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Preface

The growth of the Web is without a doubt one the most far-reaching and transfor-
mational changes our world has witnessed in the last decades. It has put at our fin-
gertips amounts of data that were unimaginable until just a couple of decades ago. But
owing to the quantity, heterogeneity, and dynamicity of this data, making use of it
raises enormous challenges. Managing and accessing Web data calls for increasingly
better tools and techniques that are capable of reasoning and can infer useful infor-
mation from data that may be noisy, distributed, heterogeneous, dynamic, incomplete,
and inconsistent. Several successful research efforts have used rule-based systems,
which allow us to represent knowledge and draw inferences from it, to overcome these
challenges. Extensions and adaptations of classic rule-based languages have found their
application in a range of areas like ontologies for the Semantic Web, querying Web
data, semantic data management, and common-sense reasoning on the Web.

The International Conference on Web Reasoning and Rule Systems has become a
major forum for discussion and dissemination of new results concerning Web rea-
soning and rule systems. This volume contains the proceedings of the 10th Interna-
tional Conference on Web Reasoning and Rule Systems (RR 2016), held during
September 9–11, 2016, in Aberdeen, Scotland. The conference program included
keynote talks by Abraham Bernstein, Meghyn Bienvenu, Ian Horrocks, and Leonid
Libkin, covering diverse theoretical and practical topics of Web reasoning and rule
systems. Extended abstracts of these talks are included in this volume.

The conference program also included presentations of 10 full research papers and
three technical communications. The latter are a more concise paper format that pro-
vides the opportunity to present preliminary and ongoing work, systems, and appli-
cations that are of interest to the RR audience. The accepted papers were selected out of
17 submissions by our Program Committee (PC). This selection was based on four
experts reviews (and in one exceptional case, three reviews) for each paper. We are
deeply grateful to our PC members for their commitment in the process, and their
efforts to provide high-quality constructive feedback to the authors.

To foster the participation and engagement of students, which is fundamental to RR
and to our scientific community, RR 2016 hosted a doctoral consortium and a joint
poster session, in coordination with the established co-location with the 12th edition
of the Reasoning Web Summer School (RW 2016), held just before RR. The generous
sponsorship of the NSF was fundamental to these events. The RR Conference and RW
Summer School would like to acknowledge the support received from VisitScotland
and VisitAberdeenshire, as well as from the Accenture Centre for Innovation and the
K-Drive project, for which we are very grateful.

We want to thank the invited speakers for their valuable contribution, and the local
organizer Jeff Pan and his team for their hard job organizing this event. We would like
to thank our general chair, Umberto Straccia, as well as the doctoral consortium chair,
Rafael Peñaloza, our publicity chair, Adila Alfa Krisnadhi, and our sponsorship chair,



Giorgos Stamou. As usual, EasyChair was an excellent conference management system
and provided great support for the preparation of these proceedings. Last but not least,
we thank all authors and participants of RR 2016, who make this event possible and are
the heart of this community; we hope they had a wonderful time in Scotland.

July 2016 Magdalena Ortiz
Stefan Schlobach
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On the Complexity of Evaluating Regular Path
Queries over Linear Existential Rules

Meghyn Bienvenu1,2 and Michaël Thomazo2(B)

1 CNRS, Université de Montpellier, Montpellier, France
meghyn@lirmm.fr

2 Inria, Le Chesnay Cedex, France
michael.thomazo@inria.fr

Abstract. In the setting of ontology-mediated query answering, a query
is evaluated over a knowledge base consisting of a database instance and
an ontology. While most work in the area focuses on conjunctive queries,
navigational queries are gaining increasing attention. In this paper, we
investigate the complexity of evaluating the standard form of naviga-
tional queries, namely two-way regular path queries, over knowledge
bases whose ontology is expressed by means of linear existential rules.
More specifically, we show how to extend an approach developed for DL-
LiteR to obtain an exponential-time decision procedure for linear rules.
We prove that this algorithm achieves optimal worst-case complexity by
establishing a matching ExpTime lower bound.

1 Introduction

Ontology-mediated query answering (OMQA) has generated a lot of interest in
the last years as a promising way of facilitating access to data (see [4] for a
recent survey). In the OMQA approach, the ontology serves to define a con-
ceptual view of an application domain, introducing a convenient vocabulary
for query formulation and providing background knowledge that is exploited at
query time to obtain the complete set of answers. So far, the vast majority of
research on OMQA has considered user queries in the form of conjunctive queries
(CQs), which are a standard query language for relational databases. However,
in numerous application scenarios, data can naturally be seen as graphs, in which
case so-called navigational queries are considered more suitable. The basic navi-
gational query language is regular path queries (RPQs) [11], which allow one to
find paths whose labels conform to a given regular language.

In recent years, the problem of answering navigational queries in the setting
of OMQA has begun to be explored, first for ontologies formulated in highly
expressive description logics (DLs) of the Z family [8–10], then for rich Horn
DLs like Horn-SROIQ [18], and more recently, for lightweight DLs like DL-
LiteR and EL [5,19]. The latter DLs, which underlie the OWL 2 QL and EL
profiles, are the most relevant for OMQA due to their favourable computational
properties. In addition to plain RPQs, this line of work has also considered
richer navigational languages like conjunctive RPQs (which extend both RPQs
c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 1–17, 2016.
DOI: 10.1007/978-3-319-45276-0 1



2 M. Bienvenu and M. Thomazo

and CQs) and extensions with nesting and/or negation [3,6,15]. Although much
work remains to be done in developing and implementing efficient algorithms,
the complexity landscape for answering various forms of path queries over DL
knowledge bases is now rather well understood. The same cannot be said for
ontologies formulated by means of decidable classes of existential rules (like lin-
ear and guarded rulesets), which constitute another important class of ontology
languages [1,7]. A key feature that distinguishes existential rules from DLs is
the possibility of using predicates of arity greater than two. Since regular path
queries are defined only with respect to unary and binary predicates, one might
wonder whether they make sense in higher arity settings. We argue however that
unary and binary predicates form the backbone of real-world ontologies (irre-
spective of the choice of ontology language), and it is desirable to be able to
use some higher-arity predicates without losing any expressivity in the query
language.

In this paper, we take a step towards a better understanding of the com-
bination of navigational query languages and existential rules by studying the
complexity of answering two-way RPQs in the presence of linear rules, a well-
studied class of existential rules that are a natural generalization of the DL-Lite
description logics. After introducing the necessary background, we show how to
adapt the RPQ algorithm for DL-Lite proposed in [5] to the setting of linear
rules. Unfortunately, our adaptation incurs an exponential blow-up with respect
to the maximum predicate arity. We can nevertheless show that the obtained
algorithm is worst-case optimal, as RPQ answering is ExpTime-complete in
combined complexity.

2 Preliminaries

We adopt the notation of [13]. The notions of constants, function symbols and
predicate symbols are standard. Each function or predicate symbol is associ-
ated with a nonnegative integer arity. Variables, terms, substitutions, atoms,
first-order formulae, sentences, interpretations (i.e., structures), and models are
defined as usual. By a slight abuse of notation, we often identify a conjunction
with the set of its conjuncts. Furthermore, we often abbreviate a vector of terms
t1, . . . , tn as t, and define |t| = n. By ϕσ we denote the result of applying a
substitution σ to ϕ. A term, atom, or formula is ground if it does not contain
variables; a fact is a ground atom. A term t′ is a subterm of a term t if t′ = t
or t = f(s) where f is a function and t′ is a subterm of some si ∈ s. A term
s is contained in an atom p(t) is s ∈ t, and s occurs in p(t) if s is a subterm
of some term ti ∈ t; thus, if s is contained in p(t), s occurs in p(t), but the
converse may not hold. A term s is contained (resp. occurs) in a set of atoms I
if s is contained (resp. occurs) in some atom in I. Let T = {t1, . . . , tn} be a set
of terms. A term t is generated by T if (i) t ∈ T or (ii) t = f(x1, . . . , xk) and
all the xk are generated by T . An instance is a finite set of function-free facts.
The terms appearing in an instance (resp. atom) are denoted by terms(I) (resp.
terms(α)).
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Existential Rules. An existential rule (or just rule) takes the form:

∀x∀z.[ϕ(x, z) → ∃y.ψ(x,y)],

where ϕ(x, z) and ψ(x,y) are non-empty conjunctions of function-free atoms,
and tuples of variables x,y and z are pairwise disjoint. We call ϕ the body and
ψ the head of the rule. For brevity, quantifiers are often omitted.

We frequently use Skolemisation to interpret rules in Herbrand interpreta-
tions, which are defined as possibly infinite sets of facts. In particular, for each
rule ρ and each variable yi ∈ y, let f i

ρ be a function symbol globally unique
for ρ and yi of arity |x|; furthermore, let θsk be the substitution such that
θsk(yi) = f i

ρ(x) for each yi ∈ y. Then, the Skolemisation sk(ρ) of ρ is the follow-
ing rule: ϕ(x, z) → ψ(x,y)θsk.

A linear rule is an existential rule whose body is restricted to a single atom.
For ease of presentation, we will consider only rules without any constants. As
usual, we also assume that rules have only a single atom in the head. This can
be done without loss of generality.

Skolem Chase. The chase [14,16] (or canonical model) is a classical tool in
OMQA. In this paper, we use the Skolem chase variant [17]. Let ρ = ϕ → ψ be
a Skolemised rule, and let I be a set of facts. A set of facts S is a consequence
of ρ on I if a substitution σ exists that maps the variables in ρ to the terms
occurring in I (denoted by terms(I)) such that ϕσ ⊆ I and S ⊆ ψσ. The result
of applying ρ to I, written ρ(I), is the union of all consequences of ρ on I. If Ω is
a set of Skolemised rules, we set Ω(I) =

⋃
ρ∈Ω ρ(I). Let I be a finite set of facts,

let R be a set of rules, let R′ = sk(R), and let R′
f and R′

n be the subsets of
R′ containing rules with and without function symbols, respectively. The chase
sequence for I and R is a sequence of sets of facts I0R, I1R, . . . , where I0R = I and
for each i > 0, set Ii

R is defined as follows:

– if R′
n(Ii−1

R ) �⊆ Ii−1
R , then Ii

R = Ii−1
R ∪ R′

n(Ii−1
R )

– otherwise Ii
R = Ii−1

R ∪ R′
f (Ii−1

R )

The chase of I and R, written chase(I,R), is defined as
⋃

i Ii
R; note that

chase(I,R) can be infinite. However, the chase has a simple structure when
linear rules are considered: each atom can be “chased” independently.

Property 1 (Decomposition of the Chase). Let R be a set of linear rules and I
be an instance. It holds that:

chase(I,R) = ∪α∈I chase({α},R)

Regular Languages. A regular language can be represented either by a regular
expression or by a non-deterministic finite automaton (NFA). Let Σ be a finite
set of symbols. A regular expression over Σ is defined by the grammar: E → ε |
a | E · E | E +E | E∗, where a ∈ Σ and ε denotes the empty word. We use L(E) to
denote the language defined by E . An NFA over Σ is a tuple A = (S,Σ, δ, s0, F ),
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where S is a finite set of states, δ ⊆ S × Σ × S is the transition relation, s0 ∈ S
is the initial state and F ⊆ S is the set of final states. If A is an automaton and
s and s′ are two states of A, we denote by LA(s, s′) the set of words w for which
there is path from s to s′ in A labeled by w.

Regular Path Queries. Let P be a set of predicates. Let us define P±
2 = P2∪{r− |

r ∈ P2} and Pr = P±
2 ∪ P1, where Pi (i ∈ {1, 2}) denotes the predicates of arity

i. A two-way regular path query (RPQ1) is a query of the form q(x, x′) = E(x, x′),
where E is a regular expression defining a language over Pr.

Given an interpretation I, a path from a0 to an in I is a sequence
a0r1a1r2 . . . rnan such that for any i such that 1 ≤ i ≤ n, ai is an element
of the domain ΔI of I, every ri is a symbol from Pr and:

– if ri = a ∈ P1, then ai = ai−1 ∈ aI ;
– if ri ∈ P2, then (ai−1, ai) ∈ rI

i ;
– if ri = r− with r ∈ P2, then (ai, ai−1) ∈ rI .

The label λ(p) of path p = a0r1a1r2 . . . rnan is the word r1r2 . . . rn. For any
language L over Pr, the semantics of L with respect to an interpretation I is
defined by:

LI = {(a0, an) | there is some path p from a0 to an such that λ(p) ∈ L}.

A match for an RPQ q(x, x′) = E(x, x′) in an interpretation I is a mapping π
from the variables of q to elements of ΔI such that (π(x), π(x′)) ∈ L(E)I .

A certain answer to q(x1, x2) with respect to (I,R) is a pair of constants
(a1, a2) such that for every model I of (I,R), there is a match π for q such that
π(x1) = aI

1 and π(x2) = aI
2 . As matches are preserved under homomorphisms,

it holds that (a1, a2) is a certain answer to q(x1, x2) w.r.t. (I,R) if and only if
there is a match for (aI

1 , aI
2 ) in I = chase(I,R). The RPQ Answering problem

asks, given an RPQ q(x1, x2), an instance I, a set of existential rules R, and two
constants (a1, a2) ∈ terms(I)× terms(I), whether (a1, a2) is a certain answer to
q(x1, x2).

Computational Complexity and Turing Machines. We assume the reader to be
familiar with standard complexity classes. In particular, we will consider P,
NP, PSpace, APSpace (alternating PSpace), and ExpTime. We recall that
APSpace = ExpTime.

To fix notations, we recall that an alternating Turing machine (TM) is given
by a 5-tuple M = (Q,Γ, δ, q0, g) where:

– Q is the finite set of states;
– Γ is the finite tape alphabet;
– δ : Q × Γ → (Q × Γ × {L,R})2 is the transition function;
– q0 ∈ Q is the initial state;
– g : Q → {∧,∨, accept, reject} specifies the type of each state.

1 As we only consider the two-way variant, we will use the abbreviation RPQ instead
of the more traditional 2RPQ.
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Note that without loss of generality, we consider TMs having the following prop-
erties:

– for every universal (∧) or existential (∨) configuration, there exist exactly two
applicable transitions;

– the machine directly accepts any configuration whose state s is such that
g(s) = accept;

– the TM never tries to go to the left of the initial position.

We say M is polynomially space-bounded (M is a PSpace TM) if there exists
a polynomial p such that on input x, M visits only the first p(|x|) tape cells.
We assume w.l.o.g. that the alternating PSpace TMs we consider terminate on
every input.

3 Evaluating Regular Path Queries over Linear Rules

We consider the problem of computing the certain answers to a regular path
query and show how to adapt the construction in [5] to the case of linear rules.
There are two main ingredients in the original algorithm for DL-Lite:

– a path in the chase is guessed step by step, keeping in memory only the current
constant of the instance and current state of the automaton;

– when a path goes through the Skolem part of the chase, these constants are
not guessed, but the state in which the automaton is when the path returns
to constants of the instance is guessed, thanks to a precomputed table.

3.1 Additional Challenges with Linear Rules

There are two main differences between DL-Lite and linear rules that need to
be handled. First, in DL-Lite, it is enough to know the predicate of the atom in
which an constant has been created during the chase and the position at which
it appeared in that atom to determine all the atoms that contain that constant
in the chase. This is not true if we consider general linear rules, as illustrated by
the following example:

Example 1 (More Complex Types are Needed). Let us consider the following rules:

h(x, y, z) → h(z, x, y) h(x, x, y) → q(y)

and instance I = {h(a, b, b), h(c, d, e)}. Observe that while a and c occur in the
same position of atoms with the same predicate, q(a) is in chase(I,R), while q(c)
is not.

Second, the following looping property is central to the algorithm from [5].

Definition 1 (Looping Property). An ontology R fulfills the looping property
if it holds that for any instance I, for any path a0r1a1 . . . rnan in chase(I,R)
such that (i) ai and ai+1 are Skolem terms, (ii) ai is a subterm of ai+1, and
(iii) a1 and an are original constants, there exists k ≥ i such that ak = ai.
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Indeed, DL-LiteR fulfills the looping property (as do many other DLs). How-
ever, linear rules do not, as is witnessed by Example 2.

Example 2 (Failure of Looping Property). Consider the instance Ie = {t(a, b)}
and the ruleset Re consisting of the following rules:

t(x, y) → r(y, z) q(x, y, z) → p(y, z)
r(x, y) → q(x, y, z) q(x, y, z) → p(z, x)

The chase for Ie and Re contains the following atoms:

r(b, f1(b)) q(b, f1(b), f2(b, f1(b))) p(f1(b), f2(b, f1(b))) p(f2(b, f1(b)), b)

There is thus a path b r f1(b) p f2(b, f1(b)) p b going from the initial constant b
to b, that passes by f1(b) but does not return via f1(b).

3.2 Adapting the DL-LiteR Algorithm

To take care of the first difficulty, we utilize a finer notion of type, which has
similar properties to the one used in [5].

Definition 2 (Type). A type is a pair (r,P) where r is a predicate of arity k
and P is a partition of {1, . . . , k}.

With each atom, we can associate a type, representing the way terms are
repeated in the atom.

Definition 3 (Type of an Atom). Let α be an atom, whose arity is k. The
type of α is the pair (r,P) where p is the predicate of α and P is the partition of
{1, . . . , k} such that i and j belong to the same partition iff the ith and the jth

arguments of α are equal.

Note that if two atoms α1 and α2 are of same type, there exists an injective
substitution θ12 such that α2 = α1θ12.

Property 2. Let I be an instance, and R be a set of linear rules. Let α1 and α2

be two atoms of I of same type and θ12 such that α2 = α1θ12. Then for every
atom β such that β ∈ chase({α1},R), βθ12 ∈ chase({α2},R).

Let us define for any atom α ∈ chase(I,R), the restriction of chase(I,R) to
α, denoted chase(I,R)|α, as the subset of chase(I,R) consisting of those atoms
whose terms are generated by terms(α). Observe that by the preceding property,
if type(α) = type(β), then chase(I,R)|α is isomorphic to chase({β},R).

We can overcome the second difficulty by generalizing the Loop table intro-
duced in [5], which keeps track of the paths that occur ‘below’ a given type.
Intuitively, a type T is in the cell indexed by (si, j, s

′
i, j

′) if and only if below any
atom of type T , there is a path going from the term in position j to the term in
position j′ labeled by a word that takes A from state si to state s′

i.
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Definition 4 (Loop). Let R be a set of linear rules and A be an NFA. A Loop

table has cells indexed by tuples (si, j, si′ , j′) such that si and si′ are states of
A and j and j′ are integers between 1 and w, where w is the maximum arity
appearing in the ruleset. Cells contain types. A Loop table is:

– sound if for every T ∈ (si, j, si′ , j′) it holds that for every atom α of type T
appearing in some chase({α′},R) (with the predicate of α′ appearing in R),
there is a path p in the restriction of chase(I,R) to α that goes from argument
j of α to argument j′ of α such that λ(p) ∈ LA(si, si′).

– complete if for every atom α of type T (whose predicate appears in R), if
there is path p from argument j to argument j′ of α in chase({α},R) such
that λ(p) ∈ LA(si, si′), then T ∈ (si, j, si′ , j′).

It is direct from the definition that there exists a unique sound and complete
Loop table, and in what follows, we use Loop to denote this table.

The table Loop can be constructed using Algorithm 1. Line 5 initializes the
table by stating than one can go from a position to the same position without
reading any word (and thus not moving in the automaton). Lines 8 and 10
correspond to going through a single edge, reading its label either as an r or an
r−, in the case where both terms are distinct. Lines 13 to 16 do the same thing
when both arguments are equal. Line 19 deals with unary predicates. Finally,
Lines 23 and 26 saturate the table through respectively transitive closure and
propagation of paths from a child to its parent.

Property 3. Let R be a set of linear rules, I be an instance and α ∈ I. The
following are equivalent:

1. type(α) ∈ Loop(s, i, s′, j)
2. there is a path p = a0r1a1 . . . rnan in chase(I,R)|α with a0 appearing at

position i in α, an appearing at position j in α, and λ(p) ∈ LA(s, s′).

Proof. (⇒) We prove, by induction on the order of addition of types that when-
ever a type is added to a cell in Loop(s, i, s′, j), the second condition is fulfilled
as well. If type(α) is added to Loop(si, j, si, j) at Line 5, the empty word defines
a trivial path from any position existing in α to itself, and takes the automaton
from any state to itself. If type(α) is added to Loop(s1, 1, s2, 2) at Line 8, α is
a binary atom of the form r(e1, e2), and there is indeed a path from e1 to e2
labeled r. Moreover, there is a transition in A from s1 to s2 labeled by r, which
concludes this case. The reasoning is similar for types added via Line 10 and
Lines 13 to 16. If type(α) is added at Line 23, it must have already been added
to Loop(s1, j1, s2, j2) and Loop(s2, j2, s3, j3). By the induction assumption, there
is a word w1 (resp. w2) in LA(s1, s2) (resp. LA(s2, s3)) that labels a path from
the position j1 (resp. j2) of an atom α of type T to the position j2 (resp. j3).
Thus w1·w2 labels a path from position j1 in α to position j3 in α and belongs to
LA(s1, s3). Finally, let us assume that type(α) is added to Loop(s1, iα′ , s2, jα′)
at Line 26. By assumption, there is a rule α′ → β′ in R such that α and α′

have the same type, type(β′) is in Loop(s1, iβ′ , s2, jβ′), and the same variable
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Algorithm 1. Creating the Loop table
Data: A set of linear rules R
Result: A sound and complete Loop table
/* Initialization step */

1 foreach arity k do
2 foreach type T of predicate of arity k do
3 for j ∈ {1, . . . , k} do
4 for si ∈ Q(A) do
5 Loop(si, j, si, j) ← Loop(si, j, sj , j) ∪ {T};

6 for type T based on r(x, y) do
7 if s2 ∈ δ(s1, r) then
8 Loop(s1, 1, s2, 2) ← Loop(s1, 1, s2, 2) ∪ {T};
9 if s2 ∈ δ(s1, r

−) then
10 Loop(s1, 2, s2, 1) ← Loop(s1, 2, s2, 1) ∪ {T};
11 for type T based on r(x, x) do
12 if s2 ∈ δ(s1, r) ∪ δ(s1, r

−) then
13 Loop(s1, 1, s2, 1) ← Loop(s1, 1, s2, 1) ∪ {T};
14 Loop(s1, 1, s2, 2) ← Loop(s1, 1, s2, 2) ∪ {T};
15 Loop(s1, 2, s2, 1) ← Loop(s1, 2, s2, 1) ∪ {T};
16 Loop(s1, 2, s2, 2) ← Loop(s1, 2, s2, 2) ∪ {T};
17 for type T based on a(x) do
18 if s2 ∈ δ(s1, a) then
19 Loop(s1, 1, s2, 1) ← Loop(s1, 1, s2, 1) ∪ {T};

/* Saturation step */

20 while something added do
21 for T a type do
22 if T ∈ Loop(s1, j1, s2, j2) ∩ Loop(s2, j2, s3, j3) then
23 Loop(s1, j1, s3, j3) ← Loop(s1, j1, s3, j3) ∪ {T};
24 for α → β ∈ R, of respective types Tα, Tβ do
25 if the same variable appears in α at iα and β at iβ (resp. jα and jβ),

Tβ ∈ Loop(s1, iβ , s2, jβ) then
26 Loop(s1, iα, s2, jα) ← Loop(s1, iα, s2, jα) ∪ {Tα};

appears at position iα′ (resp. jα′) in α′ and iβ′ (res. jβ′) in β′. By the induction
assumption, there is a word w ∈ LA(s1, s2) that labels a path from iβ′ to jβ′ .
Now, let us observe that any two terms that are at positions iα′ and jα′ of the
same atom of type type(α′) are also at position iβ′ and jβ′ of an atom of type
type(β′) in chase(D,R)|α because it is a model of α′ → β′. Thus, w is also the
label of a path from the term at position i′α to the term at position j′

α, which
concludes the proof.

(⇐) We suppose that the second statement holds and reason by induction
on the length n of the path p = a0r1a1 . . . rnan.
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Base case, path of length 0: both states and database constants are thus
equal, and the type is added by the initialization in Line 5.

Base case, path of length 1: α′ = r1(a0, a1) belongs to chase(I,R)|α, and
r1 ∈ LA(s, s′). If a0 �= a1, then type(α′) is added to the cells (s, 1, s′, 2) and
(s, 1, s′, 2) in Lines 8 and 10. If a0 = a1, then type(α′) is added to the four cells
(s, i′, s′, j′) with i′, j′ ∈ {1, 2} (Lines 13–16). As α′ belongs to chase(I,R)|α,
there exists a finite sequence of atoms α = α0, . . . , αm = α′ such that αi+1

belongs to ρi(αi) for some rule ρi ∈ R. By using m applications of Line 26, we
obtain type(α) ∈ Loop(s, i, s′, j).

Induction step: let us assume that the result holds for any path of length
up to n − 1, n ≥ 2, and consider the path p = a0r1a1 . . . rnan. First consider
the case in which ak is contained in α for some 1 ≤ k < n, and let l be a
position of ak in α. There exists a path from a0 to ak of length strictly smaller
than n, and similarly from ak to an. By the induction assumption, type(α) is
in both Loop(s, i, s′′, l) and Loop(s′′, l, s′, j) for some state s′′. An application
of Line 23 yields type(α) ∈ Loop(s, i, s′, j). Next suppose there is no ak (1 ≤
k < n) that occurs in α, and let β be the atom in which a1 is created (at
position k′). This atom is well defined as we consider rules with atomic head.
We know that a0 (resp. an) must occur in β, let us say at position i′ (resp.
j′). Indeed, if it was not the case, α should contain a term among a1, . . . , an−1

which contradicts our earlier assumption. By the induction hypothesis, type(β)
belongs to Loop(s, i′, s′′, k′) and to Loop(s′′, k′, s′, j′) for some state s′′. Hence,
by Line 23, type(β) is in the cell Loop(s, i′, s′, j′). By (repeated) application of
Line 26, type(α) is in the cell Loop(s, i, s′, j), which concludes the proof. ��
Property 4. Algorithm 1 runs in exponential time, and in polynomial time if the
predicate arity is bounded.

Proof. There are polynomially many cells in the table, each of which can contain
at most all types. The number nt of distinct types is single exponential (and
polynomial for bounded-arity predicates). The first for loop runs in O(nt), the
next two run in polynomial time, and the while loop is performed at most nt

times. ��
The remainder of the decision procedure is very close to the original algo-

rithm for DL-LiteR, but we recall it here (Algorithm 2) in the interest of self-
containment. The idea is as follows: starting from a constant a and the initial
state of A, we guess the next constant in I on a path from a to b and the state
of A after taking this step (Line 7). We then check that this choice is valid, i.e.,
there is indeed a path from a to the guessed constant which takes the automaton
from the initial state to the current guessed state. This can be done either by a
checking that a corresponding unary or binary atom is entailed (Lines 9 and 10),
or by checking that a path going through the Skolem part of the chase allows us
to reach the next constant in the required state, using the Loop table (Lines 12
to 14). We repeat this procedure until we reach the constant b in a final state,
or hit the maximal path length. Note that at Line 12, α is uniquely defined if
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Algorithm 2. RPQ answering over linear rules
Input: An NFA A, an instance I, a set of linear rules R,

(a, b) ∈ terms(I) × terms(I)
Output: Yes if and only if (a, b) is a certain answer to the query q defined by A

1 if (I, R) is not satisfiable then
2 return Yes

3 current = (a, s0);
4 count = 0, max = |A| × |I|;
5 while count < max and current �∈ {(b, sf ) | sf ∈ F} do
6 Define (c, s) = current;
7 Guess (d, s′) together with (s, σ, s′) ∈ δ or T, ic, id such that

T ∈ Loop(s, ic, s
′, id);

8 if (s, σ, s′) was guessed then
9 if σ ∈ P±

2 ∧ (I, R �|= σ(c, d)) then return No;
10 if σ = A ∧ (c �= d ∨ I, R �|= A(c)) then return No;

11 if T, ic, id was guessed then
12 Let α be of type T such that c is at position ic and d is at position id;

other terms are set to fresh variables
13 if α does not exist then return No;
14 if I, R �|= α then return No;

15 current = (d, s′), count = count +1;

16 if current= (b, sf ) for some sf ∈ F then return Yes else return No;

it exists (it may not exist e.g., if c and d are different but are at positions that
should have identical terms according to T ).

The following property will be used to establish correctness of the algorithm.

Property 5. At the beginning of each iteration of the while loop of Algorithm 2,
it holds that there is a path from a to the first element of current that takes the
NFA A from the initial state s0 to the state in the second argument of current.

Proof. At the beginning of the first iteration of the while loop, current is equal
to (a, s0). Thus, the path a, whose label is ε, goes from a to a and ε ∈ LA(s0, s0).

Let (ai, si) be the content of current at the beginning of the ith iteration
of the while loop. Let wi be the label of a path from a0 to ai such that wi ∈
LA(s0, si). If there is an (i + 1)th iteration, either (s, σ, s′) or (T, ic, id) has been
guessed, and the corresponding check was successful. Let us consider each case:

– if (s, σ, s′) has been guessed and checked, we have two cases:
• σ ∈ P±

2 , and there is a path from ai to ai+1 in chase(I,R) labeled by
σ. Moreover, σ labels an edge from s to s′ in A. We can thus define
wi+1 = wi.σ

• σ = A, and I,R |= A(c). As c = d, we can again define wi+1 = wi.σ
– if (T, ic, id) has been guessed, it means that T belongs to Loop(si, ic, si+1, id).

By the definition of Loop, there is a path p (in the Skolem part) from any
term at position ic of an atom of type T to the position id of an atom of type
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T such that λ(p) ∈ LA(s, s′). Let α be as defined Line 12. As I,R |= α, where
type(α) = T , ai appears at position ic of α, and ai+1 appears at position id
of α, there is such a path from ai to ai+1. We can thus set wi+1 = wi.p. ��

Property 6. There is an execution of Algorithm 2 that outputs Yes iff the RPQ
given by A is entailed from (I,R).

Proof. (⇒) If the algorithm outputs Yes, the while loop has been exited with
current equal to (b, sf ), with sf a final state of A. By Property 5, this means
that there is a path from a to b whose label takes A from s0 to sf , hence is
accepted by A. This show that whenever Algorithm 2 accepts, (a, b) is a certain
answer to the RPQ given by A.

(⇐) If (a, b) is a certain answer to the RPQ based upon A, then there is path
of minimal length p = a′

0r1a
′
1 . . . rna′

n from a = a′
0 to b = a′

n in chase(I,R) such
that λ(p) = r1 . . . rn ∈ LA(s0, sf ) for some final state sf . Let s′

0s
′
1 . . . s′

n be a
sequence of states of A such that s′

n is a final state of A and for every 1 ≤ i ≤ n,
(si−1, ri, si) ∈ δ. Since p is of minimal length, there is no pair (i, j) with i �= j
such that (ai, si) = (aj , sj). Let us consider the sequence p′ = ((ai, si))i such
that:

– for any i, ai is the ith constant, say a′
ki

, in p belonging to terms(I);
– for any i, si = s′

ki
.

Moreover, for any i, if ki+1 = ki +1, we define auxi = (si, ri+1, si+1). Otherwise,
let auxi = (type(α), ic, id),where:

– α is such that α ∈ I and type(α) ∈ Loop(si, ic, si+1, id);
– aki

appears at position ic of α and aki+1 appears at position id of α.

In the second case, it is possible to define auxi in such a way, as the path ps =
a′

ki
rki+1 . . . a′

ki+1
goes from aki

to aki+1 and belongs to LA(si, si+1) by definition
of si. We show that the sequence of guesses (ai, si, auxi) leads Algorithm 2 to
accept. Since p is minimal, the length of p′ is less than |A|×|I|. Moreover, an = b
and sf is a final state. Thus, the only way for Algorithm 2 to reject with this
sequence of guesses is to reject during checks, i.e., one of the checks performed
at Lines 9, 10, 12 or 14 fails. Let (ai, si, auxi) be the guess at one of the steps. If
auxi is of the form (si, ri+1, si+1), then aki

and aki+1 are consecutive elements
in p, and there is an atom ri+1(aki

, aki+1) in chase(I,R). Thus, ri+1(aki
, aki+1)

is entailed by I and R, and the check at Line 9 or 10 (depending on ri+1 being
a binary or unary atom) is successful. If auxi is of the form (type(α), ic, id),
then there is α ∈ I such that type(α) ∈ Loop(si, ic, si+1, id), and with aki

(resp.
aki+1) appearing at position ic (resp. id) of α. The atom α fulfills the conditions
of Lines 12 and 14. Thus the defined sequence never triggers a rejection from
Algorithm 2, which concludes the proof. ��
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Theorem 1. RPQ Answering in the presence of linear existential rules is:

– in NL in data complexity
– in PTime in combined complexity with bounded arity
– in ExpTime in combined complexity with unbounded arity

Proof. Algorithm 2 is a non-deterministic algorithm that needs to keep in mem-
ory the current state, the current constant, and the number of iterations done so
far. It performs two types of operations: entailment checks and accessing the con-
tents of the Loop table (more precisely, deciding whether T ∈ Loop(s, ic, s′, id)).
Hence, it can be seen as an NL algorithm making oracle calls whenever an entail-
ment check is performed or a cell of Loop is retrieved. Entailment checks are in
NL in data complexity, and Loop is independent from the data: the overall algo-
rithm thus runs in NL in data complexity. In combined complexity with bounded
arity, entailment checks can be performed in PTime, while Loop can be com-
puted in polynomial time: the overall algorithm is thus in PTime with bounded
arity. In the unbounded arity case, the entailment checks can be performed in
PSpace, while the Loop table can be computed in ExpTime: the algorithm thus
runs in ExpTime. ��

4 Lower Bound

It is already known that the data complexity (resp. combined complexity) of
RPQs under linear rules (resp. linear rules with bounded arity) is NL-hard (resp.
PTime-hard) [5], which matches the upper bounds obtained in the preceding
section. We thus focus on providing a matching ExpTime lower bound for the
combined complexity of evaluating RPQs under linear rules of unbounded arity.
The proof is done by simulating an alternating PSpace TM. It is already known
that PSpace TMs can be simulated by means of linear rules [12]. In the following,
we explain how to adapt this construction to simulate alternating TMs. Note
that in this section, we will use rules with multiple atoms in the head: this is
done to simplify the presentation, and a classical transformation allows us to get
the same lower bound for rules with atomic heads.

The intuition is as follows: the construction in [12] represents the configura-
tion of a TM M by a single atom of polynomial arity. The initial configuration
can thus be represented by an instance IM containing a single atom. Then, for
each transition of the TM, polynomially many linear rules are created, each one
representing the action of the transition on a cell at a given position. All these
rules are part of RM. The initial configuration of the TM is accepted if and only
if an atom encoding a configuration having an accepting state is entailed by IM
and RM.

We modify this construction in the following way to deal with alternating
Turing machines: to each atom, we add two positions, that will act as “input”
and “output” positions. Moreover, we will maintain the following property: there
is a path, whose edges are all labeled by the same predicate p, from the input
position of α to the output position of α entailed by chase(I{α},RM) if and
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only if the configuration represented by α is accepted by M. This is true in the
following cases:

– the state of the current configuration is accepting. It is then enough to add
a p-edge from ic to oc; this is possible as the Turing machine is assumed to
never leave an accepting state;

– the current state is existential and one of the two successor configurations is
accepting: we thus add p-edges from the input of the current configuration to
the input of the two children, and from the output of the two children to the
output of the current configuration;

– the current state is universal, and both successor configurations are accepting:
we thus add p-edges from the input of the current configuration to the input
of the first successor configuration, then from the output of that configuration
to the input of the other successor, and lastly from the output of the second
successor to the output of the current configuration.

We now formalize the construction sketched above, staying as close as possible
to the notations in [12].

Turing Machine. Given an alternating PSpace TM and an input x, we can rep-
resent a configuration c reached during the computation by storing the content
of the first p(|x|) cells, as well as the position of the head of the tape and the
current state of the TM. Adding input and output positions, this can be encoded
by a predicate conf of arity 2p(|x|) + 3:

conf(ic, state, cell1, cur1, cell2, cur2, . . . , cellp(|x|), curp(|x|), oc),

where state contains the state identifier, celli represents the content of the ith

cell, curi is equal to 1 if the head of the Turing machine is on cell i and 0
otherwise, and ic and oc are the input and output terms of this atom. We say
that the above atom represents configuration c. Given an atom α, the term at
its input (resp. output) position is denoted by i(α) (resp. o(α)). We denote by
IM,x the instance containing a single atom representing the initial configuration
of M on input x.

For every state qf with g(qf ) = accept, we create the following rule:

conf(ic, qf , . . . , oc) → p(ic, oc). (1)

For each transition δ(q, γ) = {(q′, γ′, L), (q′′, γ′′, L)} such that g(q) = ∨, we
create the rule

conf(ic, q, cell1, cur1, . . . , celli−1, 0, γ, 1, . . . , oc) →
∃ic′ , oc′ , ic′′ , oc′′ conf(ic′ , q′, cell1, cur1, . . . , celli−1, 1, γ′, 0, . . . , oc′),

conf(ic′′ , q′′, cell1, cur1, . . . , celli−1, 1, γ′, 0, . . . , oc′′),
p(ic, ic′), p(oc′ , oc), p(ic, ic′′), p(oc′′ , oc). (2)

for each position i on the tape, and similarly when the head is moving to the
right.
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When g(q) = ∧, we associate with each transition δ(q, γ) = {(q′, γ′, L),
(q′′, γ′′, L)} the following rule:

conf(ic, q, cell1, cur1, . . . , celli, 0, γ, 1, . . . , oc) →
∃ic′ , oc′ , ic′′ , oc′′ conf(ic′ , q′, cell1, cur1, . . . , celli, 1, γ′, 0, . . . , oc′),

conf(ic′′ , q′′, cell1, cur1, . . . , celli, 1, γ′′, 0, . . . , oc′′),
p(ic, ic′), p(oc′ , ic′′), p(oc′′ , oc). (3)

Figure 1 illustrates the functioning of rules of types (2) and (3). We denote by
RM,x the set containing all the rules defined above2. The above rules (where
input and output positions are removed) simulate the run of a PSpace TM [12].

The following property formalizes the reduction and establishes its correct-
ness.

ic occelli
. . . . . .

ic′ oc′celli
. . . . . .

ic′′ oc′′celli
. . . . . .

ic occelli
. . . . . .

ic′ oc′celli
. . . . . .

ic′′ oc′′celli
. . . . . .

p
pp p p p

p

Fig. 1. Existential (left) and universal (right) gadgets

Property 7. Let M be an alternating PSpace Turing machine, and let α be an
atom of chase(IM,x,RM,x) representing a configuration c(α). Then c(α) is an
accepting configuration of M if and only if there is a path in chase(IM,x,RM,x)
from i(α) to o(α) whose label belongs to p∗.

Proof. (⇐) Let α ∈ chase(IM,x,RM,x) represent a configuration c(α), and let
Cα be the restriction of chase(IM,x,RM,x) to α. We show by induction on the
number of atoms of Cα that the required path exists. Note that the induction
is well-founded as the Skolem chase is finite (recall that the considered Turing
machines terminate).

– If Cα contains one atom, then there can be no path in chase(IM,x,RM,x)
witnessing p∗(i(α), o(α)). Suppose then that Cα contains two atoms. In this
case, the only atom in Cα other than α must be p(i(α), o(α)). The only way to
derive such an atom is to apply a rule of the form (1), which is applied if and
only if c(α) is in an accepting state, hence c(α) is an accepting configuration
of M.

– Next assume that the result holds for any atom α such that Cα has less than
n atoms, and let α be an atom such that Cα contains n atoms. We distinguish
two cases:

2 Note that x is required to determine the arity of conf.
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• Case 1: the state of c(α) is existential. Then, since the rules of type (2)
must be satisfied, Cα contains atoms α1 and α2 representing the successor
configurations of c(α). The existence of a path from i(α) to o(α) implies
that there is either a path from i(α1) to o(α1) or a path from i(α2) to
o(α2). To see why, observe that every p-atom involving i(α) or o(α) is
added either by the same rule application as created α or by a rule of
type (2) applied to α. Only atoms of the second kind (refer to Fig. 1, left)
can belong to a shortest path from i(α) to o(α), as atoms of the first kind
have i(α) (resp. o(α)) as second (resp. first) argument. If we have a path
from i(α1) to o(α1), then we can apply the induction assumption to α1

to get that c(α1) is an accepting configuration, which implies that c(α)
is also accepting. We can proceed analogously if we have path from i(α2)
to o(α2).

• Case 2: the state of c(α) is universal. As the rules of type (3) must be
satisfied, the existence of a path from i(α) to o(α) implies the existence
of a path from i(α1) to o(α1) and a path from i(α2) to o(α2), where
α1 and α2 represent the successor configurations of c(α) (refer to Fig. 1,
right). By the induction assumption, c(α1) and c(α2) are both accepting
configurations, which means that c(α) is also accepting.

(⇒) We prove the other direction by induction on the number of transitions
that need to be performed to prove that c(α) is accepted by M.

– If no transitions are required, this means that c(α) is in an accepting state.
Thus, Rule (1) is applicable, and p(i(α), o(α)) is present in chase(IM,x,RM,x).

– Assume the result holds up to n required transitions. We distinguish two cases:
• Case 1: the state of c(α) is existential. As c(α) is accepting, this means

that one of its two successor configurations, say c(α1), is accepting.
Moreover, the number of transitions required to accept c(α1) is strictly
smaller than for c(α). By the induction assumption, p∗(i(α1), o(α1)) is
present in chase(IM,x,RM,x). As p(i(α), i(α1)) and p(o(α1), o(α)) are
also present (since the rules of the form (2) generate them), this proves
that p∗(i(α), o(α)) is present as well.

• Case 2: the state of c(α) is universal. As c(α) is accepting, this means
that its two successor configuration are also accepting. By the induc-
tion assumption, this means that p∗(i(α1), o(α1)) and p∗(i(α2), o(α2))
are present in chase(IM,x,RM,x). As the rules of the form (3) also gen-
erate p(i(α), i(α1)), p(o(α1), i(α2)), and p(o(α2), o(α)), this proves that
p∗(i(α), o(α)) is present in chase(IM,x,RM,x). ��

Now let M be an alternating PSpace Turing machine, x be an input to M,
and α be the unique atom in IM,x. Then by Property 7, c(α) is an accepting
configuration of M if and only if IM,x,RM,x |= p∗(i(α), o(α)). This, together
with known results, yields the following lower bounds:
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Theorem 2. RPQ Answering in the presence of linear existential rules is NL-
hard in data complexity, PTime-hard in combined complexity with bounded arity
and ExpTime-hard in combined complexity without arity bound, even for a fixed
RPQ.

Note that the preceding reduction can be easily adapted to show that atomic
query answering under rulesets containing linear rules and transitivity rules is
ExpTime-hard. Assuming ExpTime�=PSpace, this result is in contradiction
with Theorem 5 in [2], which purports to show a Pspace upper bound. Indeed,
after reexamining the proofs, the authors of the latter work have identified the
flaw, which occurs in the analysis of the combined complexity of their rewriting-
based decision procedure. It turns out that the procedure runs in exponential
time, rather than in polynomial space (the NL upper bound in data complexity
remains valid). Combining our lower bound with their procedure shows that the
problem is ExpTime-complete in combined complexity.

5 Conclusion and Future Work

In this paper, we have investigated the complexity of evaluating regular path
queries under linear existential rules. We have shown that it is NL-complete in
data complexity, PTime-complete in combined complexity when the predicate
arity is bounded, and ExpTime-complete otherwise. This behavior is somewhat
surprising with respect to prior work: indeed, for DL-LiteR, the combined com-
plexity of RPQ answering is lower than for CQs, whereas we observe just the
opposite in the linear case (recall CQ answering is PSpace-complete under linear
rules). The upper bound was shown by adapting an existing decision procedure
for DL-Lite, using a refined definition of type. The lower bound builds upon a
PSpace-hardness result for CQ answering under linear rules.

There are two natural ways to extend the present work: either investigate
more expressive forms of path queries (with conjunction and/or nesting) over
linear rules, or consider the effect of moving to more expressive decidable classes
of existential rules.

Acknowledgements. This work was supported by the ANR project 12 JS02 007 01.
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Abstract. The temporal dimension of data, which contains such impor-
tant information as duration or sequence of events and is present in many
applications of ontology-based data access (OBDA) concerned with logs or
streams, is getting growing attention in the community. To give a proper
treatment to the events occurring in the data from the ontological per-
spective, we assume in our approach that every concept is temporalized,
i.e., has temporal validity time, and the ontology language expresses the
constraints between validity times of concepts. In this paper we outline the
state of art and the future challenges of our research. On the theoretical
side, we are interested in enriching the ontology languages with the oper-
ators for constructing the temporal concepts that are expressive enough
to capture the patterns required by industrial use-cases. On the practi-
cal side, we are interested in implementing the ontology-mediated query
answering with temporalized concepts in the OBDA system Ontop and
performing extensive evaluations using large amounts of real-world data.

Keywords: Ontology-based data access · Temporal logic · Description
logic

1 Introduction and Motivation

Ontology-based data access (OBDA) [9,21], one of the most promising applica-
tions of Knowledge Representation in the Semantic Web area, exposes a high level
conceptual layer in the form of an ontology on top of (potentially very large and
heterogeneous) data sources. The conceptual view of the data, represented by
an (OWL) ontology, models the domain of interest and hides the complex struc-
ture of the underlying data sources. In the ontology, classes and properties are
mapped through a declarative specification into views over data expressed in terms
of SQL queries. In the virtual approach, the OBDA system first rewrites end-
user queries with respect to the ontology, then translates them into SQL queries,
and finally delegates the query execution to the SQL engine over relational data
sources. OBDA has a strong impact in both scientific and industrial communities.

c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 18–24, 2016.
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Research in OBDA has grown to maturity and OBDA has become a prominent
direction in the development of the Semantic Web. The OWL 2 QL profile of the
Web Ontology Language (OWL 2) based on DL-Lite [9], a lightweight DL family
that enjoys a low complexity of reasoning, has been introduced by the W3C as a
standard for OBDA. Ontop1 is a state-of-the-art OBDA engine developed at the
Free University of Bozen-Bolzano. Ontop is currently adopted as the core OBDA
engine of the EU FP7 Optique project whose goal is to overcome the problem of
end-user access to big data [11]. More recently, Ontop has also been integrated in
the commercial graph database system Stardog2 to provide support for SPARQL
end-user queries.

In many applications data has a temporal dimension, which is important to
consider (see, e.g., [13]). In such scenarios, it is reasonable to assume that the
concepts of the conceptual OBDA layer have an associated temporal validity
periods. If the data, for example, is the stream of wind speed measurements at
weather stations, the concept HurricaneForceWind(x, t) can be associated to the
data by means of a mapping that extracts the stations and time stamps, where
the wind speed exceeded 118 km/h. An ontology designer can then use classical
(atemporal) ontology constructors to define new concepts, e.g., “hurricane force
wind is a wind”. Many studies develop this approach (see [4,7,8,12,14,19] and
references therein) and extend the query language of conjunctive or SPARQL
queries with the constructors to retrieve temporal information; e.g., “extract sta-
tions and timestamps, where hurricane force wind occurred and it also occurred
one hour ago”. The latter pattern represents the definition of a hurricane (hurri-
cane force wind lasting one hour or longer). The above mentioned approach, in
spite of allowing to query for hurricanes, does not allow for defining a concept
hurricane that would be very natural in the paradigm of OBDA.

To overcome the limitation of a temporal approach, other studies (see [1,3,
5,15] and references therein) focused on using ontology languages with tem-
poral constructors [2,17] in the setting of OBDA. One can define a hurri-
cane as a new concept by means of temporal operators (e.g., as a conjunc-
tion HurricaneForceWind ∧ X− HurricaneForceWind), where X− is a temporal
operator “previous time”). As another example, the concept Blizzard can be
defined as an occurrence of Blizzard Condition lasting for more than 3 hours,
whereas Blizzard Condition is defined as simultaneous occurrences of Strong Wind,
Low Visibility, and Snow (i.e., BlizzardCondition = Strong Wind ∧ Low Visibility ∧
Snow) [18].

The approach that considers atemporal ontologies only is less expressive. It
has, however, the advantage that the complexity of the temporal query answer-
ing mostly coincides with the complexity of answering usual queries. Therefore,
implementations for this setting can be with a reasonable effort reduced to atem-
poral query answering. With some notable exceptions [1], the complexity of rea-
soning grows significantly in the approach with temporal ontologies (as compared
to reasoning in the underlying ontology languages) [17]. Therefore, it is more

1 http://ontop.inf.unibz.it/.
2 http://stardog.com/.

http://ontop.inf.unibz.it/
http://stardog.com/
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challenging to develop a practical query answering system for that setting. As
we move towards this goal, we are aware that using more temporal constructors
results in higher complexity. Thus, we attempt to allow only those that are nec-
essary for practical use-cases.

The objectives of this ongoing research are: (a) to enrich the ontology lan-
guages with the operators for building the temporalized concepts that are expres-
sive enough to capture the patterns required by industrial use-cases, (b) to
implement ontology-mediated query answering with temporalized concepts in
the OBDA system Ontop, and (c) to perform extensive evaluations using large
amounts of real-world data.

As mentioned above, the direction (a) has been sufficiently studied. However,
more investigation is needed there continuously with respect to new use-cases of
temporal OBDA that are being discovered. Regarding the directions (b) and (c),
to the best of our knowledge, none of the available OBDA implementations take
temporal ontologies into account. In this study our aim is to extend the OBDA
techniques to support temporal reasoning and implement these techniques in the
state-of-the-art framework Ontop.

In the following sections, we identify the research problems and challenges
of this study and we propose our methodology. In Sect. 2 we discuss potential
applications, in Sect. 3 we explain the main challenges in defining new languages
for ontology, mapping, and querying by taking the trade-off between expres-
sivity and efficiency into consideration. In Sect. 4 we analyze the challenges in
implementation side of extending the existing system Ontop.

2 Applications and Use Cases

We have already discussed in Sect. 1 how weather concepts such as hurricane and
blizzard can be defined using temporal ontologies. Those concepts hold for weather
stations (assuming that the data is recorded at them) and time instants. We can
then use a role (which can be mapped to an appropriate database) that connects a
station with a town, a county, or a state it is located in. Then, one can define, e.g.,
a (temporal) concept for counties affected by hurricane as “counties which have
some station located in them that recorded a hurricane”. More interestingly, we
can define a concept for cyclone as “states which have four stations located in them
such that one of them records southern wind, one northern, one western, and one
eastern”. (Note that if we have data describing relative position of a station w.r.t.
other stations, we can define a cyclone even more precisely.) Another interesting
example is a concept for showery counties defined as “counties that have a station
that records no precipitation and a station that records precipitation but recorded
no precipitation 20 min ago”. Use of such and other similar concepts makes sense
to detect development of weather in historical or streaming data. A large database
of records of weather stations across the US is available through National Weather
Service’s Mesonet program3. It can conveniently be used as a data set to evaluate
the performance of our approach.
3 http://mesowest.org.

http://mesowest.org
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Another important application of temporal ontologies is analysis of log data
of mechanical or electronic devices. For example, if a speed (measured in RpM) of
a working engine is continuously recorded in a database, we can extract by means
of the mappings such temporal concepts as idle speed, intermediate speed, and
running speed. A concept smooth shutdown can then be defined as “idle speed
preceded for 15 min by intermediate speed, which is, in its turn, preceded by
running speed”. On the other hand, rapid shutdown can be defined as “idle speed
preceded by occurrence of running speed within 5 min”. Another interesting
example is a concept consistent vibration defined as “high vibration occurring
every 10 s for 1 min”. Clearly, using temporal ontologies to conceptually define
abnormal situations in performance of devices is a novel and relevant approach to
monitoring. We are collaborating with a major industrial company to obtain such
data. This company runs several data centers for monitoring thousands of devices
related to power generation, including gas and steam turbines, compressors,
and generators. Each device is monitored by many sensors of different kinds.
These sensors have generated terabytes of data so far. We aim to observe the
performance and the scalability of our system over these large amount of real
data in collaboration with the researchers in this company.

3 Methodological and Theoretical Challenges

Initially, the most important question to answer is what are the appropriate
temporal languages for expressing/formulating ontologies, mappings, and queries
in terms of expressivity and efficiency. For both the ontology and the query
language level, we have to investigate to which degree the recently proposed
temporal ontology languages and query languages satisfy our needs. Below we
consider potential challenges in these three areas.

Temporal Extension of the Ontology Language. The first candidate for
the role of an ontology language is a Linear Temporal Logic-based Description
Logic (DL) proposed in [1], which was shown to have low data complexity (AC0)
for some important fragments. However there are two main reasons that make
this logic not perfectly well suited to capture our requirements. On one hand,
this logic uses ABoxes with concept assertions of the form A(a, n), where a is
an object name and n is a natural number representing a time point. It is often
hard to adapt the real-world scenarios to this setting, as neither the timestamps
of data records feature fixed periodicity, nor a reasonable atomicity of time in a
data source is known a priori. On the other hand, this logic does not provide an
explicit way to express metric constraints for temporal concepts (e.g., “hurricane
is a strong wind continuing for at least 1 h”). We can overcome the first drawback
by using a Halpen-Shoham Interval Logic-based DL proposed in [3,15], where the
ABox concept assertions are assumed to be of the form A(a, n1, n2) with n1, n2

real or natural numbers indicating a validity interval. This logic was shown be
tractable in data complexity too, however, it is even less expressive in terms of
the metric constraints, and does not overcome the second drawback. We believe
that using ontology languages based on Metric Temporal Logics (MTL) [16] will
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be needed in our approach. Nothing is known yet neither about the complexity of
MTL fragments underlying our temporal constraints, nor about the complexity
of reasoning in MTL-based ontology languages.

Temporal Mapping Language. The mapping languages for temporal con-
cepts over log or stream databases is a novel problem that is fundamental to
our OBDA approach. In general, if one considers ABoxes with concept asser-
tions of the shape A(a, n), the solution is seemingly easy: a mapping should be
an SQL query returning pairs of object names and time stamps. In real-world
situations, however, the data may be noisy and, e.g., to detect whether high tem-
perature occurred at a moment of time n, one needs to look at the value of the
temperature at several surrounding time moments and take the average. Other
approximation functions, such as exponential average, should be considered too,
as they are known to be more appropriate for processing certain types of signals.
Our aim is to consider both the approximations computable in SQL, as well as
other languages for data access.

As mentioned above, in our approach it is more advantageous to consider
concept statement of the form A(a, n1, n2). Therefore, an SQL query of a map-
ping should return a pair of time moments, between which, e.g., high tempera-
ture occurred. In simple scenarios, where data records are complete for the time
stamps, one can use the LEAD function of SQL to compute the n2 to be “paired”
with n1. In the case when the database is missing values in some fields for some
time stamps, computing the temporal concepts may require more elaborate SQL
queries ignoring or taking into account (depending on assumptions about a data
source) time moments with missing signal values.

Temporal Query Language. Query languages for ontologies over temporal
data have been widely considered [4,7,12,14,19], in particular, with SPARQL-
inspired syntax [1,20]. In our approach we intend to keep the end-user query
language simple by moving the temporal patterns into the ontology level. One
important feature that we plan to enable in the queries is the direct use of tem-
poral constants of various granularity, such as 2016, May 2016, afternoon May
5 2016, May 5 2016 11:24, etc. An end-user then can formulate in a natural way
queries such as “locations where a blizzard occurred in May 2016”, “counties and
days when it rained in May 2016”, or “engines and minutes where/when consis-
tent vibration occurred in the past hour”. We plan to investigate the languages
that allow to express such queries.

4 Implementation Challenges

Implementing new forms of mappings and temporal operators of ontologies in
Ontop framework will require substantial work. The most reasonable method to
store and process the information on validity times of a concept seems to be using
the tables (possibly, virtual) representing intervals. In terms of cost efficiency, one
of the most challenging tasks in translating temporal operators into SQL queries
is computing coalescing [6], i.e., the largest time intervals where a concept holds.
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For example, in order to compute intervals where hurricane holds, we need to
consider a coalescing of the time intervals where hurricane force wind holds.
There are various approaches to computing coalescings (e.g., through transitive
closure), we are going to investigate what algorithm suits best to our setting.

The other challenging task in translating into SQL is to provide a cost effi-
cient way of performing temporal joins [10]. In the case of the concept for bliz-
zard, in order to get intervals where it holds, one should compute intersections
of the intervals where strong wind, low visibility, and snow hold. Given a pair
of intervals, one has to consider various relative positions of the first interval
w.r.t. the second, in order to find a pair of numbers that represents the intersec-
tion. Therefore, a straightforward implementation of the intersection in SQL will
result in multiple unions. On the other hand, the CASE operator can help handle
those conditions and prevent from making unions, which reduce the performance
when a number of joined tables is large. We will also investigate other methods
to decrease the temporal join cost by employing SQL cursors. The idea behind
using cursors is to perform the temporal join in a merge-sort fashion over the
tables that are ordered by starting point of intervals. This approach enables one
to apply the temporal join by doing just one iteration of scan over each table
that is joined. The drawback of it, however, is that it requires an additional sort
step before applying the temporal join.

Acknowledgements. This paper is supported by the EU under the large-scale inte-
grating project (IP) Optique (Scalable End-user Access to Big Data), grant agreement
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Abstract. Ontology-based data access (OBDA) deals with the problem
of accessing autonomous data sources through a shared, virtual ontology,
and declarative mappings connecting the data sources to the ontology.
The W3C standard R2RML allows for mapping relational data sources
to RDFS/OWL ontologies. In this paper, we present algorithms for the
semantic analysis of R2RML mappings in the OBDA setting, when the
ontology is expressed in OWL 2 QL. The focus of such algorithms is to
identify the main semantical anomalies (inconsistency and redundancy)
of a mapping specification with respect to the ontology and/or the data
sources. Such algorithms have been implemented in the mapping analysis
tool developed within the Optique European project. We also report on
the experiments conducted within the Optique project use cases.

1 Introduction

Ontology-based data access (OBDA) [12] is an approach to the access of mul-
tiple, heterogeneous data sources through an ontology that acts as a shared,
abstract model of the data, and a declarative mapping that provides the seman-
tic relationship between the data and the ontology.

An OBDA specification is the intensional specification of an OBDA setting,
i.e., a triple 〈T ,S,M〉 where T is the ontology, S is the schema of the data
sources and M is the mapping. In this paper, we focus on the case when S is a
single relational database schema.

Our purpose is to identify algorithms for developing semantic mapping analy-
sis functionalities in an OBDA platform. More precisely, we aim at developing
functionalities that help in the construction and maintenance of the OBDA spec-
ification. In particular, the present work is motivated by the Optique European
project1 [6], whose aim is to apply OBDA technology in big data scenarios. The
issue of creating, debugging and maintaining a mapping specification is a central
one in this project, and tools for supporting the design and analysis of mappings
are being developed within the project.

Indeed, the specification of the mapping is the most challenging and complex
design activity in an OBDA project, since the mapping has to fill the semantic
1 http://www.optique-project.eu/.
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distance between the ontology and the data sources, which is often very large. So,
the declarative assertions constituting the mapping are very complex statements.
Moreover, in the Optique use cases, as well as in other practical applications of
the OBDA framework (see, e.g., [2]), the number of mapping assertions consti-
tuting the mapping is large (hundreds of assertions), and it is extremely difficult
to manually handle and debug such a specification.

In this paper we present the mapping analysis component developed within
the Optique project, to provide automated support to the specification and
debugging of mappings in OBDA. We base our work (Sect. 3) on recent for-
mal notions of anomalous mappings in the OBDA context [10,11]: in particular,
notions of inconsistent and redundant mappings, defined both in a local and in
a global version. The local notions refer to single mapping assertions, while the
global ones are relative to a whole mapping collection (set of mapping assertions).

We remark that defining an appropriate notion of inconsistency for mappings
in OBDA is already challenging, since the “classical” notion of inconsistency is
not meaningful. We thus provide a notion of inconsistency for mappings (called
global mapping inconsistency) that is based on the idea of checking whether the
mapping can be “activated” by the data source without creating contradictions
with the ontology. On the other hand, a “classical” notion of redundancy (that is,
the one that naturally follows from the semantics of an OBDA system) appears
appropriate for our purposes.

This formal framework allows us (Sect. 4) to attack the problem of defining
concrete algorithms for semantic mapping analysis in OBDA. However, differ-
ently from [11], here we consider the W3C standard R2RML [5] as the mapping
language. Such a language allows for expressing arbitrary SQL queries over the
database source. This immediately makes almost every significant semantic check
over R2RML mappings undecidable, independently of the ontology language (or
equivalently, even if the ontology is empty). Nevertheless, we are able to define
approximated techniques for semantic mapping analysis based on: (i) the trans-
lation of SQL into first-order logic; (ii) the usage of a first-order theorem prover
to solve reasoning problems that encode the additional expressiveness of R2RML
with respect to GAV and GLAV.

Finally, in Sect. 5 we present the experimental results obtained by our map-
ping analysis algorithms in the Optique project use cases.

2 Preliminaries

In the following, we assume to have four pairwise disjoint, countably infinite
alphabets: an alphabet ΓT of ontology predicates, an alphabet ΓS of source
schema predicates, an alphabet ΓC of constants, and an alphabet ΓF of functions.

Source schemas. A source schema S is a relational schema containing relations
in ΓS , possibly equipped with integrity constraints (ICs). A legal instance D for
S is a database for S (i.e., a finite set of ground atoms over S and the constants
in ΓC) that satisfies the ICs of S. We denote by Const(D) the set of constants
occurring in D.
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We consider integrity constraints corresponding to first-order sentences.
Given a source schema S, we denote by Ψ(S) the first-order sentence constituted
by the conjunction of the sentences corresponding to its integrity constraints.

Given a first-order sentence α, we write S |= α if for each database D legal
for S, ID |= α, where ID is the interpretation induced by D.

We call simple schema a source schema without ICs. We adopt standard
notions for first-order (FO) queries and conjunctive queries (CQs) over relational
schemas [1]. By a FO query over a source schema S we mean a FO query over
the alphabet of S. With φ(x ) we denote a FO query with free variables x . The
number of variables in x is the arity of the query. A Boolean FO query is a FO
query without free variables. Given a FO q over S and a legal instance D for S,
eval(q,D) denotes the evaluation of q over D. In what follows, we will always
denote a source schema with S.

Ontologies. We consider ontologies expressed in the description logic DL-LiteR
[4], the logic underlying the OWL 2 QL standard profile.2 In particular, a
DL-LiteR ontology O is a pair 〈T , A〉, where T is the TBox and A is the ABox.
In what follows, O, T , and A, respectively, will always have the same meaning.
As in the W3C standard OWL, we do not interpret ontologies under the Unique
Name Assumption. We denote with Models(O) the set of models of O, and with
O |= α the fact that O entails a sentence α. Also, by ontology inconsistency we
mean the task of deciding whether Models(O) = ∅, and by instance checking the
task of deciding whether O |= β, where β is a ground atom. By CQs over O we
mean CQs over the alphabet of the TBox of O, and by CQ entailment the task
of checking whether O |= q, where q is a Boolean CQ.

Mappings. A mapping assertion m from a source schema S to a TBox T has
the form

φ(x ) � ψ(x ) (1)

where φ(x ) is a function-free first-order query with free variables x (and, pos-
sibly, existentially quantified variables) over the predicates of S, and ψ(x ) is
a conjunctive query with function symbols, i.e., a conjunction of atoms whose
predicates are concepts and roles from T and whose arguments may be variables
from x , constants, or terms of the form f(t1, . . . , tn) where n ≥ 1, f ∈ ΓF and
every ti is either a variable from x or a constant. The free variables x are called
the frontier variables of m, and denoted by FR(m). Moreover, φ(x ) is called the
body of m (denoted by body(m)), and ψ(x ) is called the head of m (denoted by
head(m)). The number of variables in x is the arity of the mapping assertion.
A mapping M from S to T is a finite set of mapping assertions from S to T .
Hereinafter M will always denote a mapping.

The above defined mapping language is the one typically considered in
OBDA [3,12], and captures almost all the R2RML W3C standard mapping lan-
guage [5].

2 http://www.w3.org/TR/owl2-profiles/.
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We say that a mapping assertion m is active on a source instance D if
eval(body(m),D) is a non-empty set of tuples of constants. A mapping M is
active on D if all its mapping assertions m ∈ M are active on D.

Without loss of generality, we assume that different mapping assertions use
different variable symbols. A freeze of a set of atoms Γ is a set of ground atoms
obtained from Γ by replacing every variable with a fresh distinct constant. In
this paper, the freeze is always used in the context of a mapping M, so it suffices
to assume that fresh constants do not appear in M. Different freezes of the same
set of atoms are equal up to renaming of constants. Thus, in the following we
assume, without loss of generality, that the freeze of a set of atoms Γ is unique
and is obtained by replacing each variable occurrence x with a fresh constant
cx, and we denote it by Freeze(Γ ).

Given a mapping assertion m of arity n and an n-tuple of constants t , we
denote by m(t) the mapping assertion obtained by replacing FR(m) in m with
the constants in t .

OBDA Specifications. An OBDA specification is a triple J = 〈T ,S,M〉. The
semantics of J is given with respect to a database instance D legal for S: a
model for J w.r.t. D is a FOL interpretation I over the alphabet ΓT ∪ ΓC ∪ ΓF
that satisfies both T and M. Formally, we say that I satisfies the mapping
M if for each assertion m ∈ M and each tuple of constants t such that t ∈
eval(body(m),D) we have that I |= head(m(t)). The set of models of J w.r.t.
D is denoted with Models(J ,D). Also, we use (J ,D) to denote J with source
instance D. We say that (J ,D) is inconsistent if Models(J ,D) = ∅, and denote
with (J ,D) |= α the entailment of a sentence α by (J ,D).

Example 1. As an example of an OBDA specification, we consider a source
schema S where the plants relation contains data on extraction facilities, while
the eZones relation contains data on the areas used for oil and gas extraction.
Below, the underlined attributes represent the keys of the relations.

plants(id pl,pl typ,id zn) eZones(id zn,zn typ)

The formula Ψ(S) expressing the source schema S is the following:

(∀x, y, z, y′, z′. plants(x, y, z) ∧ plants(x, y′, z′) → (y = y′ ∧ z = z′))∧
(∀x, y, y′. eZones(x, y) ∧ eZones(x, y′) → y = y′)

The following DL-LiteR TBox models a very small portion of the domain of
oil and gas production extracted from an ontology developed within the Optique
project. In particular, the TBox focuses on the facilities (concept Facility) used
in the oil and gas extraction and on the geographical areas (concept Area) in
which they are located (role locatedIn). A marine area (concept MarArea) is a
subconcept of the concept Area.

T = { Platform � Facility, MarArea � Area, ∃locatedIn � Facility,
∃locatedIn− � Area Facility � Area � ⊥ }
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The following is an example of a mapping M from S to T :

m1 : (∃y. plants(x, y, z)) � Facility(f(x)) ∧ locatedIn(f(x), z)
m2 : plants(x′, ‘pl’, y′) � Platform(p(x′))
m3 : eZones(z′, ‘mz’) � MarArea(m(z′)).

��

3 Formal Notions of Mapping Anomalies

In this section we recall the formal framework of [10,11] that constitutes the
basis of the mapping analysis functionalities that will be studied in the next
section. We first deal with mapping consistency, then we turn our attention to
mapping redundancy and subsumption. All the definitions of this section are
taken from [11], with the exception of Definition 2.

3.1 Mapping Inconsistency

We start by providing a “global” notion of inconsistency, that is, inconsistency
relative to a whole mapping specification.

Definition 1 (Global Mapping Inconsistency). Let J = 〈T ,S,M〉 be an
OBDA specification. We say that M is globally inconsistent for 〈T ,S〉 if there
does not exist a source instance D legal for S such that M is active on D and
Models(J ,D) = ∅.

Intuitively, if a mapping is globally inconsistent, then it is not possible to
simultaneously activate all its mapping assertions without causing inconsistency
of the whole specification. This is certainly an anomalous situation, as shown by
the following example.

Example 2. Let J = 〈T ,S,M〉 be an OBDA specification where T and S are
as in Example 1. Suppose that the mapping M contains the following mapping
assertions:

m1 : (∃y, z. plants(x, y, z)) � Area(x)
m2 : plants(x′, ‘pl’, z′) � Platform(x′) ∧ locatedIn(x′, z′)

It is easy to see that M is globally inconsistent for 〈T ,S〉, because T |= Platform�
Area � ⊥ and every activation of m2 also activates m1, thus implying Platform(x)
and Area(x) for the same individual x. ��

Then, we provide a novel notion of strong local mapping inconsistency.3

Definition 2 (Strong Local Mapping Inconsistency). Let T be a TBox
and let S be a source schema. We say that a mapping assertion m is strongly
locally inconsistent for 〈T ,S〉 if there does not exist a source instance D legal
for S such that {m} is active on D and Models(〈T ,S, {m}〉,D) = ∅.
3 This notion of strong local inconsistency is slightly different from the notion of local
inconsistency presented in [11]: in particular, it can be shown that strong local
consistency implies local consistency, while the converse in general does not hold.
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In practice, the notion of strong local inconsistency corresponds to check the
inconsistency of a single mapping assertion with respect to 〈T ,S〉.

Note that the strong local mapping inconsistency of m ∈ M for 〈T ,S〉 implies
the global mapping inconsistency of M for 〈T ,S〉. On the other hand, a mapping
M that is globally inconsistent for some 〈T ,S〉 may not contain any mapping
assertion m that is inconsistent for 〈T ,S〉. That is, the strong local inconsistency
of a mapping assertion is a sufficient but not necessary condition for global
inconsistency.

3.2 Mapping Redundancy

We now deal with mapping redundancy. First, given an ODBA specification
J = 〈T ,S,M〉 where M = {m}, we consider a mapping assertion m′ to be
redundant for m, if adding m′ to M produces a specification equivalent to J .
This is formalized below.

Definition 3 (Local Mapping Redundancy). Let T be a TBox, let S be a
source schema, and let m,m′ be mapping assertions of the same arity from S to
T . We say that m′ is redundant for m under 〈T ,S〉 if, for every source instance
D that is legal for S, Models(〈T ,S, {m}〉,D) = Models(〈T ,S, {m,m′}〉,D).

Example 3. Let T and S be as in Example 1. Consider the following mapping
assertions:

m1 : plants(x, ‘pl’, z) � locatedIn(x, z)
m2 : (∃y. plants(x, y, z)) � Facility(x) ∧ locatedIn(x, z)

It is easy to see that the m1 mapping assertion is locally redundant for m2 under
〈T ,S〉. ��

Then, we define a more general, global notion of mapping redundancy which
is relative to a whole mapping specification.

Definition 4 (Global Mapping Redundancy). Let J = 〈T ,S,M〉 be an
OBDA specification and let M′ be a mapping from S to T . We say that M′

is globally redundant for J if, for every source instance D that is legal for S,
Models(〈T ,S,M〉,D) = Models(〈T ,S,M ∪ M′〉,D).

Example 4. Let 〈T ,S,M〉 be an OBDA specification, where T and S are as in
Example 1, and M is as follows:

m1 : (∃y. plants(x, y, z) ∧ eZones(z, ‘mz’)) � locatedIn(x, z)
m2 : eZones(x′, ‘mz’) � MarArea(x′)
m3 : plants(y′, ‘pl’, z′) ∧ eZones(z′, ‘mz’) � locatedIn(y′, z′) ∧ Area(z′)

Then, {m3} is globally redundant for 〈T ,S, {m1,m2}〉. ��
Notice that global redundancy of a mapping M′ for a mapping M under

〈T ,S〉 does not imply that there exists an assertion m′ in M′ and an assertion
m in M such that m′ is redundant for m under 〈T ,S〉, as shown below.
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Example 5. Consider the ontology T = {A1 � A,B1 � B}, the source schema
composed by the only unary predicate Q, and the following mapping assertions:

m1 : Q(X) � A1(X)
m2 : Q(X) � B1(X)
m3 : Q(X) � A(X) ∧ B(X)

Then, M′ = {m3} is globally redundant for 〈T ,S, {m1,m2}〉, but m3 is not
locally redundant under 〈T ,S〉 for any mapping assertion in M. ��
Conversely, it is easy to see that if a mapping M′ contains only assertions that,
taken one by one, are redundant under 〈T ,S〉 for some assertion contained in a
mapping M, then M′ is globally redundant for M under 〈T ,S〉.

Finally, we observe that local mapping redundancy is a special case of global
mapping redundancy in which the mapping M and M′ are both singleton.

4 Algorithms for the Optique System

The techniques for mapping analysis implemented within the Optique system
are based on the construction of a matrix of ABox assertions. More precisely,
given a mapping M relative to a source schema S, we define the ABox matrix
for M under source schema S, and denote it by AM(M,S). We will then show
that such an ABox matrix can be used to reduce all the mapping consistency
and redundancy tasks defined in the previous section to standard DL ontology
reasoning tasks (ontology consistency and instance checking).

First, we introduce some preliminary definitions.
The (partial) grounding g of the frontier variables of a mapping assertion m

is a partial function from FR(m) to a set of constants.
Given two groundings g1 and g2 for m, if g1 is equal to g2 on all the variables

mapped by g2 and there exists x ∈ FR(m) that is mapped by g1 and is not
mapped by g2, then we say that g1 is preferred to g2 for m.

Given a mapping assertion m, we denote by FreezeFR(m) the mapping asser-
tion obtained from m by freezing of the frontier variables of m: more precisely,
in FreezeFR(m) every occurrence of the frontier variable x is replaced by the
constant cx (w.l.o.g., we assume that different mapping assertions use different
variable symbols, and that none of the cx’s appears in M).

Finally, given a mapping assertion m, we denote by ConstFR(m) the set of
constants {cx | x ∈ FR(m)}.

4.1 The Algorithm BuildABoxMatrix

We are now ready to present the algorithm that builds the ABox matrix
AM(M,S):
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Algorithm. BuildABoxMatrix(M,S)
Input: mapping M = {m1, . . . ,mn}, source schema S
Output: AM(M,S)
begin

for i:=1 to n do
for j:=1 to n do begin

M [i, j] = ∅;
for each grounding g : FR(mj) → ConstFR(mi) such that

(i) Ψ(S) |= body(FreezeFR(mj)) → g(body(mi))
and

(ii) there exists no grounding g′ : FR(mj) → ConstFR(mi)
such that Ψ(S) |= body(FreezeFR(mj)) → g′(body(mi))
and g′ is preferred to g for m

do M [i, j] := M [i, j] ∪ Freeze(head(g(mi)))
end;

return M
end

Informally, the ABox matrix M computed by the above algorithm
BuildABoxMatrix(M,S) is such that every cell M [i, j] represents, through ABox
assertions, how mi is activated by mj : every cell M [i, j] is a set of ABox assertions
that represent (using “frozen” individual names) the concept and role instances
retrieved by the mapping assertion mi when the mapping assertion mj is active
on any database instance D. More precisely, if (a projection of) the query in the
body of assertion mj is contained in (a projection of) the query in the body of
assertion mi (condition (i) in the algorithm), then any activation of mj implies
the activation of mi: this is a crucial property both for mapping inconsistency
and for mapping redundancy. The ABox matrix represents such semantic depen-
dencies through ABox assertions that use the same individuals.

Example 6. Consider the following mapping M (on a simple source schema S):

m1 : (∃z.T1(x, y, z) ∧ T2(z, y) ∧ T3(y, x)) � C(x) ∧ R(x, y)
m2 : (∃y′, z′.T1(x′, y′, z′)) � D(x′)
m3 : (∃z′′.T2(z′′, y′′) ∧ T3(y′′, x′′)) � S(x′′, y′′)

The ABox matrix M returned by the algorithm BuildABoxMatrix(M,S) is
as follows:

1 2 3

1 {C(cx), R(cx, cy)}
2 {D(cx)} {D(cx′)}
3 {S(cx, cy)} {S(cx′′ , cy′′)}

In particular, the presence of the D(cx) in M [2, 1] encodes the fact that any
activation of the mapping assertion m1 implies that the mapping assertion m2 is
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also activated (because the body query of m1 is contained into the body query of
m2). Similarly, the presence of the S(cx, cy) in M [3, 1] encodes the fact that any
activation of the mapping assertion m1 also implies the activation of mapping
m3 (because the body query of m1 is contained into the body query of m3).

4.2 Limits of the Algorithm

The algorithm BuildABoxMatrix and its implementation have two main limita-
tions.

First, both check (i) and check (ii) in the above algorithm require to decide
the validity of an arbitrary first-order sentence. This of course is an undecidable
problem, so the above checks can only be approximated by our implementation
of the algorithm. In particular, we have used the E theorem prover4 to solve
the above mentioned validity checks, using a time-out (which we configured in
a range from 5 to 30 s) for every task.

In the case when no answer is provided within the time-out, our implementa-
tion assumes a “no” answer (i.e., no dependency between the two body queries).
Therefore, some dependency between mapping assertions may be not represented
by the ABox matrix returned by the algorithm. We believe that, given the goal
of providing semantic support in the debugging phase of the mapping, this choice
is better than assuming a “yes” answer in the cases not decided by the E prover,
since in this case “false positives” would be produced then by the inconsistency
and redundancy checks that make use of the ABox matrix.

Second, while the ABox matrix “materializes” (through concept and role
instances) in a correct way the semantic relationship between two mapping asser-
tions, there are more complex dependencies that are not captured by the matrix.
For instance, consider the following mapping M (on a simple source schema S):

m1 : T1(x, y) � R(x, y)
m2 : T2(x′, y′) � S(x′, y′)
m3 : T1(x′′, y′′) ∧ T2(z′′, w′′) � P (x′′, w′′)

Here, the activation of a single mapping assertion does not imply the activation
of any other mapping assertion. However, it is immediate to see that the activa-
tion of both m1 and m2 implies the activation of the assertion m3. This is not
captured by the ABox matrix, which only considers dependencies between single
mapping assertions.

To overcome such an incompleteness, the algorithm should consider simul-
taneous activations of arbitrary subsets of mapping assertions: however, this
would have a dramatic impact on the performance of the algorithm, since it
would require an exponential number of iterations rather than a quadratic one.

We believe that such an incompleteness is in practice not problematic, since
in real cases the probability of dealing with situations in which the analysis of
simultaneous activations of multiple mapping assertions is required is very low.

4 http://wwwlehre.dhbw-stuttgart.de/∼sschulz/E/E.html.

http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
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Therefore, due to both the above described limitations, the ABox matrix
actually represents only a partial picture of the semantic dependencies among the
mapping assertions. Despite such a limitation, we can still provide a significant
semantic analysis of mappings.

4.3 Checking Mapping Inconsistency and Redundancy Through the
ABox Matrix

We now show how the ABox matrix can be used to solve the mapping consistency
and redundancy problems introduced in the previous section.

Strong Local Consistency. Let T be a TBox, let S be a source schema, let M
be a mapping, let |M| = n, let M be the matrix returned by the algorithm
BuildABoxMatrix(M,S), let i be an integer such that 1 ≤ i ≤ n, and let A be
the ABox defined as follows:

A = M [i, i]

If the ontology 〈T ,A〉 is inconsistent, then mi is strongly inconsistent for 〈T ,S〉.
Global Consistency. Let T be a TBox, let S be a source schema, let M be
a mapping, let |M| = n, let M be the matrix returned by the algorithm
BuildABoxMatrix(M,S) and let A be the ABox defined as follows:

A =
n⋃

i=1

n⋃

j=1

M [i, j]

If the ontology 〈T ,A〉 is inconsistent, then M is globally inconsistent for 〈T ,S〉.
Local Redundancy. Let T be a TBox, let S be a source schema, let M be
a mapping, let |M| = n, let M be the matrix returned by the algorithm
BuildABoxMatrix(M,S), and let i, j be integers such that 1 ≤ i ≤ n and
1 ≤ j ≤ n. Now let A be the ABox defined as follows:

A = M [j, i]

If 〈T ,A〉 |= M [i, i], then mi is redundant for mj under 〈T ,S〉.
Global Redundancy. Let T be a TBox, let S be a source schema, let M be
a mapping, let |M| = n, let M be the matrix returned by the algorithm
BuildABoxMatrix(M,S), let i be an integer such that 1 ≤ i ≤ n, and let
M′ = M \ {mi}. Now let A be the ABox defined as follows:

A =
⋃

j∈{1,...,i−1,i+1,...,n}
M [j, i]

If 〈T ,A〉 |= M [i, i], then mi is globally redundant for 〈T ,S,M′〉.
Using the above properties, we have implemented algorithms based on the

ABox matrix for both local and global mapping inconsistency and for both local
and global mapping redundancy.
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5 Experiments

The algorithms presented in this paper have been implemented as a novel map-
ping analysis component within the Optique European project, and, as all other
components and APIs developed by the project partners, integrated on the
Optique platform through the Information Workbench (IWB) [8]. IWB is a
semantic data management and integration platform which provides a shared
triple store for managing OBDA system assets, i.e., ontologies, mappings, data-
base metadata, and queries.

Implementation of the mapping analysis component consists both in the addi-
tion of new features to the IWB mapping component and in integration with
already existing mapping editing features. Namely, the latter allows a combina-
tion of mapping editing and analysis through automatic execution of syntactic
checks on new or edited mapping rules. The former instead enriches the mapping
component with the following capabilities.

1. Syntactic, local and global checks (for both inconsistency and redundancy)
on any mapping available in the Optique IWB repository.

2. Explanation of the mapping analysis results. Noticeably, for inconsistency
checks, the explanation or, potentially, the explanations in the case of global
inconsistency, are provided in terms of the combination of the set of TBox
axioms and the single ABox axiom, among the ones generated by algorithm
makeABox, that together determine an inconsistency. This set of axioms is
produced by using the HermiT reasoner [7] and the OWL API BlackBoxGen-
erator and HSTExplanationGenerator classes. Furthermore, provenance of the
ABox axiom in each inconsistency explanation is provided. In other words,
for each such axiom, the set of mapping assertions whose activation in algo-
rithm makeAbox concurs either directly or indirectly to produce the axiom is
returned.

3. Materialization of the mapping analysis results in the shared Optique reposi-
tory hosted by the IWB platform. All mapping analysis results are translated
into RDF triples and stored in the repository for future querying. In case
of addition, deletion, or modification of one or more mapping assertions in
a mapping, mapping analysis is automatically reset by the system, and all
mapping analysis results are deleted from the repository.

The IWB provides the user with a Semantic Wiki, whose template pages are
automatically instantiated for resources of some fixed type. The wiki features a
table-centric interface, in which information is provided mostly in table form.
Such tables are populated by the RDF resources in the IWB’s repository that
are the result of pre-defined structured SPARQL queries.

The interface of the mapping analysis component inside IWB is provided
through extensions of the TriplesMapCollection and MappingCollection templates,
which show, respectively, the available mappings in the repository, and informa-
tion about a single mapping. A “Mapping Analysis Report” section has been
added to the TriplesMapCollection template, showing, for each mapping in the
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repository, the ontology referenced by the mappings, the status of the map-
ping analysis, i.e., whether it has been performed or not, and, if so, whether or
not there are local or global inconsistencies, and if the explanations have been
computed. Instead, the MappingCollection template has been extended with an
“Analysis Results” section, detailing the anomalies identified for each performed
check: for each global inconsistency, a reference to its explanations; for each syn-
tactically incorrect or locally inconsistent mapping assertion in the mapping, the
reference to the mapping and a message detailing the anomaly; for each local
subsumption, the subsumer and subsumee mapping assertions and a message
detailing the type of subsumption, e.g., a head or body subsumption; finally, for
global redundancies, the redundant mapping assertion and a message explaining
the redundancy. Furthermore, custom templates have been produced for map-
ping inconsistency explanations and for explanation provenance, showing, for
each, the relevant information described above, i.e., for explanations, the set of
ontology axioms involved in the explanation and a reference to the provenance
of the ABox axiom, and for provenance, the mappings responsible for producing
the axiom.

The performance of the mapping analysis component was evaluated on one
of the two large-scale use cases of the Optique project from the energy sector,
namely the Statoil use case [9].

In this scenario, expert geologists develop stratigraphic models of unexplored
areas on the basis of data acquired from previous operations at nearby geograph-
ical locations through advanced visual analytics tools that access more than one
thousand terabytes of data. The ontology developed for the Statoil use case
describes wellbores that are drilled for the extraction of natural resources such
as gas or oil, and stratigraphic columns of rock layers in the geographical areas
interested by these wellbores. It also describes the different kinds of measure-
ments that can be performed in wellbores. The ontology consists of about 150
concepts and 100 roles and attributes.

The Statoil use case features two different data sources: the Exploration and
Production Data Store (EPDS), and the NPD FactPages (NPD FP). EPDS is
Statoil’s corporate data store for exploration and production data and their own
interpretations of this data, while NPD FP is a publicly available dataset that
is published and maintained by the Norwegian authorities, containing reference
data for many aspects of the Norwegian petroleum industry, and is often used as
a data source by geologists in combination with EPDS. The mapping used in the
mapping analysis evaluation relates to the EPDS data store, which currently has
about 3,000 tables with about 37,000 columns, and contains about 700 gigabytes
of data.

The evaluation was performed on a version of the EPDS mappings from
February 2015, which is formed by 81 mapping assertions. The syntactic, con-
sistency and redundancy tests were conducted incrementally, to account for the
fact that a local inconsistency of a mapping assertion entails the global inconsis-
tency of the mapping (hence, to find a global inconsistency that does not depend
on local inconsistencies, there must be none of the latter in the mapping), and
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Table 1. Results of the evaluation of the mapping analysis on the February 2015
version of the Statoil mappings for the EPDS data source.

Mapping check Anomalies found Time (sec)

Syntactic 5 .12

Local consistency 7 2.32

Global consistency 1 26.76

Local redundancy 2 55.33

Global redundancy 3 84.28

that redundancy checks must be performed on a consistent ontology. Therefore,
evaluation was performed in the following steps.

1. Identification of syntactically incorrect and locally inconsistent mapping
assertions.

2. Removal of locally inconsistent mapping assertions.
3. Identification of global inconsistencies in the mapping and production of

explanations for each global inconsistency.
4. Removal of the mapping assertions, highlighted in the explanations, respon-

sible for the global inconsistencies.
5. Identification of local and global redundancies.

The results of the evaluation are provided in Table 1. Syntactic correctness,
local consistency and global redundancy were checked for each mapping assertion
in the mapping, local redundancy was checked for each pair of mapping assertions
in the mapping, and global consistency was checked for the whole mapping. In
the case of global consistency, a value of “1” in the table indicates that the
mapping was globally inconsistent, and for such an inconsistency 18 different
explanations were produced. All execution times are expressed in seconds, and
the complete mapping analysis procedure took roughly 3 min.

6 Conclusions

In this paper we have presented algorithm for the semantic analysis of R2RML
mappings in the context of ontology-based data access. In particular, we have
focused on the OWL 2 QL ontology language. We have also presented an exper-
imental evaluation of our algorithms in the Optique project use cases.

We believe that supporting the design and maintenance of OBDA specifica-
tions, and the semantic analysis of mappings in particular, is a crucial aspect
towards the successful depolyment of the OBDA technology in the real world.
Within the Optique system, we are currently further expanding the mapping
analysis component. First, we are developing new functionalities that make use
of the ABox matrix presented in this paper. In particular, we are implementing
a mapping evolution and repair functionality. In addition, we are defining a new
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instance-level mapping debugging technique, which expolits information about
wrong or missing concept and role instances to identify the subset of mapping
assertions that need to be repaired.
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Abstract. In this paper we address the general research question of How
can we express constraints on RDF data and how can we check that an
RDF graph satisfies some given constraints? and we focus on expressing
constraints defining OWL 2 profiles and checking these constraints for
OWL validation. We propose an approach based on the SPARQL Tem-
plate Transformation language (STTL). An STTL template is a trans-
formation rule that applies to a given RDF graph and the recursive call
of a set of STTL templates on an RDF graph outputs some textual data
resulting from the transformation of this graph. We show that STTL can
be used as a constraint language for RDF and we use it to implement
the semantics of OWL 2 profiles: each profile is represented by a set of
STTL templates that a valid ontology must satisfy.

1 Introduction

OWL 2 profiles [6] can be seen as restrictions of OWL 2 statements and the
validation of ontologies against OWL 2 profiles as the checking of syntactic
constraints on OWL 2 axiom declarations. In this paper we address the general
research question of How can we express constraints on RDF data and how can
we check that an RDF graph satisfies some given constraints? and we focus on
expressing constraints defining OWL 2 profiles and checking these constraints
for OWL validation.

We propose an approach based on the SPARQL Template Transformation
language (STTL), which we originally designed in order to enable the transfor-
mation of RDF data into any data format. An STTL template can be viewed as a
transformation rule that applies to a given RDF graph just like an XSL template
applies to an XML tree, and the recursive call of a set of STTL templates on a
whole RDF graph outputs some textual data resulting from the transformation
of this graph.

We show that STTL can be used as a constraint language for RDF: each
STTL template is viewed as representing a constraint and an RDF graph is
checked against a set of constraints by applying the set of STTL templates
representing these constraints on the RDF graph. The output of the application
of a set of STTL templates can be a simple boolean value or a convenient textual
c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 39–45, 2016.
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view of the data, where for instance, the subgraphs violating the constraints are
highlighted. This is done by defining a “Visitor” design patten associated to the
set of STTL templates in order to collect illegal RDF sub-graphs, and a generic
design pattern to display the result to the user.

As a result, we apply our approach to implement the semantics of OWL 2
profiles, each viewed as a set of constraints to be validated: we defined an STTL
transformation to represent each of the three OWL 2 profiles (OWL RL, OWL
QL and OWL EL). The application of one of these STTL transformations to an
ontology (expressed in RDF) enables to validate it against the OWL 2 profile
this transformation represents.

The paper is organized as follows. Section 2 provides an overview of the STTL
language. Section 3 presents the STTL transformation implementing the seman-
tics of the OWL 2 profiles. Section 4 shows how an additional STTL transfor-
mation enables to provide the user with a visual presentation of the results of
the OWL validation results. Section 5 describes our experiments conducted on
several OWL ontologies of the Linked Data. Section 6 concludes.

2 SPARQL Template Transformation Language (STTL)

STTL is a generic transformation rule language for RDF which relies on two
extensions of SPARQL: an additional template query form to express trans-
formation rules and extension functions to recursively call the processing of a
template from another one. A template query is made of a standard where
clause and a template clause. The where clause is the condition part of a rule,
specifying the nodes in the RDF graph to be selected for the transformation.
The template clause is the presentation part of the rule, specifying the output
of the transformation performed on the solution sequence of the where part.
For instance, let us consider the OWL axiom stating that the class of parents
is equivalent to the class of individuals having a person as child. Here are its
expressions in Functional syntax and in Turtle:

EquivalentClasses(a:Parent
ObjectSomeValuesFrom(a:hasChild a:Person))

a:Parent a owl:Class ; owl:equivalentClass
[ a owl:Restriction ; owl:onProperty a:hasChild ;

owl:someValuesFrom a:Person ]

The template below enables to transform the above equivalentClass statement
from RDF into Functional syntax:

TEMPLATE { FORMAT {"EquivalentClasses(%s %s)"
st:apply-templates(?in) st:apply-templates(?c) }}

WHERE { ?in owl:equivalentClass ?c }

The value matching variable ?in is a:Parent which is expected in the transfor-
mation output (the Functional syntax of the OWL 2 statement), while the value
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matching variable ?c is a blank node whose property values are used to build
the expected output. This is defined in another template to be applied on this
focus node. The st:apply-templates extension function enables this recursive
call of templates, where st is the prefix of STTL namespace1.

More generally, function st:apply-templates can be used in the template
clause of any template t1 to execute another template t2 that can itself execute
a template t3, etc. Hence, templates call themselves one another, in a series of
calls, enabling a hierarchical processing of templates and a recursive traversing
of the target RDF graph. The STTL interpreter keeps track of templates and
focus nodes in order to prevent loops as RDF graphs may have cycles. Similarly,
function st:call-template can be used to recursively call named templates.

STTL is compiled into standard SPARQL. The compilation keeps the where
clause, the solution modifiers and the values clause of the template unchanged
and the template clause is compiled into a select clause.

A complete description of STTL language is provided in [1]. We implemented
the STTL language and transformer engine within the Corese Semantic Web
Factory [3] which now comprises an STTL RESTful Web service to process STTL
transformations and output the result of transforming an RDF dataset. This
implementation is described in [2].

3 Validating OWL 2 Profiles with STTL Transformations

OWL 2 profiles are logic fragments, or sublanguages, trading expressive rep-
resentation power for efficient reasoning capabilities. There are three profiles
predefined in the recommendation: EL, QL and RL. As stated in the W3C
recommendation, each OWL 2 profile is defined as a set of restrictions on the
structure of OWL 2 statements, i.e. syntactic constraints on OWL 2 axioms def-
initions2. Each profile is defined as (1) a set of restrictions on the type of class
expressions that can be used in axioms and on the place in which they can be
used, (2) the set of OWL axioms supported when restricted to the allowed set
of class expressions, (3) the set of OWL constructs which are not supported. For
example, in OWL 2 RL, the constructs in the subclass and superclass expressions
in SubClassOf axioms must follow some usage patterns and OWL 2 RL axioms
are undirectly constrained by these restrictions.

We defined an STTL transformation to represent each of the three OWL 2
profiles defined in the W3C recommendation. Each STTL template participating
to these transformations enables to check a specific OWL 2 model constraint
and returns a boolean, the value of which depends on whether the constraint is
verified or not. When traversing the RDF graph representing the ontology to be
validated against a given OWL 2 profile, the boolean results of the templates
applied to the graph nodes are aggregated by using a conjunction instead of a
concatenation, so that the final result is a boolean value indicating whether type
checking succeeds or fails.
1 http://ns.inria.fr/sparql-template/.
2 https://www.w3.org/TR/owl2-profiles/.

http://ns.inria.fr/sparql-template/
https://www.w3.org/TR/owl2-profiles/
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Considering that each OWL 2 profile is defined by a set of constraints for the
declaration of axioms (some axioms are not supported, some are supported with
restrictions) and a set of constraints on class expressions, we defined modular
STTL transformations to represent OWL 2 profiles. Basically, each one consists
in a single template calling a transformation gathering templates representing
constraints on axioms and these transformations call several other transforma-
tions gathering templates representing constraints on class expressions.

Let us focus on the st:owlrl3 transformation which comprises 36 STTL
templates representing the constraints defining the OWL 2 RL profile. It con-
sists of a start template calling the st:axiom transformation whose templates
themselves call the st:subexp, st:superexp, and st:equivexp transforma-
tions. Transformation st:axiom comprises 10 templates representing restric-
tions on class axioms to use the appropriate form of class expressions, restric-
tions on property domain and range axioms to only use class expressions of
type superClassExpression, restriction on positive assertions to only use class
expressions of type superClassExpression and restrictions on keys to only use
subClassExpression.

The result of each template is a boolean value that represents the confor-
mance of the axiom arguments. For instance, the following template repre-
sents the restriction on subClassOf axioms to use a class expression of type
superClassExpression (respectively subClassExpression) for the superclass
(respectively the subclass). These two types of class expressions are each defined
by another STTL transformation which is recursively called in the where clause
of the template. More precisely, a subClassOf axiom is represented by an RDF
triple whose property is rdfs:subClassOf, whose subject ?in is passed as argu-
ment to transformation st:subClassExpression and whose object ?y is passed
as argument to transformation st:superClassExpression. Both transforma-
tions return a boolean whose value corresponds to the conformance of the class
expressions. The template returns the conjunction of these two booleans. In addi-
tion, a “Visitor” design pattern is used to report axioms which are not conform
to the profile.

TEMPLATE { ?suc }
WHERE {

?in rdfs:subClassOf ?y
BIND (
st:call-template-with(st:subexp, st:subClassExpression, ?in) &&
st:call-template-with(st:superexp, st:superClassExpression, ?y)

AS ?suc)
FILTER st:alreadyVisited(?in,"subClass", ?suc) }

In addition, st:axiom comprises one template representing the disallowance of
the DisjointUnion axiom and of reflexive properties. This template returns
false if such an axiom or property occurs in the ontology.

3 http://ns.inria.fr/sparql-template/owlrl/owlrl.

http://ns.inria.fr/sparql-template/owlrl/owlrl
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TEMPLATE { false }
WHERE {

{?in owl:disjointUnionOf ?y} UNION {?in a owl:ReflexiveProperty}
FILTER (st:alreadyVisited(?in,"fail", false)) } LIMIT 1

We defined an STTL transformation for each of the three types of class
expressions in OWL 2 RL: subClassExpression, superClassExpression and
equivClassExpression. For instance, let us consider the st:subexp transfor-
mation representing the subClassExpression type of class expressions, that
can occur as subclass expressions in SubClassOf axioms. In this transformation,
the following named template st:subClassExpression calls for all the other
templates in the transformation. It enables to checks whether the argument is
a URI, in which case it must not be owl:Thing; otherwise it checks whether
all the templates matching the argument return true. In addition, a “Visitor”
design pattern is used to report expressions that do not conform.

TEMPLATE st:subClassExpression(?x) { ?suc }
WHERE {

BIND (
IF (isURI(?x), ?x != owl:Thing, st:apply-templates-all(?x))

AS ?suc)
BIND (st:visit(st:sub, ?x, ?suc) as ?b) }

4 Validation Result Presentation

In order to provide the user with a visualization of the result of the validation,
we wrote an STTL transformation to present in a HTML document the RDF
graph (in the Turtle syntax) representing the ontology to be validated, where
non valid triples are highlighted. For instance, Fig. 1 shows the visualization of
an ontology represented in Turtle and tested against the OWL 2 RL profile with
owl:complementOf in red since OWL 2 RL does not allow this within a class
intersection inside a class equivalence.

During the traversal of the RDF graph representing the tested ontology, a vis-
itor records the subjects of RDF triples corresponding to failing statements. After
type check resumes, the visitor is given to an STTL transformation RDF2Turtle
which enables to pretty-print RDF graphs in Turtle. The template below is the
key of the STTL transformation. It uses the st:visited(?in) extension func-
tion which returns true if the node has been visited (and hence represents a failing
statement). When processing a node of the RDF graph representing the vocab-
ulary to be validated, in case this node represents a failing OWL statement, the
STTL template generates a <span class=’fail’> ... </span> HTML ele-
ment to embed the transformation of the node, i.e. its pretty-print in Turtle
embeded in HTML. A CSS stylesheet associates a specific presentation format
to the fail class, e.g. a red font color.
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Fig. 1. Visualizing the validation result of an ontology against OWL 2 RL

TEMPLATE { FORMAT {
if (st:visited(?in),"[<span class=’fail’>%s</span>].","[%s].")
ibox { st:call-template(st:type, ?in)

st:call-template(st:value, ?in) } }}
WHERE { ?in ?p ?y FILTER isBlank(?in) } LIMIT 1

5 Implementation and Experiments

We have written an STTL transformation for the three OWL profiles defined in
the W3C recommendation: OWL RL (36 templates), OWL QL (24 templates)
and OWL EL (20 templates)4. These transformations, like any other STTL
transformations, can be applied to an OWL ontology to be validated by using
the Corese Semantic Web Factory which comprises an STTL engine. This is an
open-source development that can be freely downloaded5. We also wrote and
deployed a dedicated Web service that can validate an OWL ontology against
OWL 2 profiles given the URL of the ontology as an argument in the HTTP
request (in RDF)6. We also have tested the STTL transformations on a propri-
etary ontology in the e-Education domain, owned by the Educlever company. It
comprises 57,174 triples and its validation took 0.5 s on a laptop (HP EliteBook
840 G2, 2.6 GHz, 16 GB RAM). Finally, we have tested the STTL constraint
checking transformations on the open source Foundational Model of Anatomy
(FMA) ontology7. It comprises 1,743,162 triples and its validation against OWL
RL takes 3.3 s, against OWL QL 4.8 s, and against OWL EL 4.6 s.

6 Conclusion

We have shown how to answer the problem of OWL 2 RL Profile confor-
mance checking by using the STTL language. We have designed an STTL
4 http://ns.inria.fr/sparql-template/.
5 http://wimmics.inria.fr/corese.
6 http://corese.inria.fr/.
7 http://sig.biostr.washington.edu/projects/fma/release/index.html.

http://ns.inria.fr/sparql-template/
http://wimmics.inria.fr/corese
http://corese.inria.fr/
http://sig.biostr.washington.edu/projects/fma/release/index.html
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transformation for each of the OWL 2 profiles in the W3C recommendation.
The STTL engine as well as the STTL transformations are freely available and
open-source and a Web service enables to test our validators with any ontology
(in RDF). We have created a design pattern that enables transformations to
perform type checking by returning boolean values and pretty-print the result
of the validation. As future work, we will provide a comparison of our OWL
2 validator to the validator developed by the University of Manchester8 which
relies on the OWL API [5].

Our approach to represent OWL 2 profiles by STTL transformations is not
specific to the problem of OWL validation and STTL can be used to repre-
sent other kinds of constraints on RDF data. Therefore, as future work, we will
compare our approach to related works on RDF constraint checking, among
which [4]. Relatedly, the W3C hosts a RDF Data Shapes9 working group for
describing structural constraints and validate RDF data against those and we
are currently designing an STTL transformation implementing the current ver-
sion of W3C RDF Data Shapes.

References

1. Corby, O., Faron-Zucker, C.: STTL: a SPARQL-based transformation language for
RDF. In: 11th International Conference on Web Information Systems and Technolo-
gies, WEBIST 2015, Lisbon, Portugal, May 2015

2. Corby, O., Faron-Zucker, C., Gandon, F.: A generic RDF transformation software
and its application to an online translation service for common languages of linked
data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 150–165.
Springer, Heidelberg (2015)

3. Corby, O., Gaignard, A., Faron-Zucker, C., Montagnat, J.: KGRAM versatile data
graphs querying and inference engine. In: IEEE/WIC/ACM International Confer-
ence on Web Intelligence, Macau, China (2012)

4. Fischer, P.M., Lausen, G., Schätzle, A., Schmidt, M.: RDF constraint checking. In:
Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference. CEUR
Workshop Proceedings, Brussels, Belgium, vol. 1330, pp. 205–212 (2015)

5. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Seman-
tic Web J. 2, 11–21 (2011)

6. Motik, B., Grau, B.C., Horrocks, I., Zhe, W., Fokoue, A., Lutz, C.: OWL 2 Web
ontology language profiles. Recommendation, W3C (2012). http://www.w3.org/
TR/owl2-profiles/

8 http://mowl-power.cs.man.ac.uk:8080/validator/.
9 http://www.w3.org/2014/data-shapes/wiki/Main Page.

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://mowl-power.cs.man.ac.uk:8080/validator/
http://www.w3.org/2014/data-shapes/wiki/Main_Page


Revisiting Grounded Circumscription
in Description Logics

Stathis Delivorias2(B) and Sebastian Rudolph1

1 Theoretical Computer Science, TU Dresden, Dresden, Germany
Sebastian.Rudolph@tu-dresden.de

2 University of Montpellier, LIRMM, Montpellier, France
Delivorias@lirmm.fr

Abstract. Circumscription is a paradigm of non-monotonic logic meant
to formalize the common-sense understanding that, among competing
theories that represent phenomena equally well, the one with the fewest
“abnormal” assumptions should be selected. Several papers have con-
sidered ways of adding circumscription to Description Logics. One of
the proposals with good computational properties is Grounded Circum-
scription, introduced by Sengupta, Krishnadi and Hitzler in 2011. Our
paper builds on their general idea, but identifies some problems with the
original semantics definition, which gives rise to counter-intuitive conse-
quences and renders the proposed tableau algorithm incorrect. We give
an example that makes the problem explicit and propose a modifica-
tion of the semantics that remedies this issue. On the algorithmic side,
we show that a big part of the reasoning can actually be transferred to
standard Description Logics, for which tools and results already exist.

1 Introduction

Circumscription is a paradigm of non-monotonic logic introduced by John
McCarthy in 1980 [5]. The main idea is to formalize the common sense under-
standing that among competing theories that predict equally well, the one with
the fewest assumptions should be selected. This is basically an application of
the principle known as “Occam’s razor” to logic. It is also similar to the closed
world assumption, where what is not known to be true is taken to be false. In its
original first-order logic formulation, circumscription minimizes the extension of
some predicates, where the extension of a predicate is the set of tuples of values
the predicate is true on.

Description Logics (DLs) are knowledge representation formalisms designed
to describe and reason about qualitative properties and conceptual aspects of
a system [1,6]. Ontology languages based on DLs have been widely adopted
in a large class of application areas. One of the most prominent applications
of DLs is to provide the underlying logical basis of the web ontology language
OWL 2, which is the current recommendation of the World Wide Web Consor-
tium (W3C) [4,8]. Therein DLs are used to represent the intended meaning of
Web resources and establish powerful reasoning tools, so as to facilitate machine
c© Springer International Publishing Switzerland 2016
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understandability of Web pages. From a more scholarly perspective, DLs are
decidable fragments of first order logic.

Description Logics traditionally operate within the monotonic realm, namely
the addition of more assertions to a knowledge base does not negate previously
inferred information. But in many prevalent application domains, such as com-
mon sense reasoning, this property does not hold. Conclusions might need to
be revised in the light of new information. Hence it is quite intriguing to try to
develop a DL framework where reasoning would be non-monotonic. There have
been notable efforts to define circumscription for DLs, albeit with rather high
complexity or even undecidable if roles are circumscribed [2].

In this essay we aim to fuse Description Logics, with a restricted version of
Circumscription, called Grounded Circumscription. The work is based on a 2011
publication by K. Sengupta, A.A. Krisnadhi and P. Hitzler, which throughout
this work we will refer to as “the original paper” [7]. In ground circumscription,
some of the predicates in our language (which in DL can only be unary or binary)
are chosen to be grounded and minimized. Grounded means that their interpre-
tations must include only named individuals, i.e. elements of the domain that
correspond to one of the constants that appear in our knowledge base. Moreover,
those predicates are minimized in the sense that we accept only models which
assign as few individuals as possible to them, so that there cannot be a model
whose extensions of these predicates are subsets of the respective extensions in
the minimal model.

In the original paper, the main idea of grounded circumscription is given
along with algorithms for certain decision problems. We have optimized and
modified these ideas. The optimization was our initial aim, in particular we
wanted (and largely achieved) to transfer a big part of the reasoning to standard
DLs, for which there already exist tools and available results. But in the process
we uncovered some insufficiencies in the notion of minimality as introduced in the
original paper, to the discussion of which Subsect. 3.1 is devoted. Hence we have
modified the main definition to one that is more effective and more intuitive.

After introducing the particular DL formalism and terminology that we work
on (Sect. 2), we specify the basic notions and proceed to present an algorithm
for satisfiability (Sect. 3) which is predominantly in the monotonic sphere. We
then introduce important notions which are put to use in the algorithm for
entailment of facts (Sect. 4). Following are supplementary results that further
develop the theory of grounded circumscription in DLs (Sect. 5) and finally we
give an overview of the contribution of this endeavor and discuss prospects of
further research (Sect. 6).

All proofs can be found in the original master thesis [3].

2 Preliminaries

In this section, we give a brief introduction to our formalism and the main
terminology and ideas around it.

In the original paper, decidability of ground circumscription is proven using
rather complex and non-standard languages which feature concept products, role
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hierarchies and role disjunctions. Then, independently, algorithms which apply
only to ALC are given. Our work is entirely based on the standard DL ALCO
but it can trivially be extended to any more complex formalism that subsumes
ALCO.

ALCO Syntax. Let NC , Nr and NI be mutually disjoint sets of concept-, role-
and individual names, respectively. Concepts C in ALCO are built using the
grammar rule:

C ::= � | A | {a} | ¬C | C � C | ∃r.C

where A ∈ NC , r ∈ Nr, and a ∈ NI . We employ the usual abbreviations:
⊥ = ¬�, C � D = ¬(¬C � ¬D), and ∀r.C = ¬∃r.¬C.

An expression of the form C 	 D, where C and D are concepts, is called a
general concept inclusion (GCI). A finite set of GCIs is a TBox. An expression
of the form C(a), where C is a concept and a ∈ NI , is called a concept assertion.
For r ∈ NR and a, b ∈ NI , an expression of the form r(a, b) is called a role
assertion. A finite set of concept and role assertions is called an ABox.

A pair K = (T ,A) consisting of a TBox T and an ABox A is called a
knowledge base (abbreviated frequently as KB). For ease of presentation, in this
study we will usually understand a knowledge base as a single set of axioms,
which would formally be expressed as K = T ∪ A. We will not refer to Aboxes
and Tboxes individually, rather we will handle the knowledge base as a whole.

ALCO Semantics. An interpretation is a pair I = (Δ, ·I), where Δ is a non-
empty domain and ·I is a function that maps every a ∈ NI to aI ∈ Δ, every
A ∈ NC to AI ⊆ Δ, and every r ∈ Nr to rI ⊆ Δ × Δ. The mapping ·I is
naturally extended to all concepts by setting

�I = Δ,

(¬C)I = Δ \ CI ,

(C � D)I = CI ∩ DI ,

{a}I = {aI},

(∃r.C)I = {x ∈ Δ | ∃y ∈ Δ. (x, y) ∈ rI ∧ y ∈ CI}.

An interpretation I satisfies

– a concept inclusion C 	 D if CI ⊆ DI ,
– a concept assertion C(a) if aI ∈ CI and
– a role assertion r(a, b) if (aI , bI) ∈ rI .

We say that I is a model of a TBox T or an ABox A if it satisfies every concept
inclusion in T or every assertion in A, respectively. I is a model of a knowledge
base K = (T ,A) if I is a model of both T and A. If there exists a model of a
knowledge base K, then K is a satisfiable KB. If every model of K satisfies C(a)
(or r(a, b), respectively), we say that C(a) (or r(a, b), respectively) is entailed
by K. If every model of K satisfies C 	 D, then C is subsumed by D with
respect to K.
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3 Grounded Circumscription

In this section we formally define the basic notions of ground circumscription.
The definition of minimality is reestablished in solid grounds, which can prove
a useful framework for further development of this theory.

Ground Extension. A central notion in this study is that of ground extension
of a predicate with respect to a certain interpretation, which is the set of indi-
vidual names or pairs of individual names (depending on whether the predicate
is a concept or a role), whose interpretations belong to the interpretation of this
predicate. Given a knowledge base K, the set of individual names that appear
in K are symbolized Ind(K).

Definition 1. Let K be an ALCO knowledge base and I an interpretation. The
ground extension wrt I of a predicate W ∈ NC ∪ Nr, is the following set:

ExtI(W ) :=

{
{a ∈ Ind(K)|aI ∈ W I} if W ∈ NC ,

{(a, b) ∈ Ind(K) × Ind(K)|(aI , bI) ∈ W I} if W ∈ Nr. �
The key role that ground extension plays, is evident by its frequent presence
throughout the rest of this work. ExtI(·) can be naturally extended to be
applicable to any concept description: if C is a concept, then ExtI(C) := {a ∈
Ind(K)|aI ∈ CI}. Since nominals are valid concept constructors in our lan-
guage, we can ultimately view ExtI(C) as a concept description, provided that
C is a concept as well. One more important property of ground extension, which
is easy to verify, is that it is monotonic with respect to set inclusion, i.e. if
AI ⊆ BI then ExtI(A) ⊆ ExtI(B).

Groundedness and Minimality. The main idea in grounded circumscription
is to select some predicates (concept and role names), and demand that for every
model their interpretation is grounded, i.e. it includes only named individuals,
and that it is minimized, in the sense that there cannot be an interpretation
that assigns fewer individuals to those predicates and still is a model of our
given knowledge base.

Definition 2. Let K be a knowledge base and M ⊆ NC ∪ Nr. A model I of K
is called grounded wrt M if

(i) CI ⊆ {bI |b ∈ Ind(K)} for every C ∈ M ∩ NC .
(ii) rI ⊆ {(aI , bI)|a, b ∈ Ind(K)} for every r ∈ M ∩ Nr. �
Definition 3. A GC-ALCO-KB is a pair (K,M) where K is an ALCO knowl-
edge base and M ⊆ NC ∪ Nr. Every W ∈ M is said to be closed wrt K. Let
≺M denote a “smaller than” relation which is a partial order on the set of all
interpretations for K. An interpretation I is a GC-model of (K,M) if it is a
grounded model of K wrt M and I is minimal wrt ≺M , i.e. there is no grounded
model J of K such that J ≺M I. (K,M) is satisfiable if it has a GC-model.
A statement φ is a logical consequence of (K,M) if every GC-model of (K,M)
satisfies φ. We then say that (K,M) entails φ. �
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Note that φ in the above definition could be a GCI, a concept assertion or a
role assertion. Obviously, the precise semantics depends on the concrete choice
of the “smaller than” relation ≺M , which will be discussed in the next para-
graph. Henceforth we will frequently substitute the term GC-model, with mini-
mal grounded model or simply minimal model.

3.1 Discussion on the Modification of the GC-Definition

The original paper employed the following definition for the “smaller-than” rela-
tion.

Definition 4. Let (K,M) be a GC-ALCO-KB. If I and J are interpretations
of K then the “smaller than” relation is defined in the following way:

I ≺orig
M J if

(i) ΔI = ΔJ and aI = aJ for every a ∈ Ind(K),
(ii) W I ⊆ WJ for every W ∈ M and
(iii) there is a W ∈ M such that W I ⊂ WJ . �

The first condition for the minimality relation in the original paper requires
that two interpretations have equal domains in order for them to be comparable.
Firstly, we argue that this is counter-intuitive. When we say that a model has
fewer assumptions than another model, this does not imply any similarity of their
domains, it rather requires that those predicates which are of importance to us
are of smaller extension. Furthermore, the original definition imposes algorithmic
problems as one will have to look for a minimal model for every possible domain
cardinality. This can make devising correct procedures for expressive languages
significantly more difficult.

In particular, in the original paper the proposed algorithm for instance check-
ing in ALC does not take the definition fully into account. We present here an
example that demonstrates the potential counter-intuitive results of the above
definition, as well as its disagreement with the proposed algorithm.

Consider the following knowledge base:

GoodPerson � Murderer 	 Abnormal
(a good person that is a murderer is an abnormal person)

� 	 ∃r1.(¬GoodPerson � ¬Murderer)
(there exists someone who is not a good person nor a murderer)

� 	 ∃r2.GoodPerson (there exists a good person)
� 	 ∃r3.Murderer (there exists a murderer)
GoodPerson(Sam) (Sam is a good person)

Assume the set of closed predicates is M = {Abnormal}. Then an expected conse-
quence under the grounded circumscription semantics would be ¬Murderer(Sam).

Yet, we observe that the following interpretation I is a GC-model according
to the original definition (and hence prevents the expected consequence):
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ΔI = {1, 2}
SamI = 1
GoodPersonI = MurdererI = AbnormalI = {1}
r1I = {(1, 2), (2, 2)}
r2I = r3I = {(1, 1), (2, 1)}

The only reason why I is a GC-model is because it is minimal among all models
of cardinality 2. For models of greater domain sizes, Sam would never be included
in Murderer, since he is in GoodPerson and we want to minimize Abnormal.
Moreover, we note that this model is not produced by the GC-model-finder
algorithm, given in the original paper, hence contradicting their definition. We
believe that this is because the notion of GC-model was not meant to include
an interpretation like I.

We propose to overcome the problems with the original definition of the
grounded circumscription semantics by modifying the notion of minimality in
the following way.

Definition 5. If I and J are models of K then the “smaller than” relation is
defined in the following way: I ≺new

M J if

(i) ExtI({a}) = ExtJ ({a}) for every a ∈ Ind(K),
(ii) ExtI(W ) ⊆ ExtJ (W ) for every W ∈ M and
(iii) there is a W ∈ M such that ExtI(W ) ⊂ ExtJ (W ). �

Our definition of minimality, which subsumes the one in the original paper
(i.e. I ≺orig

M J implies I ≺new
M J ), is more intuitive in that it directly involves

the assignment of individuals to concepts and roles. This is anyway at the heart
of the tableau method used by the authors of the original paper when providing
algorithms for the reasoning tasks in ground circumscription. Apart from being
more intuitive, this is also the more realistic approach. Comparison between
two models can simply be done on the basis of the mapping of individuals to
concepts and roles. Although we acknowledge that requiring same domains in
order to allow comparison between two models has been the default approach
to circumscription in DLs so far, it seems to be an unnecessary specialization.

Furthermore, we will present in the following how we can significantly
improve the inferencing algorithms in comparison to the original paper. Keeping
the old definition would have hindered this development. Hence we believe that
our reformulation of the notion of minimality is an improvement compared to
the previous work. It is more efficient in producing results by avoiding to inter-
fere as much with the actual semantics, whilst capturing the essense of the idea
of ground circumscription in more satisfactory way.

3.2 Satisfiability of a GC-Knowledge Base

We present now a direct and complexitywise cheap way of determining whether
a GC-ALCO knowledge base is satisfiable. To this end, we first enhance the



52 S. Delivorias and S. Rudolph

KB with axioms that ensure grounding of the closed predicates and then we
take advantage of the following lemma, which effectively says that if a grounded
model exists, then a minimal grounded model must exist as well.

Lemma 1. Both relations ≺orig
M and ≺new

M are well-founded on the class of
grounded models of a knowledge base K wrt to M . �
Definition 6. Let (K,M) be a GC-ALCO-KB, where M ∩ NC = {A1, ..., An}
and M ∩ Nr = {r1, ..., rm}. We define KM as the ALCO-KB which consists of
all the axioms that are included in K as well as the following ones:

– P ≡ {x|x ∈ Ind(K)} where P is a fresh concept name,
– Ai 	 P for every i ∈ {1, ..., n},
– ∃rj .� 	 P for every j ∈ {1, ...,m},
– � 	 ∀rj .P for every j ∈ {1, ...,m}.

KM is then called a grounded ALCO knowledge base. �
We do not give an explicit algorithm for determining satisfiability of a GC knowl-
edge base, because we will show that this decision problem can be reduced to
the satisfiability checking of a (standard) ALCO knowledge base. To solve the
reasoning tasks of ground circumscription with the use of the already developed
monotonic DL reasoning tools was our aim, and as the next proposition shows,
in this case it is proven to be achieved quite ideally.

Proposition 1. Let (K,M) be a GC-ALCO-KB. (K,M) is satisfiable (under
the grounded circumscription semantics, both w.r.t. ≺orig

M and ≺new
M ) if and only

if the ALCO knowledge base KM is (classically) satisfiable. �
One observation worth mentioning here is that grounding, although defined at
a semantic level, can be internalized in the syntax and expressed as a particular
class of knowledge bases. And through this grounding, a localization of the non-
monotonicity is achieved, such that for the principal task of deciding satisfiability,
we do not even need to expand reasoning beyond the already known algorithms
that exist for standard DLs.

4 Instance Checking

For the task of determining whether or not a concept assertion (also referred to
as ‘fact’) is entailed by a GC-ALCO knowledge base, knowing that a minimal
model exists is not enough. We have to be able to find this model or at least
to negate the possibility of a grounded model being minimal. What seems to be
more efficient is a bottom-up approach, where the grounded models found first
are definitely minimal. From now on we are working only on our definition of
minimality and we will write ≺M instead of ≺new

M . Also in the following Part(X)
will denote the set of all partitions of a set X and Z

∗
2 = {0, 1}∗ will denote the

set of all finite binary words.
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Specification of the Configuration Space. The idea of defining indepen-
dently what is essentially the search space of our algorithm, a space of possible
choices of extensions to the closed predicates, is inspired by the original paper,
where a similar set is specified. However, and this is one more clue which points
to the divergence between the intended meaning of ground circumscription and
what was initially defined, in the original paper the domain and the possible
interpretations of the individuals over it are not taken into consideration when
defining this space. Having improved the definition, we still need to add a dimen-
sion to the search space which will correspond to the possible interpretations of
the individual names.

Given an interpretation I, the individual allocation of I is the set AL(I) ∈
Part(Ind(K)) such that every X ∈ AL(I) has the property: for every a ∈ X
and b ∈ Ind(K) holds that aI = bI if and only if b ∈ X.

Suppose that I ∈ Part(Ind(K)) and a, b ∈ Ind(K). We call a and b I-
invariant and write a �I b if there is an X ∈ I such that a, b ∈ X. A set
Z ⊆ Ind(K) is called I-complete if a ∈ Z and a �I b imply b ∈ Z. Similarly
a set V ∈ Ind2(K) is called I-complete if (a, b) ∈ V and a �I a′ and b �I b′

imply (a′, b′) ∈ V . For the sake of conciseness in the next definition, we define
the following sets:

CmpI(K) = {X ⊆ Ind(K)|X is I-complete}
Cmp2I(K) = {Y ⊆ Ind2(K)|Y is I-complete}

We can now employ the above notions to specify the search space of our
algorithm:

Definition 7. Let (K,M) be a GC-ALCO-KB, where M ∩ NC = {A1, ..., An}
and M ∩ Nr = {r1, ..., rm}. Then the set

G(K,M) =
{
(X1, ..., Xn, Y1, ..., Ym, I)

∣∣∣Xi ⊆ CmpI(K), Yj ⊆ Cmp2I(K), I ∈
Part(Ind(K))

}

is called configuration space of (K,M). �
G(K,M) is obviously a finite set. Every grounded model I of K wrt. to M cor-
responds to a point in the configuration space. In particular we will call the
tuple (

ExtI(A1), ..., ExtI(An), ExtI(r1), ..., ExtI(rm),AL(I)
)

the assignment of I.
Let G1, G2 ∈ G(K,M) with G1 = (Z1, ..., Zn+m, I) and G2 = (V1, ..., Vn+m, I).

We say that G1 is smaller than G2 and we write G1 ≺ G2 if it holds that Zi ⊆ Vi

for all i ∈ {1, ..., n + m} and there exists i ∈ {1, ..., n + m} such that Zi ⊂ Vi.
The following result then holds trivially:

Lemma 2. Let I,J be grounded models of a knowledge base K wrt M and let
G1, G2 ∈ G(K,M) be their respective assignments. Then it holds that I ≺M J if
and only if G1 ≺ G2. �
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Binary Encoding and Linear Order. Let G(K,M) be the configuration space
of a GC-ALCO-KB. Let Ind(K) = {a1, ..., aμ}. For the purposes of the algo-
rithm presented in the next section, we want to order G(K,M) linearly. We achieve
that by using a binary encoding for every G ∈ G(K,M) and the lexicographical
order. We first introduce an encoding s : Part(Ind(K)) → Z

∗
2. Every partition

of Ind(K) can be specified by indicating which couples of individual names (that
appear in the knowledge base) belong to the same block of the partition. This
is easily percieved with the following visualization:

a1 a2 a3 . . . aμ

a1 - s(1,2) s(1,3) . . . s(1,μ)

a2 - - s(2,3) . . . s(2,μ)

... - - -
. . .

...
aμ−1 - - - - s(μ−1,μ)

aμ - - - - -

In accordance with the above table we define

s(I) = s(1,2)s(1,3)...s(1,μ)s(2,3)s(2,4)...s(2,μ)...s(μ−1,μ)

where s(i,j) = 1 if there exists Z ∈ I with ai, aj ∈ Z, otherwise s(i,j) = 0. We
can now proceed to define the complete binary encoding of the points of the
configuration space.

Let σ : P
(
Ind(K)

)
∪ P

(
Ind2(K)

)
∪ Part

(
Ind(K)

)
→ Z

∗
2, with

σ(X) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z1z2 . . . zμ if X ⊆ Ind(K) where zκ =

{
1 if aκ ∈ X

0 if aκ /∈ X

z1z2 . . . zμ2 if X ⊆ Ind2(K) where zκμ+λ =

{
1 if (aκ, aλ) ∈ X

0 if (aκ, aλ) /∈ X

s(X) if X ∈ Part(Ind(K))

We can view words over Z2 as natural numbers encoded in the binary system.
If w1, w2 ∈ Z

∗
2 are words of the same length, we write w1 < w2 if this relation

holds for the respective natural numbers. We can now define a total order ‘<’
on G(K,M).

Definition 8. Let G1 = (Z1, ..., Zk) and G2 = (V1, ..., Vk) be two points in the
configuration space of a GC-ALCO-KB (K,M). G1 precedes G2 and we write
G1 < G2 if there exists an i ≤ k such that σ(Zi) < σ(Vi) and for all j < i holds
σ(Zj) = σ(Vj). �
For efficiency purposes, it is important here that the order defined above is
induced by the partial order of minimality, so that the algorithm will discover the
minimal model first and discard searching in large sections of the configuration
space. The following lemma ensures that this is indeed the case.
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Lemma 3. Let G(K,M) be the configuration space of a GC-ALCO-KB. For
every G1, G2 ∈ G(K,M) holds that G1 ≺ G2 implies G1 < G2. �

Navigation Within the Configuration Space. It is critical, given a point
in the configuration space, to be able to construct a grounded model with such
an assignment, if one exists. This is accomplished by adding the axioms specified
in the next definition.

Definition 9. Let (K,M) be a GC-ALCO-KB, where M ∩ NC = {A1, ..., An}
and M ∩ Nr = {r1, ..., rm}. Let G = (X1, ...,Xn, Y1, ..., Ym, I) be a point in the
configuration space of (K,M). We define KG as the ALCO−KB which consists
of all the axioms that are included in KM as well as the following ones:

– {a} ≡ {b} for all a, b ∈ Ind(K) with a �I b,
– {a} 	 ¬{b} for all a, b ∈ Ind(K) with a ��I b,
– Ai ≡ Xi for every i ∈ {1, ..., n},
– N(a,j) ≡ {c ∈ Ind(K)|(c, a) ∈ Yj} for every a ∈ Ind(K) and j ∈ {1, ...,m},
– ∃rj .{a} ≡ N(a,j) for every a ∈ Ind(K) and j ∈ {1, ...,m}.

KG is then called a pointwise restriction of (K,M). �
Lemma 4. Let KG be a pointwise restriction of a GC-ALCO knowledge base
(K,M). The following statements hold:

(i) If I is a model of KG, then G is the assignment of I.
(ii) If there exists a model of KM with assignment G, then KG is satisfiable. �

The Algorithm. We can now specify an algorithm for deciding whether or
not a GC knowledge base entails an assertion. We will also give an example and
discuss complexity and possibility of further use and development.

Let (K,M) be a GC-ALCO-KB, where M∩NC = {A1, ..., An} and M∩Nr =
{r1, ..., rm}. We want to check if an assertion B(a) is a logical consequence of
(K,M). Such a reasoning task is commonly refered to as instance checking, hence
the title of this section. If a /∈ Ind(K) the answer is trivial, so for the rest it
assumed that a ∈ Ind(K). We split the decision procedure in two cases, the
first of which will prove to be solvable in a much more simple way, by only once
calling the “oracle” ALCO reasoner. In the following, given a knowledge base
K0, we use the notation K+

0 := K0 ∪ {¬B(a)} to refer to K0 augmented with
the negation of the assertion we are checking for entailment.

Case 1: B ∈ M

Proposition 2. K+
M is unsatisfiable if and only if (K,M) entails B(a). �

Case 2: B /∈ M

We want to determine if every GC-model of (K,M) entails B(a). To achieve
that, we navigate bottom up in the configuration space which is essentially the
space of possible individual allocations and ground extensions to the predicates
in M . Let G(K,M) = {G1, ..., Gλ}, where G1 < G2 < ... < Gλ.
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IC Algorithm:

1] Initiate Stack := G(K,M).
2] for i = 1 to λ
3] If Gi ∈ Stack:
4] Check KGi

for satisfiability.
5] If YES:
6] Check K+

Gi
for satisfiability.

7] If YES return FALSE.
8] Else remove all Gj � Gi from Stack.
9] return TRUE.

That the above algorithm terminates is obvious, because there is only one
loop. Moreover the command in line 9, outside of the loop, guarantees that it
will return either TRUE or FALSE.

Proposition 3. The IC algorithm returns TRUE if and only if (K,M) entails
B(a). �
To demonstrate how this whole procedure works, we give a simple example.

Example. Let K be a knowledge base consisting of the following axioms:

B(a),¬B(b), r(b, c), ρ(a, b), ρ(a, c),∃r.¬A 	 A

Let M = {A}. Then Part(Ind(K)) = {I1, I2, I3, I4, I5} where

I1 = {{a}, {b}, {c}}
I2 = {{a, b}, {c}}
I3 = {{a, c}, {b}}
I4 = {{a}, {b, c}}
I5 = {{a, b, c}}.

Figure 1 is a visualization of our configuration space. Each possible individual
allocation corresponds to a lattice of possible ground extensions for the closed
predicates, which in our case consists of just A. The restriction of the search
space to I-complete sets of possible extensions, with respect to an individual
allocation I, is portrayed by the apparent reduction of points in I2-I5.

Suppose that we want to check the assertion ¬(A � ∀ρ.A)(a) for entailment.
This basically means that not all individuals can be interpreted as members of
the extension of A. Then the IC algorithm will look bottom-up for grounded
models of K wrt M . If a model is found, then an augmented knowledge base
will be built, consisting of the current pointwise restriction and the negation
of the given assertion, which in our case is just (A � ∀.ρA)(a). In case this
augmented KB is found to be satisfiable, the algorithm will halt, giving FALSE
as an answer. Otherwise it will remove from the Stack all points which are above,
hence reducing further the remaining exploration. For this particular instance,
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Fig. 1. The configuration space of (K,M).

Fig. 2. The distribution of GC-models of (K,M) in the configuration space.

(K,M) entails ¬(A�∀.ρA)(a), so no minimal model which satisfies (A�∀.ρA)(a)
can be found, and so the algorithm will return TRUE.

Note that the entailment holds exactly because of the minimality, i.e. there
are grounded models where all individuals belong to A. Figure 2 gives an account
of the distribution of grounded models and GC-models of (K,M) over the con-
figuration space. Points in white are those that do not correspond to any model
of KM , points in black correspond to GC-models and points in grey to the rest
of the grounded models. All the points in grey are exactly those that will be
never “visited”, i.e. at some step they will be removed from the Stack.

Complexity and Optimization Considerations. Considering that the pre-
sented algorithm requires at most exponentially many calls of the ALCO rea-
soner, each of which requires exponential time, we get that the overall complexity
is still in ExpTime. The lower bound is ExpTime as well as in the case M = ∅
the inference problem turns into standard reasoning in ALCO which is known to
be ExpTime-complete. For more expressive description logics, the complexity
of the black-box reasoning part will dominate and hence determine the overall
complexity.

Regarding the practical runtime behavior, we expect a significant improve-
ment through the removal of points that results from the command in line 8.
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That is because the algorithm, in accordance with the defined linear order, will
try smaller points of the configuration space first and once a model is found, the
algorithm will stop looking at the rest of the branch.

Of course there is room for optimization of this algorithm. Notably from the
example we can see how two out of the five lattices should have been rejected
from the start, since they represent individual allocations which are incompat-
ible with the given knowledge base. More thoroughly, one could remove points
which correspond to assignments which are not consistent with the axioms in
the knowledge base.

On the other hand, the results we have acquired so far can be directly
extended to more complex languages. That follows from the fact that in none
of the proofs supporting this study did we rely on the limitations of ALCO. In
effect, we have used the constructive capabilities of our language, in creating new
knowledge bases that represent the notion of grounding and different points in
the configuration space. But we have not appealed to any restrictions imposed
by the specific syntax of ALCO, with the exception of course of the property of
decidabilty, which is implicit wherever a decision procedure is regarded.

5 Minimality Checking: A Non-standard Reasoning Task

In this section we present a solution to the task of determining whether a specific
grounded model is minimal by calling the standard DL reasoner just once. It
can be of use in devising algorithms for other reasoning problems in grounded
circumscription, but also maybe in some optimized variant of the IC algorithm
presented previously.

Definition 10. Let KM be a grounded KB where M ∩ NC = {A1, ..., An} and
M ∩ Nr = {r1, ..., rm} and let I be a model of KM . We call down-the-chain
axioms with respect to I, the following set of GCIs:

I. {a} ≡ ExtI({a}) for every a ∈ Ind(K),
II. ExtI(¬{a}) 	 ¬{a} for every a ∈ Ind(K),

III. Ai 	 ExtI(Ai) for every i ∈ {1, ..., n},
IV. B(a,j) ≡ {c ∈ Ind(K)|(aI , cI) ∈ rI

j } for every a ∈ Ind(K) and j ∈
{1, ...,m},

V. {a} 	 ∀rj .B(a,j) for every a ∈ Ind(K) and j ∈ {1, ...,m},

VI. � 	 ∃r.

(( ⊔
i∈{1,...,n}

(
ExtI(Ai) � ¬Ai

))
�
( ⊔

j∈{1,...,m}
a∈Ind(K)
c∈B(a,j)

(
{a} � ∀rj .¬{c}

)))
,

where r is a fresh role, i.e. it does not appear in K. KM augmented with the
down-the-chain axioms with respect to a model is called a confining of KM and
symbolized KI−

M , where I is the respective model. �
Notice that the number of axioms in each of the categories I-V depends on M
whereas VI is one single axiom. The next lemma shows how we can find a smaller
grounded model than a given one, if there exists one. Intuitively this is like going
down in the lattice of possible grounded models, hence the terminology.
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Lemma 5. Let (K,M) be a GC-ALCO-KB and let I be a model of KM . There
exists a model J of KM such that J ≺M I if and only if KI−

M is satisfiable. �
For direct practical use, the above lemma is more conveniently expressed in

the following form:

Corollary 1. (Minimality Check) Let (K,M) be a GC-ALCO-KB and let I
be a model of KM . If KI−

M is unsatisfiable, then I is a GC-model of (K,M). �

6 Conclusions

In our paper we have refined and rectified the foundational definition of grounded
circumscription and have produced some first results as a basis for further
research. Starting from a definition that is more accurate in incorporating the
intuition behind grounded circuscription, we have an improved solution to the
satisfiability task which now does not require any non-standard description logic
and can be solved by a single call to an off-the-shelf DL reasoner. Moreover, we
have provided an algorithm for instance checking, which was only insufficiently
covered in the original paper on grounded circumscription.

Apart from the algorithm itself, the theory provided gives a well-founded
understanding of the general potential of grounded circumscription, as redefined
here. The configuration space can prove to be a useful notion for devising other
non-standard reasoning algorithms. The down-the-chain axioms and minimality
check as a sub-task could contribute to solving other reasoning tasks within
grounded circuscription as well.

As mentioned earlier, an advantage of our approach is that all our results
hold if ALCO is replaced by a more complex language, as long as it is decidable.
Certainly there is a lot of space for further development of grounded circumscrip-
tion. It remains to be seen whether the IC algorithm performs well in practice
and/or can be sufficiently optimized further.

One of our main aims was to reduce as much of the reasoning as possible
to standard DL reasoning. This is achieved, in our opinion to the largest extent
possible. With this feature, our theory is implementation-friendly, and one main
future objective is to create a reasoner for grounded circumscription, which will
of course be working on top of an efficient standard DL reasoner.
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Abstract. With the adoption of the recent SPARQL 1.1 standard, RDF
databases are capable of directly answering more expressive queries than
simple conjunctive queries. In this paper we exploit such capabilities
to answer conjunctive queries (CQs) under ontologies expressed in the
description logic called linear EL�in , a restricted form of EL. In partic-
ular, we show a query answering algorithm that rewrites a given CQ
into a conjunctive regular path query (CRPQ) which, evaluated on the
given instance, returns the correct answer. Our technique is based on
the representation of infinite unions of CQs by non-deterministic finite-
state automata. Our results achieve optimal data complexity, as well as
producing rewritings straightforwardly implementable in SPARQL 1.1.

1 Introduction

Ontologies have been successfully employed in conceptual modelling of data in
several areas, especially Information Integration and the Semantic Web. An
ontology is a specification of the domain of interest of an application, and it
is usually specified in terms of logical rules which on the one hand restrict the
form of the underlying data, and on the other hand allow for inference of infor-
mation that is not explicitly contained in the data. Description Logic (DL) is a
common family of knowledge representation formalisms that are able to capture
a wide range of ontological constructs [2]; they are based on concepts (unary
predicates representing classes of individuals) and roles (binary predicates rep-
resenting relations between classes). A DL knowledge base consists of a TBox
(terminological component) and an ABox (assertional component); the former
is a conceptual representation of the schema, while the latter is an instance of
the schema. It is important to note that a usual assumption in this context is
the so-called open-world assumption, that is, the information in the ABox is
sound but not complete; the TBox, in particular, determines how the ABox is to
be completed with additional information so as to answer queries. Answers to a
query in this context are called, following database parlance, certain answers, as
they correspond to the answers that are true in all models of the theory consti-
tuted by the knowledge base. This corresponds to cautious reasoning as opposed
to bold reasoning, where in the latter an answer is returned if it is entailed by
c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 61–76, 2016.
DOI: 10.1007/978-3-319-45276-0 6
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at least one model. The set of all models (which is not necessarily finite) is rep-
resented by the so-called expansion (called chase in database parlance) of an
ABox A according to a TBox T ; this is illustrated in the following example.

Example 1. Consider the TBox T constituted by the assertions C � A and
A � ∃S.C. The concept ∃S.C denotes the objects connected via the role S to
some object belonging to the concept C; in other words, it contains all x such
that S(x, y) and C(y) for some y. The first assertion means that every object in
the class C is also in A; the second means that every object in the class A is also
in the class represented by ∃S.C. Now suppose we have the ABox A = {A(a)};
we can expand A according to the TBox T so as to add to it all atoms entailed
by (T ,A); we therefore add S(a, z0) and C(z0), where z0 is a so-called labelled
null, that is, a placeholder for an unknown value of which we know the existence.
Given the query q defined as q(x) ← S(x, y), the answer to it under (T ,A) is
{a} because S(a, z0) is entailed by (T ,A); in fact, the certain answers to q are
obtained by evaluating q on the expansion and by considering answers that do
not contain nulls. If we consider the query q1 defined as q1(x) ← C(x), the
answer is empty because z0, though known to exist, is not known.

Answers to queries over DL knowledge bases can be computed, in certain
cases, by a technique called query rewriting. In query rewriting, starting from
a given query q, a new query q′ is computed according to a knowledge base
K = (T ,A), such that the answers to q on K are obtained by evaluating q′ on A
only; it is said that q is rewritten into q′ and that q′ is the perfect rewriting of
q with respect to T . The language of q′, called the target language, can be more
expressive than that of q. A common rewriting technique for DLs and other
knowledge representation formalisms, inspired by resolution in Logic Program-
ming, has union of conjunctive queries as target language.

Example 2. Let us consider again the knowledge base of Example 1. The query
q is rewritten into the query q′ defined as q(x) ← A(x) ∪ S(x, y); intuitively,
q′ captures the fact that, to search for objects from which some other object
is connected via the role S, we need also to consider objects in A, because the
TBox might infer the former from the latter objects. The evaluation of q′ on A
returns the correct answer.

In this paper we consider a DL which we call EL�in [17]. When executed
on EL�in TBoxes, the above rewriting technique does not guarantee termina-
tion. We therefore resort to a more expressive target language for the rewriting,
namely conjunctive regular path queries (CRPQs).

Example 3. Consider the TBox T = {∃R.A � A} and the query q defined as
q(x) ← A(x). It is easy to see that the above rewriting technique produces an
infinite union of conjunctive queries: q(x) ← A(x), q(x) ← R(x, y), A(y) and all
conjunctive queries of the form q(x) ← R(x, y1), . . . , R(yk, yk+1), A(yk+1), with
k � 1. Now, in order to capture this infinite rewriting, we can resort to the
CRPQ rewriting q′ defined as q(x) ← R∗(x, y), A(y).
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In this paper we propose a novel rewriting technique for the DL EL�in , where
the query language is that of conjunctive queries (CQs) and the target language
is that of CRPQs. This allows us to devise a query answering algorithm that
has optimum asymptotic complexity and relies on pure rewriting, without ABox
expansion. Notice that rewriting is generally considered efficient as the processing
operates solely on the query, while the ABox, which is normally considered to
be much larger than the query and the TBox, comes into play only at the last
step, when the rewriting is evaluated on it.

Our contributions are as follows.

– For illustrative purposes and technical reasons, we show a rewriting algorithm
for conjunctive queries on EL�in knowledge bases, which relies on a resolution-
like procedure widely adopted in the literature (see e.g. [10]).

– We present a novel rewriting technique, based on non-deterministic finite-state
automata, for atomic queries on EL�in knowledge bases, with CRPQs as target
language. Intuitively, the expressive power of CRPQs is able to finitely capture
the infinite rewriting branches of the above algorithm.

– Finally, based on the rewriting technique for atomic queries, we present a
technique for rewriting CQs into CRPQs. This is achieved by splitting the
problem in two: first we deal with assertions that do not introduce labelled
nulls; then, we show that the rest of the assertions are guaranteed to have
only tree-like (or, more precisely, forest-like) models; this allows us to capture
all paths (including the infinite ones) from roots in the forest by means of
finite-state automata. The final rewriting is a CRPQ whose evaluation on the
given ABox returns the correct answers to the initial CQ. Since CRPQs can be
straightforwardly expressed in SPARQL 1.1, by the means of property paths,
our approach is suitable for real-world settings.

– Our technique achieves optimal computational cost in data complexity, that
is where the TBox and the query are fixed and the ABox alone is a variable
input; in fact, our algorithm runs in nlogspace in data complexity, which
is the known (tight) bound for CQ answering under EL�in knowledge bases.
Notice also that, regarding combined complexity (where query, TBox and ABox
all constitute the variable input), our rewriting is expressed in the language
of CRPQs, which can be evaluated in np. Moreover, in the case of “simple”
queries such as atomic queries, our rewriting is expressed as a regular path
query, which can be evaluated in nlogspace.

2 Preliminaries

In this section we present the formal notions which will be used in the rest of
the paper.

2.1 Description Logics

We briefly introduce the syntax of the EL�in description logic (DL) [16,18]. The
alphabet contains three pairwise disjoint and countably infinite sets of concept
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names A, role names R, and individual names I. A complex concept C is con-
structed from a special primitive concept � (‘top’), concept names and role
names using the following grammar: C ::= A | ∃R.C | ∃R.�, where A ∈ A and
R ∈ R. The set of complex concepts is denoted by C. A terminological box (or
TBox) T is a finite set of concept and role inclusion axioms of the form C1 � C2

and R1 � R2, where C1, C2 ∈ C and R1, R2 ∈ R. An assertion box (or ABox)
A is a finite set of concept and role assertions of the form C(a) and R(a, b),
where C ∈ C, R ∈ R and a, b ∈ I. Given an ABox A, we denote by ind(A) the
set of individual names that occur in A. Taken together, T and A comprise a
knowledge base (or KB) K = (T ,A).

We adopt the semantics of DL defined in terms of interpretations. An inter-
pretation I is a pair (ΔI , ·I) that consists of a non-empty domain of interpreta-
tion ΔI and an interpretation function ·I which assigns (i) an element aI ∈ ΔI

to each individual name a, (ii) a subset AI ⊆ ΔI to each concept name A and
(iii) a binary relation P I ⊆ ΔI ×ΔI to each role name P . We adopt the unique
name assumption (UNA); therefore distinct individuals are assumed to be inter-
preted by distinct domain elements. The interpretation function ·I is extended
inductively for complex concepts by taking:

(∃R.�)I = {u | there is a v such that (u, v) ∈ RI},
(∃R.C)I = {u | there is a v ∈ CI such that (u, v) ∈ RI}.

We now define the satisfaction relation |= for inclusions and assertions:

I |= C1 � C2 if and only if CI
1 ⊆ CI

2 ,
I |= R1 � R2 if and only if RI

1 ⊆ RI
2 ,

I |= C(a) if and only if aI ∈ CI ,
I |= R(a, b) if and only if (aI , bI) ∈ RI .

We say that an interpretation I is a model of a knowledge base K = (T ,A),
written I |= K, if it satisfies all concept and role inclusions of T and all concept
and role assertions of A. A TBox is said to be in normal form if each of its
concept inclusion axioms is of the forms A � B, ∃P.C � A, or A � ∃P.C, where
A,B ∈ A, C ∈ A ∪ {�} and P ∈ R. We recall that every EL TBox can be
transformed into an equivalent TBox in normal form of size that is linear in the
size of the original TBox [14].

2.2 Regular Languages and Conjunctive Regular Path Queries

We assume the reader is familiar with regular languages, represented either
by regular expressions or nondeterministic finite state automata. A nonde-
terministic finite state automaton (NFA) over a set of symbols Σ is a tuple
α = (Q,Σ, δ, q0, F ), where Q is a finite set of states, δ ⊆ Q × Σ × Q the transi-
tion relation, q0 ∈ Q the initial state, and F ⊆ S the set of final states. We use
L(α) to denote the regular language defined by an NFA α, and (Σ)∗ to denote
the set of all strings over symbols in Σ, including the empty string ε.
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In order to define queries, we also need to assume the existence of a countably
infinite set of variables V. A term t is an individual name in I or a variable in
V. An atom is of the form α(t, t′), where t, t′ are terms, and α is an NFA or
regular expression defining a regular language over R ∪ A. We say that a string
s ∈ (R ∪ A)∗ is a path.

A conjunctive regular path query (CRPQ) q of arity n has the form q(x) ←
γ(x,y), where x = x1, . . . , xn and y = y1, . . . , ym are variables, and γ(x,y) is
a set of atoms with variables from x and y. q(x) is called the head of q and
is denoted by head(q), and γ(x,y) is the body of q and denoted by body(q).
The variables in x = x1, . . . , xn are the answer variables of q, while those in
y = y1, . . . , ym are the existentially quantified variables of q. A Boolean CRPQ
is a CRPQ with no answer variables. A regular path query (RPQ) is a CRPQ with
a single atom in its body. A path query (PQ) is an RPQ q = head(q) ← α(x, y)
such that α ∈ (R ∪ A)∗, where α is the path of q denoted by path(q).

A conjunctive query (CQ) q is a CRPQ such that, for each atom α(t, t′) ∈
body(q), α ∈ (R∪A). Informally, CQs disallow regular expressions in their bod-
ies. Given a CRPQ q with answer variables x = x1, . . . , xn and an n-tuple of
individuals a = (a1, . . . , an), we use q(a) to refer to the Boolean query obtained
from q by replacing xi with ai in body(q), for every 1 � i � n.

We now define the semantics of CRPQs [7]. Given the individual names a, b,
an interpretation I, and a regular language α over the alphabet R ∪ A, we have
that I |= a

α−→ b if and only if there is some w = u1 . . . un ∈ L(α) and some
sequence e0, . . . , en with ei ∈ ΔI , 0 � i � n, such that e0 = aI and en = bI ,
and for all 1 � i � n: (i) if ui = A ∈ A, then ei−1 = ei ∈ AI ; (ii) if ui = R ∈ R,
then (ei−1, ei) ∈ RI . A match for a Boolean CRPQ q in an interpretation I is a
mapping π from the terms in body(q) to the elements in I such that: (1) π(c) = c

if c ∈ I; (2) I |= π(t) α−→ π(t′) for each atom α(t, t′) in q.
Note that, to avoid notational clutter, we do not allow unary atoms in the

body of the query. In fact, each atom of the form A(t), where A ∈ A and t ∈ V∪I,
can be always replaced by a binary atom A(t, z), where z is a variable. However,
for better legibility, we use unary atoms in some examples throughout the paper.
We write I |= q if there is a match for q in I, and K |= q if I |= q for every
model I of the KB K. For brevity, given an ABox A we use A |= q to refer to
(∅,A) |= q, where (∅,A) is a knowledge base with empty TBox. Given a CRPQ
q of arity n we say that a tuple of individual names a = (a1, . . . , an) is a certain
answer for q with respect to a KB K if and only if K |= q(a).

3 Rewriting of Conjunctive Queries into First-Order
Queries

In this section we show a technique for rewriting CQs into a union of conjunctive
queries under an EL�in TBox. We base our approach on the rewriting algorithm
proposed in [9], which deals with DL-LiteR KBs. We do this to establish cor-
rectness of the rewriting approach with the NFAs illustrated in Sect. 4. The
technique is based on two steps: a reduction step, which eliminates atoms that
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are more specific than some other atom, and the actual rewriting step, which is
similar to the resolution step in logic programming. Notice that the algorithm
might not terminate; we present it for technical reasons, as in Sects. 4 and 5 we
will show that our CRPQ rewriting captures all the rewriting branches produced
by the algorithm, including infinite ones.

Following the approach of [9], we say that a term of an atom in a query is
bound if it corresponds to (i) an answer variable, (ii) a shared variable, that is,
a variable occurring at least twice in the query body, or (iii) a constant, that
is an element in I. Conversely, a term of an atom in a query is unbound if it
corresponds to a non-shared existentially quantified variable. As usual, we use
the symbol ‘ ’ to represent an unbound term.

A set of atoms A = {a1, . . . , an}, where n > 2, unifies if there exists a
substitution φ, called unifier for A, such that (i) if t ∈ I, then φ(t) = t, and
(ii) φ(a1) = · · · = φ(an). Reduce is a function that takes as input a conjunctive
query q and a set of atoms S occurring in the body of q and returns a conjunctive
query q obtained by applying to q the most general unifier between the atoms of
S. We point out that, in unifying a set of atoms, each occurrence of the symbol
is considered to be a different unbound variable.

We now define when concept and role inclusion axioms are applicable to
atoms in a query. An axiom I is applicable to an atom A(x1, x2) for A ∈ A if
I is of the form B � A, ∃R.� � A or ∃R.B � A. An axiom I is applicable
to an atom P (x1, x2) for P ∈ R if (1) x2 = and the right-hand side of I is
∃P.� or ∃P.A; or (2) the right-hand side of I is P . An axiom I is applicable to
a pair of atoms P (x1, x2), A(x2, x3) if x2 does not appear in other atoms of the
query body, x3 = and I is of the form C � ∃P.A. Below we define the set of
rewriting rules for atoms in the query body. Let I be an inclusion assertion that
is applicable to a sequence of query atoms g. The sequence of atoms obtained
from g by applying I, denoted by gr(g, I), is defined as follows:

(a) If g = A(x1, x2) and I = B � A, then gr(g, I) = B(x1, x2);
(b) If g = A(x1, x2) and I = ∃P.� � A, then gr(g, I) = P (x1, );
(c) If g = A(x1, x2) and I = ∃P.B � A, then gr(g, I) = P (x1, z1), B(z1, ),

where z1 is a fresh variable;
(d) If g = P (x1, ) and I = A � ∃P.� or I = A � ∃P.B, then gr(g, I) = A(x1, );
(e) If g = P (x1, x2) and I = R � P , then gr(g, I) = R(x1, x2);
(f) If g = P (x1, x2), A(x2, ) and I = C � ∃P.A, then gr(g, I) = C(x1, );

We denote by Rewrite(q, T ) the rewriting procedure that generates the perfect
rewriting of q with respect to T (see Fig. 1).

Example 4. Consider applying the Rewrite procedure to a query q of the form
q(x) ← R(x, y), R( , y) over the TBox {A � ∃R.�}, where A ∈ A and
R ∈ R. In this query, the atoms R(x, y) and R( , y) unify, and executing
Reduce(q, {R(x, y), R( , y)}) yields the atom R(x, y). The variable y is now
unbound, so can be replaced by “ ” (a don’t care). Note that the reduction
step produces a query marked with ‘0’ whilst the rewriting step marks queries
with ‘1’, and only queries marked with ‘1’ are added to the output set. We adopt
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Algorithm 1. Algorithm Rewrite(q, T )
Data: Conjunctive query q, TBox T .
Result: Union of conjunctive queries Q.
Q := {〈q, 1〉};
repeat

Q′ := Q ;
foreach 〈qr, x〉 ∈ Q′ do

/* Reduction step */
if there exists I ∈ T such that I is not applicable to qr then

foreach set of atoms S ⊆ body(qr) do
if S unify then

Q := Q ∪ 〈Reduce(qr, S), 0〉

/* Rewriting step */
foreach axiom I ∈ T do

if I is applicable to qr then
qr′ := rewrite qr according to I ;
Q := Q ∪ 〈qr′, 1〉

until Q′ = Q;
Qfin := {q | 〈q, 1〉 ∈ Q} ;
return Qfin

this approach to avoid redundancy in the output set, as a query marked with
‘0’ is always contained in a query marked with ‘1’. Now, the axiom {A � ∃R.�}
can be applied to R(x, ), whereas, before the reduction process, it could not be
applied to any atom of the query. Following this, the rewriting step reformulates
the query to q(x) ← A(x, ) which is added to the output set. For more details
on the rewriting procedure refer to [9,10].

Now we show that each disjunct of the perfect rewriting of an atomic concept
query with respect to an EL�in TBox is of a special form called a simple path
conjunctive query, defined below. We then define some technical lemmas which
will be used in Sect. 4 for the rewriting of atomic concepts by means of a finite-
state automaton.

Definition 1. A conjunctive query q is a simple path conjunctive query (SPCQ)
if body(q) is of one of the following forms: (i) A(x1, x2);
(ii) P1(x1, y1), P2(y1, y2), . . . , Pn−1(yn−2, yn−1), Pn(yn−1, x2); or
(iii) P1(x1, y1), P2(y1, y2), . . . , Pn−1(yn−2, yn−1), Pn(yn−1, yn), A(yn, x2), where:
x1, x2 are terms; for each i, yi is an existentially quantified variable and yi 
=
yi+1; n � 1; A ∈ A and P1, . . . , Pn ∈ R.

Note that query q in Example 4 is not an SPCQ. An SPCQ head(q) ←
Z1(x0, x1), . . . , Zn(xn−1, xn) is equivalent to an RPQ of the form head(q) ←
Z1 . . . Zn(x0, xn); thus, throughout the paper we will use either the RPQ form
or the CQ form of a SPCQ, whichever is more natural in the given context.



68 M.M. Dimartino et al.

For instance, given a SPCQ q, with a little abuse of notation we have that
path(q) is Z1 . . . Zn.

Given two paths p, p′, we say that p′ contains p, written p � p′, if for each
ABox A and for each tuple a = (a, a′) it holds that, if A |= q() ← p(a) then
A |= q() ← p′(a). Given a path p and an NFA N over (R ∪ A)∗ we say that N
contains p, written p � N if there exists some α ∈ L(N ) such that p � α.

Lemma 1. Given an SPCQ q, an EL�in TBox T and an axiom ρ ∈ T that is
not applicable to body(q), for each set of atoms S ⊆ body(q) that unify, ρ is also
not applicable to body(Reduce(q, S)).

Proof (Sketch). We consider all the possible cases of ρ.
Case 1: ρ is of the type B � A, ∃P.�, ∃R.B � A, R � P . ρ is not applicable

to body(q) if an atom A(x1, x2) or P (x1, x2) are not in body(q). If A(x1, x2)
or P (x1, x2) is not in body(q), then A(x1, x2) or P (x1, x2) is clearly not in
body(Reduce(q, S)) and the claim follows.

Case 2: ρ is of the type A � ∃R.�. ρ is not applicable to body(q) if an atom
R(x1, x2) is not in body(q), or if R(x1, x2) is in body(q) and x2 
= . If R(x1, x2)
is not in body(q), then R(x1, x2) is clearly not in body(Reduce(q, S)). If R(x1, x2)
is in body(q) and x2 
= , since q is an SPCQ, this happens only if R(x1, x2) is
not the last atom of the path. The only way to have x2 = is to unify R(x1, x2)
with the atom at its right as it is the only atom that can have x2. If there exists
a unification, the reduction produces an atom R(xi, xi), with xi 
= and the
claim follows.

Case 3: ρ is of the type A � ∃R.B. Since q is an SPCQ, ρ is not applicable
to body(q) if the atoms R(x1, x2), B(x2, x3) are not in body(q) or if R(x1, x2) is
in body(q) and x2 
= . It is easy to see that this case is similar to the case where
ρ is of the type A � ∃R.�.

Following from Lemma 1 we have that, to rewrite CQs with respect to EL�in

TBoxes, the reduction step generates queries that are never processed by the
rewriting step. So, in our case, the reduction step is of no use. However, we keep
it in the rewriting algorithm in order to handle future extensions to the ontology
language.

Lemma 2. Let T be an EL�in TBox and q a CQ of the form q(x) ← A(x, y),
with A ∈ A. If qrew ∈ Rewrite(q, T ), then qrew is an SPCQ.

Proof (Sketch). Following from Lemma 1 we know that queries produced by the
reduction step are never processed by the rewriting step, and so they are never
marked with ‘1’. So, queries produced by the reduction step are never in the
output set, and thus we can ignore the reduction step. The proof is then by
induction on the set of queries that are produced after each rewriting step. We
denote by Q[i] the set of the queries produced after the i-th iteration of the
repeat loop in Algorithm 1.

Base Step. Q[1] = {q(x) ← A(x, y)} plus the queries obtained by the 1st
rewriting step. The possible cases are the rewriting rules (a), (b) and (c) which
generate SPCQs.
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Inductive Step. If q ∈ Q[i+1], then q is computed by applying a rewriting
rule to a query in Q[i]. The claim follows by induction if for each rewriting q to
q′, we have that q′ is a SPCQ. If q is a SPCQ then we can identify a fixed set
of possible rewriting cases, according to the rewriting rules. For each possible
rewriting case, when q is rewritten to q′, it is easy to see that if q is a SPCQ,
then q′ is a SPCQ.

It is important to note that this algorithm is not guaranteed to terminate
on EL�in knowledge bases; see e.g. the TBox of Example 3. This is because the
algorithm essentially enumerates all rewritings produced by single applications
of the reduction and the rewriting steps; when the algorithm is forced by the
TBox to cycle on a set of assertions, it produces infinite branches and does
not terminate. However, it is possible to capture such cyclic applications of the
rewriting steps if we adopt a more expressive target language for the rewriting;
this is the subject of the next two sections: in Sect. 4 we show how to encode the
rewritings for an atomic query by means of a finite-state automaton; in Sect. 5
we present a technique, similar to that shown in [14] for OWL QL, that allows
us to combine rewritings for atomic queries so as to obtain a CRPQ rewriting
for CQs.

4 Rewriting for Atomic Concept Queries

In this section we show how to encode rewritings for atomic queries under EL�in

by means of a finite-state automaton; intuitively, the automaton is able to encode
infinite sequences of rewriting steps executed according to the algorithm of
Sect. 3. We concentrate on atomic queries having a concept atom in the body,
since in the case of role atoms, this is done by a simple check on sequences of
role inclusions in the TBox — see [13].

Definition 2. Let T be an EL�in TBox in normal form, Σ the alphabet R ∪ A
and A a concept name appearing in T . The NFA-rewriting of A with respect to
T , denoted by NFAA,T , is the NFA over Σ of the form (Q,Σ, δ, q0, F ) defined as
follows:

(1) states SA and SFA are in Q, SFA is in F , and transition (SA, A, SFA) is
in δ;

(2) SA is the initial state q0, S� is a final state;
(3) for each B ∈ A that appears in at least one concept or role inclusion axiom

of T , states SB and SFB are in Q,SFB is in F , and transition (SB , B, SFB)
is in δ;

(4) for each concept inclusion axiom ρ ∈ T : (4.1) if ρ is of the form B � C,
where B,C ∈ A, the transition (SC , ε, SB) is in δ; (4.2) if ρ is of the form
B � ∃R.�, where B ∈ A and R ∈ R, for each transition (SX , R, S�) ∈ δ,
the transition (SX , ε, SB) is in δ; (4.3) if ρ is of the form ∃R.� � B, where
B ∈ A and R ∈ R, the transition (SB , R, S�) is in δ; (4.4) if ρ is the form
∃R.D � C, where C,D ∈ A and R ∈ R, the transition (SC , R, SD) is in δ;



70 M.M. Dimartino et al.

(4.5) if ρ is the form C � ∃R.D, where C,D ∈ A and R ∈ R, for any
sequence of transitions starting from SX that accepts the strings RD or R,
the transition (SX , ε, SC) is in δ;

(5) for each role inclusion axiom T � S ∈ T and each transition of the form
(SC , S, SB) ∈ δ, the transition (SC , T, SB) is in δ.

Example 5. Consider the TBox T defined by the following inclusion assertions:
∃R.C � ∃P.�, ∃P.� � A, ∃P.� � B, ∃T.B � C and ∃S.A � A, where P , R,
S, T are role names and A, B, C are concept names. Consider now the query
q = q(x) ← A(x, y). First, we transform T into normal form, say T ′, by adding
a fresh concept name X and by replacing ∃R.C � ∃P.� by ∃R.C � X and
X � ∃P.�. It is easy to see that Rewrite(q, T ′) runs indefinitely (for instance,
we have an infinite loop when rule (c) is applied to the atom A(x, y)). Let us
consider the NFA rewriting of A with respect to T ′. We construct NFAA,T ′ as
follows: by (3) we have the transitions (SA, A, SFA), (SB , B, SFB), (SC , C, SFC)
and (SX ,X, SFX); by (4.3) and the inclusion assertions ∃P.� � A and ∃P.� �
B, we have the transitions (SA, P, S�) and (SB , P, S�); by (4.2) and the inclusion
assertion X � ∃P.�, we have the transitions (SA, ε, SX) and (SB , ε, SX); finally,
by (4.4) and the inclusion assertions ∃R.C � X, ∃T.B � C and ∃S.A � A, we
have the transitions (SX , R, SC), (SC , T, SB) and (SA, S, SA). The NFA NFAA,T ′

is illustrated in Fig. 1. The language accepted by NFAA,T ′ can be described by
the following regular expression: (∃S.)∗(A|X|(RT )∗(P |RC|RT (B|X))). It is easy
to see that all the infinite outputs of Rewrite(q, T ′) are of the form q(x) ←
NFAA,T ′(x, y). For instance, some possible rewritings of q are:

q(x) ← S(x, z1), S(z1, z2), P (z2, y)
q(x) ← S(x, z1), S(z1, z2), A(z2, y)
q(x) ← R(x, z1), T (z1, z2), R(z2, z3), C(z3, y)

It is easy to verify that each of these output queries is a SPCQ and each path is
in L(NFAA,T ′).

SAstart

SFA

S� SB

SFB

SC

SFC

SX

SFX
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B

P

X

ε

ε

R

Fig. 1. NFA for Example 5.
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Theorem 1. Let T be an EL�in TBox, and a concept A. We have that q ∈
Rewrite(q(x) ← A(x, y), T ) if and only if path(q) ∈ L(NFAA,T ).

Proof (Sketch). (⇒) The proof is by induction on the set of queries that are
marked with ‘1’ after each rewriting step, as the queries marked with ‘0’ are not
returned by the algorithm. We denote by Q[i] the set of queries marked with ‘1’
after the i-th application of the rewriting step.

Base Step. Q[0] = {q}. By (2) we have that SA is the initial state q0 and
by (3) we have the transition (SA, A, SFA) therefore A ∈ L(NFAA,T ) and the
claim follows trivially.

Inductive Step. From Lemma 1 we have that, if an axiom ρ ∈ T is not
applicable to body(q), for each set of atoms S ⊆ body(q) that unify, ρ is also not
applicable to body(Reduce(q, S)). It follows that if a query q′ is marked with ‘0’
then there is no axiom in T that is applicable to q′. Thus, if q ∈ Q[i+1], then q
is computed by applying a rewriting rule to a query that is marked with ‘1’ at
i-th application of the rewriting step, which is a query in Q[i]. Suppose that for
each q ∈ Q[i] we have that Path(q) ∈ L(NFAA,T ), the claim follows by induction
if for each rewriting q to q′, we have that Path(q′) ∈ L(NFAA,T ). From Lemma 2
it follows that the body of each query marked with ‘1’ is a simple path, thus we
can identify a fixed set of possible rewriting cases. For each of possible rewriting
case, when q is rewritten to q′, there is a rule in the definition of L(NFAA,T )
such that Path(q) ∈ L(NFAA,T ) → Path(q′) ∈ L(NFAA,T ) is true.

(⇐) The claim follows by induction on the construction rules of the
NFAA,T starting from A, which correspond to all the possible rewriting steps
of Rewrite(q(x) ← A(x, y), T ).

Theorem 2. Given an EL�in TBox T , concept A and a complex concept B, we
have that T |= B � A if and only if B � NFAA,T .

Proof. From Theorem 1 we have that NFAA,T is a perfect rewriting of A with
respect to T and the claim follows.

5 CRPQ Rewriting for EL�in

In this section, following the approach of [13,14], we split the problem of rewriting
CQs under EL�in in two: we deal separately with the part of the TBox that does
not have existential quantification on the right-hand side of assertions (that is,
the part that when expanded does not produce any labelled null) and with the
rest of the TBox. We make use of the algorithm for atomic queries presented
in the previous section. Then, we put together the solutions devised for the two
parts to produce a rewriting algorithm for CQs under EL�in .

Given an EL�in knowledge base (T ,A) with T in normal form, we can find
all answers to a CQ q over this KB by evaluating q over the (possibly infinite)
canonical model CT ,A which can be constructed using the chase procedure. We
begin by defining the standard model IA of the ABox A as follows: (1) ΔIA =
ind(A); (2) aIA = a, for a ∈ ind(A); (3) AIA = {a | A(a) ∈ A}, for concept



72 M.M. Dimartino et al.

name A; (4) P IA = {(a, b) | P (a, b) ∈ A}, for role name P . Then we take the
standard model IA as I0 and apply inductively the following rules to obtain
Ik+1 from Ik: (a’) if d ∈ AIk

1 and A1 � A2 ∈ T , then we add d to A
Ik+1
2 ;

(b’) if (d, d′) ∈ RIk
1 and R1 � R2 ∈ T , then we add (d, d′) to R

Ik+1
2 ; (c’) if

d ∈ (R.D)Ik and ∃R.D � A ∈ T , where D is a concept name or �, then we
add d to AIk+1 ; (d’) if d ∈ AIk and A � ∃R.D ∈ T , where D is a concept name
or �, then we take a fresh labelled null, d′, and add d′ to DIk+1 and (d, d′) to
RIk+1 . The canonical model CT ,A constructed using rules (a’), (b’), (c’) and (d’)
in a bottom-up fashion can alternatively be defined with the top-down approach
illustrated in this section; this will be required for query rewriting in Sect. 5.2.
There are two key observations that lead us to the alternative definition: first,
fresh labelled nulls can only be added by applying (d’), and, second, if two
labelled nulls, d1 and d2, are introduced by applying (d′) with the same concept
inclusion A � ∃R.D, then the same rules will be applicable to d1 and d2 in
the continuation of the chase procedure. So, each labelled null d′ resulting from
applying (d′) to some A � ∃R.D on a domain element d can be identified with
a pair of the form (d,∃R.D). Following from Theorem2, for each concept ∃R.D
that appears at the RHS of a concept inclusion axiom in T , we introduce a fresh
symbol w∃R.D that is a witness for ∃R.D and define a generating relation �T ,A
on the set of these witnesses together with ind(A) by taking:

– a �T ,A w∃R.D, if a ∈ ind(A), IA |= B(a) and B � NFAA,T ,
– w∃S.B �T ,A w∃R.D if B � NFAA,T and A � ∃R.D ∈ T ,

where S is a role name. We point out that we are able to define a finite generating
relation �T ,A for an EL�in knowledge base (T ,A) with the definition of NFAA,T .
In fact, NFAA,T captures all (possibly infinite) expressions B such that T |= B �
A. This allows us to exploit the Tree-Witness rewriting technique in [14] (see
Sect. 5.2).

A path�T ,A σ is a finite sequence aw∃R1.D1 . . . w∃Rn.Dn
, n � 0, such that a ∈

ind(A) and, if n > 0, then a �T ,A w∃R1.D1 and w∃Ri.Di
�T ,A w∃Ri+1.Di+1 , for

i < n. Thus, a path of the form σw∃R.D is also the fresh labelled null introduced
by applying (d’) to some A � ∃R.D on the domain element σ (and which
corresponds to the pair (σ,∃R.D) mentioned above). Let us denote by tail(σ) the
last element in σ; as we noted above, the last element in σ uniquely determines all
the subsequent rule applications. The canonical model CT ,A is defined by taking
ΔCT ,A to be the set of all path�T ,A and taking: (1) aCT ,A = a, for a ∈ ind(A); (2)
ACT ,A = {a ∈ ind(A) | IA |= B(a) and B � NFAA,T }∪{σw∃R.D | D � NFAA,T },
for each concept name A; (3) P CT ,A = {(a, b) | IA |= R(a, b) and T |= R �
P} ∪ {(σ, σw∃R.D) | tail(σ) �T ,A w∃R.D, T |= R � P}, for a role name P. We
point out that, by the definition of rule (b’), we have that T |= R � P only
if there is a sequence of roles R0, . . . , Rn such that Ri−1 � Ri are in T , for
1 � i � n, and Rn = P . For proof refer to [13].

Given a CQ q, we use the assertions of the TBox T to rewrite q into another
query q′ that returns, when evaluated over the data instance (ABox) A, all the
certain answers of q with respect to (T ,A). Notice that the rewriting q′ only
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depends on the TBox T and the given query q; it is independent of the ABox
A. In query processing, therefore, we use A only in the final step, when the
rewriting is evaluated on it.

We call a CQ q and a TBox T CRPQ-rewritable if there exists a CRPQ q′

such that, for any ABox A and any tuple a of individuals in ind(A), we have
(T ,A) |= q(a) if and only if A |= q′(a).

5.1 Rewriting for Flat EL�in

We first consider an important special case of flat EL�in TBoxes that do not con-
tain existential quantifiers on the right-hand side of concept inclusions. In other
words, flat EL�in in normal form can only contain concept and role inclusions of
the form A1 � A2, ∃R.D � A and R1 � R2, for concept names A,A1, A2, role
names R1, R2, and D a concept name or �. Now let T be a flat EL�in TBox,
q a conjunctive query and a a tuple of individuals. Since CT ,A is the canonical
model for (T ,A), we have that (T ,A) |= q(a) if and only if q(a) is true in the
canonical model CT ,A. The TBox is flat, the generating relation �T ,A is empty,
the canonical model CT ,A contains no labelled nulls, and so, by the definition of
CT ,A, we have that:

– CT ,A |= A(a) if and only if IA |= B(a) and T |= B � NFAA,T , for some B,
– CT ,A |= P (a, b) if and only if IA |= R(a, b) and T |= R � P , for some R.

For a CQ q, we define now rewriting qext as a union of CRPQs which is the result
of replacing every atom A(z1, z2) in q with Aext(z1, z2) and every atom P (z1, z2)
in q with Pext(z1, z2), where Aext(u1, u2) = NFAA,T (u1, u2) andPext(u1, u2) =⋃

T |=R�P

R(u1, u2). This leads to the following results.

Proposition 1. For all concept names A, role names P and individual names
a and b we have: (1) CT ,A |= A(a) if and only if IA |= q() ← Aext(a, a), (2)
CT ,A |= P (a, b) if and only if IA |= q() ← Pext(a, b).

Proof. Follows immediately from the definitions of the formulas Aext and Pext.

Proposition 2. For any CQ q and any flat EL�in TBox T , qext is the CRPQ
rewriting of q with respect to T .

Proof. Follows immediately from the previous proposition and from the fact
that each formula of the form R1(u1, u2) ∪ · · · ∪ Rn(u1, u2) can be expressed as
a regular path formula of the form R1| · · · |Rn(u1, u2).

5.2 Tree-Witness Rewriting for Full EL�in

Following a divide and conquer strategy, we show how the process of constructing
FO-rewritings can be split into two steps: the first step considers only the flat
part of the TBox and uses the formulas Aext(u1, u2) and Pext(u1, u2) defined in
Sect. 5.1; the second step (to be described below) takes account of the remaining
part of the TBox, that is, inclusions of the form A � ∃R.D. We first need some
preliminary definitions.
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Definition 3. (H-completeness) Let T be a (not necessarily flat) EL�in TBox.
A simple ABox A is said to be H-complete with respect to T if, for all concept
names A and role names P , we have:

– A(a) ∈ A if IA |= B(a) and B � NFAA,T , for some B,
– P (a, b) ∈ A if IA |= R(a, b) and T |= R � P , for some R.

Observe that, if an ABox A is H-complete with respect to T , then the ABox
part of CT ,A coincides with IA. Thus, if T is flat then q itself is clearly the
perfect rewriting of q and T over H-complete ABoxes. This leads to the following
proposition.

Proposition 3. If q′ is the perfect rewriting of q and T over H-complete
ABoxes, then q′

ext is the perfect rewriting of q with respect to T .

So, to generate a CRPQ rewriting we can now focus on constructing rewritings
over H-complete ABoxes. To achieve this, we reuse a technique adopted in [14]
called Tree Witness. Suppose T is a EL�in TBox in normal form. To compute
certain answers to q over (T ,A), for some A, it is enough to find answers to q
in the canonical model CT ,A. To do this, we have to check, for every tuple a of
elements in ind(A), whether there exists a homomorphism from q(a) to CT ,A.
Thus, as in the case of flat TBoxes, the answer variables take values from ind(A).
However, the existentially quantified variables in q can be mapped both to ind(A)
and to the labelled nulls in CT ,A. In order to identify how the existential variables
can be mapped to the anonymous part, it is sufficient to take a look at the tree-
like structure of the generating relation. This technique allows us to rewrite a
CQs with respect to EL�in TBoxes over H-complete ABoxes; for details on the
Tree Witness rewriting technique, consult [13,14].

Theorem 3. Let T be an EL�in TBox and q a CQ. Let q′ be the Tree Witness
rewriting for q with respect to T over H-complete ABoxes. For any ABox A and
any tuple a in ind(A), we have CT ,A |= q(a) if and only if IA |= q′

ext(a).

Corollary 1. Let T be an EL�in TBox and q a CQ. T is CRPQ-rewritable with
respect to q.

6 Discussion

In this paper we presented a rewriting algorithm for answering conjunctive
queries under EL�in knowledge bases. We showed how to encode rewritings
of atomic queries with finite-state automata, and finally how to combine such
automata in order to produce rewritings for the full language of CQs. We believe
that our contribution sheds light on the possibilities of efficient query rewrit-
ing under DLs. Our rewriting technique achieves optimal data complexity (see
below), and produces a “compact” rewriting without having to take the ABox
into account; then the rewriting is evaluated on the ABox, which does not need
to be expanded. We therefore argue that this pure rewriting approach is likely
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to be suitable for real-world cases, especially considering that the final CRPQ
evaluation step can be performed by expressing the CRPQ in SPARQL 1.1.

Complexity. When considering query answering under ontologies, the most
important asymptotic complexity measure is the so-called data complexity,
i.e. the complexity w.r.t. the ABox A. Our rewriting is evaluated on A in
nlogspace in data complexity [4], which coincides with the lower bound for
CQ answering in EL�in (see [17], where EL�in is called DL-lite+). In terms of
combined complexity, i.e. the complexity w.r.t. A, T and q, we limit ourselves to
a few consideration, leaving the issue to another work. Our rewriting, which is
exponential in the query and the TBox, similarly to other approaches, has the
advantage of being expressed in CRPQs (which implies the possibility of being
easily translated in SPARQL, as above noted) whose evaluation is in np [8].
Moreover our technique behaves as “pay-as-you-go” because in the case of atomic
queries it produces a rewriting as an RPQ which can be evaluated in nlogspace.

Related Work. Query rewriting has been extensively employed in query answer-
ing under ontologies [10,15,16]. In particular, [17] presents a resolution-based
query rewriting algorithm for DL-Lite+ ontologies (which is EL�in), with Lin-
ear Datalog as target language. In [3] the authors introduce a backward chain-
ing mechanism to identify decidable classes of tuple-generating dependencies.
Tractable query rewriting (in nlogspace) for the DL-Lite family was presented
in [9]; similarly, Rosati [18] used a rewriting algorithm for DL TBoxes expressed
in the EL family of languages [1] to show that query answering in EL is ptime-
complete in data complexity. Other works [5,6] study FO-rewritability of con-
junctive queries in the presence of ontologies formulated in a description logic
between EL and Horn-SHIF , along with related query containment problems.
In [11,12] the authors propose an algorithm for computing FO rewritings of
concept queries under EL TBoxes that is tailored towards efficient implemen-
tation. The tree-witness technique adopted in this paper is derived from that
of [13,14], which address query rewriting over EL, QL and RL, and propose
the tree-witness approach to rewrite QL. The complexity of answering CRPQs
under DL-Lite and EL families is studied in [7].

Future Work. We are extending our work in several directions. The most imme-
diate ones are the following: (1) we plan to consider CRPQs as the language for
queries, and devise a suitable rewriting algotithm; (2) we plan to consider inverse
roles, and identify syntactic properties that would still guarantee rewritability of
CQs into CRPQs; note that the ontology language so defined subsumes QL; (3)
we intend to include complex role chains and unions in the language, as in [15].
We already have results on (1) and (3).

Acknowledgments. We thank Michael Zakharyaschev and Roman Kontchakov for
precious discussions about this material.
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8. Bourhis, P., Krötzsch, M., Rudolph, S.: Reasonable highly expressive query lan-

guages. In: IJCAI (2015)
9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable

reasoning and efficient query answering in description logics: The DL-lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

10. Gottlob, G., Orsi, G., Pieris, A.: ontological queries: rewriting and optimization.
In: ICDE (2011)

11. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Query rewriting under EL TBoxes:
efficient algorithms. In: Description Logics (2014)

12. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Efficient query rewriting in the descrip-
tion logic EL and beyond. In: IJCAI (2015)

13. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: KR (2012)

14. Kontchakov, R., Zakharyaschev, M.: An introduction to description logics and
query rewriting. In: Koubarakis, M., Stamou, G., Stoilos, G., Horrocks, I., Kolaitis,
P., Lausen, G., Weikum, G. (eds.) Reasoning Web. LNCS, vol. 8714, pp. 195–244.
Springer, Heidelberg (2014)

15. Mosurovic, M., Krdzavac, N., Graves, H., Zakharyaschev, M.: A decidable exten-
sion of SROIQ with complex role chains and unions. JAIR 47, 809–851 (2013)
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Abstract. Recently, it has been shown that ontologies with large
datasets can be efficiently materialized by a so-called abstraction refine-
ment technique. The technique consists of the abstraction phase, which
partitions individuals into equivalence classes, and the refinement phase,
which re-partitions individuals based on entailments for the representa-
tive individual of each equivalence class. In this paper, we present an
abstraction-based approach for materialization in DL-Lite, i.e. we show
that materialization for DL-Lite does not require the refinement phase.
We further show that the approach is sound and complete even when
adding disjunctions and nominals to the language. The proposed tech-
nique allows not only for faster materialization and classification of the
ontologies, but also for efficient consistency checking; a step that is often
omitted by practical approaches based on query rewriting. A preliminary
empirical evaluation on both real-life and benchmark ontologies demon-
strates that the approach can handle ontologies with large datasets effi-
ciently.

1 Introduction

Over many years, Description Logics (DLs) have been very popular languages
for knowledge representation and reasoning. Among the various fragments of
Description Logics, DL-Lite [1,3] is a family of languages specifically designed
for ontology-based data access (OBDA). In this setting, an ontology with back-
ground knowledge (a TBox) can be seen as a conceptual view over data reposito-
ries (ABoxes), and data can be accessed via query answering services. Common
techniques for query answering in DL-Lite are (pure) rewriting [3] and com-
bined approaches [5,6,13]. In the rewriting approaches, OBDA systems exploit
the background knowledge and rewrite the input query so that the rewritten
queries are sufficient to retrieve the complete query answer when evaluated over
the unmodified data. As the rewritten queries can be very large or complex [12],
several optimization techniques have been proposed with the aim of reducing or
simplifying the rewritten queries [2,9,16,17]. Combined approaches complement
the pure rewriting approaches; they also work for DL fragments that allow for
qualified existential quantification. In contrast to pure rewriting, the combined
approaches not only rewrite the input query, but also partially or completely
expand the data taking the ontology/schema into account. The latter opera-
tion is called data completion or ontology materialization. It plays an important
c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 77–93, 2016.
DOI: 10.1007/978-3-319-45276-0 7
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role in the overall performance of the combined approaches, given the fact that
the data is often very large in the OBDA applications. In addition, performing
ontology materialization only, OBDA systems are already able to provide the
complete answers for instance queries. In this paper, we investigate the appli-
cation of the novel materialization technique via abstraction refinement [7] for
DL-Lite ontologies.

The existing abstraction refinement approach consists of two phases: the
abstraction phase and the refinement phase. In the abstraction phase, individu-
als in the ABox are partitioned into equivalence classes, which are then used to
construct a so-called abstract ABox. Entailments of the abstract ABox are trans-
formed to entailments for the original ABox, which might result in some individ-
uals no longer belonging to the same equivalence class. Therefore, the previous
steps are repeated in the refinement phase, e.g. individuals are re-partitioned,
until, eventually, the fixed-point is reached. The approach presented in this paper
can be regarded as an enhancement of the existing abstraction refinement app-
roach tailored towards ontologies in DL-Lite and beyond. We make the following
contributions:

– We present an abstraction-based approach for materialization for DL-LiteH�
core,

an extension of DL-Litecore with role inclusions and disjunctions. The limited
form of existential restrictions in DL-Lite enables an efficient way to transform
entailments from the abstract ABox to the original ABox. In addition, the
presented approach does not require the refinement phase. This allows not
only for faster materialization but also for efficient consistency checking of the
ontologies. Query answering only makes sense if the ontology is consistent.
Therefore, checking consistency is necessary, but this step is often omitted in
many query rewriting systems.1

– We show that the presented approach is also sound and complete when adding
nominals. Moreover, it can be extended to ontology classification, a non-trivial
reasoning task in the presence of nominals.

– We evaluate our approach on both real-life and benchmark ontologies. The
empirical results demonstrate that the size of the ABoxes can be reduced by
orders of magnitude and, as a result, reasoning via abstraction is often much
faster than reasoning over the original ontology.

2 Preliminaries

The syntax of DL-LiteHO�
core is defined using a vocabulary consisting of countably

infinite disjoint sets NC of atomic concepts, NO of nominals, NR of atomic roles,
and NI of individuals. A role is either atomic or an inverse role r−, r ∈ NR. We
define the inverse R− of a role R by R− := r− if R = r and R− := r if R = r−.
Complex concepts and axioms are defined recursively in Table 1. An ABox is a
finite set of concept assertions of the form A(a) and role assertions of the form

1 If ⊥ is allowed in the language, consistency checking can be reduced to querying
instances of ⊥ but it also requires reasoning over the whole data.
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Table 1. The syntax and semantics of DL-LiteHO�
core

Syntax Semantics

Roles:

Atomic role R RI ⊆ ΔI × ΔI

Inverse role R− {〈e, d〉 | 〈d, e〉 ∈ RI}
Concepts:

Atomic concept A AI ⊆ ΔI

Nominal o oI ⊆ ΔI , ‖oI‖ = 1

Top � ΔI

Bottom ⊥ ∅
Negation ¬C ΔI\CI

conjunction C 
 D CI ∩ DI

Disjunction C � D CI ∪ DI

Existential restriction ∃R {d | ∃e ∈ ΔI : 〈d, e〉 ∈ RI}
Axioms:

Concept inclusion C � D CI ⊆ DI

Role inclusion R � S RI ⊆ SI

Concept assertion A(a) aI ∈ AI

Role assertion R(a, b) 〈aI , bI〉 ∈ RI

R(a, b) with A ∈ NC , R ∈ NR ∪ {r− | r ∈ NR}, and a, b ∈ NI . A TBox is a finite
set of role and concept inclusions. An ontology O, written as O = A∪T , consists
of an ABox A and a TBox T . W.l.o.g. we do not distinguish between the axioms
R(a, b) and R−(b, a) as well as R � S and R− � S−. We use con(O), rol(O),
ind(O), nom(O) for the sets of atomic concepts, atomic roles, individuals, and
nominals occurring in O, respectively. By DL-LiteH�

core we denote the fragment
of DL-LiteHO�

core that disallows nominals.
An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI , the domain

of I, and an interpretation function ·I , that assigns to each A ∈ NC a subset
AI ⊆ ΔI , to each o ∈ NO a singleton subset oI ⊆ ΔI , ‖oI‖ = 1, to each r ∈ NR

a binary relation rI ⊆ ΔI × ΔI , and to each a ∈ NI an element aI ∈ ΔI . This
assignment is extended to roles and to complex concepts as shown in Table 1.
An interpretation I satisfies an axiom α (written I |= α) if the corresponding
condition in Table 1 holds. Given an ontology O, I is a model of O (written
I |= O) if I |= α for all axioms α ∈ O; O is consistent if O has a model; and O
entails an axiom α (written O |= α), if every model of O satisfies α.

For an ontology O, we say that O is concept-materialized if O |= A(a) implies
A(a) ∈ O for each A ∈ con(O) and a ∈ ind(O); O is role-materialized if
O |= r(a, b) implies r(a, b) ∈ O for each r ∈ rol(O) and a, b ∈ ind(O); O is
(fully) materialized if it is both concept and role materialized. The concept-,
role-, and/or (full) materialization of an ontology O is the smallest super-set of
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O that is concept-, role-, and/or fully materialized respectively. Given an ontol-
ogy, traditional reasoning tasks include ontology materialization: computing the
materialization of the ontology, ontology classification: computing all entailed
concept inclusions between atomic concepts in the ontology, and consistency
checking : checking if the ontology is consistent.

3 Reasoning by Abstraction

The general idea of reasoning via abstraction is to reduce reasoning over a large
ABox to reasoning over a smaller one. Specifically, one first builds a suitable
abstraction of the original ontology; performs reasoning over the abstraction;
and then transfers entailments of the abstraction to corresponding entailments
of the original ontology. Correctness of the reduction is based on homomorphisms
between ABoxes.

Definition 1. Let A and B be ABoxes. A mapping h : ind(B) → ind(A) is called
a homomorphism (from B to A) if, for every assertion α ∈ B, we have h(α) ∈ A,
where h(C(a)) := C(h(a)) and h(R(a, b)) := R(h(a), h(b)).

Example 1. Consider the ABoxes A = {A(a), A(b), R(a, b)}, B1 = {A(u)}, and
B2 = {A(v), R(v, v)} visualized in Fig. 1. Then the mappings h1 = {u �→ a} and
h2 = {u �→ b} are homomorphisms from B1 to A; and the mapping h3 = {a �→
v, b �→ v} is a homomorphism from A to B2.

The following property of homomorphisms allows us to establish the relation
between entailments of one ontology and those of the other.

Lemma 1. Let A and B be ABoxes, and h : ind(B) → ind(A) a homomorphism
from B to A. Then, for every TBox T and every axiom α, B ∪ T |= α implies
A ∪ T |= h(α).

a
A

b
AR

u
A

v
A

R

h1 h2

h3 h3

A

B1 B2

Fig. 1. Visualization of
the ABoxes and homo-
morphisms in Example 1

a
A

b
AR

wR
τ(a)

vτ(a)

A R

wR−
τ(b)

vτ(b)

AR

A

B

Fig. 2. Visualization of the ABoxes A from Example 4
and its abstraction B from Example 5, where the dotted
lines show the homomorphism from B to A induced by
the abstraction
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Note that Lemma 1 is not restricted to DL-LiteHO�
core and it holds for any DL with

(classical) set-theoretic semantics, e.g. SROIQ [10]. The following two corol-
laries illustrate aspects of homomorphisms that are of particular relevance for
our approach, namely that consistency and (concept) entailments are preserved
under homomorphisms.

Corollary 1. Let A and B be ABoxes, h : ind(B) → ind(A) a homomorphism
from B to A, a ∈ ind(A) and b ∈ ind(B) such that h(b) = a. Then, for every
TBox T and concept C, B ∪ T |= C(b) implies A ∪ T |= C(a).

Corollary 2. Let A and B be ABoxes. If there exists a homomorphism from B
to A then, for every TBox T , A ∪ T is consistent implies B ∪ T is consistent.

The abstraction is obtained by partitioning individuals in the original ABox
into equivalence classes and by using just one representative individual for each
equivalence class. Entailments of the representatives are then transferred to the
corresponding entailments for individuals in the equivalence classes.

If we use the individual u in Example 1 as the representative for a and b,
then, for any TBox T , one can transfer any newly entailed concept assertion for
u to the corresponding assertions for a and b by Corollary 1. However, not all
entailments for a and b can necessarily be computed this way.

Example 2 (Example 1 continued). Consider a TBox T = {A � C,∃R− � B}.
We have B1 ∪ T |= C(u). By Corollary 1, we obtain C(a), C(b) entailed by
A ∪ T . We are, however, not able to obtain B(b) via homomorphisms from B1

to A, although B(b) is entailed by A ∪ T .

Also in Example 1, since there is a homomorphism from A to B2, for any TBox
T , if B2 ∪ T is consistent then A ∪ T is consistent by Corollary 2. Furthermore,
if we use the individual v as the representative for a and b (ignoring that there
is no homomorphism from B2 to A), then we can compute all entailments for a
and b based on the entailments of v. However, we might transfer facts that are
not entailed by A ∪ T .

Example 3 (Example 2 continued). We have B2 ∪ T |= {B(v), C(v)}. If we take
v as representative of both a and b, then we obtain B(a), B(b), C(a), C(b).
However, B(a) is not entailed by A ∪ T .

As demonstrated in Examples 2 and 3, it is often easy to obtain either sound
or complete results but it is challenging to obtain both. The SHER approach [4]
addresses this issue by computing complete but possibly unsound entailments of
the ontology using a compressed, so-called summary ABox and by using jus-
tification techniques [11] to refine the summary. The abstraction refinement
approach [7] computes sound but possibly incomplete entailments. To ensure
completeness further refinement steps are employed based on the newly derived
entailments. In the next section, we present an enhancement of the existing
abstraction refinement approach that is only based on the abstraction. We show
that indeed no refinement is needed to obtain both sound and complete entail-
ments for DL-LiteHO�

core ontologies. To simplify presentation, we first present the
solution for DL-LiteH�

core and then discuss the extensions for DL-LiteHO�
core .
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4 Abstraction for DL-LiteH�
core

To construct the abstraction of the original ABox, we partition individuals in the
original ABox into equivalence classes and use just one representative individual
for each equivalence class. The equivalence classes are characterized by the type
of individuals, which can be syntactically computed from the original ABox.

Definition 2. Let A be an ABox and a an individual. The type of a (w.r.t. A)
is a pair τ(a) = 〈τC(a), τR(a)〉 where τC(a) = {A | A(a) ∈ A} and τR(a) = {R |
∃b : R(a, b) ∈ A}.
Example 4. Let A = {A(a), A(b), R(a, b)} be as in Example 1 (cf. Fig. 1). Then,
we have τ(a) = 〈{A}, {R}〉 and τ(b) = 〈{A}, {R−}〉.

The abstract ABox is then constructed by introducing one representative and
the respective assertions for each type.

Definition 3. The abstraction of an ABox A is an ABox B =
⋃

a∈ind(A) Bτ(a),
where, for each type τ(a) = 〈τC , τR〉, Bτ(a) = {A(vτ(a)) | A ∈ τC} ∪
{R(vτ(a), w

R
τ(a)) | R ∈ τR}, where vτ(a) and wR

τ(a) are fresh, distinguished
abstract individuals for each type τ(a).

Example 5. The abstraction for A in Example 4 is the ABox B = Bτ(a) ∪ Bτ(b),
where Bτ(a) = {A(vτ(a)), R(vτ(a), w

R
τ(a))}, Bτ(b) = {A(vτ(b)), R−(vτ(b), w

R−
τ(b))}

(cf. Fig. 2).

Note that the size of the abstraction of a small ABox may be larger than the
size of the original ABox, but for ontologies with a large ABox, many individuals
have the same type and, hence, abstractions are small.

Intuitively, the abstraction of an ABox is a disjoint union of small ABoxes
witnessing each individual type realized in the ABox. There always exist homo-
morphisms from the abstraction to the original Abox.

Definition 4. Let A be an ABox and B its abstraction as in Definition 3. The
abstraction B induces a mapping h : ind(B) → ind(A) such that:

h(vτ ) ∈ {a ∈ ind(A) | τ(a) = τ},

h(wR
τ ) ∈ {b ∈ ind(A) | R(h(vτ ), b) ∈ A}.

Lemma 2. Let A be an ABox and B the abstraction of A. Then, for every
mapping h induced by B, h is a homomorphism from B to A.

Proof. The mapping h is a homomorphism from B to A since, for every
C(vτ ) ∈ B, we have h(C(vτ )) = C(a) ∈ A and, for every R(vτ , wR

τ ) ∈ B,
we have h(R(vτ , wR

τ )) = R(a, b) ∈ A for some a, b. �
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Once the abstract ABox B of the original ABox A has been constructed,
instead of performing reasoning over A, we perform reasoning over B and transfer
entailments from the abstraction back to the original ABox using Corollary 1.
Intuitively, for each type τ , the abstract individual vτ is the representative for
all individuals of this type. Therefore, for every TBox T and each A(vτ ) entailed
by B ∪ T , we obtain A(a), where τ(a) = τ , is entailed by A ∪ T . This gives rise
to a procedure for computing the concept materialization of an ontology, which
we present in Algorithm 1.

Since materializing an inconsistent ontology would extend the ABox with all
possible assertions for the atomic concepts and roles, and individuals used in
the ontology, we can furthermore observe that B ∪ T can also be used to check
consistency of A∪T . We use this to devise a procedure for checking consistency
of an ontology in Algorithm2. In practice the steps performed by this algorithm
can also be directly integrated into Algorithm1.

Algorithm 1. Procedure for computing the concept materialization of an
ontology
Input: An ontology O = A ∪ T
Output: Returns the concept materialized ontology O
1: Compute the abstraction B of A according to Definition 3
2: Compute the concept materialization B′ ∪ T of B ∪ T
3: ΔB = {A(vτ ) ∈ B′ | A(vτ ) /∈ B}
4: for all A(vτ ) ∈ ΔB do
5: for all a ∈ ind(A) s.t. τ(a) = τ do
6: A = A ∪ {A(a)}
7: end for
8: end for
9: return A ∪ T

Algorithm 2. Procedure for checking consistency of an ontology
Input: An ontology O = A ∪ T
Output: Returns true if O is consistent and false otherwise
1: Compute the abstraction B of A according to Definition 3
2: if B ∪ T is inconsistent then
3: return false
4: else
5: return true
6: end if

Soundness of the algorithms follows directly from our previously shown
results.

Lemma 3 (Soundness). Let A be an ABox, B its abstraction, and T a TBox.
Then, we have:
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(1) B ∪ T is inconsistent implies A ∪ T is inconsistent;
(2) for every type τ and every concept C, B ∪T |= C(vτ ) implies A∪T |= C(a),

where a ∈ ind(A) s.t. τ(a) = τ .

Proof. The lemma is a straightforward consequence of the fact that the abstrac-
tion induces homomorphisms to the original ABox according to Lemma 2. Apply-
ing the contrapositive of Corollaries 2 and 1 yields the desired result and, hence,
soundness of the algorithms. �
Example 6. Consider O = A ∪ T with T = {A � C,∃R− � B} from Example 2
and A from Example 1 as input for Algorithm1. Figure 2 visualizes A and its
abstraction B. By materializing B ∪ T , we obtain ΔB = {C(vτ(a)), C(vτ(b)),
B(vτ(b))} in Line 3. Note that while B(wR

τ(a)) is in the materialized abstraction
B′, it is not part of ΔB. By updating A using ΔB (Lines 4 to 8), we obtain
A = A ∪ {C(a), C(b), B(b)}, where all added concept assertions are entailed by
the original ontology.

The procedure in Algorithm 1 differs from the abstraction refinement proce-
dure in the existing approach for Horn ALCHOI [7] in that, for each type τ , only
assertions of vτ are used to update the original ABox. As demonstrated in Exam-
ple 6, although B(wR

τ(a)) ∈ B′, it is not in ΔB and, hence, it is not used for extend-
ing A. In addition, unlike the algorithm in the existing approach, Algorithm1
incorporates no refinement step, i.e. there is no repetition of Lines 1–8 until no
new assertions can be added to the original ABox A. Such a repetition is required
to obtain completeness for the Horn ALCHOI procedure. We next show that the
current procedure is nevertheless complete for DL-LiteH�

core, that is, the resulting
ontology is (concept) materialized when the procedure terminates.

We can immediately show soundness of the algorithms as there always exist
homomorphisms from the abstraction B to the corresponding original ABox A as
in Definition 4. But we do not have a similar property for completeness, i.e. there
might exist no homomorphism from A to B. To show completeness, we construct
an extension of B such that there exists a homomorphism from A to the exten-
sion that maps a to vτ(a) for each individual a ∈ ind(A); and we show that the
abstraction entails exactly the same concept assertions as its extension does.

Example 7 (Example 6 continued). Let B+ be an ABox obtained from B
in Example 6 by adding the role assertion R(vτ(a), vτ(b)), and h a map-
ping from A to B+ defined as h(a) = vτ(a), h(b) = vτ(b). Since h(A) =
{A(vτ(a)), A(vτ(b)), R(vτ(a), vτ(b))} ⊆ B+, h is a homomorphism from A to B+.
Therefore, using Corollary 1, we can obtain all entailed assertions of a and b based
on entailed assertions of vτ(a) and vτ(b) w.r.t. B+ ∪T . Furthermore, B+ ∪T and
B ∪ T entail the same set of concept assertions. Hence, the abstraction B is suf-
ficient for obtaining all entailed assertions of A ∪ T . Indeed, the ABox A after
updating already contains all entailed concept assertions.

As demonstrated in Example 7, for this particular TBox and ABox, the abstrac-
tion is sufficient to obtain all entailed concept assertions of the original ontology.
In the following lemma, we show that the same property holds for any TBox
and ABox.
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Lemma 4. Let O = A ∪ T be a DL-LiteH�
core ontology, B the abstraction of A,

and B+ = B ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}. Then, we have:

(1) B ∪ T is consistent implies B+ ∪ T is consistent;
(2) for every atomic concept A and individual v, B+∪T |= A(v) implies B∪T |=

A(v).

Proof. If B ∪T is inconsistent, then the lemma trivially holds. We assume B ∪T
is consistent and let I be an arbitrary model of B∪T . Next, we construct a model
J of B+ ∪ T such that J |= A(v) implies I |= A(v) for every atomic concept
A and individual v. Then it follows that B+ ∪ T is consistent, i.e. Claim (1)
holds, and B+ ∪ T |= A(v) implies J |= A(v), which implies I |= A(v). Since I
is arbitrary, we obtain B ∪ T |= A(v), i.e. Claim (2) holds. Such a model J is
obtained from I by setting ΔJ = ΔI and defining the interpretation function
as follows:

vJ = vI for every individual v

AJ = AI for every atomic concept A

rJ = rI ∪ {〈vI
τ(a), v

I
τ(b)〉 | R(vτ(a), vτ(b)) ∈ B+ and O |= R � r}

∪ {〈vI
τ(b), v

I
τ(a)〉 | R(vτ(a), vτ(b)) ∈ B+ and O |= R � r−}

for every atomic role r

We will show J |= B+∪T by showing that it entails every axiom in B+∪T . Since
I |= B ∪ T and the interpretation of atomic concepts and individuals remains
the same in J , we have J entails every concept assertion in B+. And, clearly,
from the definition of J , it follows that J entails every role assertion in B+.

We now show by induction that, for every DL-LiteH�
core concept C, we have

CJ = CI . Then, for every concept inclusion C � D ∈ T , we have CJ = CI ⊆
DI = DJ , i.e. J |= C � D.

– Cases C = A | ¬A | � | ⊥ are trivial as the interpretation of atomic concepts
in I and in J are identical.

– Case C = ∃r, where r ∈ NR; the case ∃r− is symmetric. We have d ∈ (∃r)J

iff there exists e ∈ ΔJ s.t. 〈d, e〉 ∈ rJ . If 〈d, e〉 ∈ rI , then d ∈ (∃r)I . Other-
wise, from the definition of J , 〈d, e〉 results from one of the cases in the role
extension. We consider the case d = vI

τ(a), e = vI
τ(b) for some individuals a

and b, where R(vτ(a), vτ(b)) ∈ B+,O |= R � r,O �|= R � r−; other cases are
analogous. By definition of B+, we have R(vτ(a), vτ(b)) ∈ B+ iff R(a, b) ∈ A.
This is the case iff R(vτ(a), w

R
τ(a)) ∈ B by Definition 3. Since O |= R � r and

I |= B, we obtain 〈vI
τ(a), (w

R
τ(a))

I〉 ∈ rI , i.e. d = vI
τ(a) ∈ (∃r)I . Since d is

arbitrary, we have (∃r)J = (∃r)I .
– Case C = ¬D. By induction hypothesis DJ = DI and since ΔJ = ΔI , we

have (¬D)J = ΔJ \DJ = ΔI\DI = (¬D)I , i.e. CJ = CI .
– Cases C = C1  C2 and C = C1 � C2. By induction hypothesis, we have

CJ
1 = CI

1 and CJ
2 = CI

2 . Therefore, (C1  C2)J = CJ
1 ∪ CJ

2 = CI
1 ∪ CI

2 =
(C1  C2)I . Similarly, we obtain (C1 � C2)J = (C1 � C2)I .
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For every role inclusion R � S ∈ T , by the definition of J and from I |= R � S,
we have J |= R � S, which proves J |= B+ ∪ T and, hence, finishes this proof. �

Using Lemma 4, we can establish completeness of Algorithms 1 and 2.

Lemma 5 (Completeness). Let A be an ABox, B its abstraction, and T a
DL-LiteH�

core TBox, then we have:

(1) B ∪ T is consistent implies A ∪ T is consistent;
(2) for every atomic concept A and individual a, A ∪ T |= A(a) implies B ∪ T |=

A(vτ(a)).

Proof. Let B+ be the ABox in Lemma 4 and h a mapping from A to B+ s.t.
h(a) = vτ(a), for every a ∈ ind(A). By the definitions of B and of B+, for
each A(a) ∈ A, we have A(vτ(a)) ∈ B, which implies A(vτ(a)) ∈ B+. By the
definition of B+, for each R(a, b) ∈ A, we have R(vτ(a), vτ(b)) ∈ B+. Hence, h
is a homomorphism from A to B+. By Claim (1) of Lemma 4 and Corollary 2,
consistency of B ∪T implies consistency of B+ ∪T , which implies consistency of
A ∪ T , i.e. Claim (1) holds. Similarly, by Corollary 1 and Claim (2) of Lemma 4,
we have, for each atomic concept A and individual a, A ∪ T |= A(a) implies
B+ ∪T |= h(A(a)). Since h(A(a)) = A(vτ(a)), this implies B ∪T |= A(vτ(a)) and
Claim (2) holds. �

5 Implementation and Evaluation

We have implemented a prototype system Orar2 for reasoning in DL-LiteH�
core.

To evaluate the feasibility of our approach, we tested Orar on several real-life
and benchmark ontologies and compared the performance of Orar with that of
the other popular reasoners. The empirical evaluation results show the approach
can reduce the size of the ABoxes significantly (by orders of magnitude), which
results in great performance improvements.

The test ontologies are from popular benchmarks and also used in the eval-
uations of other approaches. NPD3 is an ontology about petroleum activities,
DBPedia+4 is an extension of the DBPedia ontology, and IMDb5 consists of the
Movie ontology and the dataset extracted from the IMDb website. While NPD,
DBPedia+, and IMDb contain real-life data, LUBM and UOBM are popu-
lar benchmarks with synthetic data of the university domain. The datasets in
LUBM and UOBM can be generated in arbitrary sizes, indicated by the num-
ber of universities. We use LUBMn and UOBMn to denote the datasets for n
universities of LUBM and UOBM, respectively. We extracted the relevant DL
fragment from those ontologies, i.e. we eliminated axioms not in DL-LiteH�

core.

2 https://github.com/kieen/OrarHSHOIF.
3 http://sws.ifi.uio.no/project/npd-v2.
4 https://www.cs.ox.ac.uk/isg/tools/PAGOdA.
5 https://sites.google.com/site/ontopiswc13/home/imdb-mo.

https://github.com/kieen/OrarHSHOIF
http://sws.ifi.uio.no/project/npd-v2
https://www.cs.ox.ac.uk/isg/tools/PAGOdA
https://sites.google.com/site/ontopiswc13/home/imdb-mo
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Table 2. Test ontologies with the number of TBox axioms (# ax.), atomic con-
cepts (# con.), roles (# rol.), individuals (# ind.), concept and role assertions (# ast.),
inferred assertions (# inferred ast.) by our system

Ontology # ax. # con. # rol. # indiv. # assert. # inferred assert.

NPD 354 208 90 785 656 1 392 196 1 517 844

DBPedia+ 1 748 442 806 3 822 351 27 094 909 30 239 281

IMDb 131 88 39 6 505 584 27 757 894 33 769 170

LUBM 10 80 43 25 207 426 850 433 1 086 472

LUBM 50 80 43 25 1 082 818 4 445 949 5 676 226

LUBM 100 80 43 25 2 179 766 8 954 615 11 434 996

LUBM 500 80 43 25 10 847 183 44 573 624 56 914 960

UOBM 10 110 69 35 242 491 1 926 897 2 324 962

UOBM 50 110 69 35 1 227 123 9 751 681 11 768 772

UOBM 100 110 69 35 2 461 347 19 571 755 23 617 264

UOBM 500 110 69 35 12 375 804 98 374 692 118 717 591

Table 2 presents detailed information about the test ontologies with the number
of TBox axioms, atomic concepts, roles, individuals, and (inferred) assertions.
NPD, IMDb, and LUBM are in DL-LiteH

core while DBPedia+ and UOBM are in
DL-LiteH�

core.
We used Orar to check consistency and compute the concept materialization

of the test ontologies and compared the reasoning time of Orar and of the other
well-known reasoners HermiT 1.3.8, JFact 5.0.0, Pellet 2.3.6, and Konclude 0.6.2.
All tests were run on an Intel Xeon E5-2660V3 2.60 GHz machine with 250 GB
heap size for the Java VM and with a timeout of five hours. Table 3 presents
information about the abstractions and the size of the abstract ABoxes in com-
parison with the size of the original ABoxes. In NPD, IMDb, and LUBM, many
individuals have the same types. For those ontologies, the size of the original
ABoxes are reduced by up to four orders of magnitude. Particularly, for LUBM
the abstract ABoxes are of nearly constant size regardless of the sizes of the
original ABoxes. This can be explained by the simple patterns used to generate
data in LUBM. The individuals in DBPedia+ and UOBM are more diverse. For
DBPedia+, the number of types is relatively large due to the large number of
concepts and roles; the size of the abstract ABox is approximately 10% of the
original one. For UOBM, the sizes of the abstract ABoxes are approximately 6%
and 1% of the sizes of the original ones for UOBM 10 and UOBM 500, respec-
tively. Table 4 shows the reasoning time of Orar (with Konclude as the internal
reasoner for the abstraction) in comparison with the reasoning time of the other
reasoners. In general, the reasoning time correlates with the size reduction of
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Table 3. Number of types, abstract individuals, assertions, and size of the abstract
ABox in comparison with the original ABox

Ontology Abstraction % of Original ABox

# types # indiv. # assert. % indiv. % assert.

NPD 1 005 15 580 18 244 1.983 1.310

DBPedia+ 226 530 1 775 630 2 770 261 46.454 10.224

IMDb 438 1 224 1 692 0.019 0.006

LUBM 10 29 154 158 0.074 0.019

LUBM 50 27 148 152 0.014 0.003

LUBM 100 27 148 152 0.007 0.002

LUBM 500 27 148 152 0.001 0.001

UOBM 10 11 391 97 944 124 661 40.391 6.470

UOBM 50 25 541 225 420 289 762 18.370 2.971

UOBM 100 34 872 310 513 400 938 12.616 2.049

UOBM 500 64 903 593 539 769 843 4.796 0.783

the ontologies. For concept materialization, Orar outperforms the other reason-
ers on all ontologies. For consistency checking, Konclude is faster than Orar for
IMDb and LUBM. The reason is that reasoning on those ontologies is even faster
than other operations required in Orar like computing types and generating the
abstract ABoxes. For the other ontologies, Orar outperforms all reasoners. Note
that the purpose of our evaluation was not to show the superiority of Orar, but
to demonstrate that our approach can improve the performance of any existing
reasoner when handling large data. Although we used Konclude inside Orar, it
can be replaced by any reasoner.

6 Extensions and Variations

In this section, we discuss the extension of the presented approach to DL-LiteHO�
core

and present a variation of the abstract ABox, which can also be used in our
approach.

6.1 Reasoning with Nominals

Since Lemma 1 even holds for the very expressive language SROIQ, Algorithms 1
and 2 are sound for DL-LiteHO�

core . Before we show that they are also complete for
DL-LiteHO�

core , we first illustrate the advantage of using the abstraction-based app-
roach for classification of DL-LiteHO�

core ontologies. This reasoning task has not been
covered so far as for DL-LiteH�

core classification requires reasoning only over the
TBox (after checking consistency of the ontology).
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Table 4. Reasoning time (without loading time) in seconds, where “−” stands for
timeout

Ontology Concept materialization Consistency checking

Orar Konclude Pellet HermiT JFact Orar Konclude Pellet HermiT JFact

NPD 5 11 39 579 − 3 8 27 284 −
DBPedia+ 163 176 631 2 029 − 48 148 417 292 −
IMDb 34 220 775 983 − 30 7 684 568 −
LUBM10 2 4 9 9 3 651 2 1 8 6 2 606

LUBM50 10 28 53 61 − 10 2 52 34 −
LUBM100 18 67 149 133 − 16 3 135 94 −
LUBM500 90 359 1 601 979 − 80 10 1 476 642 −
UOBM10 8 18 23 − − 3 16 16 47 3 073

UOBM50 25 106 148 − − 13 90 115 624 −
UOBM100 42 227 353 − − 23 187 274 1 421 −
UOBM500 160 1 636 3 846 − − 117 1 225 3 287 − −

Classification of an ontology containing nominals requires reasoning over
both TBox and ABox. This even holds for rather simple languages such as
DL-LiteHO�

core and even OWL 2 RL where nominals can only occur in a restricted
form (∃R.o) [14]. The following example demonstrates that class subsumption
between two concepts might depend on the existence of some assertions.

Example 8. Consider a TBox T = {A � o,∃R− � o,∃R− � B,C � ∃R}. We
observe that A � B holds depending on the existence of instances of the role R,
which can be enforced if C has some instances. Indeed, consider A = {C(a)},
we have A ∪ T |= A � B. In any interpretation I with AI = ∅ the subsumption
trivially holds. If, however, there is some element d ∈ AI , we show that d must
also be in BI . By A � o, we get d ∈ oI . Since C(a) ∈ A, C � ∃R ∈ T , and
aI ∈ CI , there is some d′ such that 〈aI , d′〉 ∈ RI . Since ∃R− � o,∃R− � B ∈ T ,
d′ ∈ oI ∩ BI and, since o is a nominal concept, we have d = d′ ∈ AI ∩ BI and
the subsumption also holds. It is easy to see, however, that ∅ ∪ T �|= A � B.

Since the abstractions are often smaller than the original ABoxes, classification
over the abstraction will be more efficient than classification over the original
ontology.

Lemma 6. Let A ∪ T be a DL-LiteHO�
core ontology and B the abstraction of A.

Then, for every atomic concepts A,B ∈ con(A ∪ T ), A ∪ T |= A � B iff
B ∪ T |= A � B.

By Lemmas 1 and 2, the “only-if” direction of Lemma6 holds. We now briefly
show the “if” direction of Lemma 6; and also show that Algorithms 1 and 2 are
complete for DL-LiteHO�

core . We rely on the following extension of Lemma4.

Lemma 7. Let O = A ∪ T be a DL-LiteHO�
core ontology, B the abstraction of A,

and B+ = B ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}. Then, we have:

(1) B ∪ T is consistent implies B+ ∪ T is consistent;
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(2) for every atomic concept A and individual v, B+∪T |= A(v) implies B∪T |=
A(v); and

(3) for every atomic concepts A and B, B+∪T |= A � B implies B∪T |= A � B.

Proof (Sketch). Intuitively, we follow similar steps as in the proof of Lemma4.
The only difference is to extend the interpretations to cover nominals. Reconsider
the interpretations I and J in the proof of Lemma4. We define J as before and
let the interpretations of nominals in J and in I be identical. Then, all claims
in the existing proof remain sound. Furthermore, since the interpretations of
atomic concepts in I and in J are identical, we have B+ ∪ T |= A � B implies
AJ ⊆ BJ , which implies AI ⊆ BI , i.e. I |= A � B. Since I is arbitrary, we
have B ∪ T |= A � B. �
As shown in the proof of Lemma 5, there exists a homomorphism h from A to
B+ that maps a to vτ(a) for each a ∈ ind(A). By Lemmas 7 and 1, it follows
that the “if” direction of the Lemma 6 holds and that Lemma 5 holds also for
DL-LiteHO�

core .

6.2 Alternative Abstraction

The key idea of the abstraction-based approach is to build a suitable, ideally
small abstract ABox, which can be used to obtain sound and complete entail-
ments of the input ontology. The abstract ABoxes from Definition 3 induce homo-
morphisms to the original ABox but not necessarily vice versa. This directly
guarantees soundness but not completeness. Completeness of the approach is
guaranteed by Lemmas 4 and 5, which show that the abstract ABox B entails
exactly the same assertions as its extension B+, to which there is a homomor-
phism from the original ABox. This suggests an alternative definition of abstrac-
tions similar to the extension B+ of B in Lemma 4.

Definition 5. The abstraction of an ABox A is an ABox C = {A(vτ(a)) |
A(a) ∈ A} ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}, where τ(a) and τ(b) are the types
of a and b, respectively, and vτ(a) and vτ(b) are a fresh, distinguished abstract
individuals.

Example 9. Consider the ABox A = {A(a), A(b), R(a, b)} as in Example 1.
The abstraction of A by Definition 5 is the ABox C = {A(vτ(a)), A(vτ(b)),
R(vτ(a), vτ(b))}.

In Example 9 there are homomorphisms both from A to C and from C to A;
C is just a copy under renaming of A. Therefore, it is easy to see that using
C as an abstract ABox, we obtain both sound and complete entailments for
A w.r.t. any TBox. In general, there is always a homomorphism from A to C,
e.g. the mapping h defined as h(a) = vτ(a), a ∈ ind(A), but not necessarily a
homomorphism from C to A. This immediately guarantees completeness of the
approach but not soundness. However, based on our previously shown results, we
can show that all results we obtained using C are sound. Let A be an ABox, C the



Scalable Reasoning by Abstraction Beyond DL-Lite 91

abstraction of A by Definition 5, B the abstraction of A by Definition 3, and B+

the extension of B defined in Lemma 4. Since C ⊆ B+, by monotonicity, for every
concept A and individual vτ(a) ∈ ind(C), we obtain that C∪T |= A(vτ(a)) implies
B+ ∪ T |= A(vτ(a)), which implies B ∪ T |= A(vτ(a)) by Lemma 4. Furthermore,
by Lemma 3 we have B ∪ T |= A(vτ(a)) implies A ∪ T |= A(a). Therefore, we
have C ∪ T |= A(vτ(a)) implies A ∪ T |= A(a).

In Definition 5, the abstract ABox C uses just one individual vτ for each
type τ , and, therefore, it requires less individuals than the abstract ABox B in
Definition 3. However, for each type τ and each role R occurring in τ there is
exactly one role assertion, e.g. R(vτ , wR

τ ), in B, whereas vτ could have many
R-successors/predecessors in C. In our experiment with both types of abstract
ABoxes, the abstract ABoxes constructed according to Definition 5 are often
larger than the ones using Definition 3.

7 Related Work

Several ontology reasoning techniques have been proposed to handle large data.
The RDFox [15] and WebPIE [18] systems utilize parallel computing to perform
a rule-based materialization for OWL 2 RL. The PAGOdA system [20] approx-
imates the TBox and then performs OWL 2 RL rules to compute lower-bound
and upper-bound entailments, which help to determine entailments for individu-
als quickly. Wandelt and Möller propose a technique for instance retrieval based
on modularization [19]. A closely related work to our approaches is the SHER
approach [4]. It merges individuals to obtain a compressed, summary ABox,
which is then used for (refutation-based) consistency checking or query answer-
ing. Since merging is only based on concept assertions, the resulting summary
ABox is an over-approximation of the original ABox. Therefore, if the summary
ABox is consistent, then so is the original ABox, but not vice versa. In case the
summary ABox is inconsistent, explanation techniques [11] are used to repair
the summary. In contrast to the summary approach, the abstract ABox cre-
ated in the presented approach immediately allows for both sound and complete
results. Note that for DL-Lite ontologies, the previous abstraction refinement
approach [7] performs reasoning over the abstract ABox twice as it continues
doing refinement after transferring the entailments from the first abstraction to
the original ABox.

8 Conclusions

We have presented a scalable abstraction-based approach for reasoning in
DL-LiteH�

core and its extensions for DL-LiteHO�
core . For DL-LiteH�

core, we focus on
concept materialization and consistency checking of the ontology as computing
the role materialization can be done simply by expanding the existing role asser-
tions according to the role hierarchy; and computing the class hierarchy requires
only the TBox (after checking consistency of the ontology). For DL-LiteHO�

core , we
show that the presented approach for concept materialization and consistency
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checking remains sound and complete. Furthermore, it can be easily extended
to ontology classification, a non-trivial task in DL-LiteHO�

core . Computing the role
materialization of DL-LiteHO�

core ontologies is not as simple as in DL-LiteH�
core as

role assertions can be derived not only from the role hierarchy but also from
axioms of nominals. It is possible to use the abstraction to obtain also the role
assertions as presented in our recent work for Horn SHOIF [8].

The languages we consider in this paper do not make the Unique Name
Assumption (UNA), which is often adopted in DL-Lite. But the presented app-
roach also works for DL-LiteH�

core with UNA; for DL-LiteHO�
core , it does not make

sense to adopt UNA. As noted in the work about different dialects of the DL-Lite
family [1], we can construct a model for a DL-LiteH�

core ontology with UNA from a
model of that ontology without UNA by “cloning” the domain elements so that
different individuals are interpreted differently. Entailments are preserved in the
resulting model, therefore, the results for DL-LiteH�

core without UNA remain valid
in DL-LiteH�

core with UNA.
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19. Wandelt, S., Möller, R.: Towards ABox modularization of semi-expressive descrip-
tion logics. J. Appl. Ontol. 7(2), 133–167 (2012)

20. Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., Horrocks, I.: PAGOdA: pay-
as-you-go ontology query answering using a datalog reasoner. J. Artif. Intell. Res.
54, 309–367 (2015)



The Impact of Active Domain Predicates
on Guarded Existential Rules

Georg Gottlob1, Andreas Pieris2(B), and Mantas Šimkus2
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Abstract. We claim it is realistic to assume that a database management
system provides access to the active domain via built-in relations. There-
fore, product databases, i.e., databases that include designated predicates
that hold the active domain, form a natural notion that deserves our atten-
tion. An important issue then is to look at the consequences of product
databases for the expressiveness and complexity of central existential rule
languages. We focus on guarded existential rules, and we investigate the
impact of product databases on their expressive power and complexity.
We show that the queries expressed via (frontier-)guarded rules gain in
expressiveness, and in fact, they have the same expressive power as Dat-
alog. On the other hand, there is no impact on the expressiveness of the
queries specified via weakly-(frontier-)guarded rules since they are power-
ful enough to explicitly compute the predicates needed to access the active
domain. We also observe that there is no impact on the complexity of the
languages in question.

1 Introduction

Rule-based languages lie at the core of databases and knowledge representation.
In database applications they are usually employed as query languages that go
beyond standard SQL, while in knowledge representation are used for declara-
tive problem solving, and, more recently, to model and reason about ontological
knowledge. Therefore, rule-based languages can be used in at least two different
ways: as query languages and as ontology languages. In the database setting, a
rule-based query is expressed as a pair of the form (Σ, Ans), where Σ is a set
of rules encoding the actual query, and Ans is the so-called goal predicate that
collects the answer to the query. On the other hand, in the ontological setting,
a database D and a set of rules Σ are used to specify implicit domain knowl-
edge – the pair (D,Σ) is called knowledge base – while user queries, typically
expressed as standard conjunctive queries, are evaluated over a knowledge base.
Alternatively, the set of rules can be conceived as part of the specification of a
query that is executed over a plain database. Such queries are known as ontology-
mediated queries [6], and are in fact pairs of the form (Σ, q), where Σ is a set
of rules expressed in a certain ontology language, and q is a conjunctive query.
c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 94–110, 2016.
DOI: 10.1007/978-3-319-45276-0 8
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From the above discussion, it is apparent that rule-based languages form the
building block of several database and ontology-mediated query languages that
can be found in the literature.

An important issue for a query language (either a database or an ontology-
mediated query language) is to understand its expressive power, and in particu-
lar, its expressiveness relative to other query languages. Relative expressiveness
considers if, given two query languages L1 and L2, every query formulated in L1

can be expressed by means of L2 (and vice versa). This helps the user to choose,
among a plethora of different query languages, the one that is more appropri-
ate for the application in question. The goal of this work is to perform such an
expressivity analysis for central query languages based on existential rules.

Existential rules (a.k.a. tuple-generating dependencies or Datalog± rules) are
first-order sentences of the form ∀x̄∀ȳ

(
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
, where φ and ψ are

conjunctions of atoms. Intuitively speaking, such a rule states that the existence
of certain tuples in a database implies the existence of some other tuples in the
same database. It is widely known that the query languages based on arbitrary
existential rules, without posing any syntactic restriction, are undecidable; see,
e.g., [5,7]. This has led to a flurry of activity for identifying expressive fragments
of existential rules that give rise to decidable query languages. One of the key
paradigms that has been thoroughly studied is guardedness [2,7]. In a nutshell,
the existential rule given above is guarded (resp., frontier-guarded) if φ has an
atom that contains ( or “guards”) all the variables in x̄ ∪ ȳ (resp., x̄). More
refined languages based on weak-(frontier-)guardedness also exist.

The relative expressiveness of the languages based on (weakly-)(frontier-)
guarded existential rules has been recently investigated in [9]. However, the thor-
ough analysis performed in [9] has made no assumption on the input databases
over which the queries will be evaluated, and it is known that such assumptions
may have an impact on the expressiveness of a query language. Recall the clas-
sical result that semipositive Datalog over ordered databases is powerful enough
to express all queries that are computable in polynomial time, which is not true
without assuming ordered databases [1].

We claim it is natural to focus on product databases, that is, databases that
include designated predicates that hold the active domain. In other words, those
predicates give access to the cartesian product of the active domain (hence the
name product databases). Since it is realistic to assume that a database man-
agement system provides access to the active domain via built-in relations (e.g.,
lookup or reference tables), we believe that product databases form a central
notion that deserves our attention. In view of this fact, it is important to under-
stand how the relative expressiveness of the guarded-based query languages in
question is affected when we concentrate on product databases. This is the goal
of the present work. The outcome of our analysis can be summarized as follows:

– The query languages based on (frontier-)guarded existential rules gain in
expressiveness, and, in fact, they have the same expressive power as Datalog.
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– There is no impact on the expressive power of the query languages that are
based on weakly-(frontier-)guarded existential rules, since they are powerful
enough to explicitly compute the relations needed to access the active domain.

– Finally, we show that there is no impact on the computational complexity of
the guarded-based query languages in question.

Although the employed techniques for establishing the above results are rather
standard, which build on existing ones that can be found in the literature, the
obtained results are conceptually interesting (e.g., assuming product databases,
(frontier-)guardedness gives rise to query languages that are equally expressive
to Datalog). We believe that our analysis sheds light on the expressivity of
the guarded-based query languages in question, and complements the recent
investigation preformed in [9]. Let us clarify that in the above summarization
of our results, the term query language refers to both database and ontology-
mediated query languages. Since the former is a special case of the latter (indeed,
the query (Σ, Ans) is actually the ontology-mediated query (Σ, Ans(x1, . . . , xn)),
where n is the arity of Ans), in the sequel we focus on ontology-mediated queries.

2 Motivating Example

The goal of this section is to illustrate, via a meaningful example, that product
databases have an impact on the expressiveness of frontier-guarded ontology-
mediated queries, which in turn allows us to write complex queries in a more
flexible way. Suppose we are developing a system for managing a response to a
natural disaster. The ultimate goal of the system is to collect information about
volunteers and their qualifications, and then use this information to coordinate
various relief activities.

The Database. Suppose that the database of such a system contains a binary
relation Team that stores an assignment of volunteers to teams. For example, the
atom

Team(“Alpha”, “Ann”)

means that Ann belongs to the team called Alpha. The database also includes
a binary relation called ExperienceIn, which relates persons to tasks in which
they have experience. For instance, the atom

ExperienceIn(“John”, “perform CPR”)

states that John has experience in performing CPR. We also have a binary
relation hasTraining with the obvious meaning; for example,

hasTraining(“John”, “race driver”)

means that John has been trained to drive a race car. In addition, the database
contains a unary relation ProDriverQualification that stores qualifications
that involve driving at professional level; e.g.,

ProDriverQualification(“bus license”)
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states that bus license is a qualification to drive at professional level. We further
assume that some tasks that can be performed by volunteers are grouped into
more complex procedures. For instance, the response to a water leak could consist
of performing four tasks in the following order: load equipment, drive truck,
perform repairs and clean up. This is stated in the database of the system using
the atoms:

ProcedureTaskFirst(“water leak”, “load equipment”)
ProcedureTaskOrder(“water leak”, “load equipment”, “drive truck”)
ProcedureTaskOrder(“water leak”, “drive truck”, “perform repairs”)
ProcedureTaskOrder(“water leak”, “perform repairs”, “clean up”)

ProcedureTaskLast(“water leak”, “clean up”).

Intuitively, ProcedureTaskFirst(p, t) and ProcedureTaskLast(p, t′) state that
t/t′ are the first/last task in the procedure p. The atom Procedure
TaskOrder(p, t, t′) says that in the procedure p the task t′ follows the task t.

The Ontology. We know that some intensional knowledge, not explicitly stored
in the database described above, also holds. More precisely, we know that if a
person p has experience in some task t, then p is qualified to perform t. This can
be expressed as

σ1 = ExperienceIn(Pn,Tk) → QualifiedFor(Pn,Tk).

Moreover, we know that if a person p has been trained to be a professional driver,
then p is qualified to drive an ambulance. This can be expressed as

σ2 = hasTraining(Pn, T ), ProDriverQualification(T ) →
QualifiedFor(Pn, “drive ambulance”).

In addition, if a person p is experienced in delivering heavy goods, then p must
have some training that leads to a truck license. This is expressed via the rule

σ3 = ExperienceIn(Pn, “delivery heavy goods”) →
∃T hasTraining(Pn, T ), TruckLicense(T ).

Finally, truck license leads to a professional driving license, which can be
expressed as

σ4 = TruckLicense(T ) → ProDriverQualification(T ).

Observe that our ontology Σ = {σ1, . . . , σ4} consists of guarded existential rules.

The Database Query. In our disaster management scenario we are interested
in checking whether a team is qualified to perform every task of a certain pro-
cedure. More precisely, we want to collect in a binary relation TeamQualified
all pairs (t, p) of a team and a procedure such that: for every task j of the pro-
cedure p, the team t has a member m that is qualified for j. Recall that an
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ontology-mediated query is a pair of an ontology and a database query. There-
fore, we need to express the above query as a database query q, which, together
with the ontology Σ defined above, will give rise to the ontology-mediated query
(Σ, q). Unfortunately, things are a bit more complicated than they seem. In
particular, the query q is inherently recursive, and thus is not expressible as
a conjunctive query. However, it can be easily expressed as the Datalog query
(Π, TeamQualified), where the program Π consists of the rules:

ProcedureTaskFirst(Pc,Tk),
ρ1 = Team(Tm,Pn),

QualifiedFor(Pn,Tk) → QualifiedUntil(Tm,Pc,Tk)

ProcedureTaskOrder(Pc,Tk ′,Tk),
ρ2 = Team(Tm,Pn),

QualifiedUntil(Tm,Pn,Tk ′) → QualifiedUntil(Tm,Pc,Tk)

ρ3 = ProcedureTaskLast(Pc,Tk),
QualifiedUntil(Tm,Pc,Tk) → TeamQualified(Tm,Pc).

The fact that our query q is expressible as a recursive Datalog query is of little
use since the ontology-mediated query (Σ, q) does not comply with the formal
definition of ontology-mediated queries where q must be a first-order query, and
thus does not fall in a decidable guarded-based ontology-mediated query lan-
guage. Hence, the crucial question that comes up is whether we can construct a
query (Σ′, q′) that is equivalent to (Σ, q), while Σ is a set of (frontier-)guarded
existential rules and q is a conjunctive query. One may think that this can be
achieved by adding the rules of Π in the ontology Σ, i.e., Σ′ = Σ ∪ Π, and let
q be the atomic conjunctive query TeamQualified(x, y). Although the obtained
query (Σ′, q′) is equivalent to (Σ, q), it is inherently unguarded, and it cannot
be expressed as a frontier-guarded ontology-mediated query. However, assuming
that our database is product, which gives us access to the active domain via rela-
tions of the form Domk, for k > 0, that hold all the k-tuples of constants occurring
in the active domain, we can convert the rules ρ1, ρ2 ∈ Σ′ into guarded rules,
without changing the meaning of the query (Σ′, q′), by adding in their body the
atom Dom4(Tm,Pc,Tk ,Pn) and Dom5(Tm,Pc,Tk ,Tk ′,Pn), respectively. Hence,
the assumption that the database is product allows us to rewrite the query (Σ, q)
into an equivalent guarded ontology-mediated query.

3 Preliminaries

Instances and Queries. Let C, N and V be pairwise disjoint countably infinite
sets of constants, (labeled) nulls and variables (used in queries and dependencies),
respectively. A schema S is a finite set of relation symbols (or predicates) with
associated arity. We write R/n to denote that R has arity n. A term is either
a constant, null or variable. An atom over S is an expression R(t̄), where R is
a relation symbol in S of arity n > 0 and t̄ is an n-tuple of terms. A fact is
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an atom whose arguments consist only of constants. An instance over S is a
(possibly infinite) set of atoms over S that contain constants and nulls, while a
database over S is a finite set of facts over S. The active domain of an instance I,
denoted adom(I), is the set of all terms occurring in I.

A query over S is a mapping q that maps every database D over S to a set
of answers q(D) ⊆ adom(D)n, where n ≥ 0 is the arity of q. The usual way of
specifying queries is by means of (fragments of) first-order logic. Such a central
fragment is the class of conjunctive queries. A conjunctive query (CQ) q over
S is a conjunction of atoms of the form ∃ȳ φ(x̄, ȳ), where x̄ ∪ ȳ are variables
of V, that uses only predicates from S. The free variables of a CQ are called
answer variables. The evaluation of CQs over instances is defined in terms of
homomorphisms. A homomorphism from a set of atoms A to a set of atoms
A′ is a partial function h : C ∪ N ∪ V → C ∪ N ∪ V such that: (i) t ∈ C
implies h(t) = t, i.e., is the identity on C, and (ii) R(t1, . . . , tn) ∈ A implies
h(R(t1, . . . , tn)) = R(h(t1), . . . , h(tn)) ∈ A′. The evaluation of q over an S-
instance I, denoted q(I), is the set of all tuples h(x̄) of constants such that h is
a homomorphism from q to I. Each schema S and CQ q = ∃ȳ φ(x1, . . . , xn, ȳ)
give rise to the n-ary query qφ,S defined by setting, for every database D over
S, qφ,S(D) = {c̄ ∈ adom(D)n | c̄ ∈ q(D)}. Let CQ be the class of all queries
definable by some CQ.

Tgds for Specifying Ontologies. An ontology language is a fragment of first-
order logic. We focus on ontology languages that are based on tuple-generating
dependencies. A tuple-generating dependency (tgd) is a first-order sentence of
the form

∀x̄∀ȳ
(
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
,

where both φ and ψ are conjunctions of atoms without nulls and constants. For
simplicity, we write this tgd as φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and use comma instead of
“∧” for conjoining atoms. We call φ and ψ the body and head of the tgd, respec-
tively, and write sch(Σ) for the set of predicates occurring in Σ. An instance I
satisfies the above tgd if: For every homomorphism h from φ(x̄, ȳ) to I, there is
a homomorphism h′ that extends h, i.e., h′ ⊇ h, from ψ(x̄, z̄) to I. I satisfies a
set Σ of tgds, denoted I |= Σ, if I satisfies every tgd in Σ. Let TGD be the class
of all (finite) sets of tgds.

Ontology-Mediated Queries. An ontology-mediated query is a triple (S, Σ, q),
where S is a schema, called data schema, Σ ∈ TGD, q ∈ CQ, and q is over
S ∪ sch(Σ).1 Notice that the data schema S is included in the specification of
an ontology-mediated query in order to make clear that the query is over S,
i.e., it ranges over S-databases. The semantics of such a query is defined in
terms of certain answers. Let (S, Σ, q) be an ontology-mediated query, where n
is the arity of q. The answer to q with respect to a database D over S and Σ is
certq,Σ(D) =

⋂
I⊇D,I|=Σ{c̄ ∈ adom(D)n | c̄ ∈ q(I)}.

1 In fact, ontology-mediated queries can be defined for arbitrary ontology and query
languages.
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At this point, it is important to recall that certq,Σ(D) coincides with the
evaluation of q over the canonical instance of D and Σ that can be constructed
by applying the chase procedure [7,8,10,11]. Roughly speaking, the chase adds
new atoms to D as dictated by Σ until the final result satisfies Σ, while the
existentially quantified variables are satisfied by inventing fresh null values.
The formal definition of the chase procedure follows. Let I be an instance and
σ = φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄) a tgd. We say that σ is applicable with respect to I
if there exists a homomorphism h from body(σ) to I. In this case, the result of
applying σ over I with h is the instance J = I ∪ h′(head(σ)), where h′ is an
extension of h that maps each z ∈ z̄ to a fresh null value not in I. For such a
single chase step we write I

σ,h−−→ J . Let us assume now that I is an instance and
Σ a finite set of tgds. A chase sequence for I under Σ is a (finite or infinite)

sequence: I0
σ0,h0−−−→ I1

σ1,h1−−−→ I2 . . . of chase steps such that: (1) I0 = I; (2) For
each i ≥ 0, σi ∈ Σ; and (3)

⋃
i≥0 Ii |= Σ. Notice that in case the above chase

sequence is infinite, then it must be also fair, that is, whenever a tgd σ ∈ Σ is
applicable with respect to Ii with homomorphism hi, then there exists h′ ⊇ hi

and k > i such that h′(head(σ)) ⊆ Ik. In other words, a fair chase sequence guar-
antees that all tgds that are applicable will eventually be applied. We call

⋃
i≥0 Ii

the result of this chase sequence, which always exists. Although the result of a
chase sequence is not necessarily unique (up to isomorphism), each such result
is equally useful for our purposes since is universal, that is, it can be homomor-
phically embedded into every other result. Therefore, we denote by chase(I,Σ)
the result of an arbitrary chase sequence for I under Σ.

Given an ontology-mediated query (S, Σ, q), it is well-known that
certq,Σ(D) = q(chase(D,Σ)), for every S-database D. In other words, to com-
pute the answer to q with respect to D and Σ, we simply need to evaluate q over
the instance chase(D,Σ). Notice that this does not provide an effective algo-
rithm for computing certq,Σ(D) since the instance chase(D,Σ) is, in general,
infinite.

Ontology-Mediated Query Languages. Every ontology-mediated query
Q = (S, Σ, q) can be interpreted as a query qQ over S by setting qQ(D) =
certq,Σ(D), for every S-database D. Thus, we obtain a new query language,
denoted (TGD,CQ), defined as the class of queries qQ, where Q is an ontology-
mediated query. However, (TGD,CQ) is undecidable since, given a database D
over S, Σ ∈ TGD, an n-ary query q ∈ CQ over S ∪ sch(Σ), and a tuple c̄ ∈ Cn,
the problem of deciding whether c̄ ∈ certq,Σ(D) is undecidable; see, e.g., [5,7].
This has led to a flurry of activity for identifying decidable syntactic restrictions.
Such a restriction defines a subclass C of tgds, i.e., C ⊆ TGD, which in turn gives
rise to the query language (C,CQ). Such a query language is called ontology-
mediated query language. Here we focus on ontology-mediated query languages
that are based on the notion of guardedness:

(Frontier-)Guarded Tgds: A tgd is guarded if its body contains an atom, called
guard, that contains all the body-variables [7]. Let G be the class of all finite sets
of guarded tgds. A key extension of guarded tgds is the class of frontier-guarded
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tgds, where the guard contains only the frontier variables, i.e., the body-variables
that appear in the head [2]. Let FG be the class of all finite sets of frontier-guarded
tgds.

Weak Versions: Both G and FG have a weak version: Weakly-guarded [7] and
weakly-frontier-guarded [2], respectively. These are highly expressive classes of
tgds obtained by relaxing the underlying condition so that only those variables
that may unify with null values during the chase are taken into account. In
order to formalize these classes of tgds we need some additional terminology.
A position R[i] identifies the i-th attribute of a predicate R. Given a schema S,
the set of positions of S is the set {R[i] | R/n ∈ S and i ∈ {1, . . . , n}}. Given
a set Σ of tgds, the set of affected positions of sch(Σ), denoted affected(Σ), is
inductively defined as follows: (1) If there exists σ ∈ Σ such that at position π
an existentially quantified variable occurs, then π ∈ affected(Σ); and (2) If there
exists σ ∈ Σ and a variable V in body(σ) only at positions of affected(Σ), and V
appears in head(σ) at position π, then π ∈ affected(Σ). A tgd σ is weakly-guarded
with respect to Σ if its body contains an atom, called weak-guard, that contains
all the body-variables that appear only at positions of affected(Σ). The set Σ is
weakly-guarded if each σ ∈ Σ is weakly-guarded with respect to Σ. The class of
weakly-frontier-guarded sets of tgds is defined analogously, but considering only
the body-variables that appear also in the head of a tgd. We write WG (resp.,
WFG) for the class of all finite weakly-guarded (resp., weakly-frontier-guarded)
sets of tgds.

4 Product Databases

Recall that product databases provide access to the active domain via designated
built-in predicates. Before proceeding to the next section, where we look at the
impact of product databases on the expressive power of the ontology-mediated
query languages in question, let us make the notion of a product database more
precise.

A database D is said to be α-product, where α is a finite set of positive inte-
gers, if it includes a designated predicate Domi/i, for each i ∈ α, that holds all
the i-tuples of constants in adom(D), or, in other words, the restriction of D
over the predicate Domi is precisely the set of facts {Domi(t̄) | t̄ ∈ adom(D)i}.
Given a non-product database D, we denote by Dα the α-product database
D ∪ {Domi(t̄) | t̄ ∈ adom(D)i}i∈α. An ontology-mediated query over a product
database is an ontology-mediated query (S, Σ, q) such that S contains the pred-
icates Domi1 , . . . , Domik , for some set of positive integers α = {i1, . . . , ik}, while
none of those predicates appears in the head of a tgd of Σ. The latter condition
is posed since the predicates Domi1 , . . . , Domik are conceived as built-in read-only
predicates, and thus, we cannot modify their content. Such a query ranges only
over S-databases that are α-product. We write (C,CQ)× for the class of (C,CQ)
queries over a product database.
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Example 1. Consider the query Qtrans = ({E}, Σ, Ans(x, y)), where Σ is the set:

E(x, y) → T (x, y)
E(x, y), T (y, z) → T (x, z)

T (x, y) → Ans(x, y),

which computes the transitive closure of the binary predicate E. It is easy to
see that the above query can be equivalently rewritten as a guarded ontology-
mediated query over a product database, i.e., as a (G,CQ)× query. More precisely,
Qtrans can be written as Q′

trans = ({E, Dom3}, Σ′, Ans(x, y)), where Σ′ is the set
of tgds:

E(x, y) → T (x, y)
Dom3(x, y, z), E(x, y), T (y, z) → T (x, z)

T (x, y) → Ans(x, y).

Clearly, for every {E}-database D, Qtrans(D) = Q′
trans(D

{3}). �

5 The Impact of Product Databases

We are now ready to investigate the impact of product databases on the rel-
ative expressiveness of the guarded-based ontology-mediated query languages
in question. Let us first fix some auxiliary terminology. Two ontology-mediated
queries Q1 = (S1, Σ1, q1) and Q2 = (S2, Σ2, q2) over a product database, with
αi = {j | Domj ∈ Si}, for each i ∈ {1, 2}, are comparable relative to schema
S if S = S1 \ {Domi | i ∈ α1} = S2 \ {Domi | i ∈ α2}. Such compara-
ble queries are equivalent, written Q1 ≡ Q2, if, for every database D over S,
certq1,Σ1(D

α1) = certq2,Σ2(D
α2). It is important to say that the above defini-

tions immediately apply even if we consider queries that are not over a product
database. An ontology-mediated query language Q2 is at least as expressive
as the ontology-mediated query language Q1, written Q1 � Q2, if, for every
Q1 ∈ Q1 there is Q2 ∈ Q2 such that Q1 and Q2 are comparable (relative to
some schema) and Q1 ≡ Q2. Q2 is strictly more expressive than Q1, written
Q1 ≺ Q2, if Q1 � Q2 �� Q1. Q1 and Q2 have the same expressive power, written
Q1 = Q2, if Q1 � Q2 � Q1. In our analysis we also include Datalog. Recall
that a Datalog program is simply a set of single-head tgds without existentially
quantified variables, while a Datalog query over S of the form (Σ, Ans/n), where
Σ is a Datalog program and Ans is the answer predicate, can be seen as the
ontology-mediated query (S, Σ, Ans(x1, . . . , xn)). We write DAT for the class of
queries definable via some Datalog query. We show the following:

Theorem 1. It holds that,

(G,CQ) ≺ (FG,CQ) ≺ (G,CQ)× = (FG,CQ)× = DAT ≺
(WG,CQ) = (WFG,CQ) = (WG,CQ)× = (WFG,CQ)×.
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The rest of this section is devoted to establish the above result. This is done
by establishing a series of technical lemmas that all together imply Theorem 1.
Henceforth, we assume that, given an ontology-mediated query (S, Σ, q), none
of the predicates of S occur in the head of a tgd of Σ. This assumption can
be made without loss of generality since, for each R ∈ S that appears in the
head of tgd of Σ, we can add to Σ the auxiliary copy tgd R(x1, . . . , xn) →
R�(x1, . . . , xn), and then replace each occurrence of R in Σ and q with R�. We
first establish that frontier-guarded ontology-mediated queries are strictly more
expressive than guarded ontology-mediated queries. Although this is generally
known, it is not explicitly shown in some previous work. Hence, for the sake of
completeness, we would like to provide a proof sketch for this fact.

Fig. 1. The graph from the proof of Lemma 1.

Lemma 1. (G,CQ) ≺ (FG,CQ).

Proof (sketch). We need to exhibit a query that can be expressed in (FG,CQ)
but not in (G,CQ), which in turn shows that (FG,CQ) �� (G,CQ); the other
direction holds trivially since G ⊆ FG. Such a query is the one that asks whether
a labeled directed graph G = (N,E, λ, μ), where λ : N → {start , internal , end}
and μ : E → {R,S}, contains a directed R-path P from a start node to an
end node via internal nodes, while each node of P is part of a directed S-
triangle. In other words, we ask if the graph G contains a subgraph as the one
depicted in Fig. 1. The graph G is naturally encoded in an S-database D, where
S = {Start/1, Internal/1, End/1, R/2, S/2}. Our query can be expressed as the
(FG,CQ) query Q = (S, Σ, Yes()), where Σ consists of:

S(x, x1), S(x1, x2), S(x2, x) → TriangleS(x)
Start(x) → Mark(x)

Mark(x), TriangleS(x), R(x, y), Internal(y) → Mark(y)
Mark(x), TriangleS(x), R(x, y), End(y), TriangleS(y) → Yes().

Let us intuitively explain why Q cannot be expressed as a (G,CQ) query. Assume
that Q can be expressed via the (G,CQ) query (S, Σ′, q′). It is well-known that
the query that asks whether a node belongs to an S-triangle is unguarded, and
thus, it cannot be expressed via a query of the form (S, Σ′, qa), where Σ′ ∈ G
and qa is atomic. Thus, the “triangle checks” must necessarily be performed by
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the CQ q′. This implies that q′ can perform an unbounded number of “triangle
checks”, and thus, q′ can express a query that is inherently recursive. But this
contradicts the fact that a (finite) first-order query, let alone a conjunctive query,
cannot express a recursive query. ��

We proceed to show that Datalog queries are strictly more expressive
than frontier-guarded ontology-mediated queries. Towards this end, we are
going to exploit the fact that (FG,ACQ) � DAT, where ACQ is the class of
queries definable by some atomic CQ [9].2 This means that, given a query
Q = (S, Σ,∃ȳ Ans(x̄, ȳ)) ∈ (FG,ACQ), there exists a procedure Ξ that trans-
lates Σ into a Datalog program such that Q and the query (Ξ(Σ), Ans) ∈ DAT
over S are equivalent.

Lemma 2. (FG,CQ) ≺ DAT.

Proof (sketch). We first show that (FG,CQ) � DAT. Let Q = (S, Σ, q) ∈
(FG,CQ), with q = ∃ȳ φ(x1, . . . , xn, ȳ). Q can be equivalently rewritten as a
(TGD,ACQ) query. More precisely, Q is equivalent to the query

Q′ = (S ∪ {P, P �}, ΣP � ∪ Σ ∪ {σq}, Ans(x1, . . . , xn)),

where P/1, P �/n are auxiliary predicates not in S∪ sch(Σ), ΣP � consists of the
tgds:

R(x1, . . . , xn) → P (xi), for each R ∈ S and i ∈ {1, . . . , n}
P (x1), . . . , P (xn) → P �(x1, . . . , xn),

and σq is the tgd

P �(x1, . . . , xn), φ(x1, . . . , xn, ȳ) → Ans(x1, . . . , xn).

In particular, ΣP � defines the predicate P � that holds all the n-tuples over
constants of the active domain, which then can be used in σq that converts the
CQ q into a frontier-guarded tgd. Notice that Q′ is not a query over a product
database, which means we do not have access to the built-in predicate Domn.
Therefore, in order to convert q into a frontier-guarded tgd, we need to explicitly
construct all the n-tuples over the active domain and store them in the auxiliary
predicate P �. Although the set of tgds Σ′ = ΣP � ∪ Σ ∪ {σq} is not frontier-
guarded, it has a very special form that allows us to rewrite it into a Datalog
program by applying the translation Ξ. Observe that Σ′ admits a stratification,
where the first stratum is the set ΣP � , while the second stratum is the frontier-
guarded set Σ ∪ {σq}. This implies that Q′ is equivalent to the Datalog query
(ΣP � ∪ Ξ(Σ ∪ {σq}), Ans) over S, and the claim follows.

It remains to show that DAT �� (FG,CQ). To this end, it suffices to construct
a Datalog query Q over a schema S such that, for every query Q′ ∈ (FG,CQ)
over S, there exists an S-database D such that, Q(D) �= Q′(D). We claim that

2 A similar result can be found in [4].
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such a Datalog query is Qtrans given in Example 1, which computes the transitive
closure of the binary relation E. Towards a contradiction, assume that Qtrans

can be expressed as (FG,CQ) query (S, Σ, q). Observe that frontier-guarded tgds
are not able to put together in an atom, during the construction of the chase
instance, two database constants that do not already coexist in a database atom.
In particular, given a database D and a set Σ ∈ FG, if there is no atom in D that
contains the constants c, d ∈ adom(D), then there is no atom in chase(D,Σ)
that contains c and d. Therefore, q is able to compute the transitive closure of
the binary relation E. But this contradicts the fact that a (finite) conjunctive
query cannot compute the transitive closure of a binary relation. ��

We now show that product databases have an impact on the expressiveness
of the ontology-mediated query languages based on (frontier-)guarded tgds. In
fact, these languages become equally expressive to Datalog when we focus on
product databases.

Lemma 3. (G,CQ)× = (FG,CQ)× = DAT

Proof. First observe that (FG,CQ)× = (FG,ACQ)×; recall that ACQ is the class
of queries definable by some atomic CQ. More precisely, a query (S, Σ, q) ∈
(FG,CQ), with q = ∃ȳ φ(x1, . . . , xn, ȳ), is equivalent to the (FG,ACQ)× query

(S, Σ ∪ {σq}, Ans(x1, . . . , xn)),

where σq is the tgd

Domn(x1, . . . , xn), φ(x1, . . . , xn, ȳ) → Ans(x1, . . . , xn),

which implies that (FG,CQ)× � (FG,ACQ)×; the other direction holds trivially.
Therefore, to prove our claim, it suffices to show that

(G,CQ)×
(1)

� (FG,ACQ)×
(2)

� DAT
(3)

� (G,CQ)×.

For showing (1), we observe that the construction given above for rewriting a
(FG,CQ)× query into a (FG,ACQ)× query can be used in order to rewrite a
(G,CQ)× query into a (FG,ACQ)× query. For showing (2), we can apply the
procedure Ξ mentioned above, which transforms a (FG,ACQ) query into an
equivalent DAT query. Finally, (3) follows from the fact that a Datalog rule
ρ can be converted into a guarded tgd by adding in the body of ρ the atom
Dom|x̄|(x̄), where x̄ are the variables in ρ. ��

The next lemma shows that weakly-guarded sets of tgds give rise to an
ontology-mediated query language that is strictly more expressive than Datalog.

Lemma 4. DAT ≺ (WG,CQ)

Proof. DAT � (WG,CQ) holds trivially since a set of Datalog rules is a weakly-
guarded set of tgds. In particular, a Datalog query (Σ, Ans/n) over S is equiv-
alent to the query (S, Σ, Ans(x1, . . . , xn)), where Σ is trivially weakly-guarded
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since there are no existentially quantified variables, which in turn implies that
the set of affected positions of sch(Σ) is empty. It remains to show that
(WG,CQ) �� DAT. To this end, we employ a complexity-theoretic argument.
It is well-known that the (decision version of the) problem of evaluating a Data-
log query is feasible in polynomial time in data complexity, while for (WG,CQ) is
complete for ExpTime [7]. Thus, (WG,CQ) � DAT implies that PTime = Exp-
Time, which is a contradiction. ��

We finally show that there is no impact on the expressiveness of the query
languages that are based on weakly-(frontier-)guarded sets of tgds:

Lemma 5. (WG,CQ) = (WFG,CQ) = (WG,CQ)× = (WFG,CQ)×.

Proof. It is well-known that (WG,CQ) = (WFG,CQ); (WG,CQ) � (WFG,CQ)
holds trivially since WG ⊆ WFG, while (WFG,CQ) � (WG,CQ) has been
shown in [9]. It remains to show (WG,CQ) = (WG,CQ)× and (WFG,CQ) =
(WFG,CQ)×. The (�) direction is trivial. The other direction holds since WG
and WFG have the power to explicitly define a predicate P k/k, where k > 0,
that holds all the k-tuples of constants in the active domain. More precisely, a
(WG,CQ)× (resp., (WFG,CQ)×) query Q = (S, Σ, q), with α = {j | Domj ∈ S},
is equivalent to the (WG,CQ) (resp., (WFG,CQ)) query Q′ = (S′, Σ′, q′), where
S′ = S \ {Domk | k ∈ α}, Σ′ is obtained from Σ by replacing each predicate Domk

with P k and adding the set of tgds:

R(x1, . . . , xn) → P 1(x1), . . . , P 1(xn), for each R ∈ S′

P 1(x1), . . . , P 1(xk) → P k(x1, . . . , xk), for each k ∈ α,

and finally q′ is obtained from q by replacing each predicate Domk with P k. ��
It is now easy to verify that Lemmas 1, 2, 3, 4 and 5 imply Theorem 1.

6 Complexity of Query Evaluation

The question that remains to be answered is whether product databases have an
impact on the complexity of the query evaluation problem under the guarded-
based ontology-mediated query languages in question. As is customary when
studying the computational complexity of the evaluation problem for a query
language, we consider its associated decision problem. We denote this problem
by Eval(Q), where Q is an ontology-mediated query language, and its definition
follows:

INPUT : Query Q = (S, Σ, q(x̄)) ∈ Q, S-database D, and tuple t̄ ∈ C|x̄|.
QUESTION : Does t̄ ∈ certq,Σ(D)?

It is important to say that when we focus on ontology-mediated queries
over a product database, then the input database to the evaluation problem is
product. In other words, if we focus on the problem Eval((C,CQ)×), where C is
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Table 1. Complexity of Eval((C,CQ)×); all the results are completeness results.

Class C Data complexity Bounded arity Combined complexity

G PTime ExpTime 2ExpTime

FG PTime 2ExpTime 2ExpTime

WG ExpTime ExpTime 2ExpTime

WFG ExpTime 2ExpTime 2ExpTime

a class of tgds, and the input query is (S, Σ, q), then the input database is an α-
product database, where α = {i | Domi ∈ S}. The complexity of Eval((C,CQ)),
where C ∈ {G,FG,WG,WFG}, is well-understood; for (G,CQ) and (WG,CQ) it
has been investigated in [7], while for (FG,CQ) and (WFG,CQ) in [3]. It is clear
that the algorithms devised in [3,7] for the guarded-based ontology-mediated
query languages in question treat product databases in the same way as non-
product databases, or, in other words, they are oblivious to the fact that an
input database is product. Therefore, we can conclude that, even if we focus
on product databases, the existing algorithms can be applied and get the same
complexity results for query evaluation as in the case where we consider arbitrary
(non-product) databases; these results are summarized in Table 1. Recall that
the data complexity is calculated by considering only the database as part of
the input, while in the combined complexity both the query and the database
are part of the input. We also consider the important case where the arity of the
schema is bounded by an integer constant.

6.1 The Bounded Arity Case Revisited

In Table 1, the bounded arity column refers to the case where all predicates in
the given query, including the predicates of the form Domk, where k > 0, are of
bounded arity. However, bounding the arity of the Domk predicates is not our
intention. Observe that in the proof of Lemma3, where we show (G,CQ)× =
(FG,CQ)× = DAT, the predicates of the form Domk are used (i) to convert a CQ
into a frontier-guarded tgd, and (ii) to convert a Datalog rule into a guarded
tgd. More precisely, in the first case we use a Domk atom to guard the answer
variables of a CQ, while in the second case to guard the variables in the body
of a Datalog rule. Therefore, in both cases, we need to guard via a Domk atom
an unbounded number of variables, even if the arity of the schema is bounded,
and thus k must be unbounded. From the above discussion, it is clear that the
interesting case to consider in our complexity analysis is not when all predicates
of the underlying schema are of bounded arity, but when all predicates except
the domain predicates are of bounded arity. Clearly, in case of (FG,CQ)× and
(WFG,CQ)×, the complexity of query evaluation is 2ExpTime-complete, since
the problem is 2ExpTime-hard even if all predicates (including the domain
predicates) have bounded arity. However, the picture is foggy in the case of
(G,CQ)× and (WG,CQ)× since the existing results imply a 2ExpTime upper
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bound and an ExpTime lower bound. Interestingly, as we discuss below, the
complexity of query evaluation remains the same, i.e., ExpTime-complete, even
if the domain predicates have unbounded arity.

Theorem 2. Eval((WG,CQ)×) is ExpTime-complete if the arity of the
schema, excluding the predicates of the form Domk, for k > 0, is bounded by
an integer constant.

The lower bound follows from the fact Eval((WG,CQ)) is ExpTime-hard
when the arity of the schema is bounded [7]. The upper bound relies on a result
that, although is implicit in [7], it has not been explicitly stated before. The
body-predicates of an ontology-mediated query (S, Σ, q) are the predicates that
do not appear in the head of a tgd of Σ. It holds that:

Proposition 1. Eval((WG,CQ)×) is in ExpTime if the arity of the schema,
excluding the body-predicates, is bounded by an integer constant.

The above result simply states that even if we allow the body-predicates to
have unbounded arity, while all the other predicates of the schema are of bounded
arity, the complexity of Eval((WG,CQ)×) remains the same as in the case where
all the predicates of the schema have bounded arity. Since the predicates of the
form Domk, for k > 0, is a subset of the body-predicates of an ontology-mediated
query over a product database, it is clear that Proposition 1 implies Theorem 2.
As said, although Proposition 1 has not been explicitly stated before, it is implicit
in [7], where the complexity of query evaluation for (WG,CQ) is investigated. In
fact, we can apply the alternating algorithm devised in [7] for showing that
Eval((WG,CQ)) is in ExpTime if the arity of the schema (including the body-
predicates) is bounded by an integer constant. In what follows, we briefly recall
the main ingredients of the alternating algorithm proposed in [7], and discuss
how we get the desired upper bound.

Recall that a set Σ ∈ WG can be effectively transformed into a set Σ′ ∈ WG
such that all the tgds of Σ′ are single-head [7]. Henceforth, for technical clarity,
we focus on tgds with just one atom in the head. Let D be a database, and Σ a
set of tgds. Fix a chase sequence D = I0

σ0,h0−−−→ I1
σ1,h1−−−→ I2 . . . for D under Σ.

The instance chase(D,Σ) can be naturally represented as a labeled directed
graph G = (N,E, λ) as follows: (1) for each atom R(t̄) ∈ chase(D,Σ), there

exists v ∈ N such that λ(v) = R(t̄); (2) for each i ≥ 0, with Ii
σi,hi−−−→ Ii+1, and

for each atom R(t̄) ∈ hi(body(σi)), there exists (v, u) ∈ E such that λ(v) = R(t̄)
and {λ(u)} = Ii+1 \ Ii; and (3) there are no other nodes and edges in G. The
guarded chase forest of D and Σ, denoted gcf(D,Σ), is the forest obtained from
G by keeping only the nodes associated with weak-guards, and their children;
for more details, we refer the reader to [7].

Consider a query (S, Σ, q) ∈ (WG,CQ), a database D over S, and a tuple
t̄ of constants. Clearly, t̄ ∈ certq,Σ(D) iff there exists a homomorphism that
maps q(t̄) to gcf(D,Σ). Observe that if such a homomorphism h exists, then in
gcf(D,Σ) there exist paths starting from nodes labeled with database atoms and
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ending at nodes labeled with atom of h(q(t̄)). The alternating algorithm in [7]
first guesses the homomorphism h from q(t̄) to gcf(D,Σ), and then constructs
in parallel universal computations the paths from D to h(q(t̄)) (if they exist).
During this alternating process, the algorithm exploits a key result established
in [7], that is, the subtree of gcf(D,Σ) rooted at some atom R(ū) is determined
by the so-called cloud of R(ū) (modulo renaming of nulls) [7, Theorem 5.16]. The
cloud of R(ū) with respect to D and Σ, denoted cloud(R(ū),D,Σ), is defined
as {S(v̄) ∈ chase(D,Σ) | v̄ ⊆ (adom(D) ∪ ū)}, i.e., the atoms in the result
of the chase with constants from D and terms from ū. This result allows the
algorithm to build the relevant paths of gcf(D,Σ) from D to h(q(t̄)). Roughly,
an atom R(ū) on a path can be generated by considering only its parent atom
S(v̄) and the cloud of S(v̄) with respect to D and Σ. Whenever a new atom is
generated, the algorithm nondeterministically guesses its cloud, and verify in a
parallel universal computation that indeed belongs to the result of the chase.

From the above informal description, we conclude that the space needed at
each step of the computation of the alternating algorithm is actually the size of
the cloud of an atom. By applying a simple combinatorial argument, it is easy
to show that the size of a cloud is at most (|S| + |sch(Σ)|) · (|adom(D)| + w)w,
where w is the maximum arity over all predicates of S∪ sch(Σ). Therefore, if we
assume that all the predicates of the schema have bounded arity, which means
that w is a constant, then the size of a cloud is polynomial. Since alternating
polynomial space coincides with deterministic exponential time, we immediately
get the ExpTime upper bound in the case of bounded arity. Now, let B be the
body-predicates of (S, Σ, q). It is clear that, for every atom R(ū) ∈ chase(D,Σ),
the restriction of cloud(R(ū),D,Σ) on the predicates of B is actually D, and
thus of polynomial size, even if the predicates of B have unbounded arity. This
implies that even if we allow body-predicates of unbounded arity the size of a
cloud remains polynomial. Therefore, the alternating algorithm devised in [7] can
be applied in order to get the ExpTime upper bound stated in Proposition 1.

7 Conclusions

It is realistic to assume that a database management system provides access to
the active domain via built-in relations, or, in more formal terms, to assume that
queries are evaluated over product databases. Interestingly, the query languages
that are based on (frontier-)guarded existential rules gain in expressiveness when
we focus on product databases; in fact, they have the same expressive power as
Datalog. On the other hand, there is no impact on the expressive power of the
query languages based on weakly-(frontier-)guarded existential rules, since they
are powerful enough to explicitly compute the predicates needed to access the
active domain. We also observe that there is no impact on the computational
complexity of the query languages in question.
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Abstract. Querying incomplete data usually amounts to finding
answers we are certain about. Standard approaches concentrate on pos-
itive information about query answers, and miss negative knowledge,
which can be useful for two reasons. First, sometimes it is the only type
of knowledge one can infer with certainty, and second, it may help one
find good and efficient approximations of positive certain answers. Our
goal is to consider a framework for defining both positive and negative
certain knowledge about query answers and to show two applications of
it. First, we demonstrate that it naturally leads to a way of representing
certain information that has hitherto not been used in querying incom-
plete databases. Second, we show that approximations of such certain
information can be computed efficiently for all first-order queries over
relational databases.

1 Introduction

If uncertainty occurs in a dataset, answering queries against it typically involves
computing certain answers, i.e., answers one can be sure about. This happens
in traditional database query answering [2,22] and in numerous applications
such as data integration [26], data exchange [4], inconsistent databases [7], and
ontology-based data access [11,25]. The most common approach is to look at all
complete datasets D′ that can potentially represent an incomplete dataset D –
i.e., its semantics [[D]] – and answers that are true in all such D′. When a query
Q returns sets of objects (for example, sets of tuples for relational database
queries), certainty is typically defined by certain(Q,D) =

⋂{Q(D′) | D′ ∈ [[D]]},
see [30]. This definition has been so dominant in the literature that even in
models where queries do not return sets, languages have been adjusted to make
this definition applicable (e.g., for XML and graph data [3,5,6]).

Certain answers defined this way can be viewed as a variant of the logical
validity problem. This, not surprisingly, leads to high complexity bounds; in fact,
query answering tends to be tractable for conjunctive queries or relatives, but
computationally infeasible beyond [1,4,5,7,8,10,26,35]. A very common situa-
tion is that adding features to conjunctive queries or their unions makes find-
ing certain answers coNP-hard or even undecidable. It is thus well understood
that the inability of the standard theoretical solutions to handle the problem of
querying incomplete data outside a limited class of queries needs to be addressed.
Recently, two lines of work in this direction have been pursued. The first revisits
c© Springer International Publishing Switzerland 2016
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the very notion of certainty in query answering, and the second attempts to
approximate certain answers efficiently.

The first line of work in fact dates back to the 1980s, when an alternative
(and, as several papers [24,28] have argued, better) definition of certain answers
appeared [31]. More recently, a general and data model-independent approach to
defining query answers over incomplete databases was proposed in [28]. It was
based on combining classical data management techniques with viewing databases
as logical theories, as advocated by [33,34], as well as using the idea of ordering
incomplete databases in terms of their informativeness [9]. Certain answers can
be represented by logical formulae true about answers in all possible worlds, and
the notion of certainty is closely connected to logical entailment, rather than an
arbitrary choice of intersection in the definition of certain. Using informativeness
ordering, one can state when a query answering algorithm behaves rationally: this
happens if it produces more informative answers on more informative inputs. For
relational databases, these ideas led to new large classes of queries for which cer-
tain answers can be computed efficiently [17], and to a new account of many-valued
query answers [13], as employed by all standard DBMSs [14].

The second line of work, based on approximations, was also used recently to
show that an efficient approximation of certain answers can be computed for all
first-order queries [29], not just unions of conjunctive queries, as was previously
known [22]. A crucial element of that approach is that one needs to carry negative
certain information while computing the answer, although at the end such nega-
tive information is dismissed and only the positive answer is given to the user.

However, dismissing negative information is not always a good path to fol-
low, as it may in fact provide us with useful information about query answers. For
example, consider a database D with two unary relations R and S, so that R con-
tains an unknown value (a null in the database terminology), S = {1}, and the
query Q(x) = R(x) ∧ ¬S(x) computes their difference. Then the certain answer
is empty under every reasonable semantics. But we can be certain that 1 is not
in the answer; hence, we are certain about the fact ¬A(1) (with A for “answer”),
which says that while we do not know what may occur in the output, we do know
that 1 does not occur. Even though in this example A(1) is the certain answer for
the negation of Q, in general certain negative answers to Q are not the same as
what is known with certainty about ¬Q. Indeed, consider relations R′ = {(1,⊥)}
and S′ = {(1,⊥′)}, where ⊥,⊥′ indicate nulls (not necessarily denoting the same
value). The negation of Q′(x̄) = R′(x̄) ∧ ¬S′(x̄) is S′(x̄) ∨ ¬R′(x̄), and thus, with
certainty, the answer to ¬Q′ will have a tuple whose first component is 1, i.e., we
know ∃yA(1, y) about the answer to Q′. However, we cannot tell which tuples with
certainty do not belong to the answer to Q′.

Even these simple examples tell us that the user may benefit from having
negative certain information about query answers, and getting it involves more
than just finding certain answers for the negation of the query. To understand
how such negative information can be incorporated into query answering, we
need to address several questions:

(a) How do we define negative and positive knowledge about query answers,
and what is the connection between the two?
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(b) In what logical languages can we express such negative knowledge? Can such
knowledge be represented in a user-friendly way, and if so, does it correspond
to any of the known ways of defining query answers?

(c) What is the complexity of finding positive and negative knowledge about
query answers?

(d) If exact computation is infeasible, can we effectively approximate answers
with some guarantees?

To answer the first question, we follow the approach of [17,28] which treats
incompleteness at an abstract level applicable to many data models. The key
elements of the approach are the notions of complete and incomplete models,
the semantics of an incomplete object, which is a set of complete ones it can
denote, and a set of formulae representing knowledge about objects. The semantic
function makes it possible to define informativeness ordering, which says when
one object is more informative than another. The restriction of frameworks in
[17,28] was that knowledge was positive: if a fact is known about an object, it
remains true in more informative ones. Negative knowledge is not such: we can
think of it as saying that we do not know some fact about an object; therefore,
we do not know that fact about less informative objects.

Positive formulae were used in [28] to define certain knowledge about sets of
objects, providing a disciplined notion of certain answers, rather than an ad hoc
one based on the notion of intersection. The idea is as follows: the theory of a
set of objects is everything we know about that set with certainty. Such a theory
of course could be infinite, but if we find a single formula equivalent to it, then
this formula gives us a proper representation of certain knowledge.

To see what kinds of formulae we can use for negative knowledge, we follow
a similar approach, but conditions required for good behavior of negative knowl-
edge impose significant computational requirements, despite a seemingly simple
reversal of the ordering. But we turn this to our advantage and use such con-
ditions as a guide for finding logical formalisms for negative formulae. For rela-
tional databases, this results in a new formalism that exhibits a duality between
formulae and objects, making it possible to apply effective query evaluation to
compute certain knowledge.

This new formalism for defining certain answers (both positive and negative)
is closely related to standard approaches used in the literature [22,31] and yet
is not covered by them. In essence, it allows nulls from the input database to
be present in query answers (which is more than [22] does) but only allows
repetitions of such nulls within a single tuple (as opposed to [31], which allows
repetitions across different tuples in the answer).

To demonstrate the usefulness of this approach and the new representation
mechanism for relational databases, we show how to compute both positive and
negative knowledge about certain answers for all first-order (equivalently, rela-
tional algebra/calculus) queries over relational databases. Given the intractabil-
ity of certain answers even for Boolean first-order queries [1], our procedure
gives an approximation for those, which is efficient, and comes with correctness
guarantees.
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Organization. Background material is presented in Sect. 2. Modeling negative
knowledge is described in Sect. 3, and certain negative knowledge is studied in
Sect. 4. Section 5 explains how to represent such knowledge for relational data-
bases, and in Sect. 6 we provide an efficient algorithm for computing it.

2 Preliminaries

A General Model. We now recall the basic setting of [17,28] that lets us talk
about the essential features of incompleteness without recourse to a particu-
lar data model. The two basic concepts are objects, and formulae they satisfy.
Objects could be incomplete or complete; the semantics of an incomplete object
is the set of complete objects it may represent.

Formally, a database domain is a triple D = 〈D, C, [[ ]]〉, where D is a set of
objects (for instance, all relational databases over the same schema), C is the
set of complete objects (for instance, databases over the same schema without
incomplete information), and [[ ]] : D → 2C is the semantic function: [[x]] ⊆ C is
the semantics of an object x. We require that a complete object denote at least
itself: if c ∈ C, then c ∈ [[c]].

The information ordering is defined by

x � y ⇔ [[y]] ⊆ [[x]]. (1)

That is, the more an object denotes, the less we know about it (indeed, if we know
nothing about something, it can denote everything). We require that objects in
the semantics of x be at least as informative as x: if c ∈ [[x]], then x � c. This
condition holds for all the standard semantics of incompleteness.

We also assume that we have a set of formulae F that express knowledge
about objects in D and a satisfaction relation |= between D and F; that is,
x |= ϕ if ϕ is true in x. For sets of objects and formulae, we write X |= ϕ
if x |= ϕ for each x ∈ X, and x |= Φ if x |= ϕ for each ϕ ∈ Φ. As usual,
Th(X) = {ϕ | X |= ϕ} is the theory of X, and Mod(Φ) = {x | x |= Φ} is the
set of models of Φ.

Previously, only positive knowledge was considered, i.e., it was required that
x � y and x |= ϕ imply y |= ϕ.

For domains D = 〈D, C, [[ ]]〉 and D
′ = 〈D′, C′, [[ ]]′〉, a query is modeled as a

mapping Q : D → D′ such that Q(c) ∈ C′ whenever c ∈ C (no incompleteness
is introduced when a query acts on a complete object). Note that the semantics
[[ ]]′ of query answers need not be the same as the semantics [[ ]] of query inputs.

The main object one then works with [2,22] is

Q([[x]]) = {Q(c) | c ∈ [[x]]} ⊆ D′ (2)

which gives us the answers to Q in all possible worlds representing x. Find-
ing certain answers to Q on x then amounts to extracting what we know with
certainty about Q([[x]]).
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Certain Knowledge. Since computing certain answers amounts to extracting
certain information from a set of objects, typically of the form (2), we need to
know how to describe certain information in a set X ⊆ D. We know that Th(X)
is the set of facts that are true in all objects of X, i.e., this is what we know
about X with certainty. The whole theory is not an object we want to work with
for performing computational tasks (to start with, it is likely to be infinite).
What we want instead is a single formula equivalent to this theory; then such
a formula describes all the certain knowledge of X. Of course formulae/theories
are equivalent when they have the same models. Using this, [28] proposed to
define certain knowledge of a set of objects as a formula �X such that

Mod(�X) = Mod(Th(X)) (3)

Such a formula may not exist for all sets X (by a simple cardinality argu-
ment), although in many cases relevant for query answering, it does. It need
not be unique, but this is not a problem: if both Mod(ϕ1) and Mod(ϕ2) equal
Mod(Th(X)), then ϕ1 and ϕ2 are equivalent, as formulae having the same mod-
els, and hence either one can be used as �X.

IncompleteRelationalDatabases. As a concrete example of incomplete infor-
mation, we consider relational databases with näıve, or marked nulls [2,22]. This
model dominates in applications such as exchange and integration of data [4,26],
and subsumes the usual model of nulls implemented in commercial DBMSs. In
this model, there are two types of values: constants and nulls. There are count-
ably infinite sets Const of constants (e.g., 1, 2, . . .), and Null of nulls, which will be
denoted by ⊥, with sub- or superscripts.

A relational vocabulary (or schema) is a set of relation names, each with its
arity. An incomplete relational database D associates with each k-ary relation
symbol R from the vocabulary a k-ary relation RD ⊆ (Const∪Null)k. When D is
clear from the context, we write R rather than RD. Sets of constants and nulls
that occur in D are denoted by Const(D) and Null(D). The active domain of
D is adom(D) = Const(D) ∪ Null(D). A complete database D has no nulls, i.e.,
adom(D) ⊆ Const.

The basic semantics of incomplete databases is given by means of special
kinds of homomorphisms between instances. A map h : Null → Const ∪ Null is
a homomorphism between two instances D and D′ if for each relation symbol
R, if t̄ ∈ RD, then h(t̄) ∈ RD′

. Here h(v1, . . . , vk) = (h(v1), . . . , h(vk)), and we
assume that h(v) = v for each a ∈ Const.

A homomorphism is called a valuation if h(v) ∈ Const for each v. By h(D)
we denote the image of a homomorphism, i.e., the database consisting of all the
tuples h(t̄) for t̄ ∈ RD, for each relation R in the vocabulary.

The standard semantics of incompleteness [22] are the closed world assump-
tion (cwa) and the open world assumption (owa) semantics:

[[D]]cwa = {h(D) | h is a valuation},

[[D]]owa = {h(D) ∪ D′ | h is a valuation, D′ is complete}.
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The former simply replaces nulls by constants, and the latter in addition allows
us to add any set of complete tuples.

The information orderings (1) given by these semantics are as follows: for owa,
D �owa D′ iff there is a homomorphism h : D → D′, and for cwa, D �cwa D′ iff
there is a homomorphism h : D → D′ such that D′ = h(D), see [17].

Queries. A relational query of arity k maps databases D over a relational
schema into a single k-ary relation, which we denote here by A (for ‘answers’).
This is in line with standard languages such as relational calculus, relational
algebra, and SQL, whose queries specify attributes of an output table [2,14].

The classical definition [22] of certain answers in the literature is the set
certain(Q,D) of tuples ū over Const such that ū ∈ Q(D′) for every D′ ∈ [[D]].
Note that answers depend on the semantics of the input. Another definition,
which has the advantage of keeping nulls in answers, is that of certain answers
with nulls, certain⊥(Q,D) (it was first defined in [31] although not given a name;
the name we use is from [29]). For cwa, the set certain⊥(Q,D) consists of all
tuples ū over adom(D) – thus having both constants and nulls – such that for
every valuation h on D, we have h(ū) ∈ Q(h(D)). It turns out that, under cwa,
certain(Q,D) is precisely the set of constant tuples in certain⊥(Q,D).

For relational databases, as our basic language we consider first-order logic
(FO) over the relational vocabulary (i.e., relational calculus, which also serves
as the basis of SQL [2]). More precisely, its atomic formulae are relational
atoms R(x̄) and equality atoms x = y, and its formulae are closed under
Boolean connectives ∧,∨,¬ and quantifiers ∃,∀. The ∃,∧-closure of atomic for-
mulae is referred to as the set of conjunctive queries; those are of the form
ϕ(x̄) = ∃z̄

∧
i Ri(z̄i) where each Ri is a relation symbol and variables in tuple

z̄is come from x̄ and ȳ.

3 Modeling Negative Knowledge

So far we assumed that the knowledge of objects is positive: a formula ϕ true in
an object continues to be true when an object is replaced by a more informative
one. While in general we often deal with logical formalisms not closed under
negation (e.g., conjunctive queries), assume for now that we can negate ϕ. If ¬ϕ
is true an object x, and y � x, then we would have y |= ¬ϕ. Thus, to model
negative knowledge in general, we look at formulae whose sets of models are
downward closed. In other words, we now have two sets of formulae, F

+ and F
−,

such that,

– for ϕ ∈ F
+, if x � y and x |= ϕ, then y |= ϕ;

– for ψ ∈ F
−, if x � y and y |= ψ, then x |= ψ.

There appear to be two possible approaches to extending the framework of
[28] with both certain positive and certain negative knowledge.
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The first approach. We follow the idea behind the definition (3). We can define
Th+(X) = {ϕ ∈ F

+ | X |= ϕ} and Th−(X) = {ψ ∈ F
− | X |= ψ} as theories

expressing positive and negative knowledge about X, and then, as in (3), try to
capture them with formulae �+X and �−X such that

Mod(�+X) = Mod(Th+(X))

Mod(�−X) = Mod(Th−(X))
(4)

When they exist, these formulae represent certain positive knowledge and cer-
tain negative knowledge about X. Note that Mod(�+X) is upward-closed and
Mod(�−X) is downward-closed with respect to �.

The second approach. Note that (3) is based on an equivalence between two
theories: Φ ≈tt Ψ whenever for each object x, all formulae of Φ are true in x iff
all formulae of Φ are true in x. Then we just required that �+X ≈tt Th

+(X).
An alternative is to look at equivalence with respect to negative information,

essentially changing true and false. We let Φ ≈ff Ψ whenever for each object x,
all formulae of Φ are false in x iff all formulae of Ψ are false in x. It would make
sense then to capture all things we know to be false in X using this equivalence.
That is, we define

Th+¬ (X) = {ϕ ∈ F
+ | X |= ¬ϕ}

Th−
¬ (X) = {ψ ∈ F

− | X |= ¬ψ}
as sets of formulae we know with certainty are false in X, and then try to capture
them with single formulae satisfying

�+
¬X ≈ff Th+¬ (X) and �−

¬X ≈ff Th−
¬ (X). (5)

Both of these seem to be reasonable ways of capturing negative information
about a set of objects; fortunately, they are closely related so we can choose
either (4) or (5) as the main definition. For formulae α, β, we write α = ¬β if
Mod(α) = D − Mod(β) (so α = ¬β implies β = ¬α).

Theorem 1. Assume that F
− contains exactly the negations of formulae in F

+.
If formulae �∗X and �∗

¬X exist, when ∗ is + or −, we have the following
relationships between them: �+X = ¬�−

¬X and �−X = ¬�+
¬X.

To illustrate the difference between two ways of representing negative infor-
mation, consider a database with relations R = {⊥} and S = {1, 2}, and a
query Q that computes their difference R − S, i.e., Q(x) = R(x) ∧ ¬S(x). Let
X = Q([[R,S]]) under either owa or cwa, and consider F

+ that consists of
atomic relational formulae. Then Th+¬ (X) contains A(1) and A(2), and thus
�+

¬X is equivalent to A(1) ∨ A(2). That is, �+
¬X describes what we know with

certainty will not hold in the answer to the query. On the other hand, �−X is
equivalent to ¬A(1) ∧ ¬A(2) (again, assuming the connection between F

+ and
F

− as in the theorem) and describes negative information that is guaranteed to
be true in the query result.
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Certain Knowledge for Query Answering. Given an object x and a query
Q, answering Q on x in a way that provides both positive and negative knowledge
amounts to finding the pair of formulae

�(Q,x) =
(
�+Q([[x]]), �−Q([[x]])

)
(6)

whenever such formulae exist, and their computation is feasible. For represent-
ing the second component, we can choose either �−Q([[x]])), or its negation
�+

¬Q([[x]]), as Theorem 1 suggests. The components of (6) are the most general
formulae defining positive and negative knowledge, as they imply all formulae
in Th+(Q([[x]])) and Th−(Q([[x]])), respectively. If computing them is infeasible,
we can look for approximations by means of returning a pair (α, β) of formulae
such that α ∈ Th+(Q([[x]])) and β ∈ Th−(Q([[x]])). They may not be as general
as (6), but they still give us information about query answers we can be certain
about.

4 Certain Negative Knowledge

Our next goal is to understand how to represent certain negative and positive
information, particularly for sets X which are possible query answers, as in (2).
That is, we will see what requirements must be imposed on logical formalisms
F
+ and F

− to ensure feasible computation of certain answers.
Towards understanding these requirements, we present an alternative view of

formulae �+X and �−X. For that, consider the usual implication of formulae,
ϕ ⊃ ψ iff Mod(ϕ) ⊆ Mod(ψ). It generates a preorder (reflexive transitive relation)
on sets F

+ and F
−. Viewing implication as a preorder, we define, for a set of

formulae Φ, the formula
∧

Φ as the greatest lower bound in the preorder ⊃. That
is,

∧
Φ ⊃ Φ and whenever ϕ′ ⊃ Φ, we have that ϕ′ ⊃ ∧

Φ (here ϕ′ ⊃ Φ means
that ϕ′ implies every formula ϕ ∈ Φ). These formulae let us capture certain
knowledge provided by Φ, so it seems desirable to have �∗X to be the same as∧

Th∗(X), for ∗ being + or −. We now explain when this is possible.
First, we remark that formulae

∧
Φ may not exist in general, and if they exist,

they may not be unique, although any two such formulae are logically equivalent
since they have the same models. While the notation

∧
is standard for greatest

lower bounds, the connection with conjunction is natural: if there is a formula ϕ
equivalent to the conjunction of all formulae in Φ, then Mod(ϕ) = Mod(Φ) and
ϕ =

∧
Φ; in general though we may have Mod(

∧
Φ) � Mod(Φ).

We now show when �∗X =
∧
Th∗(X). In fact, for Th+, this was already

shown in [28], but under additional conditions that we now eliminate.
Let ↑x = {y | x � y} and ↓x = {y | y � x}. By δ↑

x and δ↓
x we denote formulae

(if they exist) such that Mod(δ↑
x) = ↑x and Mod(δ↓

x) = ↓x.

Theorem 2. – If F
+ is closed under conjunction and contains formulae δ↑

x for
all x, then �+X =

∧
Th+(X) for every X.

– If F
− is closed under disjunction and contains formulae δ↓

x for all x, then
�−X =

∧
Th−(X) for every X.
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The meaning of the equalities �∗X =
∧
Th∗(X) is that if one formula exists,

then so does the other, and the two are equivalent, i.e., have the same models.
For most common semantics of incompleteness, formulae δ↑

x are easy to con-
struct, and in fact they determine the shape of queries that can be answered
easily under those semantics [17]. For instance, under owa, they are conjunctive
queries, and for cwa, they extend positive FO formulae with a limited form of
guarded negation [12]. The new condition for Th− that formulae δ↓

x be definable
is harder to achieve, and this condition will let us choose the appropriate logical
language for F

−.

5 Representation of Relational Query Answers:
Incomplete Tuples

We now use the abstract results of two previous sections to suggest a repre-
sentation mechanism for relational query answers, and to show how to find
positive and negative answers using such a representation. For finding a rep-
resentation mechanism, we analyze computational properties of formulae δ↑

x and
δ↓
x. Restricting those to a tractable class, gives us a representation of answers,

called incomplete tuples. This representation exhibits a duality between formu-
lae and objects: that is, positive and negative theories of query answers can be
viewed as set of conventional tuples that use null values. With this duality, we
define query answers using (6). To check that the definition makes sense, we
have to make sure that it preserves informativeness. This, in turn, means that
we need to define orderings on query answers, i.e., sets of incomplete tuples. We
do so, and then prove, in Theorem 3 that the resulting representation mecha-
nism and query answering by means of (6) do behave rationally, i.e., preserve
informativeness.

We start by looking at the requirements of Theorem 2 and analyzing formu-
lae δ↑

x and δ↓
x. While the former are easy to obtain for standard semantics of

incompleteness, the latter could become too expensive computationally, and it
is their complexity that will suggest the representation of positive and negative
certain answers.

We deal with relational databases, as described in Sect. 2. When we deal with
outputs of relational queries, which are sets of tuples, it suffices to deal with one
predicate for each type of answers, positive or negative (of course usual relational
databases just return one set of tuples, for positive answers). As before, we refer
to that predicate as A(·); later, when we look in more detail at separation of
positive and negative answers, we shall use predicates A+(·) and A−(·).

The first observation shows that one must impose rather strong restriction
on the types of formulae F

+ that represent query answers (note that this does
not imply any restriction on queries themselves).

Proposition 1. For the class of conjunctive queries, data complexity of for-
mulae δ↓

A for relations A is in NP; in fact there is a relation for which data
complexity of δ↓

A is NP-complete.
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Indeed, formulae δ↓
A test the existence of a homomorphism into A, i.e., they

encode the general constraint satisfaction problem. In particular, such formulae
are not expressible in FO, nor even its extensions with least and inflationary
fixpoints.

Incomplete Tuples. The standard representation of query answers in rela-
tional databases is by means of ground tuples: one simply says that a tuple ā is
in the answer, or that predicate A(ā) holds. Proposition 1 says that extending
it to conjunctive queries as a representation mechanism is too much from the
complexity point of view. Over the vocabulary A(·) of query answers, Boolean
conjunctive queries are of the form ∃x̄(A(x̄1, c̄1)∧ . . .∧A(x̄m, c̄m)), where c̄is are
tuples of constants from Const and x̄is are tuples of variables that together form
x̄. Eliminating variables gives us sets of constant tuples, i.e., the usual database
query answers over complete data. Another way of simplifying the definition is
to eliminate variables that occur in more than one x̄i, i.e., looking at formulae
∃x̄1A(x̄1, c̄1) ∧ . . . ∧ ∃x̄mA(x̄m, c̄m). That is, we are dealing with conjunctions of
formulae ∃x̄A(x̄, c̄).

We can think of such formulae ∃x̄A(x̄, c̄) as incomplete tuples. An incomplete
tuple is simply a tuple of Const∪Null. There is a natural correspondence between
formulae ∃x̄A(x̄, c̄) and incomplete tuples: for instance, ∃x, x′A(x, 1, x, 2, x′) can
be thought of as an incomplete tuple (⊥, 1,⊥, 2,⊥′). Note that this duality
between incomplete tuples as formulae and as actual tuples lets us represent
query answers of the form (6) just as database relations.

Representation of answers by means of incomplete tuples is between the usual
marked nulls and the Codd interpretation of nulls, which model SQL’s view of
nulls [2,22]. Marked nulls can be repeated, and appear in different tuples; Codd
nulls cannot be repeated at all. In incomplete tuples, a null can be repeated, but
only within a tuple, and not across several tuples.

Query Answering and Ordering. We now consider orderings on query
answers which are viewed as sets of incomplete tuples. Recall that we expect
a rationally behaving query answering to produce more informative answers
when more informative inputs are given; hence orderings are necessary to prove
such rationality. For input databases, we have seen some standard orderings such
as �owa and �cwa. According to (6), a query answer will be given as a pair of
sets (A+, A−) of incomplete tuples. Tuples in A+ belong to the answer with
certainty; thus, when viewed as formulae, their conjunction is equivalent to the
formula �+Q([[x]]). Tuples in A− are those that certainly do not belong to the
answer; hence conjunction of their negations is equivalent to �−Q([[x]]).

First, we need to see how we can order incomplete tuples in terms of their
informativeness. There are two ways of looking at it:

– What improves informativeness of a tuple? Replacing a null with a constant
does, and replacing a null with another null might (e.g., if we replace ⊥′ with
⊥ in (⊥,⊥′), we get a more informative tuple (⊥,⊥) giving extra information
that its components are the same). Thus, given two incomplete tuples ā and
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b̄ over Const ∪ Null, b̄ is more informative than ā if there is a homomorphism
h so that h(ā) = b̄.

– Alternatively, we view incomplete tuples as formulae and say that b̄ is more
informative than ā if it logically entails it, i.e., b̄ ⊃ ā.

The homomorphism theorem for conjunctive queries tell us that these two are
equivalent, so we can take either of them as the definition of b̄ being more
informative than ā, which will be denoted by ā � b̄.

Next, we look at sets of incomplete tuples A and B, and define orderings �+
it

and �−
it saying that one of the sets has more positive or negative information

than the other. First,

A �+
it B ⇔ ∀ā ∈ A ∃b̄ ∈ B : ā � b̄.

This ordering says that we can improve an answer by improving individual tuples
in it, or adding new tuples that our initial attempt to approximate query answers
may have missed. This is the ordering on positive query answers we shall use.
Note that it is also consistent with observations made in [13,28] that for query
answers (as opposed to inputs), the prefer interpretation is open-world, as adding
tuples improves the answer.

When it comes to negative information, if we are given two incomplete tuples
ā and b̄ such that ā � b̄, then it is actually better to have ā in the answer, as it
gives us more information about tuples to exclude. For instance, having a tuple
(1, 2) in the negative answer simply says that (1, 2) is never in the answer, but
having a tuple (1,⊥) is more informative as it says that no tuple whose first
component is 1 is in the answer. This leads to the following ordering:

A �−
it B ⇔ ∀b̄ ∈ B ∃ā ∈ A : ā � b̄.

Note that these are well-known orderings in the semantics of concurrency
(so called Hoare and Smyth powerdomain orderings [20]) where they are used
to compare possible outcomes of different threads of concurrent computations in
terms of the information they carry. In terms of computational problems, unlike
the relations �owa and �cwa, we can test relations �+

it and �−
it in polynomial

(quadratic) time.
A set A of incomplete tuples can be viewed as a formula (which we also denote

A, using the duality between tuples and formulae), which is the conjunction of
all ā in A. Likewise, we can also look at conjunction of all formulae ¬ā, giving
us a formula A¬. That is, positive and negative formulae associated with A are:

A =
∧

{ā | ā ∈ A} A¬ =
∧

{¬ā | ā ∈ A} (7)

Note that the first equation simply extends the duality of incomplete tuples and
formulae to sets of incomplete tuples: it just tells us how to view a set A as a
formula.

The following connection between orderings on sets and entailment of formu-
lae is easily obtained from the definitions and containment criteria for conjunc-
tive queries and their unions.
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Proposition 2. A �+
it B iff B ⊃ A, and A �−

it B iff A¬ ⊃ B¬.

Equipped with this, we can show that query answering by means of finding
positive and negative incomplete tuples, i.e., by using (6), is always possible and
preserves informativeness when input databases are interpreted under owa or
cwa.

Theorem 3. Assume that input databases are interpreted under owa or cwa,
and that F

+ consists of incomplete tuples, and F
− consists of their negations.

Then for every query Q and every database D there exist finite sets Q+
�(D) and

Q−
�(D) of incomplete tuples that, when viewed as formulae (7), are equivalent to

�+Q([[D]]) and �−Q([[D]]):

Mod(Q+
�(D)) = Mod(Th+(Q([[D]])))

Mod(Q−
�(D)¬) = Mod(Th−(Q([[D]])))

Moreover, this way of query answering preserves informativeness: if D � D′

(under the ordering given by the cwa or the owa semantics), then

Q+
�(D) �+

it Q+
�(D′) and Q−

�(D) �−
it Q−

�(D′).

6 Certain Information via Incomplete Tuples

The conclusion of the previous section is that incomplete tuples are a good rep-
resentational mechanism for query answers over incomplete relational databases.
What makes them especially suitable for the task is the duality of incomplete
tuples: each one can be viewed both as a formula ∃x̄A(ā, x̄), satisfied by the
query answer, or as an actual tuple (x̄, ā), where x̄ is a tuple of nulls. Thus, a
set of tuples can be seen both as sets of formulae (7) representing our knowledge
(positive and negative) about query answers, and an actual database relation
with nulls. This duality lets us compute such knowledge using well established
database query evaluation techniques, and present it to the user in a familiar
format.

Ideally, following Theorem 3, we want to compute, for a query Q and a
database D, sets Q+

�(D) and Q−
�(D) of incomplete tuples such that Q+

�(D) is
equivalent to �+Q([[D]]) and Q−

�(D)¬ is equivalent to �−Q([[D]]). That is,

Mod(
∧{ā | ā ∈ Q+

�(D)}) = Mod(Th+(Q([[D]]))) and

Mod(
∧{¬ā | ā ∈ Q−

�(D)}) = Mod(Th−(Q([[D]])))

This is problematic even for first-order queries, however, as computing such
sets of incomplete tuples is expensive. In fact, a simple examination of proofs
in [1,18] shows that even when Q is a fixed Boolean FO query, checking
whether �+Q([[D]]cwa) is true is coNP-complete, and the same question for
�+Q([[D]]owa) is undecidable.
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But the discussion following the definition (6) showed a way out of this
problem: we need to compute approximate answers with some guarantees, that
is, formulae from positive and negative theories of Q([[D]]). Using the duality
of incomplete tuples, we say that, for a query Q, the pair (Q+, Q−) of queries
returning sets of incomplete tuples provides a sound answer for Q under [[ ]] if,
for every database D,

Q+(D) ⊆ Th+(Q([[D]])) and Q−(D) ⊆ Th+¬ (Q([[D]])). (8)

Indeed, Q+(D) and Q−(D) represent parts of certain positive and negative
knowledge about Q([[D]]). If furthermore they can be computed with tractable
data complexity, we say that they provide an efficient sound answer to Q on D.

Note that the right way to read sound answers is tuple-by-tuple: for instance,
if (⊥, 1) and (⊥, 2) are in Q+(D), the correct interpretation is that for every
D′ ∈ [[D]], the answer Q(D′) contains a tuple whose second component is 1,
and a tuple whose second component is 2. It is not meant to say that the first
components of such tuples are the same: incomplete tuples cannot make cross-
tuple statements.

Efficient Sound Answers Under owa and cwa. There are trivial ways of
finding sound answers: for instance, by letting Q+ and Q− return the empty
set. Of course this is not what we want; instead we would like to find a good
approximation of positive and negative certain information. To find the exact
representation of such information, or a representation with some quality guar-
antees, and to do so efficiently, is impossible due to the complexity considerations
explained earlier (which apply even to Boolean queries).

Thus, we shall present one particular inductive definition of queries Q+ and
Q− that provides efficient sound answers for the most commonly used semantics
of incompleteness, i.e., owa and cwa semantics, for all FO queries. We also
assume, as is standard in the database context, that they are evaluated under
the active domain semantics, i.e., the answer to a k-ary query Q(x̄) on D, denoted
by Q(D), is the set of tuples ā ∈ adom(D)k so that D |= Q(ā). Formulae Q+

and Q− will use additional atomic formulae const(x) saying that x is not a null,
i.e., an element of Const. We also write const(x1, . . . , xn) for the conjunction of
all const(xi) for 1 ≤ i ≤ n.

The definitions of Q+ and Q− are identical for owa and cwa, except in
the case of relational atomic formulae. We now present them inductively for
the following formulae constructors: Q(x̄, ȳ, z̄) = Q1(x̄, ȳ) ∧ Q2(x̄, z̄) (to account
properly for the use of free variables in conjuncts); Q(x̄, ȳ, z̄) = Q1(x̄, ȳ)∨Q2(x̄, z̄)
(likewise for disjunction); Q(x̄) = ¬Q1(x̄); and Q(x̄) = ∃yQ1(x̄, y); as well as
equational atoms x = y and x = a for a constant a ∈ Const.

– If Q(x̄, ȳ, z̄) = Q1(x̄, ȳ) ∧ Q2(x̄, z̄), then

Q+(x̄, ȳ, z̄) = Q+
1 (x̄, ȳ) ∧ Q+

2 (x̄, z̄) ∧ const(x̄)
Q−(x̄, ȳ, z̄) = Q−

1 (x̄, ȳ) ∨ Q−
2 (x̄, z̄)
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– If Q(x̄, ȳ, z̄) = Q1(x̄, ȳ) ∨ Q2(x̄, z̄), then

Q+(x̄, ȳ, z̄) = Q+
1 (x̄, ȳ) ∨ Q+

2 (x̄, z̄)
Q−(x̄, ȳ, z̄) = Q−

1 (x̄, ȳ) ∧ Q−
2 (x̄, z̄)

– If Q(x̄) = ¬Q1(x̄), then Q+(x̄) = Q−
1 (x̄) and Q−(x̄) = Q+

1 (x̄) ∧ const(x̄).
– If Q(x̄) = ∃yQ1(x̄, y), then Q+(x̄) = ∃yQ+

1 (x̄, y) and Q−(x̄) = ∀yQ−
1 (x̄, y).

– If Q(x) = (x = a), then Q+(x) = (x = a) and Q−(x) = ¬(x = a) ∧ const(x).
– If Q(x, y) = (x = y), then

Q+(x, y) = (x = y) and Q−(x, y) = ¬(x = y) ∧ const(x, y).

Note that the rules for ∧ and ∨ are not symmetric, due to the asymmetric
rule for negation.

Finally we define such queries for atomic formulae R(x̄), when R is a database
relation, as follows:

Under owa: R+(x̄) = R(x̄) R−(x, y) = false

Under cwa: R+(x̄) = R(x̄) R−(x, y) = ¬∃ȳ(R(ȳ) ∧ α�(x̄, ȳ))

Here we use an additional formula α�(x̄, ȳ) such that α�(ā, b̄) iff ā � b̄. It is
not hard to see that it can be defined as a quantifier-free formula that uses
equalities and const(·), as a disjunction over possible instantiations of variables
x̄, ȳ as constants or nulls. These give us complete definitions of Q+ and Q− under
owa and cwa.

Theorem 4. The definitions of Q+ and Q− above provide efficient sound
answers to FO queries under owa and cwa. The data complexity of such queries
is in AC0.

Example. Consider the difference query Q(x̄) = R(x̄) ∧ ¬S(x̄) that is among
the most troublesome operations for relational query evaluation with nulls
[14,22,29].

Then the query Q+(x̄) is R(x̄) ∧ S−(x̄) ∧ const(x̄). Thus, under owa, S−

and hence Q+ is equivalent to false, which is to be expected, as under owa
the difference query returns the empty set. Under cwa, on the other hand, Q+

computes the set of constant tuples in R which do not match any tuple in S.
With Q−, we can also infer useful negative knowledge. Applying the rules,

Q−(x̄) = R−(x̄)∨ (S(x̄)∧ const(x̄)). Thus, under owa it becomes S(x̄)∧ const(x̄)
and we get information that constant tuples in S will never be in the answer,
something that traditional certain answers will miss. Under cwa, we also see
that tuples not mapped into tuples of R (i.e., R−) can never be query answers.

These are exactly the query results one would expect, and they are obtained
by a direct application of transformations giving us queries Q+ and Q−.
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7 Conclusion

When answering queries over incomplete data, one should concentrate not only
on what is guaranteed to be true, but also on what is guaranteed to be false,
i.e., negative information. Finding such negative information however is often
ignored. We showed how to apply the framework for dealing with incomplete-
ness based on semantics, knowledge, and ordering, to define negative information
that can with certainty be inferred about query answers. We showed how to use
basic properties of such negative information to find a good representational
mechanism for relational query answering, resulting in a natural, but hitherto
not widely used mechanism of incomplete tuples. To prove its applicability, we
demonstrated an efficient procedure for computing positive and negative knowl-
edge for all FO queries over relational databases.

As next steps, we would like to see how these notions behave in standard
applications of incompleteness (integration, inconsistency, etc.), relate them to
other approximate query answering notions, both in databases [15,16,23,34] and
in AI [27,32], and to existing approaches that explain why tuples do not appear
in query answers [21,36]. As for quality of approximations of certain answers,
these are best confirmed experimentally, as was demonstrated recently [19].
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Abstract. Weakly-sticky (WS) Datalog± is an expressive member of the
family of Datalog± programs that is based on the syntactic notions of
stickiness and weak-acyclicity. Query answering over the WS programs
has been investigated, but there is still much work to do on the design and
implementation of practical query answering (QA) algorithms and their
optimizations. Here, we study sticky and WS programs from the point
of view of the behavior of the chase procedure, extending the stickiness
property of the chase to that of generalized stickiness of the chase (gsch-
property). With this property we specify the semantic class of GSCh
programs, which includes sticky and WS programs, and other syntactic
subclasses that we identify. In particular, we introduce joint-weakly-sticky
(JWS) programs, that include WS programs. We also propose a bottom-
up QA algorithm for a range of subclasses of GSCh. The algorithm runs
in polynomial time (in data) for JWS programs. Unlike the WS class,
JWS is closed under a general magic-sets rewriting procedure for the
optimization of programs with existential rules. We apply the magic-
sets rewriting in combination with the proposed QA algorithm for the
optimization of QA over JWS programs.

1 Introduction

Ontology-based data access (OBDA) [23] allows to access, through a concep-
tual layer that takes the form of an ontology, underlying data that is usually
stored in a relational database. Queries can be expressed in terms of the ontol-
ogy language, but are answered by eventually appealing to the extensional data
underneath. Common languages of choice for representing ontologies are cer-
tain classes (or fragments) of description logic (DL) [3] and, more recently, of
Datalog± [8,10]. Those classes are expected to be computationally well-behaved
in relation to query answering (QA). Several approaches for QA, and a num-
ber of techniques have been proposed for DL-based [3,23] and Datalog±-based
OBDA [8]. In this work we concentrate on the conjunctive QA problem from
relational data through Datalog± ontologies.

Datalog±, as an extension of the Datalog query language [11], allows in rule
heads (i.e. consequents): existentially quantified variables (∃-variables), equality
atoms, and a false propositional atom, say false, to represent “negative program

c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 128–143, 2016.
DOI: 10.1007/978-3-319-45276-0 10
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constraints” [8–10]. Hence the “+” in Datalog±, while the “−” reflects syntactic
restrictions on programs for better computational properties.

Datalog± is expressive enough to represent in logical and declarative terms
useful ontologies, in particular those that capture and extend the common con-
ceptual data models [9] and Semantic Web data [2]. The rules of a Datalog±

program can be seen as forming an ontology on top of an extensional database,
D, which may be incomplete. In particular, the ontology: (a) provides a “query
layer” for D, enabling OBDA, and (b) specifies a completion of D.

In the rest of this work we will assume that programs contain only exis-
tential rules (plus extensional data). When programs are subject to syntactic
restrictions, we talk about Datalog± programs, whereas when no conditions are
assumed or applied, we talk about Datalog+ programs, also called Datalog∃ pro-
grams [4,8,15,16].

From the semantic and computational point of view, the completion of the
underlying extensional instance D appeals to so-called chase procedure that,
starting from D, iteratively enforces the rules in the ontology. That is, when a
rule body (the antecedent) becomes true in the instance so far, but not the head
(the consequent), a new tuple is generated. This process may create new values
(nulls) or propagate values to the same or other positions. The latter correspond
to the arguments in the schema predicates.

Example 1. Consider a Datalog± program P with extensional database D =
{r(a, b)} and set of rules Pr:

r(X,Y ) → ∃Z r(Y,Z). (1)

r(X,Y ), r(Y,Z) → s(X,Y,Z). (2)

The positions for this schema are: r[1], r[2], s[1], s[2], s[3]. The extension of D
generated by the chase includes the following tuples (among infinitely many oth-
ers): r(b, ζ1), s(a, b, ζ1), r(ζ1, ζ2), s(b, ζ2, ζ1). Notice that s(a, b, ζ1) and s(b, ζ1, ζ2)
are obtained by replacing the join variable Y (i.e. repeated) in the body of (2)
by b and ζ1, resp. �

The result of the chase, seen as an instance for the combined ontological and
relational schema, is also called “the chase”. The chase (instance) extends D, but
may be infinite; and gives the semantics to the Datalog± ontology, by providing
an intended model, and can be used for QA. At least conceptually, the query
can be posed directly to the materialized chase instance. However, this may not
be the best way to go about QA, and computationally better alternatives have
to be explored.

Actually, when the chase is infinite, (conjunctive) QA may be undecid-
able [14]. However, in some cases, even with an infinite chase, QA is still com-
putable (decidable), and even tractable in the size of D. In fact, syntactically
restricted subclasses of Datalog+ programs have been identified and character-
ized for which QA is decidable, among them: linear, guarded and weakly-guarded,
sticky and weakly-sticky (WS) [8,10] Datalog±.
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Sticky Datalog± is a syntactic class of programs characterized by syntac-
tic restrictions on join variables. WS Datalog± extends sticky Datalog± by also
capturing the well-known class of weakly-acyclic programs [13], which is defined
in terms of the syntactic notions of finite- and infinite-rank positions. Accord-
ingly, WS Datalog± is characterized by restrictions on join variables occurring
in infinite-rank positions. A non-deterministic QA algorithm for WS Datalog±

is presented in [10], to establish the theoretical result that QA can be done in
polynomial-time in data.

In this work, we concentrate on sticky and WS Datalog±, because they have
found natural applications in our previous work on extraction of quality data
from possible dirty databases [20]. The latter task is accomplished through QA,
so that the need for efficient QA algorithms becomes crucial. Accordingly, the
main motivations, goals, and results (among others) for/in this work are:

(A) Providing a practical, bottom-up QA algorithm for WS Datalog±. Being
bottom-up, it is expected to be based on (a variant of) the chase. Since
the latter can be infinite, the query at hand guarantees that the need to
generate only an initial, finite portion of the chase.

(B) Optimizing the QA algorithm through a magic-sets rewriting technique, to
make it more query sensitive.

For (B), we apply the magic-sets technique for Datalog+ first introduced
in [1], which we denote with MagicD+. Extending classical magic-sets for Dat-
alog [11], MagicD+prevents existential variables from getting bounded, a rea-
sonable adjustment that essentially preserves the semantics of existential rules
during the rewriting. Unfortunately, the class of WS Datalog± programs is prov-
ably not closed under MagicD+, meaning that the result of applying MagicD+ to
a WS program may not be WS anymore. This led us to search for a more general
class of programs that is: (i) closed under MagicD+, (ii) extends WS Datalog±,
and (iii) has an efficient QA algorithm. Notice that at this point both syntactic
and semantic classes may be investigated, and we do so. The latter classes refer
to the properties of the chase as an instance.

Sticky programs enjoy the stickiness property of the chase, which -in informal
terms- means the following: If, due to the application of a rule during the chase,
a value replaces a join variable in the rule body, then that value is propagated
through all the possible subsequent steps, i.e. the value “sticks”. The “stickiness
property of the chase” defines a “semantic class”, SCh, in the sense that it is
characterized in terms of the chase for programs that include an extensional
database. This class properly extends sticky Datalog± [10].

We can relax the condition in the sch-property, and define the generalized-
stickiness property of the chase. It is as for the sch-property, but with the propa-
gation condition only on join variables that do not appear in the finite positions;
the latter being those where finitely many different values may appear during
the chase. With this property we define the new semantic class of GSCh pro-
grams. However, we make notice that, given a program P consisting of a set of
rules Pr and an extensional instance D, computing (deciding) FinPoss(P), the
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set of finite positions of P, is unsolvable (undecidable) [12]. Accordingly, it is
also undecidable if a Datalog+ program belongs to the GSCh class.

Starting from the definition of the GSCh class, we can define, backwardly, a
whole range of different semantic classes between Sticky and GSCh, by replacing
in the definition of the latter the condition on the set of non-finite positions by
a stronger one that appeals to a superset of them. Each of these supersets is
represented through its complement, which is determined by an abstract selec-
tion function S that identifies a set of finite positions. Such a function, given a
program P, returns a subset S(P) of FinPoss(P) (making S sound, but possibly
incomplete w.r.t FinPoss(P)). S may be computable or not, and may depend on
Pr alone or on the combination of Pr and D. Hence we split P into Pr and D.
The corresponding semantic class of programs, those enjoying the S-stickiness
property of the chase, is denoted with SCh(S).

In particular, if S� is the non-computable function that selects all finite
positions, GSCh = SCh(S�). If Srank selects the finite-rank positions (that hap-
pen to be finite positions) [13], then WSCh = SCh(Srank ) is a new semantic
class programs, those with the weak-stickiness property of the chase. And for the
class SCh of programs we started from above, it holds SCh = SCh(S⊥), with
S⊥ always returning the empty set of positions. Notice that Srank and S⊥ are
both computable, and they do not use the extensional instance D, but only the
program. In this sense, we say that they are syntactic selection functions.

We can see that the combination of selection functions with the S-based
notion of stickiness property of the chase (i.e. that only values in join variables
in positions outside those selected by S propagate all the way through), defines
a range of semantic classes of programs starting with SCh, ending with GSCh,
and with SCh(Srank ) in between. They are shown in ascending order of inclusion,
from left to right, in the middle layer of Fig. 1. There, the upper layer shows the
corresponding selection functions ordered by inclusion (of their images).

S⊥ Srank S∃ S

SCh:=SCh(S⊥) WSCh:=SCh(Srank) SCh(S∃) GSCh:=SCh(S )

Sticky WS JWS
(g) (h) (i)

(j) (k)

(a) (b) (c)

(d) (e) (f)

Fig. 1. Semantic and syntactic program classes, and selection functions

A parallel and corresponding range of syntactic classes, also ordered by set
inclusion, is shown in the lower layer. It includes the sticky and WS classes
(cf. Fig. 1, bottom). Each syntactic class only partially represents its semantic
counterpart, in the sense that the former: does not consider extensional instances,
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appeals to the same selection function, but also imposes additional syntactic
conditions on the set of rules. All the inclusions in Fig. 1 are proper, as examples
we provide in this work will show (but (g) and (j) are known [10]).

In this work, our main goal is to introduce and investigate the semantic
class SCh(S∃), determined by the selection function S∃ that is defined in terms
of the existential dependency graph of a program [15] (a syntactic, computable
construction). We also introduce and investigate its corresponding syntactic class
of joint-weakly-sticky (JWS) programs. The latter happens to satisfy desiderata
(A) and (B) above. Actually, about (A), we provide for the class SCh(S∃) a
polynomial-time, chase-based, bottom-up QA algorithm, which can be applied
to JWS (and all its semantic and syntactic subclasses) in particular. This is a
general situation: The polynomial-time QA algorithms for the classes Sticky [10],
WS [10,21], and JWS (this work) rely basically on the properties of the semantic
class rather than on the specific syntactic restrictions. Hence our interest is in
investigating the particular semantics classes, and semantic classes in general,
as defined by selection functions. About (B), notice that if we start with a WS
program, we can apply MagicD+ to it, obtaining a JWS program, for which QA
can be done in polynomial time.

The paper is structured as follows: Sect. 2 is a review of some basics of the
database theory, the chase procedure, and Datalog±. Section 3 contains the def-
inition of the stickiness and general-stickiness properties of the chase and the
SCh and GSCh semantic classes. Section 4 is about the ranges of syntactic and
semantic program subclasses of GSCh. The JWS class of programs is introduced
in Sect. 5. Sections 6 and 7 contain the QA algorithm and MagicD+. In this paper
we use mainly intuitive and informal introductions of concepts and techniques,
illustrated by examples. The precise technical developments can be found in the
Appendices of [22].

2 Preliminaries

We start with a relational schema R containing two disjoint “data” sets: C, a
possibly infinite domain of constants, and N , of infinitely many labeled nulls.
It also contains predicates of fixed and finite arities. If p is an n-ary predicate
(i.e. with n arguments) and 1 ≤ i ≤ n, p[i] denotes its i-th position. With R,
C, N we can build a language L of first-order (FO) predicate logic, that has
V as its infinite set of variables. We denote with X̄, etc., finite sequences of
variables. A term of the language is a constant, a null, or a variable. An atom
is of the form p(t1, . . . , tn), with p ∈ R, n-ary predicate, and t1, . . . , tn terms.
An atom is ground, if it contains no variables. An instance I for schema R is
a possibly infinite set of ground atoms. The active domain of an instance I,
denoted Adom(I), is the set of constants or nulls that appear in I. Instances can
be used as interpretation structures for the FO language L. Accordingly, we can
use the notion of formula satisfaction of FO predicate logic.

A conjunctive query (CQ) is a FO formula, Q(X̄), of the form: ∃Ȳ (p1(X̄1)∧
· · · ∧ pn(X̄n)), with Ȳ := (

⋃
X̄i) � X̄. For an instance I, t̄ ∈ (C ∪ N )n is an
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answer to Q if I |= Q[t̄], with t̄ replacing the variables in X̄. Q(I) denotes the
set of answers to Q in I. Q is Boolean (a BCQ) when X̄ is empty, and when true
in I, Q(I) := {yes}. Otherwise, Q(I) = ∅. Notice that a CQ can be expressed
as a rule of the form p1(X̄1), ..., pn(X̄n) → ansQ(X̄), where ansQ(·) /∈ R is
an auxiliary predicate. The query answers form the extension of the answer-
collecting predicate ansQ(·).1

A tuple-generating dependency (TGD), also called existential rule or simply
a rule is a sentence, σ, of L of the form: p1(X̄1), . . . , pn(X̄n) → ∃Ȳ p(X̄, Ȳ ),
with X̄i indicating the variables appearing in pi (among possibly elements from
C), and an implicit universal quantification over all variables in X̄1, . . . , X̄n, X̄,
and X̄ ⊆ ⋃

i X̄i, and the dots in the antecedent standing for conjunctions.2 The
variables in Ȳ , that could be empty, are existential variables. With head(σ) and
body(σ) we denote the sets of atoms in the consequent and the antecedent of σ,
respectively. The notions of satisfaction by an instance I of a TGD σ (denoted
I |= σ), and of a set of TGDs, are defined as in FO logic.

A Datalog+ program P consists of a set of rules Pr and an extensional
database instance D, i.e. a finite instance whose atoms contain only elements
from C. The set of models of P, denoted by Mod(P), contains all instances I,
such that I ⊇ D and I |= Pr. Given a CQ Q, the set of answers to Q from P is
defined by ans(Q,P) :=

⋂
I∈Mod(P) Q(I).

The chase procedure is a fundamental algorithm in different database
problems, including implication of database dependencies, query containment,
and CQ answering under dependencies [6,10,13,14,17]. For the latter problem
[10,13], the idea is that, given a set of dependencies over a database schema and
an instance as input, the chase enforces the dependencies by adding new tuples
into the instance, so that the result satisfies the constraints (cf. Appendix B in
[22] for more details).

Example 2 (Example 1 cont.). With the given instance D and the assignment θ :
X �→ a, Y �→ b, rule (1) is not satisfied: D |= r(X,Y )[θ], but D |= ∃Z r(Y,Z)[θ].
Then, the chase inserts a new tuple r(b, ζ1) into D (ζ1 is a fresh null), resulting in
instance D1. D1 does not satisfy (2), so the chase inserts s(a, b, ζ1), resulting in
instance D2. The chase continues, without stopping, creating an infinite instance:
chase(P) = {r(a, b), r(b, ζ1), s(a, b, ζ1), r(b, ζ1), r(ζ1, ζ2), s(b, ζ1, ζ2), . . .}. �

The instance resulting from the chase procedure is also called “the chase”. As
such, it is a so-called universal model [13], i.e. a representative of all models in
Mod(P). In particular, the answers to a CQ Q under P, i.e. those in ans(Q,P),
can be computed by evaluating Q over the chase (and discarding the answers
containing nulls). The chase procedure may not terminate, and it is in general
undecidable if it terminates, even for a fixed instance [12].

1 When Q is Boolean, ansQ is a propositional atom; and if Q is true in I, then ansQ
can be reinterpreted as the query answer.

2 A query of this form can be seen and treated as a new TGD containing a fresh head
predicate.
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Several sufficient conditions, syntactic [12,13,18] and data-dependent [19],
that guarantee chase termination have been identified. Weak-acyclicity [13] is
one of the former, and is defined using the dependency graph.

Example 3 (Example 2 cont.). The dependency graph (DG) of Pr (cf. Fig. 2) is
a directed graph whose vertices are the positions of R.

s[1]

s[3]

r[1]

r[2]

s[2]

Fig. 2. Dependency graph

The edges are defined as follows: for every σ ∈ Pr,
∀-variable X in head(σ), and position π in body(σ):
1. for each occurrence of X in position π′ in head(σ),
create an edge from π to π′. 2. for each ∃-variable Z in
position π′′ in head(σ), create a special edge (dashed)
from π to π′′.

The rank of a position is the maximum number of
special edges over all (finite or infinite) paths ending
at that position. ΠF (Pr) is the set of finite-rank posi-
tions in Pr. A program is weakly-acyclic (WA) if all
of the positions have finite-rank. Here, r[1], r[2] /∈ ΠF (Pr), so the program is
not WA. �

In a program with finite- and infinite-rank positions, every finite-rank posi-
tion is finite: For any extensional instance D, during the chase only polynomially
many different values appear in them (in data) [10]. However, in infinite-rank
positions, there may be infinitely many values (and the chase does not termi-
nate). In particular, for every WA program and instance D the chase terminates
in polynomially many steps with respect to the size of D [13].

The notions of finite and infinite positions mentioned above rely on the chase
instance and hence a program’s data: Given a program P with schema R, the
set of finite positions of P, that we refer to as FinPoss(P), is the set of positions
where finitely many values appear in chase(P). Every position that is not finite
is infinite.

Conjunctive query answering w.r.t an arbitrary set of TGDs is in gen-
eral undecidable [5]. The Datalog± family is formed by syntactic subclasses of
Datalog+ programs that are defined by imposing restrictions on the sets of TGDs
rules in a program, to guarantee decidability, and in several cases, tractability
of QA. In this work we concentrate on the sticky and WS classes of programs.

3 Stickiness of the Chase and its Generalization

The “stickiness property of the chase” (sch-property) [10] is a “semantic” prop-
erty of Datalog+ programs in relation to the way the chase behaves with the
extensional data. We informally introduce it here. A program has this property
if, due to the application of a rule σ, when a value replaces a repeated variable in
a rule-body, then that value also appears in all the head atoms obtained through
the iterative enforcement of applicable rules that starts with σ’s application. In
short, the value is propagated through all possible subsequent chase steps.
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Example 4. Consider P1 with D1 = {r(a, b),r(b, c)}, and Pr
1 containing:

r(X,Y ), r(Y,Z) → p(Y,Z). p(X,Y ) → ∃Z s(X,Y,Z). s(X,Y,Z) → u(Y ).

r(a,b) r(b, c)

p(b, c)

s(b, c, ζ1)

r(a,b) r(b, c)

p(b, c)

s(b, c, ζ1)

u(c)

Fig. 3. The sch-property.

P1 does not have the sch-
property, as the chase in Fig. 3
(right-hand side) shows: value
b is not propagated all the
way down to u(c). However,
a program P2 with the same
database D2 = D1 but a set
Pr
2 of rules which is Pr

1 with-
out its third rule, has the sch-
property, as shown in Fig. 3
(left-hand side). �

SCh is the semantic class of programs with the sch-property. Next, we briefly
recall the classes of programs whose definitions are related to the sch-property
and the SCh programs.

Sticky Programs. Sticky Datalog± is a syntactic class of programs that enjoy
the sch-property, for any extensional database [10]. Its programs are character-
ized through a body variable marking procedure whose input is the set Pr of
program rules (the data do not participate).

The procedure has two steps: (a) Preliminary step, for each σ ∈ Pr and
variable X ∈ body(σ), if there is an atom A ∈ head(σ) where X does not
appear, mark each occurrence of X in body(σ), and (b) Propagation step, for
each σ ∈ Pr, if a marked variable in body(σ) appears at position π, then for
every σ′ ∈ Pr (including σ), mark each occurrence of the variables in body(σ′)
that appear in head(σ′) in the same position π.

Pr is sticky when, after applying the marking procedure, there is no rule with
a marked variable appearing more than once in its body (notice that a variable
never appears both marked and unmarked in a same body).

Example 5. The initial set of three rules, Pr, is shown on the left-hand side
below. The second rule already shows marked variables (with hat) after the
preliminary step. The set of rules on the right-hand side are the result of whole
marking procedure.

r(X,Y ), p(X,Z) → s(X,Y,Z). r(X̂, Y ), p(X̂, Ẑ) → s(X,Y,Z).
s(X̂, Y, Ẑ) → u(Y ). s(X̂, Y, Ẑ) → u(Y ).

u(X) → ∃ Y r(Y,X). u(X) → ∃ Y r(Y,X).

Variables X and Z in the first rule-body end up marked after the propagation
step: they appear in the same rule’s head, in marked positions (s[1] and s[3] in
the body of the second rule). Accordingly, the set of rules is not sticky: X in the
first rule’s body is marked and occurs twice (in r[1] and p[1]). �
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With sticky programs, QA can be done in polynomial-time in data com-
plexity [10]. A program with the sch-property may not be syntactically sticky.
Actually, the SCh class can be extended to several larger, semantic, classes of
programs that enjoy a form of the sch-property with the propagation condition
during the chase only on values in certain forms of “infinite” positions. (We pro-
pose a new, syntactic class along these lines in Sect. 4). Something similar can
be done with the class of sticky programs.

Weakly-Sticky (WS) Programs. This is a syntactic class that extends those
of WA and sticky programs. Its characterization uses the above notions of finite-
rank and marked variable: A set of rules Pr is WS if, for every rule in it and
every repeated variable in its body, the variable is either non-marked or appears
in some position in ΠF (Pr).

Example 6 (Example 5 cont.). Pr is WS, because p[1] ∈ ΠF (Pr); and X, the
only repeated variable in a body (of the first rule), is marked, but in p[1]. �

The WS condition guarantees tractability of QA, because CQs can be
answered on an initial fragment of the chase whose size is polynomial in that of
the extensional database. This relies on these facts: (a) Finite-rank positions can
be saturated by polynomially many values in the size of the extensional data-
base. (b) Stickiness for infinite-rank positions ensures that polynomially many
values are required in them for answering a query at hand. In fact, stickiness for
infinite positions makes the number of values required in them for QA polyno-
mially depend on the number of values in finite-rank positions. So, both in finite
and infinite-rank positions, polynomially many values are needed.

The above argument about QA is more general than as applied to WS pro-
grams. It can be applied with more general, syntactic and semantic, classes of
programs that are characterized through the use of the stickiness condition on
positions where infinitely many values may appear during the chase. WS pro-
grams are a special case, where those positions are with infinite-rank; and the
stickiness is enforced by the syntactic variable-marking mechanism. Actually, we
can make the general claim that the combination of finitely many values in finite
positions plus chase-stickiness on infinite positions makes QA decidable.

Generalized Stickiness. The generalized-stickiness of the chase (gsch-
property) is defined by relaxing the condition in the sch-property: the condi-
tion applies to values for the repeated body variables that do not appear in
finite positions. GSCh is the semantic class of programs with the gsch-property
(cf. Fig. 1).

Example 7 (Example 4 cont.). P1 and P2 have no infinite positions because for
both programs the chase terminates. Consequently, they are GSCh. Consider a
program P3 with the same database D3 = D1 and a set Pr

3 of rules which is
Pr
2 ∪{σ} such that, σ : r(X,Y ) → ∃Z r(Z,X). r[1] and r[2] are infinite positions

because, during the chase of P3, σ cyclically generates infinite null values in r[2]
that also propagate to r[1]. The chase of P3 does not have the gsch-property and
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it is not GSCh since the value b replaces the repeated body variable Y that only
appears in infinite positions (r[1] and r[2]) and b does not propagate all the way
down during the chase procedure. �

4 Selection Functions and Program Classes

The finite positions in the definition of the gsch-property are not computable
for a given program which makes it impossible to decide if the program has
the property. Here, we define selection functions that determine subsets of the
finite positions of a program. We replace finite positions in the definition of the
gsch-property with the results from selection functions in order to define new
stickiness properties and program classes.

A selection function S (over a schema R) is a function that takes a program
P and returns a subset of FinPoss(P). Particular functions are S⊥ and S�,
that given a program P, return the empty set and FinPoss(P), respectively. The
latter may not be computable, and depends on the program’s data, which is not
the case for the former. ΠF also defines a data-independent selection function,
Srank , that returns the finite-rank positions (there are finitely many values in
them in the chase of P, for any data set [10, Lemma 5.1]). A selection function
is “syntactically computable” if it only depends on the rules Pr of a program P,
and we use the notation S(Pr).

The S-stickiness is defined by replacing the finite positions in the definition
of the gsch-property with a selection function S: The chase of a program P
has the S-stickiness property if the stickiness condition applies only to values
replacing the repeated body variables that do not appear in a position of S(P).
SCh(S) is the semantic class of programs with the S-stickiness. In particular,
SCh = SCh(S⊥), GSCh = SCh(S�). Also, WSCh = SCh(Srank ) is the class of
programs with weak-stickiness of the chase. SCh(S) specifies a range of semantic
classes of programs starting with SCh, ending with GSCh, and with WSCh in
between.

SCh(S) grows monotonically with S: For selection functions S1 and S2 over
schema R, if S1 ⊆ S2, then SCh(S1) ⊆ SCh(S2). Here, S1 ⊆ S2 if and only if
for every program P, S1(P) ⊆ S2(P). In general, the more finite positions are
(correctly) identified (and the consequently, the less finite positions are treated
as infinite), the more general subclass of GSCh that is identified or characterized.

Sticky Datalog± uses the marking procedure to restrict the repeated body
variables and impose the sch-property. Applying this syntactic restriction only
on body variables specified by syntactic selection functions results in syntactic
classes that extend sticky Datalog±. These syntactic classes are subsumed by the
semantic classes defined by the same selection functions; each of these syntactic
classes only partially represents its corresponding semantic class. Particularly,
SCh subsumes sticky Datalog± [10]; and WS is a syntactic subclass of WSCh
(cf. (g) and (h) in Fig. 1).
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5 Joint-Weakly-Sticky Programs

The definition of the class of JWS programs uses the syntactic selection function
S∃, which appeals to the existential dependency graph of a program [15] (to
define joint-acyclic programs). We briefly review it here.

Let Pr be a set of rules that is standardized apart, i.e. no variable appears
in more than one rule. For a variable X, let B(X) (H(X)) be the set of all
positions where X occurs in the body (head) of its rule σ. For a ∃-variable Z,
the set of target positions of Z, denoted by T (Z), is the smallest set of positions
such that (a) H(Z) ⊆ T (Z), and (b) H(X) ⊆ T (Z) for every ∀-variable X with
B(X) ⊆ T (Z). Roughly speaking, T (Z) is the set of positions where the null
values invented by Z may appear in during the chase.

An existential dependency graph (EDG) of Pr is a directed graph with the
∃-variables of Pr as its nodes. There is an edge from Z to Z ′ if there exists a
body variable X in the rule containing Z ′ such that B(X) ⊆ T (Z). Intuitively,
the edge shows that the values invented by Z might appear in the body of the
rule of Z ′ and cause invention of values by Z ′. Therefore, a cycle represents the
possibility of infinite null values invention by the ∃-variables in the cycle.

Example 8. Let Pr contain the following rules: u(Y ), r(X,Y ) → ∃Z r(Y,Z)
and r(X ′, Y ′), r(Y ′, Z ′) → p(X ′, Z ′). For the variable Y , B(Y ) = {u[1], r[2]},
H(Y ) = {r[1]}. Moreover, T (Z) = {r[2], p[2]}. The EDG of Pr has Z as its node
without any edge since B(X) and B(Y ) are not subsets of T (Z). Pr is not WA,
because r[1] and r[2] have infinite rank. �

For a set of rules Pr, we define the set of finite-existential positions of Pr

denoted by Π∃
F (Pr) as follows: It is the set of positions that are not in the target

set of any ∃-variable in a cycle in EDG(Pr). Intuitively, a position in Π∃
F (Pr) is

not in the target of any ∃-variable that may invent infinite null values.

Proposition 1. For every set of rules Pr, ΠF (Pr) ⊆ Π∃
F (Pr). �

Π∃
F defines a computable selection function S∃ that returns finite-existential

positions of a program (cf. (c) in Fig. 1). SCh(S∃) is a new semantic subclass
of GSCh that generalizes SCh(Srank ) since S∃ provides a finer mechanism for
capturing finite positions in comparison with Srank (cf. (e) and (f) in Fig. 1).

A program P is joint-weakly-sticky (JWS) if for every rule in Pr and every
variable in its body that occurs more than once, the variable is either non-marked
or appears in some positions in Π∃

F (Pr). The class of JWS programs is a proper
subset of SCh(S∃) and extends WS (cf. (i) and (k) in Fig. 1). Specifically, the
program in Example 8 is JWS, because every position is finite-existential, but
not WS, because Y ′ is marked and appears in r[1] and r[2] with infinite rank.

6 A Chase-Based Query Answering Algorithm

SChQA is a QA algorithm for programs in the semantic class of SCh(S). It is
based on a bottom-up data generation approach and applies a query-driven
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chase. The algorithm takes as input a computable selection function S, a program
P ∈ SCh(S), and a CQ Q over schema R and returns ans(Q,P).

Before describing SChQA, we introduce some notations. A homomorphism
is a structure-preserving mapping, h : C ∪ N → C ∪ N , between two instances
over schema R that is the identity on constants. An isomorphism is a bijective
homomorphism.

Definition 1. A rule σ ∈ Pr and an assignment θ are applicable over an instance
I of R if: (a) I |= (body(σ))[θ]; and (b) there is an assignment θ′ that extends
θ, maps the ∃-variables of σ into fresh nulls, and θ′(head(σ)) is not isomorphic
to any atom in I. �

Note that for an instance I and a set of rules Pr, we can systematically
compute the applicable pairs of rule-assignment by first finding σ ∈ Pr for which
body(σ) is satisfied by I. That gives an assignment θ for which (body(σ))[θ] ∈ I.
Then, we construct θ′ as specified in Definition 1 and we iterate over atoms in I
and we check if they are isomorphic to θ′(head(σ)).

In SChQA, we use the notion of freezing a null value that is moving it from
N into C. It may cause new applicable rule-assignment because it changes iso-
morphic atoms. Considering an instance I, the resumption of a step of SChQA
is freezing every null in I and continuing the step. Notice that a pair of rule-
assignment is applied only once in Step 2. Moreover, if there are more than one
applicable pairs, then SChQA chooses the pair that becomes applicable sooner.
SChQA is applicable to any Datalog+ program and any selection function, and
returns sound answers. However, completeness is guaranteed only when applied
to programs in SCh(S) with a computable S.

Algorithm 1. The SChQA algorithm
Inputs: A selection function S, a program P ∈ SCh(S), and a CQ Q over P.
Output: ans(Q, P).

Step 1: Initialize an instance I with the extensional database D.

Step 2: Choose an applicable rule-assignment σ and θ over I, add head(σ)[θ′] into
I in which θ′ is an extension of θ with mappings for the ∃-variables in σ to fresh
nulls in N .

Step 3: Freeze the nulls in the new atom in Step 2 that appear in the positions of
S(P).

Step 4: Iteratively apply Steps 2 and 3 until there is no more applicable pair of
rule-assignment.

Step 5: Resume Step 2 with I, i.e. freeze nulls in I and continue with Steps 2.
Repeat resumption MQ times where MQ is the number of variables in Q
Step 6: Return the tuples in Q(I) that do not have null values (including the
frozen nulls).
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Example 9. Consider a program P with D = {s(a, b, c), v(b), u(c)}, and a BCQ
Q : p(c, Y ) → ansQ, and a set of rules Pr containing (the hat signs show the
marked variables):

σ1 : s(X̂, Ŷ , Ẑ)→ ∃W s(Y,Z,W ). σ2 : u(X̂)→ ∃Y,Z s(X,Y,Z).
σ3 : s(X̂, Y, Z), v(X̂), s(Y,Z, Ŵ )→ p(Y,Z).

P is in WS and so SCh(Srank ). Specifically in σ3, X occurs in v[1] which is
in Srank (Pr) and Y and Z are not marked. The algorithm starts from I = D.
At Step 2, σ1 and θ1 = {X→ a, Y → b, Z→ c} are applicable; and SChQA adds
s(b, c, ζ1) into I. σ2 and θ2={X →c} are also applicable and they add s(c, ζ2, ζ3)
into I. Note that Step 3 does not freeze ζ1, ζ2, and ζ3 since they are not in
Srank (Pr)

There is not more applicable rule-assignments and we continue with Step 5.
Consider that σ1 and θ3={X→b, Y →c, Y→ζ1} are not applicable since any θ′

3=
θ3∪{W→ζ4} generates s(c, ζ1, ζ4) that is isomorphic with s(c, ζ2, ζ3) already in I.
SChQA is resumed once since Q has one variable. This is done by freezing ζ1, ζ2, ζ3
and returning to Step 2. Now, s(c, ζ1, ζ4) and s(c, ζ2, ζ3) are not isomorphic
anymore and σ1 and θ3 are applied which results in s(c, ζ1, ζ4). As a consequence,
σ3 and θ4 = {X → b, Y → c, Z → ζ1,W → ζ4} are applicable, which generate
p(c, ζ1). The instance I in Step 6 is I = D∪{s(b, c, ζ1), s(c, ζ2, ζ3), s(c, ζ1, ζ4), p(c,
ζ1), s(ζ2, ζ3, ζ5), s(ζ1, ζ4, ζ6)}, and I |= Q. �

The number of resumptions with SChQA depends on the query. However,
for practical purposes, we could run SChQA with N resumptions, to be able to
answer queries with up to N variables. If a query has more than N variables, we
can incrementally retake the already-computed instance I, adding the required
number of resumptions.

Theorem 1. Consider a computable selection function S, a program P ∈
SCh(S), and a CQ Q over schema R. Algorithm SChQA taking S, P, and Q
as inputs, terminates returning ans(Q,P). �

Termination is due to condition (b) in Definition 1, which prevents isomorphic
atoms in I. Note that because of Step 3 the null values that appear in the
positions of S(P) are treated as constants while deciding isomorphic atoms.
However, condition (b) in Definition 1 prevents some atoms from I that are
necessary for answering Q. Adding these atoms depends on the applicability of
certain pairs of rule-assignment in which the assignment replaces some repeated
variables in the body of the rule with null values. Each resumption makes some of
these pairs applicable by freezing nulls. Since P is SCh(S), there are at most MQ
such rules and so MQ resumptions are sufficient for answering Q. The running
time of SChQA depends on the number of finite values that may appear in the
positions of S(P).

Proposition 2. Algorithm SChQA runs in ptime in data if the following holds
for S: for any program P ′, the number of values appearing in S(P ′)-positions
during the chase is polynomial in the size of the extensional data. �
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Lemma 1. During the chase of a Datalog+ program P, the number of distinct
values in S∃(Pr)-positions is polynomial in the size of the extensional data. �

Corollary 1. SChQA runs in ptime in data with programs in SCh(S∃), in par-
ticular for the programs in the JWS and WS syntactic classes. �

7 Magic-Sets and JWS Datalog±

Magic-sets is a general technique for rewriting logical rules so that they may
be implemented bottom-up in a way that avoids the generation of irrelevant
facts [7,11]. The advantage of such a rewriting technique is that, by working
bottom-up, we can take advantage of the structure of the query and the data
values in it, optimizing the data generation process.

In this section, we present a magic-sets rewriting for Datalog+ programs,
denoted by MagicD+. It has two changes regarding the technique in [11] in
order to: (a) work with ∃-variables in the existential rules, and (b) consider the
extensional data of the predicates that also have intensional data defined by the
rules. For (a), we apply the solution proposed in [1]. However (b) is specifically
relevant for Datalog+ programs that allow predicates with both extensional and
intentional data, and we address it in MagicD+. MagicD+ is described in detail
in Appendix D in [22].

Example 10 (Example 8 cont.). Consider a BCQ Q : p(a, Y ) → ansQ over
a program P with D = {u(a), r(a, b)} and the rules in Pr. MagicD+ has the
following steps:

1. Generate the adorned version of the query by annotating its body predi-
cates with strings of bs and fs that correspond to the positions with con-
stants or variables respectively. Then, propagate the adorned predicates to
the other program rules. Here, pbf (a, Y ) → ansQ is the adorned query;
rbf (X,Y ), rbf (Y,Z) → pbf (X,Z) and u(Y ), rfb(X,Y ) → ∃Z rbf (Y,Z) are
the adorned rules. Note that the first rule in Pr is not adorned by bounding
Z in the head (e.g. rfb(Y,Z)) since the ∃-variables can not be bounded.

2. Add magic predicates to the body of the adorned rule. The magic predicates
specify the values for the bounded variables: mg pbf (X), rbf (X,Y ), rbf (Y,Z)
→ pbf (X,Z) and mg rbf (Y ), u(Y ), rfb(X,Y ) → ∃Z rbf (Y,Z).

3. Generate magic rules that define the magic predicates: mg pbf (X) → mg rbf

(X) and mg rbf (X), rbf (X,Y ) → mg rbf (Y ), and a fact mg pbf (a).
4. For the adorned predicates with extensional data (e.g. r), generate new

rules to load their extensional data: mg rbf (X), r(X,Y ) → rbf (X,Y ) and
mg rfb(Y ), r(X,Y ) → rfb(X,Y ).

The result is a program Pm with schema Rm, Dm = D, the set of rules Pr
m

specified in Steps 2–5, and Qm which is the adorned query from Step 1. �
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MagicD+ differs from the rewriting algorithm of [1] in Step 4. Particularly, in
the latter Step 4 is not needed since, unlike the former, it assumes the intentional
predicates in P and the adorned predicates in Pm do not have extensional data.
Therefore, the correctness of MagicD+, i.e. ans(Q,P) = ans(Qm,Pm), follows
from both the correctness of the rewriting algorithm in [1] and Step 4.

Pr
m has certain syntactic properties. First, the magic rules do not have ∃-

variables. Also as mentioned in Step 1, the positions of ∃-variables in the head of
a rule never become bounded. Additionally we assume that the full information
about bounded variables is propagated from the head of an atom to its body.
That is when a variable is in a bounded position in the head it appears in the
body only in bounded positions.

Applying MagicD+ over a WS program P, Pm is not necessarily WS or in
SCh(Srank ) (cf. Example 14 in Appendix E in [22]), which means SCh(Srank ) and
WS are not closed under MagicD+. This is because MagicD+ introduces new join
variables between the magic predicates and the adorned predicates, and these
variables might be marked and appear only in the infinite rank positions. That
means the joins may break the Srank -stickiness as it happens in Example 14 in
Appendix E [22]. Specifically it turned out to be because Srank decides some
finite positions of Pr

m as infinite rank positions. In fact, the positions of the new
join variables are always bounded and are finite. Therefore, MagicD+ does not
break S-stickiness if we consider a finer selection function S that decides the
bounded positions as finite. We show in Theorem2 that the class of SCh(S∃)
and its subclass of JWS are closed under MagicD+ since they apply S∃ that
better specifies finite positions compared to Srank .

Theorem 2. Let P and Pm be the input and the result programs of MagicD+

respectively. If P is JWS, then Pm is JWS. �
As a result of Theorem 2, we are able to apply MagicD+ in order to optimize

SChQA for the class of JWS and its subclasses sticky and WS.

8 Conclusion and Future Research

We introduced semantic and syntactic extensions of sticky and WS Datalog±

and we proposed a practical bottom-up QA algorithm for these programs. We
applied a magic-set rewriting technique, MagicD+, to optimize the QA algorithm.
As the future work, we intend to study the applications of the magic-set rewriting
for Datalog± ontologies and in the presence of program constraints, i.e. negative
constraints and equality generating dependencies and specifically for the purpose
of managing inconsistency for these ontologies. We believe that SChQA and
MagicD+ are applicable on real-world scenarios and we plan to implement them
and run experiments on real-world data with large data sets.
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Abstract. Datalog± is a family of ontology languages that combine
good computational properties with high expressive power. Datalog±

languages are provably able to capture many relevant Semantic Web
languages. In this paper we consider the class of weakly-sticky (WS)
Datalog± programs, which allow for certain useful forms of joins in
rule bodies as well as extending the well-known class of weakly-acyclic
TGDs. So far, only nondeterministic algorithms were known for answer-
ing queries on WS Datalog± programs. We present novel determinis-
tic query answering algorithms under WS Datalog±. In particular, we
propose: (1) a bottom-up grounding algorithm based on a query-driven
chase, and (2) a hybrid approach based on transforming a WS pro-
gram into a so-called sticky one, for which query rewriting techniques
are known. We discuss how our algorithms can be optimized and effec-
tively applied for query answering in real-world scenarios.

1 Introduction

The Datalog± family of ontology languages [4], which extends Datalog with
explicit existential quantification, has been gaining importance in the area of
ontology-based data access (OBDA) due to its capability of capturing several
conceptual data models and Semantic Web languages as well as offering efficient
query answering services in many variants relevant for applications.

The core feature of Datalog± languages are the so-called existential rules
(a.k.a. tuple-generating dependencies or TGDs). Such rules allow the inference
(entailment) of new atoms from an initial set of ground atoms, typically a
database, through the chase procedure [6,7,9]. For example, consider the rule
∀X∀Y r(X,Y ) → ∃Z s(X,Z) (in the following we shall omit universal quanti-
fiers, keeping only the existential ones) and a database D constituted by a single
atom r(a, b). A chase step will generate (notice that X and Y correspond to
a and b respectively in this step) the atom s(a, ζ1), where ζ is a labelled null,
that is, a placeholder for an unknown value; notice that the constant b is lost
in this step as it doesn’t appear in the new atom. In general the chase may not
terminate. Answering a conjunctive query (CQ) q under a database D and a set
c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 144–158, 2016.
DOI: 10.1007/978-3-319-45276-0 11
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of TGDs Σ amounts to computing all atoms entailed by D ∪ Σ ∪ q (where q is
seen as a TGD) or, equivalently, evaluating q over all atoms entailed by D ∪ Σ.

Consider the following simple example. Let Σ = {σ1, σ2}; σ1 is the rule
emp(X) → ∃Y rep(X,Y ), asserting that each employee reports to someone; σ2

is the rule rep(X,Y ) → mgr(Y ), asserting that anyone to whom someone else
reports is a manager. Now assume D = {mgr(ann), emp(joe)}. Let us consider
the conjunctive query q1 defined as q1(W1) ← rep(W1,W2), where q1 is now a new
predicate (we use the head predicate q1 for convenience, but any predicate name
would suit). This query, which is itself a TGD1, which we denote with δ, asks for
all those who report to someone. Clearly the plain evaluation q1(D) over D returns
no answer (q1(D) = ∅), as D says nothing about who reports to whom. However,
we are to reason on atoms entailed by D ∪ Σ ∪ δ; therefore, we apply the chase
of D w.r.t. Σ ∪ δ. By applying σ1 to emp(joe) we obtain rep(joe, ζ1), where ζ1 is
a labeled null (in logical terms this means ∃Y rep(joe, Y )); then by applying σ2

to rep(joe, ζ1) we obtain mgr(ζ1); no more atoms can be entailed by the chase.
Now, if we evaluate q1 on all entailed atoms, thus computing all atoms entailed
by D ∪ Σ ∪ δ, we get the answer 〈joe〉; this is because D ∪ Σ ∪ δ entails that joe
reports to someone: D ∪ Σ ∪ δ |= q1(joe). Consider now the query q2 defined as
q2(W1) ← mgr(W1), asking for all those who are managers. In this case, evalu-
ating q2 over all atoms entailed by D ∪ Σ returns the answer 〈ann〉; notice that
D ∪ Σ does not entail the answer 〈ζ1〉 for q2; this because ζ1 is just a placeholder
for an unknown value — we know that the manager to whom joe reports exists,
but we do not know who he (or she) is.

Conjunctive query answering under general TGDs is undecidable; languages
of the Datalog± family impose therefore restrictions on the form of rules so as to
guarantee decidability and certain computational problems, most prominently,
conjunctive query answering.

Guarded and weakly-guarded Datalog± (the latter generalising the former)
were the first decidable Datalog± languages, inspired by guarded logic and char-
acterised by the presence of a guard atom in each rule that contains all variables
of that rule [5]. The sticky Datalog± [5] language was introduced to capture a
“proper” notion of join in rules, that is, the occurrence of variables in two dis-
tinct atoms of a rule body in the absence of a guard for that rule. Weakly-sticky
(WS) Datalog± extends sticky Datalog± by also capturing the well-known class
of weakly-acyclic rules [7]. As an example, consider the following set of rules Σ,
where some body variables are marked (by a hat sign, e.g. X̂; see [5]; notice that
X and X̂ are the same variable) as the result of a procedure that identifies occur-
rences of variables (the marked ones) corresponding, in the chase procedure, to
a value that can eventually be lost in some subsequent chase step.

σ1 : v(X) → ∃Y r(X,Y ). σ3 : r(X, Ŷ ), r(Ŷ , Z) → p(X,Z).
σ2 : p(X̂, Ŷ ) → ∃Z p(Y,Z). σ4 : p(X̂, Y ), p(Y,Z) → t(Y,Z).

A set of TGDs is sticky if, for each rule, there is no marked variable in
that rule that appears more than once in the body of the same rule. Intuitively,
1 Here we adopt the usual notation for conjuntive queries, where the head appears on

the left-hand side.
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stickiness can be defined by means of the following (semantic) property: during a
chase step according to a rule σ, each value corresponding to a variable appearing
more than once in σ is not lost in the chase step, and it is also never lost in any
subsequent step involving atoms where it appears. Notice that the set of rules
Σ above is not sticky, as easily seen.

Weak acyclicity is defined using the notion of rank of a position, i.e. a predi-
cate attribute. In a position of finite (resp., infinite) rank, the number of labelled
nulls that can appear in the chase procedure is finite (resp., infinite). In the set
of TGDs Σ above, ΠF (Σ) = {v[1], r[1], r[2]} contains the positions with finite
rank and Π∞(Σ) = {p[1], p[2], t[1], t[2]} those with infinite rank. A Datalog±

program is weakly-acyclic if all positions have finite rank. The set Σ of TGDs
above is not weakly-acyclic.

A set of TGDs is WS if, for each TGD, every marked variable that appears
more than once in the body also appears at least once in a finite-rank position.
This notion generalizes both stickiness and acyclicity, because the stickiness
condition applies to variables that appear only in positions with infinite rank.
Notice that Σ above is WS. Specifically, in σ3, the repeated variable Y appears
in positions r[1] and r[2], which are in ΠF (Σ). In σ4, Y is repeated not marked.

To answer a conjunctive query q under a set Σ of TGDs (or other types
of ontological rules) and a database D, two main approaches were proposed in
the literature: grounding (or expansion) and query rewriting. In the grounding
approach, variables are suitably replaced by constants (or nulls) in the body of
a rule, so that the head of the rule yields a (ground) atom that is entailed by
the program. The aforementioned chase is in fact a grounding procedure. The
grounding allows the computation of all atoms entailed by D ∪ Σ, onto which
q can be then evaluated. In the rewriting approach, the query q is rewritten,
according to Σ, into another query qR (possibly in another language different
from that of q), so that the correct answers can be obtained by evaluating qR
directly on D.

The rewriting approach is usually considered more efficient than the ground-
ing because in the former only the query is manipulated, according to the
rules, while the data is left unchanged; on the contrary, the grounding app-
roach requires the expansion of the given data, whose size is normally much
larger than that of the query and of the rules.

CQ answering can be done in polynomial time in data for WS programs.
However, so far, no non-trivial deterministic algorithm for CQ answering has
been devised for WS Datalog±. In this paper we devise algorithms for the effi-
cient implementation of conjunctive query answering under WS Datalog±. Our
contributions are as follows.

1. We propose a bottom-up technique, based on grounding, which is a variant of
the chase procedure, and relies on a terminating chase-like procedure that is
resumed a number of times that depends on the query to be evaluated. Once
the procedure is resumed a sufficient number of times for the query, the same
query is evaluated together with the result of the procedure, that is a set of
(ground) rules, yielding the correct answers to the query under the given WS
set of TGDs.
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2. We propose a hybrid approach between grounding and rewriting as follows.
First, with a novel algorithm, we transform the given set Σ of TGDs into
another, all whose positions in ΠF become of rank 0 (that is, positions where
only constants can appear in the chase or grounding). Next, certain variables
in such positions are grounded, that is, they are replaced by selected constants
of the given instance. The obtained program is a sticky program, for which a
well-known query rewriting technique for CQ answering can be applied. The
rewriting (a union of CQs) is finally evaluated on the initial instance.

Both techniques we propose yield algorithms for CQ answering that are of the
same data complexity as the lower-bound complexity of CQ answering under
weakly-stick programs. Moreover, both our algorithms, unlike the one for WS
Datalog± in [5], are deterministic. The advantage of the first, pure-grounding
technique is that we can pre-compute off-line a ground Datalog program (pos-
sibly containing nulls, treated as constants), which serves for answering every
query up to a certain number of variables by simply evaluating it on the minimum
model of the above Datalog program (in fact, a relational instance). The second,
hybrid algorithm relies on a partial grounding, again computed off-line, as well
as on an on-the-fly rewriting of every query; the advantages of this approach are
that (a) the grounding is query-independent and generally much smaller than a
complete grounding; (b) the final step consists of a mere evaluation of a union of
CQs on the given database. Notice that in both our approaches the last step can
be performed by executing an SQL query, then offering the possibility of taking
advantage of optimizations of RDBMSs. Several optimization strategies are pos-
sible for these algorithms (this is ongoing work). We argue that our techniques
set the basis for efficient CQ answering under expressive Datalog± languages
such as WS Datalog±. A full version of this paper is available at [14].

2 Preliminaries

In this section, we review some basic notions which we use in the paper.

2.1 Basic Definitions

We assume an infinite universe of data constants ΓC , an infinite set of (labeled)
nulls ΓN , and an infinite set of variables ΓV (used in rules and queries). We
denote by uppercase letters (e.g. X,Y,Z) variables, while X is a sequence of
variables X1, . . . , Xk with k ≥ 0. We use the same notation for sets of variables.
A relational schema R is a finite set of relation names (or predicates). A position
p[i] identifies the i-th argument of a predicate p.

A homomorphism is a structure-preserving mapping h : ΓC ∪ ΓN ∪ ΓV →
ΓC ∪ ΓN ∪ ΓV such that c ∈ ΓC implies h(c) = c. For atoms and conjunctions
of atoms, we denote by Π-homomorphism a homomorphism that is the identity
on the terms that appear in a set Π of positions.

A tuple-generating dependency (or TGD, also called existential rule) σ
on a schema R is a formula p1(X 1), . . . , pn(X n) → ∃Y p(X ,Y ) in which
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p, p1, . . . , pn are predicates in R and X ⊆ ⋃
X i and

⋃
X i are universal vari-

ables that are implicitly quantified. We denote by head(σ) and body(σ) the head
atom p(X ,Y ) and the set of the body atoms p1(X 1), . . . , pn(X n) of σ, respec-
tively. Variables in Y are called existential variables. A rule is ground if its terms
are in ΓC∪ΓN .

An instance D for R is a (possibly infinite) set of atoms with predicates in
R and arguments from ΓC ∪ΓN . A database D is an instance that contains only
atoms with arguments from ΓC . The active domain of a database D denoted by
active(D) is the set of constants that appear in D.

A rule σ is satisfied by an instance I, written I |= σ, if the following holds:
whenever there exists a homomorphism h such that h(body(σ)) ⊆ I, then there
exists a homomorphism h′ as an extension of h that maps existential variables
of σ into terms in ΓC ∪ ΓN , such that h′(head(σ)) ⊆ I. An instance I satisfies a
set Σ of TGDs, denoted I |= Σ, if I |= σ for each σ ∈ Σ.

A conjunctive query (CQ) has the form q(X ) ← p1(X 1), ..., pn(X n) where
p1, ..., pn are predicate names in R, q is a predicate name not in R, X ⊆ ⋃

X i

and the X i are sequences of variables or constants. A Boolean CQ (BCQ) over
R is a CQ having head predicate q of arity 0 (i.e., no variables in X ). The answer
to a CQ q(X ) ← p1(X 1), . . . , pn(X n) over an instance I, denoted as q(I), is the
set of all n-tuples t ∈ Γn

C for which there exists a homomorphism h such that
h(p1(X 1), . . . , pn(X n)) ⊆ I and h(X ) = t. A BCQ has only the empty tuple 〈〉
as possible answer, in which case we say it has a positive answer, denoted I |= q.

A program P consists of a set of rules ΣP and a database DP over same
schema R. P is a ground program if ΣP is a set of ground rules. Given a
program P and a CQ q, the answers to q are those that are true in all models
of P. Formally, the models of P, denoted as mods(P), is the set of all instances
I such that I ⊇ DP and I |= ΣP . The answers to a CQ q over P, denoted as
ans(q,P), is the set of n-tuples {t | t ∈ q(I),∀I ∈ mods(P)}. The answer to a
BCQ q is positive, denoted as P |= q, if ans(q,P) is not empty.

2.2 Chase and Grounding

The chase procedure is a fundamental algorithm in various database prob-
lems including implication of database dependencies, query containment and CQ
answering under dependencies [3,9,12]. The chase has been broadly employed in
CQ answering in the presence of dependencies [5,7]; the intuition is that, given a
set of dependencies over a database schema and a fixed database instance as input,
the chase “repairs” the instance so that the result satisfies the constraints. The
result of the chase procedure, also called chase, is a so-called universal model [7],
i.e., a representative of all models in mods(P); therefore, the answers to a CQ q
under dependencies (in the open-world assumption, also called certain answers),
can be computed by evaluating q over the chase (and discarding the answers con-
taining labeled nulls). The chase under TGDs, which we do not describe in detail,
is in fact a form of grounding ; in Sect. 3 we propose a grounding technique for
answering CQs under WS Datalog± based on a variant of the chase.
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2.3 Datalog± and the Stickiness Paradigm

Query answering with respect to a set of TGDs is generally undecidable as
proved in [2]. The Datalog± family contains syntactic classes of TGDs that
impose restrictions on the form of the rules to guarantee decidability and in
many cases tractability of query answering. Two relevant decidability paradigms
are guardedness and stickiness. In this paper we concentrate on stickiness, which
is a syntactic condition on the join variables in the body of the rules.

Sticky Programs. Sticky rules are defined by means of a body variable marking
procedure that takes as input the set ΣP of rules. It has two steps:

1. Preliminary step: for each σ ∈ ΣP and for each variable X ∈ body(σ), if
there is an atom a ∈ head(σ) such that X does not appear in a, mark each
occurrence of X in body(σ).

2. Propagation step: for each σ ∈ ΣP , if a marked variable in body(σ) appears
at position π, then for every σ′ ∈ ΣP (including σ), mark each occurrence of
the variables in body(σ′) that appear in head(σ′) in the same position π.

Example 1. Consider a program P, with ΣP as following set of rules in which
the marked variables (denoted by hat signs) after applying the preliminary step:

r(X,Y ), p(X,Z) → s(X,Y,Z). u(X) → ∃ Y r(Y,X).

s(X̂, Y, Ẑ) → u(Y ).

In the first rule, variables X and Z are marked after applying one propagation
step since they appear in the head in marked positions (s[1], s[3]), and the final,
marked rules are:

r(X̂, Y ), p(X̂, Ẑ) → s(X,Y,Z). u(X) → ∃ Y r(Y,X).

s(X̂, Y, Ẑ) → u(Y ).

�
P is sticky when, at the end of the marking procedure over ΣP , there is

no rule with a marked variable in its body that occurs more than once. From
Example 1, we can see that the program is not sticky since X in the first rule is
marked and occurs twice in r[1] and p[1].

Sticky programs enjoy first-order rewritability. A class of programs is first-
order rewritable if, for every program P in the class, and for every BCQ q,
there is a first-order query qP such that, P |= q if and only if DP |= qP . Thus,
under first-order rewritable programs, CQs can be answered by constructing the
(finite) rewritten first-order query [8], and then evaluating it over the extensional
database. Since evaluation of first-order queries is in ac0 in data complexity [1],
it immediately follows that CQ answering under first-order rewritable classes of
rules, including sticky ones, is in ac0.
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p[1] s[1]

r[1]

s[2] s[3] p[2]

u[1] r[2]

Fig. 1. Dependency graph for ΣP in Example 2

Weakly-Sticky Programs. Weakly-sticky (WS) programs generalize sticky
programs and the well known class of weakly-acyclic programs. The class of WS
programs is not first-order rewritable but CQ answering over these programs is
proved to be tractable in data complexity [5]. The definition of WS programs
appeals to conditions on repeated variables in its rule bodies, and is based on the
notion of dependency graph and the positions with finite rank in such a graph [7]
that we explain in Example 2.

Example 2 (Example 1 cont.). Consider the set of rules ΣP in program P. The
dependency graph of ΣP is a directed graph constructed as follows: The vertices
in V are positions of the predicates in schema of ΣP , and the edges in E are
defined as it follows. For every σ ∈ ΣP and non-existential variable x in head(σ)
and in position π in body(σ): (1) for each occurrence of x in position π′ in head(σ),
create an edge from π to π′; (2) for each existential variable z in position π′′ in
head(σ), create a special edge from π to π′′. The dependency graph of ΣP from
Example 1 is illustrated in Fig. 1. The special edge from u[1] to r[1] is shown by
a dotted arrow that depicts values invention by existential variable Y in the last
rule. The rank of a position is the maximum number of special edges over all
(finite or infinite) paths ending at that position. Accordingly, ΠF (ΣP) denotes
the set of positions of finite rank, and Π∞(ΣP) the set of positions of infinite
rank. Intuitively, ΠF (ΣP) captures positions where finitely many values may
appear during the chase; and Π∞(ΣP) those where infinitely many fresh null
values may occur during the chase. In this example, Π∞(ΣP) is empty. The rank
of u[1], s[2], r[2], s[3], p[1] and p[2] is zero and the rank of r[1] and s[1] is one. �

A program P is WS if for every rule in ΣP and every variable in its body
that occurs more that once, the variable is either non-marked or appears at least
once in a position in ΠF (ΣP) (position with finite rank).
Example 3 (Example 2 cont.). P is WS. ΠF (ΣP) contains s[3], p[1] and p[2]
and the other positions of the predicates in ΣP are in Π∞(ΣP). The repeated
variable X in the body of the second rule is marked, but it appears at least once
in the finite-rank position p[1]. �

3 Grounding Based on a Query-Driven Chase

In this section we adopt the chase procedure proposed in [13] for query answering
under WS Datalog± programs as a basis for a query-driven grounding algorithm,
called GroundWS. GroundWS takes as input a WS Datalog± program P and a
CQ q and returns a ground program P ′ for which q can be efficiently answered.
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The GroundWS algorithm uses the notion of applicability that we explain
next. A rule σ and homomorphism h are applicable if: (a) h(body(σ)) ⊆ H ∪ DP

in which H is the set of head atoms of ΣP′
(the set of already grounded rules);

(b) There is no atom a ∈ H and homomorphism h′ as an extension of h such
that h′ maps existential variables in σ to fresh nulls in ΓN and h′(head(σ))
is ΠF (ΣP)-homomorphic to a. The second applicability condition is imposed
to prevent infinite grounding steps as we describe next. Importantly, we use
ΠF (ΣP)-homomorphism instead of ordinary homomorphism to consider only
the null values that appear in the positions with infinite rank, which is sufficient
to prevent infinite grounding steps. We now illustrate the algorithm GroundWS,
which consists of the following steps:

1. Initialize ΣP′
to ∅ and DP′

to DP .
2. For every rule σ ∈ ΣP applicable with homomorphism h, add h′(σ) into ΣP′

,
in which h′ is extension of h that maps existential variables of σ into fresh
null values in ΓN .

3. Apply Step 2 iteratively, until there are no more applicable rules.
4. Resume Step 2 after freezing every labeled null value in ΣP′

, where by freezing
a null we mean replacing it with a special constant in ΓC , which henceforth is
considered as a constant but is never returned in the result of a query. Repeat
this resumption Mq times, where Mq is the number of variables in q.

5. Return P ′.

Notice that every pair of rule and homomorphism in Step 2 is applied
only once. Moreover, if there are more than one pairs of applicable
rule\homomorphism, then GroundWS applies them in a level saturating fash-
ion. More specifically, GroundWS chooses the rule and the homomorphism for
which the body atoms have the smallest maximum level. Here the level of an
atom is 0 if it is in DP , and it is the maximum level of the body atoms of a
rule plus one for the head atom of the rule. It is important to notice that by
freezing a null value we consider it as a constant only for deciding homomorphic
atoms (specifically in the second applicability condition), and not during query
answering. That is, the frozen nulls still can not appear in query answers since
they are not in the active domain of the extensional database.

Example 4. Consider WS program P with DP = {p(a, b), c(b)}, and a BCQ
q ← u(X), and a set of rules ΣP as follows:

σ1 : p(X,Y ) → ∃Z p(Y,Z). σ2 : p(X,Y ), c(X), p(Y,Z) → u(Y ).

We start from DP and iteratively generate ground rules by mapping via
homomorphism the body of the rules in ΣP into DP or the head of the rules
in ΣP′

(the current set of ground rules). The basic algorithm is as follows:
we iteratively add a ground rule to ΣP′

if its head atom is not homomorphic
to the head of a rule already in ΣP′

, until no new rule can be added. This
“cautious” procedure, similar to the chase procedure in [11,13], guarantees ter-
mination. In our example, GroundWS stops after adding only one ground rule
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σ′
1 : p(a, b) → p(b, ζ1) to ΣP′

, where ζ1 is a labelled null in ΓN . In order to com-
plete our grounding, we resume the above basic algorithm Mq times, where Mq

is the number of variables in q. Before each resumption, we freeze the labelled
nulls, which after having frozen are considered as constants. In our example, we
have only another resumption, which adds the rules σ′′

1 : p(b, ζ1) → p(ζ1, ζ2)
and σ′

2 : p(b, ζ1), c(b), p(ζ1, ζ2) → u(ζ1). Resumptions are needed, intuitively,
to capture applications of rules in the chase procedure where a join variable,
appearing in two or more distinct atoms, is mapped to a labelled null. �

Notice that the number of resumptions depends on the query, which makes
our grounding also dependent of the query; however, for practical purposes, we
could ground with N resumptions so as to be able to answer queries with up
to N existential variables, and if a query with more than N existential variables
is to be answered, we can incrementally retake the already-computed grounding
and add the required number of resumptions.

Theorem 1. For every WS program P and CQ q, GroundWS runs in ptime
with respect to the size of DP and in 2exptime with respect to the size of P
and q, and returns a ground program P ′ such that, ans(q,P) = ans(q,P ′).

Proof (sketch): GroundWS runs in polynomial time essentially because of the sec-
ond applicability condition, which at each resumption prevents the generation in
ΣP′

of two distinct (ground) rules having ΠF (Σ)-homomorphic heads; since the
number of terms in the positions of ΠF (Σ) is polynomial with respect to DP [7,
Theorem 3.9], the ptime membership follows. Notice that the above condition,
within a resumption “phase”, prevents the generation of some (ground) rules in
ΣP′

that are necessary for answering q; these rules depend on replacing a join
variable with a null value in the rule body; the subsequent resumption phase adds
at least one of such rules to ΣP′

. The 2exptime combined complexity is because
exponentially many terms can appear in the positions of ΠF (Σ) with respect to
the size of P and q. This is implicit in the proof of [7, Theorem 3.9]. As a result,
the total number of atoms in each resumption phase is double exponential in the
size of P and q.

The weak-stickiness of ΣP implies that such null values continue to appear in
the head of consequent ground rules all the way to the head atoms mapped to the
query. Hence there are at most Mq such rules generated for answering q, given
that each rule “saturates” one of the Mq existential variables in q. Therefore
only Mq resumptions are necessary. �

4 Partial Grounding for Weakly-Sticky Datalog±

In this section we propose a partial grounding algorithm, called PartialGround-
ingWS, that takes a WS Datalog± program P and transforms it into a sticky
Datalog± program P ′ such that P ′ is equivalent to P for CQ answering. Par-
tialGroundingWS selectively replaces certain variables in positions of finite rank
with constants from the active domain of the underlying database. Our algorithm
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requires that the set of rules ΣP in the input program satisfies the condition that
there is no existential variable in ΣP in any finite-rank position; therefore each
position in the input set of rules ΣP will have rank either 0 or ∞. The reason for
this requirement is the convenience of grounding variables at zero-rank positions
by replacing them by constants rather than by labeled nulls. This does not really
restrict the input programs since, as we will show later, an arbitrary program
can be transformed by the ReduceRank algorithm to a program that has the
requirement.

Before illustrating the PartialGroundingWS algorithm, we therefore present
an algorithm, called ReduceRank, that takes a program P and compiles it into
an equivalent program P ′ whose rule set ΣP′

has only zero-rank or infinite-
rank positions. The ReduceRank algorithm is inspired by the reduction method
in [10] for transforming a weakly-acyclic program into an existential-free Datalog
program. Given a program P, ReduceRank executes of the following steps.

1. Initialize ΣP′
to ΣP and DP′

to DP .
2. Choose a rule σ in ΣP′

with an existential variable in a position with rank 1.
Notice that if there are existential variables in positions with finite rank, at
least one of the positions has rank 1.

3. Skolemize σ as σ′ by replacing the existential variable with a functional term.
For example, σ : p(X,Y ) → ∃Z r(Y,Z), becomes σ′ : p(X,Y ) → r(X, f(X)).

4. Replace the Skolemized predicate r that has the function term with a new
expanded predicate of higher arity (the arity of r plus 1) and introduce a
fresh special constant of ΓC to represent the function symbol. The new con-
stant precedes its arguments in a newly introduced position. For example,
r(X, f(X)) becomes, r′(X, f,X); we are therefore expanding the position r[2].

5. Replace the expanded predicate in other rules and analogously expand other
predicates in positions where variables appearing in the expanded position
appear: if a variable appears in σ ∈ ΣP in an expanded position π and also
in another position π1, then also π1 is expanded (with its predicate) and the
same variables of π also appear in π1, thus preserving the join. More precisely,
let X be a variable at position π in an atom r(. . . , X, . . .) that is expanded in
some rule σ into r(. . . , X1,X2, . . .); if there is another rule σ1 ∈ ΣP contain-
ing atoms r(. . . , Y, . . .) and s(. . . , Y, . . .) such that Y appears in the former
at position π1 and in the latter at position π2, then the first atom is replaced
by r′(. . . , Y1, Y2, . . .) (expanded version on π1 with the new variable Y ) and
the second one is replaced by s′(. . . , Y1, Y2, . . .) (expanded version on π2). For
example, r(X,Y ), t(Y,Z) → s(X,Y,Z) becomes r′(X,Y, Y ′), t′(Y, Y ′, Z) →
s′(X,Y, Y ′, Z). Notice that if a predicate is expanded in a head-atom in a posi-
tion where an existential variable occurs, the new positions are not required
and are filled with the special symbol

6. If the expanded predicates have extensional data, add new rules to ΣP′
to

“load” the extensional data into the expanded predicates. For example, if r
has extensional data, we add a rule, r(X,Y ) → r′(X,Y,�). Here, � is used
to fill the new position in the expanded predicate since it does not carry
extensional data.
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7. Repeat Steps 2 to 6 until there is no existential variable in a finite-rank
position.

Note that in Step 3 only the body variables that also appear in the head
participate as arguments of the function term. For example, in the Skolemization
of p(X,Y ) → ∃Z r(Y,Z), the function term does not include X since the rule
can be broken down into p(X,Y ) → u(Y ) and u(Y ) → ∃Z r(Y,Z). Notice that
given a CQ q over P, Steps 2 to 6 are also applied on q obtaining a new CQ q′

over P ′.

Example 5. Let P be a program with ΣP as follows.

σ1 : v(X) → ∃Y r(X,Y ). σ3 : t(X,Y ), v(X) → p(X,Y ).
σ2 : r(X,Y ) → ∃Z t(X,Z). σ4 : p(X,Y ) → ∃Z p(Y,Z).

In this program, ΠF (ΣP) = {v[1], r[1], r[2], t[1], t[2]}. ReduceRank will eliminate
Y in σ1 and Z in σ2, but not Z in σ4 since the later is in an infinite rank
position. ReduceRank chooses Y in σ1 over Z in σ2 since, Y is in r[2] with zero
rank and Z is in t[2] with rank 1. After applying Steps 2–6, σ1 and σ2 become
σ′
1 : v(X) → r′(X, f,X) and σ′

2 : r′(X,Y, Y ′) → ∃Z t(X,Z). By removing
Y from σ1, Z in σ2 is placed in a position with zero rank. ReduceRank repeats
Steps 2–6 to eliminate Z in σ2 which results into ΣP′

:

v(X) → r′(X, f,X). r′(X,Y, Y ′) → t′(X, g,X).
t′(X,Y, Y ′), v(X) → p′(X,�, Y, Y ′). p′(X,X ′, Y, Y ′) → ∃Z p′(Y, Y ′, Z,�).

Notice that ReduceRank does not try to remove Z in the last rule, since it is in
the infinite rank position p[3]. Note also that p is expanded twice since both its
positions can host labeled nulls generated by Z in σ2. �

Proposition 1. Given a CQ q over a program P, ReduceRank runs in exptime
with respect to the size of ΣP and returns a CQ q′ over a program P ′ such that
P ′ has no existential variable in finite rank positions of ΣP′

and ans(q,P) =
ans(q′,P ′).

For every rule in ΣP , there is only one corresponding rule in ΣP′
. There are

also rules in ΣP′
for loading the extensional data of the expanded predicates.

Therefore, the number of rules in ΣP is the same order of the size of ΣP′
. The

arity of the predicates in ΣP′
can have an exponential increase with respect to

the arity of predicates in ΣP which makes ReduceRank run in exptime. P and
P ′ are equivalent since the expanded predicate that represent the propagation
of null values in P are applied on every possible rule in ΣP′

in Steps 5–6.
Notice that ReduceRank preserves the weak-stickiness property because the

property only concerns repeated marked variables that occur in infinite rank
positions, while ReduceRank involves finite rank positions and it does not create
a new marked variable or a new infinite rank position to break the property. We
can therefore state the following.
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Lemma 1. The class of WS programs is closed under ReduceRank.

Now that we explained the ReduceRank algorithm, we continue and present
the PartialGroundingWS algorithm. Given a WS program P, let us call weak rules
the rules of ΣP in which some repeated marked body variables (which we call
weak variables) appear at least once in a position with finite rank. PartialGround-
ingWS transforms P into a sticky program P ′. The sticky program P ′ has the
same database as P (DP′

= DP) and its set of rules ΣP′
is obtained by replacing

the weak variables of ΣP with every constants from the active domain of DP .
Example 6 illustrates the PartialGroundingWS algorithm.

Example 6. Consider a WS program P with DP = {p(a, b), r(a, b)} and ΣP

consisting of the following rules:

σ1 : p(X̂, Ŷ ) → ∃Z p(Y,Z). σ3 : s(X̂, Y, Z), r(X̂, Y ) → t(Y,Z).
σ2 : p(X̂, Y ), p(Y,Z) → s(X,Y,Z).

Here σ3 is a weak rule with X as its weak variable. Notice that Y in σ2 and
σ3 are not weak since they are not marked (the hat signs show the marked
variables). We replace X with constants a and b from DP . The result is a
set of sticky rules ΣP′

that includes σ1 and σ2 as well as the following rules,
σ′
3 : s(a, Y, Z), r(a, Y ) → t(Y,Z) and σ′′

3 : s(b, Y, Z), r(b, Y ) → t(Y,Z). �

Theorem 2. Let P be a WS program such that there is no existential variable
in ΣP in a finite rank position. PartialGroundingWS runs in polynomial time
with respect to the size of DP and it transforms P into a sticky program P ′

such that for every CQ q, the following holds: ans(q,P) = ans(q,P ′).

Proof (sketch): P ′ is sticky since every weak variable, that by its definition breaks
the weak-stickiness, is grounded. P and P ′ are equivalent for query answering
since the weak variables of ΣP are replaced in ΣP′

with every possible constant
from DP , and based on our assumption on ΣP , only constants can substitute
these variables. Additionally, PartialGroundingWS runs in polynomial time since
weak variables are replaced with constants from DP . �

A possible optimization for PartialGroundingWS is to narrow down the values
for replacing the weak variables, that is to ignore those constants in the active
domain of DP that can not appear in the positions where weak variables appear
during the chase of P. In Example 6, σ′

3 is not useful since a can never be assigned
to X in σ3. For this purpose, GroundWS can be applied to compute the possible
values for partial grounding. For example, a CQ, s(X,Y,Z), r(X,Y ) → qg(X)
returns constants for grounding the weak variable X in σ3.

5 A Hybrid Approach

In this section we propose a query answering algorithm for WS programs based
on a hybrid approach that combines ReduceRank and PartialGroundingWS from
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the previous section with a query rewriting algorithm for sticky programs [8].
Given a WS program P and a CQ q, hybrid query answering proceeds as follows:

1. Use ReduceRank to compile P into a WS program P ′ with no existential
variable in finite rank positions.

2. Apply PartialGroundingWS on P ′ that results to a sticky program P ′′.
3. Rewrite q into a first-order query q′ using the rewriting algorithm proposed

in [8] and answer q′ over DP′′
(any other sound and complete rewriting algo-

rithm for sticky programs is also applicable at this step).

Example 7. Consider a WS program P with database D = {v(a)} and ΣP

consisting of the following rules:

σ1 : p(X,Y ) → ∃Z p(Y,Z). σ4 : r(X,Y ), s(X,Z) → c(Z).
σ2 : p(X,Y ), p(Y,Z) → u(Y ). σ5 : c(X) → ∃Y p(X,Y ).

σ3v(X) → ∃Y r(X,Y ).

The ReduceRank method removes the existential variable Y in σ3. The result
is a WS program P ′ with ΣP′

:

p(X,Y ) → ∃Z p(Y,Z). r′(X,Y, Y ′), s(X,Z) → c(Z).
p(X,Y ), p(Y,Z) → u(Y ). c(X) → ∃Y p(X,Y ).

v(X) → r′(X, f,X).

Next, PartialGroundingWS grounds the only weak variable, X in σ′
4 with con-

stant a which results into sticky program P ′′ with ΣP′′
= {σ1, σ2, σ

′
3, σ

′′
4 , σ5}, in

which σ′′
4 : r′(a, Y, Y ′), s(a, Z) → c(Z). P ′′ is sticky and a CQs can be answered

by rewriting it in terms of ΣP′′
and answered directly on DP′′

= DP . �

Corollary 1. Given a WS program P and a CQ q, the set of answers obtained
from the hybrid approach is ans(q,P).

6 Conclusions

WS Datalog± is an expressive ontology language with good computational prop-
erties and capable of capturing the most prominent Semantic Web languages.
We proposed two deterministic algorithms for answering conjunctive queries on
WS Datalog±. In the first algorithm, a variant of the well-known chase, which
proceeds in terminating “resumptions”, generates an expansion of the given data-
base that contains all (ground) atoms needed to answer the query; the expansion
depends on the query as the number of resumptions is the number of existen-
tially quantified variables of the query. For practical purposes, one can expand
up to m resumptions off-line, and the expansion will serve to answer all queries
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with up to m existential variables. If at a certain point a query with more than m
existential variables is to be processed, more resumptions can be performed from
the expansion already computed. This, of course, if there are no changes in the
given database. The second algorithm transforms a WS program into a sticky
one by means of (a) a Skolemization and annotation procedure, which turns
all finite-rank positions into zero-rank ones, followed by (b) a partial grounding
on the zero-ranked positions. Then, the rewriting technique for WS programs is
employed; the rewriting, which is in the language of union of conjunctive queries,
is then evaluated directly on the given database.

Efficiency. Both algorithms we propose achieve the optimal lower bound in data
complexity (i.e., in complexity calculated having only the database as input) for
CQ answering under WS Datalog±, that is ptime. In the first algorithm, the
expansion is computed off-line, and the final query processing step is a simple
evaluation of a CQ on an instance. In the second algorithm, the rewriting is
intensional (i.e., it does involve the data) and the final step is the evaluation of
a union of CQs on the given database, which can easily done, for example, by
evaluating an SQL query on the database.

In the light of the above considerations, we believe that our contribution sets
the basis for practical query answering algorithms in real-world scenarios. We
plan to continue our work by running experiments on large data sets. We also
intend to refine the hybrid algorithm by limiting the number of CQs in the final
rewriting; to do so, we will avoid the grounding of rules when we discover that
having certain constants in certain position will not yeld any new atom; such
discovery can be performed by analyzing the dependency graph and the TGDs
in general. This refinement will improve the efficiency of the algorithm.
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Abstract. The increasing availability of knowledge bases (KBs) on the
web has opened up the possibility of improved inference in automated
query answering (QyA) systems. We have developed a rich inference
framework (RIF) that responds to queries where no suitable answer is
readily contained in any available data source, by applying functional
inferences over heterogeneous data from the web. Our technique com-
bines heuristics, logic and statistical methods to infer novel answers to
queries. It also determines what facts are needed for inference, searches
for them, and then integrates these diverse facts and their formalisms
into a local query-specific inference tree. We explain the internal rep-
resentation of RIF, the grammar and inference methods for expressing
queries and the algorithm for inference. We also show how RIF estimates
confidence in its answers, given the various forms of uncertainty faced
by the framework.

1 Introduction

Inference enables an agent to create new knowledge from old. Our aim is to
apply automatic inference to the semantic web, allowing users to extract new
knowledge via queries, and dramatically increase the usefulness of semantic web
data sources. RIF does not take natural language text as inputs. We use the
acronym QyA for query answering, to distinguish it from question answering
(QA) systems, which tend to focus on natural language processing (NLP) rather
than inference of new facts. We focus on queries that require making predic-
tions based on known facts about the past. We evaluate RIF in the domain of
open governance, particularly, demography, education and agriculture. We use
data from sources such as Wikidata [1], World Bank Data (WBD) (http://data.
worldbank.org) and Geonames (http://www.geonames.org).

Our claim is that the quality and range of answers generated by a query
answering system is significantly improved when we automatically curate data
and use rich forms of inference to infer novel knowledge from Semantic Web data
and other semi-structured data from the web. We use the term “rich” to emphasize
the fact that the RIF relies on inference methods that go beyond first-order logic.
We incorporate higher-order inference, where reasoning about functions expands
the range of answers that can be sought. For instance, we can use regression to
first construct functions then apply them to make predictions. Answers to most

c© Springer International Publishing Switzerland 2016
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queries in Table 2 can only be inferred by such prediction. Our view on QyA com-
plements NLP-driven approaches by inferring non-trivial answers from readily
available facts in KBs by applying such rich forms of inference.

Information retrieval has been explored in different ways using techniques
that include NLP and formal logic. Data sources from which answers are sought
also range from logically represented facts, to natural language text on the Inter-
net. The Semantic Web (SW) [2] offers practical approaches to representing
shared knowledge across multiple domains on the Internet. Public agencies are
responding to the initiative for open data by publishing their data using SW
technologies. However, most query answering systems are still unable to effec-
tively use these KBs to find answers that require inference beyond the retrieval
of facts.

Systems such asAskMSR [4], START [5],Wolfram|Alpha (www.wolframalpha.
com), PowerAqua [6], ANGIE [7], and OQA [8] are limited when the required
facts are not stored in the KB. GORT [9], although it uses inference, is also heav-
ily dependent on human input of missing facts and does not handle inference
over functions. The systems surveyed in the QA tasks of the QALD (Question
Answering over Linked Data) [10] challenge do not decompose queries beyond
the NLP parse trees. For instance, in [11], the approach taken to answer ques-
tions with statistical linked data uses the NLP parse tree to generate the required
SPARQL queries. Inference is, therefore, limited to the NLP parse since the process
bottoms out at the SPARQL queries that are generated from it. Recent NLP tech-
niques, such as dependency-based compositional semantics (DCS) [12], use sta-
tistical techniques that involve semantic parsing of questions to logical forms and
evaluation of the logical forms with respect to a database of facts.

We use techniques from SW, logic and statistical inference to build the RIF.

2 The Rich Inference Framework

RIF uses a graph-based algorithm that recursively decomposes queries into sub-
queries, eventually grounding out in either stored facts or previously cached
answers. The decomposition at each level, as well as the means for combining
sub-queries, is determined by features of the query or the sub-query’s parent.

Facts retrieved from the external KBs used by the framework are primarily
based on RDF [3] and are queried using the SPARQL query language or spe-
cific web APIs provided by the sources. This information needs to be curated to
enrich it for the inference that is to follow. We augment the subject(subj), predi-
cate(pred), object(obj) triple found in RDF KBs with frames that contain addi-
tional elements such as time, uncertainty, units of quantities, and other features
as required. A frame is a list of key:value pair elements with keys that include
(but are not limited to) subj, pred, obj, time and confidence. For example, the
frame [method:VALUE, subj:uk, pred:population, obj:63182000, time:2011, con-
fidence:0.35] represents the population of the UK in 2011 and the confidence
RIF has in this fact.

www.wolframalpha.com
www.wolframalpha.com
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2.1 Definitions

Definition 1. RIF Node: A RIF node is a frame with elements whose values
contain variables or ground terms.

Variables indicate the elements of the frame to be looked up or inferred.
Variables are prefixed with the $ or ? symbols. All variables in a RIF node are
bound. Variables whose values are returned from a node are prefixed with the ?
symbol. For instance, [method:MAX, subj:uk, pred:population, obj:?y, time:2020]
shows that the object, y, is unknown and must be inferred and returned. An
answer is found when all variables are instantiated to ground terms.

Definition 2. RIF Tree: A tree of RIF nodes where each child node is derived
from a decomposition of its parent node.

RIF performs inference on a tree in two directions: (1) top-down: decompos-
ing nodes using inference strategies, (2) bottom-up: using inference methods to
propagate values from the leaf nodes back up the RIF tree to the root. Decom-
position strategies label the arcs. Inference methods label the nodes.

Definition 3. Inference Method: A higher-order function that aggregates
values from a set of RIF nodes. For instance, for a given node nparent, its child
nodes ni

child and inference method, ΣI , nparent.obj = ΣI{ni
child.obj}, where

x.obj is the object element of the RIF node, x.
We use the notation frame.key to extract the value of the specified element

from the frame of a given RIF node.
In RIF, methods applied to RIF also return RIF nodes. An inference method,

first extracts relevant values from its child RIF nodes to use as inputs and then
applies the function associated with the method. The inference method then
substitutes the inferred value into the respective RIF node elements and returns
the complete RIF node. Methods used in RIF are listed in Table 1.

Definition 4. Query: A query is a composition of inference methods and con-
tains both functional and propositional logics for describing entities and relations.

Functional is used at meta-level for inference methods and propositional for
the object logic. We use a context-free grammar in Extended Backus-Naur Form
(BNF) that, together with the type signatures of inference methods, defines
well-formed queries. RIF queries take the form:

func_expr :: METHOD_NAME((var|<var,var>),(logic_expr|func_expr)[,(logic_expr|func_expr)])

where var are variables, func expr are functional expressions and logic expr
represents propositional expressions. Examples are shown in Table 2. The con-
vention is that methods are all caps and propositional constants can begin with
either a lower or upper case.

Predicates are not pre-defined prior to their use in RIF. The framework
finds matching predicates in the KBs from which the corresponding subjects (or
objects) are retrieved. The matching process uses string functions to split words
in a predicate, language resources such as WordNet [13] to find synonyms, and
edit distance measures to find matches to predicates in a KB.
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Table 1. Inference methods

Method Description

VALUE Default method.

Returns value of

node

SUM Add values of nodes of

numeric type

AVG Mean value of child

nodes

MEDIAN Median value of child

nodes

MAX Maximum value of child

nodes

MIN Minimum value of child

nodes

COMP Obtain a set by list

comprehension

GT ‘Greater Than’ function

to compare two

nodes

LT ‘Less Than’ function to

compare two nodes

EQ Check if the value of

two nodes are equal

REGRESS Regression function

from child nodes

LOOKUP Find facts from

knolwedge bases

Table 2. Types of queries and examples

Type 1: Facts Retrieval

Q1.What was the urban population of UK in 2010?

VALUE(?y,urban population(Uk,?y,2010))

Type 2: Aggregation

Q2.Which country had the lowest female

unemployment in South America in 2011?

MIN($y,COMP( 〈?x,$y〉,
female unemployment(?x,$y,2011):

Country(?x) & location(?x,South America)))

Type 3: Nested Queries

Q3.Was the rural population of the country with

the largest arable land in Africa greater than

the urban population of the country with the

smallest arable land in Africa in 2003?

GT(?b,VALUE(?b,rural population(MAX($d,

COMP( 〈?c,$d〉,arable land(?c,$d,2003):

Country(?c) & location(?c,Africa))),?b,2003)),

VALUE(?b,urban population(MIN($h,

COMP( 〈?g,$h〉,arable land(?g,$h,2003):Country(?g)

& location(?g,Africa))),?b,2003)))

Type 4: Prediction

Q4.What was the GDP in 2010 of the country

predicted to have the largest total population in

Europe in 2018?

VALUE(?y,gdp(MAX($b,COMP( 〈?a,$b〉,
population(?a,$b,2018):Country(?a) &

location(?a,Europe))),?y,2010)))

Definition 5. Inference Strategy: An inference strategy (decomposition) is
a transformation on a RIF node from which child nodes are derived.

For a given RIF node, nparent and strategy, S, the decomposition, Δ, is the
mapping: ΔS(nparent) �→ {ni

child|i > 0}.
Strategies used in RIF include: the temporal strategy, to decompose nodes

by date/time features; geospatial strategy, to decompose nodes by location; and
the lookup strategy, to create child nodes with synonyms of the elements of the
parent, to increases the chances of finding facts in KB.

2.2 Implementation

RIF explores strategies and executes the necessary inference methods to infer
a novel answer from the available facts. Figure 1 illustrates RIF with different
inference strategies that recursively define new nodes and inference methods that
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Fig. 1. RIF example: initial decompositions (showing AND-OR search tree). The frame
of each node is represented compactly as [method,subj,pred,obj,time,confidence].

infer answers that are propagated up the RIF tree. It is shown as an AND-OR
graph where the OR branches show strategy options and the AND branches
show node decompositions.

RIF begins with the root node as a goal and searches for facts in the KB
that match variables in the node. If no fact is found, RIF selects the appropriate
strategies to create child nodes. Strategies are selected based on features in
queries such as names of location or date/time. For each child node with an
answer that is resolved, the answer is propagated back to the parent which in
turn aggregates its child nodes and infers a new fact based on its inference
method. This process continues until an answer is propagated to the root goal.
To prevent unnecessary decompositions, we set a depth limit on the graph. If
the inference tree depth bound is reached and no relevant facts are found in the
KB at the leaves, the framework yields no answer. For nested queries (e.g. Q3
in Table 2), the parent node spawns child nodes to solve the sub queries.

Due to the time overheads in calling web services, we store a local copy of KBs
such as WordNet, ConceptNet [14] and Geonames, which are used frequently by
RIF and are rarely changed by their authors. However, data resources such as
WBD and the Scottish Government Data (http://statistics.gov.scot/), that are
frequently updated, are queried directly using APIs provided by their publishers.
In these cases, we cache facts retrieved and inferred as well as inferred functions.

We implemented RIF in Java. We also set up a local RDF triplestore using
Apache Jena (https://jena.apache.org) to host frequently used KBs such as
Geonames and used a MongoDB (www.mongodb.org) instance for caching.

http://statistics.gov.scot/
https://jena.apache.org
www.mongodb.org
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2.3 Uncertainty in RIF

RIF has two main sources of uncertainty: (1) credibility of KBs and noise in
the data, and (2) errors introduced by the inference methods. We have initially
focused on the first form of uncertainty and limit it to real-valued facts. We
will tackle the latter form in future work. The confidence of a node captures
the uncertainty in an estimate, normalized by its magnitude, i.e., the coefficient
of variation (CoV) or σ/μ, where σ is the estimated standard deviation and μ
is the posterior mean. This currently applies to positive real-valued facts. We
assume that each retrieved real-valued fact is an observation of the true value
with additive Gaussian noise, where the noise variance depends on the assumed
credibility of the source. RIF estimates the confidence in an answer by combining
and propagating the confidence values of child nodes to their parent recursively in
closed form. We use a normal approximation in the estimation and propagation
of confidence.

3 Evaluation

We tested our hypothesis by evaluating RIF with a variety of queries
(github.com/knuamah/rif). Concretely, we focused on queries that are of inter-
est to public institutions that publish open data on the web. We based the test
queries on real-valued facts available in Wikidata and the WBD.

Existing test sets for evaluating query answering systems focus on aspects of
the inference process that differ from our objective with RIF. We were interested
in queries that, not only find relevant facts, but also infer non-trivial answers by
combining them. We therefore compiled questions that are usually asked about
demographics and other country development indicators. Our evaluation con-
sisted of forty queries spanning the four main query types shown in Table 2.
Results for the four query types are shown in Table 3. We also used cross-
validation to evaluate the confidence scores estimated by RIF. We compared
the absolute difference between the inferred value and the true ‘held-out’ fact
to the confidence score (CoV). Results are shown in Fig. 2. We obtained good
results in both tests.

RIF’s use of geospatial, temporal and commonsense facts as well as higher
order functions allowed it to tackle the range of test queries with 80 % overall
success. RIF’s main limitation was its word matching mechanism, where it failed

Table 3. Evaluation results by
queries types, showing the percent-
age of queries answered success-
fully.

Query types 1 2 3 4 Overall

RIF(%) 90 80 80 70 80
Fig. 2. CoV and estimation error plot.

http://www.github.com/knuamah/rif
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to find the appropriate matches from KBs in some cases. This was due to its lack
of NLP to handle the useful NL descriptions contained in facts. Hence, when the
same fact was provided in multiple units, RIF easily mixed them up.

Finally, our evaluation of the confidence scores estimated by RIF also showed
a good correlation between the confidence score (CoV) and the error between
the true fact and what was inferred.

4 Conclusion

Our Rich Inference approach to QyA enables us to increase the range of queries
that can be answered by a QyA system to include prediction and interpolation.
The framework also estimates its confidence in the answers inferred given the
underlying data and methods used for inference. Finally, the inference trees
generated give full access to how answers were inferred. This, we believe, makes
our approach practically useful for users who wish to verify answers.

In future work, we plan to extend the algorithm to incorporate the confidence
scores in the selection and prioritization of inference strategies, as well as capture
non-positive-real-valued data, such as booleans and discrete values, in confidence
estimations. We will also consider uncertainty arising from approximations made
by inference methods.
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Abstract. Due to the dynamic nature of knowledge and data in seman-
tic applications, ontology incremental reasoning technologies are essential
for ontology management systems. Nowadays, many proposed incremen-
tal reasoning solutions and implemented systems apply forward chaining
completion algorithms to handle the removal and addition of axioms.
In this paper, we propose a novel approach to ontology incremental rea-
soning that combines forward and backward chaining completion for EL.
Compared to existing work, this approach can be applied with or without
bookkeeping, does not affect parallelisation or tractability, and reduces
the effort for re-deriving the over-deleted results both theoretically and
empirically.

1 Introduction

Ontologies are widely used in many different application domains to support
knowledge management. In order to facilitate automatic processing of ontolo-
gies, today’s de facto standard ontology languages, the Web Ontology Lan-
guages (OWLs), are based on a family of Description Logics [1] (DLs). There
are some profiles for OWL 2, including EL, QL and RL. Using DLs, ontologies
can be regarded as a set of logical axioms.

Ontologies and their corresponding reasoning results are usually considered
static. However, with the expanding applications of ontologies, such a paradigm
has been challenged [13,16]. In many scenarios, ontologies are subject to rapid
changes [12].

The dynamics of ontologies have brought many new research challenges, such
as the design of new knowledge representation and query languages [3,5], the
development of new reasoning services [10,12] and the development of stream
benchmarks [18]. In this paper, we are particularly interested in the development
of incremental reasoning technologies that update reasoning results affected by
the updating of the ontology without naively re-computing all results. In order
to reuse previously computed results, many existing approaches [4,8,11,17,21]
adopted the Delete and Re-derive (DRed) strategy [7]. With DRed, an incre-
mental reasoner first over-estimates and over-deletes the results affected by the
deleted original axioms, unaffected results are preserved. It then re-derives the
over-deleted results that can be entailed by the preserved axioms. The authors
of [20] pointed out that DRed needs to examine all preserved results during

c© Springer International Publishing Switzerland 2016
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re-derivation and proposed to completely avoid re-derivation by using count-
ing to pinpoint the affected results. Despite of the different mechanisms, all
these approaches adopt forward chaining consequence-based algorithms to com-
pute results. For Datalog-based systems, Motik et al. [14] proposed a Back-
ward/Forward (B/F) algorithm for reducing the work done by combining back-
ward and forward chaining to efficiently update the materialization incremen-
tally. In their approach, B/F continuously outperformed the DRed algorithm
up to a threshold of 12 % updates in the initial ontology

In this paper, we present a novel DRed approach to ontology incremental
reasoning by combining forward chaining and backward chaining of consequence-
based algorithms. It has several advantages: (1) It can be applied with either book-
keeping or non-bookkeeping. (2) It helps to reduce the volume of over-deletion and
re-derivation in the DRed strategy, as we will show both theoretically and empiri-
cally. (3) It can be parallelised and allows the use of multiple computational cores
with shared main memory, when applied in parallel reasoners. (4) It works for
OWL 2 EL and can be applied to any knowledge representation that supports a
consequence-based procedure. When applied with a tractable algorithm, our app-
roach is also tractable. In this paper, we will focus on (1) and (2) with OWL 2
EL [2].

2 Background

In this section, we introduce the most relevant notions of syntax and semantics
of DLs. See [1] for a more thorough introduction on DLs.

Briefly, an ontology O is a set of DL axioms, containing a TBox (schema
part of O) and ABox (data part of O). An axiom α is entailed by an ontology
O, written O |= α, iff all models of O satisfy α. JO(α) ⊆ O is a (minimal)
justification of α iff JO(α) |= α and J ′ �|= α for all J ′ ⊂ JO(α). The algorithms
presented in this paper handle both TBox and ABox axioms.

A consequence-based algorithm usually consists of two closely related com-
ponents: a set of completion rules and a serialised forward-chaining procedure
to apply the rules. For example, below is a completion rule for the DL EL+, in
which �∗ is the transitive, reflexive closure of � in O.

R∃
E � ∃R.C,C � D,R �∗ S

E � ∃S.D
: ∃S.D occurs in O

We say that some axioms in the ontology can be used as premises (consequences)
of a rule when they satisfy the syntactic form specified by the premises (con-
sequences) of the rule. When it is clear from context, we also simply call these
axioms premises (consequences) of the rule.

Given an ontology, a consequence-based algorithm repeatedly applies all com-
pletion rules in the rule set until no more rule can be applied to compute the
completion closure:

Definition 1 (Completion Closure). For a set of axioms S and a completion
rule set R, the immediate results of applying R on S, denoted by R(S) or R1(S),
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is the set of axioms that are either in S, or can be derived as consequence from
premises in S by a single rule in R.

Let Rn+1(S) = R(Rn(S)) for n ≥ 1, then the completion closure of S w.r.t.
R, denoted by R∗(O), is some Rn(S) s.t. Rn(S) = R(Rn(S)).

A rule set R converges if for any O, R∗(O) exists.

It can be show that the following properties hold:

Lemma 1. Let S(i) be sets of axioms, R a set of completion rules and n ≥ 1:

S1 ⊆ S2 → Rn(S1) ⊆ Rn(S2) (1)
R∗(Rn(S)) = R∗(S) (2)

R∗(S1 ∪ S2) = R∗(Rn(S1) ∪ S2) (3)

The step of deriving consequences from premises using a rule is an execution
of the rule. The computation of closure can then be described with the help of
a list L in the following algorithm FCC (Forward Chaining Completion).

Forward Chaining Completion:
FCC(L, S,R)
INPUT: a list of axioms to be processed L, a set of processed axioms S, a
completion rule set R
OUTPUT: a set of processed axioms S

1: while L �= ∅ do
2: get an element α ∈ L
3: L := L \ {α}, S := S ∪ {α}
4: for each rule in R do
5: if α can be used as a premise, and all other premises α2, . . . , αn are in

S, and consequence β is not in S ∪ L then
6: execute rule and add β into L
7: return S

For each α ∈ L, FCC checks if it can be used to execute a rule with other
axioms in S to infer β /∈ S ∪ L, which implies that β has not been processed or
derived yet. If that is the case, the rule will be executed and β will be added
into L. In any case, α will be moved from L to S.

It can be shown that R∗(L) = FCC(L, ∅, R):

Lemma 2. If R(S) ⊆ S ∪ L, then R∗(S ∪ L) = FCC(L, S,R).

Since R∗(∅) ⊆ L∪∅, we have R∗(L) ⊆ FCC(L, ∅, R). With the above proce-
dure, consequence-based algorithms can be used to perform ontology reasoning
such as classification and materialisation.

In this paper, we focus on incremental reasoning. We consider an ontology
sequence (O1, t1), . . . , (On, tn), in which Oi are DL ontologies and t1 < · · · < tn
are time points. The change from Oi to Oi+1 is an update of the ontology. In this
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paper, given an Oi and its following snapshot Oi+1, we address the problem of
computing the updated completion closure FCC(Oi+1, ∅, R). There are two dif-
ferent approaches to solve this problem. One is Naive Reasoning, which recom-
putes all results completely. The other is Incremental Reasoning, which attempts
to re-use the results of FCC(Oi, ∅, R) to compute FCC(Oi+1, ∅, R), without com-
pletely re-computing FCC(Oi, ∅, R). The later is the focus of this paper.

3 Technical Motivation

To deal with incremental reasoning, one key challenge is to handle the dele-
tion of original axioms. The authors of [21] first adopted the Delete and Re-
derive (DRed) strategy [7,19] from traditional data stream management sys-
tems and applied it on ontology incremental reasoning. A DRed approach first
over-deletes all the potential consequences of the original deletion. Other results
will be preserved. It then re-derives the over-deleted consequences that can be
derived by the preserved results. It finally performs reasoning to deal with the
new facts, which can be realised with the same mechanism we just introduced.
Such a mechanism has also been adopted by all the existing incremental rea-
soning approaches. Hence, in this paper we will focus on the optimisation of the
over-deletion and re-derivation.

Let O be an ontology, R∗(O) = FCC(O, ∅, R) be its completion closure w.r.t.
R, Del ⊆ O be a set of axioms to remove. A DRed approach first identifies a set
of valid over-deletion OD ⊆ R∗(O) w.r.t. Del:

Definition 2 (Valid Over-deletion). Let O be an ontology, Del ⊆ O a set
of axioms to remove, R a completion rule set, an over-deletion OD of R∗(O)
w.r.t. Del is valid if:

1. ∀α ∈ R∗(O), if for every JO(α) it is true that JO(α)∩Del �= ∅, then α ∈ OD.
2. ∀α ∈ R∗(O \ Del), there is some JO(α) such that JO(α) ∩ OD = ∅.

The first condition ensures that OD over-deletes all entailments that can
only be inferred from some axioms in Del. The second condition ensures that
any entailment of O \ Del is also entailed by R∗(O) \ OD. A DRed approach
then re-derives any axiom α ∈ OD if there is some JO(α) s.t. JO(α) ∩ Del = ∅.
Different DRed or non-DRed incremental reasoning approaches differ primarily
on how they identify the over-deleted results and how they perform re-derivation.
We introduce them w.r.t. their re-derivation mechanism:

– Global Re-derivation: There are a few variants, of the global re-derivation
approach, including [4,11,17,21]. These global re-derivation DRed approaches
have two major limitations: (1) Some of these approaches require bookkeep-
ing, e.g., a TMS [17], to identify the valid over-deletion. Such bookkeep-
ings will impose performance and resource-consumption overhead; (2) The
re-derivation has to go through all remaining axioms R∗(O) \ OD to ensure
the completeness of results, even if many of them cannot infer further entail-
ments. A TMS is a loopless directed graph in which nodes denote the axioms in
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Fig. 1. Over-deletion with a TMS

the completion closure, and edges connect premise and side condition axioms
to consequence axioms. When some original axioms are deleted, all axioms to
which the deleted axioms have paths in the TMS will be over-deleted. Consider
the example:

Example 1. Figure 1 shows a TMS in over-deletion. In this figure, O = {α1,
α2, β1} and R∗(O) = O ∪ {α3, α4, β2}.

When Del = {α1} is deleted, OD = Del ∪ {α3} since according to the TMS,
α3 is the only entailment connected from α1 in the TMS.

– Local Re-derivation: A recent work [8] proposed a non-bookkeeping DRed
approach to address the above limitations. The key point is to exploit the
independent nature of different contexts to facilitate the over-deletion and re-
derivation. Nevertheless, this approach also has limitations: (1) It relies on
the context in rules so it is not applicable to consequence-based algorithms
without context; (2) It almost always over-deletes more axioms than neces-
sary. This approach first re-runs a similar forward chaining procedure as in
algorithm FCC to identify a set of entailments DEL = {C � D|C � D ∈
R∗(O) \ (O \ Del) and can be directly or indirectly derived from premises in
Del}. The computation of DEL is similar to the over-deletion proposed in
[11]. It then computes Broken = {C � E|C � E ∈ R∗(O), C � D ∈ DEL},
i.e. all derived GCIs who share a LHS (left hand side) context with some GCI
that can be derived from the removed axioms. Below is an example:

Example 2. Figure 2 shows a closure similar as the one in Fig. 1. Now the closure
is partitioned into two contexts. αis all have context C1 and βis all have context
C2. Suppose we still have Del = {α1} and DEL = Del ∪ {α3}, since α2 and α4

also belongs to the same context, we have {α2, α4} ⊆ Broken.

– No Re-derivation: In order to completely avoid the re-derivation in DRed,
the authors of [20] apply the counting strategy proposed in [7] to pinpoint
the axioms that have to be removed from R∗(O). This approach is conceptu-
ally and empirically more efficient than DRed when dealing with removal of
axioms.

Example 3. The upper part of Fig. 3 shows a TMS similar as the one in Fig. 1.
The main difference is that now the TMS recognised that α3 can not only be
derived from α1, but also α2. Hence its count N(α3) = 2.
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Fig. 2. Over-deletion with context

Fig. 3. Over-deletion with counting

The lower part of Fig. 3 shows how the deletion works. When Del = {α1},
N(α1) = 0. Consequently N(α3) = 1. Since N(α3) �= 0, α3 will not be deleted
and its derivation from α2 is still preserved.

However, it needs to make a trade-off between efficiency and quality of results:
(1) If the independent rule executions for each entailment are not thoroughly and
precisely identified, then this approach might not yield exactly the same results
as naive reasoning. (2) In order to obtain and maintain all possible rule execu-
tions for each entailment, this approach essentially computes all justifications
for all entailments in the closure. This is known to be expensive even for EL.

In this paper, we do not want to increase the complexity of incremental rea-
soning in comparison to naive reasoning. We want the results to be exactly the
same as naive reasoning. Therefore, we will use DRed instead of the counting
strategy. We also want our approach to not to rely on contexts, but be par-
allelisable with contexts, so that it is applicable with both bookkeeping and
non-bookkeeping methods.

4 Combining Forward and Backward Chaining

In order to avoid unnecessary axiom over-deletion and re-derivation, it is nec-
essary to develop a re-derivation mechanism that focuses only on the preserved
entailments that can be used to infer over-deleted axioms.



A Combined Approach to Incremental Reasoning for EL Ontologies 173

Full Backward Chaining Re-derivation

One way to achieve our goal is a full backward chaining procedure: A backward
chaining procedure starts from the entailments that are attempted to be re-
derived. It then checks which potential premises in the original closure can be
used to derive such an entailment. If all the premises have been preserved during
over-deletion or re-derived during re-derivation, then the target axiom can be
re-derived. Otherwise, the algorithm can try to re-derive the potential premises
recursively. Eventually, this procedure can re-derive all entailments that can be
inferred from the preserved axioms. Such a procedure can be described with the
following algorithms:

Full Backward Chaining Re-derivation:
fBCRD(L, S,R)
INPUT: a list of axioms to be re-derived L, a partial closure S, a completion
rule set R
OUTPUT: a set of re-derived axioms Rederived

1: Rederived := ∅
2: while L �= ∅ do
3: get α ∈ L
4: L := L \ {α}
5: fTest(L, S,Rederived, {α}, α,R)
6: return Rederived

Given a closure after over-deletion S, a list of over-deleted axioms L and a
rule set R, Algorithm fBCRD(L, S,R) finds out all axioms in L that can be
directly or indirectly re-derived from S, i.e. fBCRD(L, S,R) = L ∩ R∗(S):

1. In Step-1 it first initialises the set of re-derived entailments, which is empty
initially.

2. From Step-2 to Step-5, it iteratively tests each entailment α ∈ L until L is
empty. Such a testing is performed by a sub-procedure Algorithm fTest.

Full Test:
fTest(L, S,Rederived, Testing, β,R)
INPUT: a list of axioms to be re-derived L, a partial closure S, a set of re-
derived axioms Rederived, a set of axioms being tested Testing, an axiom to be
tested β and a set of completion rules R
OUTPUT: nothing, but L and Rederived will be altered during the execution
of the algorithm
1: if β /∈ Rederived then
2: for each rule ∈ R do
3: if β can be used as the consequence of rule, and all premises A =

{α1, . . . , αn} of rule are in S ∪ L ∪ Rederived \ Testing then
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4: while A ∩ L �= ∅ do
5: get α ∈ A ∩ L
6: fTest(L,S,Rederived,Testing ∪ {β},α,R)
7: if A ⊆ S ∪ Rederived then
8: Rederived := Rederived ∪ {β}
9: L := L \ {β}

10: return

Given S, L, Rederived, R and a set of axioms being tested Testing, Algo-
rithm fTest will check if an entailment β can be re-derived with R from entail-
ments in S. If β can be re-derived, the algorithm will extend Rederived accord-
ingly. To test the possibility of re-derivation, the algorithm will recursively test
the premises of β in L.

Let R∗(O) be a completion closure of ontology O w.r.t. rule set R and OD be
the set of over-deleted axioms, with the above algorithms, re-derivation can be
performed with fBCRD(OD,R∗(O) \ OD,R). It can be shown that the above
procedure produces the correct and complete re-derivation results:

Lemma 3. Let O be an ontology, S = R∗(O) = FCC(O, ∅, R) be the completion
closure of O w.r.t a set of completion rules R, Del ⊆ O be a set of deleted axioms,
OD ⊆ S be a valid over-deletion w.r.t. Del, then:

(S \ OD) ∪ fBCRD(OD,S \ OD,R) = R∗(O \ Del).

Combined Forward and Backward Chaining Re-derivation. The full
backward chaining approach introduced in the previous subsection can be fur-
ther optimised. Particularly, in the presented procedure, the testing of the same
axiom may be invoked multiple times.

In this section, we present a more efficient variant of the previous procedure
that eliminates the redundant testings. The key-point is to combine forward and
backward chaining in re-derivation:

1. Assuming we have a completion closure S = R∗(O) and a set of over-deleted
axioms OD, the purpose of re-derivation is to compute R∗(S \ OD).

2. Forward chaining re-derivation achieves this by computing FCC(S\OD, ∅, R)
either globally or locally, and may process unnecessary entailments.

3. Instead, we only need to find L′ = R(S \ OD) \ (S \ OD), and then compute
FCC(L′, S \OD,R). Since we have R(S \OD) ⊆ (S \OD)∪L′, according to
Lemma 2, results of FCC(L′, S\OD,R) is the same as R∗((S\OD)∪L′). Since
L′ = R(S \OD)\(S \OD), we have (S \OD)∪L′ = R(S \OD). According to
Property (2) of Lemma 1, R∗((S\OD)∪L′) = R∗(R(S\OD)) = R∗(S\OD).

The above procedure is the forward chaining part. The L′ = R(S \ OD) \
(S \ OD) will be computed by backward chaining. It can be achieved with a
procedure similar to fBCRD:
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Backward Chaining Re-derivation:
BCRD(L, S,R)
INPUT: a list of axioms to be re-derived L, a partial closure S, a completion
rule set R
OUTPUT: a set of re-derived axioms Rederived

1: Rederived := ∅
2: for each α ∈ L do
3: Test(S,Rederived, α,R)
4: return Rederived

Test:
Test(S,Rederived, β,R)
INPUT: a partial closure S, a set of re-derived axioms Rederived, an axiom to
be tested β and a set of completion rules R
OUTPUT: nothing, but Rederived will be altered during the execution of the
algorithm
1: for each rule ∈ R do
2: if β can be used as the consequence of rule, and all premises A =

{α1, . . . , αn} of rule are in S then
3: Rederived := Rederived ∪ {β}
4: return

As we can see, the procedure is different from the previous full backward
chaining re-derivation on the following aspects:

1. Instead of testing axioms with algorithm fTest, a new algorithm Test is used.
2. Test no longer recursively checks if a premise is re-derivable when it is not

immediately available in S. Instead, it only checks if all premises are in S,
which is the preserved partial closure. Hence the set Testing is not needed,
because a tested axiom will not be used as premise to re-derive another tested
axiom.

3. As a consequence, BCRD(L, S,R) will compute L∩R(S), namely all axioms
in L that can be directly re-derived from S.

Therefore, for a completion closure S and a valid over-deletion OD, we have
R(S \ OD) \ (S \ OD) = BCRD(OD,S \ OD,R). Combining with the forward
chaining part mentioned above, re-derivation of R∗(S \ OD) can be achieved:

Theorem 1. Let O be an ontology, S = R∗(O) = FCC(O, ∅, R) be the comple-
tion closure of O w.r.t. a set of completion rules R, Del ⊆ O be a set of deleted
axioms, OD ⊆ S be a valid over-deletion w.r.t. Del, then:

R∗(O \ Del) = FCC(BCRD(OD,S \ OD,R), S \ OD,R).
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Proof (Sketch). We can first show that R∗(O \ Del) = R∗(S \ OD). Hence we
only need to prove R∗(S \ OD) = FCC(BCRD(OD,S \ OD,R), S \ OD,R).
According to Lemma 2, we only need to prove that R(S \ OD) ⊆ (S \ OD) ∪
BCRD(OD,S \OD,R). For any α ∈ R(S \OD), it is either trivially in (S \OD,
or it will be added into Rederived in Step-2 of Algorithm Test. ��

When completion rule set R is tractable, this procedure is also tractable since
both BCRD and FCC will be tractable. This suggests that our re-derivation
itself does not affect the tractability of reasoning in general. When the com-
pletion rule set is intractable, our approach is as complex as forward chain-
ing completion. Although not affecting the worst case computational complex-
ity, conceptually, such a combined forward and backward chaining re-derivation
has a minimal problem space (the over-deleted entailments) and a small search
space (all premises must be preserved). The re-derivation will only examine the
over-deleted axioms once in the backward chaining stage and only process the
re-derived axioms once in the forward chaining stage. These characteristics make
the combined re-derivation more efficient than the full forward chaining or full
backward chaining re-derivation, especially when the over-deleted entailments
are much less than the preserved entailments.

Our approach does not rely on bookkeeping dependencies between premise
and consequence axioms. When performing Step-2 of Algorithm Test, an imple-
mented system only needs to identify one candidate premise α, and then it can
use α in the same way as in Step-5 of Algorithm FCC to find other premises.
The identification of α can be realised by exploiting the structural relationships
between premise and consequence of each rule. For example, in order to re-derive
α (e.g., E � ∃S.D) with backward chaining of rule R∃, the reasoner only needs
to search for a preserved entailment β (e.g., E � ∃R.C) with the same LHS as
α s.t. another γ (e.g., C � D) whose LHS is the RHS filler of β, and whose
RHS is the same as α is preserved, and R �∗ S holds. In general, if FCC can be
performed without bookkeeping, our approach can be performed without book-
keeping. Nevertheless, our approach can also be augmented with bookkeeping in
the same way as FCC. Our approach also does not rely on context in rules. Our
approach can also be modified to calculate the counts of entailments, but this is
clearly out of the scope of this paper. We will leave it to our future work.

5 Experimental Evaluation

In order to evaluate the usefulness and performance of our approach, we con-
ducted an empirical evaluation to find out:

1. Whether our approach can be used to reduce the number of axioms that are
processed, in comparison to global re-derivation and local re-derivation.

2. Whether our approach can be used to achieve efficient incremental reasoning
in terms of execution time and memory consumption.
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Implementation

For evaluation purposes, we implemented the following approaches:

1. In order to compare with the naive reasoning approach, we first implemented
a consequence-based algorithm with context. This algorithm is used by the
parallel EL++ reasoner ELK [9].

2. In order to compare with the non-bookkeeping DRed approach [8], we also
implemented an extension of the above approach with the forward-chaining
over-deletion used in the non-bookkeeping DRed approach. Such an approach
first obtains a set DEL, consisting of all entailments that can be derived from
the deleted original axioms. It then effectively over-deletes and re-derives all
non-original GCIs OD with the same context as some axiom in DEL.

3. In order to examine the effect of applying our approach with context-based
non-bookkeeping DRed, we implemented our non-bookkeeping approach on
the above one by replacing the context-based re-derivation with our combined
forward and backward chaining re-derivation. As we mentioned earlier, this
approach will use DEL instead of OD as the over-deleted entailments.

4. In order to compare with the bookkeeping DRed approach, a variant of the
first naive reasoning implementation was augmented with the TMS mecha-
nism proposed by [17]. This implementation performs TMS-based DRed.

5. In order to examine the effect of applying our approach with TMS-based book-
keeping DRed, we implemented our TMS-based approach on the above one
by replacing the forward chaining global re-derivation with our re-derivation.

All our implementation used the same completion rules. Hence, they will have
the same completion closure for the same input. In order to support reasoning
with our evaluation benchmark, our implementations were extended with ABox
completion mechanisms. Implementation-wise, this was achieved by internalising
ABox axioms with TBox axioms. Such a treatment does not affect the complete-
ness of results on our evaluation benchmark. In order to support the DL used
by our evaluation benchmark, our completion rule set extends the R rules with
the following additional rule to exploit inverse roles in ABox reasoning:

RI
(a, b) : r, a : C

b : ∃s.C
: ∃s.C occurs in O, r �∗,− s

where r �∗,− s if r ≡ s− ∈ O or r′ �∗ r′, r �∗,− s′ and s′ �∗ s and r �∗ s if
r � s ∈ O, or r �∗ t and t �∗ s, or r �∗,− t and t �∗,− s. With such extension,
the rule set is tractable but it is complete for our evaluation benchmark. Note
that in the above formulation, all premise axioms still share a context {a}. Hence,
the extension should not affect the context-based parallelisation of the original
rule set.

Test Environment

For preparing the evaluation benchmark, we have used the Lehigh Univer-
sity Benchmark (LUBM) [6] with 10 universities, The University Ontology
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Benchmark (UOBM)1 with 10 universities and Systematised Nomenclature of
Medicine - Clinical Terms (SNOMED CT)2 as experimental datasets. We used
el-vira3 to convert UOBM ontologies to OWL 2 EL ontologies.

All experiments were conducted on 64-bit Ubuntu 14.04 with 3.20 GHz CPU
and 10G RAM allocated to JVM. To examine if our approach can reduce the
number of over-deleted and/or processed axioms in re-derivation, we were inter-
ested in the sizes of the following sets:

Del: deleted original axioms.
DEL: the over-deleted non-original axioms directly or indirectly inferred

from Del axioms.
R∗: the completion closure.
DELL: the non-original axioms directly or indirectly inferred from Del

axioms with the forward chaining over-deletion in the non-bookkeeping DRed
approach.

ODL: the non-original axioms with the same context as some axioms in
DELL. These axioms, even if preserved, will be re-derived by the forward chain-
ing re-derivation of the non-bookkeeping DRed approach.

BCRDL: the axioms re-derived in the backward chaining re-derivation stage
of our non-bookkeeping approach.

ODT : the over-deleted axioms in the TMS-based DRed approach. These are
also the axioms to be processed in the backward chaining re-derivation stage of
our TMS-based approach.

BCRDT : the axioms re-derived in the backward chaining re-derivation
stage of our TMS-based approach. These are also the axioms to be ini-
tialised in L in the forward chaining re-derivation stage of our TMS-
based approach. Our implementations are available at https://app.box.com/s/
mh81cprp0tgpmjc1qmcjdp00powkcpi9.

We conducted the experiments for n = 1, 2, 5, 10, i.e. 2%, 4%, 10% and 20%
of the ABox were updated respectively. For each n, the size of above sets were
obtained on the � 150

n � runs. The reasoning output of the incremental reasoner
was the same as the naive reasoner.

We also explored the performance and memory overhead of the TMS. Naive
re-computation was performed by the implementation without TMS. In this
experiment, we performed tests for 151 times, on the ABoxes A1∪· · ·∪A50, A2∪
· · · ∪ A51, . . . , A151 ∪ · · · ∪ A200. Each time, we calculated %initial and %memory.
For Tdeletion and Taddition, we conducted the experiments for n = 1, 2, 5, 10. For
each n, the incremental reasoning were performed for � 150

n � times. The reasoning
output of the incremental reasoner was the same as the naive reasoner.

Test Results

The average percentages of |Del|, |R∗ \ ODT |, |BCRDT |, |DELL|, |ODL|,
|BCRDL| against |R∗| are illustrated in Table 1.
1 https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/.
2 http://www.ihtsdo.org/snomed-ct(2011-Jan.Version).
3 http://el-vira.googlecode.com.

https://app.box.com/s/mh81cprp0tgpmjc1qmcjdp00powkcpi9
https://app.box.com/s/mh81cprp0tgpmjc1qmcjdp00powkcpi9
https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
http://www.ihtsdo.org/snomed-ct (2011-Jan. Version)
http://el-vira.googlecode.com
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Table 1. Re-derivation evaluation results (in %)

n
50 LUBM UOBM SNOMEDCT

2 4 10 20 2 4 10 20 2 4 10 20

|Del|/|R∗| 0.55 1.10 2.76 5.52 0.72 1.45 3.62 7.26 0.43 0.86 2.16 4.37

|ODT |/|R∗| 1.81 3.60 8.88 17.33 1.61 3.22 8.05 16.13 10.66 20.47 45.72 77.58

|R∗ \ ODT |/|R∗| 98.2 96.4 91.1 82.7 98.4 96.8 92.0 83.9 89.3 79.5 54.3 22.4

|BCRDT |/|R∗| 0.52 1.02 2.32 4.02 0.03 0.06 0.14 0.28 0.40 0.73 1.60 2.73

|DELL|/|R∗| 3.66 6.35 13.58 23.86 1.83 3.66 9.15 18.33 5.92 11.75 29.10 58.03

|ODL|/|R∗| 6.47 11.04 22.75 37.88 2.11 4.22 10.57 21.17 5.73 11.42 28.58 58.19

|BCRDL|/|R∗| 1.70 2.59 4.61 6.72 0.03 0.05 0.13 0.27 0.89 1.66 3.78 6.54

Fig. 4. Time consumption ratio for 2% Update (in %)

To examine if our approach can be used to achieve efficient incremental
reasoning in terms of execution time, in comparison to other approaches, we
have conducted experiments using 2 synthetic (LUBM, UOBM) and 1 real-
world (SNOMEDCT) datasets to see what would be the ratio of execution
time consumed for an update of 2% in the initial ontology when compared
to re-computation. The average values for every approach-dataset pair are illus-
trated in Fig. 4. We have implemented different algorithms in the environment
of TrOWL EL reasoner. Results of experiments are expressed using percentages,
instead of absolute values, to proportionally see the effect of different incremental
reasoning algorithms and make a comparison between them.

Experiment results regarding the memory overhead are illustrated in Table 2
and Fig. 5.

Observations

1. Because of the nature of Naive Reasoning, the cost of time consumed for every
small or big update in ontology is always the time of re-computation from
scratch(100%). When the update rate is high, this approach can be prefer-
able. But, if the update ratio is as small as 2%, other incremental reasoning
techniques become more advantageous. Judging from our experiments, about
memory overhead of incremental reasoning, approximately 15% update is the
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Table 2. Incremental reasoning evaluation results

%initial 125.89%

%memory 121.56%
n
50

2% 4% 10% 20%

%deletion 7.37% 14.06% 37.12% 70.21%

%addition 5.94% 15.17% 33.87% 52.44%

%incremental 13.31% 29.23% 70.99% 122.65%

Fig. 5. Incremental reasoning evaluation results

turning point. As illustrated in Table 2 and Fig. 5, up to 15% update in the
ontology, incremental reasoning consumes less RAM than naive reasoning,
but after that threshold RAM cost of incremental reasoning makes naive rea-
soning preferable.

2. Using TMS-based DRed in a reasoner will impose a performance and mem-
ory over-head. The reasoning time was about 25.89% longer than the same
reasoner without TMS. The TMS approach consumed 21.56% more memory.

3. When Del is small, as shown with the ontology SNOMEDCT in Table 1,
BCRDT is much smaller than R∗ \ODT (e.g. 0.40% v.s. 89.3% when Del is
0.43% of R∗), indicating that the forward chaining stage in our TMS-based
approach processes much less axioms than the TMS-based DRed.
Even when taking into account the cost of the backward chaining, as implied
by the size of ODT , our combined forward and backward chaining approach
should still process less axioms than the TMS-based approach.

4. When the size of DELL (non-original axioms directly or indirectly inferred
from Del axioms) is smaller than the size of ODL (axioms that are over-
deleted and will be re-derived, even if preserved), the non-bookkeeping DRed
is unnecessarily over-deleting more entailments than necessary. By apply-
ing our non-bookkeeping re-derivation approach, the over-deletion in non-
bookkeeping approach can be reduced, i.e. over-deleting DELL instead
of ODL.
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For example, In case of LUBM with 2% update, 3.66% of data, which con-
stitutes the non-original axioms that are inferred from the deleted original
axioms, will be selected for over-deletion. Some of this data will be re-derived
in forward chain completion. But non-bookkeeping DRed approach chooses
a scope of 6.47% of the data for over deletion. By this way 2.81% of data is
unnecessarily processed. In this case our non-bookkeeping approach saves the
reasoner from ca.77% (2.81/3.66) of unnecessary processing. In case of UOBM
with 2% update, the contribution of our non-bookkeeping DRed approach is
15% ((2.11-1.83)/1.83) when compared to non-bookkeeping DRed approach.
In case of SNOMEDCT, we don’t observe big contribution but nearly same
results.

5. Our non-bookkeeping approach and non-bookkeeping DRed continuously con-
sumed less computation time when compared to other approaches. When
interconnections in ontologies increase, performance advantage of them
against naive re-computation and global approach becomes more obvious.
Increase in the interconnected axioms makes processing of TMS-based Global
DRed longer in terms of execution time but does not have that much increase
in the processing of them.

To summarise, our combined forward and backward chaining re-derivation
technology is very suitable for ontology updating with small scale deletion. It can
significantly reduce the re-derivation effort in comparison to the bookkeeping
global re-derivation approach. It can reduce the unnecessary over-deletion in
comparison to the non-bookkeeping local re-derivation approach. It can also be
used to address the completeness issue of the counting approach.

6 Conclusion

In this paper, we presented a novel approach for ontology incremental reasoning.
Although we chose the proposed approach is presented in EL, the approach can
be used to other completion based algorithms. The motivation of using EL is
due to the effective EL based approximate reasoning approach [15] implemented
in the TrOWL ontology reasoner. Thus we can combine our approach with the
approximate reasoning approach for OWL 2 DL incremental reasoning.

Based on a DRed framework, our approach first uses backward chaining to
re-derive the over-deleted axioms that can be directly inferred from preserved
axioms, and then uses these directly re-derived axioms to initiate forward chain-
ing and re-derive the completion closure of the preserved axioms. This app-
roach can be combined with different over-deletion techniques. It can also be
used with or without bookkeeping. The implementation of our approach does
not affect the parallelisation or tractability of reasoning and its mechanism is
applicable to many consequence-based algorithm. Evaluation results showed that
our approach can indeed reduce unnecessary over-deletion and/or re-derivation
in a DRed incremental reasoner and can perform efficient incremental reason-
ing, particularly when the ontology update is of small size in comparison to the
ontology, which is where incremental reasoning is mostly needed.
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The backward chaining stage of our approach derives the immediate results
of the preserved closure. Such an idea has also been exploited in [11] (in their
Algorithm 1.3) and [8] (in their Algorithm 4). The difference is that existing
approaches derive such immediate results by forward chaining with all the pre-
served entailments or un-deleted original axioms, which will essentially re-process
the entire new closure or the entire broken contexts. Our approach uses back-
ward chaining to avoid the unnecessary processing. Backward chaining can be
implemented easily with rule systems. Hence, the original DRed strategy [7], its
declarative variant [19] and the ontological adoption of the latter [21] can also
exploit such a backward chaining mechanism. Nevertheless, we notice that back-
ward chaining only needs to be performed to re-derive immediate consequence of
the preserved partial closure. Hence, expensive recursive full backward chaining
can be avoided. Also, our approach only considers a given completion rule set
and does not need to generate additional rules from the axioms.

In the future we would like to combine the strengths of different approaches
to develop an adaptive incremental reasoning framework, e.g., using TMS to
deal with deletion of side condition axioms and contexts to deal with deletion of
non-side condition axioms.
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Abstract. Our society is full of rules: rules authorize us to achieve our
goals by endowing us with legitimation, they provide the necessary struc-
ture to understand the chaos of conflicting indications or tell-tales of a
situation, and oftentimes they legitimate our actions. But rules in society
are different than logical rules suggest to be: they are not as unshake-
able, continuously renegotiated, often even accepted to be wrong but
still used, and used as inspiration in the situated context rather than
universal truth.

Based on theories about the role of technology in society, this talk will
first try to convey the role of rules in social science theory. Extending
these insights, it will draw on examples to illustrate how they might be
transferred to computer science or artificial intelligence to derive systems
that are attuned to the role of rules in social environments and adhere
to social rules in the environment in which they are used.

Keywords: Rules in the social realm · Non-standard reasoning · Adap-
tive workflows · Specificity frontier · Process recombination · Cultural
adaptivity · Diverse and accurate recommendations

1 Rules in Society

Our Society gets governed by rules. Some are written explicitly such as laws;
others are tacit and maintained by processes such as socialization or rites of
passage [4]. Many of these rules are used very differently than in the canonical
model often-times prescribed by logical rules. They change and evolve during
actions [1], are only taken as indications rather than prescriptions for action
[10], or are even completely ignored.

Despite this mismatch, the formalization of rules has led to incredible gains:
Enterprise Resource Planing Systems (ERPs) such a SAP enable the running
of corporations, automated trading systems manage billions, fraud detection
systems ensure the stability of our financial transactions. Some of these systems’
properties have, however, prevented innovation, caused rigidity, and prevented
adaptiveness due to an inability to deal with exceptions or lack of flexibility. In
some cases, they may have even led to disasters, as they found themselves in
situations that were not foreseen during design and implementation.
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-45276-0
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2 Social Rules in Systems

Taking inspiration in social science theory about the role of rules and norms in
society [6], this talks will explore examples of the loose interpretation of rules as
the means for supporting the social rules, norms, or conventions. Each approach
presented leverages the use of loosely or statistically specified and interpreted
rules in the attempt of finding the sweet-spot between the efficiency of automated
interpretation and flexibility of human activity.

The first example will explore an alternative view to process support or
workflow management systems that provide flexibility. Based on a concept called
the Specificity Frontier [2], it suggests that the relevant rules should be able to
change during execution. This has recently lead to a system that interleaves
the orchestration of crowds with auto-experimentation to determine the most
appropriate process for a given task [3].

The second example will explore the elusive nature of cultural norms—
another special set of societal rules—and how they can be leveraged to improve
user interactions. Specifically, we show how a rule-based system paired with a
very generalizing interpretation of insights from cultural anthropology allow to
generate user interfaces that automatically adapt the users’ cultural background.
These generated user interfaces are shown to increase both the efficiency and
effectiveness of users’ interactions with the system [7–9].

Time permitting, the third example will take us to the realm of recommending
TV shows, where we will see that also statistical reasoning needs to be “bent”
to the social rules that govern this specific setting by foregoing recommendation
accuracy in favor of diversity and speed [5].
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Recent years have seen an increasing interest in ontology-mediated query answer-
ing (OMQA), in which the semantic knowledge provided by an ontology is
exploited when querying data. Adding an ontology has several advantages (e.g.
simplifying query formulation, integrating data from different sources, provid-
ing more complete answers to queries), but it also makes the query answering
task more challenging, as reasoning is needed to obtain all answers that can be
derived using both the data and the ontology. Query rewriting provides a means
of reducing OMQA to the evaluation of database queries (typically, first-order
(FO) ∼ SQL queries), thereby allowing for OMQA to be built on top of exist-
ing database systems and thus to benefit from the maturity and performance
of such systems. It is arguably the most prominent algorithmic technique for
OMQA. In this talk, I will give an overview of two recent lines of work aimed at
understanding the limits and possibilities of query rewriting in OMQA.

The first line of work arose out of the observation that while FO rewritings
always exist for ontologies formulated in DL-LiteR (the lightweight DL underly-
ing the OWL 2 QL profile), the rewritings generated by implemented rewriting
engines were often prohibitively large. This motivated the study of the following
succinctness problem: under what circumstances can polynomial-size rewritings
be achieved? More specifically, how does the worst-case size of rewritings depend
on (i) the way the rewritten queries are represented (e.g. as positive existential
queries vs. non-recursive datalog (NDL) queries), (ii) the existential depth of
the ontology, and (iii) the structure of the input query (treewidth, number of
leaves)? This question has been addressed in a series of works [3, 7, 8], which
establish and exploit tight connections between FO query rewriting and circuit
complexity. The resulting succinctness landscape shows that while polynomial-
size rewritings cannot be guaranteed in general, there are a large classes of
ontologies and queries which possess polynomial-size NDL-rewritings. Moreover,
concrete NDL-rewriting algorithms that achieve optimal worst-case complexity
have recently been developed [4].

At first sight, the FO query rewriting approach seems to have limited applica-
bility, since for almost every ontology language outside the DL-Lite family, we
run into the problem that FO rewritings need not exist. However, such results
reflect the worst-case situation and leave open the possibility that some, perhaps
many, queries encountered in real applications are in fact first-order rewritable.
In the second half of this talk, I will give an overview of a recent line of work
[1, 2, 5, 6] aimed at devising methods for identifying those ontology-query pairs
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which admit FO rewritings, which is an important step towards extending the
applicability of the first-order query rewriting approach.
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Logic based “Semantic Technologies” are maturing rapidly, with RDF and OWL
now being deployed in diverse application domains, and with major technology
vendors starting to augment their existing systems accordingly. For example,
the Optique project has successfully piloted Ontology Based Data Access in the
energy domain, and Oracle Inc. has enhanced its well-known database manage-
ment system with modules that use RDF/OWL ontologies to support “semantic
data management”. Such applications increasingly focus on data, and critically
depend on efficient query answering services; this in turn depends on the provi-
sion of robustly scalable reasoning systems. In this talk I will review the evolution
of Semantic Technologies to date, and show how research ideas from logic based
knowledge representation developed into a mainstream technology. I will then go
on to examine the scalability challenges arising from deployment in large scale
applications, particularly those that primarily focus on query answering over
large datasets, compare various different approaches and present some results
from ongoing research in the area.
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Efficient Computation of Certain Answers:
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Abstract of invited talk: Computing certain answers is the standard way of
answering queries over incomplete data; it is also used in many applications
such as data integration, data exchange, consistent query answering, ontology-
based data access, etc. Unfortunately certain answers are often computationally
expensive, and in most applications their complexity is intolerable if one goes
beyond the class of conjunctive queries (CQs), or a slight extension thereof.

However, high computational complexity does not yet mean one cannot
approximate certain answers efficiently. In this talk we survey several recent
results on finding such efficient and correct approximations, going significantly
beyond CQs. We do so in a setting of databases with missing values, and first-
order (relational calculus/algebra) queries. Even the class of queries where the
standard database evaluation produces correct answers is larger than previously
thought. When it comes to approximations, we present two schemes with good
theoretical complexity. One of them also performs very well in practice, and
restores correctness of SQL query evaluation on databases with nulls.

This talk is based on recent papers [1–3].
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