
Sandrine Blazy
Marsha Chechik (Eds.)

 123

LN
CS

 9
97

1

8th International Conference, VSTTE 2016
Toronto, ON, Canada, July 17–18, 2016
Revised Selected Papers

Verified Software
Theories, Tools, and Experiments

Lecture Notes in Computer Science 9971

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Sandrine Blazy • Marsha Chechik (Eds.)

Verified Software
Theories, Tools, and Experiments

8th International Conference, VSTTE 2016
Toronto, ON, Canada, July 17–18, 2016
Revised Selected Papers

123

Editors
Sandrine Blazy
IRISA, University of Rennes 1
Rennes
France

Marsha Chechik
Department of Computer Science
University of Toronto
Toronto, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-48868-4 ISBN 978-3-319-48869-1 (eBook)
DOI 10.1007/978-3-319-48869-1

Library of Congress Control Number: 2016956493

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 8th International Conference on
Verified Software: Theories, Tool and Experiments (VSTTE), which was held in
Toronto, Canada, during July 17–18, 2016, co-located with the 28th International
Conference on Computer-Aided Verification. The final version of the papers was
prepared by the authors after the event took place, which permitted them to take
feedback received at the meeting into account. VSTTE originated from the Verified
Software Initiative (VSI), which is an international initiative directed at the scientific
challenges of large-scale software verification. The inaugural VSTTE conference was
held at ETH Zurich in October 2005, and was followed by VSTTE 2008 in Toronto,
VSTTE 2010 in Edinburgh, VSTTE 2012 in Philadelphia, VSTTE 2013 in Menlo
Park, VSTTE 2014 in Vienna, and VSTTE 2015 in San Francisco. The goal of the
VSTTE conference is to advance the state of the art through the interaction of theory
development, tool evolution, and experimental validation.

The call for papers for VSTTE 2016 solicited submissions describing large-scale
verification efforts that involve collaboration, theory unification, tool integration, and
formalized domain knowledge. We were especially interested in papers describing
novel experiments and case studies evaluating verification techniques and technologies.
We welcomed papers describing education, requirements modeling, specification lan-
guages, specification/verification, formal calculi, software design methods, automatic
code generation, refinement methodologies, compositional analysis, verification tools
(e.g., static analysis, dynamic analysis, model checking, theorem proving), tool inte-
gration, benchmarks, challenge problems, and integrated verification environments. We
received 21 submissions. Each submission was reviewed by at least three members
of the Program Committee. The committee decided to accept 12 papers for presentation
at the conference. The program also included six invited talks, given by Zachary
Tatlock (Washington), Mark Lawford (McMaster), Kristin Yvonne Rozier (Iowa
State), Michael Tautschnig (Amazon), and Oksana Tkachuk (NASA Ames). The
volume includes abstracts or full-paper versions of some of these talks.

We would like to thank the invited speakers and all submitting authors for their
contribution to the program. We are very grateful to our general chair, Temesghen
Kahsai, for his tremendous help with organizing this event. We also thank Azadeh
Farzan (CAV PC co-chair) and Zak Kinsaid (CAV Workshops chair) for logistical
support, and to Natarajan Shankar for his vision for this year’s VSTTE and other events
in this series. Last but definitely not least, we thank the external reviewers and the
Program Committee for their reviews and their help in selecting the papers that appear
in this volume. This volume was generated with the help of EasyChair.

September 2016 Marsha Chechik
Sandrine Blazy

Organization

Program Committee

June Andronick NICTA and UNSW, Australia
Frédéric Besson Inria, France
Nikolaj Bjorner Microsoft Research, USA
Sandrine Blazy IRISA, France
Marsha Chechik University of Toronto, Canada
Ernie Cohen Amazon, USA
Deepak D’Souza Indian Institute of Science, Bangalore, India
Jean-Christophe Filliatre CNRS, France
Vijay Ganesh University of Waterloo, Canada
Arie Gurfinkel Software Engineering Institute, Carnegie Mellon

University, USA
William Harris Georgia Institute of Technology, USA
Temesghen Kahsai NASA Ames/CMU, USA
Vladimir Klebanov Karlsruhe Institute of Technology, Germany
Rustan Leino Microsoft Research, USA
Tiziana Margaria Lero, Ireland
David Naumann Stevens Institute of Technology, USA
Nadia Polikarpova MIT CSAIL, USA
Kristin Yvonne Rozier University of Cincinnati, USA
Natarajan Shankar SRI International, USA
Natasha Sharygina University of Lugano, Switzerland
Richard Trefler University of Waterloo, Canada
Michael Whalen University of Minnesota, USA
Naijun Zhan Institute of Software, Chinese Academy of Sciences,

China

Additional Reviewers

Alt, Leonardo
Berzish, Murphy
Bormer, Thorsten
Chen, Mingshuai
Fedyukovich, Grigory
Graham-Lengrand, Stephane
Guelev, Dimitar

Hyvärinen, Antti
Kuraj, Ivan
Marescotti, Matteo
Tiwari, Ashish
Zhang, Wenhui
Zheng, Yunhui
Zulkoski, Ed

Abstracts Short Papers

Advanced Development of Certified OS
Kernels

Zhong Shao

Yale University, New Haven, USA

Abstract. Operating System (OS) kernels form the backbone of all system
software. They can have a significant impact on the resilience, extensibility, and
security of today’s computing hosts. We present a new compositional approach
[3] for building certifiably secure and reliable OS kernels. Because the very
purpose of an OS kernel is to build layers of abstraction over hardware
resources, we insist on uncovering and specifying these layers formally, and
then verifying each kernel module at its proper abstraction level. To support
reasoning about user-level programs and linking with other certified kernel
extensions, we prove a strong contextual refinement property for every kernel
function, which states that the implementation of each such function will behave
like its specification under any kernel/user (or host/guest) context. To demon-
strate the effectiveness of our new approach, we have successfully implemented
and specified a practical OS kernel and verified its (contextual) functional
correctness property in the Coq proof assistant. We show how to extend our base
kernel with new features such as virtualization [3], interrupts and device drivers
[1], and end-to-end information flow security [2], and how to quickly adapt
existing verified layers to build new certified kernels for different domains.

This research is based on work supported in part by NSF grants 1065451,
1319671, and 1521523 and DARPA grants FA8750-12-2-0293 and
FA8750-15-C-0082. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these agencies.

References

1. Chen, H., Wu, X., Shao, Z., Lockerman, J., Gu, R.: Toward compositional verification of
interruptible OS kernels and device drivers. In: PLDI 2016: 2016 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 431–447(2016)

2. Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow security for C and
assembly programs. In: PLDI 2016: 2016 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 648–664 (2016)

3. Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X., Weng, S-C., Zhang, H., Guo. Y.:
Deep specifications and certified abstraction layers. In: POPL 2015: Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming languages,
pp. 595–608 (2015)

Automating Software Analysis at Large Scale

Michael Tautschnig

Queen Mary University of London, London, UK
Amazon Web Services, Ashburn, USA

Abstract. Software model checking tools promise to deliver genuine traces to
errors, and sometimes even proofs of their absence. As static analysers, they do
not require concrete execution of programs, which may be even more beneficial
when targeting new platforms. Academic research focusses on improving
scalability, yet largely disregards practical technical challenges to make tools
cope with real-world code.

At Amazon, both scalability requirements as well as real-world constraints
apply. Our prior work analysing more than 25,000 software packages in the
Debian/GNU Linux distribution containing more than 400 million lines of C
code not only led to more than 700 public bug reports, but also provided a solid
preparation for the challenges at Amazon.

RACE to Build Highly Concurrent
and Distributed Systems

Oksana Tkachuk

NASA Ames Research Center, Moffett, USA
oksana.tkachuk@nasa.gov

Abstract. Instantiating, running, and monitoring highly concurrent and dis-
tributed systems presents many challenges. Such systems are prone to:
concurrency-related issues (races, deadlocks), communication problems (drop-
ped connections), functional issues (unhandled messages), and scalability (the
size of the system grows with the number of communicating components).

This talk will present solutions to the above problems implemented in
RACE: Runtime for Airspace Concept Evaluation, designed and developed at
NASA Ames Research Center. RACE is a framework for instantiating and
running highly concurrent and distributed systems. RACE employs actor pro-
gramming model, as implemented in the Akka framework. Akka actors com-
municate through asynchronous messages, do not share state, and process their
own messages sequentially. RACE is implemented in the Scala programming
language, which improves type safety compared to other JVM languages.
RACE includes many building blocks needed to create distributed systems,
including actors for exporting, importing, translating, archiving, replaying, and
visualizing data.

RACE is being evaluated in the context of building and running simulations
for National Airspace System (NAS) at NASA. For example, RACE can be used
to get flight and weather data from various FAA servers, process, and visualize it
in the NASA’s World Wind viewer. However, RACE is an open source,
highly-configurable and extensible platform, which makes it suitable for a wide
range of applications. RACE source code is available at https://github.com/
NASARace/race. More information can be found on the RACE web site at
http://nasarace.github.io/race.

https://github.com/NASARace/race
https://github.com/NASARace/race
http://nasarace.github.io/race

Contents

Stupid Tool Tricks for Smart Model Based Design 1
Mark Lawford

Specification: The Biggest Bottleneck in Formal Methods and Autonomy . . . 8
Kristin Yvonne Rozier

Order Reduction for Multi-core Interruptible Operating Systems 27
Jonas Oberhauser

Producing All Ideals of a Forest, Formally (Verification Pearl) 46
Jean-Christophe Filliâtre and Mário Pereira

Constructing Semantic Models of Programs with the Software
Analysis Workbench . 56

Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman,
Dylan McNamee, and Aaron Tomb

Bidirectional Grammars for Machine-Code Decoding and Encoding 73
Gang Tan and Greg Morrisett

Automated Verification of Functional Correctness of Race-Free
GPU Programs . 90

Kensuke Kojima, Akifumi Imanishi, and Atsushi Igarashi

The Matrix Reproved (Verification Pearl). 107
Martin Clochard, Léon Gondelman, and Mário Pereira

Enabling Modular Verification with Abstract Interference Specifications
for a Concurrent Queue . 119

Alan Weide, Paolo A.G. Sivilotti, and Murali Sitaraman

Accelerating the General Simplex Procedure for Linear Real
Arithmetic via GPUs . 129

Steven T. Stewart, Derek Rayside, Vijay Ganesh,
and Krzysztof Czarnecki

JavaSMT: A Unified Interface for SMT Solvers in Java. 139
Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer

Relational Program Reasoning Using Compiler IR 149
Moritz Kiefer, Vladimir Klebanov, and Mattias Ulbrich

http://dx.doi.org/10.1007/978-3-319-48869-1_1
http://dx.doi.org/10.1007/978-3-319-48869-1_2
http://dx.doi.org/10.1007/978-3-319-48869-1_3
http://dx.doi.org/10.1007/978-3-319-48869-1_4
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_6
http://dx.doi.org/10.1007/978-3-319-48869-1_7
http://dx.doi.org/10.1007/978-3-319-48869-1_7
http://dx.doi.org/10.1007/978-3-319-48869-1_8
http://dx.doi.org/10.1007/978-3-319-48869-1_9
http://dx.doi.org/10.1007/978-3-319-48869-1_9
http://dx.doi.org/10.1007/978-3-319-48869-1_10
http://dx.doi.org/10.1007/978-3-319-48869-1_10
http://dx.doi.org/10.1007/978-3-319-48869-1_11
http://dx.doi.org/10.1007/978-3-319-48869-1_12

Resolution in Solving Graph Problems. 166
Kailiang Ji

SMT-based Software Model Checking: An Experimental Comparison
of Four Algorithms . 181

Dirk Beyer and Matthias Dangl

Author Index . 199

XIV Contents

http://dx.doi.org/10.1007/978-3-319-48869-1_13
http://dx.doi.org/10.1007/978-3-319-48869-1_14
http://dx.doi.org/10.1007/978-3-319-48869-1_14

Stupid Tool Tricks for Smart Model
Based Design

Mark Lawford(B)

McMaster Centre for Software Certification, McMaster University,
Hamilton, ON L8S 4K1, Canada

lawford@mcmaster.ca

Abstract. Formal methods tools can be used to detect and prevent
errors so researchers assume that industry will use them. We are often
frustrated when we see industrial projects where tools could have been
used to detect or prevent errors in the final product. Researchers often
fail to realize that there is a significant gap between aa potentially useful
tool and its use in a standards compliant, commercially viable, develop-
ment process. In this talk I take a look at seemingly mundane industrial
requirements - qualification (certification) of tools for use in standards
compliant development process for general safety (IEC 61508), Automo-
tive (ISO 26262) and Avionics (DO-178C), Model Based Design coding
guidelines compliance, standards compliance documentation generation
and integration with existing industry partner development processes.
For each of these topics I show how “stupid tool tricks” can be used to
not only increase adoption of academic methods and tools, but also lead
to interesting research questions with industry relevant results.

Keywords: Simulink · Model-based design · Tool qualification · Soft-
ware tools

1 Introduction

The title of this talk is based upon the former television host David Letterman’s
popular “Stupid Pet tricks” segment from the Late Show where people brought
out their pets to perform various tricks. In introducing the segment during the
November 15, 2013 show, Letterman described the segment as follows:

Now please, the pets are not stupid. The people who taught them the
tricks are not stupid. It’s just that it’s a colloquialism for . . . “Oh! Isn’t
that cute!”

In the remainder of the paper I will briefly describe joint work with colleagues
and students from industrial research projects that form the basis of the “Stupid
Tool Tricks” I refer to in the title. In order to avoid confusion about my opinion
of the excellent people I get to work with and the high quality work they produce,
let me rephrase Letterman’s description:
c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 1–7, 2016.
DOI: 10.1007/978-3-319-48869-1 1

2 M. Lawford

Now please, the tools are not stupid. The people who programmed the
tool tricks are not stupid. It’s just that it’s a colloquialism for . . . “Oh!
Isn’t that useful!”

Recently embedded software development has turned to Model Based
Design (MBD) with code generation from models created with tools like Mat-
lab/Simulink. In recent talks John Knight has declared that “Coding is over!”,
basically saying that it doesn’t matter what language you teach anymore. Java,
Python, C, C# are irrelevant. What matters is models. Engineers will create
models and generate the code. Or to think of it another way, “Coding is dead!
Long live encoding! (of models . . . in MATLAB/Simulink)”. As a result man-
agers might think that we do not need software engineers any more. While
domain engineers may create the models, companies will still need the Software
Engineers to help manage the models and abstractions.

A recurring theme at VSTTE is moving the focus up the levels of abstrac-
tion to a more productive layer closer to the engineering problem. For example,
automotive controls engineers will provide insight into how to model and design
control systems using the controls oriented models of Matlab/Simulink, but with
the pace of development, diverse product lines and absolute need for dependable
software and systems will require appropriate software engineering methods and
concepts to be applied. From precise requirements to design for change, software
engineering principles will need to be applied to the models. A problem currently
facing many industries is that the majority of engineers developing the models
are not taught Software Engineering fundamentals such as those pioneered by
Parnas [4]. With the move to Model Based Development, coding is mostly over.
Software Engineering is definitely not over.

It is clear that many industries need help in dealing with Model Based Devel-
opment of software. So why is the industry not using researchers tools, theories
and methods that are promoted at conferences and workshops like VSTTE? In
the remainder we provide some possible answers to this question.

2 What Is Tool Qualification? (and Why Should I Care
About It?)

In a nutshell? Tool qualification comes down to insure that the tool is fit for use
in the intended development context. Researchers should care about it because
it is one of the biggest hurdles to getting their tools and theories used.

Figure 1 represents at the top level what is the main hazard that is of the
utmost concern for most standards regarding tool use - the tool fails to detect an
error or inserts an error. A rudimentary interpretation of the DO-330 Software
Tool Qualification Considerations supplement to the DO-178B/C standard that
is applied to civilian aviation software provides the second level possible causes
that can lead to this hazard. The diagram then provides some detail of the third
level of what could lead to the tool not being properly installed that then results
in the tool failing to detect an error or inserting an error. For the purposes of

Stupid Tool Tricks for Smart Model Based Design 3

Fig. 1. Representation of tool hazard analysis implicit in DO-330

brevity we have not provided the complete third level expansion. Other standards
such as IEC 61508 and ISO 26262 have similar reasoning behind their need for
tool qualification before the tools are used in the development of a critical system.

The successful use of the PVS theorem prover to perform software verification
of the Darlington Nuclear Reactor Shutdown Systems software has been docu-
mented in [6] and a description of how consideration of the entire development
process was important to that success can be found in [7]. One of the key insights
is that while the use of a formal methods tool like PVS provided increased con-
fidence and considerable benefits, the final development process accepted by the
regulator required all of the proofs done in PVS to be performed manually too
in order to mitigate any potential failures of PVS and the supporting tool chain
used in the design verification of Darlington. Tools are great, but they do not
buy you as much as you think if they can be a single point of failure. At the time
of the Darlington Redesign Project the regulator wanted to mitigate a failure of
PVS with a known method, manual proof. It was a reasonable requirement at
the time, but it limited the benefits of the formal methods tools.

In the intervening years since the Darlington Redesign Project was com-
pleted, standards have evolved to provide better guidance to engineers wishing
to use software tools. For example, the Latest version of IEC-61508-3 now pro-
vides better guidance here:

4 M. Lawford

In particular, Note 2 suggests checking of the tool output or use of diverse
tools for the same purpose. DO-330 (S. 4.4(e)) in the avionics domain and ISO
26262 (clause 11.4.1.1) in the automotive domain provide similar guidance in
avoidance of single points of failure in development tool chains.

2.1 Solving the Tool Qualification Problem

The bad news is that in order to get your tools and methods used, you will, in all
likelihood, need to use two different (diverse) tools in order to avoid having to do
work manually because “demonstrating soundness of the tools” to a regulator in
a cost effective way will likely be difficult or impossible. The good news is that
it is not as hard as you might think to knock the tool qualification requirements
down a level by doing the same thing with 2 or more tools. Intermediate Domain
Specific Languages (DSLs) can be used to generate code for multiple theorem
provers, SMT solvers, or model checkers, often providing more than one way to
get the same result. This technique has the additional benefit that it can help
avoid vendor lock-in for verification tools.

In developing tools and methods, researchers need to consider this tool qual-
ification problem if they want industry to use their work. In developing the
Tabular Expression Toolbox for Matlab Simulink [2] this was the main impetus
behind having the completeness and disjointness conditions checkable by both
PVS and an SMT solver. This could then be used as part of an argument to the
regulator the checks for domain coverage and determinism of the specification
would not need to be manual checked. This brings us to

Stupid Tool Trick #1

Do everything twice in two different ways.

3 Integrating with the Development Process and
Documentation

Recent industrial research projects have given us access to a large number of
industrial Matlab/Simulink models that are used for code generation. In an effort
to understand those models, we began examining the explicit dataflow due to
model input/output ports and implicit data flow due to (scoped) data stores and
goto/from blocks in Simulink [1]. This led to the development of tools for Mat-
lab/Simulink that help with model comprehension and refactoring for improved
software qualities such as model comprehension, testability, modularity [3].

Stupid Tool Tricks for Smart Model Based Design 5

bAllowSet

2

eGearSet

1

Merge

Merge

If GearState

u1

u2

u3

u4

u5

u6

if(u1 <= u2)

elseif(u1 == u3)

else

If Gear345 or Else

Action
bAllowSel

eGearSet

bAllowSet

If Gear2

Action
eGearSel

eGearSet

bAllowSet

If Gear1

ActioneGearSel

bAllowSel

eGearSet

bAllowSet

[eGearSel]

[bAllowSel]

[eGearSel]

[eGearSel]

[bAllowSel]

[bAllowSel]

cGear4

cGear5

cGear3

cGear2

cGear1

eGearSelection

3

bAllowSelection

2

eGearState

1

Inputs

Data Store Reads

Updates

Outputs

Data Store Writes

eAllowSet

2

eGearSet

1

bPoweredState

eGrantedGear

Merge

Merge

If GearState

u1

u2

u3

u4

u5

u6

if(u1 <= u2)

elseif(u1 == u3)

else

If Gear345 or Else

If Gear2

If Gear1

[eAllowSet]

[eGearSet]

[eGearSelection]

[bAllowSelection]

[eGearState]

[eGearSel]

[bAllowSel]

[eAllowSet]

[eGearSet]

[eGearSelection]

[bAllowSelection]

[eGearState]

[eGearSel]

[eGearSel]

[bAllowSel]

[bAllowSel]

eGrantedState cGear5

cGear3

cGear2

cGear1

cGear4

eGearSelection

3

bAllowSelection

2

eGearState

1

ActioneGearSel

bAllowSel

eGearSet

bAllowSet

Action eGearSet

bAllowSet

Action
bAllowSel

eGearSet

bAllowSet

Fig. 2. Original Simulink model (top) and with “signature” (bottom)

One tool in particular, the signature tool, made all of the dataflow explicit
by modifying the models to create explicit ports for all of the dataflow, explicit
and implicit, on the left side of the model (see Fig. 2). One could think of this as
the equivalent of a function prototype in a C header file. The industry partner
did not want to modify the layout of their models because of potential code
generation impacts so the tool was initially rejected, but later found use as a
test harness generator when we demonstrated significant improvements in test
coverage, with reduced testing effort, when the signature was used to help make
dataflow explicit to commercial test case generation tools.

Stupid Tool Trick #2

Consider alternative uses of a tool. These might be more useful than your
original purpose.

4 Coding Guideline Compliance and Research

During our examination of implicit dataflow in Simulink models we noted that
many of the models developed by domain experts tended to have the majority
of their data store declarations at the top level of the model hierarchy. This
is equivalent to programming with global variables. Data stores, like variables

6 M. Lawford

in traditional programming languages, should be restricted in scope in order to
avoid inadvertent or unwanted access and help to make the design more modular.

We developed a tool that examined the dataflow and determined where the
data stores were actually accessed and then rescoped the data stores to be as
low as possible in the model hierarchy. This tool was initially called the Data
Store Push-Down Tool and has since been renamed the Data Store Rescope Tool
since it can also move a data store declaration higher up in the model hierarchy
if access is added a part of the model that is not below (i.e., in the scope of)
the data store declaration. Since the development of this tool modeling guide-
lines published by the Japan MathWorks Automotive Advisory Board (JMAAB)
include a rule which strongly recommends positioning Data Store Memory blocks
as low as possible in the model hierarchy, and discourages top level data store
declarations [5].

Noticing that some models had well scoped data store declarations and were
hence easier to understand, we then developed a metric that computed the dif-
ference between the number of data items that subsystems had access to and
the number that it actually used. A lower the total difference might then be
an indicator of better model quality. This in turn has led us to reconsider how
Simulink models can be developed to embody the software engineering principles
such as those in the works Parnas et al. [4].

Stupid Tool Trick #3

If a tool is useful, ask yourself why is it useful. This might lead to inter-
esting research ideas.

5 Conclusion

By working with our industrial partners we were motivated to discover simple
“stupid” tool tricks that improved the applicability of research tools, helping to
improve software engineering methods for Model Based Design and led to inter-
esting research problems that had industrial relevance. The reader is encouraged
to examine their own research tooling efforts in the context of industrial devel-
opment to see if similar stupid tool tricks can lead to improved industry uptake
of research results.

Acknowledgments. The author would like to acknowledge the work of all of the
researchers and students in the McMaster Centre for Software Certification (McSCert).
This work would not have been possible without the support of our industry partners.

References

1. Bender, M., Laurin, K., Lawford, M., Pantelic, V., Korobkine, A., Ong, J., Mackenzie,
B., Bialy, M., Postma, S.: Signature required: making Simulink data flow and inter-
faces explicit. In: Science of Computer Programming, Part 1, vol. 113, pp. 29–50
(2015). Model Driven Development (Selected & extended papers from MODEL-
SWARD 2014)

Stupid Tool Tricks for Smart Model Based Design 7

2. Eles, C., Lawford, M.: A tabular expression toolbox for Matlab/Simulink. In:
Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol.
6617, pp. 494–499. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 38

3. Pantelic, V., Postma, S., Lawford, M., Korobkine, A., Mackenzie, B., Ong, J.,
Bender, M.: A toolset for Simulink: improving software engineering practices in devel-
opment with Simulink. In: 3rd International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD), pp. 50–61. IEEE, February 2015

4. Parnas, D.L.: Software design. In: Hoffman, D.M., Weiss, D.M. (eds.) Software
Fundamentals: Collected Papers by David L. Parnas, pp. 137–142. Addison-Wesley
(2011)

5. The MathWorks. Japan MathWorks Automotive Advisory Board (JMAAB): Con-
trol Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow,
Version 4.01, March 2015. www.mathworks.com/solutions/automotive/standards/
maab.html. Accessed Feb 2016

6. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.)
FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45236-2 9

7. Wassyng, A., Lawford, M.: Software tools for safety-critical software development.
Int. J. Softw. Tools Technol. Transf. (STTT) 8(4–5), 337–354 (2006)

http://dx.doi.org/10.1007/978-3-642-20398-5_38
www.mathworks.com/solutions/automotive/standards/maab.html
www.mathworks.com/solutions/automotive/standards/maab.html
http://dx.doi.org/10.1007/978-3-540-45236-2_9
http://dx.doi.org/10.1007/978-3-540-45236-2_9

Specification: The Biggest Bottleneck in Formal
Methods and Autonomy

Kristin Yvonne Rozier(B)

Iowa State University, Ames, IA, USA
kyrozier@iastate.edu

Abstract. Advancement of AI-enhanced control in autonomous systems
stands on the shoulders of formal methods, which make possible the rig-
orous safety analysis autonomous systems require. An aircraft cannot
operate autonomously unless it has design-time reasoning to ensure cor-
rect operation of the autopilot and runtime reasoning to ensure system
health management, or the ability to detect and respond to off-nominal
situations. Formal methods are highly dependent on the specifications
over which they reason; there is no escaping the “garbage in, garbage
out” reality. Specification is difficult, unglamorous, and arguably the
biggest bottleneck facing verification and validation of aerospace, and
other, autonomous systems.

This VSTTE invited talk and paper examines the outlook for the
practice of formal specification, and highlights the on-going challenges of
specification, from design-time to runtime system health management.
We exemplify these challenges for specifications in Linear Temporal Logic
(LTL) though the focus is not limited to that specification language. We
pose challenge questions for specification that will shape both the future
of formal methods, and our ability to more automatically verify and vali-
date autonomous systems of greater variety and scale. We call for further
research into LTL Genesis.

1 Introduction

Formal methods have now scaled to the point of enabling rigorous safety analysis
of full-scale, real-life systems, and none too soon, as such capabilities are required
for developing the autonomous systems of the future. This is because autonomy
requires systems to be reactive and concurrent [36], operating in real-time and
in an open environment. Formal methods have been recognized as a critical, and
often expected, design-time component for autonomous and life-critical systems,
such as aircraft and spacecraft. FAA standards including DO-178-B [46] DO-178-
C [48], and DO-254 [47] incorporate formal specification, validation, and verifica-
tion. For one example, NASA’s Lunar Atmosphere Dust Environment Explorer
(LADEE) mission was a resounding success. LADEE used model-based develop-
ment starting with specification of the requirements; refinement of these spec-
ifications via analysis against system models; automatic generation of software

Thanks to NASA’s Autonomy Operating System (AOS) Project and NSF CAREER
Award CNS-1552934 for supporting this work.

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 8–26, 2016.
DOI: 10.1007/978-3-319-48869-1 2

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 9

from verified models; and a variety of verification techniques including formal
methods, static analysis, formal inspection, and code coverage applied early and
often throughout the system design lifecycle [22]. We have influenced the design
of an automated air traffic control system via model checking analysis [55–57].
We have also used formal methods to help NASA assess the Functional Alloca-
tion question: in the early design stage, when there are thousands of options for
allocating essential system functions, how can we formally analyze the space of
many possible deigns to determine which are the most safe [16,37]?

In addition to design-time analysis, autonomous systems in particular crit-
ically depend on formal runtime reasoning, for runtime verification that unan-
ticipated events do not violate their specifications, and to ensure system health
management, or the ability to detect and respond to off-nominal situations that
could not be verified at design time. NASA’s Copilot language and compiler gen-
erates runtime monitors for distributed, hard real-time systems, including pitot
tube subsystems and MAVLink (Micro Air Vehicle Link); these verified sys-
tems have flown in the Edge 540 aircraft [38]. Our own Realizable, Responsive,
Unobtrusive Unit (R2U2) [18,41,49–51] utilizes formal specifications to generate
runtime observers integrated with Bayesian reasoning to provide runtime system
health management for Unmanned Aerial Systems (UAS) such as NASA’s Swift
and DragonEye UAS.

All of these formal methods, from design time to runtime, require formal
specifications. A formal methodology, as defined by Manna and Pnueli in their
seminal text on reactive and concurrent systems [36], consists of a specifica-
tion language and a repertoire of proof methods by which the correctness of a
proposed system, relative to the specification, can be formally verified. By this
definition, a formal methodology provides two components central to autonomy:
(1) the ability to make early, precise decisions, e.g. between multiple possible
designs, about major system functions; (2) the ability to remove ambiguities
from the system’s expected behavior, from design-time behavioral descriptions
to runtime behavioral monitors. For clarity through the remainder of the paper,
we will distinguish the formal specification, or the description of the behavioral
requirement that most often appears in the form of a formula (which we will call
ϕ), from the system model that instead specifies how the system works (M). The
verification question is then the question of whether (or not) these two things
match; both are necessary inputs to a proof method.

Figure 1 shows one such example of a formal methodology. In this case, the for-
mal specification is given as a set of Linear Temporal Logic (LTL) formulas; the
system model is a description of system operation in a formal semantics we call
M . A set of validation specifications is written simultaneously with the system
model M ; specification debugging increases confidence in the correctness of this
set, and model checking against M serves to validate M . A set of verification spec-
ifications, which first pass specification debugging, are model-checked against M
to verify that the early design satisfies its requirements. These specifications can
then be carried throughout the system development process, e.g., used for test-
case generation or simulation, and all the way to runtime verification of the final

10 K.Y. Rozier

System
Design

Build
Prototype Simulation

Testing and ...ERROR NOModel
Check

SPEC
DEBUGGING

Specification

Model
Verification

SPEC
DEBUGGING

USE SPECIFICATIONS
FOR RUNTIME
MONITORING

YES

NOERROR

REVISE

YES

Specification
Validation

Model
Validation

via
Model

Checking
M = Formal System

Model

Model

Fig. 1. A goal system design process (based on LTL model checking) where specifica-
tions are first debugged, then utilized for early system design validation, used in design
verification, and carried through the system development process to runtime [56].

system implementation. This goal system design process, using Linear Temporal
Logic (LTL) as the specification language and model checking as a proof method
appeared in [56], where it was used successfully during the design time of a coor-
dination protocol for an automated air traffic control system. Formal methods,
including model checking, are highly dependent on the specifications over which
they reason; not only are specifications required for analysis, but there is no escap-
ing the “garbage in, garbage out” reality.

System
Design

Model
Check ERROR

M = Formal System
Model

Model
Verification

Specification

...

...
...

Fig. 2. Bottom line: inputs to formal
analysis are the biggest challenge.

Figure 2 zooms in on the inputs to
this process. The bottom line for formal
methods is that the inputs to formal analy-
sis are the biggest challenge. In [56], over
100 person-hours were required to create
the inputs, which dwarfs the less than 10
hours of total runtime required to complete
model checking analysis. In the follow-on
study of a more complex version of the sys-
tem with a large space of possible designs,
over 1000 person-hours were required to
generate the inputs that resulted in the
1620 model-checking instances (model-
specification-set pairs) whose automated
verification then averaged approximately
5 minutes per pair [16]. (Validation and

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 11

further analysis, e.g., using fault trees, took several hours per pair but still
far less time than specification; total time for input generation of all automated
analysis including validation, verification, and fault tree analysis totaled over
2000 person-hours [17].)

When it comes to formal system modeling, there is some hope in the form
of synthesis. Recall that in model checking, we check whether M |= ϕ, e.g., does
the system model satisfy its specification? LTL Synthesis is predicated on the
fact that designing M is hard and expensive; re-designing M when M � ϕ is also
hard and expensive [52]. Starting from LTL formula ϕ synthesis designs M such
that M |= ϕ, which simplifies verification, eliminates the problem of re-designing
M , and, for algorithmic derivations, eliminates the burden of design entirely [52].
While synthesis as a technique does not yet enjoy the same level of tool support
or scalability as verification techniques such as model checking, the field is well
on the way to being able to greatly improve the bottleneck of the system model
as input to the formal verification process. However, synthesis shares with model
checking the requirement of a formal specification: the input formula ϕ. So, while
synthesis is a worthwhile goal with the potential to eventually solve half of the
inputs bottleneck, what we really need is LTL Genesis!

The remainder of this paper is organized as follows. Section 2 asks where we
will get specifications from, while Sect. 3 examines how we will examine their
quality. Section 4 asks how do we best use specifications, including introduc-
ing new ideas for specification patterns. Section 5 asks how should we organize
specifications to enable these uses and examines the merits of strategies for
accomplishing this. Section 6 concludes and gives an outlook for a future of well-
specified autonomous systems.

2 Specification Origins

Specifications are required for all applications of formal methods, yet extracting
specifications for real-life safety critical systems often proves to be a huge bottle-
neck or even an insurmountable hurdle to the application of formal methods in
practice. This is the state for safety-critical systems today and as these systems
grow more complex, more pervasive, and more powerful in the future, there is
not a clear path even for maintaining the bleak status quo [3,4].

At NASA in particular, extracting specifications needed for any formal analy-
sis is a huge challenge [4,5,16,37,55,56]. Some critical systems are designed
without ever having what this community would consider to be a formal set
of requirements. Some design processes don’t formally define requirements until
the testing phase, far too late to use them for design or design-time analysis,
or other key periods in the system development life-cycle where formal methods
are applicable. Even for critical systems where specifications are defined early
in the system development life-cycle, they often mix many different objectives,
mixing many different levels of detail and describing things like how the system
is defined, how the system should behave, legal-speak on why the system satisfies
rules, and more – sometimes all in the same sentence! As safety-critical systems

12 K.Y. Rozier

Fig. 3. An illustration of the outdated V Systems Engineering Model from [27].

become increasingly complex and the budgetary and other constraints tighten,
where can we look in the future to hope to extract the specifications we need for
formal analysis?

Even outside of the formal methods community, systems engineering
processes are adapting to the fact that the old standard V model of systems
engineering (shown in Fig. 3) is outdated and does not capture the steps neces-
sary for the design of today’s complex, possibly autonomous, systems [27]. This
realization comes from the need to define, and debug, requirements first, modify
them throughout the system design lifecycle with each new phase of develop-
ment, and perform verification at every stage of system design, not just at the
end. AFRL has documented the unreasonable cost associated with the V model
[21,25,26]. While an estimated 70 % of faults are introduced in the early design
phases on the left of the V, all but 3.5 % are found in the later stages of system
integration and testing (on the right of the V), where they are increasingly costly
to fix. The estimated nominal cost for fault removal is 300-1000x for faults found
in the final “Acceptance” or “Operation” phase versus the early design phases
[25,26]. The emerging realization that we need to define precise specifications
that can be automatically analyzed from the earliest stages of system design has
given rise to many different methods for deriving specifications, e.g., in LTL.

Though none of these have emerged as industrial standards, several spec-
ification extraction strategies remain under study as active areas for further
research.

Human Authorship: Train system designers to write formal specifications first
and have them author their own LTL, or pair designers with formal methods
team to write specifications.

– Advantages include potential for accuracy and improved design-level reason-
ing; disadvantages include high learning curves and lack of automation.

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 13

Natural Language Processing (NLP): Extract formal specifications from
English Operational Concepts, encoding them in LTL for automated analysis.
Notable tools include ARSENAL [20] and VARED [5]. NLP is highly input-
dependent: it is difficult to handle unstated assumptions, implied/arbitrary func-
tions, slang, mixed abstraction levels, and other inconsistencies. There is a ques-
tion whether structured English is advantageous over natural language.

– Advantages include the high level of automation and low learning curve
required; disadvantages include that is it hard to measure correctness, com-
pleteness, and closeness to the designers intentions.

Specification Mining: Extract behaviors from existing systems. Can combine
with test-case generation to explore system behavior [13].

– Advantages include automation; disadvantages include the need for a code
specification as input.

Static Analysis: Map all paths of a program.

– Advantages include automation; disadvantages include that it is hard to dif-
ferentiate normal usage from exceptions; also some essential specifications, like
function postconditions, can be difficult to extract [54].

Learning/Dynamic Invariants: Analyze actual executions; observe use-cases.

– Advantages include that checking observed variable values against a library
of fixed invariant patterns can automatically generate valuable specifications.
Disadvantages include that specifications might refer to internal details or be
irrelevant; observations are too limited and are heavily dependent on the set
of observed executions [54].

Specification Wizard: Semi-automated exploration of system facets, guided
by human input.

– Disadvantages include that similar ideas similar were tried previously and
failed to catch on widely; advantages include that today’s complex autonomous
systems demand a more standardized system design process that may provide
a better platform to build upon. With the widespread use of COTS compo-
nents that could be added to an online database and the recent advances in
specification extraction from LTL patterns and component parameters, there
is a new opportunity for a wizard.

Notably, Zeller asked: can we have specifications for free [54]? Can we combine
specification mining, test-case generation, static analysis, and dynamic invariants
to extract specifications automatically? The specifications would be automati-
cally mined from code, so that specification validation would equate to software

14 K.Y. Rozier

defect detection. While this is a promising strategy for software runtime verifi-
cation, fundamentally this process still requires code as an input. (In a sense,
the code is now the specification; so we have not solved the specification genesis
problem.) This strategy does not solve the specification problem for early design
time, where code has not yet been written, or for cyber-physical systems that
combine code with other components. The problem of requiring input code can
be mitigated by using specifications extracted from the last version of a system
for creating new designs. However, there remain challenges with specialization
of the previous code, levels of abstraction, and relevance to the new system.
Other challenges include scalability, efficiency, and expressiveness of extracting
specifications for free. Still, Zeller’s idea is highly intriguing!

3 Specification Quality

How can we know when we’re “done” extracting specifications or have some idea
of how well we’ve done? As critical systems continue to grow in complexity, how
will we measure the completeness, coverage, or general quality of a specification
or a set of specifications? We asked these questions in a panel at NFM2014 [4],
yet in large degree they remain open areas for future research.

The emerging area of specification debugging [24,30], also called sanity check-
ing, has made notable progress in automated analysis of specification quality,
chiefly in four areas. We briefly discuss each, with respect to LTL specifications
specifically.

Satisfiability. For LTL, satisfiability checking reduces to model checking against
a universal model, or a model that accepts all possible valuations of the variables
at all states [43]. Formally, if we let ϕ be a specification over the set Prop
of propositions then a system model M is universal if it contains all possible
traces over Prop: Lω(M) = (2Prop)ω. A model checker negates ϕ and checks
for emptiness of the combined model for ¬ϕ and M . Then ϕ is satisfiable by
any counterexample returned by model checking against M : M � ¬ϕ iff ϕ is
satisfiable. If there is no counterexample, then ϕ is not satisfiable. In [43,44]
we advocate for a sanity check of checking ϕ, ¬ϕ, and the conjunction of all
specifications describing the same system for satisfiability before using them in
system design and verification.

Stated another way, let ϕ describe a “good” requirement that the system
must uphold. Then ¬ϕ describes a “bad” behavior that the system must never
display. The model checker takes as input ϕ, then negates it, combines it with
the input model, and checks if the resulting combined automaton is empty,
outputting a counterexample if not. Model checking ϕ against a universal model
will show whether or not ¬ϕ is satisfiable. A counterexample returned by the
model checker in this case is a satisfying assignment to the formula. If ¬ϕ is not
satisfiable, then the model checking search of its combination with the universal
model will not return a counterexample because no satisfying assignment exists.
The reverse situation is also a problem. If ϕ is not satisfiable, then ¬ϕ is a

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 15

tautology. So, in a normal model checking run, we would model check ¬ϕ against
a system model, the model checker would negate ϕ to get ¬ϕ, and return a
counterexample, which we are expecting to indicate that there is something
wrong with the system model. However, since ¬φ is a tautology, no matter how
we change the system model, we will always get some counterexample.

In [44], we conducted an extensive experimental evaluation of LTL satisfia-
bility checking via model checking, concluding that using symbolic model check-
ing for this task is vastly superior to explicit-state model checking in terms of
both correctness and performance. (Symbolic tools always returned the correct
SAT/UNSAT result; this was not true for any of the explicit tools available at the
time, perhaps due to the difficulty of implementing their algorithms.) In [45] we
designed a portfolio approach consisting of 30 new encodings for LTL satisfiabil-
ity via symbolic model checking that performed up to exponentially faster than
was previously possible. In [33,34], the explicit approach was improved, circum-
venting explicit-state model checking and solving the LTL satisfiability problem
directly using techniques borrowed from propositional SAT solving. Today, the
(freely available) tools PANDA [45] and Aalta [34], represent the state of the
art in symbolic (via the nuXmv model checker) and explicit LTL satisfiability
checking, respectively.

Vacuity. Sanity checks in industry include many types of simple, often ad hoc,
tests such as checking for duplicate conflicting variable assignments or enabling
conditions that are never enabled [32]. Vacuity checking can help detect errors in
specifications by checking whether a subformula of a specification does not affect
the satisfaction of the specification in the system model [31]. A common exam-
ple is checking for implications like �(p → ♦q) where p can never be enabled.
Inherent vacuity checking is a set of sanity checks that can be applied to a set
of temporal properties, even before a model of the system has been developed,
but many possible errors cannot be detected by inherent vacuity checking [15].
This capability is available in some proprietary industrial tools [7], and VaqUoT
provides a front-end checker for nuXmv, but it only handles the subset of LTL
that can be encoded as CTL [19]. VARED [5] integrates an updated algorithm
for vacuity checking [23] into an end-to-end toolchain for requirements analysis.

Realizability. Realizability checking provides another, stronger sanity check for
a set of temporal properties in LTL by testing whether there is an open system
that satisfies all the properties in the set [40], but such a test is very com-
putationally expensive: 2ExpTime-Complete. However, notable progress on the
problem is underway. RATSY [8] checks realizability of the class of Generalized
Reactivity(1) (GR(1) [39]) specifications via an interactive game with the speci-
fier. Acacia+ [9] also solves LTL realizability problems encoded as safety games.
Another approach to realizability checking [35] builds upon RATSY using a
template-based specification mining approach to identify situations of an under-
constrained environment or an over-constrained system. This approach is com-
plimented by work on detecting unrealizability due to overly-strong system guar-
antees or overly restricted signals [29]. An algorithm for finding minimal cores

16 K.Y. Rozier

of unrealizability of GR(1) specifications is implemented in nuXmv [12]. All
of these address the tricky space of checking specifications that are satisfiable
but unrealizable because there is no implementation that can produce outputs
that satisfy the specification given all possible inputs that can be generated by
the environment. Realizability is inherently tied to synthesis: the LTL synthesis
problem seeks to produce a model such that ϕ is realizable.

Coverage. Coverage is a complicated sanity check because significant research
has been contributed just to a set of definitions; measuring coverage for each such
definition is a separate research question. Informally, coverage asks whether a set
of LTL specifications considers all of the behaviors of the system; behaviors may
be defined in various ways with respect to states or paths through an execution
graph/automaton required for a specification to pass, the set of system variables,
model checking analysis, checks for incomplete or redundant sub-models, etc. In
a sense, coverage is complimentary to vacuity checking in that it asks whether
there are parts of the system that are not relevant for the verification process
to proceed. Coverage checking for LTL can be integrated into model checking
[11]. Algorithms for automatically checking LTL coverage and completeness have
been successfully used in industry for sanity checking, e.g., the requirements for
an airplane control system [6].

4 Specification Usage

How should formal specifications (both those we are given and those we must
extract) fit into the design life-cycle for different kinds of critical systems? How
can we indoctrinate formal specifications into diverse teams of system designers
without hitting barriers to adoption such as huge costs in terms of time and
learning curves? What should our roadmap look like for a future full of well-
specified (formally analyzable) critical systems?

Figure 4 shows the updated waterfall model for system design that has sup-
planted the former V model of Fig. 3. The need to define specifications early and
carry them through all stages of system design has given rise to many different
specification use strategies. All present interesting challenges for future research.

Property-Based Design: system design centers around specifications

– Challenge: defining a foundation of specifications early

Synthesis: generate M such that M |= ϕ

– Challenge: how can we synthesize a cyber-physical system M?

Specification-Based Testing: use specifications in test-case generation

– Challenge: how can we carry specifications through different levels of abstrac-
tion?

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 17

V&V

V&V

V&V

V&V

Software & hardware

Requirements document

Proofs, safety cases, analysis
with respect to the requirements

requirements
Updated documentation/

System architecture/models

Requirements

Design

Implementation

Verification

Maintenance

V&V

Fig. 4. The current waterfall model for system engineering incorporates the specifica-
tions (aka system requirements) throughout all phases of system design.

From Design- to Run-Time: carry specifications through the design cycle

– Challenge: how do we define a specification design lifecycle?

Maintenance: using specifications in system up-keep

– Challenge: what do best practices for maintenance of specifications look like?

4.1 Specification Patterns

Since the early days of temporal logic specifications, we have been concerned
with dividing them into classes like Safety/Liveness/Guarantee/Obligation,
Fairness/Justice/Compassion, or Safety/Response/Reactivity [36]. While these
classes have proven useful in specializing algorithms for automated analysis, they
are still too coarse and tied to syntax for practical use; there is a need for more
functional and hierarchical specification.

Dwyer et al. [14] answered with definitions of specification formula patterns
that have many practically useful properties. Formula patterns are organized in
a hierarchy based on semantics and leverage experience with design and coding
patterns to enable system designers to more efficiently generate specifications.
This specification pattern system captures recurring solutions and allows speci-
fiers to generalize across domain-specific problems. It encourages re-use by better
enabling practitioners to identify the same patterns across systems and makes
transparent the means by which requirements are satisfied.

Formula patterns each have a name, intent, logic (language), scope (time
interval), and relationship to other patterns. Each pattern is characterized by
the following traits:

18 K.Y. Rozier

– Solves a Specific Problem, e.g. not too abstract
– Proven Concept effective in practice
– Not Obvious or direct application of basic principles
– Describes Relationships, not single components
– Generative, describes how to construct a solution

However, challenges remain with the translational semantics of these formula
patterns: they are not compositional and are often inconsistent with the seman-
tics of informal definitions. Therefore, [10] introduced automata-based patterns.
These are:

– Compositional: based on compositions of patterns (logic executions) and
scopes (time)

– Homogeneous: don’t flatten key patterns/scopes separation
– Extensible: compositional semantics allow adding patterns & scopes
– Generic: can combine any pattern and any scope
– Faithful: formal guarantee that the translated temporal formula is faithful to

the intended natural semantics

While automata-based patterns correct some inconsistencies in the previous
formula patterns, they present other challenges: it is often more natural for
practitioners to think of specifications in terms of time lines (temporal logic) than
automata, and automata patterns pose a challenge for many of the sanity checks
from Sect. 3. Design-time formula patterns and automata patterns still do not
answer the pressing question: what about runtime specifications for autonomous
systems?

4.2 R2U2: Runtime Specification Patterns in the Field

Work on specification patterns focuses mostly on design time, which is impactful
for applications such as model checking. But in today’s complex, cyber-physical,
and/or autonomous systems, exhaustive verification is not achievable for all sub-
systems; in practice, more specifications are used for applications such as runtime
verification. Formula patterns are not compositional, which can be a challenge
for runtime evaluation. Automata patterns are not decomposable and are more
complex to sanity check, e.g., because it is easier to check satisfiability and real-
izability on a formula than an automaton. Yet it is vital to sanity check runtime
specifications.

Therefore, we ask the question: what about functional patterns?1 Are there
different patterns for specification functions, e.g., between design time and run-
time? In our experience with runtime verification in the field [18,41,49–51], we
have observed the following five functional patterns.

1 Note that the term functional patterns has been used in a different context: describ-
ing Requirements Specification Language (RSL) patterns for system state changes
in response to external stimuli [2].

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 19

Ranges. Sensors have well-defined operating ranges: both ranges of the values
they can report and ranges of operation. For example, a laser altimeter has a
ceiling; above this altitude its readings should not be trusted. For each sensor,
we check its operating ranges and the bounds on correct values it can return.

Rates. For each sensor stream on a system, there are rate constraints. We must
check that value changes fall within realistic bounds, both for the sensitivity
and tolerances of the individual sensor and for the physics of the system. For
example, if a sensor indicates that an aircraft is falling faster than gravity, clearly
there is something wrong with that sensor!

Relationships. There are predictable relationships between multiple sensors; we
need to compare temporal outputs from related or redundant sensors for correct-
ness. For example, the readings from all three altimeters should be consistent,
modulo sensor noise. Pitching up and increasing power to the engines should
result in a rise in altitude shortly afterward.

Control Sequences. A sequence of events will predictably happen following a
command to take off, land, or carry out a procedure like a waypoint visit, with
check-able milestones along the way A command to take off requires an ordered
set of actions such as turning on the engines, taxiing, increasing altitude above
ground level, and reaching a prescribed altitude. A command to land involves
a series of actions in a precise order, such as an initial decrease in altitude,
deploying of landing gear, and approaching the appropriate runway.

Consistency Checks. Do all components have the same view of system
state/environment? We consider both intra- and inter-component properties.
For example, the rate of noise from a sensor should not suddenly increase. The
flight computer and autopilot should always agree on which waypoint the UAS
is currently visiting.

In industrial systems, LTL is often not the exclusive specification language.
While languages and constructs for specification vary widely and are often tailored

R2U2 specification format:

1. TL Observers: Efficient temporal reasoning
(a) Asynchronous: output 〈t, {0, 1}〉
(b) Synchronous: output 〈t, {0, 1, ?}〉

– Logics: MTL, pt-MTL, Mission-time LTL
– Variables: Booleans (from system bus), sensor filter outputs

2. Bayes Nets: Efficient decision making
– Variables: outputs of TL observers, sensor filters, Booleans
– Output: most-likely status + probability

Fig. 5. R2U2 system health management framework in a nutshell [41,50].

20 K.Y. Rozier

to specific applications, one general trend is the propensity for expanding upon
LTL or combining it with other specification constructs. An example of this is the
specification format we use for R2U2, the Realizable, Responsive, Unobtrusive
Unit for runtime system health management. Figure 5 summarizes R2U2 speci-
fications, which combine two encodings for each linear-time temporal logic for-
mula, which may be in one of several variants of LTL, with efficient (non-dynamic)
Bayes Nets to provide diagnostic decision-making capabilities. Specifications ana-
lyzed via R2U2 are exclusively checked during runtime and do not follow previ-
ously defined patterns for formulas or automata because those describe design-
time specifications consisting exclusively of temporal logic formulas.

We need to expand specification patterns to runtime! How do we expand
patterns to reason about specifications in the field?

Health Nodes / Failure Modes
H FG Magnetometer sensor
H FC RxUR Receiver underrun
H FC RxOVR Receiver overrun
H FG TxOVR Transmitter overrun in sensor
H FG TxErr Transmitter error in in sensor

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

Fig. 6. The possible failures a Fluxgate Magnetometer can suffer can be diagnosed by
a Bayes Net with a health node corresponding to each type of failure. These nodes take
as input the valuations from six temporal logic runtime observers; many failures require
inputs from multiple temporal observers in order to make an accurate diagnosis [18].

As an example, Fig. 6 displays a pictorial representation of a set of specifica-
tions for determining if a fault has occurred in the fluxgate magnetometer during
runtime. From the manual, we know that there are five possible faults that can
occur. We can write six temporal logic specifications that we encode as run-
time observers outputting statuses S1, . . . , S6. The outputs from these runtime
observers are inputs to five Bayesian health nodes, one for determining whether
it is probabilistically likely that each possible fault has occurred. A health node
may hierarchically depend on the output from more than one runtime sensor
node and the runtime observers may supply temporal information to multiple
health nodes.

Cyber-physical, autonomous systems often utilize hierarchical, multi-
formalism specifications; see, e.g., [53]. In R2U2, we combine specifications in
a way that is hierarchically structured, compositional, and cross-language. How
do we organize R2U2 specifications?

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 21

5 Specification Organization

How should we organize specifications? How do we store specifications in an
accessible way that allows for automated analysis including verification? How
do we best enable re-use from design time to runtime to the design of future
systems? How do we pair English and formal specifications in an understand-
able way? How do we preserve the hierarchical structure, compositionality, and
relationships between specifications in our practical, organizational structure?
Can we do all of this in a performable way?

Scenario definition languages such as the Aviation Scenario Definition Lan-
guage (ASDL) [28] establish structured specification standards over domain-
specific vocabulary for verification, execution, simulation, sharing, comparing,
and re-using scenario specifications. This approach provides transparency to
system designers via model-to-text translation, and graphical modeling envi-
ronments. ASDL is an Eclipse modeling framework suited to defining scenario
models for simulation, but we still need an efficient way to store and codify spec-
ifications. Most significantly, there is the question of M vs ϕ: how do we distin-
guish functions of the system model from design- and runtime specifications so
that we can analyze specifications automatically and use them throughout the
system lifecycle?

One can turn to an all-in-one tool suite such as Matlab/Simulink, but since
these tools were not designed for specification organization, this solution tends
to be kludgy and not scalable. Considering the often long life of specifications,
which follow a system throughout its entire lifecycle, the lack of backwards-
compatibility in successive tool versions presents a significant negative.

SQL databases are routinely used for longterm, scalable information storage.
However, the relationships between specifications are inherently non-tabular;
fitting them into this schema requires flattening the database, and accessing
them requires extensive JOINs, making this solution non-performable.

None of these strategies solve the organization problem. We have hit an era
of Big Data of Specifications. If we follow recommended practices for system
design, then specifications are everywhere! So, how do we organize specifications
for each subsystem, subcomponent, and level of abstraction? How do we mine
specifications for data, patterns, statistical analysis, and coverage? How do we
search specifications? How do we sort specifications? How do we integrate specifi-
cation languages for different purposes? How do we make specifications available
for reuse?

5.1 A Property Graph Database Approach to Specification
Organization with Neo4j

We can represent R2U2 specifications using a property graph.

Definition 1. [42] A property graph G = (V,E, λ, μ) is a directed, edge-labeled,
attributed multi-graph where V is a set of nodes, E is a multiset of directed edges,
λ : E → Σ is an edge labeling function assigning a label from the alphabet Σ to

22 K.Y. Rozier

each edge, and μ : (V ∪ E) × K → S is a property assignment function over the
sets K of property keys and S of property values.

Organizing big data requires a database that can store and enable efficient
access to large specification sets, so we use a property graph database. Neo4j2 is
a publicly available, performable, NoSQL graph database implemented in Java
and Scala that efficiently implements the property graph model to allow, e.g.,
constant-time traversals for relationships in the graph. A property graph data-
base stores Nodes (graph data records), and Relationships (directional connect
nodes), with Properties (named data values of type string, number, Boolean, or
array), on both Nodes and Relationships.

name: S4
LTL: <formula> MTL: <formula>

name: S5
LTL: <formula>

name: S6 name: S3
MTL: <formula> LTL: <formula>

2S :eman1S :eman
MTL: <formula>

name: H_FG
CPT: <array of floats>

name: H_FC_rxUR
CPT: <array of floats>

name: H_FC_RxOVR
CPT: <array of floats> CPT: <array of floats>

name: H_FG_TxErrname: H_FG_TxOVR
CPT: <array of floats>

Relationship: takes as input
Property: variable name

Properties: name, conditional probability table
Node: Bayes Net health node

Node: Temporal Logic Observer
Properties: name, LTL/MTL/pt−MTL formula

Node: Boolean filter
Properties: name, filter

Node: Sensor signal
Properties: name, origin

Hdy FGx FGyHdx

< 0 < 0 < 0 < 0 Ntot

Nb

>=1= 0

...

Fig. 7. A property graph database storage scheme for the Fluxgate Magnetometer
failure specifications of Fig. 6 with additional details from the case study in [18].

Figure 7 re-draws Fig. 6 with the Neo4j database schema we are currently
investigating for R2U2 specifications. We have four types of Nodes: Bayes
Net health nodes that contain conditional probability tables, Temporal Logic
Observer nodes that store logic formulas, Boolean filter nodes that filter direct
sensor signals, and Sensor signal nodes that designate which system signals we
are reasoning about. All relationships pictured are of type “takes as input”
and are labeled with the name of the variable whose value is set by the given
input. Note that nodes can mix properties, so we can define our Temporal Logic
Observer nodes to have one type of formula, either LTL, MTL, or pt-MTL.

6 Conclusions and Outlook

Going forward, as a community, we need to continuously re-assess our answer to
the question “Where are we now?” with regards to specifications. For the fore-
seeable future, specifications remain arguably the biggest bottleneck in formal
2 https://neo4j.com.

https://neo4j.com

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 23

methods and autonomy. While there are several promising research thrusts in
specification debugging, updated system design processes that encourage speci-
fication extraction, and specification patterns, we still do not have a clear path
forward, particularly in the context of cyber-physical, autonomous systems. The
questions posed by this paper of where we will get specifications from, how
should we measure their quality, how should we best use them, and how should
we organize them, continue to drive future research directions.

In future work, we plan to devise formal definitions of the functional specifi-
cation patterns introduced here. There are many experimental evaluations in the
pipeline, including use of functional specification patterns and technical analysis
and performance evaluation of a new Neo4j specification organization scheme
for R2U2 specifications. We also plan to advance capabilities for specification
debugging, particularly satisfiability checking, and methods for efficiently rea-
soning about specifications in new logics now appearing in industrial settings,
such as MTL [1].

Acknowledgments. Thanks to the VSTTE chairs Sandrine Blazy, Marsha Chechik,
and Temesghen Kahsai for inviting this paper, which is the expansion of an invited
talk delivered July 18, 2016. Thanks to Julia Badger for instigating the framing of
the specification bottleneck as a series of questions for our NFM2014 panel. Thanks
to André Platzer for encouraging me to update and expand on these challenges; a
shorter, preliminary version of this talk appeared at the NSF Workshop on “Cyber-
Physical System (CPS) Verification & Validation Industrial Challenges & Foundations
(I&F): CPS and AI Safety” in May, 2016. (http://www.ls.cs.cmu.edu/CPSVVIF-2016/
index.html.) Thanks to Arie Gurfinkel, Eric Rozier, and Johann Schumann for technical
discussions on earlier drafts of this paper. Information on our recent work can be found
at: http://laboratory.temporallogic.org.

References

1. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. In:
LICS, pp. 390–401. IEEE (1990)

2. Backes, J.D., Whalen, M.W., Gacek, A., Komp, J.: On implementing real-time
specification patterns using observers. In: Rayadurgam, S., Tkachuk, O. (eds.)
NFM 2016. LNCS, vol. 9690, pp. 19–33. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-40648-0 2

3. Badger, J., Rozier, K.Y. (eds.): NFM 2014. LNCS, vol. 8430. Springer, Heidelberg
(2014)

4. Badger, J., Rozier, K.Y.: Panel: future directions of specifications for formal meth-
ods. In: Badger, J., Rozier, K.Y. (eds.) NFM. LNCS, vol. 8430, pp. XX-XXI.
Springer, May 2014

5. Badger, J., Throop, D., Claunch, C.: Vared: verification and analysis of require-
ments and early designs. In: Requirements Engineering, pp. 325–326. IEEE (2014)

6. Barnat, J., Bauch, P., Beneš, N., Brim, L., Beran, J., Kratochv́ıla, T.: Analysing
sanity of requirements for avionics systems. Formal Aspects Comput. 28(1), 45–63
(2016)

7. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. Formal Methods Syst. Des. 18(2), 141–162 (2001)

http://www.ls.cs.cmu.edu/CPSVVIF-2016/index.html
http://www.ls.cs.cmu.edu/CPSVVIF-2016/index.html
http://laboratory.temporallogic.org
http://dx.doi.org/10.1007/978-3-319-40648-0_2
http://dx.doi.org/10.1007/978-3-319-40648-0_2

24 K.Y. Rozier

8. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY – a new requirements analysis tool with syn-
thesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
425–429. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 37

9. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 45

10. Castillos, K.C., Dadeau, F., Julliand, J., Kanso, B., Taha, S.: A compositional
automata-based semantics for property patterns. In: Johnsen, E.B., Petre, L. (eds.)
IFM 2013. LNCS, vol. 7940, pp. 316–330. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38613-8 22

11. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A practical app-
roach to coverage in model checking. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, pp. 66–78. Springer, Heidelberg (2001). doi:10.1007/
3-540-44585-4 7

12. Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for
realizability. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 52–67. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78163-9 9

13. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: ISSTA, pp. 85–96. ACM (2010)

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP, pp. 7–15. ACM (1998)

15. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.Y.: A framework for
inherent vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp.
7–22. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01702-5 7

16. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: automated air traffic control design space exploration. In: Chaudhuri,
S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 3–22. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-41540-6 1

17. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: automated air traffic control design space exploration. Presentation:
https://es-static.fbk.eu/projects/nasa-aac/download/CAV2016 presentation.
pdf#21 (2016-07-22)

18. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and Bayesian Net-
work reasoners on-board FPGAs: flight-certifiable system health management for
embedded systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol.
8734, pp. 215–230. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3 18

19. Gheorghiu, M., Gurfinkel, A., Chechik, M.: VaqUoT: a tool for vacuity detection.
In: Posters & Research Tools Track, FM 2006 (2006)

20. Ghosh, S., Shankar, N., Lincoln, P., Elenius, D., Li, W., Steiener, W.: Automatic
Requirements Specification Extraction from Natural Language (ARSENAL). Tech-
nical report, DTIC Document (2014)

21. Gross, K.H., Fifarek, A.W., Hoffman, J.A.: Incremental formal methods based
design approach demonstrated on a coupled tanks control system. In: HASE, pp.
181–188. IEEE (2016)

22. Gundy-Burlet, K.: Validation and verification of LADEE models and software. In:
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition (2013)

23. Gurfinkel, A., Chechik, M.: Robust vacuity for branching temporal logic. ACM
Trans. Comput. Logic (TOCL) 13(1), 1 (2012)

http://dx.doi.org/10.1007/978-3-642-14295-6_37
http://dx.doi.org/10.1007/978-3-642-31424-7_45
http://dx.doi.org/10.1007/978-3-642-38613-8_22
http://dx.doi.org/10.1007/978-3-642-38613-8_22
http://dx.doi.org/10.1007/3-540-44585-4_7
http://dx.doi.org/10.1007/3-540-44585-4_7
http://dx.doi.org/10.1007/978-3-540-78163-9_9
http://dx.doi.org/10.1007/978-3-642-01702-5_7
http://dx.doi.org/10.1007/978-3-319-41540-6_1
https://es-static.fbk.eu/projects/nasa-aac/download/CAV2016_presentation.pdf#21
https://es-static.fbk.eu/projects/nasa-aac/download/CAV2016_presentation.pdf#21
http://dx.doi.org/10.1007/978-3-319-11164-3_18

Specification: The Biggest Bottleneck in Formal Methods and Autonomy 25

24. Heitmeyer, C., Jeffords, R., Labaw, B.: Automated consistency checking of require-
ments specifications. ACM Trans. Softw. Eng. Methodol. 5(3), 231–261 (1996)

25. Hoffman, J.A.: Utilizing assume guarantee contracts to construct verifiable
simulink model blocks. S5 (2015). http://mys5.org/Proceedings/2015/Day 1/
2015-S5-Day1 1255 Hoffman.pdf

26. Hoffman, J.A.: V&V of Autonomy: UxV Challenge Problem (UCP). S5 (2016).
http://mys5.org/Proceedings/2016/Day 3/2016-S5-Day3 0805 Hoffman.pdf

27. Jackson, C.: Face it: The engineering V is outdated (2014). https://www.linkedin.
com/pulse/20140721140340-5687591-face-it-the-engineering-v-is-outdated

28. Jafer, S., Chhaya, B., Durak, U., Gerlach, T.: Formal scenario definition language
for aviation: aircraft landing case study. In: AIAA MST (2016)

29. Könighofer, R., Hofferek, G., Bloem, R.: Debugging unrealizable specifications with
model-based diagnosis. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.)
HVC 2010. LNCS, vol. 6504, pp. 29–45. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19583-9 8

30. Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006).
doi:10.1007/11817949 3

31. Kupferman, O., Vardi, M.: Vacuity detection in temporal model checking. J. Softw.
Tools Technol. Transf. (STTT) 4(2), 224–233 (2003)

32. Kurshan, R.: FormalCheck User’s Manual. Cadence Design, Inc. (1998)
33. Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTL satisfiability checking revisited.

In: TIME, pp. 91–98. IEEE (2013)
34. Li, J., Zhu, S., Pu, G., Vardi, M.Y.: SAT-based explicit LTL reasoning. In: Piter-

man, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 209–224. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-26287-1 13

35. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: MEM-
OCODE, pp. 43–50. IEEE (2011)

36. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer Science & Business Media, New York (2012)

37. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing dif-
ferent functional allocations in automated air traffic control design. In: FMCAD.
IEEE/ACM (2015)

38. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: monitoring embedded
systems. Innov. Syst. Softw. Eng. 9(4), 235–255 (2013)

39. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). doi:10.1007/11609773 24

40. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190 (1989)

41. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). doi:10.1007/978-3-642-54862-8 24

42. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. arXiv preprint
arXiv:1004.1001 (2010)

43. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73370-6 11

44. Rozier, K., Vardi, M.: LTL satisfiability checking. Int. J. Softw. Tools Technol.
Transf. (STTT) 12(2), 123–137 (2010)

http://mys5.org/Proceedings/2015/Day_1/2015-S5-Day1_1255_Hoffman.pdf
http://mys5.org/Proceedings/2015/Day_1/2015-S5-Day1_1255_Hoffman.pdf
http://mys5.org/Proceedings/2016/Day_3/2016-S5-Day3_0805_Hoffman.pdf
https://www.linkedin.com/pulse/20140721140340-5687591-face-it-the-engineering-v-is-outdated
https://www.linkedin.com/pulse/20140721140340-5687591-face-it-the-engineering-v-is-outdated
http://dx.doi.org/10.1007/978-3-642-19583-9_8
http://dx.doi.org/10.1007/978-3-642-19583-9_8
http://dx.doi.org/10.1007/11817949_3
http://dx.doi.org/10.1007/978-3-319-26287-1_13
http://dx.doi.org/10.1007/11609773_24
http://dx.doi.org/10.1007/978-3-642-54862-8_24
http://arxiv.org/abs/1004.1001
http://dx.doi.org/10.1007/978-3-540-73370-6_11

26 K.Y. Rozier

45. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfia-
bility checking. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp.
417–431. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21437-0 31

46. RTCA: DO-178B: Software Considerations in Airborne Systems and Equipment
Certification (1992). http://www.rtca.org

47. RTCA: DO-254: Design assurance guidance for airborne electronic hardware, April
2000

48. RTCA: DO-178C/ED-12C: Software considerations in airborne systems and equip-
ment certification (2012). http://www.rtca.org

49. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 233–249. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23820-3 15

50. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime analysis with R2U2: a tool
exhibition report. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012,
pp. 504–509. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46982-9 35

51. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for Unmanned Aerial Systems. IJPHM 6(1), 1–27 (2015)

52. Vardi, M.Y.: From verification to synthesis. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 2–2. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87873-5 2

53. Whalen, M.W., Rayadurgam, S., Ghassabani, E., Murugesan, A., Sokolsky, O.,
Heimdahl, M.P., Lee, I.: Hierarchical multi-formalism proofs of cyber-physical sys-
tems. In: MEMOCODE, pp. 90–95. IEEE (2015)

54. Zeller, A.: Specifications for free. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 2–12. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20398-5 2

55. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. In: AVoCS. Electronic Com-
munications of the EASST, vol. 53 (2012)

56. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. SCP J. 96(3), 337–353 (2014)

57. Zhao, Y., Rozier, K.Y.: Probabilistic model checking for comparative analysis of
automated air traffic control systems. In: ICCAD, pp. 690–695. IEEE/ACM (2014)

http://dx.doi.org/10.1007/978-3-642-21437-0_31
http://www.rtca.org
http://www.rtca.org
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-319-46982-9_35
http://dx.doi.org/10.1007/978-3-540-87873-5_2
http://dx.doi.org/10.1007/978-3-540-87873-5_2
http://dx.doi.org/10.1007/978-3-642-20398-5_2

Order Reduction for Multi-core Interruptible
Operating Systems

Jonas Oberhauser(B)

Saarland University, Saarbrücken, Germany
jonas@wjpserver.cs.uni-saarland.de

Abstract. If one wishes to verify a program in high-level semantics, one
has to deal with the fact that the compiled code is run on an architecture
very different from the one the program was verified in. For example, one
unit of execution in the high-level language can be compiled to a block
consisting of multiple units of execution in the target architecture. Order
reduction is then the property that this block can indeed be considered
to be executed in a single step, i.e., that the behavior of the program
remains unchanged. Order reduction is dependent on certain properties
of the compiled code, e.g., that there is at most one linearization point
in each block. Conditions under which order reduction is possible have
been studied in depth for user programs, but not for operating systems.
Interruptible operating systems are particularly exciting because inter
processor interrupts can interrupt an operating system thread while it
has not yet completed a block of execution. In this paper, we show an
order reduction theorem for interruptible operating systems. Unlike most
order reduction theorems, all properties of the compiled code necessary
for order reduction can be verified on the order-reduced program. Thus,
one can verify high-level programs completely in the high-level semantics,
including the property that the behavior of the program is unchanged
when executed on a low-level machine. Furthermore, we make no assump-
tions about user code. We use a simple ownership annotation which can
be deduced mechanically and thus be used to find data races in programs.
The order reduction theorem presented here is strong in the sense that
multiple memory accesses can be part of a single block, as long as at
most one of them is racing.

1 Introduction

Programming in high-level languages is more efficient than programming in
assembly. The same is true for verifying the programs. However, programs are not
executed in their high-level semantics; they are executed in a low-level refinement
of their high-level semantics. This refinement adds additional computations, like
weak memory behaviors [SFC92,Obe16b] or more chaotic interleavings. That
these chaotic interleavings can always be sorted and cleaned up in such a way
that the behavior of the program is unchanged and corresponds to a behavior of
the original, high-level program is known as order reduction. This is obviously

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 27–45, 2016.
DOI: 10.1007/978-3-319-48869-1 3

28 J. Oberhauser

not always the case, an example being the well known parallel increment

i++ || i++,
which in an order-reduced computation must increment twice, but once refined
becomes

t = i.load(); i.store(t+1) || t = i.load(); i.store(t+1),

which might increment only once.
It is trivial to assume properties of all computations, e.g., left- or right-

commutativity of steps, to show that all computations correspond to an order-
reduced computation [Lip75]. The disadvantage of this is that the properties can
not be verified on the high-level program, requiring a compilation and expensive
and tedious analysis of the compiled code in the refined semantics of the target
machine. Instead, one can assume (possibly stronger) properties only on the
order-reduced computations, and show that these properties are strong enough
to be transferred to arbitrary interleavings [SC06,Bau14]. In this setting, order
reduction can be made dependent only on properties of the high-level program,
and thus tools like VCC [CDH+09] can be used to pervasively verify programs.
One typical way to achieve this is with dynamic ownership of addresses, where
each unit of execution may access at most one of the variables which are shared
between multiple threads (in the above program, i is accessed twice by both
threads in a single unit of execution).

The situation becomes more dire when one wants to verify interruptible oper-
ating systems, where additional interleavings are not only created between cores,
but also inside of a core, namely when external interrupts can occur in the middle
of a compiled statement of the operating system. In this case, one has to reorder
steps of the interrupted thread with the interrupt handler on the same core,
which is using the same processor registers. This utterly breaks commutativity
(and thus all classical techniques such as partial order reduction); in fact, since
the steps of the interrupted thread are disabled while the interrupt handler is
running, those steps have to be reordered across the complete handler, which can
consist of multiple blocks of execution. We have found a set of conditions, which,
if satisfied in all order-reduced computations, are sufficient for order-reduction
in such a setting.

It is easy to come up with such rules in a high-level view:

Linearizability. At most one access to a shared variable (or register) per block
Transparency. The interrupt handlers restore the configuration of the inter-

rupted thread when they return control to them
Independence. Interrupt handlers do not use the register content of inter-

rupted threads and therefore are independent of the precise configuration in
which the interrupt occurred

Sadly, the high-level picture here turns out to be quite useless, because for-
malizations of these rules tend to be wrong1. As the saying goes, the devil is in
1 As an example, the conditions in Pentchev’s PhD thesis [Pen16] can not be satisfied

by any multi-core program.

Order Reduction for Multi-core Interruptible Operating Systems 29

the details. In this paper, we lay out several of the key challenges and give a more
in-depth solution to these challenges. For lack of space and for the sake of read-
ability, we defer the mathematical formalisms to the PhD thesis of the author
[Obe16a], and focus on the key insights, using more readable pseudo-formalism
where appropriate.

As a machine model we consider sequentially consistent2 multi-core proces-
sors with operating system support and inter processor interrupts, triggered by
memory-mapped programmable interrupt controllers. Our model supports inter-
locked memory operations such as fetch-and-add. It does not support memory
management units that are active while kernel code is running. We also do not
assume single-cycle fetch-and-execute, but our theorem can be easily used to
prove that single-cycle fetch-and-execute is simulated by the machine in the
absence of concurrent code modification3.

We add to this model an ownership discipline (Sect. 7) and explain how it
can be used to mimic ownership states known from the literature, one of which
is slightly too weak to be used in order reduction. We also quickly hint at how
ownership can be mechanically deduced from execution histories and thus used to
detect (low-level) data races (Sect. 9.1). The central new idea is to keep track of
registers and memory cells that contain data of interrupted threads, in particular
the register and interrupted thread that the data is taken from (Sect. 8). On an
exception return, that data has to be restored independently of its value, and it
may not be used for the computation of certain key functions, such as the set of
accessed addresses, whether a given point is a linearization point or an access to
a shared variable, etc.

We briefly discuss the theorem in Sect. 4, and its proof in Sect. 9.

2 Architecture

In this section we introduce some notation, the model of the machine, and its
semantics.

We consider a processor with a set of cores P . Each core i ∈ P has its own
processor registers and interrupt controller. The set of addresses A is partitioned
into

Processor Registers. APR,i such as an instruction buffer, program counters,
general purpose registers, special purpose registers, and the translation look-
aside buffer. We assume for each processor a binary register that distinguishes
between interruptible mode (where hardware interrupt requests will trigger a
jump to the interrupt service routine, jisr) and non-interruptible mode (where

2 For some architectures, such as TSO, it is possible to apply a reduction theorem
that first reduces to a sequentially consistent machine, and then apply the theorem
in this paper, to obtain a sequentially consistent C level.

3 Well-synchronized code modification in general is necessary (e.g., for page fault han-
dlers). It is also difficult, and not supported by any other order reduction theorem
to the best of our knowledge.

30 J. Oberhauser

hardware interrupt requests are stored in the APIC until a) cleared or b) the
processor returns to interruptible mode)

Inti ∈ APR,i.

Interrupt Controller Registers. AIC,i such as interrupt request registers
(IRR)4, which act as an inbox for interrupts, and the interrupt command
register (ICR), which is used to send interrupts to other processors.

Main Memory. AM which is a sequentially consistent memory component.

Our non-deterministic machine has an operational semantics that uses an
oracle input to distinguish between processor steps and interrupt controller steps,
and allows further distinctions (e.g., in case a translation look-aside buffer has
multiple matching translations, it can non-deterministically choose one of the
translations). A configuration c is a map from addresses to their values, and
a computation is a finite labeled sequence of configurations, where the labels
are oracle inputs and each configuration is obtained by applying the operational
transition function δ on previous configuration and the previous label (which is
one of the oracle inputs)

ct+1 = δ(ct, xt).

In our pseudo-formalization, we will often drop t and t + 1 and use f and f ′

for f t or f t+1. When an oracle input x signals a step of processor i, we write
that the current processor is processor i

cp = i.

3 Programming Language

For the examples in this paper, we use C-like pseudo code with mostly obvious
semantics, but with the following caveats.

Variables t and u are always thread-local, i.e., each thread has a local copy,
while other variables are always global (but not necessarily shared). The double
pipe || means parallel execution. An interleaving point is denoted by a semicolon
; and separates atomic units of execution in both the high-level and low-level
language, while a comma , separates atomic units of execution only in the low-
level language. In other words, a thread may only be scheduled out at a ; in
the high-level machine, but also at a , in the low-level semantics. Therefore, the
parallel increment of above could be written as

t = i.load(), i.store(t+1); || t = i.load(), i.store(t+1);,

making clear the atomicity of the load and increment in the high-level language
and the lack of this atomicity in the low-level language.
4 Real architectures also have in-service registers, which prevent low-priority interrupts

from overtaking high-priority interrupts. Those registers have no effect on the proof.

Order Reduction for Multi-core Interruptible Operating Systems 31

We use operations x.load() and x.store(v) to mark accesses to shared
variables, and a special construct for interlocked compare-exchange

y = x.cxg(cmp → data),

which changes x to data if it equals to cmp and leaves it unchanged otherwise,
loading into y the old value of x in either case.

Additionally, threads can access their own interruptability via IC.int.
To define the interrupt handler, we use a triangle � (read as “on interrupt”).

We leave context store and restore usually implicit, as in the following example

x.store(1); t = x.load(); � x = 0;.

We write down computations as a table, read from top to bottom, where each
column corresponds to a thread and each row to one step in the computation,
as in

t = i.load(),
t = i.load(),
i.store(t+1);

i.store(t+1);

In this form, a high-level computation stays in the same column until a ; is
reached, and thus the above must be a computation in the low-level machine.

4 Correctness Statement

Our theorem says that if all order-reduced computations of a program have an
ownership annotation that is safe, each low-level computation can be rearranged
into an order-reduced computation, changing only the value of dirty data and
data owned by threads that were not at an interleaving point. Let D be the
set of threads which are not at an interleaving point at the end of computation
(sequence) s. Our result can then be written formally as

Theorem 1

(∀s.Reduced(s) → ∃o.safe(s, o)) → ∀s.∃r ≡D(s) s.Reduced(r).

The equivalence relation ≡D does not preserve dirty data and locally writable
data of threads in D. The ownership annotation o is a sequence of ownership
states, where the ownership of a thread may only change at a linearization point
of that thread. Due to the existential quantification, one does not have to actually
decide the ownership change at the linearization point; threads can “look into
the future”, i.e., how the computation will go on, to decide which ownership to
acquire. This turns out to be extremely useful for mechanically deducing the
existence of an ownership annotation (cf. Sect. 9.1), and is the main reason we
keep ownership implicit in our programming language. For more information
about ownership, see Sect. 7.

32 J. Oberhauser

This theorem begs the question which types of properties are being reduced.
One answer is that given a global invariant I and thread local invariants Ii,n, one
can obtain that in the low-level computation the global invariant always holds
and the thread local invariants hold while the thread is at an interleaving point
if, assuming the global invariant and the local invariant of the current thread
at the beginning of a block, one can always assert the global invariant and the
local invariant of the current thread at the end of that block. Here, the global
invariant is a predicate over (a) the set of shared addresses, (b) the dirtiness of
these addresses, and (c) the value of the clean addresses, and the thread local
invariant is a predicate over (a) the set of addresses owned by that thread and
not write-owned by another thread, (b) the dirtiness of these addresses, and (c)
the value of the clean addresses.

It makes sense to add an additional safety criterion to ownership safety, which
is that there may be no ownership conflict, i.e., a read-owned or write-owned
address which is write-owned by another thread. It is easy to show that this
criterion is equivalent to the original criterion. The advantage of this restriction
is that the precondition of the local invariant — that the address not be write-
owned by another thread — becomes trivially satisfied, thus removing the need
to consider ownership of other threads for the local invariant.

5 Interrupt Levels and Threads

Whenever a thread is interrupted, a thread is created for the interrupt handler.
The interrupted thread is scheduled out and the interrupting thread is sched-
uled in. This creates a stack of threads, where only the top thread is currently
executing on the core, and all lower threads are sleeping. The interrupt level is
the depth of this stack, and an interrupt level of zero corresponds to the user.
We do not allow thread migration, and an interrupt handler has to return to
the next lower interrupted thread. Therefore we can uniquely identify a thread
by its associated core i and its interrupt level n as the tuple i, n, and operating
system threads have an interrupt level highter than zero

OST = { i, n | n > 0 } .

The top-level thread is the thread with the highest interrupt level

top(i) = i, il(i).

Each step has a current thread, which normally is either the top-level thread
of the processor making the step, or the interrupt controller making the step.
The only exemption to this rule are jisr steps5, during which we already count
5 In the scope of this theorem, a jisr step in operating system mode only includes

hardware interrupts. Software interrupts in operating system mode, e.g., when using
a system call, do not increase the interrupt level or create a new thread and are
most certainly not guaranteed to occur at an interleaving point, although they may
technically cause a jump to the interrupt service routine.

Order Reduction for Multi-core Interruptible Operating Systems 33

the top-level thread as interrupted, and thus the current thread is the thread
one level above the top-level thread on the current processor

jisr → ct = top(cp) + 1.

When a thread returns, it has to restore the configuration (i.e., processor
registers) of the next lower thread. However, this is not actually possible on all
architectures. Certain special purpose registers are usually used by the hardware
to restore the others during exception return (eret), e.g., an exception program
counter register that restores the program counter. These registers themselves
can not be restored. We therefore distinguish between retrievable and irretriev-
able registers

AR,i � AI,i = APR,i.

On jisr, we put the current value of these registers on top of a (processor-
local) stack that we call register stack

jisr → rs′(ct − 1) = c
∣
∣
AR,cp

.

One may now wish to define transparency as “on eret, all retrievable registers
are restored”, but this is incorrect. To show why this is the case, consider a
program where only one of the interleaving points is in interruptible mode. If
we would use a condition like the above, it would be safe (but not correct) to
always restore the configuration at that interleaving point.

IC.int = 1; x++, IC.int = 0; � restore before x++;

Note that the only order-reduced computation in which the interrupt handler
occurs is the following one:

IC.int = 1;
� restore before x++;
x++,
IC.int = 0;

In this computation, restoring before x++ is what we might call “accidentally”
correct. The following low-level computation, in which x is incremented twice,
makes the problem apparent

IC.int = 1;
x++,
� restore before x++;
x++,
IC.int = 0;

We will need to introduce additional technology (in Sect. 8) before we can
give an acceptable, complete solution.

34 J. Oberhauser

6 Shared Steps

In order to count the number of accesses to shared variables in our theorem, we
require that programmers mark those accesses. This is not an additional burden
on the programmer, as languages such as6 C and C++ (atomic accesses), D
(shared), Java (volatile), etc., already have keywords or operators for this, and
provide little (Java) or no (C, C++) guarantees on the behavior of a program
where the markings are incomplete7. The decision has to be made before reading
from memory, even in case of an interlocked operation with a conditional write
where only the write step accesses a shared variable.

In addition to memory accesses marked by the programmer, we consider as
shared all jisr steps and all exception return steps

sh ≡ jisr ∨ eret ∨ marked.

These shared steps are the linearization points in our theorem. Already in
our theorem for finite computations, we require that after a thread has reached
a linearization point, it can always reach a linearization point in a finite number
of steps, i.e., when we have committed to an action, we can also complete it.
Consider the following problematic program

x.store(1), while(1); || t = x.cxg(1 → 2);

with the following problematic computation

x.store(1),
t = x.cxg(1 → 2);

This computation can not be order-reduced; neither instruction can be
dropped or moved, because that would change the value of x, but we can also
not insert steps to reach an interleaving point for the thread on the left hand
side. A notable coincidence is that at least in the C and C++ languages, side
effect-free, non-terminating loops already have undefined behavior (cf. [Boe]);
whereas the rationale there is to allow for certain compiler optimizations, here
it has more fundamental reasons.

7 Ownership Annotation

Rather than having a fixed classification of variables as shared or local (e.g.,
Java), the programmer can decide at each memory access whether the accessed
variables are shared or not; in other words, it is possible to think of the access
as being shared or local, rather than the variable. The access has to be shared
in case it is racing, i.e., there is a concurrent access to the same object, and at

6 Languages which do not have such a feature usually disallow shared state altogether,
e.g., Erlang or Go.

7 Indubitably for weak memory and optimizations, but also for order reduction.

Order Reduction for Multi-core Interruptible Operating Systems 35

least one of them is attempting to modify the object. A naive way to formalize
this simply looks at steps t and t + 1 (cf. [Obe16b]). This does not work for an
order reduction theorem, as the following example shows.

t = 0, x = t, t = 1; || u = x;

Recall that we only check our conditions in order reduced schedules, i.e., one
of the following two.

t = 0,
x = t,
t = 1;

u = x;

Or, when the thread on the right hand side makes the first step,

u = x;
t = 0,
x = t,
t = 1;

The obvious data race does not manifest in either of these two computations,
and the naive formalization is not sound. Instead, we use dynamic ownership to
distinguish between shared and local accesses. We have for each thread read-
owned and write-owned addresses. Intuitively, a thread can locally (i.e., non-
shared) access what it owns, and can only access what nobody else owns. The
only exception to this rule are read-owned addresses, which can be read by other
threads.

We define the set of all ownership sets by

O = { (r, w) | r, w ⊆ AM } .

We keep track of these addresses in a function

o(i, n) ∈ O.

Users do not have ownership, and so we hardcode

o(i, 0) = (∅, ∅).

Ownership may only change during a shared step, and only of the current
thread

sh ∧ i, n = ct ∨ o′(i, n) = o(i, n).

It is now clear why the above program is unsafe: both threads would need to
own x at some point, but due to the lack of shared steps, the thread that makes
the first access to x can not give away the ownership before the second thread
accesses x, causing an ownership violation.

36 J. Oberhauser

However, this ownership does not identify all accesses to shared variables,
because some processor registers are shared between the interrupt handler and
the interrupted thread. One important example is the interruptible mode regis-
ter, which is obviously used during the jisr step — which belongs to the interrupt
handler — to determine that the interrupt occurred in the first place. We there-
fore consider a subset of local processor registers

ALPR,i ⊆ APR,i.

The interruptible mode register is not local

Inti �∈ ALPR,i.

Let read and written be the set of addresses read and written in the step. A
step is ownership-safe if all of the following four conditions are met:

– A local step only reads read-owned data and local and retrievable processor
registers:

¬sh → read ⊆ O(ct).r ∪ ALPR,i ∪ AR,i.

– A local step only writes to write-owned data and local processor registers:

¬sh → written ⊆ c.O(ct(c, x)).w ∪ ALPR,i.

– Write-owned data is read only by the owner:

read ∩ O(i, n).w �= ∅ → ct = i, n.

– Owned data is written to only by the owner:

written ∩ (O(i, n).w ∪ O(i, n).r) �= ∅ → ct = i, n.

7.1 Mimicking Address-Based Ownership

In the literature [Bau14,Pen16,CL98] ownership is usually defined as address-
based, i.e., by assigning to each address a state. We describe quickly how typical
states can be simulated in our model.

Read-Only: A read-only address is one that can not be written to and may thus
be accessed (or fetched) locally. In our model this is the case for addresses
which are read-owned by all threads that wish to access it. Note that this
change is necessary to obtain dynamic read-only addresses, which is useful,
e.g., for readers-writer locks or swapping in code pages of the kernel; in our
model, an address ceases to be read-only only when all threads agree that it
is writable and relinquish read-ownership. For address-based ownership, one
thread may change the ownership of an address without the permission of
other threads, which is not sound with respect to order reduction. Consider
the following readers-writer lock x which protects y, but due to the illusion
of atomicity it seems sound to read from y one more time after releasing x.

Order Reduction for Multi-core Interruptible Operating Systems 37

x.store(IDLE), t = x.cxg(IDLE → LOCKED),
t = y; if (t = IDLE)

y = 1;

In an order reduced computation, y will always be executed before the assign-
ment to it, but this is clearly not true in the low-level machine, so the program
is not order-reducible. If y is read-only at the beginning, the second thread
can change y to locally owned if it can acquire the lock, and the program
would be safe (but incorrect)8.
Another work-around is permission-based read-only, where each thread that
wants to access the address needs a permission; only when all permissions have
been released can the ownership state be changed. This is similar to fractional
permissions or permissions counting in separation logic (e.g., [HLMS13]), or
to VCC’s claims.

Shared: A shared address can be accessed by any thread, but only by using
shared accesses. All addresses in our model are shared unless they are owned.

Owned-Shared: An owned-shared address can be locally read and shared writ-
ten to by one thread and shared read by other threads. This is the same as
having the address read-owned by that thread and not owned by any other
thread.

Locally Owned: A locally owned address can be locally accessed by a single
thread. This is the same as obtaining both read- and write-ownership of that
address.

7.2 Ownership Transfer on Interrupt

Note that an interrupt handler knows that the interrupted thread is not running.
It is therefore tempting to allow the interrupt handler to acquire the ownership
of the interrupted thread. This is false, as the following example shows.

t = x, u = x; � x = 1;

In any order-reduced computation, the values of t and u will always be equal,
but this is clearly not the case if an interrupt is received in the middle of the
block. If we would allow the handler to “steal” the ownership of x, the program
would be safe (but incorrect), so this is not allowed.

The opposite, that the interrupt handler can not make use of the fact that
the interrupted thread is not running except for using the same registers, is also
not true. While the handler can not “steal” ownership, it can use the absence of
races by acquiring the ownership of variables which would be otherwise shared,
as in the following correct example:

t = x.load(); u = x.load(); � x = 1, x = 2;

Both in the high-level and the low-level machine, neither t nor u will ever equal 1.
8 At the time of writing, an implementation bug in VCC allows this program to be

verified.

38 J. Oberhauser

8 Dirty Data

Recall now the independence condition, i.e., that the handler should not use data
belonging to the interrupted thread. In order to restore the thread configuration
on eret - and in order to store it after jisr - the interrupt handler most certainly
will use the register content of the registers of the interrupted thread. Therefore,
one can not claim that the registers are not used, only that in some sense the
general shape of the execution is independent of the concrete values. This is
somewhat hard to make precise.

Note that shared registers only change at linearization points. Therefore the
exact position of the interrupt in the block does not matter (only whether
it occurs before or after the linearization point), so using these is actually
absolutely fine. For local registers, we introduce a concept we call dirtiness,
i.e., at the beginning of a jisr we flag all local registers of the interrupted thread
as dirty. As dirty data is being used, e.g., while storing the context, it makes
dirty everything that it comes into contact with. Note that a step may have out-
puts that depend on the dirty data (such as the target memory cell) and other
outputs which do not (such as the program counter, which is simply incremented
independently of the data), and one has to distinguish between these. We do this
by defining computational inputs of a function, which are all sets of addresses
that stabilize the output of that function, i.e., all configurations that agree on a
computational input of f also agree on the value of f

cin[f](c) =
{

A ⊆ A ∣
∣ ∀c′.c

∣
∣
A

= c′∣∣
A

→ f(c) = f(c′)
}

.

Independence. The following functions (and a few others) always have a clean
computational input

jisr, eret, read, written, sh

However, simply having a flag for each address is not enough. Firstly, recall
our issue with the transparency condition, where simply restoring the register
contents does not work. We keep track not only of the set of registers that
contain dirty data, but also the source register and source thread to which the
data belongs, with a function

d(a) ∈ { ⊥,� } ∪
⋃

i

(AR,i ∩ ALPR,i) × { i } × N,

with the following meaning

d(a) = ⊥: The address is clean.
d(a) = �: The address is dirty, but will not need to be restored (e.g., because it

didn’t come from a retrievable register or the thread has been restored). We
call this state generically dirty.

d(a) = (b, i, n): The address contains the data of retrievable register b ∈ AR,i of
interrupted thread i, n.

Order Reduction for Multi-core Interruptible Operating Systems 39

Secondly, note that if we would simply make all local registers dirty on a jisr,
we would destroy the previous information about what was dirty and what was
not. Therefore we use a dirt stack analogous to the register stack

jisr → ds′(ct − 1) = d
∣
∣
AR,i

.

We use a somewhat technical construction to keep track of dirtiness. In a
nutshell, we first figure out the current dirtiness d∗ (with a special case for jisr),
then we figure out what the new dirtiness would be if the step was a normal
step with dout, and finally we look at whether we have an eret, in which case we
restore the dirtiness using ds, or we have a normal step, in which case we use
dout. More formally, we choose

d∗(a) =

{

(a, ct − 1) jisr ∧ a ∈ ALPR,cp ∩ AR,cp

d(a) o.w.,

and then choose dout as follows.

If the new value of a can be computed using only clean data, it should become
clean

dout(a) = ⊥.

If the new value of a depends on exactly one dirty address din(a), we propa-
gate that dirtiness

dout(a) = d∗(din(a)).

If a can not be computed using clean data, but also there is no clear origin,
we default to generically dirty

dout(a) = �.

A retrievable register is correctly restored during eret if it is local and we
restore it to itself, or if it is shared and we restore the previous dirtiness

correctr(a) ≡ eret ∧ a ∈ AR,cp ∧ dout(a) =

{

ds(ct − 1, a) a ∈ AR,cp \ ALPR,cp

(a, ct − 1) o.w.

An address becomes stale if it is not correctly restored, but would contain
dirty data of the restored thread (e.g., the process control block typically becomes
stale during eret)

stale(a) ≡ eret ∧ dout(a) = (, ct − 1) ∧ ¬correctr(a).

Finally, we make the stale copies of a dirty address generically dirty and
restore the previous dirtiness of correctly restored addresses during eret, and
simply use the normal output in case of a normal step

d′(a) =

⎧

⎪⎨

⎪⎩

� stale(a)
ds(ct − 1, a) correctr(a)
dout(a) o.w.

.

40 J. Oberhauser

We can now formulate a transparency criterion for dirtiness.

Transparency (Dirty). The dirtiness of retrievable registers is correctly
restored on eret

eret ∧ a ∈ AR,cp → correctr(a).

This says nothing about the data yet, so we add the following two conditions
for shared registers, and for local registers, respectively.

Transparency (Shared). Shared retrievable registers are restored on eret

eret → c′∣∣
AR,cp\ALPR,cp

= rs(ct − 1).

Tracking. Retrievable, local data is always tracked correctly9

din(a) �= ⊥ → ∀v.δ(c[din(a): = v], x)(a) = v.

Dirtiness still has one problem, which is that for the interrupted thread,
things become dirty only at interleaving points. Consider the following example,
where t is a local, irretrievable register which becomes stale during eret

t = 1, IC.int = 1, x = t; � . . .

The access to t seems safe because t is a local processor register and it does
not appear to be dirty in any order-reduced computation. In reality, it may have
been destroyed by an interrupt that occurred right after enabling the interrupts,
and the program is not correct. Such accesses have to be forbidden.

Finally, one may never use dirty data to activate devices, in particular, the
interrupt controller. It appears to be fine to store dirty data in devices, e.g., a
hard disk, but we do not have a theorem (let alone proof) that handles such
cases.

9 Proof Sketch

On a high level, the proof of this theorem is as follows. We consider first incom-
plete block computations, which are computations where a thread is only sched-
uled in at an interleaving point (but, unlike in order-reduced computations, can
be scheduled out or interrupted at any time). We go now through such a com-
putation and, after each block that has not reached an interleaving point, either
drop the block completely (if it has not reached a linearization point) or com-
plete it (if it has reached a linearization point, in which case by assumption
9

c[a: = v](b) =

{
v a = b

b o.w.

.

Order Reduction for Multi-core Interruptible Operating Systems 41

there is a finite number of steps that bring it to an interleaving point). Since
we never change the number or order of shared steps, we do not change owner-
ship, interrupt levels, the IRR, the interruptibility, etc., of any of the threads.
Furthermore, we only change the value of owned addresses and local processor
registers. Only the latter are ever accessed by another thread (due to ownership),
and then only in case of a jisr step - but during jisr, all local processor registers
become dirty. Therefore, any changes in data used by a thread not in D(s) will
be correctly flagged as dirty, and therefore not used for the computation of any
of the functions that matter (independence).

Therefore we have the claim when s is an incomplete block computation. For
the case where s is not an incomplete block computation, we show that it can be
reordered to an equivalent incomplete block computation. The proof is a simple
proof by induction over the length of s, very similar to that in Baumann’s PhD
thesis [Bau14]: in the inductive step from s to s ◦ x, we consider the incomplete
block computation r ≡D(s) s given by the induction hypothesis. As in Baumann’s
proof, in case x is a local step or belongs to a new block, we simply put it into
its place and the proof is easy. Otherwise, we reorder the incomplete block that
x belongs to as far to the right as possible10. Note that since x is shared and
there is at most one shared access per block, that block must consist only of
local steps. Unlike in Baumann’s theorem, either reordering may include moving
the block or step across multiple interrupt handlers on the same core, but this
is not a big problem as it really corresponds to either

– first dropping an incomplete, local block, which is a technique we have already
used in the completion proof above and then inserting the local steps behind
the interrupt handler

– inserting a local step before an interrupt handler, and showing that the step
has the same effect before and after the handler, which follows from the track-
ing and transparency results

A detailed version of the proof is available alongside the mathematical for-
malization in the upcoming PhD thesis of the author.

9.1 Deducing Ownership Mechanically

The existence of an ownership o for each order reduced computation can be
checked mechanically in multiple ways. We construct a witness ownership o as
follows. We go through the computation from right to left, and for each thread
record all addresses accessed locally. When we reach an shared step, we acquire
exactly those addresses.

Checking whether o is safe is easy, as one only has to go through the enhanced
computation and check every single step. There are two cases.

Ownership o is safe: We have found a safe ownership.
10 Baumann’s proof has a small gap here. Baumann simply assumes the existence of

a computation with such a shape, without proving that it can be obtained through
this reordering.

42 J. Oberhauser

Ownership o is unsafe: In this case we have to show that no other ownership
is safe. Note that by definition, o is the minimal ownership that satisfies
the requirement that local accesses only access owned addresses, thus any
safe ownership must subsume o. Since o is not safe, there is a violation of the
requirement that owned addresses are not accessed by other threads. But that
requirement is also violated by any ownership that subsumes o. Consequently
there is no safe ownership.

One can thus use the results of the paper to check whether an annotation
of shared accesses and interleaving points is safe without having to give owner-
ship annotations. Most programming languages (e.g., C11) only annotate shared
accesses and interleaving points (the latter by the compiler), and it is unrealis-
tic to ask programmers to add an ownership annotation to their program. The
method is also complete resp. our model. If o is not safe, there clearly is a data
race in our model, as one can reorder the local access next to the violating access
of another thread. If there is a safe ownership, the computation — but not nec-
essarily the program — is data race free (i.e., this interleaving of shared accesses
can not cause a data race).

The disadvantage of this method is that the computation needs to be known
in advance. If this is not the case, one instead records for each thread an upper
and a lower bound for the ownership that the thread could have acquired at
its most recent shared step. The lower bound is increased by each local step of
that thread (since the thread should have acquired those addresses), and the
upper bound is decreased by each step (shared or local) of another thread. An
ownership exists exactly while the lower bound of each thread is subsumed by
its upper bound.

10 Conclusion, Related and Future Work

We have shown, using only assumptions on the operating system in order reduced
computations and realistic assumptions on the architecture, that for interruptible
operating systems arbitrary interleavings can be reordered into order reduced
computations. Thus many properties such as the shared annotation only have
to be verified on order-reduced computations, decreasing state space in model
checkers and burden on verifiers, as well as allowing verification work to be
done completely in the semantics of high-level languages. Our method also acts
as a complete data race detector in execution histories, and can be employed
by model checkers to find data races in programs, again checking only order-
reduced computations. Our theorem has many applications, e.g., for proving the
theoretical compilability of a given high-level (system programming) language;
for verifying (system) software with a more abstract interleaving model than
that provided by the hardware; for proving the correctness of pipelined multi-
core processors, in particular if memory accesses are involved in multiple pipeline
stages; etc.

Order Reduction for Multi-core Interruptible Operating Systems 43

For user level programs, there has been considerable work in theorems of
a similar type, most notably by Stoller and Cohen [SC06] and the PhD the-
sis of Baumann [Bau14] who used no assumptions on arbitrary interleavings.
All results in the literature to the best of our knowledge use ownership models
which can not be used to model dynamic read-only addresses, i.e., the set of
read-only addresses is static and fixed at compile time, which can not be used
to check page fault handlers and readers-writer locks. Furthermore, Baumann’s
model can not be used to model interrupt controllers, and in particular, reorder-
ing of an interrupted thread with its interrupt handler. Baumann’s work was
extended independently of this work to cover interrupt controllers in the PhD
thesis of Pentchev [Pen16], which however has several crucial shortcomings. Most
notably it has an unsatisfiable condition related to their version of the indepen-
dence condition (they require that the context be stored in a dedicated data
structure before registers are used, but at least one of the registers needs to be
used for computing the base address of that data structure), only covers a single
level of interrupts, and requires that each shared access immediately reaches an
interleaving point (rather than eventually). The latter is due to the fact that they
do not have a unified theorem for order reduction, but instead apply Baumann’s
theorem first (where interrupt handler and interrupted thread share ownership,
linearization points, and interleaving points), after which they show that the
interrupt handler itself can also be reordered with the interrupted threads. Nev-
ertheless, parts of the proof show similarities to our proof. In order to verify
a fully interruptible operating system, we introduced the interrupt stack, dirty
data, and the irretrievable registers, all of which to the best of our knowledge are
novel ideas. We are not aware of any other work on the topic of order reduction
for operating systems, let alone interruptible operating systems.

On the other hand, there has been work on verifying interruptible and pre-
emptive kernels, e.g., by Feng et al. [FSDG08], which gives a very elegant pro-
gram logic for verifying single-core preemptive operating systems without shared
state on an x86 level. We on the other hand give a theorem for verifying multi-
core operating systems with shared state and low-level concurrency on a C (or
even higher) level. The central idea of the Feng paper is to do an ownership
transfer when entering (or leaving) interruptible mode. Since the interruptible
mode register is shared, this is also possible in our theorem; in some sense, our
theorem is a generalization of Feng’s theorem, if one restricts the set of processors
to a singleton and prevents shared accesses except to shared processor registers.

There are several venues of improvement and several rewarding open ques-
tions related to our work. The first are guard conditions, which in real archi-
tectures prevent ill-formed computations (e.g., extending a translation which
does not exist). Guard conditions are useful because one does not have to show
safety for ill-formed computations. The second are MMUs which are active while
kernel code is running. MMUs are difficult because they behave both like a dif-
ferent processor - non-deterministic entities that make steps independent of the
program counter - and like a part of the processor, interacting directly via the
processor registers (such as the translation look-aside buffer or the page table

44 J. Oberhauser

origin register). In many real-world kernels, some parts of the kernel are run-
ning in translated mode, in which case the MMU may actually race the thread.
Furthermore, even if the kernel is not running in translated mode, a pipelined
processor may switch to kernel mode while a set-access or set-dirty-bit opera-
tion of the MMU has been started. Such memory operations can usually not be
aborted easily, and therefore the MMU may continue to make such steps even
in kernel mode. In either case, our theorem is not equipped to deal with MMUs
that run concurrently with kernel code (on which we want to apply the order-
reduction). We conjecture that they can be dealt with using monotonicity of the
translation look-aside buffer (as in Cohen Kovalev Chen [CCK14]), and specific
constraints on TLB operations such as flushing only occurring at the end of a
block. Thirdly, it may be necessary to swap out pages that contain dirty data
(at least in a pageable kernel), in which case dirty data is moved into a device
such as a disk. Our theorem does not tackle this problem, and although it should
be easy to give an extension to the theorem on a case-by-case basis, a generic
theorem that handles dirty data in storage devices sounds interesting and useful.
Fourthly, it has been brought to our attention that for real-time kernels, it may
be useful to return to any interrupt handler (e.g., one from another core), or even
switch to another interrupt handler voluntarily. Such an extension may require
some serious technical work, but would allow higher priority threads from other
processors to overtake the current low-priority interrupt easily. Finally, a deli-
cate theorem like the one presented in this paper would benefit greatly from a
mechanization of the proof.

References

[Bau14] Baumann, C.: Ownership-based order reduction and simulation in shared-
memory concurrent computer systems. Ph.D. thesis, Saarland University
(2014)

[Boe] Boehm, H.: N1528: why undefined behavior for infinite loops? http://www.
open-std.org/jtc1/sc22/wg14/www/docs/n1528.htm

[CCK14] Chen, G., Cohen, E., Kovalev, M.: Store buffer reduction with MMUs. In:
Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 117–132. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12154-3 8

[CDH+09] Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M.,
Santen, T., Schulte, W., Tobies, S.: VCC: a practical system for verify-
ing concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M.
(eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03359-9 2

[CL98] Cohen, E., Lamport, L.: Reduction in TLA. In: Sangiorgi, D., Simone, R.
(eds.) CONCUR 1998. LNCS, vol. 1466, pp. 317–331. Springer, Heidelberg
(1998). doi:10.1007/BFb0055631

[FSDG08] Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying low-level programs with
hardware interrupts and preemptive threads. In: ACM SIGPLAN Notices,
vol. 43, pp. 170–182. ACM (2008)

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1528.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1528.htm
http://dx.doi.org/10.1007/978-3-319-12154-3_8
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/BFb0055631

Order Reduction for Multi-core Interruptible Operating Systems 45

[HLMS13] Heule, S., Leino, K.R.M., Müller, P., Summers, A.J.: Abstract read per-
missions: fractional permissions without the fractions. In: Giacobazzi, R.,
Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 315–
334. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 20

[Lip75] Lipton, R.J.: Reduction: a method of proving properties of parallel pro-
grams. Commun. ACM 18(12), 717–721 (1975)

[Obe16a] Oberhauser, J.: Justifying the Semantics of High-Level Languages. Ph.D.
thesis, Saarland University, unpublished thesis (2016)

[Obe16b] Oberhauser, J.: A simpler reduction theorem for x86-TSO. In: Gurfinkel,
A., Seshia, S.A. (eds.) VSTTE 2015. LNCS, vol. 9593, pp. 142–164.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-29613-5 9

[Pen16] Pentchev, H.: Sound Semantics of a High-Level Language with Interproces-
sor Interrupts. Ph.D. thesis, Saarland University (2016)

[SC06] Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space
reduction. Form. Methods Syst. Des. 28(3), 263–289 (2006)

[SFC92] Sindhu, P.S., Frailong, J.-M., Cekleov, M.: Formal specification of
memory models. In: Dubois, M., Thakkar, S. (eds.) Scalable Shared
Memory Multiprocessors, pp. 25–41. Springer, US (1992). doi:10.1007/
978-1-4615-3604-8 2

http://dx.doi.org/10.1007/978-3-642-35873-9_20
http://dx.doi.org/10.1007/978-3-319-29613-5_9
http://dx.doi.org/10.1007/978-1-4615-3604-8_2
http://dx.doi.org/10.1007/978-1-4615-3604-8_2

Producing All Ideals of a Forest, Formally
(Verification Pearl)

Jean-Christophe Filliâtre1,2 and Mário Pereira1,2(B)

1 Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, 91405 Orsay, France
mpereira@lri.fr

2 INRIA Saclay – Île-de-France, 91893 Orsay, France

Abstract. In this paper we present the first formal proof of an imple-
mentation of Koda and Ruskey’s algorithm, an algorithm for generating
all ideals of a forest poset as a Gray code. One contribution of this work
is to exhibit the invariants of this algorithm, which proved to be chal-
lenging. We implemented, specified, and proved this algorithm using the
Why3 tool. This allowed us to employ a combination of several auto-
mated theorem provers to discharge most of the verification conditions,
and the Coq proof assistant for the remaining two.

1 Introduction

Givena forest,we consider theproblemof coloring its nodes inblackandwhite, such
that a white node only has white descendants. Consider for instance this forest:

It has exactly 15 colorings, which are the following:

Koda and Ruskey proposed a very nice algorithm [4] to generate all these
colorings.1 This is a Gray code algorithm, which only changes the color of one
node to move from one coloring to the next one. If we read the figure above
in a zig-zag way, we can notice that any coloring is indeed obtained from the
previous one by changing the color of exactly one node.

This research was partly supported by the Portuguese Foundation for Sciences
and Technology (grant FCT-SFRH/BD/99432/2014) and by the French National
Research Organization (project VOCAL ANR-15-CE25-008).

1 Such a coloring has a mathematical interpretation as an ideal of a forest poset.

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 46–55, 2016.
DOI: 10.1007/978-3-319-48869-1 4

Producing All Ideals of a Forest, Formally (Verification Pearl) 47

There are many ways to implement Koda-Ruskey’s algorithm. Koda and
Ruskey themselves give two implementations in their paper. Filliâtre and Pot-
tier propose several implementations based on higher-order functions and their
defunctionalization [1]. Knuth has two implementations in C, including one using
coroutines [3]. In particular, Knuth makes the following comment:

[...] I think it’s a worthwhile challenge for people who study the science
of computer programming to verify that these two implementations both
define the same sequence of bitstrings.

Before trying to verify Knuth’s intricate C code, a reasonable first step is to
work out the invariants of Koda-Ruskey’s algorithm on a simpler implementa-
tion. This is what we do in this paper, using the Why3 system. To our knowledge,
this is the first formal proof of this algorithm.

This paper is organized as follows. Section 2 describes our implementation
in Why3. Then Sect. 3 goes over the formal specification. Finally, Sect. 4 details
the most interesting parts of the proof. The Why3 source code and its proof can
be found at http://toccata.lri.fr/gallery/koda ruskey.en.html.

2 Implementation

Our implementation of Koda-Ruskey’s algorithm is given in Fig. 1. The syntax
of Why3 is close to that of OCaml, and we explain it whenever necessary. The
algebraic datatype of forests is declared on lines 1–3. A forest is either empty
(constructor E) or composed of an integer node together with two forests, namely
the forest of its children nodes and its sibling forest (constructor N). One can
notice that the type forest is isomorphic to a list of pairs of nodes and forests.

The type of colors is introduced on line 4. The entry point is function main

(lines 24–25). It takes an array bits as argument, to hold the coloring, and a
forest f0. It then calls a recursive function enum, which implements the core of
the algorithm.

Function enum operates over a stack of forests, using the predefined type list

of Why3 (with constructors Nil and Cons). On entry, function enum inspects the
stack. It will never be empty (line 9). If the stack is reduced to a single empty
forest, we have just discovered a new coloring. We are free to do whatever we
want with the contents of array bits (line 10), such as printing it, storing it, etc.
If the stack starts with an empty forest, we skip it (line 11). Otherwise, the top
of the stack contains a non-empty tree, with a root node i, a children forest f1,
and a sibling forest f2 (line 12). If node i is white (line 13), we first enumerate
the colorings of f2 together with the remaining st’ of the stack (line 14), then we
blacken node i (line 15), and finally we enumerate the colorings of f1, interleaving
them with the colorings of f2 and st’. If node i is black (line 17), the process
is reversed. First, we enumerate the colorings of f1 (line 18), so that all nodes
of f1 are white again at the end. Then we whiten node i (line 19). Finally, we
enumerate the colorings of f2 (line 20).

http://toccata.lri.fr/gallery/koda_ruskey.en.html

48 J.-C. Filliâtre and M. Pereira

Fig. 1. An implementation of Koda-Ruskey’s algorithm.

3 Specification

In this section we give function main a specification. The specification of function
enum is considered being part of the proof and thus only described in the next
section. The first requirement over function main is to have array bits large
enough to hold all the nodes of the forest. So we start by defining the number
of elements in a forest:

function size_forest (f: forest) : int = match f with

| E → 0

| N _ f1 f2 → 1 + size_forest f1 + size_forest f2

end

In Why3, the function keyword introduces a logical function, i.e., a function
with no side-effects and whose termination is checked automatically, and that
one can use in a specification context. We use size_forest to introduce the first
precondition of function main:

let main (bits: array color) (f0: forest)

requires { size_forest f0 = length bits } ...

Producing All Ideals of a Forest, Formally (Verification Pearl) 49

To execute correctly, the program also requires the forest to have nodes num-
bered with distinct integers that are also valid indexes in array bits. These
conditions are expressed, respectively, by predicates no_repeated_forest and
between_range_forest, as follows:

predicate no_repeated_forest (f: forest) = match f with

| E → true

| N i f1 f2 →
no_repeated_forest f1 && no_repeated_forest f2 &&

not (mem_forest i f1) && not (mem_forest i f2) &&

disjoint f1 f2

end

predicate between_range_forest (i j: int) (f: forest) =

forall n. mem_forest n f → i ≤ n < j

where mem_forest expresses that an element belongs to a forest:

predicate mem_forest (n: int) (f: forest) = match f with

| E → false

| N i f1 f2 → i = n || mem_forest n f1 || mem_forest n f2

end

and disjoint indicates that two trees have disjoint sets of nodes:

predicate disjoint (f1 f2: forest) =

forall x. mem_forest x f1 → mem_forest x f2 → false

To write more succinct specifications in the following, we combine predi-
cates between_range_forest and no_repeated_forest into a single predicate
valid_nums_forest, which is added to the precondition of main.

predicate valid_nums_forest (f: forest) (n: int) =

between_range_forest 0 n f && no_repeated_forest f

let main (bits: array color) (f0: forest)

requires { valid_nums_forest f0 (size_forest f0) } ...

We now turn to the part of the specification related to the enumeration of
colorings. A coloring is a map from nodes, which are integers, to values of type
color:

type coloring = map int color

At the beginning of the algorithm, all nodes of the forest must be colored white.
We introduce a predicate white_forest to say so.

predicate white_forest (f: forest) (c: coloring) = match f with

| E → true

| N i f1 f2 → c[i] = White && white_forest f1 c && white_forest f2 c

end

This predicate traverses the forest and checks that for each node i, its color c[i]

is White. As for functions, termination of recursive predicates is automatically
also checked. We can now use this predicate in the precondition of main:

50 J.-C. Filliâtre and M. Pereira

let main (bits: array color) (f0: forest)

requires { white_forest f0 bits.elts } ...

Here bits.elts is the map modeling the contents of array bits, which happens
to have type coloring.

Upon termination, the program must have enumerated all colorings, each
coloring being visited exactly once. Since the code is not storing the colorings,
we extend it with ghost code to do that. A ghost reference, visited, is declared
to hold the sequence of colorings enumerated so far:

val ghost visited: ref (seq coloring)

(Sequences are predefined in Why3 standard library.) The idea is that this ref-
erence is updated each time a new coloring is found, on line 10 of the program
in Fig. 1.

To express that main enumerates all colorings exactly once, we specify that
all colorings in visited are valid and pairwise distinct colorings, and that there
are the expected number of colorings. The latter is easily defined recursively:

function count_forest (f: forest) : int = match f with

| E → 1

| N _ f1 f2 → (1 + count_forest f1) * count_forest f2

end

Indeed, an empty forest has exactly one coloring (the empty coloring), and col-
orings of a non-empty forest are obtained by combining any coloring for the
first tree with any coloring for the remaining forest. Last, the coloring of a tree
is either all white (hence 1) or a black root with any coloring of the children
forest. The postcondition of main states that we have enumerated this number
of colorings:

let main (bits: array color) (f0: forest)

ensures { length !visited = count_forest f0 } ...

To be valid, a coloring must respect the constraint that if a node is colored
white then its children forest must be all white. The predicate valid_coloring

checks this constraint:

predicate valid_coloring (f: forest) (c: coloring) =

match f with

| E → true

| N i f1 f2 →
valid_coloring f2 c &&

match c[i] with

| White → white_forest f1 c

| Black → valid_coloring f1 c

end

end

Each time a white node is reached, we use predicate white_forest to ensure that
its children forest is white.

Producing All Ideals of a Forest, Formally (Verification Pearl) 51

Comparing two colorings requires to ignore values outside of the array range.
Thus we introduce predicate eq_coloring to state that two colorings coincide on
a given range 0..n− 1:

predicate eq_coloring (n: int) (c1 c2: coloring) =

forall i. 0 ≤ i < n → c1[i] = c2[i]

We are now in position to give the full code and specification of function main:

let main (bits: array color) (f0: forest)

requires { size_forest f0 = length bits }

requires { valid_nums_forest f0 (size_forest f0) }

requires { white_forest f0 bits.elts }

ensures { length !visited = count_forest f0 }

ensures { let n = length !visited in

forall j. 0 ≤ j < n →
valid_coloring f0 !visited[j] &&

forall k. 0 ≤ k < n → j �= k →
not (eq_coloring (length bits) !visited[j] !visited[k]) }

= visited := empty;

enum bits f0 (Cons f0 Nil)

Note that main assigns visited to the empty sequence before calling enum. The
forest f0 is also passed to enum as an extra, ghost argument.

4 Proof

As shown in Fig. 1, program main simply amounts to a call to enum. So, in order
to prove that main respects its specification we need to specify and prove correct
function enum. In this section we go over the most subtle points in the specifica-
tion and proof of enum. The complete specification for this function is shown in
Fig. 2.

Fig. 2. Specification of function enum.

52 J.-C. Filliâtre and M. Pereira

Function enum operates on a stack of forests, and we need to relate that stack
to the original forest f0 (which is passed to enum as a ghost argument). To do
so, we introduce a predicate sub st f c that relates a stack st, a forest f , and a
coloring c. It is defined with the following inference rules:

sub [f] f c

sub st f2 c

sub st (N i f1 f2) c

sub st f1 c c[i] = Black

sub (st ++ [f2]) (N i f1 f2) c

The first rule states that a stack containing a single forest f is a sub-forest
of f itself. ([f] is a notation for a one-element list.) The second rule states that
we can skip the left tree (i, f1) of a forest (N i f1 f2). The third rule states that
we can plunge into f1 provided c[i] is black and f2 appears at the end of the
stack. (Operator ++ is list concatenation). In Why3, such a set of inference rules
is defined as an inductive predicate:

inductive sub stack forest coloring =

| Sub_reflex:

forall f, c. sub (Cons f Nil) f c

| Sub_brother:

forall st i f1 f2 c.

sub st f2 c → sub st (N i f1 f2) c

| Sub_append:

forall st i f1 f2 c.

sub st f1 c → c[i] = Black →
sub (st ++ Cons f2 Nil) (N i f1 f2) c

We use this predicate in enum’s precondition, with the current stack, the initial
forest f0, and the current coloring (line 5). Together with preconditions in lines
2–4, we are already in position to prove safety of function enum. Indeed, nodes
found in the stack do belong to f0, according to sub, and thus are legal array
indices.

To specify what enum does, we need to characterize the final coloring in the
enumeration (e.g., the bottom right coloring in the 15 colorings on page 1).
Indeed, for the algorithm to work, it has to enumerate all colorings in a reverse
order when called on such a final coloring, ending on a white forest. Since the
algorithm is interleaving the colorings for the various trees of the forest, the
final configuration depends on the parity of these numbers of colorings. So we
first introduce a predicate even_forest f which means that forest f has an even
number of colorings:

predicate even_forest (f: forest) = match f with

| E → false

| N _ f1 f2 → not (even_forest f1) || even_forest f2

end

Though we could define it instead as count_forest being even, we prefer this
direct definition, which saves us some arithmetical reasoning. We can now define
what is the final coloring of a forest:

predicate final_forest (f: forest) (c: coloring) = match f with

Producing All Ideals of a Forest, Formally (Verification Pearl) 53

| E → true

| N i f1 f2 →
c[i] = Black && final_forest f1 c &&

if not (even_forest f1) then white_forest f2 c

else final_forest f2 c

end

Though we can see final_forest as the dual of white_forest, from the algorithm
point of view, it is clear that a final forest is not a black forest (as one can see
on page 1). Function enum requires all forests in the stack to be either white or
final. To say so, we introduce the following recursive predicate:

predicate any_stack (st: stack) (c: coloring) = match st with

| Nil → true

| Cons f st →
(white_forest f c || final_forest f c) && any_stack st c

end

It appears as a precondition on line 6.
From a big-step perspective, Koda-Ruskey’s algorithm is switching from a

white coloring to a final coloring and conversely. But enum is operating over a
stack of forests and thus requires us to be more precise. For the tree on top of
the stack, we are indeed switching states. However, for the next tree (its right
sibling in the same forest, if any, or the next tree in the stack, otherwise), the
state changes only if the first tree has an odd number of colorings. Otherwise,
it is kept unchanged. To account for this inversion, we introduce the following
predicate that relates a stack st and two colorings, namely the first coloring c1

and the last coloring c2:

predicate inverse (st: stack) (c1 c2: coloring) =

match st with

| Nil → true

| Cons f st’ →
(white_forest f c1 && final_forest f c2 ||

final_forest f c1 && white_forest f c2) &&

if even_forest f then

unchanged st’ c1 c2

else

inverse st’ c1 c2

end

Note that the coloring of the first forest in the stack is always inverted, while the
inversion of the remaining of the stack depends on the parity of the first forest.
The predicate unchanged st’ c1 c2 states that c1 and c2 coincide on any node
in the stack st’. The postcondition on line 9 in Fig. 2 relates the initial contents
of array bits (written old bits) to its final contents using predicate inverse.

We briefly go over the remaining clauses in the specification of enum. The
stack is never empty (line 2). The initial forest f0 has as many elements as
the bits array (line 3) and is correctly numbered from 0 (line 4). In both pre-
and post-state, the coloring must be valid w.r.t. f0 (lines 7 and 10). A frame

54 J.-C. Filliâtre and M. Pereira

postcondition ensures that any element outside of the stack is left unchanged
(line 8). We characterize the sequence of enumerated colorings with a predicate
stored_solutions (line 11), not shown here. It means that visited has been
augmented with new, valid, and pairwise distinct colorings, which coincide with
array bits outside of the stack nodes. Finally, we ensure termination with a
lexicographic variant (line 12). In all cases but one, the size of the stack is
decreasing, when defined as its total number of nodes, as follows:

function size_stack (st: stack) : int = match st with

| Nil → 0

| Cons f st → size_forest f + size_stack st

end

The last case is when the stack is of the form Cons E st’, for which we perform
a recursive call on st’. The number of nodes remains the same, but the stack is
structurally smaller, hence the lexicographic variant.

Proof Statistics. To make the proof of enum and main fully automatic, we intro-
duce 19 proof hints in the body of enum and 37 auxiliary lemmas. Many of these
lemmas require a proof by induction, which is done in Why3 by first applying
a dedicated transformation (interactively, from the Why3 IDE) and then calling
automated theorem provers. The table below summarizes the number of VCs
and the verification time.

Number of VCs Automatically proved Verification time

lemmas 102 100 (98 %) 14.72 s

enum 94 94 (100 %) 47.51 s

main 7 7 (100%) 0.07 s

Total 203 201 (99 %) 62.30 s

Two VCs are proved interactively using Coq. These proofs amount to 55 lines
of Coq tactics, including the why3 tactic that allows to automatically discharge
some Coq sub-goals using SMT solvers. All other VCs are proved automatically,
using a combination of theorem provers as follows:

Prover VCs proved

Alt-Ergo 1.01 139

CVC4 1.4 57

Z3 4.4.0 3

CVC3 2.4.1 1

Eprover 1.8-001 1

Producing All Ideals of a Forest, Formally (Verification Pearl) 55

Our proof process consists in calling Alt-Ergo first. When it does not succeed,
we switch to CVC4. And so on. So the numbers above should not be interpreted
as “Alt-Ergo discharges 139 VCs and CVC4 only 57”. Though we could call all
provers on all VCs, we choose not to do this in practice to save time. A more
detailed table is available on-line at http://toccata.lri.fr/gallery/koda ruskey.en.
html.

5 Conclusion

In this paper we presented a formal verification of an implementation of Koda-
Ruskey’s algorithm using Why3. To our knowledge, this is the first formal proof of
this algorithm. The main contribution of this paper is the definition of the algo-
rithm’s invariants (mostly, the definition of predicates any_stack and inverse).
We argue that such definitions could be readily reused in other proofs of this
algorithm, whatever the choice of implementation and of verification tool (e.g.,
Dafny [5], VeriFast [2], or Viper [6]).

We intend to improve our verification with a proof that count_forest is indeed
the right number of colorings. One way to do that would be to implement a naive
enumeration of all colorings, with an obvious soundness proof. We are also inter-
ested in verifying higher-order implementations of Koda-Ruskey’s algorithm,
such as the ones by Filliâtre and Pottier [1]. This means extending Why3 with
support for effectful higher-order functions.

Acknowledgments. We thank Claude Marché for his comments on earlier versions
of this paper.

References

1. Filliâtre, J.C., Pottier, F.: Producing all ideals of a forest, functionally. J. Funct.
Program. 13(5), 945–956 (2003)

2. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

3. Knuth, D.E.: An implementation of Koda and Ruskey’s algorithm (June 2001).
http://www-cs-staff.stanford.edu/knuth/programs.html

4. Koda, Y., Ruskey, F.: A gray code for the ideals of a forest poset. J. Algorithms 15,
324–340 (1993)

5. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

6. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure
for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 2

http://toccata.lri.fr/gallery/koda_ruskey.en.html
http://toccata.lri.fr/gallery/koda_ruskey.en.html
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://www-cs-staff.stanford.edu/knuth/programs.html
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2

Constructing Semantic Models of Programs
with the Software Analysis Workbench

Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman,
Dylan McNamee, and Aaron Tomb(B)

Galois, Inc., Portland, OR, USA
{rdockins,acfoltzer,jhendrix,huffman,dylan,atomb}@galois.com

Abstract. The Software Analysis Workbench (SAW) is a system for
translating programs into logical expressions, transforming these expres-
sions, and using external reasoning tools (such as SAT and SMT solvers)
to prove properties about them. In the implementation of this transla-
tion, SAW combines efficient symbolic execution techniques in a novel
way. It has been used most extensively to prove that implementations
of cryptographic algorithms are functionally equivalent to referencespec-
ifications, but can also be used to identify inputs to programs that will
lead to outputs with particular properties, and prove other properties
about programs. In this paper, we describe the structure of the SAW
system and present experimental results demonstrating the benefits of
its implementation techniques.

Keywords: Equivalence checking · Cryptography · SAT · SMT · Sym-
bolic execution · Verification

1 Introduction

The Software Analysis Workbench (SAW) is a suite of tools for transforming
programs into formal models — logical representations of program semantics —
and for subsequent analysis of those models. Such models are appropriate for
mechanized reasoning about the functional behavior of programs. For example,
SAW can be used to answer questions such as the following, with a high degree
of automation:

– Is a tricky optimized program equivalent to a trusted reference specification?
– What is an input that will lead to a given location in a program?
– What inputs will yield outputs satisfying a given predicate?
– Did a refactoring cause any semantic change?
– What is an input for which program A, written in language L produces a

different output than program B, written in language M?

SAW supports generating models from several source languages, including
Java Virtual Machine (JVM) bytecode, Low-Level Virtual Machine (LLVM) bit-
code, and Cryptol (a domain-specific language designed for the description of
c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 56–72, 2016.
DOI: 10.1007/978-3-319-48869-1 5

Constructing Semantic Models of Programs with the SAW 57

cryptographic algorithms [21]). As a result, SAW can generate models from C
and Java programs, along with other languages that target the JVM or LLVM.

The formal models are represented in a dependently-typed functional lan-
guage, SAWCore, that adopts the same general design as the internal represen-
tation used by proof assistants based on type theory.

The philosophy of SAW is to generate generic models of program seman-
tics, independent of a specific analysis task, and then act as a bridge between
programs and existing automated reasoning tools, allowing a wide range of trans-
formations along the way. The goal is to be able to perform mostly-automated
proofs about subtle code. SAW integrates existing tools with custom implemen-
tations of a number of known techniques, along with a variety of novel enhance-
ments to those techniques.

1.1 The Structure of SAW

Translation from programs to formal models in SAWCore takes one of several
forms. For programs that are originally written in functional style (such as Cryp-
tol programs), the process is essentially a straightforward compilation into SAW-
Core. For imperative programs, the current version of SAW depends primarily
on symbolic execution with path merging to generate functional terms. When
using symbolic execution, the resulting terms are “flat”; all iteration, whether
originating from loops or recursive functions, is fully unrolled. If full unrolling is
not possible, symbolic execution can simply fail to terminate.

Once programs have been translated to formal models, SAW supports trans-
forming, composing, and evaluating these models in a variety of ways. A built-in
rewriter can transform existing terms according to a chosen set of rewrite rules.

Transformation of formal models is generally used to prove properties about
programs. The SAW tools have been tuned to proving functional equivalence
between programs (and especially to the implementations of cryptographic algo-
rithms), though the tools are well-suited to proving any relationship between the
input and output of programs for which the model generation process succeeds.

The rewriting functionality built in to SAW can sometimes be used to com-
plete a proof on its own. For instance, when performing equivalence proofs
between similar programs written in different languages, the SAWCore terms
generated from those programs are often very similar and require only minor
transformations to become identical. Terms in SAWCore are represented as hash-
consed Directed Acyclic Graphs (DAGs), so syntactically equivalent terms are
immediately apparent, since they are guaranteed to be represented by the same
node in the graph of the term. For proofs that cannot be completed with rewrit-
ing alone, SAW provides a connection to various automated and semi-automated
external tools, including Boolean Satisfiability (SAT) and Satisfiability Modulo
Theories (SMT) solvers, to offload proof tasks.

To improve the assurance of rewrite-based proofs, rewrite rules can be proven
correct themselves. A rewrite rule can be built from an equality type in the logic,
allowing a term of that type to serve as a witness to the validity of the rule.

58 R. Dockins et al.

Fig. 1. Architecture of SAW. Source programs are translated to SAWCore, rewritten
according to user-defined rules, and sent to external theorem provers. The process is
controlled by programs in the SAWScript language.

In addition, SAT and SMT solvers can be used to prove the validity of rewrite rules.
In cases where assurance requirements are lower, SAW also allows unproven rules.

The translations between source languages, SAWCore, and external theorem
provers are illustrated in Fig. 1. The process of constructing models and orches-
trating external theorem provers is controlled by a scripting language called
SAWScript. It is a straightforward typed functional language with a large collec-
tion of built-in functions dedicated to extracting formal models from programs,
manipulating those models, and interacting with external theorem provers.

In particular, SAW provides a novel combination of efficient symbolic execu-
tion techniques: a shared representation of symbolic program states; eager path
merging; deeply-integrated rewriting; and deep integration with efficient bit-level
provers based on an And-Inverter Graph (AIG) representation of boolean func-
tions. These features allow it to construct complete semantic models of programs
that include heavy use of bit-level operations. The key novelty of SAW is in this
combination of techniques, and the primary contributions of our work include:

– Experimental results demonstrating the benefits of DAG term representations,
compositional symbolic execution, and the use of a wide variety of back-end
proof tools.

– Demonstration of symbolic execution for equivalence checking of cryptographic
algorithms across multiple languages.

– A tool made publicly available to the community.

2 SAWCore

The formal models generated by SAW are represented in an internal model-
ing language called SAWCore. This language was designed to be an efficient,

Constructing Semantic Models of Programs with the SAW 59

expressive representation for the semantics of programs originating in a variety
of source languages, including languages with sophisticated type systems (such
as Cryptol), general recursion (most languages), and complex memory models
(such as those appropriate for JVM, LLVM, and most machine languages).

SAWCore is a dependently typed functional language, similar to the core
calculi used by languages such as Coq [25], and Lean [22]. It supports user-
defined inductive data types, but also has built-in support for a variety of special
types such as Booleans, vectors (including extensive support for bit vectors),
tuples, and records, for efficient modeling of constructs from software, and for
compatibility with external tools that also have special support for these types.

Although SAWCore is intended primarily as an internal representation for
program semantics, it also has a concrete syntax with some conveniences to
simplify development of libraries of common operations and rewrite rules.

The ability to use high levels of abstraction in SAWCore makes models more
compact and easier to transform according to the properties of those abstrac-
tions. Ultimately, however, many of the program analyses performed by SAW can
largely be represented in first-order form (and the external provers we use gener-
ally operate on first-order formulas), so SAW includes back ends for translation
of a subset of SAWCore into first-order representations such as the (AIGER) and
SMT-Lib formats. Broadly speaking, the translatable subset consists of functions
with domains and ranges that are made entirely of finite bit vectors (potentially
aggregated into higher-level vectors, tuples, or records).

We are also considering adding the ability to export terms to Lean or Coq for
interactive proof. These will stay at a high level of abstraction and make use of
higher-order features, motivating a delay in lowering terms to first-order form.

3 Symbolic Execution

SAW makes heavy use of symbolic execution to translate imperative programs
to SAWCore. Unlike most implementations of symbolic execution, we ultimately
generate a single model of the symbolic state of a program, for all paths explored,
rather than generating a separate symbolic state for each path. This has the
advantage of capturing the entire semantics of a program, which is useful for
functional correctness verification. However, it has the disadvantage of leading
to more complex symbolic states, making it potentially less effective as a bug-
finding tool for identifying potential assertion violations on specific paths. There-
fore, SAW tends to be effective for programs that can be exhaustively explored
by symbolic execution, but less scalable for programs that cannot. Our approach
is similar to that used by bounded model checkers in this respect, though the
bounds are all provided by the program rather than the model checker. Termina-
tion is determined by the satisfiability of loop conditions as each loop iteration
executes, so symbolic execution will fail to terminate if the underlying program
does not terminate, or if it has a sufficiently complex termination condition.

60 R. Dockins et al.

3.1 Shared Terms

The implementation of SAWCore uses a DAG structure to represent terms, and
uses memoization to guarantee that identical subterms are represented with a
single graph node. In addition, the SAW system uses a single term node database
for all terms generated within a session. Therefore, when comparing two similar
programs, semantically identical portions of those programs are immediately
identified (even when the original programs are written in different languages).
As detailed in Sect. 7.2, this representation is critical for symbolic execution of
most cryptographic code, to avoid exponential blow-up. For non-cryptographic
code without extensive iteration, the DAG representation is less critical, but still
helpful for reducing model sizes.

3.2 Postdominator-Based Merging

To support generating a single model of program semantics, rather than a model
of the symbolic state of each individual path, the symbolic execution infrastruc-
ture in SAW uses path merging at every node in the control-flow graph that
immediately post-dominates more than one other node. To facilitate path merg-
ing, we translate the original program into a modified representation which
includes special symbolic execution instructions in place of the original branch
instructions. Each branch includes a merge point as well as an initial target, and
each path that executes starting from that branch instruction will pause when it
reaches the merge point. When all paths leading to a single merge target instruc-
tion have completed, the simulator merges their symbolic states. The result is
a single logical formula describing the final state of the program in terms of its
initial state (with free variables denoting arbitrary initial values).

3.3 Memory Models

One of the characteristics that tends to distinguish systems based on symbolic
execution from those based on, for instance, weakest preconditions or strongest
postconditions (the latter of which is roughly equivalent to symbolic execution),
is the use an implicit instead of an explicit memory model. In an implicit memory
model, the mapping between names and (potentially symbolic) values is tracked
directly by the symbolic execution system, perhaps as a map data structure in
the host language. Imperative updates, then, can be destructive updates to this
map instead of existentially-quantified equalities in the generated verification
conditions (as would be the case with strongest postconditions).

The ability to destructively update the internal simulator state can make
symbolic execution more efficient than strongest postcondition calculation for
typical imperative programs, and allows symbolic state expression to remain
quantifier-free. However, if imperative updates occur to symbolic addresses, the
size of verification conditions can explode with explicit case splitting expressions.
Therefore, the ability to trade off between implicit and explicit memory models
provides a flexibility advantage.

Constructing Semantic Models of Programs with the SAW 61

SAW currently has several implicit memory models, and does not implement
an explicit memory model. As future work, we are considering implementing
built-in data types in SAWCore that present similar functionality to the current
implicit memory models but in a way that would allow them to be directly
embedded into SAWCore terms, and therefore be used as part of an explicit
memory model. Such terms might be difficult for SMT solvers, but could allow
interactive provers to tackle more complex programs, rather than ruling out such
cases entirely.

3.4 Path Feasibility Checking

Like many symbolic execution systems, SAW supports (optional) path feasibility
checking. The process of executing a conditional branch instruction involves
adding the relevant branch condition to the accumulated path condition of each
path, and can include checking that condition for satisfiability.

For complex but satisfiable path conditions, full satisfiability checking can be
expensive, so SAW also supports another option: translating the path condition
term to AIG format and checking for syntactic equality with False. The trans-
lation to AIG form necessarily includes common simplifications such as constant
folding and beta reduction as well as simple representations of bit-level oper-
ations such as shifting and masking. In code that uses bit-level manipulation
heavily, this operation can frequently suffice to determine path feasibility. For
example, consider a program that iteratively performs a logical right shift on a
condition. For a bit vector of a fixed size, this operation will yield zero after a
fixed number of iterations, making the condition False (for a C or LLVM pro-
gram), and equivalence to False is often immediately apparent in AIG format.

3.5 Example

As a simple example of a task that SAW is ideally suited for, consider the
POSIX Find First Set (FFS) function, for finding the index of the first bit set
in a word. This function is implemented in many standard C library variants.
Some implementations iterate over the bits of the word, such as shown in the
left column of Fig. 2.

Other implementations avoid loops by masking off bits of the word in chunks,
such as shown in the right column of Fig. 2. These two functions compute the
same result using dramatically different techniques.

SAW can translate each of these programs to a formal model using symbolic
execution and prove the models equivalent with a SAT solver in a fraction of a
second (using the short script that appears in Sect. 5).

62 R. Dockins et al.

Fig. 2. Reference and efficient implementations of the FFS algorithm which compute
the same result using different techniques.

4 Compositional Symbolic Execution

For functional languages, symbolic execution is naturally compositional. Sym-
bolic execution essentially amounts to a non-standard reduction strategy, and
any application expression with a name on the left-hand side can be either inlined
or treated as uninterpreted.

For imperative languages, the problem is trickier. We would like to treat
the target of a function call abstractly, referring to it with an uninterpreted
function symbol in our logic. It would also be convenient to provide only some
facts about that function, rather than a complete definition. However, doing
this automatically is tricky in an imperative setting with an implicit memory
model: although treating an imperative program as a pure function can often
be straightforward when its inputs and outputs are known, it can in general be
undecidable to determine those inputs and outputs automatically.

Therefore, our strategy to compositional verification is to allow users to pro-
vide descriptions of the inputs and outputs of a procedure in the imperative
language, and then describe the logical function that transforms those inputs
to outputs. This function can be an arbitrary expression, including, if desired,
uninterpreted function symbols.

Given such a description, we can do two things. We can symbolically execute
the procedure being described, given arbitrary contents of the inputs, to derive
a term denoting the symbolic values of the outputs. We can then (attempt to)
prove that this resulting term satisfies any property we desire.

Alternatively, we can use the same description of a procedure during the
symbolic execution of one of its callers. When the symbolic execution engine
encounters a function call, it can simply apply the provided expression to the
appropriate (symbolic) values of the state elements that form its inputs, and
store the resulting term in the portion of the simulator state corresponding to
its outputs. Thus, the symbolic execution engine can process procedure calls

Constructing Semantic Models of Programs with the SAW 63

without examining the callee, and may (as one option) simply use an uninter-
preted function to describe the semantics of the callee.

A more general approach is also possible: the semantics of a procedure can
be represented by a function that takes in all of that procedure’s arguments
plus the current heap and returns the procedure’s return value plus a new heap.
This allows automated composition, but trades off the efficiency possible with an
implicit representation of the heap. For programs that use linked data structures
or unbounded memory allocation, however, this approach would be effective in
cases where the current one is not. We plan to explore this approach more in
future work.

5 SAWScript

The process of model generation and transformation in SAW, and the interac-
tion with third-party proof tools, is coordinated by a scripting language called
SAWScript. The language is a simply-typed functional language, with an inter-
preter that can be used either in batch mode or through an interactive Read-
Evaluate-Print Loop (REPL).

Many of the built-in functions in SAWScript have externally-visible effects,
and these effectful commands are combined with a monad-like construct.
Unlike other languages with this approach to combining effectful computations,
SAWScript has no facility for user-defined monads, a decision we made to reduce
cognitive load. To the SAWScript user, the types of effectful commands simply
restrict their use to specific contexts.

One central built-in type in SAWScript is Term, representing a SAWCore
term. Most built-in functions produce, modify, or consume Term values. From
the SAWScript point of view, Term is a single type, but each Term also has a
SAWCore type internally. Each Term is type-checked according to the SAWCore
type system as it is constructed, but the internal type of a Term can change
without the underlying SAWScript program changing if the structure of the
program under analysis changes.

SAWScript also has a tight connection with Cryptol, a language originally
developed for the high-level description of cryptographic algorithms, but which
is also very convenient for description of any algorithm that operates on fixed-
size bit vectors. Cryptol syntax provides a convenient way to construct SAW-
Core terms that provides type inference and has less syntactic overhead than
SAWCore. Existing SAWCore terms can be used in subsequent Cryptol expres-
sions, allowing Cryptol to be used as convenient “glue” around SAWCore terms
extracted automatically from programs.

A variety of commands exist for extracting Term objects from imperative
programs. The simplest work only on a limited set of programs but are com-
pletely automatic, translating an imperative function to a lambda abstraction
with a type isomorphic to that of the original program. An alternative interface
allows more control over symbolic execution, allowing the user to place either

64 R. Dockins et al.

symbolic or concrete values into the program state, symbolically execute a func-
tion, and then read out components of the final state. The third interface allows
for compositional reasoning following the approach described in Sect. 4.

Given a Term, SAWScript provides commands to perform rewriting with a
given set of rules, unfold abstract named subterms, perform beta reduction, or
export it in various external formats. Proving the validity of Term values is
a central activity in SAW, and a ProofScript monad provides a mechanism
for chaining simple tactics together to complete a proof. The final tactic in
a ProofScript can be trivial to indicate that the preceding tactics should
have reduced the term to True, or a tactic that invokes an external prover on
the residual term. If a proof fails (or if a Term is satisfiable when using the
sat command), counter-examples are presented in terms of variables from the
original program.

Figure 3 shows a short script that compares the FFS implementations from
Sect. 3.5 for equivalence. The llvm extract command translates a simple LLVM
function into SAWCore, and the abc primitive is a ProofScript value that
instructs the system to perform the proof automatically using ABC. Expressions
between double curly braces are in Cryptol syntax and automatically translated
to SAWCore terms.

Fig. 3. SAWScript code to compare FFS implementations.

6 Implementation

The SAW implementation brings together a symbolic execution system for the
JVM; a similar system for LLVM; an implementation of the SAWCore language,
including a rewriting engine; an interpreter for the SAWScript language; and
an interpreter for the Cryptol language. All of these components are written in
Haskell, and total around 70 k Lines of Code (LOC). In addition to this Haskell
code, SAW builds heavily on (and statically links with) the ABC system [5],
which consists of around 480 k LOC in C. ABC is used in particular to represent
AIG data structures.

The current implementation can export SAWCore models to ABC, other
tools supporting the AIGER format, SAT solvers supporting the DIMACS Con-
junctive Normal Form (CNF) format, model checkers that use sequential AIG
models, and SMT solvers that use the SMT-Lib2 format (including invocation
support for ABC, Boolector, CVC4, MathSAT, Yices, and Z3).

The entire SAW system is publicly available under the 3-clause BSD license:

– An overview and tutorial: http://saw.galois.com
– Complete source code: http://github.com/GaloisInc/saw-script

http://saw.galois.com
http://github.com/GaloisInc/saw-script

Constructing Semantic Models of Programs with the SAW 65

6.1 Current Limitations

Because the development of SAW has been driven by the goal of automatically
proving properties about cryptographic algorithms, the scope of programs it can
effectively model is currently restricted in several ways.

Symbolic Termination. Because symbolic execution is the key technique in SAW
for translating imperative programs into formal models, we can successfully gen-
erate formal models only in cases where symbolic execution terminates. Symbolic
execution is guaranteed to terminate when control flow does not depend on sym-
bolic values (and when the program terminates for concrete values), but it may
fail to terminate in other cases.

Memory Layout. The formal models generated by SAW must currently work
over data composed of fixed-size bit vectors (potentially aggregated into larger
data structures). Because of this, programs that operate over linked data struc-
tures such as lists or trees can only be analyzed for specific, fixed layouts.

Exceptions. Exceptions in both JVM and LLVM are largely unsupported. Code
under analysis can throw exceptions, as a way of indicating invalid paths, but
the symbolic execution engines do not track or invoke exception handlers.

Floating Point. The floating point instructions in JVM and LLVM are supported
only for concrete values.

7 Experiments

SAW provides a novel combination of symbolic execution techniques. Although
each has been at least proposed in prior work, the performance of each on con-
crete benchmarks is less well-understood. In this section, we describe how SAW
performs on several benchmarks that show the benefits of its design choices. In
all experiments, we set a time limit of 1500 s, and indicate times longer than this
limit with “T/O”.

7.1 Experimental Subjects

We have focused on using SAW for proofs about cryptographic algorithms and
implementations, so the chosen benchmarks come from that domain.

FFS Two C implementations of the FFS algorithm (shown earlier), taken
from standard C library implementations, compared for equivalence.
The implementations are each a single function, so the proof of equiv-
alence uses a monolithic strategy.

AES In-house implementations of the Advanced Encryption Standard
(AES) block cipher in C and Cryptol, compared for equivalence using
a monolithic proof strategy.

66 R. Dockins et al.

SHA-384 Three implementations of the SHA-384 hash function in C (from the
libgcrypt library), Java (from Bouncy Castle), and Cryptol, com-
pared for equivalence using both monolithic and compositional proof
strategies. This proof covers just the inner loop of the compression
function.

ZUC Implementations of two versions of the ZUC stream cipher, in C
(from the official reference implementation) and Cryptol, compared
for equivalence using both monolithic and compositional proof strate-
gies. Version 1.4 of the algorithm had a bug related to non-injectivity
of the key expansion function. We show a proof of the injectivity of
the key expansion routine in version 1.5, and an example of non-
injectivity in version 1.4 (by automatically producing two inputs for
which the key expansion function returns the same output).

ECDSA In-house implementations of the Elliptic Curve Digital Signature
Algorithm (ECDSA) over the NIST P-384 curve, written in Cryptol
and Java, compared for equivalence using a compositional strategy.
We also compare a subset of this implementation for equivalence
using both a monolithic and a compositional strategy.

All of the in-house implementations are in the examples directory of the
saw-script repository on GitHub cited in Sect. 6.

7.2 Shared Term Representation

Representing programs using shared (DAG) terms is one of the critical features
of SAW. Because symbolic execution unrolls loops, many similar or identical
subterms appear in the final program model. Table 1 shows how the shared and
unshared sizes of the verification conditions for the following proofs compare.
We also show the overall number of code lines, script lines, and total execution
time required for each proof. In some cases, such as the SHA-384 equivalence
proof, the improvement due to shared terms is simply a significant performance
benefit; in other cases, such as the ECDSA equivalence proof, it makes proofs
feasible that would otherwise be intractable.

Note that, although most of these benchmarks are equivalence proofs, two
are not. The ZUC 1.4 example finds a specific input for which the key expansion
function is not injective, and the ZUC 1.5 example shows that the improved key
expansion function has been made injective. Both of these cases work directly on
the C code without making use of a separate specification (other than a one-line
statement of the injectivity property of the key expansion function).

7.3 Compositional Proofs

We show the effects of compositional reasoning on several examples on Table 2.
Compositional reasoning can split one large proof into several smaller proofs.
Because each proof must be processed separately, compositional reasoning can

Constructing Semantic Models of Programs with the SAW 67

Table 1. Shared and unshared term sizes, execution times, and script sizes for bench-
marks. Proof times are for our original proof scripts, each of which may use several
different provers.

Benchmark Term Size Lines Proof time

Shared Unshared Code Script

FFS equivalence 6.48 × 102 9.90 × 103 18 5 0.012 s

ZUC equivalence 3.96 × 104 3.550 × 106 620 152 6.443 s

ZUC 1.4 bug 1.83 × 104 1.27 × 107 263 79 1.692 s

ZUC 1.5 injectivity 1.83 × 104 1.30 × 107 263 78 7.047 s

AES equivalence 6.67 × 105 2.09 × 1038 1301 55 901.923 s

SHA-384 equivalence 3.39 × 104 6.64 × 105 979 309 8.619 s

ECDSA equivalence 3.03 × 105 2.76 × 10273 4305 1526 311.009 s

Table 2. Execution time for compositional and monolithic equivalence checking. These
benchmarks use a single prover, rather than an optimized set, so the proof times differ
from those in Table 1.

Benchmark Prover Proof time

Compositional Monolithic

ZUC equivalence ABC 13.873 s 13.064 s

ZUC equivalence Z3 4.445 s 5.371 s

SHA-384 equivalence ABC T/O T/O

SHA-384 equivalence Z3 25.219 s 7.750 s

ECDSA equivalence (subset) ABC 27.220s 105.284 s

ECDSA equivalence (subset) Z3 75.385s T/O

make small equivalence proofs slower to complete (as in the SHA-384 exam-
ple). However, some proofs that are feasible monolithically are faster when done
compositionally (such as ZUC using Z3 and the ECDSA subset using ABC).
Most importantly, larger proofs tend to be intractable when done monolithically
(such as the ECDSA proof using Z3) but become tractable using compositional
reasoning. The full ECDSA proof mentioned in the previous section is composi-
tional. A monolithic attempt at the same proof runs out of memory before even
generating a theorem to prove, much less invoking a solver to discharge it.

7.4 Prover Comparison

We have included support for multiple provers within SAW because each tends
to be efficient on a different class of applications. In particular, the purely propo-
sitional ABC tends to be the most efficient for small cryptographic primitives
that primarily perform bit-level operations, whereas SMT solvers become more
efficient for larger programs in which compositional verification is necessary.

68 R. Dockins et al.

Table 3. Relative prover efficiency. These are the same benchmarks as in Table 1, but
with a single prover instead of potentially several. All proofs are monolithic, since ABC
and Picosat do not support uninterpreted functions.

Benchmark ABC CVC4 Yices Z3 Picosat

FFS equivalence 0.013 s 0.015 s 0.018 s 0.021 s 0.035 s

ZUC equivalence 14.451 s T/O 4.196 s 6.952 s 11.311 s

ZUC 1.4 bug 1.692 s 3.073 s 0.599 s 1.991 s 2.961 s

ZUC 1.5 injectivity 7.047 s T/O 2.051 s 1.679 s 4.629 s

AES equivalence 901.923 s T/O T/O T/O T/O

SHA-384 equivalence T/O T/O 56.368 s 8.813 s T/O

ECDSA equivalence (subset) 26.743 s T/O 42.925 s 74.591 s 35.470 s

Table 3 shows the time taken by each of five provers on several benchmarks.
For the AES benchmark, we used the equivalence checking interface to ABC to
compare two distinct circuits. For all other benchmarks, we generated a single
formula for the property to be checked.

8 Related Work

Symbolic execution has been used since at least the 1970s as a technique for
software analysis [17]. Many systems have used symbolic execution to prove
properties about programs, detect bugs, and guide test generation. Of these,
the KLEE tool [7] for LLVM is a representative example, and one of the most
robust. Unlike SAW, KLEE focuses on checking specific properties of individual
execution paths rather than generating complete models of programs that can
be used for a variety of purposes. Others have investigated state merging in
symbolic execution [15,19], but have used it more to improve the efficiency of
path-based analysis based on symbolic execution, rather than for generation of
complete semantic models.

The approach taken by bounded model checkers, such as CBMC [10] and
LLBMC [13], is in some ways more similar to that of SAW. Bounded model
checkers also tend to construct models of program semantics that are complete
up to a certain bound. Model checkers frequently focus on temporal properties
of concurrent systems, at the expense of efficiency when reasoning about com-
plex, non-concurrent systems. SAW supports precise, efficient reasoning about
sequential code but does not support concurrency or temporal properties.

Contract-based software verification tools such as Frama-C [18], VCC [11],
the Java Modeling Language (JML) tools [6], and KeY [1] are very flexible
with respect to the sorts of properties they can prove. They typically require
significantly more manual effort than SAW for problems supported by both
approaches (in the form of manual annotations or user-assisted proofs), but can
handle a wider range of properties.

Constructing Semantic Models of Programs with the SAW 69

Unlike all of the verifiers mentioned so far, the goal of SAW is to construct
a full model of the underlying program, separate from any specific verification
task, and then perform any desired analysis on that model. However, some other
tools have taken a similar approach to SAW. The most similar is Axe [24],
which also aims at comparing cryptographic algorithms for equivalence. Axe uses
ACL2 instead of type theory as its internal logic, and is not publicly available.
Myreen et al. [23] and Hardin et al. [16] have both described decompilation
of low-level imperative languages into logic, using techniques similar to those of
SAW, though neither has a similar degree of integration. In the narrower domain
of equivalence checking, LLVM-MD [26] used somewhat similar techniques for
LLVM translation validation.

Both Why3 [14] and Boogie [20] have very similar goals to SAWCore. They
are aimed at modeling the semantics of various source languages and provid-
ing easy connection to existing theorem provers. However, both languages use
imperative constructs in the modeling language to encode the imperative con-
structs from the source language. Some standard program analysis techniques
(e. g., dataflow analysis) are easier to implement on an imperative language,
but verification must generally be annotation-based, and use, for instance, an
approach like the weakest precondition calculus. Therefore, imperative modeling
languages are not well-suited to the rewrite-based philosophy that we embrace.
SAWCore tends to be well-suited to different classes of programs than Why3
or Boogie. Implementing a translator from either Why3 or Boogie to SAWCore
could allow for the best of both worlds.

In the specific application domain of cryptography, several proof tools exist.
One example is EasyCrypt [3], which allows high-level reasoning about cryp-
tographic algorithms in the abstract, but does not allow proofs about existing
concrete implementations.

In the realm of implementation verification, Appel recently proved the SHA-
256 code in OpenSSL [2] equivalent to a high-level specification using the Veri-
fied Software Toolchain (VST), which provides a strong reasoning path between
high-level cryptographic notions and concrete implementations written in C,
depending on only the relatively small trusted code base (TCB) of the Coq the-
orem prover. The TCB of SAW is much larger. However, using VST to show
equivalence between the abstract definition of SHA-256 and the C implementa-
tion required around 6,500 lines of manual proof, whereas equivalence proofs in
SAW tend to be mostly automated. Our hope is that, in the long run, it will be
possible to achieve a better balance between TCB size and automation, realizing
the best of both worlds.

Relatedly, the miTLS project has created an implementation of Transport
Layer Security TLS verified to be equivalent to a high-level specification [4]. The
proof concerns a custom implementation written in F* and the tools could not
be used to verify existing implementations in other languages.

The implementation of SAW described in this paper grew out of previous
work on verifying Cryptol programs [12] and is the second iteration of a system
briefly outlined in a previous extended abstract [8].

70 R. Dockins et al.

9 Conclusions and Future Work

We have shown that SAW can perform efficient equivalence checking and bug
finding on a variety of real-world examples written in several programming lan-
guages. It achieves this by combining a collection of known but not previously
integrated symbolic execution and program modeling techniques and connecting
to a wide range of state-of-the art theorem provers.

Currently, however, SAW is most applicable to a restricted class of programs:
those with finite, fixed input and output types that terminate under symbolic
execution. Our primary intended direction of future work is to relax the restric-
tions. To ease the restriction on termination under symbolic execution, we plan
to translate at least some iterative programs into explicit uses of fixpoint opera-
tions in the logic. This will allow us to generate models of more programs at the
expense of more difficult reasoning about the resulting models. To allow general
recursion in the context of our logic, while still allowing the logic to be used for
proofs, we are considering adopting the approach of Zombie [9].

To ease the restriction on finite, fixed input and output types, we plan to
extend SAW with the ability to generate formal models that include the heap
as an explicit parameter and result. In conjunction with explicit fixpoint opera-
tions, this change should allow SAW to generate models of essentially arbitrary
programs. It will, however, place a higher burden on the proof infrastructure
required to do analysis of those models. Inductive proofs and complex reasoning
about arrays will become much more important. Therefore, proofs about such
models may only be feasible with interactive or semi-interactive proof tools, and
we plan to explore emitting SAWCore models in the language of a proof assistant
such as Coq or Lean.

Acknowledgments. Much of the work on SAW and Cryptol has been funded by, and
design input was provided by the team at the NSA’s Trusted Systems Research Group,
including Brad Martin, Frank Taylor, Sean Weaver, and Jared Ziegler.

References

1. Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch, C., Grebing, S., Hähnle,
R., Hentschel, M., Herda, M., Klebanov, V., Mostowski, W., Scheben, C., Schmitt,
P.H., Ulbrich, M.: The KeY platform for verification and analysis of Java programs.
In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp.
55–71. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12154-3 4

2. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans.
Program. Lang. Syst. 37(2), 7:1–7:31 (2015)

3. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 5

4. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.: Implement-
ing TLS with verified cryptographic security. In: Proceedings of the 2013 IEEE
Symposium on Security and Privacy (SP), pp. 445–459, May 2013

http://dx.doi.org/10.1007/978-3-319-12154-3_4
http://dx.doi.org/10.1007/978-3-642-22792-9_5

Constructing Semantic Models of Programs with the SAW 71

5. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 5

6. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. Intl. J. Softw. Tools
Technol. Transf. 7(3), 212–232 (2005)

7. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI
2008), pp. 209–224. USENIX Association, Berkeley (2008)

8. Carter, K., Foltzer, A., Hendrix, J., Huffman, B., Tomb, A.: SAW: the software
analysis workbench. In: Proceedings of the 2013 ACM SIGAda Annual Conference
on High Integrity Language Technology (HILT 2013), pp. 15–18 (2013)

9. Casinghino, C., Sjöberg, V., Weirich, S.: Combining proofs and programs in a
dependently typed language. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POpPL 2014), pp. 33–45
(2014)

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

11. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 23–42. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 2

12. Erkök, L., Matthews, J.: Pragmatic equivalence and safety checking in Cryptol.
In: Proceedings of the 3rd Workshop on Programming Languages Meets Program
Verification (PLpPV 2009), pp. 73–82 (2009)

13. Falke, S., Merz, F., Sinz, C.: The bounded model checker LLBMC. In: Proceedings
of the 28th IEEE/ACM International Conference on Automated Software Engi-
neering, (ASE 2013), pp. 706–709. IEEE (2013)

14. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37036-6 8

15. Hansen, T., Schachte, P., Søndergaard, H.: State joining and splitting for the sym-
bolic execution of binaries. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 76–92. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04694-0 6

16. Hardin, D.S.: Reasoning about LLVM code using Codewalker. In: Proceedings of
the 13th International Workshop on the ACL2 Theorem Prover and Its Applica-
tions. Electronic Proceedings in Theoretical Computer Science, vol. 192, pp. 79–92,
October 2015

17. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

18. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

19. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2012), pp. 193–204 (2012)

20. Leino, K.R.M.: This is Boogie 2. Technical report, Microsoft Research (2008)
21. Lewis, J., Martin, B.: Cryptol: high assurance, retargetable crypto development

and validation. In: Proceedings of the IEEE Military Communications Conference
(MILCOM 2003), vol. 2, pp. 820–825, October 2003

http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-642-04694-0_6

72 R. Dockins et al.

22. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean the-
orem prover. In: Proceedings of the 25th International Conference on Automated
Deduction (CADE-25), Berlin, Germany (2015)

23. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic - improved. In:
Proceedings of the 12th International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2012), pp. 78–81. IEEE (2012)

24. Smith, E.W.: Axe: an automated formal equivalence checking tool for programs.
Ph.D. thesis, Stanford University (2011)

25. The Coq development team: The Coq Proof assistant reference manual. LogiCal
Project, version 8.0 (2004). http://coq.inria.fr

26. Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for LLVM. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2011), pp. 295–305
(2011)

http://coq.inria.fr

Bidirectional Grammars for Machine-Code
Decoding and Encoding

Gang Tan1(B) and Greg Morrisett2

1 Pennsylvania State University, State College, USA
gtan@cse.psu.edu

2 Cornell University, Ithaca, USA
jgm19@cornell.edu

Abstract. Binary analysis, which analyzes machine code, requires a
decoder for converting bits into abstract syntax of machine instructions.
Binary rewriting requires an encoder for converting instructions to bits.
We propose a domain-specific language that enables the specification
of both decoding and encoding in a single bidirectional grammar. With
dependent types, a bigrammar enables the extraction of an executable
decoder and encoder as well as a correctness proof showing their consis-
tency. The bigrammar DSL is embedded in Coq with machine-checked
proofs. We have used the bigrammar DSL to specify the decoding and
encoding of a subset of x86-32 that includes around 300 instructions.

1 Introduction

Much recent research has been devoted to binary analysis, which performs sta-
tic or dynamic analysis on machine code for purposes such as malware detec-
tion [5], vulnerability identification [14], and safety verification [16]. As a promi-
nent example, Google’s Native Client (NaCl [16]) statically checks whether a
piece of machine code respects a browser sandbox security policy, which pre-
vents buggy or malicious machine code from corrupting the Chrome browser’s
state, leaking information, or directly accessing system resources.

When analyzing machine code, a binary analysis has to start with a disas-
sembly step, which requires the decoding of bits into abstract syntax of machine
instructions. For some architectures, decoding is relatively trivial. But for an
architecture as rich as the x86, building a decoder is incredibly difficult, as it
has thousands of unique instructions, with variable lengths, variable numbers
of operands, a large selection of addressing modes, all of which can be prefixed
with a number of different byte sequences that change the semantics. Flipping
just one bit leads to a totally different instruction, and can invalidate the rest
of binary analysis.

In our previous work [10], we developed a Domain-Specific Language (DSL)
for constructing high-fidelity machine-code decoders. It allows the specification
of a machine-code decoder in a declarative grammar. The specification process
in the DSL is user friendly in that a user can take the decoding tables from an
architecture manual and use them to directly construct patterns in the decoder
c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 73–89, 2016.
DOI: 10.1007/978-3-319-48869-1 6

74 G. Tan and G. Morrisett

DSL. Furthermore, the decoder DSL comes with a denotational and operational
semantics, and a proof of adequacy for the two semantics. Finally, we can auto-
matically extract efficient recognizers and parsers from grammars in the DSL,
with a proof of correctness about the extraction process based on the semantics.

The inverse of machine-code decoding is encoding: going from the abstract
syntax of instructions to bits. Machine-code encoding is also important for some
applications. For instance, binary rewriting has often been used to enforce secu-
rity properties on untrusted code by inserting security checks before danger-
ous instructions [15]. After binary rewriting, the new code needs to be encoded
into bits. Following the spirit of the previous decoder DSL, the machine-code
encoding process should also be specified in some grammar with formal seman-
tics. More importantly, we should be able to show the consistency between the
decoder and the encoder: ideally, if we encode an instruction into bits and then
decode those bits, we should get the instruction back (and also the other way
around).

In this paper, we propose a DSL that allows the specification of both machine-
code encoding and decoding in the same bidirectional grammar. The DSL is
equipped with formal semantics. From a bidirectional grammar, we can extract
a decoder and an encoder, as well as a machine-checked consistency proof that
relates the decoder and encoder. Major contributions of the paper is as follows:

– We propose a bidirectional grammar (abbreviated as bigrammar) DSL that
allows simultaneous specification of decoding and encoding. Using dependent
types, it enables correctness by construction: if a bidirectional grammar in the
DSL can be type checked, then the extracted decoder and encoder must be
consistent. Our consistency definition takes into consideration that practical
parsers may lose information during parsing and may produce values in loose
semantic domains.

– We have used the bigrammar DSL to specify the decoding and encoding of
an x86-32 model, which demonstrates the practicality of our proposed DSL.
In this process we identified a dozen bugs in our previous x86 encoder and
decoder, which were written separately and without a correctness proof.

– The bigrammar DSL and its semantics are formally encoded in Coq [6] and
all proofs are machine-checked.

Machine decoding is an instance of parsing and encoding is an instance of
pretty-printing. There has been previous work in the Haskell community on uni-
fying parsing and pretty printing using invertible syntax [1,7,12]. In comparison,
since our DSL is embedded in Coq, consistency proofs between decoding and
encoding are explicitly represented as part of bigrammars and machine checked.
Previous work in Haskell relies on paper and pencil consistency proofs. Another
difference is on the consistency definition. Early work [1,7] required that parsers
and pretty-printers are complete inverses (i.e., they form bijections). Rendel and
Ostermann [12] argued that the bijection requirement is too strong in practice
and proposed a consistency definition based on partial isomorphisms. We further
simplify the requirement by eliminating equivalence relations in partial isomor-
phisms; details will be in Sect. 3.

Bidirectional Grammars for Machine-Code Decoding and Encoding 75

2 Background: The Decoder DSL

We next briefly describe the decoder DSL, upon which the bidirectional DSL
is based. The decoder DSL was developed as part of RockSalt [10], a machine-
code security verifier with a formal correctness proof mechanized in Coq. The
decoder language is embedded into Coq and lets users specify bit-level patterns
and associated semantic actions for transforming input strings of bits to outputs
such as abstract syntax. The pattern language is limited to regular expressions,
but the semantic actions are arbitrary Coq functions. The decoder language is
defined in terms of a small set of constructors given by the following type-indexed
datatype:

Inductive grammar : Type → Type :=
| Char : ch → grammar ch
| Eps : grammar unit
| Zero : ∀t, grammar t
| Cat : ∀t1 t2, grammar t1 → grammar t2 → grammar (t1 ∗ t2)
| Alt : ∀t1 t2, grammar t1 → grammar t2 → grammar (t1 + t2)
| Map : ∀t1 t2, (t1 → t2) → grammar t1 → grammar t2
| Star : ∀t, grammar t → grammar (list t)

A grammar is parameterized by ch, the type for input characters. For machine
decoders, the ch type contains bits 0 and 1. A value of type “grammar t” rep-
resents a relation between input strings and semantic values of type t. Alterna-
tively, we can think of the grammar as matching an input string and returning a
set of associated semantic values. Formally, the denotation of a grammar is the
least relation over strings and values satisfying the following equations:

[[Char c]] = {(c :: nil, c)}
[[Eps]] = {(nil, tt)}

[[Zero]] = ∅
[[Cat g1 g2]] = {((s1s2), (v1, v2)) | (si, vi) ∈ [[gi]]}
[[Alt g1 g2]] = {(s, inl v1) | (s, v1) ∈ [[g1]]} ∪ {(s, inr v2) | (s, v2) ∈ [[g2]]}

[[Map f g]] = {(s, f(v)) | (s, v) ∈ [[g]]}
[[Star g]] =[[Map (λ . nil) Eps]] ∪[[Map (::) (Cat g (Star g))]]

Grammar “Char c” matches strings containing only the character c, and
returns that character as the semantic value. Eps matches only the empty string
and returns tt (Coq’s unit value). Grammar Zero matches no strings and thus
returns no values. When g1 is a grammar that returns values of type t1 and g2
is a grammar that returns values of type t2, then “Alt g1 g2” matches a string s
if either g1 or g2 matches s; it returns values of the sum type t1 + t2. “Cat g1 g2”
matches a string if it can be broken into two pieces that match the grammars.
It returns a pair of the values computed by the grammars. Star matches zero
or more occurrences of a pattern, returning the result as a list.

Map is the constructor for semantic actions. When g is a grammar that returns
t1 values, and f is a function of type t1 → t2, then “Map f g” is the grammar

76 G. Tan and G. Morrisett

Fig. 1. Parsing specification for the INC instruction.

that matches the same set of strings as g, but transforms the outputs from t1
values to t2 values using f .

Figure 1 gives an example grammar for the x86 INC instruction. We use Coq’s
notation mechanism to make the grammar more readable. Next we list the def-
initions for the notation used.

g @ f := Map f g
g1 $ g2 := Cat g1 g2
literal [c1, . . . , cn] := (Char c1) $. . . $ (Char cn)
g1 $$ g2 := ((literal g1) $ g2)@ snd
g1 || g2 := (Alt g1 g2)@(λv. match v with inl v1 ⇒ v1 | inr v2 ⇒ v2 end)

Note that “g1 || g2” uses the union operation and assumes both g1 and g2 are of
type “grammar t” for some t. It throws away information about which branch is
taken.

At a high-level, the grammar in Fig. 1 specifies three alternatives that can
build an INC instruction. Each case includes a pattern specifying literal sequences
of bits (e.g., “1111”), followed by other components like anybit or reg that are
themselves grammars that compute values of an appropriate type. For example,
in the first case, we take the bit returned by anybit and the register returned by
reg and use them to build the abstract syntax for a version of the INC instruction
with a register operand.

The denotational semantics allows formal reasoning about grammars, but it
cannot be directly executed. The operational semantics of grammars is defined
using the notion of derivatives [4]. Informally, the derivative of a grammar g for
an input character c is a residual grammar that returns the same semantic values
as g and takes the same input strings except c. Using the notion of derivatives,
we can build a parsing function that takes input strings and builds appropri-
ate semantic values according to the grammar. We have also built a tool that
constructs an efficient, table-driven recognizer from a grammar. Details about
derivatives and table-driven recognizers can be found in our previous paper [10].

3 Relating Parsing and Pretty-Printing

A machine decoder is a special parser and a machine encoder is a special pretty
printer. In general, a parser accepts an input string s and constructs a semantic

Bidirectional Grammars for Machine-Code Decoding and Encoding 77

value v according to a grammar. A pretty printer goes in the reverse direction,
taking a semantic value v and printing a string s according to some grammar.
In this section, we discuss how parsers and pretty printers should be formally
related. We will first assume an unambiguous grammar g: that is, for a string
s, there is at most one v so that (s, v) ∈ [[g]]. In Sect. 5, we will present how to
generalize to ambiguous grammars.

Ideally, a parser and its corresponding pretty printer should form a bijec-
tion [1,7]: (i) if we parse some string s to get some semantic value v and then
run the pretty printer on v, we should get the same string s back, and (ii) if we
run the pretty printer on some v to get string s and then run the parser on s,
we should get value v back. While some simple parsers and pretty printers do
form bijections, most of them do not, because of the following two reasons.

Information loss during parsing. Parsing is often forgetful, losing information
in the input. A simplest example is that a source-code parser often forgets the
amount of white spaces in the AST produced by the parser. Another typical
example happens when the union operator (i.e., ||) is used during parsing. For
example, the INC grammar in Fig. 1 forgets which branch is taken because of the
uses of the union operator. Our x86 decoder grammar has many such uses.

Because information is lost in a typical parser, multiple input strings may
be parsed to the same semantic value. Therefore, for such a semantic value, the
pretty printer has to either list all possible input strings, or choose a particular
one, which may not be the same as the original input string. In this work, we take
the second option since listing all possible input strings can be challenging for
certain parsers (e.g., x86 has many bit-string encodings for the same instructions
and operands; enumerating all of them during encoding is troublesome at least).

Loose semantic domains. A parser produces semantic values in some domain.
For uniformity the semantic domain may include values that cannot be possible
parsing results. Here is a contrived example: a parser takes strings that represent
even numbers and converts them to values in the natural-number domain; the
result domain is loose as the parser cannot produce odd numbers. Our x86
decoder has many examples, especially with respect to instruction operands. In
the x86 syntax, operands can be immediates, registers, memory addresses, etc.;
an instruction can take zero or several operands. A two-operand instruction
cannot use memory addresses for both operands, but for uniformity our decoder
just uses the operand domain for both operands. Similarly, some instructions
cannot take all registers but only specific registers, but our decoder also uses the
operand domain for these instructions.

Some of these issues can be fixed by tightening semantic domains so that they
match exactly the set of possible parse results. While this is beneficial in some
cases, it would in general require the introduction of many refined semantic
domains, which would make the abstract syntax and the processing following
parsing messy. For the example of x86 operands, we would need to define extra
syntax for different groups of operands and, when we defined the semantics of

78 G. Tan and G. Morrisett

instructions, we would need to introduce many more interpretation functions for
those extra groups of operands.

The implication of loose semantic domains is that the pretty printer has to
be partial: it cannot convert all possible semantic values back to input strings.

Formalizing consistency between parsing and pretty printing. The following dia-
gram depicts the relationship between the domain of input strings and the output
semantic domain for a parser: because of information loss during parsing, mul-
tiple input strings can be parsed to the same semantic value; because of loose
semantic domains, some values may not be possible parsing results; finally, a
typical parser is partial and may reject some input strings during parsing.

With the above diagram in mind, we next formalize the properties we desire
from a parser and its corresponding pretty printer. Both the parser and the
pretty printer are parameterized by a grammar of type “bigrammar t”, which
stands for bidirectional grammars that produce semantic values of type t. We
will present the details of our bidirectional grammars in the next section; for now
we just discuss the desired properties about the parser and the pretty printer
that are derived from a bigrammar. These properties will be used to motivate
the design of bigrammars.

Formally, a parser turns an input string (as a list of chars) to a possible
value1 of type t, according to a grammar indexed by t. A pretty printer encodes
a semantic value in a possible string, according to a grammar.

parse : ∀t, (bigrammar t) → list ch → option t
pretty-print : ∀t, (bigrammar t) → t → option (list ch)

Two consistency properties that relate a parser and a pretty printer for the
same grammar g of type “bigrammar t” are as follows:

Definition 1. (Consistency between parsers and pretty printers)

Prop1: If parse g s = Some v, then exists s′ so that pretty-print g v = Some s′.
Prop2: If pretty-print g v = Some s, then parse g s = Some v.

Property 1 says that if a parser turns an input string s to a semantic value
v, then the pretty printer should encode that value into some input string s′;
1 Our parser implementation actually returns a list of values during parsing, for sim-
plicity of presentation we ignore that aspect in this paper.

Bidirectional Grammars for Machine-Code Decoding and Encoding 79

however, s and s′ may be different—this is to accommodate the situation when
multiple input strings may correspond to the same semantic value. The property
allows the pretty printer to choose one of them (the pretty printer cannot just
pick an arbitrary string that is unrelated to v because of property 2).

Property 2 says that if the pretty printer encodes value v in string s, then
the parser should parse s into the same value. Note that it places no restriction
when the pretty printer cannot invert v—this is to accommodate a loose semantic
domain in which some semantic values are not possible parsing results.

Rendel and Ostermann [12] proposed to use partial isomorphisms to relate
parsers and pretty-printers. A partial isomorphism requires the same Property 2,
but also requires s′ and s are in some equivalence relation in Property 1. While
it is mathematically appealing, requiring an extra equivalence relation would
require adding unintuitive equivalence relations for many of our examples. For
instance, x86 often has multiple bit-string encodings for the same instruction; for
each case, we would have to define a special equivalence relation that just relates
those bit strings. In our approach, the information about equivalence is actually
contained in the bigrammar; the equivalence relation relates all bit strings that
are parsed to the same semantic value. We could build an additional layer on top
of our design and provide additional checking, but at the price of a programmer
specifying the equivalence relations explicitly.

4 A Bidirectional Grammar

It would certainly be possible to write a parser and a pretty printer separately
and then develop a correctness proof based on the consistency definition we
presented. We actually developed an encoder separately from the x86-32 decoder
(extracted from the decoder grammar). However, we realized that developing a
correctness proof this way was rather difficult. Since the decoder and the encoder
were developed separately, their internal structures were not designed to match
closely and thus not amenable to a proof that relates them.

More importantly, the reverse pretty-printing functions for most constructors
in our decoder DSL can be automatically calculated, but the separate encoder
does not take advantage of that. For instance, the parser for “Cat g1 g2” parses
the input string to construct a pair of values (v1, v2), the reverse pretty-printing
function is then to encode v1 to get s1 according to g1, encode v2 to get s2
according to g2, and return s1 followed by s2. In fact, if a grammar forgoes the
use of Map, then the semantic value returned by the grammar represents the
input as a parse tree, which loses no information; the pretty printer can easily
takes the parse tree and the grammar to reconstruct the input string.

Our bigrammar DSL takes advantage of the above observation and requires
an inverse function only for the map case. Both a parser and a pretty printer are
extracted from a bigrammar. Furthermore, the extracted parser and the pretty
printer meet the consistency requirement. Therefore, it enables correctness by
construction of parsers and pretty printers.

Figure 2 presents the bigrammar DSL syntax. We use lower-case constructors
for bigrammars to distinguish them from grammar constructors. They are almost

80 G. Tan and G. Morrisett

Fig. 2. Bigrammar DSL syntax.

the same as those in the decoder DSL, except that the map case requires an
additional partial inverse function that goes from values of t2 to values of type
“option t1” as well as a proof showing that the map function f1 and the inverse
function f2 are invertible (we will discuss the invertible definition later). The
inverse function is partial to accommodate loose semantic domains; i.e., some
values cannot be possible results of the map function.

The denotational semantics of bigrammars is the same as the denotational
semantics of the decoder DSL in Sect. 2, except that the map case ignores the
inverse function and the proof; therefore, we do not repeat it. We still use g for
a bigrammar. As before, notation [[g]] is the denotation of g and contains all pairs
of (s, v) according to the denotational semantics. We write rng(g) to be the set
{v | ∃s, (s, v) ∈ [[g]]}.

Figure 3 presents the pretty printer for bigrammars. It takes a bigrammar
and a semantic value, and returns an optional string s for the semantic value
according to the bigrammar. We comment only on a few cases next. For “char c”,
since it is impossible for “char c” to produce a char that is different from c, the
pretty printer tests if the semantic value c′ is the same as c; if so, the input
string must be a single-char string that contains c; otherwise, it returns None.
Since pretty-print returns an optional value, we use an option monad and
use the Haskell-style monadic notation (← and ret) to simplify the syntax of
propagating None values.2 Take the case of “cat g1 g2” as an example: if running
pretty-print on g1 produces None, then it returns None for the cat grammar;
otherwise, the returned string is bound to s1 and pretty-print is run on g2; it
either returns None or some s2; in the first case, None is returned; in the second
case, return s1++s2, which is s1 concatenated with s2. For “map f1 f2 g pf ”,
the inverse function f2 is first used to convert v to a possible v′; if it succeeds,
pretty-print is run on v′ according to g. Only the map case uses an explicit

2 That is, “ret s” is defined as Some s; and “s1 ← v; f” is defined as
match v with | None ⇒ None | Some s1 ⇒ f s1 end.

Bidirectional Grammars for Machine-Code Decoding and Encoding 81

Fig. 3. The pretty-print function for bigrammars.

inverse function; other cases’ inverse functions are completely determined by the
shapes of the bigrammar and the semantic value.

In “map f1 f2 g pf ”, a proof that the map function and the inverse function
are invertible is required. The definition of invertibility is formulated so that
the parser and the pretty printer for a bigrammar should meet the correctness
properties in Definition 1. Therefore, the two conditions closely follow the two
properties in Definition 1. The definition also takes g as a parameter and quanti-
fies over all values in the range of g; this is to accommodate the situation when
the range of g is a strict subset of the values in t1. Requiring that the property
holds for all values in t1 would be too strong and unnecessary (and make the
invertibility conditions unprovable for certain useful bigrammars).

Now we show how to prove that the parser and the pretty printer for a bigram-
mar meet the consistency requirement. With the help of denotational semantics,
we can decouple the correctness proof of the parser from the correctness proof
of the pretty printer. The correctness of the parser extracted from a grammar
has been shown in the RockSalt paper [10] for a derivative-based parser; in the
same way, a derivative-based parser can be extracted from a bigrammar with a
similar correctness proof:

Theorem 1. (Parser correctness.)

(s, v) ∈ [[g]] if and only if parse g s = Some v.

The second theorem is about pretty-printer correctness.

Theorem 2. (Pretty-printer correctness.)

(1) If (s, v) ∈ [[g]], then exists s′ so that pretty-print g v = Some s′.
(2) If pretty-print g v = Some s, then (s, v) ∈ [[g]].

82 G. Tan and G. Morrisett

The proof of the above theorem is straightforward, based on induction over
the syntax of g. With the theorems about parser and pretty-printer correctness,
it can be checked easily that the consistency requirement in Definition 1 is a
corollary.

The following notation is also introduced to simplify bigrammar construction:

g @ f1 & f2 & pf := map f1 f2 g pf g1 + g2 := alt g1 g2

5 Generalization to Ambiguous Grammars

An ambiguous bigrammar g can relate the same input string s to multiple seman-
tic values. A simple example is “alt (char c) (char c)”, where c is some char-
acter; it relates the single-character string c to “inl c” and “inr c”. Because of
ambiguity, the type of the parser is changed to the following:

parse : ∀t, (bigrammar t) → list ch → list t

It takes a possibly ambiguous bigrammar and an input string, and returns a list
of values of type t. Correspondingly, the correctness theorem for the parser has
to change:

Theorem 3. (Parser correctness for ambiguous bigrammars.)

(s, v) ∈ [[g]] if and only if v ∈ parse g s.

We write “v ∈ parse g s” to mean that v is in the list produced by parse g s.
The type signature of the pretty printer and its correctness formulation are

as before. With parser and pretty-printer correctness, we can show the following
consistency theorem:

Theorem 4. (Consistency between parsers and pretty printers for ambiguous
grammars.)

Prop1: If v ∈ parse g s, then exists s′ so that pretty-print g v = Some s′.
Prop2: If pretty-print g v = Some s, then v ∈ parse g s.

6 Engineering Bigrammars for x86 Decoding
and Encoding

We previously defined a 32-bit x86 grammar in the decoder DSL and used the
grammar to extract a decoder. We retrofitted the grammar into a bigrammar
by adding inverse functions and invertibility proofs to where Map is used. In the
process we often needed to tweak grammar rules (sometimes with substantial
changes) and introduce new constructors to make it easier to develop invertibil-
ity proofs and make the encoder more efficient. Using representative examples,
we next discuss this experience about how we engineered the x86-32 decoder/en-
coder bigrammar.

Bidirectional Grammars for Machine-Code Decoding and Encoding 83

Tighten semantic domains. Most of the changes were because the map functions
used in the original decoder grammar are not surjective, causing loose semantic
domains. Some of those instances can be fixed by having a tightened semantic
domain. Here is a typical example. The grammar for parsing immediate values
takes either 32 bits or 16 bits, depending on an operand-override flag, and returns
an immediate operand:

Definition imm_p (opsize_override:bool): grammar operand_t :=
match opsize_override with

| false => word @ (fun w => Imm_op w)
| true => halfword @ (fun w => Imm_op (sign_extend16_32 w))

end.

To convert it to a bigrammar, we need to add one inverse function for each
of the two cases. However, the operand domain contains not just immediate
operands, but also other kinds of operands such as register operands. So the
inverse function, which takes an operand value, has to first check if the value is
an immediate operand. For instance, the inverse function for the first case is:

fun op => match op with | Imm_op w => Some w | _ => None end

Furthermore, we need a lemma that says operands produced by imm p must
be immediate operands and use the lemma in other bigrammars that use imm p.

The problem is that the map functions in imm p are not surjective and the
resulting operand domain is loose. The fix is to change imm p to return 32-bit
immediates and any client of it applies Imm op in its map functions when nec-
essary. This makes the inverse function more efficient by avoiding some runtime
tests. In particular, the imm b bigrammar is as follows (in this and following
examples, invertibility proofs are omitted and are represented as).

Program Definition imm_b (opsize_override:bool):
bigrammar word_t :=
match opsize_override with

| false => word
| true => halfword @ (fun w => sign_extend16_32 w)

& (fun w =>
if repr_in_signed_halfword_dec w then

Some (sign_shrink32_16 w)
else None)

& _
end.

Eliminating the uses of the union operator. Not all instances of loose semantic
domains can be fixed easily, because of the extensive use of the union operator
in the x86 decoder grammar. Many instructions’ grammars have multiple cases.
We have seen a typical example about the INC instruction in Fig. 1, which has
three cases. Each case uses a map function and the three cases are combined

84 G. Tan and G. Morrisett

through union, which throws away information about which case is taken during
parsing.

To turn the INC grammar to a bigrammar, one possible way is to add an
inverse function for each of the three cases. For instance, the inverse function
for the first case (copied below) would pattern match the two arguments; if they
are of the form “w, (Reg op r)”, return Some (w, r); otherwise, return None.

"1111" $$ "111" $$ anybit $ "11000" $$ reg @
(fun p => let (w,r) := p in INC w (Reg_op r))

The three cases can then be combined using a special union operator that
constructs bigrammars:

Program Definition union t (g1 g2:bigrammar t): bigrammar t :=
(g1 + g2)

@ (fun w => match w with inl v1 => v1 | inr v2 => v2 end)
& (fun v: t =>

match pretty_print g1 v with
| Some _ => Some (inl v)
| None =>

match pretty_print g2 v with
| Some _ => Some (inr v) | None => None end

end)
& _.

The inverse function for the union operator implements a backtracking
semantics: it uses the pretty printer to first try the left branch; if it succeeds,
inject v to the left branch; if it fails, it tries the right branch. The union con-
structor is biased toward the left branch if v can be produced by both branches.

Although the use of union is convenient for converting grammars to bigram-
mars, it is terribly inefficient. If the union is used to convert the INC grammar to
a bigrammar, each case needs an inverse function that performs strict pattern
matches and the inverse function in the union sequentially tries each case and
checks which one succeeds. It comes with many runtime tests. Things get worse
for instructions that have more cases; for instance, the grammar for MOV has a
dozen cases. In general, if g is the result of combining n bigrammars via union
and each bigrammar is of size m, then running the pretty printer on g takes
O(n ∗ m) time in the worst case since it may try all n possibilities and pretty
printing each bigrammar may take time O(m). Therefore, the use of the union
operator should be avoided as much as possible and it would be much more effi-
cient to have some test at the top of the inverse function and use the test result
to dispatch to one of the m cases, which leads to a complexity of O(n+m). Our
first version of the x86 bigrammar used the union operator for convenience, but
in a subsequent version all uses of union were eliminated. We next discuss how
this was achieved via the INC example.

In the following INC bigrammar, we combine cases using the disjoint-sum
operator alt (abbreviated as +). Essentially, the three cases are combined to

Bidirectional Grammars for Machine-Code Decoding and Encoding 85

produce a parse tree and a single map function is used to convert the parse
tree into arguments for INC. A single inverse function then converts arguments
for INC to a parse tree. We will discuss later why the map function constructs
arguments for INC instead of INC instructions.

Program Definition INC_b: bigrammar (pair_t bool_t operand_t) :=
("1111" $$ "111" $$ anybit $ "11000" $$ reg

+ "0100" $$ "0" $$ reg
+ "1111" $$ "111" $$ anybit $ ext_op_modrm_noreg "000")
@ (fun v => match v with

| inl (w,r) => (w, Reg_op r)
| inr (inl r) => (true, Reg_op r)
| inr (inr (w,addr)) => (w, Address_op addr)

end)
& (fun u => let (w,op):=u in

match op with
| Reg_op r =>

if w then Some (inr (inl r)) else Some (inl (w,r))
| Address_op addr => Some (inr (inr (w,addr)))
| _ => None

end)
& _.

Since the above pattern is used over and over again in many instructions, we
have constructed specialized Coq tactics for facilitating the process. Suppose we
have a list of n bigrammars and bigrammar gi is of type “bigrammar ti” and
function fi is of type ti → t. For instance, the INC example has three cases:

Grammar 1:"1111" $$ "111" $$ anybit $ "11000" $$ reg
Map 1: fun v => let (w,r):=v in (w, Reg_op r)
Grammar 2: "0100" $$ "0" $$ reg
Map 2: fun r => (true, Reg_op r)
Grammar 3: "1111" $$ "111" $$ anybit $ ext_op_modrm_noreg "000"
Map 3: fun v => let (w,addr):=v in (w, Address_op addr)

Bigrammars g1 to gn can then be combined through repeated uses of alt and
a single map function can be produced based on f1 to fn. We have automated
the process by introducing tactics that combine bigrammars and for producing
the map function based on f1 to fn. The inverse function needs to perform case
analysis over values of type t and construct appropriate parse trees. A special
tactic is introduced to facilitate the writing of the inverse function; it takes a
case number and a value and produces a parse tree by inserting appropriate inl
and inr constructors.

Our tactics construct balanced parse trees when combining bigrammars via
the disjoint-sum operator; this makes a substantial difference for the speed of
checking proofs of the combined bigrammar. To see why, one naive way would

86 G. Tan and G. Morrisett

be to combine bigrammars in a right-associative fashion (or similarly in a left-
associative fashion): g = g1 + (g2 + (. . . + (gn−1 + gn))). However, to inject a
value vi produced by gi into a parse tree, an average of O(n) number of inl
and inr constructors would be used. In contrast, our tactics balance the sizes of
branches when combining bigrammars. For instance, g1 to g4 are combined to
be (g1 + g2) + (g3 + g4). This way, an average of O(log n) number of inls and
inrs are used to inject a value to a parse tree. When developing proofs about g,
this makes a substantial difference in the speed of proof checking. For instance,
bigrammar reg no esp accepts the encoding of all registers except for esp and
has therefore seven cases; it would take five seconds in Coq 8.4 to finish checking
the bigrammar definition for the right-associative combination and take only two
seconds for the balanced combination.

Combining instruction bigrammars. After individual instruction bigrammars
have been developed, we need to combine them into a global bigrammar for all
instructions. This was relatively easy to achieve when we developed grammars
(without inverse functions): each instruction grammar produced values of the
instr type and instruction grammars were combined through union. We have
seen an example instruction grammar in Fig. 1, which returns INC instructions.

When constructing bigrammars, the situation is more complicated because
of the desire of eliminating the use of union. To achieve that, we make our
instruction bigrammars return arguments for instructions instead of instructions;
then instruction bigrammars are combined via the disjoint-sum operator. That
is, the global instruction bigrammar produces a parse tree; this is similar to the
technique for dealing with cases in individual instruction bigrammars. We next
illustrate this using an instruction set of only two instructions:

Inductive instr :=
| AAA | INC (w:bool)(op1:operand).

Definition AAA_b : bigrammar unit_t := ...
Definition INC_b : bigrammar (pair_t bool_t operand_t) := ...
Program Definition instr_b : bigrammar instr_t :=

(AAA_b + INC_b)
@ (fun v =>

match v with | inl _ => AAA | inr (w,op) => INC w op end)
& (fun i =>

match i with | AAA => inl tt | INC w op => inr (w,op) end)
& _.

As before, part of instr b can be automatically generated using special Coq
tactics.

However, during development we encountered the difficulty of running out
of memory in Coq when checking instr b. This was because our x86 model
had around 300 instructions and it used a flat instruction syntax in which the
instr definition has around 300 cases, one for each instruction. The resulting
instr b had an enormous number of uses of inls and inrs; each use had an

Bidirectional Grammars for Machine-Code Decoding and Encoding 87

implicit type parameter (the type parameter of inl/inr tells the type of the
right/left branch of the sum type). As a result, Coq ran out of memory when
checking the invertibility proof in instr b and this was the case even after using
balanced parse trees and employing special tricks in Coq to save memory (e.g.,
using the abstract tactic). To deal with the situation, we introduced hierar-
chical abstract syntax for instructions. For instance, floating-point instructions
are grouped into a separate instruction type and a bigrammar is developed for
floating-point instructions; as there are much fewer floating-point instructions,
Coq was able to type check the bigrammar. Then, we have a bigrammar that
converts the hierarchical instruction syntax into the flat instruction syntax (and
also an inverse function for going the other direction).

Statistics of the x86 bigrammar. Our x86 bigrammar specifies the decoding and
encoding of 297 instructions, including all x86 integer, floating-point, SSE, and
MMX instructions. It also allows prefixes that can be added in the front of
instructions. So for each decoding operation the decoder returns (p, i), where p
is the set of prefixes and i is the instruction.

The following table lists the lines of Coq code for our previous decoder gram-
mar, a separately developed encoder, and our new bigrammar for x86 encoding
and decoding. Since our bigrammars enforce correctness by construction, the x86
bigrammar implies its extracted decoder and encoder are consistent. In contrast,
the separately developed decoder and encoder lacked the correctness proof that
relates them. We have also extracted executable OCaml decoder and encoder
code from our x86 bigrammar and are using them in a separate OCaml project.

Lines of Coq code

Decoder grammar 2,194

Encoder 2,891

Decoder/Encoder bigrammar 7,254

During the construction of the x86 bigrammar, we found around a dozen
bugs in the previous decoder grammar and encoder. The decoder grammar was
extensively tested in RockSalt [10], so most of the identified bugs were in the
encoder. For example, the old encoder for MOVBE disallows the combination of
using registers for both of its two operands (i.e., the encoder maps the case
to None), but the decoder can actually produce operands of that combination.
When developing the proof for the corresponding bigrammar, we could not prove
the first condition in the invertibility definition and this was fixed by modify-
ing the inverse function. As another example, the old encoders for instructions
BT/BTC/BTR/BTS allow the combination of using a register for the first operand
and a memory address for the second operand; however, this combination is not
a possible decoding result for those instructions. As a result, we could not prove
the second condition in the invertibility definition and this was fixed by mapping
the combination to None in the inverse function. Even though the old decoder

88 G. Tan and G. Morrisett

grammar was extensively tested, we did find a couple of bugs. For instance, the
old decoder for the Test instruction had a case as follows:

"1010" $$ "1000" $$ byte @
(fun b => TEST true (Reg_op EAX) (Imm_op (zero_extend8_32 b)))

The first parameter of Test tells whether the test operation should be for 32-
bit words (when the parameter’s value is true) or for 8-bit bytes (when the
parameter’s value is false). The above case actually compares bytes, so the first
argument should be false.

Before we started migrating the x86 grammar, we wanted to determine
whether or not moving from an established grammar and abstract syntax to
a bigrammar required extensive changes. Our x86 experience tells us that the
answer is yes, especially when one wants to eliminate the use of union. On the
other hand, some of those changes could be alleviated through clever tactics.

7 Related Work

Specialized DSLs have been designed for declarative machine-code decoding
(e.g., [13]); most of them do not allow a bidirectional syntax. Similar to bigram-
mars, SLED [11] allows specifying both encoding and decoding in a bidirec-
tional syntax; however, consistency requirements are not formally spelled out
and proofs are not represented and machine checked, leaving room for errors.

There are many general parsing and pretty-printing libraries. However, in
general they do not allow a single syntax for both parsing and pretty-printing
(other than [1,7,12], which we previously discussed). There has also been many
bidirectional languages that have been designed for mapping between different
data formats including XML processing [3,8] and pickling/unpickling [9]. They
all require the forward and the backward directions form bijections, which are too
strong for practical parsing and pretty-printing. Boomerang [2] provides bidirec-
tional lenses that can run backwards. However, a bidirectional lens is motivated
by the view-update problem in the database community and the backward direc-
tion takes both an abstract value and the original concrete value as input, while
a pretty printer takes only the abstract value as input.

8 Conclusions

Our bigrammar DSL allows declarative specification of decoding and encoding
of machine instructions, with machine-checked proofs that show the consistency
between decoding and encoding. We have shown how to migrate a grammar
for x86 decoding to a bigrammar for decoding and encoding. As future work,
we plan to use the bigrammar DSL to specify the decoding/encoding of other
machine architectures such as ARM. We also plan to extend the bigrammar DSL
to support more expressive grammars such as parsing-expression grammars and
context-free grammars.

Bidirectional Grammars for Machine-Code Decoding and Encoding 89

The bigrammar development and the x86-32 bigrammar are open sourced
and available at the following URL: https://github.com/gangtan/CPUmodels/
tree/master/x86model/Model.

Acknowledgement. We thank the anonymous reviewers for their comments. This
research is supported by NSF grants CCF-1217710, CCF-1149211, and CNS-1408826.

References

1. Alimarine, A., Smetsers, S., van Weelden, A., van Eekelen, M., Plasmeijer, R.:
There and back again: arrows for invertible programming. In: Proceedings of the
ACM SIGPLAN Workshop on Haskell, pp. 86–97 (2005)

2. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: 35th ACM Symposium on Principles of Pro-
gramming Languages (POPL), pp. 407–419 (2008)

3. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual syntax for XML languages. In:
Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 27–41. Springer,
Heidelberg (2005). doi:10.1007/11601524 2

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11, 481–494 (1964)
5. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious pat-

terns. In: 12th Usenix Security Symposium. pp. 169–186 (2003)
6. The Coq proof assistant. https://coq.inria.fr/
7. Jansson, P., Jeuring, J.: Polytypic compact printing and parsing. In: Swierstra,

S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 273–287. Springer, Heidelberg (1999).
doi:10.1007/3-540-49099-X 18

8. Kawanaka, S., Hosoya, H.: biXid: a bidirectional transformation language for XML.
In: ACM International Conference on Functional Programming (ICFP), pp. 201–
214 (2006)

9. Kennedy, A.: Pickler combinators. J. Funct. Program. 14(6), 727–739 (2004)
10. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: Rocksalt: better,

faster, stronger SFI for the x86. In: ACM Conference on Programming Language
Design and Implementation (PLDI), pp. 395–404 (2012)

11. Ramsey, N., Fernández, M.F.: Specifying representations of machine instructions.
ACM Trans. Program. Lang. Syst. 19(3), 492–524 (1997)

12. Rendel, T., Ostermann, K.: Invertible syntax descriptions: unifying parsing and
pretty printing. In: Proceedings of the Third ACM Haskell Symposium on Haskell,
pp. 1–12 (2010)

13. Sepp, A., Kranz, J., Simon, A.: GDSL: a generic decoder specification language
for interpreting machine language. In: Tools for Automatic Program Analysis, pp.
53–64 (2012)

14. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: a new approach to computer
security via binary analysis. In: Proceedings of the 4th International Conference
on Information Systems Security (2008)

15. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Securing untrusted code via
compiler-agnostic binary rewriting. In: Proceedings of the 28th Annual Computer
Security Applications Conference, pp. 299–308 (2012)

16. Yee, B., Sehr, D., Dardyk, G., Chen, B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native
code. In: IEEE Symposium on Security and Privacy (S&P), May 2009

https://github.com/gangtan/CPUmodels/tree/master/x86model/Model
https://github.com/gangtan/CPUmodels/tree/master/x86model/Model
http://dx.doi.org/10.1007/11601524_2
https://coq.inria.fr/
http://dx.doi.org/10.1007/3-540-49099-X_18

Automated Verification of Functional
Correctness of Race-Free GPU Programs

Kensuke Kojima1,2(B), Akifumi Imanishi1, and Atsushi Igarashi1,2

1 Kyoto University, Kyoto, Japan
kozima@fos.kuis.kyoto-u.ac.jp

2 JST CREST, Tokyo, Japan

Abstract. We study an automated verification method for functional
correctness of parallel programs running on GPUs. Our method is based
on Kojima and Igarashi’s Hoare logic for GPU programs. Our algorithm
generates verification conditions (VCs) from a program annotated by
specifications and loop invariants and pass them to off-the-shelf SMT
solvers. It is often impossible, however, to solve naively generated VCs
in reasonable time. A main difficulty stems from quantifiers over threads
due to the parallel nature of GPU programs. To overcome this difficulty,
we additionally apply several transformations to simplify VCs before call-
ing SMT solvers.

Our implementation successfully verifies correctness of several GPU
programs, including matrix multiplication optimized by using shared
memory. In contrast to many existing tools, our verifier succeeds in ver-
ifying fully parameterized programs: parameters such as the number of
threads and the sizes of matrices are all symbolic. We empirically con-
firm that our simplification heuristics is highly effective for improving
efficiency of the verification procedure.

1 Introduction

General-purpose computation on graphics processing units (GPGPU) is a tech-
nique to utilize GPUs, which consist of many cores running in parallel, to acceler-
ate applications not necessarily related to graphics processing. GPGPU is one of
the important techniques in high-performance computing, and has a wide range
of applications [21]. However, it is hard and error-prone to hand-tune GPU pro-
grams for efficiency because the programmer has to consider cache, memory
latency, memory access pattern, and data synchronization.

In this paper we study an automated verification technique for functional
correctness of GPU programs. The basic idea is standard: our algorithm first
generates verification conditions (VCs) from a program annotated with speci-
fication and loop invariants and then passes the generated VCs to off-the-shelf
SMT solvers to check their validity. We empirically show that our technique can
be applied to actual GPU programs, such as a matrix multiplication program
optimized by using shared memory. Because shared memory optimization is a
technique that is widely used when writing GPU programs, we believe that it is
an encouraging result that we could verify a typical example of such programs.
c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 90–106, 2016.
DOI: 10.1007/978-3-319-48869-1 7

Automated Verification of Functional Correctness of Race-Free GPU 91

We focus on race-free programs, relying on race detection techniques that
have been studied elsewhere [1,16]. Race-freedom allows us to assume an arbi-
trary scheduling of threads without changing the behavior of a program. In
particular, we can safely assume that all threads are executed in complete lock-
step (that is, all threads execute the same instruction at the same time). Kojima
and Igarashi [10] observed that such an assumption makes it possible to ana-
lyze a program similarly to the sequential setting and developed Hoare logic for
GPGPU programs executed in lockstep. We adapt their logic for VC generation.

Even under the race-freedom assumption, however, the generated VCs are
often too complex for SMT solvers to solve in a reasonable amount of time. VCs
tend to involve many quantifiers over threads and multiplication over integers.
Quantifiers over threads arise from assignment statements. When an assignment
is executed on a GPU, it modifies more than one element of an array at a time. This
means that the VC corresponding to an assignment says “if there exists a thread
writing into this index, . . . , and otherwise,” Also, the termination condition
of a loop involves a quantifier over threads, saying “there is no thread satisfying
the guard.” Multiplications over integers often appears in GPGPU programs as
computation of offsets of arrays in a complicated way. This also increases the dif-
ficulty of the verification problem because nonlinear integer arithmetic is unde-
cidable in general. To overcome this difficulty, we devise several transformations
to simplify VCs. Some of the simplification methods are standard (e.g., quantifier
elimination) but others are specific to the current problem.

We implement a verifier for (a subset of) CUDA C, conduct experiments,
and show that our method successfully verifies a few realistic GPU programs.
Specifically, the correctness of an optimized matrix multiplication program using
shared memory is verified, without instantiating parameters such as sizes of
matrices and thread blocks. We also empirically confirm that our simplification
heuristics is indeed highly effective to improve the verification process.

Contributions. Our main contributions are: (1) a VC generation algorithm for
(race-free) GPU programs; (2) several simplification procedures to help SMT
solvers discharge VCs; (3) implementation of a verifier based on (1) and (2); and
(4) experiments to show that our verification method can indeed be applied to
realistic GPU programs. Our approach can successfully handle fully parameter-
ized programs, that is, we do not need to fix parameters such as the number
of threads and sizes of arrays, unlike much of the existing work (for example,
GPUVerify [1] requires the user to specify the number of threads).

Organization. The rest of the paper is organized as follows. Section 2 explains the
execution model of GPU programs on which our verification method is based.
Section 3 describes our VC generation algorithm. Section 4 introduces several
methods to simplify generated VCs. Section 5 reports our implementation and
experimental results. Section 6 discusses related work, and finally we summarize
the paper and discuss future directions in Sect. 7.

92 K. Kojima et al.

2 Execution Model of GPU Programs

Compute Unified Device Architecture (CUDA) is a development environment
provided by NVIDIA [22] for GPGPU. It includes a programming language
CUDA C, which is an extension of C for GPGPU. A CUDA C program consists
of host code, which is executed on a CPU, and device code, which is executed on
a GPU. Host code is mostly the same as usual C code, except that it can invoke
a function defined in device code. Such a function is called a kernel function (or
simply kernel). The device code is also similar to usual C code, but it includes
several special constants and functions specific to GPU, such as thread identifiers
and synchronization primitives. The kernel function is executed on GPUs by the
specified number of threads in parallel. The number of threads is specified in
host code and does not change during the execution of a kernel function. When
all the threads finish the execution, the result becomes available to host code. In
this paper we focus on the verification of kernel functions invoked by host code
(so we do not consider kernel functions called from device code).

As is mentioned in Sect. 1, we assume each instruction is executed in complete
lockstep by all threads during the execution of device code. When the control
branches during the execution, both branches are executed sequentially with
threads irrelevant to branches being disabled. After both branches are completed,
all the threads are enabled again. We say a thread is inactive if it is disabled,
and active otherwise. This execution model is simplified from the so-called SIMT
execution model, an execution model of CUDA C [22], in which threads form
hierarchically organized groups and only threads that belong to the smallest
group (called warp) are executed in lockstep. However, for race-free programs,
there are not significant differences (except barrier divergence, which is an error
caused by threads executing barrier synchronization at different program points).

Let us consider the kernel given in Fig. 1, which we call ArrayCopy, and use
it as a running example. This program copies the contents of a shared array
(pointed to by) a to another shared array (pointed to by) b, both of length len.
N is the number of threads, and tid is a thread identifier, which ranges from
0 to N − 1. The first two lines specify a precondition and a postcondition, and

/*@ requires len == m * N;

ensures \forall int j; 0 <= j < len ==> b[j] == a[j]; */

void ArrayCopy (int *a, int *b, int len) {

int i = tid;

/*@ loop invariant i == N * loop_count + tid;

loop invariant

\forall int j; 0 <= j < N * loop_count ==> b[j] == a[j]; */

while (i < len) {

b[i] = a[i];

i = i + N;

}}

Fig. 1. Running example: ArrayCopy

Automated Verification of Functional Correctness of Race-Free GPU 93

the three lines above the loop declare loop invariants used for verification of the
specification. These specifications will be used later but we ignore them for the
moment because they are not used during the execution.

If len is 6 and N is 4, the execution takes place as follows.1 The local variable
i is initialized to tid, so its initial value equals t at thread t (0 ≤ t < 4). In the
first iteration of the loop body, the first four elements are copied from a to b,
and the value of i at thread t becomes t+4. Then, the guard i< len is satisfied
by only threads 0 and 1; therefore, threads 2 and 3 become inactive and the loop
body is iterated again. Because active threads are only 0 and 1, the fourth and
fifth elements of a are copied, and the values of i at threads 0, 1, 2, 3 becomes
8, 9, 6, 7, respectively. Now, no threads satisfy the guard, so the loop is exited
and the program terminates with the expected result.

3 Verification Condition Generation

In this section we describe how VCs are generated from a program annotated
with specifications, using the example ArrayCopy in Fig. 1. Before discussing VC
generation, let us take a look at the specification. The first line declares a pre-
condition that the length of arrays is a multiple of the number of threads. A
variable m, whose declaration is omitted, is a specification variable, which is a
variable used only in the specification. We also assume implicitly that a and
b do not overlap, and have length (at least) len. The second line declares the
postcondition asserting that the contents of a are indeed copied into b. The loop
contains two declarations of loop invariants. In the invariant we allow a specifi-
cation variable loop count, which stands for how many times the loop body has
been executed. This variable is not present in CUDA C, but we have introduced
it for convenience. It allows us to express the value of variables explicitly in an
invariant. The first invariant specifies the value of the variable i on each iter-
ation, and the second asserts that at the beginning of l-th iteration (counting
from 0) the first N · l elements of a have been already copied to b.

We present verification condition generation as symbolic execution of the
axiomatic semantics of SIMT programs by Kojima and Igarashi [10]. We do not
review the previous work here but believe that the description below is detailed
enough (and self-contained), with the concrete execution model described in the
last section in mind. Constructs that do not appear in this example are explained
at the end of the section.

First, generate specification variables i0 and len0, which represent the initial
values of i and len, respectively, and a0 and b0, which represent the contents
of arrays pointed to by a and b, respectively. Here, i0, a0, and b0 has the type
of maps from int to int, and len0 has type int. Since a0 and b0 represent
arrays, they are naturally represented as maps. The reason that i0 also has a
map type is that it corresponds to a local variable whose value varies among
1 We choose these initial values to explain what happens when the control branches.

These initial values do not satisfy the precondition on the first line, so the asserted
invariant is not preserved during execution.

94 K. Kojima et al.

threads. So, expression i0(t) stands for the value of i at thread t. We also need
m which is a specification variable of type int. The precondition in the first line
is translated into the formula len0 = m · N , so we assume this equation holds.
In the next line the value of i is updated to tid in all threads. In general every
time we encounter an assignment we introduce a new variable that represents
the value of the variable being assigned after this assignment. In the case of
i = tid we introduce a new variable i1 of the same type as i0, and assume
∀t.0 ≤ t < N → i1(t) = t, that is, its value on thread t equals t. For later use, let
us denote by Γentry the list consisting of the two constraints we have introduced
so far:

Γentry
def= len0 = m · N,∀t.0 ≤ t < N → i1(t) = t.

So, Γentry represents possible states of the program at the beginning of the
loop. Since two invariants are declared in this loop, we have to check that they
are true at the entry, so we generate two conditions to be verified:

Γentry � ∀t.0 ≤ t < N → i1(t) = N · 0 + t, (T1)

Γentry � ∀j.0 ≤ j < N · 0 → b0(j) = a0(j). (T2)

Below we call a condition of the form Γ � ϕ a task, and ϕ the goal. Tasks
(T1) and (T2) assert that the first and second invariants are true at the loop
entry, respectively. The right-hand sides of these tasks are obtained from loop
invariants by simply replacing loop count with 0, the initial value of the loop
counter.

Next, we have to encode the execution of the loop, but in general it is impos-
sible to know how many times the loop body is executed. Rather than iterating
the loop, we directly generate a constraint that abstracts the final state of the
loop, relying on the invariants supplied by the programmer [8]. Also we have to
verify that the supplied invariants are indeed preserved by iterating the loop.
To do this we first introduce a new variable for each program variable being
modified in the loop body. In the case of our example, variables being modified
are b and i, so we generate fresh b1 and i2. We also introduce l corresponding
to the loop counter. Let Γloop be the following list of formulas:

Γloop
def= Γentry, 0 ≤ l,∀t.0 ≤ t < N → i2(t) = N · l + t,

∀j.0 ≤ j < N · l → b1(j) = a0(j).

Γloop consists of three additional constraints. The first one, 0 ≤ l, says that
the loop counter is not negative. The second and third ones correspond to invari-
ants, and they assert that invariants are true for variables b1, i2, and l we just
have introduced. Note that in Γloop it is not yet specified whether the loop is
already exited or not.

Consider the case the loop is continued. Then, there is at least one thread that
satisfies the loop guard i < len, which is expressed: ∃t.0 ≤ t < N ∧ i2(t) < len0.
Since the loop body contains assignments to b and i, we generate new variables
b2 and i3 and add constraints expressing that these variables are the result

Automated Verification of Functional Correctness of Race-Free GPU 95

of executing these assignments. Writing down such constraints is a little more
involved than before, because these assignments are inside the loop body, and
therefore there may be several threads that are inactive (actually in this example
such a situation never happens, but to describe how VCs are generated in a
general case, let us proceed as if we do not know this fact). We use the notation
assign(b2, i2 < len0, b1, i2, a0(i2)) for such a constraint.2 This intuitively means
that b2 is the result of executing b[i] = a[i] with the values of b and i being
b1 and i2 respectively, and active threads t being precisely those that satisfy
i2(t) < len0. The first argument is the new value of the variable being assigned,
the second specifies which threads are active, the third is the original value of
the variable being assigned, the fourth is the index being written (in general,
this is an n-tuple if the array being assigned is n-dimensional, and the 0-tuple ·
if the variable is scalar), and the last is the value of the right-hand side of the
assignment. It can be written out as

∀n. (∃t.0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = n ∧ b2(n) = a0(i2(t))) ∨
((∀t.¬(0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = n)) ∧ b2(n) = b1(n)) ,

(1)

but the concrete definition does not matter here. For general cases, readers
are referred to Kojima and Igarashi [10]. Putting these constraints together we
obtain Γiter defined as follows:

Γiter
def= Γloop,∃t.0 ≤ t < N ∧ i2(t) < len0,

assign(b2, i2 < len0, b1, i2, a0(i2)), assign(i3, i2 < len0, i2, ·, i2 + N).

Using Γiter we can write the tasks corresponding to the invariant preservation
as follows:

Γiter � ∀t.0 ≤ t < N → i3(t) = N · (l + 1) + t, (T3)

Γiter � ∀j.0 ≤ j < N · (l + 1) → b2(j) = a0(j). (T4)

The right-hand sides of these tasks are obtained by replacing loop count,
b, and i in the invariants with their values after the iteration, namely l + 1, b2,
and i3, respectively.

Finally we consider the case loop is exited, in which case the loop guard is
false in all threads. Therefore we put

Γexit
def= Γloop,∀t.0 ≤ t < N → ¬(i2(t) < len0).

Since there are no more statements to be executed, it only remains to verify
that the postcondition holds under this constraint. So the final task is as follows:

Γexit � ∀j.0 ≤ j < len0 → b1(j) = a0(j). (T5)

2 Some of the terms appearing in this expression are not well-typed. We could write
assign(b2, (λt.i2(t) < len0), b1, (λt.i2(t)), (λt.a0(i2(t)))), but for brevity we abbrevi-
ate it as above.

96 K. Kojima et al.

To summarize, we generate tasks (T1–T5) as VCs for our example program.
(T1) and (T2) ensure that the invariants hold when the loop is entered, (T3) and
(T4) ensure that the invariants are preserved by executing the loop body, and
(T5) ensures that the postcondition is satisfied when the program terminates.

Finally let us mention two more constructs: if-statements and barrier syn-
chronization. As mentioned before, an if-statement is executed sequentially with
switching active threads. When a statement if b thenP elseQ is encountered,
we first process P , and then Q (because we assume race-freedom, the order does
not matter). When processing P we have to bear in mind that active threads
are restricted to those at which b evaluates to true, and similarly for Q. Barrier
synchronization is, since we assume the execution is complete lockstep, consid-
ered as an assertion that all threads are active at that program point. We can
generate an extra task Γ � ∀t.0 ≤ t < N → μ(t), where μ(t) is a formula
expressing that thread t is currently active, to verify that the synchronization
does not fail. For example, if there were synchronization at the end of the loop
body in ArrayCopy, μ(t) would be i2(t) < len0.

4 Simplifying Verification Conditions

Unfortunately, SMT solvers often fail to discharge VCs generated by the algo-
rithm described in the previous section. In this section, we describe a few schemes
to simplify VCs used in our verifier implementation.

The main difficulty stems from universal quantifiers, which are typically intro-
duced by assignment statements and loop invariants. When these universally
quantified formulas are put on the left-hand side of the tasks, the solvers have
to instantiate them with appropriate terms, but it is often difficult to find them.
To overcome this difficulty, in Sects. 4.1 and 4.2 we introduce two strategies that
find appropriate instances of these quantified variables and rewrite VCs using
these instances.

Another difficulty stems from multiplication over integers that often arises
from indices of arrays. This makes VCs harder to discharge automatically, since
nonlinear integer arithmetic is undecidable (even without quantifiers). The trans-
formation described in Sect. 4.3 simplifies formulas involving both quantifiers and
multiplication in a certain form.

A standard approach to the first problem would be to provide SMT solvers
with patterns (triggers) to help them find appropriate instances. However, we
could not verify programs by using triggers instead of the first two methods
introduced in this section. This is because the third transformation (described
in Sect. 4.3) often works only after the first two have been applied, that is,
instantiation and rewriting have to be performed before this transformation.
Because all of our transformations are performed before calling SMT solvers,
they cannot be replaced by triggers.

Automated Verification of Functional Correctness of Race-Free GPU 97

4.1 Eliminating assign

One of the important transformations is what we call assign-elimination. Dur-
ing VC generation, we introduce a new assumption involving assign for each
assignment statement. As we have seen in (1), assign is universally quantified
and therefore has to be instantiated by appropriate terms. The main objective
of assign-elimination is to find all necessary instances automatically, and rewrite
the VC using such instances (as a result, assign may be removed from the task).
Since (1) is introduced to specify the value of b2, we instantiate (1) by every
term u such that b2(u) appears in VCs. By enumerating such u’s (including
those inside quantifiers) we would find all instances for n that are necessary to
prove VCs.

There are two cases to consider: assignments to local variables and shared
variables. As an example of the local case, let us consider i3 appearing in (T3).
Its value is specified by assign(i3, i2 < len0, i2, ·, i2 + N) in Γiter, which implies:
(a) if t is a thread ID that is active (that is, i2(t) < len0), then the value of
i3 at t is i2(t) + N , and (b) otherwise the value of i3 at t is i2(t). In case (a),
i3(t) = N · (l + 1) + t is equivalent to i2(t) + N = N · (l + 1) + t, and in case (b)
it is equivalent to i2(t) = N · (l + 1) + t. Therefore by doing case splitting, we
can rewrite the right-hand side of (T3) into:

∀t.(0 ≤ t < N → i2(t) < len0 → i2(t) + N = N · (l + 1) + t) ∧
(0 ≤ t < N → ¬(i2(t) < len0) → i2(t) = N · (l + 1) + t).

The first and the second conjuncts correspond to cases (a) and (b), respectively.
For the case of shared variables, consider b2 in task (T4). Similarly to the

previous case, for each j either (a) there exists a thread t such that i2(t) < len0,
i2(t) = j, and b2(j) = a0(i2(t)), or (b) there is no such thread t, and b2(j) =
b1(j). We obtain the following formula by rewriting the right-hand side of (T4):

∀j.(0 ≤ j < N · (l + 1) →
∀t.0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = j → a0(i2(t)) = a0(j)) ∧

(0 ≤ j < N · (l + 1) →
(∀t.¬(0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = j)) → b1(j) = a0(j)).

(2)

Following this strategy we can rewrite the VC so that the first argument of
assign does not appear in the resulting VC, thus SMT solvers do not have to
search for instances of assign any more.

4.2 Rewriting Using Equalities with Premises

Invariants often involve a quantified and guarded equality that specifies the
values of program variables, as we can see in ArrayCopy. Let us illustrate how
such an equality can be used to rewrite and then simplify the formula. The
method described below applies to both goals and assumptions.

98 K. Kojima et al.

Consider b1 in the task (T5). Using the invariant ∀j.0 ≤ j < N · l → b1(j) =
a0(j), we can rewrite b1(j) into a0(j), but only under the assumption that 0 ≤
j < N · l. Taking this condition into account, we can see that the goal ∀j.0 ≤
j < len0 → b1(j) = a0(j) can be changed to:

∀j.0 ≤ j < len0 → (0 ≤ j < N · l ∧ a0(j) = a0(j)) ∨
(¬(0 ≤ j < N · l) ∧ b1(j) = a0(j)).

(3)

After this transformation, we can use several simplifications to transform the
task into an easier one that can be solved automatically. Let us demonstrate
how this can be done. We have both ∀t.0 ≤ t < N → ¬(i2(t) < len0) and
∀t.0 ≤ t < N → i2(t) = N · l + t in Γexit; therefore, rewriting i2(t) in the same
way as above, we can see that it follows from Γexit that

∀t.0 ≤ t < N → ¬(

(0 ≤ t < N → N · l + t < len0) ∧
(¬(0 ≤ t < N) → i2(t) < len0)

)

.

By using laws of propositional logic we can simplify this as ∀t.0 ≤ t < N →
¬(N · l + t < len0), and by eliminating the quantifier we obtain len0 ≤ N · l.
From this, (3) is easily derived by SMT solvers.

Similarly, (2) can be simplified as follows: the first conjunct is easily proved;
in the second conjunct we can replace i2(t) with N · l + t, and then eliminate ∀t
to obtain

∀j.0 ≤ j < N · (l + 1) → ¬(0 ≤ j − N · l < N ∧ j < len0) → b1(j) = a0(j).

In general, we first search for an assumption of the form

∀x1.γ1 → ∀x2.γ2 → . . . → ∀xm.γm → f(s1, . . . , sn) = s′ (4)

where f is a function symbol. For each such assumption, find another formula
(either one of the assumptions or the goal) in which f occurs. Such a formula can
be written as ψ[ϕ(f(t1, . . . , tn))], where every variable occurrence of t1, . . . , tn is
free in ϕ(f(t1, . . . , tn)). Then by rewriting f we obtain:

ψ[(∃x1 . . . xm.γ1 ∧ · · · ∧ γm ∧ s1 = t1 ∧ · · · ∧ sn = tn ∧ ϕ(s′)) ∨
(∀x1 . . . xm.¬ (γ1 ∧ · · · ∧ γm ∧ s1 = t1 ∧ · · · ∧ sn = tn)) ∧ ϕ(f(t1, . . . , tn))].

Intuitively, this can be read as follows. If there are x1, . . . , xn that satisfy
γ1, . . . , γn and si = ti for every i, then by (4) we can replace ϕ(f(t1, . . . , tn))
with ϕ(s′) (the first disjunct). If there are no such x1, . . . , xn, then we leave
ϕ(f(t1, . . . , tn)) unchanged (the second disjunct).

4.3 Merging Quantifiers

Aside from standard transformations on formulas such as quantifier elimina-
tion, we exploit a procedure which merges two quantifiers into a single one.

Automated Verification of Functional Correctness of Race-Free GPU 99

Typical example is the following: if x and y range over integers, ∀x.0 ≤ x <
a → ∀y.0 ≤ y < b → ϕ(x + ay) (or equivalently, ∀x.0 ≤ x ≤ a − 1 → ∀y.0 ≤
y ≤ b − 1 → ϕ(x + ay)) is equivalent to 0 < a → ∀z.0 ≤ z < ab → ϕ(z) (the
antecedent 0 < a is necessary because otherwise if both a and b are negative
the former is trivially true while the latter would not). This pattern often arises
when computing an index of an array.

Let us illustrate how this helps simplify a VC. This transformation typically
applies when a thread hierarchy and/or two-dimensional arrays are involved.
Consider the following program, which is a variant of ArrayCopy.

/*@ requires len == m * N;
ensures \forall int j; 0 <= j < len ==> b[j] == a[j]; */

i = bid * bsize + tid;
/*@ loop invariant i == N * loop_count + bid * bsize + tid;

loop invariant
\forall int j; 0 <= j < N * loop_count ==> b[j] == a[j]; */

while (i < len) {
b[i] = a[i];
i = i + N;

}

Here we assume that threads are grouped into blocks, as in actual CUDA C
or OpenCL programs. Each block consists of an equal number of threads. In the
program above, bsize is the number of threads contained in one block, and bid
is the identifier for a block, called block ID. When bid is evaluated on a certain
thread, the result is the block ID of the block to which the thread belongs. N is,
as before, the number of threads, and now equals the product of bsize and the
number of blocks.

Let us consider the termination condition of the loop:

∀t.0 ≤ t < T → ∀b.0 ≤ b < B → ¬(N · l + b · T + t < len)

where T denotes the number of threads per block, and B the number of blocks
(we replaced i with N · l + b · T + t using the first invariant). By merging two
quantifiers, we obtain

0 < T → ∀z.0 ≤ z < T · B → ¬(N · l + z < len).

The quantification over z is now easily eliminated, and we obtain 0 < T →
T · B ≤ 0 ∨ len ≤ N · l.

Up to now we have assumed that the quantifiers that can be merged have the
form ∀x.0 ≤ x < a → . . . , but in general this is not the case. Other simplification
procedures (quantifier elimination, in our implementation) may convert formulas
to their normal forms. After that, the guard 0 ≤ x < a may be modified,
split, or moved to other places. This significantly makes the quantifier merging
algorithm complicated. Because guards do not necessarily follow quantifiers, it is
not straightforward to find a pair of quantifiers that can be merged as described
above.

100 K. Kojima et al.

Our strategy in the general case is the following. (I) For every quantified
subformula ∀x.ϕ(x), find a such that ∀x.ϕ(x) is equivalent to ∀x.0 ≤ x < a →
ϕ(x). We call such a a bound of x. (II) For each subformula ∀x.∀y.ϕ(x, y), where x
and y have bounds a and b, respectively, find ψ(z) such that ϕ(x, y) is equivalent
to ψ(x+ay) (or ψ(y+bx)). Then we can replace ∀x.∀y.ϕ(x, y) with an equivalent
formula 0 < a → ∀z.0 ≤ z < ab → ψ(z), as desired. For the existential case, use
∧ instead of →. There may be multiple (actually infinitely many) bounds, and
only some of them can be used as a in step (II). We collect as many bounds as
possible in step (I), and try step (II) for every bound a of x we found. Below we
simply write ϕ rather than ϕ(x) if no confusion arises.

For step (I), note that if ¬(0 ≤ x) implies ϕ and ¬(x < a) implies ϕ, then
∀x.ϕ if and only if ∀x.0 ≤ x < a → ϕ. Similarly, if ϕ implies both 0 ≤ x and
x < a, then ∃x.ϕ if and only if ∃x.0 ≤ x < a ∧ ϕ. Therefore we can split the
problem as follows: for the universal case, (i) check that ¬(0 ≤ x) implies ϕ, and
(ii) find a such that ¬(x < a) implies ϕ; for the existential case, (i) check that ϕ
implies 0 ≤ x, and (ii) find a such that ϕ implies x < a. Because both of them
can be solved similarly, we shall focus on (ii).

Let us say that a is a ∀-bound (∃-bound) of x in ϕ if ¬(x < a) implies ϕ (ϕ
implies x < a, respectively). Then we are to find ∀- and ∃-bounds of x in a given
ϕ. The procedure is given recursively. If ϕ is atomic, then the problem is easy,
although there are tedious case distinctions. For example, ∀-bound of x ≥ t is
t,3 ∀-bound of x < t does not exist, and ∃-bound of x ≤ t is t + 1. If ϕ is atomic
but not an inequality, then we consider there are no bounds. If ϕ is ϕ1 ∧ ϕ2,
then ∀-bounds of ϕ is the intersection of those of ϕ1 and ϕ2 (this may miss some
bounds, but we confine ourselves to this approximation), and ∃-bounds are the
union of those of ϕ1 and ϕ2. The ∀- and ∃-bounds of ¬ϕ are ∃- and ∀-bounds of
ϕ, respectively. Bounds of ∀y.ϕ are those of ϕ. We omit ∨, →, and ∃ since they
are derived from other connectives by the laws of classical logic.

Step (II) is done by verifying that all atomic formulas depends only on x+ay.
First, consider s(x, y) < t(x, y) where s and t are polynomials in x, y. There is a
simple sufficient condition: if there exists a polynomial u(z) such that t(x, y) −
s(x, y) = u(x+ay), then s(x, y) < t(x, y) is equivalent to 0 < u(x+ay). Therefore
it is sufficient to check that s(x, y) − t(x, y) can be written as a polynomial of
x+ay, which is not difficult. If s and t are not polynomials, or a predicate other
than inequalities is used, then we check whether all arguments of the predicate
or function symbols can be written as u(x + ay).

4.4 Extra Heuristics

It is sometimes the case that the simplified goal is not still provable by SMT
solvers, but the following transformations help proving the task (they are sound
but not complete, i.e. they may replace a provable goal with an unprovable one).

3 In this case t+1, t+2, . . . are also ∀-bounds, but we do not take them into account.
Practically, considering only t seems sufficient in many cases.

Automated Verification of Functional Correctness of Race-Free GPU 101

– If an equality f(s1, . . . , sn) = f(t1, . . . , tn) occurs in a positive position, then
we may replace it with s1 = t1 ∧ · · · ∧ sn = tn.

– A subformula occurring in a positive (negative) position of a task may be
replaced by False (True, respectively). We try this for a subformula of the
form f(t1, . . . , tn) = t where f corresponds to a program variable.

By applying them to a subformula inside a quantifier, we can rewrite a nonlinear
formula into a linear one. After that we can use quantifier elimination to simplify
the resulting formula.

5 Implementation and Experiment

We have implemented the method described above and conducted an experiment
on three kernels. Our implementation takes source code annotated with speci-
fications (pre- and post-conditions and loop invariants) as an input and checks
whether the specification is satisfied. The input language is a subset of CUDA
C, but we slightly modified the syntax so that we can use an existing C parser
without modification. This is just to simplify the implementation.

The verifier first generates VCs as described in Sect. 3, and performs the
simplification in Sect. 4 roughly in the following order: (1) assign-elimination
(Sect. 4.1); (2) rewriting (Sect. 4.2); (3) merge quantifiers (Sect. 4.3). In addi-
tion to these operations, we also use standard simplification methods such as
quantifier elimination. After that, for each task, it calls several SMT solvers at
once, and run them in parallel. The task is considered completed when one of
the solvers successfully proves it. For tasks that none of the solvers can prove,
it applies heuristics in Sect. 4.4 followed by calls to SMT solvers and repeats
these steps at most 10 times. If there is still a task that remains unsolved, the
verification fails.

The front-end is written in OCaml. We use Cil [20] to parse the input, and
the syntax tree is converted into tasks using Why3 [3] API. Simplification of
formulas is implemented as a transformation on data structures of Why3, and
SMT solvers are called through Why3 API functions.4 We use Alt-Ergo, CVC3,
CVC4, E Theorem Prover, and Z3 as back-ends.5

Using our implementation we have verified the functional correctness of three
programs: vector addition, matrix multiplication, and stencil computation (dif-
fusion equation in one dimension) programs. The matrix multiplication program
is taken from NVIDIA CUDA Samples [22] and slightly modified without chang-
ing the essential part of the algorithm. The vector addition program computes
the sum of two vectors in a similar way to ArrayCopy. The matrix multiplication
and diffusion programs are optimized by using shared memory.

We did not concretize any of the parameters in programs, such as the number
of threads and blocks, length of vectors, and size of matrices. Throughout the
4 Currently we use Why3 only for manipulating formulas and calling SMT solvers,

although it provides a programming language WhyML.
5 alt-ergo.lri.fr, www.cs.nyu.edu/acsys/cvc3, cvc4.cs.nyu.edu, www.eprover.org,

z3.codeplex.com.

http://alt-ergo.lri.fr
www.cs.nyu.edu/acsys/cvc3
http://cvc4.cs.nyu.edu
www.eprover.org
http://z3.codeplex.com

102 K. Kojima et al.

Table 1. The number of proved/generated tasks, time spent for VC generation and
SMT solving (sec), and size of VC, with and without VC simplification. LOC excludes
blank lines and annotations.

Program Simplify Result VC generation SMT solving Size of VC

vectorAdd Y 7/7 0.1488 0.8154 9836

(9 LOC) N 3/7 0.0064 8.9177 9879

matrixMul Y 19/19 1.4101 10.4927 34754

(29 LOC) N 15/17 0.0271 5.3835 38416

Diffusion Y 112/112 9264.9941 17.7110 163819

(20 LOC) N 1/4 0.0063 3.7122 6511

experiments, we set time limit to 1 s through Why3 API for each solver call (but
CVC4 seems to run for two seconds; we do not know the reason). We also set
memory limit to 4000 MB, but it seems that it is almost impossible to exhaust
this amount of memory in 1 s. Experiments are conducted on a machine with
two Intel Xeon processors E5-2670 (with eight cores, 2.6 GHz) and 128 GB of
main memory. The OCaml modules are compiled with ocamlopt version 4.02.3.

The result is summarized in Table 1. We compared the performance of our
method with and without the simplification introduced in Sect. 4 (shown in the
second column). For the case where no simplification is applied, we have provided
triggers that would help solvers finding an instance used in assign-elimination and
rewriting (such as b2(n) in (1) and i2(t) in ∀t.0 ≤ t < N → i2(t) = N · l + t). The
size of a VC is the sum of the size of all formulas in it and the size of a formula is the
number of nodes in its abstract syntax tree. The number of tasks increases when
simplification is enabled, because simplification may split a task into smaller tasks.

Our implementation with the simplification successfully verified realistic GPU
kernels, whereas it could not verify any of the three programs without simplifica-
tion. We also ran SMT solvers for one hour on each task without simplification,
and confirmed that the numbers of proved tasks did not change in any of the three
cases. These results show that our simplification strategy is indeed effective. We
also tried applying only some of the simplifications introduced in Sect. 4; solvers
could discharge one more task for vectorAdd under some combinations of simpli-
fication, but verification failed unless all of the simplifications are applied.

The result also suggests a limitation of our current implementation. As we can
see from the VC-generation time and size for diffusion with the simplification,
our method occasionally generates very large VCs, which are time- and memory-
consuming to generate. This is mainly caused by iterated applications of the
assign-elimination which, in the worst case, doubles the size of the formula every
time. We expect that the generation time can be reduced by further optimization,
because during assign-elimination many redundant formulas are generated, and
removed afterwards (indeed, in the case of diffusion, the intermediate VC has
size approximately 1.1× 107, which is nearly 70 times larger than the final VC).

Automated Verification of Functional Correctness of Race-Free GPU 103

6 Related Work

Functional correctness of GPU programs. Some of the existing tools support
functional correctness verification by assertion checking or equivalence checking.
PUG [14] and GKLEE [16] support assertion checking (as well as detecting other
defects such as data races), but they cannot verify fully parameterized programs.
Both of them require the user to specify the number of threads, and they dupli-
cate each instruction by the specified number of threads to simulate lockstep
behavior as a sequential program. PUGpara [15] supports equivalence checking
of two parameterized programs. They report results on equivalence checking
of unoptimized and optimized kernels; equivalence checking of a parameterized
matrix-transpose program resulted in timeout, so they had to concretize some
of the variables.

Deductive approaches to functional correctness. Regarding deductive verification
of GPU programs, two approaches have been proposed. Kojima and Igarashi
adapted the standard Hoare Logic to GPU programs [10]. Our work is based on
theirs, although we do not use their inference rules as they are. Blom, Huisman
and Mihelčić applied permission-based separation logic to GPU programs [2].
Their logic is implemented in the VerCors tool set.6 Their approach, in addition
to functional correctness, can reason about race-freedom by making use of the
notion of permission (but it requires more annotations than ours).

Automated race checking. Race checking is one of the subject intensively studied
in verification of GPU programs, and many tools have been developed so far [1,6,
14,15,17,18]. Although they use SMT solvers, their encoding methods for race-
checking are different from ours in several ways. In particular, it is not necessary
to consider all threads at a time, but only two threads suffice. This is because
if there is a race, then there has to be a pair of threads that are to perform
conflicting read/write (this is an important observation for optimization which,
to our knowledge, first mentioned in [14] and detailed discussion on this technique
is given in [1]). Therefore they model the behavior of a pair of threads (whose
thread identifiers are parameterized), rather than all threads.

Reasoning about arrays. There is a technique to eliminate existential quantifi-
cation over arrays, which is applied to the verification of C program involv-
ing arrays [11]. Although we did not consider quantifier elimination over arrays
explicitly, the effect of assign-elimination is similar to the quantifier elimination:
if a variable a representing an intermediate value of some array and a does not
appear in the postcondition, then we can regard a as an existentially quantified
variable. Because assign-elimination removes a from the VC, it could be seen as
a quantifier-elimination procedure. Further investigation on relationship to their
idea and possibility of adapting it to our setting is left for future work.

6 Several examples are found at https://fmt.ewi.utwente.nl/redmine/projects/vercors-
verifier/wiki/Examples.

https://fmt.ewi.utwente.nl/redmine/projects/vercors-verifier/wiki/Examples
https://fmt.ewi.utwente.nl/redmine/projects/vercors-verifier/wiki/Examples

104 K. Kojima et al.

7 Conclusion

We have presented an automated verification method of race-free GPGPU pro-
grams. Our method is based on symbolic execution and (manual) loop abstrac-
tion. In addition to the VC generation method, we have proposed several sim-
plification methods that can help SMT solvers prove generated VCs. We have
empirically confirmed that our method successfully verifies several realistic ker-
nels without concretizing parameters and that the simplification method is effec-
tive for improving efficiency of the verification procedure. We expect that it is
a feasible approach to the verification of functional correctness to check race-
freedom by using the existing tools first, and then verifying functional correctness
by using our method.

Automatically inferring loop invariants is one of the interesting and impor-
tant problems left for future work. Various methods to generate invariants have
been proposed in the literature [5,9,12,19]. Although they mainly target sequen-
tial programs, we expect that they can be adapted to GPU programs. To our
knowledge, there is no previous work on applying these invariant generation
methods to GPU programs (GPUVerify [1] uses Houdini algorithm [7] to find
invariants, and PUG [14] uses predefined set of syntactic rules that can automat-
ically derive an invariant if the program fragment matches a common pattern).

Other important future work is to improve our manipulation of formulas
of nonlinear arithmetic, from which a difficulty often arises. Sometimes SMT
solvers cannot solve a problem that seems quite easy for humans. For example,
if a, x, x′, y, y′ are integers, 0 ≤ x < a ∧ 0 ≤ x′ < a ∧ x + ay = x′ + ay′ implies
x = x′. Similar inferences are often needed to reason about GPU programs
because it arises from the computation of an index of arrays. As far as we have
tried, this type of inference is hard to automate. We conjecture that nonlinear
expressions (such as x + ay above) that appear during verification have some
patterns in common, and we can find a suitable strategy to handle them, enabling
us to automatically prove the correctness of more complicated programs. One of
the possible direction would be to investigate the relationship to decidable non-
linear extensions of linear arithmetic [4,13]. Although we do not expect that all
the VCs are expressed in such theories, it would be interesting if these theories
and their decision procedures bring us a new insight into the manipulation of
non-linear VCs.

Improving the strategy of simplification on VCs is also vital for scalability
of our verification method. As we have discussed in Sect. 5, our simplification
method sometimes produces extremely large VCs, or even fails to generate VCs
in a reasonable amount of time. Also, there seems to be room for optimization
in the assign-elimination procedure. We expect that optimizing this part greatly
reduces the amount of time spent for verification, because assign-elimination is
one of the most time-consuming part of our verification method.

Automated Verification of Functional Correctness of Race-Free GPU 105

References

1. Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson, P.,
Wickerson, J.: The design and implementation of a verification technique for GPU
kernels. ACM Trans. Program. Lang. Syst. 37(3), 10:1–10:49 (2015)

2. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU
programs. Sci. Comput. Prog. 95(3), 376–388 (2014)

3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: 1st International Workshop on Intermediate Verification Languages,
Boogie 2011, pp. 53–64, Wroclaw, Poland (2011)

4. Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divisi-
bility. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 425–439. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31982-5 27. http://dx.doi.org/10.1007/
b106850

5. Cachera, D., Jensen, T.P., Jobin, A., Kirchner, F.: Inference of polynomial invari-
ants for imperative programs: a farewell to Gröbner bases. Sci. Comput. Prog. 93,
89–109 (2014)

6. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code.
In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp.
203–218. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34188-5 18

7. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001). doi:10.1007/3-540-45251-6 29

8. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: Proceedings of ACM POPL, pp. 193–205 (2001)

9. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for
learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69–87. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9 5

10. Kojima, K., Igarashi, A.: A hoare logic for SIMT programs. In: Shan, C. (ed.)
APLAS 2013. LNCS, vol. 8301, pp. 58–73. Springer, Heidelberg (2013). doi:10.
1007/978-3-319-03542-0 5

11. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using Horn clauses over integers and arrays. In:
Formal Methods in Computer-Aided Design, FMCAD 2015, pp. 89–96, Austin,
Texas, USA, 27–30 September 2015

12. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00593-0 33

13. Lechner, A., Ouaknine, J., Worrell, J.: On the complexity of linear arithmetic with
divisibility. In: Proceedings of 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, (LICS 2015), pp. 667–676 (2015)

14. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proceedings of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2010), pp. 187–196. ACM (2010)

15. Li, G., Gopalakrishnan, G.: Parameterized verification of GPU kernel programs.
In: IPDPS Workshop on Multicore and GPU Programming Models, Languages
and Compilers Wokshop, pp. 2450–2459. IEEE (2012)

16. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: Proceedings of ACM PPoPP,
pp. 215–224 (2012)

http://dx.doi.org/10.1007/978-3-540-31982-5_27
http://dx.doi.org/10.1007/b106850
http://dx.doi.org/10.1007/b106850
http://dx.doi.org/10.1007/978-3-642-34188-5_18
http://dx.doi.org/10.1007/3-540-45251-6_29
http://dx.doi.org/10.1007/978-3-319-08867-9_5
http://dx.doi.org/10.1007/978-3-319-03542-0_5
http://dx.doi.org/10.1007/978-3-319-03542-0_5
http://dx.doi.org/10.1007/978-3-642-00593-0_33

106 K. Kojima et al.

17. Li, P., Li, G., Gopalakrishnan, G.: Parametric flows: automated behavior equiva-
lencing for symbolic analysis of races in CUDA programs. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC 2012). IEEE Computer Society Press (2012)

18. Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking of GPU pro-
grams. In: Proceedings of International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC 2014), pp. 179–190 (2014)

19. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3 31

20. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). doi:10.1007/
3-540-45937-5 16

21. Nguyen, H.: GPU Gems 3, 1st edn. Addison-Wesley Professional, Reading (2007).
http://developer.nvidia.com/object/gpu-gems-3.html

22. NVIDIA: NVIDIA CUDA C Programming Guide (2014). http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html

http://dx.doi.org/10.1007/978-3-540-78800-3_31
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1007/3-540-45937-5_16
http://developer.nvidia.com/object/gpu-gems-3.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

The Matrix Reproved (Verification Pearl)

Martin Clochard1,2, Léon Gondelman1,2(B), and Mário Pereira1,2

1 Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, 91405 Orsay, France
{martin.clochard,leon.gondelman,mario.pereira}@lri.fr

2 INRIA, Université Paris-Saclay, 91893 Palaiseau, France

Abstract. In this paper we describe a complete solution for the first
challenge of the VerifyThis 2016 competition held at the 18th ETAPS
Forum. We present the proof of two variants for the multiplication of
matrices: a naive version using three nested loops and the Strassen’s
algorithm. The proofs are conducted using the Why3 platform for deduc-
tive program verification, and automated theorem provers to discharge
proof obligations. In order to specify and prove the two multiplication
algorithms, we develop a new Why3 theory of matrices and apply the
proof by reflection methodology.

1 Introduction

In this paper we describe a complete solution for the first challenge of the Veri-
fyThis 2016 competition using the Why3 platform for deductive verification.

As it was asked in the original challenge, we prove the correctness of two
different implementations of matrix multiplication. First, we specify and prove
a naive algorithm which runs in cubic time; then the more efficient Strassen’s
algorithm. To our knowledge, this is the first proof of Strassen’s algorithm for
square matrices of arbitrary size in a program verification environment based on
automated theorem provers.

Wishing to make our solutions both concise and generic, we devised in Why3
an axiomatic theory for matrices and showed various algebraic properties for
their arithmetic operations, in particular multiplication distributivity over addi-
tion and associativity (which was asked in the challenge second task). Our full
development is available online1.

It turns out that proving Strassen’s algorithm was virtually impossible for
automated theorem provers due to their incapacity to perform reasoning on
algebraic matrix equations. To overcome this obstacle, we devise an algebraic
expression simplifier in order to conduct proof by reflection.

This work is partly supported by the Bware (ANR-12-INSE-0010, http://bware.lri.
fr/) and VOCAL (ANR-15-CE25-008, https://vocal.lri.fr/) projects of the French
national research organization (ANR) and by the Portuguese Foundation for the
Sciences and Technology (grant FCT-SFRH/BD/99432/2014).

1 http://toccata.lri.fr/gallery/verifythis 2016 matrix multiplication.en.html.

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 107–118, 2016.
DOI: 10.1007/978-3-319-48869-1 8

http://bware.lri.fr/
http://bware.lri.fr/
https://vocal.lri.fr/
http://toccata.lri.fr/gallery/verifythis_2016_matrix_multiplication.en.html

108 M. Clochard et al.

This paper is organized as follows. The Sect. 2 presents briefly Why3. The
Sect. 3 describes our solution for naive matrix multiplication. Then, the Sect. 4
presents our solution for the second task and for that purpose introduces our
axiomatic matrix theory. We specify and prove Strassen’s algorithm in Sects. 5
and 6. We discuss related work in Sect. 7.

2 Why3 in a Nutshell

The Why3 platform proposes a set of tools allowing the user to implement,
formally specify, and prove programs. It comes with a programming language,
WhyML [6], an ML dialect with some restrictions in order to get simpler proof
obligations. This language offers some features commonly found in functional
languages, like pattern-matching, algebraic types and polymorphism, but also
imperative constructions, like records with mutable fields and exceptions. Pro-
grams written in WhyML can be annotated with contracts, that is, pre- and
postconditions. The code itself can be annotated, for instance, to express loop
invariants or to justify termination of loops and recursive functions. It is also
possible to add intermediate assertions in the code to ease automatic proofs.
The WhyML language features ghost code [5], which is used only for specifica-
tion and proof purposes and can be removed with no observable modification
in the program’s execution. The system uses the annotations to generate proof
obligations thanks to a weakest precondition calculus.

Why3 uses external provers to discharge proof obligations, either automatic
theorem provers (ATP) or interactive proof assistants such as Coq, Isabelle, and
PVS. The system also allows the user to manually apply transformations to
proof obligations before they are sent to provers, in order to make proofs easier.

The logic used to write formal specifications is an extension of first-order
logic with rank-1 polymorphic types, algebraic types, (co-)inductive predicates
and recursive definitions [4], as well as a limited form of higher-order logic [2].
This logic is used to write theories for the purpose of modeling the behavior of
programs. The Why3 standard library is formed of many such logic theories, in
particular for integer and floating point arithmetic, sets, and sequences.

The entire standard library, numerous verified examples, as well as a more
detailed presentation of Why3 and WhyML are available on the project web site,
http://why3.lri.fr.

3 Naive Matrix Multiplication

The VerifyThis 2016 first challenge starts with a proposal to verify a naive
implementation of the multiplication of two matrices using three nested loops,
though in non-standard order. In this section we present our solution to this
part of the challenge.

We first write the WhyML equivalent of the challenge code for multiplication
of two matrices a and b:

http://why3.lri.fr

The Matrix Reproved (Verification Pearl) 109

let mult_naive (a b: matrix int) : matrix int

= let rs = make (rows a) (columns b) 0 in

for i = 0 to rows a - 1 do

for k = 0 to rows b - 1 do

for j = 0 to columns b - 1 do

set rs i j (get rs i j + get a i k * get b k j)

done;

done;

done;

rs

To encode matrices, we use two-dimensional arrays as provided in the Why3
standard library. Operations get and set have the usual semantics, and make

carries out creation and initialization. Such arrays are represented by the follow-
ing abstract type, whose fields can only be accessed in specifications.

type matrix ’a

model { rows: int; columns: int; mutable elts: map int (map int ’a) }

Let us now specify the multiplication procedure

let mult_naive (a b: matrix int) : matrix int

requires { a.columns = b.rows }

ensures { result.rows = a.rows ∧ result.columns = b.columns }

ensures { matrix_product result a b }

The matrix_product predicate mimicks the mathematical definition of matrix
product (AB)ij =

∑m−1
k=0 AikBkj :

function mul_atom (a b: matrix int) (i j: int) : int → int =

\k. a.elts[i][k] * b.elts[k][j]

predicate matrix_product (m a b: matrix int) =

forall i j. 0 ≤ i < m.rows → 0 ≤ j < m.columns →
m.elts[i][j] = sum 0 a.columns (mul_atom a b i j)

In order to define this predicate concisely we use higher-order features and the
sum function from Why3 standard library. This function returns the sum of f n

for n ranging between a and b, as defined by the following axioms:

function sum (a b: int) (f: int → int) : int

axiom sum_def1: forall f a b. b ≤ a → sum a b f = 0

axiom sum_def2: forall f a b. a < b →
sum a b f = sum a (b - 1) f + f (b - 1)

The last argument we give to sum is a first-class function λk.M . Why3 supports
such definitions by translating them to first-order values [2].

To prove that mult_naive meets its specification, we give suitable loop invari-
ants. There are two kinds of invariant per loop. The first one is the frame invari-
ant, which describes the part of the matrix that is left unchanged. The second
one describes the contents of cells affected by the loop. Let us illustrate this with
the inner loop. In that case, the loop has the effect of writing a partial sum into
cells 0 to j-1 of the i-th row, leaving other cells unchanged.

110 M. Clochard et al.

’I: for j = 0 to columns b - 1 do

invariant { forall i0 j0. 0 ≤ i0 < rows a ∧ 0 ≤ j0 < columns b →
(i0 �= i ∨ j0 ≥ j) → rs.elts[i0][j0] = (at rs ’I).elts[i0][j0] }

invariant { forall j0. 0 ≤ j0 < j →
rs.elts[i][j0] = sum 0 (k+1) (mul_atom a b i j0) }

With the given specification all the generated verification conditions are dis-
charged in a fraction of second using the Alt-Ergo SMT solver.

4 From Multiplication Associativity to a Matrix Theory

The next task was to show that matrix multiplication is associative. More pre-
cisely, participants were asked to write a program that performs the two different
computations (AB)C and A(BC), and then prove the corresponding results are
always the same. In our case, this corresponds to prove the following:

let assoc_proof (a b c: matrix int) : unit

requires { a.columns = b.rows ∧ b.columns = c.rows }

= let ab_c = mult_naive (mult_naive a b) c in

let a_bc = mult_naive a (mult_naive b c) in

assert { ab_c.rows = a_bc.rows ∧ ab_c.columns = a_bc.columns ∧
forall i j. 0 ≤ i < ab_c.rows ∧ 0 ≤ j < ab_c.columns →

ab_c.elts[i][j] = a_bc.elts[i][j] }

As one can guess, the proof of associativity relies essentially on the linearity
properties of the sum operator and Fubini’s principle. Let us illustrate how we
establish the additivity of the sum (the homogeneity of the sum and Fubini’s
principle are done in a similar way). First we define a higher-order function addf

which, given two integer functions f and g, returns a function \x. f x + g x.
Then, we state the additivity as a lemma function:

let rec lemma additivity (a b: int) (f g: int → int) : unit

ensures { sum a b (addf f g) = sum a b f + sum a b g }

variant { b - a }

= if b > a then additivity a (b-1) f g

The fact that we write the lemma not as a logical statement but as a recursive
function allows us to do two important things. First, we simulate the induction
hypothesis via a recursive call, which is useful since the ATPs usually do not
support reasoning by induction. Second, writing a lemma as a program function
allows us to call it with convenient arguments later, which amounts to giving
instances. Notice that the lemma is given an explicit variant clause. Indeed, when
one writes a lemma function, Why3 verifies that it is effect-free and terminating.

Now, a possible way to complete the second task would be to show the
associativity directly for the multiplication implemented by the naive algorithm
from task one. However, such a solution would be ad hoc: each time we implement
the matrix multiplication differently, the associativity must be reproved.

To make our solution more general, we opt for a different solution which con-
sists roughly of two steps. First, we provide an axiomatized theory of matrices

The Matrix Reproved (Verification Pearl) 111

where we prove that matrix product, as a mathematical operation, is associative.
Second, we create a model function from program matrices to their logical repre-
sentation in our theory. Finally, we show that from the model perspective naive
multiplication implements the mathematical product. When all this is done, we
have the associativity of naive multiplication for free.

We split our matrix axiomatization in two modules. The first module intro-
duces a new abstract type and declares the following functions

type mat ’a

function rows (mat ’a) : int

function cols (mat ’a) : int

function get (mat ’a) int int : ’a

function set (mat ’a) int int ’a : mat ’a

function create (r c: int) (f: int → int → ’a) : mat ’a

and adds a set of axioms that describes their behavior. We add the create

function to build new matrices by comprehension. Additionally, we have an
extensionality axiom, i.e. that for any pair of matrices m1, m2, we have
m1 == m2 → m1 = m2 where m1 == m2 means that both matrices have the same
dimensions and the content of their cells are the same.

The second module defines arithmetic operations over integer matrices as
straightforward instances of create, and exports various proved lemmas about
their algebraic properties, including associativity and distributivity. Although
we are looking for associativity, the other properties are expected in such a
theory, and we will use some of them in later sections. A typical proof amounts
to writing the following:

function mul_atom (a b: mat int) (i j:int) : int → int =

\k. get a i k * get b k j

function mul (a b: mat int) : mat int =

create (rows a) (cols b) (\i j. sum 0 (cols a) (mul_atom a b i j))

let lemma mul_assoc_get (a b c: mat int) (i j: int)

requires { cols a = rows b ∧ cols b = rows c }

requires { 0 ≤ i < rows a ∧ 0 ≤ j < cols c }

ensures { get (mul (mul a b) c) i j = get (mul a (mul b c)) i j }

= ...

lemma mul_assoc: forall a b c. cols a = rows b → cols b = rows c →
mul a (mul b c) = mul (mul a b) c

by mul a (mul b c) == mul (mul a b) c

The by connective in the last line instruments the lemma with a logical cut for its
proof, to show the desired instance of extensionality. It follows by the auxiliary
lemma function mul_assoc_get, whose proof is omitted here.

Once we formalized the matrix theory and proved associativity, it remains
to connect it to the implementation by a model function:

function mdl (m: matrix ’a) : mat ’a = create m.rows m.columns (get m)

Then, we change the specification of mult_naive to use the model. This turns
the postcondition to mdl result = mul (mdl a) (mdl b). The proof of this new
specification is immediate and makes the second task trivial.

112 M. Clochard et al.

5 Strassen’s Algorithm in Why3

The last (and optional) part in the VerifyThis challenge was to verify Strassen’s
algorithm for power-of-two square matrices. We prove a more general implemen-
tation that uses a padding scheme to handle square matrices of any size.

5.1 Implementation

The principle behind Strassen’s Algorithm is to use 2× 2 block multiplication
recursively, using a scheme that uses 7 sub-multiplications instead of 8. More
precisely, it works in 3 phases. It first partitions both input matrices in 4 equal-
sized square matrices. Then, it computes 7 products of matrices obtained by
additions and subtractions. Finally, it obtains a similar partition of the result
using addition and subtractions from those products. The details can be found
in Appendix B.

For even sizes, our implementation closely follows Strassen’s recursive
scheme. To this end, we first implement and prove a few simple matrix routines:

– Matrix addition (add) and subtraction (sub);
– Matrix block-to-block copy (blit);
– Sub-matrix extraction (block).

For odd sizes, the recursive scheme cannot be applied. This is typically solved
by peeling or zero-padding, either statically or dynamically to recover an even
size. We use a dynamic padding solution. In case the matrices have odd size, we
add a zero row and column to recover an even size, make a recursive call and
extract the relevant sub-matrices.

When the size gets below an arbitrary cutoff we use naive matrix multipli-
cation. Although we used a concrete value, the code is correct for any positive
cutoff. We ensure this by wrapping the cutoff value under an abstract block,
which hides its precise value in verification conditions.

5.2 Specification and Proof

Except for the additional requirements that the matrices are square, we give the
same specification for Strassen’s algorithm as for naive multiplication.

As for the proof, let us first focus on the correctness of Strassen’s recursive
scheme. We break down that proof in two parts. First, we prove that the usual
2× 2 block decomposition of matrix product is correct. Then, we prove that the
efficient computation scheme that uses seven multiplication indeed computes
that block decomposition. That second part boils down to checking four ring
equations, which we will cover in details in Sect. 6.

In order to prove block decomposition, we introduce a dedicated module
where sub-matrix extraction is defined by comprehension. It extracts a rectangle
from a matrix, given the low corner at coordinates r, c and with dimensions
dr, dc:

The Matrix Reproved (Verification Pearl) 113

Fig. 1. Relations between sub-matrices and product

function block (a: mat int) (r dr c dc: int) : mat int =

create dr dc (\i j. get a (r+i) (c+j))

The module essentially proves two lemmas about relations between sub-
matrix extraction and product, which are best seen graphically as in Fig. 1.
One expresses sub-matrices of the product as products of sub-matrices, while
the other decomposes products into sums of sub-matrices products. We then
expect to obtain the desired block decomposition by two successive partitioning
steps, but there is a catch. Our implementation extracts directly the 4 input
sub-matrices, while using those lemmas implies extracting from intermediate
sub-matrices. We bridge the gap by reducing successive sub-matrix extraction
to single ones. In practice, we do this by proving and then calling a lemma
function with the following postcondition:

ensures { block (block a.mdl r1 dr1 c1 dc1) r2 dr2 c2 dc2 =

block a.mdl (r1+r2) dr2 (c1+c2) dc2 }

This is sufficient to prove the algebraic relations between the partition of the
product and the partitions of the input matrices. Also, note that we can readily
reuse the same proof scheme for padding correctness. Indeed, it amounts to
checking that the block we extract from the product of padded matrices is the
right one. This follows immediately from the relevant block decomposition of the
matrix product.

Finally, there is only one non-trivial remaining part: termination. It is non-
trivial because our padding scheme increases the matrix size. This does not cause
any problem, because the next step will halve it. We prove termination by intro-
ducing an extra ghost argument identifying matrices that will not require padding:

requires { 0 ≤ flag }

requires { flag = 0 → a.mdl.cols = 1 ∨ exists k. a.mdl.cols = 2 * k }

variant { a.mdl.cols + flag, flag } (* lexicographic order *)

All generated VCs for the described specification are automatically discharged
using a combination of Alt-Ergo, CVC4, and Z3 SMT solvers.

6 Proving Validity of Ring Equations by Reflection

Once we got rid of block matrix multiplication, proving validity of algebraic
equations was the major difficulty. Indeed, Strassen’s algorithm relies on equa-
tions like

114 M. Clochard et al.

A1,1B1,2 + A1,2B2,2 = A1,1(B1,2 − B2,2) + (A1,1 + A1,2)B2,2

which is obvious for humans, but turns out to be quite a trouble for ATPs.
A possible explanation is that ATPs are not directly aware that fixed-size

square matrices form a ring, struggling to instantiate relevant lemmas correctly.
Moreover, the dimension constraints from those lemmas must be proved at each
application, which makes the situation even worse.

One possible solution would be to add assertions about intermediate equa-
tions inside the code until they are easy enough to be exploitable by ATPs to
bridge the gap. However, after trying to go this way, we found that even for the
equality above (the easiest one), the gap was too large for ATPs which were still
spending too much time to discharge the proof obligations.

Without support of automated provers, making use of an interactive one
(typically Coq) would be a standard choice. If the interactive prover has support
for proving ring equations, then it would suffice to embed our matrix theory
inside the prover’s ring structure. However, we were curious to see if we could
embed some kind of similar ring support inside Why3 itself. That leads us to the
technique known as proof by reflection. The methodology we follow is actually
very similar to the one presented in [1, Chap. 16].

To carry out proof by reflection of algebraic equations, we have to do two
things. First, we have to reflect (translate) the original expressions on each side
by equivalent syntactical forms. Second, we need a procedure that normalizes a
syntactical form so that the comparison of algebraic expressions becomes trivial.
This can be implemented in Why3 logic, and run using the compute specified
transformation. This transformation normalizes a given goal, making boolean
and integer arithmetic simplifications, and applying user-defined rewrite rules
(in the source code one can add declarations to configure the transformation).
To complete the proof, we need a lemma saying that the normalization procedure
preserves the interpretation of the syntactic form. Let us now describe how we
carry out these two phases in more detail.

6.1 Reflecting Algebraic Expressions by Ghost Tagging

Essentially, the reflection phase amounts to building an equivalent syntactic form
for each algebraic expression. In our case, we achieve that by tagging each matrix
with a ghost symbolic expression:

type with_symb = { phy : matrix int;

ghost sym : expr; (* reflection *) }

predicate with_symb_vld (env:env) (ws:with_symb) =

e_vld env ws.sym ∧ (* internal dimension conditions *)

e_mdl env ws.sym = ws.phy.mdl ∧ (* Model correlation *)

ws.sym.e_rows = ws.phy.mdl.rows ∧ (* Dimensions correlation *)

ws.sym.e_cols = ws.phy.mdl.cols

The Matrix Reproved (Verification Pearl) 115

Notice that the representation predicate above is parametrized by an environ-
ment, which binds expression variables to matrices. Also, as field sym is ghost, it
will not incur any extra runtime cost.

It remains then to provide, for each arithmetic operation, a tagging combina-
tor that wraps in parallel the corresponding matrix computations and symbolic
executions on their reflection. For instance, the combinator for addition is defined
by:

let add_ws (ghost env:env) (a b:with_symb) : with_symb

requires { a.phy.mdl.rows = b.phy.mdl.rows }

requires { a.phy.mdl.cols = b.phy.mdl.cols }

requires { with_symb_vld env a ∧ with_symb_vld env b }

ensures { result.phy.mdl = add a.phy.mdl b.phy.mdl }

ensures { result.sym = symb_add a.sym b.sym }

ensures { with_symb_vld env result }

= { phy = add a.phy b.phy;

sym = ghost symb_add env a.sym b.sym }

Introduction of variables is carried out by a similar combinator on top of sub-
matrix extraction.

6.2 Normalizing Algebraic Expressions

In practice, we choose not to reflect completely algebraic expressions as syntactic
objects. Instead, we implement in Why3 logic smart constructors that maintain
normal forms, and reflect algebraic expressions as a computation tree made of
those constructors. This has the advantage that we can use the ghost tagging
mechanism to instantiate correctness lemmas as well. Also, this reduces the proof
work to first write an assertion like

assert { e_mdl e m11.sym = e_mdl e egm11 }

then to apply the transformation on the associated goal. This completely reduces
both computation trees and interprets back the results as standard expressions.
Since they are in normal form, the equation becomes trivial and is reduced to
true by the transformation directly.

The normal form we choose for algebraic expressions is a sorted sequence of
signed variable products (monomials), interpreted as the sum of those monomi-
als. We represent them using Why3 algebraic datatype of lists, and integers for
variables. To correlate variables with effective matrices, we use a simple envi-
ronment composed of a mapping and a symbol generator.

type mono = { m_prod : list int; m_pos : bool }

type expr = { e_body : list mono; e_rows : int; e_cols : int }

type env = { mutable ev_f : int → mat int; mutable ev_c : int }

The smart constructor implementations are fairly straightforward. For instance,
addition is done by merging sorted lists followed by collapsing opposite terms.
Multiplication is reduced to addition by distributing. We carried out smart con-
structors correctness proof by writing ghost procedures that mimic the control

116 M. Clochard et al.

structure of the logical functions. Those procedures are then called in the ghost
tagging combinators.

Note that we only prove that the simplifications are correct, not that we
indeed compute normal forms. Although it may be desirable, it is not necessary
if our goal is to prove algebraic equations. We only need both sides to be reduced
to the same term. This also makes the aforementioned correctness proofs very
easy, as the simplifications we carry out mirror the lemmas of our matrix theory.

All generated proof obligations for the correctness of smart constructors
are automatically discharged using a combination of Alt-Ergo and CVC4 SMT
solvers. The algebraic equations involved in Strassen’s algorithm are directly
eliminated by compute specified.

7 Related Work

There are other works in the literature that tackle the proof of matrix multipli-
cation algorithm similar to Strassen’s. The closest to our work is that of Dénès
et al. [3]. They propose a refinement-based mechanism to specify and prove effi-
cient algebraic algorithms in the Coq proof assistant. The authors report on the
use of Coq’s ring tactic to ease the proof of Winograd’s algorithm (a variant
of Strassen’s with fewer additions and subtractions), a similar approach to our
proof by reflection. To cope with the case of odd-sized matrices they implemented
dynamic peeling to remove extra rows or columns.

Another work is the proof of Strassen’s algorithm in the ACL2 system [7].
The use of ACL2 with suitable rewriting rules and proper ring structure allows
a high degree of automation in the proof process. However, they use an ad hoc
definition of matrices whose sizes can only be powers of 2.

Srivastava et al. propose a technique for the synthesis of imperative pro-
grams [8] where synthesis is regarded as a verification problem. Verification tools
are then used with a two-folded purpose: to synthesize programs and their cor-
rectness proof. One case-study presented for this technique is Strassen’s algo-
rithm for 2× 2 integer matrices, for which the authors have been able to synthe-
size the additions and subtractions operations over block matrices.

8 Conclusion

We presented our solution for the first challenge of the VerifyThis 2016 com-
petition. While presenting our solutions in detail, we took the opportunity to
illustrate some interesting features of Why3, among which are higher-order func-
tions in logic, lemma functions, ghost code, and proof obligation transformations.
It would be interesting to see whether the proof by reflection methodology we use
in this work can be helpful for verification of some other case studies, especially
in a context which favours ATPs.

Acknowledgements. We thank Arthur Charguéraud, Jean-Christophe Filliâtre, and
Claude Marché for their comments and remarks.

The Matrix Reproved (Verification Pearl) 117

A Challenge 1 Original Text

Consider the following pseudocode algorithm, which is naive implementation of
matrix multiplication. For simplicity we assume that the matrices are square.

int[][] matrixMultiply(int[][] A, int[][] B) {
int n = A.length;

// initialise C
int[][] C = new int[n][n];

for (int i = 0; i < n; i++) {
for (int k = 0; k < n; k++) {

for (int j = 0; j < n; j++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}
return C;

}

Tasks.

1. Provide a specification to describe the behaviour of this algorithm, and prove
that it correctly implements its specification.

2. Show that matrix multiplication is associative, i.e., the order in which matri-
ces are multiplied can be disregarded: A(BC) = (AB)C. To show this, you
should write a program that performs the two different computations, and
then prove that the result of the two computations is always the same.

3. [Optional, if time permits] In the literature, there exist many proposals for
more efficient matrix multiplication algorithms. Strassen’s algorithm was one
of the first. The key idea of the algorithm is to use a recursive algorithm
that reduces the number of multiplications on submatrices (from 8 to 7),
see Strassen algorithm on wikipedia for an explanation. A relatively clean
Java implementation (and Python and C++) can be found here. Prove that
the naive algorithm above has the same behaviour as Strassen’s algorithm.
Proving it for a restricted case, like a 2× 2 matrix should be straightforward,
the challenge is to prove it for arbitrary matrices with size 2n.

B Strassen Recursion Scheme

Given three matrices A, B and M = AB partitioned as:

A =
[

A1,1 A1,2

A2,1 A2,2

]

B =
[

B1,1 B1,2

B2,1 B2,2

]

M =
[

M1,1 M1,2

M2,1 M2,2

]

https://en.wikipedia.org/wiki/Strassen_algorithm
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/

118 M. Clochard et al.

Then we can compute the partition of M from the two others as follow:

M1,1 = X1 + X4 − X5 + X7 M2,1 = X2 + X4

M1,2 = X3 + X5 M2,2 = X1 − X2 + X3 + X6

With

X1 = (A1,1 + A2,2) (B1,1 + B2,2) X2 = (A2,1 + A2,2) B1,1

X3 = A1,1 (B1,2 − B2,2) X4 = A2,2 (B2,1 − B1,1)
X5 = (A1,1 + A1,2) B2,2 X6 = (A2,1 − A1,1) (B1,1 + B1,2)
X7 = (A1,2 − A2,2) (B2,1 + B2,2)

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

2. Clochard, M., Filliâtre, J.-C., Marché, C., Paskevich, A.: Formalizing semantics
with an automatic program verifier. In: Giannakopoulou, D., Kroening, D. (eds.)
VSTTE 2014. LNCS, vol. 8471, pp. 37–51. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12154-3 3

3. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational
algebra in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
83–98. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32347-8 7

4. Filliâtre, J.-C.: One logic to use them all. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS (LNAI), vol. 7898, pp. 1–20. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38574-2 1

5. Filliâtre, J.-C., Gondelman, L., Paskevich, A.: The spirit of ghost code. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 1–16. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-08867-9 1

6. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37036-6 8

7. Palomo-Lozano, F., Medina-Bulo, I., Alonso-Jiménez, J.: Certification of matrix
multiplication algorithms. Strassen’s algorithm in ACL2. In: Supplemental Pro-
ceedings of the 14th International Conference on Theorem Proving in Higher Order
Logics, pp. 283–298. Edinburgh, Scotland (2001)

8. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program syn-
thesis. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2010, pp. 313–326. ACM, New York
(2010). doi:10.1145/1706299.1706337

http://dx.doi.org/10.1007/978-3-319-12154-3_3
http://dx.doi.org/10.1007/978-3-319-12154-3_3
http://dx.doi.org/10.1007/978-3-642-32347-8_7
http://dx.doi.org/10.1007/978-3-642-38574-2_1
http://dx.doi.org/10.1007/978-3-642-38574-2_1
http://dx.doi.org/10.1007/978-3-319-08867-9_1
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1145/1706299.1706337

Enabling Modular Verification
with Abstract Interference Specifications

for a Concurrent Queue

Alan Weide1(B), Paolo A.G. Sivilotti1, and Murali Sitaraman2

1 The Ohio State University, Columbus, OH 43221, USA
weide.3@osu.edu, paolo@cse.ohio-state.edu
2 Clemson University, Clemson, SC 29634, USA

murali@clemson.edu

Abstract. When concurrent threads of execution do not modify shared
data, their parallel execution is trivially equivalent to their sequential
execution. For many imperative programming languages, however, the
modular verification of this independence is often frustrated by (i) the
possibility of aliasing between variables mentioned in different threads,
and (ii) the lack of abstraction in the description of read/write effects
of operations on shared data structures. We describe a specification
and verification framework in which abstract specifications of functional
behavior are augmented with abstract interference effects that permit
verification of client code with concurrent calls to operations of a data
abstraction. To illustrate the approach, we present a classic concurrent
data abstraction: the bounded queue. Three different implementations
are described, each with different degrees of entanglement and hence
different degrees of possible synchronization-free concurrency.

1 Introduction

Parallel programming is important for both large-scale high performance systems
and, increasingly, small-scale multi-core commodity software. Programming with
multiple threads, however, is error-prone. Furthermore, when errors are made,
they can be difficult to debug and correct because parallel programs are often
nondeterministic. Non-trivial parallel programs designed with software engineer-
ing consideration will be invariably composed from reusable components, often
ones that encapsulate data abstractions.

Given this context, we propose a specification and verification framework
to guarantee entanglement-free execution of concurrent code that invokes oper-
ations on data abstractions. Guaranteeing, simultaneously, modularity of the
verification process and the independence of concurrent threads is complicated
by two key problems. The first of these is the possibility of aliasing between
objects involved in different threads. The second problem concerns guarantee-
ing safe parallel execution of data abstraction operations on an object without
violating abstraction.

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 119–128, 2016.
DOI: 10.1007/978-3-319-48869-1 9

120 A. Weide et al.

At the core of a solution to the aliasing problem is a notion of clean operation
calls whereby effects of calls are restricted to objects that are explicit parameters
or to global objects that are explicitly specified as affected. Under this notion,
regardless of the level of granularity, syntactically independent operation calls
are always safe to parallelize. While both the problem and the solution are of
interest, this paper focuses only on a solution to the second problem.

To illustrate the ideas, the paper presents a bounded queue data abstraction
and outlines three different implementations that vary in their potential for par-
allelism among different queue operations. The data abstraction specification is
typical, except that it is designed to avoid unintended aliasing. To capture the
parallel potential in a class of implementations we augment the data abstraction
specification with an interference specification that introduces additional mod-
eling details to facilitate guarantees of safe execution of concurrent client code.
The second-level specification is typically still quite abstract and is devoid of
concrete implementation details. The novelty of the proposed solution is that
it modularizes the verification problem along abstraction boundaries. Specifi-
cally, verification of implementation code with respect to both its data abstract
and interference specification is done once in the lifetime of the implementation.
Verification of client code relies strictly on the specifications.

This paper is strictly work in progress. We outline, for example, the speci-
fication and verification framework, but do not include formal proof rules. The
rest of the paper is organized as follows. Section 2 summarizes the most related
work. Section 3 describes the central example and alternative implementations.
Section 4 describes the solution. It begins with a presentation of the interference
specification that forms the basis for the subsequent discussion on verification.
The last section summarizes and gives directions for further research.

2 Related Work

The summary here is meant to be illustrative of the type of related work, not
exhaustive.

Classical solutions to the interference problem (e.g., [3]) would involve defin-
ing and using locks, but neither the solutions nor the proofs of absence of inter-
ference here involve abstraction or specification. Lock-free solutions built using
atomic read-write-modify primitives (e.g., compare-and-swap) allow finer gran-
ularity of parallelism, but the proofs of serializability in that context are often
not modular and do not involve complex properties.

The objective of modular verification is widely shared. The work in [1], for
example, involves specifying interference points. For data abstractions, the inter-
ference points would be set at the operation level, meaning two operations may
not execute concurrently on an object, even if they are disentangled at a “fine-
grain” level. The work by Rodriguez, et al. [7] to extend JML for concurrent
code makes it possible to specify methods to be atomic through locking and
other properties. Using JML* and a notion of dynamic frames, the work in [6]
address safe concurrent execution in the context of more general solutions to

Modular Verification of a Concurrent Data Abstraction 121

address aliasing and sharing for automated verification. The work in [9] makes
it possible to specify memory locations that fall within the realm of an object’s
lock. Chalice allows specification of various types of permissions and includes a
notion of permission transfer [5]. Using them, it is possible to estimate an upper
bound on the location sets that may be affected by a thread in Chalice.

3 A Bounded Queue Data Abstraction

3.1 RESOLVE Background

RESOLVE [8] is an imperative, object-based programming and specification
framework designed to support modular verification of sequential code. Con-
tracts contain functional specifications and invariants in terms of abstract state.
Abstract state is given in terms of mathematical types, such as sets or strings.1

Realizations provide executable implementations as well as correspondence infor-
mation connecting concrete and abstract state. The fundamental data movement
operation is swap (:=:), a constant-time operator that avoids introducing aliasing
while also avoiding deep or shallow copying [2].

In addition to pre- and post-condition based specifications, operation signa-
tures in contracts include parameter modes, whereby the modification frame is
defined. For example, the value of a restores-mode parameter is the same at the
end of the operation as it was the beginning. In the realm of concurrency, restore-
mode alone is not sufficient to ensure noninterference since it does not preclude
the temporary modification of a parameter during the execution of an operation.
Other parameter modes include clears (changed to be an initial value), replaces
(can change, incoming value is irrelevant), and updates (can change, incoming
value may be relevant).

3.2 Abstract Specification

The BoundedQueueTemplate concept models a queue as a mathematical string
of items. This concept defines queue operations including Enqueue, Dequeue,
SwapFirstEntry, Length, and RemCapacity. The operations have been designed
and specified to avoid aliasing that arises when queues contain non-trivial
objects [2] and to facilitate clean semantics [4].

The operations in the contract are given in the listing below. For Enqueue,
the requires clause says that there must be space in the queue for the new element
(|q| < MAX LENGTH). The ensures clause says that the outgoing value of q
is the string concatenation of the incoming value of q (i.e., #q) and the string
consisting of a single item, the old value of e. Less formally, Enqueue puts e at
the end of the queue. The parameter mode for e defines its outgoing value: an
initial value for its type.

1 A string is a sequence of values such as <1, 2, 1, 3>. The string concatenation
operator is o.

122 A. Weide et al.

operation Enqueue (clears e: Item, updates q: Queue)
requires |q| < MAX LENGTH
ensures q = #q o <#e>

operation Dequeue (replaces r: Item, updates q: Queue)
requires q /= empty string
ensures #q = <r> o q

operation SwapFirstEntry (updates e: Item, updates q: Queue)
requires q /= empty string
ensures
<e> = substring(#q, 0, 1) and
q = <#e> o substring(#q, 1, |#q|)

operation Length (restores q: Queue) : Integer
ensures Length = |q|

operation RemCapacity (restores q: Queue) : Integer
ensures RemCapacity = MAX LENGTH − |q|

Listing 1.1. Contracts for queue operations

The requires clause for Dequeue says that q must not be empty. The ensures
clause says that the concatenation of the resulting element r and outgoing value
of q is the original value of q.

The SwapFirstEntry operation makes it possible to retrieve or update the
first entry, without introducing aliasing.

The functions Length and RemCapacity behave as expected: Length returns
an integer equal to the number of elements in the queue, and RemCapacity
returns an integer equal to the number of free slots left in the queue before it
becomes full. Neither modifies the queue.

3.3 Alternative Implementations

We have developed three alternative implementations of the bounded queue
specified above, each with different parallelization opportunities. All three are
based on a circular array. In the first two implementations, the length of the
underlying array is equal to the maximum length of the queue, MAX LENGTH,
while in the third the length of the array is one greater (Fig. 1).

The first implementation has two Integer fields, front and length, where front
is the index of the first element of the queue and length is the number of elements
in the queue. This implementation cannot handle concurrent calls to Enqueue
and Dequeue without synchronization because both of those calls must necessarily
write to length. A client can, however, make concurrent calls to SwapFirstEntry
and Enqueue when the precondition for both methods is met before the parallel
block (that is, if 0 < |q| and |q| < MAX LENGTH. These two methods may be

Modular Verification of a Concurrent Data Abstraction 123

x

y

z

m

n

a

b

front = 5

length = 8

x

y

z

m

n

a

b

head = 5

postTail = 3

y

z

m

n

o

a

b

x

head = 5

postTail = 2

isEmpty = false

a. Realization #1 b. Realization #2 c. Realization #3

Fig. 1. Three alternatives for implementing a bounded queue on a circular array.

executed in parallel because SwapFirstEntry touches only the head of the queue
and does not modify length, while Enqueue will write length and touch the end of
the queue (which we know is different from the head of the queue because there
was already an element in the queue before Enqueue was called). An empty queue
in this implementation has length = 0 and 0 <= front < MAX LENGTH, and a
full queue has length = MAX LENGTH and 0 <= front < MAX LENGTH.

The second implementation also has two Integer fields: head and postTail,
and an additional Boolean field isEmpty. While head is the index of the array at
which the first element of the queue is located, postTail is the index of the first
element of the array after the last element of the queue. The boolean isEmpty
is necessary to distinguish between a full queue and an empty queue since in
both cases, head = postTail. As in implementation 1, a client can concurrently
call Enqueue and SwapFirstEntry as long as both preconditions are satisfied.
However, because the length of the queue is computed from the head and postTail
fields (and not another variable written by both Enqueue and Dequeue), we can
also concurrently call Enqueue and Dequeue, but only in a more limited set
of circumstances than is described by their respective preconditions: the queue
must have at least 2 entries in it and there must be at least 2 “free” slots in the
array. This restriction is important because both Enqueue and Dequeue must at
least read isEmpty to determine if the queue is empty when head = postTail.
By restricting concurrent calls to these two methods to those situations when
isEmpty will not be changed by either method (that is, when the queue will be
made neither full nor empty by either Enqueue or Dequeue), we can guarantee
deterministic behavior when they are executed in parallel.

The third and final implementation is similar to the second in that its two
Integer fields are head and postTail (and they represent the same things), but
in lieu of a Boolean isEmpty field, there is a sentinel node added to the array
so that when head = postTail it can only be the case that the queue is empty

124 A. Weide et al.

(a full queue has head = (postTail + 1) mod (MAX LENGTH + 1)). Because
the length of the array is greater than MAX LENGTH, there will always be
some element of the array that is not part of the queue. This differentiation
between a full and empty queue without the need to have a separate variable
ensures that even when the queue might become either full or empty during a
call to Enqueue or Dequeue, it will not write anything that the other method
reads or writes.

4 Interference Contracts and Modular Verification

Modular reasoning about the safe execution of concurrent threads can be sep-
arated into three distinct parts: (i) a description of the conditions under which
operations are independent, (ii) a proof that client code ensures these inde-
pendence conditions, and (iii) a proof that an implementation guarantees non-
interference under these conditions.

Our approach to these three tasks is described below and illustrated using
the first bounded queue realization from the previous section.

4.1 Interference Contract

A functional specification, as given in Sect. 3.2, does not reveal the degree to
which different parts of the abstract state are entangled in the implementation.
The correspondence relation between concrete state and abstract state is part
of the proof of correctness for the implementation, and modular verification
precludes its use in reasoning about client code.

Reasoning about the independence of concurrent threads in client code, how-
ever, requires exposing more information. Our approach for describing this inde-
pendence involves creating an intermediate model consisting of orthogonal com-
ponents, and encapsulating the description of this intermediate model in a dis-
tinct specification, an interference contract. While this segmentation is all that
is necessary for the example in this paper, in general, an augmentation may
additionally supplement the abstract model with more elaboration in order to
specify absence of interference among operations. In this case, the specification
will also need to state the additional guarantees (ensures clauses) on the supple-
mental model for each operation, not just interference-related specifications as
in the present example.

An interference contract for the bounded queue is given below.

interference contract LookupOffset for BoundedQueueTemplate

partition for Queue is (head, tail, offset)

operation Enqueue (clears e: Item, updates q: Queue)
affects q.tail
preserves q.offset

Modular Verification of a Concurrent Data Abstraction 125

when q = empty string affects q.head

operation SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.offset

end LookupOffset

Names for different segments of the intermediate model are introduced with
the partition keyword. These segments are independent of implementation par-
ticulars.

An interference contract includes the effects of each operation in terms of
this partition. There are two kinds of possible effects: affects and preserves. The
former reflects a possible perturbation (i.e., a write) while the latter reflects
non-modifying access (i.e., a read). Standard RESOLVE parameter modes map
to these two categories of effects. The partition, however, allows for a finer-
granularity description of effects, which is particularly important when concur-
rent threads use the same variable as a parameter, for example the access of a
shared data structure.

RESOLVE’s clean semantics ensure that an operation is oblivious to (i.e.
neither reads nor writes) any variable not explicitly included as a parameter.
Similarly, an operation is oblivious any segment of a partition not explicitly
mentioned in its effects. For example, SwapFirstEntry is oblivious to q.tail.

A when clause gives a condition that restricts the scope of effects. That is, the
when predicate must hold initially for the stated effect to occur. For example,
in order for Enqueue to affect q.head, the queue must be empty.

Notice that this partitioning of this state space is not the same as establishing
the independence of these segments from the point of view of the correspondence
relation. In this example, the independence of the Enqueue operation on front is
conditioned by the queue being non-empty. These independence conditions are
in addition to the usual preconditions of the corresponding operations from the
template specification, so SwapFirstEntry must be oblivious to q.tail only when
the queue is non-empty.

4.2 Modular Verification of Client Code

In order for a set of statements to be safely executed in parallel, each variable–or
each segment in a variable’s intermediate model–can be affected by at most one
statement. Furthermore, if any segment is affected by some statement, all of the
other statements must be oblivious to this segment.

For example, with the interference contract given above, SwapFirstEntry
and Enqueue affect non-overlapping segments (q.head and q.tail, respectively).
Furthermore, each is oblivious to the segment affected by the other, assuming
the queue is non empty. Finally, the segment used by both (q.offset) is preserved
by both. The following client code illustrates the parallel composition of these
operations.

126 A. Weide et al.

assume 0 < |q| < MAX LENGTH
cobegin

SwapFirstEntry(x, q)
Enqueue(y, q)

end

First we note that the client code above can be executed concurrently only
if there is no aliasing between objects x and y. This isolation is implied if the
programming language is defined to have a clean semantics like RESOLVE or
through disciplined programming in a language to avoid unintended aliasing.
Under clean semantics, the effects of operations are restricted to their explicit
parameters (or explicitly specified global variables) [4].

In addition to satisfying the usual preconditions for functional correctness,
the verification of the client code includes establishing the independence con-
ditions of the two operations. This verification is carried out entirely in the
context of the client code, using only the abstract functional specification and
interference contract of the bounded queue template.

The independence of the constituent statements of a cobegin block means
that the statements can be executed in any concurrent or arbitrarily interleaved
manner. The semantics of their execution is identical to that of their sequential
composition.

4.3 Modular Verification of an Implementation

In order to map from concrete implementation state to abstract specification
state, realizations provide a representation invariant (convention) and a corre-
spondence function (or relation, more generally). Our approach for establishing
operation independence is to augment this correspondence relation with a parti-
tioning of the constituent concrete state space. That is, an implementation must
provide a mapping from the concrete data structure involved in the implementa-
tion (e.g., contents, front, and length) to the partitioned model of the queue in
the interference contract. Specifically, it must place each implementation struc-
ture for the queue realization into one of head, tail, and offset.

The restrictions imposed by the effect statements need to be proven for the
implementation code of each operation, under the specified conditions. In order
for an operation’s implementation to meet the obliviousness requirement, all
statements in its code must be oblivious to the corresponding parts of the data
structure. When a statement does not mention a part of the data structure (e.g.,
front), it is trivially oblivious to that variable. (This observation also requires
clean semantics.) Otherwise, a statement may use parts of the data structure
from their obliviousness requirement only in operations which, themselves, are
oblivious on the corresponding parts of the data structure. The underlying data
structure itself might be built from other data abstractions. This is not a prob-
lem, because the lack of entanglement of one component can be layered on top
of appropriately disentangled realization components.

Modular Verification of a Concurrent Data Abstraction 127

realization ArrayWithLength for BoundedQueueTemplate
respects LookupOffset

type representation for Queue is
(contents: array 0..MAX LENGTH − 1 of Item,
front: Integer,
length: Integer)

exemplar q
convention

0 <= q.front < MAX LENGTH and
0 <= q.length <= MAX LENGTH

correspondence
Conc.q = Iterated Concatenation(i = q.front.. q.front + q.length + 1,

q.contents(i mod MAX LENGTH))
interference correspondence

head: q.contents.c[q.front]
tail: q.length, q.contents.c except on {q.front}
offset: q.front

end Queue

procedure Enqueue(clears e: Item; updates q: Queue)
e :=: q.contents[q.front + q.length mod MAX LENGTH]
q.length := q.length + 1
Clear(e)

end Enqueue

procedure SwapFirstEntry(updates e: Item; updates q: Queue)
e :=: q.contents[q.front]

end SwapFirstEntry

end ArrayWithLength

The proof of Enqueue’s obliviousness to q.head (when the queue is non-
empty) is seen as follows. When the queue is non-empty, q.length >= 1. So the
part of q.contents that is modified is distinct from q.contents[q.front]. Therefore,
Enqueue is oblivious to q.head. SwapFirstEntry, on the other hand, is oblivi-
ous to q.tail. Firstly, the operation does not mention q.length. Secondly, only
q.contents[q.front] is affected, so it is oblivious to the rest of the contents.

Notice that the partitioning of q.contents involves the interference contract
for an array (i.e., q.contents.c). It is the partition at this nested level that is used
in the realization’s interference correspondence.

The proof of preserving q.offset amounts to a proof that no statement in
the implementation affects q.front. This proof follows from the interference con-
tracts of the operations used by Enqueue and SwapFirstEntry. In particular, the
swapping of e and q.contents[q.front] preserves q.front.

128 A. Weide et al.

5 Summary and Future Directions

This paper has presented a novel framework for modular verification of concur-
rent programs using data abstractions. Specifically, it has explained how multiple
operations can be simultaneously invoked on an abstract data object if a set of
interference conditions can be specified and verified using an augmentation to
the abstract specification of the data abstraction. The proof process is strictly
modularized. The paper has presented a concrete example to illustrate the ideas.
Future directions include development of a formal proof system and automated
verification.

Acknowledgments. This research is funded in part by NSF grants CCF-1161916 and
DUE-1022941. Any opinions, findings, conclusions, or recommendations expressed here
are those of the authors and do not necessarily reflect the views of the NSF.

References

1. Bagherzadeh, M., Rajan, H.: Panini: a concurrent programming model for solving
pervasive and oblivious interference. In: Proceedings of the 14th International Con-
ference on Modularity, MODULARITY 2015, pp. 93–108. ACM, New York (2015)

2. Harms, D.E., Weide, B.W.: Copying and swapping: influences on the design of
reusable software components. IEEE Trans. Softw. Eng. 17, 424–435 (1991)

3. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco (2008)

4. Kulczycki, G.W.: Direct reasoning. Ph.D. thesis, Clemson University, Clemson, SC,
USA (2004). AAI3125470

5. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with chal-
ice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009. LNCS, vol.
5705, pp. 195–222. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03829-7 7

6. Mostowski, W.: Dynamic frames based verification method for concurrent Java pro-
grams. In: Gurfinkel, A., Seshia, S.A. (eds.) VSTTE 2015. LNCS, vol. 9593, pp.
124–141. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29613-5 8

7. Rodŕıguez, E., Dwyer, M., Flanagan, C., Hatcliff, J., Leavens, G.T.: Extending JML
for modular specification and verification of multi-threaded programs. In: Black,
A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 551–576. Springer, Heidelberg (2005)

8. Sitaraman, M., Adcock, B., Avigad, J., Bronish, D., Bucci, P., Frazier, D., Friedman,
H.M., Harton, H., Heym, W., Kirschenbaum, J., Krone, J., Smith, H., Weide, B.W.:
Building a push-button resolve verifier: progress and challenges. Formal Aspects
Comput. 23(5), 607–626 (2011)

9. Smans, J., Jacobs, B., Piessens, F.: VeriCool: an automatic verifier for a concurrent
object-oriented language. In: Barthe, G., Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 220–239. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68863-1 14

http://dx.doi.org/10.1007/978-3-642-03829-7_7
http://dx.doi.org/10.1007/978-3-319-29613-5_8
http://dx.doi.org/10.1007/978-3-540-68863-1_14

Accelerating the General Simplex Procedure
for Linear Real Arithmetic via GPUs

Steven T. Stewart(B), Derek Rayside, Vijay Ganesh, and Krzysztof Czarnecki

University of Waterloo, Waterloo, Canada
steven.stewart@uwaterloo.ca

Abstract. This paper demonstrates the benefits of GPU parallelism for
a simplex-based decision procedure for conjunctions of linear constraints
over reals. This variant of the simplex method, called general simplex,
decides whether the set of constraints is satisfiable, and is intended to
be integrated into SMT solvers. We carried out comprehensive experi-
ments over randomly generated instances for dense linear programming
problems on a mid-range consumer GPU (AMD Radeon 390X) using
floating point arithmetic. The GPU scheduled hundreds of thousands
of concurrent thread workgroups to process tableaus representing up to
8k variables and 8k constraints. We achieved speedup up to 25x over
a CPU-only implementation (quad-core AMD Kaveri 3.7 GHz) of the
same procedure. We compared this to a multithreaded OpenMP imple-
mentation that also achieved up to 1.8x speedup on the same inputs.
These results suggest that GPU processors may be further utilized in
the context of SMT and software verification tools.

1 Introduction

The landscape of processing hardware is increasingly heterogeneous. Transistor
density is no longer the primary constraint on hardware performance; instead,
the focus is on performance delivered per watt expended [3,16]. The transition to
many-core1 processors, such as the GPU, and heterogeneous solutions is rapidly
moving forward. The next generation of software verification engines are likely
to take advantage of the massive parallelism of many-core processors.

In order to prepare such tools for this evolving hardware landscape, we
demonstrate a GPU-accelerated variant of the general simplex procedure [6,10].
Our initial prototype achieves up to 25x speedup over a CPU-only implementa-
tion using a mid-range GPU.

The accelerated GPU kernels demonstrated in this paper should be useful for
solvers employing mixed-floating point / rational strategies. In software verifi-
cation, inexact solutions produced by floating-point arithmetic are generally not
acceptable. SMT solvers use rational arithmetic for linear real arithmetic (LRA),
though at the cost of extended precision arithmetic. As a result, exact solvers

1 Many-core processors have orders of magnitude more processing elements than multi-
core processors [1,16].

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 129–138, 2016.
DOI: 10.1007/978-3-319-48869-1 10

130 S.T. Stewart et al.

do not handle dense problem inputs with large coefficients very well. In recent
years, it has been shown that an inexact, floating-point solver that produces an
untrusted solution can be strategically used to guide an exact solver towards an
accurate result [15].

2 Related Work

There are countless papers on solving linear programming (LP) problems using
simplex, but only a handful are directly related to our work.

The use of alternative processing architectures for solving LP is not with-
out precedence. Lalami et al. showed that the GPU can accelerate the simplex
procedure. Their single- and multi-GPU CUDA implementations achieved an
order of magnitude speedup over a CPU implementation [11,12]. Mittal et al.
[14] suggested that advances in FPGA technology could be exploited to greatly
accelerate simplex procedures. Our solver emerges from this same interest, but
differs in that it is an implementation of general simplex for solving the decision
problem rather than the optimization problem. The procedure for solving gen-
eral simplex was introduced by Dutertre and de Moura [6] in 2006. Since then,
general simplex has been integrated into SMT solvers such as Yices2 and Z33.

Our work is related to the topic of combining inexact (floating-point arith-
metic) and exact (extended precision arithmetic) solvers, such as those described
by [7,15]. Monniaux [15] uses this approach to transform a “näıve and slow”
solver into a competitive one.

SMT solvers rely on SAT-solving technology and there are a handful of papers
that examine the use of GPUs for SAT-solving, a selection of which includes
[2,5,8,9,13]. To date, no GPU-based SAT solver has demonstrated that it can
be competitive with the state-of-the-art.

3 GPU Design Principles

In this paper, we focus on the programming model for GPUs using the OpenCL
framework for writing parallel programs. The modern GPU offers a flexible pro-
gramming model for writing thread-level or data-parallel code [16].

Whereas CPUs are designed to minimize latency, GPUs are designed for
throughput. Like a SIMD computer, the GPU architecture is built upon a paral-
lel array of processors, called compute units in the OpenCL nomenclature. Each
compute unit, which is composed of many processing elements, is capable of con-
currently executing hundreds of threads decomposed into workgroups. Threads
within a workgroup can synchronize and access shared memory. When the host
process launches a kernel, workgroups are distributed across the available com-
pute units. Each thread in a workgroup has its own program counter and register

2 http://yices.csl.sri.com/.
3 http://research.microsoft.com/en-us/um/redmond/projects/z3/.

http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

Accelerating the General Simplex Procedure for Linear Real Arithmetic 131

state, and – unlike a SIMD computer – threads within a workgroup are permit-
ted to execute different instructions when they are required to follow divergent
execution paths, offering the programmer greater flexibility.

The OpenCL programming model exposes more of the memory hierarchy
than what is typical for CPU programmers, and memory access patterns can
have a substantial impact on performance. Much of the performance gains of
GPUs are achieved by effective use of programmable, on-chip local memory
and registers, and by ensuring aligned and coalesced data access patterns that
minimize relatively slow global memory transactions.

The GPU programmer’s objective is to leverage as much parallelism as possi-
ble by keeping all compute units of the GPU busy. Achieving this involves some-
what complicated considerations of both execution behavior and how resources
are distributed.

4 Problem Statement

In a linear programming problem, the goal is to find a solution to a set of linear
constraints that maximizes (or minimizes) a linear objective function. A variant
of this is called the feasibility problem, wherein the goal is to determine the
existence or nonexistence of a feasible solution. The general simplex [6] procedure
has properties that are advantageous for SMT solvers; thus, in this paper, we
are interested in solving the feasibility problem using this procedure.

4.1 Problem Input

The feasibility problem is specified by a set of linear constraints without an
objective function. A vector of decision variables X = [x1, x2, . . . , xn] is assigned
a vector of values, called an assignment, and each value is a nonnegative real
number. An assignment is feasible if it respects all linear constraints represented
by a vector C = [c1(X), . . . , cm(X)], representing the conjunction of constraints.
This conjunction of constraints is a first-order formula, and a feasible assignment
is said to be a solution to the formula.

4.2 The General Simplex Procedure for LRA

The general simplex procedure for LRA was designed to be efficient for SMT
solvers, and is a variant of the simplex procedure developed by Danzig [4] in
1947. All constraints4 must be expressed in general form: a1x1 + · · ·+anxn = 0.

The problem is represented by a data structure called a tableau, which con-
sists of m rows (for constraints) and n columns (for decision variables). The
4 As described in [10], arbitrary weak linear constraints of the form L ⊗ R, where

⊗ ∈ {≤,≥,=}, can be translated to general form as follows for the ith constraint:
(1) move all addends in R to the left-hand side to obtain L′⊗b, where b is a constant;
(2) introduce a new variable si and add the constraints L′ − si = 0 and si ⊗ b. The
variables s are called additional variables.

132 S.T. Stewart et al.

entries in the tableau are the coefficients from the set of linear constraints. Each
variable is subject to bounds (lower/upper), and the assignment of each variable
must also be tracked.

The initial assignment to the variables begins at the origin X = [0, . . . , 0],
and variables are partitioned into two sets: initially, decision variables belong to
the set of non-basic variables N , and additional variables belong to the set of
basic variables B. Respectively, these may be thought of as the independent and
dependent variables, because the assignment of those in B are computed based
on the those in N . Variables may switch membership between B and N when
the procedure “pivots.”

The procedure is fully specified in [6,10], and is intuitively described as fol-
lows. Suppose that the bounds of a basic variable xi

5 are violated under the cur-
rent assignment α(xi), and call this a broken variable; in other words, α(xi) < li
or α(xi) > ui, where li is a lower bound and ui is an upper bound for variable
xi. Clearly, if a satisfying assignment were to exist, then the broken variable
needs to be repaired; thus, a suitable non-basic variable is chosen whose current
assignment can be “tweaked” such that the bounds violation of xi is corrected.
A suitable variable is a non-basic variable that has “room for tweaking.” To
achieve this, the current assignment of the suitable variable is either increased
or decreased. If no suitable variable exists, then repair is not possible, no feasible
solution exists, and the procedure reports “unsatisfiable”; otherwise, the broken
variable is fixed, but this can lead to a bounds violation of another basic vari-
able, which in turn must also be fixed. This iterative process continues until there
are no further bounds violations, at which point the procedure reports “satis-
fiable” and returns the satisfying assignment, or until it reports “unsatisfiable”
as described.

5 Implementation

We start by presenting a simple API of the solver, expressed in C++.
public:

virtual void addConstraint(vector <T> &constr);
virtual void setBounds(int idx , T lower , T upper);
virtual vector <T> solution ();
virtual bool solve ();

protected:
virtual bool checkBounds(int &broken_idx);
virtual bool findSuitable(int &broken_idx ,

int &suitable_idx);
virtual void pivot(int pivot_row , int pivot_col);
virtual void updateAssignment ();

The four public methods enable an application to construct a problem instance,
and the four protected methods are used internally by the solver. Some methods
are templatized with the type T, indicating they may be instantiated with dif-
ferent types (e.g., float or double). Constraints are built from variables of type

5 Note that we are using xi here to refer to any variable, whether it be a decision or
an additional variable.

Accelerating the General Simplex Procedure for Linear Real Arithmetic 133

T and added by addConstraint. Variable bounds are set by setBounds, requiring
a variable’s index and lower/upper bounds. If the solver has found a solution, it
can be obtained via solution.

The public solve method is a template method that specifies the solving
procedure as part of an extensible abstract base class. It references the four
protected virtual methods that must be implemented by a concrete class.
virtual bool solve {

unsigned broken_idx , suitable_idx;
while (! checkBounds(brokenIdx)) {

if (! findSuitable(brokenIdx , suitableIdx))
return false;

pivot(brokenIdx , suitableIdx);
updateAssignment ();

}
return true;

}

The checkBounds method identifies a broken variable, saving its index in the
output argument brokenIdx. If no broken variable is found, the procedure exits
the while loop and returns true (“satisfiable”). The findSuitable method searches
for a suitable non-basic variable. If one is found, its index is saved in suitableIdx ;
otherwise, false (“unsatisfiable”) is returned.

The pivot method swaps the broken variable in B with the suitable variable
in N . The row r of the table corresponding with the broken variable xr is called
the pivot row, and the column c of the table corresponding with the suitable
variable xc is called the pivot column. An element arj is said to belong to the
pivot row, and an element aic is said to belong to the pivot column. The element
arc at the intersection of the pivot row and pivot column is called the pivot
element. All other elements aij where i �= r and j �= c are called inner elements.
A call to pivot updates the tableau using the following expressions.

(Inner element) a′
ij = aij − (aic · arj)/arc where i �= r and j �= c

(Pivot column) a′
ic = aic/aij

(Pivot row) a′
ir = −arj/aij

(Pivot element) a′
rc = 1/arc

Finally, the updateAssignment method updates the current assignment of the
basic variables after pivoting. The current assignment α(xi) of a basic variable
xi is computed by the following summation.

xi =
n∑

j=1

aij · α(xj)

5.1 CPU-only

We present a concrete CPU implementation of the solver, listing its relevant
data structures that include the tableau, assignments, and variable metadata.

134 S.T. Stewart et al.

private:
T *tableau; // the tableau manipulated by the solver
T *assigns; // the current assignment of each variable
Variable vars; // stores information about each variable
set <Variable >

basic; // the current set of basic variables
set <Variable >

nonbasic; // the current set of nonbasic variables

struct Variable {
int idx; // the unique index of the variable
int tableau_idx; // the row or column index of the tableau

// associated with the variable
T lower; // the lower bound on the variable
T upper; // the upper bound on the variable
T assignment; // the current assignment of the variable

}

Each Variable has a unique index, a current mapping to a row or column index
of the tableau, lower/upper bounds, and an assignment. The solver distinguishes
between basic and nonbasic variables with two ordered sets (basic and nonbasic),
which store Variable objects in the ascending order of their indices.

The public and protected methods required by solve have straightforward
implementations: checkBounds iterates through the set basic, selecting the
first broken variable it encounters; findSuitable iterates through nonbasic vari-
ables until a suitable one is found; pivot calls ancillary methods update inner,
update row, and update column, which respectively implement the expressions
listed earlier for the pivot operation; updateAssignment performs a reduction
operation across the rows of the tableau, updating the assignments using the
summation expression listed earlier.

OpenMP. The pivot method presents an ample opportunity for parallelism.
Each tableau element can be updated independently of the other. Loop con-
structs can be augmented with OpenMP preprocessor directives so that multiple
CPU threads will carry out these independent operations. The simplest approach
is to use the pragma omp parallel for to automatically parallelize a loop.
#pragma omp parallel for

for (int i = 0; i < n; ++i) {
...

}

5.2 CPU-GPU

The CPU-GPU variant extends the CPU solver, overriding pivot for GPU accel-
eration. In order to facilitate coalesced accesses to global memory, variable meta-
data are stored in contiguous arrays. Data structures used by pivot have both
host and device OpenCL memory objects (cl mem), as well as conventional
host pointers for mapping OpenCL driver-allocated memory to the host process.
There are two additional arrays used to map a tableau row and column index
to corresponding variable indices (rowToVar and colToVar).

Accelerating the General Simplex Procedure for Linear Real Arithmetic 135

private:
// host memory object , device memory object , followed by
// pointer to the host memory of the data
cl_mem h_tableau , d_tableau;
cl_mem h_assigns , d_assigns;
float *tableau , *assigns;
cl_mem h_rowToVar , d_rowToVar;
cl_mem h_colToVar , d_colToVar;
int *rowToVar , *colToVar;

Pinned (or page-locked) memory transfers are preferred for high throughput.
When the CL MEM ALLOC HOST PTR flag is specified, it is likely (though
not guaranteed) that pinned memory will be used. The steps required to accom-
plished this are abbreviated as follows.
// Request the driver to allocate pinned host memory
cl_mem h_tableau = clCreateBuffer (... CL_MEM_ALLOC_HOST_PTR ...);

// Map the pinned memory region to a host pointer
float *tableau = (float*) clEnqueueMapBuffer (... h_tableau ...);

// Write some data to tableau
for (int i = 0; i < n; ++i) tableau[i] = ...

// Copy host data to device
clEnqueueWriteBuffer (... d_tableau_ ...);

The pivot method is nearly identical to its CPU parent, except that calls to
update inner, update row, and update col are replaced with corresponding calls to
OpenCL kernel functions. Kernel calls are made using clEnqueueNDRangeKernel
and require a launch configuration that specifies the magnitude and dimension-
ality of workgroups. Each GPU has an upper limit on the number of threads per
workgroup, and the ideal number that maximizes device occupancy can only be
determined by experimentation. As a default, we set this number to half of the
maximum size of a workgroup for the device.

Each time pivot is called, the tableau is updated; thus, findSuitable is over-
ridden so that the row of the tableau corresponding with the broken variable is
copied back to the host. This ensures that the host has up-to-date data before
searching for a suitable variable.
bool GpuSolver :: findSuitable(int &broken_idx ,

int &suitable_idx) {
// Copy updated row from device to host
clEnqueueReadBuffer (... copy one row ...);

// Call parent method
return CpuSolver :: findSuitable(broken_idx , suitable_idx);

}

6 Experiments

Experiments were conducted on a quad-core AMD A10-7850K 3.7 GHz CPU and
a mid-range GPU (AMD Radeon 390X).

In order to best identify opportunities for parallel acceleration, the CPU
implementation was profiled using dense linear programming instances that were
randomly generated with tableau sizes ranging from 1 million (1024× 1024)

136 S.T. Stewart et al.

to 65 million elements (8192 × 8192). The percentage time of each method is
depicted in Table 1. Our implementation uses a “lazy” version of updateAssign-
ment, which dramatically reduced its percentage time from 37 % to a negligible
cost, and the percentage time for pivot went from 60 % to 96 %. This boosted
the potential gains available by parallelizing pivot on the GPU.

Table 1. Percentage time taken by each method in the CPU-only implementation.

Method Contribution

checkBounds 0.4 %

findSuitable 0.1 %

pivot 96.0 %

(other) 3.6 %

The speedup measured for the general simplex procedure’s solve method
using OpenMP and the GPU is summarized in Table 2. Four conclusions are
evident:

1. The benefits of parallelism increase with the size of the input.
2. There is never an advantage for using the serial CPU-only implementation,

even for the smallest tableau (1M = 1024 × 1024).
3. The CPU-GPU is superior to OpenMP. Overall speed increases for range from

3x for the smallest tableau studied (1M = 1024× 1024) to 25x for the largest
(65M = 8192 × 8192).

4. The pivot sub-procedure significantly benefits from parallelization.

Table 2. Speedup of the solve procedure.

Size OpenMP GPU

1M 1.2x 3x

4M 1.5x 8x

16M 1.8x 18x

64M 1.8x 25x

7 Conclusions and Future Work

Many-core processors, such as GPUs, can effectively accelerate the floating-point
calculations of the pivot operations for an inexact LRA solver based on the
general simplex procedure. These GPU kernels excel on dense problem inputs,
demonstrating the potential of using GPUs for dense problems that current SMT
solvers have difficulty solving.

Accelerating the General Simplex Procedure for Linear Real Arithmetic 137

For future work, the prototype solver needs to be extended to support addi-
tional features currently in use by state-of-the-art SMT solvers for LRA. In
particular, it needs to support adding and removing of constraints (for back-
tracking), and the ability to propagate theory lemmas. The solver also needs to
be tested with algorithms that combine inexact and exact solvers, such as those
described by [7,15].

The potential for scaling up the performance and problem sizes for the GPU-
accelerated solver is significant. Companies like AMD (Radeon and Firepro),
NVIDIA (Geforce and Tesla), and Intel (Xeon Phi) continue to advance the
hardware, and there are no apparent obstacles to scaling up the procedure to
support multiple GPUs in a single machine with aggregate memory bandwidth
in the order of TB/s. There is strong potential for using many-core processors
in the context of SMT and software verification tools.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: a view from Berkeley. Technical report
UCB/EECS-2006-183, Berkeley EECS, December 2006

2. Beckers, S., De Samblanx, G., De Smedt, F., Goedeme, T., Struyf, L., Vennekens,
J.: Parallel hybrid SAT solving using OpenCL (2012)

3. Borkar, S., Chien, A.A.: The future of microprocessors. CACM 54(5), 67–77 (2011).
http://doi.acm.org/10.1145/1941487.1941507

4. Dantzig, G.B.: Linear Programming and Ext. Princeton University Press,
Princeton (1963)

5. Deleau, H., Jaillet, C., Krajecki, M.: GPU4SAT: solving the SAT problem on GPU.
In: PARA Workshop on Scientific & Parallel Computing (2008)

6. Dutertre, B., Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

7. Faure, G., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: SAT modulo
the theory of linear arithmetic: exact, inexact and commercial solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 77–90. Springer,
Heidelberg (2008)

8. Fujii, H., Fujimoto, N.: GPU Acceleration of BCP Procedure for SAT Algorithms
(2012)

9. Gulati, K., Khatri, S.P.: Boolean satisfiability on a graphics processor, pp. 123–126
(2010)

10. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer (2008)

11. Lalami, M.E., Boyer, V., El-Baz, D.: Efficient implementation of the simplex
method on a CPU-GPU system. In: IEEE International Symposium on Parallel
and Distributed Processing Workshops and Ph.D. Forum, pp. 1999–2006 (2011)

12. Lalami, M.E., El-Baz, D., Boyer, V.: Multi GPU implementation of the simplex
algorithm. In: 2011 IEEE International Conference on High Performance Comput-
ing and Communications, Banff, Canada, pp. 179–186, September 2011

http://doi.acm.org/10.1145/1941487.1941507

138 S.T. Stewart et al.

13. Meyer, Q., Schonfeld, F., Stamminger, M., Wanka, R.: 3-SAT on CUDA: towards
a massively parallel SAT solver. In: High Performance Computing and Simulation
(HPCS), pp. 306–313. IEEE (2010)

14. Mittal, S., Vetter, J.: A Survey of CPU-GPU Heterogeneous Computing Tech-
niques. ACM Comput. Surv. 47, 1–35 (2015)

15. Monniaux, D.: On using floating-point computations to help an exact linear arith-
metic decision procedure. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 570–583. Springer, Heidelberg (2009)

16. Munshi, A., Benedict, R.G., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Pro-
gramming Guide. Addison-Wesley, Reading (2012)

JavaSMT: A Unified Interface
for SMT Solvers in Java

Egor George Karpenkov1,2, Karlheinz Friedberger3, and Dirk Beyer3

1 Univ. Grenoble Alpes, VERIMAG, 38000 Grenoble, France
2 CNRS, VERIMAG, 38000 Grenoble, France

3 University of Passau, 94032 Passau, Germany

Abstract. Satisfiability Modulo Theory (SMT) solvers received a lot of
attention in the research community in the last decade, and consequently
their expressiveness and performance have significantly improved. In the
areas of program analysis and model checking, many of the newly devel-
oped tools rely on SMT solving. The SMT-LIB initiative defines a com-
mon format for communication with an SMT solver. However, tool devel-
opers often prefer to use the solver API instead, because many features
offered by SMT solvers such as interpolation, optimization, and formula
introspection are not supported by SMT-LIB directly. Additionally, using
SMT-LIB for communication incurs a performance overhead, because all
the queries to the solver have to be serialized to strings. Yet using the
API directly creates the problem of a solver lock-in, which makes evalu-
ating a tool with different solvers very difficult. We present JavaSMT, a
library that exposes a solver-independent API layer for SMT solving. Our
library aims to close the gap between API-based and SMT-LIB-based
communication, by offering a large set of features with minimal perfor-
mance overhead. JavaSMT has been used internally in CPAchecker
since inception, and has been heavily tested in different verification algo-
rithms. The library is available from its Github website https://github.
com/sosy-lab/java-smt.

1 Introduction

During the last decade, SMT solvers have demonstrated an impressive increase
in expressiveness (many supported theories) and efficiency (much larger scale
of queries that can be answered within a small time-frame). As a consequence,
many tools for software verification rely on an SMT solver as a back-end.

The SMT-LIB [3] initiative defines a common interface language for SMT
solvers, much like SQL standardizes the interface to a relational database. How-
ever, from the perspective of a tool developer, using the textual SMT-LIB
communication channel is often suboptimal. Firstly, it does not expose all the

The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR” and from
the Free State of Bavaria.

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 139–148, 2016.
DOI: 10.1007/978-3-319-48869-1 11

https://github.com/sosy-lab/java-smt
https://github.com/sosy-lab/java-smt
http://erc.europa.int/
http://stator.imag.fr/

140 E.G. Karpenkov, K. Friedberger, and D. Beyer

features that modern solvers offer: interpolation1 multiple independent solvers,
formula introspection, and optimization modulo theories are not included in
SMT-LIB 2.0. It is also not possible to conditionally store formulas for future
reuse and remove them when they are no longer needed. Secondly, such a textual
communication can be very inefficient, because all queries to the solver have to
be serialized to strings, and all of the solver output has to be parsed. For a tool
that poses a large number of simple queries (such as in PDR [2]), parsing and
serialization can become a performance bottleneck.

However, when using a solver API directly, users face the problem of “solver
lock-in”, which makes it difficult to evaluate different SMT solvers or to switch
to a different SMT solver without rewriting a large chunk of the application.

We propose JavaSMT, a library that exposes a common API layer
across several back-end solvers. It is written in Java and is available under
the Apache 2.0 License on GitHub (https://github.com/sosy-lab/java-smt).
JavaSMT communicates with solvers using their API, and imposes only a min-
imal amount of overhead. For the solvers that are implemented in Java the
exposed API is used directly, and for the solvers in other languages we inte-
grated JNI bindings.

Outlook. This paper refers to JavaSMT v1.01 2. The contributions of this paper
are structured as follows: First, we describe the features that JavaSMT exposes in
Sect. 2. Second, we present the project structure and the requirements for adding
a new solver into JavaSMT in Sect. 3. Third, Sect. 4 discusses the strategies for
managing memory of the JNI bindings, and the associated performance problem.
Finally, we present a case study based on the Houdini algorithm [4] in Sect. 5,
and conclude by comparing JavaSMT to related projects and discussing possible
future work in Sect. 6.

2 Features

JavaSMT currently provides access to five different SMT solvers: MathSAT [1],
OptiMathSAT [17], Z3 [14], SMTInterpol [12], and Princess [16]. Table 1 lists
the theories and features that are supported by these solvers.

Formula Representation. To keep the memory overhead low, JavaSMT does
not store its own internal representation of the formulas, but keeps only one
single pointer to each formula in the solver’s memory, possibly with an addi-
tional pointer to the current solver context. Consequently, the memory footprint
of JavaSMT is proportional to a small constant multiplied by the number of
formulas that the client application needs a reference to, regardless of the size of
the constructed formulas. This choice ensures high performance, but obstructs
transferring formulas between different contexts for different operations, such as
checking satisfiability with Z3 and performing interpolation with SMTInterpol.
For such inter-solver translations we use SMT-LIB serialization.
1 A proposal draft [11] exists since 2012.
2 https://github.com/sosy-lab/java-smt/releases/tag/1.0.1.

https://github.com/sosy-lab/java-smt
https://github.com/sosy-lab/java-smt/releases/tag/1.0.1

JavaSMT: A Unified Interface for SMT Solvers in Java 141

Table 1. Theories and features supported by different solvers

M
a
t
h
S
A
T

O
p
t
iM

a
t
h
S
A
T

Z
3

S
M
T
In

t
e
r
p
o
l

P
r
in
c
e
ss

Integer + + + + +

Rational + + + + -

Array + + + + +

Bitvector + + + - -

Float + + - - -

Unsat Core + + + + -

Partial Models - - + - +

Assumptions + + + + +

Quantifiers - - + - +

Interpolation (Tree/Sequential) + + + + +

Optimization - + + - -

Incremental Solving + + + + +

SMT-LIB2 + + + + +

Type Safety. Using and enforcing types is beneficial for a software library,
because it guarantees the absence of errors that are caused by incorrect type
usage at compile time and can increase the level of trust in the software. Improv-
ing such confidence is particularly important for tools for software verification,
because the verdict of such tools is only reliable if all components operate cor-
rectly (“who verifies the software verifier”).

JavaSMT uses the Java type system to differentiate between the different
sorts of formulas (e.g., BooleanFormula and IntegerFormula) and guarantees
that all operations respect the formula type. The typed interface avoids incorrect
operations (such as adding integers to Booleans), which would not pass the
compiler. Type safety also extends to model evaluation: for example, evaluating
an IntegerFormula is guaranteed at compile time to return a BigInteger.

Formula Introspection. In many applications, formula introspection is a
required feature. For instance, an analysis might wish to re-encode expensive
non-linear operations as uninterpreted functions, or to find and rename all vari-
ables used in the formula.

In our experience with formula introspection and transformation code in
CPAchecker [6], we have discovered that writing correct and robust formula-
traversing code can be very challenging, due to:

142 E.G. Karpenkov, K. Friedberger, and D. Beyer

– cases missed by the client, e.g., an unexpected XOR,
– incorrect assumptions by the client, such as assuming that the input formula

has no quantifiers,
– not performing memoization for recursive traversals, resulting in exponential

blow-up on formulas represented as directed acyclic graphs, or
– performing recursive traversal using recursion, since it can result in stack-

overflow exceptions on large formulas.

In order to decrease the likelihood of such bugs, we use the Visitor design
pattern (cf. [9], Chap. 5) for formula traversal and transformation. Two visi-
tor interfaces are exposed: BooleanFormulaVisitor and FormulaVisitor. The
Boolean visitor requires implementations for Boolean primitives that can occur
in the formulas (equality, implication, etc.) and matches all other formulas as
atoms. It is useful for transformation of the Boolean structure of the formula,
such as a conversion to negation normal form. The FormulaVisitor does not
explicitly require matching each possible function, but provides an enumeration
consisting of most common function declarations (addition, subtraction, com-
parison, etc.) and can be used to recursively traverse the entire formula, e.g., in
order to find all used variables.

Our experience shows that such an approach leads to considerably safer code
as compared to direct formula manipulation.

3 Project Architecture

The overall structure of the library is shown in Fig. 1. An interaction with the
JavaSMT library starts with a SolverContextFactory, which is used to create
a SolverContext object, encapsulating a context for a particular solver. All fur-
ther interaction is performed through the SolverContext class, which exposes
the features outlined in Sect. 2. Instances of SolverContext are not thread-safe,
and should be accessed only from a single thread. However, separate contexts are
independent from each other and can be safely used from different threads, pro-
vided that the underlying solver supports multithreading on different contexts.

An interface to every represented solver is implemented as a separate package
with an entry class that implements the SolverContext API.

4 Memory Management

Different SMT solvers resort to different strategies for memory management. The
solvers running in managed environments (e.g., SMTInterpol and Princess run-
ning on JVM) use the available garbage collector, while solvers exposing a C API
have to expose the memory management API to a user. The underlying prob-
lem is that for a library that exposes its API through the native non-managed
language, it is impossible to know whether a previously returned object is still
referenced by the client application, or whether it can be deleted.

JavaSMT: A Unified Interface for SMT Solvers in Java 143

MathSAT exposes a “manual” garbage-collection interface, which removes
all formulas except those that are specifically requested to be kept. This requires
an application to keep track of all created objects that can still be referenced.

Z3 uses a reference-counting approach, where an object is considered unreach-
able whenever its reference count reaches zero. While this interface can be
effectively used from C++ to offer automatic memory management using RAII
(incrementing references in constructors, and decrementing in destructors), using
it in an efficient and correct way is surprisingly difficult from Java.

The official Z3 Java API is using Java finalizers 3 to decrement the references,
explicitly performing locking on the queue of references that need to be decre-
mented. Unfortunately, finalizers are known to have a very severe memory and
performance penalty (cf. [10], Chap. 2.7). Thus we have developed our own Z3

JNI bindings with a memory strategy based on using PhantomReference and
ReferenceQueue, provided by the JDK to get a more fine-grained control over
the garbage collection.

We present the performance evaluation of three different memory managing
strategies for Z3: (1) using the official Z3 API, which relies on finalizers, (2) using
our phantom reference-based implementation, and (3) not closing resources at
all. We have chosen a benchmark setup that runs a program analysis with local
policy iteration [8] on the SV-COMP [5] data set. Obtained results are shown in
Fig. 2. Unsurprisingly, the approach using finalizers has the worst performance
by far, with performance penalty often eclipsing the analysis time, and a very
large memory consumption. The no-GC approach minimizes both memory and
time consumption. We attribute the high performance of the no-GC approach to
the hash-consing used in Z3, which results in no additional memory consumption
for ASTs that were previously already constructed.

Solver Bindings

JavaSMT Implementation

JavaSMT API

Z3 MathSAT SMTInterpol Princess

Formula Solver Context Formula Manager Model ...

Fig. 1. JavaSMT Architecture

3 Since the publication of this paper, Z3 bindings were updated by one of the authors
of this paper to use a more efficient memory management strategy.

144 E.G. Karpenkov, K. Friedberger, and D. Beyer

5 Case Study: Inductive Formula Weakening

To give a tour of the library, we present a usable implementation of the inductive-
invariant synthesis algorithm Houdini [4]. In order to provide the context, we
include a brief background that explains the algorithm and its motivation.

Background. We consider a program that manipulates a set X of variables.
The program is defined by the initial condition I(X) and the transition relation
τ(X,X ′). Both I and τ are quantifier-free first-order formulas.

A lemma F is called inductive with respect to τ if it implies itself over the
primed variables after the transition:

∀X,X ′ : F (X) ∧ τ(X,X ′) =⇒ F (X ′) (1)

Inductiveness can be checked with a single query to an SMT solver. The
lemma F is inductive with respect to τ iff the following formula (2) is
unsatisfiable:

F (X) ∧ τ(X,X ′) ∧ ¬F (X ′) (2)

The Houdini algorithm finds a maximal inductive subset of a given set L of
candidate lemmas which satisfies the initial condition I(X). Firstly, it filters out
all lemmas from L which are not implied by I. Then, it repeatedly checks

∧
L

for inductiveness using (2), and updates L to exclude the lemmas that give rise
to counterexamples-to-induction. At the end the algorithm terminates with an
inductive subset LI ⊆ L.

Counterexamples-to-induction are derived from a model returned by an SMT
solver in response to a query in (2) (such a model exists iff the conjunction of
lemmas is not inductive). Given a model M, the Houdini algorithm filters out
all lemmas l ∈ L for which M |= ¬l(X ′) holds. After such filtering is applied in
a fixed-point manner, a (possibly empty) inductive subset remains.

0 20 40 60 80 100 120 140

109

1010

Programs

M
em

o
ry

C
o
n
su

m
p
ti

o
n

(b
y
te

s)

No bookkeeping

Phantom References

Finalizers

0 20 40 60 80 100 120 140

101

102

103

Programs

W
a
ll
ti

m
e

(s
)

No bookkeeping

Phantom References

Finalizers

Fig. 2. Resource usage comparison across different memory management
strategies for Z3

JavaSMT: A Unified Interface for SMT Solvers in Java 145

Implementation.
Initialization: To initialize JavaSMT, we pass the required classes using depen-
dency injection, as shown in Listing 1. This code snippet generates a configu-
ration from passed command-line arguments (configuration can choose a solver,
and tweak any of its options), a logger instance, and initializes the solver context.

Formula Transformation: The Houdini algorithm gets a set of lemmas as an
input. However, for checking inductiveness as shown in (2) we need primed ver-
sions of these lemmas, which we obtain by renaming all free variables using a
transformation visitor as shown in Listing 2.

Instead of directly removing asserted lemmas from the solver, we use annota-
tion with auxiliary selector variables. Each lemma li is converted to li∨si, where si
is a fresh Boolean variable. After such an annotation, the lemma li can be relaxed
by asserting an assumption si. The code for input-lemma annotation is shown in
Listing 3. Finally, the main Houdini loop, which performs lemma filtering until
inductiveness, is shown in Listing 4.

146 E.G. Karpenkov, K. Friedberger, and D. Beyer

JavaSMT: A Unified Interface for SMT Solvers in Java 147

6 Related Work

jSMTLIB [7] is a solver-agnostic library for Java which uses SMT-LIB for com-
munication with the solvers, and thus has the associated restrictions outlined in
Sect. 1, including costly serialization overhead and a limitation to the features
offered by SMT-LIB. In contrast, our work presents a solver-independent library
for Java which connects directly to the solvers API.

The newly published jDart [13] tool bundles a jConstraints library that
offers a functionality similar to JavaSMT. However, JavaSMT has more features,
communicates with solvers using their API, and provides an efficient memory-
management strategy (jConstraints uses the official Z3 Java API, which relies
on finalizers). Additionally, our library provides several solvers that can be
installed automatically and one simple configuration option to switch between
them. For jConstraints, the user has to manually include and configure all the
solver’s bindings and binaries. We have learned that these steps are complicated
and error-prone, as the library might be used as part of a bigger software sys-
tem. Thus, our solvers and their bindings do not require to setup any special
environment.

The problem of creating such a library has also been tackled for Python in
PySMT [15]. In contrast to our work, PySMT keeps the formula structure itself,
while delegating the queries to the solvers. While this allows for creating formulas
without any solvers installed, and for easier transfer of formulas between different
contexts, it incurs a large memory overhead.

7 Conclusion

We have presented JavaSMT, a new library for efficient and safe communication
with SMT solvers. The advantages of using such a library over communicating
using SMT-LIB include performance, access to new features, and the ability to
control which formulas remain in scope and which should be discarded. Some
disadvantages exist as well — using JavaSMT means restricting to the supported
solvers, and relying on JavaSMT developers to update the solvers in time. Our
experience with using SMT solvers is that for applications that pose a few large,
monolithic queries and need only standard features, the communication using
SMT-LIB is optimal, while for tools that post many cheap, incremental queries,
using the API via JavaSMT is the better solution. New editions of SMT-LIB
could make missing features like interpolation available (proposed draft already
exists [11]), but giving the user control over memory management for formulas
(Sect. 4), or allowing efficient communication without string serialization and
parsing may be far outside of the scope of SMT-LIB initiative. So for users
requiring such features, an intermediate-layer library is always beneficial.

Acknowledgements. The authors thank P. Wendler for valuable discussions on
design decisions and principles behind JavaSMT, and all JavaSMT contributors for
their programming efforts.

148 E.G. Karpenkov, K. Friedberger, and D. Beyer

References

1. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. LNCS, vol. 7795, pp. 93–107. Springer,
Heidelberg (2013)

2. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5.
Technical report. Department of Computer Science, University of Iowa (2015).
www.SMT-LIB.org

4. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

5. Beyer, D.: Reliable and reproducible competition results with BenchExec and wit-
nesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016)

6. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

7. Cok, D.R.: The jSMTLIB User Guide (2013). http://smtlib.github.io/jSMTLIB/
jSMTLIBUserGuide.pdf. Accessed 10 Feb 2016

8. Karpenkov, E.G., Monniaux, D., Wendler, P.: Program analysis with local policy
iteration. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583,
pp. 127–146. Springer, Heidelberg (2016)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

10. Bloch, J.: Effective Java (The Java Series), 2nd edn. Prentice Hall, Upper Saddle
River (2008)

11. Christ, J., Hoenicke, J.: Interpolation in SMTLIB 2.0 (2012). https://ultimate.
informatik.uni-freiburg.de/smtinterpol/proposal.pdf. Accessed 10 Feb 2016

12. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

13. Luckow, K., Dimjašević, M., Giannakopoulou, D., Howar, F., Isberner, M., Kahsai,
T., Rakamarić, Z., Raman, V.: jDart: A dynamic symbolic analysis framework.
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 442–459.
Springer, Heidelberg (2016)

14. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Gario, M., Micheli, A.: PySMT: A solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT 2015 (2015)

16. Rümmer, P.: E-matching with free variables. In: Bjørner, N., Voronkov, A. (eds.)
LPAR 2012. LNCS, vol. 7180, pp. 359–374. Springer, Heidelberg (2012)

17. Sebastiani, R., Trentin, P.: OptiMathSAT: A tool for optimization modulo the-
ories. In: Kröening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 447–454. Springer, Heidelberg (2015)

http://www.SMT-LIB.org
http://smtlib.github.io/jSMTLIB/jSMTLIBUserGuide.pdf
http://smtlib.github.io/jSMTLIB/jSMTLIBUserGuide.pdf
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf

Relational Program Reasoning Using
Compiler IR

Moritz Kiefer, Vladimir Klebanov, and Mattias Ulbrich(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany
moritz.kiefer@student.kit.edu, {klebanov,ulbrich}@kit.edu

Abstract. Relational program reasoning is concerned with formally
comparing pairs of executions of programs. Prominent examples of rela-
tional reasoning are program equivalence checking (which considers exe-
cutions from different programs) and detecting illicit information flow
(which considers two executions of the same program).

The abstract logical foundations of relational reasoning are, in the
meantime, sufficiently well understood. In this paper, we address some
of the challenges that remain to make the reasoning practicable. Two
major ones are dealing with the feature richness of programming lan-
guages such as C and with the weakly structured control flow that many
real-world programs exhibit.

A popular approach to control this complexity is to define the analy-
ses on the level of an intermediate program representation (IR) such as
one generated by modern compilers. In this paper we describe the ideas
and insights behind IR-based relational verification. We present a pro-
gram equivalence checker for C programs operating on LLVM IR and
demonstrate its effectiveness by automatically verifying equivalence of
functions from different implementations of the standard C library.

1 Introduction

Relational program reasoning. Over the last years, there has been a growing
interest in relational verification of programs, which reasons about the relation
between the behavior of two programs or program executions – instead of com-
paring a single program or program execution to a more abstract specification.
The main advantage of relational verification over standard functional verifi-
cation is that there is no need to write and maintain complex specifications.
Furthermore, one can exploit the fact that changes are often local and only
affect a small portion of a program. The effort for relational verification often
only depends on the difference between the programs respectively program exe-
cutions and not on the overall size and complexity of the program(s).

Relational verification can be used for various purposes. An example is regres-
sion verification resp. equivalence checking, where the behavior of two different
versions of a program is compared under identical input. Another example is
checking for absence of illicit information flow, a security property, in which exe-
cutions of the same program are compared for different inputs. For concreteness’
c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 149–165, 2016.
DOI: 10.1007/978-3-319-48869-1 12

150 M. Kiefer et al.

sake, we focus in this paper on regression verification/equivalence checking of
C programs, though the presented techniques readily apply to other instances
of relational reasoning.

Regression Verification. Regression verification is a formal verification app-
roach intended to complement regression testing. The goal is to establish a formal
proof of equivalence of two program versions (e.g., consecutive revisions during
program evolution, or a program and a re-implementation). In its basic form, we
are trying to prove that the two versions produce the same output for all inputs.
In more sophisticated scenarios, we want to verify that the two versions are
equivalent only on some inputs (conditional equivalence) or differ in a formally
specified way (relational equivalence). Regression verification is not intended to
replace testing, but when it is successful, it offers guaranteed coverage without
requiring additional expenses to develop and maintain a test suite.

Challenges in Making Regression Verification Practicable. The abstract
logical foundations of relational reasoning are, in the meantime, sufficiently well
understood. For instance, in [8], we presented a method for regression verification
that reduces the equivalence of two related C programs to Horn constraints over
uninterpreted predicates. The reduction is automatic, just as the solvers (e.g.,
Z3 [15,18] or Eldarica [23]) used to solve the constraints. Our current work
follows the same principles.

Yet, the calculus in [8] only defined rules for the basic, well-structured pro-
gramming language constructs: assignment, if statement, while loop and func-
tion call. The Rêve tool implemented the calculus together with a simple self-
developed program parser.

While the tool could automatically prove equivalence of many intricate
arithmetic-intensive programs, its limited programming language coverage ham-
pered its practical application. The underlying calculus could not deal with
break, continue, or return statements in a loop body, loop conditions with
side effects, for or do-while loops, let alone arbitrary goto statements.

Contributions. The main contribution of this paper is a method for automated
relational program reasoning that is significantly more practical than [8] or other
state-of-the-art approaches. In particular, the method supports programs with
arbitrary unstructured control flow without losing automation. The gained ver-
satility is due to a completely redesigned reduction calculus together with the
use of the LLVM compiler framework [17] and its intermediate program repre-
sentation (IR).

Furthermore, the calculus we present in this paper is fine-tuned for the infer-
ence of relational predicates and deviates from straightforward encodings in
crucial points: (a) Loops are not always reduced to tail recursion (see Sect. 4.6),
(b) mutual function summaries are separated into two predicates for pre- and
postcondition (see Sect. 4.5), and (c) control flow synchronization points can be
placed by the user manually to enable more flexible synchronization schemes.

Relational Program Reasoning Using Compiler IR 151

We developed a tool implementing the approach, which can be tested online
at http://formal.iti.kit.edu/improve/reve/. We have evaluated the tool by auto-
matically proving equivalence of a number of string-manipulating functions from
different implementations of the C standard library.

Main Idea of Our Method. First, we employ the LLVM compiler framework
to compile the C source code to LLVM IR. This step reduces all control flow in a
program to branches (jumps) and function calls. Next, we divide the (potentially
cyclic) control flow graph of the program into linear segments. For the points at
which these segments are connected, we introduce relational abstractions repre-
sented by uninterpreted predicate symbols (instead of concrete formulas). The
same applies for pairs of corresponding function calls. Finally, we generate con-
straints over these predicate symbols linking the linear segments with the cor-
responding state abstractions. The produced constraints are in Horn normal
form.

The generation of constraints is automatic; the user does not have to sup-
ply coupling predicates, loop invariants, or function summaries. The constraints
are passed to a constraint solver for Horn clauses (such as Z3 [15,18] or Eldar-
ica [23]). The solver tries to find an instantiation of the uninterpreted abstraction
predicates that would make the constraints true. If the solver succeeds in finding
a solution, the programs are equivalent. Alternatively, the solver may show that
no solution exists (i.e., disprove equivalence) or time out.

Advantages of Using LLVM IR. There are several advantages to working
on LLVM IR instead of on the source code level. The translation to LLVM
IR takes care of preprocessing (resolving typedefs, expanding macros, etc.) and
also eliminates many ambiguities in the C language such as the size of types
(which is important when reasoning about pointers). Building an analysis for
IR programs is much simpler as the IR language has fewer instruction types
and only two control flow constructs, namely branches (jumps) and function
calls. Furthermore, LLVM provides a constantly growing number of simplifying
and canonicalizing transformations (passes) on the IR level. If the differences in
the two programs are merely of a syntactical nature, these simplifications can
often eliminate them completely. Also, it was easy to incorporate our own passes
specifically geared towards our use case.

Challenges Still Remaining. Of course, using a compiler IR does not solve
all challenges. Some of them, such as interpreting integers as unbounded or
the inability to deal with general bit operations or floating-point arithmetic
remain due to the limitations of the underlying solvers. Furthermore, we, as
is common, assume that all considered programs are terminating. Verifying
this property is delegated to the existing termination checking technology, such
as [7,9].

http://formal.iti.kit.edu/improve/reve/

152 M. Kiefer et al.

Listing 1. memchr(), dietlibc

1 #include <stddef.h>
2 extern int __mark(int);
3

4 void* memchr(const void *s,
5 int c,
6 size_t n) {
7 const unsigned char *pc =
8 (unsigned char *) s;
9 for (;n--;pc++) {

10 __mark (42);
11 if (*pc == c)
12 return ((void *) pc);
13 }
14 return 0;
15 }

Listing 2. memchr(), OpenBSD libc

1 #include <stddef.h>
2 extern int __mark(int);
3

4 void * memchr(const void *s,
5 int c,
6 size_t n) {
7 if (n != 0) {
8 const unsigned char *p = s;
9 do {

10 __mark (42);
11 if (*p++ == (unsigned char)c)
12 return ((void *)(p - 1));
13 } while (--n != 0);
14 }
15 return (NULL);
16 }

2 Illustration

We tested our approach on examples from the C standard library (or libc). The
interfaces and semantics of the library functions are defined in the language stan-
dard, while several implementations exist. GNU libc [10] and OpenBSD libc [21]
are two mature implementations of the library. The diet libc (or dietlibc) [27] is
an implementation that is optimized for small size of the resulting binaries.

Consider the two implementations of the memchr() function shown in List-
ings 1 and 2. The function scans the initial n bytes of the memory area pointed to
by s for the first instance of c. Both c and the bytes of the memory area pointed
to by s are interpreted as unsigned char. The function returns a pointer to the
matching byte or NULL if the character does not occur in the given memory area.

In contrast to full functional verification, we are not asking whether each
implementation conforms with this (yet to be formalized) specification. Instead,
we are interested to find out whether the two implementations behave the same.
Whether this is the case is not immediately obvious due to the terse programming
style, subtle pointer manipulation, and the different control flow constructs used.

While the dietlibc implementation on the left is relatively straightforward,
the OpenBSD one on the right is more involved. The for loop on the left is
replaced by a do-while loop wrapped in an if conditional on the right. This
transformation known as loop inversion reduces the overall number of jumps by
two (both in the branch where the loop is executed). The reduction increases
performance by eliminating CPU pipeline stalls associated with jumps. The price
of the transformation is the duplicate condition check increasing the size of the
code. On the other hand, loop inversion makes further optimizations possible,
such as eliminating the if statement if the value of the guard is known at compile
time.

With one exception, the code shown is the original source code and can indeed
be fed like that into our implementation LLRêve, which without further user
interaction establishes the equivalence of the two implementations. The excep-
tion is the inclusion of the mark() calls in the loop bodies. The calls identify

Relational Program Reasoning Using Compiler IR 153

synchronization points in the execution of two programs where the states of the
two are most similar. The numerical arguments only serve to identify match-
ing pairs of points. The user has to provide enough synchronization points to
break all cycles in the control flow, otherwise the tool will abort with an error
message. In [8], we used a simple heuristic to put default synchronization points
automatically into loop bodies in their order of appearance, though this is not
yet implemented in LLRêve.

Suppose that we are running the two implementations to look for the same
character c in the same 100 byte chunk of memory. If we examine the values of
variables at points in time when control flow reaches the mark(42) calls for
the first time, we obtain: for dietlibc n = 99, pc = s, and for OpenBSD n = 100,
p = s. The second time: for dietlibc n = 98, pc = s + 1, and for OpenBSD
n = 99, p = s + 1. The values of c, s, and the whole heap remain the same. At
this point, one could suspect that the following formula is an invariant relating
the executions of the two implementations at the above-mentioned points:1

(n2 = n1 + 1) ∧ (p2 = pc1) ∧ (c2 = c1) ∧ ∀i. heap1[i] = heap2[i] . (∗)

That our suspicion is correct can be established by a simple inductive argument.
Once we have done that, we can immediately derive that both programs produce
the same return value upon termination.

We call an invariant like (*) for two loops a coupling (loop) invariant. A
similar construct relating two function calls is called a mutual (function) sum-
mary [13,14]. Together, they fall into the class of coupling predicates, inductive
assertions allowing us to deduce the desired relation upon program termination.
In [8], we have shown that coupling predicates witnessing equivalence of pro-
grams with while loops can be often automatically inferred by methods such as
counterexample-guided abstraction refinement or property-directed reachability.
In this paper, we present a method for doing this for programs with unstructured
control flow.

3 Related Work

Our own previous work on relational verification of C programs [8] has already
been discussed in the introduction.

Many code analysis and formal verification tools operate on LLVM IR, though
none of them, to our knowledge, perform relational reasoning. Examples of non-
relational verification tools building on LLVM IR are LLBMC [19] and Sea-
Horn [12]. The SeaHorn tool is related to our efforts in particular, since it
processes safety properties of LLVM IR programs into Horn clauses over integers.
An interesting recent development is the SMACK [22] framework for rapid pro-
totyping of verifiers, a translator from the LLVM IR into the Boogie intermediate
verification language (IVL) [2].
1 To distinguish identifiers from the two programs, we add subscripts indicating the

program to which they belong. We may also concurrently use the original identifiers
without a subscript as long as the relation is clear from the context.

154 M. Kiefer et al.

The term regression verification for equivalence checking of similar programs
was coined by Godlin and Strichman [11]. In their approach, matching recur-
sive calls are abstracted by the same uninterpreted function. The equivalence
of functions (that no longer contain recursion) is then checked by the CBMC
model checker. The technique is implemented in the RVT tool and supports a
subset of ANSI C.

Verdoolaege et al. [25,26] have developed an automatic approach to prove
equivalence of static affine programs. The approach focuses on programs with
array-manipulating for loops and can automatically deal with complex loop
transformations such as loop interchange, reversal, skewing, tiling, and others.
It is implemented in the isa tool for the static affine subset of ANSI C.

Mutual function summaries have been prominently put forth by Hawblitzel et
al. in [13] and later developed in [14]. The concept is implemented in the equiva-
lence checker SymDiff [16], where the user supplies the mutual summary. Loops
are encoded as recursion. The tool uses Boogie as the intermediate language, and
the verification conditions are discharged by the Boogie tool. A frontend for C
programs is available.

The BCVerifier tool for proving backwards compatibility of Java class
libraries by Welsch and Poetzsch-Heffter [28] has a similar pragmatics as Sym-
Diff. The tool prominently features a language for defining synchronization
points.

Balliu et al. [1] present a relational calculus and reasoning toolchain target-
ing information flow properties of unstructured machine code. Coupling loop
invariants are supplied by the user.

Barthe et al. [3] present a calculus for reasoning about relations between
programs that is based on pure program transformation. The calculus offers
rules to merge two programs into a single product program. The merging process
is guided by the user and facilitates proving relational properties with the help
of any existing safety verification tool. We are not aware of an implementation
of the transformation.

Beringer [4] defines a technique for deriving soundness arguments for rela-
tional program calculi from arguments for non-relational ones. In particular, one
of the presented relational calculi contains a loop rule similar to ours. The rule
targets so-called dissonant loops, i.e., loops not proceeding in lockstep.

Ulbrich [24] introduces a framework and implementation for relational verifi-
cation on an unstructured intermediate verification language (similar to Boogie),
mainly targeted at conducting refinement proofs. Synchronization points are
defined and used similar to this work. However, the approach is limited to fully
synchronized programs and requires user-provided coupling predicates.

Relational Program Reasoning Using Compiler IR 155

4 The Method

4.1 From Source Code to LLVM IR

LLVM’s intermediate representation is an abstract, RISC-like assembler lan-
guage for a register machine with an unbounded number of registers. A program
in LLVM-IR consists of type definitions, global variable declarations, and the
program itself, which is represented as a set of functions, each consisting of a
graph of basic blocks. Each basic block in turn is a list of instructions with
acyclic control flow and a single exit point.

The branch instructions between basic blocks induce a graph on the basic
blocks, called the control flow graph (CFG), in which edges are annotated with
the condition under which the transition between the two basic blocks is taken.
Programs in LLVM IR are in static single assignment (SSA) form, i.e., each
(scalar) variable is assigned exactly once in the static program. Assignments to
scalar variables can thus be treated as logical equivalences.

To obtain LLVM IR programs from C source code, we first compile the two
programs separately using the Clang compiler. Next, we apply a number of
standard and custom-built transformation passes that:

– eliminate load and store instructions (generated by LLVM) for stack-allocated
variables in favor of register operations. While we do support the general load
and store instructions, they increase deduction complexity.

– propagate constants and eliminate unreachable code.
– eliminate conditional branching between blocks in favor of conditional assign-

ments (similar to the ternary operator ? in C). This step reduces the number
of distinct paths through the program. As we are considering a product of all
paths, this step is important.

– inline function calls where desired by the user.

4.2 Synchronization Points and Breaking Control Flow Cycles

If the compiled program contained loops or iteration formulated using goto
statements, the resulting CFG is cyclic. Cycles are a challenge for deductive
verification because the number of required iterations is, in general, not known
beforehand.

We break up cycles in the control flow by defining synchronization points, at
which we will abstract from the program state by means of predicates. The paths
between synchronization points are then cycle-free and can be handled easily.
Synchronization points are defined by labeling basic blocks of the CFG with
unique numbers n ∈ N. Additionally, the entry and the exit of a function are
considered special synchronization points labeled with B and E. If every cycle in
the CFG contains at least one synchronization point, the CFG can be considered
as the set of all linear paths leading from one synchronization point directly to
another. A linear path is a sequence of basic blocks together with the transition
conditions between them. Formally, it is a triple 〈n, π,m〉 in which n and m

156 M. Kiefer et al.

denote the beginning and end synchronization point of the segment and π(x, x′)
is the two-state transition predicate between the synchronization points in which
x are the variables before and x′ after the transition. Since basic blocks are in
SSA form, the transition predicate defined by a path is the conjunction of all
traversed assignments (as equalities) and transition conditions. The treatment
of function invocation is explained in Sect. 4.5.

4.3 Coupling and Coupling Predicates

Let in the following the two compared functions be called P and Q, and let xp

(resp. xq) denote the local variables of P (resp. Q). Primed variables refer to
post-states.

We assume that P and Q are related to each other, in particular that the
control and data flow through the functions is similar. This means that we expect
that there exist practicable coupling predicates describing the relation between
corresponding states of P and Q. The synchronization points mark where the
states are expected to be coupled. If a function were compared against itself, for
instance, the coupling between two executions would be equality ranging over
all variables and all heap locations. For the analysis of two different programs,
more involved coupling predicates are, of course, necessary.

Formally, we introduce a coupling predicate Cn(xp, xq) for every synchro-
nization point index n. Note that these predicates have the variables of both
programs as free variables. Two functions are considered coupled, if they yield
coupled traces when fed with the same input values; coupled in the sense that
the executions pass the same sequence of synchronization points in the CFG
and that at each synchronization point, the corresponding coupling predicate is
satisfied. See Fig. 1 for an illustration.

B n1 n2 . . . E

B n1 n2 . . . E

CB Cn1 Cn2 CE

Fig. 1. Illustration of coupled control flow of two fully synchronized programs

The coupling predicates CB and CE for the function entry and exit are
special in that they form the relational specification for the equivalence between
P and Q. For pure equivalence, CB encodes equality of the input values and
state, and CE of the result value and output state. Variations like conditional
or relational equivalence can be realized by choosing different formulas for CB

and CE .

Relational Program Reasoning Using Compiler IR 157

4.4 Coupling Predicates for Cyclic Control Flow

In the following, we outline the set of constraints that we generate for programs
with loops. If this set possesses a model, i.e., if there are formulas making the
constraint true when substituted for the coupling predicate placeholders Ci, then
the programs fulfill their relational specification.

The first constraint encodes that every path leading from a synchronization
point to the next satisfies the coupling predicate at the target point. Let 〈n, π,m〉
be a linear path in the CFG of P and 〈n, ρ,m〉 one for the same synchronization
points for Q. For each such pair of paths, we emit the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq, x

′
q) → Cm(x′

p, x
′
q) . (1)

The above constraint only covers the case of strictly synchronized loops which
are iterated equally often. Yet, often the number of loop iterations differs between
revisions, e.g., if one loop iteration has been peeled in one of the programs. To
accommodate that, we allow one program, say P , to loop at a synchronization
point n more often than the other program.2 Thus, P proceeds iterating the
loop, while Q stutters in its present state. For each looping path 〈n, π, n〉 in P ,
we emit the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧

(∧

〈n,ρ,n〉
in Q

∀x′
q.¬ρ(xq, x

′
q)

)

→ Cn(x′
p, xq) . (2)

The second conjunct in the premiss of the implication encodes that P iterates
from n to n, while the third captures that no linear path leads from n to n
in Q from initial value xq. The coupling predicate in the conclusion employs the
initial values xq, since we assume that the state of Q stutters.

Emitting (2) to accommodate loops that are not strictly synchronized adds to
the complexity of the overall constraint and may in practice prevent the solver
from finding a solution. We thus provide the user with the option to disable
emitting (2), if they are confident that strict synchronization is sufficient.

Finally, we have to encode that the control flow of P and Q remains syn-
chronized in the sense that it must not be possible that P and Q reach different
synchronization points m and k when started from a coupled state at n.3 For
each path 〈n, π,m〉 in P and 〈n, ρ, k〉 in Q with m 	= k, n 	= m, n 	= k, we emit
the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq, x

′
q) → false . (3)

4.5 Coupling Predicates for Function Calls

Besides at synchronization points that abstract loops or iteration in general,
coupling predicates are also employed to describe the effects of corresponding
2 The situation is symmetric with the case for Q omitted here.
3 This restriction is of minor practical importance but releases us from the need to

create coupling predicates for arbitrary combinations of synchronization points.

158 M. Kiefer et al.

function invocations in the two programs. To this end, matching pairs of function
calls in the two CFGs are abstracted using mutual function summaries [13]. A
heuristic used to match calls will be described later.

Mutual Function Summaries. Let fp be a function called from the function
P , xp denote the formal parameters of fp, and rp stand for the (optional) result
returned when calling fp. Assume that there is an equally named function fq

defined in the program of Q. A mutual summary for fp and fq is a predicate
Sumf (xp, xq, rp, rq) that relationally couples the result values to the function
arguments. If the function accesses the heap, the heap appears as an additional
argument and return value of the function.

In our experiments, we found that it is beneficiary to additionally model an
explicit relational precondition Pref (xp, xq) of f . Although it does not increase
expressiveness, the solvers found more solutions with precondition predicates
present. We conjecture that the positive effect is related to the fact that mutual
summary solutions are usually of the shape φ(xp, xq) → ψ(rp, rq), and that
making the precondition explicit allows the solver to infer φ and ψ separately
without the need to infer the implication.

For every pair of paths 〈n, π,m〉 ∈ P and 〈n, ρ,m〉 ∈ Q that contain a single
call to f , we emit the following additional constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq, x

′
q) → Pref (x∗

p, x
∗
q) . (4)

in which x∗
p and x∗

q denote the SSA variables used as the argument for the
function calls to f . The constraint demands that the relational precondition Pref

must be met when the callsites of f are reached in P and Q.
For every such pair of paths, we can now make use of the mutual sum-

mary by assuming Sumf (x∗
p, x

∗
q , rp, rq). This means that for constraints emitted

by (1)–(3), the mutual summary of the callsite can be added to the premiss. The
augmented version of constraint (1) reads, for instance,

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq, x

′
q) ∧ Sumf (x∗

p, x
∗
q , rp, rq) → Cm(x′

p, x
′
q) , (5)

with rp and rq the SSA variables that receive the result values of the calls.
The mutual summary also needs to be justified. For that purpose, constraints

are recursively generated for f , with the entry coupling predicate CB = Pref

and exit predicate CE = Sumf .
The generalization to more than one function invocation is canonical.

1 int f(int n) {
2 return g(n-1);
3 }
4 int g (int n) {
5 return n+1;
6 }

Listing 3. f() calling g()

Example. To make the above clearer, let us look at
the encoding of the program in Listing 3 when ver-
ified against itself. Let Cf

B(n1, n2) and Cf
E(r1, r2) be

the given coupling predicates that have to hold at the
entry and exit of f . When encoding the function f , we
are allowed to use Sumg at the callsite but have to show
that Preg holds. Thus we get the following constraints:

Cf
B(n1, n2) ∧ n∗

1 = n1−1 ∧ n∗
2 = n2−1 → Preg(n∗

1, n
∗
2)

Cf
B(n1, n2) ∧ n∗

1 = n1−1 ∧ n∗
2 = n2−1 ∧ Sum(n∗

1, n
∗
2, r1, r2) → Cf

E(r1, r2) .

Relational Program Reasoning Using Compiler IR 159

To make sure that Preg and Sumg are a faithful abstraction for g, we have
a new constraint for g, which boils down to

Preg(n1, n2) → Sumg(n1, n2, n1 + 1, n2 + 1) .

At this point, the set of constraints is complete, and we can state the main
result:

Theorem 1 (Soundness). Let S be the set of constraints emitted by (1)–(5).
If the universal closure of S is satisfiable, then P and Q terminate in states with
x′

p and x′
q satisfying CE(x′

p, x
′
q) when they are executed in states with xp and xq

satisfying CB(xp, xq) and both terminate.

Matching Function Calls. For treatment using mutual summaries, the func-
tion calls need to be combined into pairs of calls from both programs. Our goal
is to match as many function calls between the two programs as possible. To
this end, we look at any pair of possible paths from the two programs that start
and end at the same synchronization points. For each path, we consider the
sequence of invoked functions. To determine the optimal matching of function
calls (i.e., covering as many calls as possible), an algorithm [20] for computing the
longest common (not necessarily continuous) subsequence among the sequences
is applied.

As an example, consider the functions in Fig. 2. There are no cycles in the
control flow, so the only two synchronization points are the function entry and
exit. In Program 1, there are two paths corresponding to x > 0 and x ≤ 0 respec-
tively. In Program 2, there is only a single path. That gives us two possible path
pairs that we need to consider. The resulting longest matchings for the pairs are
also shown in the figure. Matched calls are abstracted using mutual summaries,
while unmatched calls have to be abstracted using conventional functional sum-
maries.

int f(int x) {
if (x > 0) {

x = g(x);
x = g(x);

}
x = h(x);
x = h(x);
x = g(x);
return x;

}

int f(int x) {
x = g(x);
x = g(x);
x = g(x);
x = h(x);
x = h(x);
return x;

}

g(int)

g(int)

h(int)

h(int)
g(int)

g(int)

g(int)

g(int)

h(int)

h(int)

h(int)

h(int)
g(int)

g(int)

g(int)

g(int)

h(int)

h(int)

Program 1 Program 2 Matching for x > 0 Matching for x ≤ 0

Fig. 2. Illustration of function call matching

An additional feature is that the user can request to inline a specific call or all
calls to a function with an inline pragma. The feature is especially important

160 M. Kiefer et al.

1 int f(int n) {
2 int i = 0;
3 while (i < n) {
4 i++;
5 }
6 int r = i;
7 return r;
8 }

Listing 4. Function f

∀n.rel in(n) → inv(0, n)

∀i, n.(i < n ∧ inv(i, n)) → inv(i + 1, n)

∀i, n.(¬(i < n) ∧ inv(i, n)) → relout(i)

Fig. 3. Iterative encoding of f

if the callee function contains a loop that should be synchronized with a loop in
the caller function of the other program. The pragma can also be used to inline
some steps of a recursive call.

If a Function’s Implementation is Not Available. A special case arises
when there is a call from both programs to a function for which we do not have
access to the sources. If such calls can be matched, we abstract the two calls
using the canonical mutual summary Sumf : xp = xq → rp = rq stating that
equal inputs induce equal results. If a call cannot be matched, however, we have
to use an uninterpreted functional summary, losing all information about the
return value and the resulting heap. In most cases, this means that nothing can
be proved.4

∀n.rel in(n) → invpre(0, n) ∧
(∀r.inv(0, n, r) → invf (n, r))

∀i, n, r.(i < n ∧ invpre(i, n) ∧ inv(i + 1, n, r)) → inv(i, n, r)

∀i, n.(¬(i < n) ∧ invpre(i, n) → inv(i, n, i)

∀n, r.(rel in(n) ∧ invf (n, r)) → relout(r)

Fig. 4. Recursive encoding of f

4.6 Alternative Loop Treatment as Tail Recursion

When developing our method, we explored two different approaches to deal with
iterative unstructured control flow.

The first one models a program as a collection of mutually recursive functions
such that the function themselves do not have cyclic control flow. Loops must be
translated to tail recursion. This aligns with the approach presented in [13]. It
is attractive since it is conceptually simple allowing a unified handling of cyclic
branching and function calls. However, our experiments have shown that for our
purposes the encoding did not work as well as the one presented in Sect. 4.4 which
4 Alternatively, it would also be possible to trade soundness for completeness and,

e.g., assume that such a call does not change the heap.

Relational Program Reasoning Using Compiler IR 161

handles loops using coupling predicates directly instead of by translation into tail
recursion. A possible explanation for this observation could be that the number
of arguments to the coupling predicates is smaller if (coupling) invariants are
used. For these predicates, it suffices to use those variables as arguments which
may be changed by the following code. The mutual summaries for tail recursion
require more variables and the return values as arguments.

To illustrate the two styles of encoding, we explain how the program in
Listing 4 is encoded. For simplicity of presentation, we encode a safety property
of a single program. The point where the invariant inv has to hold is the loop
header on Line 3. rel in is a predicate that has to hold at the beginning of f and
relout is the predicate that has to hold when f returns. In the recursive encoding
(Fig. 4), inv has three arguments, the local variables i and n and the return
value r. In the iterative case (Fig. 3), the return value is not an argument, so inv
only has two arguments. The entry predicate invpre over the local variables i and
n has to hold at every “call” to inv . The reasoning for having such a separate
predicate has already been explained in Sect. 4.5.

In the end, a combination of the two encodings proved the most promising:
We apply the iterative encoding to the function whose exit and entry predi-
cates have been given as relational specification explained in Sect. 4.3. All other
functions are modeled using the recursive encoding. Mutual summaries depend,
by design, on the input parameters as well as the output parameters whereas
the relational postcondition CE usually only depends on the output parame-
ters. Using an iterative encoding for the other functions would require passing
the input parameters through every predicate to be able to refer to them when
establishing the mutual summary at the exit point. The advantage of an itera-
tive encoding of having fewer parameters in predicates is thereby less significant,
and we employ the recursive encoding. A special case arises when the toplevel
function itself recurses. In this case, we encode it twice: first using the iterative
encoding, which then relies on the recursive encoding for the recursive calls.

4.7 Modeling the Heap

The heap is modeled directly as an SMT array and the LLVM load and store
instructions are translated into the select and store functions in the SMT theory
of arrays. We assume that all load and store operations are properly aligned; we
do not support bit operations or, e.g., accessing the second byte of a 32 bit inte-
ger. Struct accesses are resolved into loads and stores at corresponding offsets.
The logical handling of constraints with arrays requires quantifier reasoning and
introduces additional complexity. We handle such constraints following the lines
of [6].

162 M. Kiefer et al.

5 Experiments

Table 1. Performance with different solvers for
the libc benchmarks

Run time w/solver, seconds

Function Source Eldarica Z3/duality

memccpy d/o 0.733 0.499

memchr d/o 0.623 0.328

memmem d/o 1.545 3.634

memmove d/o 4.195 4.219

memrchr g/o 0.487 1.082

memset d/o 0.263 1.211

sbrk d/g 0.439 0.630

stpcpy d/o 0.203 0.241

strchr d/g 48.145 13.705

strcmp g/o 0.545 0.985

strcspn d/o 17.825 t/o

strncmp g/o 1.046 4.556

strncmp d/g 2.599 7.971

strncmp d/o 0.602 1.742

strpbrk d/o 3.419 3.237

strpbrk d/g 1.029 2.083

strpbrk g/o 1.734 3.453

swab d/o 4.032 0.709

d = dietlibc, g = glibc, o = OpenBSD libc.

t/o = timeout after 300 s.

2 GHz i7-4750HQ CPU, 16 GB RAM

Our implementation of the app-
roach consists of ca. 5.5 KLOC
of C++, building on LLVM ver-
sion 3.8.0.

In our experiments, we have
proven equivalence across a
sample of functions from three
different libc implementations:
dietlibc [27], glibc [10], and
the OpenBSD libc [21]. Apart
from the not yet automated
placing of the synchronization
marks, the proofs happen with-
out user interaction. The run-
times of the proofs are sum-
marized in Table 1. One of the
more complex examples, the
function memmove(), is shown
in Fig. 5. It demonstrates the
use of nested ifs, multiple loops
with different loop structures
(while/do-while) and goto
statements.

Revisiting the memchr()
example discussed in Sect. 2,
the early implementation of
memchr() in dietlibc is known
to have contained a bug (List-
ing 5). In case of a found char-
acter, the return value is one
greater than expected.

1 void* memchr(const void *s,
2 int c,
3 size_t n) {
4 const char* t=s;
5 int i;
6 for (i=n; i; --i)
7 if (*t++==c)
8 return (char*)t;
9 return 0;

10 }

Listing 5. Bug in memchr()

Unsurprisingly, this implementation can-
not be proven equivalent to any of the other
two, and LLRêve produces a counterexam-
ple. While counterexamples in the presence
of heap operations in the program can be
spurious (in the absence of heap operations,
counterexamples are always genuine), in
this case, the counterexample does demon-
strate the problem.

An interesting observation we made was that existentially quantified pre-
conditions might potentially be necessary, such as requiring the existence of a
null byte terminating a string. While techniques for solving existentially quanti-
fied Horn clauses exist [5], most solver implementations currently only support

Relational Program Reasoning Using Compiler IR 163

1 void *memmove(void *dst ,
2 const void *src ,
3 size_t count) {
4 char *a = dst;
5 const char *b = src;
6

7

8

9 if (src != dst) {
10

11

12 if (src > dst) {
13 while (count --) {
14 __mark (0);
15 *a++ = *b++;
16 }
17 } else {
18 a += count - 1;
19 b += count - 1;
20 while (count --) {
21 __mark (1);
22 *a-- = *b--;
23 }
24 }
25 }
26

27

28 return dst;
29 }

(a) dietlibc

1 void *memmove(void *dst0 ,
2 const void *src0 ,
3 size_t length) {
4 char *dst = dst0;
5 const char *src = src0;
6 size_t t;
7 if (length == 0 || dst == src)
8 goto done;
9 if ((unsigned long)dst <

10 (unsigned long)src) {
11 t = length;
12 if (t) {
13 do {
14 __mark (0);
15 *dst++ = *src++;
16 } while (--t);
17 }
18 } else {
19 src += length;
20 dst += length;
21 t = length;
22 if (t) {
23 do {
24 __mark (1);
25 *--dst = *--src;
26 } while (--t);
27 }
28 }
29 done:
30 return (dst0);
31 }

(b) OpenBSD libc

Fig. 5. memmove()

universally quantified clauses. The libc implementations, however, were suffi-
ciently similar so that such preconditions were not necessary.

6 Conclusion

We have shown how the automated relational reasoning approach presented in [8]
can be taken in its applicability from a basic fragment to the full C language stan-
dard w.r.t. the control flow. In this work, LLVM played a crucial rule in reducing
the complexity of a real-world language. We have successfully evaluated our app-
roach on code actually used in production and were able to prove automatically
that many string-manipulation functions from different implementations of libc
are equivalent.

Acknowledgments. This work was partially supported by the German National
Science Foundation (DFG) under the IMPROVE APS project within the priority pro-
gram SPP 1593 “Design For Future – Managed Software Evolution”.

164 M. Kiefer et al.

References

1. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of low
level code. In: Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, CCS 2014, pp. 1080–1091. ACM (2014)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). doi:10.1007/11804192 17

3. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011)

4. Beringer, L.: Relational decomposition. In: Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 39–54. Springer, Heidelberg
(2011)

5. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013)

6. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013)

7. Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs
using bitvector arithmetic. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 261–277. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27705-4 21

8. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, ASE 2014, pp. 349–360. ACM (2014)

9. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination
proofs with AProVE. In: Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 210–
220. Springer, Heidelberg (2004)

10. GNU C library (2016). https://www.gnu.org/software/libc/
11. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th

Annual Design Automation Conference, DAC 2009, pp. 466–471. ACM (2009)
12. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification

framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Heidelberg (2015)

13. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Mutual summaries: uni-
fying program comparison techniques. In: Proceedings, First International Work-
shop on Intermediate Verification Languages (BOOGIE) (2011). http://research.
microsoft.com/en-us/um/people/moskal/boogie2011/boogie2011 pg40.pdf

14. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-
paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013)

15. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

16. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 54

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-27705-4_21
http://dx.doi.org/10.1007/978-3-642-27705-4_21
https://www.gnu.org/software/libc/
http://research.microsoft.com/en-us/um/people/moskal/boogie2011/boogie2011_pg40.pdf
http://research.microsoft.com/en-us/um/people/moskal/boogie2011/boogie2011_pg40.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_54

Relational Program Reasoning Using Compiler IR 165

17. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
2004. IEEE Computer Society (2004)

18. McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpo-
lation. Technical Report MSR-TR–6, Microsoft Research (2013)

19. Merz, F., Falke, S., Sinz, C.: LLBMC: bounded model checking of C and C++
programs using a compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012)

20. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2),
251–266 (1986)

21. OpenBSD libc (2016). http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/lib/libc/
22. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-

fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9 7

23. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013)

24. Ulbrich, M.: Dynamic logic for an intermediate language: verification, interaction
and refinement. Ph.D. thesis, Karlsruhe Institute of Technology, June 2013. http://
nbn-resolving.org/urn:nbn:de:swb:90-411691

25. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. ACM Trans. Program. Lang. Syst.
34(3), 11:1–11:35 (2012)

26. Verdoolaege, S., Palkovic, M., Bruynooghe, M., Janssens, G., Catthoor, F.: Expe-
rience with widening based equivalence checking in realistic multimedia systems.
J. Electron. Test. 26(2), 279–292 (2010)

27. Felix von Leitner. diet libc (2016). https://www.fefe.de/dietlibc/
28. Welsch, Y., Poetzsch-Heffter, A.: Verifying backwards compatibility of object-

oriented libraries using Boogie. In: Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs, FTfJP 2012, pp. 35–41. ACM (2012)

http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/lib/libc/
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://nbn-resolving.org/urn:nbn:de:swb:90-411691
http://nbn-resolving.org/urn:nbn:de:swb:90-411691
https://www.fefe.de/dietlibc/

Resolution in Solving Graph Problems

Kailiang Ji(B)

LRI, Université Paris Sud, Orsay, France
kailiang.ji@lri.fr

Abstract. Resolution is a proof-search method on proving satisfiabil-
ity problems. Various refinements have been proposed to improve the
efficiency of this method. However, when we try to prove some graph
properties, none of the refinements have an efficiency comparable with
traditional graph traversal algorithms. In this paper we propose a way
of solving some graph traversal problems with resolution. And we design
some simplification rules to make the proof-search algorithm work more
efficiently on such problems.

1 Introduction

Since the introduction of Resolution [11], many refinements have been proposed
to increase the efficiency of this method, by avoiding redundancies. A first refine-
ment, hyper-resolution, has been introduced by Robinson himself the same year
as Resolution [10]. More recently ordered resolution [9,12], (polarized) resolution
modulo (PRM) [5,6], and finally ordered polarized resolution modulo (OPRM) [1]
introduced more restrictions. However, as we shall see, these kind of refinements
are still redundant.

In order to address the question of the redundancy of proof search methods,
we encode graph problems, e.g. accessibility or cycle detection, as Resolution
problem, and we compare two ways to solve these problems: by using a proof-
search method and by a direct graph traversal algorithm. If the proof-search
method simulates graph traversal step by step, and in particular never visits
twice the same part of the graph, we can say that it avoids redundancies. Oth-
erwise, this helps us analyze and eliminate the redundancies of the method, by
analyzing why the method visits twice the same part of the graph.

The two graph problems can be expressed by predicate formulae with class
variables (monadic second-order logic) [4,7]. For instance, the cycle detection
problem can be expressed as ∃Y (s1 ∈ Y ∧∀x(x ∈ Y ⇒ ∃x′(edge(x, x′)∧x′ ∈ Y))).
The satisfiability of this formula can be proved by reducing it to effectively
propositional case [8], where the sub-formula ∀xA is replaced by A(s1/x) ∧ · · · ∧
A(sn/x), and ∃xA by A(s1/x)∨· · ·∨A(sn/x), in which s1, ..., sn are the constants
for all the vertices of a graph. By representing the theory of the graph as a set of
rewrite rules [7], these problems can be proved by some off-the-shelf automated

K. Ji—This work is supported by the ANR-NSFC project LOCALI(NSFC
61161130530 and ANR 11 IS02 002 01).

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 166–180, 2016.
DOI: 10.1007/978-3-319-48869-1 13

Resolution in Solving Graph Problems 167

theorem provers, such as iProver Modulo [2]. As these problems can be expressed
with temporal formulae [3], they can also be solved by model checking tools. In
this paper, a propositional encoding of these two problems is given. To reduce the
search space and avoid redundant resolution steps, we add a selection function
and a new subsumption rule. This method works for encoding of several graph
problems. Its generality remains to be investigated.

The paper is organized as follows. Section 2 describes the theorem proving
system PRM. In Sect. 3, some basic definitions for the expressing of graph prob-
lems are presented. Sections 4 and 5 presents the encoding of cycle detection
and accessibility respectively. In Sect. 6, some simplification rules are defined.
Finally, an implementation result is presented.

2 Polarized Resolution Modulo

In Polarized Resolution Modulo (see Fig. 1), clauses are divided into two sets:
one-way clauses (or theory clauses) and ordinary clauses. Each one-way clause
has a selected literal and resolution is only permitted between two ordinary
clauses, or a one-way clause and an ordinary clause, provided the resolved literal
is the selected one (the one underlined later) in the one-way clause. In the rules
of Fig. 1, P and Q are literals, C and D denote a set of literals. σ is a substitution
function, which is equal to the maximal general unifier (mgu) of P and Q. R is
a set of one-way clauses that are under consideration.

Fig. 1. Polarized resolution modulo

Proving the completeness of the rules in Fig. 1 requires to prove a cut elimina-
tion lemma [5,6] for Polarized Deduction Modulo, the deduction system with a
set of rewrite rules, containing for each one-way clause P⊥ ∨C the rule P →− C
and for each one-way clause P ∨ C the rule P →+ C⊥.

Like in OPRM, in this paper we define a selection function to select literals in
an ordinary clause which have the priority to be resolved and add the selection
function to PRM.

Note that when applying a Resolution rule between an ordinary clause and
a one-way clause, we are in fact using an Extended Narrowing rule on this
ordinary clause. We write Γ 	→R C if C can be derived from the set of clauses
Γ by applying finitely many inference rules of PRM.

168 K. Ji

3 Basic Definitions

In this paper, we consider a propositional language which contains two atomic
propositions Bi and Wi for each natural number. We denote a graph as G =
〈V,E〉, where V is a set of vertices enumerated by natural numbers, E is the
set of directed edges in the graph. The sequence of vertices l = s0, ..., sk is a
walk if and only if ∀0 ≤ i < k, (si, si+1) ∈ E. The walk l is closed if and only
if ∃0 ≤ j ≤ k such that sk = sj . The walk l is blocked if and only if sk has no
successors. The method we proposed is inspired by graph traversal algorithms.

Definition 1 (Black literal, white literal). Let G be a graph and {s1, ..., sn}
be the set of all the vertices in G. For any 1 ≤ i ≤ n, the literal Bi is called a
black literal and the literal Wi is called a white literal.

Intuitively, the black literals denote the vertices that have already been vis-
ited, while the white literals denote the non-visited ones.

Definition 2 (Original clause, traversal clause, success clause). Let G be
a graph and {s1, ..., sn} the set of vertices in G. For each graph traversal problem
starting from si (1 ≤ i ≤ n), the clause of the form Bi∨W1∨· · ·∨Wn is called an
original clause (OC(si, G)). A clause with only white and black literals is called
a traversal clause. Let C be a traversal clause, if there is no i, such that both Bi

and Wi are in C, then C is called a success clause.

Among the three kinds of clauses, the original clause is related to the starting
point of the graph traversal algorithm, the traversal clause is the current state of
the traveling, and the success clause denotes that a solution is derived. Trivially,
the original clauses and success clauses are also traversal clauses.

4 Closed-Walk Detection

In this section, we present a strategy of checking whether there exists a closed
walk starting from a given vertex. For a graph, each edge is represented as a
rewrite rule, and the initial situation is denoted by the original clause.

E-coloring rule. Let G be a graph and V = {s1, ..., sn} be the set of vertices in
G. For each pair of vertices 〈si, sj〉 in V , if there exists an edge from si to sj ,
then we formalize this edge as an E-coloring rewrite rule

Wi ↪→ Bj .

The corresponding one-way clause of this rewrite rule is W⊥
i ∨ Bj (called E-

coloring clause). The set of all the E-coloring clauses for G is denoted as EC(G).

Resolution in Solving Graph Problems 169

Resolution for closed-walk detection. Let G be a graph and s be a vertex of G,
then the the problem of checking whether, starting from s, there exists a closed
walk can be encoded as the set of clauses {OC(s,G)} ∪ EC(G). By applying
resolution rules among these clauses, a success clause can be derived if and only
if there exists a closed walk starting from s.

Example 1. Consider the following graph

We prove that there exists a closed walk starting from s1. For this problem,
the original clause is B1∨W1∨W2∨W3∨W4∨W5∨W6 and the set of E-coloring
clauses for this graph are

W⊥
1 ∨ B2, W⊥

1 ∨ B3, W⊥
2 ∨ B4, W⊥

3 ∨ B5, W⊥
3 ∨ B6, W⊥

4 ∨ B5, W⊥
5 ∨ B2.

The resolution steps are presented in the following tree from top to bottom

B1 ∨ W1 ∨ W2 ∨ W3 ∨ W4 ∨ W5 ∨ W6 W ⊥
1 ∨ B2

B1 ∨ B2 ∨ W2 ∨ W3 ∨ W4 ∨ W5 ∨ W6 W ⊥
2 ∨ B4

B1 ∨ B2 ∨ B4 ∨ W3 ∨ W4 ∨ W5 ∨ W6 W ⊥
4 ∨ B5

B1 ∨ B2 ∨ B4 ∨ W3 ∨ B5 ∨ W5 ∨ W6 W ⊥
5 ∨ B2

B1 ∨ B2 ∨ B4 ∨ W3 ∨ B5 ∨ W6

The clause B1 ∨ B2 ∨ B4 ∨ W3 ∨ B5 ∨ W6 is a success clause. Thus, there exists
a closed walk starting from s1.

Theorem 1. Let G be a graph and s be a vertex of G. Starting from s, there
exists a closed walk if and only if starting from {OC(s,G)} ∪ EC(G), a success
clause can be derived.

5 Blocked-Walk Detection

In this section, a method on testing whether, starting from a vertex, there exists
a blocked walk or not is given. In this method, the set of edges starting from the
same vertex are represented as a rewrite rule.

A-coloring rule. Let G be a graph and V = {s1, ..., sn} the set of vertices in
G. For each si in V , assume that starting from si, there are edges to si1 , ..., sij ,
then we formalize such set of edges as an A-coloring rewrite rule

Wi ↪→ Bi1 ∨ · · · ∨ Bij .

The one-way clause of this rewrite rule is W⊥
i ∨Bi1 ∨· · ·∨Bij (called A-coloring

clause). The set of all the A-coloring clauses of G is denoted as AC(G).

170 K. Ji

Resolution for blocked-walk detection. Let G be a graph and s be a vertex of G,
then the problem of checking that starting from s, whether there exists a blocked
walk can be encoded as the set of clauses {OC(s,G)} ∪ AC(G). By applying
resolution rules among these clauses, a success clause can be derived if and only
if there is no blocked walk starting from s.

Example 2. Consider the graph

and check whether there exists a blocked walk starting from s1. For this
problem, the original clause is B1 ∨ W1 ∨ W2 ∨ W3 ∨ W4 ∨ W5 ∨ W6 and the set
of A-coloring clauses for this graph are

W⊥
1 ∨ B2 ∨ B3, W⊥

2 ∨ B4, W⊥
3 ∨ B2, W⊥

4 ∨ B3, W⊥
5 ∨ B4, W⊥

6 ∨ B4.

The resolution steps are presented in the following tree top-down

B1 ∨ W1 ∨ W2 ∨ W3 ∨ W4 ∨ W5 ∨ W6 W ⊥
1 ∨ B2 ∨ B3

B1 ∨ B2 ∨ B3 ∨ W2 ∨ W3 ∨ W4 ∨ W5 ∨ W6 W ⊥
2 ∨ B4

B1 ∨ B2 ∨ B3 ∨ B4 ∨ W3 ∨ W4 ∨ W5 ∨ W6 W ⊥
3 ∨ B2

B1 ∨ B2 ∨ B3 ∨ B4 ∨ W4 ∨ W5 ∨ W6 W ⊥
4 ∨ B3

B1 ∨ B2 ∨ B3 ∨ B4 ∨ W5 ∨ W6

The clause B1 ∨ B2 ∨ B3 ∨ B4 ∨ W5 ∨ W6 is a success clause. Thus, there is no
blocked walk starting from s1.

Theorem 2. Let G be a graph and s be a vertex of G. Starting from s, there
is no blocked walk if and only if, starting from {OC(s,G)} ∪ AC(G), a success
clause can be derived.

6 Simplification Rules

Traditional automatic theorem proving methods are only practical for graphs of
relatively small size. In this section, the reason why the resolution method is not
as efficient as graph traversal algorithms is analyzed. Moreover, some strategies
are designed to address such problems in proof-search algorithms.

6.1 Selection Function

First we show that the number of resolution steps strongly depend on the literals
that are selected. More precisely, the number of literals that are selected will also
affect the number of resolution steps. Then a selection function is given.

Resolution in Solving Graph Problems 171

Example 3. For the graph

we prove the property: starting from s1, there exists a closed walk. The orig-
inal clause is B1 ∨ W1 ∨ W2 ∨ W3 ∨ W4 and the E-coloring clauses of the graph
are

W⊥
1 ∨ B2, W⊥

2 ∨ B1, W⊥
2 ∨ B3, W⊥

3 ∨ B4, W⊥
4 ∨ B3.

Starting from the original clause, we can apply resolution as follows: First, apply
resolution with E-coloring clause W⊥

1 ∨ B2, which yields

B1 ∨ B2 ∨ W2 ∨ W3 ∨ W4. (1)

Then for (1), apply resolution with E-coloring clause W⊥
2 ∨ B1, which yields

B1 ∨ B2 ∨ W3 ∨ W4. (2)

Clause (2) is a success clause. However, from (1), if we apply resolution with
another E-coloring clause, more steps are needed to get a success clause.

The instinctive idea from Example 3 is similar to graph traversal algorithm.
In a traversal clause, if there exists a pair of literals Bi and Wi, then the strat-
egy of selecting Wi to have priority in applying resolution rules may have less
resolution steps to get a success clause.

Definition 3 (Grey literal). Let C be a traversal clause. For the pair of white
literals and black literals 〈Wi, Bi〉, if both Wi and Bi are in C, then Wi is called
a grey literal of C. The set of grey literals of C is defined as follows:

grey(C) = {Wi | Bi ∈ C & Wi ∈ C}

Example 4. For the graph

we prove the property: starting from s1, there is no blocked walk. The original
clause is B1 ∨ W1 ∨ W2 ∨ W3 ∨ W4 and the A-coloring clauses of the graph are

W⊥
1 ∨ B2 ∨ B3, W⊥

2 ∨ B3, W⊥
3 ∨ B4

For the original clause, apply resolution with A-coloring clause W⊥
1 ∨ B2 ∨ B3,

which yields
B1 ∨ B2 ∨ B3 ∨ W2 ∨ W3 ∨ W4. (3)

Then for (3), we can apply resolution rules with A-coloring clauses W⊥
2 ∨B3 and

W⊥
3 ∨ B4, and two new traversal clauses are generated:

B1 ∨ B2 ∨ B3 ∨ W3 ∨ W4, (4)

172 K. Ji

B1 ∨ B2 ∨ B3 ∨ B4 ∨ W2 ∨ W4. (5)

Then for (4), apply resolution rule with A-coloring clause W⊥
3 ∨B4, which yields

B1 ∨ B2 ∨ B3 ∨ B4 ∨ W4, (6)

and for this clause, we cannot apply resolution rules any more. For (5), we can
apply resolution rule with A-coloring clause W⊥

2 ∨ B3, and the clause generated
is the same as (6). Thus, the clause (5) is redundant.

To avoid generating redundant clauses similar to Example 4, the following
selection function is defined.

Definition 4 (Selection function). For any traversal clause C, the selection
function δ is defined as:

δ(C) =

{

single(grey(C)), grey(C) �= ∅
C, Otherwise

in which single is a random process to select only one literal from a set of literals.

Notations. The Polarized Resolution Modulo with δ is written as PRMδ. We
write Γ →δ

R C if the clause C can be derived from Γ in the system PRMδ.

6.2 Elimination Rule

As we will see, selecting literals, which is at the base of Ordered Resolution,
PRM, OPRM and this method are not sufficient enough, as we also have to
restrict the method at the level of clauses.

Example 5. Reconsider the graph in Example 4, we prove the property: starting
from s1, there exists a closed walk. The original clause is B1∨W1∨W2∨W3∨W4

and the E-coloring clauses of the graph are:

W⊥
1 ∨ B2, W⊥

1 ∨ B3, W⊥
2 ∨ B3, W⊥

3 ∨ B4

For the original clause, apply resolution rules with W⊥
1 ∨ B2 and W⊥

1 ∨ B3, two
new traversal clauses

B1 ∨ B2 ∨ W2 ∨ W3 ∨ W4, (7)

B1 ∨ B3 ∨ W2 ∨ W3 ∨ W4 (8)

are generated. For (7), apply resolution rule with W⊥
2 ∨ B3, which yields

B1 ∨ B2 ∨ B3 ∨ W3 ∨ W4. (9)

Then for (9), apply resolution rule with W⊥
3 ∨ B4, which yields

B1 ∨ B2 ∨ B3 ∨ B4 ∨ W4. (10)

Resolution in Solving Graph Problems 173

Resolution rules cannot be applied on (10) any more. Then we can apply reso-
lution rule between (8) and W⊥

3 ∨ B4, with

B1 ∨ B3 ∨ W2 ∨ B4 ∨ W4 (11)

generated, on which the resolution rules cannot be applied neither.

In Example 5, The clause (8) has the same grey literal as (9). Note that no
success clause can be derived start from either (8) or (9).

Definition 5 (Path subsumption rule (PSR)). Let M be a set of A(E)-
coloring clauses and C be a traversal clause. If we have C,M →δ

R C1 and
C,M →δ

R C2, in which grey(C1) = grey(C2), the following rule

C1 C2

Ci
grey(C1) = grey(C2), i = 1 or 2

can be applied to delete either C1 or C2, without breaking the final result.

After each step of applying resolution rules, if we apply PSR on the set of
traversal clauses, the clause (8) in Example 5 will be deleted.

Theorem 3 (Completeness). PRMδ with PSR is complete.

7 Implementation

In this section, we talk about the issues during the implementation, and then
present the data of experiments.

7.1 Issues in Implementation

Success Clauses. In normal resolution based algorithms, the deduction will
terminate if (i) an empty clause is generated, meaning the set of original clauses
is Unsatisfiable or (ii) the resolution rule cannot be applied to derive any more
new clauses, in this case the set of original clauses is Satisfiable. However, for
the problems in this paper, the derivation should stop when a success clause is
derived, which is neither Sat nor Unsat. To implement our method in automated
theorem provers, there may be two ways to deal with the success clauses. The
first way is to give a set of rewrite rules, and make sure that every success clause
can be rewritten into empty clause. For example, we can introduce class variables
and treat the atomic propositions Bi and Wi as binary predicates, i.e., replace Bi

with B(si, Y) and Wi with W (si, Y). Thus the success clause B1∨· · ·∨Bi∨Wi+1∨
· · ·∨Wk is replaced by B(s1, Y)∨· · ·∨B(si, Y)∨W (si+1, Y)∨· · ·∨W (sk, Y). To
deal with this kind of clause, the following rewrite rules are taken into account.

B(x, add(y, Z)) ↪→ x = y⊥ ∧ B(x,Z) W (x, nil) ↪→ ⊥
W (x, add(y, Z)) ↪→ x = y ∨ W (x,Z) x = x ↪→ �
for each pair of different vertices si and sj , si = sj ↪→ ⊥

174 K. Ji

Init : original clause in U, coloring clauses in P
G = ∅ // G is a set of sets of grey literals

Output: Sat or Unsat
1 while U �= ∅ do
2 c = select(U);
3 U = U \ c; // remove c from U
4 if c is an empty clause or a success clause then
5 return Unsat
6 end
7 g := δ(c); // δ is the literal selection function
8 if g /∈ G then
9 P = P ∪ {c}; // add c to P

10 G = G ∪ {g};
11 U = U + generate(c,P);

12 end

13 end
14 return Sat;

Algorithm 1. Proof Search Algorithm

This idea is a variation of the theory in [7]. The second way is to add a function
to check whether a clause is a success clause or not to the proof-search procedure.

Path Subsumption Rule. To make it simple, an empty set G is given in the
initial part of the proof-search algorithm, and for the selected traversal clause
in U, if the selected grey literal of the traversal clause is in G, then the traversal
clause is dead, otherwise, add the selected grey literal to G.

Algorithm. The proof-search algorithm with literal selection function and path
subsumption rule is in Algorithm 1. In this algorithm, select(U) selects a clause
from U, g is the selected grey literal in c and generate(c,P) produces all the
clauses by applying an inference rule on c or between c and a clause in P.

7.2 Experimental Evaluation

In the following experiment, the procedure of identifying success clauses, the
selection function, and the PSR are embedded into iProver Modulo. The data of
the experiments on some randomly generated graphs are illustrated in Table 1.

Table 1. Closed-walk and blocked-walk detection

Graph Result and time

Prop N(v) N(e) Num Sat Succ PRMδ PRMδ + PSR

Closed walk 1.0 × 103 1.0 × 103 100 95 5 25 m 40 s 25 m 0 s

1.0 × 103 1.5 × 103 100 50 50 1 h 06 m 40 s 1 h 02 m 46 s

1.0 × 103 2.0 × 103 100 23 77 1 h 09 m 44 s 1 h 09 m 46 s

Blocked walk 1.0 × 103 2.0 × 103 100 100 0 17 m 48 s

1.0 × 103 3.0 × 103 100 100 0 1 h 06 m 28 s

1.0 × 103 1.0 × 104 100 0 100 24 h 50 m 43 s

Resolution in Solving Graph Problems 175

For the test cases of closed-walk detection, the total time on testing all the
100 graphs did not change much when we take PSR into account. By checking
the running time of each graph, we found that in most cases, PSR was inactive,
as most of the vertices did not have the chance to be visited again. However,
on some special graphs, the running time do reduces much. On blocked walk
detection, the running time grows while there are more edges on graphs, as the
number of visited vertices increased.

8 Conclusion and Future Work

In this paper, two graph problems, closed-walk and blocked-walk detection, are
considered. The problems are encoded with propositional formulae, and the edges
are treated as rewrite rules. Moreover, a selection function and a subsumption
rule are designed to address efficiency problems.

Safety and liveness are two basic model checking problems [3]. In a program,
safety properties specify that “something bad never happens”, while liveness
assert that “something good will happen eventually”. To prove the safety of a
system, all the accessible states starting from the initial one should be traversed,
which is a kind of blocked-walk detection problem. For liveness, we need to prove
that on each infinite path starting from the initial state, there exists a “good”
one. This problem can be treated as closed-walk detection. In the future, we will
try to address some model checking problems by improving our strategy.

Acknowledgments. I am grateful to Gilles Dowek, for his careful reading and
comments.

A Appendix

A.1 Correctness of the Encoding of Closed-Walk Detection Problem

To prove that this kind of encoding suit for all closed walk detection problems,
a proof of the theorem below is given.

Theorem 4. Let G be a graph and s be a vertex in G. Starting from s, there
exists a closed walk if and only if starting from {OC(s,G)} ∪ EC(G), a success
clause can be derived.

Before proving this theorem, several notations and lemmas are needed, which
will also be used in the following sections.

Notations. Let C1, C2, C3 be clauses, Γ be a set of clauses:

– if C3 is generated by applying resolution between C1 and C2, then write the
resolution step as C1

C2−→ C3; if the resolution is based on a selection function
δ, then the resolution step is written as C1

C2−→δ C3.

176 K. Ji

– if C2 is generated by applying resolution between C1 and a clause in Γ , then
write the resolution step as C1

Γ−→ C2; if the resolution is based on a selection
function δ, then the resolution step is written as C1

Γ−→δ C2.
– if C1 is generated by one step of resolution on some clauses in Γ , then write

the resolution step as Γ −→ Γ,C1; if the resolution is based on a selection
function δ, then the resolution step is written as Γ −→δ Γ,C1.

Lemma 1. For any two traversal clauses, we cannot apply resolution rules
between them.

Proof. All the literals in traversal clauses are positive. ��
Lemma 2. If resolution rules can be applied between a traversal clause and a
coloring clause, then one and only one traversal clause can be derived.

Proof. As all the literals in the traversal clause are positive and there is only
one negative literal in the coloring clause, straightforwardly, only one traversal
clause can be derived. ��
Proposition 1. Let M be a set of coloring clauses, C1, . . . , Cn be traversal
clauses and S be a success clause. If M,C1, . . . , Cn → S, then there exists
1 ≤ i ≤ n, such that M,Ci → S, and the length of the later derivation is at
most equal to the former one.

Proof. By induction on the size of the derivation M,C1, . . . , Cn → S.

– If S is a member of C1, . . . , Cn, then there exists the derivation M,S → S
without applying any resolution rules.

– If S is not a member of C1, . . . , Cn, then in each step of the derivation,
by Lemma 1, the resolution rules can only be applied between a traversal
clause and a coloring clause. Assume the derivation is M,C1, . . . , Cn −→
M,C1, . . . , Cn, C ′ → S, in which, by Lemma 2, C ′ is a traversal clause. Then
for the derivation M,C1, . . . , Cn, C ′ → S, by induction hypothesis, M,C ′ → S
or there exists 1 ≤ i ≤ n such that M,Ci → S, with the steps of the derivation
at most equal to M,C1, . . . , Cn, C ′ → S. If M,Ci → S, then the steps of the
derivation are less than M,C1, . . . , Cn → S, thus this derivation is as needed.
If M,C ′ → S, then by Lemma 1, there exists Cj in C1, . . . , Cn, such that

Cj
M−→ C ′, thus the derivation M,Cj → S, with the derivation steps at most

equal to M,C1, . . . , Cn → S, is as needed. ��
Proposition 2. Let M be a set of coloring clauses, C be a traversal clause, and
S be a success clause. If M,C → S(π1)1, then there exists a derivation path
C(C0)

M−→ C1
M−→ C2 · · · M−→ Cn(S).

1 We denote the derivation as π1.

Resolution in Solving Graph Problems 177

Proof. By induction on the size of the derivation π1.

– If C is a success clause, then the derivation path can be built directly.
– Otherwise, by Lemma 1, in each step of the derivation, the resolution rules can

only be applied between a traversal clause and a coloring clause. Assume the
derivation is M,C −→ M,C,C ′ → S, then for the derivation M,C,C ′ → S,
by Proposition 1, there exists a derivation M,C → S(π2)2 or M,C ′ → S,
with the length less than π1. For π2, by induction hypothesis, there exists a
derivation path C(C0)

M−→ C1 · · · M−→ Cn(S), and this is just the derivation
as needed. For M,C ′ → S, by induction hypothesis, there exists a derivation
path C ′ M−→ C ′

1 · · · M−→ C ′
m(S). As C

M−→ C ′, the derivation path C
M−→

C ′ M−→ C ′
1 · · · M−→ C ′

m(S) is as needed. ��
Now it is ready to prove Theorem 4. The proof is as follows.

Proof of Theorem 4

– For the right direction, we assume that the path is

By the method of generating E-coloring clauses of a graph, there exist E-
coloring clauses:

W⊥
k1

∨ Bk2 , W⊥
k2

∨ Bk3 , . . . , W⊥
ki−1

∨ Bki
, W⊥

ki
∨ Bki+1 , . . . , W⊥

kj
∨ Bki

.

Then starting from the original clause C1 = B1∨W1∨· · ·∨Wn, the derivation

C1
D1−→ C2

D2−→ · · · Ci−1
Di−1−→ Ci

Di−→ · · · Cj
Dj−→ Cj+1

can be built, in which Cj+1 is a success clause and for each 1 ≤ m ≤ j, Dm is
the E-coloring clause W⊥

km
∨ Bkm+1 .

– For the left direction, by Proposition 2, starting from the original clause C1 =
B1 ∨ W1 ∨ · · · ∨ Wn, there exists a derivation path

C1
D1−→ C2

D2−→ · · · Ci−1
Di−1−→ Ci

Di−→ · · · Cj
Dj−→ Cj+1,

in which Cj+1 is a success clause and for each 1 ≤ m ≤ j, Dm is an E-coloring
clause. As Cj+1 is a success clause, for each black literal Bi in the clause Cj+1,
there exists an E-coloring clause W⊥

i ∨Bki
in D1, . . . , Dj . Thus for each black

literal Bi in the clause Cj+1, there exists a vertex ski
such that there is an

edge from si to ski
. As the number of black literals in Cj+1 is finite, for each

vertex si, if Bi is a member of Cj+1, then starting from si, there exists a path
which contains a cycle. As the literal B1 is in Cj+1, starting from s1, there
exists a path to a cycle. ��

2 We denote the derivation as π2.

178 K. Ji

A.2 Correctness of the Encoding of Block-Walk Detection Problem

Theorem 5. Let G be a graph and s1 be a vertex of G. Starting from s1, there
is no blocked walk if and only if, starting from {OC(s1, G)} ∪ AC(G), a success
clause can be derived.

Before proving this theorem, a lemma is needed.

Lemma 3. Let G be a graph and s1 be a vertex of G. Starting from s1, if all
the reachable vertices are traversed in the order s1, s2, . . . , sk and each reachable
vertex has at least one successor, then starting from {OC(s1, G)}∪AC(G), there
exists a derivation path C1(OC(s1, G)) D1−→ C2

D2−→ · · · Ck
Dk−→ Ck+1, in which

Ck+1 is a success clause and ∀1 ≤ i ≤ k, Di is an A-coloring clause of the form
W⊥

i ∨ Bi1 ∨ · · · ∨ Bij .

Proof. As s1, s2 . . . , sk are all the reachable vertices starting from s1, for a vertex
s, if there exists an edge from one of the vertices in s1, s2, . . . , sk to s, then s is

a member of s1, s2, . . . , sk. Thus, after the derivation C1
D1−→ C2

D2−→ · · · Cj
Dj−→

Cj+1, for each black literal Bi, the white literal Wi is not in Cj+1, thus Cj+1 is
a success clause. ��
Now it is ready to prove Theorem 5. The proof is as follows.

Proof of Theorem 5

– For the right direction, assume that all the reachable vertices starting from s1
are traversed in the order s1, s2, . . . , sk. For the resolution part, by Lemma 3,
starting from the original clause, a success clause can be derived.

– For the left direction, by Proposition 2, starting from the original clause C1 =
OC(s1, G), there exists a derivation path

C1
D1−→ C2

D2−→ · · · Cj
Dj−→ Cj+1,

in which Cj+1 is a success clause and ∀1 ≤ i ≤ j, Di is an A-coloring clause
with W⊥

ki
underlined. As there is no i such that both Bi and Wi are in Cj+1,

for the vertices in sk1 , sk2 , . . . , skj
, the successors of each vertex is a subset of

sk1 , sk2 , . . . , skj
. As the black literal B1 is in the clause Cj+1, by the definition

of success clause, the white literal W1 is not in Cj+1, thus s1 is a member of
sk1 , sk2 , . . . , skj

. Then recursively, for each vertex s, if s is reachable from s1,
then s is in sk1 , sk2 , . . . , skj

. Thus starting from s1, all the vertices reachable
have successors. ��

A.3 Completeness of PRMδ + PSR

For the completeness of our method, we first prove that PRMδ is complete, then
we prove that PRMδ remains complete when we apply PSR eagerly.

Resolution in Solving Graph Problems 179

Proposition 3 (Completeness of PRMδ). Let M be a set of coloring clauses
and C1, . . . , Cn be traversal clauses. If M,C1, . . . , Cn → S, in which the clause S
is a success clause, then starting from M,C1, . . . , Cn, we can build a derivation
by selecting the resolved literals with selection function δ in Definition 4 and get
a success clause.

Proof. By Propositions 1 and 2, there exists 1 ≤ i ≤ n, such that Ci(Ci0)
D1−→

Ci1 · · · Dn−→ Cin(S). As there are no white literals in any clauses of D1, . . . , Dn

and in each step of the resolution, the resolved literal in the traversal clause is
a white literal, the order of white literals to be resolved in the derivation by
applying Resolution rule with coloring clauses in D1, . . . , Dn will not affect the
result. Thus use selection function δ to select white literals to be resolved, until
we get a traversal clause S′ such that there are no grey literals in it. By the
definition of success clause, S′ is a success clause. ��
Lemma 4. Let M be a set of coloring clauses and C be a traversal clause.
Assume C(H0)

D1−→δ H1
D2−→δ · · · H(Hi)

Di−→δ · · · Dn−→δ Hn in which Hn is a
success clause and for each 1 ≤ j ≤ n, the coloring clause Dj is in M , and
M,C →δ K such that grey(H) = grey(K). If K,D1, . . . , Dn →δ K ′, and K ′ is
not a success clause, then there exists a coloring clause Dk in D1, . . . , Dn, such
that K ′ Dk−→δ K ′′.

Proof. As K ′ is not a success clause, assume that the literals Bi and Wi are in
K ′. As Wi cannot be introduced in each step of resolution between a traversal
clause and a coloring clause, Wi is in C and K. As the literal Bi is in clause K ′,
during the derivation of K ′, there must be some clauses which contains Bi:

– if the literal Bi is in K, as Wi is also in K, Wi is a grey literal of K. As
grey(H) = grey(K), the literal Bi is also in H, and as Bi cannot be selected
during the derivation, it remains in the traversal clauses Hi+1, . . . , Hn.

– if the literal Bi is introduced by applying Resolution rule with coloring clause
Dj in D1, . . . , Dn, which is used in the derivation of Hn as well, so the literal
Bi is also a member of Hn.

In both cases, the literal Bi is in Hn. As Hn is a success clause, the literal Wi

is not a member of Hn. As Wi is in C, there exists a coloring clause Dk in
D1, . . . , Dn with the literal W⊥

i selected. Thus, K ′ Dk−→δ K ′′. ��
Lemma 5. Let M be a set of A(E)-coloring clauses and C be a traversal clause.
If we have M,C →δ H and M,C →δ K, such that grey(H) = grey(K), then
starting from M,H a success clause can be derived if and only if starting from
M,K a success clause can be derived.

Proof. Without loss of generality, prove that if starting from M,H we can get
to a success clause, then starting from M,K, we can also get to a success
clause. By Proposition 2, starting from C, there exists H0(C) M−→δ H1

M−→δ

· · · Hi(H) M−→δ · · · M−→δ Hn, in which Hn is a success clause. More precisely,

180 K. Ji

H0(C) D1−→δ H1
D2−→δ · · · Hi(H)

Di+1−→δ · · · Dn−→δ Hn, where for each 1 ≤ j ≤ n,
the coloring clause Dj is in M . Then by Lemma 4, starting from M,K, we can
always find a coloring clause in D1, . . . , Dn to apply resolution with the new
generated traversal clause, until we get a success clause. As the white literals in
the generated traversal clauses decrease by each step of resolution, we will get a
success clause at last. ��
Theorem 6. (Completeness). PRMδ with PSR is complete.

Proof. By Lemma 5, each time after we apply PSR, the satisfiability is preserved.
��

References

1. Burel, G.: Embedding deduction modulo into a prover. In: Dawar, A., Veith, H.
(eds.) CSL 2010. LNCS, vol. 6247, pp. 155–169. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15205-4 15

2. Burel, G.: Experimenting with deduction modulo. In: Bjørner, N., Sofronie-
Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 162–176.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 14

3. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

4. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

5. Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) TCS
2010. IAICT, vol. 323, pp. 182–196. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15240-5 14

6. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom.
Reasoning 31, 33–72 (2003)

7. Dowek, G., Jiang, Y.: Axiomatizing Truth in a Finite Model (2013). https://hal.
inria.fr/hal-00919469/document

8. Navarro-Pérez, J.A.: Encoding and solving problems in effectively propositional
logic. Ph.D. thesis, The University of Manchester (2007)

9. Reiter, R.: Two results on ordering for resolution with merging and linear format.
J. ACM (JACM) 18(4), 630–646 (1971)

10. Robinson, J.A.: Automatic deduction with hyper-resolution. J. Symbolic Logic
39(1), 189–190 (1974)

11. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
(JACM) 12(1), 23–41 (1965)

12. Slagle, J.R., Norton, L.M.: Experiment with an automatic theorem-prover having
partial ordering inference rules. Commun. ACM 16(11), 682–688 (1973)

http://dx.doi.org/10.1007/978-3-642-15205-4_15
http://dx.doi.org/10.1007/978-3-642-15205-4_15
http://dx.doi.org/10.1007/978-3-642-22438-6_14
http://dx.doi.org/10.1007/978-3-642-15240-5_14
http://dx.doi.org/10.1007/978-3-642-15240-5_14
https://hal.inria.fr/hal-00919469/document
https://hal.inria.fr/hal-00919469/document

SMT-based Software Model Checking:
An Experimental Comparison of Four

Algorithms

Dirk Beyer and Matthias Dangl

University of Passau, Passau, Germany

Abstract. After many years of successful development of new algo-
rithms for software model checking, there is a need to consolidate the
knowledge about the different algorithms and approaches. This paper
gives a coarse overview in terms of effectiveness and efficiency of four
algorithms. We compare the following different “schools of thought” of
algorithms: bounded model checking, k-induction, predicate abstraction,
and lazy abstraction with interpolants. Those algorithms are well-known
and successful in software verification. They have in common that they
are based on SMT solving as the back-end technology, using the theo-
ries of uninterpreted functions, bit vectors, and floats as underlying the-
ory. All four algorithms are implemented in the verification framework
CPAchecker. Thus, we can present an evaluation that really compares
only the core algorithms, and keeps the design variables such as parser
front end, SMT solver, used theory in SMT formulas, etc. constant. We
evaluate the algorithms on a large set of verification tasks, and discuss
the conclusions.

Keywords: Software verification · Program analysis · Bounded model
checking · k-induction · Impact · Lazy abstraction · SMT solving

1 Introduction

In recent years, advances in automatic methods for software verification have lead
to increased efforts towards applying software verification to industrial systems,
in particular operating-systems code [3,5,13,30]. Predicate abstraction [24] with
counterexample-guided abstraction refinement (CEGAR) [18] and lazy abstrac-
tion [27], lazy abstraction with interpolants [33], and k-induction with auxiliary-
invariants [8,22] are some of the concepts introduced to scale verification tech-
nology from simple toy problems to real-world software. In the 5th International
Competition of Software Verification (SV-COMP’16) [7], ten out of the 13 can-
didates participating in category Overall used some of these techniques, and
out of the remaining three, two are bounded model checkers [15]. Consider-
ing this apparent success, we revisit an earlier work that presented a unifying
algorithm for lazy predicate abstraction (Blast-like) and lazy abstraction with
interpolants (Impact-like), and showed that both techniques perform similarly [14].
We conduct a comparative evaluation of bounded model checking, k-induction, lazy

c© Springer International Publishing AG 2016
S. Blazy and M. Chechik (Eds.): VSTTE 2016, LNCS 9971, pp. 181–198, 2016.
DOI: 10.1007/978-3-319-48869-1 14

182 D. Beyer and M. Dangl

predicate abstraction, and lazy abstraction with interpolants, observe that the previ-
ously drawn conclusions about the two lazy-abstraction techniques still hold today, and
show that k-induction has the potential to outperform the other two techniques. We
restrict our presentation to safety properties; however, the techniques that we present
can be used also for checking liveness [38].

Availability of Data and Tools. All presented approaches are implemented in
the open-source verification framework CPAchecker [10], which is available under the
Apache 2.0 license. All experiments are based on publicly available benchmark verifi-
cation tasks from the last competition on software verification [7]. To ensure technical
accuracy, we used the open-source benchmarking framework BenchExec1 [12] to con-
duct our experiments. Tables with our detailed experimental results are available on
the supplementary web page2.

Related Work. Unfortunately, there is not much work available in rigorous compar-
ison of algorithms. General overviews over methods for reasoning [6] and of approaches
for software model checking [28] exist, but no systematic comparison of the algorithms
in a common formal setting. This paper tries to give an abreast comparison of the
effectiveness and efficiency of the algorithms.

Figure 1 tries to categorize the main approaches for software model checking that
are based on SMT technology; we use this structure also to give pointers to other
implementations of the approaches.

Bounded Model Checking. Many software bugs can be found by a bounded search
through the state space of the program. Bounded model checking [15] for software
encodes all program paths that result from a bounded unrolling of the program in
an SMT formula that is satisfiable if the formula encodes a feasible program path
from the program entry to a violation of the specification. Several implementations
were demonstrated to be successful in improving software quality by revealing shallow
program bugs, for example Cbmc [19], Esbmc [20], Llbmc [39], and Smack [35]. The
characteristics to quickly verify a large portion of the state space without the need
of computing expensive abstractions made the technique a basis component in many
verification tools (cf. Table 4 in the report for SV-COMP 2016 [7]).

Unbounded — No Abstraction. The idea of bounded model checking (to encode large
portions of a program as SMT formula) can be used also for unbounded verification by
using an induction argument [40], i.e., a safe inductive invariant needs to be implied by
all paths from the program entry to the loop head and by all paths starting from the
assumed invariant (induction hypothesis) at the loop head through the loop body. The
remaining problem, which is a main focus area of research on k-induction, is to compute
a sufficient safe inductive invariant. The approach of k-induction is implemented in
Cbmc [19], CPAchecker [8], Esbmc [36], Pkind [29], and 2ls [37]. The approach
of k-induction with continuously-refining invariant generation [8] was independently
reproduced later in 2ls [17].

Unbounded — With Abstraction. A completely different approach is to compute an
over-approximation of the state-space, using insights from data-flow analysis [1,31,34].

1 https://github.com/sosy-lab/benchexec
2 https://www.sosy-lab.org/∼dbeyer/k-ind-compare/

https://github.com/sosy-lab/benchexec
https://www.sosy-lab.org/~dbeyer/k-ind-compare/

SMT-based Software Model Checking 183

SMT-based Software Model Checking

Bounded Model Checking Unbounded Model Checking

No Abstraction Abstraction

k-induction Predicate Abstraction Impact

Fig. 1. Classification of algorithms

The idea of state-space abstraction is often combined with the idea of counterexample-
guided abstraction refinement (CEGAR) [18] and lazy abstraction refinement [27].
Several verifiers implement a predicate abstraction [24]: Slam [4], Blast [9], and
CPAchecker [10]. A safe invariant is computed by iteratively refining the abstract
states by discovering new predicates during each CEGAR step. Interpolation [21,32]
is a successful method to obtain useful predicates from error paths. Ultimate
Automizer [26] combines predicate abstraction with an automaton-based approach.

Instead of using predicate abstraction, it is possible to construct the abstract state
space directly from interpolants using the Impact algorithm [33].

Combinations. Of course, the best features of all approaches should be combined into
new, “hybrid” methods, such as implemented in CPAchecker [41], SeaHorn [25],
and UFO [2].

2 Algorithms

In the following, we will give a unifying overview over four widely-used algorithms
for software model checking: bounded model checking (BMC), k-induction, predicate
abstraction, and the Impact algorithm.

As shown in Fig. 1, all four algorithms are SMT-based model checking algorithms:
They rely on encoding program paths as SMT formulas.

Preliminaries. We restrict the presentation to a simple imperative programming
language, where all operations are either assignments or assume operations, and all
variables range over integers.3 We use control-flow automata (CFA) to represent pro-
grams. A control-flow automaton consists of a set L of program locations (modeling the
program counter), the initial program location l2 ∈ L (modeling the program entry),
a target program location lE ∈ L (modeling the specification violation), and a set of
control-flow edges (modeling the operation that is executed during the flow of control
from one program location to another).

Example. Figure 2 shows an example C program and the corresponding CFA. We
will use this example to illustrate the algorithms. The displayed C program contains
two variables x and y, which are both initialized to 0. In the loop of lines 4–10,

3 Our implementations are based on CPAchecker [10], which supports C programs.

184 D. Beyer and M. Dangl

1 kpv main() {
2 wpukipgf"kpv x = 0;
3 wpukipgf"kpv y = 0;
4 yjkng (x < 2) {
5 x++;
6 y++;
7 kh (x != y) {
8 ERROR: tgvwtp 1;
9 }

10 }
11 tgvwtp 0;
12 }

(a) Safe program

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

x < 2

!(x < 2)

x++;

y++;

x!=y

ERROR:return 1;

return 0;

!(x != y)

(b) Control-flow automaton

Fig. 2. An example C program (a) and its CFA (b)

both variables are incremented as long as x is lower than 2. The CFA nodes corre-
sponding to this loop are l4, l5, l6, and l7, with l4 being the loop head. At the end of
the loop body in line 7, x and y are checked for equality. If the variables are not equal,
control flows to the error location l8 in line 8.

ABE: An SMT-formula-based program analysis. For the algorithms presented in this
paper, it is frequently required to represent the reachability of a program state as a
precise or over-approximated set of program paths that are encoded as SMT formulas.
A configurable program analysis (CPA) for this purpose has been formally defined in
previous work [11]. Adjustable-block encoding (ABE) is a forward-reachability analy-
sis that unrolls the control-flow automaton (CFA) into an abstract reachability graph
(ARG) while keeping track of arbitrarily-definable (adjustable) blocks. An abstract
state in the ARG is defined as a triple consisting of a program location, an abstract-
state formula, which represents an abstract over-approximation of the reachability of
the block entry, and a concrete path formula, which for any state within a block repre-
sents the set of concrete paths from the block entry to the location of this state. This
mechanism can be used to control if and when to apply abstraction by configuring the
definition of block(s). Two of the algorithms we present, BMC and k-induction, do not
use abstraction, while the other two, predicate abstraction and Impact, do. In the for-
mer case, the abstract-state formula is always true and has no effect. For consistency,
however, we display the abstract-state formula in all our graphical representations.

Another feature required by the presented algorithms is the configuration of a limit
for unrolling the control-flow automaton into an ARG, because a complete unrolling is
not always desirable or even feasible. In addition to the configurability of the definition
of blocks, we therefore introduce such a limit on unrolling the CFA as another parameter
to configure the SMT-formula-based program analysis ABE. In the following, we will
describe the presented algorithms informally and discuss their usage of configurable
ABE program analysis as a convenient way to construct, manage, and apply SMT
formulas.

SMT-based Software Model Checking 185

A0: (l2,true,true)

A1: (l3,x0 = 0,true)

A2: (l4,x0 = 0 ∧ y0 = 0,true)

A3: (l11,x0 = 0 ∧ y0 = 0 ∧ ¬(x0 < 2),true)

A4: (l12,x0 = 0 ∧ y0 = 0 ∧ ¬(x0 < 2),true)

A5: (l5,x0 = 0 ∧ y0 = 0 ∧ x0 < 2,true)

A4: (l8,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1,true)

A7: (l7,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,true)

A8: (l8,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),true)

A9: (l12,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),true)

A10: (l4,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)),true)

A11: (l11,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2),true)

A12: (l12,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2),true)

Fig. 3. ARG fragment for applying BMC to the example of Fig. 2

Bounded Model Checking. In BMC, the state space of the analyzed program is
explored without using abstraction by unrolling loops up to a given bound k. In this
setting, ABE is configured so that there is only one single block of unbounded size
starting at the program entry. This way, there is never any abstraction computation.
The limit for unrolling the CFA with ABE in the context of BMC is given by the
loop-unrolling bound k.

Due to the single ABE block that contains the whole program, the path formula
of any state always represents a set of concrete program paths from the program entry
to the program location of this state. After unrolling a loop up to bound k, the state-
space exploration stops. Then, the disjunction of the path formulas of all states in
the explored state space at error location lE is checked for satisfiability using an SMT
solver. If the formula is satisfiable, the program contains a real specification violation.
If the formula is unsatisfiable, there is no specification violation in the program within
the first k loop unrollings. Unless an upper bound lower than or equal to k for a loop
is known, a specification violation beyond the first k loop iterations may or may not
exist. Due to this limitation, BMC is usually not able to prove that a program satisfies
its specification.

If we apply BMC with k = 1 to the example in Fig. 2, unrolling the CFA yields
the ARG depicted in Fig. 3. The path formula of the ARG state A8, which is the only

186 D. Beyer and M. Dangl

ARG state at error location lE = l8, is unsatisfiable. Therefore, no bug is reachable
within one loop unrolling. The bound k = 1 is not large enough to completely unroll
the loop; the second loop iteration, which is necessary to have the loop condition x < 2

no longer satisfied, is missing from this ARG.

k-Induction. For ease of presentation, we assume that the analyzed program contains
exactly one loop head lLH . In practice, k-induction can be applied to programs with
many loops [8]. k-induction, like BMC, is an approach that at its core does not rely
on abstraction techniques. The k-induction algorithm is comprised of two phases. The
first phase is equivalent to a bounded model check with bound k, and is called the
base case of the induction proof. If a specification violation is detected in the base
case, the algorithm stops and the violation is reported. Otherwise, the second phase is
started. In the second phase, ABE is used to re-explore the state space of the analyzed
program, with the analysis and the (single, unbounded) ABE block starting not at the
program entry l2, but at the loop head lLH , so that the path formula of any state always
represents a set of concrete program paths from the loop head to the program location
of this state. The limit for unrolling the CFA is set to stop at k + 1 loop unrollings.
Afterwards, an SMT solver is used to check if the negation of the disjunction of all
path formulas for states at the error location lE that were reached within k loop
unrollings, implies the negation of the disjunction of all path formulas for states at the
error location lE that were reached within k + 1 loop unrollings. This step is called
the inductive-step case. If the implication holds, the program is safe, i.e., the safety
property is a k-inductive program invariant. Often, however, the safety property of a
verification task is not directly k-inductive for any k, but only relative to some auxiliary
invariant, so that plain k-induction cannot succeed in proving safety. In these cases, it
is necessary to employ an auxiliary-invariant generator and inject these invariants into
the k-induction procedure to strengthen the hypothesis of the inductive-step case.

If we apply k-induction with k = 1 to the example in Fig. 2, the first phase, which
is equivalent to BMC, yields the same ARG as in Fig. 3. Figure 4 shows the ARG of the
second phase, which is constructed by unrolling the CFA starting at loop head lLH = l4
and using loop bound k = 1. The negation of the disjunction of the path formulas of
the ARG states A5 and A10 at the error location lE = l8, which were reached within
at most one loop iteration, implies the negation of the disjunction of the path formulas
of the ARG states A5, A10, and A18 at the error location lE = l8, which were reached
within at most k + 1 = 2 loop iterations, which in combination with the base case
(BMC) from the first phase proves that the program is safe. This inductive proof is
strong enough to prove safety even if we replace the loop condition in line 4 of the
sample program by a nondeterministic value.

Predicate Abstraction. Predicate abstraction with counterexample-guided
abstraction refinement (CEGAR) directly applies ABE within the CEGAR loop. The
abstraction-state formula of an abstract state over-approximates the reachable concrete
states using a boolean combination of predicates over program variables from a given
set of predicates (the precision π). This abstraction is computed by an SMT solver.
Using CEGAR, it is possible to apply lazy abstraction, starting out with an empty ini-
tial precision. When the analysis encounters an abstract state at the error location lE ,
the concrete program path leading to this state is reconstructed and checked for feasi-
bility using an SMT solver. If the concrete error path is feasible, the algorithm reports
the error and terminates. Otherwise, the precision is refined (usually by employing an

SMT-based Software Model Checking 187

A0: (l4,true,true)

A1: (l11,¬(x0 < 2),true)

A2: (l12,¬(x0 < 2),true)

A3: (l5,x0 < 2,true)

A4: (l6,x0 < 2 ∧ x1 = x0 + 1,true)

A5: (l7,∧x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,true)

A6: (l8,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),true)

A7: (l12,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),true)

A8: (l4,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)),true)

A9: (l11,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2),true)

A10: (l12,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2),true)

A11: (l5,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2,true)

A12: (l6,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1,true)

A13: (l7,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1,true)

A14: (l8,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2),true)

A15: (l12,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2),true)

A16: (l4,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2)),true)

A17: (l11,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2)) ∧ ¬(x2 < 2),true)

A18: (l12,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2)) ∧ ¬(x2 < 2),true)

Fig. 4. ARG fragment for the inductive-step case of k-induction applied to the example
of Fig. 2

SMT solver to compute Craig interpolants [21] for the locations on the error path)
and the analysis is restarted. Due to the refined precision, it is guaranteed that the
previously identified infeasible error paths are not encountered again.

For this technique, the blocks can be arbitrarily defined; in our experimental eval-
uation we define a block to end at a loop head. To enable CEGAR, the unrolling of
the CFA must be configured to stop if the state-space exploration hits a state at the
error location lE .

If we apply predicate abstraction to the example in Fig. 2 using a precision π : {x =
y} and defining all blocks to end at the loop head l4, we obtain the ARG depicted in
Fig. 5: The first block consists of the locations l2 and l3. If the ABE analysis hits
location l4, which is a loop head, the path formula x0 = 0 ∧ y0 = 0 is abstracted
using the set of predicates π. Precision π contains only the predicate x = y, which is
implied by the path formula and becomes the new abstraction formula, while the path
formula for the new block beginning at l4 is reset to true. From that point onwards,

188 D. Beyer and M. Dangl

A0: (l2,true,true)

A1: (l3,x0 = 0,true)

A2: (l4,true,x = y)

A3: (l11,¬(x0 < 2),x = y)

A4: (l12,¬(x0 < 2),x = y)

A5: (l5,x0 < 2,x = y)

A6: (l6,x0 < 2 ∧ x1 = x0 + 1,x = y)

A7: (l7,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,x = y)

Fig. 5. ARG for predicate abstraction applied to the example of Fig. 2

there are two possible paths: one directly to the end of the program the loop if x is
greater than or equal to 2, and another one into the loop if x is less than 2. The path
avoiding the loop is trivially safe, because from l11 or l12 there is no control-flow path
back to the error location. The path through the loop increments both variables before
encountering the assertion. Using the abstraction formula encoding the reachability of
the block entry in combination with the path formula, it is easy to conclude that the
assertion is true, so that the only feasible successor is at the loop head l4, which causes
the previous block to end. The abstraction computation yields again the abstraction
formula x = y at l4, which is already covered by the ARG state A2. Therefore, unrolling
the CFA into the ARG completed without encountering the error location lE = l8. The
algorithm thus concludes that the program is safe.

Impact. Lazy abstraction with interpolants, more commonly known as the
Impact algorithm due to its first implementation in the tool Impact, also uses ABE
to create an unwinding of the CFA similar to predicate abstraction. Impact, however,
does not base its abstractions on an explicit precision. Initializing all new abstract-state
formulas to true, the algorithm repeatedly applies the following three steps until no
further changes can be made:

(1) Expand(s): If the state s has no successors yet (s is currently a leaf node in the
ARG) and is not marked as covered, the successor states of s are created with true
as their initial abstract-state formula.

(2) Refine(s): If s is an abstract state at the error location lE with an abstract-state
formula different from false, inductive Craig interpolants for the path from the root
of the ARG to this state s are computed using an SMT solver. Each abstract state
at an ABE block entry along this path is marked as not covered, and its abstract-
state formula is strengthened by conjoining it with the corresponding interpolant,
guaranteeing that if the state s is unreachable, the formula of s becomes false.

SMT-based Software Model Checking 189

A0: (l2,true,true)

A1: (l3,x0 = 0,true)

A2: (l4,true, true x = y)

A3: (l11,¬(x0 < 2),true)

A4: (l12,¬(x0 < 2),true)

A5: (l5,x0 < 2,true)

A6: (l8,x0 < 2 ∧ x1 = x0 + 1,true)

A7: (l7,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,true)

A8: (l8,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x0 = y0), true false)

A9: (l4,true, true x = y)

A10: (l5,x0 < 2,true)

A11: (l6,x0 < 2 ∧ x1 = x0 + 1,true)

A12: (l7,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,true)

A13: (l8,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬ / /(x1 = y1), true false)

covered by

/ /

/ /

/ /

Fig. 6. Final ARG for applying the Impact algorithm to the example of Fig. 2

(3) Cover(s1, s2): A state s1 gets marked as covered by another state s2 if neither
s2 nor any of its ancestors are covered, both states belong to the same program
location, the abstract-state formula of s2 is implied by the formula of s1, s1 is not
an ancestor of s2, and s2 was created before s1.

As in predicate abstraction, the ABE blocks can be arbitrarily defined; again, we
define a block to end at a loop head in our experimental evaluation of the Impact algo-
rithm. Since this algorithm is also based on CEGAR, the unrolling of the CFA must
again be configured to stop when the state-space exploration hits a state at the error
location lE , so that interpolation can be used to compute the abstractions.

The original presentation of the Impact algorithm [33] also includes a description
of an optimization called forced covering, which improves the performance significantly
but is not relevant for understanding the fundamental idea of the algorithm and exceeds
the scope of our summary.

If we apply the Impact algorithm to the example program from Fig. 2 defining
blocks to end at the loop head l4 and assuming that both interpolations that are

190 D. Beyer and M. Dangl

required during the analysis yield the interpolant x = y, we obtain an ARG as depicted
in Fig. 6: Starting with the initialization of the variables, we first obtain the ARG
states A0 and A1; at A2, however, we reset the path formula to true, because l4 is a
block entry. Note that at this point, the abstract-state formula for this block is still true.
Unwinding the first loop iteration, we first obtain abstract states for incrementing the
variables and then hit the error location lE = l8 with state A8. An SMT check on
the reconstructed concrete error path shows that the path is infeasible, therefore, we
perform an interpolation. For the example we assume that interpolation provides the
interpolant x = y, strengthen the abstract-state formula of A2 with it, and set the
abstract-state formula of A8 to false. Then, we continue the expansion of A7 towards l4
with state A9. Note that at this point, the abstract-state formula for A9 is still true, so
that it is not covered by A2 with x = y. Also, A2 cannot be covered by A9, because A2

is an ancestor of A9. We unwind the loop for another iteration and again hit the error
location l8 with state A13. Once again, the concrete path formula for this state is
infeasible, so we interpolate. For the example we assume that interpolation provides
again the interpolant x = y, use it to strengthen the abstract-state formula of A9, and
set the abstract-state formula of A13 to false. Now, a coverage check reveals that A9 is
covered by A2, because neither A9 nor any of its ancestors is covered yet, both belong
to the same location l4, x = y implies x = y, A9 is not an ancestor of A2, and A2 was
created before A9. Because A9 is now covered, we need not continue expanding the
other states in this block, and the algorithm terminates without finding any feasible
error paths, thus proving safety.

Summary. We showed how to apply the four algorithms to the example presented in
Fig. 2 and gave a rough outline of the concepts required to implement them. While BMC
is very limited in its capacity of proving correctness, it is also the most straightforward
of the four algorithms, because k-induction requires an auxiliary-invariant generator to
be applicable in practice, and predicate abstraction and Impact require interpolation
techniques. While invariant generator and interpolation engine are usually treated as
a black box in the description of these algorithms, the efficiency and effectiveness of
the techniques depends on the quality of these modules.

3 Evaluation

We evaluate bounded model checking, k-induction, predicate abstraction, and Impact,
on a large set of verification tasks and compare the approaches.

Benchmark Set. As benchmark set we use the verification tasks from the 2016
Competition on Software Verification (SV-COMP’16) [7]. We took all 4 779 verifica-
tion tasks from all categories except ArraysMemSafety, HeapMemSafety, Overflows,
Recursive, Termination, and Concurrency, which are not supported by our implemen-
tations of the approaches. A total of 1 320 tasks in the benchmark set contain a known
specification violation, while the rest of the tasks is assumed to be free of violations.

Experimental Setup. Our experiments were conducted on machines with two
2.6 GHz 8-Core CPUs (Intel Xeon E5-2650 v2) with 135 GB of RAM. The operating
system was Ubuntu 16.04 (64 bit), using Linux 4.4 and OpenJDK 1.8. Each verifica-
tion task was limited to two CPU cores, a CPU run time of 15 min and a memory

SMT-based Software Model Checking 191

Table 1. Experimental results of the approaches for all 4 779 verification tasks, 1 320
of which contain bugs, while the other 3 459 are considered to be safe

Algorithm BMC k-induction Predicate abstraction Impact

Correct results 1024 2482 2325 2306

Correct proofs 649 2116 2007 1967

Correct alarms 375 366 318 339

False alarms 1 1 0 0

Timeouts 2786 2047 1646 1607

Out of memory 180 98 75 104

Other inconclusive 788 151 733 762

Times for correct results

Total CPU time (h) 8.3 54 32 32

Avg. CPU time (s) 29 79 49 50

Times for correct proofs

Total CPU time (h) 4.3 44 26 27

Avg. CPU time (s) 24 75 47 50

Times for correct alarms

Total CPU time (h) 4.0 10 5.4 4.8

Avg. CPU time (s) 38 100 61 51

usage of 15 GB. We used version cpachecker-1.6.8-vstte16 of CPAchecker, with
MathSAT5 as SMT solver. We configured CPAchecker to use the SMT theories
over uninterpreted functions, bit vectors, and floats. To evaluate the algorithms, we
used ABE for Impact and predicate abstraction [14]. For Impact we also activated
the forced-covering optimization [33], and for k-induction we use continuously-refined
invariants from an invariant generator that employs an abstract domain based on inter-
vals [8]. For bounded model checking we use a configuration with forward-condition
checking [23].

Experimental Validity. We implemented all evaluated algorithms using the same
software-verification framework, CPAchecker. This allows us to compare the actual
algorithms instead of comparing different tools with different front ends and differ-
ent utilities, thus eliminating influences on the results caused by such implementation
differences unrelated to the actual algorithms.

Results. Table 1 shows the number of correctly solved verification tasks for each of
the algorithms, as well as the time that was spent on producing these results. None of
the algorithms reported incorrect proofs4, there was one false alarm for bounded model
checking, and one false alarm for k-induction. When an algorithm exceeds its time or
memory limit, it is terminated inconclusively. Other inconclusive results are caused

4 For BMC, real proofs are accomplished by successful forward-condition checks, which
prove that no further unrolling is required to exhaustively explore the state space.

192 D. Beyer and M. Dangl

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500

C
P

U
 ti

m
e

(s
)

n-th fastest correct proof

BMC
k-Induction

Predicate abstraction
Impact

(a) Proofs

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400

C
P

U
 ti

m
e

(s
)

n-th fastest correct alarm

BMC
k-Induction

Predicate Abstraction
Impact

(b) Alarms

Fig. 7. Quantile plots for all correct proofs and alarms

by crashes, for example if an algorithm encounters an unsupported feature, such as
recursion or large arrays. For k-induction, there is sometimes a chance that while other
techniques must give up due to such an unsupported feature, waiting for the invariant
generator to generate a strong invariant will help avoid the necessity of handling the
problem, which is why k-induction has fewer crashes but instead more timeouts than
the other algorithms. The quantile plots in Fig. 7 shows the accumulated number of
successfully solved tasks within a given amount of CPU time. A data point (x, y)
of a graph means that for the respective configuration, x is the number of correctly
solved tasks with a run time of less than or equal to y seconds. As expected, bounded
model checking produces both the fewest correct proofs and the most correct alarms,
confirming BMC’s reputation as a technique that is well-suited for finding bugs. Having
the fewest amount of solved tasks, BMC also accumulates the lowest total CPU time
for correct results. Its average CPU time is on par with the abstraction techniques,
because even though the approach is less powerful than the other algorithms, it still
is expensive, because it has to completely unroll loops. On average, BMC spends 3.0 s
on formula creation, 4.7 s on SMT-checking the forward condition, and 13 s on SMT-
checking the feasibility of error paths. The slowest technique by far is k-induction with
continuously-refined invariant generation, which is the only technique that effectively
uses both available cores by running the auxiliary-invariant generation in parallel to
the k-induction procedure, thus almost spending twice as much CPU time as the other
techniques. Like BMC, k-induction also does not use abstraction and spends additional
time on building the step-case formula and generating auxiliary invariants, but can
often prove safety by induction without unrolling loops. Considering that over the
whole benchmark set, k-induction generates the highest number of correct results, the
additional effort appears to be mostly well spent. On average, k-induction spends 4.4 s
on formula creation in the base case, 4.2 s on SMT-checking the forward condition,
4.8 s on SMT-checking the feasibility of error paths, 22 s on creating the step-case
formula, 21 s on SMT-checking inductivity, and 11 s on generating auxiliary invariants,
which shows that much more effort is required in the inductive-step case than in the
base case. Predicate abstraction and the Impact algorithm both perform very similarly
for finding proofs, which matches the observations from earlier work [14]. An interesting
difference is that the Impact algorithm finds more bugs. We attribute this observation
to the fact that abstraction in the Impact algorithm is lazier than with predicate
abstraction, which allows Impact larger parts of the state space in a shorter amount of
time than predicate abstraction, causing Impact to find bugs sooner. For verification

SMT-based Software Model Checking 193

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

C
P

U
 ti

m
e

(s
)

n-th fastest correct result

BMC
k-Induction

Predicate Abstraction
Impact

(a) DeviceDrivers: Correct proofs

 1

 10

 100

 1000

 0 100 200 300 400 500

C
P

U
 ti

m
e

(s
)

n-th fastest correct result

k-Induction
Predicate Abstraction

Impact

(b) ECA: Correct Proofs

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350

C
P

U
 ti

m
e

(s
)

n-th fastest correct result

BMC
k-Induction

Predicate abstraction
Impact

(c) ProductLines: Correct Proofs

 1

 10

 100

 1000

 0 50 100 150 200 250

C
P

U
 ti

m
e

(s
)

n-th fastest correct result

BMC
k-Induction

Predicate abstraction
Impact

(d) ProductLines: Correct Alarms

Fig. 8. Quantile plots for some of the categories

tasks without specification violations, however, the more eager predicate-abstraction
technique pays off, because it requires fewer recomputations. Although in total, both
abstraction techniques have to spend the same effort, this effort is distributed differently
across the various steps: While, on average, predicate abstraction spends more time
on computing abstractions (21 s) than the Impact algorithm (7.5 s), the latter requires
the relatively expensive forced-covering step (13 s on average).

Although the plot in Fig. 7a suggests that k-induction with continuously-refined
invariants outperforms the other techniques in general for finding proofs, a closer look
at the results in individual categories, some of which are displayed in Fig. 8, reveals
that how well an algorithm performs strongly depends on the type of verification task,
but also reconfirms the observation of Fig. 7b that BMC consistently performs well for
finding bugs. For example, on the safe tasks of the category on Linux device drivers
in Fig. 8a, k-induction performs much worse than predicate abstraction and Impact.
These device drivers are often C programs with many lines of code, containing pointer
arithmetics and complex data structures. The interval-based auxiliary-invariant gen-
erator that we used for k-induction is not a good fit for such kinds of problems, and
a lot of effort is wasted, while the abstraction techniques are often able to quickly
determine that many operations on pointers and complex data structures are irrele-
vant to the safety property. We did not include the plot for the correct alarms in the
category on device drivers, because each of the algorithms only solves about 20 tasks,
and although k-induction and BMC are slower than the abstraction techniques, which

194 D. Beyer and M. Dangl

matches the previous observations on the correct proofs, there is not enough data
among the correct alarms to draw any conclusions. The quantile plot for the correct
proofs in the category of event condition action systems (ECA) is displayed in Fig. 8b.
BMC is not included in this figure, because there is no single task in the category it
could unroll exhaustively. These tasks usually only consist of a single loop, but each
of these loops contains very complex branching structures over many different inte-
ger variables, which leads to an exponential explosion of paths, so unrolling them is
very expensive in terms of time and memory. Also, because in many tasks, almost
all of the variables are in some way relevant to the reachability of the error location
within this complex branching structure, the abstraction techniques are unable to come
up with useful abstractions, and perform badly. The interval-based auxiliary-invariant
generator that we use for k-induction, however, appears to provide invariants useful
for handling the complexity of the control structures, so that k-induction performs
much better than all other techniques in this category. We did not include the plot for
the correct alarms in this category, because the abstraction techniques are not able to
detect a single bug, and only BMC and k-induction detect one single bug for the same
task, namely Problem10 label46 false-unreach-call.c. Figure 8c shows the quantile
plot for correct proofs in the category on product lines. Similar to the proofs over all
categories depicted in Fig. 7a, k-induction solves more tasks than the other techniques,
but is becomes even more apparent how much slower than the other techniques it is.
Figure 8d shows the quantile plot for correct alarms in the same category. It is interest-
ing to observe that the Impact algorithm distinctly outperforms predicate abstraction
on the tasks requiring over 100 s of CPU time, whereas in the previous plots, the dif-
ferences between the two abstraction techniques were hardly visible. While, as shown
in Fig. 8c, both techniques report almost the same amount of correct proofs (305 for
predicate abstraction, 308 for Impact), Impact detects 130 bugs, whereas predicate
abstraction detects only 121. This seems to indicate that the state space spanned by
the different product-line features can be explored more quickly by lazy abstraction of
Impact than with the more eager predicate abstraction.

Individual Examples. The previous discussion showed that while overall, the algo-
rithms perform rather similar (apart from BMC being inappropriate for finding proofs,
which is expected), each of them has some strengths due to which it outperforms the
other algorithms on certain programs. In the following, we will list some examples
from our benchmark set that were each solved by one of the algorithms, but not by
the others, and give a short explanation of the reasons.

BMC. For example, only BMC can find bugs in the verification tasks cs lazy false-

unreach-call.i and rangesum40 false-unreach-call.i. Surprisingly, by exhaus-
tively unrolling a loop, BMC is the only of our four techniques that is able to prove
safety for the tasks sep20 true-unreach-call.i and cs stateful true-unreach-

call.i. All four of these tasks have in common that they contain bounded loops and
arrays. The bounded loops are a good fit for BMC and enable it to prove correctness,
while the arrays make it hard in practice for predicate abstraction and Impact to find
good abstractions by interpolation. k-induction, which in theory is at least as powerful
as BMC, spends too much time trying to generate auxiliary invariants and exceeds the
CPU time limit before solving these tasks.

SMT-based Software Model Checking 195

k-induction. k-induction is the only of our four techniques to prove the correctness of
all of the safe tasks in the (non-simplified) ssh subset of our benchmark set, while
none of the other three techniques can solve any of them. These tasks encode state
machines, i.e., loops over switch statements with many cases, which in turn modify the
variable that is considered by the switch statement. These loops are unbounded, so
that BMC cannot exhaustively unroll them, and the loop invariants that are required
to prove correctness of these tasks need to consider the different cases and their inter-
action across consecutive loop iterations, which is beyond the scope of the abstraction
techniques but very easy for k-induction (cf. [8] for a detailed discussion of a similar
example).

Predicate Abstraction. toy true-unreach-call false-termination.cil.c is a task
that is only solved by predicate abstraction but by none of our other implementa-
tions. It consists of an unbounded loop that contains complex branching structure over
integer variables, most of which only ever take the values 0, 1 or 2. Interpolation quickly
discovers the abstraction predicates over these variables required to solve the task, but
in this example, predicate abstraction profits from eagerly computing a sufficiently pre-
cise abstraction early after only 9 refinements while the lazy refinement technique used
by Impact exceeds the time limit after 129 refinements, and the invariant generator
used by k-induction fails to find the required auxiliary invariants before reaching the
time limit.

Impact. The task Problem05 label50 true-unreach-call.c from the ECA subset
of our benchmark set is only solved by Impact: BMC fails on this task due to the
unbounded loop, and the invariant generator used by k-induction does not come up
with any meaningful auxiliary invariants before exceeding the time limit. Predicate
abstraction exceeds the time limit after only three refinements, and up to that point,
over 80 % of its time is spent on eagerly computing abstractions. The lazy abstraction
performed by Impact, however, allows it to progress quickly, and the algorithm finishes
after 7 refinements.

4 Conclusion

This paper presents an overview over four state-of-the-art algorithms for SMT-based
software model checking. First, we give a short explanation of each algorithm and
illustrate the effect on how the state-space exploration looks like. Second, we provide
the results of a thorough experimental study on a large number of verification tasks,
in order to show the effect and performance of the different approaches, including a
detailed discussion of particular verification tasks that can be solved by one algorithm
while all others fail. In conclusion, there is no clear winner: there are disadvantages
and advantages for each approach. We hope that our experimental overview is useful
to understand the difference of the algorithms and the potential application areas.
Future Work. In our comparison, one well-known algorithm is missing: PDR (property-
driven reachability) [16]. We plan to formalize this algorithm in our framework and
implement it in CPAchecker as well.

196 D. Beyer and M. Dangl

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Boston (1986)

2. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A framework for
abstraction- and interpolation-based software verification. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 672–678. Springer, Heidelberg
(2012)

3. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and static driver verifier:
Technology transfer of formal methods inside microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004)

4. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
Slam. Commun. ACM 54(7), 68–76 (2011)

5. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via static
analysis. In: POPL 2002, pp. 1–3. ACM (2002)

6. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art and current
trends. IEEE Intell. Syst. 29(1), 20–29 (2014)

7. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016)

8. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kröning, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 622–640. Springer, Heidelberg (2015)

9. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transf. 9(5–6), 505–525 (2007)

10. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

11. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: FMCAD 2010, pp. 189–197 (2010)

12. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178.
Springer, Heidelberg (2015)

13. Beyer, D., Petrenko, A.K.: Linux driver verification. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012. LNCS, vol. 7610, pp. 1–6. Springer, Heidelberg (2012)

14. Beyer, D., Wendler, P.: Algorithms for software model checking: Predicate abstrac-
tion vs. Impact. In: FMCAD 2012, pp. 106–113 (2012)

15. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

16. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

17. Brain, M., Joshi, S., Kröning, D., Schrammel, P.: Safety verification and refutation
by k -invariants and k -induction. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS,
vol. 9291, pp. 145–161. Springer, Heidelberg (2015)

18. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

SMT-based Software Model Checking 197

19. Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

20. Cordeiro, L., Morse, J., Nicole, D., Fischer, B.: Context-bounded model checking
with Esbmc 1.17 (competition contribution). In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 534–537. Springer, Heidelberg (2012)

21. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem.
J. Symb. Log. 22(3), 250–268 (1957)

22. Donaldson, A.F., Haller, L., Kröning, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011)

23. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT, 1–18 (2015)

24. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

25. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: A framework for verifying C
programs (competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 447–450. Springer, Heidelberg (2015)

26. Heizmann, M., Dietsch, D., Greitschus, M., Leike, J., Musa, B., Schätzle, C.,
Podelski, A.: Ultimate Automizer with two-track proofs (competition contri-
bution). In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 950–953. Springer, Heidelberg (2016)

27. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002, pp. 58–70. ACM (2002)

28. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009)

29. Kahsai, T., Tinelli, C.: Pkind: A parallel k-induction based model checker. In:
PDMC 2011. EPTCS, vol. 72, pp. 55–62 (2011)

30. Khoroshilov, A., Mutilin, V., Petrenko, A., Zakharov, V.: Establishing linux driver
verification process. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009.
LNCS, vol. 5947, pp. 165–176. Springer, Heidelberg (2010)

31. Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973,
pp. 194–206. ACM (1973)

32. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

33. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

34. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

35. Rakamarić, Z., Emmi, M.: Smack: Decoupling source language details from verifier
implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
106–113. Springer, Heidelberg (2014)

36. Rocha, H., Ismail, H.I., Cordeiro, L.C., Barreto, R.S.: Model checking embedded
C software using k-induction and invariants. In: SBESC 2015. IEEE (2015)

37. Schrammel, P., Kröning, D.: 2LS for program analysis. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 905–907. Springer,
Heidelberg (2016)

38. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. Electr. Notes Theor. Comput. Sci. 149(1), 79–96 (2006)

198 D. Beyer and M. Dangl

39. Sinz, C., Merz, F., Falke, S.: Llbmc: A bounded model checker for Llvm’s interme-
diate representation (competition contribution). In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 542–544. Springer, Heidelberg (2012)

40. Wahl, T.: The k-induction principle (2013). http://www.ccs.neu.edu/home/wahl/
Publications/k-induction.pdf

41. Wendler, P.: CPAchecker with sequential combination of explicit-state analysis
and predicate analysis. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 613–615. Springer, Heidelberg (2013)

http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

Author Index

Beyer, Dirk 139, 181

Clochard, Martin 107
Czarnecki, Krzysztof 129

Dangl, Matthias 181
Dockins, Robert 56

Filliâtre, Jean-Christophe 46
Foltzer, Adam 56
Friedberger, Karlheinz 139

Ganesh, Vijay 129
Gondelman, Léon 107

Hendrix, Joe 56
Huffman, Brian 56

Igarashi, Atsushi 90
Imanishi, Akifumi 90

Ji, Kailiang 166

Karpenkov, Egor George 139
Kiefer, Moritz 149

Klebanov, Vladimir 149
Kojima, Kensuke 90

Lawford, Mark 1

McNamee, Dylan 56
Morrisett, Greg 73

Oberhauser, Jonas 27

Pereira, Mário 46, 107

Rayside, Derek 129
Rozier, Kristin Yvonne 8

Sitaraman, Murali 119
Sivilotti, Paolo A.G. 119
Stewart, Steven T. 129

Tan, Gang 73
Tomb, Aaron 56

Ulbrich, Mattias 149

Weide, Alan 119

	Preface
	Organization
	Abstracts Short Papers
	Advanced Development of Certified OS Kernels
	Automating Software Analysis at Large Scale
	RACE to Build Highly Concurrent and Distributed Systems
	Contents
	Stupid Tool Tricks for Smart Model Based Design
	1 Introduction
	2 What Is Tool Qualification? (and Why Should I Care About It?)
	2.1 Solving the Tool Qualification Problem

	3 Integrating with the Development Process and Documentation
	4 Coding Guideline Compliance and Research
	5 Conclusion
	References

	Specification: The Biggest Bottleneck in Formal Methods and Autonomy
	1 Introduction
	2 Specification Origins
	3 Specification Quality
	4 Specification Usage
	4.1 Specification Patterns
	4.2 R2U2: Runtime Specification Patterns in the Field

	5 Specification Organization
	5.1 A Property Graph Database Approach to Specification Organization with Neo4j

	6 Conclusions and Outlook
	References

	Order Reduction for Multi-core Interruptible Operating Systems
	1 Introduction
	2 Architecture
	3 Programming Language
	4 Correctness Statement
	5 Interrupt Levels and Threads
	6 Shared Steps
	7 Ownership Annotation
	7.1 Mimicking Address-Based Ownership
	7.2 Ownership Transfer on Interrupt

	8 Dirty Data
	9 Proof Sketch
	9.1 Deducing Ownership Mechanically

	10 Conclusion, Related and Future Work
	References

	Producing All Ideals of a Forest, Formally (Verification Pearl)
	1 Introduction
	2 Implementation
	3 Specification
	4 Proof
	5 Conclusion
	References

	Constructing Semantic Models of Programs with the Software Analysis Workbench
	1 Introduction
	1.1 The Structure of SAW

	2 SAWCore
	3 Symbolic Execution
	3.1 Shared Terms
	3.2 Postdominator-Based Merging
	3.3 Memory Models
	3.4 Path Feasibility Checking
	3.5 Example

	4 Compositional Symbolic Execution
	5 SAWScript
	6 Implementation
	6.1 Current Limitations

	7 Experiments
	7.1 Experimental Subjects
	7.2 Shared Term Representation
	7.3 Compositional Proofs
	7.4 Prover Comparison

	8 Related Work
	9 Conclusions and Future Work
	References

	Bidirectional Grammars for Machine-Code Decoding and Encoding
	1 Introduction
	2 Background: The Decoder DSL
	3 Relating Parsing and Pretty-Printing
	4 A Bidirectional Grammar
	5 Generalization to Ambiguous Grammars
	6 Engineering Bigrammars for x86 Decoding and Encoding
	7 Related Work
	8 Conclusions
	References

	Automated Verification of Functional Correctness of Race-Free GPU Programs
	1 Introduction
	2 Execution Model of GPU Programs
	3 Verification Condition Generation
	4 Simplifying Verification Conditions
	4.1 Eliminating assign
	4.2 Rewriting Using Equalities with Premises
	4.3 Merging Quantifiers
	4.4 Extra Heuristics

	5 Implementation and Experiment
	6 Related Work
	7 Conclusion
	References

	The Matrix Reproved (Verification Pearl)
	1 Introduction
	2 Why3 in a Nutshell
	3 Naive Matrix Multiplication
	4 From Multiplication Associativity to a Matrix Theory
	5 Strassen's Algorithm in Why3
	5.1 Implementation
	5.2 Specification and Proof

	6 Proving Validity of Ring Equations by Reflection
	6.1 Reflecting Algebraic Expressions by Ghost Tagging
	6.2 Normalizing Algebraic Expressions

	7 Related Work
	8 Conclusion
	A Challenge 1 Original Text
	B Strassen Recursion Scheme
	References

	Enabling Modular Verification with Abstract Interference Specifications for a Concurrent Queue
	1 Introduction
	2 Related Work
	3 A Bounded Queue Data Abstraction
	3.1 RESOLVE Background
	3.2 Abstract Specification
	3.3 Alternative Implementations

	4 Interference Contracts and Modular Verification
	4.1 Interference Contract
	4.2 Modular Verification of Client Code
	4.3 Modular Verification of an Implementation

	5 Summary and Future Directions
	References

	Accelerating the General Simplex Procedure for Linear Real Arithmetic via GPUs
	1 Introduction
	2 Related Work
	3 GPU Design Principles
	4 Problem Statement
	4.1 Problem Input
	4.2 The General Simplex Procedure for LRA

	5 Implementation
	5.1 CPU-only
	5.2 CPU-GPU

	6 Experiments
	7 Conclusions and Future Work
	References

	JavaSMT: A Unified Interface for SMT Solvers in Java
	1 Introduction
	2 Features
	3 Project Architecture
	4 Memory Management
	5 Case Study: Inductive Formula Weakening
	6 Related Work
	7 Conclusion
	References

	Relational Program Reasoning Using Compiler IR
	1 Introduction
	2 Illustration
	3 Related Work
	4 The Method
	4.1 From Source Code to LLVM IR
	4.2 Synchronization Points and Breaking Control Flow Cycles
	4.3 Coupling and Coupling Predicates
	4.4 Coupling Predicates for Cyclic Control Flow
	4.5 Coupling Predicates for Function Calls
	4.6 Alternative Loop Treatment as Tail Recursion
	4.7 Modeling the Heap

	5 Experiments
	6 Conclusion
	References

	Resolution in Solving Graph Problems
	1 Introduction
	2 Polarized Resolution Modulo
	3 Basic Definitions
	4 Closed-Walk Detection
	5 Blocked-Walk Detection
	6 Simplification Rules
	6.1 Selection Function
	6.2 Elimination Rule

	7 Implementation
	7.1 Issues in Implementation
	7.2 Experimental Evaluation

	8 Conclusion and Future Work
	References

	SMT-based Software Model Checking: An Experimental Comparison of Four Algorithms
	1 Introduction
	2 Algorithms
	3 Evaluation
	4 Conclusion
	References

	Author Index

