observe (e.g., 2H, as opposed to 1H). Such 
ENDOR experiments often require large H2 fields, and the spectral lines tend to be 
relatively broad (Kevan & Kispert, 1976). 

ENDOR is also very difficult to observe when cross-relaxation becomes a fac-
tor and, in effect, “short-circuits” the relaxation routes, thus preventing observation 
of ENDOR enhancement. Often cited in the context of the complementary nature 
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of ESEEM and ENDOR is the fact that among metal imidazole complexes the 
ENDOR technique detects the strongly coupled (metal-coordinated) 14N only, 
whereas the ESEEM method detects only the weakly coupled (remote) 14N. As it 
turns out, the six-level nuclear hyperfine diagram of the latter nucleus tends to be 
subject to a level-crossing condition at the DC magnetic fields used in X-band 
EMR experiments. This near level-crossing condition opens up the possibility of 
cross-relaxation (e.g., via dipolar interaction, cf. Abragam & Proctor, 1958) and is 
therefore likely the mechanism responsible for the lack of an ENDOR spectrum for 
the weakly coupled imidazole nitrogen atom. This conclusion is supported by the 
fact that high-quality ENDOR and Triple spectra may be obtained for similarly 
weakly coupled 14N in single-crystal samples of Cu(II)/Zn(II) bis-(diethyl-dithio-
carbamate); the narrow lines of the single-crystal spectrum obviate cross-
relaxation, and otherwise intractable spectra are observed (Böttcher et al., 1984). 

ESEEM, by contrast, is a form of coherence-transfer spectroscopy (Macomber, 
1976; Hollas, 1982) that seems to perform optimally when the cross-relaxation 
phenomenon allows an admixture of states. The degree to which nuclear manifolds 
are mixed appears to be linked to the so-called “modulation depth,” or peak–peak 
amplitude oscillations in the echo modulation time series relative to the average 
echo amplitude (again, the much-desired “exact cancellation” condition). The 
modulation depth, in turn, determines how sharp and well-defined spectral peaks 
are recovered in the Fourier transform, as is the case of any transformation of an 
oscillatory waveform into the frequency domain. Among the body of literature 
(Dikanov & Tsvetkov, 1992) for nuclei of similar gyromagnetic ratio and (pre-
sumably) quadrupolar relaxation rates, there is a large disparity in ESEEM modula-
tion depth, and therefore relaxation enhancement by quadrupolar effects (cf.
Abragam, 1961) cannot be the sole factor responsible for deep electron spin echo 
modulation. The directly coordinated nitrogen will relax differently than the remote 
nitrogen in a metal imidazole because of the proximity of the metal, but if one is to 
invoke accelerated relaxation as a factor in modulation depth, then the coupling to 
the paramagnetic copper should further enhance the relaxation of the ligand nitro-
gen and render the nucleus subject to detection by ESEEM. Similarly, the relaxa-
tion rates of weakly coupled deuterons in, for example, a tyrosyl radical (Warnecke 
et al., 1995) should not differ markedly from weakly coupled 2H2O (Mims et al.,
1984), yet electron spin echoes are modulated much more deeply by the latter than 
the former. Although perhaps coincidental, it seems that the ESEEM technique is 
optimal when the energy levels of one spin manifold are sufficiently close to allow 
for cross-relaxation and admixture of these close-proximity states; under such con-
ditions, the spectroscopic technique becomes analogous to coherence transfer and 
fluorescence enhancement methods in atomic and molecular spectroscopy, which 
also owe their narrow lineshape and intensity to a condition of level-crossing. 

ESEEM spectra become, in general, inferior to cw-ENDOR spectra when the 
modulation depth becomes shallow and renders the FT-spectrum poorly resolved. 
This occurs as the otherwise admixed energy states disperse and “turn off” the 
cross-relaxation, and at this point conventional ENDOR becomes feasible. For ex-
ample, excellent 2H-ENDOR have been recorded for organic radicals, and the NQI 
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tensors applied to structural analyses and the detection of phase transitions 
(Krzytek & Kwiram, 1991; Krzytek et al., 1994, 1995). Another limitation of 
ESEEM relates to sampling theory and the manner in which the echo modulation is 
measured. The spin echo is typically a bell-shaped waveform of width approxi-
mately 15−20 ns, although the width varies as a function of T2. The echo ampli-
tude, which is plotted in order to generate the modulation time series, is recorded 
as an integrated area sampled with a gated amplifier whose sampling aperture ap-
proximates the echo width. Digital delays and time interval measurements can be 
performed on the subnanosecond time scale, but the inherent echo width and data 
acquisition method limit the timing resolution to 1 ns.  

Besides the spin dynamics of the measurement itself, waveform sampling in 
the time domain for frequency analysis via transform methods are generally sub-
jected to constraints such as the Nyquist theorem (1946), which stipulates that a 
waveform with highest frequency component fm and duration T requires greater 
than 2Tfm discrete points for accurate sampling and spectral representation via 
transform methods. In practice, this theorem stipulates that the waveform should be 
sampled in such a manner that there are more than two points per shortest period. 
A typical spectrometer may record an echo modulation time series as 1000 discrete 
points. Arbitrarily setting the number of sample points per shortest period as four, 
that is 1000 = 4Tfm' > 2Tfm, the theoretical maximum frequency that may be re-
solved in the time series is fm' (MHz) = 250 ⁄T (s). Hypothetically performing a rep-
resentative ESEEM experiment by incrementing the interpulse spacing by 10 ns, a 
waveform of duration T = 10µs will be generated with a Nyquist limit of fm'= 25 
MHz. The periods of, for example, 4- and 25-MHz modulation frequencies are 250 
and 40 ns, respectively. The 15-ns gated amplifier aperture therefore represents 6 
and 37% of the period in the respective cases, and the practical question of just 
how “discrete” are the sample points (exclusive of instrumental factors, waveform 
damping, and noise) becomes an issue. This limitation, combined with the disper-
sion of states excited by the finite frequency bandwidth of the excitation pulse, 
renders the ESEEM method specious for accurately recording modulation frequen-
cies above 10 MHz; the situation improves if the echo (and the requisite amplifier 
aperture) is narrow. ENDOR and ESEEM, however, can be performed on the same 
spectrometer by using echo-detected swept frequency or field methods (Clark et 
al., 1996), and a contiguous spectrum can be obtained by performing orchestrated 
experiments. Another option, however, is the coherent Raman beats method (Bow-
ers & Mims 1959; Brewer & Hahn, 1973; Bowman, 1992), in which the modula-
tion is detected as a “beat” against a continuous wave (or long pulse) signal. In this 
case the limiting factor in waveform recovery is the bandwidth of the receiver; 
waveform sampling oscilloscopes are, in effect, boxcar averagers and typically 
feature aperture times on the order of 100 ps.
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5.  ZEEMAN DEPENDENCE OF HYPERFINE SPECTRA 

Thus far, we have established that the nuclear hyperfine parameters of the spin 
Hamiltonian are desirable for assessing the chemically interesting problem of 
structure–function correlation and reaction control. The advanced EMR methods 
known as ENDOR and ESEEM best recover this information from samples in 
which the chemical agent of interest is paramagnetic, and, in principle, there are 
methods that enable the spectroscopist to cope with the sometimes pathological 
behavior of spin systems, in other word, coax a spectrum out of a sample. In this 
section, however, we shall address the question of whether there is necessary and 
sufficient information in a single ENDOR or ESEEM spectrum and how to design 
an experimental approach that enables one to fully parameterize the spin Hamilto-
nian.  

The spin Hamiltonian (eq. (2)) contains two first-order perturbation terms that 
are dependent upon the magnitude of applied field H0, which is an experimentally 
controlled parameter. The electron magnetic resonance spectroscopy experiment 
can therefore be tailored in the sense that the hyperfine splitting between energy 
levels can be arbitrarily adjusted by varying the DC magnetic field as long as the 
fundamental electron resonance relation, hν = geβeH0, is maintained. This ability to 
control hyperfine splitting is important because one can thereby force the state dia-
gram to assume configurations that greatly simplify the spectroscopy experiment 
and recovery of the desired molecular parameters. 

Proton ENDOR transition frequencies, such as those that appear in Figure 3, 
are very nearly symmetrically dispersed about the proton Larmor frequency ac-
cording to the empirical rule ν± = ±a, where ν± refers to the upper and lower fre-
quency ENDOR transitions, and νn corresponds to the nuclear Larmor frequency at 
the experimental DC magnetic field (for 1H, approximately 15 MHz at 0.35T).
When νn > a, the ENDOR transition frequencies assume positions in the spectrum 
according to the rule ν± = ±aν n. It follows that the peaks of an ENDOR experiment 
will shift as the experiment is repeated at different field/frequency combinations. 
For example, a proton ENDOR spectrum (isotropic a) will behave as illustrated in 
Figure 7. The reader should recognize that the plot depicted in Figure 7 represents 
the trajectory mapped out by ENDOR peak positions in discrete experiments; both 
spectrometer operating frequency and field are varied in order to maintain a con-
stant g-value. 

For experiments conducted at H0 such that νn  > a/2, one observes that paired 
ENDOR transitions ν± follow parallel trajectories that are separated by a. As one 
decreases H0, ENDOR transition ν− approaches zero as νn ∼ a/2, and then reverses 
direction as νn < a/2. At the zero Zeeman field limit (i.e., νn = 0), both ν− and ν+
converge at value a/2. The minimum that is traced out by the trajectory of ν− corre-
sponds to an energy level crossing as states | +½, +½  and | +½, −½  become degen-
erate. This resultant degeneracy is due to the fact that the signs of the nuclear Zee-
man and contact terms are opposite, and the magnitude of H0 ensures that nuclear 
Zeeman and contact terms cancel. (If contact term a is negative, then states 
|+½, ±½  cross.) As the nuclear Larmor energy further decreases beyond this criti-
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cal point, the energy levels diverge and the peak position shifts to a higher fre-
quency. 

Figure 7. Zeeman dependence of ENDOR transitions in a S=1/2, I=1/2 spin system. As the 
nuclear Zeeman energy is varied, the peak positions shift and there exists a critical point at 
which the nuclear Zeeman energy equals half the nuclear hyperfine energy (dashed vertical 
line). The critical point corresponds to the energy level (anti-)crossing situation.

For a simple model in which the spectroscopic energy terms are treated as sca-
lar quantities and linewidths are represented by δ-functions, the trajectory of ν− is 
V-shaped and the predicted line intensity will be uniform over the entire experi-
mental frequency range.  But for a real system in which there are finite linewidths, 
such as that illustrated in Figure 9, the energy states will be more disperse and 
permit overlap for some range νn− a greater than zero. This overlap of the dipolar 
broadened states will permit cross-relaxation (cf. Geschwind, 1967), and the ν−
ENDOR line intensity will markedly decrease as the lines increasingly overlap. 
The trajectory of the ENDOR peaks will likewise be modified and presumably 
broaden at the so-called critical point because of the increasing probability of state 
mixing as the adjoining states converge. In other words, the lower V-shaped trajec-
tory will become more parabolic near the minimum as the overlapping disperse 
states increase the bounds on nuclear Zeeman energies that permit level crossing. A 
similar drop in signal intensity will likewise occur for the same reason at the zero-
field limit where all four states converge. 

When I ≥ 1 the addition of quadrupole coupling renders the hyperfine splitting 
patterns asymmetric. The mI levels are unequally spaced (without the quadrupole 
coupling all levels would be equally spaced irrespective of I), and one obtains more 
than two ENDOR transitions. For example, when I = 1 there are two ∆mI = 1 tran-
sitions per mS spin manifold, and their Zeeman dependence behavior is illustrated 
in Figure 8. In contrast to the I = ½ case, the trajectories are split by nuclear quad-
rupole coupling, and the level-crossing condition may occur between two mI sub-
levels (e.g., between +1 and 0) or among all three, depending on the spectral dis-
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persion of those mI energy states (i.e., relative magnitude of dipolar interaction 
energy and the zero-field nuclear quadrupole interaction splittings).  

Figure 8. Level (anti-)crossing of nuclear sublevels S=1/2, I=1 by adjusting the nuclear 
Zeeman splitting. Only the m=1 transitions are shown in the diagram. As in Figure 7, the 
ENDOR transitions are mobile and subject to a critical point as the magnitude of the nuclear 
zeeman energy assumes a value that leads to the crossing condition in one electron spin 
manifold. 

The (ENDOR) spectroscopic peak trajectories of Figures 7 and 8 illustrate 
how replicate experiments, that is, multi-frequency experiments conducted at the 
same g-value, result in identification of specific “critical points” characterized by 
spin-Hamiltonian parameters. These critical points correspond to level-crossing 
conditions that are imposed by changes in the nuclear Larmor component of the 
spin Hamiltonian as the DC magnetic field is varied. Figure 9 depicts the six-level 
state diagram (S = ½, I = 1) in which the individual levels are dispersed in energy 
because of dipolar effects and inhomogeneities (Geschwind, 1967). 

5.1. Multi-Frequency Measurements and Energy Level-Crossing as  

 an Interpretative Aid 

Conventional EMR spectrometers operate at discrete frequencies within a 
given band. 1H-ENDOR (and S =½, I = 1 systems in general) are sufficiently simple 
that spectral interpretation can be routinely made at a single spectrometer operating 
frequency (i.e., a single nuclear Larmor frequency on the plot in Figure 7) and, for 
instances in which spectra are highly convoluted, by using specialized procedures 
such as TRIPLE (Schweiger, 1982). But it is often necessary to interpret a multi-
parameter ENDOR spectrum by numerical simulation of the spectrum using a spin-
Hamiltonian model, and this becomes problematic because, in addition to the spin-
Hamiltonian parameters for each nucleus, one also has to account for the relative 
orientations of the tensors. A multi-frequency approach to recording spectra is then 
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called for in order to increase the number of spectroscopic observables (i.e., peaks) 
in order to better refine the numerical simulations; the idea being that a correct 
assignment of spin-Hamiltonian parameters will enable one to simulate the spectra 
recorded at all spectrometer operating frequencies. 

Figure 9. Dipolar broadening of otherwise discrete energy levels, leading to overlap and 
mixing in one spin manifold. This leads to cross-relaxation (ENDOR) and quantum beats 
(ESEEM). 

What is typically termed multi-frequency EMR therefore entails the repetition 
of a spectroscopic experiment at a single frequency in the S-, C-, X-, K-, and Q-
bands; the hyperfine parameters would then be culled from the data by independent 
simulations of the spectra (cf. Hyde & Froncisz, 1982; Hoffman et al., 1993). In 
this experimental scenario, state degeneracy, whether as a crossing of states attrib-
uted to the same nucleus, as depicted in Figure 7, or between two or more nuclei, is 
something to be avoided because it becomes a factor in determining spin-relaxation 
rates and the radiofrequency power that becomes necessary in order to observe an 
ENDOR signal (Kevan & Kispert, 1976; Schweiger, 1982). In other words, for a 
cw-ENDOR experiment, the traditional multi-frequency approach to spectroscopic 
interpretation does not make use of the so-called critical points identified in Fig-
ures 7 and 8 because of the associated deleterious relaxation effects on the spectra.  

Figure 10 illustrates a simulated set of three S = ½, I= 1 hyperfine spectra per-
formed in the single spectrum per band approach. The hyperfine parameters that 
were used to generate these data represent those of a single weakly coupled nitro-
gen, and even this simple example results in very complicated spectra whose peaks 
are difficult to assign. Furthermore, the only way to analyze this set of spectra and 
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correctly determine the spin-Hamiltonian parameters would be to conduct numer-
ous trial-and-error simulations in order to best fit the spectra using a set of spin-
Hamiltonian terms and tensor orientations. This example graphically shows that, as 
simple as ENDOR can be for I = ½ systems, the multi-frequency approach, as prac-
ticed in the manner described in the preceding paragraph, is problematic with I ≥ 1
systems. It likewise follows that the quantitative analysis of hyperfine parameters 
by fitting a Hamiltonian model to EMR spectra recorded at discrete frequencies in 
separate bands leaves one open to error in selecting parameters for optimizing the 
simulation's fidelity to experiment.  

Figure 10. The conventional multi-frequency approach to ENDOR/ESEEM by recording 
spectra at discrete spectrometer operating frequencies in two or more microwave ovtaves. 
These data represent simulated ESEEM/ENDOR spectra of an S=1/2, I=1 system using the 
hyperrfine parameters e2Qq=1.6 MHz, η=0.45, and Aiso = 4.0 MHz. Top and bottom spectra 
correspond to nuclear Zeeman energies above and below the ideal ‘exact cancellation’ condi-
tion (center spectrum). The simplified exact cancellation spectrum makes it easy to assign 
peaks to transitions (cf.  Mims & Peisach, 1978), but peak mobility makes it difficult to as-
sign numerical values to the hyperfine parameters based on a single spectrum.  

Besides the ambiguity of fitting simulated to experimental spectra, the instru-
mental limits (most conventional microwave sources — klystrons, Gunn diodes, 
etc. — operate only a limited band width within the octave, that is, they are not 
tunable) of the “one frequency per octave” approach does not assure one of being 
able to obtain the requisite number of spectra to begin with. For example, it is 
highly problematic to record cw-ENDOR of weakly coupled 14N at the X-band 
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(because of cross-relaxation), and so the most common experimental configuration 
will not yield data of suitable quality so as to perform a meaningful Hammett-like 
analysis of the system. Instead, I propose that a more quantitatively reliable proce-
dure may be formulated by using the Zeeman-dependent behavior of the hyperfine 
spectrum to provide a graphical approach to determining the spin Hamiltonian pa-
rameters (cf. Singel, 1989). The proposed multi-frequency approach will be used to 
record spectra in the region of so-called “exact cancellation” both to extract the 
spin-Hamiltonian parameters from the aforementioned critical points and to take 
advantage of line-narrowing phenomena that occur in ESEEM spectra near exact 
cancellation.  

Figures 7 and 8 have been used to identify useful trends, namely, that level 
crossing in one mS spin manifold causes the trajectory of at least one ENDOR tran-
sition frequency, as mapped by plotting peak position against the nuclear Zeeman 
energy, to have a minimum value (i.e., a critical point) at which the hyperfine in-
teraction energy may be read directly from the raw data. For the S = ½, I = ½ system 
this minimum corresponds to the contact interaction energy, but when I ≥ 1 this 
minimum can be used to assign the zero-field NQI parameters. The improved 
multi-frequency experimental protocol therefore entails replicate measures of spec-
tra at small increments of spectrometer operating frequency (500-MHz steps are 
ideal) and plotting peak position vs. the nuclear Larmor frequency. The use of 
small incremental steps allows one to, in effect, map the hyperfine spectrum energy 
levels and locate the level-crossing condition. This approach does not obviate the 
need for spectral simulations, but it does provide a higher level of confidence in the 
interpretation when one finally does try to correlate the experimental data with a 
spin Hamiltonian model and simulations. In short, the method obviates interpretive 
errors that might be associated with drastic lineshape changes that accompany large 
nuclear Zeeman energy steps (i.e., Figure 10). As it turns out, the forced condition 
of level crossing also introduces nonlinear effects that yield strikingly narrow lines 
that enhance resolution of the quantitative measurement. 

5.2.  Level-Crossing Spectroscopy 

The complementary nature of cw-ENDOR and ESEEM (or FT-ENDOR, to 
resurrect an old descriptive term; Rowan et al., 1965) was described in §4 by refer-
ring to the differences between the role of cross-relaxation (spectral diffusion) in 
each of the two methods, and these cross-relaxation effects establish a connection 
between ESEEM and what is known as level-crossing spectroscopy. In general, 
level-crossing spectroscopy (Hollas, 1982) is identified with a situation in which 
the experimentalist controls the state diagram of the system under study, with the 
result that the spectrum is modified in some manner. This behavior was first asso-
ciated with atomic fluorescence spectroscopy in which a marked enhancement of 
signal intensity and linewidth was obtained when the Zeeman component of the 
state energy was used to force crossing of the excited states (Franken, 1961; 
Cosgrove et al., 1959). With the crossing of the excited states the transition ener-
gies from two or more ground states became equivalent, and in this respect the 



116 CHRISTOPHER J. BENDER 

similarity between the experimental scenarios of atomic level-crossing fluores-
cence and ESEEM spectroscopies becomes apparent. 

With a nominal pulse width of 20 ns, the bandwidth of a conventional high-
power pulsed EMR spectrometer is approximately 50 MHz, which would readily 
encompass the dispersion of allowed ∆mS = 1 transitions in Figure 2. At the same 
time, the Zeeman field has been chosen so as to force the merger of the mI states of 
one electron spin manifold, and therefore the microwave pulse is driving multiple 
ground states into a common admixed excited state in precise analogy to the atomic 
fluorescence case. ESEEM spectroscopy is therefore a form of “level-crossing” 
spectroscopy applied to nuclear hyperfine spectra and should be generally applica-
ble to those systems in which the nuclear sublevels of one mS spin manifold 
“cross” and ground states simultaneously excited by an intense pulse of adequate 
bandwidth. For ENDOR spectroscopy, however, level-crossing is a catastrophic 
condition because of the associated relaxation effects that destroy signal amplitude. 

5.2.1.  Level (Anti-) Crossing and ENDOR 

The first ramification of excited-state degeneracy is manifest in cw-ENDOR as 
what has to be the most frustrating aspect of the technique, namely, the balancing 
act between radiation-induced transitions and spin-relaxation rates that is necessary 
to observe an ENDOR signal. The cw-ENDOR signal intensity, which is often de-
scribed as an “enhancement factor,” depends on one's ability to drive the nuclear 
sublevel transitions faster than the electron spin–lattice relaxation rate. Transition 
probabilities and rates of population dynamics differ when the excited state of a 
spectroscopic transition becomes degenerate. For example, a very simple model 
system may entail a ground state a that is driven into a pair of degenerate levels b
and c. Such a model describes the state–state transitions derived from resonance 
fluorescence experiments involving crossed atomic excited states. In such systems 
the observed enhancement in fluorescence yield (related to rate of energy disposal 
by radiative mechanism) is explained by the necessity of mixing states. The rate 
expression is therefore altered from a sum of individual transition rates. For exam-
ple,

2 21
DISCRETE ab ba ac caT f g f g+    

is rewritten in a form that reflects the state admixture: 

21
CROSSED ab bc ac caT f g f g+

Terms fij and gji represent expectation values (e.g., oscillator strengths) of the exci-
tation and relaxation process, respectively. It follows that, in general, the transition 
rate under the condition of crossing levels is greater than the discrete, which fol-
lows from Cauchy’s theorem. 

Level crossing and its effect upon spectroscopic transition rates in ENDOR are 
mechanistically understood in the context of linewidth and spin relaxation (Poole 
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& Farach, 1987; Caspers, 1964). Inhomogeneous broadening of a spectral line 
means that for a given transition a → b, there is an associated transition energy 
hνab. But, because of inhomogeneities in the sample inhomogeneities in the sample 
field, there are populations of molecules whose a → b transition is driven above and 
below the “exact” resonance condition hνab. The individual sets of localized mole-
cules themselves constitute a set of (Gaussian or Lorentzian) homogeneous lines 
that overlap to some extent (Grant, 1964a–d; Geschwind, 1967). This overlap de-
termines the extent of “crosstalk” between the individual homogeneous line pack-
ets, and energy is disposed (relaxation) via spectral diffusion through the inho-
mogeneously broadened line via dipolar interactions. Linewidth broadening 
disperses the discrete energy levels of Figure 2, and there is a greater chance of 
overlap, mixing, and enhancement of cross-relaxation rates as the nuclear Zeeman 
energy brings the otherwise discrete levels into close proximity (Figure 9). In the 
circuit analogue diagrams that are used to describe the ENDOR phenomenon, this 
spectral dispersion has the effect of introducing additional low-resistance routes to 
the network, and one has to drive the “source” (the allowed EMR transition) much 
harder. Representative examples of level crossing and the effect on ENDOR line 
intensities in F-centers (Doyle & Dutton, 1969) may be compared with a study of 
cross-relaxation in ruby (Squire, 1965). 

5.2.2.  Level (Anti-) Crossing and ESEEM 

In the preceding section, level crossing among magnetic resonance hyperfine 
states was described as a mechanism that affects the transition rates in a conven-
tional EMR experiment, namely, swept frequency generation of the spectrum and 
low powers. An ESEEM or true FT-EMR experiment differs from the conventional 
technique in the sense that the powers that are applied to the sample are very in-
tense (typically 20–25 W) and the time interval over which the resonant radiation is 
applied is very fast on the time scale of the spin relaxation rate. The microwave 
pulse widths, which are used in many experiments, also satisfy condition tp ≤ 1/∆ω,
where ∆ω is the frequency dispersion of the microwave source, and one therefore 
observes nonlinear behavior among the spectroscopic states in the system (Klauder 
& Sudarsham, 1968); this nonlinearity is one of the necessary conditions for ob-
serving an echo (Hahn, 1950; Chebotayev & Dubetsky, 1983). 

In the introductory paragraphs of this section it was stated that the pulse exci-
tation bandwidth spanned the ground state energy dispersion of all the allowed 
transitions in a typical S = ½, I = 1 hyperfine spectrum and that the excited states 
could be put near a crossing condition by manipulating the Zeeman field. For ex-
ample, the 14N nuclear Zeeman energy at 0.35T is approximately equal to the weak 
hyperfine interaction energy of remote nitrogen atoms in metal complexes, such as 
the non-coordinated imidazole ring nitrogen or the nitrogen atoms of diethyl-
dithiocarbamate, so that the three mI states (here regarding an I = 1 hyperfine inter-
action) become nearly degenerate. In other words, the energy levels can be induced 
to cross, and the corresponding states mix in one mS spin manifold. The term “ex-
act cancellation” was originally coined and meant to describe the phenomenon as a 
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condition in which the nuclear Zeeman and contact terms were of approximately 
equal and opposite sign, leaving only the nuclear quadrupole term of the perturba-
tional spin Hamiltonian, which led to the analogy between the ESEEM FT-
spectrum and ZF-NQR spectroscopy (Mims & Peisach, 1978). The ESEEM FT-
spectra of metal–imidazole complexes (most successfully Cu(II) and low spin 
Fe(III), which are ground-state S = ½ ions) resemble the nitrogen ZF-NQR spectra 
of pure imidazole (>N–H fragment) with two intense features at low frequency (ca.
0.7 and 1.5 MHz) that correspond to ZF-NQR and Townes-Dailey (1955) frequen-
cies ν±= 3⁄4e2Qqzz[1 ± 1⁄3η] and ν0 = 1⁄2e2Qqzz. More detailed theoretical descrip-
tions of the exact cancellation effect and the transition frequencies of the S = 1⁄2, I =
1 system (Shubin & Dikanov, 1983; Iwasaki et al., 1986) concur with the Mims 
(1972b,c) density matrix formalism and the general theory of quantum beats (Al-
exandrov, 1964). 

Among ESEEM spectra of weakly coupled 14N nuclei, the exact cancellation 
spectrum consists of three intense and narrow lines in the frequency range 0.5−2
MHz (Figure 11, top). For the case where η ≈ 1, which seems to correspond to most 
metal–imidazole complexes in frozen polar solvents, the best resolved peak is lo-
cated at ∼1.5 MHz and corresponds to the ∆mI = 2 transition ν+, which in the zero-
field Townes-Dailey (1955) formalism, and corresponds to 3⁄4e2Qqzz[1 + η]. The 
other two lines corresponding to ν− and ν0 partially overlap in this case of large η,
but the striking aspect of these peaks that arises from the (anti-)crossing energy 
levels is their narrow width (particularly evident at 1.5 MHz), which is on the order 
of 10 kHz and approaches the natural linewidth that might be recorded from a sin-
gle-crystal ENDOR experiment. As one would expect, the intensity and character-
istic width of a given peak in an ESEEM spectrum will reflect the depth of the 
modulation in the time-series data. This modulation depth seems to be associated 
with systems in which the Zeeman energy brings the excited state levels into close 
proximity rather than the quadrupolar relaxation rate of the nucleus, which is con-
sistent with the level (anti-)crossing spectroscopy analogy and mechanisms of co-
herence transfer spectroscopic techniques. 

5.2.3.  Level (Anti-) Crossing and the Spin Hamiltonian 

Quantum mechanics abhors an intersection of two (or more) energy levels, 
which are repulsed in a manner that may be described by the perturbation theory as 
is commonly found in textbooks on the quantum mechanics (Kauzmann, 1957; 
Greiner, 1993). For example, the two-level perturbation theory leads to a power 
series expansion of terms in Hii and Hij and may be modified for n-levels (cf.
Corson, 1951): 

11 12 21
1

11 22

W += H H H
H H

and 
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Figure 11. ESEEM spectra of the oxidized form of the Type I copper protein rusticyanin, 
which has the classic His2CysMet Cu(II) binding motif. These are exact cancellation-like 
spectra that are obtained at spectrometer operating frequencies from 7.0 to 13 GHz. The 
peaks are mobile, as predicted by the nuclear Zeeman dependence. The upper spectrum is 
derived from an engineered form of the protein in which one of the two ligand histidines is 
removed; the spectrum is characteristic of a single 14N hyperfine spectrum. The lower spec-
trum corresponds to the modulation spectrum of two nearly equivalent 14N interactions and 
features the sum/harmonic lines in the 2-3 MHz region.

12 21
2 22

11 22

W = + +H HH
H H

where terms Hii correspond to the spin Hamiltonian levels (eq. (1)). The cross 
terms arise from the mixing of the near-degenerate states. It is evident that the 
power-series expansion that appears in this simplified expression is only an ap-
proximation to the solution of the secular determinant because of the singularity 
that arises as the levels “cross,” but alternatives to the power series expansion are 
solved in the general case and applicable to the crossing problem (Slater, 1968; 
Schweiger et al., 1979). These equations are intended only to illustrate that the 
conventional spin-Hamiltonian expansion of terms that are used to interpret 



120 CHRISTOPHER J. BENDER 

ESEEM spectra at “exact cancellation” are close approximations to the spectra 
because the terms Hii are retained. It follows from this simple illustration that, al-
though one must force a near-crossing condition in order to optimize the modula-
tion effect, this near degeneracy does not preclude the interpretation of the “exact 
cancellation” spectra by using the conventional spin-Hamiltonian terms. In other 
words, cw- and FT-ENDOR are indeed analogous; the ENDOR crossing problem 
has been examined in depth by Schweiger et al. (1979). 

5.2.4.  Ramifications of Level Crossing in ESEEM 

Assuming that the analogy to level-crossing spectroscopy holds, ESEEM can 
be described as a situation in which an admixed excited state ψ = | mS

−,+1 + |mS
−, 0

+ |mS
−,−1  is being pumped simultaneously from states |mS

+, +1 , | mS
+, 0 , and 

|mS
+,−1  because the excitation bandwidth of the microwave pulse, which goes as 

∆ƒ = tw
−1, is greater than the separation between the ground-state energies. The hy-

perfine transition energies that arise from this (anti-)crossing condition are derived 
from the Zener and similar theories of state degeneracy lifting, and the narrow 
linewidths may be explained on the basis of this state mixing, which is the scenario 
of the enhancement observed in the optical systems (Breit, 1938; Geneaux et al.,
1969). In this regard, it is noteworthy that the ESEEM technique (almost univer-
sally performed at the X-band) often yields poor quality modulation time series and 
FT-spectra when the nucleus being probed is not a weakly coupled 14N or 2H. The 
quadrupole relaxation rate is not related to the relative contribution of the NQI en-
ergy to the total hyperfine interaction, and besides, the double quantum transition 
at 4 MHz is always less intense than the quadrupolar transitions from the opposite 
manifold despite the fact that the quadrupole relaxation components should be the 
same in both mS manifolds. It therefore does not follow that the quadrupole relaxa-
tion of weakly coupled 14N alone governs the echo modulation depth, and that in-
stead, it is the cross-relaxation effects of the near crossing levels that determine the 
modulation depth and the quality of the FT-spectrum. 

Analogies may be drawn between the ESEEM experiment and the Hanle ef-
fect, and therefore theories of interference fluorescence, quantum scattering, and 
the transition frequencies observed in these quantum beats experiments (cf. Hollas, 
1982) are related and directly applicable to ESEEM. An interesting variation in the 
echo modulation phenomenon that demonstrates the relationship to quantum beats 
was demonstrated in NQR experiments (Gerishkin & Shishkin, 1973). Rather than 
simultaneously drive several states into a common excited state, as generally done 
in ESEEM, these NQR experiments entailed multiple transitions 1⁄2 → 3⁄2 and 3⁄2
→ 5⁄2 that were simultaneously driven by two frequencies in the pulse sequence. In 
the zero-field condition, systems whose asymmetry parameter was zero did not 
exhibit beats, in contrast to systems in which η > 0; beats in the echo could be in-
duced when η = 0 by imposing a Zeeman field, and this was interpreted as being 
caused by forced mixing of the magnetic states. 

If ESEEM is indeed a variation of level (anti-)crossing spectroscopy, then is 
should be possible to perform ZF-NQR studies of any species in the region of the 
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paramagnet provided that two conditions are met. The first of these conditions is 
that the energy levels (or states) be manipulated via the applied Zeeman field so 
that near degeneracy of hyperfine states occurs. This condition will depend on the 
form of the spin Hamiltonian (i.e., whether terms with signs opposing that of the 
nuclear Zeeman term exist) and the magnitude of the dipolar broadening of the 
levels (dispersion of the states). In short, the states have to be able to be brought 
close enough for cross-relaxation to occur. The second condition requires that the 
separation of the ground state energy levels be less than the bandwidth of the mi-
crowave pulse that is driving the spin system. The power spectrum bandwidth, cor-
responding to ∆ƒ ≈ 50 MHz for a 20-ns pulse, is a fairly large excitation band and 
should suffice for many types of electron–nuclear coupling ranges. The first condi-
tion is therefore likely to be the most important prerequisite for deep modulation 
and detection of effective ZF-NQI transitions, and it is noteworthy that recent high-
frequency ESEEM have recorded electron echo modulation presumably by the 
strongly coupled 14N nuclei of imidazole that are directly coordinated to copper, 
which, at the high fields used, approximately conform to condition 1 (Coremans et
al., 1997). 

Finally, the level-crossing mechanism might be advantageously used to probe 
nuclei for which one or both of the aforementioned conditions may not be met. For 
example, anomalous spin relaxation was measured in nuclear systems at a pre-
scribed field by Gutowsky and Woessner (1958). The anomalous relaxation occurs 
because two spin systems, 1H and 35Cl, and are brought into resonance by adjusting 
the Zeeman energies so that levels of dissimilar nuclei coincide (Figure 12). When 
the spin states are in resonance a flip-flop (cross-relaxation) mechanism of induced 
transitions via dipolar interactions may occur, and hence the enhanced relaxation 
rate.

This property might be used to advantage in an ESEEM experiment. The 
lower panel of Figure 12 depicts a hypothetical hyperfine pattern of the Gutowsky 
system. An arbitrary electron spin state, mS, is first split by the zero-field term of 
the 35Cl and “adjusted” to the resonance value at Hc. One then adds the contribution 
of the proton hyperfine splitting, and it is apparent that the resultant-line state de-
scription results in some closely packed states, two of which do cross at Hc. This 
type of behavior is the underlying mechanism of such techniques as coherence-
transfer ENDOR (Höfer et al., 1986; Mehring et al., 1986), but in the hypothetical 
experiment described in Figure 12 ESEEM should yield exact cancellation like-
modulation. 

6. A GRAPHICAL APPROACH TO HYPERFINE SPECTRA 

 ANALYSIS 

The extent to which level crossing can be imposed upon a given system will 
depend upon the zero-field splitting of quadrupolar nuclei. For example, if the ZF-
NQI splitting is larger than the dipolar broadening, it may not be possible to force 
overlap of the discrete energy levels. Nitrogen hyperfine studies are important  
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Figure 12. Cross-relaxation between different types of nuclei (1H and 35Cl) in NMR as the 
nuclear Zeeman levels cross (adapted with permission from Gutkowsky & Woesner, 1958). 
It is suggested in this chapter that the level-crossing phenomenon underlies the echo modula-
tion effect, and the mechanism that yields cross-relaxation in the NMR experiment may be a 
valid means to detect modulation of nuclei whose own mI levels cannot be brought suffi-
ciently close to crossing. For example, 35Cl are made to cross with 1H levels by adjusting the 
Zeeman field strength (bottom state diagram).

because the nucleus is ubiquitous in both synthetic and natural metal complexes 
that are of chemical interest. It is fortuitous that the nuclear quadrupole coupling of 
many nitrogen compounds is less than 6 MHz (Lucken, 1969b), and therefore a 
level-crossing condition may be imposed even though the electron–nuclear dipolar 
interaction energy is weak. Boron, tin, and some oxygen nuclear quadrupole inter-
action parameters are also sufficiently small that the electron–nuclear dipole inter-
action energy may likewise lead to state admixture (cf. Lucken, 1969b; Schempp & 
Bray, 1970). Other nuclei whose nuclear quadrupole parameters are large, such as 
the halogens, sulfur, and most transition metals, may be induced into crossing con-
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ditions with other nuclei in order to create the desired effect. Although generally 
applicable, the principles of graphically analyzing hyperfine spectra will be illus-
trated for the S = ½, I = 1 spin system with 14N parameters, for which ESEEM ex-
cels.

6.1.  Peak Trajectories and Their Interpretation 

The simulated 14N ESEEM spectra depicted in Figure 10 include all of the 
transitions of an S = ½, I = 1 spin system. These transitions are identified in Figure 
13, which is a simulation of the spectrum at exact cancellation (i.e., 18.5 GHz) 
using the same hyperfine parameters as was used to generate the spectra in Figure 
10. But in Figure 13 a decay function, exp(t /T2)

½, where T2 = 2000 ns (cf. Carr & 
Purcell, 1954; Klauder & Anderson, 1962), has been applied to the modulation 
time series prior to transformation, which results in a more realistic depiction of an 
experimental FT-spectrum and loss of resolution as the ∆ mI = 1 transitions from 
mS

+, in particular, are washed out. Two data sets are illustrated in the figure: one 
depicts the hyperfine spectrum of a single 14N nucleus coupled to an electron spin, 
and the second depicts the interaction between two identical 14N nuclei and the 
resultant combination lines (sums and harmonics). 

Figure 13. Simulated ESEEM spectra for the S=1/2, I=1 spin system depicted in the center 
trace of Figure 10. (left: one coupled nucleus; right: two coupled nuclei). A decay function 
has been applied to the modulation time series, and the FT-ENDOR spectra shown therefore 
exhibit a realistic lineshape. Peaks are labelled according to the scheme used in Figure 2.

The peak positions of the spectra illustrated in Figure 13 vary with the Zeeman 
field, and numerical assignments to spin Hamiltonian parameters based on inspec-
tion and a Townes-Dailey ZF-NQI interpretation will yield incorrect values of 
e2Qqzz and η. The exact cancellation-like spectral profile is retained over a wide 
span of microwave frequencies and one does not a priori know from a single 
ESEEM spectrum whether one is near true exact cancellation. In other words, one 
cannot simply tune up the spectrometer, locate a frequency/field combination that 
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yields an exact cancellation-like spectrum, and interpret that spectrum using a 
Townes-Dailey or even the spin Hamiltonian model of eq. (1). And, as demon-
strated in Figure 10, replicate experiments at separate microwave octaves still 
leaves one with a complicated analysis problem. One therefore needs a “continu-
ously” tunable spectrometer to map the Zeeman dependence of the various peaks in 
the hyperfine spectrum.  

The peaks of an ESEEM spectrum are Zeeman field dependent and may be 
used to develop graphical procedures for determining e2Qqzz and η (Flanagan & 
Singel, 1987; Flanagan et al., 1988; Singel, 1989). If one conducts a series of 
ESEEM experiments taken at small intervals in spectrometer operating frequency 
(e.g., 500 MHz), the changes in nuclear Zeeman energy alter the state diagram in 
commensurately small steps, and the peaks of the spectrum can be mapped so that 
they form a graphical “trajectory.” Subject to the conditions described in the pre-
ceding section and this section's introductory paragraph, the energy levels of a hy-
perfine state diagram can be induced to cross, which is reflected in the trajectory of 
the peaks and used as an interpretative tool (cf. Figures 7 and 8). 

Figure 14. The peak positions of the ESEEM spectra of Figure 13 plotted as Zeeman de-
pendent trajectories. When a≥P, the trajectories of the peaks associated with the (anti-) cross-
ing energy levels are parabolas from whose minima one can directly read the ZF-NQR pa-
rameters. The peaks from non-crossing levels trace linear diverging trajectories. Note that 
the sum/harmonic (i.e. combination) lines mirror the fundamentals and can be distinguished 
from lines of other origin based on their behavior.

The peak positions of the simulated 14N ESEEM spectra illustrated in Figure 
13 are plotted as a function of the 14N nuclear Zeeman energy in Figure 14, and 
these represent data recorded as discrete experiments in a manner analogous to that 
depicted in Figure 8. The peak trajectories are approximately parabolic when the 
associated transition corresponds to energy levels that “cross,” and linear when the 
transitions are derived from levels that cannot cross. The minimum value of either 
type of plot yields the effective zero-field Hamiltonian parameters from which the 
ZF-NQI parameters can be culled. For a six-level state diagram such as the one 
depicted in Figure 2, the peak trajectories associated with the (crossing) mS

− spin 
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manifold are parabolic, whereas the mS
+ peaks shift in a linear monotonically in-

creasing fashion. The shape of the parabola’s well would presumably reflect the 
dipolar broadening of the states; a broader dispersion of states increases the Zee-
man field range that permits state admixture (Figure 9).  

The trajectories of the peaks associated with the (non-crossing) mS
+ spin mani-

fold are linear monotonic increasing with the Zeeman field because all the terms of 
the spin Hamiltonian effectively add, and there is no nuclear Zeeman energy for 
which the three nuclear sublevels are close enough so that the states admix. It fol-
lows, therefore, that the trajectory of the peaks in general will reflect the zero-field 
splitting of the associated mS electron spin manifold. For example, if P is signifi-
cantly greater than a, then the zero-field splitting may be sufficiently large that no 
nuclear Zeeman energy will force level (anti-) crossing. The graphical method of 
analysis is therefore expounded as case studies that correspond to 1) levels that can 
be induced to cross, and 2) levels that do not cross. 

The state diagram of the hyperfine spectroscopy experiment is controlled only 
to the extent that the nuclear Zeeman energy may used to null out other contribu-
tions to the hyperfine splitting. The nuclear quadrupole interaction is obtained as 
effective zero-field splitting values, and therefore the prospect of using the Zeeman 
field as a means to induce level (anti-)crossing will depend on the relative magni-
tude of P and a. If a > P, then it is possible to generate a parabolic trajectory, but 
the parabola well flattens as P increases and ultimately assumes a linear trajectory 
as P > a. Figure 15 illustrates the lineshape variations that arise as the relative 
magnitudes of spin-Hamiltonian parameters a and P are juxtaposed. In one plot P
is varied for a fixed value of a, whereas the second plot illustrates the effect of 
varying a for a fixed value of P. One can identify in Figure 15 each of the peaks 
that were assigned in Figure 13, and the Zeeman-dependent trajectories of the 
peaks are parabolic (Figure 14) so long as a > P. Figure 16 illustrates the trajectory 
of the peaks when P > a: because no value of 14 N

ν can force crossing, the trajecto-
ries resemble a half-parabola in the sense that the plot assumes a minimum value 
below some critical value of nuclear Zeeman energy. It is evident from comparing 
the trajectory plots depicted in Figures 14 and 16 that combination lines (of a nu-
cleus characterized by a > P, e.g., imino nitrogen) may be distinguished from low-
intensity peaks arising from a different class of the same nucleus (P > a, e.g., 
amino fragment) simply on the basis of the Zeeman dependence. 

6.2.  Suppression Effects and Deconvolution of Lines 

The graphical method of analysis works well only so long as the peaks are 
well resolved. Such an idealized situation might not be the case, however, and a 
technique for selective excitation is necessary for deconvoluting overlapping lines 
that may or may not have disparate origins. The density matrix model of the spin-
Hamiltonian basis of echo modulation, however, features certain relationships be-
tween the timing parameters of the pulse sequence and the modulation frequencies 
that would enable one to effectively suppress peaks in the FT-spectrum (Mims, 
1972a–c). For example, matching tau in the stimulated echo sequence to a fre-
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quency component of the spectrum will render that frequency transparent, and it 
will be lost from the modulation and corresponding FT-spectrum. This suppression 
effect may be used as a diagnostic tool in three-pulse ESEEM studies (Mercks & 
deBeer, 1979; Bender et al., 1997; Bender & Peisach, 1998) and is the basis of 
such modern pulse sequences as HYSCORE (Höfer, 1994). 

Figure 15. Variation of spectral lineshape as the character of the hyperfine spectrum changes 
from one in which a≥P to one in which P>a. Two extreme values of the asymmetry parame-
ter η are assumed in each of these case studies.

A simple demonstration of tau-suppression is illustrated in Figure 17, which 
again uses the idealized model of a weak 14N hyperfine spectrum. The top spectrum 
corresponds to data recorded with typical stimulated echo pulse parameters, spe-
cifically, tau equal to 150 ns, the starting value of the interpulse spacing between 
pulses 2 and 3 set to 70 ns, and the latter incremented by 10 ns. The complete spec-
trum is observed because tau does not correspond to any harmonic of the modula-
tion frequencies extant. But, if one records the modulation series with tau set to 
126 ns, which corresponds to the period of the ∆mI= 2 line at 7.94 MHz, there is 
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observed a suppression of the (fundamental) peaks at 0.9, 1.4, and 8 MHz. Simi-
larly, experiments with τ= 239 ns and τ= 758 ns collapse or enhance the fundamen-
tal lines. Note also that in each case the combination lines of the suppressed lines 
also collapse, and this can be used to deconvolute spectral peaks. For example, if 
there were a proton or second 14N line in the region littered with combination lines, 
the combination lines could be suppressed in the manner demonstrated and the 
former identified and analyzed by the same graphical procedures as outlined above. 

Figure 16. Zeeman field dependent trajectories of peak positions in ESEEM spectra when 
P>a. In this case the effective zero field splitting of the mI levels prevents crossing, and the 
peaks follow trajectories that resemble flattened half-parabolas. The behavior of this class of 
nuclei is easily distinguished from the a≥P class (and their combination lines).

6.3.  Application of the Principles to a Strong Hyperfine Coupling 

The graphical analysis of ENDOR or ESEEM spectral lines makes it possible 
to obtain ZF-NQI parameters for any quadrupolar nucleus provided that a series of 
spectra can be obtained as the magnetic field is incremented so that the levels of 
one spin manifold can be made to cross (i.e., exact cancellation). This condition is 
easily imposed on weakly coupled 14N nuclei (i.e., the distal nitrogen of the imida-
zole/histidine ligands to copper), but our aim is to apply the technique to all hyper-
fine spectra, strong and weakly coupled nuclei, in order to make avail of all the 
probes potentially at our disposal in a given metal binding site. And this means that 
EMR spectrometers must operate at frequencies considerably higher than X-band 
(8–12 GHz). 

Coremans et al. (1997) obtained ESEEM spectra for the HisNδ of histidine that 
is coordinated to the copper ion in azurin. The profile of these spectra resemble 
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those of the weakly coupled HisNε (i.e., non-coordinated) nitrogens, implying that, 
as expected, the nuclear Zeeman term of the spin Hamiltonian is sufficiently large 
at the W-band to render the energy levels close to the condition of exact cancella-
tion. In this case a >> P, and it is desirable to know whether an incremental tuning 
of the spectrometer operating field and a graphical analysis of the resultant spectra 
would as easily recover the ZF-NQI parameters as has been demonstrated with 
weakly coupled nitrogen. 

Figure 17. Tau-suppression effects in ESEEM spectra and their potential use in identifying 
and correlating peaks. In a semi-classical model, the procedure entails the locking of the 
temporal aspects of the pulse sequence, that is, the preparation-evolution-detection re-
gions(see Ponti & Schweiger, 1994) to the precession frequency of a specific ENDOR reso-
nance. One thereby renders the ENDOR transition transparent to the echo modulation inter-
ferogram. 

The hyperfine splitting parameters of the two azurin HisNδ were determined 
via multi-frequency cw-EMR studies by Antholine et al. (1993), yielding the fol-
lowing principal values for the hyperfine tensor (in MHz): 

xx yy zz 
27  25.5 27 
21  18 17.5 
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For the pair, and the respective isotropic (contact) interactions of 26.5 and 18.8 
MHz. The exact cancellation condition for the two nitrogen nuclei would therefore 
occur at ν = ½a, or 13 and 9.4 MHz, respectively, and the field required to promote 
the nuclear Zeeman energy to 13 MHz is 4.25T, which is a 122-GHz experiment at 
g = 2.05. The corresponding field and spectrometer operating frequency that would 
cross levels of the more weakly coupled nitrogen is 3.07T (88 GHz). The predicted 
splitting of the ∆mI = 2 transition of the mS

+ spin manifold at 4.2T is approximately 
52 MHz, and the three ground states are therefore within the excitation bandwidth 
of a 15-ns microwave pulse, which is routinely achieved. 

Figure 18. The simulated multifrequency ESEEM experiment conducted at W-band and us-
ing an S=1/2, I=1 spin system that models the strongly coupled hyperfine parameters attrib-
uted to the directly coordinated imidazole nitrogen of azurin, as determined by cw-EMR 
(Antholine et al., 1993). Note that in this model exact cancellation yields ZF-NQI like spec-
tra whose peaks shift in a manner that is analogous to the weakly couples 14N case.

The simulated spectra in Figure 18 represent a series of replicate ESEEM ex-
periments performed on a system containing a single Cu–14N interaction with a 
Fermi contact interaction energy of 26 MHz and quadrupole coupling (e2Qqzz) of 
3.5 MHz. It is immediately evident from these simulations that the behavior ob-
served at the X-band is reproduced at the W-band provided that the spin-
Hamiltonian model that is used to describe experiments at the X-band is not af-
fected in the extremely high magnetic fields of the W-band (i.e., no introduction of 
nonlinear effects). The W-band ESEEM spectra of the Type I copper center of azu-
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rin feature low-frequency ZF-NQI-like patterns (Coremans et al., 1997), and so a 
hypothetical incremental study of the level-crossing experiment in the manner de-
picted in Figure 18 appears to be feasible for the graphical analysis of NQI parame-
ters. The instrumental requirement, however, is that one have an incrementally 
tunable microwave source at the W-band so that the analysis can be performed 
reliably. 

7.  APPLICATION OF THE ANALYTICAL METHOD 

The stated aim of this review is to demonstrate that classical analyses of 
physical organic chemistry are feasible with respect to complex systems such 
as supported metal catalysts through the application of advanced EMR spectro-
scopic techniques and determining the relevant spin Hamiltonian parameters via 
the Zeeman-dependent hyperfine spectrum. The principles of analysis were out-
lined in the preceding section and entail replicate collection of ESEEM or ENDOR 
spectra by incremental steps and mapping the trajectory of peak positions. Decon-
volution of peaks may be made either by traditional tau-suppression in the stimu-
lated echo pulse sequence or via advanced pulse sequences such as HYSCORE (2-
D ESEEM, Höfer, 1994). Mapping of spectral peak position as it varies depending 
on the Zeeman field is very important to the accurate determination of hyperfine 
terms. 

ENDOR and ESEEM, under the proper circumstances, can achieve linewidths 
as narrow as 10 kHz, and therefore one is constrained to examining interaction 
energies and changes on this scale. The graphical procedure of ESEEM analysis, 
for which the measure of nuclear quadrupole interaction parameters is the goal, 
was initially described and tested in a series of papers (Flanagan & Singel, 1987; 
Flanagan et al., 1988; Singel, 1988), and applied to a study of the Type I copper 
proteins (Bender et al., 1997; Bender & Peisach, 1998). As a class, the Type I cop-
per proteins are small and easily engineered by modern molecular biology meth-
ods. One member of the class, rusticyanin, was uniquely suited for a “proof of 
principle” study because there exists a structurally stable engineered form of the 
protein that lacks one of the imidazole ligands to the copper ion. Not only does this 
His85Ala mutant form of rusticyanin allow one to examine the ESEEM spectrum 
of the archetypical 14N exact cancellation spectrum, but the protein binds exoge-
nous ions and may be used to examine chemical perturbations. This section re-
views the outcome of two experimental “proof of principle” studies that were made 
using the His85Ala rusticyanin. 

The electronic structure of a molecule may be correlated to chemical reaction 
rates, and in this manner Hammett’s concept of σi can, in principle, be correlated to 
a nuclear quadrupole coupling or hyperfine interaction constant. The analogy be-
tween ESEEM and quantum beats or level-crossing spectroscopy opens up the op-
portunity to measure the effective zero-field NQI parameters for quadrupolar nu-
clei in the reactive center (ligands or metal ion) of proteins and supramolecular 
assemblies. As one might expect, however, one is constrained to a system in which 
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the energy levels can be made to cross for the probe nucleus in question, and it is 
therefore important to determine whether typical subtle changes in the chemical 
makeup of the system will yield a measurable spectroscopic change at the probe 
location. 

Assuming that one can perform the graphical analysis, one needs to know the 
extent to which changes in either e2Qq or η will shift the observed peaks in an 
ESEEM spectrum. Simulations indicate that the trajectories of the ZF-NQR lines 
are sensitive to small changes in e2Qq and η, and the ESEEM study of the Type I 
copper protein stellacyanin (Bender & Peisach, 1998) demonstrated that two 
closely matched nuclei could be deconvoluted from the echo modulation interfero-
gram. A peak shift of 20 kHz or more should be detected in the graphical analysis 
or in individual spectra (Bender et al., 1997; Bender & Peisach, 1998).  

The origin of effects on NQI parameters from molecular interactions and or-
bital effects has been reviewed, but a representative example illustrates the prob-
lem. Nuclear quadrupole spectra are particularly attractive for the examination of 
internal fields because of electric field gradient (EFG) tensor eq that governs the 
magnitude of the coupling, and any factor that distorts the EFG will be manifest in 
the measured NQI. For example, motional averaging (i.e., lattice vibrations) affects 
NQI parameters (Duchesne, 1952), and therefore pressure and temperature affect 
the measured NQR spectrum. Similarly, crystal field effects may perturb the elec-
tric field gradient, and this solid-state effect was described by Bersohn (1952, 
1958, 1968) and expressed mathematically by using an electrostatics model (Ber-
taut, 1952; Nakayama et al., 1990): 
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This formula is conceptually simple, and its application can be facilitated, in the 
case of Type I copper proteins, by referral to x-ray crystallographic structures. One 
therefore might test this and similar models by comparing the experimentally 
measured NQI parameters with estimates derived from the known x-ray structures 
and routine computational chemistry procedures. 

An NQR study of two linear polymers demonstrated that substitution of Br−

for Cl− as the counterion can be correlated to a peak and NQI parameter shift of 
approximately 20 kHz (Asaji et al., 1981, 1983). A similar experiment was under-
taken with the ESEEM spectrum of His85Ala rusticyanin (Bender et al., 1997), in 
which the normal CysMetHis2 ligand binding motif of the Type I copper center is 
modified by the deletion of one histidine. The still structurally and spectroscopi-
cally intact Type I protein binds ions with a correlated shift of the charge-transfer 
band. ESEEM spectra of protein samples His85Ala-X, where X= H2O, Cl−, Br−

revealed no shift of the effective ZF-NQR lines, and hence no solid-state effect of 
the type described in the preceding paragraph. But the nuclear hyperfine coupling, 
as measured in the double quantum peak of the ESEEM spectrum, decreased in-
crementally in steps of approximately 100 kHz as the substitution H2O → Cl− →
Br− was made. The shift in the nuclear hyperfine interaction was attributed to in-
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creased withdrawal of electron (spin) density from the copper ion by the increas-
ingly electronegative ligand. 

A second experiment was undertaken in order to determine whether a strong 
DC electric field could be used to split lines in the ESEEM spectrum at exact can-
cellation. A linear electric field-induced hyperfine shift may be detected and under-
stood in terms of orbital polarization. The shift has been proposed as a potential 
probe of the systems’s excited-state wavefunction, defined as  

| | | |

( )
i E o i o o

i oE E
ψ ψ ψ ψ

∆ε=
H H

The electric field shift introduces characteristics of the excited-state wavefunction 
that, in principle, may be mapped in the same way as the spin-density distribution 
is assigned to orbitals of the ground-state wavefunction (Reichert, 1967; Ryde, 
1976; Mims, 1976). 

As a preliminary test of the hypotheses expressed in this chapter, the His85Ala 
rusticyanin ESEEM spectrum was recorded while a DC electric field was applied 
across the sample. The intent in this experiment was to create the conditions de-
scribed in the preceding paragraph and thereby broaden the peaks of the usual (i.e.,
unperturbed) ESEEM spectrum. The three effective ZF-NQI lines of the exact can-
cellation ESEEM spectrum are very narrow, and one might therefore expect to see 
the electric field shifts that are normally measured in single-crystal or solution 
spectra (Reichert, 1967) despite the fact that these are powder sample spectra. The 
three-pulse stimulated echo ESEEM spectra are broadened as the DC electric field 
is increased (Figure 19), and this behavior is analogous to the electric field line 
broadening splitting that one observes in the case of NMR and ENDOR spectra. 
These data suggest that ESEEM, like ENDOR, can be used to detect small spectra 
line shifts that are caused by perturbations in the electric field local to a given 
atomic nucleus/crystallographic center. 

8.  CONCLUSION  

Advanced EMR methods may be used to conduct quantitative measurements 
of nuclear hyperfine interaction energies, and these data, in turn, may be used as a 
tool in molecular design because of their direct relation to the frontier orbitals. The 
Zeeman field dependence of hyperfine spectra enables one to greatly improve the 
quantitative analysis of hyperfine interaction and assign numeric values to the pa-
rametric terms of the spin Hamiltonian. Graphical methods of analysis have been 
demonstrated that reduce the associated error that comes from a multi-parameter fit 
of simulations based on an assumed model. The narrow lines inherent to ENDOR 
and ESEEM enable precise measures of peak position and high-resolution hyper-
fine analyses on even powder sample materials. In particular, ESEEM can be used 
to obtain very narrow lines that are distributed at very nearly the zero-field NQI 
transition frequencies because of a quantum beating process that is associated with 
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Figure 19. 14N ESEEM spectra recorded near the condition of exact cancellation (i.e. effec-
tive ZF-NQI spectra) while a DC electric field was applied. Note the broadening of lines and 
decrease in relative peak intensity that suggest some of the contributing configurations are 
being shifted on account of the field. 

a level-crossing process. ENDOR is equally powerful and complementary to 
ESEEM because of its ability to measure strong hyperfine interaction energies and 
derive structural information from lineshape analysis. Together, ESEEM and 
ENDOR are powerful tools for performing chemically chemically relevant analy-
ses of metal complexes and free radicals.  

Simulations reported in this and other reviews (Singel, 1989) demonstrate that, 
based on the spin-Hamiltonian model, effective zero-field nuclear quadrupole in-
teraction parameters can be obtained by invoking a condition known as exact can-
cellation. On the basis of observations made concerning what experimental condi-
tions yield optimal performance in ENDOR and ESEEM experiments, it has been 
suggested in this review that level crossing and the associated cross-relaxation is 
responsible for the deep modulation and corresponding narrow lines in the ESEEM 
spectrum. If level crossing and the resultant cross-relaxation processes are, in fact, 
the requisite condition for deep ESEEM, then the techniques described here are 
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generally applicable. For example, any nucleus having a quadrupole moment may 
be subjected to ESEEM-detected ZF-NQR analysis so long as (a) the nuclear Zee-
man field can be adjusted to force the levels close together, and (b) the bandwidth 
of the excitation pulse is sufficiently wide so that the ground states are simultane-
ously driven into the admixed excited state. If spin exchange can be induced be-
tween different nuclei (i.e., heteronuclear cross-relaxation), it is, in principle, pos-
sible to study modulation effects of nuclei that might not be readily subjected to the 
aforementioned conditions. 

As a prerequisite for performing the graphical analysis of ENDOR and 
ESEEM spectra, one needs a spectrometer that is operable over a wide frequency 
range. The simulations that were presented as demonstrations of the technique rep-
resent replicate spectroscopic studies that are conducted at 500-MHz increments of 
spectrometer operating frequency. This protocol differs from the customary multi-
frequency method of recording one spectrum per octave because stepwise incre-
ments allow one to identify critical points in the hyperfine transition “trajectory” 
from which one may assign numeric quantities to spin-Hamiltonian parameters 
without relying completely on simulations. Furthermore, the flexibility of stepwise 
variation of operating frequency and the Zeeman energy permits one to “tune” the 
spectrum so that level crossing occurs, along with the associated narrowing of lines 
and intensity (ESEEM) enhancement. Ideally, a spectrometer should be capable of 
being continuously tuned over several octaves.  

No commercial electron magnetic resonance spectrometer presently operates 
continuously over one or more frequency octaves, but instead utilizes a narrow 
band source that is mechanically or electrically tunable over a 500-MHz range. 
Despite past arguments against their use, wideband solid-state devices perform 
competitively with traditional narrow band devices, and numerous synthesized 
frequency sources are continuously tunable from 2−26 GHz. The phase noise, rated 
at <−80 dBc at 10 kHz offset for many systems, is excellent, and comparable to 
narrow band reflex klystrons. Similarly, many components can be made broadband 
or at least octave spanning, and therefore the experimental capability is available. 
One approach that is economical relies on the VXIbus instrumentation architecture, 
which enables one to assemble a modular instrument on a common computer-
controlled mainframe that allows experimental flexibility, and further details of a 
broadband EMR instrument may be found in Volume 21 of this series (Bender, 
2004). 

Finally, quantitative analytical techniques draw their reliability from correla-
tion to other proven methods, and quantitative EMR measures of hyperfine pa-
rameters must likewise be subjected to a form of quality assurance so that their 
applicability to chemical reactivity may be proven. Nuclear quadrupole interaction 
parameters e2Qq\zz and η are recognized as powerful tools in the chemist's investi-
gation of frontier orbital interactions. The electric field gradient, for example, re-
flects the hybridization, polarization, and bond order effects and will therefore vary 
as the covalent bonds are distorted, such as occurs when vibrational modes are ex-
cited. NQI parameters that are obtained by ESEEM or ENDOR may be refined by 
examining their temperature dependence (i.e., the Baeyer effect, 1951; observed by 
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Krzytek & Kwiram, 1991) and correlated to vibrational spectra (Duchesne, 1952). 
Electronic distribution in molecules and classical point-charge effects may likewise 
be related to NQI parameters (Lucken, 1969b; Semin et al., 1975), and there exists 
a wide body of literature for both ab initio and semi-empirical methods of comput-
ing NQI parameters (cf. Gready, 1984b). As a result, experimental measures of 
NQI parameters might be an excellent guide for examining the efficacy of modern 
and novel computational chemistry methods. One example is the QM/MM ap-
proach (Warshel & Levitt, 1976), which models large systems such as a metallo-
protein by performing full ab initio SCF techniques to a “core” (i.e., the active site) 
and lower accuracy molecular mechanics to the remainder of the protein. Compari-
son of experimental and computed NQI parameters for the various nuclei in the 
active site could be used to guide the design of the computational model. 

9.  SYMBOLS & ABBREVIATIONS 

cw- Continuous Wave 

EMR Electron Magnetic Resonance 

ENDOR Electron-Nuclear Double Resonance 

ESEEM Electron Spin Echo Envelope Modulation 

NQI Nuclear Quadrupole Interaction 

NQR Nuclear Quadrupole Resonance 

ZF Zero Field 

a (Fermi) Contact Interaction 

A Nuclear Hyperfine coupling Tensor 

β Bohr Magneton 

e2Qqzz Nuclear Quadrupole Coupling 

η Asymmetry Parameter 

g g-value (scalar quantity) 

g g-tensor 

H0 DC (primary) magnetic field (in an EMR experiment) 

H1 Magnetic (magnitude) component of the resonant microwave 
field 

H2 Magnetic (magnitude) component of a double resonance field 
(e.g., rf in ENDOR) 

Hii Matrix Element (of Hamiltonian)qqq 
 Electric field 
P Nuclear Quadrupole Coupling Tensor 
τ Interpulse spacing (ESEEM), first and second pulse 
Τ Interpulse spacing (ESEEM), second and third pulse 
W Energy 
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1.  INTRODUCTION 

Biological systems exhibit properties of amorphous materials. The Mn(II) ion 
in amorphous materials is characterized by distributions of spin-Hamiltonian 
parameters around mean values. It has a certain advantage over other ions, being 
one of the most abundant elements on the earth. The extent to which living 
organisms utilize manganese varies from one organism to the other. There is a 
fairly high concentration of the Mn(II) ion in green plants, which use it in the O2

evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relation-
ships in Mn(II)–O2 complexes are given in a review article by Coleman and Taylor 
(1980). Manganese is a trace requirement in animal nutrition; highly elevated 
levels of manganese in the diet can be toxic, probably because of an interference 
with iron homeostasis (Underwood, 1971). On the other hand, animals raised with 
a dietary deficiency of manganese exhibit severe abnormalities in connective 
tissue; these problems have been attributed to the obligatory role of Mn(II) in 
mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected une-
quivocally in living organisms. Examples are Mn(II)-metalloproteins, such as 
pyruvate carboxylase (Sutton et al., 1966), plant lectins (Galbraith & Goldstein, 
1970), dioxygenase enzyme isolated from Bacillus brevis (Que et al., 1981), 
arginase isolated from liver tissue (Hirsch-Kolb et al., 1971), Mn(II) protein 
glutamine synthetase isolated from sheep brain (Wedler et al., 1982), placental 
diamine oxidase (Crabbe et al., 1976), clam shells and sea shells (Blanchard & 
Chasteen, 1976; White et al., 1982). (See, among others, the review article by 
McEuen (1982), which summarizes information on Mn-metalloproteins and several 
Mn-activated enzymes.) The free Mn(II) level in rat livers is higher in fed than in 
fasted animals, with the total amount of Mn(II) being very nearly constant (Ash & 
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Mn(II) being very nearly constant (Ash & Schramm, 1982). The ability of Mn(II) 
to substitute for Mg(II) in a wide variety of enzyme reactions has made Mn(II) 
popular as a spectroscopic probe in many enzyme complexes. There are a number 
of similarities in the coordination properties of Mn(II) and Mg (II) ions; in many 
cases the maximal velocities of enzyme reactions activated by Mn(II) are nearly 
equivalent to those obtained with Mg(II). Mn(II), thus, remains one of the best sur-
rogates for Mg(II) in studies of enzymic complexes. 

Mn(II) EPR spectra in biological systems are very much like those in glasses 
— e.g., that in lithium-borate glass (Griscom & Griscom, 1967) matches closely 
that in kinase oxalate ternary complex (Reed & Markham, 1984; referred to hereaf-
ter as RM, and references therein). Table 1 lists the measured values of the spin-
Hamiltonian parameters parameters (g, D, E) in some proteins, as taken from RM.

Table 1. Mn(II) spin-Hamiltonian (SH) parameters in metalloproteins after Reed and Mark-
ham (1984) (references given therein), indicated by RM. Additional references are as indi-
cated. The D, E, A values are in units of Gauss (as calculated by dividing the value in energy 
units by geµB, unless otherwise indicated; η = D/E). The spectra were taken at the X-band, 
unless otherwise stated. 

Host SH Parameter Remarks 
Concanavalin A g = 2.0009  

D = 232 
η = 0.185 
A|| = 94.4  
A⊥ = 91.5 

Single crystal (RM) 

Concanavalin A g = 2.0007  
D = 230 
η  = 0.11 

Solution (RM) 

Creatine kinase, ADP, 
creatine, and formate 
complex 

D = 300; 
η  = 0.06 

A Gaussian spread of 12 G was used in simulation. 
Matrix-diagonalization simulation with D = 315 G 
led to a better fit (Coffino & Peisach, 1996)  

Glutamine synthetase 
(GS) with Mn(II) and 
methionine sulfoximine 
(MSOX) 

D = 140 D estimated from the relative intensity of allowed and 
forbidden transitions of the central sextet (RM) 

GS-Mn(II)-MSOX-
MgADP complex 

D ~ 150 

Hadacidin (N-formyl 
hydroxy amino acetate)-
bound ternary enzyme-
Mn(II)-GTP (or -GDP) 
complex in the presence 
of IMP 

D = 1,000 Presence of IMP increases D significantly (9.35 GHz) 
(RM)



NEW METHODS OF SIMULATION OF Mn(II) EPR SPECTRA 145

Mn(II)-α-lactalbumin 
complex 

D < 0.02 cm-1 9 GHz (frozen, 77 K), 35 GHz (283 K). The spectrum 
did not narrow when the temperature was increased 
to ambient temperature. Spectra remarkably similar 
to those for Mn(II) -troponin or -parvalbumin com-
plexes. Spectra indicate a relatively highly symmetric 
(cubic) environment around the Mn(II) ion. Fine 
structure unresolved due to relatively small value of 
D (Berliner et al, 1993). 

Mn(II), pyruvate kinase, 
and phospho enolpyru-
vate (ternary complex) 

D = 1300; 
⏐η⏐ = 1⁄3

35 GHz; Closely matches Mn(II) spectrum in lithium 
borate glasses. (Weak interaction of Mn(II) with C-
O-P bridge oxygen of P-enolpyruvate upsets the elec-
tronic symmetry around the metal ion leading to large 
values of D, E.) (RM) 

Nitrate-bound enzyme-
Mn(II)-GDP-IMP  
complex 

D = 360 
E = 120 

35 GHz. Proved fine-structure splittings due to ni-
trate’s role as a transition state analog for the phos-
phoryl transfer step of the reaction. (RM) 

Ternary enzyme-
Mn(II)-GTP with co-
substrate aspartate 

D = 260 
E = 60 

Spectra are best fitted with a distribution in D with a 
half width of 20 G. (Same values of parameters in the 
enzyme with GDP complex (RM).) 

Being an S-state ion, the Mn(II) g and A matrices can be considered to be iso-
tropic in so far as simulation of spectra in amorphous materials is concerned, as 
their small anisotropies are smeared out in these samples. On the other hand, the 
hyperfine structure of its spectrum adds some complexity to the spectrum, which 
also reflects the effect of interaction with the environment, since the Mn(II) ion 
possesses an electronic spin larger than ½.  

Simulation of polycrystalline (or powder; these terms are used interchangeably) 
spectra of the Mn(II) ion has been of great interest recently, especially in metallo-
proteins (references on metalloproteins include Reed & Markham, 1984; Chiswell 
et al., 1987; for EPR crystallography of metalloproteins see Chien & Dickinson, 
1981; for ESR of iron proteins, Smith & Pilbrow, 1980; for X- and Q-band EPR 
studies of Cu2+, VO2+, and Gd3+ ions in bovine α-lactalbumin complexes, see 
Musci, Reed, and Berliner, 1986; for copper proteins see Boas, 1984; Beinert, 
1985; Palmer, 1985; Hanson & Pilbrow, 1987; Blumberg & Peisach, 1987; Hanson 
& Wilson, 1988; Villafranca & Raushel, 1990). Mn(II) EPR spectra in amorphous 
materials can be simulated by superposition of single-crystal EPR spectra obtained 
for various orientations of the external Zeeman field over the unit sphere (see 
Misra & Sun, 1991, for a review of published single-crystal Mn(II) EPR results). 
To simulate the Mn(II) spectrum in an amorphous material, one takes into account 
distributions of zero-field splitting parameters D and E, as well as random orienta-
tions of the Mn(II) principal magnetic axes with respect to the external magnetic 
field. 

There are two approaches to simulate and interpret Mn(II) EPR spectra in 
amorphous materials. A simple approach is to take into account second- or third-
order perturbation expressions for eigenvalues and relative intensities of EPR lines 
for different site symmetries, e.g., axial (Misra, 1994) and orthorhombic (Misra, 
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1997). Information on the values of the parameters (D, E) can then be obtained 
from the “peaks” of the spectra. A more rigorous approach is to simulate the spec-
trum on a computer, using appropriate line shapes and distribution of parameters, 
(see, e.g., Kliava and Purans, 1980; Misra, 1996). The purpose of this article is to 
provide details of how to simulate EPR spectra in amorphous materials, with the 
objective to obtain knowledge of Mn(II) zero-field splitting (ZFS) parameters in 
these materials. Section 2 deals briefly with the details of how to simulate Mn(II) 
EPR spectra in a polycrystalline material, assuming sharp values for parameters D
and E, based on expressions up to third order in perturbation as well as those ob-
tained by diagonalization of the spin-Hamiltonian matrix on a computer. This is 
then exploited in §3 to simulate spectra in amorphous materials, e.g., glasses, tak-
ing into account distributions of D, E values. Computer-simulated spectra and their 
comparison with experimental spectra in glasses, as prototypes for biological sys-
tems, are described in §4, while concluding remarks are offered in §7.

2. SINGLE-CRYSTAL AND POLYCRYSTALLINE Mn(II)  

 SPECTRA 

2.1. Single-Crystal Spin-Hamiltonian and Its Eigenvalues 

 for Orthorhombic Distortion  

This section presents expressions for the energies of the Mn(II) ion in a single 
crystal, calculated up to third order in perturbation, along with allowed hyperfine 
line positions and hyperfine forbidden hyperfine-doublet (FHD) separations. These 
are then exploited to calculate FHD separations, and to estimate D and E parame-
ters from a polycrystalline EPR spectrum depending on FHD and peaks of allowed 
h.f. lines in the central sextet. The various possible shapes of Mn(II) EPR spectrum 
in polycrystalline and glass samples are shown in Figure 1. It is noted that only the 
lines belonging to the central hyperfine sextet are usually observed in polycrystal-
line/amorphous materials, and that often the allowed and/or forbidden lines may or 
may not be resolved.  

The spin-Hamiltonian for the Mn(II) ion (electronic spin S = 5/2, nuclear spin I
= 5/2) in a quadratic crystal field for orthorhombic distortion, neglecting terms of 
fourth order in electronic spin operator, is given by  

ZFSµ µ= + +B N NH g g A HB S B I I ×S   (1) 

where the first three terms represent the electronic-Zeeman, nuclear-Zeeman, and 
electron-nuclear hyperfine interactions, respectively. Here µB and µN are Bohr and 
nuclear magnetons, respectively; and B is the external (Zeeman) magnetic field; 
HZFS is the zero-field splitting (ZFS) term, which can be written for non-axial situa-
tion as 

{ }2 2 21
( 1)

3 2
+= + + +ZFS z

EH D S S S S S  (2) 
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Figure 1. Shape of Mn(II) central hyperfine sextet in different materials. The spectra are ex-
hibited in (a–c), respectively, in a single crystal, polycrystalline sample, and disordered ma-
terial only to demonstrate their qualitative features. It is noted that while the line positions 
correspond to each other in (b) and (c) as shown, they do not exactly correspond to those in 
(a). (a) A typical X-band (~9.5 GHz) Mn(II) central hyperfine sextet in a single crystal. The 
allowed hyperfine lines — A1, A2, A3, A4, A5, and A6 — as well as the five hyperfine for-
bidden doublets — F1

(1), F1
(2), F2

(1), F2
(2), F3

(1), F3
(2), F4

(1), F4
(2), F5

(1), and F51
(2) — in order of 

increasing value of the magnetic field at which they occur, have been indicated. For identifi-
cation of the transitions corresponding to these lines, see the text in §3. (b) A typical X-band 
Mn(II) central hyperfine sextet in a polycrystalline sample. The various allowed and hyper-
fine lines corresponding to those in a single crystal as described in the caption of (a) have 
been indicated. (c) A typical X-band Mn(II) central hyperfine sextet for a disordered mate-
rial, wherein the value of D varies over different parts of the sample, resulting in complete 
smearing of the hyperfine forbidden lines and a significant broadening of the hyperfine al-
lowed lines. Adapted with permission from Misra (1994). 

where z denotes the principal axis of the second-order zero-field splitting (ZFS) 
tensor; D and E are the axial and orthorhombic ZFS parameters; and S± = Sx ± iSy.
Matrices  and  g A for the S-state Mn(II) ion have here been assumed isotropic. The 
spin-Hamiltonian can now be written as the sum of zero-order and perturbation 
parts: 
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H = H(0) + H′′  (3)

with  

H(0) = gµBBSz – gNµNB⋅I, and  H′ = HZFS + AI⋅S (4)

where the z-axis, assumed parallel to the direction of the external (Zeeman) mag-
netic field, B, has been chosen as the axis of quantization. Expressions for the per-
turbation energies, up to third order in perturbation, are (Meirovitch & Popko, 
1978; Markham et al., 1979) 

(0) (1) (2) (3)
Mm Mm Mm Mm Mm= + + +E E E E E

with 

(0)
Mm ;µ= BE g BM   (5) 

(1) 2
Mm

1
( 1) ;

3
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where 
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2
23cos 1 3

sin cos 2
2 2

θ η θ φ= +a D

{ }sin 2 sin 2 cos 2 2 sin sin 2
4

θ η θ φ η θ φ± = + ±Db i

{ }2 2sin (cos 1) cos 2 2 cos sin 2
4

θ η θ φ η θ φ± = + + ±Dc i

η= E
D

Bµ= BG g

( 1) ( 1)± = + ±MS S S M M

( 1) ( 1)± = + ±mI I I m m   (9) 

In the above equations, the order of perturbation is indicated by number n (= 0, 
1, 2, 3) within brackets in the superscripts on EMm; M and m are the electronic and 
nuclear magnetic quantum numbers, respectively; θ and φ are, respectively, the 
polar and azimuthal angles of the principal axis of the ZFS tensor with respect to 
the external magnetic field; and Re denotes the real part. Because of its small mag-
nitude, only the first-order term of the nuclear Zeeman energy is taken into ac-
count. The range for η is 0 ≤ η ≤ 1/3. 

The positions of the allowed — (1/2, m ↔ –1/2, m) — and forbidden, M, m
↔ M, m – 1 (∆M = 0, ∆m = −1), or M, m – 1↔ M, m (∆M = 0, ∆m = 1), hyperfine 
transitions belonging to the Mn(II) central sextet can be expressed from eqs. (5)–
(8) by the use of resonance condition hη = E1/2,m − E-1/2,m = G0 = gµBB0, where B0 is 
the magnetic field corresponding to the middle of the central sextet, as follows: 

[
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3 23

4
( , , ) 1 ( , )

                4 36 ( , ) 2( ) ( , )
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      { }
2
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o
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  (10) 

In eq. (13) the expressions for f1(θ,ϕ), f2(θ,ϕ), and f3(θ,ϕ) are given as follows: 

{ }2 2
1( , ) (3cos 1) 3 sin cos 2θ ϕ θ η θ φ= +f   (11)  

{ }2 2 2 2 2 2
2 ( , ) [sin cos 2 (1 cos )] 4 cos sin 2θ ϕ θ η φ θ η θ φ= + + +f   (12) 

{ }2 2 2 2
3 ( , ) (1 cos 2 ) sin 2 4 sin sin 2θ ϕ η φ θ η θ φ= +f    (13) 
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2.2.  Forbidden HFD Separations 

The positions of the forbidden hyperfine lines (1/2, m ↔ −1/2, m) denoted by 
( , ) and ( , )+B M m B M m  in the Mn(II) central sextet are defined as follows, 

separating the contributions into various orders of perturbation:  

( , )  ( , 1, 1) =+B M m B M m M m   (14) 

( , ) ( , 1 1, )=B M m B M m M m   (15) 

Finally, using eqs. (14) and (15), and for simplification replacing B+(M,m) and 
B–(M,m) by B0 in the denominators, the five hyperfine forbidden doublet separa-
tions turn out to be (for m = −3/2, −1/2, 1/2, 3/2, 5/2) (Misra, 1994, 1997) 

(1) (2) (3)

( , ) ( , ) ( , )

( , ) ( , ) ( , )

∆

∆ ∆ ∆
+=

= + +

B M m B M m B M m

B M m B M m B M m
 (16) 
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µ µ

µ

= +
B B

B

D Af A DB M m f m
g B M g B M

A m
g B M

 (19) 

In eqs. (18) and (19), the expressions for f1(θ,ϕ) and f2(θ,ϕ) are the same as 
those given by eqs. (11) and (12), respectively. The superscripts in (17)–(19) repre-
sent the order of the contribution in perturbation to the eigenvalues of the spin-
Hamiltonian. Further, it is noted that for the central sextet (M = 1/2), ∆B(1)(M,m), is 
zero, while ∆B(2)(M,m) is positive regardless of the absolute sign of the hyperfine-
interaction constant (A). This means that the forbidden line position, B+(M,m), is at 
a higher magnetic field value than the forbidden line position, B–(M,m), unless the 
value of D is sufficiently large to render ∆B(3) the dominant contribution. 

2.3.  Estimation of Parameters D and E from a Polycrystalline Spectrum 

FHD Separations. The expression for the forbidden hyperfine line positions, 
Bc(m,θ,ϕ), listed in §2.2 (i) above, are those for a single crystal, whose axis of 
symmetry is oriented at angle θ with respect to the external magnetic field (B). In a 
polycrystalline material, the constituting crystallites are randomly oriented, so that 
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all values of θ from 0 to 90° are possible, and the number of crystallites with their 
axes oriented between θ and θ + dθ is proportional to sin θ dθ. Similarly, all values 
of φ between 0 and 2π are possible, and the number of crystallites with their axes 
oriented between φ and φ + dφ is proportional to dφ. The doublet separation corre-
sponding to the peaks (maxima) of forbidden hyperfine lines (FHDs) for a poly-
crystalline sample are calculated at angle θ = (0, at which the maximum value of 
f0((,() sin ( occurs as a function of (, since the intensity of a forbidden hyperfine 
line M, m  symbol 171 \f "Symbol" \s 12 «  M, m – 1 ((M = 0, (m = –1), or M, 
m – 1  symbol 171 \f "Symbol" \s 12 «  M, m ((M = 0, (m = 1), relative to the 
allowed hyperfine line M, m ↔ M – 1, m (∆M = 1, ∆m= 0) in the central sextet (M
= 1/2) is given by the following expression: 

2

( (

0

, ) , )

2
( 1)3

1
4 ( ) 3 ( 1)

( 1) ( 1) ,

θ ϕ θ ϕ
µ

=
++ ×

+
B

S SDR fog B M M M
I I m m

  (20) 

where f0(θ,ϕ) = sin2 2θ (1 – η cos ϕ)2.
A simple calculation yields the values of the angular-dependent factors in the 

forbidden line positions, given by eqs. (14) and (15), corresponding to the maxi-
mum of intensity, which occurs, respectively, for θ = θ0, i.e. when  

2
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  (21) 
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Finally, the separation of peaks (maxima of intensity) corresponding to dou-
blets of hyperfine forbidden transitions) in the central sextet (M = 1/2 ↔M = -1/2) 
in a polycrystalline sample turns out to be from Equations (16) - (19): 
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with  

2 22 2 2
2
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2 3 25 10(2 ) 4 2
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F  (24) 

Equation (23) is the key equation to be used to estimate the values of D and E
from Mn(II) EPR spectra in an amorphous material. Figure 2 shows plots of the 
values of |D| as functions of average hyperfine forbidden-doublet separation in the 
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Figure 2. Plots of values of |D| as functions of the average hyperfine forbidden doublet sepa-
ration in the central sextet for the Mn(II) ion for: (a)  = 0.0, (b)  = 0.12, (c)  = 0.23, and 

 = 0.33. Adapted with permission from Misra (1995). 

Mn(II) central sextet for (a) η = 0.0; (b) η = 0.12; (c) η = 0.23; (d) η = 0.33. Fur-
ther, taking into account the first term, which has the largest value, it is concluded 
that the hyperfine doublet separation — ( )( ) 1/ 2,∆ PCB m  — as given by eq. (23) is 
positive unless the value of D > D0 for which ( )( ) 1/ 2, 0∆ =PCB m . It is also noted 
that, because of Go

2 [≈(hν)2, where h and ν are Planck’s constant and the klystron 
frequency, respectively] in the denominator of the first term in (23), the hyperfine 
doublet separation decreases with increasing microwave frequency; for example, it 
will be more than 12 times smaller at the Q-band (~35 GHz) than that at the X-
band (∼10 GHz) for the central sextet. Thus, X-band data are preferable over Q-
band data to estimate D from forbidden hyperfine doublet separation. To this end, 
it should be noted that the lower the microwave frequency the greater the resolu-
tion of hyperfine doublet separation. 

To illustrate the use of third-order perturbation expressions, simulated spectra 
at the X- and K-bands for the central hyperfine sextet are illustrated in Figures 3 
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and 4, respectively, for various values of D. In addition to the above, it is possible 
to use the relative intensities of various hyperfine lines in the EPR spectra to esti-
mate D as illustrated by Allen (1965) and depicted in Figure 5.  

Figure 3. Computer-simulated spectra of the M = +1/2  –1/2 fine-structure group at the X 
band as calculated from expressions calculated up to third order in perturbation for various 
values of D. The abscissa is in gauss with the zero of reference chosen at unperturbed reso-
nance field B0. Full lines refer to m = 0 transitions, dashed lines to the hyperfine "forbid-
den" m = 1 transitions. All intensities are drawn on the same scale. These spectra are to be 
compared with Figure 1b. A/g B = 93 G. (a) D/g B = 75 G, (b) D/g B = 100 G, and (c) 
D/g B = 150 G. Adapted with permission from de Wijn and Van Balderin (1967). 
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Figure 4. (a) Theoretical spectrum of the M = +1/2  –1/2 fine-structure group at the K 
band. The abscissa is in Gauss with reference of zero at H0. A/g B = 93 G, D/g B = 100 G. 
This is to be compared with Figure 4b, displaying the experimental first-derivative EPR 
spectrum of Mn(II) in a borate glass (MnO)x(B2O3+0.04K2O)1–x (x = 0.006) recorded at 23 
GHz at 295 K. Adapted with permission from de Wijn and Van Balderin (1967). 

3. SIMULATION OF POWDER SPECTRUM ON A COMPUTER  

 USING MATRIX DIAGONALIZATION 

In the brute-force technique, for each chosen orientation (θ,ϕ) of B, one di-
agonalizes the spin-Hamiltonian matrix for a large number of values of B to find 
the resonant magnetic-field value. It requires exorbitant computer time, especially 
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Figure 5. Ratios of line intensities versus D/g B (Gauss). The solid lines show the second-
order ratios calculated for D values up to D/g B = 170 G; the dashed lines exhibit the ex-
trapolated curve from the calculated curve up to D/g B = 120 G. Adapted with permission 
from Allen (1965). 

when the spin is large, e.g., S = 5/2 for Mn(II). A technique of quickly calculating 
angular variation of resonant EPR line positions in a single crystal consists in cal-
culating EPR line position by the method of least-squares fitting (LSF) for an ori-
entation of B infinitesimally close to the one for which the resonant line position is 
known (Misra & Vasilopoulos, 1983). This can be easily extended to simulate a 
polycrystalline spectrum quickly. In the brute-force technique, for each chosen 
orientation of B, the spin-Hamiltonian matrix is diagonlized over a large number of 
closely spaced values of B to find the resonant magnetic field values. This requires 
exorbitant computer time, especially when the spin is as large as S = 5/2 for the 
Mn(II) ion. 

The EPR spectrum in a polycrystalline material can be simulated rigorously by 
overlapping spectra computed for a large number of orientations (θ,ϕ) of the exter-
nal magnetic (Zeeman) field, B, over the unit sphere weighted in proportion to 
sin θ dθ dϕ to take into consideration the distribution of various constituting crys-
tallites whose principal axes are oriented in the interval dθ, dϕ about (θ,ϕ). As 
well, a lineshape function, F(ωi,B), for the various possible transitions i′ ↔ i″, is 
used that could be Gaussian, Lorentzian, or a complicated function appropriate to 
the sample, in addition to each line position being weighted in proportion to its 
transition probability. The eigenvalues and eigenvectors required for calculation of 
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line positions and line intensities are obtained by a numerical diagonalization of the 
spin-Hamiltonian matrix on a computer using the JACOBI subroutine (Press et al.,
1992). The following description is based on details given by Misra (1999). 

The simulated spectrum can be expressed as 

/ 2 2

00

( , ) ( , , , ) ( , ) (cos )
π π

ϕθ
ν θ ϕ ν ω θ ϕ

==
= i

i
S B P i F B d d  (25) 

In (25) P(i,θ,ϕ,ν) is the transition probability for the ith transition, between levels i′
and i″, participating in resonance at microwave frequency ν at orientation (θ,ϕ) of 
B over the unit sphere. It is expressed as follows: 

2

' 1 1 1 "( , , ) ( )θ ϕ Φ Φ+ +i x x y y z z iP i B S B S B S  (26) 

In (26) Sα and B1α (α = x,y,z) represent the components of the electron spin 
operator, S, and modulation r.f. field B1. 'Φi  and 

"Φi  are the eigenvectors of the 
spin-Hamiltonian (SH) matrix, H, corresponding to energy levels Ei and Ei partici-
pating in resonance [H Φk =Ek Φk . For an arbitrary orientation of field B1, one 
can sum the real and imaginary parts of the three terms together. The required 
square of the absolute value in (26) is as follows: 
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where ax = sin θ cos ϕ, ay = sin θ sin ϕ, az = cos θ, Re and Im are the real and 
imaginary parts, respectively, and ⊗ represents the outer product of two column 
vectors. For use in (27), the following deductions are useful as far as the various 
terms are concerned. 

Noting that  

 Re(Sx)j,j+1 = Re(Sx)j+1,j,  and  Im(Sx)j,k = 0 (28) 

and that  

( )i" i' i" i' i" i'Re Re Re Im ImΦ Φ Φ Φ Φ Φ= +
j k j kjk

( )i" i' i" i' i" i'Im Re Im Im ReΦ Φ Φ Φ Φ Φ= +
j k j kjk

 (29) 

one obtains 
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Similarly, noting that  

 Im(Sy)j,j+1 = –Im(Sy)j+1,j   and   Re(Sy)jk = 0  (32) 

one obtains  

( ) ( )" ' , 1 " ' 1,
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j

Tr S S  (34) 

In (33) and (34) the required imaginary and real parts of the outer products on the 
right-hand sides are given by (29). As for the corresponding expression in Sz, one 
notes that Sz has only diagonal nonzero element, which is real, and thus, 

 Im(Sz)jk = 0;  Re(Sz)jk = (Sz)jk δjk (35) 

where δjk is the Kronecker-delta symbol, such that δij = 0 for i ≠ j, δij =1 for i = j. 
Finally,  
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The simulated spectrum is computed by the use of eq. (25), wherein the inte-
grals are converted into discrete sums. It is clear from (25) that, in particular, one 
needs to know the resonant field values for the various transitions, as well as their 
transition probabilities for numerous orientations of the external magnetic field 
over the unit sphere over the unit sphere. A considerable saving of computer time 
can be accomplished if one uses numerical techniques to minimize the number of 
required diagonalizations of the SH matrix in the brute-force method. That is, when 
one uses the known resonant-field value at angle (θ,ϕ) to calculate the one at an 
infinitesimally close orientation, (θ + δθ, ϕ + δϕ), known as the method of homo-
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topy (Misra & Vasilopoulos, 1980), as described below. The various parameters/ 
techniques required in the computation are described below. 

Resonant Line Positions. The procedure to calculate the resonant line posi-
tion at the orientation, (θ + δθ, ϕ + δϕ), from the knowledge of the line position at 
orientation (θ,ϕ), using the least-squares fitting technique and Taylor-series expan-
sion, is as follows (Misra & Vasilopoulos, 1980; this paper describes the homotopy 
technique to calculate angular variation of EPR line positions.): 
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Thus, to be used in eq. (3.1), 
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In (38) one starts with ' ( , , )θ ϕ=r rB B i , and S is defined as 

( )2' " νi iS E E h   (40) 

In eq. (39) the derivative of eigenvalue Ei' or Ei" can be evaluated as follows: 
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where, gαα (α = x, y, z) are the components of the -tensorg . (It has been assumed 
that the -tensorg  is diagonal in the coordinate axes chosen here; thus, gxx = gyy = 
gzz = g) In writing (41), the fact that only the Zeeman term, µ=z BH S g B , in the 
spin-Hamiltonian depends on the external field, and Bz = B cos θ, Bx = B
sin θ cos ϕ, By = B sin θ sin ϕ, have been taken into account.  There are, of 
course, other field-dependent terms, commonly not used, present in the spin-
Hamiltonian which depend on higher powers of B, e.g., B3, B5,…, or on higher 
powers of S, e.g., S3 , S5,… (see Misra et al., 1996; Al'tshuler & Kozyrev, 1974). 

Transition Probabilities. The transition probability, given by eq. (26), at the 
infinitesimal orientation θ + δθ and ϕ + δϕ of B can be obtained from eigenvectors 

( , )Φ θ δθ ϕ δϕ+ +i . The latter can be calculated using 
rB (i, , )θ δθ ϕ δϕ+ + as ob-

tained using eq. (38), and diagonalizing the spin-Hamiltonian expressed at (θ + δθ,
ϕ + δϕ) for this value of the magnetic field.  

Integrals. The integral for polycrystalline spectrum S(B,νc) as given by eq. 
(25) can be expressed as a sum over different orientations (θj,ϕj) of B distributed 
over the unit sphere divided into grids whose intersections for successive grids are 
infinitesimally close to each other, and over the values of B divided into channels, 
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Bk, distributed over the range of the magnetic field considered. Thus, eq. (25) can 
be expressed, using constant C, as the following sum: 

, , ,

( , ) ( , , , ) ( , ( , , , ), ) sin
θ ϕ

ν θ ϕ ν ω θ ϕ ν θ=
j j

j j i r j j k j
i k

S B C P i F B i B  (42) 

where the values of θj are distributed over the range 0 to π/2, while those of ϕj over 
0 to 2π, taking into account the fact that the EPR spectrum remains unchanged 
when the magnetic field orientation is reversed in direction due to time-reversal 
invariance; and sin θj takes into account the uniform distribution of the crystallites 
constituting the powder such that the number of crystallites with their axes along θj

is proportional to sin θj. Alternatively, the presence of factor sin θj can be easily 
seen to arise, since solid angle dΩ = sin θ dθ dϕ represents the surface of the unit 
sphere covered by the orientation of B in the angular interval θ and θ + dθ, ϕ and ϕ
+ dϕ. When the integration over the unit sphere is carried out as mentioned above 
to compute a powder spectrum, the various crystallites in the polycrystalline sam-
ple are fully taken into account. (The choice of grid (θj,ϕj) is described below.) 
Summation over k takes into account the probability of amplitude of absorption at 
the magnetic field value Bk due to lineshape distribution ( , ( , , , ), )ω θ ϕ νi r j j kF B i B  for 
the ith transition for the orientation of B along the (θj,ϕj) direction. 

The (θj,ϕj) Grid. One can conveniently choose a (θj,ϕj) grid where the value 
of θ changes from 0 to π/2 in nθ, steps where nθ is a sufficiently large number, say, 
nθ = 300 (i.e., every 3/10th of a degree), depending upon the convergence of 
Br(i,θj,ϕj,ν) values computed by the use of eq. (27). Similar considerations apply to 
changes in ϕ values in nϕ steps, say, nϕ =120 (i.e., every 3 degrees, or even every 
degree). When there appear “crossing” or “looping” transitions, e.g., in the case of 
the Fe3+ ion (Misra & Vasilopoulos, 1983), problems arise when two transitions 
cross each other between two successive (θj,ϕj) values considered (“crossing” tran-
sition), or a transition does not occur at the adjacent (θj,ϕj) values (“looping” tran-
sition). In order to overcome these, certain strategies may be employed as dis-
cussed by Misra and Vasilopoulos (1983). In addition, an improved partitioning 
scheme of the grid may be used. To this end, Wang and Hanson (1995, 1996) de-
veloped a novel scheme, named the SOPHE (Sydney Opera House) partitioning 
scheme, involving a combination of cubic spline and linear interpolations; the unit 
sphere is partitioned into triangularly shaped convexes subtending nearly the same 
solid angles; see also partitioning schemes proposed earlier e.g., the Igloo method 
for partitioning an octant of the unit sphere (Nilges, 1979; Belford & Nilges, 1979; 
Maurice, 1980). 

Lineshape Function F(ωi, Br(i,θj,ϕj,ν),Bk). The spectrum is then calculated 
by performing the summation in eq. (42) with P(i,θj,ϕj) centered at Br(i,θj,ϕj,ν)
with lineshape function F(ωi, Br(i,θj,ϕj,ν)) extended over a reasonable magnetic-
field interval ±∆B about Br(i,θj,ϕj,ν), characteristic of the lineshape. The most 
commonly used lineshapes are Gaussian [~exp(B – B0)

2/σ2] and Lorentzian 
[~Γ/{(B – B0)

2 + Γ2}], where σ and Γ are Gaussian and Lorentzian linewidths, re-
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spectively, and B0 is the peak position. For computational purposes they can be 
expressed as follows: 
Gaussian lineshape: 

2 2
r j j c( , ) exp ( B (i, , , )) / ,θ ϕ ν σ=G k ri G kF B B K B   (43) 

where Br is the resonant field value for the ith transition, and KG is a normalization 
constant. 

Lorentzian lineshape: 

12 2
r j j c( , ) ( B (i, , , )) ,Γ Γ θ ϕ ν= +L k r L kF B B K B   (44) 

where Γ = 3 W 2∆ , where ∆W is the half-width at half-maximum, HWHM.  
Computation of Eigenvalues and Eigenvectors of the Spin-Hamiltonian 

Matrix. They are computed by the use of JACOBI subroutine (Misra, 1999), 
which diagonalizes real symmetric matrices, and is particularly efficient when the 
off-diagonal elements in the SH matrix are infinitesimally small as is naturally the 
case in homotopy. (Briefly, the diagonalization in the JACOBI algorithm is ac-
complished by successive rotations to annihilate the off-diagonal elements of the 
2 × 2 submatrix constituted by the largest off-diagonal element and corresponding 
diagonal elements of the SH matrix at any stage of successive rotations. For an 
efficient algorithm, see Press et al. (1992) and Misra (1999a). 

Absorption Signal. Usually, it is the first derivative of the absorbed micro-
wave power that is experimentally measured. The simulated first-derivative spec-
trum is calculated by taking the derivative with respect to B of S(B,ν), as given by 
eq. (42), along with that of the lineshape. Specifically, for the Lorentzian lineshape, 
given eq. (44), one has for the first-derivative 
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Thus, the simulated first-derivative absorption spectrum is expressed, from (42), as 
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In (47) normalization constant N may be appropriately chosen, e.g., the calculated 
value with the largest magnitude of the y value of all the channels was here set 
equal to 1. 

The simulation procedure presented here, among others, is eminently exploit-
able to estimation of spin-Hamiltonian parameters from a powder spectrum by the 
least-squares fitting (LSF) procedure in conjunction with numerical diagonalization 
of the spin-Hamiltonian matrix similar to that proposed by Misra (1976) in context 
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with single-crystal EPR spectra, even though the powder spectrum possesses fur-
ther complications over and above those of a single-crystal EPR spectrum. This 
LSF technique will, thus, be of immense help to this end, especially in those cases 
where single-crystal samples cannot be prepared, e.g., transition metal ion-doped 
metalloproteins. Efforts are currently in progress to accomplish this (Misra, 
1999b). 

4. COMPUTER SIMULATION OF Mn(II) EPR SPECTRA  

 IN AMORPHOUS MATERIALS 

Amorphous materials, e.g., glasses or biological systems, are characterized by 
structure disorders, subjecting Mn(II) ions to experience random surroundings. The 
spin-Hamiltonian parameters thus vary rather widely. In powders the interpretation 
of EPR spectra becomes difficult due to the orientational disorder of paramagnetic 
ions. There are three types of glasses in which Mn(II) spectra have been mainly 
studied: borate (Misra, 1996, 1999), phosphate and silicate (Kliava & Purans, 
1980; see Misra, 1996, 1999; de Wijn & Van Balderin, 1967, for more examples). 
Some materials pass from glassy to disordered state with variation of temperature 
as illustrated in Figure 6 (Allen, 1965).  

Figure 6. Variation of the value of D/gB* of the Mn(II) ion in 12 N HCl with temperature. 
The arrows show the direction of the temperature changes in the experiment. Adapted with 
permission from Allen (1965). 
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Simulation of EPR spectra in glasses requires use of rather precise Mn(II) EPR 
lineshapes taking into account distribution of spin-Hamiltonian parameters [5]. 
Only the parameter values restricted to D  << gµBB, E  << gµBB, A  << gµBB
will here be considered. The resonance magnetic fields for transitions between 
states M, m and M−1, m+i , denoted by 

( )0 M,m;M 1,m iB B g,A,D,E,θ ϕ+= ,

have been calculated (de Wijn & Van Balderin, 1967; Bleaney & Rubins, 1961; 
Bir, 1964, Upreti, 1974). In the expression for B0, i = 0 implies allowed, while i =
±1, ±2, … correspond to forbidden transitions; θ,ϕ are the polar and azimuthal an-
gles formed by the magnetic field with the principal axes of the second-order crys-
tal-field tensor in the spin-Hamiltonian. Finally, a total of nine parameters are to be 
determined: g0, A0, D0, E0, ∆g, ∆A, ∆D, ∆E, and ∆Bpp, where subscript 0 denotes 
mean values, each of which is characterized by a width — ∆g, ∆A, ∆D, ∆E — 
along with the peak-to-peak linewidth, ∆BPP. Parameters g and A for Mn(II) are 
much less sensitive to change in the environment in comparison to the zero-field 
splitting fine-structure parameters, D and E. Thus, ∆g and ∆A are relatively much 
smaller, and their variation can be taken into account by an appropriate value of 
∆BPP, which also takes into account spin–spin interaction and other terms not in-
cluded in the spin-Hamiltonian. The value of g0 = 2.0 can be safely assumed for the 
S-state ion Mn(II). 

Considering only the variations ∆D and ∆E to be significant, describing Gaus-
sian spreads with variances ∆D2/2 and ∆E2/2, respectively, and correlation coeffi-
cient r ( − ≤ ≤1 1r ) the joint statistical probability then becomes  

( ) ( )( )
( )( )

1
2

2 2

0 00 0
2

, 1

1
     exp 2

(1 )

π∆ ∆

∆ ∆ ∆ ∆

= ×

+

P D E D E r

D D E ED D E E
r

D D E Er

 (48) 

When r = 0, D and E are totally uncorrelated; P(D,E) is expressed as the prod-
uct of two Gaussian distribution that are independent of each other: 
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Values r = ± 1 represent a total correlation between D and E. P(D,E) as given 
by (48) is thus nonzero only when (E – E0)/(D – D0 ) = ±∆E/∆D, in which case 
only one variation — P(D) or P(E) — is to be used in (49). 
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Assuming that ensembles of randomly oriented identical sites and randomly 
distorted sites are mutually independent, the EPR spectra in a glassy material can 
be expressed taking into account all fine-structure transitions and all orientations of 
Mn(II) ions, following Taylor and Bray (1972), as 
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In expression (50), the term F[(B –- B0)/∆BPP ] is a lineshape function,and it can 
be considered the first derivative of either a Gaussian or a Lorentzian;  
W M, m; M - 1, m + i(D,E,θ,ϕ)  is the probability of a transition between states M, m and M–
1, m+i averaged over different orientations of the microwave magnetic field. W can 
be calculated using the method of Bir (1964), which is superior to the traditional 
perturbation approach (Bleaney & Rubins, 1961; as described in detail by Kliava & 
Purans, 1978) unless exact eigenvectors are used as obtained by computer diago-
nalization of the spin-Hamiltonian matrix as described in §3. The limits of integra-
tion over D and E can be taken to be D0 ± 2∆D and E0 ± 2∆E. Finally, factor 

B0/ hν, which should be included in the integrand of (50), has here been ap-
proximated to be unity as its value deviates, in fact, from unity only by a few per-
cent (Aasa & Vangard, 1975). 

In practice, the calculation is confined to the transitions belonging to the cen-
tral hyperfine sextet 1/2, m ↔ –1/2, m + i (m = 5/2, 3/2, 1/2, –1/2, –3/2, ––5/2), 
since the non-central lines are much less intense as compared to the central lines 
because they have a stronger angular dependence. In fact, in glasses parameter dis-
tributions totally smear out all non-central transition lines since their resonant 
fields contain terms linear in D and E, which is not the case for the resonant fields 
for the central transition lines. 

5. COMPUTER-SIMULATED SPECTRA AND COMPARISON  

 WITH EXPERIMENT 

Figures 7–14 display various simulated and experimental spectra. The salient 
features of these are as follows:

(i) Figure 8 indicates a drastic discrepancy between the two simulated spectra, 
one which does and the other which does not take into account different transition 
probabilities of different transitions in the simulated spectrum, leading to the con-
clusion that transition probabilities are extremely important in arriving at a reason-
able fit. 
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Figure 7. EPR spectra of Mn(II) observed at  = 8.9 GHz in phosphate (ZnO P2O5, upper 
trace) and silicate (K2O 4Si2O, lower trace) glasses. Adapted with permission from Kliava 
and Purans (1980). 

Figure 8. Mn(II) powder spectra simulated to third order in perturbation for some allowed 
(solid lines) and forbidden (dashed lines) hyperfine transitions belonging to the central fine-
structure transition: g = 2.0, A/g B = –95 G, D/g B = 210 G, E/g B = 70 G,  = 8.9 GHz. For 
the top diagram the transition probability is calculated using Bir's method (1964), while in 
the bottom diagram the transition probability is equal to 1. The difference in the two dia-
grams shows the importance of taking into account the transition probabilities in spectral 
simulation. Adapted with permission from Kliava and Purans (1980). 
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Figure 9. A series of spectra computed for different distributions of the fine-structure pa-
rameter (for the central fine-structure transition): g = 2.0, A/g B = –93 G, D0/g B = 220 G, 
E0/g B = 73 G,  = 8.9 GHz, BPP = 7 G (Lorentzian lineshape function). The following val-
ues (in Gauss) of D/g B, E/g B have been used for different traces: (a) 0, 0; (b) 40, 20; (c) 
80, 40; (d) 120, 60; (e) 160, 80. In trace (a) the attribution of some of the spectral features to 
definite critical points is shown. Numbers 1–6 indicate the six types of critical points (see eq. 
(56)) for the allowed (A) and forbidden i = –1 (F) hyperfine-structure transitions. Adapted 
with permission from Kliava and Purans (1980). 

(ii) Changing the signs of D0 or E0 does not lead to appreciable variation of 
simulated spectra since the third-order terms in resonant field linear in D0 and E0

are small. 
(iii) The best-fit spin-Hamiltonian parameters are found to be the same for the 

two glasses from Figures 12 and 13 for phosphate and silicate glasses with the 
exception of A: g = 2.0, 0D /gµB = 220 ± 20 G, 0E /gµB = 70 ± 15 G, ∆D/gµ B = 
80 ± 20 G, ∆E/gµ B = 30 ± 10 G, r = 0.0 ± 0.2, while A/gµB = –93 ± 1 G for the 
phosphate glass and A/gµB = –87 ± 1 G for the silicate glass. Outside the limits of 
error for D0, E0, ∆D, ∆E, and A, the variation of one parameter degrades the other 
parameters. The limits of error are determined for correlation coefficient r for fixed 
values of all other parameters. Finally, it is noted that only the absolute values of 
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D0 and E0 can be determined in glasses when D0 is small. On the other hand, when 
D0 is large (D0/g B ≥ 10,000 G), then variable temperature measurements will al-
low determination of the signs for D, E. Zero-field EPR may also be used to deter-
mine the signs of D, E.

Figure 10. A series of spectra computed for different values of the central fine-structure 
transition: g = 2.0, A/g B= –93 G, D0/g B= 220 G, D/g B = 80 G, E/g B= 30 G,  = 8.9 
GHz, BPP = 6 G (Lorentzian lineshape). Adapted with permission from Kliava and Purans 
(1980). 

5.1. Effect of Distribution of Fine-Structure Parameters D and E
 on the Shape of EPR Spectra 

The effect of the distributions of the fine-structure parameter on the shape of 
EPR spectra is illustrated in Figure 9. The “lines” and “peaks” that appear in the 
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Figure 11. A series of spectra computed for different values of correlation coefficient r for 
the central fine-structure transition: g = 2.0, A/g B = –93 G, D0/g B = 220 G, E0/g B = 73 G, 

D/g B = 80 G, E/g B = 30 G,  = 8.9 GHz, BPP = 6 G (Lorentzian lineshape). Adapted 
with permission from Kliava and Purans (1980). 

absence of distribution of D and E (curve a) broaden at first as ∆D and ∆E are in-
creased (curves b–e); some of them broaden out completely. As ∆D and ∆E are 
increased further, the remaining “lines” and “peaks” do not broaden any more, con-
trary to expectation, and even become narrower (curves d–e). This can be ex-
plained by expressing (50) as follows (Kneubuhl, 1960): 
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In expression (51) the integration is over B0, three-dimensional surface S is defined 
by B0(d,e,θ,ϕ) = constant, d = D/∆D and e = E/∆E,
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Figure 12. Comparison of the experimental and computer-simulated spectra for zinc-
phosphate glass (ZnO P2O5). The upper trace represents the experimental spectrum after sub-
tracting the broad underlying resonance. The lower trace is the computed best-fit spectrum 
(for the central fine-structure transition) with g = 2.0, A/g B = –93 G, D0/g B = 220 G, 
E0/g B = 70 G, D/g B = 80 G, E/g B = 30 G,  = 8.9 GHz and BPP = 6 G (Lorentzian 
lineshape). Adapted with permission from Kliava and Purans (1980). 

In eq. (52), d0 = D0/∆D, e0 = E0/∆E. Since H0 depends on d, e, θ, and ϕ, one has 

( ) 0 0

0 0

1/ 22 2
2

,grad gradθ ϕ= + +B BB B
d e

, (53) 

where 
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1/ 222

0 0
0 2

1
grad

sinθ ϕ θ θ ϕ, = +B BB . (54) 

When ∆D = ∆E = 0, it is seen from (51) that the “lines” and “peaks” in the powder 
EPR spectra occur at resonance-field values for which , 0gradθ ϕ B  = 0, i.e.,

0 0
∂
∂θ
=B , 01

0
sin 

∂
θ ∂ϕ

=B .  (55) 

Figure 13. Comparison of the experimental and computer-simulated spectra for potassium 
silicate glass (K2O 4SiO2). The upper trace represents the experimental spectrum after sub-
tracting the broad underlying resonance. The lower trace is the computed best-fit spectrum 
(for the central fine-structure transition) with g = 2.0, A/g B = –87 G, D0/g B = 220 G, 
E0/g B = 70 G, D/g B = 80 G, E/g B = 30 G,  = 8.9 GHz, BPP = 7 G (Lorentzian line-
shape). Adapted with permission from Kliava and Purans (1980). 

It can be shown that for each hyperfine transition six different types of critical 
points occur at definite values of θ0, ϕ0, which are as follows: 

1. θ0 = 0; 
2, 3. θ0 = π/2, ϕ = π/4 π/4 (or 5π/4 π/4 ) ; 
4. θ0 = π/2, cos 2ϕ0 = αD/E, where 
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    ( ) ( )( )
( )

2
0 0

0

2 2 / 3 2 1 /

18 73 2 /
α

+ + + +
=

+
m i A B m i i A DB

m i A B

5, 6. cos2 θ0 = x, ϕ0 = π/4 π/4 (or 5π/4 π/4 ), where  

      ( )( ) ( )( )
( ) ( )

2
0 0

0

10 6 2 37 35 / 3 2 1 /

18 73 2 /

± + ± + +
=

+ ±
D E m i D E A B m i i A B

x
m i A B D E

 (56) 

Assignment of some “lines” and “peaks” to define critical points is illustrated in 
Figure 9 (curve a). 

Figure 14. Simulated Mn(II) spectrum at 249.9 GHz with parameter values g = 2.00, D0/g B

= 10,000 G, E0/D0 = 0. Reprinted with permission from Misra (1999a). 

Supposing now that ∆D ≠ 0, ∆E ≠ 0. If the parameter distributions are small 
enough to satisfy the conditions 

0∂
∂ C

B
D

. ∆D, 0∂
∂ C

B
E

. ∆E << 
, , 0,θ ϕ θ ϕ

∂ ∂
∂θ ∂ϕo c C

grad B grad B   (57) 

where index c means that all the distributions are taken at the critical point (θ0, ϕ0,
D0, E0), the value of 0∂ ∂θB  and ( )0 sin∂ θ ∂ϕB  increase rapidly as one moves 
away from the critical point. Finally, eq. (53) becomes 
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( ) ( )
1/ 22 2

2 2o 0
0

c c

grad D E
E

∂ ∂∆ ∆
∂ ∂

= +c

B BB
D

  (58) 

Equation (58) reveals that the amplitudes of the “lines” and “peaks” decrease, 
while their widths increase, in proportion to 0 c

grad B . This broadening becomes 
significant when it approaches or exceeds the value of ∆ PPB , which includes all 
other sources of line broadening. 

5.2.  Sharp Features in Mn(II) Spectra 

The salient features of the computer-simulation of sharp spectral features in 
the spectra in the region g ≈ 2.0 are as follows: 

(i) The values D, E ≈ 0 account for sharp features in computer-simulated spec-
tra at broad parameter distributions (Figure 9, curves d and e). 

(ii) For the case of intermediate parameter distributions, no definite statement 
can be made on parameter distribution without a complicated analysis. 

(iii) As for the dependence of the spectra on the ratio E0/D0, even at rather 
broad parameter distributions (∆D/g B = 80 G, ∆E/g B = 30 G), an increase in 
E0/D0 produces a strong variation in spectral shape. Figures 14 and 15 represent 
250-GHz spectra for two ratios of E0/D0 = 0 and E0/D0 = 0.23. It is seen from these 
figures that when E0/D0 is large, there is an apparent splitting of the –2D and –4D
fine-structure lines (Wood et al., 1999). Computer fitting to the experimental spec-
tra enables determination of the absolute value of ratio E0/D0 along with other spin-
Hamiltonian parameters uniquely for Mn(II) in glasses with sufficient accuracy. 
Great care must be taken to “qualitatively” interpret EPR spectra of Mn(II) in dis-
ordered systems. For example, a spectrum with broad parameter distributions can 
be easily mistaken for one with small values of D0 and E0 (Taylor & Bray, 1972), 
since there are present some sharp features in both cases. This mistake is not possi-
ble with computer simulation of EPR spectra, since the overall features of com-
puted spectra are quite different in the two cases. 

5.3.  Broad Resonances in Mn(II) Spectra 

Computer simulations support the claim of Griscom and Griscom (1960) that 
the broad resonance does not arise from non-central fine-structure transitions, since 
the contribution of these transitions to the total EPR spectrum is, in fact, insignifi-
cant to account for the observed background resonance (see Figure 16.) As seen 
from Figure 7, the peak-to-peak intensities of the broad resonance relative to sharp 
central features are about 3.3 and 4.0, respectively, for the phosphate and silicate 
glasses. 

Griscom and Griscom (1960) concluded from the fact that broad underlying 
resonances observed at X-band collapse at the K band, and that a broad distribution 
of sites with values /D h  ranging from near zero to as high as 7 GHz (~2.5 kG) 
and 

0 0 1/ 3E D is responsible for this behavior; sites with /D h ≥  2 GHz (~0.7 
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Figure 15. Simulated Mn(II) spectrum at 249.9 GHz with parameter values g = 2.00, D0/g B

= 10,000 G, E0/D0 = 0.23. Reprinted with permission from Misra (1999a). 

 kG) give rise to background resonances. Computer simulations (Kliava & Purans, 
1980), however, yield sharp g = 2.0 features with 

0 / µBD g  220G (~0.6 GHz) 
with the same ratio 

0 0E D 1/3, but without continuous broad distribution of 
sites. Thus, it is concluded that in addition to the large site-to-site distortion range, 
sites for which short-range order is much better preserved do exist in glasses 
(Tucker, 1962). 

6. ESTIMATION OF SPIN-HAMILTONIAN PARAMETERS AND 

 LINEWIDTH FROM A POWDER SPECTRUM AND CALCULATION 

 OF FIRST AND SECOND DERIVATIVES OF THE χ2
-FUNCTION  

This section deals with, in outline form, the essentials of the the least-squares 
fitting (LSF) technique; more details are given by Misra (1999a). For application of 
the LSF technique to evaluate spin-Hamiltonian parameters and linewidth, the χ2-
function is defined as the sum of the weighted squares of the differences of the 
calculated and measured first-derivative absorption signals at the magnetic field 
values Bk within the range of the magnetic field considered: 
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2 2 2[ ( , ) ( , )]χ ν ν σ= c k c m k c k
k

F B F B ,  (59) 

where Fc(Bk,νc) and Fm(Bk,νc) are, respectively, the normalized calculated [eqs. 
(46) or (47)] and measured values of the first-derivative EPR signal, and σk is the 
weight factor (related to standard deviation of datum k). The measured/calculated 
values may be normalized in such a way that the maximum of each is equal to 1.  

Figure 16. A spectrum computed taking into account all the fine-structure transitions: g = 
2.0, A/g B = –93 G, D0/g B = 220 G, E0/g B = 70 G, D/g B = 80 G, E/g B = 30 G,  = 
8.9 GHz and BPP = 11 G. Adapted with permission from Kliava and Purans (1980). 

In the LSF technique vector am constituted by the parameters that correspond 
to the absolute minimum of the χ2-function can be obtained from a

i, the vector 
constituted by the initially chosen value of SH parameters and linewidth by the 
following relation [the article by Misra (1976) deals with the LSF technique as 
applied to evaluate spin-Hamiltonian parameters from single-crystal EPR line posi-
tions]: 

'=m i i 1
a a (D"(a )) D  (60) 

In eq. (60) D′ is the column vector whose elements are the first derivatives of the 
χ2-function with respect to the parameters evaluated at a

i and D″ is the matrix 
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whose elements are the second derivatives with respect to the parameters evaluated 
at a

m:

2∂χ
∂

=
ma i

©

m

a

D  (61) 

2 2∂ χ
∂ ∂

=
n ma a m

"

nm

a

D  (62) 

Since am is not known to begin with, the elements of matrix D″ are, in prac-
tice, evaluated with respect to ai, referred to as D″ (ai). A new set of parameters, 
denoted by vector af is then calculated as follows: 

f i i -1a = a - (D"(a )) D'   (63) 

in place of vector am given by (60), which is calculated iteratively until a suffici-
ently small value of the χ2-function, consistent with experimental uncertainties, is 
obtained. 

Calculation of D′ and D″. From eqs. (61) and (62), one has 

' 2( , )
2 [ ( , ) ( , )]

∂ νν ν σ
∂

= c k c
m c k c m k c k

k m

F BD F B F B
a

 (64) 

{

} 2

2 ( , )" 2 [ ( , ) ( , )]

( , ) ( , )
          σ

=

+ c k c c k c

kn m

F B nc k cD F B n F B nnm c k c m k c a ak n m

F B n F B n
a a

 (65) 

Thus, in order to evaluate (64) and (65), one needs to calculate the first and second 
derivatives of Fc(Bk,ν c), given by eq. (47), with respect to the parameters. 

Finally, the parameter errors, ∆aj, are estimated statistically using the matrix 
constituted by the second derivatives of the χ2-function (Misra & Subramanian, 
1982): 

∆aj = εjj
1/2  (66) 

where, matrix ε is defined as follows: 

ε = (½D″)–1.
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7.  CONCLUDING REMARKS 

The present work provides essential insights into Mn(II) EPR spectra in amor-
phous materials, appropriate to biological systems, and how to simulate and inter-
pret them. It does not attempt to provide full details of the various publications on 
the subject. The many examples of Mn(II) EPR spectra in glasses provided here 
should serve as prototypes for biological systems, since glasses and biological sys-
tems exhibit similar spectra. A detailed list of references on EPR in metalloproteins 
has here been mentioned in §1. The various references (and references therein) 
should be helpful to obtain a rather exhaustive list of papers published on the sub-
ject. An interesting review article covering both NMR and EPR spectra in poly-
crystalline materials taking into account many different values of electronic and 
nuclear spins is provided by Taylor et al. (1975). 

Mn(II) EPR spectra provide information about the environment of the Mn(II) 
ion in amorphous materials, which is reflected in the values of parameters g, D, and 
E and the linewidth. As for proteins with Mn(II) complexes, signal broadening due 
to motional effect or by structural variations diminishes as the composition of the 
complex approaches that of the fully functional state of the protein. Hence, the 
improvement in the resolution of the spectrum provides some insight into the fidel-
ity of the structure under investigation. The interpretation of the structure is facili-
tated by studying the various glassy spectra provided in this article, since a close 
parallel of biological systems exists with analysis of other amorphous materials in 
the solid state. 
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CHAPTER 5 

DENSITY MATRIX FORMALISM OF ANGULAR

MOMENTUM IN MULTI-QUANTUM

MAGNETIC RESONANCE

H. Watari and Y. Shimoyama 

Uchihonmachi 2-chome, Suita, Osaka, 564-0032 Japan; Department of Physics, 
Hokkaido University of Education, Hakodata, 040-0083 Japan 

1.  INTRODUCTION 

The pulse Fourier transform approach to magnetic resonance spectroscopy has 
been extensively developed and successfully applied to systems of one-half spin 
and their mutual interactions. But resonance spectroscopy of spin systems with the 
higher half- and integer spin quantum numbers is commonplace, for example, in 
the case of alkali metal nuclear magnetic resonance (NMR) and electron paramag-
netic resonance (EPR) of transition metal compounds involving multi-quantum 
transitions. Similarly, magnetic resonance at zero field entails the observation of 
multi-quantum transitions.  

Besides the treatment of high-spin nuclei, multi-quantum transitions are be-
coming more frequently encountered because magnetic resonance spectroscopy has 
expanded beyond the traditional operating frequencies of microwave spectrome-
ters. Magnetic resonance phenomena are being studied in the submillimeter region 
of the electromagnetic spectrum. And at the high-frequency end of the electromag-
netic spectrum the Fourier transform is being applied to spectroscopy in ultraviolet, 
visual, and infrared regions in time-domain measurements using a Michelson inter-
ferometer and a birefingent interferometer. Additionally, a laser operating with a 
several-femtosecond pulsewidth has been developed and used to observe multi-
quantum coherence effects in materials.  

Magnetic and optical resonances are identical electromagnetic phenomena in 
the sense that there occurs an interaction of a magnetic field with matter, and both 
types of experiments may be described under a common mathematical formalism 
that is independent of experimental approach. But in developing a theoretical for-
malism that fuses both optical and magnetic resonance phenomena there occurs a 
problem reconciling the manner in which one treats the resonance condition.  For 
example, both magnetic resonance theory and experiment deal directly with an 
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“on-resonance” condition. But in quantum optics one describes a resonance condi-
tion via perturbation theory, and thus an application of the theory to the resonance 
condition has been limited to treatments in which the system is brought into near-
resonance so as to avoid a divergence at the frequency of on-resonance. This fun-
damental difference between the two theoretical approaches is just one problem 
that must be addressed in reconciling the methodologies.  

The density matrix representation of spin and orbital angular momentum is ca-
pable of expressing a static state of matter and its time-dependent response to an 
external perturbation. Our application necessitates that we follow the response of 
the orbital and spin momenta subject to full or partial excitations, and the density 
matrix provides a direct solution to the stochastic Liouville equation. But the den-
sity matrix representation in a rotating operator is algebraically ambiguious, and 
we must also clarify the algebraic description of selective excitation of multi-
quantum systems.   

The purpose of this paper is to present the density matrix formalism of angular 
momentum with half- and integer spin quantum numbers using the spectrum dis-
solving theorem. The density matrix formalism was developed for the laboratory 
and rotating frame in order to obtain a complete analytical representation for the 
spin excitation and response scheme. The density matrix contained in the rotation 
operator will become clear, as oppossed to the approximate treatment, and thereby 
from the theoretical process of off-resonance to that of just-resonance through the 
state of near-resonance will be visualized continuously. 

2.  PROJECTION OF ANGULAR MOMENTUM ON BASIS SETS 

A matrix representation of Hamiltonian H is given by eq. (1) assuming eigen-
function matrix ϕ and eigenvalue matrix Λ:

φ φ Λ=H H HH  (1) 

where “·” denotes a matrix product. Given that H, φH , and ΛH  are 3×3 square ma-
trices, for convenience we can develop an algebraic representation for the larger 
quantum numbers. An eigenfunction matrix may be written as follows: 

p p p

q q q

r r r

p q r
p q r
p q r

φ =H  (2) 

where a given element belongs to a proper eigenvalue, respectively, and the associ-
ated subscript refers to one of the connected basis set. An inverse of eigenfunction 
matrix 1φH  is expressed as follows: 
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* * *

1 * * *

* * *

p q r

p q r

p q r

p p p
q q q
r r r

φ =H  (3) 

where an asterisk denotes a complex conjugate. Each element value in the eigen-
value matrix can be obtained from the Hamiltonian H using the secular equation, 
and its expansion is also shown by matrices Ep, Eq, and Er, which designate an in-
dividual basis set on the diagonal axis as 

0 0

0 0

0 0

p

q

r

λ
Λ λ

λ
=H

       

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1
p q rλ λ λ= + +  (4) 

       p p q q r rE E Eλ λ λ= + +

       
, .

j j
j p q r

Eλ
=

=

Here pλ , qλ , and rλ are nondegenerate eigenvalues. Among matrices Ep, Eq, and 
Er, the following relation exists: 

, ,
j

j p q r

E E
=

=  (5) 

j k jk jE E Eδ=  (j,k = p,q, and r)

where δ is the Kronecker delta. Using ϕH , 1ϕH , and ΛH ..., the representation ma-
trix can be resolved into a sum of individual terms as follows: 

1 1

, ,
j j

j p q r

Eφ Λ φ λ φ φ
=

= =H H H H HH  (6) 

Each of the terms appearing in eq. (6) is defined as a projection matrix onto a basis 
set. Thus, each term 1

jEφ φH H  (j = p,q,r) is defined as follows: 

* * *

1 * * *

* * *

p p p q p r

p p q p q q q r

r p r q r r

p p p p p p
D E p p p p p p

p p p p p p
φ φ= =H H
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* * *

1 * * *

* * *

p p p q p r

q q q p q q q r

r p r q r r

q q q q q q
D E q q q q q q

q q q q q q
φ φ= =H H  (7) 

* * *

1 * * *

* * *

p p p q p r

r r q p q q q r

r p r q r r

r r r r r r
D E r r r r r r

r r r r r r
φ φ= =H H

When an eigenfunction is intrinsic, the projection matrix is itself a density matrix. 
Equation (7) then leads to 

, ,
j

j p q r

E D
=

=  (8) 

where 

j k ij jD D Dδ=   (j,k = p,q,r) (9) 

It is apparent that the projection matrices are orthogonal, and using the spectral 
resolution theorem we may write the representation matrix of  H as 

, ,
p p q q r r j j

j p q r

D D D Dλ λ λ λ
=

= + + =H  (10) 

3.  DERIVATION OF THE DENSITY MATRIX 

Using eqs. (9) and (10), the mth power of H can be expressed by 

, ,

m m m m m
p p q q r r i i

i p q r

D D D Dλ λ λ λ
=

= + + =H  (11) 

When power m increases from 0 to 2 in eq. (11), the following simultaneous equa-
tions are defined: 

0 0 0

2 2 2 2

p p q q r r

p p q q r r

p r q q r r

E D D D
D D D

D D D

λ λ λ

λ λ λ

λ λ λ

= + +
= + +

= + +

H
H

 (12) 

The terms on the left-hand side of these equations correspond to the power of the 
Hamiltonian operators. The right-hand side of (11) corresponds to the progression 
of  ( . . )m

i iD i p q rλ = . For example, if the system consists of six eigenvalues, den-
sity matrices can be obtained using six equations. The simultaneous equations that 
appear in eq. (12) are written concisely as the product of the vector and matrix: 



MULTI-QUANTUM MAGNETIC RESONANCE 183

g g gDΛ=H  (13) 

where gΛ is the Vandermonde matrix and pH  and gD  are the vectors defined by 
the following matrix representation: 

0 0 0

2 2 2

p q r

g p q r

p q r

λ λ λ
Λ λ λ λ

λ λ λ
= ,

2

g

E
=H H
H

,
p

g q

r

D
D D

D
=  (14) 

The vector of the density matrices, gD , can be calculated through the inverse of 
Vandermonde matrix 1

gΛ , that is, 

1
g g gD Λ= H  (15) 

where we write the i,jth element of a minor matrix of gΛ  as ( )g ijΛ , the following 
equations are obtained for the density matrices: 

( )
( )
( )

21
11 21 31

21
12 22 32

21
13 23 33

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

g

g

g

p g g g

q g g g

r g g g

D E

D E

D E

Λ

Λ

Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

= + +

= + +

= + +

H H

H H

H H

 (16) 

where gΛ  is the determinant of matrix gΛ . Thus, the density matrix corresponds 
to each eigenvalue whose values are known and nondegenerate, and it can be cal-
culated when representation Hamiltonian Hg is definitely obtained. 

The reason for using 0
pλ , 0

qλ , and 0
rλ in eqs. (14) and (16) is due to the fact 

that if one of eigenvalues pλ , qλ , or rλ  is zero, then the numerical value of 0
uλ

becomes 1, so only the 0th power term of an eigenvalue will survive, and other 
terms of the higher power become zero. 

4.  THE EXPONENTIAL FORM OF THE ANGULAR MOMENTUM 

An exponential of the angular momentum is expanded as a Taylor Series as 
follows: 

0 1 2 31 1
2! 3!exp( )= + + +H H H H H  (17) 

Using eq. (11), this expansion becomes 

( )
( )
( )

0 2 31 1
2! 3!

0 2 31 1
2! 3!

0 2 31 1
2! 3!

exp( )

             

             

p p p p p

q q q q q

r r r r r

D

D

D

λ λ λ λ

λ λ λ λ

λ λ λ λ

= + + + +

+ + + + +

+ + + + +

H

 (18) 
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and so the exponential form of H can be obtained via an algebraic equation: 

, ,

exp( ) exp( ) exp( ) exp( )

          exp( )

p p q q r r

j j
j p q r

D D D

D

λ λ λ

λ
=

= + +

=

H
 (19) 

Likewise, the exponential of –H is given by 

, ,

exp( ) exp( )j j
j p q r

Dλ
=

=H  (20) 

5.  ANGULAR MOMENTUM IN CARTESIAN COORDINATES 

The angular momentum has three components — xM , yM , and zM — along 
the x-, y-, and z-axes in a Cartesian coordinate system. These components satisfy 
the eigenvalue–eigenfunction equation, with eigenvalue matrix, gΛ :

0 0

0 0

0 0

p

g q

r

λ
Λ λ

λ
=  (21) 

When an angular momentum is directed toward arbitrary directions that have direc-
tion cosines cos α, cos β, and cos γ, where α, β, and γ are Euler angles, angular 
momentum ( , , )M α β γ  may be written as follows: 

( , , ) cos cos cosx y zM M M Mα β γ α β γ= + +  (22) 

and therefore the following relation exists: 

2 2 2cos cos cos 1α β γ+ + =  (23) 

Components xM , yM , and zM of the angular momentum may be regarded as a 
projection onto the orthogonal coordinates. the eigen-equation is then written 

( , , ) ( , , ) ( , , ) MM α β γ φ α β γ φ α β γ Λ=  (24) 

We have assumed that ( , , )M α β γ , ( , , )φ α β γ , and 1( , , )φ α β γ  are 3×3 square ma-
trices, and so the following relationship exists: 

1( , , ) ( , , ) Eφ α β γ φ α β γ =  (25) 

Matrix ( , , )M α β γ  can be resolved according to eq. (9) such that 
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1

1

, ,

, ,

( , , ) ( , , ) ( , , )

               ( , , ) ( , , )

               ( , , )

M

u u
u a b c

u u
u a b c

M
E

P

α β γ φ α β γ Λ φ α β γ

λ φ α β γ φ α β γ

λ α β γ
=

=

=
=

=

 (26) 

where 

1( , , ) ( , , ) ( , , )u uP Eα β γ φ α β γ φ α β γ= , u = a, b, c (27) 

Eigenfunction matrix ( , , )φ α β γ  and its inverse, 1( , , )φ α β γ , are obviously de-
pendent on the Euler angles. As a result, projection matrices ( , , )uP α β γ  are also 
dependent on the direction. 

Note that when one of the direction cosines, for example, cos γ, is unity in eq. 
(23), the remaining terms cos2 α and cos2 β should be simultaneously zero. The 
following relations must therefore be introduced for the sake of removing infinite 
values: 

cos cos 1,   cos cos 0i iα β α β+ = =  (28) 

6.  INTRINSIC DENSITY MATRIX OF ANGULAR MOMENTUM 

Direction-dependent matrices ( , , )uP α β γ  might be transformed supposing 
there exist matrices ( , , )T α β γ  and 1( , , )T α β γ  such that 

1

1 1

( , , ) ( , , ) ( , , )

    ( , , ) ( , , ) ( , , ) ( , , )

u

u

D T P T
T E T

α β γ α β γ α β γ

α β γ φ α β γ φ α β γ α β γ

=
=

 (29) 

where u = a, b, and c, and 

H

1 1 1
H

( , , ) ( , , )

( , , ) ( , , )

T

T

φ α β γ α β γ φ

φ α β γ φ α β γ

=
=

 (30) 

Eigenfunction matrix φH can be written as 

a a a

b b b

c c c

a b c
a b c
a b c

φ =H  (31) 

where characters a, b, and c connect a basis set. The corresponding inverse of the 
eigenfunction matrix is written as 
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* * *

1 * * *

* * *

a a a

b b b

c c c

a b c
a b c
a b c

φ =H  (32) 

with the result that 

1 Eφ φ =H H  (33) 

and so 

1
u uD Eφ φ= H H  (34) 

Finally, matrix uD  (u = a, b, and c) is defined as the Intrinsic Density Matrix, 
which is independent of direction: 

1

1 1

( , , ) ( , , ) ( , , )

                ( , , ) ( , , ) ( , , ) ( , , )

u u

u

P T D T

T E T

α β γ α β γ α β γ

α β γ φ α β γ φ α β γ α β γ

=
=

 (35) 

Furthermore, ( , , )T α β γ  and 1( , , )T α β γ  are resolved in the following formula: 

1( , , ) ( , ) ( ) ( )T T T S Tα β γ α β γ γ=  (36) 

and 

1 1 1( , , ) ( ) ( ) ( , )T T S T Tα β γ γ γ α β=  (37) 

where matrices ( , )T α β  and ( )T γ  and their inverses are given by the following: 

2

1

(cos[ ] cos[ ]) 0 0

( , ) 0 (cos[ ] cos[ ]) 0

0 0 1

I
T I

α β
α β α β=

2cos[ ] 0 0

( ) 0 cos[ ] 0

0 0 1

T
γ

γ γ=

2

1

(cos[ ] cos[ ]) 0 0

( , ) 0 (cos[ ] cos[ ]) 0

0 0 1

I
T I

α β
α β α β=

+
= +
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2

1 1

cos[ ] 0 0

( ) 0 cos[ ] 0

0 0 1

T
γ

γ γ=  (38) 

Matrices ( , )T α β  and ( )T γ  and their inverses are obtained in the case of spin 
quantum number 1, but in the case of higher multiplicities the corresponding matri-
ces are patterned after those of spin quantum number 1. Matrices S  and 1S  are 
triangular and independent of direction; however, for I > 1 the individual spin ma-
trices must be calculated: 

1 2 1

0 1 2

0 0 1

S =

1

1 2 1

0 1 2

0 0 1

S =  (39) 

Thus, the eigenfunction matrices obtained from angular momentum ( , , )M α β γ  can 
be written as 

1( , , ) ( , ) ( , ) ( ) ( )T T T S Tφ α β γ α β α β γ γ φ= H  (40) 

and 

1 1 1 1( , , ) ( ) ( ) ( , )T S T Tφ α β γ φ γ γ α β= H  (41) 

From this result an intrinsic eigenfunction matrix is known to be equal to an eigen-
function matrix of MH . Finally, angular momentum ( , , )M α β γ , having direction 
cosines cosα , cosβ , and cos γ , can be written as 

( )1
, ,

( , , ) ( , ) ( ) ( )u
u a b c

M T T S Tα β γ λ α β γ γ
=

=

                       1 1 1 ( ) ( ) ( , )H u HE T S T Tφ φ γ γ α β  (42) 

When the components of ( , , )M α β γ  fall along an orthogonal coordinate, substitu-
tion of α, β, and γ must be made. This is especially so for the case of MH, in which 
it is necessary to make substitutions using the transformation matrices. 
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7.  COMMUTATION RELATIONS OF THE ANGULAR MOMENTA  

Suppose there exists a second angular momentum designated as ( ', ', ')M α β γ
with the same eigenvalue matrix, :ΛH

( )1
, ,

( ', ', ') ( ', ', ') ( ', ', ')u u
u a b c

M T D Tα β γ λ α β γ α β γ
=

=  (43) 

Then, of course, the following relation exists between the direction cosines: 

2 2 2cos ' cos ' cos ' 1α β γ+ + =  (44) 

and, supposing the angle between the two angular momentum vectors is θ,

cos cos ' cos cos ' cos cos ' cosα α β β γ γ θ+ + =  (45) 

An exchange relation between ),,( γβαM and )',','( γβαM can be written as 

1

, ,

( , , ) ( ', ', ') ( , , ) ( , , )u u
u a b c

M M T D Tα β γ α β γ λ α β γ α β γ
=

=

            1

, ,

( ', ', ') ( ', ', ')v v
v a b c

T D Tλ α β γ α β γ
=

 (46) 

           ( )1 1

, , , ,

( , , ) ( , , ) ( ', ', ') ( ', ', ')u v u v
u a b c v a b c

T D T T D Tλ λ α β γ α β γ α β γ α β γ
= =

=

1

, ,

( ', ', ') ( , , ) ( ', ', ') ( ', ', ')v v
v a b c

M M T D Tα β γ α β γ λ α β γ α β γ
=

=

      1

, ,

( , , ) ( , , )u v
v a b c

T D Tλ α β γ α β γ
=

 (47) 

      ( )1 1

, , , ,

( ', ', ') ( ', ', ') ( , , ) ( , , )v u v u
v a b c u a b c

T D T T D Tλ λ α β γ α β γ α β γ α β γ
= =

=

As a product of transformation matrices 1( , , ) ( ', ', ')T Tα β γ α β γ  and 1( ', ', ')T α β γ
( , , )T α β γ , the result is a set of scalar quantities that corresponds to the u,v- and 

v,u- components of the matrices: 

1 1( ( , , ) ( ', ', ') )uvT Tφ α β γ α β γ φH H

1 1( ( ', ', ') ( , , ) )vuT Tφ α β γ α β γ φH H  (48) 

8.  ANGULAR MOMENTUM UNDER THE HAMILTONIAN 

When angular momentum ( )M αβγ  is governed by Hamiltonian 0H , this is 
transformed with a rotation operator to 1( )M αβγ , such that 
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1 0 0 0( ) exp( ) ( ) exp( )M i t M i tαβγ αβγ= H H  (49) 

where 0exp( )i tH  and 0exp( )i tH  are a rotation operator of the Hamiltonian and its 
complex conjugate, respectively. 

When the Hamiltonian is defined as the Zeeman interaction between an angu-
lar momentum with direction cosines 0cos ξ , 0cos η , and 0cosς , and magnetic 
field 0 0 0 0( )H ξ η ς , which is aligned, a rotation operator is expressed, assuming 
gyromagnetic ratio mγ , as 

0 0 0 0 0 0 0 0 0 0 0 0 0 0( ) ( ) ( )m H M Mγ ξ η ς ξ η ς ω ξ η ς= =H  (50) 

where 0 0m Hω γ= . The eigenvalues are obtained as ΛH , whose diagonal matrices 
are

0

0 0

0 0

0 0

p

q

r

λ
Λ ω λ

λ
=H  (51) 

The rotation operator of 0H  is given as 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
, ,

exp( ( ) ) exp( ) ( )

           exp( ) ( ) exp( ) ( )

     exp( ) ( )

p p

q q r r

j j
j p q r

i M t i t P
i t P i t P

i t P

ω ξ η γ λ ω ξ η γ

λ ω ξ η γ λ ω ξ η γ

λ ω ξ η γ
=

=

=

 (52) 

and its complex conjugate is written as 

0 0 0 0 0 0 0 0 0 0
, ,

exp( ( ) ) exp( ) ( )j j
j p q r

i M t i t Pω ξ η γ λ ω ξ η γ
=

=  (53) 

The resultant angular momentum that is transformed by the Zeeman interaction is 
given by 

1 1

0 0 0 0 0 0 0 0 0

1

0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

, , , ,

exp( ( ) ) ( ) ( )

( )

( ) exp( ( ) ) exp( ( ) )

exp( ( ) ) ( ) ( ) ( )

u j k H j H

H u H

u j k j k
j p q r k p q r

i t T E T

T E

M i M t M i M t

i t P M P

λ λ λ ω ξ η γ φ φ ξ η γ

ξ η γ φ φ

αβγ ω ξ η γ ω ξ η γ

λ λ λ ω ξ η γ αβγ ξ η γ
= =

=

=

=

1

0 0 0 0

, , , , , ,
1 1

0 0 0 0 0 0 0 0

( )

( ) ( )
j p q r u p q r k p q r

H k H

T

T E T

ξ η γ

ξ η γ φ φ ξ η γ
= = =

 (54) 

Here we take the term between jE  and uE , and that between uE  and kE  in eq. 
(54): 
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1 1
0 0 0 0

1 1
0 0 0 0

( ) ( )

( ) ( )

j u

u k

E T E

E T E

φ ξ η ς φ αβγ φ

φ ξ η ς φ αβγ φ
H H

H H

 (55) 

The product of these scalar quantities decides a transition between states λj and λk.

9.  SUCCESSIVE TRANSFORMATIONS 

Under any kind of second Zeeman interaction, 1H , including angular momen-
tum 1 1 1 1( )M ξ η ς , angular momentum 1( )M αβγ  is transformed so as to obtain 

2 ( )M αβγ :

2 1 1 1( ) exp( ) ( ) exp( )M i t M i tαβγ αβγ= H H  (57) 

The Hamiltonian is given as the Zeeman interaction between oscillating field 

1 cosH tω  and angular momentum 1 1 1 1( )M ξ η ς , such as 

1 1 0 1 1 1

1 0 1 1 1

cos ( )

       cos ( )
mH H t M

t M
γ ω ξ η ς

ω ω ξ η ς
=
=

 (58) 

Thus 

1 1 1 1 1 1 1 1 1 1 1

, , , ,

1 1 1 1 1 1 1 1 1 1

, , , ,

2 1 1 1 1 1 1 1 1 1 1 1

exp( ) ( ) ( ) exp( ) ( )

exp( ( ) ) ( ) ( ) ( )

( ) exp( ( ) ) ( ) exp( ( ) )

m j n k
m p q r n a b c

u j k j k
j p q r k p q r

i t P M i t P

i t P M P

M i M t M i M t
λ ξ η γ αβγ λ ω ξ η γ

λ λ λ ω ξ η γ αβγ ξ η γ

αβγ ω ξ η γ αβγ ω ξ η γ

= =

= =

=

=

=

=

1 1

1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 H H 1 1 1 1

, , , , , ,
1 1

1 1 1 1 H H 1 1 1 1

exp( ( ) ) ( ) ( )

( ) ( )

( ) ( )

u j k H j H

u
j p q r u p q r k p q r

k

i t T E T

T E T

T E T

λ λ λ ω ξ η γ φ φ ξ η γ

ξ η γ φ φ ξ η γ

ξ η γ φ φ ξ η γ
= = =

 (59) 

The exponential terms of eqs. (54) and (59) are extracted and combined in order to 
define the oscillatory behavior of 1 1 1 1( )M ξ η ς , that is, 

1 0
, , , , , , , ,

1 0
. . , , , , , ,

exp( ( ) ) exp( ( ) )

    exp( ( ) ( ) ) )

j k m n
j p q r k p q r m p q r n p q r

j k m n
j p q r k p q r m p q r n p q r

i t i t

i t

λ λ ω λ λ ω

λ λ ω λ λ ω
= = = =

= = = =

=
 (60) 

This term is very informative with respect to detection of a signal in the time do-
main. Usually a single harmonic of frequency 0ω  is used so that the first harmonic 
of 1ω  shows a single quantum transition and the second double quantum. 
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10.  DISCUSSION 

The density matrix formalism of angular momentum with half- and integer-
spin quantum numbers has been presented using the spectrum dissolving theorem, 
which yields an exact transformation when the rotation operator is used. Next, the 
spectral resolution theorem enabled obtaining a matrix representation of the Hamil-
tonian as a linear combination of the matrix multiplied by its associated non-
degenerate eigenvalue. Each matrix is a projection onto a basis function and or-
thogonal to other members of the set. The matrix also has the property that its 
square returns the same matrix, and therefore the nth power of a matrix is a linear 
combination of the projection matrix multiplied by the nth power of the associated 
eigenvalue. This fact leads to an algebraic expression of an exponential of the 
Hamiltonian. This procedure of the projection onto the basis might be topological. 

Treatment of angular momentum in a multi-quantum regime naturally benefits 
from this operation. We applied this theorem to quantum operator ( )M αβγ , de-
fined as cos cos cosx y zM M Mα β γ+ + , in which cosα , cosβ , and cos γ  are 
direction cosines of Euler angles α, β, and γ. The resultant eigenvalues of the angu-
lar momentum are independent of direction, but the projection matrices are de-
pendent. The matrix for an angular momentum can therefore be resolved as a prod-
uct of the transformation matrix with a direction cosine and an eigenfunction 
matrix that corresponds to the transition. The projection matrix, after removal of 
information on direction, is an intrinsic density matrix. The procedure to obtain 

xM , yM , or zM  from the operator entails a geometric projection onto an or-
thogonal coordinate. An exchange relation among elements xM , yM , and zM  of 
an angular momentum was then examined and used to generate transformation 
matrices that produce the projection matrix independent of the density matrix. 

The vector composed of the density matrices is generated by taking the prod-
uct of the inverse of Vandermonde matrix composed by the (n−1)th powers of the 
eigenvalues and the vector composed of the (n−1)th powers of each angular mo-
mentum, both including the 0th power. This procedure entails an interpolation 
problem of finding the polynomial and degree n − 1. When the eigenvalues are 
nondegenerate, all the density matrices are easily calculated.  

Since a linear combination of the spin density matrix-associated eigenvalue di-
rectly yields a solution for the stochastic Liouville equation, one may evaluate the 
spin response under full or partial excitation. Consequently, the present formalism 
is applicable to the treatment of orbital angular momentum. 
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