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Preface

This volume contains the papers presented at the 16th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI 2015),
held during January 12–14, 2015, in Mumbai, India.

This edition of the conference attracted 53 competitive submissions from
22 countries across the world. Each submission was reviewed by at least three
Program Committee members. The Committee decided to accept 24 papers. The
program also included four invited talks.

We would like to thank our invited speakers Supratik Chakraborty, Rustan
Leino, Antoine Miné, and Jean-François Raskin for readily agreeing to share their
insights with us through their talks and articles contributed to the conference.
We would like to thank all the Program Committee members and reviewers for
their diligent reviews that helped maintain the high standards of VMCAI. Like
many other conferences, we are indebted to EasyChair for providing us with an
excellent conference management system. We are grateful to Alfred Hofmann
and Anna Kramer of Springer for their close cooperation in publishing these
proceedings.

Finally, we would to thank ACM SIGPLAN-SIGACT and the local organiz-
ers, especially Sriram Rajamani and Paritosh Pandya, for the excellent infras-
tructural support to VMCAI.

November 2014 Deepak D’Souza
Akash Lal

Kim Guldstrand Larsen
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AstréeA: A Static Analyzer

for Large Embedded Multi-Task Software

Antoine Miné

CNRS & École Normale Supérieure
45, rue d’Ulm

75005 Paris, France

mine@di.ens.fr

Embedded critical systems, such as planes and cars, cannot be easily fixed dur-
ing missions and any error can have catastrophic consequences. It is thus pri-
mordial to ensure the correctness of their controlling software before they are
deployed. At the very least, critical embedded software must be exempt from
runtime errors, including ill-defined operations according to the specification
of the language (such as arithmetic or memory overflows) as well as failure of
programmer-inserted assertions. Sound and approximate static analysis can help,
by providing tools able to analyze the large codes found in the industry in a fully
automated way and without missing any real error. Sound and scalable static
analyzers are sometimes thought to be too imprecise and report too many false
alarms to be of any use in the context of verification. This claim was disproved
when, a decade ago [2], the Astrée static analyzer [1] successfully analyzed the
runtime errors in several Airbus control flight software, with few or no false
alarm. This result could be achieved by employing abstract interpretation [4], a
principled framework to define and compose modular sound-by-construction and
parametric abstractions, but also by adopting a design-by-refinement develop-
ment strategy. Starting from an efficient and easy to design, but rather coarse,
fully flow- and context-sensitive interval analyzer, we integrated more complex
abstractions (carefully chosen from the literature, such as octagons [10], adapted
from it, such as trace partitioning [9], or specifically invented for our needs, such
as digital filter domains [6]) to remove large sets of related false alarms, until we
reached our precision target.

In this presentation, we discuss our on-going efforts towards a similar goal:
the efficient and precise sound verification of the absence of run-time errors, but
targeting another, more complex class of software: shared-memory concurrent
embedded C software. Such software are already present in critical systems and
will likely become the norm with the generalization of multi-core processors in
embedded systems, leading to new challenging demands in verification. Our ana-
lyzer is named AstréeA [5], in reference to Astrée on which it takes its inspiration
and on the code base of which it elaborates. AstréeA’s specialization target is a
family of several embedded avionic codes, each featuring a small fixed set of a
dozen threads, more than 1.5 Mlines of C code, implicit communication through
the shared memory, and running under a real-time OS based on the ARINC 653
specification.
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One major challenge is that a concurrent program execution does not fol-
low a fixed sequential order, but one of many interleavings of executions from
different tasks chosen by the scheduler. A sound analysis must consider all pos-
sible interleavings in order to cover every corner case and race condition. As it
is impractical to build a fully flow-sensitive analysis by enumerating explicitly
all interleavings, we took inspiration from thread-modular methods: we analyze
each thread individually, in an environment consisting of (an abstraction of) the
effect of the other threads. This is a form of rely-guarantee reasoning [8], but
in a fully automatic static analysis settings formalized as abstract interpreta-
tion. Contrary to Jones’ seminal rely-guarantee proof method or its more recent
incarnations [7], our method does not require manual annotations: thread in-
terferences are automatically inferred by the analysis (including which variables
are actually shared and their possible values). Following the classic methodology
of abstract interpretation [4, 3], a thread-modular static analysis is now viewed
as a computable abstraction of a complete concrete thread-modular semantics.
This permits a fine control between precision and efficiency, and opens the way
to analysis specialization: any given safety property of a given program can be
theoretically inferred given the right abstract domain.

Following the design-by-refinement principle of Astrée, our first prototype
AstréeA [11] used a very coarse but efficient flow-insensitive and non-relational
notion of thread interference: it gathered independently for each variable and
each thread an interval abstraction of the values the thread can store into the
variable along its execution, and injected these values as non-deterministic writes
into other threads. This abstraction allowed us to scale up to our target appli-
cations, in efficiency (a few tens of hours of computation) if not in precision (a
few tens of thousands alarms).

This presentation will describe our subsequent work in improving the preci-
sion of AstréeA by specialization on our target applications, and the interesting
abstractions we developed along the way. For instance, we developed new inter-
ference abstractions enabling a limited but controllable (for efficiency) degree of
relationality and flow-sensitivity [12]. We also designed abstractions able to ex-
ploit our knowledge of the real-time scheduler used in the analysis target: i.e., it
schedules tasks on a single core and obeys a strict priority scheme.1 The resulting
analysis is less general, but more precise on our target applications, which was
deemed necessary as the correctness of the applications relies on these hypothe-
ses on the scheduler.2 Finally, not all false alarms are caused by our abstraction
of concurrency; we also developed numeric and memory domains to handle more

1 The scheduler remains fully preemptive: a low-priority thread may be interrupted at
any point by a higher-priority thread whose request to an external resource has just
been granted, resulting in a large number of possible thread interleavings.

2 It is important not to confuse here specialization with restriction: the scheduler ab-
straction is optional and can be omitted to achieve a more general, but less specialized
analysis.
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precisely some programming patterns which we did not encounter in our previous
experience with Astrée and for which no stock abstract domain was available.

The end-result is a more precise analyzer on our target applications, with cur-
rently around a thousand alarms. We stress that AstréeA is a work in progress
and that its results, although they are not yet as impressive as those of As-
trée, are likely to improve through further specialization. We also believe that,
thanks to the intrinsic modularity of the abstract interpretation framework, the
analysis performed by AstréeA can be adapted to other settings (other families
of applications, other schedulers, other concurrency models) by developing new
abstractions, while the abstractions we designed along the journey may also be
of use in similar or different static analyses.
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Word-Level Quantifier Elimination

Supratik Chakraborty

Department of Computer Science & Engineering
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A first order theory T is said to admit quantifier elimination if every T -formula
of the form Qx.ϕ(x, y1, . . . yn), where ϕ(x, y1, . . . yn) is quantifier-free and Q is
either ∃ or ∀, is T -equivalent to a quantifier-free formula of the form ϕ̂(y1, . . . yn).
The process of systematically deriving ϕ̂(y1, . . . yn) from ϕ(x, y1, . . . yn) is called
“quantifier elimination”.

Quantifier elimination is an important operation in several verification, syn-
thesis and analysis tasks. When reasoning about hardware and software with
finite precision arithmetic, the theory T of relevance is that of fixed-width bit-
vectors (or words). Since each variable in this theory has a fixed finite domain,
the theory is easily seen to admit quantifier elimination via expansion of quan-
tified variables. This naive approach, however, does not translate to a practical
algorithm for eliminating quantifiers, since the domain of a variable is exponen-
tial in its bit-width. Therefore, the formula resulting from expansion of quan-
tified variables blows up exponentially, rendering the naive approach infeasible
in practice. Approaches based on bit-blasting ϕ(x, y1, . . . yn), followed by quan-
tifier elimination techniques for quantified propositional formulas are not very
useful either, since the result obtained via such approaches have no word-level
structure at all. This makes it difficult to apply further word-level reasoning on
the formula resulting from quantifier elimination. It is therefore important to de-
velop word-level quantifier elimination algorithms that avoid variable expansion
and bit-blasting as much as possible, and instead reason directly at the level of
bit-vectors (or words).

The importance of word-level quantifier elimination in several application do-
mains has spurred a lot of interesting work in this area in the recent past. This
talk surveys these techniques, and discusses in more depth some quantifier elim-
ination algorithms for linear word-level constraints, developed in our research
group. Since the output of each word-level quantifier elimination technique is a
word-level formula, it is indeed possible to harness the power of multiple tech-
niques in a co-operative manner to quantify a set of variables. The talk concludes
with an overview of sub-problems that still remain to be addressed satisfacto-
rily in our quest for word-level quantifier elimination techniques for real-world
verification, synthesis and analysis problems.



Early Verification
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Abstract. Technology that accurately models, analyzes, and verifies
software has come a long way since its conception several decades ago.
One mode of using such technology is to look for defects in software that
has already left the hands of developers. Another mode is to integrate
the technology into the process of software authoring (see, for example,
[2,1,5,3,4]). The advantage of this mode is that it lends analytical power
to the developer’s thinking. To be used in this way, the technology must
be packaged in a way that is understandable, unobtrusive, and respon-
sive. In this talk, I showcase an integrated development environment
that supports reasoning and verification, trying to provide an aid to the
developer earlier during the software development process.
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Variations on the Stochastic

Shortest Path Problem�

Mickael Randour1, Jean-François Raskin2, and Ocan Sankur2

1 LSV, CNRS & ENS Cachan, France
2 Département d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. In this invited contribution, we revisit the stochastic shortest
path problem, and show how recent results allow one to improve over the
classical solutions: we present algorithms to synthesize strategies with
multiple guarantees on the distribution of the length of paths reaching
a given target, rather than simply minimizing its expected value. The
concepts and algorithms that we propose here are applications of more
general results that have been obtained recently for Markov decision
processes and that are described in a series of recent papers.

1 Introduction

Markov decision processes (MDP) [18] are natural models for systems that ex-
hibit both non-deterministic and stochastic evolutions. An MDP is executed in
rounds. In each round, the MDP is in a give state and an action is chosen by a
controller (this is the resolution of non-determinism). Once this action has been
fixed then the next state is determined following a probability distribution asso-
ciated to the current state and the action that has been chosen by the controller.
A controller can thus be considered as a strategy (a.k.a. policy) that determines
which action to choose according to the history of the execution so far. MDPs
have been studied intensively and there are algorithms to synthesize strategies
that enforce a large variety of objectives like omega-regular objectives [9], PCTL
objectives [1], or quantitative objectives [18].

One Philosophy, Three Variants. The classical strategy synthesis setting
often considers a single objective to be optimized such as the reachability prob-
ability, or the expected cost to target. Such simple objectives are not always
sufficient to describe the properties required from an efficient controller. Indeed,
on the one hand, one often has several measures of performance, and several ob-
jectives to satisfy, so the desired strategies have to settle for trade-offs between
these. On the other hand, the strategies computed in the classical setting are
tailored for the precise probabilities given in the MDP, which often correspond
to the average behavior of the system in hand. This approach is not satisfactory
if one is also interested in giving some formal guarantees under several scenarios,

� Work partially supported by ERC starting grant inVEST (FP7-279499) and Euro-
pean project CASSTING (FP7-ICT-601148).

D. D’Souza et al. (Eds.): VMCAI 2015, LNCS 8931, pp. 1–18, 2015.
c© Springer-Verlag Berlin Heidelberg 2015



2 M. Randour, J.-F. Raskin, and O. Sankur

say, under normal conditions (i.e., average behavior), but also a minor failure,
and a major failure. In this paper, we summarize recent results that we have ob-
tained in this direction with the common goal of improving the strategies that
can be synthesized for probabilistic systems. They were presented in three recent
publications [5,20,19]. All three models that we studied share a common philos-
ophy which is to provide a framework for the synthesis of strategies ensuring
richer performance guarantees than the traditional models. The three problems
we tackle can be summarized as follows.

First, in [5], we study a problem that is at the crossroad between the analysis
of two-player zero-sum quantitative graph games and of quantitative MDPs. In
the former, we want strategies for the controller that ensure a given minimal
performance against all possible behaviors of its environment: we ask for strict
guarantees on the worst-case performance. In the latter, the controller plays
against a stochastic environment, and we want strategies that ensure a good
expected performance, with no guarantee on individual outcomes. Both models
have clear weaknesses: strategies that are good for the worst-case may exhibit
suboptimal behaviors in probable situations while strategies that are good for
the expectation may be terrible in some unlikely but possible situations. The be-
yond worst-case synthesis problem asks to construct strategies that provide both
worst-case guarantees and guarantees on the expected value against a particular
stochastic model of the environment given as input. We have considered both
the mean-payoff value problem and the shortest path problem.

Second, in [19], we study multi-dimensional weighted MDPs, which are useful
for modeling systems with multiple objectives. Those objectives may be conflict-
ing, and so the analysis of trade-offs is important. To allow the analysis of those
trade-offs, we study a general form of percentile queries. Percentile queries are
as follows: given a multi-dimensional weighted MDP and a quantitative payoff
function f (such as mean-payoff or truncated sum), quantitative thresholds vi
(one per dimension), and probability thresholds αi, we show how to compute
a single strategy that enforces that for all dimensions i, the probability that
an outcome ρ satisfies fi(ρ) ≥ vi is at least αi. We have obtained several new
complexity results on the associated decision problems and established efficient
algorithms to solve these problems.

Third, in [20], we introduce multi-environment MDPs (MEMDPs) which are
MDPs with a set of probabilistic transition functions. The goal in an MEMDP
is to synthesize a single controller with guaranteed performances against all
environments of this set even though the environment is unknown a priori. While
MEMDPs can be seen as a special class of partially observable MDPs, several
verification problems that are undecidable for partially observable MDPs, are
decidable for MEMDPs and sometimes even allow for efficient solutions.

Stochastic Shortest Path. To illustrate those results in a uniform manner, we
consider the stochastic shortest path problem, SSP problem, and study several
variations. The shortest path problem is a classical optimization problem that
asks, given a weighted graph, to find a path from a starting state to a target
state such that the sum of weights along edges used in the path is minimized.
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Stochastic variants consider edges with probabilistic distributions on destina-
tions and/or on weights. We revisit here some of those variants at the light of
the results that we have obtained in the contributions described above.

Structure of the Paper. Our paper is organized as follows. In Sect. 2, we
recall some elementary notions about MDPs. In Sect. 3, we define two classical
stochastic variations on the SSP problem: the first one asks to minimize the
expected length of paths to target, and the second one asks to force short paths
with high probability. In Sect. 4, we apply the beyond worst-case analysis to the
shortest path problem and summarize our results presented in [5]. In Sect. 5,
we consider a multi-dimension version of the shortest path problem where edges
both have a length and a cost. We illustrate how percentile queries, that we have
studied in [19], are natural objectives for the study of trade-offs in this setting.
In Sect. 6, we study a version of the SSP where the stochastic information is
given by several probabilistic transition relations instead of one, so we apply the
multi-environment MDP analysis introduced in [20] on this variant. Throughout
Sect. 4-6, we also give a summary of our general results on the corresponding
models, as well as additional pointers to the literature.

2 Preliminaries

Markov Decision Processes. A (finite) Markov decision process (MDP) is a
tuple D = (S, sinit, A, δ) where S is a finite set of states, sinit ∈ S is the initial
state, A is a finite set of actions, and δ : S × A → D(S) is a partial function
called the probabilistic transition function, whereD(S) denotes the set of rational
probability distributions over S. The set of actions that are available in a state
s ∈ S is denoted by A(s). We use δ(s, a, s′) as a shorthand for δ(s, a)(s′). A
weighted MDP D = (S, sinit, A, δ, w) is an MDP with a d-dimension integer
weight function w : A → Zd. For any dimension i ∈ {1, . . . , d}, we denote by
wi : A→ Z the projection of w to the i-th dimension, i is omitted when there is
only one dimension.

We define a run ρ of D as a finite or infinite sequence ρ = s1a1 . . . an−1sn . . .
of states and actions such that δ(si, ai, si+1) > 0 for all i ≥ 1. We denote the
prefix of ρ up to state si by ρ(i). A run is called initial if it starts in the initial
state sinit. We denote the set of runs of D by R(D) and its set of initial runs by
Rsinit(D). Finite runs that end in a state are also called histories, and denoted
by H(D) and Hsinit(D), respectively.

Strategies. A strategy σ is a function H(D)→ D(A) such that for all h ∈ H(D)
ending in s, we have Supp(σ(h)) ∈ A(s), where Supp denotes the support of the
probability distribution. The set of all possible strategies is denoted by Σ. A
strategy is pure if all histories are mapped to Dirac distributions. A strategy σ
can be encoded by a stochastic Moore machine, (M, σa, σu, α) whereM is a finite
or infinite set of memory elements; σa : S×M→ D(A) the next action function
where Supp(σ(s,m)) ⊆ A(s) for any s ∈ S andm ∈ M; σu : A×S×M→ D(M)
the memory update function; and α the initial distribution onM. We say that σ
is finite-memory if |M| < ∞, and K-memory if |M| = K; it is memoryless
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if K = 1, thus only depends on the last state of the history. We define such
strategies as functions s 	→ D(A(s)) for all s ∈ S. Otherwise a strategy is infinite-
memory.

Markov Chains. A weighted Markov chain (MC) is a tupleM = (S, dinit, Δ,w)
where S is a (non-necessarily finite) set of states, dinit ∈ D(S) is the initial
distribution, Δ : S → D(S) is the probabilistic transition function, and w : S ×
S → Zd is a d-dimension weight function. Markov chains are essentially MDPs
where for all s ∈ S, we have that |A(s)| = 1.

We define a run of M as a finite or infinite sequence s1s2 . . . sn . . . of states
such that Δ(si, si+1) > 0 for all i ≥ 1. A run is called initial if it starts in the
initial state s such that dinit(s) > 0. Runs of M are denoted by R(M), and its
set of initial runs by Rdinit(M).

Markov Chains Induced by a Strategy. An MDP D = (S, sinit, A, δ) and
a strategy σ encoded by (M, σa, σu, α) determine a Markov chain M = Dσ

defined on the state space S ×M as follows. The initial distribution is such
that for any m ∈ M, state (sinit,m) has probability α(m), and 0 for other
states. For any pair of states (s,m) and (s′,m′), the probability of the transition
((s,m), a, (s′,m′)) is equal to σa(s,m)(a) · δ(s, a, s′) · σu(s,m, a)(m′). So, a run
of Dσ is a finite or infinite sequence of the form (s1,m1), a1, (s2,m2), a2, . . .
where each ((si,mi), ai, (si+1,mi+1)) is a transition with non-zero probability
in Dσ, and s1 = sinit. In this case, the run s1a1s2a2 . . ., obtained by projection
to D, is said to be compatible with σ.

In an MC M , an event is a measurable set of runs E ⊆ Rdinit(M). Every event
has a uniquely defined probability [24] (Carathodory’s extension theorem induces
a unique probability measure on the Borel σ-algebra over Rdinit(M)). We denote
by PM (E) the probability that a run belongs to E when the initial state is chosen
according to dinit, and M is executed for an infinite number of steps. Given a
measurable function f : R(M) → R ∪ {∞}, we denote by EM (f) the expected
value or expectation of f over initial runs in M . When considering probabilities
of events in Dσ, for D an MDP and σ a strategy on D, we often consider runs
defined by their projection on D. Thus, given E ⊆ R(D), we denote by Pσ

D[E ]
the probability of the runs of Dσ whose projections to D are in E .

3 The Stochastic Shortest Path Problem

The shortest path problem in a weighted graph is a classical problem that asks,
given a starting state s and a set of target states T , to find a path from s to a
state t ∈ T of minimal length (i.e., that minimizes the sum of the weights along
the edges in the path). See for example [8]. There have been several stochastic
variants of this classical graph problem defined and studied in the literature, see
for example [18]. We recall here two main variants of this problem, other new
variants are defined and studied in the subsequent sections.

Let D = (S, sinit, A, δ, w) be an MDP with a single-dimensional weight func-
tion w : A → N0 that assigns to each action a ∈ A a strictly positive integer.
Let T ⊆ S be a set of target states. Given an initial run ρ = s1s2 . . . si . . . in
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the MDP, we define its truncated sum up to T to be TST (ρ) =
∑n−1

j=1 w(aj) if
sn is the first visit of a state in T ⊆ S within ρ; otherwise if T is never reached,
then we set TST (ρ) =∞. The function TST is measurable, and so this function
has an expected value in a weighted MC and sets of runs defined from TST are
measurable. The following two problems have been considered in the literature.

Minimizing the Expected Length of Paths to Target. Given a weighted
MDP, we may be interested in strategies (choices of actions) that minimize the
expected length of paths to target. This is called the stochastic shortest path
expectation problem, SSP-E for short, and it is defined as follows.

Definition 1 (SSP-E problem). Given a single-dimensional weighted MDP
D = (S, sinit, A, δ, w) and a threshold 
 ∈ N, decide if there exists σ such that
Eσ
D(TST ) ≤ 
.

Theorem 1 ([2]). The SSP-E problem can be decided in polynomial time. Opti-
mal pure memoryless strategies always exist and can be constructed in polynomial
time.

There are several algorithms proposed in the literature to solve this problem.
We recall a simple one based on linear programming (LP). For other solutions
based on value iteration or strategy iteration, we refer the interested reader to,
e.g., [2,10]. To apply the reduction to LP, we must make the hypothesis that,
for each state s ∈ S of the MDP, there is a path from s to the target set T . It
is clear that the expectation of states that are not connected to the target set
T by a path is infinite. So, we will assume that all such states have first been
removed from the MDP. This can easily be done in linear time. Also, it is clear
that for all states in T , the expected length of the shortest path is trivially equal
to 0. So, we restrict our attention to states in S \ T . For each state s ∈ S \ T ,
we consider one variable xs, and we define the following LP:

max
∑

s∈S\T
xs

under the constraints

xs ≤ w(a) +
∑

s′∈S\T
δ(s, a, s′) · xs′ for all s ∈ S \ T , for all a ∈ A(s).

It can be shown (e.g., in [2]) that the optimal solution v for this LP is such that vs

is the expectation of the length of the shortest path from s to a state in T under
an optimal strategy. Such an optimal strategy can easily be constructed from
the optimal solution v. The following pure memoryless strategy σv is optimal:

σv(s) = arg min
a∈A(s)

⎡⎣w(a) + ∑
s′∈S\T

δ(s, a, s′) · vs′

⎤⎦ .
Forcing Short Paths with High Probability. As an alternative to the expec-
tation, given a weighted MDP, we may be interested in strategies that maximize
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the probability of short paths to target. This is called the stochastic shortest
path percentile problem, SSP-P for short, and provides a preferable solution if
we are risk-averse. The problem is defined as follows.

Definition 2 (SSP-P problem). Given a single-dimensional weighted MDP
D = (S, sinit, A, δ, w), value 
 ∈ N, and probability threshold α ∈ [0, 1]∩Q, decide
if there exists a strategy σ such that Pσ

D

[
{ρ ∈ Rsinit(D) | TST (ρ) ≤ 
}

]
≥ α.

Theorem 2. The SSP-P problem can be decided in pseudo-polynomial time, and
it is PSPACE-hard. Optimal pure strategies with pseudo-polynomial memory al-
ways exist and can be constructed in pseudo-polynomial time.

The PSPACE-hardness result was recently proved in [15]. An algorithm to
solve this problem can be obtained by a (pseudo-polynomial-time) reduction to
the stochastic reachability problem, SR for short.

Given an unweighted MDP D = (S, sinit, A, δ), a set of target states T ⊆ S,
and a probability threshold α ∈ [0, 1]∩Q, the SR problem asks to decide if there
is a strategy σ that ensures, when played from sinit, to reach the set T with a
probability that exceeds the threshold α. The SR problem can also be solved in
polynomial time by a reduction to linear programming. Here is a description of
the LP. For all states s ∈ S, we consider a variable xs in the following LP:

min
∑
s∈S

xs

under the constraints

xs = 1 ∀s ∈ T ,
xs = 0 ∀s ∈ S which cannot reach T ,
xs ≥

∑
s′∈S δ(s, a, s

′) · xs′ ∀a ∈ A(s).
The optimal solution v for this LP is such that vs is the maximal probability
to reach the set of targets T that can be achieved from s. From the optimal
solution v, we can define a pure memoryless strategy σv which achieve vs when
played from s, we define it for all states s 
∈ T that can reach T :

σv(s) = arg max
a∈A(s)

[∑
s′∈S

δ(s, a, s′) · xs′
]
.

We are now ready to define the reduction from the SSP-P problem to the
the SR problem. Given a weighted MDP D = (S, sinit, A, δ, w), a set of targets
T ⊆ S, a value 
 ∈ N, and a probability threshold α ∈ [0, 1]∩Q, we construct an
MDP D�. D� is constructed from D and contains an additional information in
its state space: it records the sum of the weights encountered so far. Formally,
D� = (S′, s′init, A

′, δ′, w′) where:

– S′ is the set of states, each one being a pair (s, v), where s ∈ S and v ∈
{0, 1, . . . , 
}∪{⊥}. Intuitively v records the running sum along an execution
in D (⊥ > 
 by convention);
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– its initial state s′init is equal to (sinit, 0);
– the set of actions is A and the weight function is unchanged, i.e., A′ = A

and w′ = w;
– the transition relation is as follows: for all pairs (s, v), (s′, v′) ∈ S′, and

actions a ∈ A, we have that δ((s, v), a)(s′, v′) = δ(s, a)(s′) if v′ = v +
w(a) ≤ 
, δ((s, v), a)(s′, v′) = δ(s, a)(s′) if v′ = ⊥ and v + w(a) > 
, and
δ((s, v), a)(s′, v′) = 0 otherwise.

The size of D� is proportional to the size of D and the value 
, i.e., it is thus
pseudo-polynomial in the encoding of the SSP-P problem. The SR objective in
D� is to reach T ′ = {(s, v) | s ∈ T ∧ v ≤ 
} with a probability at least α.

Runs that satisfy the reachability objective in D� are in bijection with runs
that reach T in D with a truncated sum at most 
. So if there is a strategy that
enforces reaching T ′ in D� with probability p ≥ α, then there is a strategy in
D to ensure that T is reached with a path of length at most 
 with probability
p ≥ α (the strategy that is followed in D� can be followed in D if we remember
what is the sum of weights so far). The converse also holds. As for a reachability
objective, memoryless strategies are optimal, we deduce that pseudo-polynomial-
size memory is sufficient (and is sometimes necessary) in the SSP-P problem, and
the problem can be solved in pseudo-polynomial time. As the problem has been
shown to be PSPACE-Hard, this pseudo-polynomial-time solution is essentially
optimal, see [15] for details.

Illustration.We illustrate the concepts of this paper on a running example that
we have introduced in [5] and that we extend in the subsequent sections. The
MDP of Fig. 1 models the choices that an employee faces when he wants to reach
work from home. He has the choice between taking the train, driving or biking.
When he decides to bike, he reaches his office in 45 minutes. If he decides to take
his car, then the journey depends on traffic conditions that are modeled by a
probabilistic distribution between light, medium and heavy traffic. The employee
can also try to catch a train, which takes 35 minutes to reach work. But trains
can be delayed (potentially multiple times): in that case, the employee decides if
he waits or if he goes back home (and then take his car or his bike). We consider
two scenarios that correspond to the two problems defined above.

If the employee wants to minimize the expected duration of his journey from
home to work, we need to solve a SSP-E problem. By Theorem 1, we know
that pure memoryless strategies suffice to be optimal. It turns out that in our
example, taking the car is the strategy that minimizes the expected time to
work: this choice gives an expectation equal to 33 minutes.

Observe that taking the car presents some risk: if the traffic is heavy, then work
is only reached after 71 minutes. This can be unacceptable for the employee’s
boss if it happens too frequently. So if the employee is risk-averse, optimizing the
expectation may not be the best choice. For example, the employee may want
to reach work within 40 minutes with high probability, say 95%. In this case,
we need to solve a SSP-P problem. First, observe that taking the train ensures
to reach work within 40 minutes in 99% of the runs. Indeed, if the train is not
delayed, we reach work with 37 minutes, and this happens with probability 9/10.
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

Now, if the train is late and the employee decides to wait, the train arrives in the
next 3 minutes with probability 9/10: in that case, the employee arrives at work
within 40 minutes. So, the strategy consisting in going to the railway station and
waiting for the train (as long as needed) gives us a probability 99/100 to reach
work within 40 minutes, fulfilling our objective. Second, it is easy to see that
both bicycle and car are excluded in order to satisfy the SPP-P problem. With
bicycle we reach work in 45 minutes with probability one, and with the car we
reach work in 71 minutes with probability 1/10, hence we miss the constraint of
40 minutes too often.

Related Work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value 
 inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed α. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (ρ) ≤ 
. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].
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4 Good Expectation under Acceptable Worst-Case

Worst-Case Guarantees. Assume now that the employee wants a strategy to
go from home to work such that work is guaranteed to be reached within 60
minutes (e.g., to avoid missing an important meeting with his boss). It is clear
that both optimal (w.r.t. problems SSP-E and SSP-P respectively) strategies of
Sect. 3 are excluded: there is the possibility of heavy traffic with the car (and a
journey of 71 minutes), and trains can be delayed indefinitely in the worst case.

To ensure a strict upper bound on the length of the path, an adequate model
is the shortest path game problem, SP-G for short. In a shortest path game,
the uncertainty becomes adversarial: when there is some uncertainty about the
outcome of an action, we do not consider a probabilistic model but we let an
adversary decide the outcome of the action. So, to model a shortest path game
based on an MDP D = (S, sinit, A, δ, w), we modify the interpretation of the
transition relation as follows: after some history h that ends up in state s, if the
strategy chooses action a ∈ A(s), then the adversary chooses the successor state
within Supp(δ(s, a)) without taking into account the actual values of the prob-
abilities. With this intuition in mind, if we fix a strategy σ (for the controller),
then the set of possible outcomes in D, noted OutσD, is the set of initial runs that
are compatible with σ, i.e., OutσD = {ρ ∈ Rsinit(D) | ∀ i ≥ 0: ai ∈ Supp(σ(ρ(i)))}.
Now, we can define the SP-G problem as follows.

Definition 3 (SP-G problem). Given single-dimensional weighted MDP D =
(S, sinit, A, δ, w), set of target states T ⊆ S, and value 
 ∈ N, decide if there exists
a strategy σ such that for all ρ ∈ OutσD, we have that TST (ρ) ≤ 
.

Theorem 3 ([16]). The SP-G problem can be decided in polynomial time. Opti-
mal pure memoryless strategies always exist and can be constructed in polynomial
time.

Under the hypothesis that actions in D have strictly positive weight, the
controller has no interest in forming cycles, and if he cannot avoid to close
cycles (before reaching T ), then there will be outcomes that will never reach
T , yielding an infinite truncated sum. As a consequence, the only option for
the controller is to win within |S| = n steps. So, to solve the SP-G problem, we
compute for each state s and for each i, 0 ≤ i ≤ n, the value C(s, i), representing
the lowest bound on the length to the target T from s that the controller can
ensure, if the game is played for i steps. Those values can be computed using
dynamic programming as follows: for all s ∈ T , C(s, 0) = 0, and for all s ∈ S \T ,
C(s, 0) = +∞. Now, assume that 0 < i < n and that we have already computed
C(s, i− 1) for all s ∈ S. Then for i steps, we have that

C(s, i) = min
[
C(s, i− 1), min

a∈A(s)
max

s′∈Supp(δ(s,a))
w(a) + C(s′, i− 1)

]
.

So, C(sinit, n) can be computed in polynomial time, and we have that the con-
troller can force to reach T from sinit with a path of length at most 
 if and only
if C(sinit, n) ≤ 
.
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Related Work. For results about the SP-G problem when weights can also be
negative, we refer the interested reader to [3] where a pseudo-polynomial-time
algorithm has been designed and to [11] where complexity issues are discussed
(see Theorem 8 in that reference). In multi-dimensional MDPs with both positive
and negative weights, it follows from results on total-payoff games that the SP-G
problem is undecidable [7].

Illustration. If we apply this technique on the example of Fig. 1, it shows that
taking bicycle is a safe option to ensure the strict 60 minutes upper bound.
However, the expected time to reach work when following this strategy is 45
minutes, which is far from the optimum of 33 minutes that can be obtained
when we neglect the worst-case constraint.

In answer to this, we may be interested in synthesizing a strategy that min-
imizes the expected time to work under the constraint that work is reached
within 60 minutes in the worst case. We claim that the optimal strategy in this
case is the following: try to take the train, if the train is delayed three times
consecutively, then go back home and take the bicycle. This strategy is safe as it
always reaches work within 58 minutes and its expectation is ≈ 37, 34 minutes
(so better than taking directly the bicycle). Observe that it is pure but requires
finite memory, in contrast to the case of problems SSP-E and SSP-G.

Beyond Worst-Case Synthesis. In [5,4], we study the synthesis of strategies
that ensure, simultaneously, a worst-case threshold (when probabilities are re-
placed by adversarial choices), and a good expectation (when probabilities are
taken into account). We can now recall the precise definition of the problem.

Definition 4 (SSP-WE problem). Given a single-dimensional weighted MDP
D = (S, sinit, A, δ, w), a set of target states T ⊆ S, and two values 
1, 
2 ∈ N,
decide if there exists a strategy σ such that:

1. ∀ ρ ∈ OutσD : TST (ρ) ≤ 
1,
2. Eσ

D(TST ) ≤ 
2.

While the SP-G problem and the SSP-E problem are both solvable in poly-
nomial time and pure memoryless strategies suffice in both cases, the SSP-WE
problem proves to be inherently harder.

Theorem 4 ([5]). The SSP-WE problem can be decided in pseudo-polynomial
time and is NP-hard. Pseudo-polynomial memory is always sufficient and in gen-
eral necessary, and satisfying strategies can be constructed in pseudo-polynomial
time.

The algorithm proposed in [5] to solve the SSP-WE problem can be summa-
rized as follows. First, construct the MDP D� as for solving the SSP-P problem.
States ofD� are pairs (s, v) where s ∈ S is a state ofD and v is the sum of weights
of edges traversed so far. Consider the target T ′ = {(s, v) | s ∈ T∧v ≤ 
}. Second,
compute for each state (s, v) what are the safe actions, noted A(s, v), that ensure
to reach T ′ in D� no matter how the adversary resolves non-determinism. A(s, v)
can be computed inductively as follows: we start with A0(s, v) = A(s) if v ≤ 
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and A0(s, v) = ∅ if v = ⊥, i.e., a priori, all the actions are good in states that have
not yet exceeded the sum 
 while states that have exceeded 
 are hopeless and
none of the actions are good. Assume that we have computed Ai(s, v), for i ≥ 0,
then Ai+1(s, v) = {a ∈ Ai(s, v) | ∀ (s′, v′) ∈ Supp(δ((s, v), a)) : Ai(s, v) 
= ∅}. As
the set of good actions is finite and is decreasing, it is easy to see that this process
ends after a finite number of steps that is polynomial in the size of D�. We note
DA

� , the MDP D� limited to the safe actions. Then, it remains to solve the SSP-E
on DA

� . The overall complexity of the algorithm is pseudo-polynomial, and the
NP-hardness result established in [5] implies that we cannot hope to obtain a
truly-polynomial-time algorithm unless P = NP.

Additional Results. In [5,4], we also study the so-called beyond worst-case
synthesis for models with the mean-payoff function instead of the truncated
sum. Mean-payoff games [12] are infinite-duration, two-player zero-sum games
played on weighted graphs. In those games, the controller wants to maximize
the long-run average of the weights of the edges traversed during the game
while the adversary aims to minimize this long-run average. Given a mean-
payoff game and a stochastic model of the adversary, their product defines an
MDP on which we study the problem MP-WE, the mean-payoff analogue of
problem SSP-WE. We have shown that it is in NP ∩ coNP for finite-memory
strategies, essentially matching the complexity of the simpler problem MP-G of
solving mean-payoff games without considering the expected value. We have also
established that pure strategies with pseudo-polynomial-memory are sufficient.
Our synthesis algorithm is much more complex than for SSP-WE, and requires
to overcome several technical difficulties to prove NP ∩ coNP-membership.

5 Percentile Queries in Multi-Dimensional MDPs

Illustration. Consider the MDP D depicted in Fig. 2. It gives a simplified
choice model for commuting from home to work, but introduces two-dimensional
weights: each action is labeled with a duration, in minutes, and a cost, in Euro.
Multi-dimensional MDPs are useful to analyze systems with multiple objectives
that are potentially conflicting and make necessary the analysis of trade-offs. For
instance, we may want a choice of transportation that gives us high probability
to reach work in due time but also limits the risk of an expensive journey. Since
faster options are often more expensive, trade-offs have to be considered.

Recall the SSP-P problem presented in Def. 2: it asks to decide the existence
of strategies satisfying a single percentile constraint. This problem can only be
applied to single-dimensional MDPs. For example, one may look for a strategy
that ensures that 80% of compatible initial runs take at most 40 minutes (con-
straint C1), or that 50% of them cost at most 10 Euro (C2). A good strategy
for C1 would be to take the taxi, which guarantees that work is reached within
10 minutes with probability 0.99 > 0.8. For C2, taking the bus is a good option,
because already 70% of the runs will reach work for only 3 Euro. Note that
taking the taxi does not satisfy C2, nor does taking the bus satisfy C1.
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home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

Fig. 2. Multi-percentile queries can help when
actions both impact the duration of the jour-
ney (first dimension) and its cost (second di-
mension): trade-offs have to be considered

In practice, a desirable strategy
should be able to satisfy both C1
and C2. This is the goal of our
model of multi-constraint percentile
queries, introduced in [19]. For ex-
ample, an appropriate strategy for
the conjunction (C1 ∧ C2) is to try
the bus once, and then take the taxi
if the bus does not depart. Indeed,
this strategy ensures that work is
reached within 40 minutes with
probability larger than 0.99 thanks
to runs home·bus·work (probabil-
ity 0.7 and duration 30) and
home·bus·home·taxi·work (proba-
bility 0.297 and duration 40). Fur-
thermore, it also ensures that more
than half the time, the total cost to
target is at most 10 Euro, thanks to
run home·bus·work which has probability 0.7 and cost 3. Observe that this strat-
egy requires memory. In this particular example, it is possible to build another
acceptable strategy which is memoryless but requires randomness. Consider the
strategy that flips an unfair coin in home to decide if we take the bus or the taxi,
with probabilities 3/5 and 2/5 respectively. Constraint C1 is ensured thanks to
runs home·bus·work (probability 0.42) and home·taxi·work (probability 0.396).
Constraint C2 is ensured thanks to runs (home·bus)n·work with n = 1, 2, 3: they
have probabilities 0.42, ≥ 0.07 and ≥ 0.01 respectively, totaling to ≥ 0.5, while
they all have cost at most 3 · 3 = 9 < 10. As we will see, percentile queries in
general require strategies that both use memory and randomness, in contrast to
the previous problems which could forgo randomness.

Percentile Queries. In [19], we study the synthesis of strategies that enforce
percentile queries for the shortest path.

Definition 5 (SSP-PQ problem). Given a d-dimensional weighted MDP D =
(S, sinit, A, δ, w), and q ∈ N percentile constraints described by sets of target states
Ti ⊆ S, dimensions ki ∈ {1, . . . , d}, value thresholds 
i ∈ N and probability
thresholds αi ∈ [0, 1]∩Q, where i ∈ {1, . . . , q}, decide if there exists a strategy σ
such that

∀ i ∈ {1, . . . , q}, Pσ
D

[
TSTi

ki
≤ 
i

]
≥ αi,

where TSTi

ki
denotes the truncated sum on dimension ki and w.r.t. target set Ti.

Our algorithm is able to solve the problem for queries with multiple constraints,
potentially related to different dimensions of the weight function and to different
target sets: this offers great flexibility which is useful in modeling applications.

Theorem 5 ([19]). The SSP-PQ problem can be decided in exponential time in
general, and pseudo-polynomial time for single-dimension single-target
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multi-contraint queries. The problem is PSPACE-hard even for single-constraint
queries. Randomized exponential-memory strategies are always sufficient and in
general necessary, and satisfying strategies can be constructed in exponential
time.

The first step to solve an SSP-PQ problem on MDP D is to build a new MDP
D� similarly to what was defined for the SSP-P problem, but with 
 = maxi 
i,
and adapting the construction to multi-dimensional weights. In particular, we ob-
serve that a run can only be disregarded when the sum on each of its dimensions
exceeds 
. Essentially, some runs may satisfy only a subset of constraints and still
be interesting for the controller, as seen in the example above. Still, the size of
D� can be maintained to a single-exponential by defining a suitable equivalence
relation between states (pseudo-polynomial for single-dimensional MDPs and

single-target queries). Precisely, the states of D� are in S × ({0, . . . , 
} ∪ {⊥})d.
Now, for each constraint i, we compute a set of target states Ri in D� that
exactly captures all runs satisfying the inequality of the constraint.

We are left with amultiple reachability problem onD�: we look for a strategy σ�
that ensures that each of these sets Ri is reached with probability αi. This is
a generalization of the SR problem defined above. It follows from [13] that this
multiple reachability problem can be answered in time polynomial in |D�| but
exponential in the number of sets Ri, i.e., in q. The complexity can be reduced
for single-dimensional MDPs and queries with a unique target T : in that case,
sets Ri can be made absorbing, and the multiple reachability problem can be
answered in time polynomial in D� through linear programming. Overall, our
algorithm thus requires pseudo-polynomial time in that case. It is clear that σ�
can be easily translated to a good strategy σ in D and conversely.

The PSPACE-hardness result already holds for the single-constraint case, i.e.,
the SSP-P problem (Theorem 2), following results of [15]. Hence the SSP-PQ
framework offers a wide extension for basically no price in computational com-
plexity.

Additional Results. In [19], we establish that the SSP-PQ problem becomes
undecidable if we allow for both negative and positive weights in multi-
dimensional MDPs, even with a unique target set.

Furthermore, in [19], we study the concept of percentile queries for a large
range of classical payoff functions, not limited to the truncated sum: sup, inf,
limsup, liminf, mean-payoff and discounted sum. In all cases, the complexity for
the most general setting - multi-dimensional MDPs, multiple constraints - is at
most exponential, better in some cases. Interestingly, when the query size is fixed,
all problems except for the discounted sum can be solved in polynomial time.
Note that in most applications, the query size can be reasonably bounded while
the model can be very large, so this framework is ideally suited. In many cases, we
show how to reduce the complexity for single-dimensional queries, and for single-
constraint queries. We also improve the knowledge of the multiple reachability
problem sketched above by proving its PSPACE-hardness and identifying the
subclass of queries with nested targets as solvable in polynomial time.
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Related Work. As mentioned in Sect. 3, there are several works that ex-
tend the SSP-P problem in different directions. In particular, cost problems,
recently introduced in [15], can handle arbitrary Boolean combinations of in-
equalities ϕ over the truncated sum inside an SSP-P problem: it can be written
as Pσ

D

[
TST |= ϕ

]
≥ α. Observe that this is orthogonal to our percentile queries.

Cost problems are studied on single-dimensional MDPs and all the inequalities
relate to the same target T , in contrast to our setting which allows both for
multiple dimensions and multiple target sets. The single probability threshold
bounds the probability of the whole event ϕ whereas we analyze each event in-
dependently. Both settings are in general incomparable (see [19]), but they share
the SSP-P problem as a common subclass.

6 Multiple Environments

The probabilities in a stochastic process represent a model of the environment.
For instance, in Fig. 1, the probability of a train coming when we wait in the
train station is a simplified model of the behavior of the train network. Clearly,
this behavior can be significantly different on some particular days, for instance,
when there is a strike. In this section, we consider the problem of synthesizing
strategies in probabilistic systems with guarantees against a finite number of
different environments.

Illustration. Let us consider again the problem of commuting to work, and
assume that some days there may be an unannounced strike (S) in the train
service, and an accident (A) in the highway. Thus, four settings are possible: (),
(A), (S), (AS). When there is a strike, there is no train service; and when there
is an accident, the highway is blocked. We assume that we are not informed
of the strike or the accident in advance. Our goal is to synthesize a strategy
with guarantees against these four environments with no prior knowledge of the
situation we are in.

Consider the MDP D of Fig. 3, which models the normal conditions without
strike or accident. We will define three different MDPs from D on the same state
space to model the three other environments, by modifying the probabilities of
dotted edges. For each environment E ∈ {(A), (S), (AS)}, we define MDP DE

from D as follows.

1. For D(S), action wait from state stat deterministically leads back to stat.
2. For D(A), action go from state h2 deterministically leads back to h2.
3. For D(AS), we apply both items 1 and 2.

Note that if strikes and accidents have small probabilities, instead of creating
separate models, one could integrate their effect in a single model by adjust-
ing the probabilities in D, for instance, by reducing the probability of moving
forward in the highway. Such an approach may be useful (and simpler) for an av-
erage analysis. However, we are interested here in giving guarantees against each
scenario rather than optimizing a global average. Our formulation can rather be
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Fig. 3. Commuting to work. States h1, h2 represent sections of the highway. After h1,
one may take an alternative road which is longer but not affected by traffic.

modeled by partially observable MDPs since the strategy is not aware of the
state of the system. However, most problems are undecidable in this setting [6].

Our objective is to get to work with high probability within reasonable time.
More precisely, we would like to make sure to be at work, with probability 0.95 in
all cases: in 40 minutes if there is no strike, in 50 minutes if there is a strike but
no accident, and 75 minutes if there is a strike and an accident. More formally,
we would like to synthesize a single strategy σ such that:

– Pσ
D[TST ≤ 40] ≥ 0.95,

– Pσ
D(S) [TS

T ≤ 50] ≥ 0.95,

– Pσ
D(A) [TS

T ≤ 40] ≥ 0.95,

– Pσ
D(SA) [TS

T ≤ 75] ≥ 0.95.

Solution. We will describe a strategy that satisfies our objective. First, note
that we shouldn’t take the car right away since even if we take the alternative
road, we will be at work in 40 minutes only with probability 0.90 (even if there
is no accident, we may spend 20 minutes in h1). Our strategy is the following.
We first walk to the train station, and wait there at most twice. Clearly, if there
is no strike, we get to work in less than 40 minutes with probability at least 0.99.
Otherwise, we run back home, and take the car. Note that we already spent 5
minutes at this point. Our strategy on the highway is the following. We take the
alternative road if, and only if we failed to make progress twice by taking action
go (e.g., we observed h1 · go · h1 · go · h2 · go · h2).

We already saw that in the absence of strike, this strategy satisfies our objec-
tive. If there is a strike but no accident, we will surely take the car. Then the
history ending with h1 ·go·h2 ·go·work has probability 0.81 and takes 30 minutes.
The histories ending with h1 ·go·h1 ·go·h2 ·go·work and h1 ·go·h2 ·go·h2 ·go·work
have each probability 0.081 and take 40 and 45 minutes respectively. Overall,
with probability at least 0.97 we get to work in at most 50 minutes. If there is a
strike and an accident, then the history h2 · go · work is never observed. In this
case, the history ending with h1 ·go ·h2 ·go ·h2 ·go ·h2 ·alternative has probability
0.90 and takes 75 minutes, and history h1 · go · h1 · go · h2 · go · h2 · alternative
has probability 0.09 and takes 75 minutes. Hence we ensure the constraint with
probability 0.99.

Algorithms. Formally, we define a multi-environment MDP as a tuple D =(
S, sinit, A, (δi)1≤i≤k, (wi)1≤i≤k

)
, where each (S, sinit, A, δi, wi) is an MDP, corre-

sponding to a different environment.
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Definition 6 (SSP-ME problem). Given any single-dimensional multi-envi-
ronment MDP D = (S, sinit, A, (δi)1≤i≤k, (wi)1≤i≤k

)
, target states T ⊆ S, thresh-

olds 
1, . . . , 
k ∈ N, and probabilities α1, . . . , αk ∈ [0, 1]∩Q, decide if there exists
a strategy σ satisfying

∀i ∈ {1, . . . , k}, Pσ
Di

[TST ≤ 
i] ≥ αi.

For the particular case of α1 = . . . = αk = 1, the problem is called the almost-
sure SSP-ME problem. The limit-sure SSP-ME problem asks whether the SSP-
ME problem has a solution for all probability vectors (α1, . . . , αk) ∈]0, 1[k. If the
limit-sure problem can be satisfied, the almost-sure case can be approximated
arbitrarily closely. Note that in some multi-environment MDPs, the limit-sure
SSP-ME problem has a solution although the almost-sure one does not.

Theorem 6 ([20]). The almost-sure and limit-sure SSP-ME problems can be
solved in pseudo-polynomial time for a fixed number of environments. Finite
memory suffices for the almost-sure case, and a family of finite-memory strate-
gies that witness the limit-sure problem can be computed.

We analyze the structure of the MDPs to identify learning components in
which one can almost-surely (resp. limit-surely) determine the current environ-
ment. Once these are identified, one can transform the MDPs into simpler forms
on which known algorithms on (single-environment) MDPs are applied [21].

For an example of a learning component, consider two states s, t and action a,
with δ1(s, a, t) = 0.9, δ1(s, a, s) = 0.1, and δ1(t, a, s) = 1 for the first environ-
ment, and δ2(s, a, t) = 0.1, δ2(s, a, s) = 0.9, and δ2(t, a, s) = 1 for the second
environment. Now, at state s, repeating the action a a large number of times,
and looking at the generated history, one can guess with arbitrarily high confi-
dence the current environment. However, no strategy can guess the environment
with certainty. If, we rather set δ1(s, a, t) = 1, and δ2(s, a, s) = 1, then an ob-
served history uniquely determines the current environment.

For the general SSP-ME problem, there is an algorithm for an approximate
version of the above problem, namely the ε-gap problem. For any ε > 0, a
procedure for the ε-gap SSP-ME problem answers Yes if the SSP-ME problem
has a solution; it answers No if the SSP-ME problem has no solution when each
αi is replaced with αi − ε; and answers either Yes or No otherwise. Intuitively,
such a procedure gives a correct answer on positive instances, and on instances
that are clearly too far (by ε) to be satisfiable. However, there is an uncertainty
zone of size ε on which the answer is not guaranteed to be correct. The algorithm
is based on a reduction to the first order theory of the reals (see [20]).

Theorem 7. The SSP-ME problem and the ε-gap SSP-ME are NP-hard. For
any ε > 0, there is a procedure for the ε-gap SSP-ME problem.

Additional Results. In [21], we restricted our study to MDPs with
two environments, and considered reachability, safety, and parity objectives. We
proved these problems to be decidable in polynomial time for almost-sure and
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limit-sure conditions. The general quantitative case, i.e., arbitrary satisfaction
probabilities is shown to be NP-hard already for two environments and MDPs
with no cycles other than self-loops. We gave a doubly exponential-space proce-
dure to solve the ε-gap problem for reachability. We are currently studying the
exact complexity of the case of arbitrary number of environments.

7 Conclusion

Through this paper, we gave an overview of classical approaches to the quanti-
tative evaluation of strategies in MDPs, and presented three recent extensions
that increase the modeling power of that framework. We chose to illustrate them
through application to the stochastic shortest path problem. We hope this helps
in understanding and comparing the different approaches. Let us sum up.

Given a weighted MDP modeling a stochastic shortest path problem, a first
natural question is to find a strategy that minimizes the expected sum of weights
to target. This is the SSP-E problem. Optimizing the average behavior of the
controller is interesting if the process is to be executed a great number of times,
but it gives no guarantee on individual runs, which may perform very badly.
For a risk-averse controller, it may be interesting to look at the SSP-P problem,
which asks to maximize the probability that runs exhibit an acceptable perfor-
mance. When one really wants to ensure that no run will have an unacceptable
performance, it is useful to resort to the SSP-G problem, which asks to optimize
the worst-case performance of the controller.

In recent works, we introduced three related models that may be used to
synthesize strategies with richer performance guarantees. First, if one reasons
using the SSP-G problem, he may obtain a strategy which is sub-optimal on
average while using the SSP-E problem gives no worst-case guarantee. With the
framework of beyond worst-case synthesis, developed in [5,4], and presented here
as the SSP-WE problem, we can build strategies that provide both worst-case
guarantees and good expectation. Second, we are interested in describing rich
constraints on the performance profile of strategies in multi-dimensional MDPs.
To that end, we extended the SSP-P problem to the SSP-PQ problem, which
handles multi-constraint percentile queries [19]. Those queries are particularly
useful to characterize trade-offs between, for example, the length of a journey
and its cost. Third and finally, we have discussed another extension of the SSP-P
problem that models some uncertainty about the stochastic model of the envi-
ronment which is defined in the MDP through the transition function. With the
SSP-ME problem, we are able to analyze multi-environment MDPs and synthe-
size strategies with guarantees against all considered environments [21,20].
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Abstract. We introduce a unified view of induction performed by automatic veri-
fication tools to prove a given program specification This unification is done in the
abstract interpretation framework using extrapolation (widening/dual-widening)
and interpolation (narrowing, dual-narrowing, which are equivalent up to the ex-
change of the parameters). Dual-narrowing generalizes Craig interpolation in
First Order Logic pre-ordered by implication to arbitrary abstract domains. An
increasing iterative static analysis using extrapolation of successive iterates by
widening followed by a decreasing iterative static analysis using interpolation
of successive iterates by narrowing (both bounded by the specification) can be
further improved by a increasing iterative static analysis using interpolation of
iterates with the specification by dual-narrowing until reaching a fixpoint and
checking whether it is inductive for the specification.

Keywords: Abstract induction, Abstract interpretation, Dual-narrowing, Dual-
widening, Extrapolation, Interpolation, Narrowing, Static analysis, Static check-
ing, Static verification, Widening.

1 Introduction

Program analysis, checking, and verification require some form of induction on pro-
gram steps [41, 62], fixpoints [64], program syntactic structure [47, 65], program data
[6], or more generally segmentation hierarchies [26]. Whichever form of induction is
chosen, the difficulties boil down to the basic case of a proof that lfp⊆ F ⊆ S where
S ∈ D is a specification in a concrete poset 〈D, ⊆, ⊥, ∪〉 and F ∈ D �→ D is a trans-
former given by the program semantics, or dually1,2. Hypotheses on F like monotony,
[co-]continuity, contraction, etc. ensure the existence of the least fixpoint lfp⊆ F for
partial order ⊆.

Since the concrete domain D is in general not machine-representable, the problem

is abstracted in an abstract domain D which is a pre-order3 〈D, 
, ⊥, �〉 with in-

creasing concretization γ ∈ D �→ D. An example is the pre-order 〈FOL, ⇒, ff, ∨〉 of

1 lfp⊆
D

F is the ⊆-least fixpoint of F ⊆-greater than or equal D, if any. The least fixpoint of F, if
any, is lfp⊆ F � lfp⊆⊥ F where ⊥ is the infimum of D. gfp⊆

D
F � lfp⊇

D
F is dual.

2 A variant, as found in strictness analysis [61] is lfp
 F ⊆ S where the computational order 
 is
different from the approximation order/logical implication ⊆ can be handled in a way similar
to that proposed in this paper, see [23].

3 The pre-order 
 is reflexive and transitive. Additionally, a partial order is antisymmetric.
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first-order formulæ FOL preordered by implication⇒. The concretization is the inter-
pretation of formulae in a given set-theoretic structure. This is an abstraction since not
all set-theoretic properties are expressible in first order logic, a problem which is at the
origin of the incompleteness of Hoare logic [47, 17].

The concrete transformer F is abstracted by an abstract transformer F ∈ D �→ D

satisfying the pointwise semi-commutation property F ◦ γ 
̇ γ ◦ F (or dually). Abstract

iterates X
0
�⊥, . . . , X

n+1
� F(X

n
), . . . , are designed to converge to a limit I ∈ D, which

is an inductive abstract property, that is F(I) 
 I (e.g. I is an inductive invariant [41, 62]).

For abstract specifications S ∈ D, the program verification consists in checking that
I 
 S . By semi-commutation and fixpoint induction [66], this implies lfp⊆ F ⊆ γ(S ).
The abstraction is always meant to be sound (a proof in the abstract is valid in the
concrete, I 
 S ⇒ lfp⊆ F ⊆ γ(S )) and sometimes complete (a valid concrete property
γ(S ) can be proved in the abstract i.e. lfp⊆ F ⊆ γ(S )⇒ I 
 S ). A very simple example
of a complete abstraction is the First of a context-free grammar [25].

When using finite domains |D| ∈ N (which was shown in [18] to be strictly equivalent
to predicate abstraction [43]) or Noetherian domains (i.e., with no infinite ascending
and/or descending chain), the induction is done implicitly by repeated joins (or dually
meets) in the abstract domain. By the finiteness hypothesis, the abstract iterates always
converge in finitely many steps to a fixpoint limit.

This is more difficult for static analysis using infinitary abstract domains not sat-
isfying ascending/descending chain conditions. Successive joins/meets for successive
fixpoint iterations may diverge. It is therefore necessary to make an induction on the
iterates and to pass to the limit. Under appropriate conditions like [co-]continuity this
limit does exist and is unique. Abstract interpretation theory has introduced increasing
iterations with widening extrapolation followed by a decreasing iteration with narrow-
ing interpolation (and there duals) to over/under-approximate the limit in finitely many
steps [13, 20]. When the specification cannot be verified after these two phases, we
propose to use a further increasing iteration phase by interpolation with respect to this
specification by dual-narrowing. The whole process can be repeated if necessary. In the

particular case where the abstract domain D is the set 〈FOL,⇒, ff, ∨〉 of first-order logi-
cal sentences over the program variables and symbols, often quantifier-free, pre-ordered
by implication, the additional phase is comparable to program verification using Craig
interpolants [56].

We recall and show the following results.

– In Sect. 2, we recall known facts on iteration and fixpoints.
– In Sect. 3, we briefly recall basic static analysis methods in infinite abstract domains

by extrapolation with widening/dual-widening and interpolation with narrowing/dual-
narrowing.

– In Sect. 4, we explain why a terminating [dual-]widening (enforcing the convergence
of iterations by extrapolation with [dual-]widening) cannot be increasing in its first
parameter. It follows that static analyzers (like Astrée [28]) which proceed by in-
duction on the program syntax cannot assume that the abstract transformers F�C� of
commands C are increasing since loop components of C may involve non-increasing
[dual-]widenings.
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– After expressing soundness conditions on widening and its dual with respect to the
concrete in Sect. 5, we show in Sect. 6 that iteration with widening extrapolation is
sound for non-increasing abstract transformers F by referring to the concrete fixpoint
iterations for an increasing transformer F. Similarly, soundness conditions on narrow-
ing and its dual are expressed in the concrete in Sect. 7 In Sect. 8, iterations with nar-
rowing interpolation for non-increasing abstract transformers are shown to be sound
with respect to the concrete iterations for a increasing concrete transformer F.

– In Sect. 9, we study dual-narrowing, which is shown to be a narrowing with inverted
arguments, and inversely. Graig interpolation [37] in the abstract domain 〈FOL, ⇒,
ff, ∨〉 of first-order formulæ pre-ordered by logical implication is an example of dual-
narrowing. Static analysis based on Graig interpolation and SMT solvers [55] has limi-
tations [1], including to be only applicable to 〈FOL,⇒, ff, ∨〉, that can be circumvented
by appropriate generalization to dual-narrowing in arbitrary abstract domains.

– In Sect. 10, we discuss terminating extrapolators and interpolators.
– In Sect. 11, we show that after an increasing abstract iteration using extrapolation

of successive iterates by widening which converges to a post-fixpoint followed by a
decreasing abstract iteration using interpolation of successive iterates by narrowing
to an abstract fixpoint, it is no longer possible to improve this imprecise abstract
fixpoint by repeated applications of the abstract transformer. Nevertheless, it is still
possible to improve the over-approximation of the concrete fixpoint by an increasing
abstract iteration using interpolation of iterates by dual-narrowing with respect to this
imprecise abstract fixpoint. This can be repeated until an inductive argument is found
implying the specification or no further improvement is possible.

– In Sect. 12, we compare static verification, checking, and analysis. In Sect. 13, we dis-
cuss different utilizations of extrapolation and interpolation. We conclude in Sect. 14

2 Iteration and Fixpoints
We recall results on the iteration of transformers on posets. We let O be the class of all
ordinals. We have [14]:

Lemma 1 (Increasing sequences in posets are ultimately stationary). Any �-in-
creasing4 transfinite sequence 〈Xδ, δ ∈ O〉 of elements of a poset 〈P, �〉 is ultimately
stationary (i.e. ∃ε ∈ O : ∀δ � ε : Xδ = Xε . The smallest such ε is the rank of the
sequence.). ��
Definition 2 (Upper-bounded iterates). Let F ∈ D �→ D be an transformer on a
poset 〈D, ⊆〉 and D ∈ D. By upper-bounded iterates of F from D we mean a transfinite
sequence 〈Xδ, δ ∈ O〉 of elements of D such that X0 � D, Xδ+1 � F(Xδ), and for limit
ordinals λ, ∀δ < λ : Xδ ⊆ Xλ. ��
Definition 3 (Least-upper-bounded iterates). Least-upper-bounded iterates (or lub-
iterates) are upper-bounded iterates in Def. 2 such that for limit ordinals λ, Xλ is the
least element such that ∀δ < λ : Xδ ⊆ Xλ i.e. ∀Y : ∀δ < λ : Xδ ⊆ Y ⇒ Xλ ⊆ Y. ��

4 A map f ∈ P �→ Q of pre-order 〈P, 
〉 into pre-order 〈Q, �〉 is increasing if and only if
∀x, y ∈ P : x 
 y ⇒ f (x) � f (y). In particular, a sequence 〈Xδ, δ ∈ O〉, considered as a map
X ∈ O �→ D where Xδ � X(δ), is increasing when β � δ ⇒ Xβ ⊆ Xδ. It is then called an
increasing chain.
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Lemma 4 (Increasing fixpoint iterates). Let 〈Xδ, δ ∈ O〉 be the iterates of a trans-
former F ∈ D �→ D on a poset 〈D, ⊆〉 from D ∈ D.
(a) If F is extensive (i.e. ∀X ∈ D : X ⊆ F(X)) and the iterates are upper-bounded then

they are increasing and F has a fixpoint ⊆-greater than of equal to D.
(b) If F is increasing, D a prefix-point of F (i.e. D ⊆ F(D)), and the iterates are upper-

bounded (resp. least-upper-bounded) then they are increasing and F has a fixpoint
⊆-greater than of equal to D (resp. least fixpoint lfp⊆

D
F).

(c) In case (b) of lub-iterates, ∀Y ∈ D : (D ⊆ Y ∧ F(Y) ⊆ Y)⇒ (lfp⊆
D

F ⊆ Y). ��

Lem. 4.(b)–(c) is often used with the extra assumption that D = ⊥ is the infimum of a
cpo 〈D, ⊆, ⊥〉, but the least upper bound (lub) needs only to exist for the iterates, not
for all increasing chains (increasing ω-chains when F is assumed to be continuous) of
the cpo. For example, 〈FOL,⇒, ff, ∨〉 has no infinite lubs in general, but specific iterates
may or may not have a lub.

Even when Xλ is chosen to be a minimal upper bound of the previous iterates for
limit ordinals λ (i.e. ∀δ < λ : Xδ ⊆ Xλ ∧ ∀Y ∈ D : (∀δ < λ : Xδ ⊆ Y) ⇒ Y � Xλ), F
may have no minimal fixpoint, as shown by the following counter-example

3 Iterative Static Analysis by Extrapolation and Interpolation

3.1 Mathematical Iteration with Induction

To calculate a solution I to a system of constraints F(X) 
 X on a poset 〈D, 
〉,
a mathematician (i) will start from an initial approximation I

0
= D for some initial

guess D, (ii) calculate the first iterates I
1
= F(I

0
), I

2
= F(I

1
), etc. to help her guess a

recurrence hypothesis I
n
= I(I

0
, F, S ,
, n), (iii) prove that the recurrence hypothesis

is inductive I
n+1
= F(I

n
) = F(I(I

0
, F, S ,
, n)) = I(I

0
, F, S ,
, n + 1) so that, by

recurrence, ∀n ∈ N : I
n
= I(I

0
, F, S ,
, n)), and (iv) pass to the limit I = limn→∞ I(I

0
,

F, S ,
, n). Static analysis must do a similar induction in the abstract.

3.2 Abstract Iteration in Noetherian Domains

In abstract interpretation with finite abstract domains (which has been shown to be
strictly equivalent to predicate abstraction [18]) and, more generally, with Noetherian
domains, the induction, which consists in joining/(dually intersecting) the successive

abstract properties I(I
0
, F, S ,
, n + 1) =

⊔
k�n(I(I

0
, F, S ,
, k)), is pre-encoded in the

join/(dually meet) operations of the abstract domain. They are ensured to converge in
finitely many steps to a fixpoint limit.
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3.3 Abstract Iteration in Non-Noetherian Domains with Convergence
Acceleration

In abstract interpretation with infinitary non-Noetherian abstract domains extra machin-
ery is needed to discover inductive hypotheses and pass to the limit. For example extrap-
olators like terminating widening [12] and dual-widening [20] can enforce convergence
of increasing iterations after finitely many steps as illustrated in Fig. 1. Instead of ap-
plying the function as in Def. 2 or 3, its derivative is used to accelerate convergence
and ultimately reach a post-fixpoint which over-approximates the least fixpoint [66]. A
similar widening is implicitly used in [36].

F

lfp F

F

lfp F x

F(x)6x

Fig. 1. Convergence acceleration by extrapolation with widening

3.4 Extrapolators (Widening, Dual-Widening) and Interpolators (Narrowing,
Dual-Narrowing)

The convergence acceleration operators used in abstract interpretation are of two dis-
tinct kinds. The widening [12] and dual-widening [20] are extrapolators. They are used
to find abstract properties outside the range of known abstract properties. The nar-
rowing [13] and dual-narrowing [20] are interpolators. They are used to find abstract
properties within the range of known abstract properties. The objective is to over-
approximate or under-approximate the limit of increasing or decreasing fixpoint iter-
ations, so that the various possibilities of using the convergence acceleration operators
of Table 1 are illustrated in Fig. 2. Notice that their are four distinct notions since
widening and narrowing (as well as dual-widening and dual-narrowing) are definitely
not order-dual concepts. Of course widening and dual-widening (as well as narrowing
and dual-narrowing) are order-dual concepts. In [11], the approximation properties of
extrapolators are considered separately from their convergence properties. For exam-
ple, their approximation properties are useful to approximate missing or costly lattice
join/meet operations. Independently, their convergence properties are useful to ensure
termination of iterations for fixpoint approximation.

4 Terminating (Dual) Widenings Are Not Increasing

An iteration sequence with widening in a poset 〈D, 
〉 has the form X
0

� D, where

D ∈ D is some initial approximation, and X
k+1

� X
k �

F(X
k
), k ∈ N where F can be
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Table 1. Extrapolators (
�

,
�̃

) and interpolators (
�

,
�̃

)

Convergence above the limit Convergence below the limit

Increasing iteration Widening
�

Dual-narrowing
�̃

Decreasing iteration Narrowing
�

Dual-widening
�̃

Fig. 2. Fixpoint iteration approximation

assumed to be extensive on the iterates5. It follows that the iterates 〈Xk
, k ∈ N〉 form a


-increasing chain6.

The widening
� ∈ D × D �→ D should have the following properties.

(
�

.a) ∀X, Y ∈ D : Y 
 X
�

Y .

Requiring the widening to be extensive in its second parameter, that is an extrapola-

tor, ensures that F(X
k
) 
 X

k+1
, which guarantees convergence to an over-approximation

of the limit lim
k→+∞

F
k
(D) of the exact iterates F

0
(X) = X and F

n+1
(X) = F(F

n
(X)).7

(
�

.b) ∀X, Y ∈ D : (Y 
 X)⇒ (X
�

Y = X).

This condition (
�

.b) guarantees that the iterations with widening do stop as soon as a
solution X

n
to the constraint problem of finding X such that F(X) 
 X has been found.

If F(X
n
) 
 X

n
, then (

�
.b) ensures that the next iterate is X

n+1
� X

n �
F(X

n
) = X

n
.

5 i.e., ∀k ∈ N : X
k 
 F(X

k
). This is also the case when D 
 F(D) and F is increasing, i.e.,

∀X,Y ∈ D : (X 
 Y) ⇒ F(X) 
 F(Y). It is always possible to use λX . X � F(X) when the

join � exists in the abstract domain D.
6 If F is not extensive, one can assume that ∀X,Y ∈ D : X 
 X

�
Y in which case ∀i ∈ N : X

i 

X

i+1
.

7 Besides extrapolation, widenings are also as an over-approximation/upper-bound in posets

missing least upper bounds. In that case, in addition to (
�

.a), it is also required ∀X,Y ∈ D :
X 
 X

�
Y. Such widenings can be generalized to sets of infinitely many parameters

� ∈
℘(D) �→ D such that ∀X ∈ ℘(D) : ∀P ∈ X : P 
 �

X.
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(
�

.c)
�

is terminating that is for any increasing chain 〈Xk ∈ D, k ∈ N〉 and arbitrary

sequence 〈Yk ∈ D, k ∈ N〉 such that ∀k ∈ N : X
k 
 Y

k
, the sequence 〈Xk �

Y
k
,

k ∈ N〉 is ultimately stationary (i.e. ∃n ∈ N : ∀k � n : X
k �

Y
k
= X

n
).

This condition (
�

.c) guarantees the convergence of the iterates with widening where

〈Yk
, k ∈ N〉 stands for 〈F(X

k
), k ∈ N〉 so that ∀k ∈ N : X

k 
 Y
k

since F ∈ D �→ D is

extensive but is otherwise unknown. Because X
k 
 F(X

k
) 
 X

k �
F(X

k
) � X

k+1
, 〈Xk
,

k ∈ N〉 is a 
-increasing chain.

Example 5 (Interval widenings). The basic widening on the abstract domain of integer
intervals I � {∅} ∪ {[a, b] | −∞ � a � b � +∞∧ a � +∞∧ b � −∞} was defined in [19]
as ∅ �

X = X
� ∅ � X, [a, b]

�
[c, d] � [� c < a � −∞ � a �, � d > b � +∞ � b �]8. This

basic widening may yield static analyzes which are less precise than the sign analysis.
For example [2,+∞]

�
[1,+∞] = [−∞,+∞] whereas the sign is [0,+∞]. This is why

the interval widening was refined in [16] into [a, b]
�

[c, d] � [� 0 � c < a � 0 � c <
a � −∞ � a �, � d > b � 0 � 0 � d > b � +∞ � b �]. This can be further improved
by using static thresholds in addition to zero [28] or even dynamic thresholds chosen
during the static analysis [52]. In all cases, these widenings are not increasing in their
first parameter [0, 1] 
 [0, 2] but [0, 1]

�
[2, 2] = [0,+∞] � [0, 2] = [0, 2]

�
[2, 2]. ��

Counter-example 6 (Top widening). The top widening X
�
� Y � � is terminating, in-

creasing in its first parameter, but does not satisfy (
�

.b). A solution F(X
k
) 
 X

k
is

degraded to X
k+1
= X

k �
F(X

k
) = �. This imprecision can be avoided by choos-

ing X
�

Y � � Y 
 X � X � � �, which is more accurate but not increasing. If
X1 � Y � X2 � T then X1

�
Y = � � X2

�
Y = X2. ��

Theorem 7 (Non-monotonicity of terminating [dual] widening). Let 〈D, 
〉 be a

poset and
� ∈ D × D �→ D be a widening satisfying (

�
.a), (

�
.b), and (

�
.c). Then�

cannot be increasing in its first parameter. The dual holds for the dual-widening
�̃

satisfying the order-dual ˜(
�

.a), ˜(
�

.b), and ˜(
�

.c) of conditions (
�

.a), (
�

.b) and possibly
(
�

.c).

Proof. By reflexivity, Y 
 Y so (
�

.b) implies Y
�

Y = Y . By reductio ad absurdum, if�
is increasing in its first parameter then X 
 Y implies X

�
Y 
 Y

�
Y = Y 
 X

�
Y by

(
�

.a) which implies that X
�

Y = Y by antisymmetry. By (
�

.c), ∀k � n, X
n+k
= X

k�
Y

k
=

X
k
= X

n
. By hypothesis X

k 
 Y
k

so X
k �

Y
k
= Y

k
which implies ∀k � n : Y

k
= X

n
, in

contradiction with the fact that 〈Yk
, k ∈ N〉 is an arbitrary sequence of elements of D,

hence in general not ultimately stationary. ��

When D 
 F(D) and F is continuous, hence increasing and such that limk→+∞ F
k
(D) =

lfp

D

F, the intuition for Th. 7 is that applications of F and
�

from below this fixpoint
would remain below the fixpoint, making any over-approximation impossible. The jump
over the least fixpoint must be extensive but cannot be increasing (dually decreasing
hence monotone in general).

8 The conditional expression is � tt � a � b � � a and � ff � a � b � � b.
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Many non-Noetherian static analyzes of infinite-state systems proceed by successive

analyzes in different abstract domains 〈Di, 
i〉, i = 1, . . . , n, e.g. by refinement. A
comparison of the successive iterative analyzes performed in these domains is possible
by concretizing to the most precise one (or their reduced product). Then Th. 7 shows
that there is no guarantee of precision improvement. This problem is soundly taken
into account by [54, Sect. 7] and [59, Sect. 5.1], but is otherwise too often completely
ignored.

When transformers F�C� are defined by structural induction on the syntax of the
command C as in Astrée [28], this command C may involve loops, which abstract se-
mantics is defined by fixpoint iterations with terminating widenings, hence may be non-
increasing. In the worst case, lfp
 F�C� may simply not exist.

Example 8 (Non-increasing transformer). Consider the program while (TRUE) {if
(x == ) {x = 1} else {x = 2}}. To ensure termination of the static analysis, the
forward transformer for this program is Fwhile(I) = lfp
 λX . X

�
(I�Fif(X)) where

�
is the basic widening of Ex. 5 and Fif(X) = � 0 ∈ X � [1, 1] � ∅ � � �∃x ∈ X : x �

0 � [2, 2] � ∅ � is the transformer for the conditional.

The iterates for Fwhile([0, 0]) are X
0
= ∅, X

1
= X

0 �
Fif(X

0
) = [0, 0], and

X
2
= X

1 �
Fif(X

1
) = [0, 0]

�
([0, 0]� ([1, 1]� ∅)) = [0,+∞] such that Fif(X

2
) 
 X

2
.

The iterates for Fwhile([0, 2]) are Y
0
= ∅, Y

1
= Y

0 �
Fif(Y

0
) = [0, 2], and Y

2
=

Y
1 �

Fif(Y
1
) = [0, 2]

�
([0, 0] � ([1, 1] � [2, 2])) = [0, 2] such that Fif(Y

2
) 
 Y

2
.

So the transformer Fwhile is not increasing since [0, 0] 
 [0, 2] but Fwhile([0,
0]) � Fwhile([0, 2]). It follows that the transformer of any program containing this
while command will be a composition of transformers involving Fwhile and so will
not, in general, be increasing. ��

5 Hypotheses on Widening, Dual-Widening, and Correspondence

Widening and dual-widening are extrapolators in that their result is outside the range of
their parameters.

5.1 Widening

Soundness conditions on widenings are usually expressed in the abstract domain (such
as (

�
.a)) but can be weakened into conditions expressed in the concrete domain, as

follows:

Hypotheses 9 (Sound widening for concretization γ)

(a) • for
� ∈ D× D �→ D, ∀P,Q ∈ D : γ(P) ⊆ γ(P �

Q) ∧ γ(Q) 
 γ(P �
Q)

(a′) ∀P,Q ∈ D : P 
 (P
�

Q) ∧ Q 
 (P
�

Q)

(b) • for
� ∈ ℘(D) �→ D, ∀X ∈ ℘(D) : ∀P ∈ X : γ(P) ⊆ γ(�X) ��
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Widenings have to be defined for each specific abstract domains like intervals [19],
polyhedra [30, 2], etc. or combinations of abstract domains like reduced product, pow-
erset domains [3], cofibred domains [68], etc. It follows that the Galois calculus to
define abstract interpretations [27] can be extended to widening and more generally to
all interpolators and extrapolators.

5.2 Dual-Widening

The dual-widening
�̃

satisfies the order dual of Hyp. 9 hence the dual of the following
theorem Th. 10 reformulating [11, Ch. 4, Th. 4.1.1.0.3 & Th. 4.1.1.0.9]. This is useful
to under-approximate greatest fixpoints e.g. [7].

6 Over-Approximating Increasing Abstract Iterates by
Extrapolation with Widening

We reformulate the abstract static analysis by iteration with widening of Sect. 4 for
non-increasing transformers. Soundness proofs can no longer be done in the abstract.
They can be done instead with respect to an increasing concrete semantics (Th. 10).

6.1 Increasing Iteration with Widening

We have the following reformulation of [11, Ch. 4, Th. 4.1.1.0.2 & Th. 4.1.1.0.6].

Theorem 10 (Over-approximation of increasing abstract iterates by widening).
Let 〈Xδ, δ ∈ O〉 be the least upper bound iterates of the increasing transformer F ∈
D �→ D on a concrete poset 〈D, ⊆〉 from D ∈ D such that D ⊆ F(D). By Lem. 4 (b),
〈Xδ, δ ∈ O〉 is therefore increasing and ultimately stationary at Xε = lfp⊆

D
F.

Let D be the abstract domain, γ ∈ D �→ D be the concretization, F ∈ D �→ D be

the abstract transformer,
� ∈ D × D �→ D be a widening satisfying Hyp. 9 (a) and

� ∈ ℘(D) �→ D be a widening satisfying Hyp. 9 (b) for all X = {Xδ | δ < λ ∧ λ ∈
O is a limit ordinal} where the abstract iterates are the transfinite sequence 〈Xδ ∈ D,

δ ∈ O〉 defined such that X
δ+1

� X
δ �

F(X
δ
) and X

λ
�

�
β<λ

X
β

for limit ordinals λ. Then

(a) The concretization 〈γ(Xδ), δ ∈ O〉 of the abstract iterates 〈Xδ, δ ∈ O〉 is increasing
and ultimately stationary with limit γ(X

ε
).

Moreover, if D ⊆ γ(X0
) and the semi-commutation condition ∀δ ∈ O : F ◦ γ(X

δ
) ⊆ γ ◦

F(X
δ
) holds, then

(b) ∀δ ∈ O : Xδ ⊆ γ(Xδ) (so, in particular Xε ⊆ γ(Xε)).
Moreover if the abstract domain 〈D, 
〉 is a pre-order (
 is reflexive and transitive,

but not necessarily antisymmetric) and the concretization γ ∈ D �→ D is increasing
(X 
 Y ⇒ γ(X) ⊆ γ(Y)), then

(c) ∀δ ∈ O : F(γ(X
δ
)) ⊆ γ(Xδ)⇒ lfp⊆

D
F ⊆ γ(Xδ).
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(d) Moreover, if
�

is terminating i.e. the iterates are ultimately stationary at some
rank n ∈ N then F(X

n
)

�
X

n
= X

n
so γ(F(X

n
)) ⊆ γ(Xn

), F(γ(X
n
)) ⊆ γ(Xn

), and
lfp⊆

D
F ⊆ γ(Xn

).
(e) Moreover, if the terminating widening satisfies

�
satisfies Hyp. 9 (a′) then ∃n ∈

N : F(X
n
) 
 X

n
so lfp⊆

D
F ⊆ γ(Xn

). ��
Condition Th. 10.(c) is a sufficient condition for stopping the abstract iteration, always
applicable by Th. 10.(d) for terminating widenings, and in case Hyp. 9 (a′) checkable
with the abstract pre-order 
 by Th. 10.(e). Note that in Th. 10.(d), the abstract domain
is a pre-order, maybe not antisymmetric, so that the widening must avoid the problem
of iterating within an equivalence class under equivalence (X ≡ Y) � (X 
 Y ∧ X � Y).
Interesting examples are given in [42].

Remark 11. Notice that in Th. 10, F is assumed to be increasing but F is not assumed
to be either 
-extensive or increasing because, in case F is defined by structural in-
duction, it might depend upon widenings that are not increasing, see Ex. 8 and Th. 7.
Nevertheless, the limit of the abstract iterates over-approximate that of the concrete it-
erates. This may not be the case with the hypotheses of Lem. 4.(a). In the following
counter-example, F is extensive but not increasing. Both concrete and abstract iterates
have limits but Xε � γ(X

ε
).

��

Remark 12. If in Th. 10 (d) the widening
�

satisfies Hyp. 9 (b) but not Hyp. 9 (a′) then

there may exist no δ ∈ O such that F(X
δ
) 
 X

δ
. Here is a counter-example where

�
is

the lub.

��

6.2 Parameterized Widening

The abstract iterates with widening in Th. 10 can be generalized to widenings including
additional parameters such the iteration rank δ, a list of thresholds T , possibly depend-

ing on the rank T (δ), the abstract transformer F, all previous iterates 〈Xβ, β � δ〉 and

their transformation 〈F(X
β
), β � δ〉, etc, so that X

δ+1
�

�
(δ, T (δ), F, 〈Xβ, β � δ〉, 〈F(X

β
),

β � δ〉). The idea applies to all other extrapolators and interpolators.
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Example 13 (Parameterized [dual-]widenings). Delayed widening [28] is an example
of parameterized widening

�
(δ) where a join or a standard widening is performed de-

pending on the iteration rank parameter δ (often counted as the number of iterations in
a loop).

n-bounded abstract model checking [4] for universal properties implicitly uses an

iteration X
k+1

� X
k �

(k) F(X
k
) with an parameterized widening X

�
(k) Y � � k � n � Y �

� � where � is the abstract supremum: ∀X ∈ D : P ⊆ γ(�). For existential properties,
n-bounded abstract model checking implicitly uses a dual-widening X

�̃
(k) Y � � k � n �

Y � ⊥ �. Unreachability after n steps is a correct under-approximation of the executions
that do go on. It follows in both cases that everything is known exactly before n steps and
completely unknown beyond n steps. This is an abstract interpretation of the concrete

trace semantics, even when D = D and F = F, since in both cases concrete traces are
abstracted by the identity for the first n steps and by� (resp.⊥) for the remaining steps.

ESC/Java™ [39] implicitly uses a dual-widening which unrolls loops twice (and outs
assume false, i.e. ⊥). This under-approximates the loop semantics which is unsound for
checking invariance properties.

An extreme example avoiding any iteration is the so called abstract acceleration
for specific abstract domains and programs where

�
(
,D, F) = X

ε
so that the abstract

solution can be computed exactly from the program text abstraction F [50], may be
including a few iterations for iterative constraint solving methods.

Between these extreme examples, parameterized widenings can smoothly be made
less and less precise over successive iterations (e.g. by widening to less and less given
or program-dependent thresholds [28]). ��

7 Hypotheses on Narrowing, Dual-Narrowing, and
Correspondence

Narrowing and dual-narrowing are interpolators in that their result is within the range
of their parameters.

7.1 Narrowing

A narrowing
� ∈ D × D �→ D is an interpolation of its parameters, ∀P,Q ∈ D : Q 


P ⇒ Q 
 P
�

Q 
 P. We can also define
� ∈ ℘(D) �→ D such that ∀X ∈ ℘(D) :

∀P ∈ D : (∀Q ∈ X : P 
 Q) ⇒ P 
 �
X. Otherwise stated, the narrowing

�
X

over-approximate any lower bound of X (hence its greatest lower bound if it exists).
These conditions expressed in the abstract domain can be weakened into conditions

expressed in the concrete domain, as follows:

Hypotheses 14 (Sound narrowing for concretization γ)

• for
� ∈ D× D �→ D,

(a) ∀P,Q ∈ D : (γ(Q) ⊆ γ(P))⇒ (γ(Q) ⊆ γ(P �
Q) ⊆ γ(P))

(a′) ∀P,Q ∈ D : (γ(Q) ⊆ γ(P))⇒ (Q 
 (P
�

Q) 
 P)
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(a′′) ∀P,Q ∈ D : (Q 
 P)⇒ (Q 
 (P
�

Q) 
 P)

• for
� ∈ ℘(D) �→ D,

(b) ∀P ∈ D : ∀X ∈ ℘(D) : (∀Q ∈ X : P ⊆ γ(Q))⇒ (P ⊆ γ(�X) ⊆ γ(Q)) ��
Example 15 (Interval narrowing). The narrowing of [13, 20] for integer intervals I was
∅ �

X � X
� ∅ = ∅ for the infimum ⊥ = ∅. Otherwise, [a, b]

�
[c, d] � [� a = −∞ � c �

min(a, c) �, � b = +∞ � d � max(b, d) �] improves infinite bounds only. ��

7.2 Dual-Narrowing

The dual-narrowing
�̃

satisfies the order dual of Hyp. 14 hence the dual of Th. 22
reformulating [11, Ch. 4, Th. 4.1.1.0.12].

Example 16 (Interval dual-narrowing). If [a, b] ⊆ [c, d] then c � a � b � d so we can
define [a, b]

�̃
[c, d] � [� c = −∞ � a � �(a + c)/2� �, � d = ∞ � b � �(b + d)/2� �] where

�x� is the largest integer not greater than real x and �x� is the smallest integer not less
than real x since c � �(a + c)/2� � a � b � �(b + d)/2� � d and therefore [a, b] ⊆ ([a,
b]

�̃
[c, d]) ⊆ [c, d]. ��

Example 17 (Bounded interval dual-narrowing). If [a, b] ⊆ [c, d] ⊆ [
, h] (e.g. 
 =
min int, h = max int for machine integers) then [a, b]

�̃
[c, d] � [�(a + c)/2�, �(b +

d)/2�] ⊆ [
, h]. ��
Example 18 (Craig interpolation). Craig’s interpolation theorem [31] implies that for
all first-order formulæ ϕ, ψ ∈ FOL such that ¬(ϕ∧ψ) there exist a first-order formula ρ,
called an interpolant, such that ψ ⇒ ρ, ¬(ρ ∧ ψ), and Vars�ρ� ⊆ (Vars�ϕ� ∩ Vars�ψ�).
Letting ψ′ � ¬ψ this means that if ϕ ⇒ ψ′ then there exists an interpolant ρ such that
ϕ⇒ ρ ⇒ ψ′. So a dual-narrowing can be defined as ϕ

�̃
ψ′ � ρ on the abstract domain

〈FOL, ⇒〉 of first-order formulæ pre-ordered by implication ⇒, the concretization of
a formula being its interpretation in a given domain of discourse. The interpolant is in
general not unique, may contain exponentially more logical connectives than ϕ, and
successive interpolations may not terminate. So arbitrary choices have to be done, for
example, to compute quantifier-free interpolants with a minimal number of components
and symbols [48].

[35, Sect. 5.2, page 145] recognized that Craig interpolation is a narrowing (in fact a
dual-narrowing, see Lem. 19 just below) without the syntactic constraints of Craig in-
terpolation because the lattice is not necessarily constructed from formulae. In Boolean
lattices, this coincide with McMillan’s use of Craig interpolation [56], which is called
separation, mapping a pair satisfying A � B 
 ⊥ to I such that A 
 I ∧ I � B 
 ⊥ [44,
p. 447].

Interpolants in the style of [57] require that abstract domains are or can be comple-
mented [10]. When the interpolation cannot be directly applied to the representation of

abstract properties A, B in the abstract domain D, it can be applied to their concretiza-
tion into a pair of formulæ 〈γ(A), γ(B)〉 in 〈FOL, ⇒〉 and the interpolant γ(A)

�̃
γ(B)

constructed from a refutation proof e.g. by an SMT solver [49] can be abstracted back
to the abstract domain α(γ(A)

�̃
γ(B)), a technique is used e.g. to generate abstract trans-

formers [67], which can also be used during the static analysis. ��
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7.3 Correspondence between Narrowing and Dual-Narrowing

The Hyp. 14 are not self dual. Nevertheless, the narrowing and dual-narrowing are

essentially the same notion up to the inversion of their parameters: X
�

Y = X
�̃−1

Y � Y
�̃

X and X
�

Y = X
�−1 Y � Y

�
X9.

Lemma 19 (dual-narrowing as inverse narrowing and dually). If
�

is a narrow-
ing satisfying Hyp. 14 (a) then

�−1 is a dual-narrowing satisfying the order-dual of

Hyp. 14 (a). Reciprocally, the inverse
�̃−1

of a dual-narrowing
�̃

is a narrowing. ��
The interpretation of Lem. 19 in the context of Table 1 is that if a narrowing is used
for decreasing iterates in Th. 22 then its inverse can be used for increasing iterates in
the dual of Th. 22.

Example 20 (Interval narrowing). The inverse of the dual-narrowing of Ex. 16 is the
narrowing [c, d]

�
[a, b] � [� c = −∞ � a � �(a + c)/2� �, � d = ∞ � b � �(b + d)/2� �]

which is more precise than the narrowing of [13, 20] in Ex. 15. Convergence in Th. 22
is guaranteed but much slower. ��
Example 21 (Polyhedral narrowing). By Ex. 18, Craig interpolation is a dual-narrowing,
hence by Lem. 19 and parameter inversion, a narrowing. For example, Craig interpo-
lation for linear arithmetic over the rationals [8] should yield a narrowing P

�
Q for

polyhedral static analysis [30] when there is a difference in the variables appearing in
both systems of constraints P and Q10. ��

8 Over-Approximating Decreasing Abstract Iterates by
Interpolation with Narrowing

A static analysis by increasing iteration with widening can be improved by any iterate
of a decreasing iteration with narrowing. The narrowing cannot make downwards ex-
trapolations which might jump over the least fixpoint. So the narrowing can only do
interpolations which prevent jumping below any fixpoint (hence the least one which
cannot be simply distinguished from the other fixpoints). We have the following refor-
mulation of [11, Ch. 4, Th. 4.1.1.0.16].

Theorem 22 (Over-approximation of decreasing iterates with narrowing). By the
dual of Def. 3, let 〈Yδ, δ ∈ O〉 be the greatest lower bound iterates of the increasing
transformer F ∈ D �→ D on a concrete poset 〈D, ⊆〉 from D ∈ D such that F(D) ⊆ D.
By the dual of Lem. 4 (b), 〈Yδ, δ ∈ O〉 is therefore decreasing and ultimately stationary
at Yε = gfp⊆

D
F.

Let the abstract domain 〈D, 
〉 be a pre-order, the concretization γ ∈ D �→ D be

increasing, the abstract transformer be F ∈ D �→ D,
� ∈ D× D �→ D be a narrowing

9 We use −1 to denote the exchange of parameters as in the inverse of relations r−1(x, y) = r(y, x),
not as the inverse image of a function f −1(x, y) = {z | f (z) = 〈x, y〉}.

10 Thanks to reviewer 7 for pointing out that the semantic notions of amalgamation might be more
adequate than the purely syntactic notion of Craig interpolation in this context. This (together
with the related Robinson joint consistency property) remains to be explored [60].



32 P. Cousot

satisfying Hyp. 14 (a) and
� ∈ ℘(D) �→ D satisfies Hyp. 14 (b) for X = {Yδ | δ <

λ ∧ λ ∈ O is a limit ordinal}, where the abstract iterates are the transfinite sequence

〈Yδ ∈ D, δ ∈ O〉 such that D ⊆ γ(Y0
), Y

δ+1
� Y

δ �
F(Y

δ
), Y

λ
�

�
β<λ

Y
β

for limit ordinals

λ, and do satisfy the semi-commutation condition ∀δ ∈ O : F ◦ γ(Y
δ
) ⊆ γ ◦ F(Y

δ
).

If the abstract transformer F ∈ D �→ D is reductive on the abstract iterates 〈Yδ,
δ ∈ O〉 (i.e. ∀δ ∈ O : γ(F(Y

δ
)) ⊆ γ(Yδ)11) then their concretization 〈γ(Yδ), δ ∈ O〉 is

decreasing and ultimately stationary with limit γ(Y
ε
) such that ∀δ ∈ O : gfp⊆

D
F = Yε ⊆

γ(Y
ε
) ⊆ γ(Yδ). ��

Lemma 23 (Traditional soundness requirement for narrowing). The more tradi-
tional hypotheses that (P 
 Q) ⇒ (P 
 P

�
Q 
 Q), ∀i ∈ Δ : (P 
 Qi) ⇒ (P 


�
j∈Δ

Q j 
 Qi), the initial iterate is F(Y
0
) 
 Y

0
, and F is increasing imply that F is reduc-

tive on the iterates. ��

9 Over-Approximating Bounded Increasing Abstract Iterates by
Interpolation with Dual-Narrowing

When the upper bound γ(Y
n
) of the concrete least fixpoint can no longer be improved

in the decreasing abstract iterates with narrowing interpolation of Sect. 8, i.e. F(Y
n
) 


Y
n+1
= Y

n �
F(Y

n
) = Y

n
, the upper bound Y

n
can still be further improved by computing

increasing abstract iterates with dual-narrowing interpolation bounded by the bound
specification S � Y

n
.

9.1 Bounded Increasing Iteration with Dual-Narrowing

Let us now consider increasing iterates bounded by a given specification.

Theorem 24 (Over-approximation of bounded increasing iterates with dual-nar-
rowing). Let 〈Zδ, δ ∈ O〉 be the least upper bound iterates of the increasing transformer
F ∈ D �→ D on a concrete poset 〈D, ⊆〉 from D ∈ D such that D ⊆ F(D). By
Lem. 4 (b), 〈Zδ, δ ∈ O〉 is therefore increasing and ultimately stationary at Zε = lfp⊆

D
F.

Let D be the abstract domain, γ ∈ D �→ D be the concretization, S ∈ D be the

bound specification, F ∈ D �→ D be the abstract transformer,
�̃ ∈ D × D �→ D be

the dual-narrowing satisfying the order dual of Hyp. 14 (a), and
�̃ ∈ ℘(D) �→ D be

the dual-narrowing satisfying the order dual of Hyp. 14 (b) for X� {Zλ | δ < λ ∧ λ ∈
O is a limit ordinal} where the abstract iterates are the transfinite sequence 〈Zδ ∈ D,

δ ∈ O〉 such that D ⊆ γ(Z0
) ⊆ γ(S ), Z

δ+1
� � γ(F(Z

δ
)) ⊆ γ(S ) � F(Z

δ
)

�̃
S � S �,

Z
λ

�
�̃
β<λ Z

β
for limit ordinals λ, which are assumed to satisfy the semi-commutation

condition ∀δ ∈ O : F ◦ γ(Z
δ
) ⊆ γ ◦ F(Z

δ
). Then

11 Since γ is increasing this is implied by ∀δ ∈ O : F(Y
δ
) 
 Y

δ
.
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(a) The concretization 〈γ(Zδ), δ ∈ O〉 of the abstract iterates 〈Zδ, δ ∈ O〉 is such that

∀δ ∈ O : (Zδ ⊆ γ(S ))⇒ (Zδ ⊆ γ(Zδ) ⊆ γ(S ));

(b) Moreover, if 〈D, 
〉 is a pre-order and the concretization γ ∈ D �→ D is increasing,

then ∀δ ∈ O, if γ(F(Z
δ
)) ⊆ γ(Zδ) then lfp⊆

D
F = Zδ ⊆ γ(Zδ) ⊆ γ(S ). ��

Note 25. In case (b), the definition Z
δ+1

� � γ(F(Z
δ
)) ⊆ γ(S ) � F(Z

δ
)

�̃
S � S � of the

next iterate can be over-approximated by Z
δ+1

� � F(Z
δ
) 
 S � F(Z

δ
)

�̃
S � S �.

Note 26. In case (b), if F is extensive or Z
0 
 F(Z

0
) and F is increasing then the

abstract iterates 〈Zδ, δ ∈ O〉 in Th. 24 form an increasing chain, but this is not necessarily
the case in general. ��
Note 27. In the definition of the abstract iterates 〈Zδ, δ ∈ O〉 in Th. 24, the dual-

narrowing
�̃

in Z
δ+1

� � γ(F(Z
δ
)) ⊆ γ(S ) � F(Z

δ
)

�̃
S � S � does not use the infor-

mation provided by Z
δ
. It would be more informative to use a ternary dual-narrowing

with Z
δ+1

� � γ(F(Z
δ
)) ⊆ γ(S ) �

�̃
(Z
δ
, F(Z

δ
), S ) � S � such that P 
 Q 
 S implies

Q 
 �̃
(P,Q, S ) 
 S . ��

Example 28. A variant of Ex. 17 where [a, b] ⊆ [c, d] ⊆ [
, h] = S would be
�̃

([a,
b], [c, d], S ) � [� �(3c− 2a+ 
) 2� > 
 � �(3c− 2a+ 
) 2� � 
 �, � �(3d − 2b+ h)/2� < h �
�(3d − 2b + h)/2� � h �] which doubles the growth of [a, b] to [c, d]. Another example is
the widening “up-to” of [46] for polyhedra. ��

9.2 Bounded Widening versus Dual-Narrowing

A widening
�

S is bounded by S ∈ D if and only if it satisfies Hyp. 9 (a′ ) and ∀P,Q :
P

�
S Q 
 S . An example is the interval widening on machine integers bounded by

[min int, max int] which can be generalized to any interval bound [
, h].
Then, continuing Note 27,

�̃
(P,Q, S ) � P

�
S Q is a dual-narrowing since if P 
 Q 


S then by Hyp. 9 (a′), Q 
 P
�

S Q and P
�

S Q 
 S since the widening is bounded so
that Q 
 �̃

(P,Q, S ) 
 S .
Reciprocally, if

�̃
is a dual-narrowing then P

�
S Q �

�̃
(P,Q, S ) may not satisfy

Hyp. 9 (a′ ) in case P � P
�

S Q. However, in case F is increasing or extensive in
Th. 10, the widening is used only when P 
 Q in which case Hyp. 9 (a′) holds.

In conclusion, although widenings and dual-narrowing are different concepts, they
are equivalent in the specific contexts considered in this Sect. 9.2.

Example 29. Observe that
�̃

([a, b], [c, d], S ) in Ex. 28 is a bounded widening. ��

10 Terminating Extrapolators and Interpolators

Extrapolators/interpolators
�� ∈ {�, �̃,�, �̃} over/under-approximate the limit of

increasing/decreasing chains by abstract induction. Terminating operators also enforce
termination.
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Enforcing Termination by Extrapolators/Interpolators. For terminating extrapola-

tors/ interpolator, the abstract iterates X
0
, . . . , X

i+1
� X

i ��
F(X

i
), . . . must be ultimately

stationary at some rank n ∈ N. Let us say that the widening
�

and dual-narrowing
�̃

are increasing (since they operate on increasing chains 〈γ(Xi
), i ∈ N〉) and, dually that

the dual-widening
�̃

and narrowing
�

are decreasing (since they operate on decreasing

chains 〈γ(Xi
), i ∈ N〉). Since we don’t want to make hypotheses on the abstract trans-

former F, we can consider abstract iterates of the form X
0
, . . . , X

i+1
� X

i ��
Y

i
, . . . where

〈γ(Xi
), i ∈ N〉 is a chain and 〈Yi

, i ∈ N〉 is arbitrary.

Definition 30 (Terminating extrapolator/interpolator).An increasing (resp. decreas-

ing) extrapolator/interpolator
�� ∈ {�, �̃,�, �̃} such that

�� ∈ D×D �→ D is terminating

whenever for any chain 〈Xi ∈ D, i ∈ N〉 increasing (resp. decreasing) in the concrete

and arbitrary sequence 〈Yi ∈ D, i ∈ N〉, the sequence X
0
, . . . , X

i+1
� X

i ��
Y

i
, . . . is

ultimately stationary at some rank n ∈ N. ��
The interval widenings of Ex. 5 and narrowing of Ex. 15 are all terminating.

Definition 31 (Terminating bounded interpolation operator). An increasing (resp.

decreasing) interpolator
�� ∈ {�, �̃} such that

�� ∈ D × D × D �→ D is terminating

whenever for any chain 〈Yi ∈ D, i ∈ N〉 increasing (resp. decreasing) in the concrete

and bound S ∈ D, the sequence X
0
= Y

0
, . . . , X

i+1
=

��
(X

i
, Y

i
, S )12, . . . is ultimately

stationary at some rank n ∈ N. ��
Example 32. The dual-narrowing of Ex. 16 bounded by [−∞, h] or [
,+∞] is not termi-
nating. The bounded interval dual-narrowing of Ex. 17 is terminating but convergence
may be slow. ��

11 Fixpoint Over-Approximation Strategy

Given a concrete fixpoint lfp⊆⊥ F of a concrete increasing operator F ∈ D �→ D on a
partially ordered concrete domain 〈D, ⊆, ⊥, ∪〉 such that lfp⊆⊥ F =

⋃

δ∈O Fδ(⊥) does
exist, the static analysis problem is to effectively compute an over approximation of this
fixpoint. The abstraction method consists in designing a pre-ordered abstract domain

〈D, 
, ⊥, �〉, an abstract transformer F ∈ D �→ D, and an increasing concretization

function γ ∈ D �→ D satisfying the semi-commutation condition F ◦ γ ⊆̇ γ ◦ F,
pointwise. We obtain the fixpoint over-approximation by the following successive over-
approximations, the first two ones (A) and (B) being classical, as illustrated in Fig. 3.

Algorithm 33 (Fixpoint over-approximation by successive extrapolations and in-
terpolations). Input F ∈ D �→ D and D ∈ D on a pre-order 〈D, 
〉. Define X ≡
Y � X 
 Y ∧ X � Y .

12 X
i+1
= Y

i ��
S for binary interpolators

�� ∈ D× D �→ D.
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Fig. 3. Successive extrapolations and interpolations

(A) Using a terminating widening
� ∈ D× D �→ D, compute the iterates X

0
� D, . . . ,

X
k+1

� X
k �

F(X
k
) until convergence X

n+1 ≡ X
n

at some rank n13, 14

(B) If F(X
n
) � X

n
then compute the iterates Y

0
� X

n
, . . . , Y

k+1
� Y

k �
F(Y

k
) with

terminating narrowing
� ∈ D × D �→ D, until convergence Y

m+1 ≡ Y
m

at some
rank m.
Otherwise F(X

n
) ≡ X

n
so skip this step (B) with Y

m
� X

n
.

(C) Using a terminating dual-narrowing
�̃ ∈ D×D �→ D, compute the iterates Z

0
� D,

. . . , Z
k+1

� F(Z
k
)

�̃
Y

m
until reaching Z

p+1 ≡ Z
p

at some rank p.
Optionally, if F(γ(Z

p
)) ⊆ γ(Zp

) and Z
p
� Y

m
, repeat the interpolation steps (B) and (C)

from X
′n

� Z
p �′ Y

m
(where

�′ is a terminating narrowing satisfying Hyp. 14 (a)) until
convergence to Z

p �′ Y
m ≡ Y

m15. If F(γ(Z
p
)) ⊆ γ(Zp

) then return Z
p

else Z
p

� Y
m

(no
improvement). ��
Theorem 34 (Soundness and termination of Alg. 33). Let 〈D, ⊆, ∪〉 be a poset,
F ∈ D �→ D be increasing, D ∈ D be such that D ⊆ F(D), and the concrete iterates
X0 � D, Xδ+1 � F(Xδ) for successor ordinals, and Xλ �

⋃
β<λ Xβ for limit ordinals λ,

be well defined in the poset 〈D, ⊆, ∪〉 (i.e. the lubs
⋃

do exist).

Let the abstract domain 〈D, 
〉 be a pre-order, the concretization γ ∈ D �→ D be

increasing, the abstract transformer be F ∈ D �→ D satisfying the pointwise semi-
commutation condition F ◦ γ ⊆̇ γ ◦ F.

Let D ∈ D be such that D ⊆ γ(D) and ∀X ∈ D : (γ(D) ⊆ γ(X)∧γ(F(X)) ⊆ γ(X))⇒
(γ(D) ⊆ γ(F(X))),

� ∈ D × D �→ D be a terminating widening satisfying Hyp. 9 (a),

13 As shown by Fig. 3, checking that F(F(X
n
)) 
 F(X

n
) might sometimes avoid a last useless

widening but Alg. 33 (A) follows the classical iteration method [20].
14 The traditional termination condition of reaching a post-fixpoint F(X

n
) 
 X

n
is obtained by

X
�′ Y � � Y 
 X � X � X

�
Y �.

15 In case of static checking (Sect. 12) of a specification S , one can stop as soon as Z
p 
 S .

Otherwise, one can also restart at (A) with the new specification S � Z
p
, see Th. 36.



36 P. Cousot

� ∈ D × D �→ D be a terminating narrowing satisfying Hyp. 14 (a) such that ∀X ∈
D : (γ(F(X)) ⊆ γ(X))⇒ (γ(F(X

�
F(X))) ⊆ γ(X �

F(X))), and
�̃ ∈ D× D �→ D be a

terminating dual-narrowing satisfying the order dual of Hyp. 14 (a).
Then static analysis Alg. 33 always terminates with a sound fixpoint over-approxi-

mation Z
p

such that lfp⊆
D

F ⊆ γ(Zp
) ⊆ γ(Ym

) ⊆ γ(Xn
).

Given an abstract specification S ∈ D, if γ(Z
p
) ⊆ γ(S ) (which is implied by Z

p 
 S )
then lfp⊆

D
F ⊆ γ(S ) else it is unknown whether the specification holds. ��

Note 35 (Skipping phases). As suggested by Fig. 2, phase (A) of Alg. 33 can be skipped

by starting directly with (B) from the supremum X
n
= � of D (or a given specification,

see Sect. 12). Phase (B) will then over-approximate gfp
� F (which is imprecise in gen-

eral). Phase (A) of Alg. 33 is useful to provide an initial over-approximation of gfp

X

n F,

which, in general, is below gfp
� F. The narrowing iteration (B) of Alg. 33 can also be
skipped by choosing Y

�
X � X. Both phases (A) and (B) of Alg. 33 can be skipped by

starting (C) with an abstract specification S ∈ D. ��

12 Static Verification, Checking, and Analysis

The static inductive proof ∃I ∈ D : F(I) 
 I ∧ I 
 S can be done in various forms.
(a) In static verification by deductive verification methods, the induction hypothesis

I is provided by the end-user so that the problem is to generate and check the
verification condition F(I) 
 I ∧ I 
 S .

(b) In static checking, the induction hypothesis I must be automatically inferred from
the transformer F and the specification S (and also checked to satisfy the verifica-
tion condition F(I) 
 I ∧ I 
 S ).

(c) In static analysis, the induction hypothesis I must be automatically inferred from
the transformer F (independently of a particular specification S ) and checked to
satisfy the verification F(I) 
 I. Then later, when a specification S is given, it
remains to check that I 
 S .

Of course static verification (a) such as Boogie [5], ESC/Java [39, 40], Dafny [53], etc
is a sub-problem of static checking/analysis since it consists in proving an implication
only.

There is no essential difference between static analysis (c) and static checking (b).

– Static analysis (c) is static checking (b) where the specification S = � is the always
true i.e. ∀I : I 
 �.

– Static checking (b) is static analysis (c) in the abstract domain D
′
� {P ∈ D | P 
 S }.

The idea is therefore to assume that the specification S does hold and to calculate

by Alg. 33 a more precise inductive fixpoint over-approximation Z
p

in D
′
. Upon

termination it remains to check that the fixpoint over-approximation Z
p

is inductive

and stronger than the specification S in D.
The following Th. 36 shows that static checking can be reduced to a static analysis
by Alg. 33 using a widening and transformers bounded by the specification (so that
the specification is assumed to hold), to infer a conditionally sound invariant, and then
checking that the invariant is inductive.
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Theorem 36 (Static checking). Assume the hypotheses of Th. 34. Let S ∈ D be a

(non-inductive) abstract specification, define D
′

� {P ∈ D | γ(P) ⊆ γ(S )}, and let

D ∈ D
′

such that D ⊆ γ(D) ⊆ γ(S ) and γ(F(S )) � γ(S )16. Let Z
′p

be the result of

Alg. 33 applied to the restriction F
′
(X) � � γ(F(X)) ⊆ γ(S ) � F(X) � S � of F to D

′
,

with bounded widening X
�′ Y � � X

�
Y 
 S � X

�
Y � S � restricting widening

�

satisfying Hyp. 9 (a) to D
′
, and same narrowing satisfying Hyp. 14 (a) and same dual-

narrowing satisfying the dual of Hyp. 14 (a). If F(γ(Z
′p

)) ⊆ γ(Z′p) (which is implied
by F(Z

′p
) 
 Z

′ p
) then lfp⊆

D
F ⊆ γ(S ). ��

13 Discussion

The proposal of [45] is to iterate the widening (A) and narrowing (B) phases of Alg. 33
to get a sequence of results Y

mi

i , i = 1, . . . , k and to return their intersection
�k

i=1 Y
mi

i .
After each widening/narrowing phase, the result Y

mi

i is heuristically perturbated (after
observing the origin of the imprecision of the widening) to get a 
-smaller value D used
to restart with the next widening/narrowing phase. One such heuristic perturbation can

be done by considering the dual-narrowing
(�i−1

j=1 Y
mj

j
) �̃

Y
mi

i with the intersection of the

previous iterates, which in general will not be one of the already explored iterates Y
mj

j ,
j = 1, . . . , i. However, by Th. 7, the widening is not increasing, so that, in contrast to
the dual-narrowing phase (C) of Alg. 33, there is no guarantee of improvement after a
perturbation, whichever perturbation method is chosen.

If
�

is a widening and
�̃

is a dual-narrowing on an abstract pre-ordered domain 〈D,

〉, and the widening overshoots the specification, then P

�′ Q � Q
�̃

(P
�

Q) is a more
precise widening (although termination might be lost). This is the essence of [44] where
the dual-narrowing is by interpolation.

Following [58], let us compare widening (extrapolation) versus interpolation
(narrowing/dual-narrowing), more precisely, Alg. 33 (A) and (B) on any abstract do-

main D versus Alg. 33 (C) alone on the abstract domain 〈FOL, ⇒〉 of first-order predi-
cates pre-ordered FOL by implication⇒ with Craig interpolation as dual-narrowing.
– It can be argued that Alg. 33 (A) and (B) uses a weak/inexpressive abstract domain
with efficient representations and small search space while Alg. 33 (c) uses a strong/ex-
pressive abstract domain 〈FOL, ⇒〉 with generic representations and large search space.
In fact both approaches rely on an abstract domain, with loss of information, and this
choice is independent of the chosen iteration method. For example [29] shows that
combinations of theories in SMT solvers are reduced products of abstract domains (just
lacking extrapolation and interpolation operators). Some theories in SMT solvers rely
on specific internal representations for efficiency (like affine inequalities).
– The transformers F (and F) can be weakest pre- or strongest post-conditions (and
their abstraction). The fact that the equivalence formalized in the concrete by the Galois

16 If D � γ(S ) the problem has no solution and if γ(F(S )) ⊆ γ(S ) so F(γ(S )) ⊆ γ(S ) by semi-
commutativity, it is solved, two cases without any interest.
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connection 〈D, ⊆〉 −−−−−−−−→←−−−−−−−−
post[τ]

p̃re[τ] 〈D, ⊆〉 is preserved in the abstract depends on the abstract

domain not on the convergence acceleration method (widening, narrowing, and duals).
– The decision to abstract to (relational) invariants or sets of computation histories
is part of the choice of the abstract domain. For example trace-based abstraction [21,
9] and trace partitioning [63] can lift any abstraction to reason by case analysis on
computation histories.
– Incompleteness comes from the choice of the abstract domain and the extrapo-
lation/interpolation operators. The abstraction is fundamentally incomplete by unde-
cidability. Extrapolation itself is not necessarily non-terminating and incomplete. A
counter-example is abstract acceleration where the abstract fixpoint can be computed
exactly [50].
– Ockham’s razor (lex parsimoniae) can be made part of the definition of the abstract
transformer and the extrapolation/interpolation operators. As pointed out in [24], it is
always possible to introduce simplification heuristics e.g. by using λX . X

�
F(X) or

it’s n-unrolling version λX . (. . . ((X
�

F(X))
�

F
2
(X)) . . .

�
F

n
(X)) where the local

widening
�

performs heuristic simplifications or to approximate the transformer based
on interpolation e.g. by using λX . F(X)

�̃
S as proposed in [56]. Notice that the main

contribution to get a simplified transformer F ∈ D �→ D is through the careful design

of the abstract domain D (and, up to the machine representation of abstract properties

in D, one can always perform exactly the same static analysis in the concrete domain
D using a widening on D [22]).

14 Conclusion

The unifying of apparently diverging points of view on extrapolation and interpola-
tion in the abstract interpretation theory leaves opened the question of which part of
the fixpoint over-approximation strategy of Sect. 11 should be used. Obviously. using
only one phase is imprecise while iterating three successive phases in Alg. 33 will be
costly. In our opinion this depends on how close the specification S is from the in-
ductive argument I to be calculated to do the proof F(I) 
 I 
 S in the abstract.
In [51, Sect. 2.5], James H. Morris and Ben Wegbreit observed that subgoal induction
(which is a relational backward deductive positive induction method as shown in [15])
“can often be used to prove a loop’s correctness directly from its input-output specifica-
tion without the use of an invariant.” or “ with weaker-than-normal inductive assertions
inside the loops.”. Looking at their examples, one sees that the induction hypothesis
I (is or is a very simple variant of) the specification S itself. This was also exploited
by Dijsktra for calculational program design [32, 33], and more recently in program
checking by interpolation [56] and abductive inference [34]. Of course this favorable
situation is more frequent for tiny programs than very large ones, in particular when the
specification is very far from the inductive invariant.

Such a challenging example is the automatic inference of an interval in the following
filter program, intervals being usually considered to be a very simple property.
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typedef enum {FALSE = 0, TRUE = 1} BOOLEAN; BOOLEAN INIT; float P, X;

void filter () { static float E[2], S[2];

if (INIT) {S[0] = X; P = X; E[0] = X;}

else { P = (((((0.5*X)-(E[0]*0.7))+(E[1]*0.4))+(S[0]*1.5))-(S[1]*0.7));}

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [l, h] */ }

void main () { X = 0.2*X+5; INIT = TRUE; /* simulated filter input */

while (1) { X = 0.9*X+35; filter (); INIT = FALSE; } }

The problem is to infer automatically maximal and minimal h bounds such that S[0],
S[1] ∈ [ , h] is invariant in the program. Because and h are unknown in the in-
variant S[0], S[1] ∈ [ , h], neither static verification nor static checking methods
can be helpful. The full burden of finding the bounds, which is not easy, is entirely
put by these methods on the end-users. But static analyzers, like Astrée [28, 38], au-
tomatically infer that [ , h] ⊆ [-1418.3753, 1418.3753], with no user hint or
interaction. This is challenging in purely syntactic domains such as 〈FOL, ⇒〉.

Acknowledgements. Work supported by NSF Expeditions in Computing CMACS,
award 0926166.
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Abstract. Cache analysis plays a very important role in obtaining pre-
cise Worst Case Execution Time (WCET) estimates of programs for
real-time systems. While Abstract Interpretation based approaches are
almost universally used for cache analysis, they fail to take advantage of
its unique requirement: it is not necessary to find the guaranteed cache
behavior that holds across all executions of a program. We only need the
cache behavior along one particular program path, which is the path with
the maximum execution time. In this work, we introduce the concept of
cache miss paths, which allows us to use the worst-case path information
to improve the precision of AI-based cache analysis. We use Abstract In-
terpretation to determine the cache miss paths, and then integrate them
in the IPET formulation. An added advantage is that this further allows
us to use infeasible path information for cache analysis. Experimentally,
our approach gives more precise WCETs as compared to AI-based cache
analysis, and we also provide techniques to trade-off analysis time with
precision to provide scalability.

1 Introduction

Real time systems need a safe estimate of the execution time of a program,
which should never be exceeded by any of the program’s actual runs. Modern
architectures use caches, out-of-order pipelines and all kinds of speculation to
make programs run faster, and this has a significant impact on their execution
times. The Worst Case Execution Time (WCET) of a program on a particular
architecture is defined as the maximum execution time of the program across all
its possible runs on that architecture. Ideally, we would like to find this WCET,
but theoretically, it is not possible. Timing analysis techniques try to find an
upper bound on the WCET of programs. Since the scheduler in a real-time
system is likely to assign computational resources such as the processor to a
program for the entire duration of its estimated WCET, it is desirable that the
upper bound be as close as possible to the actual WCET to avoid wastage.

Caches have a major impact on execution time of programs, because of the
huge difference in cache access latency and main memory latency in current
architectures. The execution time of a memory-accessing instruction can change
by a factor of 100, depending on whether the access hits the cache or goes to the
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main memory. Cache analysis techniques try to find the accesses in a program
which will hit the cache, so that the cache latency can be used for those accesses
while finding the WCET.

The cache behavior of an instruction depends on the sequence of accesses made
to the cache by the program before the instruction, which in turn depends on the
program path taken to reach the instruction. Since we want to find the WCET,
we would be interested only in the worst-case (WC) program path, which is the
program path with the maximum execution time. If the WC path is known, then
this information can be used to determine the accurate cache behavior of the
accesses along it. However, this results in a ‘boot-strapping’ problem, because to
find the WC path, we must know its execution time, which requires knowledge of
the cache hits along the path. But, cache hits along the worst-case path cannot
be accurately estimated unless we know the path leading to the cache accesses.

One way to solve this problem is to find the accesses which hit the cache
irrespective of the program path taken to reach them. This is the approach taken
by the almost universally used Abstract Interpretation (AI) based cache analysis
[1], which finds the guaranteed cache hits in a program. All the accesses which are
not guaranteed to hit the cache are classified as misses, and the resulting hit-miss
classification is used to determine the latency of memory-accessing instructions.
Once the execution time of each individual instruction is determined, the Implicit
Path Enumeration Technique (IPET) [2] can be used to find the worst-case path
in the program. IPET generates an Integer Linear Program (ILP), whose optimal
solution encodes the worst-case path.

In our work, we target those accesses which will hit the cache along the worst-
case path, but not necessarily along all other paths. To do this, we integrate a
limited amount of cache analysis into the IPET formulation, thus taking ad-
vantage of the knowledge about the worst-case path to classify certain cache
accesses. We propose the concept of cache miss paths of an access, which are
simply those program paths along which the access will suffer a cache miss. We
concentrate on the accesses which are not classified as hit by AI-based cache
analysis, and find the cache miss paths of these accesses. We then integrate the
miss paths into the IPET formulation to ensure that a cache access will be con-
sidered a miss only if the worst-case path contains a miss path of the access.
Previously, we have used a similar concept of cache hit paths, to determine the
effect of shared cache interference on cache hits [6].

There are many advantages of integrating cache analysis into the IPET for-
mulation. Most of the imprecision of AI-based cache analysis stems from the
fact it requires an access to hit the cache along all paths leading to the access.
However, an access can be safely classified as hit, if it experiences a cache hit
along the worst-case path. This will only happen if the worst-case path does not
contain a miss path of the access.

Moreover, some programs have infeasible paths, which generally take the
form of conflicting basic blocks, which will never be executed together. Informa-
tion about infeasible paths can be obtained separately using abstract execution
[3], SMT solvers [5], model checking [7], etc. and is part of the program flow
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analysis stage. This stage generally occurs before timing analysis, and is primar-
ily used to determine the program CFG, loop bounds, etc. A number of works
have integrated infeasible path information into the IPET formulation, ensuring
that infeasible paths will be ignored while finding the worst-case path in the pro-
gram ([4], [5]). Since we integrate cache miss paths into the IPET formulation,
our approach will have the added advantage of utilizing infeasible path infor-
mation for cache analysis. Previous works ([7], [8]) have shown that substantial
precision improvement in the WCET can be achieved by utilizing infeasible path
information during cache analysis.

Experimentally, we found that our approach gave lower WCETs for 9 out of
27 Mälardalen benchmarks [15], as compared to AI-based cache analysis, with an
average precision improvement of 22.54 % and with negligible increase in analysis
time. Another advantage of our analysis is that it subsumes persistence analysis,
which is used to classify accesses inside loops as First-Miss. Since our approach
adds some portion of cache analysis to the IPET formulation and thus increases
the size of the generated ILP and hence the time required to solve it, we also
provide two methods to control the analysis time. Since the number of extra
variables/constraints added to the ILP depend on the size and total number
of cache miss paths, we allow user-controlled upper bounds on these values.
We experimented with different bounds, and found that substantial precision
improvement can be obtained even with very low bounds on the size of cache
miss paths. We also propose a CEGAR-like strategy which introduces cache miss
paths of accesses into the ILP one access at a time, by selecting the cache access
which suffers a hit along the worst case path, but has the maximum number of
cache misses in the ILP. This allows us to stop the refinement of the WCET
at any iteration of the CEGAR loop, and thus trade-off precision with analysis
time.

2 Related Work

Few works have looked at the impact of infeasible paths on cache analysis ([7],
[8]). However, none of these works have directly integrated cache analysis with
the IPET formulation. In [7], the authors instrument the code by introducing
variables to count the number of cache misses suffered by accesses which are
not classified as Hit by AI-based analysis, and then use model checking to verify
assertions on these variables. This approach requires code instrumentation, and is
also known to have very high analysis time [8]. There is no way to reuse infeasible
path information, which may already have been determined separately during
the program flow analysis stage. Moreover, no information about the worst-case
path is used to refine the cache analysis, and hence the approach will work only
when there are actual infeasible paths (and model checking can identify them).

[8] modifies the AI-based approach for cache analysis, by annotating cache
states with logic formulae, corresponding to the partial path along which the
cache state would be realized. However, their work can only handle limited types
of infeasible paths. In particular, they only consider a maximum of two conflicting
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basic blocks, and because of their abstract lattice, the conflicting basic blocks
must be close to each other in the program CFG (there cannot be more than
one join between two conflicting basic blocks). Moreover, they also ignore the
worst-case path information and consider only the impact of infeasible paths on
cache analysis.

There have also been previous efforts in performing complete cache analysis
using the ILP-based IPET formulation, most notably, the CSTG-based approach
proposed by Lee et al. [9]. In this work, the authors first generate the cache state
transition graph (CSTG), whose nodes are all possible cache states generated
during execution, and edges show the transition between the cache states. Integer
variables are introduced in the IPET ILP for all the edges in the CSTG, and
these variables are then used to provide an upper bound on the number of
hits experienced by accesses. However, as has been noted by [10], this approach
introduces an exponentially large number of variables, and significantly increases
the size of the ILP, rendering it non-practical even for small programs.

In our approach, we also introduce new variables for a cache access and their
miss paths, but only for those accesses which are not classified as Hit by the AI-
based cache analysis. In [9], the authors essentially find cache hit paths in the
CSTG, constrain the number of cache hits using the variables in the CSTG, and
then link these variables with the basic block counts in the CFG. In our case,
we directly find the cache miss paths in the CFG, using an AI-based approach,
and hence do not need to generate the CSTG.

3 Foundations

Caches store a small subset of main memory closer to the processor, and pro-
vide fast access to its contents. To take advantage of spatial locality of memory
accesses, all data transfer between the main memory and cache takes place in
equal-sized chunks called memory blocks (or cache blocks). To enable fast lookup,
caches are further divided into cache sets. For an A−way set associative cache,
each cache set can contain maximum of A cache blocks. Given an access to a
cache block, the cache subsystem first finds the unique cache set containing the
accessed cache block, searches for it among the (at most) A cache blocks in the
cache set, and if it is not present, brings it from the main memory.

Since the total number of cache blocks mapped to a cache set will usually be
much greater than the associativity (A), the cache replacement policy decides
which cache block should be evicted, if the cache set is full and a new cache block
has to be brought in. The Least Recently Used (LRU) policy orders all cache
blocks in a cache set according to their most recent accesses, and evicts the cache
block which was accessed farthest in the past. We will assume LRU replacement
policy in our work. We also assume a timing anomaly-free architecture.

Must Analysis [1] for caches produces abstract cache states at each program
point, which contains those cache blocks which are guaranteed to be in the actual
cache at the program point across all executions of the program. It is used to
classify accesses as cache hits. Similarly, May analysis produces abstract cache
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states which contain cache blocks which may be present in the actual cache
during some execution. It is used to classify accesses as cache misses.

4 Cache Miss Paths

To keep things simple, we will now assume a single-level instruction cache. How-
ever, our approach can in general be applied to any level in a multi-level instruc-
tion cache hierarchy. First we formally define cache miss paths.

Given an instruction a which accesses the cache block m mapped to cache set
s, a path π in the CFG of the program is called a cache miss path of a if

1. π ends with instruction a and has no other accesses to m other than a, and
2. either the number of distinct cache blocks mapped to s and accessed by

instructions in π is equal to A+ 1 (where A is the cache associativity), or π
begins from the start of the program.

m1 m2

m3

m1

a1 a2

a3

a4

Fig. 1.

Note that there are only two possible ways
that an instruction a can suffer a cache miss:
the accessed cache block m has not been
brought into the cache at all from the start
of the program, or it was brought but then
evicted before a. Both these scenarios are cap-
tured in the definition of cache miss path.
If miss path π begins from the start of the
program, then since a is the only instruction
which accesses m, m will not be brought into
the cache along the path π, before a. Other-
wise, if π contains accesses to A + 1 distinct
cache blocks, then the instructions of π before
a must have accessed A distinct cache blocks
different from m. Hence, by the time a is ex-
ecuted, m is guaranteed to be not present in
the cache. Since the cache miss paths consider
both the reasons for a cache miss, this shows
that an access suffers a cache miss if and only
if execution passes through a miss path of the
access.

Consider the example program in
Figure 1, which shows four cache accesses a1, a2, a3, a4, accessing cache blocks
m1,m2,m3,m1 respectively. Assume the cache has an associativity of 2, and
also assume that m1,m2,m3 map to the same cache set. Let us concentrate on
the access a4, which accesses cache block m1, and consider the program paths
leading to this access.

The path 
− a2 − a3 − a4 begins from the start of the program, and does not
access m1 until a4. Hence, this is a cache miss path of a4. On the other hand,
the path a1 − a3 − a4 begins with an access to m1, and accesses only 2 distinct



48 K. Nagar and Y.N. Srikant

cache blocks. Execution along this path will result in a cache hit for a4, and hence
it is not a cache miss path. The path a4−a3−a4 lies entirely within the loop, and
is again not a cache miss path, as it accesses only 2 distinct cache blocks. Hence,
a4 does not have a cache miss path entirely within the loop, and so is guaranteed
to be a cache hit for all iterations except the first. In addition, it will be a cache
hit in the first iteration if the worst-case path passes through a1.

The miss path of an access can be determined by traversing backward in the
CFG starting from the access and keeping track of the cache blocks encountered
along different paths. If the number of distinct cache blocks encountered along
a path (without encountering the accessed cache block) becomes greater than
cache associativity, the path can be deemed as a miss path and further accounting
of cache blocks along the path can be stopped. On the other hand, if the accessed
cache block itself is encountered on a path, then such paths can be discarded,
as they cannot become cache miss paths of the access. For accesses inside loops,
we may have to take the back-edges (in the reverse direction) more than once
to find all cache miss-paths.

5 AI Formulation

We use Abstract Interpretation to find the cache miss paths of accesses. We
concentrate only on those accesses which are not classified as Hit by the AI-based
Must analysis, or Miss by May cache analysis. Let Acc be the set of all cache
accesses made by the program. Since cache accesses are made by the instructions
in a program, we use the terms ‘access’ and ‘instruction’ interchangeably . Let
AccNC be the set of accesses not classified as Hit or Miss (AccNC ⊆ Acc).
Accesses in AccNC will have at least one cache-miss path. Each cache-miss path
π can be viewed as a set of accesses which satisfies the required properties (it
is not necessary to keep track of their sequence, because if all instructions in a
miss path of an access are executed, then irrespective of their order of execution,
the access will suffer a miss). We use the special symbol � to indicate that the
cache-miss path has ended, which means that it has accessed A+1 distinct cache
blocks, and no new accesses should be added to it. Hence π ∈ P(Acc ∪ {�}).
(P(S) denotes the powerset of S).

���

�

�

Fig. 2.

An access can have multiple cache-miss paths, and hence
we maintain a set of miss paths for every access in AccNC . Our
abstract lattice is the set of functions F = {f |f : AccNC →
P(P(Acc ∪ {�}))}. For f1, f2 ∈ F , we say that f1 � f2 if
and only if ∀a ∈ AccNC , f1(a) ⊆ f2(a). This is the standard
power-set lattice formulation, with the join being defined as
point-wise union: (f1 � f2)(a) = f1(a) ∪ f2(a).

We now define the transfer function. Let cb(a) and cs(a)
denote the cache block and cache set accessed by instruction
a respectively. Given a set of instructions, π, dist blocks(π)
gives the number of distinct cache blocks accessed by instructions in π. Hence,
dist blocks(π) = |{cb(a)|a ∈ π}|. The direction of the analysis will be backward,
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assigning an empty set of cache-miss paths initially for all accesses in AccNC .
Since all miss-paths of an access end with the access itself, as soon as an access
in AccNC is encountered, the collection of its miss-paths will begin. As shown in
Figure 2, suppose instruction a accesses cache block m mapped to cache set s.
The transfer function TPQ for this instruction takes as input function fP ∈ F ,
and outputs function fQ:

fQ(a
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{{a}} ∪ {π : π ∈ fP (a)∧ �∈ π}, if a = a′,

{π : π ∈ fP (a′)∧ �∈ π}, else if m = cb(a′)

{π ∪ {a} : π ∈ fP (a′)∧ �
∈ π ∧ dist blocks(π ∪ {a}) ≤ A}
∪{π ∪ {a,�} : π ∈ fP (a′)∧ �
∈ π ∧ dist blocks(π ∪ {a}) > A}
∪{π : π ∈ fP (a′)∧ �∈ π},

else if cs(a) = cs(a′)

fP (a
′) otherwise

First, we consider the miss paths of the access a itself (if a ∈ AccNC). We
add the singleton path {a} to start the collection of miss paths of a, while any
existing paths of a which have been already been ended are retained. An existing
path of a will be present in fP (a) when a is inside a loop, and it has already been
encountered once during an earlier AI iteration. If an existing path of a has not
ended, then it would have accessed at most A distinct cache blocks (including
m). The access a will bring m to the cache, but there would not be enough cache
blocks in this path to evict m before the next access by a. Such a path will never
be a cache-miss path of a, and hence must be discarded.

In the second case, we consider the paths of those instructions a′ which access
the same cache block m. Since this is a backward analysis, any existing path
of a′ which reaches a would indicate that there is a path from a to a′. Since a
brings cache block m into the cache, any path from a to a′ will be a cache miss
path only if there are enough cache blocks accessed on it to evict m. In this
case, only the existing paths which have already been ended will be retained,
while all other paths of a′ will be discarded. This is because any path which
has already been ended would have accessed A + 1 distinct cache blocks, or A
distinct cache blocks other than m. Hence, m would have been evicted by the
time a′ is executed. On the other hand, any path which has not been ended will
not have accessed enough cache blocks to evict m.

In the third case, we consider the paths of instruction a′ which access a differ-
ent cache block cb(a′), mapped to the same cache set cs(a). In this case, cache
block m will conflict with cb(a′) and therefore the access a should be added
to any existing path of a′. In addition, if the number of distinct cache blocks
accessed along a path (after adding a) becomes greater than A, such a path
would now become a cache-miss path and hence can be ended. Also, miss paths
which have already ended are retained without any modification. Finally, in the
last case, paths of instructions which do not access the cache set cs(a) are not
modified.
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It is easy to see that the transfer function is monotonic, as it operates sep-
arately on every path of a cache access. It either adds a new path, discards
existing paths or adds new accesses to a path, but this depends solely on the
properties of the access or the path itself. We also give a formal proof in Section
7. Moreover, the abstract lattice F is finite, and hence termination of the analy-
sis is guaranteed. All the cache-miss paths of accesses in AccNC will be gathered
at the start of the program in the fixpoint solution.

6 ILP Formulation

We now integrate the cache-miss paths into the IPET formulation [2]. We in-
troduce new integer variables for every access in AccNC , as well as for each
cache-miss path of these accesses. The number of cache misses suffered along
a cache-miss path will be constrained by the execution counts of the accesses
along the path.

Table 1. Notation

Symbol Explanation

yi Integer variable storing the execution count of basic block bi

xij Integer variable storing the total number of cache misses suffered
by instruction aij

xπ
ij Integer variable storing the number of cache misses of

instruction aij along cache-miss path π

wij Integer variable storing the execution count of edge between
basic blocks bi and bj

ei Execution time of basic block bi assuming NC-instructions
as cache hits

cp Cache miss penalty

Let b1, . . . , bn be the basic blocks of the program, and let ai1, . . . , aili be the
instructions in bi which are not classified (NC) as Hit or Miss. Table 1 contains
all the notations used in the ILP. Note that ei is the estimated execution time
of bi obtained by using the AI-based cache hit-miss classification, and assuming
cache hit latency for all instructions classified as NC. Let BB(a) denote the
index of the basic block containing instruction a.

We first give a brief description of the IPET formulation. For each basic block
bi, yi stores the execution count of this basic block on the worst-case path. For
an edge between basic blocks bi and bj in the CFG, the variable wij stores the
number of times execution passes from bi to bj on the worst case path. The
objective is to find the worst-case path, i.e. the execution counts of basic blocks
which maximizes the execution time of the program. The execution counts are
constrained by the program structure, which basically places the restriction that
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the number of times execution enters a basic block (through an incoming edge
in the CFG) must be the same as the number of times execution leaves the basic
block (through an outgoing edge), and this will also be the execution count of
the basic block. Hence, the sum of the w variables for all incoming edges to a
basic block will be the same as the sum of w variables for all outgoing edges.
Following is our proposed ILP, which is based on the IPET formulation:

Maximize
n∑

i=1

(eiyi +

li∑
j=1

cpxij) (1)

subject to

∀i, yi =
∑

j∈pred(bi)
wji =

∑
k∈succ(bi)

wik (2)

∀i∀j, xij ≤ yi (3)

∀i∀j, xij ≤
∑

all miss paths π of aij

xπij (4)

∀i∀j∀π where π is a miss path of xij, π = {aπ1, aπ2, . . . , aπk}
xπij ≤ yBB(aπ1) (5)

...

xπij ≤ yBB(aπk)

Loop Constraints ...

Infeasible path constraints ...

The product eiyi is the contribution of bi to the execution time of the program,
assuming that all NC-instructions are cache hits. The variable xij accounts for the
cachemisses suffered by access aij . Each cachemiss causes an additional execution
time of cp. Hence, the objective function is the sum of the total execution times
of all basic blocks on the worst-case path (Equation 1). Equation 2 encodes the
flow constraint for each basic block. The maximum number of misses suffered by
an access will be the execution count of the basic block containing the access, and
this gives a trivial upper bound on xij (Equation 3). For each miss path π of aij ,
the variable xπij counts the number of misses suffered by aij along π.

For aij to experience a miss along miss path π, all the accesses in the miss-path
should happen. Hence, xπij is upper-bounded by the execution counts of all the
basic blocks which contain the instructions present in π (Equation 5 onwards).
If an access has multiple cache miss paths, then it can suffer a miss along any of
its miss paths. Moreover, for an access inside a loop, multiple cache-miss paths
of the access may be executed (for example, in different iterations). Hence, the
total number of misses suffered by an access (xij) is bounded by the sum of its
xπij variables (Equation 4). Since the two notions of an access suffering a cache
miss, and its cache-miss path being executed are equivalent, and the AI-based
approach will determine all the cache miss paths, the above ILP is guaranteed
to account for all the cache misses suffered by an access.
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In addition to loop constraints, which will bound the execution count of loop
headers, infeasible path constraints can also be provided in the above ILP. An
infeasible path generally takes the form of a set of conflicting basic blocks, which
will never be executed together. The constraints will place an upper bound on
the sum of the execution counts (yi) of conflicting basic blocks. By appending
them to the above ILP, we not only guarantee that the worst case path will not
contain the infeasible path, but also that no cache miss will be caused due to it.
If the cache miss path of an access is infeasible, then the contribution of cache
misses along such a path would become zero.

Multi-level Cache Hierarchy: Our technique can be applied at any level
in a multi-level cache hierarchy. To apply the technique at level x in a cache
hierarchy with L levels, Acc will consist of all accesses which may reach level x,
while AccNC will consist of accesses which are not classified as Hit at level x. The
AI-based approach to find the cache miss paths can be directly applied, except
that a miss-path of an access can be discarded in the transfer function, only
when there is a guaranteed access to the same cache block, and the miss-path
has not ended. Similarly, the same ILP formulation can also be used, except that
the cache miss penalty (cp) of an access will now depend on whether it hits any
cache level beyond x, or if it has to go to the main memory.

7 Scalability

Previous approaches [9] at integrating cache analysis into the IPET formulation
have struggled with the exponential increase in the size of the ILP due to the
addition of extra variables and constraints. However, these approaches did not
perform any prior cache analysis, and hence relied solely on the ILP for the hit-
miss classification of all cache accesses made by the program. In our case, we are
weeding out the cache accesses classified as Hit or Miss by the AI-based cache
analysis, and only rely upon the ILP for the remaining accesses.

However, we are also introducing extra variables for each cache-miss path
of NC accesses, and extra constraints for each basic block present in a cache-
miss path. In general, the number of cache miss paths, and their sizes can be
exponentially large in the size of the program. Even though a cache-miss path
will access at most A+1 distinct cache blocks, this does not place any restrictions
on its size, as multiple instructions could access the same cache block. Hence, we
propose two changes in the original AI-formulation to limit the size of generated
cache-miss paths and hence the size of the final ILP. We note that this is main
advantage of using cache miss paths, as more abstractions can be used to speed
up the analysis time, at the cost of precision, but without jeopardizing the safety
requirements of cache analysis. There could be other ways in which cache miss
paths can be combined/ignored without under-estimating the number of cache
misses, to tradeoff precision with analysis time.

We first modify the transfer function to limit the size of each miss-path to
a maximum threshold (T ). For miss path π of access a, let |π| denote its size,
i.e., the number of accesses present in π, excluding the access a. Referring back
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to the original transfer function defined in Section 5, an access a was added to
a miss-path of access a′ if they accessed different cache blocks mapped to the
same cache set and the miss-path had not ended. In the new transfer function,
we will add a new access to an existing miss-path only if the size of the expanded
miss-path does not exceed T . A miss-path will be ended when its size reaches
T , even though the number of distinct cache blocks accessed on the path may
not have reached A + 1. The following equation shows the only change in the
transfer function TPQ of an access a, proposed in Section 5:

fQ(a
′) =⎧⎪⎪⎪⎨⎪⎪⎪⎩

{π ∪ {a} : π ∈ fP (a′)∧ �
∈ π ∧ dist blocks(π ∪ {a}) ≤ A ∧ |π ∪ {a}| < T }
∪{π ∪ {a,�} : π ∈ fP (a′)∧ �
∈ π ∧ (dist blocks(π ∪ {a}) > A ∨ |π ∪ {a}|=T )}
∪{π : π ∈ fP (a′)∧ �∈ π}

if cb(a) 
= cb(a′) and cs(a) = cs(a′)
The new transfer function ends a miss-path either when its size becomes equal

to the threshold, or if it accesses more than A distinct cache blocks. Note that
there is no restriction on the threshold T , and it can take any value. It is possible
that paths determined using above restriction may not actually be cache miss
paths. However, we will not lose any actual cache miss paths, because if the
length of any actual miss path is greater than T , then its sub-path of length
T will be considered as a miss-path by the analysis. This is safe in the context
of the ILP as well, since an upper bound on the number of cache misses along
a miss path, obtained using the entire path, will be smaller than the upper
bound obtained using only its sub-path. Hence, we will only be overestimating
the number of misses along the shortened miss-path.

m1

�

m1

m2

�

a1

a2

a3

�

Fig. 3.

The analysis will lose precision with lower
values of T , as more paths which access less
than A + 1 distinct cache blocks may be
treated as cache miss-paths, and the upper
bound on the number of cache misses along
the more shortened paths will also not be
precise. In our experiments, we were able to
achieve good precision by setting T to be twice
the cache associativity. By limiting the maxi-
mum size of cache-miss path, we also decrease
the number of cache-miss paths of an access.

The other modification is made to the join
in the abstract lattice. In the original formu-
lation, at the join points, we simply took the
union of the incoming miss paths for every
cache access. However, some miss paths may
be entirely contained in other miss paths, and
in such a scenario, it is safe to discard the
larger miss paths, if they access the same number of distinct cache blocks as the
smaller miss paths present inside them.
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For example, consider the program fragment shown in Figure 3 which shows
cache accesses a, a1, a2 and a3 all accessing the same cache set. Assume that the
cache associativity is 2. We concentrate on the miss paths of the access a to cache
blockm. While finding the fixpoint (in the backward direction), at program point
P , we will get two different paths of a, π1 = {a3, a} and π2 = {a2, a3, a}. Clearly
π1 ⊆ π2, and both paths access the same number of distinct cache blocks. In
this case, it is safe to discard π2 during the join, because if π2 were to eventually
become a cache miss-path by adding some accesses (for example, by adding a1),
then the same accesses will also make π1 a cache miss-path. Moreover, in the
ILP formulation, xπ1

a ≥ xπ2
a . Hence, the contribution of cache misses along π2

will be accounted for by the path π1.
Experimentally, we have found that such scenarios occur very often in bench-

marks, and using the modified join can substantially decrease the number of
miss-paths. Moreover, this also has a positive impact on the ILP, as we will
not count the same cache miss multiple times along different miss paths. In the
example, the access a suffer a cache miss along both the miss paths {a1, a3, a}
and {a1, a2, a3, a}. In actual execution, a will only suffer one cache miss, but
if we did not discard π2, then we would have counted two misses along both
the miss-paths in the ILP. We now give a formal definition of the join. Given
f1, f2 ∈ F , we define f1 � f2 as follows:

∀a ∈ AccNC , (f1 � f2)(a) = (f1(a) ∪ f2(a)) \ {π ∈ (f1(a) ∪ f2(a)) : |π| < T − 1

∧ (∃π′ ∈ (f1(a) ∪ f2(a)) \ {π}, (π′ ⊆ π)
∧ (dist blocks(π) = dist blocks(π′)))}

From the pointwise union of miss paths from f1 and f2, we remove those miss
paths which contain less than T − 1 accesses and for which a sub-path accessing
the same number of distinct cache blocks is also present in the union. Note that
both the miss path which is being removed and its subpath will also access the
same set of cache blocks. The ordering relation � in the lattice F now becomes:
f1 � f2 ⇔ ∀a ∈ AccNC , ∀π ∈ f1(a), if |π| ≥ T − 1, then π ∈ f2(a), and if
|π| < T − 1 then ∃π′ ∈ f2(a), π′ ⊆ π and dist blocks(π) = dist blocks(π′).

To see why the new transfer function remains monotonic with the new join,
let us define a relation on the miss paths, �. For π1, π2 ∈ 2Acc∪{�}, π1 � π2 ⇔
π1 = π2 ∨ (|π1| < T − 1∧π2 � π1 ∧dist blocks(π1) = dist blocks(π2)). Then, for
f1, f2 ∈ F , f1 � f2 ⇔ ∀a ∈ AccNC , ∀π1 ∈ f1(a), ∃π2 ∈ f2(a), such that π1 � π2.

To prove that the new transfer function TPQ is monotonic, we have to show
that if f1 � f2, then TPQ(f1) � TPQ(f2). Assume that the access a′ happens

between program points Q and P . Let TPQ(fx) = f̂x, x = 1, 2. We have to show

that ∀a ∈ AccNC , ∀π′1 ∈ f̂1(a), ∃π′2 ∈ f̂2(a), such that π′1 � π′2.
Now, for π′1 ∈ f̂1(a), π′1 would have been obtained from some π1 ∈ f1. Oth-

erwise, π′1 = {a}, which is the singleton miss-path added when a = a′. In this

case, {a} would be present in f̂2(a) as well.
The transfer function will add the new access a′ and possibly end the miss-

path to obtain π′1 ∈ f̂1(a) from π1. We know that there exists π2 ∈ f2(a) such

that π1 � π2. Suppose π1 = π2, then π1 ∈ f2(a). Hence, π′1 ∈ f̂2(a). For the
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original transfer function and join defined in Section 5, this proof will be sufficient
to prove that TPQ is monotonic.

On the other hand, suppose |π1| < T − 1, and ∃π2 ∈ f2(a) such that π2 � π1
and dist blocks(π1) = dist blocks(π2). Since |π1| < T − 1, even if the transfer
function adds the new access a′ to π1, its length will not reach the threshold
T . Let π′2 ∈ f̂2(a) be the miss-path obtained from π2. Since |π2| < |π1|, adding
a new access to π2 will also not violate the threshold. Also, if π′1 = π1 ∪ {a′},
then π′2 = π2 ∪{a′}, because both π1 and π2 access the same number of distinct
cache blocks. Similarly, if π′1 = π1 ∪ {a′,�} then π′2 = π2 ∪ {a′,�}. This shows
that π′2 � π′1, with dist blocks(π

′
1) = dist blocks(π

′
2). Hence, π

′
1 � π′2.

8 Experimental Results

We have implemented our approach for path sensitive cache analysis in the
Chronos framework [14]. Chronos performs AI-based Must and May cache anal-
ysis, and classifies cache accesses as one of Hit, Miss, or NC. In addition, Chronos
also provides the option of performing persistence cache analysis to further im-
prove the classification of NC-cache accesses to Persistent (PS). We use lp solve
to solve the generated ILPs. Our experiments were conducted on a 4-core Intel
i5 CPU with 4 GB memory.

If a cache access is classified as PS, then the accessed cache block will never get
evicted during execution. This means that such accesses can experience at most
one cache miss. PS classification is very useful for accesses inside loops, where
the first iteration will bring the accessed block into the cache, and the block will
stay in the cache for subsequent iterations. In our terminology, it would mean
that the access has a cache-miss path which begins outside the loop, but has no
cache-miss path entirely within the loop itself. Hence, our approach can identify
persistent cache accesses, and make persistence analysis redundant.

For the experiments, we assume a 1 KB L1 instruction cache with block size
32 bytes and associativity 4. The L1 hit latency is 1 cycle, while the miss latency
is 30 cycles. We use Must and May cache analysis as our baseline cache analysis.
We apply our approach for all NC-accesses. We restrict the threshold value (i.e.
the maximum miss-path length) to 8 (twice the cache associativity). Further, if
the number of cache miss paths of an access exceeds 100, then we ignore all the
miss-paths and simply classify the access as a cache miss. We experimented on 27
benchmarks from the Mälardalen WCET benchmark suite [15], and found that
our approach was able to improve the WCET estimate for 9 benchmarks, with
an average precision improvement of 22.54 %, compared to the WCET obtained
using the baseline cache analysis.

Some of the precision improvement would be due to persistent cache blocks,
and to find their contribution, we compare the WCETs obtained using Persis-
tence analysis with our approach. Figure 4 compares the precision improvement
obtained by performing persistence analysis and the improvement obtained using
our approach. It can be seen that our approach gives higher precision improve-
ment for 8 out of the 9 benchmarks, and is very close to persistence analysis



56 K. Nagar and Y.N. Srikant

for cover. Our approach works better because apart for identifying persistent
accesses, it also takes into account the worst-case path information while classi-
fying accesses as cache misses. Note that this precision improvement is obtained
without adding any infeasible path information.

Fig. 4. Graph showing percentage improvement of WCET obtained using (1) Persis-
tence analysis and (2) Our approach, over baseline cache analysis

The total time taken to determine the WCET (including the time to solve
the ILP) was less than 1 second for all 27 benchmarks except nsichneu and
statemate. For statemate, the AI analysis took 3.16 seconds, while solving the
ILP required 0.6 seconds. For nsichneu, the AI analysis took 63.87 seconds,
while solving the ILP required 3 seconds. For both these benchmarks, neither
persistence analysis nor our approach showed any precision improvement. For
most of the accesses in nsichneu, the number of cache miss paths were greater
than 100, and hence these accesses were classified as cache misses. Note that
nsichneu has a large number of program paths.

In general, there is no correlation between the effectiveness of our approach,
and factors such program size, number of accesses, number of program paths,
etc. However, in almost all the benchmarks programs where our approach was
successful, there were accesses inside loops which had small number of cache miss
paths, whose classification was refined by our approach. If an access has large
number of cache miss paths, then it is highly likely that the worst-case path
will contain one of them, and such accesses will not benefit from our approach.
As the program size increases, the number of cache accesses will also increase,
which in turn will increase size of the ILP and the time required to solve it. It is
not necessary to find the cache miss paths of all accesses which are classified as
NC. Accesses which are more likely to affect the WCET (for example, accesses
inside loops) can be selected for miss-path based analysis, while the rest of the
accesses can be simply considered as cache misses.
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CEGAR-Like Approach: To test the effectiveness of our approach when ap-
plied only on selected cache accesses, we used a strategy similar to Counterex-
ample guided Abstraction refinement (CEGAR) [12]. We start with IPET ILP
(with no cache miss path information) and solve it to obtain the worst-case
(WC) path. Then we determine the actual cache states along this path, to find
the accesses which were considered as cache misses in the ILP but actually hit
the cache along the WC path. Among such accesses, we pick the access with
the maximum number of cache misses in the ILP (this is the counter-example),
and find the cache miss paths of this access. This is equivalent to an abstraction
refinement for this access, as we will now take into account its cache behavior
along different paths. These miss paths are then integrated into the (current)
ILP to find the new WCET (and possibly the new WC path), and the process
is repeated again in the next iteration.

Since the selected cache access was actually hitting the cache along the WC
path (of that iteration), no cache miss path of the access will be contained in
the WC path. Hence, by integrating the cache miss path information of this
access into the ILP, we would be forcing the ILP to either classify the access
as a hit, or to find a new WC path which contains a miss path of the access.
The new WCET is guaranteed to be less than or equal to the previous WCET.
At each iteration, the size of the ILP will increase, as new cache miss path
information will be added (note that the miss path information added during
earlier iterations is retained). An important advantage of this approach is that
the refinement process can be stopped at any time, and the WCET that was
obtained after the last completed iteration can be safely used.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Number of Iterations

P
re

c
is

io
n

 I
m

p
ro

v
e

m
e

n
t 

(i
n

 %
)

 

 

bsort100
cover
crc
expint
fft
lms
ndes
qurt
ud

Fig. 5.Graph showing precision improvement in WCET obtained at different iterations
of our CEGAR-like approach, over baseline cache analysis

Figure 5 shows the precision improvement in WCET of 9 benchmarks over
the baseline cache analysis, obtained after different number of iterations of the
above approach, ranging from 1 to 10. Most of the benchmarks start showing
lower WCETs from the first iteration itself, with increasing precision improve-
ment as the number of iterations increase. For 5 benchmarks, the maximum
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precision improvement is achieved within 10 iterations, while the other bench-
marks continue to show precision improvement after the first 10 iterations. This
demonstrates that our approach is useful even when applied to limited number
of cache accesses, if they are selected appropriately.

Note that we continue to use a threshold of 8 on the size of cache miss paths.
The above strategy is motivated by a similar CEGAR-like strategy used for
WCET estimation in [13], in which the accesses for abstraction refinement are
selected in a similar manner. However, for the refinement itself, [13] uses AI-
based Must and May cache analysis on the cache set containing the selected
access. Hence, the information about the worst-case path is still ignored during
the refinement process.

Decreasing the Threshold: Restricting the length of the miss paths is another
avenue for trading off precision with analysis time, since this will decrease both
the time required to find the miss paths and the size of the ILP. We experimented
with different thresholds for the maximummiss path length, noting the number of
extra variables in the final ILP (as compared to the ILP generated by IPET), and
the precision improvement of WCET. Table 2 shows the precision improvement in
WCET, and the extra number of variables, for each of the 9 benchmarks of Figure
4, with different threshold values, ranging from1 to 8.Note that in this experiment,
we find and integrate miss paths of all NC-accesses into the ILP.

Table 2. Effect of different thresholds of miss path length on size of ILP and WCET

Benchmark Precision Improvement (%) Extra variables
Threshold = Threshold =

1 2 4 8 1 2 4 8

bsort100 0.42 0.42 0.42 0.42 8 8 8 8

cover 52.41 52.41 50.49 55.78 15 15 23 12

expint 13.66 40.9 40.9 40.9 22 24 25 25

lms 0 3.82 3.82 11.45 33 34 37 26

crc 0 0 4.25 4.67 186 231 472 576

fft 2 3.2 22.48 33.3 211 230 255 259

ndes 0.7 0.7 6.1 17.3 312 316 543 574

qurt 9.7 9.7 19.38 25.28 329 328 366 500

ud 5 5 5 20.6* 323 390 972 897*

Concentrating on the precision improvement, it is interesting to see that even
with low thresholds, several benchmarks show considerable precision improve-
ment. With a threshold of 2 (half the cache associativity), all benchmarks except
crc experience non-zero precision improvement, while for a threshold value equal
to the cache associativity, all benchmarks show improvement. For all the bench-
marks, the maximum precision improvement is obtained at the highest threshold
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value (8). The caveat with increasing the maximum miss path length is the in-
crease in the size of the ILP. For most of the benchmarks, the maximum number
of extra variables are added at the maximum threshold. Note that for these
benchmarks, the number of added variables is still small enough for lp solve to
solve it very fast. variables decrease when the threshold is increased from 4 to
8. However, the precision improvement is still higher.

For some benchmarks, (e.g. cover, lms) the number of variables decrease on
increasing the threshold value from 4 to 8. The reason is that some of the miss
paths determined with a threshold of 4 would not be actual cache miss paths,
but the analysis does not recognize this due to the restriction on length. Once
the allowable length is increased, the analysis will be able to determine this, and
discard them, thus decreasing the number of variables. It should be noted that
for the benchmark nsichneu, for a threshold of upto 4, all the accesses had less
than 100 miss paths. The number of extra variables in the ILP for nsichneu
with a threshold of 4 were 2832, with 52 seconds required to compute the miss
paths, and 4 seconds required to solve the ILP (970 extra variables were required
for thresholds of 1 and 2). In general, the above results suggest that by lowering
the threshold on the length of miss-paths, the size of the ILP can be controlled.
Also, even with a low threshold, it is possible to improve the precision of the
WCET using our approach.

While we have not experimented with the impact of infeasible paths on cache
analysis, we note that previous techniques which integrate infeasible path infor-
mation into the IPET ILP ([4], [5]) can be directly applied on our modified ILP
which has cache miss path information added to it. We have only concentrated
on instruction caches, because although it is possible to use cache miss paths for
data caches with few modifications, it may not have the same impact on improv-
ing the precision. Address analysis for data caches is highly imprecise, and may
only estimate a set of cache blocks (instead of a single cache block) accessed by
an instruction. Hence, while finding cache miss paths, we may quickly exceed A
distinct cache blocks, which may result in short and imprecise miss paths.

9 Conclusion

In this work, we have presented a new approach to cache analysis which does not
completely rely on Abstract interpretation, but instead uses AI to obtain path-
sensitive information about cache accesses, in the form of cache miss paths. This
information is then integrated into the IPET ILP, thus allowing us to take advan-
tage of the worst-case path information and find the cache behavior of accesses
along this path. Since our AI-based analysis is path-sensitive to a limited ex-
tent, to control the size of the ILP, we also provide user-defined thresholds and a
CEGAR-like approach to trade-off analysis time with precision. Experimentally,
our approach provides lower WCETs for 9 out of 27 Mälardalen benchmarks,
with an average precision improvement 22.5 %, with a negligible increase in anal-
ysis time. Our approach also provides the opportunity to use already available
infeasible path information for cache analysis.
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Abstract. We introduce an enhanced information-flow analysis for tracking the
amount of confidential data that is possibly released to third parties by a mobile
application. The main novelty of our solution is that it can explicitly keep track
of the footprint of data sources in the expressions formed and manipulated by the
program, as well as of transformations over them, yielding a lazy approach with
finer granularity, which may reduce false positives with respect to state-of-the-art
information-flow analyses.

Keywords: Abstract Interpretation, Privacy, Information-flow Analysis.

1 Introduction

Mobile applications typically ask for permission to access personal (i.e. relevant with
respect to privacy) information stored on the device. However, even in non-malicious
applications, once these permissions are granted it is often the case that data concerning
gender, sex, age, GPS location, smartphone ID, etc. is managed in a way that partially
releases it to third parties (e.g. for advertising, profiling, analytics and social comput-
ing), with or without some degree of obfuscation, leaving the user unaware of how much
confidential information actually leaked [29,36]. Most systems, in fact, are designed to
allow users to configure access control (e.g., by setting permissions), without enabling
them to monitor the actual information flow of confidential data. In reality, users may
trust an application to manage their personal information, but might be concerned about
the obfuscation degree applied to that information before it is passed to other (possibly
untrusted) actors. The key issue is to keep track of (and possibly restrict) the amount of
confidential information that is released by an app, without compromising the usability
of the app itself by enforcing overly conservative constraints.

In this challenging context, the aim of this work is to define a theoretical framework
to support the design of tools that provide developers as well as end users with better
control of how the values managed by the applications reveal confidential data stored
on the device.

1.1 Background

Preserving confidentiality of sensitive information in software systems is a subject of
intensive research. Various language-based information-flow security analyses were

D. D’Souza et al. (Eds.): VMCAI 2015, LNCS 8931, pp. 61–79, 2015.
© Springer-Verlag Berlin Heidelberg 2015
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proposed [18,21,32,35]. Most of these works are based on the non-interference no-
tion that says that a variation of confidential data given as input to a program does
not cause any variation of publicly observable data [12]. The approaches are differ-
ent (type systems [28,32,34], dependence graphs [18,22], slicing [2,6,21,35], etc.), and
apply to different languages including imperative, object-oriented, functional and struc-
tured query languages [17,18,21,30]. Recent works address in particular data protection
from permission-hungry Android applications [4,7,15,19,24,40], and data-leakage ag-
gregation due to undesired inter-application dataflows [31].

However, in the scenario depicted above the crucial point is not just to discover if
sensitive data is confined to private variables, but also to keep control of how the autho-
rized access to confidential data is compliant with respect to a privacy policy, expressed
in terms of minimal degree of obfuscation that should be applied to sensitive data in
the exposed values. In this respect, the information-flow approach of the mentioned
works yields overly conservative results, as the granularity of public/private variables
is too coarse, just like the tampered/untampered granularity [1] assigned to data when
declassification mechanisms are introduced for relaxing confidentiality policies [5].

1.2 Contribution

This work extends taint analysis, which is a popular variant of information-flow analysis
[37,38,39] in order to trace the dependence flow of confidential information from data
sources to data sinks. A finer granularity of the analysis is obtained by explicitly keeping
track of the footprint of data sources in the expressions managed by the program, as well
as of the obfuscation impact of the program operators. As the analysis is defined as an
instance of the Abstract Interpretation framework [10], the tradeoff between accuracy
and efficiency can be tuned by a suitable choice of the concrete domain abstraction.

The main contributions of this paper can be summarized as follows:

– We design an enhanced concrete semantics that makes explicit the dependence of
values on local data sources.

– We define the notion of “confidentiality value of an expression” in terms of min/-
max confidentiality degree of its sources and of min/max obfuscation degree of the
operators that are used to generate it.

– We lift the enhanced concrete semantics to (computable) abstract semantics accord-
ing to the Abstract Interpretation framework.

– We show how a static analysis based on this framework can be used to verify the
satisfaction of privacy policies.

– We provide practical evidence of the effectiveness of our approach.

In concrete implementations, tracking indirect information flows negatively impacts the
effectiveness of the analysis due to the presence of exceptions. Therefore, our approach
disregards them. However, the treatment of implicit flows can be further incorporated
into our framework by infusing relational operators’ footprint in the different condi-
tional statements’ branches.
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1 public class IMBanner {
2 public void loadBanner() {
3 UserInfo user = new UserInfo();
4 user.updateInfo ();
5 BannerView banner = new BannerView(user);
6 banner.loadNewAd();
7 show(banner);
8 }
9 }

10

11 public class BannerView {
12 private UserInfo user;
13 BannerView(UserInfo user) {
14 this .user = user;
15 }
16 void loadNewAd() {
17 String url = ”http :// www.inmobi.com/...?id=”
18 + user.id + ”&lang=”+user.language+
19 ”&country=” + user.country + ”&loc=” + user.loc ;
20 // open an http connection with url
21 // update the new ad to display
22 }
23 }

25 public class UserInfo {
26 String language;
27 String country;
28 String id ;
29 Location loc ;
30

31 void updateInfo() {
32 Locale localLocale = Locale.getDefault ();
33 language = localLocale.getLanguage();
34 country = localLocale.getCountry();
35 String androidId = Settings.Secure.getAndroidId();
36 id = MessageDigest.hashSHA1(androidId);
37 loc = LocationManager.getLastKnownLocation();
38 }
39 }

Fig. 1. Code Snippet from the Inmobi Library

1.3 Structure of the Paper

The rest of paper is structured as follows: Section 2 presents some examples that moti-
vate the main novelties of our approach. Sections 3, 4, and 5 describe the syntax, and the
enhanced concrete and abstract semantics, respectively. Section 6 introduces the notion
of confidentiality and obfuscation values for sources and operators. Section 7 shows
how this framework can be applied to the verification of privacy compliance policies.
Section 8 discusses related work, while Section 9 concludes.

2 Motivating Examples

2.1 Inmobi

Consider the motivating example in Figure 1. This code is extracted from the Inmobi
library.1 Inmobi is among the three most popular advertisement engines for Android
apps [3]. This code sketches the main steps performed by theInmobi library when load-
ing an advertisement banner. This is performed by method IMBanner.loadBanner(),
that first creates and updates a UserInfo object (lines 3-4), then creates and loads the
advertisement banner view passing the information about the user (lines 5-6), and fi-
nally displays the banner (line 7). Even though, at a first glance, this method does not
seem to access any confidential information, user.updateInfo() collects and trans-
forms various pieces of information about the user and the device, and in particular (i)

1 This library is obfuscated, and some parts (and in particular BannerView.loadNewAd()) can-
not be decompiled. For the sake of readability, we represented the main components of the
library in this code snippet.
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the language and country of the user from the default Locale object (lines 32-34), (ii)
the hashing of the Android ID (lines 35-36)2, and (iii) the last known location (line 37).
When a UserInfo object is passed to the constructor of BannerView, it is stored in
a local field. The information contained in this field is then concatenated in the URL
(lines 17-19) used to retrieve the advertisement banner. In this way, the data collected
by UserInfo.updateInfo() is leaked to the advertisement server. This data aggregates
various sources (language and country from the Locale, the android ID, and the loca-
tion).

This example shows that we need to track complex flows of information. For in-
stance, with a standard taint analysis [39] an alarm would be raised upon any flow from
a source to a sink. In this particular example, we expect that it would be fine to release to
the advertisement server some of the sources (e.g., the country and the language, but not
the Android ID), so taint analysis could raise a false alarm in this scenario. Indeed, we
are interested in computing the global amount of data that is released (that is, country,
language, Android ID, and location), and to raise an alarm only if this amount exceeds a
specified threshold. In addition, one needs to specify if the transformation performed on
the confidential data (e.g., hashing the Android ID) is obfuscating the value sufficiently
or not. For instance, the hashing of the ID might be used to track a user or device if
the hash clashing is quite rare, and therefore the level of obfuscation performed by this
transformation might be insufficient.

2.2 IMSI

The following code snippet is extracted from internal Android library com.android.
internal.telephony.cdma.RuimRecords:
1 String mImsi = telephonyManager.getDeviceId();
2 log( ”IMSI:” + mImsi.substring (0, 6) + ”xxxxxxxxx”);

It leaks a portion of the device identifier through the log. The fundamental question here
is whether the first 6 characters of the International Mobile Subscriber Identity (IMSI)
code contain confidential information that the user does not want to leak outside. The
IMSI code is usually made by 15 characters, where the first 3 characters identify the
country, the following 2 or 3 characters identify the mobile network, and the rest is
used to identify the device.3 Therefore, we assume that the first 6 characters do not
contain confidential information.

3 Syntax

At the lowest level of the language, we consider expressions on strings (s ∈ S), inte-
gers (n ∈ Z), and Boolean values (b ∈ B). We denote by bexp and nexp Boolean

2 The Android ID is “randomly generated when the user first sets up the device and should
remain constant for the lifetime of the user’s device”. Therefore, it is used to track a specific
user (rather than a device) by advertisement engines. We simplify the API call to make the
code more readable.

3 http://en.wikipedia.org/wiki/International mobile subscriber
identity.

http://en.wikipedia.org/wiki/International_mobile_subscriber_identity
http://en.wikipedia.org/wiki/International_mobile_subscriber_identity
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and numerical expressions, respectively. In addition to basic numerical, textual, and
Boolean expressions, we introduce label constants (that refer to datastore entries). Let
Lab be the set of labels. We denote by 
, possibly subscripted, labels identifiers in Lab.
Our language support a statement read(
) that returns the value read from the datas-
tore corresponding to the label 
. We define string expressions by sexp ::= s | sexp1 ◦
sexp2 | encrypt(sexp, k) | sub(sexp, nexp1, nexp2) | hash(sexp) | read(lexp) where
◦ denotes the concatenation of two strings, k denotes a key used to encrypt a textual
value, sub(s, n1, n2) computes the substring of s from the n1-th to the n2-th character,
and hash(s) computes the hash value of s. For the sake of simplicity, we focus our
formalization on this minimal representative language, and on operations over strings.
Our approach can be extended straigthforwardly to support other operations and types.

Finally, we define a standard minimal imperative set of statements. In particular, we
support string assignment (x := sexp), concatenation (c1; c2), conditional if

(if bexp then c1 else c2), and while loops (while bexp do c). In addition, we have
a special statement send(sexp) that leaks a string value.

4 Collecting Semantics

4.1 Domain

First of all, we define atomic data expressions by D = {〈
i, Li〉 : i ∈ I}. Given a set of
data labels, which identify the locations of the read-only4 datastore a program interacts
with, an atomic data expression adexp is a set of elements 〈
i, {(opj , 
′j) : j ∈ J}〉.
An element 〈
i, {(opj , 
′j) : j ∈ J}〉 in adexp says that the value of adexp has been
obtained from the datum stored in the location 
i by combining it with data coming
from the locations 
′j through the corresponding operations opj . In other words, an
atomic data expression keeps track, for each source of the expression value, of the set
of other data sources that were used to get that value from it. We denote by D the
domain of atomic data.

We focus our collecting semantics on the variables referring to values coming from
the datastore. Therefore, we define a data environment mapping local variables in Var
to atomic data expressions (D : Var −→ ℘(D)). Note that each variable may con-
tain data about different sources (e.g., the concatenation of the strings representing the
Android identifier and the location), and therefore each variable is related to a set of
atomic data expressions. In addition, the concrete state tracks value information as well
(V : Var −→ (Z ∪ S)). Formally,Σ = D × V .

We then introduce a concrete datastore that contains all the possible atomic data that
may be read by a program, where the special label � is used to represent data coming
either from the input of the program or from the constant set of the program itself, i.e.
data that is not contained in the datastore.

Definition 1 (Concrete Datastore). A concrete datastore C is a set {〈
i, ∅〉} : i ∈
I} ⊆ D such that ∀i, j ∈ I : i 
= j ⇒ 
i 
= 
j, and 
i 
= �}.

4 We restrict our focus to a read-only datastore, for the sake of simplicity. Extending the model
to the general case brings about the problem of aliasing that should be studied further.
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SA[[x]](a, v) = a(x)
SA[[read(lexp)]](a, v) = {〈SL[[lexp]](a, v), ∅〉}

SA[[encrypt(sexp, k)]](a, v) = {〈�1, L1 ∪ {([encrypt, k], �1)}〉 : 〈�1, L1〉 ∈ SA[[sexp]](a, s, n)}
SA[[s]](a, v) = {〈�, ∅〉}

SA[[sexp1 ◦ sexp2]](a, v) = {〈�1, L1 ∪ {(◦, �2)}〉, 〈�2, L2 ∪ {(◦, �1)}〉 :
〈�1, L1〉 ∈ SA[[sexp1]](a, v) , 〈�2, L2〉 ∈ SA[[sexp2]](a, v)}

SA[[sub(sexp, k1, k2)]](a, v) = {〈�1, L1 ∪ {([sub, k1, k2], �1)}〉 : 〈�1, L1〉 ∈ SA[[sexp]](a, v)}
SA[[hash(sexp)]](a, v) = {〈�1, L1 ∪ (hash, �1)〉 : 〈�1, L1〉 ∈ S[[sexp]](a, v)}

Fig. 2. Semantics of Expressions on Atomic Data

S[[x := sexp]](a, v) = (a[x �→ SA[[sexp]](a, v)], v[x �→ SS[[sexp]](v)])
S[[send(sexp)]](a, v) = (a, v)

S[[c1; c2]](a, v) = S[[c2]](S[[c1 ]](a, v)))

S[[if bexp then c1 else c2]](a, v) =

{
S[[c1]](a, v) if SB [[bexp]](v)
S[[c2]](a, v) otherwise

S[[while bexp do c]](a, v) = S[[ if (bexp) (c; while bexp do c)](a, v)

Fig. 3. Concrete Semantics of Statements

Given a program p, we will denote the concrete datastore associated with this pro-
gram by Cp.

Example Consider the Inmobi example from Section 2. Method updateInfo accesses
various data coming from the datastore. We represent by (i) 〈Language, ∅〉 the lan-
guage returned by the Default object (line 30), (ii) 〈Country, ∅〉 the country returned
by the Defaultobject (line 31), and (iii) 〈AndroidId, ∅〉 the Android identifier. These
three data sources are stable, that is, they always return the same values. For the locations
(that is, line 34) it may be the case that different calls of getLastKnownLocation re-
trieves different locations. Therefore, the concrete datastore contains 〈Locationi, ∅〉 :
i ∈ N as well. Instead, for the IMSI example we have only one datum 〈IMSI, ∅〉.

4.2 Semantics

We suppose that a standard concrete evaluation of numerical (SN : nexp × V → Z)
and string (SS : sexp × V → S) expressions is provided, as well as the evaluation of
Boolean conditions (SB : bexp× V → {true, false}). In addition, we suppose that the
semantic evaluation of label expressions (SL : lexp × Σ → Lab) returns a data label
given a label expression.

The evaluation of the expressions on atomic data SA : sexp×Σ → ℘(D) is defined
in Fig. 2. Observe that this enhanced concrete semantics of expressions can be seen
as an abstract representation of partial execution traces, where each expression tree is
projected to the data associated to the labels in Lab.

Once the semantics of expression is formalized, the (concrete enhanced) semantics
of statements can be expressed as depicted in Figure 3.

Example. Consider again the Inmobi example of Section 2. After the execution of
updateInfo (line 4) we have that (i) user.language 	→ {〈Language, ∅〉},
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(ii) user.country 	→ {〈Country, ∅〉}, (iii) user.id 	→ {〈AndroidId,
{(hash.Android-Id)}〉}, and (iv) user.loc 	→ {〈Location1, ∅〉}. We then concate-
nate all this data in a string stored in url at line 17. Therefore, we obtain the following
atomic data expression with label AndroidId:
〈AndroidId, {(hash, AndroidId), (◦, Language), (◦, Country), (◦, Location1)}〉

while for Location1 we obtain 〈Location1, {(◦, AndroidId)}〉 since this is the last
element concatenated when building url. For the IMSI example, we obtain that the
data expression leaked at line 2 is 〈IMSI, {([sub, 0, 6], IMSI)}〉.

4.3 Canonical Form of Atomic Data

The definition of atomic data does not impose any constraint on the number of elements.
In particular, the same source label can appear several times in an atomic datum, when
its data have multiple impact on the expression’s value. However, if we are just inter-
ested to observe the sources of an expression, and the set of operators applied to each
source, a more compact representation of atomic data can be given, where each source
label appears at most once.

Given an atomic datum d = {〈
j , Lj〉 : j ∈ J}, we denote by src(d) its source
set {
j : j ∈ J}. Moreover, given a label 
 and an atomic datum d, we denote by
links(
, d) the links set of 
 in d if 
 ∈ src(d), and ∅ otherwise.

Definition 2. We say that an atomic datum d is in canonical form if every label in
src(d) occurs as a source label exactly once in d. Given an atomic datum, its canonical
form can be obtained by applying the following unary source collapse operator ρ:

ρ(d) = {〈
,∪links(
, d)〉 : 
 ∈ src(d)}

5 Abstract Semantics

There are two main ways to get abstractions of the concrete semantics defined so far:
abstracting values, and abstracting labels. The abstract elements should be an overap-
proximation of the concrete values assigned to variables in the concrete computation
steps.

5.1 Values Abstraction

Values can be abstracted by means of well-known either relational or non-relational
domains for numerical and textual values [9,26]. Therefore, we suppose that a value
abstract domain V a is provided, and it is equipped with the standard lattice and semantic
operators.

5.2 Labels Abstraction

Labels can be abstracted by any abstract domain for categorical data, like a flat constant
propagation domain. Observe that when dealing with data stored in relational form, i.e.
by means of bi-dimensional tables, a relational abstract domain for array representation
can be adopted, as defined in [11].
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Example. In the Inmobi example of Section 2, we do not need to apply any abstraction
on Language, Country, and AndroidId, since these are persistent throughout the exe-
cution. Instead, we need to apply abstraction to the locations Locationi : i ∈ N, since
the statement at line 37 may produce many values. Therefore, we abstract together all
the locations produced by the same program point pp with Locationpp. In our example,
this means that we abstract the data source at line 37 with Location37.

5.3 Atomic Data Abstraction

We are now in position to formalize the atomic data abstract domain AD.

Definition 3 (Abstract Atomic Data). Given a set of atomic data, an abstract element
will be a set of tuples {〈
aj , La�

j , L
a

j 〉 : j ∈ J} ∈ AD, where

– 
aj is an element of an abstract domain that abstracts labels in Lab
– La�

j = {(opaij , 
aij) : i ∈ I} is an under-approximation of the set of operators ap-
plied to the sources represented by 
aj with values coming from sources represented
by 
aij

– La

j = {(opaij , 
aij) : i ∈ I ′} is an over-approximation of the set of operators ap-

plied to the sources represented by 
aj with values coming from sources represented
by 
aij

– La�
j ⊆ La


j .

The order on the abstract elements is given by the order on the Cartesian product of
the components’ domain, and the least upper bound and greatest lower bound operators
are defined accordingly.

Definition 4 (Partial Order on Abstract Atomic Data). Given two abstract atomic
data d1 = {〈
a1i, La�

1i , L
a

1i 〉 : i ∈ I1} and d2 = {〈
a2i, La�

2i , L
a

2i 〉 : i ∈ I2} on the same

abstract domains for values and labels,
d1 � d2 ⇔ ∀i ∈ I1 ∃j ∈ I2 : 
a1i = 


a
2j , L

a�
1i ⊇ La�

2j , L
a

1i ⊆ La


2j

Given an abstract atomic datum {〈
aj , La�
j , L

a

j 〉 : j ∈ J}, we denote by src(d) its

source set {
aj : j ∈ J}.

Definition 5 (Least Upper bound of Abstract Atomic Data). Given two abstract
atomic data d1 = {〈
a1i, La�

1i , L
a

1i 〉 : i ∈ I1} and d2 = {〈
a2i, A, La�

2i , L
a

2i 〉 : i ∈ I2}

on the same abstract domains for values and labels, the least upper bound of d1 and d2
is the atomic datum

d1 � d2 =
⋃

�a∈src(d1)∪src(d2)

⎧⎨⎩
〈�a, La�

1 , La�
1 〉 if �a ∈ src(d1) \ src(d2)

〈�a, La�
2 , La�

2 〉 if �a ∈ src(d2) \ src(d1)
〈�a, La�

1 ∩ La�
2 , La�

1 ∪ La�
2 , 〉 otherwise

⎫⎬⎭
Let Laba and A be complete lattices featuring Galois Connections with the con-

crete domains of labels and values, respectively. Let (γLab, αLab), (γA, αA) be the cor-
responding concretization and abstraction functions. When applied to a set of links
{(opi, 
i) : i ∈ I}, the function αLab returns the set {(opai , αLab(
i)) : i ∈ I}, where
opai is the abstract operator that safely approximates opi in the abstract domain A.
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Definition 6 (Abstraction function). The abstraction function α : ℘(D) −→ AD is
first defined on singletons and then extended to sets by applying the least upper bound
operator.

αs({〈
i, Li〉 : i ∈ I}) = {〈αLab(
i), αLab(Li), αLab(Li)〉 : i ∈ I}
α({dj ∈ D : j ∈ J}) =

⊔
j∈J αs(dj).

Notice that in the definition above, when considering a single atomic datum, in its
abstract representation the under- and over-approximations of the link sets are equal.
The gap among these sets is introduced in fact by the least upper bound operator.

Definition 7 (Concretization function). The concretization of abstract atomic data is
defined as an adjoint of the abstraction function: γ(ad) = {d ∈ D : α(d) � ad}

Theorem 1 (Galois Connection). The functions α and γ defined above form a Galois
Connection between ℘(D) and AD, i.e.:

i) α and γ are monotone,
ii) ∀ad ∈ AD : α(γ(ad)) �AD ad
iii) ∀S ⊆ D : S ⊆ γ(α(S)).

Proof. AD is the Cartesian product of abstract domains featuring Galois Connections
with the concrete domain ℘(D), and the functions α and γ are defined in canonical way
w.r.t. the Cartesian product [8].

We define by ADa : Var 	→ ℘(AD) the component of the abstract domain tracking
information on atomic data expressions. The partial order, the upper bound and the
concretization function are defined as pointwise application of the operators defined on
AD.

5.4 Abstract Domain

Our abstract domain is the Cartesian product of the Atomic Data abstract domain (ADa),
and the value domain (V a).

5.5 Data-Store Abstraction

The analysis of a program P aimed at verifying that it satisfies a given confidential-
ity policy with respect to data stored in devices running P can be defined either as a
”datastore-aware” analysis, i.e. running the analysis on the actual data contained in the
device, or in a ”datastore-unaware” way, i.e. running the analysis on a generic datastore
that represents the actual datastores under a suitable abstraction of labels and values.

A ”datastore-aware” analysis has the advantage of being in general more accurate,
as it allows to deal with the actual values that are leaked by the program. However, this
scenario requires the analysis being applied only once the program is installed on the
device, as an app that runs on the device itself or on a third-party verifier that should be
given access permission to the device’s datastore.

The accuracy of a ”datastore-unaware” analysis heavily relies on the datastore ab-
straction, but it has the advantage of being applicable to the program with no need to
access the actual confidential data when running the analysis itself.
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Sa[[x := sexp]](aa, va) = (aa, Sa
v [[x := sexp]](va))

Sa[[send(sexp)]](aa, va) = (aa, va)
Sa[[c1; c2]](a

a, va) = Sa[[c2]](S
a[[c1]](a

a, va))
Sa[[if bexp then c1 else c2]](a

a, va) = Sa[[c1]](a
a, Sa

B [[bexp]](va)) 
 Sa[[c2]](a
a, Sa

B [[¬bexp]](va))
Sa[[while bexp do c]](aa, va) = fix(Sa[[ if (bexp) (while bexp do c)](aa, va))

Fig. 4. (Abstract) Semantics of Statements

Definition 8 (Abstract Datastore). Given a Galois connection between ℘(D) and AD,
an abstract datastore is a set Da = {{〈
aj , ∅, ∅〉} : j ∈ J} ⊆ AD such that ∀i, j ∈ J :
i 
= j ⇒ 
ai 
= 
aj .

An abstract datastore Da = {{〈
aj , ∅, ∅〉} : j ∈ J} is an abstraction of all con-
crete datastores D = {{〈
i, ∅〉} : i ∈ I} that satisfies the following conditions:⋃

i∈I{α(
i)} =
⋃

j∈J{
aj }, and ∀i ∈ I ∃!j ∈ J such that 
i ∈ γLab(
aj ).

Example. Consider the Inmobi example introduced in Section 2. In particular, we
have the following atomic data expressions: 〈Language, ∅, ∅〉, 〈Country, ∅, ∅〉, and
〈AndroidId, ∅, ∅〉. The only case that is slightly different regards Location since we
abstract with 〈Location37, ∅, ∅〉 all the concrete data expressions in 〈Locationi, ∅〉 :
i ∈ N. Similarly, for the IMSI example we have 〈IMSI, ∅, ∅〉.

5.6 Abstract Semantics of Statements

Figure 4 depicts the abstract semantics of statements5. We omit the abstract semantics
of expressions, as it can be easily formalized by mimicking the concrete semantics,
the only difference being that (1) every operation has impact on both link sets asso-
ciated to an abstract label, and (2) abstract atomic data are kept in canonical form
by systematically applying the following normalization operator in presence of mul-
tiple occurrences of the same label in the source set of an abstract atomic datum:
ρ(ad) = {〈
a,∩links(
a, ad),∪links(
a, ad)〉 : 
a ∈ src(ad)}
Example. The abstract semantics of the Inmobi example does not substantially differ
from the concrete semantics for the the example of Section 2. After the execution of
updateInfo (line 4), we have the same information described in Section 4.2, the only
difference being that the abstract label for the location is Location37 instead of the
concrete label Location16. The same consideration applies to the results of the con-
catenation at line 17.

For the IMSI example, the abstract semantics tracks that we log the abstract datum
〈IMSI, {([sub, 0, 6], IMSI)}, {([sub, 0, 6], IMSI)}〉.

The following theorem formalizes the soundness of the analysis.

5 Observe that this semantics does not capture indirect information flow.
6 For the sake of simplicity, we ignore the issues related with heap abstraction. It has been

demonstrated [16] that value domains (like ADa and V a) can be combined with heap abstrac-
tions relying on standard operators of value domains.
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Theorem 2. The abstract semantics of a program P with an abstract datastoreDa is a
conservative (sound) over-approximation of the enhanced concrete semantics of P with
a concrete datastoreD ∈ γ(Da).

Proof. By induction on the lenght of the trace as in [23], by lifting the local correctness
of the operations to the Cartesian product [8].

We observe in particular that for each execution of P with input I, if a value assigned
to a variable v in the store is obtained from values coming from local data stored in 

through operations in R, then there is a corresponding abstract trace of P with input
α(I), assigning v an abstract atomic datum ad such that (i) 
a ∈ src(ad), and (ii)
R ⊆ {op : (op

a
, 
aj ) ∈ links(
a, ad)} (where 
a = α(
) is the label in the abstract

datastore representing 
).

6 Confidentiality and Obfuscation

So far, we made no distinctions among data contained in the data-store, with respect to
their confidentiality level. In general, we can consider a lattice of confidentiality levels
S, and we can associate to each label 
 in Lab an element s� ∈ S. Confidentiality levels
are assigned to labels, and values corresponding to these labels will inherit from them
the same confidentiality level.

On the operation side, we introduce the notion of obfuscation degree. The intuitive
idea is that if you know which operation has been applied to get an expression, and
the expression itself, you can look at the amount of information which is necessary to
recover the sources the operation applied to. This leads us to assume the existence of a
partial-order relation among operations that captures their different obfuscation impact.

This can be seen as a generalization of the all-or-nothing tainting approach [37,39],
where only declassification operators (e.g., encryption) are tracked.

The obfuscation degree of an operator can be seen as a measure of the complexity
of the brute-force analysis needed by an external observer in order to detect the actual
source data when knowing just the result of the operation and the applied operator.

Definition 9 (Obfuscation Degree). Consider a complete lattice (O,�O), and a map
ζ : Op → O, such that ζ(op1) �O ζ(op2) if the obfuscation power of op1 is smaller
than the obfuscation power of op2. We say that the obfuscation degree of an operator
op ∈ Op is ζ(op).

Example. The string operators of sexp introduced in Section 3 have different obfus-
cation degrees. For instance, encrypt obfuscates more that hash, while the power of
obfuscation of substring may depend on the indexes used to compute the substring,
and the particular information contained in the string. For instance, in the IMSI exam-
ple of Section 2 the substring operator at line 2 has a high obfuscation degree, but
this relies on the value information tracked on the indexes passed to substring.

6.1 Confidentiality of Atomic Data

Given an atomic datum, a confidentiality value can be assigned to it by considering
an under- and over-approximation of the confidentiality levels of source data, and by
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considering an under- and over- approximation of obfuscation power of the operations
applied to them.

We first define it at a concrete level, on top of our instrumented atomic data semantics,
and then we can lift this notion to the abstract case.

Definition 10 (Confidentiality of Atomic Data for Monotonic Operators). Let S be
a lattice representing confidentiality levels of labels. Let O be a lattice representing the
obfuscation power of operators. Finally, let η and ζ be functions assigning confidential-
ity/obfuscation values in S and O to labels and operators, respectively.

If the combination of operators in
⋃

i∈I Li is monotonic with respect to the obfusca-
tion order in the lattice O, the confidentiality value of an atomic datum {〈
i, Li〉 : i ∈ I}
with respect to (η, ζ) is the tuple (scmin, scmax, lcmin, lcmax), where:

scmin = �D{η(
i) : i ∈ I} lcmin = �O{ζ(opij) : (opij , 
j) ∈ Li, i ∈ I}
scmax = �D{η(
i) : i ∈ I} lcmax = �O{ζ(opij) : (opij , 
j) ∈ Li, i ∈ I}

Example. Imagine that we have L < M < H as both the confidentiality and obfuscation
lattice. We then establish that encrypt has H obfuscation level, and hash has level M,
whereas the obfuscation level of substring depends on the parameters: [sub, k1, k2] has
level L if k1 = 6 and k2 = 9, it has level M if 6 < k1 + k2 < 15, and it has level H if
k1 + k2 ≤ 6 . Consider then the concrete labels of the Inmobi example introduced in
Section 4.1. We define as L both Language and Country, since they do not contain
particularly confidential information. Instead, we define as H AndroidId, since this
datum allows to uniquely identify our Android account, and track our activity. Finally,
Locationi : i ∈ N are all M, since these locations allow to identify our geographical
location at a given point, but do not uniquely identify us. For the IMSI example, we
obtain that for the data expression leaked at line 2, i.e. 〈IMSI, {([sub, 0, 6], IMSI)}〉, we
get scmin = scmax = H and lcmin = lcmax = H. This says that even if sensitive data
items are leaked, a powerful obfuscation is definitely applied to them before releasing
them.

Notice that Definition 10 is explicitly restricted to the case of operators whose com-
bination is monotonic with respect to the obfuscation order in O. If we are interested to
consider also programs where the combination of operators is non-monotonic, we just
need to give an obfuscation value to sets of operators instead of singletons.

Definition 11 (Confidentiality of Atomic Data - General Case). Let S be a lattice
representing confidentiality levels of labels. Let O be a lattice representing the obfusca-
tion power of operators. Finally, let η be a function assigning confidentiality values in S

to labels, and let ζ be a function assigning to each set of operators an interval in O× O

representing its min and max obfuscation power.
The confidentiality value of an atomic datum {〈
i, Li〉 : i ∈ I} with respect to (η, ζ)

is the tuple (scmin, scmax, lcmin, lcmax), where:
scmin = �D{η(
i) : i ∈ I} lcmin = �O{π1(ζ({opij : (opij , 
j) ∈ Li})) : i ∈ I}
scmax = �D{η(
i) : i ∈ I} lcmax = �O{π2(ζ({opij : (opij , 
j) ∈ Li})) : i ∈ I}
where π1 and π2 denote the on the min and max element of the interval, respectively.

Notice that keeping track of mimimal confidentaility and maximal obfuscation al-
lows us (when they are equal to maximal confidentiality and minimal obfuscation, re-
spctively) to be aware of the precision of these values.
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6.2 Confidentiality of Abstract Atomic Data

In order to define the confidentiality value of abstract atomic data, we need to assign a
confidentiality value to abstract labels. As abstract labels may represent concrete labels
with different confidentiality values, the confidentiality function ηa returns an interval
min/max of values in S× S instead of a single value. On the obfuscation side, we just
lift the value, as we can assume there is a always a one-to-one correspondence between
concrete and abstract operators.

As in the concrete setting, we distinguish the case in which all operator combinations
behave monotonically with respect to the obfuscation order, from the general case, that
takes into account non-monotonic behaviors, the price to pay being to assign obfusca-
tion values to sets of operators instead of single ones.

Definition 12 (Confidentiality Value of Abstract Atomic Data - Monotonic Opera-
tors). Let S and O be the lattices representing the labels’ confidentiality and the obfus-
cation power of operators, respectively. Let η and ζ be functions assigning confidential-
ity/obfuscation values in S and O to (concrete) labels and operators, respectively. Let
ηa : Laba → S× S such that ηa(
a) = [�{η(
) : 
 ∈ γ(
a)},�{η(
) : 
 ∈ γ(
a)}].
Let ζa be the function assigning to each abstract operator the same obfuscation value
assigned by ζ to the concrete operator it corresponds.

If the combination of operators in Op appearing in
⋃

i∈I L
a

i is monotonic with re-

spect to the obfuscation order in O, then the confidentiality value of an abstract atomic
datum {〈
ai , valai , Ai, L

a�
i , L

a

i 〉 : i ∈ I} is a tuple (scamin, sc

a
max, lc

a
min, lc

a
max),

where:
scamin = �S{π1(ηa(
ai )) : i ∈ I} lcamin = �O{ζa(opaij) : (opaij , 
aj ) ∈ La�

i , i ∈ I}
scamax = �S{π2(ηa(
ai )) : i ∈ I} lcamax = �O{ζa(opaij) : (opaij , 
aj ) ∈ La


i , i ∈ I}
where π1 and π2 denote the min and max element of the interval, respectively.

Observe that lcamin is obtained as the greatest lower bound of the obfuscation values
corresponding to operators that are surely applied to compute the value, while lcamax is
obtained as the least upper bound of the obfuscation values corresponding to operators
that are possibly applied to compute the value. As La�

i ⊆ La

i for each i ∈ I , we get

that lcamin �O lc
a
max.

Definition 13 (Confidentiality Value of Abstract Atomic Data - General Case). Let
S and O be the lattices representing the labels’ confidentiality and the obfuscation power
of operators, respectively. Let η and ζ be functions assigning confidentiality/obfuscation
values in S and O to (concrete) labels and operators, respectively. Let ηa : Laba →
S× S such that ηa(
a) = [�{η(
) : 
 ∈ γ(
a)},�{η(
) : 
 ∈ γ(
a)}]. Finally, let ζa be
a function assigning to each set of (abstract) operators an interval in O× O representing
the min and max obfuscation power.

The confidentiality value of an abstract atomic datum {〈
ai , valai , Ai, L
a�
i , L

a

i 〉 :

i ∈ I} is a tuple (scamin, sc
a
max, lc

a
min, lc

a
max), where:

scamin = �S{π1(η
a(�ai )) : i ∈ I} lcamin = �O{π1(ζ

a(S)) : S ⊆ {opa
ij : (opa

ij , �
a
j ) ∈ La�

i }, i ∈ I}
scamax = 
S{π2(η

a(�ai )) : i ∈ I} lcamax = 
O{π2(ζ
a(S)) : S ⊆ {opa

ij : (opa
ij , �

a
j ) ∈ La�

i }, i ∈ I}

where π1 and π2 denote the on the min and max element of the interval, respectively.
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Notice that lcamin and lcamax in the general case are both obtained as the greatest lower
bound and least upper bound, respectively, of the obfuscation values corresponding to
operators that are possibly applied to compute the value. This conservative approach
guarantees the soundness of the result also in presence of operators whose combination
does not behave monotonically with respect to obfuscation, i.e. the monotonicity of
confidentiality with respect to the partial order in the domain of abstract atomic data.

7 Privacy Compliance Policies

Definition 14 (Confidentiality Policy). Given the set of data source labels Lab, and
the confidentiality/obfuscation lattices S and O for labels and operations, respectively,
a confidentiality policy is a tuple π = (η, ζ, κsc max, κlc min) such that

– η, ζ assign each label and each operator a corresponding value in the confidential-
ity lattices S and O, respectively.

– κsc max is a source confidentiality threshold (the max confidentiality level allowed
for sources).

– κlc min is an obfuscation threshold (the min obfuscation level required for opera-
tors).

Given a program P , letX be the set of concrete/abstract atomic data P generated as
an output. We say that P satisfies the confidentiality policy π = (η, ζ, κsc max, κlc min)
if:
∀d ∈ X , if (scmin, scmax, lcmin, lcmax) is the confidentiality value of dwith respect

to (η, ζ), then, scmax �S κsc max and lcmin �O κlc min.

Theorem 3. Consider a program P , an abstract datastore A, and a confidentiality
policy π = (η, ζ, κsc max, κlc min). If the program P terminates, and the output of the
analysis on P and A satisfies π, then any actual execution of program P on a concrete
datastore in γ(A) satisfies the confidentiality policy π.

Proof. By Theorem 2, and by the monotonicity of confidentiality values with respect to
the partial order on the domain of abstract atomic data.

Example. A reasonable privacy policy for the Inmobi example of Section 2 may be
that a datum can be released only if its obfuscation level is equal or higher than its
confidentiality level. This program satisfies this model for Country and Language
(whose confidentiality level is L and they are released without any obfuscation), but not
for Locationi (with confidentiality level M and released without any obfuscation) and
AndroidId (whose confidentiality level is H and it is released after invoking hash,
that is, with obfuscation level M).

7.1 Sources’ Confidentiality Policies

The definition of confidentiality policy of atomic data discussed in the previous sections
allows to capture the min and max levels of confidentiality/obfuscation carried by the
values returned by a program, or shared with other applications.
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As an orthogonal approach, we may define (at the concrete level) a confidentiality
policy as a propositional formula that captures constraints on the allowed releasing
levels of confidential data in the datastore, and verify if the atomic data returned by the
concrete execution of the program satisfy that formula.

Let Lab denote as usual the set of data source labels, and Op denote the set of opera-
tors in the program. Consider a set of propositional variables V (with empty intersection
with the set of program variables), and a function λ that maps elements of V into either
labels or links.

λ : V −→ Lab ∪ {(op, 
) : op ∈ Op, 
 ∈ Lab}

A policy formula is a positive propositional formula on V, i.e. a propositional formula
using only ∧,∨ and↔ logical operators7.

Example. For instance, we can express the fact that we can leak the Android ID if en-
crypted and the location, or the hashed Android ID, or the first six characters of the
IMSI, by means of the formula ϕ = (x ∧ y) ∨ z ∨ w, where λ(x) = ([encrypt, k],
AndroidId), λ(y) = Location, and λ(z) = (hash, AndroidId), λ(w) = ([sub, 0, 6],
AndroidId).

Given a set of atomic data S, a set of propositional variables V and an assignment
λ on V, we say that S satisfies the policy formula ϕ on V if S, λ |= ϕ, as defined
inductively as follows:

S, λ |= v ∈ V ⇔
{
λ(v) ∈

⋃
d∈S src(d) if λ(v) ∈ Lab

λ(v) ∈
⋃

d∈S links(d) otherwise.
S, λ |= ϕ1 ∨ ϕ2 ⇔ S, λ |= ϕ1 or S, λ |= ϕ2

S, λ |= ϕ1 ∧ ϕ2 ⇔ S, λ |= ϕ1 and S, λ |= ϕ2

S, λ |= ϕ1 ↔ ϕ2 ⇔ S, λ |= ϕ1 iff S, λ |= ϕ2.

Observe that, by construction, if the data resource denoted by λ(x) contributes to
any of the values represented by the atomic data S, then S, λ |= x.
Example The formulaϕ in the Example above is satisfied by the data expressions leaked
by either Inmobi and IMSI as described in the Example in Section 3.2.

Observe that checking the policy reduces to checking the satisfiability of the propo-
sitional assignment [42].

When we lift to the abstract setting, three-valued models of propositional formulas
should be used in order to preserve soundness. Let Sa be a set of abstract atomic data,
and λa : V −→ Laba ∪ {(opa, 
a) : op ∈ Op, 
a ∈ Laba} be a function mapping propo-
sitional variables into abstract labels and links. Consider the three value assignment

7 The advantage of using positive formulas, i.e. formulas that are satisfied by assigning true to
all its propositional variables, is that they well capture monotonic behaviors [42].
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assign(Sa, λ) : V→ {true, false,�} defined by

assign(Sa, λa)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if λa(v) ∈ Laba and λa(v) ∈
⋃

d∈S links lab(L
�
d )

or
if λa(v) 
∈ Laba and λa(v) ∈

⋃
d∈S L�(d)

false if λa(v) ∈ Laba and λa(v) 
∈
⋃

d∈S src(d)
or
if λa(v) 
∈ Laba and λa(v) 
∈

⋃
d∈S L
(d)

� otherwise

(where L�(d) and L
(d) denote the last two components of d, respectively), and con-
sider the logical operators extended to the top value � by:

∧ true false �
� � false �

∨ true false �
� true � �

↔true false �
� � � �

Theorem 4. Let ϕ be a positive formula on a set V of propositional variables, Sa be
a set of abstract atomic data, and λa : V −→ Laba ∪ {(opa, 
a) : op ∈ Op, 
a ∈
Laba} be a function mapping propositional variables into abstract labels and links. If
assign(S, λ)(ϕ) = true, then there is a set of atomic data S ⊆

⋃
d∈Sa γ(d) and a

function λ satisfying ∀v ∈ V : λ(v) ∈ γLab(λa(v)), such that S, λ |= ϕ.

Proof. By structural induction on the formula ϕ, and by Theorem 1.

8 Related Work

In this section, we discuss in details how our work compares to some similar approaches
in the area in addition to the high-level overview on the state of the art of Section 1.1.

Quantitative Information Flow (QIF) [25] is aimed at measuring the quantity of infor-
mation that is leaked by a program. A given confidential datum might be manipulated by
the program, that at the end releases only partial information. Then, the analysis checks
if the quantity of released information is below a given threshold. Our approach shares
with QIF the intuition that is crucial to estimates the quantity of information revealed,
since ofter it is necessary to partially disclose a part of the information. Nevertheless,
instead of measuring a quantity, our approach tracks the set of operators that have been
applied to the datum before its release, and then we check if this matches what specified
on the policy. We believe that QIF can be seen as an abstraction of a concrete semantics
tracking the exact order of operators applied to a datum (instead of a set of operators
as we do). In addition, QIF can track implicit flows, while we explicitly ignored these
flows as we believe they lead to many false alarms.

Declassification-based approaches [33] suppose that a list of declassifier operators is
given, and as soon as one of these operators is applied to a datum, then it can be sent to
a sink. Our analysis can represent declassifiers through a policy stating that it is allowed
to release the data on which at least one of these operators has been applied.
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Decentralized Information Flow Control [20,27] systems represent a finer grained
and more expressive model, in which each process can declassify information, rather
than a central authority as in centralized system and classical declassification-based ap-
proaches. Nevertheless, our analysis can support this more complex scenarios by defin-
ing specific policies per process.

Another approach that has gained relevant results recently is Differential Privacy
[13,14]. Given a data store, the goal of Differential Privacy is to discover if the varia-
tion of a query over the data set stays below a given threshold when an entry is added.
Usually, some statistical noise is added in order to ensure differential privacy. Our ap-
proach may track how the data from the data set is aggregated and noise added, and
this may be a first step towards proving differential privacy. However, how to relate this
information on the operators applied to data and ε-differential privacy is not straightfor-
ward at all, and it requires further investigation.

9 Conclusion

Our semantic framework for fine-grained information-flow analysis captures how the
values released by an application may partially reveal confidential data stored on the
device through different levels of obfuscation. The enhanced concrete semantics and
the generic abstract domain we presented provide a workbench for (static) analysis of
mobile apps that can be tuned by setting a few parameters: the domain representing
values, the domain representing data locations, and the confidentiality and obfuscation
values for data and operators. This data-centric approach may be utilized to refine ex-
isting tools like [15,41,40] aimed at enforcing privacy policies, providing the user with
more accurate privacy control.

The problem of formalizing how the semantics of operations reflects on the corre-
sponding obfuscation values, as well as the problem of assisting the user in the defini-
tion of privacy compliance policies remain of course, as there is a tradeoff between the
amount of sensitive information that she allows the device to release and the accuracy
and efficiency of some functionalities.

Aknowledgments. Work partially supported by PRIN ”Security Horizons”.
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Abstract. Satisfiability modulo theory solvers are increasingly being used to
solve quantified formulas over structures such as integers and term algebras.
Quantifier instantiation combined with ground decision procedure alone is in-
sufficient to prove many formulas of interest in such cases. We present a set of
techniques that introduce inductive reasoning into SMT solving algorithms that
is sound with respect to the interpretation of structures in SMT-LIB standard. The
techniques include inductive strengthening of conjecture to be proven, as well as
facility to automatically discover subgoals during an inductive proof, where sub-
goals themselves can be proven using induction. The techniques have been im-
plemented in CVC4. Our experiments show that the developed techniques have
good performance and coverage of a range of inductive reasoning problems. Our
experiments also show the impact of different representations of natural numbers
and quantifier instantiation techniques on the performance of inductive reasoning.
Our solution is freely available in the CVC4 development repository. In addition
its overall effectiveness, it has an advantage of accepting SMT-LIB input and
being integrated with other SMT solving techniques of CVC4.

1 Introduction

One of the strengths of satisfiability modulo theory (SMT) solvers [3,10] lies in their ef-
ficient handling of many useful theories arising in software verification. These theories
often model ubiquitous data types, such as integers, bitvectors, arrays, algebraic data
types, sets, or maps. The theories of many of these data types can be naturally thought of
as statements that hold in certain concrete structures (for example, integers), or families
of structures [20] (for example, lists instantiated into lists of integers). Such semantics
is also supported by the SMT-LIB standard’s definition of theories [1], meaning that
the satisfiability of such formulas is determined by its interpretation in these structures,
whether or not the satisfiability problem is easily axiomatizable in first-order logic, or
whether it is decidable.

From the early days, many SMT solvers and their predecessors have been support-
ing satisfiability of not only quantifier-free but also universally quantified formulas,
typically using quantifier instantiation strategies [11], which have become increasingly
more robust over time [12,13,24]. Quantifiers together with uninterpreted functions and
theory-specific symbols give great modeling power to the input language.
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Unfortunately, the use of quantifier instantiation alone for such problems is highly
incomplete, not only in a theoretical sense (the problem is not even recursively enumer-
able), but also in a very concrete practical sense. Namely, current solvers cannot solve
any statements requiring non-trivial use of induction! This is an acknowledged fact
in the SMT community. For example, the Z3 tutorial [2] clarifies explicitly that “The
ground decision procedures for recursive datatypes don’t lift to establishing inductive
facts. Z3 does not contain methods for producing proofs by induction.” Similarly, CVC4
(until now) did not contain a method to perform induction, nor did most other competi-
tive SMT solvers of which we are aware.

Automating induction is a considered very difficult for automated provers [5,9]. Re-
cent progress has been made in several tools [7, 16, 17], with which we make detailed
comparison in Section 4. Interactive theorem provers heavily use inductive proofs, but
have largely avoided to automate induction within their tactics, suggesting that this is
among the most difficult tasks to automate. A notable exception is the ACL2 prover,
which has early been recognized for its sophisticated inductive reasoning [19]. How-
ever, these tools miss an opportunity to fully benefit from efficient theory reasoning:
they encode most values using algebraic data types, and need to prove from scratch
theory lemmas, which could be handled more efficiently with an SMT approach.

It is worthwhile mentioning that program analysis and verification tools implicitly
incorporate inductive reasoning into their algorithms. In fact, it could be argued that
the current division of tasks between program analyzers (including software model
checkers and verifiers) delegates non-inductive reasoning to SMT solvers, and performs
induction in a specialized manner. We do not claim that the techniques we propose
will replace such verification techniques, often specialized for the meaning of non-
deterministic programs. Instead, we expect that they will complement them, in similar
ways that algebraic reasoning of SMT solvers complements fixpoint reasoning of ab-
stract interpretation and software model checking engines. Note that for infinite-state
systems, the form of invariants inferred by these tools is often of a particular form,
either given by an abstract domain, or given by a class of formulas such as linear con-
straints [26], or constraint satisfying certain templates [14, 15, 18, 23]. Thefore, espe-
cially in cases when invariants themselves may contain recursive functions, it seems
desirable to incorporate inductive reasoning into an SMT solver. In fact, Rustan Leino
has proposed a pre-processing of formulas to incorporate inductive reasoning, which
already proved very helpful for a program verifier based on an SMT solver [22].

In this paper, we present the first technique and implementation of inductive rea-
soning within an SMT solver. Among the advantages of this approach are not only
convenience and, in some cases, performance, but also the ability to exploit the internal
state of the solver to automatically discover subgoals that themselves need to be proved
by induction, which is essential to be able to prove more difficult conjectures.

Contributions. This paper makes the following contributions:

– We describe an approach for supporting inductive reasoning inside an SMT solver
that integrates well with existing approaches for handling quantified formulas in
SMT. The starting point of this approach is inductively strengthening existentially
quantified conjectures.
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– We present techniques that help to infer relevant subgoals used in inductive proofs.
The generation of subgoals is based on introduction of splitting lemmas into the
DPLL(T) framework. The automatically discovered lemmas are generated by enu-
merating potential equalities while applying the following filtering techniques:
• limiting the generalization to terms that refer to variables in the conjecture

being proven;
• inferring universally quantified identities that allow us to remove subgoals that

are found to be equivalent to others;
• removing subgoals that are contradicted by ground facts in the current context.

– We provide a set of 933 benchmarks in the SMT-LIB2 syntax, which are publicly
available at http://lara.epfl.ch/˜reynolds/VMCAI2015-ind. This
is the first set of SMT-LIB2 benchmarks targeting inductive reasoning, and includes
several previously used benchmark sets used to exercise inductive theorem provers.

– We demonstrate that our implementation in the SMT solver CVC4 performs well on
this set of benchmarks, in particular through the use of newly developed techniques
for inductive reasoning described in this paper. We show our approach is competi-
tive with existing tools for automating induction, comparing favorably against these
tools in many cases.

2 Skolemization with Inductive Strengthening

To determine the T -satisfiability of an input set of ground clauses F for some back-
ground theory T , a DPLL(T)-based SMT solver first consults a SAT solver for finding
a subset of its literalsM (which we will call a context) that propositionally entails F . If
successful, the ground decision procedure for theory T determines the satisfiability of
M , adding additional clauses to F as necessary whenM is found to be T -unsatisfiable.
When extending SMT to quantified formulas, the input F (and likewise a context M )
may contain literals whose atoms are universally quantified formulas ∀x. P (x).

SMT solvers commonly handle universally quantified formulas ∀x.P (x) from
M using instantiation-based techniques, and handle existentially quantified formu-
las1 ¬∀x. P (x) from M by skolemization. In the latter case, they infer the lemma
(∀x. P (x)) ∨ ¬P (k), where k is a fresh constant, which is then added to F . We will
refer to ¬P (k) as the skolemization of ¬∀x. P (x), and k as the skolem constant for
¬∀x. P (x). Assuming P (k) is quantifier-free, the aforementioned lemma enables a
ground decision procedure to reason about the satisfiability of ¬P (k). Unfortunately,
SMT solvers have limited ability to prove the unsatisfiability of ¬P (k) in cases when
inductive reasoning is required, as in the following example.

Example 1. Assume an axiomatization of the length function len : List→ Int:

len(nil) ≈ 0 (A1)
∀xy. len(cons(x, y)) ≈ 1 + len(y) (A2)

1 Informally, we refer to ¬∀x. P (x) as an existentially quantified formula, since it is equivalent
to ∃x. ¬P (x).

http://lara.epfl.ch/~reynolds/VMCAI2015-ind
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and the conjecture ψ := ∀x. len(x) ≥ 0. To determine the satisfiability of
F := {A1, A2,¬ψ}, the SMT solver by skolemization will add the clause (ψ ∨
¬len(k) ≥ 0) to F for fresh constant k, after which we find a context M :=
{A1, A2,¬ψ,¬len(k) ≥ 0} that propositionally entails it. The (combined) decision
procedure for inductive datatypes and linear arithmetic will determine the satisfiabil-
ity of the ground porition of this context, {A1,¬len(k) ≥ 0}, where it will find a
model where k ≈ cons(head(k), tail(k)) and len(k) ≈ −1. By instantiation, the
solver may add (¬A2 ∨ len(cons(head(k), tail(k))) ≈ 1 + len(tail(k))) to F . In
turn, the solver will find a context M ′ that in addition to M now contains the right
disjunct above. The ground portion of M ′ is satisfied, for instance, by a model where
len(k) ≈ −1 and len(tail(k)) ≈ −2. Again by instantiation, the solver may add
(¬A2 ∨ len(cons(head(tail(k)), tail(tail(k)))) ≈ 1 + len(tail(tail(k)))) to F , and
this loop will continue indefinitely. This is not a coincidence: there exist, in fact, a non-
standard model of the axioms used to decide the ground theory of algebraic data types,
in which the conjecture is false. In other words, the theory axioms implicitly used within
the solver are inadequate for our purpose. �

The aforementioned example can be solved using inductive reasoning. In particular,
we may assume without loss of generality that our skolem constant k is the smallest
such list that satisfies the property ¬len(k) ≥ 0, thereby allowing us to assume in
particular that len(tail(k)) ≥ 0. More generally, we may strengthen a conjecture for a
variable of sort T when we have a well-founded ordering R over terms of sort T . The
general scheme for strengthening our skolemization according to such an R is:

(∀x. P (x) ) ∨
(
¬P (k) ∧ ∀x. (R(x, k)⇒ P (x))

)
(1)

where k is a fresh constant. We call ∀x. (R(x, k)⇒ P (x)) the inductive strengthening
of¬P (k) based onR. Note that conjoining the formula (1) with the initial input formula
F does not affect the outcome of the satisfiability ofF . The intuition is that if a universal
statement does not hold, then there exists the least counterexample with respect to R.

Remark 1. Let ϕ be the formula (1) for well-founded relation R. The formula ∃k. ϕ
holds in all interpretations.

Proof: Consider any interpretation for symbols other than k. If ∀x. P (x) holds in this
interpretation, then the first disjunct of ϕ holds in this interpretation. We show that
otherwise the second disjunct holds. Consider the set S of all elements y of sort T in
this structure such that ¬P (y). Let y0 any element in S, which exists because ∀x. P (x)
does not hold. If we consider an arbitrary maximal sequence y0, y1, . . . ∈ S such that
R(yi+1, yi) for all i, then this sequence must be finite and stop at some yn, because R
is well founded. Let us interpret the fresh constant k as yn. Then ¬P (k) holds because
yn ∈ S. Because yn is the last element of the sequence, k also satisfies ∀x. R(x, k)⇒
P (x), so the second disjunct of ϕ holds. �

Two examples of well-founded relations R in the context of SMT solving are struc-
tural induction for inductive datatypes where R(s, t) if and only if s is a subterm of t,
and natural number induction on integers where R(s, t) if and only 0 ≤ s < t. Both of
these refer to forms of strong induction, where a conjecture is assumed for all terms less
than k according to a transitive relation R. Alternatively, we may apply forms of weak
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induction, where for inductive datatypesR(s, t) if and only if s is a direct subterm of t,
and for integers R(s, t) if and only if 0 ≤ s = t − 1. The advantage of the weak form
for induction is that, in the case of inductive datatypes, R(s, t) can be encoded without
introducing a subterm relation, which is not supported natively by the solver.

Example 2. The skolemization with inductive strengthening of the negated conjecture
¬∀x. len(x) ≥ 0 in Example 1 based on weak structural induction is:

¬len(k) ≥ 0 ∧ ∀y.(k ≈ cons(head(k), tail(k)) ∧ y ≈ tail(k))⇒ len(y) ≥ 0)

The right conjunct in the formula above simplifies to k ≈ cons(head(k), tail(k)) ⇒
len(tail(k)) ≥ 0. With this constraint, the original conjecture can be solved immedi-
ately, noting that the length of tail(k) is forced to be non-negative in the case where
k ≈ cons(head(k), tail(k)). �

For quantification over multiple variables, we consider induction schemes that are
limited to lexicographic orderings. As a result, we skolemize variables one at a time
and independently, starting from the outermost variable. Thus a formula ¬∀xy. P (x, y)
is skolemized as: ∀xy. P (x, y) ∨ (¬∀y.P (k, y) ∧ ∀xy. R(x, k) ⇒ P (x, y)). The first
conjunct in the conclusion, ¬∀y.P (k, y), can then be skolemized in the same manner
if and when it is necessary to do so. It is also important to note that the variable y is
universally quantified in the rightmost conjunct, meaning that P (x, y) can be assumed
for any y assuming we choose an x that is smaller k according to R.

For some problems requiring inductive reasoning, it is challenging to determine
which variable to apply induction on first. In our approach, the SMT solver is capa-
ble of applying induction for different variable orders simultaneously. For instance, in
the case of a quantified formula over x and y and induction on y is necessary, this can
be done simply by inferring: ∀xy.P (x, y)∨¬∀yx.P (x, y). Subsequently, we will apply
induction based on y if and when skolemization is applied to ¬∀yx.P (x, y).

Our approach is closely related to the approach used in the Dafny tool [22], where
(non-negated) conjectures are inductively weakened in an intermediate language before
being sent to an SMT solver. Here, we advocate an approach where this transformation
is pushed within the core of the SMT solver. This gives several advantages over external
approaches. First, the SMT solver may have insight into how and when to invoke in-
ductive strengthening, performing this step lazily or with multiple induction schemes as
necessary. Second, certain benchmarks require the skolemization of existentially quan-
tified formulas during the search procedure when a new quantified formula is created or
becomes asserted. This may occur, for instance, when instantiating quantified formulas
with nested existentially quantified formulas, or in the case when the SMT solver itself
introduces an existentially quantified formula of interest, as we will see in the next sec-
tion. Our approach enables the SMT solver to inductively strengthen its assertions for
each such skolemization, which otherwise would not be possible if done externally.

3 Subgoal Generation

A majority of the complexity in inductive reasoning lies in discovering intermediate
lemmas, or subgoals, that are required for proving the overall conjecture. A variety of
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tools, including [7,16,17], have focused on inferring such subgoals automatically in the
context of automated theorem proving. In context of software verification, a subgoal
corresponds to a necessary loop invariant or adequate post-condition describing the
input/output behavior of a function that is required for a proof to succeed. Tools for this
purpose that analyze functional programs include [21, 23, 25].

In this section, we use the following as a running example.

Example 3. Consider the (combined) theory T of equality and inductively defined
datatypesNat and List whose signature Σ contains the functions plus, app, rev, and
sum, representing natural number addition, list append and reverse, and summing the
elements of list respectively. Let A be the axiomatization of app, rev, and sum where
for the latter,A contains:

sum(nil) ≈ Z ∀xy. sum(cons(x, y)) ≈ plus(x, sum(y))

Now, consider the conjecture ψ := ∀x. sum(rev(x)) ≈ sum(x). Showing the va-
lidity of this conjecture requires, for instance, discovering the intermediate subgoals
ϕ1 := ∀xy. sum(app(x, y)) ≈ plus(sum(x), sum(y)) and ϕ2 := ∀xy. plus(x, y) ≈
plus(y, x). Even more so, proving ϕ1 itself requires induction and the intermediate
subgoal ϕ3 := ∀xyz. plus(x, plus(y, z)) ≈ plus(plus(x, y), z). As we will see in our
evaluation, theory reasoning capabilities of the SMT solver can preempt the need for
discovering the latter two subgoals ϕ2 and ϕ3, by enabling the solver to assume that
various properties of the builtin integer operator for addition + also hold for applica-
tions of the function plus. Even so, the solver will not succeed in showing the validity
of ψ until it has first discovered and proven ϕ1, or some other sufficient subgoal. �

A naive approach for subgoal generation is to enumerate candidate subgoals accord-
ing to a fair strategy until a set of sufficient subgoals is discovered. In Example 3, we
could enumerate all well-typed equalities between Σ-terms built from variables, con-
structors of sort List and Nat, plus, app, rev, and sum up to a particular size until
the subgoal ϕ1 is discovered. However, an exhaustive enumeration of subgoals is not
scalable even for cases where the signature and necessary subgoals are small. It is thus
crucial to avoid enumeration of a vast majority of candidate subgoals ϕ, either by de-
termining that ϕ is not relevant, redundant, or does not hold.

In this section, we present a design and implementation of an additional component
of an SMT solver, which we will refer to as the subgoal generation module, whose
aim is to discover subgoals that are relevant for proving a given conjecture. We first
describe our scheme for basic operation of the subgoal generation module in relation to
the rest of the SMT solver, and then describe several heuristics for how it determines
which subgoals are likely to be relevant. In particular, these heuristics will make use of
the information maintained at the core of a DPLL(T)-based SMT solver. Conceptually,
our approach is similar to that of subgoal generation in the Quickspec tool [8], which
enumerates candidate subgoals in a principled fashion that can in turn be used within
a theorem prover [7]. Like their approach, here we limit ourselves to equality subgoals
only. Unlike Quickspec, however, we benefit from integration into a DPLL(T) engine.
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proc check(F )
M := findSatAssignment(F )
if M = fail

return “unsat”
else
C := getTConflict(M)
if C = fail

I := quantInst(M) ∪ subgoalGen(M)
return check(F ∪ I)

else
return check(F ∪ ¬C)

Fig. 1. The method check, giving the interaction of components within an SMT solver, for an
input set of clauses F . The SAT solver (method findSatAssignment), when possible, returns
a set of literals M that propositionally entails F . The ground decision procedure(s) (method
getTConflict), when possible, returns a subset C ⊆M that is inconsistent according to the back-
ground theory. The quantifier instantiation and subgoal generation modules (methods quantInst
and subgoalGen) return a set of clauses I based on M .

3.1 Subgoal Generation in DPLL(T)

To prove the conjecture ψ in Example 3, the solver must (1) determine that ϕ1 is a
relevant subgoal, (2) prove that ϕ1 holds, and (3) prove the original conjecture ψ under
the assumption ϕ1. The DPLL(T) search procedure used by SMT solvers enables a
straightforward scheme for accomplishing both (2) and (3). If the subgoal generation
module determines that ∀x.t ≈ s is a relevant subgoal, it adds (¬∀x.t ≈ s)∨∀x.t ≈ s,
which we refer to as a splitting lemma, to the set of clauses currently known by the
solver, and additionally may set its decision heuristic to explore the branch ¬∀x.t ≈ s
first. A subgoal may be proven by induction, since the skolemization of the assertion
¬∀x. t ≈ s can in turn be inductively strengthened according to the method described in
Section 2. Subsequently, the solver will backtrack and assert ∀x.t ≈ s positively if and
only if the standard conflict analysis mechanism of the SMT solver causes ¬∀x. t ≈ s
to be backtracked during the search. In terms of Example 3, the solver will succeed
in proving ψ only after it does so for such a ∀x.t ≈ s that entails ϕ1. Notice that
this behavior is managed entirely by a combination of the SAT solver, ground decision
procedures and quantifier instantiation mechanism of the SMT solver, and requires no
further intervention from the subgoal generation module, thus enabling it to focus its
attention solely on its choice of which subgoals to introduce. This scheme also allows
conjecturing multiple candidate subgoals to the system at once, and as needed, during
the search, which plays to the advantage of an SMT solver, which is capable of handling
inputs having a large number of clauses.

Figure 1 gives the overall interaction between the ground solver, quantifier instan-
tiation, and subgoal generation modules. Notice that the quantifier instantiation and
subgoal generation both run after the SAT solver finds a context M which proposi-
tionally entails F that is T -consistent according to ground decision procedure(s). Both
modules add additional clauses I to F in the form of instances of quantified formulas
and splitting lemmas for candidate subgoals respectively. It remains to be shown which
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subgoals are chosen by the subgoal generation module, i.e. the subgoals in the splitting
lemmas returned by the method subgoalGen(M) for contextM .

As mentioned, a naive approach for subgoal generation amounts to a fair enumer-
ation of candidate subgoals. At its core, our approach performs such an enumeration,
but discards all candidates that it determines are not useful. For enumerating candidate
subgoals in a fair manner, our approach considers subgoals that are smaller than larger
ones according to the following measure. Let size of a term t be the number of function
applications occurring in t plus the number of duplicated variables. For instance, the
size of f(g(x, y)) is 2, and the the size of g(x, f(x)) is 3. The size of a subgoal of the
form ∀x. t ≈ s is the maximum of the size of t and the size of s. Thus, the size of
the subgoal ϕ1 from Example 3 has size 3. Given a fixed signature Σ, we enumerate
the set of all subgoals Sn of size n, starting with n = 0. We will call this the set of can-
didate subgoals of size n. For each n, we heuristically determine a subset SRn ⊆ Sn of
these subgoals, which we will call relevant; all others we say are filtered. The method
subgoalGen returns splitting lemmas corresponding to a subset of the subgoals SRn ,
where the total number of splitting lemmas it returns does not exceed some fixed num-
ber (typically≤ 3). We continue constructing relevant subgoals for increasing values of
n until this limit is reached. In the rest of this section, we will focus on three effective
techniques for determining which subgoals are relevant, and which should be filtered.

3.2 Filtering Candidate Subgoals

Filtering Based on Active Conjectures. Consider the conjecture ψ := ¬∀x.
sum(rev(x)) ≈ sum(x) from Example 3, and its corresponding skolemization
¬sum(rev(k)) ≈ sum(k). An implicit side effect of this skolemization is that a new
function symbol k (not occurring in func(Σ)) is introduced, thus requiring the solver to
determine the satisfiability of constraint in a signatureΣ′ that extendsΣ with k. Assum-
ing all functions inΣ are axiomatized as terminating functions in our axiomatization,A,
the introduction of k into our constraint is in fact the very reason why inductive reason-
ing is required, since now the solver cannot reason aboutΣ′-constraints simply based on
a combination of ground theory reasoning and unfolding function definitions by quan-
tifier instantiation. Based on this observation, our first form of filtering is to generate
candidate subgoals that state properties about terms that generalize Σ′-terms only, in
particular, ones that are not entailed to be equivalent to Σ-terms in the current context.

We thus say a term t is inactive if M |=T t ≈ s for some Σ-term s, and active
otherwise.2 An existentially quantified formula is inactive in context M if and only
if its skolem constant is inactive in M , and active otherwise. For instance in Exam-
ple 3, if k ≈ nil ∈ M , then k and ψ are inactive in M , indicating that inductive
reasoning is not required for reasoning about the skolemization of ψ in M . Indeed,
k ≈ nil,¬sum(rev(k)) ≈ sum(k) imply ¬sum(rev(nil)) ≈ sum(nil), and deter-
mining the satisfiability ofA∧¬sum(rev(nil)) ≈ sum(nil) can be done by a ground
decision procedure and quantifier instantiation for unfolding function definitions.

2 Determining if term t is active in M can be accomplished when t is an inductive datatype,
since our decision procedure for inductive datatypes [4] infers all entailed equalities.
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We say that a term f(t1, . . . , tn) occurring inM is ground-relevant inM if and only
if at least one of t1, . . . , tn is active in M . We say a Σ-term t is relevant in M if and
only if it generalizes a ground-relevant term s from M , that is, M entails (t ≈ s)σ
for some grounding substitution over FV (t), the free variables of t. Notice that since
s contains symbols fromΣ′, all relevant terms are necessarily non-ground. For context
M , the subgoal generation module will only consider subgoals ∀x.t ≈ s where t is
relevant inM , and FV (s) ⊆ FV (t).

Example 4. Assume a contextM = {sum(k) ≈ Z, sum(rev(k)) ≈ S(Z), rev(k) ≈
nil}. The term sum(x) is relevant in contextM since it generalizes the term sum(k),
which is ground-relevant since k is active. The term sum(rev(x)) is not relevant in
context M since it only generalizes sum(rev(k)), which is not ground-relevant. As a
result, in contextM , the subgoal generation module will filter out all candidate subgoals
of the form ∀x. sum(rev(x)) ≈ s. �

To generate the set of all candidate subgoals of size n, we first generate the set Rn

of terms (unique up to variable renaming) of size at most n that are relevant in M ,
which will be set of terms used on the left-hand side of all candidate subgoals. The set
Rn can be efficiently computed by a branching procedure whose states are an (initially
empty) sequence of substitutions of the form ({x1 	→ tn}, . . . , {xn 	→ tn}) where
for each j = 1, . . . , n, either tj = xi for some i ≤ j or tj is a well-typed term of
the form f(xk+1, . . . , xk+n), where FV (t1, . . . , tj−1) = {x1, . . . , xk} for k > j. Let
term((σ1, . . . , σn)) denote the term (. . . (x1σ1) . . .)σn. Intuitively, appending σn+1 to
a state s = (σ1, . . . , σn) corresponds to deciding on the form of the subterm xn+1

of term(s), either it is a variable or a function applied to new variables not occurring
in term(s). We do not explore states s where term(s) has size greater than n, or if
term(s) does not generalize an active term from M . Then, Rn is the set {term(s) |
s ∈ S} where S is the set of states reached by this procedure.

After several iterations of the loop from Figure 1 on the axiomatization and conjec-
ture from Example 3, we obtain a contextM where there are on the order of 20 relevant
terms of size 2, and on the order of 100 relevant terms of size 3 that are unique up to
variable renaming. Overall in the signature Σ, there are > 40 terms of size at most
2 and > 200 terms of size at most 3 unique up to variable renaming, indicating that
this form of filtering determines over half of Σ-terms do not generalize an active term.
Notice when Σ contains functions not occurring in the conjecture ψ, the percentage of
potential terms this filtering eliminates is even higher.

Filtering Based on Canonicity. SMT solvers contain efficient methods for reasoning
about conjunctions of ground equalities and disequalities, in particular through the use
of data structures for maintaining equivalence classes of ground terms, and performing
congruence closure over these terms. Note that all inferences (reflexivity, symmetry,
transitivity, and congruence) either implicitly or explicitly made by a standard proce-
dure for congruence closure extend to universal equalities as well. Thus, such data struc-
tures can be lifted without modification to maintain equivalence classes of non-ground
terms that are entailed to be equivalent in a contextM .

In detail, say we have a set of equalities U ⊆ M between (possibly) non-ground
Σ-terms, corresponding to function definitions from our axiomatization, and the set of
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subgoals we have proven thus far. The subgoal generation module maintains a con-
gruence closure U∗ over the set U , where each equivalence class {t1, . . . , tn} in U∗

is such that M entails ∀[FV (ti) ∪ FV (tj)]. ti ≈ tj for each i, j ∈ {1, . . . , n}. The
structure U∗ can be used to avoid considering multiple conjectures that are equivalent.
Each equivalence class in U∗ is associated with one of its terms, which we call its rep-
resentative term. We say a term is canonical in U∗ if and only if it is a representative of
an equivalence class in U∗, and non-canonical in U∗ if and only if it exists in U∗ and
is not canonical. In our approach, we choose the term in an equivalence class with the
smallest size to be its representative term. While enumerating candidate subgoals, we
discard all subgoals that contain at least one non-canonical subterm.

Determining whether a subgoal ϕ is canonical involves adding an equality t ≈ t
to U for each subterm t of ϕ not occurring in U∗, and then recomputing U∗. For the
purposes of increasing the frequency when a term such as t is found to be non-canonical,
we may infer additional equalities between t and terms from U∗, which is based on the
following. If t = sσ for some substitution σ where s is a term from U∗, and moreover
if s ≈ r ∈ U∗ and rσ is a term from U∗, then we add the equality t ≈ rσ to U∗, noting
that (s ≈ r)σ is a consequence of s ≈ r by instantiation. This allows us to merge
the equivalence classes of t and rσ in U∗, forcing one of them to be non-canonical, as
demonstrated in the following example.

Example 5. Say our contextM is {∀x. app(x, nil) ≈ x}. Our set U is {app(x, nil) ≈
x}, and U∗ contains the equivalence classes {x, app(x, nil)} and {nil}. Consider
a candidate subgoal ϕ := ∀x. rev(app(rev(x), nil))) ≈ x. We recompute U∗,
now including all subterms of this conjecture, after which it will additionally contain
the equivalence classes {rev(x)}, {app(rev(x), nil)} and {rev(app(rev(x), nil))}.
Since app(rev(x), nil)) = app(x, nil)σ for substitution σ := {x 	→ rev(x)}, and
app(x, nil) ≈ x ∈ U∗, and since xσ = rev(x), our procedure will merge the equiv-
alence classes {rev(x)} and {app(rev(x), nil)} to obtain one having rev(x) as its
representative term. This indicates that the subgoal ∀x. rev(app(rev(x), nil))) ≈ x is
redundant in contextM , since it contains the non-canonical subterm app(rev(x), nil).
We are justified in filtering this subgoal since the above reasoning has determined that
it is equivalent to ∀x. rev(rev(x))) ≈ x, which the subgoal generation module may
choose to generate instead, if necessary. �

This technique is particularly useful in our approach for subgoal generation in
DPLL(T), since our ability to filter candidate subgoals is refined whenever a new sub-
goal becomes proven. In the previous example, learning ∀x.app(x, nil) ≈ x allows us
to filter an entire class of candidate subgoals, namely that contains a subterm of the form
app(t, nil) for any term t. This gives us a constant factor of improvement in our ability
to filter future subgoals for each subgoal that we prove during the DPLL(T) search.

Filtering Based on Ground Facts. As mentioned, DPLL(T)-based SMT solvers main-
tain a context of ground factsM that represent the current satisfying assignment for the
set of clauses F . A straightforward method for determining whether a candidate sub-
goal ∀x. t ≈ s does not hold (inM ) is to determine if one of its instances is falsified by
M . In other words, if M entails ¬(t ≈ s)σ, where σ is a grounding substitution over
x, then clearly ∀x. t ≈ s does not hold in contextM .
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Example 6. Assume our context M is { k ≈ nil, sum(cons(Z, k)) ≈ sum(k),
sum(k) ≈ Z }, and a candidate subgoal ϕ := ∀x. sum(cons(Z, x)) ≈ S(Z). We
have that M entails ¬(sum(cons(Z, x)) ≈ S(Z)){x 	→ nil}, indicating that ϕ does
not hold in contextM . �

Notice that the fact that ϕ has a counterexample in contextM does not imply that ϕ
will always be filtered out, since the solver may later find a different context that does
not contain sum(k) ≈ Z . Conversely, we may filter candidate subgoals ∀x. t ≈ s if
none (or fewer than a constant number) of its instances are entailed in M , that is, M
does not entail (t ≈ s)σ for any grounding substitution over x. Note the following
example.

Example 7. Assume our context M is { sum(cons(Z, k)) ≈ plus(Z, sum(k)),
plus(Z, sum(k)) ≈ sum(k) }, and a candidate subgoal ϕ := ∀x. sum(x) ≈ S(Z).
Although no ground instance of ϕ is falsified, neither is any ground instance of ϕ en-
tailed. Thus, we may choose to filter out ϕ. �

When the above two forms of filtering are enabled, our implementation also intro-
duces additional ground terms, initially 40 per function symbol, which are subsequently
incorporated into contexts and may be evaluated as a result of our quantifier instantia-
tion heuristics. This both increases the likelihood that witnesses are found that falsify
candidate subgoals, and can ensure that at least one ground instance of candidate sub-
goals is confirmed.

To give a rough and informal idea of the overall number of subgoals that are filtered
by these techniques, consider the axiomatization and conjecture ψ from Example 3. We
found there were approximately 33800 well-typed equalities betweenΣ-terms that met
the basic syntactic requirements of being a candidate subgoal3. We measured the aver-
age number of relevant subgoals for contextsM obtained after several iterations of the
loop from Figure 1. With filtering based on active conjectures alone, there were on av-
erage approximately 11200 relevant subgoals of size at most 3, with filtering based on
canonicity alone (given only the set of axioms in A), there were approximately 23400,
and with filtering based on ground facts alone, there were approximately 2100. With
all three filtering techniques enabled, there were approximately 450 relevant subgoals
of size at most 3, reducing the space of conjectures well over fifty times. Furthermore,
filtering based on the canonicity of the candidate subgoal is refined whenever a new
subgoal becomes proven. We thus found that, once the solver proves the commutativity
and right identity of plus, as well as the right identity of app, the number of relevant
subgoals of size at most 3 decreased to around 260 on average. After proving the as-
sociativity of plus and app, this further decreases to 70, making the discovery of the
sufficient subgoal ϕ1 in this example much less daunting from a practical perspective.

4 Evaluation

We have implemented the techniques described in this paper in the SMT solver
CVC4 [3]. We evaluate the implementation on a library of 933 benchmarks, which we

3 Namely, for a subgoal ∀x. t ≈ s, we require FV (s) ⊆ FV (t), and t must be an application
of an uninterpreted function.
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constructed from several sources, including previous test suites for tools that specif-
ically target induction (Isaplanner, Clam, Hipspec), as well as verification conditions
from the Leon verification system. The benchmarks in SMT-LIB2 format can be re-
trieved from http://lara.epfl.ch/˜reynolds/VMCAI2015-ind.

Isaplanner. We considered 85 benchmarks from the test suite for automatic induc-
tion introduced by the authors of the Isaplanner system [17]. These benchmarks con-
tain conjectures involving lists, natural numbers, and binary trees. A handful of these
benchmarks involved higher-order functions on lists, such as map, which we encoded
using an auxiliary uninterpreted function as input (the function to be mapped) for each
instance ofmap in a conjecture.

Clam. We considered 86 benchmarks used for evaluating the CLAM prover [16]. Of
the 86 benchmarks, 50 are conjectures designed such that subgoal generation is likely
necessary for the proof to succeed, 12 are generalizations of these conjectures, and 24
are subgoals that were discovered by CLAM during its evaluation. These benchmarks
involve lists, natural numbers, and sets.

Hipspec. We considered benchmarks based on three examples from [7], which in-
cluded intermediate subgoals used by the HipSpec theorem prover for proving various
conjectures. The first example states that list reverse is equivalent to its tail-recursive
version, the second example states that rotating a list by its length returns the original
list, and the third example states that the sum of the first n cubes is the nth triangle
number squared. Between the three examples, there are a total of 26 benchmarks, 16 of
which are reported to require subgoals.

Leon. We considered three sets of benchmarks for programs taken from Leon, a sys-
tem for verification and synthesis of Scala programs (http://lara.epfl.ch/w/
leon). We considered these benchmarks since they involve more sophisticated data
structures (such as queues, binary trees and heaps), and are representative of properties
seen when verifying simple functional programs. In the first set, we conjecture the cor-
rectness of various operations on amortized queues, in particular that enqueue and pop
behave analogously to a corresponding implementation on lists. In the second set, we
conjecture the correctness of some of the more complex operations on binary search
trees, in particular that membership lookup according to binary search is correct if the
tree is sorted, and the correctness of removing an element from a tree.

4.1 Encodings

For our evaluation, we considered three encodings of the aforementioned benchmarks
into SMT-LIB2 syntax. In the first encoding, which we will refer to as dt, all functions
were encoded as uninterpreted functions over inductive datatypes. In particular, natural
numbers were encoded as an inductive datatype with constructors S and Z , and sets
were represented using the same datatype for lists, where its constructors cons and nil
represented insertion and the empty set respectively.

Direct Translation to Theory. For the purposes of leveraging the decision procedures
of the SMT solver for reasoning about the behavior of built-in functions, we considered
an alternative encoding, which we will refer to as dtt. This encoding is obtained as a
result of replacing all occurrences of certain datatypes with builtin sorts. For instance,

http://lara.epfl.ch/~reynolds/VMCAI2015-ind
http://lara.epfl.ch/w/leon
http://lara.epfl.ch/w/leon
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we replace all occurrences of Nat (the datatype for natural numbers) with Int (the
built-in type for integers) according to the following steps. First, all occurrences of
f -applications are replaced by fi-applications where fi is an uninterpreted function
whose sort is obtained from the sort of f by replacing all occurrences of Nat by Int.
All variables of sort Nat in quantified formulas are replaced by variables of sort Int.
All occurrences of S(t) are replaced by 1 + t (where + is the built-in operator for
integer addition), and all occurrences of Z were replaced by the integer numeral 0.
Second, to preserve the semantics of natural numbers, all quantified formulas of the
form ∀x.ϕ where x is of type Int are replaced with ∀x.x ≥ 0 ⇒ ϕ (indicating a
pre-condition for the function/conjecture), and for all functions fi : S1 × . . . × Sn →
Int, the quantified formula ∀x1, . . . , xn.fi(x1, . . . , xn) ≥ 0 was added (indicating
a post-condition for the function). Finally, constraints are added, wherever possible,
stating the equivalence between uninterpreted functions from Σ and a corresponding
built-in functions supported by the SMT solver if one existed. For instance, we add the
quantified formulas ∀xy. (x ≥ 0∧y ≥ 0)⇒ plus(x, y) = x+y and ∀xy. (x ≥ 0∧y ≥
0)⇒ less(x, y)⇔ x < y. 4 Since CVC4 has recently added support for a native theory
for sets, a similar translation was done for set operations as well, so insertion and empty
data structure are replaced by {x} ∪ y and ∅, respectively.

Datatype to Theory Isomorphism. We considered a third encoding, which we will
refer to dti, that is intended to capitalize on the advantages of both encodings dt and
dtt. In this encoding, we use the signature Σ, axioms for function definitions, and all
conjectures as for dtt, and introduce uninterpreted functions to map between certain
datatypes and builtin types. For instance, we introduce an uninterpreted function fNat :
Nat → Int mapping natural numbers as algebraic data type into the built-in integer
type. We add constraints to all benchmarks for its definition, also stating that fNat is an
injection to non-negative integers:

fNat(Z) ≈ 0 ∀x. fNat(S(x)) ≈ 1 + fNat(x)

∀x. fNat(x) ≥ 0 ∀xy. fNat(x) ≈ fNat(y)⇒ x ≈ y
We then add constraints for the uninterpreted functions from Σ that correspond to
built-in functions involving Int that are supported by the solver. For instance, we add
the constraints ∀xy. fNat(plus(x, y)) ≈ fNat(x) + fNat(y) and ∀xy. less(x, y) ⇔
fNat(x) < fNat(y). A similar mapping was introduced between lists and sets, where
constraints were added for each basic set operation.

4.2 Results

In our results, we evaluate the performance of our implementation in the SMT solver
CVC4 on all benchmarks in each of the three encodings. To measure the number of bench-
marks that can be solved without inductive reasoning, we ran the SMT solver Z3 [10],
as well as CVC4 without the inductive reasoning module enabled (as indicated by the
configuration cvc4).5 We then ran two configurations of CVC4 with inductive reasoning.

4 We did not provide this constraint for multiplication mult, since it introduces non-linear arith-
metic, which SMT solvers only have limited support for.

5 Note these two configurations were only run to measure the number of benchmarks that did
not require inductive reasoning, and not to be considered as competitive.
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Isaplanner Clam+sg Clam Hipspec+sg Hipspec Leon+sg Total
Encoding Config 85 86 50 26 16 46 311
dt z3 16 11 0 2 0 6 35

cvc4 15 4 0 3 0 7 29
cvc4+i 68 72 7 25 3 29 204
cvc4+ig 75 79 40 24 8 34 260

dtt z3 35 19 4 4 1 9 72
cvc4 34 14 2 4 1 8 63
cvc4+i 64 57 5 14 3 37 180
cvc4+ig 67 61 16 14 4 39 201

dti z3 35 22 3 5 1 9 75
cvc4 34 16 3 5 1 9 68
cvc4+i 76 78 14 25 6 41 240
cvc4+ig 80 83 38 25 9 42 277

Fig. 2. Number of solved benchmarks. All experiments run with a 300 second timeout. The suffix
+sg indicates classes where subgoals were explicitly provided. All benchmarks in the Clam and
Hipspec classes are reported to require subgoals. The Isaplanner class contains a mixture of
benchmarks, some of which require subgoals.

The first, configuration cvc4+i is identical to the behavior of CVC4, except that it applies
skolemization with inductive strengthening as described in Section 2. The second config-
uration cvc4+ig additionally enables the subgoal generation scheme as described in Sec-
tion 3. In both configurations, inductive strengthening is applied to all inductive datatype
skolem variables based on weak structural induction, and to all integer skolem variables
based on weak natural number induction. All configurations of CVC4 used newly devel-
oped quantifier instantiation techniques that prioritize instantiations that lead to ground
conflicts [24].

Figure 2 shows the results for the four configurations on each of the three encod-
ings. For isolating the benchmarks where subgoal generation is reported to be neces-
sary, we divide the results for the Clam and Hipspec classes into two columns. The
first (columns Clam+sg and Hipspec+sg) explicitly provide all necessary subgoals (if
any) as indicated by the sources of the benchmarks in [16] and [7] as theorems. The
second (columns Clam and Hipspec) includes only the benchmarks where subgoals
were required, and does not explicitly provide these subgoals. The Leon benchmarks
were considered sequentially: to prove kth conjecture, the previous k − 1 conjectures
were assumed as theorems for the next conjecture, whether they were needed or not.
Therefore, these benchmarks contain many quantified assumptions.

As expected, a majority of the benchmarks over all classes in the base encoding dt
require inductive reasoning, as Z3 and CVC4 solve 35 and 29 respectively (around 10%
of the benchmarks overall). Encodings that incorporate theory reasoning eliminated the
need for inductive reasoning for approximately an additional 10% of the benchmarks,
as Z3 and CVC4 solve 72 and 63 respectively on benchmarks in the dtt encoding, and
75 and 68 respectively in the dti encoding.

Our results show that the basic configuration of inductive reasoning cvc4+i has a
relatively high success rate for classes where subgoal generation is reported to be un-
necessary (Clam+sg, Hipspec+sg and Leon+sg). Over these three sets, cvc4+i solves
126 (80%) of the benchmarks in the dt encoding, 108 (68%) in the dtt encoding, and
144 (91%) in the dti encoding. We found that 4 of the heapsort benchmarks from
Leon+sg likely require an induction scheme based on induction on the size of a heap,
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consequently cvc4+i (as well as cvc4+ig) was unable to solve them. Our results con-
firm that subgoal generation is necessary for a majority of benchmarks in the Clam and
Hipspec classes, as cvc4+i solves only 10 out of 66 total in these sets. 6 However, note
that cvc4+i solves twice as many of these benchmarks (20) simply by leveraging theory
reasoning, as seen in the results for Clam and Hipspec in the dti encoding.

With subgoal generation enabled, CVC4 was able to solve an additional 114 bench-
marks over all classes and encodings. In total, CVC4 automatically inferred subgoals
sufficient for proving conjectures in 123 cases that were otherwise unsolvable without
subgoal generation. This improvement was most noticeable on the benchmarks from
the dt encoding, where cvc4+ig solved 56 more than cvc4+i (260 vs. 204). This can
be attributed to the fact that many of the subgoals it discovered related to simple facts
related to arithmetic functions, such as the commutatitivity and associativity of plus,
whereas in the other two encodings these facts are inherent consequences of theory rea-
soning. The performance of the subgoal generation module was the least noticeable on
benchmarks from the dtt encoding, which we attribute to the fact that the techniques
from Section 3 are not well suited for signatures that contain theory symbols. In the dti
encoding, subgoal generation led to cvc4+ig solving 37 more benchmarks than cvc4+i
(277 vs. 240). The techniques for filtering candidate subgoals from Section 3.2 were
critical for these cases. We found that only 1 of these 37 benchmarks was solved in a
configuration identical to cvc4+ig but where all filtering techniques were disabled.

The majority of subgoals found by cvc4+ig were small, the largest for a given
benchmark typically having size at most three. Nevertheless, we remark that cvc4+ig
was able to discover and prove several interesting subgoals. For the conjecture
∀nx. count(n, x) ≈ count(n, sort(x)) from the Isaplanner class, stating the num-
ber of times n occurs in a list is the same after an insertion sort, we first determined by
paper-and-pencil analysis this would need two subgoals (also from the Isaplanner set):

∀nx. count(n, insert(n, x)) ≈ S(count(n, x)), and

∀nmx. ¬n ≈ m⇒ count(n, insert(m,x)) ≈ count(n, x)

However, CVC4’s subgoal generation module found and proved a single subgoal
∀nmx. count(n, insert(m,x)) ≈ count(n, cons(m,x)), which by itself was suffi-
cient to prove the original conjecture. CVC4 was thus able to fully automatically find a
simpler proof than we found by hand.

On most of the benchmarks we considered, the subgoal generation module has only
a small overhead in performance for benchmarks where subgoal generation is not re-
quired. In only 30 cases cvc4+ig took more than twice as long to solve a benchmark
than cvc4+i (for benchmarks that took cvc4+ig more than a second to solve), and in
only 9 cases cvc4+ig was unable to solve a benchmark that cvc4+i solved.

6 These 10 benchmarks are solved by CVC4 without subgoal generation, despite being described
in literature as requiring subgoals. In some cases, the reason is that CVC4 chose a different
variable to apply induction to. For instance, the conjecture rotate(S(n), rotate(m,xs)) ≈
rotate(S(m), rotate(n, xs)) is said to be proven by Hipspec by induction on xs after dis-
covering the subgoal rotate(n, rotate(m,xs)) ≈ rotate(m,rotate(n, xs)). Instead, CVC4
proved this conjecture by induction on n using no subgoals.
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Id Property Solved only by
47 ∀t. height(mirror(t)) = height(t) CVC4, HipSpec, Zeno
50 ∀x. butlast(x) = take(minus(len(x), S(Z)), x) CVC4, Zeno
54 ∀mn. minus(plus(m, n), n) = m CVC4, HipSpec, Zeno
56 ∀nmx. drop(n, drop(m,x)) = drop(plus(n,m), x) CVC4, HipSpec, Zeno
66 ∀x. leq(len(filter(x)), len(x)) CVC4, ACL2, Zeno
67 ∀x. len(butlast(x)) = minus(len(x), S(Z)) CVC4, HipSpec, Zeno
68 ∀xl. leq(len(delete(x, l)), len(l)) CVC4, ACL2, Zeno
81 ∀nmx. take(n, drop(m,x)) = drop(m, take(plus(n,m), x)) CVC4, HipSpec, Zeno
83 ∀xyz. zip(app(x, y), z) = app(zip(x, take(len(x), z)), zip(y, drop(len(x), z))) CVC4, HipSpec, Zeno
84 ∀xyz. zip(x, app(y, z)) = app(zip(take(len(y), x)y), zip(drop(len(y), x), z)) CVC4, HipSpec, Zeno
72 ∀ix. rev(drop(i, x)) = take(minus(len(x), i)rev(x)) Hipspec
73 ∀x. rev(filter(x)) = filter(rev(x)) HipSpec, Zeno
74 ∀ix. rev(take(i, x)) = drop(minus(len(x), i)rev(x)) Hipspec
78 ∀l. sorted(sort(l)) ACL2, Zeno
85 ∀xy. len(x) = len(y) ⇒ zip(rev(x), rev(y)) = rev(zip(x, y))

Fig. 3. Isaplanner benchmarks that cannot be solved by either a competing inductive prover, or
using CVC4 with its inductive mode with subgoal generation on the dti encoding. The first part
shows benchmarks solved by our approach but not by one of the competing provers. Zeno excels
at these benchmarks, but note that, e.g., CVC4 solves 21 Clam benchmarks that Zeno cannot.

Overall, the results show that the performance of all configurations is the best for
benchmarks in the dti encoding. While the dtt encoding enables the SMT solver to
leverage the decision procedure for linear integer arithmetic when reasoning about in-
ductive conjectures, it degrades performance for many benchmarks, often leading to
conjectures being unsolved. We attribute this to several factors. Firstly, the dtt encoding
complicates the operation of the matching-based heuristic for quantifier instantiation.
For instance, finding ground terms that modulo equality match a pattern f(1+x) is less
straightforward than finding terms that match a pattern f(S(x)). Secondly, as opposed
to the other two encodings, the dtt encoding relies heavily on decisions made by the
theory solver for linear integer arithmetic. For a negated conjecture ¬Pi(ki) for inte-
ger ki, a highly optimized Simplex decision procedure for linear integer arithmetic will
find a satisfying assignment, which may or may not choose to explore useful values of
ki. On the other hand, given a negated conjecture ¬P (k) for natural number k, in the
absence of conflicts, the decision procedure for inductive datatypes will first case-split
on whether k is zero. We believe the behavior of the decision procedure for inductive
datatypes has more synergy with the quantifier instantiation mechanism in CVC4 for
our axiom sets, since its case splitting naturally corresponds with the case splitting in
the definition of recursive functional programs. As a result, the dti encoding is the best
of the three, as it allows the solver to effectively consult the integer solver for mak-
ing theory-specific inferences as needed, without affecting the interaction between the
ground solver and quantifier instantiation mechanism.

Comparison with Inductive Theorem Provers. By comparing to reported results of
inductive provers, we find that tools perform well on their own benchmark sets, but,
unsurprisingly, less well on benchmarks used to evaluate competing tools. Although no
tool dominates, cvc4+ig performs well across all benchmark sets. Combined with the
convenience of using the standardized SMT-LIB2 format and the benefits of other SMT
techniques, CVC4 becomes an attractive choice for inductive proofs.
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For the 85 benchmarks in Isaplanner set, cvc4+ig solves a total of 80 benchmarks in
the dti encoding. These benchmarks have been translated into the native formats sup-
ported by a number of tools. As points of comparison, as reported in [27], Zeno solves
a total of 82 benchmarks, 2 that cvc4+ig cannot. Hipspec [7] solves a total of 80 bench-
marks, 3 that cvc4+ig cannot, while cvc4+ig solves 3 benchmarks that Hipspec cannot.
ACL2 [6] solves a total of 73 benchmarks, 1 that cvc4+ig cannot, while cvc4+ig solves
8 that ACL2 cannot. We list all benchmarks that either CVC4, Zeno, Hipspec, or ACL2
does not solve in Figure 3. Isaplanner [17] and Dafny [22] solve 47 and 45 benchmarks
respectively, the latter of which does not incorporate techniques for automatically gen-
erating subgoals. Interestingly, we found one property in the original set of benchmarks
from [17], ∀xyz. less(x, y) ⇒ mem(x, insert(y, z)) ≈ mem(x, z) is true, although
it is cited in later sources as not a theorem, and excluded from the evaluation of the
other tools. We found that CVC4 was able to prove this property, both by enabling the-
ory reasoning (cvc4+i on the dtt and dti encodings) and by enabling subgoal generation
(cvc4+ig on the dt encoding).

For the original 50 benchmarks from the Clam set (which include 38 benchmarks
from Clam class in Figure 2 that require subgoals and 12 benchmarks from Clam+sg
that do not), cvc4+ig solves a total of 39 benchmarks in the dti encoding. A version
of Hipspec solves a total of 47 of these benchmarks, 10 that cvc4+ig cannot, while
cvc4+ig solves 2 benchmarks that Hipspec cannot (which were solved due to the use of
CVC4’s native support for sets). Zeno solves a total of 21 benchmarks, 3 that cvc4+ig
cannot, while cvc4+ig solves 21 that Zeno cannot. The Clam tool itself solves 41 fully
automatically, 7 that cvc4+ig cannot, while cvc4+ig solves 5 that Clam cannot.

5 Conclusion

We have presented a method for incorporating inductive reasoning within a DPLL(T)-
based SMT solver. We have shown an implementation that has a high success rate for
benchmarks taken from inductive theorem proving and software verification sources,
and is competitive with state-of-the-art tools for automating induction. We have pro-
vided a larger and unified set of benchmarks in a standard SMT-LIB2 format, which will
make future comparisons more feasible. Our evaluation indicates the inductive reason-
ing capabilities in our approach benefit from an encoding where theory reasoning can be
consulted using a mapping between datatypes and builtin types, allowing the solver to
leverage inferences made by its ground decision procedures. Our evaluation shows that
our approach for subgoal generation is feasible for automatically inferring subgoals that
are relevant to proving a conjecture. The scalability of our approach is made possible by
several powerful techniques for filtering out irrelevant candidate subgoals based on the
information the solver knows about its current context. Future work includes incorpo-
rating further induction schemes, inferring subgoals containing propositional symbols,
and improvements to the heuristics used for filtering candidate subgoals.

Acknowledgments. We thank Ravichandhran Madhavan for an initial version of the
Leon benchmarks and Cesare Tinelli for discussions about SMT-LIB semantics.
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Abstract. Among the various critical systems that are worth to be for-
mally analyzed, a wide set consists of controllers for dynamical systems.
Those programs typically execute an infinite loop in which simple com-
putations update internal states and produce commands to update the
system state. Those systems are yet hardly analyzable by available static
analysis method, since, even if performing mainly linear computations,
the computation of a safe set of reachable states often requires quadratic
invariants.

In this paper we consider the general setting of a piecewise affine
program; that is a program performing different affine updates on the
system depending on some conditions. This typically encompasses linear
controllers with saturations or controllers with different behaviors and
performances activated on some safety conditions.

Our analysis is inspired by works performed a decade ago by Johans-
son et al, and Morari et al, in the control community. We adapted their
method focused on the analysis of stability in continuous-time or discrete-
time settings to fit the static analysis paradigm and the computation of
invariants, that is over-approximation of reachable sets using piecewise
quadratic Lyapunov functions.

Keywords: formal verification, static analysis, piecewise affine systems,
piecewise quadratic lyapunov functions.

1 Introduction

With the success of Astrée [BCC+11], static analysis in general and abstract
interpretation in particular are now seriously considered by industrials from the
critical embedded system community, and more specifically by the engineers
developing and validation controllers. The certification norms concerning the
V&V of those software have also evolved and now enable the use of such methods
in the development process.

These controller software are meant to perform an infinite loop in which val-
ues of sensors are read, a function of inputs and internal states is computed,
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and the value of the result is sent to actuators. In general, in the most critical
applications, the controllers used are based on a simple linear update with minor
non linearities such as saturations, i.e. enforcing bounds, or specific behaviors
when some conditions are met. The controlled systems range from aircraft flight
commands, guidance algorithms, engine control from any kind of device optimiz-
ing performance or fuel efficiency, control of railway infrastructure, fan control
in tunnels, etc.

It is therefore of outmost importance to provide suitable analyses to verify
these controllers. One of the approach is to rely on quadratic invariants, such as
the digital filters abstract domain of Feret [Fer04], since, according to Lyapunov
theorem, any globally asymptotically stable linear system admits a quadratic
Lyapunov function. This theorem does not hold in presence of disjunction, such
as saturations.

In static analysis, dealing with disjunction is an import concern. When the
join of two abstract element is imprecise, one can consider the disjunctive com-
pletion of the domain [FR94]. This process enriches the set of abstract elements
with new ones, but the cost, i.e. the number of new elements, could be exponen-
tial in the number of initial elements. Concerning relation abstract domains, one
should mention the tropical polyhedra of Allamigeon [All09] in which an abstract
element characterizes a finite disjunction of zones [Min01]. However concerning
quadratic properties, no static analysis actually performs the automatic compu-
tation of disjunctive quadratic invariants.

The goal of this paper is to propose such a computation: produce a disjunctive
quadratic invariant as a sub-level of a piecewise quadratic Lyapunov function.

Related works. Most relational abstractions used in the static analysis com-
munity rely on a linear representation of relationship between variables, e.g.
polyhedra [CH78], octagons [Min06], zonotopes [GGP09] are not join-complete.
Integrating constraints in invariants generation was developed in [CSS03] but
for computing linear invariants. As mentioned above, the tropical polyhedra do-
main [All09] admits some disjunctions since it characterizes a family of properties
encoded as finite disjunction of zones.

Concerning non linear properties, the need for quadratic invariant was ad-
dressed a decade ago with ellipsoidal abstract domains for simple linear fil-
ters [Fer04] and more recently for non linear template domains [CS11] and policy
iteration based static analysis [GSA+12].

More recently, techniques used in the control community have been used to
synthesize appropriate quadratic templates using SDP solvers and Lyapunov
functions [RJGF12].

The proposed technique addresses a family of systems well beyond the ones
handled by the mentioned methods. In general, a global quadratic invariant is
not enough to bound the reachable value of the considered systems, hence none
of these could succeed.

On the control community side, Lyapunov based analysis are typically used
to show the good behavior of a controlled system: it is globally asymptotically
stable (GAS), i.e. when time goes to infinity the trajectories of the system goes
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to 0. Since about a decade SDP solvers, i.e. convex optimization algorithms for
semi-definite programming, have reached a level of maturity that enable their
use to compute quadratic Lyapunov functions. On the theory side, variants of
quadratic Lyapunov functions such as the papers motivating our work – Jo-
hansson and Rantzer [RJ00, Joh03] as well as Mignone, Ferrari-Trecate and
Morari [MFTM00] – addressed the study of piecewise linear systems for proving
the GAS property.

In general, computing a safe superset of reachable states as needed when
performing static analysis, is not a common question for control theorist. They
would rather address the related notions of controllabilty or stability under per-
turbations. In most case, either the property considered, or the technique used,
relies on the existence of a such a bound over reachable state; which we aim to
compute in static analysis.

Contributions. Our contribution is threefold and based on the method of Jo-
hansson and Mignone used to prove the GAS property of a piecewise linear
system:

– we detailed the method in the discrete setting, computing a piecewise
quadratic Lyapunov function of a discrete-time system;

– we adapted it to compute an invariant over reachable states of the analyzed
system;

– we showed the applicability of the proposed method to a wide set of generated
examples.

Organization of the paper. The paper is structured as follow. Section 2 introduces
the kind of programs considered. Section 3 details our version of the piecewise
quadratic Lyapunov function as well as the characterization of invariant sets.
Section 4 presents the experimentations while Section 5 concludes and opens
future direction of research.

2 Problem Statement

The programs we consider here are composed of a single loop with possibly
a complicated switch-case type loop body. Our switch-case loop body is sup-
posed to be written as a nested sequence of ite statements, or a switch c1 →
inst1; c2 → instr2; c3 → instr3. Moreover, we suppose that the analyzed pro-
grams are written in affine arithmetic. Consequently, the programs analyzed here
can be interpreted as piecewise affine discrete-time systems. Finally, we reduce
the problem to compute automatically an overapproximation of the reachable
states of a piecewise affine discrete-time system. The term piecewise affine means
that there exists a polyhedral partition {X i, i ∈ I} of the state-input space
X ⊆ Rd+m such that for all i ∈ I, the dynamic of the system is affine and
represented by the following relation for all k ∈ N:

if (xk, uk) ∈ X i, xk+1 = Aixk +Biuk + b
i, k ∈ N (1)
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where Ai is a d×d matrix, Bi a d×m matrix and bi a vector of Rd. The variable
x ∈ Rd refers to the state variable and u ∈ Rm refers to some input variable.

For us, a polyhedral partition is a family of convex polyhedra which partitions
the state-input space i.e. X =

⋃
i∈I X

i ⊆ Rd+m such that X i ∩ Xj = ∅ for all
i, j ∈ I, i 
= j. From now on, we call X i cells. Cells {X i}i∈I are convex polyhedra
which can contain both strict and weak inequalities. Cells can be represented
by a ni × (d+m) matrix T i and ci a vector of Rni . We denote by Isi the set of
indices which represent strict inequalities for the cell X i, denote by T i

s and cis the
parts of T i and ci corresponding to strict inequalities and by T i

w and ciw the one
corresponding to weak inequalities. Finally, we have the matrix representation
given by Formula (2).

X i =

{(
x
u

)
∈ Rd+m

∣∣∣∣T i
s

(
x
u

)
 cis, T

i
w

(
x
u

)
≤ ciw

}
(2)

We use the following notation: y  z means that for all coordinates l, yl < zl
and y ≤ z means that for all coordinates l, yl ≤ zl.

We will need homogeneous versions of laws and thus introduce the (1 + d +
m)× (1 + d+m) matrices F i defined as follows:

F i =

⎛⎝1 01×d 01×m

bi Ai Bi

0 0m×d Idm×m

⎞⎠ (3)

The system defined in Equation (1) can be rewritten as (1, xk+1, uk+1)
ᵀ =

F i(1, xk+1, uk). Note that we introduce a "virtual" dynamic law uk+1 = uk
on the input variable in Equation (3). In the point of view of set invariance
computation, we will see that it remains to consider such dynamic law. Indeed
we suppose that the input is bounded and we write uk ∈ U for all k ∈ N with U
is a nonempty compact set (polytope).

We are interested in proving that the reachable states R is bounded and a
proof of this statement can be expressed by directly computing R that is:

R = {y ∈ Rd | ∃ k ∈ N, ∃ i ∈ I, ∃ (xk, uk) ∈ X i, y = Aixk +Biuk + b
i} ∪ {x0}

and prove that this set is bounded. We can also compute an overapproximation
of R from a set S ⊆ Rd+m such that (x0, u0) ∈ S, R × U ⊆ S and S is an
inductive invariant in the sense of, for all i ∈ I:

(x, u) ∈ S ∩X i =⇒ (Aix+Biu+ bi, u) ∈ S.

Indeed, by induction since (x0, u0) belongs to S, (xk, uk) ∈ S for all k ∈ N. Since
every image of the dynamic of the system stays in S, a reachable state (y, u)
belongs to S. Finally, if we prove that S is bounded then R is also bounded.

Working directly on sets can be difficult and usually invariant sets are com-
puted as a sublevel of some function to find. For (convergent) discrete-time
linear systems, it is classical to compute ellipsoidal overapproximation of reach-
able states. Indeed, sublevel sets of Lyapunov functions are invariant set for the
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analyzed linear system and to compute an ellipsoid containing the initial states
provides an overapproximation of reachable states. Initially, Lyapunov functions
are used to prove quadratic asymptotic stability. In this paper, we use an ana-
logue of Lyapunov functions for piecewise affine systems to compute directly an
overapproximation of reachable states.

Example 1 (Running example). Let us consider the following program. It is con-
stituted by a single while loop with two nested conditional branches in the loop
body.

(x , y )∈ [−9, 9]× [−9, 9] ;
whi l e ( true )

ox=x ;
oy=y ;
read (u ) ; \\u ∈ [−3, 3]
i f (−9∗ox+7∗y+6∗u<5){

i f (−4∗ox+8∗oy−8∗u<4){
x=0.4217∗ox+0.1077∗oy+0.5661∗u ;
y=0.1162∗ox+0.2785∗oy+0.2235∗u−1;
}

e l s e { \\4∗ox−8∗oy+8∗u<−4
x=0.4763∗ox+0.0145∗oy+0.9033∗u ;
y=0.1315∗ox+0.3291∗oy+0.1459∗u+9;
}

}
e l s e { \\9∗ox−7∗y−6∗u<−5

i f (−4∗ox+8∗oy−8∗u<4){
x=0.2618∗ox+0.1107∗oy+0.0868∗u−4;
y=0.4014∗ox+0.4161∗oy+0.6320∗u+4;
}

e l s e { \\4∗ox−8∗oy+8∗u<−4
x=0.3874∗ox+0.00771∗oy+0.5153∗u+10;
y=0.2430∗ox+0.4028∗oy+0.4790∗u+7;
}

}

The initial condition of the piecewise affine systems is (x, y) ∈ [−9, 9]× [−9, 9]
and the polytope where the input variable u lives is U = [−3, 3].

We can rewrite this program as a piecewise affine discrete-time dynamical
systems using our notations. We give details on the matrices T i

s and T i
w and

vectors cis and ciw (see Equation (2)) which characterize the cells and on the
matrices F i representing the homogeneous version (see Equation (3)) of affine
laws in the cell X i.

F 1 =

⎛⎜⎜⎝
1 0 0 0
0 0.4217 0.1077 0.5661
−1 0.1162 0.2785 0.2235
0 0 0 1

⎞⎟⎟⎠ ,

⎧⎪⎪⎨⎪⎪⎩
T 1
s =

(−9 7 6
−4 8 −8

)
c1s = (5 4)ᵀ

,

⎧⎪⎪⎨⎪⎪⎩
T 1
w =

(
0 0 1
0 0 −1

)
c1w = (3 3)ᵀ
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F 2 =

⎛⎜⎜⎝
1 0 0 0
0 0.4763 0.0145 0.9033
9 0.1315 0.3291 0.1459
0 0 0 1

⎞⎟⎟⎠ ,

⎧⎨⎩
T 2
s =
(−9 7 6

)
c2s = 5

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T 2
w =

⎛⎝4 −8 8
0 0 1
0 0 −1

⎞⎠
c2w = (−4 3 3)ᵀ

F 3 =

⎛⎜⎜⎝
1 0 0 0
−4 0.2618 0.1177 0.0868
4 0.4014 0.4161 0.6320
0 0 0 1

⎞⎟⎟⎠ ,

⎧⎨⎩
T 3
s =
(−4 8 −8)

c3s = 4
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T 3
w =

⎛⎝9 −7 −6
0 0 1
0 0 −1

⎞⎠
c2w = (−5 3 3)ᵀ

F 4 =

⎛⎜⎜⎝
1 0 0 0
10 0.3874 0.0771 0.5153
7 0.2430 0.4028 0.4790
0 0 0 1

⎞⎟⎟⎠ ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
T 4
w =

⎛⎜⎜⎝
9 −7 −6
4 −8 8
0 0 1
0 0 −1

⎞⎟⎟⎠
c4w = (−5 − 4 3 3)ᵀ

3 Invariant Computation

In [Joh03, MFTM00], the authors propose a method to prove stability of piece-
wise affine dynamical discrete-time systems. The method is a generalization of
Lyapunov stability equations in the case where affine laws defining the system
depend on the current state. Let A be a d× d matrix and let xk+1 = Axk, k ∈
N, x0 ∈ Rd be a linear dynamical system. We recall that L is a quadratic Lya-
punov function iff there exists a d×d symmetric matrix P such that L(x) = xᵀPx
for all x ∈ Rd and P " 0 and P −AᵀPA " 0. The notation P " 0 means that P
is positive definite i.e. xᵀPx > 0 for all x ∈ Rd, x 
= 0 and 0 for x = 0. We will
denote by Q # 0 when Q is positive semidefinite i.e. xᵀPx ≥ 0 for all x ∈ Rd.
Positive definite matrices characterize square of norm on Rd. A Lyapunov func-
tion allows to prove the stability by the latter fact : the norm (associated to
the Lyapunov function) of the states xk decreases along the time. In switched
system, similarly to the classical case, we exhibited a positive matrix (square
norm) to prove that the trajectories decrease along the time. The main difficulty
in the switched case is the fact that we change the laws and we must decrease
whenever a transition from one cell to other is fired. Moreover, we only require
the norm to be local i.e. positive only where the law is used.

3.1 Quadratization of Cells

We recall that for us local means that true on a cell and thus true on a polyhe-
dron. Using the homogeneous version of a cell, we can define local positiveness on
a polyhedral cone. Let Q be a d×d symmetric matrix and M be a n×d matrix.
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Local positivity in our case means that My ≥ 0 =⇒ yᵀQy ≥ 0. The problem
will be to write the local positivity as a constraint without implication. The prob-
lem is not new (e.g. the survey paper [IS00]). The paper [MJ81] proves that local
positivity is equivalent, when M has a full row rank, to Q−MᵀCM # 0 where
C is a copositive matrix i.e. xᵀCx ≥ 0 if x ≥ 0. First in general (when the rank
ofM is not necessarily equal to its number of rows), note that if Q−MᵀCM # 0
for some copositive matrix C then Q satisfies My ≥ 0 =⇒ yᵀQy ≥ 0. Secondly
every matrix C with nonnegative entries is copositive. Since copositivity seems
to be as difficult as local positivity to handle, we will restrict copositive matrices
to be matrices which nonnegative entries. The idea is instead of using cells as
polyhedral cones, we use a quadratization of cells by introducing nonnegative
entries and we will define the quadratization of a cell X i by:

X i =

⎧⎨⎩
(
x
u

)
∈ Rd+m

∣∣∣∣∣∣
⎛⎝1
x
u

⎞⎠ᵀ

EiᵀW iEi

⎛⎝1
x
u

⎞⎠ ≥ 0

⎫⎬⎭ (4)

where W i is a (1+ni)× (1+ni) symmetric matrix with nonnegative entries and

Ei =

(
Ei

s

Ei
w

)
with Ei

s =

(
1 01×(d+m)

cis −T i
s

)
and Ei

w =
(
ciw −T i

w

)
. Recall that ni is

the number of rows of T i. The matrix Ei is thus of the size ni+1× (1+ d+m).
The goal of adding the row (1, 01×(d+m)) is to avoid to add the opposite of a
vector of X i in X i. Indeed without this latter vector X i would be symmetric.
We illustrate this fact at Example 2. Note that during optimization process,
matrices W i will be decision variables.

Example 2 (The reason of adding the row (1, 01×(d+m))). Let us take the polyhe-
dra X = {x ∈ R | x ≤ 1}. Using our notations, we have X = {x |M(1 x)ᵀ ≥ 0}
with M = (1 − 1). Let us consider two cases, the first one without adding the
row and the second one using it.

Without any modification, the quadratization of X relative to a nonnegative
real W is X ′ = {x | (1 x)MᵀWM(1 x)ᵀ ≥ 0}. But (1 x)MᵀWM(1 x)ᵀ =
W (1 x)(1 − 1)ᵀ(1 − 1)(1 x)ᵀ = 2W (1− x)2. Hence X ′ = R for all nonnegative
real W .

Now let us take E =

(
1 0
1 −1

)
. The quadratization as defined by Equation (4)

relative to a 2×2 symmetric matrix W with nonnegative coefficients is X = {x |
(1 x)EᵀWE(1 x)ᵀ ≥ 0}. We have:

(1 x)

(
1 1
0 −1

)(
w1 w3

w3 w2

)(
1 0
1 −1

)
(1 x)ᵀ = w1 + 2w3(1− x) + w2(1− x)2 .

To take a matrix W such that w2 = w1 = 0 and w3 > 0 implies that X = X .

Now we introduce an example of the quadratization of the cellX1 for our running
example.
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Example 3. Let us consider the running example and the cell X1. We recall that
X1 is characterized by the matrices and vectors:⎧⎪⎪⎨⎪⎪⎩

T 1
s =

(
−9 7 6
−4 8 −8

)
c1s = (5 4)ᵀ

,

⎧⎪⎪⎨⎪⎪⎩
T 1
w =

(
0 0 1
0 0 −1

)
c1w = (3 3)ᵀ

and E1 =

⎛⎜⎜⎜⎜⎝
1 0 0 0
5 9 −7 −6
4 4 −8 8
3 0 0 −1
3 0 0 1

⎞⎟⎟⎟⎟⎠
As suggested we have added the row (1, 01×3). Take for example the matrix:

W 1 =

⎛⎜⎜⎜⎜⎝
63.0218 0.0163 0.0217 12.1557 8.8835
0.0163 0.0000 0.0000 0.0267 0.0031
0.0217 0.0000 0.0000 0.0094 0.0061
12.1557 0.0267 0.0094 4.2011 59.5733
8.8835 0.0031 0.0061 59.5733 3.0416

⎞⎟⎟⎟⎟⎠
We have X1 = {(x, y, u) | (1, x, y, u)E1W 1E1(1, x, y, u)ᵀ ≥ 0} ⊇ X1. In Sec-
tion 4, we will come back on the generation of W 1.

Local positivity of quadratic forms will also be used when a transition from a
cell to an other is fired . For the moment, we are interested in the set of (x, u)
such that (x, u) ∈ X i and whose the image is in Xj and we denote by X ij the
set: {(

x
u

)
∈ Rd+m

∣∣∣∣(xu
)
∈ X i and (Aix+Biu+ bi, u) ∈ Xj

}
for all pairs i, j ∈ I. Note that in [MFTM00], the authors take into account all
pairs (i, j) such that there exists a state xk at moment k in X i and the image
of xk that is xk+1 is in Xj. We will discuss in Subsection 3.2 the computa-
tion or a reduction to possible switches using linear programming as suggested
in [BGLM05]. To construct a quadratization of X ij , we use the same approach
than before by introducing a (1+ni+nj)× (1+ni +nj) symmetric matrix U ij

with nonnegative entries to get a set X ij defined as:

X ij =

⎧⎨⎩
(
x
u

)
∈ Rd+m

∣∣∣∣∣∣
⎛⎝1
x
u

⎞⎠ᵀ

EijᵀU ijEij

⎛⎝1
x
u

⎞⎠ ≥ 0

⎫⎬⎭ (5)

where Eij =

(
Eij

s

Eij
w

)
with

Eij
s =

⎛⎜⎜⎝
1 01×(d+m)

cis −T i
s

cjs − T j
s

(
bi

0

)
−T j

s

(
Ai Bi

0d×m Idm×m

)
⎞⎟⎟⎠

and

Eij
w =

⎛⎝ ciw −T i
w

cjw − T j
w

(
bi

0

)
−T j

w

(
Ai Bi

0d×m Idm×m

)⎞⎠
(6)
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3.2 Switching Cells

We have to manage another constraint which comes from the cell switches. After
applying the available law in cell X i, we have to specify the reachable cells i.e.
the cells Xj such that there exists (x, u) satisfying:

(x, u) ∈ X i and (Aix+Biu+ bi, u) ∈ Xj

We say that a switch from i to j is fireable iff:⎧⎪⎪⎨⎪⎪⎩(x, u) ∈ Rd+m

∣∣∣∣∣∣∣∣
T i
s(x, u)

ᵀ  cis
T j
s (A

ix+Biu+ bi, u)ᵀ  cjs
T i
w(x, u)

ᵀ ≤ ciw
T j
w(A

ix+Biu+ bi, u)ᵀ ≤ cjw

⎫⎪⎪⎬⎪⎪⎭ 
= ∅ (7)

We will denote by i → j if the switch from i to j is fireable. Recall that the
symbol < means that we can deal with both strict inequalities and inequali-
ties. Problem (7) is a linear programming feasibility problem with both strict
and weak inequalities. However, we only check whether the system is solvable
and we can detect infeasibility by using Motzkin transposition theorem [Mot51].
Motkin’s theorem is an alternative type theorem, that is we oppose two linear
systems such that exactly one of the two is feasible. To describe the alternative
system, we have to separate strict and weak inequalities and use the matrices
Eij

s and Eij
w defined at Equation (6). Problem (7) is equivalent to check whether

the set {y = (z, x, u) ∈ R1+d+m | Eij
w y ≥ 0, Eij

s y $ 0} is empty or not. To
detect feasibility we test the infeasibility of the alternative system defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Eij
s )ᵀps + (Eij

w )ᵀp = 0∑
k∈I p

s
k = 1

psk ≥ 0, ∀ k ∈ I

pi ≥ 0, ∀ i /∈ I

(8)

From Motzkin’s transposition theorem [Mot51], we get the following proposition.

Proposition 1. Problem (7) is feasible iff Problem (8) is not.

However reasoning directly on the matrices can allow unfireable switches. For
certain initial conditions, for all k ∈ N, the condition (xk, uk) ∈ X i and (Aixk +
Biu + bi, u) ∈ Xj does not hold whereas Problem (7) is feasible. To avoid it,
we must know all the possible trajectories of the system (which we want to
compute) and remove all inactivated switches. A sound way to underapproximate
unfireable transitions is to identify unsatisfiable sets of linear constraints.

Example 4. We continue to detail our running example. More precisely, we con-
sider the possible switches. We take for example the cell X2. To switch from



108 A. Adjé and P.-L. Garoche

cell X2 to cell X1 is possible if the following system of linear inequalities has a
solution:

−9x+ 7y + 6u < 5
−0.8532x+ 2.5748y− 10.4460 < −68
−3.3662x+ 2.1732y− 1.1084u < −58

4x− 8y + 8u ≤ −4
u ≤ 3
−u ≤ 3

(9)

The two first consists in constraining the image of (x, y, u) to belong to X1 and
the four last constraints correspond to the definition of X2. The representation
of these two sets (X2 and the preimage of X1 by the law defined in X2) is
given at Figure 1. We see at Figure 1 that the system of inequalities defined at

Fig. 1. The truncated representation of X2 in red and the preimage of X1 by the law
inside X2 in blue

Equation (9) seems to not have solutions. We check that using Equation (8) and
Proposition 1. The matrices Eij

s and Eij
w of Equation (8) are in this example:

E21
s =

⎛⎝ 5 9 −7 −6
−68 0.8532 −2.5748 10.446
−58 3.3662 −2.1732 1.1084

⎞⎠ and E21
w =

⎛⎝−4 −4 8 −8
3 0 0 −1
3 0 0 1

⎞⎠
We thus solve the linear program defined in Equation (8) (with Matlab and Lin-
prog) andwe foundp=(0.8735, 0.0983, 0.0282)ᵀand q=(0.3325, 14.2500, 7.8461)ᵀ.
This means that the alternative system is feasible and consequently the initial is
not from Proposition 1. Finally the transition fromX2 toX1 is not possible.
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3.3 Piecewise Quadratic Lyapunov Functions to Compute Invariant
Sets

Now we adapt the work of Rantzer and Johansson [Joh03] and the work of
Mignone et al [MFTM00] to compute of an invariant set for switched systems
i.e. a subset S such that (xk, u) ∈ S implies (xk+1, u) ∈ S. These works are in-
stead focused on deciding whether a piecewise affine system is global asymptotic
convergent or not. Even if the problem is undecidable [BBK+01] the latter au-
thors prove a stronger property on the system: there exists a piecewise Lyapunov
functions for the piecewise affine systems. Rantzer and Johansson [Joh03] and
Mignone et al [MFTM00] suggest to compute a piecewise quadratic function as
Lyapunov function in the case of discrete-time piecewise affine systems to prove
GAS property. Recall that a piecewise quadratic function on Rd is a function
defined on a polyhedric partition of Rd which is quadratic on each polyhedron
of the partition. In this paper, we propose to compute a (weaker) piecewise Lya-
punov function to characterize an invariant set for our piecewise affine systems.
In this section, we will denote by V this function. The pieces are given by the
cells of the piecewise affine system and thus V is defined as:

V (x, u) = V i(x, u), if
(
x
u

)
∈ X i

=

(
x
u

)ᵀ
P i

(
x
u

)
+ 2qi

ᵀ
(
x
u

)
, if

(
x
u

)
∈ X i

The function V i is thus a local function only defined on X i.
A sublevel set Sα of V of level α ∈ R is represented as:

Sα =
⋃

i∈I Si,α

=
⋃

i∈I

{(
x
u

)
∈ X i |

(
x
u

)ᵀ
P i

(
x
u

)
+ 2qi

ᵀ
x ≤ α

}
=
⋃

i∈I

⎧⎨⎩
(
x
u

)
∈ X i |

⎛⎝1
x
u

⎞⎠ᵀ (
−α qiᵀ
qi P i

)⎛⎝1
x
u

⎞⎠ ≤ 0

⎫⎬⎭ .
The set Si,α is thus the local sublevel set of V i associated to the level α.

So we are looking a family of pairs of a matrix and a vector {(P i, qi)}i∈I and
a real α ∈ R such that Sα is invariant by the piecewise affine system. To obtain
invariance property, we have to constraint Sα to contain initial conditions of the
system. Finally, to prove that the reachable set is bounded, we have to constraint
Sα to be bounded.

Before deriving the semi-definite constraints, let us first state a useful result
in Proposition 2. This result allows to encode implications into semi-definite
constraint in a safe way safe. The implication must involve quadratic inequalities
on both sides.

Proposition 2. Let A,B,C be d×d matrices. Then C+A+B # 0 holds implies
that the implication (yᵀAy ≤ 0 ∧ yᵀBy ≤ 0) =⇒ yᵀCy ≥ 0 holds.
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Proof. Suppose that C +A+B # 0. It is equivalent to say yᵀ(C +A+B)y ≥ 0
for all y ∈ Rd. Now pick z ∈ Rd such that zᵀAz ≤ 0 and zᵀBz ≤ 0. Since
zᵀCz ≥ −zᵀAz− zᵀBz, we conclude that zᵀCz ≥ 0 and the implication is true.

Writing Invariance as Semi-definite Constraints . We assume that (x, u) ∈
X i∩Si,α (this index i is unique). Invariance means that if we apply the available
law to (x, u) and suppose that the image of (x, u) belongs to some cell Xj

(notation i→ j), then the image of (x, u) belongs to Sj,α. Note that (x, u) ∈ X i

and its image is supposed to be in Xj then (x, u) ∈ X ij . Let (i, j) ∈ I2 such
that i→ j, invariance translated in inequatilities and implication gives :(

x
u

)
∈ X ij ∧

(
x
u

)
∈ Si,α =⇒

(
Aix+Biu+ bi

u

)
∈ Sj,α (10)

We can use the relaxation of Subsection 3.1 as representation of cells and use
matrix variables W i and U ij to encode their quadratization. We get, for (i, j) ∈
I2 such that i→ j:⎛⎝1

x
u

⎞⎠ᵀ

EijᵀU ijEij

⎛⎝1
x
u

⎞⎠ ≥ 0 ∧

⎛⎝1
x
u

⎞⎠ᵀ (
−α qiᵀ
qi P i

)⎛⎝1
x
u

⎞⎠ ≤ 0

=⇒

⎛⎝1
x
u

⎞⎠ᵀ (
F iᵀ

(
−α qjᵀ
qj P j

)
F i

)⎛⎝1
x
u

⎞⎠ ≤ 0

(11)

whereEij is the matrix defined at Equation (5) and F i is defined at Equation (3).
Finally, we obtain a stronger condition by considering semi-definite constraint

such as Equation (12). Proposition 2 proves that if (P i, P j , qi, qj , U ij) is a
solution of Equation (12) then (P i, P j, qi, qj , U ij) satisfies Equation (11). For
(i, j) ∈ I2 such that i→ j:

−F iᵀ
(
0 qj

ᵀ

qj P j

)
F i +

(
0 qi

ᵀ

qi P i

)
− EijᵀU ijEij # 0 . (12)

Note that the symbol −α is cancelled during the computation.

Integrating Initial Conditions . To complete invariance property, invariant
set must contain initial conditions. Suppose that initial condition is a polyhedron
X0 = {(x, u) ∈ Rd+m | T 0

w(x, u) ≤ c0w, T 0
s (x, u) c0s}. We must have X0 ⊆ Sα.

But X0 is contained in the union of X i. Hence X0 is the union over i ∈ I of the
sets X0∩X i. If, for all i ∈ I, the set X0∩X i is contained in Si,α then X0 ⊆ Sα.
We can use the same method as before to express that all sets Si,α such that
X0 ∩X i 
= ∅ must contain X0 ∩X i. In term of implications, it can be rewritten
as for all i ∈ I such that X0 ∩X i 
= ∅:

(x, u) ∈ X0 ∩X i =⇒ (x, u)P i(x, u)ᵀ + 2(x, u)qi ≤ α (13)
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Since X0 ∩X i is a polyhedra, it admits some quadratization that is: X0 ∩X i =

{(x, u) ∈ Rd+m | (1, x, u)E0iᵀZiE0i(1, x, u)ᵀ ≥ 0} where E0i =

(
E0i

s

E0i
w

)
with:

E0i
w =

(
c0w −T 0

w

ciw −T i
w

)
and E0i

s =

⎛⎝ 1 01×(d+m)

c0s −T 0
s

cis −T i
s

⎞⎠
and Zi is some symmetric matrix whose coefficients are nonnegative.

For all i ∈ I such thatX0∩X i 
= ∅, we obtain a stronger notion by introducing
semi-definite constraints:

−
(
−α qiᵀ
qi P i

)
− E0iᵀZiE0i # 0 (14)

Proposition 2 proves that if (P i, qi, Zi) is a solution of Equation (14) then
(P i, qi, Zi) satisfies Equation (13).

Note since X0 ∩ X i is a polyhedron then its emptyness can be decided by
checking the feasibility of the linear problem (15) and by using of same argument
than Proposition 1. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(E0i
s )ᵀps + (E0i

w )ᵀp = 0∑
k∈I p

s
k = 1

psk ≥ 0, ∀ k ∈ I

pi ≥ 0, ∀ i /∈ I

(15)

Linear program (15) is feasible iff X0 ∩X i = ∅.

Writing Boundedness as Semi-Definite Constraints . The sublevel Sα is
bounded if and only if for all i ∈ I, the sublevel Si,α is bounded The boundedness
constraint in term of implications is, for all i ∈ I, there exists β ≥ 0:

(x, u) ∈ X i ∧
(
x
u

)
∈ Si,α =⇒ ‖(x, u)‖22 ≤ β (16)

where ‖ · ‖2 denotes the Euclidian norm of Rd+m.
As invariance, we use the quadratization of X i and the definition of Si,α. We

use the fact that ‖(x, u)‖22 =

(
x
u

)ᵀ
Id(d+m)×(d+m)

(
x
u

)
and we get for all i ∈ I:

⎛⎝1
x
u

⎞⎠ᵀ

EiᵀW iEi

⎛⎝1
x
u

⎞⎠ ≥ 0 and

⎛⎝1
x
u

⎞⎠ᵀ(
−α qiᵀ
qi P i

)⎛⎝1
x
u

⎞⎠ ≤ 0

=⇒

⎛⎝1
x
u

⎞⎠ᵀ(
−β 01×(d+m)

0(d+m)×1 Id(d+m)×(d+m)

)⎛⎝1
x
u

⎞⎠ ≤ 0

(17)
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where Ei is defined in Equation (4).
Finally, as invariance we obtain a stronger condition by considering semi-

definite constraint such as Equation (18). Proposition 2 proves that (P i, qi,W i)
is a solution of Equation (18) the (P i, qi,W i) satisfies Equation (17). For all
i ∈ I:

−EiᵀW iEi +

(
−α qiᵀ
qi P i

)
+

(
β 01×(d+m)

0(d+m)×1 − Id(d+m)×(d+m)

)
# 0 (18)

Method to Compute Invariant Set for Piecewise Affine Systems and
Prove the Boundedness of Its Reachable Set. To compute a piecewise
ellipsoidal invariant set for a piecewise affine systems of the form (1) whose
initial conditions is a polyhedron, we can proceed as follows:

1. Define a matrix L of size I × I following Equation (7): set L(i, j) = 1 if
Problem (8) is not feasible and L(i, j) = 0 otherwise;

2. Define the real variables α, β;
3. For i ∈ I, compute the matrix Ei of Equation (4) define the variable P i as

a symmetric matrix of size (d+m)× (d+m), the variable matrix W i with
nonnegative coefficients of size (� lines of Ei) × (� lines of Ei) and add the
constraint (18). If Problem (15) is not feasible, add Constraint (14);

4. For all (i, j) ∈ I2, if L(i, j) = 1 construct the matrix Eij defined by
Equation (5) and define the symmetric matrix variable U i,j of the size
(� lines of Eij) × (� lines of Eij) with nonnegative coefficients and add the
constraint (12);

5. Add as linear objective function the sum of α and β to minimize;
6. Solve the semi-definite program;
7. If there exists a solution then the set

⋃
i∈I{(x, u) ∈ X i | (x, u)P i

opt(x, u)
ᵀ +

2(x, u)qiopt ≤ αopt} is a bounded invariant of system (1) and the norm
‖(x, u)‖ is less than βopt for all the reachable (x, u) of the system.

3.4 Solution

The method is implemented in Matlab and the solution is given by a semi-definite
programming solver in Matlab. For our running example, Matlab returns the
following the values:

αopt = 242.0155
βopt = 2173.8501

This means that ‖(x, y, u)‖22 = x2+y2+u2 ≤ βopt. We can conclude, for example,
that the values taken by the variables x are between [−46.6154, 46.6154]. The
value αopt gives the level of the invariant sublevel of our piecewise quadratic
Lyapunov function where the local quadratic functions are characterized by the
following matrices and vectors:

P 1 =

⎛⎝ 1.0181 −0.0040 −1.1332
−0.0040 1.0268 −0.5340
−1.1332 −0.5340 −13.7623

⎞⎠ and q1 = (0.1252, 1.3836,−29.6791)ᵀ
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P 2 =

⎛⎝ 9.1540 −7.0159 −2.6659
−7.0159 9.5054 −2.4016
−2.6659 −2.4016 −8.9741

⎞⎠ and q2 = (−21.3830,−44.6291, 114.2984)ᵀ

P 3 =

⎛⎝ 1.1555 −0.3599 −2.6224
−0.3599 2.4558 −2.8236
−2.6224 −2.8236 −2.3852

⎞⎠ and q3 = (−5.3138, 6.7894,−40.5537)ᵀ

P 4 =

⎛⎝ 3.7314 −3.4179 −3.1427
−3.4179 6.1955 0.9499
−3.1427 0.9499 −10.6767

⎞⎠ and q4 = (28.5011,−73.5421, 48.2153)ᵀ

Finally, for conciseness reason, we only give the matrix certificates for the cell
X1. First we give the matrix W 1 which encodes the quadratization of the guard
X1. Recall that this matrix ensures that (x, u) 	→ α− (x, u)P 1(x, u)ᵀ− 2(x, u)qi

is nonnegative on X1.

W 1 =

⎛⎜⎜⎜⎜⎝
63.0218 0.0163 0.0217 12.1557 8.8835
0.0163 0.0000 0.0000 0.0267 0.0031
0.0217 0.0000 0.0000 0.0094 0.0061
12.1557 0.0267 0.0094 4.2011 59.5733
8.8835 0.0031 0.0061 59.5733 3.0416

⎞⎟⎟⎟⎟⎠
Secondly, we give the matrices U1j which encodes the quadratization of poly-
hedron X1j . Recall that those matrices ensure that the image of (1, x, u) by F 1

belongs to the set Sj,α for all (1, x, u) such that F 1(1, x, u) ∈ Xj.

U11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000
0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000
0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000
0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000
0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 0.0000
0.0001 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

U12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.1068 0.4134 0.0545 1.4664 0.1882 2.3955 2.4132
0.4134 0.0008 0.0047 0.0009 0.0819 0.5474 0.0484
0.0545 0.0047 0.0050 0.0147 0.0097 0.1442 0.2316
1.4664 0.0009 0.0147 0.0041 0.3383 0.8776 0.0999
0.1882 0.0819 0.0097 0.3383 0.0675 0.4405 0.4172
2.3955 0.5474 0.1442 0.8776 0.4405 8.1215 9.6346
2.4132 0.0484 0.2316 0.0999 0.4172 9.6346 0.9532

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

U13 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3570 0.2243 0.0031 0.0050 0.1431 0.0388 0.7675
0.2243 0.0201 0.0023 0.0050 0.1730 0.0494 0.1577
0.0031 0.0023 0.0001 0.0001 0.0071 0.0006 0.0088
0.0050 0.0050 0.0001 0.0002 0.3563 0.0009 0.0168
0.1431 0.1730 0.0071 0.3563 0.0527 0.2689 0.8979
0.0388 0.0494 0.0006 0.0009 0.2689 0.0137 0.1542
0.7675 0.1577 0.0088 0.0168 0.8979 0.1542 0.2747

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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U14 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.3530 0.1912 0.0280 0.1178 2.9171 0.7079 1.4104
0.1912 0.0512 0.0068 0.0326 1.7179 0.3764 0.6045
0.0280 0.0068 0.0022 0.0048 0.1396 0.0264 0.0679
0.1178 0.0326 0.0048 0.0409 0.5231 0.1204 0.2390
2.9171 1.7179 0.1396 0.5231 15.0992 5.1148 14.3581
0.7079 0.3764 0.0264 0.1204 5.1148 0.5102 1.6230
1.4104 0.6045 0.0679 0.2390 14.3581 1.6230 1.2985

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
We remark that U11 has negative coefficients whereas in our method, we are
looking for a nonnegative coefficients matrix. It is due to the interior point
method which is used to solve the semi-definite programming problems. Interior
point methods returns ε-optimal solution i.e. a solution which belongs to the
ball of radius ε centered at an optimal solution. Hence, the solution furnished by
the solver can slightly violate the constraints of the semi-definite program. We
are aware of that and the projection of the returned solution on the feasible set
should be studied as a future work.

4 Experimentations

To illustrate the applicability of our method to a wide set of examples, we gen-
erated about a thousand of dynamical systems with at most 4 partition cells, 4
state variables and a single input.

In [BBK+01], the authors show (Theorem 2) that to determine the stability
a piecewise affine dynamical system is undecidable. In order to generated more
stable examples, we restricted the class of program generated. Each partition
cell affine semantics would be (i) generated with small coefficients, since big
coefficients are usually avoided in controllers and, (ii) enforced locally stable
when needed by updating the values of the coefficients using the spectral radius.

Our example synthesis still does not guaranty to obtain globally stable system,
but, with these required properties of local stability and small coefficients, it is
more likely that switching from one cell to the other would not break stability
and therefore boundedness of the reachable states. The intuition behind is that
when we pass from a cell to another cell, we multiply a vector by a small number
then all the coordinates of the vector image are strictly smaller than the ones of
initial vector.

About 300 of such 1000 examples are automatically shown to be bounded
using our technique while the class of program considered is unlikely to be an-
alyzable with other static analysis tools the author are aware of, including the
previous analyzes proposed [RG13]. A typical run of the analysis, including the
time to generate the problem instance, is about 20s.

All the computation have been performed within Matlab, including the syn-
thesis of the examples. The source code of the analysis as well a document
summarizing the examples and their analysis is available athttps://cavale.
enseeiht.fr/vmcai15/.

https://cavale.enseeiht.fr/vmcai15/
https://cavale.enseeiht.fr/vmcai15/
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5 Conclusion

The presented approach is able, considering a piecewise affine system, to compute
a piecewise quadratic invariant able to bound the set of reachable state.

The technique extends the classical quadratic Lyapunov function synthesis
using SDP solvers by formulating a more complex set of constraints to the SDP
solver. This new formulation accounts the definition of the partitioning and
encodes within the SDP constraints the relationship between partitions.

In practice our technique has been applied to a wide set of generated examples
and was able to bound their reachable state space while a global quadratic
invariant was proven not computable.

Our future work will consider the combination of this technique with other
formal methods. A first direction will rely on the computed piecewise quadratic
form as a template domain, bounding its value on some code using either Kleene
iterations [CC77] or policy iteration [GSA+12]. This will require to extend the
existing algorithms to fit this piecewise description of the template.

A second direction is to ease the applicability of the method and to integrate
the technique in a more common analysis framework. A requirement for the
presented work is to obtain a global representation of the program, as matrix
updates and conditions. Existing static analysis [RG13] used for policy iteration
extracts such a graph with the appropriate representation. We plan to integrate
the two frameworks to ease the applicability on more realistic programs in an
automated fashion.

Acknowledgement. We thank the anonymous referees for their useful com-
ments regarding the paper.
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Abstract. The formal verification of large probabilistic models is chal-
lenging. Exploiting the concurrency that is often present is one way to
address this problem. Here we study a class of communicating proba-
bilistic agents in which the synchronizations determine the probability
distribution for the next moves of the participating agents. The key prop-
erty of this class is that the synchronizations are deterministic, in the
sense that any two simultaneously enabled synchronizations involve dis-
joint sets of agents. As a result, such a network of agents can be viewed
as a succinct and distributed presentation of a large global Markov chain.
A rich class of Markov chains can be represented this way.

We use partial-order notions to define an interleaved semantics that
can be used to efficiently verify properties of the global Markov chain rep-
resented by the network. To demonstrate this, we develop a statistical
model checking (SMC) procedure and use it to verify two large networks
of probabilistic agents.

We also show that our model, called distributed Markov chains (DMCs),
is closely related to deterministic cyclic negotiations, a recently intro-
duced model for concurrent systems [10]. Exploiting this connection we
show that the termination of a DMC that has been endowed with a
global final state can be checked in polynomial time.

1 Introduction

We present here a class of distributed probabilistic systems called distributed
Markov chains (DMCs). A DMC is a network of probabilistic transition
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systems that synchronize on common actions. The information that the agents
gain through a synchronization determines the probability distribution for their
next moves. Internal actions correspond to synchronizations involving only one
agent. The synchronizations are deterministic in the sense that, at any global
state, if two synchronizations are enabled then they will involve disjoint set of
agents. We capture this syntactically by requiring that at a local state of an
agent, the synchronizations that the agent is willing to engage in will all involve
the same set of partners. In many distributed probabilistic systems, the commu-
nication protocols are naturally deterministic in this sense, or can be designed
to be so. As our two case studies in Section 7 show, the determinacy restriction
is less limiting than may appear at first sight while permitting a considerable
degree of concurrency.

We define an interleaved semantics where one synchronization action is exe-
cuted at a time, followed by a probabilistic move by the participating agents.
Except in the trivial case where there is no concurrency, the resulting transition
system will not be a Markov chain. Hence, defining a probability measure over
interleaved runs, called trajectories, is a technical challenge. We address this by
noting that there is a natural independence relation on local actions—two ac-
tions are independent if they involve disjoint sets of agents. Using this relation,
we partition the trajectories in the usual way into equivalence classes that cor-
respond to partially ordered executions. We then use the maximal equivalence
classes to form a trajectory space that is a counterpart to the path space of a
Markov chain.

To endow this trajectory space with a probability measure, we exploit the
fact that, due to determinacy of synchronizations, any two actions enabled at
a global state will be independent. Hence, by executing all the enabled actions
simultaneously, followed by probabilistic moves by all the agents involved, one
obtains a finite state Markov chain that captures the global behavior of the DMC
under this “maximally parallel” execution semantics.

Using Mazurkiewicz trace theory [8], we then embed the trajectory space
into the path space of this Markov chain and use this embedding to induce a
probability measure over the trajectory space. Consequently, the global behavior
of this Markov chain can be verified efficiently using the interleaved semantics.

We then demonstrate on two fronts that the DMC model possesses a good
of modeling power while considerably easing the task of analyzing the global
behavior of the network. First we formulate a statistical model checking (SMC)
procedure for DMCs in which the specifications consist of Boolean combinations
of local bounded linear temporal logic (BLTL) [4] formulas. We then use the
sequential probability ratio test (SPRT) based SMC technique [21,22] to analyze
the global behavior of a DMC.

Our two case studies show that one can easily construct DMC models of a
variety of distributed probabilistic systems [7]. Both the systems we study exhibit
a considerable degree of concurrency. Further, the performance and scalability
of our interleaved semantics based verification techniques is significantly better
than the SMC procedure of PLASMA [6].
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The second front we briefly explore demonstrates that the determinacy re-
striction adds a considerable amount of analysis power. Specifically, we show
that the DMC model constitutes the probabilistic version of the deterministic
cyclic negotiations model [10]. As a result one readily obtains a polynomial time
algorithm to verify that a DMC that has been endowed with a global final (goal)
state almost certainly terminates. This suggests that by using the DMC model
one can efficiently analyze the termination properties of a range of goal-oriented
distributed stochastic processes such as communication protocols and stochastic
distributed algorithms.

To summarize, our main contributions are: (i) establishing that determinis-
tic synchronizations are a fruitful restriction for distributed stochastic systems,
(ii) showing that the space of partially ordered runs of such systems can be en-
dowed with a probability measure due to the clean combination of concurrent
and stochastic dynamics, (iii) constructing an SMC procedure in this distributed
stochastic setting and, (iv) establishing a connection to the model of determinis-
tic negotiations, and thereby deriving a polynomial time algorithm to check for
termination of DMCs endowed with global final states.

In what follows we will mainly present proof sketches of the main results. The
details can be found in the full paper [19].

RelatedWork. Our work is in line with partial order basedmethods forMarkov
Decision Processes (MDPs) [12] where, typically, a partial commutation structure
is imposed on the actions of a global MDP. For instance, in [5], partial order reduc-
tion is used to identify “spurious” nondeterminism arising out of the interleaving
of concurrent actions, in order to determine when the underlying behavior corre-
sponds to a Markov chain. In contrast, in a DMC, deterministic communication
ensures that local behaviors always generate a global Markov chain. The inde-
pendence of actions is directly given by the local state spaces of the components.
This also makes it easier to model how components influence each other through
communications.

The interplay between concurrency and stochasticity has also been explored in
the setting of event structures [2,20]. In these approaches, the global behaviour —
which is not a Markov chain — is endowed with a probability measure. Further,
probabilistic verification problems are not formulated and studied. Markov nets,
studied in [3] can be easily modeled as DMCs. However, in [3], the focus is on
working out a probabilistic event structure semantics rather than on developing
a model checking procedure based on the interleaved semantics, as we do here.

Our model is formulated as a sub-class of probabilistic asynchronous au-
tomata [14], where we require synchronizations to be deterministic. This re-
striction allows us to develop a probability measure over the (infinite) trajectory
space, which in turn paves the way for carrying out formal verification based on
probabilistic temporal logic specifications. In contrast, the work reported in [14]
is language-theoretic, with the goal of generalizing Zielonka’s theorem [23] to
a probabilistic setting. Moreover, in the model of [14], conflicting actions may
be enabled at a global state and it is difficult to see how one can formulate a
σ-algebra over the runs with a well-defined probability measure.
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2 The Distributed Markov Chain (DMC) Model

We fix n agents {1, 2, . . . , n} and set [n] = {1, 2, . . . , n}. For convenience, we
denote various [n]-indexed sets of the form {Xi}i∈[n] as just {Xi}. We begin
with some notation for distributed state spaces.

Definition 1. For i ∈ [n], let Si be a finite set of local states, where {Si} are
pairwise disjoint.

– S =
⋃

i Si is the set of local states.

– For nonempty u ⊆ [n], Su =
∏

i∈u Si is the set of u-states.
– S[n] is the set of global states, typically denoted S.
– For a state v ∈ Su and w ⊆ u, vw denotes the projection of v to Sw.

– For u = {i}, we write Si and vi rather than S{i} and v{i}, respectively.

Our model is a restricted version of probabilistic asynchronous automata [14].

Definition 2. A probabilistic asynchronous system is a structure
({Si}, {sini }, A, loc, en, {πa}a∈A) where:

– Si is a finite set of local states for each i and {Si} is pairwise disjoint.
– sini ∈ Si is the initial state of agent i.

– A is a set of synchronization actions.

– loc : A→ 2[n] \ ∅ specifies the agents that participate in each action a.

• For a ∈ A, we write Sa instead of Sloc(a) and call it the set of a-states.

– For each a ∈ A, ena ⊆ Sa is the subset of a-states where a is enabled.

– With each a ∈ A, we associate a probabilistic transition function πa : ena →
(Sa → [0, 1]) such that, for every v ∈ ena,

∑
u∈Sa

πa(v)(u) = 1.

The action a represents a synchronization between the agents in loc(a) and
it is enabled at the global state s if sa ∈ ena. When a occurs at s, only the
components in loc(a) are involved in the move to the new global state s′; the
new a-state s′a is chosen probabilistically according to the distribution πa(sa).
On the other hand, for every j /∈ loc(a), sj = s′j .

We would like to lift the probabilities associated with individual moves to
a probability measure over the runs of the system. This is difficult to achieve
because of the combination of nondeterminism, concurrency and probability in
the model. This motivates us to restrict the nondeterminism in the model.

For an agent i and a local state s ∈ Si, we define the set of actions that i
can participate in at s to be act(s) = {a | i ∈ loc(a), s = vi for some v ∈ ena}.
Using this notion we define the DMC model as follows.

Definition 3. A distributed Markov chain (DMC) is a probabilistic
asynchronous system D = ({Si}, {sini }, A, loc, en, {πa}a∈A) in which (i) for each
local state s ∈ S, if a, b ∈ act(s) then loc(a) = loc(b), and (ii) if a, b ∈ A, a 
= b
and loc(a) = loc(b), then ena ∩ enb = ∅.
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Fig. 1. The DMC model for the two players coin toss game

By (i), the set of partners that an agent can synchronize with is fixed de-
terministically by its current local state. Typically an agent will be willing to
engage in a set of actions at a local state. But by (ii), at most one of these
actions will be enabled in any global state.

Events. Events will play a crucial role in defining the dynamics of a DMC. Let
D be a DMC. An event of D is a triple e = (v, a,v′) where v,v′ ∈ Sa, v ∈ ena
and πa(v)(v′) > 0. We define loc((v, a,v′)) to be loc(a).

Suppose e = (v, a,v′) is an event and p = πa(v)(v′). Then e represents an
occurrence of the synchronization action a followed by a joint move by the agents
in loc(a) from v to v′ with probability p. Again, components outside loc(e) are
unaffected by this move.

Let Σ denote the set of events of D and e, e′, . . . range over Σ. With the event
e = (v, a,v′) we associate the probability pe = π

a(v)(v′).

The Interleaved Semantics. We now associate a global transition systemwith
D based on event occurrences.

Recall that S is the set of global states. The event e = (v, a,v′) is enabled at
s ∈ S iff v = sa ∈ ena. The transition system of D is TS = (S, Σ,→, sin), where
sin is the global initial state with sini = sini for each i. The transition relation

→ ⊆ S × (Σ × (0, 1])× S is given by s
e,pe−−→ s′ iff e = (v, a,v′) is enabled at s,

s′a = v′ and sj = s′j for every j /∈ loc(e).

(T1, T2) (IN1, T2) (H1, T2)

(T1, IN2) (IN1, IN2) (H1, IN2)
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e1t , 0.5

e1h, 0.5

e1h, 0.5

e1h, 0.5

eht

eth

ew1

ew2

e2t , 0.5 e2t , 0.5 e2t , 0.5

e2h, 0.5 e2h, 0.5 e2h, 0.5

Fig. 2. The transition system of a DMC for the two player coin toss game
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In Fig. 1 we show a DMC describing a simple two player game. Each player
tosses an unbiased coin. If the tosses have the same outcome, the players toss
again. If the outcomes are different, then the player who tossed heads wins. In
this 2-component system, Si = {INi, Ti, Hi, Li,Wi} for i = 1, 2, where Ti/Hi

denote that a tail/head was tossed, respectively, and Li/Wi denote local los-
ing/winning states, respectively. Agent 1, for instance, has an internal action
a1 with loc(a1) = {1}, ena1 = {IN1} and πa1(IN1)(T1) = 0.5 = πa1(IN1)(H1).
Thus, e1h = ({IN1}, a1, {H1}) and e1t = ({IN1}, a1, {T1}) are both events that are
enabled at (IN1, IN2). On the other hand, tt is an action with loc(tt) = {1, 2},
entt = {(T1, T2)}. There will be an event ett = ({T1, T2}, tt, {IN1, IN2}) with
πtt((T1, T2))((IN1, IN2)) = 1. To aid readability, such an action with a unique
event (with probability 1) as its only outcome is shown without any probability
value. In this simple example, all the actions except a1 and a2 are of this type.

The Trace Alphabet (Σ, I). The independence relation I ⊆ Σ×Σ given by
e I e′ iff loc(e) ∩ loc(e′) = ∅. Clearly I is irreflexive and symmetric and hence
(Σ, I) is a Mazurkiewicz trace alphabet [8].

3 The Trajectory Space

Let TS be the transition system associated with a DMC D. To reason about
the probabilistic behaviour of D using TS, one must build a σ-algebra over the
paths of this transition system and endow it with a probability measure. The
major difficulty is that, due to the mix of concurrency and stochasticity, TS is
not a Markov chain (except in trivial cases where there is no concurrency). In
Fig. 2, for instance, the sum of the probabilities of the transitions originating
from the state (IN1, IN2) is 2. To get around this, we first filter out concurrency
by working with equivalence classes of paths.

We shall refer to paths in TS as trajectories. A finite trajectory of TS from
s ∈ S is a sequence of the form s0e0s1 . . . sk−1ek−1sk such that s0 = s and, for

0 ≤ 
 < k, s�
e�,pe�−−−−→ s�+1. Infinite trajectories are defined as usual.

For the trajectory ρ = s0e0s1 . . . sk−1ek−1sk, we define ev(ρ) to be the event
sequence e0e1 . . . ek−1. Again, this notation is extended to infinite trajectories in
the natural way. Due to concurrency, one can have infinite trajectories that are
not maximal, so we proceed as follows.

Let Σi = {e | i ∈ loc(e)}. Suppose ξ is an event sequence (finite or infinite).
Then proji(ξ) is the sequence obtained by erasing from ξ all events that are not
in Σi. This leads to the equivalence relation ≈ over event sequences given by
ξ ≈ ξ′ iff proji(ξ) = proji(ξ

′) for every i. We let [ξ] denote the ≈-equivalence
class containing ξ and call it a (Mazurkiewicz) trace. 1 The partial order relation
� over traces is defined as [ξ] � [ξ′] iff proji(ξ) is a prefix of proji(ξ

′) for every
i. Finally the trace [ξ] is said to be maximal if for every ξ′, [ξ] � [ξ′] implies
[ξ] = [ξ′]. The trajectory ρ is maximal iff [ev(ρ)] is a maximal trace. In the

1 For infinite sequences, it is technically more convenient to define traces using equiv-
alence of projections rather than permutation of independent actions.
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transition system of Fig. 2, (IN1, IN2)e
1
h(H1, IN2)e

2
T (H1, T2)eht((W1, L2)ew1)

ω is
a maximal infinite trajectory. In fact, in this example all the infinite trajectories
are maximal.

The σ-Algebra of Trajectories. We denote by Trjs the set of maximal tra-
jectories from s. Two trajectories can correspond to interleavings of the same par-
tially ordered execution of events. Hence, one must work with equivalence classes
of maximal trajectories to construct a probability measure. The equivalence rela-
tion & over Trjs that we need is defined as ρ & ρ′ if ev(ρ) ≈ ev(ρ′). As usual [ρ]
will denote the equivalence class containing the trajectory ρ.

Let ρ be finite trajectory from s. Then ↑ρ is the subset of Trjs satisfying
ρ′ ∈ ↑ρ iff ρ is a prefix of ρ′. We now define BC(ρ), the basic trj-cylinder at
s generated by ρ, to be the least subset of Trjs that contains ↑ρ and satisfies
the closure property that if ρ′ ∈ BC(ρ) and ρ′ & ρ′′ then ρ′′ ∈ BC(ρ). In other
words, BC(ρ) = {[ρ′] | ρ′ ∈ Trjs, [ev(ρ)] � [ev(ρ′)]}.

It is worth noting that we could have BC(ρ) ∩ BC(ρ′) 
= ∅ without hav-
ing ρ & ρ′. For instance, in Fig. 2, let ρ = (IN1, IN2)e

1
h(H1, IN2) and ρ′ =

(IN1, IN2)e
2
t (IN1, T2). Then BC(ρ) and BC(ρ

′) will have common maximal tra-
jectories of the form (IN1, IN2)e

1
h(H1, IN2)e

2
t (H1, T2) . . . .

We now define ŜA(s) to be the least σ-algebra that contains the basic trj-
cylinders at s and is closed under countable unions and complementation (rela-
tive to Trjs).

To construct the probability measure P̂ : ŜA(s)→ [0, 1] we are after, a natural
idea would be to assign a probability to each basic trj-cylinder as follows. Let
BC(ρ) be a basic trj-cylinder with ρ = s0e0s1 . . . sk−1ek−1sk. Then P̂ (BC(ρ)) =
p0 · p1 · . . . · pk−1, where p� = pe� , for 0 ≤ 
 < k. This is inspired by the Markov
chain case in which the probability of a basic cylinder is defined to be the product
of the probabilities of the events encountered along the common finite prefix of
the basic cylinder. However, showing directly that this extends uniquely to a
probability measure over ŜAs is very difficult.

We get around this by associating a Markov chainM with D and then embed
ŜAs into SAs, the σ-algebra generated by the infinite paths inM starting from
s. The standard probability measure over SAs will then induce a probability
measure over ŜAs.

4 The Markov Chain Semantics

We associate a Markov chain with a DMC using a “maximal parallelism” based
semantics. A nonempty set of events u ⊆ Σ is a step at s if each e ∈ u is enabled
at s and, for every distinct pair of events e, e′ ∈ u, e I e′. We say u is a maximal
step at s if u is a step at s and u ∪ {e} is not a step at s for any e /∈ u. In
Fig. 2, {e1h, e2h}, {e1h, e2t}, {e1t , e2h} and {e1t , e2t} are maximal steps at the initial
state (IN1, IN2).

Let u be a maximal step at s. Then s′ is the u-successor of s if the following
conditions are satisfied: (i) For each e ∈ u, if e = (v, a,v′) and i ∈ loc(e) then
s′i = v′i, and (ii) sj = s′j if j /∈ loc(u), where loc(u) =

⋃
e∈u loc(e).
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Suppose u is a maximal step at s and i ∈ loc(u). Then, because events in
a step are independent, it follows that there exists a unique e ∈ u such that
i ∈ loc(e), so the u-successor of s is unique. We say s′ is a successor of s if
there exists a maximal step u at s such that s′ is the u-successor of s. From the
definition of a DMC, it is easy to see that if s′ is a successor of s then there
exists a unique maximal step u at s such that s′ is the u-successor of s. Finally,
we say that s is a deadlock if no event is enabled at s.

Definition 4. The Markov chain M : S × S → [0, 1] generated by D is given
by:

– If s ∈ S is a deadlock then M(s, s) = 1 and M(s, s′) = 0 for s 
= s′.
– Suppose s ∈ S is not a deadlock. ThenM(s, s′) = p if there exists a maximal

step u at s such that s′ is the u-successor of s and p =
∏

e∈u pe.
– If s is not a deadlock and s′ is not a successor of s thenM(s, s′) = 0.

It follows thatM(s, s′) ∈ [0, 1] for every s, s′ ∈ S. In addition, if u and u′ are
two maximal steps at s then loc(u) = loc(u′) and |u| = |u′|. Using these facts, it
is easy to verify thatM is indeed a finite state Markov chain. The initial state
ofM is sin = (sin1 , s

in
2 , . . . , s

in
n ).

(T1, T2) (T1,H2) (H1, T2) (H1,H2)

(IN1, IN2)

(L1,W2) (W1, L2)

0.25 0.25 0.25 0.25

Fig. 3. Markov chain for the DMC in Fig. 2

In Fig. 3 we show the Markov chain of the DMC whose transition system was
shown in Fig. 2. Again, unlabelled transitions have probability 1.

Suppose u is a maximal step at s with |u| = m and |Si| = k for each i ∈ loc(u).
InM there will be, in general, km transitions at s. In contrast there will be at
most k · m transitions at s in TS. Hence—assuming that we do not explicitly
construct S—there can be substantial computational gains if one can verify the
properties of D by working with TS instead of M. This will become clearer
when we look at some larger examples in Section 7.

The Path Space ofM. LetM be the Markov chain associated with a DMC D.
The path space and a probability measure over this space is obtained in the usual
way. A finite path inM from s is a sequence τ = s0s1 . . . sm such that s0 = s and
M(s�, s�+1) > 0, for 0 ≤ 
 < m. The notion of an infinite path starting from s
is defined as usual. Paths and Path

fin
s denote the set of infinite and finite paths

starting from s, respectively.
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For τ ∈ Pathsfins , ↑τ ⊆ Pathss is the set of infinite paths that have τ as a
prefix. Υ ⊆ Paths is a basic cylinder at s if Υ = ↑τ for some τ ∈ Pathsfins .
The σ-algebra over Paths, denoted SA(s), is the least family that contains the
basic cylinders at s and is closed under countable unions and complementation
(relative to Paths). Ps : SA(s) → [0, 1] is the usual probability measure that
assigns to each basic cylinder ↑τ , with τ = s0s1 . . . sm, the probability p =
p0 · p1 · · · pm−1, whereM(s�, s�+1) = p�, for 0 ≤ 
 < m.

5 The Probability Measure for the Trajectory Space

To construct a probability measure over the trajectory space we shall associate
infinite paths in M with maximal trajectories in TS. The Foata normal form
from Mazurkiewicz trace theory will help achieve this. Let ξ ∈ Σ�. A standard
fact is that [ξ] can be canonically represented as a “step” sequence of the form
u1u2 . . . uk. More precisely, the Foata normal form of the finite trace [ξ], denoted
FN([ξ]), is defined as follows [8].

– FN([ε]) = ε.
– Suppose ξ = ξ′e and FN([ξ′]) = u1u2 . . . uk. If there exists e′ ∈ uk such

that (e′, e) /∈ I then FN([ξ]) = u1u2 . . . uk{e}. If not, let 
 be the least
integer in {1, 2, . . . , k} such that e I e′ for every e′ ∈

⋃
�≤m≤k um. Then

FN([ξ]) = u1 . . . u�−1(u� ∪ {e})u�+1 . . . um.

For the example shown in Fig. 2, FN(e1h e
2
t eht ew1 ew1) = {e1h, e2t} {eht} {ew1}

{ew1}. This notion is extended to infinite traces in the obvious way. Note that
ξ ≈ ξ′ iff FN(ξ) = FN(ξ′).

Conversely, we can extract a (maximal) step sequence from a path in M.
Suppose s0s1 . . . is a path in Pathss. There exists a unique sequence u1 u2 . . .
such that u� is a maximal step at s�−1 and s� is the u�-successor of s�−1 for every

 > 0. We let st(τ) = u1 u2 . . . and call it the step sequence induced by τ .

This leads to the map tp : Trjs → Pathss given by tp(ρ) = τ iff FN(ev(ρ)) =
st(τ). It is easy to check that tp is well-defined. As usual, for X ⊆ Trjs we
define tp(X) = {tp(ρ) | ρ ∈ X}. It turns out that tp maps each basic cylinder in
the trajectory space to a finite union of basic cylinders in the path space. As a
result, tp maps every measurable set of trajectories to a measurable set of paths.
Consequently, one can define the probability of a measurable set of trajectories
X to be the probability of the measurable set of paths tp(X).

To understand how tp acts on the basic cylinder BC(ρ), let FN(ev(ρ)) =
u1u2 . . . uk. We associate with ρ the set of finite paths paths(ρ) = {π | st(π) =
U1U2 . . . Uk and u� ⊆ U�, for 1 ≤ 
 ≤ k}. In other words π ∈ paths(ρ) if it
extends each step in FN(ev(ρ)) to a maximal step. Then, tp maps BC(ρ) to the
(finite) union of the basic cylinders generated by the finite paths in paths(ρ).
These observations and their main consequence, namely, the construction of a
probability measure over the trajectory space, can be summarized as:

Lemma 5. (i) Let B = BC(ρ) be a basic trj-cylinder from s, with FN(ev(ρ))
= u1u2 . . . uk. Then tp(B) is a finite union of basic cylinder sets in SA(s)
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and is hence a member of SA(s). Furthermore P (tp(B)) =
∏

1≤�≤k p�
where p� =

∏
e∈u�

pe for 1 ≤ 
 ≤ k.
(ii) If B ∈ ŜA(s) then tp(B) ∈ SA(s).
(iii) Define P̂ : ŜA(s) → [0, 1] as P̂ (B) = P (tp(B)). Then P̂ is a probability

measure over ŜA(s).

Proof sketch. Let BC(ρ) be the basic trj-cylinder from s generated by ρ 
= ε
and FN(ev(ρ)) = u1u2 . . . uk. Suppose τ ∈ Paths. Then, using the semantic
definitions, it is tedious but straightforward to show that τ ∈ tp(BC(ρ)) iff
ui ⊆ st(τ)(
), for 1 ≤ 
 ≤ k. (Here, st(τ)(
) is the maximal step appearing
in position 
 of the sequence st(τ).) It will then follow that tp(BC(ρ)) is a
finite union of basic cylinder sets in SA(s) and is hence a member of SA(s).
Furthermore, one can argue that P (tp(BC(ρ)) =

∏
1≤�≤k p�.

For the other two parts, we first establish easily that if B ∈ ŜA(s), ρ ∈ B
and ρ & ρ′ then ρ′ ∈ B as well. Next, it is straightforward to show that if
B,B′ ∈ ŜA(s) with B ∩ B′ = ∅ then tp(B) ∩ tp(B′) = ∅ too. Finally, one can
also show tp is onto. Using these facts, the second and third parts of the lemma
can be easily established. �

Note that while a finite path inM always induces a maximal step sequence, a
finite trajectory, in general, does not have this structure. Some components can
get ahead of others by an arbitrary amount. The lemma above states that, despite
this, any finite trajectory defines a finite set of of basic cylinders whose overall
probability can be easily computed, by taking the product of the probabilities
of the events encountered along the trajectory. This helps considerably when
verifying the properties ofM. In particular, local reachability properties can be
checked by exercising only those components that are relevant.

Going back to our running example, let ρt = (IN1, IN2)e
1
t (T1, IN2), and Xt =

↑ρt. Let ρ′t = (IN1, IN2)e
2
t (IN1, T2), and X ′t = ↑ρt. Assume ρh, Xh, ρ

′
h and

X ′h are defined similarly. Then P̂ (Xt) = P̂ (X ′h) = 0.5, while P̂ (Xh ∪ Xt) = 1.
On the other hand, due to the fact that e1h and e2h are independent, we have

P̂ (Xh ∪X ′h) = 0.75.

6 A Statistical Model Checking Procedure for DMCs

To bring out the applicability of the DMC formalism and its interleaved seman-
tics, we formulate a statistical model checking procedure. The specification logic
PBLTL⊗ (product PBLTL) is a simple generalization of probabilistic bounded
linear time temporal logic (PBLTL) [15] that captures Boolean combinations
of local properties of the components. The logic can express interesting global
reachability properties as well since the Boolean connectives can capture -in a
limited fashion- the way the components influence each other.

We assume a collection of pairwise disjoint sets of atomic propositions {APi}.
As a first step, the formulas of BLTL⊗ are given as follows.
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(i) ap ∈ APi is a BLTL⊗ formula and type(ap) = {i}.
(ii) If ϕ and ϕ′ are BLTL⊗ formulas with type(ϕ) = type(ϕ′) = {i} then so is

ϕUt
iϕ
′ where t is a positive integer. Further, type(ϕUt

iϕ
′) = {i}. As usual,

F tϕ abbreviates (trueUtϕ) and Gtϕ is defined as ¬F t¬ϕ.
(iii) If ϕ and ϕ′ are BLTL⊗ formulas then so are ¬ϕ and ϕ∨ϕ′ with type(¬ϕ) =

type(ϕ) and type(ϕ ∨ ϕ′) = type(ϕ) ∪ type(ϕ′).

The formulas of PBLTL⊗ are given by:

(i) Suppose ϕ is a BLTL⊗ formula and γ a rational number in the open
interval (0, 1). Then Pr≥γ(ϕ) is a PBLTL⊗ formula.

(ii) If ψ and ψ′ are PBLTL⊗ formulas then so are ¬ψ and ψ ∨ ψ′.

To define the semantics, we project each trajectory to its components. For s ∈ S
and i ∈ [n] we define Proji : Trj

fin
s → S+

i inductively.

(i) Proji(s) = si.
(ii) Suppose ρ = s0eos1 . . . smemsm+1 is in Trjfins and ρ′ = s0e0s1 . . . sm.

If i ∈ loc(em) then Proji(ρ) = Proji(ρ
′)(sm+1)i. Otherwise Proji(ρ) =

Proji(ρ
′).

We lift Proji to infinite trajectories in the obvious way—note that Proji(ρ)
can be a finite sequence for the infinite trajectory ρ. We assume a set of local
valuation functions {Vi}, where Vi : Si → 2APi . Let ϕ be a BLTL⊗ formula with
type(ϕ) = {i}. We begin by interpreting such formulas over sequences generated
by the alphabet Si. For � ∈ S+

i ∪ Sω
i , the satisfaction relation �, k |=i ϕ, with

0 ≤ k ≤ |�|, is defined as follows.

(i) �, k |=i ap for ap ∈ APi iff ap ∈ Vi(�(k)(i)), where �(k)(i) is the Si-state
at position k of the sequence �.

(ii) ¬ and ∨ are interpreted in the usual way.
(iii) �, k |=i ϕ1U

t
iϕ2 iff there exists 
 such that k ≤ 
 ≤ max(k + t, |�|) with

�, 
 |=i ϕ2, and �,m |=i ϕ1, for k ≤ m < 
.

As usual, � |=i ϕ iff �, 0 |=i ϕ. Next, suppose ϕ is a BLTL⊗ formula and ρ ∈
Paths. Then the relation ρ |=s ϕ is defined as follows.

(i) If type(ϕ) = {i} then ρ |=s ϕ iff Proji(ρ) |=i ϕ.
(ii) Again, ¬ and ∨ are interpreted in the standard way.

Given a formula ϕ in BLTL⊗ and a global state s, we define Trjs(ϕ) to be the
set of trajectories {ρ ∈ Trjs | ρ |=s ϕ}.

Lemma 6. For every formula ϕ, Trjs(ϕ) is a member of ŜA(s).

Proof sketch. If we interpret the formulas overM, we easily derive that Paths(ϕ)
is a member of SA(s) for every ϕ. We then use Lemma 5 to obtain this result.

�

The semantics of PBLTL⊗ is now given by the relation D |=trj
s ψ, defined as:
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(i) Suppose ψ = Pr≥γ(ϕ). Then D |=trj
s ψ iff P̂ (Paths(ϕ)) ≥ γ.

(ii) Again, the interpretations of ¬ and ∨ are the standard ones.

For the example in Fig. 1, one can assert Pr≥0.99((F
7(L1)∧F 7(W2))∨(F 7(W1)∧

F 7(L2))). Here, the local states also serve as the atomic propositions. Hence,
the formula says that with probability ≥ 0.99, a winner will be decided within
7 rounds.

We write D |=trj ψ for D |=trj
sin ψ. The model checking problem is to determine

whether D |=trj ψ. We shall adapt the SMC procedure developed in [22] to solve
this problem approximately.

6.1 The Statistical Model Checking Procedure

We note that in the Markov chain setting, given a BLTL formula and a path in
the chain, there is a bound k that depends only on the formula such that we can
decide whether the path is a model of the formula by examining just a prefix
of the path of length k [15]. By the same reasoning, for a BLTL⊗ formula ϕ,
we can compute a vector of bounds (k1, k2, . . . , kn) that depends only on ϕ such
that for any trajectory ρ starting from sin, we only need to examine a finite
prefix ρ′ of ρ that satisfies |Proji(ρ′)| ≥ ki, for 1 ≤ i ≤ n. The complication
in our setting is that it is not guaranteed that one can generate such a prefix
with bounded effort. This is due to the mix of concurrency and stochasticity in
DMCs. More precisely, at a global state s, one may need to advance the history
of the agent i but this may require first executing an event e = (v, a,v′) at s
that does not involve the agent i. However, there could also be another event
e′ = (v, a,u) enabled at s. Since one must randomly choose one of the enabled
events according to the underlying probabilities, one may repeatedly fail to steer
the computation towards a global state in which the history of i can be advanced.
A second complication is that starting from the current global state it may be
impossible to reach a global state at which some event involving i is enabled.

To cope with this, we maintain a count vector (c1, c2, . . . , cn) that records how
many times each component has moved along the trajectory ρ that has been
generated so far. A simple reachability analysis will reveal whether a component
is dead in the current global state — that is, starting from the current state,
there is no possibility of reaching a state in which an event involving this agent
can be executed. If this is the case for the agent i or the ci is already the required
bound then remove it from the current set of active agents. If the current set of
active agents is not empty, we execute, one by one, all the enabled actions —
using a fixed linear order over the set of actions — followed by one move by each
of the participating agents, according to the underlying probabilities. Recall that
action a is enabled at s iff sa ∈ ena. Due to the determinacy of synchronizations,
the global state thus reached will depend only on the probabilistic moves chosen
by the participating agents. We then update the count vector to (c′1, c

′
2, . . . , c

′
n)

and mark the new dead components. It is not difficult to prove that, continuing
in this manner, with probability 1 we will eventually generate a finite trajectory
ρ̂ and reach a global state s with no active agents. We then check if ρ̂ satisfies ϕ
and update the score associated with the statistical test described below.



Distributed Markov Chains 129

The parameters for the test are δ, α, β, where δ is the size of the indifference
region and (α, β) is the strength of the test, with α bounding the Type I er-
rors (false positives) and β bounding the Type II errors (false negatives). These
parameters are to be chosen by the user. We generate finite i.i.d. sample trajec-
tories sequentially. We associate a Bernoulli random variable x� with the sample
ρ� and set x� = 1 if ρ� ∈ Trjsin(ϕ) and set x� = 0 otherwise. We let cm =

∑
� x�

and compute the score SPRT via

SPRT =
(γ−)cm(1− γ−)n−cm

(γ+)
cm(1− γ+)n−cm

Here γ+ = γ + δ and γ− = γ − δ. If SPRT ≤ β
1−α , we declare D |=trj P̂≥rϕ.

If SPRT ≥ 1−β
α , we declare D 
|=trj P̂≥γϕ. Otherwise, we draw one more sample

and repeat.
This test is then extended to handle formulas of the form ¬ψ and ψ1 ∨ ψ2 in

the usual way [15]. It is easy to establish the correctness of this statistical model
checking procedure.

7 Experimental Results

We have tested our SMC procedure on two probabilistic distributed algorithms:
(i) a leader election protocol for a unidirectional ring of anonymous processes by
Itai and Rodeh [11,13] and (ii) a randomized solution to the dining philosophers
problem [18]. Both these algorithms -for large instances- exhibit a considerable
degree of concurrency since any two agents that do not share a neighbor can exe-
cute independently. We focused on approximately verifying termination proper-
ties of these algorithms to bring out the scalability and the performance features
of our SMC technique. We also compared our results with the corresponding
ones obtained using the tool Plasma [6].

In the leader election protocol, each process randomly chooses an identity
from {1, 2, . . . , N}, and passes it on to its neighbor. If a process receives an
identity lower than its own, the message is dropped. If the identity is higher
than its own, the process drops out of the election and forwards the message.
Finally, if the identity is the same as its own, the process forwards the message,
noting the identity clash. If an identity clash is recorded, all processes with the
highest identity choose a fresh identity and start another round.

Since the initial choice of identity for the N processes can be done concur-
rently, in the global Markov chain, there will be NN possible moves. However,
correspondingly in the interleaved semantics, there will be N2 transitions from
the initial state.

We have built a DMC model of this system in which each process and chan-
nel is an agent. Messages are transferred between processes and channels via
synchronizations while ensuring this is done using a deterministic protocol. For
simplicity, all channels in our implementation have capacity 1. We can easily
construct higher capacity channels by cascading channels of capacity 1 while
staying within the DMC formalism.



130 R. Saha et al.

The challenge in modeling the dining philosophers problem as a DMC is to
represent the forks between philosophers, which are typically modeled as shared
variables. We use a deterministic round robin protocol to simulate these shared
variables. The same technique can be used for a variety of other randomized
distributed algorithms presented as case studies for Plasma.

Fig. 4. Comparison of simulation times in DMC and Plasma

We ran our trajectories based SPRT procedure written in Python program-
ming language on a Linux server (Intel Xeon 2.30 GHz, 16 core, 72GB RAM).
For the first example, we verified that a leader is elected with probability above
0.99 within K rounds, for a ring of N processes for various values of N up to
1000. For each N , it turned out that K = N is a good choice for K as explained
below.

The termination property was specified as follows. Let Li denote the boolean
variable which evaluate to true iff in the current global state, node i has been
elected as the leader. Then for N processes with K = N , the specification is:

Pr≥0.99(

n∨
i=1

[FN (¬L1)∧· · ·∧FN (¬Li−1)∧FN (Li)∧FN (¬Li+1)∧· · ·∧FN (¬Ln)])

For the dining philosophers, we verified that with probability above 0.95 ev-
ery philosopher eventually eats, up to N = 500 philosophers. In both the ex-
periments, we set the bound on both the Type I and Type II errors to be 0.01
and the indifference region to be 0.01. We tested the same properties with the
same statistical parameters using the Plasma model. Plasma supports paral-
lel execution and multithreading. Since our DMC implementation is currently
sequential, we restricted Plasma to single-threaded sequential execution for a
meaningful comparison.

In Fig. 4, we have compared the running time for SPRT model-checking in
the DMC model with that for Plasma. The x-axis is the number of processes
in the system and the y-axis is the running time, in seconds. We have not been
able to determine from the literature how Plasma translates the model into a
DTMC. Consequently we could only compare the simulation times at the system
level while treating the Plasma tool as a black box. In the case of Plasma,
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the specifications use time bounds which we took it to imply the number of
time steps for which the model is simulated. We found that for N = 1000,
Plasma verifies the termination property to be true if the time bound is set to
be 10, 000. Further, increasing the bound does not cause the simulation times to
change. Hence we fixed the time bound to be 10, 000 for all choices of N in the
Plasma setting. In the DMC setting we found that setting K = N caused our
implementation to verify the termination property to be true. Again, increasing
this to larger number of rounds does not change the simulation times. For this
reason we fixed K = N for each N .

The experiments show that as the model size increases, the running time in-
crease for the DMC approach is almost linear whereas for Plasma it is more
rapid. The results also show the significant performance and scalability advan-
tages of using the interleaved semantics approach based on DMC models. We
expect further improvements to be easily achieved via a parallel implementation.

8 DMCs with Global Final States

The preceding section demonstrates the applicability of the DMC model and
the scalability of the interleaved semantics based SMC procedure. Here we wish
to show that the “determinacy of synchronizations” restriction brings a con-
siderable amount of analysis power. To bring this out we augment the DMC
model with a global final state. For convenience, we shall refer to this extended
model also as a DMC in this section. This is a natural extension since in many
situations — including distributed algorithms, protocols and task executions in
uncertain environments — the goal is to reach a desired final state instead of
executing forever.

Accordingly, we work here with the formalism D̂ = (D, {sfi }, F, enF , πF )
where D = ({Si}, {sini }, A, loc, {ena}a∈A, {πa}a∈A) is as before, while s

f
i ∈ Si is

the final state for each agent i. It is a final state in the sense no action in A is
enabled at sf where sf , the global final state, is given by sf (i) = sfi for every i.
Further, F /∈ A is a synchronization action with loc(F ) = [n] and enF = {sf}.
Finally, πF is given by: πF (s

f )(sf ) = 1. Thus F is enabled only at the global
final state sf and when the system reaches this state, it loops at this state with
probability 1. For technical convenience, we have assumed a unique global final
state. Our arguments can be easily extended to multiple final states.

The key property to explore here is termination. To define this notion we

assume that T̂RJ be the set of maximal trajectories of D̂ defined in the obvious

way. We note that if ρ ∈ T̂RJ encounters the state sf then all the subsequent

states encountered will also be sf . We next define T̂RJf ⊆ T̂RJ via:

ρ ∈ T̂RJf iff sf appears in ρ. Since each element in T̂RJf will have a finite prefix

in which sf appears for the first time we are assured that T̂RJf is a countable

set and hence measurable. We now say that D̂ terminates iff Pr(T̂RJf ) = 1.
Our main observation here is as follows:

Theorem 7. Whether D̂ terminates can be decided in polynomial time.
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This result can be proved by translating D into a deterministic cyclic nego-
tiation (DCN) model [10]. We explain this translation with the help of the coin
toss example, whose DCN representation is shown in Fig. 5. To avoid clutter, we
do not show the mild changes to the DMC model to incorporate a global final
state — we have assumed that the system will transit to this global final state
as soon as (L1,W2) or (W1, L2) is reached. The corresponding actions will have
a single associated event with probability 1 while the self-looping actions w1 and
w2 are removed.

1 2

1 2

1 2

21 1 2

1 2

n0

n1 n2

n3

n4 n5

nf

IN1 IN2

H1, T1 H2, T2
IN1 IN2

W1
L1L2

W2

Fig. 5. Negotiation for coin toss

We briefly recall that a DCN consists of atoms called negotiations, each in-
volving a set of agents, a set of outcomes, and a transformation associated with
each outcome that non-deterministically transforms the internal states of the
agents participating in the negotiation into a new tuple of internal states. To
comply with the notion of deterministic negotiations, we gather together actions
to form negotiations as follows. For a ∈ A we first define pre(a) ⊆ S: s ∈ pre(a)
iff there exists i ∈ loc(a) and v ∈ ena such that vi = s. For a ∈ A we then define
cl(a) to be the least subset of A that contains a and satisfies: if b ∈ cl(a) then
act(pre(b)) ⊆ cl(a). It is easy to check that {cl(a)}a∈A is a partition of A. We
associate a negotiation with each block in this partition. We then construct the
transformation functions using the transition relation defining the interleaved
semantics of D. For instance, in the coin toss example, cl(tt) = {tt, th, ht, hh},
and these actions are grouped together into the single negotiation n3 with a sin-
gle outcome that will transform (T1, T2) into (IN1, IN2) and transform (T1, H2)
into (L1,W2) etc. Similarly, there will be a negotiation n1 corresponding to the
action a1 with two outcomes, one of which will transform IN1 into T1, while
the other one will transform IN1 into H1. On the other hand, cl(w1) = {w1}
and cl(w2) = {w2}. We note that the transformation function will mimic the
effects of events which, by definition, will have a non-zero probability. It is now
straightforward to show that this translation yields a deterministic cyclic negoti-
ation. Further, the DMC will terminate iff the corresponding negotiation model
is sound in the sense defined in [1]. Using a finite set of reduction rules it has
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been shown that soundness can be checked for deterministic cyclic negotiations
in polynomial time [10]. This at once implies theorem 7.

9 Conclusion

We have formulated a distributed probabilistic system model called DMCs. Our
model achieves a clean mix of concurrency and probabilistic dynamics by re-
stricting synchronizations to be deterministic. Our key technical contribution is
the construction of a probability measure over the σ-algebra generated by the
(interleaved) trajectories of a DMC. This opens the door to using partial order
reduction techniques to efficiently verify the dynamic properties of a DMC. As a
first step we have developed a SPRT based statistical model checking procedure
for the logic PBLTL⊗. Our experiments suggest that our method can handle
systems of significant sizes.

The main partial order concept we have used is to group trajectories into
equivalence classes. One can also explore how ample sets [16] and related notions
can be used to model check properties specified in logics such as PCTL [4].
Another possibility is to see if the notion of finite unfoldings from Petri net
theory can be applied in the setting of DMCs [9, 17].

In our two case studies, the specification has a global character in that it
mentions every agent in the system. In many specifications, only a few agents
will be mentioned. If the system is loosely coupled, we can check whether the
required property is fulfilled without having to exercise all the agents. This will
lead to additional computational gains.

In many of the benchmark examples in [7], the probabilistic moves are lo-
cal. On the other hand, DMCs allow synchronous probabilistic moves where
the probability distribution is influenced by information obtained through com-
munication. It will be interesting to exploit this feature to model and analyze
applications arising in embedded control systems.

We currently allow agents to gain complete information about the state of the
agents they synchronize with. In practice, only a part of this state may/should
be exposed. We are also encouraged by the close relationship between DMCs and
deterministic negotiations. Here, we have exploited the powerful reduction rules
based analysis technique for deterministic negotiations to check the termination
of DMCs with final states. There could be other ways to fruitfully transfer results
across the two formalisms.
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Abstract. Analysis of distributed systems with message passing and
dynamic process creation is challenging because of the unboundedness
of the emerging communication topologies and hence the infinite state
space. We model such systems as graph transformation systems and use
abstract interpretation to compute a finite overapproximation of the set
of reachable graphs. To this end, we propose cluster abstraction, which
decomposes graphs into small overlapping clusters of nodes. Using astra,
our implementation of cluster abstraction, we are for the first time able to
prove several safety properties of the merge protocol. The merge protocol
is a coordination mechanism for car platooning where the leader car of
one platoon passes its followers to the leader car of another platoon,
eventually forming one single merged platoon.

Keywords: graph transformation, abstract interpretation, parameter-
ized verification, shape analysis, distributed message-passing systems.

1 Introduction

Distributed message-passing systems such as car platoons and drone swarms
consist of an unbounded and dynamically changing number of agents. These
agents act in a coordinated fashion using wireless ad-hoc networks to achieve
common goals. For this purpose, they assume different roles in a logical com-
munication topology that is established on top of the physical communication
medium. These communication topologies, which consist of unidirectional chan-
nels between pairs of agents, are formed by distributed protocols that all agents
execute concurrently.

The purpose of our analysis is to determine the emerging topologies, which
can then be used to evaluate safety properties, ensuring that the system will
never reach a state with an undesired topology.

We model such systems by graph transformation systems, i.e., graphs modified
by transformation rules. Graph transformation is a lingua franca with a broad

� This work was partially supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/

for more information.

D. D’Souza et al. (Eds.): VMCAI 2015, LNCS 8931, pp. 135–152, 2015.
c© Springer-Verlag Berlin Heidelberg 2015

http://www.avacs.org/


136 P. Backes and J. Reineke

range of applications in systems modeling, all of which become potential use cases
for our method. Many domain-specific models can be translated automatically
into graph transformation systems.

In the graph transformation framework, we represent agents as labeled nodes
and communication channels and message queues as labeled, directed edges of a
graph. We model the dynamics of the system, like agents sending and receiving
messages, detecting each other’s presence and setting up and closing communi-
cation channels, as transformation rules that are applied to the graphs. Those
rules match subgraph patterns in a graph, optionally restricted by application
conditions, and replace them by modified subgraphs.

The main challenges with respect to the analysis of the systems under con-
sideration are the unboundedness of the graphs, caused by the unboundedness
of the number of agents, and the concurrency of the computations of the par-
ticipating agents. In particular, the state space of such systems is infinite, and
naive state-space exploration cannot be used for our purpose. Instead, we use ab-
stract interpretation, overapproximating the graphs by abstract representations
of bounded size.

To compute this overapproximation, we lift rule application to the abstract
level, reducing the infinite concrete state space to a finite abstract one: We match
the rules on the abstract representation, partly undo the abstraction, just enough
to apply the rule, and restore abstraction on the result. By fixed-point iteration,
we end up with one final abstract topology, an overapproximation of all graphs
the system may produce.

The crucial idea of our abstraction is to decompose graphs into overlapping,
simultaneously evolving clusters, one per node of the graph—cluster abstraction.
Each cluster consists of a core node, corresponding to the specific node under con-
sideration, and peripheral nodes, corresponding to the immediate neighborhood
of the core node, i.e., its adjacent nodes. We keep the edges between peripheral
nodes and the core node, as well as the core node itself, completely concrete. The
neighborhood of a node may be unbounded, e.g., in some protocols a leader may
have an unbounded number of followers. To arrive at a finite abstract domain,
we use approximated counting: two or more neighborhood nodes that are similar
become one summary node in the periphery. By a three-valued abstraction, we
preserve information about the neighborhood edges where possible.

We have implemented cluster abstraction in a tool called astra. In addition
to benchmarks from the literature, ranging from red-black trees to firewalls,
we successfully apply astra to the merge protocol. The merge protocol is a
coordination mechanism for car platooning that could not be fully analyzed
with previous approaches.

Outline. In Section 2, we describe the graph transformation framework our work
is based upon. Section 3 introduces cluster abstraction and the computation
of the corresponding abstract transformer. In Section 4 we present our tool
implementation astra and experimental results. After discussing related work
in Section 5, we conclude the paper in Section 6.
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2 Background

2.1 Graph Preliminaries

Our framework is based on directed graphs with edge and node labels. We allow
several edges between the same pair of nodes, but only as long as their direction
or edge label differ.

Definition 1 (Graph). Let V be a set of node names, N a set of node labels and

E = {β1, . . . , β|E|} a set of edge labels. A graph G is a tuple (VG, E
β1

G , . . . , E
β|E|
G ,


G) where VG ⊆ V is the set of nodes, 
G : VG → N is the node label assignment

and Eβ
G ⊆ VG × VG is the set of edges with label β ∈ E.

For simplicity, we assume a globally unique set V of node names, plus a globally
unique set of node labels N and edge labels E . Note the difference between node
names and node labels: Nodes may share the same node label and nodes from
different graphs may share the same node name, but nodes from the same graph
always have different node names. We use mappings over node names to relate
nodes of different graphs. We denote the set of graphs as G.

Graph morphisms map the nodes of one graph to the nodes of another graph
such that the node labels agree and all edges are preserved. The existence of a
graph morphism means that one graph is a subgraph of another.

Definition 2 (Partial and total graph morphism, subgraph relation).
Let G and H be graphs. An injective partial function h : VG ⇀ VH is a partial
graph morphism iff 
G ∩ (def(h)×N ) = h ◦ 
H and for all β ∈ E, h(Eβ

G) ⊆ E
β
H .

We call h a (total) graph morphism iff it is a total function, i.e., h : VG → VH . If
an injective graph morphism exists, G is a subgraph of H, denoted by G �h H.

For the purpose of abstraction, we will later need to consider spokes between
nodes, not merely individual edges. Spokes represent the configuration of edges,
i.e., direction and edge label of edges between two given nodes.

Definition 3 (Spoke). Let G be a graph and v, v′ ∈ VG. Then the spoke be-

tween v and v′ in G is the pair SPG(v, v
′) := ({β ∈ E | (v, v′) ∈ Eβ

G}, {β ∈ E |
(v′, v) ∈ Eβ

G}) We denote the set of all spokes 2E × 2E by SP. An alternative
notation for the empty spoke (∅, ∅) shall be ∅.

2.2 Graph Transformation Systems

Graph transformation systems rewrite graphs according to transformation rules,
starting with some initial graph. Rule application can be restricted via negative
application conditions. In this paper, we consider negative application conditions
specified by partner constraints. A partner constraint prohibits incident edges
with a specific direction and label to an adjacent node with a specific label.

Definition 4 (Partner constraint). A partner constraint is a tuple (d, β, l) ∈
PC = {in, out}×E×N where d is a direction, β an edge label and l a node label.
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Transformation rules consist of a left hand side graph matched against the host
graph, a right hand side graph by which the left hand side graph is replaced, and
a mapping that describes node correspondence between the left and the right
hand side graph. Additionally, for each left hand side node, an optional set of
partner constraints can be specified.

Definition 5 (Graph transformation rule). A graph transformation rule is
a tuple (L, h, p, R) where L (the left hand side) and R (the right hand side) are
graphs, h : VL ⇀ VR is an injective partial mapping from the left to the right
hand side and p : VL ⇀ 2PC specifies the partner constraints.

For simplicity, in the following, we assume one globally unique set of graph
transformation rules R and an initial graph I, which, together with node and
edge labels, form the graph transformation system S := (N , E , I,R). We further
assume for simplicity that in each rule, either all or none of its right hand side
nodes are newly created.

For a rule to match, its left hand side must be a subgraph of the host graph and
all negative application conditions need to be satisfied: We check each partner
constraint against the matched node and its neighborhood.

Definition 6 (Match, partner constraint satisfaction). Let r = (L, h, p, R)
be a rule, G a graph and m : VL → VG. Then m is a match from r to G iff
L �m G such that the partner constraints p are satisfied: For each v ∈ def(p)
and β ∈ E, we have p(v) ∩ E = ∅, where

E = {(out , β, 
G(u′)) | (m(v), u′) ∈ Eβ
G}

∪ {(in, β, 
G(u′)) | (u′,m(v)) ∈ Eβ
G})}

Rule application requires that the left hand side matches the host graph. A
result graph is the host graph with labels of matched nodes changed as specified
by h, nodes and edges of the left hand side removed and nodes and edges of the
right hand side added as specified by the rule. Added nodes may be assigned any
unused node name, thus the result is not unique. We obtain a mapping from the
unchanged nodes of the host graph to the result graph as a byproduct. A graph
is directly derived from a host graph according to some rule iff there is any way
to apply the rule and obtain this graph as the result.

Definition 7 (Rule application, direct derivation). Let r = (L, h, p, R)
be a rule, G,H graphs, m : VL → VG an injective graph morphism and D :=
m(VL \ def(h)) the set of deleted nodes. Then H is a result of the application
of r to G with respect to m, written G

r,m�H, iff there is an injective mapping
m′ : VR \ h(VL \ def(m))→ VH such that m = h ◦m′, VH ∩D = ∅ and


H = (
G \ (D ×N ) ∪ (m′−1 ◦ 
R)
VH = (VG \D) ∪m′(VR)
Eβ

H = ((Eβ
G \m(Eβ

L)) ∩ (VH × VH)) ∪m′(Eβ
R)
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Fig. 1. An example of rule application: A rule (L, h, ∅, R) transforming graph G into
graph H , as it occurs in the merge protocol [1]

The direct derivation relation
r� is a relation over G ×G where G

r� H iff there

is a match m such that G
r,m� H.

In this paper, we are interested in reachability properties, i.e., is a graph with a
particular property reachable or not? Therefore, we define the semantics of the
graph transformation system simply as the set of reachable graphs.

Definition 8 (Graph transformation system semantics). The semantics
of a graph transformation system S is the smallest set such that I ∈ �S� and,

if there are graphs G ∈ �S� and H and a rule r ∈ R such that G
r� H, then

H ∈ �S�.

2.3 The Merge Protocol

Our main benchmark is a graph transformation system modeling the merge
protocol [2,1]. This protocol is used in car platooning, where autonomous cars
on highways form platoons driving at constant speed and distance to save fuel.
Its purpose is to allow (1) two cars to form a platoon with the car in front
becoming the platoon leader and the other becoming its follower, (2) a car joining
an existing platoon as a new follower and (3) merging of two platoons, with the
leader on the back handing over all its followers to the leader in front, eventually
itself becoming one of the followers.

What makes the merge protocol so difficult to analyze is the vast range of
topological configurations all present and evolving at the same time, caused by
the protocol’s massively distributed nature. For example, a car may receive at
any time a request to form a platoon, at the same time receive a request to merge
with another platoon, all while being in the middle of any intermediate step of
a merge operation, or sending such a request itself—and this happening with an
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arbitrary number of cars in different contexts at once. This is different from the
typical setting of shape analysis, i.e., the static analysis of heap-manipulating
programs, where data structures typically have a regular global structure mod-
ified only at some select points, those referenced by pointers from the stack.
On the other hand, shape analyses are often employed to prove global invari-
ants about the heap structure, such as the sortedness of a binary tree, whereas
in the analysis of the merge protocol, our goal is to show that undesired local
configurations never occur.

3 Analysis

3.1 Cluster Abstraction

In the graph transformation systems we consider, unbounded numbers of nodes
may be created dynamically. Thus, the state space of such systems is infinite in
size, making exact analysis by concrete state-space exploration impossible. To
overcome this challenge, we employ a bounded abstraction: each concrete graph
of arbitrary size is represented by an abstract graph of bounded size, reducing
the infinite state space to a finite one.

We apply local abstraction to each node of a given graph, obtaining a bounded
set of clusters. Local abstraction focusses on one specific node in the graph,
henceforth called the focal node. It abstracts from all nodes in the graph except
for the focal node and its immediate neighborhood, referred to as the periphery
in the abstraction. The neighborhood consists of the incident edges and the
adjacent nodes of the focal node. In addition, neighborhood nodes are merged
into summary nodes if they are connected to the focal node by the same spoke
(see Definition 3). Further, edges among neighborhood nodes are abstracted into
three-valued constraints. This yields a cluster, which consists of the core node
and its periphery. The core node shall have the unique name core ∈ V . Figure 2
illustrates local abstraction, which is formally defined later.

Local abstraction asymmetrically preserves information about one specific
node and some information about its neighborhood only, none about the rest
of the graph. To capture the structure of the entire graph, we apply local ab-
straction to all of its nodes. As the neighborhoods of nodes are overlapping, this
preserves some information about the global graph structure.

While a concrete graph may contain an arbitrary number of nodes, the set of
distinct clusters is bounded. Thus the abstraction is bounded.

The process described above yields a set of clusters that may contain clusters
that differ only with respect to constraints between peripheral nodes. To reduce
analysis complexity, such clusters are merged by loosening the constraints.

Definition 9 (Cluster). A cluster P is a tuple (GP , SP , C
β1

P , . . . , C
β|E|
P ) where

GP = (VP , E
β1

P , . . . , E
β|E|
P , 
P ) is a graph, {core} ⊆ VP ⊆ {core} ∪ SP × N are

the node names, SP ⊆ DP = VP \ {core} is a set of summary nodes, with DP

the set of peripheral nodes, Cβ
P : ((DP×DP )\{(v, v) | v ∈ DP \SP })→ {0, 1, 12}
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Fig. 2. An example of local abstraction: Graph G with the pass-labeled node as fo-
cal node is abstracted into cluster P . The periphery of P is an abstraction of the
neighborhood of the focal node in G.

are the peripheral constraints, Eβ
P ⊆ ({core}×VP )∪(VP ×{core}) for any β ∈ E

and SPP (core, v) 
= ∅ for all v ∈ DP . We denote the set of all clusters by P.

Given a graph G and one of its nodes v, local abstraction yields a cluster P with
a core node that corresponds to the focal node v. P has one peripheral node per
uniquely connected neighborhood node of v, that is, with a unique configuration
of neighborhood node label plus non-empty spoke.

The edges connecting the neighborhood nodes are abstracted as follows: If,
in G, there are β-labeled edges from all source nodes V1 to all target nodes V2,
both sets each corresponding to a (possibly summary) node in P , then there
is a peripheral 1-constraint in P that involves two nodes corresponding to V1
and V2. If there are some, but not all such β-labeled edges, we use a 1

2 -constraint
instead. And if there are no such β-labeled edges at all, a 0-constraint. Note
that peripheral constraints do not contain information about self-loops of the
corresponding concrete nodes.

The byproduct of local abstraction is a mapping hG,P . It maps nodes of G
to corresponding nodes in P , if any. hG,P is not necessarily injective: If the
abstraction contains a summary node, then all corresponding concrete nodes
will be mapped to it.

Definition 10 (Local abstraction, induced mapping). The local abstrac-
tion of a graph G with respect to a focal node v ∈ VG, denoted by α(G, v), is the
cluster P that satisfies the following conditions:

– VP = hG,P (VG)

– Eβ
P = hG,P (E

β
G ∩ (({v} × VG) ∪ (VG × {v})))

– SP = {u ∈ DP | |hG,P
−1({u})| ≥ 2}

– Cβ
P (u1, u2) =

⎧⎪⎨⎪⎩
0 : ∀v1 
= v2 : (hG,P (v1), hG,P (v2))=(u1, u2)⇒ (v1, v2) /∈Eβ

G

1 : ∀v1 
= v2 : (hG,P (v1), hG,P (v2))=(u1, u2)⇒ (v1, v2)∈Eβ
G

1
2 : else
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– 
P = hG,P
−1 ◦ 
G

where hG,P : VG ⇀ VP is the induced mapping of concrete nodes from G to
abstract nodes in P , defined as

hG,P = {(v, core)} ∪ {(u, u′) ∈ (VG \ {v})× (SP ×N ) | SPG(v, u) 
= ∅
and u′ = (SPG(v, u), 
G(u))},

The information order compares the information content of two peripheral con-
straints. It expresses that a 1

2 -constraint is less precise than both a 0 and a 1
constraint.

Definition 11 (Information order). For l1, l2 ∈ {0, 1, 12}, we write l1 � l2 iff
l1 = l2 or l2 = 1

2 .

Using information order, we define a partial order on clusters P and P ′ that
considers P to be less than or equal to P ′ if P and P ′ are equal except for
peripheral constraints, and each constraint of P is less than or equal (with respect
to the information order) to the corresponding constraint of P ′.

Definition 12 (Cluster order). Let P and P ′ be clusters. We write P � P ′ iff
GP = GP ′ , SP = SP ′ and Cβ

P (v, v
′) � Cβ

P ′(v, v′) for any β ∈ E and v, v′ ∈ VP .
We say that P ′ is an upper bound of P .

Note that both information order and cluster order are partial orders, so the
notion of least upper bounds is applicable to them. A least upper bound exists
for clusters as long as they differ in peripheral constraints only. It yields a cluster
with peripheral constraints that are just weak enough to be consistent with both
clusters. In effect, a constraint becomes 1

2 whenever it differs in the two clusters
(or is already 1

2 ).
Our abstract domain consists of sets of clusters, such that no pair of clusters

is comparable according to the cluster order:

Definition 13 (Abstract topology). An abstract topology is a set S ⊆ P,
where for no pair P1 
= P2 ∈ S there is a mutual upper bound P ′ ∈ P.
To obtain such an abstract topology from the clusters produced by local abstrac-
tion, we impose an order on sets of clusters, with an induced least upper bound.
Cluster set S is less than or equal to cluster set S′ according to this induced
order iff for each cluster P in S, S′ contains a cluster P ′, such that P � P ′

according to the cluster order.

Definition 14 (Cluster set order). Let S, S′ be sets of clusters. We write
S � S′ iff for each P ∈ S, there is a P ′ ∈ S′ such that P � P ′.

We split the set of clusters into singleton sets, each containing one of the clusters.
Then we consider the least upper bound over all of those singleton sets. This
means joining any clusters that can be joined and taking the union for those that
cannot. At the end, this yields the abstract topology we were looking for. We call
this abstract topology the topologization of the cluster set under consideration.
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Definition 15 (Topologization). The topologization of a set of clusters S ⊆
P is the abstract topology

⊔
S =

⊔
{{P} | P ∈ S}).

For each equivalence class of clusters from S identical except for peripheral con-
straints, topologization yields a single, joined, less precise cluster in the resulting
topology. Note that we overload the

⊔
operator, denoting topologization if ap-

plied to a set of clusters, and denoting the least upper bound on cluster sets
if applied to sets of sets of clusters. Note further that, given S � S′, we have⊔
S �

⊔
S′ and S �

⊔
S′, but not necessarily

⊔
S � S′.

The full abstraction of a graph is the topologization of the set of clusters
obtained by local abstraction of each node of the graph. Each of these nodes
corresponds to the core node of one of the clusters in the resulting abstract
topology. Conversely, we define topology concretization.

Definition 16 (Cluster abstraction and concretization). Let G ⊆ G. Then
the cluster abstraction of G is the abstract topology α(G) =

⊔
{α(G, v) | v ∈

VG∧G ∈ G}. An abstract topology S represents the set of concrete graphs γ(S) =
{G ∈ G | α({G}) � S}.

3.2 Abstract Transformer

Thus far, we considered how to apply rules on concrete graphs and how to
abstract a graph into an abstract topology. Now, we discuss the application of
rules on abstract topologies instead of concrete graphs. We obtain an abstract
topology capturing the graphs we would obtain in the concrete. We sacrifice some
precision in the abstract transformation to allow for a tractable and efficient
implementation.

Rule application to all graphs from the cluster concretization induces an ab-
stract derivation relation between clusters for a given rule and abstract topology.
The relation holds if the core nodes of source and target cluster relate to corre-
sponding nodes in the respective host and result graph.

Definition 17 (Induced abstract derivation). The induced abstract deriva-
tion is a relation

r,S⇒ ⊆ P × P where P ′
r,S⇒Q iff there are graphs G,H, a match

m : VL → VG from r to G and a node v ∈ VG, such that G is in the cluster
concretization of S, P � P ′, Gr,m�H and α(H, v) = Q, where r = (L, h, p, R),
P = α(G, v) with induced mapping hG,P : VG → VP and m ◦ hG,P 
= ∅.

The induced abstract topology is the topology we obtain if we apply full abstrac-
tion to the initial graph and then iteratively compute abstract topologies until
we reach a fixpoint: We apply any rule in any possible way to any graph from
the cluster concretization of the abstract topology from the previous iteration,
add the resulting clusters to those that already existed, and take the least upper
bound on the cluster set thus obtained.

Definition 18 (Induced abstract topology). The induced abstract topology

is the set �S�
 = �S�
n where n = min{i ∈ N | �S�
i = �S�
i+1} and �S�
i defined
recursively as follows:
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– �S�
0 = α({I})
– �S�
i = ⊔(�S�
i−1 ∪ {Q ∈ P | ∃P ∈ P , r ∈ R : P

r,�S��i−1⇒ Q})

Note that the existence of the induced abstract topology follows from the fact
that �S�
i � �S�
i+1 and the finiteness of the domain.

Proposition 1. The induced abstract topology overapproximates the graph trans-
formation system semantics, i.e., �S� ⊆ γ(�S�
).

Induced abstract derivation, and, consequently, the induced abstract topology
involves rule application to an infinite number of graphs. For an implementation,
we need to reduce this to a finite number. That this is possible follows from the
fact that our domain is finite.

We capture the characteristics of a sufficient, yet finite subset using the notion
of abstract matches. While a concrete match relates a left hand side L of a rule
to the nodes of a host graph G, the abstract match relates it to a cluster P . The
core node of P has a corresponding node in a host graph G. This node has a
corresponding focal node in the result graph H . (Recall that we do not permit
node deletion.) Local abstraction on the result graph will yield the relevant
cluster Q. Q primarily depends on P and the node and edge modifications as
stipulated by the rule. Thus, the main components of an abstract match are P
and the relation hL,P between the left hand side and the matched nodes of P .

However, indirectly, and perhaps contrary to intuition, Q also depends on
some nodes and edges of the host graph G that are neither matched nor deter-
mined by P :

– For each match to a summary node, only one concrete instance will be
matched. Thus, Q may depend on the number of additional unmatched in-
stances (captured by mater in the following definition). We need to distin-
guish only the cases of zero, one, and more than one instances, since the
latter will always become a summary node after abstraction.

– A 1
2 -constraint in P may become a 0 and 1 constraint in Q, and sometimes

remain as is: (a) If two matched peripheral nodes have an unmatched 1
2 -

constraint in between, the corresponding concrete edge will be either present
or absent in G, captured by cc. (b) The concrete edge corresponding to a
1
2 -constraint between a pair of unmatched peripheral nodes will be either
present or absent in G. Concrete edges incident to residual materializations
of a summary node v with mater(v) ≥ 1 may be present for all, none or some
of the corresponding concrete node pairs. Both cases are captured by dd . (c)
The same possibilities exist for edges between an unmatched peripheral node
and a matched node. The mapping dc specifies these edges. In this case, the
matched node does not even have to be in P , since it might just be about
to become connected to the focal node through application of the rule.

In addition, the match requires that a closure exists, that is, we have a graph G
from the cluster concretization for which the match holds.
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Definition 19 (Abstract match). Let r = (L, h, p, R) be a rule and S be an
abstract topology. An abstract match from r to S is a tuple (P, hL,P ,mater , dc, cd ,
dd) where

– P ∈ P is the matched cluster,
– hL,P : VL ⇀ VP maps the left hand side to the nodes of P ,
– mater : DP → {0, 1, 2} specifies the residual materialization count of sum-

mary nodes in P ,
– dc : (VL×DP×{−1, 1}×E)→ {0, 1, 12} specifies the materialization of edges

from peripheral to matched nodes and vice versa,
– dd : (DP ×DP × E)→ {0, 1, 12} specifies the peripheral edge materialization
– cc : VL × VL → 2E specifies the materialization of edges among matched

nodes

and the following conditions are satisfied:

– P � P ′ for some P ′ ∈ S
– hL,P (VL) 
= ∅
– |hL,P

−1(core)| < 2
– the following conditions hold for matched : DP → N, the induced number of

matches, defined as matched(u) := |hL,P
−1({u})|:

matched(u) = 0⇒ mater(u) =

{
2 if u ∈ SP
1 otherwise

matched(u) = 1⇒ mater(u) ∈
{
{1, 2} if u ∈ SP
{0} otherwise

matched(u) > 1⇒ u ∈ SPv

– there is a graph G, a match m : VL → VG from r to G and a node v ∈ VG
such that α(G, v) = P with induced mapping hG,P : VG ⇀ VP and
• m ◦ hG,P = hL,P ,
• mater(u) = min{|hG,P

−1({u}) \m(VL)|, 2},
• for all u ∈ VL \m−1({v}), u′ ∈ DP ,

β ∈ E , and d ∈ {−1, 1},

dc(u, u′, d, β) =

⎧⎪⎨⎪⎩
0 : ∀v′ /∈ m(VL) : hG,P (v

′) = u′ ⇒ (m(u), v′) ∈ (Eβ
G)

d

1 : ∀v′ /∈ m(VL) : hG,P (v
′) = u′ ⇒ (m(u), v′) /∈ (Eβ

G)
d

1
2

otherwise,

• for all u, u′ ∈ DP , for all β ∈ E,

dd(u, u′, β) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 : ∀v1 
= v2 /∈ m(VL) : (hG,P (v1), hG,P (v2)) = (u, u′)

⇒ (v1, v2) ∈ Eβ
G

1 : ∀v1 
= v2 /∈ m(VL) : (hG,P (v1), hG,P (v2)) = (u, u′)

⇒ (v1, v2) /∈ Eβ
G

1
2 otherwise,
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Fig. 3. An example of the abstract transformer

• for all u, u′ ∈ VL, (cc(u, u′), cc(u′, u)) = SPG(m(u),m(u′)),
• G ∈ γ(S), and
• the partner constraints p are satisfied.

Since the number of abstract matches is finite, the definition is constructive and
a computation method directly follows from it, except for the non-trivial closure
check. However, the fact that we are looking for an overapproximation allows us
to weaken this check, including the option to ignore it completely. This includes
the check that partner constraints are satisfied. Note that at least the partner
constraints for hG,P

−1(core) can be checked without knowledge of the entire
graph G.

From the abstract matches, we generate partial concretizations. These are
graphs with focal node and neighborhood, just sufficient to capture all potential
changes to the cluster caused by rule application and local abstraction of the
result. We do not need to consider the full graph, since this is taken care of by
symmetry: The additional nodes it contains will be covered by other abstract
matches with those nodes as the core node of a cluster. Those, in turn, have their
own partial concretizations to account for the impact of the rule application.

Note that edges specified by dd and dc will never be modified by a rule, for that
would require its adjacent nodes both to be matched, which is, by definition, not
the case. The set A, in the following definition, splits the unmatched peripheral
nodes into two subsets such that those in the set will have respective edges for
the 1

2 case and the complementary nodes will not.
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Definition 20 (Partial concretization). The partial concretization function
γ maps abstract matches (P, hL,P ,mater , dc, dd , cc) to tuples (G,m, hG,P ) where
G is a graph, m : VL ⇀ VG is an injective partial graph morphism from the left
hand side to this graph and hG,P : VG ⇀ VP is a mapping to the abstraction P ,
all defined as follows:

– VG = {core}∪(VL \hL,P
−1({core}))∪{(u, n) ∈ DP ×N | 1 ≤ n ≤ mater(u)}

– hG,P (u) =

⎧⎪⎨⎪⎩
core if u = core

v if u = (v, n)

hL,P (u) if u ∈ VL \ hL,P
−1({core})

– m = {(hL,P
−1(core), core)} ∪ {(u, u) | u ∈ (VL \ hL,P

−1({core}))}
– Eβ

G = {(u, u′) ∈ A×A | dd(hG,P (u), hG,P (u
′), β) ≥ 1

2}
∪ {(u, u′) ∈ VG × VG | dd(hG,P (u), hG,P (u

′), β) = 1}
∪ {(u, u′) ∈ m(VL)×m(VL) | β ∈ cc(m−1(u),m−1(u′))}
∪ {(u, u′) ∈ m(VL)×A | dc(m−1(u), hG,P (u

′), 1, β) = 1
2}

∪ {(u, u′) ∈ m(VL)× VG | dc(m−1(u), hG,P (u
′), 1, β) = 1}

∪ {(u, u′) ∈ A×m(VL) | dc(m−1(u′), hG,P (u),−1, β) = 1
2}

∪ {(u, u′) ∈ VG ×m(VL) | dc(m−1(u′), hG,P (u),−1, β) = 1}
∪ hG,P

−1(Eβ
P )

where A = (DP × {1}) ∩ VG
– 
G = (m−1 ◦ 
L) ∪ (hG,P ◦ 
P )

The abstract transformer describes how clusters are affected by rule application.
It presupposes the existence of an abstract match, constructs the corresponding
partial concretization, applies the rule, and constructs the modified cluster by
local abstraction of the focal node. See Figure 3.2 for an example.

Definition 21 (Abstract transformer). Let r = (L, h, p, R) be a rule and S
be an abstract topology. The abstract transformer (or direct derivation) is a rela-
tion

r,S→ ⊆ P×P where P ′
r,S→Q iff there is a graph H and an abstract match m̂ =

(P, hL,P ,mater , dc, dd , cc) from r to S such that P � P ′, γ(m̂) = (G,m, hG,P ),
G

r,m�H and Q = α(H, core)

The graph morphismm may be partial, i.e., some nodes of the left hand side may
map to none of the nodes in G. Not even the focal node needs to be covered.
In those cases, we waive the totality requirement that rule application puts
on m, thereby modifying only those parts of the partial concretization that are
matched. We obtain an abstract topology that overapproximates the system by
abstracting the start graph and applying the abstract transformer in a fixpoint
iteration.

Definition 22 (Derived abstract topology). The derived abstract topology

is the set [S]
 = [S]
n, where n = min{i ∈ N | [S]
i = [S]
i+1} and [S]
i is defined
recursively as follows:
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– [S]
0 = α({I})

– [S]
i =
⊔

([S]
i−1 ∪ {Q ∈ P | ∃P ∈ [S]
i−1, r ∈ R : P
r,[S]�i−1→ Q}

∪ {α({R}) | (∅, ∅, ∅, R) ∈ R})

Note that we assumed the absence of rules with non-empty left hand side that
create new nodes. Because of this, we do not need to take care of new clusters that
occur as a byproduct of the modification of an existing cluster. Instead, for each
rule with empty left hand side, we add the clusters obtained by local abstraction
for each right hand side node. This takes place unconditionally, pointing towards
the equivalence of node creation and initial graphs in our domain.

Theorem 1. The derived abstract topology overapproximates the induced ab-
stract topology, i.e., �S�
 � [S]
.

Corollary 1 (Soundness). The derived abstract topology overapproximates the
graph transformation system semantics, i.e., �S� ⊆ γ([S]
).
Proof. This follows immediately from Proposition 1, Theorem 1, and the mono-
tonicity of cluster concretization.

4 Experimental Evaluation

4.1 Implementation

We implemented cluster abstraction in our tool astra 2.0. The implementation
differs from theory in minor respects: (a) Partial concretization materializes clus-
ters over the entire left hand side of a rule at once, exploiting symmetry and
allowing us to properly check all partner constraints. (b) We do a rudimentary
check for the existence of a closure, by checking whether peripheral constraints of
unmatched nodes are satisfiable. (c) To cover cases with unmatched core nodes,
for each match, we iterate over all possibilities in which one additional cluster
can be attached in the periphery. (d) After each iteration, we apply a reduc-
tion step, eliminating any cluster whose existence can be ruled out easily, and
concretizing 1

2 -constraints if more precise information is available. (e) In various
places, we use overapproximation ad hoc in order to improve analysis time.

4.2 Selection of Benchmarks

With astra 1.0, we already succeeded to analyze a part of the merge proto-
col [1] with star abstraction [3], a precursor to the method described in this pa-
per. (In a nutshell, cluster abstraction with all peripheral constraints being 1

2 .)
It was sufficient to analyze platoon formation and car joining, but not platoon
merging, for which state space explosion occurred: Follower handover requires
ternary predicates, while star abstraction only preserves binary predicates. This
causes a cascade of spurious abstract states, with the analysis eventually spend-
ing its time enumerating an intractable number of combinatorial possibilities.
The main goal of astra 2.0 was to analyze the full protocol. We did this for two
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Table 1. Benchmark analysis statistics. cl. = clusters, a.r. = active rules, i.e., applied
at least once, m. = abstract matches, rule app. = rule applications, it. = iterations,
vfy. = safety property verified. *safety property not expressible as forbidden subgraphs

Benchmark # cl. # a.r. # m. # rule app. # it. time vfy.

Synchronous merge 873 34 9674 349774 17 0m 14.057s yes
Asynchronous merge 3069 36 44553 36114603 21 14m 27.977s yes
AVL trees 1876 302 114284 2221151967 38 757m 9.273s yes
Firewall 31 4 139 1371 5 0m 0.012s yes
Firewall 2 96 9 786 45525 7 0m 0.330s no
Public/private servers 2 239 26 1633 102250 10 0m 1.030s yes
Dining philosophers 41 8 40 179 7 0m 0.006s no*
Resources 32 7 100 207 4 0m 0.007s yes
Mutual exclusion 308 9 2419 1237361 17 0m 56.060s yes
Red-black trees 263 38 8769 24855500 11 10m 3.145s yes
Singly-linked lists 7 2 15 13 3 0m 0.000s yes
Circular buffers 152 2 798 241234 17 2m 43.441s no*
Euler walks 18 6 47 134 3 0m 0.008s no*

versions. In addition, we analyzed the AVL tree benchmark from [4] and var-
ious other benchmarks from the related work: Firewall, public/private servers,
dining philosophers, resources, mutual exclusion, and red-black trees are bench-
marks from the AUGUR package [5]; singly-linked lists, circular buffers and Euler
walks for GROOVE are from [6].

The AUGUR package comes with additional benchmarks that we did not an-
alyze: connections, leader election protocol and the Needham–Schroeder protocol
all make use of numerical attributes, which are not yet supported by our tool.
External-internal processes is merely a stripped-down version of public and pri-
vate server 2. Public and private server contains a subset of the rules from
public and private server 2. The same holds for the finite-state version of dining
philosophers versus the infinite-state version, which we analyze. Red-black trees
converted is a tweaked version of red-black trees to ease analysis with AUGUR.

We could analyze the GROOVE benchmarks without modifications. The AU-

GUR benchmarks, on the other hand, had to be translated from the tool’s hyper-
edge-based approach to one based on nodes and edges. In addition, we had to
make a structure-preserving change to the public/private server grammar (re-
placing a specific edge with two edges connected by a node) in order to prevent
combinatorial explosion that would otherwise have defied analysis. For red-black
and AVL trees, we manually added invariants about the uniqueness of some la-
bels over the entire graph. These invariants trivially follow from the respective
graph transformation systems and it would in principle be easy to find them au-
tomatically. However, uniqueness is not expressible in our abstraction, because
clusters always represent an arbitrary number of concrete instances.

We checked the safety properties by adding rules specifying respective forbid-
den subgraphs, producing a node with an error label if found. This approach
could not be taken for dining philosophers, circular buffers and Euler walks,
since the respective safety properties quantify over an unbounded number of
nodes and hence cannot be formulated as forbidden subgraphs.
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4.3 Analysis Results

astra was able to analyze all benchmarks. See Table 1 for the number of iter-
ations required for reaching the fixed point, the number of clusters in the final
result and the processor time taken. We ran all analyses on an Intel Core 2 Quad
CPU Q9550 (2.83GHz) with 4 GB of memory under Linux 3.15, though only
9 MB were used at the peak for the largest benchmark, asynchronous merge.
Execution time given is the time in user mode as reported by time(1).

In all but one of the cases with safety properties expressible as forbidden
subgraphs, verification succeeded. Verification failed for firewall 2 because the
abstraction was unable to distinguish locations in front of and behind the firewall.

5 Related Work

Petri graphs are unfoldings of graph transformation systems, abstracted by a
cutoff after a defined depth [7]. Reachability can be checked with existing tech-
niques for Petri nets. As we have seen, we were able to analyze a subset of their
benchmarks. Once they support negative application conditions (which they cur-
rently list as future work), it will be interesting to investigate whether their tool
AUGUR [8] can analyze our main target, the merge protocol.

Bauer et al.’s partner abstraction [9] considers connected components instead
of overlapping clusters and folds nodes according to neighborhood node and
edge labels. In practice, it requires the system to obey friendliness properties
that hold only for a simplified merge protocol where processes know each other’s
state [4]. Rensink and Distefano [10] consider an abstraction similar in design
and limitations. Ideas from both approaches were combined and extended in
neighborhood abstraction [11]. No friendliness restriction applies, but lacking
Bauer’s decomposition into components, the GROOVE implementation runs out
of memory even on Bauer’s simplified merge protocol [6].

Environment abstraction [12] abstracts a system into one process and its
environment, i.e., the set of states of all the other processes plus relations to
them. Cherem and Rugina [13] propose a local abstraction for shape analysis that
tracks individual heap cells and their immediate neighborhood. Bauer et al.’s
daisy patterns [14] and our star abstraction [3] are graph abstractions based on
the same idea, the former abstracting the transformation rules in addition to
the graph. All these abstractions are less precise than cluster abstraction, since
none of them tracks peripheral node relationships.

Saksena et al. [15] verify graph transformation systems by symbolic back-
ward reachability analysis. Starting with the undesirable configurations, they
compute, by backward rule application in a fixed point iteration, an overapprox-
imation of the set of reachable predecessor configurations, checking whether an
initial configuration is among them. While not guaranteed to terminate, their
method succeeds in proving loop freedom of an ad hoc routing protocol.

Berdine et al. [16] show that shape analysis of concurrent programs via canon-
ical abstraction [17] leads to state-space explosion even for a toy example. The
complexity of expressing cluster abstraction via canonical abstraction confirms
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this: at least, one abstraction predicate would be needed for each spoke, which is
exponential in the number of edge labels. Berdine et al.’s own solution allows ef-
ficient analysis of an unbounded number of threads manipulating an unbounded
shared heap. However, their abstraction is unable to express direct relations be-
tween the state of the threads. Manevich et al. [18] decompose the heap into a
bounded number of overlapping components as specified by user-defined loca-
tion selection predicates. In contrast, our method decomposes the graph by local
abstraction of each of the unbounded number of nodes.

Zufferey et al. [19] provide an abstraction for depth-bounded systems (systems
with a bound on the longest acyclic path), an expressive class of well-structured
transition systems. Unfortunately, the merge protocol does not belong to this
class unless one uses a simplified version similar to Bauer’s.

6 Conclusions and Future Work

We have seen an abstraction for the analysis of the set of reachable graphs
generated by infinite-state graph transformation systems. Using astra, our im-
plementation of cluster abstraction, we were for the first time able to analyze
the full merge protocol. In addition, our method has proven robust and precise
enough to allow for the analysis of various benchmarks from the literature.

Future work: (1) We are going to check safety properties that cannot be ex-
pressed as forbidden subgraphs, such as quantification over an unbounded num-
ber of nodes. (2) We shall explore suitable approximations for the closure check,
to preserve more of the global graph structure during rule application. (3) We
are going to investigate opportunities to adjust the precision of our analysis. Es-
pecially, structure-preserving changes to the graph transformation system before
the analysis seem to be an interesting way to give direction to the abstraction.
For example, adding edges to the right hand side of rules with a new label that
never occurs on a left hand side can keep nodes in the periphery of some clus-
ters, thereby increasing precision. (4) If some cluster may occur at most once,
we would like to retain this information. (5) We would like to allow integer
values as node and edge attributes, in addition to regular labels. Lifted to the
abstraction, it extends clusters by overapproximated values for those attributes,
based on abstract domains on integers. (6) Based on a suitable fragment of μ-
calculus, we plan to support abstract model checking on an abstract labeled
transition systems of clusters, preserving some non-trivial relationships for the
transitions, such as size invariants on summary nodes. We plan to extend this to
model checking over an abstract labeled transition system, based on a suitable
fragment of μ-calculus.

Acknowledgments. We thank Reinhard Wilhelm for many valuable discus-
sions about this work and the anonymous referees for their useful comments.
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Abstract. Introducing automated formal methods for large industrial
real-time systems is an important research challenge. We propose timed
process automata (TPA) for modeling and analysis of time-critical sys-
tems which can be open, hierarchical, and dynamic. The model offers two
essential features for large industrial systems: (i) compositional model-
ing with reusable designs for different contexts, and (ii) an automated
state-space reduction technique. Timed process automata model dynamic
networks of continuous-time communicating control processes which can
activate other processes. We show how to automatically establish safety
and reachability properties of TPA by reduction to solving timed games.
To mitigate the state-space explosion problem, an automated state-space
reduction technique using compositional reasoning and aggressive ab-
stractions is also proposed.

1 Introduction

This paper develops a model for the automated analysis of safety and reachability
properties in large industrial time-critical systems. To fulfill industrial require-
ments, we consider time-critical systems that are open (communicate with exter-
nal components), hierarchical (can be decomposed and recomposed into smaller
control systems), and dynamic (the decomposition can change over time). In
the paper, we use real-time systems, meaning time-critical systems that fulfill all
these features. The model also facilitates compositional modeling and reusable
designs for different contexts.

An open system continuously interacts with an unpredictable environment. A
good example of time-critical open systems is a pacemaker, which continuously
interacts with a heart, an uncontrolled environment. The pacemaker’s perfor-
mance crucially depends on the exact timing of an action performed either by
the system or by the environment. The theory of timed games [1,2,3,4] is well-
known in the research community for the analysis of time-critical open systems.

A hierarchical system is a hierarchical composition of smaller systems. An
automotive system, developed by an original equipment manufacturer (OEM),
may be used in different models of cars. In this case, the system has a con-
troller which helps the system adapt to different environments and cars. In other
words, the system is an open system, which has two distinguished interacting
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segments: the controller and the environment. Typically, these systems consist
of other smaller systems in a hierarchical structure. For instance, a system Ac-
tuator can be a component of a larger system Position, while Position can be a
component of another system Brake-by-Wire, and so on. Every component of a
system has a specific set of tasks; for example, system Brake-by-Wire may use
its component Position to perform some desired tasks in interaction with the en-
vironment, and Brake-by-Wire may also indirectly—through using Position—use
its sub-component Actuator to perform some desired tasks in interaction with
the environment.

A dynamic system is a hierarchical system whose components may change
over time. Many hierarchical systems have dynamic characteristics, which are
activating components only when needed. Dynamic behaviors are an important
feature when resource constraints (such as limited memory) do not allow one to
keep all the components active at the same time. Sometimes dynamic behaviors
are inherent to the system. For example, we applied timed game theory in an
industrial project to construct a fault-tolerant framework for a hierarchical open
system that has a scheduler, a set of tasks, and a set of subtasks; only the
scheduler is active in the initial system-state; subtasks are activated by their
parent tasks, and the top level tasks are activated by their scheduler; thus the
scheduler controls tasks, and a task controls its subtasks; due to the termination
or the initialization of tasks (or subtasks) the structures of the processes may
change; thus the system is a dynamic open system [5].

Timed automata (TA) [6,7] are desirable for the development of real-time
systems because TA can model and analyze both discrete-time controllable be-
haviors of the system and continuous-time uncontrollable behaviors of the envi-
ronment. Timed automata and their more than 80 variants [8] are mostly studied
for the development of embedded systems, where behaviors of the components
are known and the number of the components is static. As a result, modeling
techniques, automated analyses, and other key issues of TA are typically ad-
dressed for static closed systems. The application domain of TA is growing [8].
In our two projects with General Motors (GM), we used different TA-based
analyses to investigate the fault-tolerance of real-time systems, which are part
of many large-scale safety-critical systems. During our industrial projects, we
observed that continuous-time formal methods of TA may provide the most
accurate analysis; however, TA are not suited for industrial real-time systems
mainly because of poor scalability. Moreover, we found that TA have no struc-
tured support for modeling real-time systems, which may lead to cumbersome
design details in a large-scale real-time system having several control hierarchies.
The paper extends TA to achieve better modeling support and scalability for
automated analysis of real-time systems.

We propose timed process automata (TPA), a variant of TA, for the devel-
opment of industrial real-time systems. The proposed variant provides compo-
sitional modeling (with reusable designs for different contexts) and automated



A Model for Industrial Real-Time Systems 155

analysis—a system needs to be modeled and analyzed using TPA only once when
copies of it are used as independent systems or multiple components of a larger
system or components of different larger systems or a combination of all previous
scenarios. The contributions of this paper include:

1. Timed process automata, the first model that provides compositional model-
ing with reusable designs for dynamic hierarchical open time-critical systems.

2. Definition of a formal semantics for TPA.
3. An automated analysis for safety and reachability properties of TPA.
4. The first automated state-space reduction technique for time-critical systems,

which can be dynamic, hierarchical, and open.

The rest of the paper can be divided into seven sections:

Section 2. Describes the motivation for the work. The motivation is based on
the experience achieved from a couple of automotive industrial projects.

Section 3. Provides the required background to understand the paper.
Section 4. Presents the syntax (Sect.4.1) and the semantics (Sect.4.2) of TPA,

which use start actions, finish actions, final locations, and channels to facili-
tate compositional modeling to reuse designs without manual alterations.

Section 5. Presents an automated analysis technique—based on timed games—
for TPA. The analysis model of a timed process automaton T is constructed
by composing a finite number of timed I/O automata (TIOA) [9,2,4], a vari-
ant of TA, to mimic the execution of T . The analysis model is constructed
using an automated technique that allows the designer to avoid manual al-
teration techniques for different compositions. Other than the automated
construction, the constructed analysis models essentially are TIOA models,
whose state spaces are too large to analyze industrial real-time systems.

Section 6. Develops an automated state-space reduction technique that con-
verts each callee process into a small automaton having only two locations
and two edges, irrespective of the size of the callee. The technique uses struc-
tured construction of TPA, compositional reasoning, aggressive abstractions,
and fewer synchronizations to ensure smaller state space.

Section 7. Discusses related work. It also classifies TPA depending on the clas-
sification of TA variants presented in a previous work [8].

Section 8. Concludes the paper.

2 Motivation

The first goal of the paper is to develop a real-time model, where a designer will
not need to readjust a design for different compositions. The second and main
goal is to allow automated analysis of the model for industrial systems.

Figure 1 presents an abstract Brake-by-Wire system modeled using TIOA, and
the system is developed by an OEM. The model has seven automata representing
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Fig. 1. An abstract Brake-by-Wire system modeled using standard TIOA

different copies of only three elements: one copy of the main thread of Brake-
by-Wire (the top automaton), two copies of the main thread of Position (the
two automata in the middle), and four copies of Actuator system (the four au-
tomata in the bottom). Each Position system contains two children (Actuator
systems) and its main thread that schedules the children, communicates with its
parent (the main thread of Brake-by-Wire), and performs some other functions,
which cannot be performed by the children. Similarly, the Brake-by-Wire system
contains two children (Position systems) and its main thread that schedules the
children and performs some other functions, which cannot be performed by the
children. In this model, the main thread of Brake-by-Wire is the root, which does
not have a parent. However, in the future a car manufacturer may include this
Brake-by-Wire system in a car and then the main thread of Brake-by-Wire will
no longer be the root. Then a central control system may be able to start the
main thread of Brake-by-Wire. To analyze the new complex system, a designer
will need to manually alter the model again by including start and finish actions
(in the top automaton of Fig. 1). Let us assume a complex system contains N
Break-by-Wire systems; to analyze this complex system, a designer will need to
manually construct at least N × 7 automata with a proportionally growing al-
phabet! Existing TA-based modeling techniques do not support compositional
modeling with reusable designs for different contexts; that is, a design may need
to be altered manually in every composition. All these ad hoc alterations may
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Fig. 2. The same Brake-by-Wire system of Fig. 1 is modeled using TPA

make a large industrial design incomprehensible and error-prone. Figure 2 con-
tains the same Brake-by-Wire system of Fig. 1 modeled by using TPA. Timed
process automata always model a system only once. For example, Fig.2 presents
only three TPA, which are equivalent to the seven automata of Fig. 1. Moreover,
the number of copies and the root status of Break-by-Wire system has no impact
on the new design.

To the best of our knowledge, no automated state-space reduction technique
has been developed for the analysis of real-time systems. During our two projects
with GM, we noticed that even a (practically) very small real-time system may
have a state space too large for automated formal analysis because of hierarchy,
dynamic behaviors, and time calculations. We overcame the scalability prob-
lem in one of the projects—construction of a fault-tolerance framework [5]—by
developing a manual state-space reduction technique that applies aggressive ab-
stractions and uses fewer synchronizations. Applying this manual technique to
a design of an industrial system is a challenging task. Moreover, the technique
may not work for every real-time systems. A generalized automated reduction
technique, therefore, is needed for analysis of large real-time systems, which is
provided in this paper by presenting an automated reduction technique for TPA.

3 Background

The semantic construction of TA is expressed using semantics objects called
timed transition systems (TTS) [10,4,7]. A timed I/O automaton [9,2,4] is a timed
automaton which has an input alphabet along with a regular output alphabet.
The controller plays controllable output transitions and the environment plays
uncontrollable input transitions; thus TIOA are a natural model for timed games.
Two TIOA are composable with each other if they don’t have a common output
action. The composition of two well-formed TIOA forms a larger timed I/O
automaton [2,4]. The section defines TTS, TIOA, composition of TIOA, and all
other terms required to understand the remaining paper.
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Definition 1 [10,4,7] A timed transition system is a tuple T = (St, s0, Σ,�),
where St is an infinite set of states, s0 ∈ St is the initial state, Σ is an alphabet,
and �: St × (Σ ∪ R≥0) × St is a transition relation.

We use d ∈ R≥0 to denote delay. A TTS satisfies time determinism (i.e., whenever

s
d
� s′ and s

d
� s′′ then s′ = s′′ for all s ∈ S ), time reflexivity (i.e., s

0
� s for

all s ∈ S ), and time additivity (i.e., for all s, s′′ ∈ S and all d1, d2 ∈ R≥0 we have

s
d1+d2� s′′ iff there exists an s′ such that s

d1� s′ and s′
d2� s′′). A run ρ of a TTS

T from a state s1 ∈ St is a sequence s1
a1� s2

a2� s3 · · · an� sn+1 such that for all

1 ≤ m ≤ n : sm
am� sm+1 with am ∈ Σ ∪ R≥0. A state s is reachable in a transition

system T if and only if there is a run s0
a0� s1

a1� s2 · · · an−1� sn, where s = sn. Timed
I/O transition systems (TIOTS) are TTS with input and output modalities on
transitions. Timed I/O transition systems are used to define semantics of TIOA.

A clock is a non-negative real variable. A constraint δ ∈ C(X,V) over a set of
clocks X and over a set of non-negative finitely bounded integer variables V is
generated by the grammar δ� xm ≺ q | k ≺ α | xm − xn ≺ q | true | Φ ∧Φ, where
q ∈ Q≥0, α ∈ Z≥0, {xm, xn} ⊆ X, k ∈ V and ≺∈ {<,≤, >,≥}. Consequently, the set of
clock constraints C(X) is the set of constraints C(X,V), where V = ∅. Let Ψ (V)
be the set of assignments over the set of variables V.

Definition 2 [9,2,4,7] A timed I/O automaton is a tuple A = (L, l0, X,V, A, E, I),
where L is a finite set of locations, l0 ∈ L is the initial location, X is a finite
set of clocks, V is a finite set of non-negative finitely bounded integer variables,
A = Ai⊕Ao is a finite set of actions, partitioned into input actions Ai and output
actions Ao, E ⊆ L×A×Φ(X,V)×Ψ (V)×2X × L is a set of edges, and I : L→ C(X)
is a total mapping from locations to invariants.

A clock valuation over X is a mapping RX
≥0 : X → R≥0. Given a clock valuation v

and d ∈ R≥0, we write v + d for the clock valuation in which for each clock x ∈ X
we have (v+d)(x) = v(x)+d. For λ ⊆ X, we write v[x 
→ 0]x∈λ for a clock valuation
agreeing with v on clocks in X \ λ, and giving 0 for clocks in λ. For φ ∈ Φ(X,N)
and v ∈ RX

≥0, we write v,N |= φ if v and N satisfy φ. Let e = (l, a, φ, θ, λ, l′) be
an edge, then l is the source location, a is the action label, and l′ is the target
location of e; the constraint φ has to be satisfied during the traversal of e; the
set of clocks λ ∈ 2X are reset to 0 and the set of non-negative finitely bounded
integer variables are updated to θ whenever e is traversed.

Definition 3 [2,4] Two timed I/O automata Am = (Lm, lm0 , X
m,Nm, Am, Em, Im)

and An = (Ln, ln0, X
n,Nn, An, En, In) are composable with each other when Am

o ∩An
o =

∅, Xm ∩ Xn = ∅, and Nm ∩Nn = ∅; when composable, their composition is a timed
I/O automaton A = Am||An = (Lm × Ln, (lm0 , l

n
0), Xm ∪ Xn,Nm ∪ Nn, A, E, I), where

A = Ai ∪ Ao with Ao = Am
o ∪ An

o and Ai = (Am
i ∪ An

i ) \ Ao. The set of edges E
contains:

– ((lm, ln), a, φm ∧ φn, λm ∪ λn, θm ∪ θn, (l′m, l′n)) ∈ E for each (lm, a, φm, θm, λm, l′m) ∈
Em and (ln, a, φn, θn, λn, l′n) ∈ En if a ∈ {Am

i ∩ An
o} ∪ {Am

o ∩ An
i }
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– ((lm, ln), a, φm, λm, θm, (l′m, ln)) ∈ E for each (lm, a, φm, λm, θm, l′m) ∈ Em if a � An

– ((lm, ln), a, φn, λn, θn, (lm, l′n)) ∈ E for each (ln, a, φn, λn, θn, l′n) ∈ En if a � Am

and the set of invariants I is constructed as follows: I(lm, ln) = Im(lm) ∧ In(ln)

4 Processes

Timed process automata model processes, where each process is a real-time sys-
tem. Every process hierarchically contains its active callee processes. Thus the
control of a process is hierarchically shared with its active callee processes. The
main thread of a process can activate callee processes via communication chan-
nels. An active process can receive any input in any state. An active callee pro-
cess can deactivate itself in any state of the main thread of its caller process. An
activated callee process dies within its worst-case execution time. This section
presents the syntax and the semantics of TPA.

4.1 Timed Process Automata

Timed process automata are a variant of TIOA. Unlike a timed I/O automaton,
a timed process automaton has a finite set of start actions As, a finite set of
finish actions Af , a final location lf , and a finite set of channels C.

The set of actions A = Ai ⊕ Ao ⊕ As ⊕ Af of a timed process automaton is a
disjoint union of finite sets of input actions Ai, output actions Ao, start actions
As, and finish actions Af . For every set of actions A, there exists a bijective
mapping between its start actions As and finish actions Af in such a way that for
each start action sN ∈ As there is exactly one finish action fN ∈ Af, and vice versa.
These actions can be used for starting and terminating processes associated with
N. We use s and f with the name N (of another timed process automaton) as
a subscript index (e.g., sN and fN) to denote a start action and a finish action,
respectively. We use the same subscript to indicate paired actions. We write a to
denote an action in general. Processes synchronize via instantaneous channels.
Each TPA uses the same designated symbols for its public channel (∗) and caller
channel (�). We use c to denote a channel in general.

Definition 4 A timed process automaton is a tuple T = (L, l0, X, A,C, E, I, lf),
where L is a finite set of locations, l0 ∈ L is the initial location, X is a finite set
of clocks, A = Ai ⊕ Ao ⊕ As ⊕ Af is a finite set of actions as described above, C is
a finite set of channels, E ⊆ (L × A ×C \ {�, ∗} ×Φ(X) × 2X × L) ∪ (L × (Ai ∪ Ao) ×
{�, ∗} × Φ(X) × 2X × L) is a set of edges, I : L → Φ(X) is a total mapping from
locations to invariants, and lf ∈ L is a designated final location which does not
have any outgoing edges to other locations and has the invariant I(lf ) = true.

Figure 2 presents TPA Brake-by-Wire, Position, and Actuator. In the figure,
each initial location has a dangling incoming edge, final locations are filled with
black, and TPA names are underlined. The final location lf of a TPA may be
unreachable from the initial location (and then lf is not shown in the figure).
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4.2 Process Executions

Every instance of a timed process automaton is a process. Two processes of
the same timed process automaton represent two different copies of the same
system. Every process has a unique process identifier. A process is a tuple P =
(id(P), tpa(P), channel(P)), where id(P)1 is the process identifier, timed process
automaton tpa(P) defines the execution logic, and caller channel channel(P) is
the private channel to communicate with the caller and the other processes which
are started via the same channel. A process Q is a callee of P if P is the caller
of Q. We use ⊥ to denote the caller channel of the root process. Every process P
of tpa(P) = (L, l0, X, A,C, E, I, lf) has its own copy P.c of channel c ∈ C. We write
P.c.a meaning that action a is performed via channel P.c.

At the same time, no two processes of the same timed process automaton can
have the same caller channel. A process P, therefore, may have at most |C | × |As |
active callee processes. For example, an instance of automaton Brake-by-Wire of
Fig. 2 can activate at most two instances of automaton Position of Fig. 2 at
the same time via two different channels front and rear, where the instance of
Brake-by-Wire is the caller process of the two instances of Position, which are the
callee processes of the instance of Brake-by-Wire. A subprocess is a callee or a
callee of a subprocess, recursively. For example, every instance of Brake-by-Wire
has six subprocesses: two instances of Position and four instances of automaton
Actuator of Fig. 2. Every process hierarchically contains all of its subprocesses.
Two processes are siblings if they have the same caller channel. The caller can
use separate channels to differentiate control over different callees, even if they
are processes of the same automaton.

A process P starts a process Q of an automaton tpa(Q) via channel P.c by
traversing an edge e1 = ( , stpa(Q), c, , , ) labeled by a start action stpa(Q) if there
exists no active process of tpa(Q) with caller channel P.c; dually, P traverses
an edge e2 = ( , ftpa(Q), c, , , ) labeled by the paired finish action ftpa(Q) when-
ever Q reaches its final state. No edge labeled by ftpa(Q) will ever be traversed
if tpa(Q) is a non-terminating timed process automaton. Correspondingly, note
that existing processes may start different processes of tpa(Q)—but always with
different process identifiers. However, only P listens to finish action ftpa(Q) via
channel channel(Q). Process P traverses an edge e = ( , a, c, , , ) when P re-
ceives (respectively, sends) an input (resp., output) a in channel P.c. Process P
communicates with its callee Q via channel(Q) and with the environment via
channel P.∗.

We formalize the above mechanics of execution by first giving the semantics of
the main thread of the process, ignoring its subprocesses in Def. 5 and then giving
the semantics of the entire process in Def. 6. The standalone semantics of a process
are essentially the same semantics as a standard timed I/O automaton [7,9,2,4].
The main difference is that states are decorated with process identifiers and edges
with channel names to distinguish different instances of the same timed process
automaton in Def. 6. Also the caller channel � is instantiated for an actual parent
process. The technical reason for this will become apparent in Def. 6.

1 To avoid clutter, we abuse notation by writing P instead of id(P).
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Definition 5 The standalone semantics S�P	 of a process P = (P, tpa(P), channel
(P)) are a TIOTS S�P	 = (L×RX

≥0×P, (l0, 0, P), AP,−�)2, where tpa(P) = (L, l0, X, A,
C, E, I, lf), 0 is a function mapping every clock to zero and −�⊆ (L × RX

≥0 × {P}) ×
(AP ∪ R≥0) × (L × RX

≥0 × {P}) is the transition relation generated by the following
rules:

Action For each clock valuation v ∈ RX
≥0 and each edge (l, a, c, φ, λ, l′) ∈ E such

that v |= φ, v′ = v[x 
→ 0]x∈λ, and v′ |= I(l′) we have (l, v, P)
P.c.a−−� (l′, v′, P) if

c � �, otherwise (l, v, P)
channel(P).a−−−−−−−−−−� (l′, v′, P)

Delay For each clock valuation v ∈ RX
≥0 and for each delay d ∈ R≥0 such that

(v + d) |= I(l) we have (l, v, P)
d−� (l, v + d, P).

The transition system induced by the standalone semantics of a process is time
deterministic, time reflexive, and time additive.

Ground timed process automata are TPA that cannot perform a start or fin-
ish action (As ∪ Af = ∅). Automaton Actuator in Fig. 2, for instance, is a ground
timed process automaton. Compound timed process automata are TPA that can
perform a start or finish action (As ∪ Af � ∅). For example, Brake-by-Wire and
Position in Fig. 2 are compound TPA. A well-formed channel cannot be used by
two processes sharing an output action. Processes of a well-formed timed pro-
cess automaton have only well-formed channels. Non-recursive TPA are defined
inductively using the following rules: (i) every ground timed process automaton
is a non-recursive timed process automaton, and (ii) a compound timed process
automaton which performs only those start and finish actions whose subscripts
are the names of some other existing non-recursive TPA is a non-recursive timed
process automaton. All three TPA in Fig. 2, for example, are non-recursive TPA.
A process of a non-recursive timed process automaton hierarchically contains
only a finite number of subprocesses. The caller may activate an idle process, it-
eratively. Thus a process may activate a subprocess an arbitrary number of times.
In this paper, we are only concerned with non-recursive well-formed TPA.

A standalone final state of a process P is (lf , v, P), where v is any clock valuation.
We use stP, stP

0, cP, and stP
f to denote a standalone state, the standalone initial

state, the set of channels, and a standalone final state of process P, respectively.
We say that a process P is A′-enabled for a channel P.c if for every reachable

standalone state stP we have stP P.c.a−−� st′P for some standalone state st′P for each
action a ∈ A′. We require that each process P is Ai-enabled (input enabled) for
all channels of P, and Af -enabled (finish enabled) for all channels of P other than
channels P.� and P.∗ to reflect the phenomenon that inputs from the environment
and the deaths of callees are independent events, beyond the control of a process.
We present the semantics of a process in the following:

Definition 6 The global operational semantics G�P	 (semantics �P	 for short)
of a process P = (P, tpa(P),⊥) are a TIOTS G�P	 = (2S , s0, P × C × A,→), where

2 AP is the set of actions where action names are constructed using regular expression
(P“.”C | channel(P))“.”A.
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S is the set of all the standalone states of all the processes in the universe,
tpa(P) = (L, l0, X, A, E, I, lf), s0 = {stP

0 } is the initial state, P is the set of all the
processes in the universe, C is the set of all the channels in the universe, A is
the set of all the actions in the universe, and →⊆ 2S × (P × C × A ∪ R≥0) × 2S is
the transition relation generated by the following rules:

stQ Q.c.sT−−−−� st′Q and c � {�, ∗} {stW ∈ s | channel(W) = Q.c and tpa(W) = T } = ∅
stQ ∈ s (R,T,Q.c) is a freshly started process

s
Q.c.sT−−−−→ s \ {stQ} ∪ {stR

0 , st′Q}
Start

stR
f , stQ ∈ s and channel(R) = Q.c

{stU ∈ s | channel(U) ∈ CR} = ∅ stQ
Q.c.ftpa(R)−−−−−−−−� st′Q

s
Q.c.ftpa(R)−−−−−−−→ s \ {stR

f , stQ} ∪ {st′Q}
Finish

s′ = {st′Q | stQ d−� st′Q and stQ ∈ s and (stQ � stQ
f or |s| = 1)} |s| = |s′|

s
d−→ s′

Delay

a �
⋃

stQ∈s Atpa(Q)
o s′ = {stQ ∈ s | stQ Q.∗.a−−−� st′Q}

s
a−→ s \ s′ ∪ {st′Q | stQ Q.∗.a−−−� st′Q and stQ ∈ s}

Input

stQ W.c.a−−−� st′Q and a ∈ AQ
o and stQ ∈ s

s′ = {stR ∈ s | stR W.c.a−−−� st′R and W.c is a channel}
s

Q.c.a−−−→ s \ s′ ∪ {st′R | stR W.c.a−−−� st′R and stR ∈ s}
Output

A global state is a set which holds standalone states of all active processes. The
Start rule states that the initial standalone state of a freshly started callee is
added to the global state whenever the corresponding start action is performed
by its caller. The rule also states that no two active processes can have the
same timed process automaton and the same caller channel. The Finish rule
prescribes that the standalone-final state of a callee is removed from the global
state and the caller executes the corresponding finish action whenever that callee
is in the standalone-final state and no standalone state of its subprocesses is in
global state. Thus the rule defines global-final state (final state for short) of a
process: a process is in its the final state when the process is in its final location
and the process has no active subprocess. The Delay rule declares that globally
a process can delay if that process and all of its active subprocesses can delay
in their respective standalone semantics. Every subprocess is a part of the root
process and thus if a subprocess is performing an action (or not idle) then the
root process is also not idle. The rule also says that a process cannot delay if that
process or any of its subprocess is in its global final state. That means a process
finishes as soon as it reaches its final state. The Input rule states that a process
receives an input from the environment via channel id.∗. Rule Output declares
a process send an output via channel id.c to others who share id.c. It follows from
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the properties of the standalone semantics that the transition system induced
by Def. 6 is time deterministic, time reflexive, and time additive. The process
semantics, therefore, defines a well-formed TIOTS. This allows us to use TA as
a basis for analyzing TPA. A local run of the main thread of a process P is a
standalone run of P for which there exists a global run of P such that every
transition of that standalone run occurs in that global run. The local behavior
of the main thread of P consists of all of its local runs.

5 Analysis

We are interested in safety and reachability properties of real-time systems. This
section explains how such analyses can be performed using the theory of timed
games. A standard timed I/O automaton can be viewed as a concurrent two-
player timed game, in which the players decide both which action to play, and
when to play it. The input player represents the environment, and the output
player represents the system itself. Similarly, the main thread of a process acts as
a concurrent two-player timed game: the environment plays input transitions and
finish transitions, and the main thread of the process plays output transitions and
start transitions. Let’s consider interactions of a process defined in the previous
section. A process controls its output and start transitions. After starting a callee,
the main thread of the caller knows that the paired finish action will arrive within
the worst-case execution time of the associated callee. However, the main thread
does not have any control on the exact arrival time of a finish action. Finish
transitions along with input transitions are uncontrollable. The environment of
the main thread of a process consists of all the connected processes (such as
caller, siblings, and subprocesses) and all unconnected entities.

A global state of a process is safe if and only if all of the standalone states
which it contains are safe locations. A safety property asserts that the system
remains inside a set of global-safe states regardless of what the environment
does. We are interested in Safety Property I: Given a process P and a set of
unsafe locations LU of P, can the controller avoid LU in P regardless of what
the environment does? A global state of a process is a target state if and only
if at least one of its standalone states contains a target location. A reachability
property asserts that the system reaches any of the global-target states regardless
of what the environment does. We are interested in Reachability Property I:
Given a process P and a set of target locations LT of P, can the controller reach
a location of LT in P regardless of what the environment does?

The monolithic analysis constructs a static network of automata to represent
all possible global executions by mimicking the hierarchical call tree of the ana-
lyzed process. It simulates a process execution by changing states of pre-allocated
TIOA which fall into two groups: a root automaton to simulate the local behav-
iors of the main thread of the root process and a finite set of standalone automata
to simulate the local behaviors of the main threads of the subprocesses.

Standalone Automata. We construct a standalone automaton for each subpro-
cess to simulate the main thread of that process. To construct a standalone
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Fig. 3. A generalized view of standalone automata construction

automaton, we prefix the timed process automaton with a simulated start ac-
tion and suffix it with a simulated finish action. We use non-negative finitely
bounded integer variables3 in standalone automata to count the number of active
callees, in order to detect termination. We rename actions (e.g., a) of processes
uniformly to encode channel names (e.g., P.c) in action names (e.g., P.c.a) of
standalone automata; because standard TIOA do not support private channels.
A standalone automaton includes all the locations and slightly altered edges
of the corresponding timed process automaton. Moreover, each standalone au-
tomaton has two additional locations: a new initial location lid0 to receive (resp.,
send) a start (resp., finish) message from (resp., to) the caller, and a new un-
safe location BAD to prevent the automaton from waiting in final states in-
stead of finishing. Every start (resp., finish) increments (resp., decrements) a
counter variable n. The automaton represents finishing of the process in the
final location when n = 0. Formally, the standalone automaton of process P
is standalone(P) = (L ∪ {lP0 , BAD}, lP0 , X ∪ {xP}, {n}, AP, EP, IP), where tpa(P) =
(L, l0, X, A,C, E, I, lf), lP0 and BAD are two newly added locations, xP is a newly
added clock, n is a non-negative finitely bounded integer variable with the initial
value 0, AP

o = A′o∪A′s∪{channel(P).ftpa(P)} and AP
i = A′i∪A′f∪{channel(P). stpa(P), P.∗.u}

such that A′m = {channel(P).a | a ∈ Am} ∪ {P.c.a | a ∈ Am and c ∈ C \ {�}} where
m ∈ {o, s, i, f} and newly added actions are channel(P).stpa(P), channel(P).ftpa(P), and
P.∗.u. The set of edges EP contains

– Converted edges that do not communicate via caller channel �:
• An edge (l, P.c.a, φ, ξ, λ ∪ λ′, l′) ∈ EP for each edge (l, a, c, φ, λ, l′) ∈ E,
where c ∈ C \ {�}, the integer assignment is empty ξ = ∅ when a ∈ Ao∪Ai,
ξ = {n − −} when a ∈ Af , and ξ = {n + +} when a ∈ As

– Converted edges that communicate via caller channel �:
• An edge (l, channel(P).a, φ, ∅, λ∪ λ′, l′) ∈ EP for each edge (l, a,�, φ, λ, l′) ∈

E
– Additional new edges that simulate activation and deactivation:

• Three more edges (lP0 , channel(P).stpa(P), ∅, ∅, X, l0), (lf , channel(P).ftpa(P), n =
0 ∧ xP = 0, ∅, ∅, lP0 ), (lf , P.∗.u, n = 0 ∧ xP > 0, ∅, ∅, BAD) are in EP

3 The use of non-negative finitely bounded integer variables can be avoided if a more
cumbersome encoding is used.
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λ′ = ∅ when l′ � lf , otherwise λ′ = {xP}. The invariant function IP maps each
location l ∈ L to I(l) and maps each location l ∈ {lP0 , BAD} to true. The stan-
dalone semantics of automaton tpa(P) and the semantics of standalone automa-
ton standalone(P) are essentially the same.

Fig. 4. A generalized view of root automata construction

Root Automata. To analyze a timed process automaton tpa(P) = (L, l0, X, A,C, E,
I, lf ), we construct the root automaton root(P) of process P. Standalone automa-
ton standalone(P) is slightly different from root(P). The differences are: (i) the
caller channel is always ⊥, (ii) the initial location of root automaton root(P) is the
location l0, which is also the initial location of tpa(P), and (iii) root automaton
does not have edge (lP0 ,⊥.stpa(P), ∅, ∅, X, l0), which simulates activation of P.

Monolithic Analysis Model. The monolithic analysis model of a ground timed
processes automaton (such as Actuator) is its root automaton. We construct the
monolithic analysis model of automaton tpa(P) in the following iterative manner:

First Step: We construct the root automaton root(P).
Iterative Step: We construct a standalone automaton for each triple (Q, sT , c),

where Q is process for which we have constructed a standalone automaton
or the root automaton, tpa(Q) = (L, l0, X, A,C, E, I, lf), c ∈ C \ {�, ∗}, sT ∈ As,
and ( , sT , c, , , ) ∈ E.

Figures 3–4 present a generalized view of the standalone and root automata
constructions (a technical report [11] presents monolithic analysis models of pro-
cesses of TPA Actuator, Position, and Brake-by-Wire). The monolithic analysis
model constructs a parallel composition of all the TIOA constructed above. The
construction is finite, and the composition is a timed I/O automaton, because
we consider only non-recursive well-formed TPA. The created composition is
timed-bisimilar to the global semantics (modulo hiding the special actions and
renaming the others). Executions of this composition, when projected on the
original alphabet, are identical to the executions of the global semantics. Thus
the composition has the same properties. We convert Safety Property I to Safety
Property II: Given a process P and a set of unsafe locations LU of P, can the
controller avoid LU and all the BAD locations in the analysis model regardless of
what the environment does? We also convert Reachability Property I to Reach-
ability Property II: Given a process P and a set of target locations LT of P, can
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the controller reach a location of LT in the analysis model avoiding all the BAD
locations regardless of what the environment does? Avoiding all the newly added
BAD locations in the analysis model ensures that each caller process performs
the corresponding finish action as soon as the callee finishes. Therefore, if a
Safety Property I (resp., Reachability Property I) holds for a process then its
corresponding Safety Property II (resp., Reachability Property II) also holds,
and vice versa.

6 State-Space Reduction

We introduce an automated state-space reduction technique for TPA to coun-
teract state-space explosion. The technique relies on compositional reasoning,
aggressive abstractions, and reducing process synchronizations. In the mono-
lithic analysis of Sect. 5, a callee can be represented by an arbitrary number
of standalone automata and each of these automata can be arbitrarily large.
The compositional reasoning replaces hierarchical trees of standalone automata
representing subprocesses with simple abstractions (Fig. 5)—so called duration
automata.

Fig. 5. A compositional (sound) analysis model on the left and a monolithic (sound
and complete) analysis model on the right of automaton Brake-by-Wire, where P is a
process of the automaton, R1 is the root automaton, S1–S7 are standalone automata,
and D1–D2 are duration automata

Fig. 6. A generalized view of dura-
tion automata construction

Duration Automata. A duration automaton
(Fig. 6) is timed I/O automaton with only
two locations: the initial location (lP

0 ) and
the active location (lP

1 ). A duration automa-
ton of an analyzed process abstracts all the
information of global executions of the pro-
cess other than its worst-case execution time
(WCET). It can capture safety and reachabil-
ity properties of interest. The minimal-time
safe reachability of a target location is the
minimal-time reachability [12,13] for which the controller has a winning strat-
egy to reach that target location by avoiding unsafe states. We assume that
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the WCET W of a process P is the minimal-time safe reachability time to
reach location lP0 of automaton root(P) in the analysis model of P. This is a
known technique to limit the WCET of a controller [14,15]. The WCET of
P is unknown (W = ∞) when there is no winning strategy for the minimal-
time safe reachability to reach location lP0 of root(P). The duration automa-
ton of process P is duration(P) = ({lP0 , lP1 }, lP0 , {xP}, ∅, AP, EP, IP), where tpa(P) =
(L, l0, X, A,C, E, I, lf), AP

i = {channel(P).stpa(P)}, AP
o = {channel(P).ftpa(P)}, the set

of edges EP = {(lP0 , channel(P).stpa(P), ∅, ∅, {xP}, lP1 ), (lP1 , channel(P).ftpa(P), ∅, ∅, ∅, lP0 )},
invariant IP maps location lP0 to true, and IP maps location lP1 to xP ≤W.

Fig. 7. Steps of the compositional analysis of automaton Brake-by-Wire

Compositional Analysis Model. We construct the compositional analysis model
in a bottom-up manner: analysis of a compound process is performed only after
analyzing all its callees. Like the monolithic analysis, the compositional analysis
model of a ground timed process automaton tpa(Q) (such as Actuator) is a root
automaton of process Q. That timed I/O automaton is analyzed to construct
a duration automaton of Q. For a compound process P, we analyze automaton
root(P) in the context of the duration automata of its callees (instead of the
entire hierarchical structure of subprocesses). We construct the compositional
analysis model of a timed process automaton tpa(P) in the following manner:

First Step: We construct the root automaton root(P).
Second Step: We construct a duration automaton for each triple (P, sT , c), where

tpa(P) = (L, l0, X, A,C, E, I, lf), c ∈ C \ {�, ∗}, sT ∈ As, and ( , sT , c, , , ) ∈ E.

Figure 7 presents the compositional analysis procedure of Brake-by-Wire (the
detailed models are presented in [11]). The compositional model construction
procedure terminates, and the composition of all the above TIOA is a timed
I/O automaton, because we consider only non-recursive well-formed TPA. The
duration automaton of a process can capture safety properties: if a process has a
winning strategy for a safety game, then all locations of its duration automaton
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are considered safe; otherwise, the active location (lid1 ) of the duration automaton
is added to the set of unsafe locations LU . Now this duration automaton can be
used as a sound context to analyze the caller automaton for safety. A safety prop-
erty holds for a compound process when the main thread of the process preserves
the property locally and allows the activation of a callee only if that callee also
preserves the property. Duration automata can also capture reachability proper-
ties: if a process has a winning strategy for a reachability game then the active
location (lid1 ) of the duration automaton is added to the set of target locations LT ;
otherwise, no target location is specified for this callee. This duration automaton
can be used as a sound context to analyze the caller automaton for reachability.
A reachability property holds for a compound process when the main thread of
the process can reach the target locally or can activate a callee where the prop-
erty holds. Like the monolithic analysis, the compositional analysis is performed
for Safety Property II and Reachability Property II. The compositional analysis
is sound: if a safety or reachability property holds in compositional analysis then
it holds in the global semantics. A duration automaton does not contain any
input and output actions of its process. Hence, the root automaton in a com-
positional model does not synchronize with the input and output actions of its
callees—instead the automaton synchronizes for those actions with the environ-
ment. The duration automaton was created under the assumption that inputs
are uncontrollable, so ignoring synchronization with inputs is sound. Similarly,
it is sound to open the inputs of the root automaton from a callee, as they will
be treated as open actions, so will be analyzed in a more “hostile” environment
than before the abstraction. Therefore, if a property holds in the compositional
analysis then it also holds for the monolithic analysis.

Scalability. In all the steps of Fig. 7, the largest composition contains only three
automata, and except for the root automaton all are tiny duration automata.
Monolithic analysis model of Brake-by-Wire is a composition of seven automata
(see [11]). A duration automaton always has a small constant size (modulo the
size of the WCET constant), and so its state space is very simple (actually
the discrete state space is independent of the input model). We applied our ap-
proach to examples like the one presented in our previous work [5]. First, we
modeled that problem with standard TIOA using shared variables. The timed
games solver Uppaal Tiga [16] produced a large winning strategy (290 MB) for a
safety objective for a configuration (C1 of [5])—a combination of different system
parameters—in the TIOA model within 94 seconds4. After that, we modeled the
same system with TPA, and applied the state-space reduction technique. The
same solver for the same configuration produced a much smaller winning strategy
(100 KB) for the same objective in our compositional model within 0.3 seconds.
Experiments for different configurations for the same system (of [5]) revealed
that speed up of two orders of magnitude is possible with the compositional tech-
nique, while maintaining enough precision to obtain useful strategies for realistic

4 All the analyses were performed by Uppaal Tiga-0.17 on a PC with an Intel Core i3
CPU at 2.4 GHz, 4 GB of RAM, and running 64-bit Windows 7.
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scheduling problems. The size of composition in the monolithic analysis is ex-
ponential in the depth of the hierarchy, due to a product construction (it is
also linear in the multiplication of sizes of all included standalone automata).
In the compositional analysis, the depth of the hierarchy is constant (only two
layers) and we only take a product of one root automaton with several con-
stant size duration automata; this explains why the practically obtained speed
ups are so dramatic. The efficiency gains are primarily due to the coarse ab-
straction of safety and reachability properties of an arbitrarily large callee into
a tiny duration automaton. Abstraction and compositional reasoning together
might provide similar speed ups for TIOA [5]; however, the restrictions that TPA
impose on models allow one to automate the procedure.

7 Related Work

Classical TA [6,7] and timed I/O automata [2,4] have explicit modeling support
only for static non-hierarchical structures. In 2011, we identified and classified
eighty variants of TA into eleven classes in a survey [8] and there may be many
more. Timed process automata fall in the class of TA with resources [8] because
of their ability to model dynamic behaviors, which is required when resource con-
straints do not permit one to activate all the components at the same time. More
precisely, the model is a direct generalization of task automata [17], dynamic net-
works of TA [18], and callable timed automata [19]. These three variants model
only closed systems, while TPA can model both closed and open systems. Task
automata model only two layers (a scheduler and its tasks) of hierarchy, while
TPA, dynamic networks of TA [18], and callable timed automata are able to
model any numbers of hierarchies. Unlike TPA, none of them supports private
communication, provides compositional modeling with reusable designs for dif-
ferent contexts, or supports automated state-space reduction technique.

Dynamic networks of continuous-time automata have also been studied in the
context of hybrid automata [20,21]. These works model physical environments
using differential equations, which restrict the kinds of environments that can
be described. In practice, large differential equations make analyses unmanage-
able, or can only give statistical guarantees [21]. These works focus on system
dynamics, and do not support private communication. Timed process automata
can be considered as a member of the class of TA with succinctness [8] because
they hide many design details from the designers to achieve succinctness (like TA
variants with urgency [22,23,8]). Timed process automata are also timed game
automata [1,3,2,4] because the new variant uses timed games for analysis.

8 Conclusion

We have presented timed process automata that captures dynamic activation and
deactivation of continuous-time control processes and private communication
among the active processes. We have provided a safety and reachability analysis
technique for non-recursive well-formed timed process automata. We have also
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designed an abstraction- and compositional reasoning-based state-space reduc-
tion technique for automated analysis of large industrial systems. Our analysis
techniques can be applied in practice using any standard timed games solver
such as Uppaal Tiga [16] and Synthia [24].

To the best of our knowledge, no prior work on dynamic network of timed au-
tomata considered private communication or open systems. This is also the first
work that provides two important features for industrial time-critical dynamic
open systems development: (i) compositional modeling with reusable designs for
different contexts and (ii) automated state-space reduction technique.

It would be interesting to consider a model transformation from subset of real-
time π-calculus [25,26] to TPA. This transformation might enable controllability
analysis of π-calculus for open systems. The converse reduction from TPA to real-
time π-calculus could also give several advantages: understanding TPA semantics
in terms of the well-established π-calculus formalism, access to tools developed for
real-time π-calculus [25], which might permit the analysis of recursive processes;
it would also give a familiar automata-like syntax to π-calculus formalisms. It
would also be relevant to minimize the number of subprocesses in controller
synthesis. One may consider synthesis under this objective in the future, possibly
by reduction to priced/weighted timed automata [27,28].
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Abstract. Markov automata allow us to model a wide range of complex
real-life systems by combining continuous stochastic timing with prob-
abilistic transitions and nondeterministic choices. By adding a reward
function it is possible to model costs like the energy consumption of a
system as well.

However, models of real-life systems tend to be large, and the anal-
ysis methods for such powerful models like Markov (reward) automata
do not scale well, which limits their applicability. To solve this prob-
lem we present an abstraction technique for Markov reward automata,
based on stochastic games, together with automatic refinement methods
for the computation of time-bounded accumulated reward properties.
Experiments show a significant speed-up and reduction in system size
compared to direct analysis methods.

1 Introduction

During the last few years Markov automata (MA) [1] have become a popular for-
malism for modelling stochastic systems. Markov automata are compositional,
allowing us to model large systems component-wise and to obtain a model for
the whole system by combining the models of the components according to fixed
composition rules. Markov automata combine nondeterminism with probabilis-
tic behaviour and continuous stochastic timing. Thus they are a generalisation
of discrete-time Markov chains (DTMCs), Markov decision processes (MDPs),
probabilistic automata (PA), continuous-time Markov chains (CTMCs), and in-
teractive Markov chains (IMCs [2]). Markov automata form the semantic foun-
dation of generalised stochastic Petri nets (GSPNs) [3] and stochastic activity
networks (SANs) [4]. For modelling systems as MA, the Markov automata pro-
cess algebra (MAPA) [5] has been devised. It is accompanied with tool support:
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SCOOP [5] transforms descriptions in MAPA into the underlying MA and is
able to apply reduction techniques to reduce the MA’s size.

Such a powerful modelling formalism is, however, only useful in practice if it
is accompanied by efficient analysis algorithms. Model checking of MA against
continuous stochastic logic (CSL) has been discussed in [6]. Algorithms for a
wide range of properties for MA have been developed: long-run average, ex-
pected reachability time, and time-bounded reachability probabilities have been
considered in [7,8]. Markov reward automata (MRA), which is the extension of
MA by rewards, have recently been studied in [9]. The analysis algorithms for
MA and MRA are implemented in the tool IMCA1.

Model checking algorithms for many kinds of properties like time-unbounded
reachability, expected reachability costs, and long-run averages can be trans-
ferred to MA from simpler models like PA and are similarly efficient. In contrast,
checking time-bounded properties is much more expensive. The reason is that the
methods based on uniformisation, which make checking time-bounded properties
on CTMCs efficient, cannot be applied to MA due to the nondeterminism present
there. Instead (like for IMCs [10]) one has to resort to discretisation [7,8,9]: the
time until the time bound is split into small intervals such that one can assume
that with high probability either none or exactly one step occurs within one in-
terval. For each of these intervals, an unbounded reachability analysis for PA has
to be performed. Therefore the analysis of such properties scales badly to large
state spaces and is limited to a few thousand states, depending on the structure
of the state space and the time bound.

Contributions. To tackle this problem for MRA we present an abstraction and
refinement framework, the first of its kind. We target time-bounded accumulated
rewards like “What is the maximal expected cost the system causes within 10
hours of operation?” The MRA at hand is abstracted into a two-player stochastic
reward game, which keeps the nondeterminism present in the concrete system
separate from the nondeterminism introduced by abstraction. This allows us
to compute safe upper and lower bounds on the minimal and maximal reward
value of the original system. These bounds are an in-built quality measure for
the abstraction, allowing us to refine it. To compute the bounds, we give a
fixed point characterisation of time-bounded accumulated rewards on stochastic
games, show how to discretise it, and give an estimation of the error caused
by the discretisation. Experimental results confirm that our abstraction method
yields substantial reductions in system size and reduces the computation times
compared to competing tools which work on the concrete state space.

Related Work. This paper continues a series of successful works on abstraction
frameworks for simpler probabilistic models, foremost rooted in game-based ab-
straction for PA [11]. In a preliminary paper [12] we have presented an abstrac-
tion framework for time-bounded reachability probabilities for MA, which was

1 The official homepage available at
http://www-i2.informatik.rwth-aachen.de/imca.

http://www-i2.informatik.rwth-aachen.de/imca
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the first attempt to apply abstraction to MA. Other abstraction methods are
restricted to unbounded and step-bounded reachability probabilities in PA: PA-
based abstraction [13] abstracts a PA again into a PA whose behaviour is an over-
approximation of the behaviour of the original model. It therefore only allows to
compute lower bounds on minimal probabilities and upper bounds on maximal
probabilities. This is improved by game-based abstraction [11], which yields a
probabilistic game. Its advantage is that it yields both upper and lower bounds
for minimal and maximal reachability probabilities. Wachter and Zhang [14,15]
have proposed menu-based abstraction for PA, which has the same advantage as
game-based abstraction, but yields in many practical cases significantly smaller
abstractions.

Structure of the paper. In the next section we briefly review the foundations of
MA and stochastic games. In Sec. 3 we present our abstraction and refinement
method for MA and show how to compute reward measures for stochastic games.
The experimental evaluation follows in Sec. 4. We finally summarise the paper
with an outlook to future work in Sec. 5. An extended version of this paper with
proofs of the main propositions is available at [16].

2 Preliminaries

We first introduce the necessary foundations on stochastic games (SGs), ex-
tended by reward functions, which form the basic formalism used in our ab-
straction framework. We define the properties we consider and give a fixed point
characterisation of them for SGs. Finally we define MA as a special case of SGs
with a single player.

We denote the set of real numbers by R, the non-negative real numbers by
R≥0, and by R≥0

∞ the set R≥0 ∪̇ {∞}. For a finite or countable set S let Distr(S)
denote the set of probability distributions on S, i. e. of all functions μ : S → [0, 1]
with

∑
s∈S μ(s) = 1. The support of a distribution μ is given by Supp(μ) = {s ∈

S |μ(s) > 0}; μ is called Dirac if there is s ∈ S with μ(s) = 1. It is denoted by
ξs. Given a set S′ ⊆ S we write μ(S′) for

∑
s∈S′ μ(s).

2.1 Stochastic Reward Games

Stochastic games are a behavioural model that combines stochastic timing, non-
determinism and probabilistic choices. An SG consists of one or more players
who can choose between one or more transitions to change the current state.
Each choice may influence the behaviour of the other players. A transition con-
sists of a real-valued or infinite rate λ ∈ R≥0

∞ and a probability distribution over
the successor states. For our work we need the definition of stochastic two-player
games:

Definition 1 (Stochastic game). A stochastic (continuous-time two-player)
game (SG) is a tuple G =

(
V, (V1, V2), vinit,T

)
such that V = V1 ∪̇ V2 is a set of

states, vinit ∈ V is the initial state, and T ⊆ V ×R≥0
∞ ×Distr(V ) is a transition

relation.
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V1 and V2 are the states of player 1 and player 2, respectively; we also de-
note them as V1- and V2-states. Transitions (v, λ, μ) ∈ T with rate λ < ∞
are called Markovian, transitions with infinite rate probabilistic. We denote the
set of Markovian and probabilistic transitions by TM and TP , respectively; it
holds that T = TM ∪̇ TP . TM (v) and TP (v) denote the set of Markovian
and probabilistic transitions available at state v, respectively. We use T(v) =
TM (v) ∪̇TP (v) as the set of all transitions available at state v.

The game starts in state vinit. If the current state is v ∈ V1, then it is player 1’s
turn, otherwise player 2’s. The current player chooses a transition (v, λ, μ) ∈
T(v) for leaving state v. The rate θr ((v, λ, μ)) = λ ∈ R≥0

∞ determines how long
we stay at v, whereas θp ((v, λ, μ)) = μ ∈ Distr(V ) gives us the distribution which
leads to the successor states. If λ = ∞, the transition is taken instantaneously.
Otherwise, λ is taken as the parameter of an exponential distribution. In this
case, the probability that a transition to state v′ ∈ V happens within t ≥ 0 time
units, is given by μ(v′) ·(1−e−λ·t). For conciseness, we write λtr instead of θr(tr)
and μtr instead of θp(tr) for tr ∈ T.

Paths. The dynamics of SGs is specified by paths. An infinite path π ∈ (V ×
R≥0 × T)ω is an infinite sequence of states, sojourn times, and transitions. A
finite path is such a sequence which is finite and ending in a state, i. e. π ∈ (V ×
R≥0×T)�×V . We usually write v

t,tr−−→ instead of (v, t, tr) ∈ (V ×R≥0×T). We
use Paths� and Pathsω to denote the set of finite and infinite paths, respectively.

Given a finite path π = v0
t0,tr0−−−→ v1

t1,tr1−−−→ · · · vn, vi is the (i + 1)-th state of
π, denoted by St(π, i), ti is the time of staying at vi, denoted by Ti(π, i), and
Tr(π, i) = tri is the executed transition for i ∈ {0, . . . , n − 1}. Note that vi is
left instantaneously, i. e. Ti(π, i) = 0, if Tr(π, i) has an infinite rate. Moreover,
|π| refers to n, the length of π, and last(π) to vn, its last state.

Strategies. The nondeterminism which may occur at a state is resolved by a
function, which is called a strategy (or policy or scheduler). Each player follows
its own strategy in order to accomplish its goal. A strategy of player i (i = 1, 2) is
a partial function σi : Paths

� 	→ Distr(T) such that σi(π) = η only if last(π) ∈ Vi
and Supp(η) ⊆ T

(
last(π)

)
. This strategy class is called generic, since it uses the

complete path history to resolve the nondeterminism.2 We denote the set of all
strategies for player i by Strati.

Probability measure. Given strategies σ1, σ2 for both players and a state v ∈ V ,
a probability space on the set of infinite paths starting in v can be constructed.
The set of measurable events is thereby a σ-algebra that is induced by a stan-
dard cylinder set construction [18] together with a unique probability measure

2 This class is also known as the class of early schedulers [17] because the scheduler
makes its choice when entering a state and—in contrast to a late scheduler—may not
change its choice while residing in a state. This is the most general scheduler class
for MA, since they do not exhibit nondeterminism between Markovian transitions
(see Sec. 2.3).
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Prv,σ1,σ2 on the events. Prv,σ1,σ2(Π) is the probability of the set of paths Π ,
starting from state v, given that player 1 and player 2 play with strategies σ1
and σ2, respectively. Both the σ-algebra and the probability measure are con-
structed by extending the existing techniques used for MA and IMCs. We omit
the details here; for more information see, e. g. [6,19,20].

Zenoness. It may happen that an SG contains an end component consisting
of probabilistic transitions only. Such an end component leads to the existence
of infinite paths π with finite sojourn times, i. e. limn→∞

∑n
i=0 Ti(π, i) < ∞.

This phenomenon is called Zenoness. Since such behaviour has to be consid-
ered unrealistic, we assume that the SGs under consideration are non-Zeno, i. e.
that they do not contain such end components. Formally, an SG is non-Zeno iff
∀v ∈ V : ∀σ1 ∈ Strat1 ∧ ∀σ2 ∈ Strat2 : Prv,σ1,σ2

(
{π | limn→∞

∑n
i=0 Ti(π, i) <

∞}
)
= 0.

For more on strategies and on SGs in general we refer to [21,22].

Now we extend SGs by rewards (or costs). We consider two kinds of rewards:
transient rewards for staying in a certain state and instantaneous rewards for
taking a transition.

Definition 2 (Stochastic reward game). A stochastic reward game (SRG)
is a tuple Grew = (G, ρt, ρi) such that G is an SG, ρt : T → R≥0 the transient
reward function, and ρi : T→ R≥0 the instantaneous reward function.

The transient reward ρt(tr) of a transition tr = (v, λ, μ) is the cost of staying
in v for one time unit before taking transition tr, i. e. residing in state v for Δ
time units yields a transient reward of Δ · ρt(tr). Since a state is immediately
left if a transition with infinite rate is chosen, we can assume that the transient
reward of such transitions is zero.

The instantaneous reward ρi(tr) is the cost of the state change using transition
tr ∈ T. The accumulated reward along a path π is the sum of the costs for the
transitions and the costs for staying in the states of the path. We are interested
in time-bounded rewards, i. e. the costs accumulated until a time bound T is
reached. It is denoted by RewT .

RewT (π) =

nT−1∑
i=0

(
ρt
(
Tr(π, i)

)
· Ti(π, i) + ρi

(
Tr(π, i)

))
+ ρt

(
Tr(π, nT )

)
·
(
T −

nT−1∑
i=0

Ti(π, i)
)
,

(1)

where nT is the largest number such that
∑nT−1

i=0 Ti(π, i) ≤ T . Each player can
independently of the other try to maximise or minimise the expectation of this
reward by choosing an appropriate scheduler.

Ropt1
opt2

(v, T ) = opt1
σ1∈Strat1

opt2
σ2∈Strat2

∫
π∈Pathsω

RewT (π) dPrv,σ1,σ2(π) (2)
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is the opt1-opt2 expected time-bounded reward (ETR) when player i tries to
optimise according to opti ∈ {inf, sup} for i = 1, 2 and the game starts in state
v ∈ V .

2.2 Time-Bounded Reward as a Fixed Point

In this section we provide a fixed point characterisation of the ETR for an SG. In
the following we restrict the presentation to the case where player 1 maximises
the expected reward, i. e. setting opt1 to sup in (2). We denote the case by Rsup

opt ,
where player 2 still has the choice to either minimise or maximise the ETR.

Lemma 1 (Fixed point characterisation). Given an SRG Grew = (G, ρt, ρi),
a time bound T ≥ 0, opt ∈ {inf, sup}, optv = sup if v ∈ V1 and optv = opt
otherwise. Rsup

opt(·, T ) is the least fixed point of the higher order operator Ωopt :

(V × R≥0 	→ R≥0) 	→ (V × R≥0 	→ R≥0), opt ∈ {inf, sup}, such that

Ωopt(F )(v, T ) = optv
tr∈T(v)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρi(tr) +

ρt(tr)
λtr

)(
1− e−λtrT

)
+

T∫
0

λtre
−λtrt

∑
v′∈V

μtr(v
′)F (v′, T − t) dt, if tr ∈ TM (v),

ρi(tr) +
∑
v′∈V

μtr(v
′)F (v′, T ), if tr ∈ TP (v).

(3)

A similar fixed point characterisation can be attained for the case that player 1
minimises the ETR. Both characterisations, however, yield Volterra integral
equation systems which are not directly tractable [23]. We demonstrate in Sec. 3.2
how to approximate Rsup

opt by applying a discretisation technique. Moreover, the
characterisation provides a sound theory for the abstraction of MA subject to
time-bounded reward analysis (see Sec. 3).

2.3 Markov Automata

For consistency reasons we present MA [1,24,25] as a special case of SGs. This is
possible under two conditions: First, we consider only closed MA, i. e. we assume
that the model to be analysed is not subject to further composition operations.
Then the actions with which transitions are labelled do not carry any informa-
tion and can be omitted. Second, we make the maximal progress assumption [25],
which is typically made for closed MA before analysis. It says that probabilis-
tic transitions (which are carried out immediately without progress of time)
have precedence over Markovian transitions, which are delayed by an exponen-
tially distributed amount of time. Together with the restriction that there is no
nondeterminism between Markovian transitions in MA, we obtain the following
definition:
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Definition 3 (Markov (reward) automaton). An SGM=
(
V, (V1, V2), vinit,

T
)
is a Markov automaton (MA) if V2 = ∅ and each state v ∈ V contains either

only probabilistic transitions (v,∞, μ) ∈ T(v) or a single Markovian transition
(v, λ, μ) ∈ T(v) with λ <∞.

A Markov reward automaton (MRA) is an SRG Mrew = (M, ρt, ρi) where
M is an MA.

The fixed point characterisation of the ETR for SRGs is valid for MRA as
well. Since the set V2 is empty for MRA, we can omit the opt subscript from
Ωopt as defined in Eq. (3) and simply write it as Ω in this case.

Like SGs can be seen as a generalisation of MA, MA can be seen as the
generalisation of some other common models: A (closed) probabilistic automaton
(PA) is an MA where all transitions are probabilistic. A PA with

∣∣{μ | (v,∞, μ) ∈
T(v)}

∣∣ = 1 for all v ∈ V is a discrete-time Markov chain (DTMC). An interactive
Markov chain (IMC) is an MA where all distributions occurring in probabilistic
transitions are Dirac. A continuous-time Markov chain (CTMC) is an MA with
only Markovian transitions.

We partition the state space V of an MA based on the rate of outgoing
transitions of the states. A state is called probabilistic (Markovian) if its outgo-
ing transitions are all probabilistic (Markovian). We assume that there are no
deadlock states, which have no outgoing transitions. They can be turned into
Markovian states by adding a Markovian transition (v, λ, ξv) with arbitrary rate
λ < ∞. Then we have V = MS ∪̇ PS with MS being the Markovian states and
PS the probabilistic states.

3 Abstraction and Refinement of MRA

In this section we first describe our abstraction of an MA, then how safe bounds
on the maximal (minimal) ETR can be computed on SGs (and therefore also on
our abstraction). Finally we will show how an abstraction can be refined in case
that it is too coarse, i. e. if it yields bounds that are too far apart.

3.1 Abstraction

The abstraction of an MAM = (V, (V, ∅), vinit,T) is based on a partition of V ,
which is a set P ⊆ 2V \ {∅} with

⋃
B∈P B = V and B ∩B′ = ∅ for all B,B′ ∈ P

with B 
= B′. For v ∈ V we denote the unique block B of P with v ∈ B by [v]P .

Definition 4 (Lifted distribution). Let μ ∈ Distr(V ) be a probability distri-
bution over V and P a partition of V . The lifted distribution μ ∈ Distr(P) is
given by μ(B) =

∑
v∈B μ(v) for B ∈ P.

Definition 5 (Labelling function). Let Lab be a finite set of labels and M
an MA. A labelling function is a function lab : T → Lab which is injective at
each state, i. e. for all v ∈ V and all tr, tr′ ∈ T(v) we have either tr = tr′ or
lab(tr) 
= lab(tr′). Additionally we require lab(tr) = ⊥ iff tr is Markovian.
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For a set B ⊆ V of states, we define Lab(B) = {lab(tr) | ∃v ∈ B : tr ∈ T(v)}
as the set of actions which are enabled in B. We also write Lab(v) instead of
Lab
(
{v}
)
.

A simple, basic way to abstract an MAM is to use the blocks of a partition P
as abstract states and create the abstract transitions by lifting the distributions
as in Def. 4. If two transitions coincide after lifting, they are combined into one
abstract transition.

Such an abstraction introduces additional nondeterminism into the system:
There is now a nondeterministic choice between transitions which belong to
different concrete states, but to the same state in the abstraction. In a basic
abstraction, this new, abstract nondeterminism cannot be distinguished from
the original, concrete nondeterminism. This makes it impossible to obtain both
lower and upper bounds on the actual reward value.

To avoid this effect, we introduced a game abstraction for MA in [12], which
we now extend to MRA.

Definition 6 (Game abstraction of MA). Given an MAM=(V, (V, ∅), vinit,
T), a labelling function lab : T → Lab, and a partition P = {B1, . . . Bn} of V
such that for all B ∈ P either B ⊆ MS or B ⊆ PS. We construct the game

abstractionMP,lab
= (V , (V1, V2), vinit,T) with:

– V = V1 ∪̇ V2,
– V1 = P,
– V2 =

{
(B,α) ∈ P × Lab

∣∣α ∈ Lab(B)} ∪̇ {∗},
– vinit = [vinit]P , and
– T = TP ∪̇TM with

TP =
{(

[v]P ,∞, ξ([v]P ,α)

) ∣∣ v ∈ V ∧ α ∈ Lab([v]P)
}

∪̇
{(

([v]P , α),∞, μ
) ∣∣ v ∈ PS ∧ α ∈ Lab(v) ∧ (v,∞, μ) ∈ TP

}
∪̇
{(

([v]P , α),∞, ξ∗
) ∣∣ v ∈ PS ∧ α ∈ Lab([v]P ) \ Lab(v)

}
,

TM =
{(

([v]P ,⊥), λ, μ
) ∣∣ v ∈MS ∧ (v, λ, μ) ∈ TM}

∪̇
{
(∗, 1, ξ∗)

}
.

We call V2-states of the form (B,⊥) with B ⊆ MS Markovian and V2-states of
the form (B,α) with α 
= ⊥ and B ⊆ PS probabilistic. The V1- and V2-states
strictly alternate.

Player 1 resolves the nondeterminism already present in the concrete MA
when it selects at state B a label α present in one of the concrete states of B.
Player 2 resolves the nondeterminism introduced by the abstraction by selecting
at abstract state (B,α) a concrete state v ∈ B and firing the lifted transition of
state v that has the label α. In case there is no transition with label α in state
v, the abstraction goes to a special state ∗ that represents the worst outcome for
the property under consideration. This is similar to the menu-based abstraction
in [14,15].

In order to abstract an MRA Mrew = (M, ρt, ρi) we have to add abstract
reward functions to the abstraction. For this we need an additional function
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ν : T → 2T, which maps the abstract transitions back to the corresponding
concrete transitions inMrew . For a transition tr = (v, λ, μ) ∈ T we get:

ν(tr) =

⎧⎪⎨⎪⎩
{(v′,∞, μ) ∈ T | v′ ∈ B}, if v = (B,α) ∧ α 
= ⊥ ∧B ⊆ PS,

{(v′, λ, μ) ∈ T | v′ ∈ B}, if v = (B,⊥) ∧B ⊆MS,

∅, otherwise.

The choice of the reward function depends on whether we want to compute a
lower or an upper bound on the (minimal or maximal) ETR. In case of a lower
bound, player 2 chooses the smallest possible reward among all transitions which
were mapped onto the same abstract transition. The case of an upper bound is
analogous.

We give the definition of the reward structures for the case that player 1
maximises the ETR. If player 1 minimises the ETR, the only change is that
ρt
(
(∗, 1, ξ∗)

)
is set to ∞ instead of 0.

Definition 7 (opt-Abstraction-induced SRG). Given an MRA Mrew =
(M, ρt, ρi), a partition P of the state space, a labelling function lab for the transi-
tions, and opt ∈ {inf, sup}. Then the opt-Abstraction-induced SRG (or for short

opt-AISRG) with respect to P and lab is a tuple opt-MP,lab

rew = (MP,lab
, ρt

opt,

ρi
opt), whereMP,lab

is the game abstraction ofM obtained from Def. 6 and ρt
opt

and ρi
opt are abstract transient and instantaneous reward functions defined as:

ρt
opt(tr) =

⎧⎨⎩ opt
tr∈ν(tr)

ρt(tr), if ν(tr) 
= ∅,

0, otherwise.

and

ρi
opt(tr) =

⎧⎨⎩ opt
tr∈ν(tr)

ρi(tr), if ν(tr) 
= ∅,

0, otherwise.

respectively, where tr ∈ T is an abstract transition.

We illustrate the abstraction of an MRA in Example 1.

Example 1. Figure 1(a) shows an MRA Mrew together with a partition P =
{B0, B1}. We assume that all probabilistic transitions are labelled with lab(tr) =
α and all Markovian transitions with lab(tr) = ⊥. It holds PS = {v0, v1, v2} = B0

and MS = {v3, v4, v5} = B1. For each transition tr the rewards are given in the
form “(ρi(tr)|ρt(tr))” next to the transition in red colour.

Figure 1(b) shows the resulting game abstraction. The blocks B0 and B1

have become V1-states, whereas all other states are V2-states. We show both
reward structures: the values in red colour next to each abstract transition are
the minimal rewards in the form “(ρi

inf(tr)|ρtinf(tr))”; the blue figures below are
the maximal rewards, shown as “(ρi

sup(tr)|ρtsup(tr))”.
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(b) Abstraction MP,lab
rew

Fig. 1. An example for the game abstraction of an MRA Mrew

The soundness of our framework follows from the fact that the least fixed
points of the abstract semantics are over- and underapproaximations of the least
fixed point in the concrete semantics.

Theorem 1 (Soundness). LetMrew = (M, ρt, ρi) be an MRA, its high-order

operator for the maximal ETR Ω, and opt-MP,lab

rew = (MP,lab
, ρt

opt, ρi
opt),

opt ∈ {inf, sup}, be a game abstraction with rewards, its high-order operators
Ωinf , Ωsup. Then:

lfp(Ωinf)([v]P , T ) ≤ lfp(Ω)(v, T ) ≤ lfp(Ωsup)([v]P , T )

for all v ∈ V , and T ∈ R≥0.

3.2 Reward Computation

In this section we describe how to compute optimal ETRs for the general class
of SRGs. For this purpose a discretisation technique is employed, which is then
applied to the fixed point characterisation given in Lemma 1. The technique
yields a discretised fixed point characterisation accompanied by a stable nu-
merical algorithm with strict error bound for computing the optimal ETRs in
SRGs.

Discretisation. As stated before, it is not generally feasible to directly solve the
fixed point characterisation in Lemma 1 due to the complex integrals occurring
in Eq. (3). Instead the SRG subject to analysis needs to be discretised. For this,
the interval [0, T ] is first split into k time steps of size δ = T

k . The discretisation
then simplifies the computation of Rsup

opt by assuming that with high probability
at most one Markovian transition fires within each time step. Finally, we provide
lower and upper bounds for the error created by the discretisation.
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We aim to simplify the reward computation proposed by Eq. (3). For that,
we first express Rsup

opt(v, T ) in terms of its behaviour in the first discretisation
step [0, δ) with opt ∈ {inf, sup}. As time passes only if a Markovian transition
is taken, we assume w. l. o. g. that v only contains Markovian transitions, i. e.
∅ 
= T(v) ⊆ TM . To see why the assumption does not restrict the generality
of the discretisation, note that the simplification only applies to the part of
Eq. (3) that contains the integral equation, so the case corresponding to the
probabilistic transitions remains untouched. We partition the paths from v that
take transition tr ∈ TM (v) into the set Πδ,0

v,tr of paths that make no Markovian

jump in [0, δ) and the set Πδ,>0
v,tr of paths that do at least one jump in that

interval. We therefore write Rsup
opt(v, T ) as the sum of

1. The optimal expected reward attained in [0, δ) by paths from Πδ,>0
v,tr

2. The optimal expected reward attained in [δ, T ] by paths from Πδ,>0
v,tr

3. The optimal expected reward attained in [0, δ) by paths from Πδ,0
v,tr

4. The optimal expected reward attained in [δ, T ] by paths from Πδ,0
v,tr

It is not hard to express the last item in terms of Rsup
opt(v, T − δ). We further

combine the first three items, denoted by Acctr(v, T ), and finally have:

Rsup
opt(v, T ) = optv

tr∈T(v)

(
Acctr(v, T ) + e−λtr·δRsup

opt(v, T − δ)
)

(4)

We can show (see [16]) that Acctr(v, T ) is obtained by:

Acctr(v, T ) =
(
ρi(tr) +

ρt(tr)
λtr

)(
1− e−λtr·δ)

+

δ∫
0

λtre
−λtr·t

∑
v′∈V

μtr(v
′)Rsup

opt(v
′, T − t) dt

(5)

As for the fixed point characterisation in Lemma 1, the exact computation
of Acctr(v, T ), opt ∈ {inf, sup} is in general intractable. However, if the dis-
cretisation constant δ is very small, then, with high probability, at most one
Markovian jump happens in each discretisation step. Hence the reward gained
by paths carrying multiple Markovian jumps within at least one such interval is
negligible and can be omitted from the computation. In other words, the reward
gained after the first Markovian jump in each discretisation constant is ignored
by this approximation. It naturally induces some error and thereby approximates
Acctr(v, T ), denoted by Ãccδ,tr(v, k) and Rsup

opt(v, T ), denoted by R̃sup
δ,opt(v, k). As

a result we have:

R̃sup
δ,opt(v, k) = optv

tr∈T(v)

(
Ãccδ,tr(v, k) + e−λtr·δR̃sup

δ,opt(v, k − 1)
)

(6)
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Ãccδ,tr and R̃sup
δ,opt both count the number of discretisation steps instead of

real time. This makes their computation tractable.

Ãccδ,opt(v, k) =
(
ρi(tr) +

ρt(tr)
λtr

)(
1− e−λtr·δ)

+

δ∫
0

λtre
−λtr·t

∑
v′∈V

μtr(v
′)R̃sup

opt(v
′, k − 1) dt

=
(
ρi(tr) +

ρt(tr)
λtr

+
∑
v′∈V

μtr(v
′)R̃sup

opt(v
′, k − 1)

)(
1− e−λtr·δ)

(7)

By using Eq. (6) instead of the Markovian part in Eq. (3) of the fixed point
characterisation in Lemma 1, we get a discretised fixed point characterisation
which is directly computable.

Definition 8 (Discretised maximum time-bounded reward). Given an
SRG (G, ρt, ρi), a time bound T ≥ 0, and a step size δ > 0 such that T = k · δ
for k ∈ N. Let opt ∈ {inf, sup}, optv = sup if v ∈ V1 and optv = opt otherwise.
Rsup

opt(·, T ) is the least fixed point of the higher order operator Ωδ
opt : (V × N 	→

R≥0) 	→ (V × N 	→ R≥0) such that

Ωδ
opt(F )(v, k) = optv

tr∈T(v)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ρi(tr) +

ρt(tr)
λtr

+
∑
v′∈V

μtr(v
′)F (v′, k − 1)

)
·
(
1− e−λtrδ

)
+e−λtrδF (v, k − 1), if v ∈ TM (v),

ρi(tr) +
∑
v′∈V

μtr(v
′)F (v′, k), if v ∈ TP (v).

(8)

Discretisation Error. This section evaluates the precision of the discretisation
technique described above. The discretisation technique can be applied to any
kind of SRG respecting Def. 2. Its precision can be accordingly assessed for
the general class of SRGs. However, opt-AISRGs obtained from MA abstraction
have a special structure, namely all their Markovian transitions are controlled
by player 2. For this specific structure it is usually possible to find a tighter
error bound for time-bounded analysis (see for example [26]). Hence we restrict
ourselves to a subclass of SRGs whose Markovian transitions (if there are any)
are controlled by one player. In other words, the discretisation of models in this
subclass in general introduces a smaller error compared to the general class of
SRGs. The subclass is formally defined as:

Definition 9 (Single Markovian Controller SRG). Grew = (G, ρt, ρi) is
called a single Markovian controller SRG (1MC-SRG) iff either ∀tr ∈ TM :
tr ∈ TM (v)⇒ v ∈ V1 or ∀tr ∈ TM : tr ∈ TM (v)⇒ v ∈ V2.

The accuracy of R̃sup
opt depends on some parameters including the step size

δ. The smaller δ is, the better is the quality of the discretisation. In order to
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assess the accuracy of the discretisation we first need to define some parameters
of SRGs.

Definition 10. Given an SRG Grew = (G, ρt, ρi), we define the maximum (fi-
nite) exit rate existing in G as ē = maxtr∈TM λtr, and the maximum transient
reward existing in ρt as r̄t = maxtr∈T ρt(tr). Moreover, let r̄i be the maximum in-
stantaneous reward that can be earned between two consecutive Markovian jumps.
This value can be efficiently computed via the Bellman equation given in [9, The-
orem 1] after assigning zero value to all transient rewards.

The following theorem quantifies the quality of the discretisation.

Theorem 2. Given an 1MC-SRG Grew = (G, ρt, ρi), time bound T > 0 and
discretisation step δ > 0 such that T = kδ for some k ∈ N. Then for all v ∈ V
we have:

R̃sup
δ,opt(v, k) ≤ R

sup
opt(v, T ) ≤ R̃

sup
δ,opt(v, k) +

ēT
2 (̄rt + ē̄ri)(1 +

ēT
2 )δ

Using Theorem 2 it is possible to find a step size that respects a given prede-
fined accuracy level. The proposed error bound is a linear approximation of the
original bound (see [16]), which is a more complicated function with the same
set of parameters. Since the original bound is tighter, in practice it is used for
finding an appropriate step size by applying Newton’s method.

3.3 Initial Abstraction and Labelling Function

An important part of the abstraction and later the refinement process is starting
with a suitable initial partition P and labelling function lab. On the one hand,
if P is too coarse the resulting game abstraction requires many refinement steps
until the desired accuracy is reached. On the other hand, if P is unnecessarily
fine the resulting abstraction will not be able to reduce the size of the state space
sufficiently.

A simple way to obtain a partition [12] is by exploiting the actions of the
probabilistic transitions in an MA. They are used for synchronisation of different
MA. The partition contains one block with all Markovian states and groups
the probabilistic states according to the action labels available in a state. The
labelling function is given by the action labels of the transitions.

However, experiments have shown that in such a partition transitions in the
same block that are labelled with the same action may exhibit very different
behaviour. Therefore they trigger refinement steps which can be avoided by
a labelling function that takes the similarities of transitions into account. To
achieve this, we first define a new initial partition: The Markovian states form
one block of P ; the probabilistic states are grouped according to the number of
outgoing transitions:

P =
{
MS
}
∪̇
{
{v ∈ PS | |T(v)| = |T(v′)|}

∣∣ v′ ∈ PS} .
Based on this partition we compute the labelling function lab, using a greedy

strategy as follows: All Markovian transitions are labelled with ⊥ as required by
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Def. 4. For the transitions of a probabilistic block B ⊆ PS we proceed as follows:
We take an arbitrary state v ∈ B (actually the first one in our list of states)
and assign each transition tr ∈ T(v) a unique label lab(tr) := αtr. Running
over the transitions tr ∈ T(v), we choose from each state v′ ∈ B with v′ 
= v
a transition tr′ ∈ T(v′) which is not labelled yet and minimises mP(μtr, μtr′)
defined as follows:

mP : Distr(V )×Distr(V )→ [0, 2] with mP(μ, μ
′) =

∑
B′∈P

∣∣μ(B′)− μ′(B′)∣∣ .
The function mP is a pseudo-metric3 that measures the similarity of probability
distributions with respect to a partition P . Formally we take for each state
v′ ∈ B with v′ 
= v an arbitrary

tr′ ∈ argmin
tr′′∈T(v′)

lab(tr′′) is undefined

mP(μtr, μtr′′)

and set lab(tr′) := αtr.
By labelling the transitions in this way we ensure that more similar prob-

abilistic transitions belong to the same probabilistic V2-state, which prevents
unnecessary splitting operations during refinement. Since all states within one
probabilistic block B get the same set of labels with this labelling function, we
do not need to introduce the ∗-state.

3.4 Refinement

We approximate the maximal ETRRsup of an MRAMrew by computing a lower

and an upper bound R̃sup
δ,inf and R̃

sup
δ,sup with a game abstractionMP,lab

and the

abstract reward functions ρt
opt and ρi

opt. If these bounds are too far apart, i. e.
R̃sup

δ,sup − R̃
sup
δ,inf > ε, with ε being a precision threshold, our abstraction is too

coarse and needs to be refined. The result of the refinement is a new partition,
which in turn leads to a new game abstraction. This refinement-loop is repeated
until the intended precision threshold ε is reached.

The reason behind the difference of the bounds can be two different situations:
(1) The difference occurs due to different choices in the player 2 strategies σinf2

and σsup2 . (2) The difference is a result of the different reward structures. In
case (1) we can use a strategy-based refinement strategy like in [12]. In case (2)
we have to use a refinement strategy based on the reward values.

For this value-based refinement strategy we first have to search for a V2-
state v where the values for R̃sup

δ,inf and R̃sup
δ,sup differ and the reward functions

give different values. More precisely, this means that we have to search for
an abstract transition tr ∈ T which was chosen by σinf2 and σsup2 and where[
ρi

opt(tr) + ρt
opt(tr)
λtr

]
= ropt, opt ∈ {inf, sup}, and rinf 
= rsup.

3 The function mP has the following properties: mP(μ, μ′) = mP(μ′, μ), mP(μ, μ′′) ≤
mP(μ, μ′) + mP(μ′, μ′′), and mP(μ, μ) = 0 for all distributions μ, μ′, μ′′. However,
it is not a metric because mP(μ, μ′) = 0 does not imply that μ = μ′ holds.
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If we have found such an abstract transition tr, we split the preceding block
B. For this we compute two sets of concrete states, one (Brinf ) containing the
states with reward rinf , the other (Brsup) containing the states with reward

rsup: Bropt =
{
v | v ∈ B ∧ (v, λ, μ) = tr ∈ ν(tr) ∧

[
ρi(tr) +

ρt(tr)
λtr

]
= ropt

}
with

opt ∈ {inf, sup}.
In case of an abstract Markovian transition tr it may occur that Bropt = ∅

since it is possible that no concrete transition tr ∈ ν(tr) matches the constraints.
Should this happen for both Bropt we use the concrete transitions tr which

optimise
[
ρi(tr) +

ρt(tr)
λtr

]
instead.

After we have generated the concrete state sets for the minimal and maximal
reward, we replace B with Brinf , Brsup and B \

(
Brinf ∪̇Brsup

)
.

Block B is replaced by at least two and at most three new blocks, which leads
to a new, strictly finer partition and thus to a new game abstraction ofMrew ,
which in turn can be analysed and refined. This refinement-loop is repeated until
the precision threshold ε is reached.

Similar to [12] we apply a “precision trick”, i. e. we start with a coarse, tem-
porary precision threshold ε̂ for the refinement-loop. If precision ε̂ is reached, we
switch to a higher precision, i. e. we lower ε̂ and continue the refinement-loop.
This process is repeated until the final precision ε is reached.

Zenoness. Although we assume the considered MRAMrew is non-Zeno, i. e. it
does not contain probabilistic end components, it may happen that Zenoness is

introduced into the abstractionMP,lab

rew . This occurs, e. g. if a non-cyclic sequence
of probabilistic states is partitioned into the same block B ∈ P . If the instan-
taneous reward function ρi is non-zero within the end component, the value
iteration will not terminate since the accumulated reward does not converge.

We avoid this effect with the following method: Before applying value iteration
to solve the discretised fixed point characterisation, we employ a standard graph

algorithm [27] to search for end components in MP,lab

rew . If a probabilistic end
component is found, we refine the corresponding blocksB into smaller blocks and
recompute the abstraction. This process is repeated until all probabilistic end
components have been removed. Since there are no probabilistic end components
present inMrew , our method will always terminate.

4 Experimental Results

We implemented the described abstraction and refinement framework in C++
in a prototype tool called MeGARA. As mentioned earlier, we are currently
concentrating on the maximal ETR only, using discretisation (see Sec. 3.2). We
compare our experimental results with those of IMCA [10,7,9], an analyser for
MA and IMCs. For our experiments we used the following case studies:

The Polling System (PoS) [7,28] consists of two stations and one server.
Incoming requests are stored within two queues until they are delivered by the
server to their station. With a probability of p = 0.1 a request erroneously stays
in the queue after if it was delivered to a station. In our experiments we varied
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Table 1. Results for the polling system and the queueing system

Name IMCA MeGARA
#states r time #states rlb rub #iter. time

PoS-3-2 1,547 0.830 0:04 657 0.828 0.830 17 0:02
PoS-3-3 14,322 0.922 1:06 5,011 0.920 0.921 19 1:16
PoS-3-4 79,307 0.985 10:59 11,527 0.982 0.985 20 7:02
PoS-4-2 6,667 0.832 0:20 1,513 0.829 0.831 18 0:12
PoS-4-3 131,529 0.924 13:46 31,992 0.922 0.923 22 8:55
PoS-5-2 27,659 0.833 1:47 2,006 0.830 0.832 18 0:23
QS-2 103 1.768 0:04 76 1.768 1.768 9 0:01
QS-3 163 2.307 0:10 118 2.306 2.306 10 0:02
QS-4 237 2.679 0:19 167 2.678 2.680 13 0:07
QS-8 673 3.351 1:47 455 3.351 3.351 17 0:33
QS-16 2,217 3.530 12:07 1,039 3.530 3.530 24 2:33
QS-32 7,993 TO 3,286 3.532 3.532 40 57:43

the queue size Q and the number of different request types J . The rewards in this
case study represent costs for processing requests and consuming server memory.
The model instances are denoted as “PoS-Q-J”.

The Queueing System (QS) [6] stores requests within two queues of size K,
each belonging to a server. ServerS1 handles requests and eliminates them from its
queue. Requests processed by server S2 are either nondeterministically submitted
to the queue of S1, or with probability q = 0.3 re-submitted to the queue of S2, or
with probability (1− q) eliminated from the queue. With the help of rewards we
explore the average number of jobs in the queues. For our experiments we varied
the queue size K. The model instances are denoted as “QS-K”.

We created the model files with SCOOP [5], a modelling tool for MA. All
experiments were done on a Dual Core AMD Opteron processor with 2.4 GHz per
core and 64 GB of memory. Computations which took longer than one hour were
aborted and are marked with “TO”. Each computation needed less than 4 GB
memory, we therefore do not present measurements of the memory consumption.

For all experiments we used time bound T = 1 and precision ε = 0.01 in order
to compute the maximal ETR.

Table 1 shows the experimental results. The first column contains the name of
the respective benchmark instance, the blocks titled “IMCA” and “MeGARA”
present the results from IMCA and our abstraction refinement tool, respectively.
The columns headed with “#states” give the number of states of the concrete
system (in case of IMCA) and the final abstraction (in case of MeGARA). The
benchmarks instances are relatively small since the solving of discretised systems
is rather expensive [29].

Column “r” contains the maximal ETR computed by IMCA, whereas the
columns “rlb” and “rub” denote the lower and the upper bounds for the ab-
straction. The columns titled “time” present the total computation time (in
format min:s) needed by IMCA and MeGARA, respectively. For our abstrac-
tion refinement tool we do not give more detailed time measurements since the
better part of the computation time is needed for the repeated analysis of the
abstraction, whereas the time needed for the refinement and re-computation of
the abstraction is often negligible. For example, for QS-32 we need 57min and
43 s, of which 57min and 41 s are spent on the analysis, whereas the time spent
on re-computing and refining the abstraction is less than 2 s.
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For the instances of PoS our tool needs about the same amount of time as
IMCA or is even faster, for the instances of QS we are always faster. As can be
seen from the columns “rlb” and “rub” the quality of our abstraction is always
very good. In some cases the value “r” computed by IMCA is slightly higher
than rub , however this deviation is always well within our precision threshold of
ε = 0.01. We always achieve a notable compaction of the state space, even for
the smallest instances with only a few hundred states. For the bigger instances
we can report on compaction rates up to 92%, e. g. for PoS-5-J we can reduce
the system from 27,659 to 2,006 states.

5 Conclusion

We have presented a new abstraction technique for MRA, based on SRGs. We are
able to analyse our abstraction regarding ETR properties. Should the quality of
the abstraction be too low, we can apply scheduler- and value-based refinement
methods. Our experiments show a significant compaction of the state space and
a reduction of computation times.

In the future we plan to explore the possibilities of different initial partitions,
labelling functions, and refinement techniques. We also plan to work on addi-
tional types of properties, e. g. bounded rewards or long-run average.
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10. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 8–23. Springer, Heidelberg (2012)



Abstraction-Based Computation of Reward Measures for Markov Automata 189

11. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design 36(3), 246–280 (2010)

12. Braitling, B., Ferrer Fioriti, L.M., Hatefi, H., Wimmer, R., Becker, B., Hermanns,
H.: MeGARA: Menu-based game abstraction and abstraction refinement of Markov
automata. In: Proc. of QAPL. EPTCS, vol. 154, pp. 48–63 (2014)

13. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and refine-
ment strategies for probabilistic analysis. In: Hermanns, H., Segala, R. (eds.)
PAPM-PROBMIV 2002. LNCS, vol. 2399, pp. 57–76. Springer, Heidelberg (2002)

14. Wachter, B., Zhang, L.: Best probabilistic transformers. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer,
Heidelberg (2010)

15. Wachter, B.: Refined probabilistic abstraction. PhD thesis, Saarland University
(2011)

16. Braitling, B., Ferrer Fioriti, L.M., Hatefi, H., Wimmer, R., Hermanns, H., Becker,
B.: Abstraction-based computation of reward measures for Markov automata (ex-
tended version). Reports of SFB/TR 14 AVACS 106, SFB/TR 14 AVACS (2014),
http://www.avacs.org
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18. Ash, R.B., Doléans-Dade, C.A.: Probability & Measure Theory, 2nd edn. Academic
Press (1999)
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Abstract. We present new static analysis methods for proving liveness
properties of programs. In particular, with reference to the hierarchy of
temporal properties proposed by Manna and Pnueli, we focus on guar-
antee (i.e., “something good occurs at least once”) and recurrence (i.e.,
“something good occurs infinitely often”) temporal properties.

We generalize the abstract interpretation framework for termination
presented by Cousot and Cousot. Specifically, static analyses of guar-
antee and recurrence temporal properties are systematically derived by
abstraction of the program operational trace semantics.

These methods automatically infer sufficient preconditions for the
temporal properties by reusing existing numerical abstract domains based
on piecewise-defined ranking functions. We augment these abstract do-
mains with new abstract operators, including a dual widening.

To illustrate the potential of the proposed methods, we have imple-
mented a research prototype static analyzer, for programs written in a
C-like syntax, that yielded interesting preliminary results.

1 Introduction

Temporal properties play a major role in the specification and verification of
programs. The hierarchy of temporal properties proposed by Manna and Pnueli
[15] distinguishes four basic classes:

– safety properties: “something good always happens”, i.e., the program never
reaches an unacceptable state (e.g., partial correctness, mutual exclusion);

– guarantee properties: “something good happens at least once”, i.e., the pro-
gram eventually reaches a desirable state (e.g., termination);

– recurrence properties: “something good happens infinitely often”, i.e., the
program reaches a desirable state infinitely often (e.g., starvation freedom);

– persistence properties: “something good eventually happens continuously”.
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while 1( x ≥ 0 ) do 2x := x + 1;

while 3( true ) do

if 4( x ≤ 10 ) then 5x := x + 1; else 6x := − x; fi

Fig. 1. Program SIMPLE

This paper concerns the verification of programs by static analysis. We set our
work in the framework of Abstract Interpretation [9], a general theory of semantic
approximation that provides a basis for various successful industrial-scale tools
(e.g., Astrée [1]). Abstract Interpretation has to a large extent concerned safety
properties and has only recently been extended to program termination [11],
which is just a particular guarantee property.

In this paper, we generalize the framework proposed by Cousot and Cousot
for termination [11] and we propose an abstract interpretation framework for
proving guarantee and recurrence temporal properties of programs. Moreover,
we present new static analysis methods for inferring sufficient preconditions for
these temporal properties. Let us consider the program SIMPLE in Figure 1,
where the program variables are interpreted in the set of mathematical integers1.
The first while loop is an infinite loop for the values of x greater than or equal to
zero: at each iteration the value of x is increased by one. The second while loop
is an infinite loop: at each iteration, the value of x is increased by one or negated
when it becomes greater than ten. Given the guarantee property “x = 3 at least
once”, where x = 3 is the desirable state, our approach is able to automatically
infer that the property is true if the initial value of x is smaller than or equal
to three. Given the recurrence property “x = 3 infinitely often”, our approach
is able to automatically infer that the property is true if the initial value of x is
strictly negative (i.e., if the first while loop is never entered).

Our approach follows the traditional methods for proving liveness proper-
ties by means of a well-founded argument (i.e., a function from the states of
a program to a well-ordered set whose value decreases during program execu-
tion). More precisely, we build a well-founded argument for guarantee and re-
currence properties in an incremental way: we start from the desirable program
states, where the function has value zero (and is undefined elsewhere); then, we
add states to the domain of the function, retracing the program backwards and
counting the maximum number of performed program steps as value of the func-
tion. Additionally, for recurrence properties, this process is iteratively repeated
in order to construct an argument that is also invariant with respect to program
execution steps so that even after reaching a desirable state we know that the
execution will reach a desirable state again. We formalize these intuitions into
sound and complete guarantee and recurrence semantics that are systematically
derived by abstract interpretation of the program operational trace semantics.

In order to achieve effective static analyses, we further abstract these se-
mantics. Specifically, we leverage existing numerical abstract domains based on

1 For simplicity, this assumption remains valid throughout the rest of the paper.
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piecewise-defined ranking functions [21,22,23] by introducing new abstract op-
erators, including a dual widening. The piecewise-defined ranking functions are
attached to the program control points and represent an upper bound on the
number of program execution steps before the program reaches a desirable state.
They are automatically inferred through backward analysis and yield sufficient
preconditions for the guarantee and recurrence temporal properties. We prove
the soundness of the analysis, meaning that all program executions respecting
these preconditions indeed satisfy the temporal properties, while a program ex-
ecution that does not respect these preconditions might or might not satisfy the
temporal properties.

To illustrate the potential of our approach, let us consider again the program
SIMPLE in Figure 1. Given the guarantee property “x = 3 at least once”, the
piecewise-defined ranking function inferred at program control point 1 is:

fg1 (x) =

⎧⎪⎨⎪⎩
−3x+ 10 x < 0

−2x+ 6 x ≥ 0 ∧ x ≤ 3

undefined otherwise

which bounds the wait (from the control point 1) for the desirable state x = 3
by −3x+ 10 program execution steps if x < 0, and by −2x+ 6 execution steps
if x ≥ 0 ∧ x ≤ 3. In case x > 3, the analysis is inconclusive. In fact, if
x > 3 the guarantee property is never true so the precondition x ≤ 3 for the
guarantee property is the weakest precondition. Given the recurrence property
“x = 3 infinitely often”, the piecewise-defined ranking function at program point
1 bounds the wait for the next occurrence of the desirable state x = 3 by −3x+10
program execution steps:

f r1 (x) =

{
−3x+ 10 x < 0

undefined otherwise

Note that, if x ≥ 0 ∧ x ≤ 3, x = 3 occurs once but not infinitely often: fg1 is
defined for x ≥ 0 ∧ x ≤ 3 but not f r1 . Again, the sufficient precondition x < 0 is
also a necessary precondition. At program point 3 (i.e., at the beginning of the
second while loop), we get the following piecewise-defined ranking function:

fg3 (x) = f r3 (x) =

{
−3x+ 9 x ≤ 3

−3x+ 72 x > 3

which bounds the wait (from the control point 3) for the next occurrence of
x = 3 by −3x+ 9 execution steps if x ≤ 3, and by −3x+ 72 execution steps if
x > 3.

Our Contribution. In summary, this paper makes the following contributions.
First, we present an abstract interpretation framework for proving guarantee
and recurrence temporal properties of programs. In particular, we generalize
the framework proposed by Cousot and Cousot for termination [11]. Moreover,
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by means of piecewise-defined ranking function abstract domains [21,22,23], we
design new static analysis methods to effectively infer sufficient preconditions
for these temporal properties, and provide upper bounds in terms of program
execution steps on the wait before a program reaches a desirable state. Finally,
we provide a research prototype static analyzer for programs written in a C-like
syntax.

Limitations. In general, liveness properties are used to specify the behavior of
concurrent programs and are satisfied only under fairness hypotheses. In this
paper, we model concurrent programs as non-deterministic sequential programs
and we assume that the fair scheduler is explicitly represented within the pro-
gram (e.g., see [13] and Example 6 in Section 8). We plan, as part of our future
work, to extend our framework in order to explicitly express and handle fairness
properties.

Outline of the Paper. Section 2 introduces the preliminary notions used in the
paper. In Section 3, we give a brief overview of Cousot and Cousot’s abstract
interpretation framework for termination. In Section 4, we define a small spec-
ification language to describe guarantee and recurrence properties. The next
two sections are devoted to the main contribution of the paper: we formalize
our framework for guarantee and recurrence properties in Section 5 and in Sec-
tion 6, respectively. In Section 7, we present decidable guarantee and recurrence
abstractions based on piecewise-defined ranking functions. We describe our pro-
totype static analyzer in Section 8. Finally, Section 9 discusses related work and
Section 10 concludes.

2 Trace Semantics

Following [8,11], as a model of the operational semantics of a program, we use
a transition system 〈Σ, τ〉, where Σ is the (possibly infinite) set of program
states and the program transition relation τ ⊆ Σ × Σ describes the possible
transitions between states during program execution. Note that this model allows
representing programs with (possibly unbounded) non-determinism.

Let Σn be the set of all finite program state sequences of length n ∈ N. We
use ε to denote the empty sequence, i.e., Σ0 � {ε}. The set of final states
Ω � {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 
∈ τ} can be understood as a set of sequences of
length one and the program transition relation τ can be understood as a set of
sequences of length two. Let Σ+ �

⋃
n∈N+ Σn be the set of all non-empty finite

sequences, Σ∗ � Σ0 ∪ Σ+ be the set of all finite sequences, Σω be the set of all
infinite sequences, Σ+∞ � Σ+ ∪ Σω be the set of all non-empty finite or infinite
sequences and Σ∗∞ � Σ∗ ∪ Σω be the set of all finite or infinite sequences.
We write σσ′ for the concatenation of sequences σ, σ′ ∈ Σ+∞ (with σε = εσ = σ
and σσ′ = σ when σ ∈ Σω), T+ � T ∩ Σ+ for the selection of the non-empty
finite sequences of T ⊆ Σ+∞, T ω � T ∩ Σω for the selection of the infinite
sequences of T ⊆ Σ+∞ and T ; T ′ � {σsσ′ | s ∈ Σ ∧ σs ∈ T ∧ sσ′ ∈ T ′} for
the merging of sets of sequences T, T ′ ⊆ Σ+∞.
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The maximal trace semantics τ+∞ ⊆ Σ+∞ generated by a transition system
〈Σ, τ〉 is the union of the set of all non-empty finite program execution traces that
are terminating with a final state, and the set of all infinite execution traces. It
can be expressed as a least fixpoint in the complete lattice 〈Σ+∞,�,�,�, Σω, Σ+〉
[8]:

τ+∞ � lfp� φ+∞

φ+∞(T ) � Ω � (τ ; T )
(1)

where T1 � T2 � T+

1 ⊆ T+

2 ∧ T ω
1 ⊇ T ω

2 and T1�T2 � (T+

1 ∪T+

2 ) ∪ (T ω
1 ∩T ω

2 ).

3 Termination Semantics

The Floyd/Turing traditional method for proving program termination [12] con-
sists in inferring ranking functions, namely mappings from program states to
elements of a well-ordered set (e.g., 〈O, <〉, the well-ordered set of ordinals)
whose value decreases during program execution.

In [11], Cousot and Cousot prove the existence of a most precise program
ranking function2 τ t ∈ Σ ⇀ O that can be expressed in fixpoint form as follows:

τ t � lfp�
∅̇ φ

t

φt(v) � λs.

⎧⎪⎨⎪⎩
0 s ∈ Ω
sup{v(s′) + 1 | 〈s, s′〉 ∈ τ} s ∈ p̃re(dom(v))

undefined otherwise

(2)

where ∅̇ is the totally undefined function, v1 � v2 � dom(v1) ⊆ dom(v2) ∧ ∀x ∈
dom(v1) : v1(x) ≤ v2(x) and p̃re(X) � {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈
X}.

The most precise ranking function τ t extracts the well-founded part of the
transition relation τ : starting from the final states in Ω, where the function has
value zero, and retracing the program backwards while mapping each program
state in Σ definitely leading to a final state (i.e., a program state such that all
the traces to which it belongs are terminating) to an ordinal in O representing an
upper bound on the number of program execution steps remaining to termina-
tion. The domain dom(τ t) of τ t is the set of states definitely leading to program
termination; any trace starting in a state s ∈ dom(τ t) must terminate in at most
τ t(s) execution steps, while at least one trace starting in a state s 
∈ dom(τ t)
does not terminate:

Theorem 1. A program terminates for all execution traces starting from an
initial state s ∈ Σ if and only if s ∈ dom(τ t).

We would like to emphasize the elegance of the abstract interpretation theory
which allows to tie together seemingly unrelated semantics by different abstrac-
tions of the same operational trace semantics, i.e., the maximal trace semantics

2 A ⇀ B is the set of partial maps from a set A to a set B.
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(1) [8]. The semantics, rather than being first derived by intuition and then
proved correct, are systematically derived by abstract interpretation. Specifi-
cally, in [11], in order to derive the most precise ranking function (2), Cousot
and Cousot define the following abstraction functions:

– The prefix abstractions pf ∈ Σ+∞ → P(Σ+∞) and pf ∈ P(Σ+∞)→ P(Σ+∞)
yield respectively the set of prefixes of a sequence σ ∈ Σ+∞ and the set of
prefixes of a set of sequences T ⊆ Σ+∞:

pf(σ) � {σ′ ∈ Σ+∞ | ∃σ′′ ∈ Σ∗∞ : σ = σ′σ′′}

pf(T ) �
⋃
{pf(σ) | σ ∈ T }

(3)

The neighborhood of a sequence σ ∈ Σ+∞ in a set of sequences T ⊆ Σ+∞ is
the set of sequences σ′ ∈ T with a common prefix with σ: {σ′ ∈ T | pf(σ) ∩
pf(σ′) 
= ∅}.

– The termination abstraction αt ∈ P(Σ+∞) → P(Σ+) selects from a set of
sequences T ⊆ Σ+∞ the sequences that are finite and whose neighborhood
in T consists only of finite traces:

αt(T ) � {σ ∈ T+ | pf(σ) ∩ pf(T ω) = ∅} (4)

Example 1. Let T = {ab, aba, ba, bb, baω}, then αt(T ) = {ab, aba}. In fact,
pf(ab) ∩ pf(baω) = ∅ and pf(aba) ∩ pf(baω) = ∅, while pf(ba) ∩ pf(baω) =
{b, ba} and pf(bb) ∩ pf(baω) = {b}. ��

– The transition abstraction
→
α∈ P(Σ+∞) → P(Σ × Σ) extracts from a set of

sequences T ⊆ Σ+∞ the smallest transition relation r ⊆ Σ×Σ that generates
T :

→
α (T ) � {〈s, s′〉 | ∃σ, σ′ ∈ Σ∗∞ : σss′σ′ ∈ T }

– The ranking abstraction αrk ∈ P(Σ × Σ) → (Σ ⇀ O) provides the rank of
the elements in the domain of a relation r ⊆ Σ ×Σ:

αrk(r)s �

⎧⎪⎨⎪⎩
0 ∀s′ ∈ Σ : 〈s, s′〉 
∈ r

sup

{
αrk(r)s′ + 1

∣∣∣∣∣ s′ ∈ dom(αrk(r))

∧ 〈s, s′〉 ∈ r

}
otherwise

– The variant abstraction αv ∈ P(Σ+) → (Σ ⇀ O) provides the rank of the
elements in the domain of the smallest transition relation that generates a
set of sequences T ⊆ Σ+:

αv(T ) � αrk(
→
α (T )) (5)

The most precise ranking function (2) can now be explicitly defined as abstract
interpretation of the program maximal trace semantics (1) [11]:

τ t � αv(αt(τ+∞))

In Section 5 and Section 6, we will follow the same abstract interpretation
approach in order to systematically derive sound and complete semantics for
proving guarantee and recurrence temporal properties of programs.



196 C. Urban and A. Miné

δ ::= X | n | − δ | δ1 � δ2 X ∈ X , n ∈ Z, � ∈ {+,−, ∗, /}
β ::= true | false | !β | β1 ∨ β2 | β1 ∧ β2 | δ1 �	 δ2 �	 ∈ {<,≤,=, �=, >,≥}
ϕ ::= β | l : β | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 l ∈ L

Fig. 2. Syntax of State Properties

4 Specification Language

In general, we define a program property as a set of sequences. A program has
a certain property if all the program execution traces belong to the property. In
this paper, with respect to the hierarchy of temporal properties proposed in [15],
we focus on guarantee (“something good happens at least once”) and recurrence
(“something good happens infinitely often”) properties. In particular, we con-
sider guarantee and recurrence properties that are expressible by temporal logic.

We define a small specification language, which will be used to describe prop-
erties of program states. Let X be a finite set of program variables. We split
the program state space Σ into program control points L and environments
E � X → Z, which map each program variable to an integer value. In Figure 2
we define inductively the syntax of the state properties. The predicate l : β al-
lows specifying a state property at a particular control point l ∈ L. We write
s |= ϕ when the state s ∈ Σ has the property ϕ, and Σϕ � {s ∈ Σ | s |= ϕ}
for the set of states Σϕ ⊆ Σ that have the property ϕ.

In the following, we define the program properties of interest by means of the
temporal operators always � and eventually ♦.

The guarantee properties are expressible by a temporal formula of the form
♦ϕ, for some state property ϕ. The formula expresses that at least one state
in every program execution trace has the property ϕ, but it does not promise
any repetition. In general, the guarantee properties are used to ensure that some
event happens once during a program execution, such as program termination
or eventual consistency. Indeed, program termination can be expressed as the
guarantee property ♦le : true, where le ∈ L is the program final control point.

The recurrence properties are expressible by a temporal formula of the form
�♦ϕ, for some state property ϕ. The formula expresses that infinitely many
states in every program execution trace have the property ϕ. In general, the
recurrence properties are used to ensure that some event happens infinitely many
times during a program execution (e.g., a request is always eventually answered).

5 Guarantee Temporal Properties

In the following, we generalize Section 3 from termination to guarantee proper-
ties. We define a sound and complete semantics for proving guarantee temporal
properties by abstract interpretation of the program maximal trace semantics.
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Let S ⊆ Σ be a set of states and let S+∞ ⊆ Σ+∞ be the set of non-empty finite
or infinite sequences of states in S ⊆ Σ. In the following, we write S̄ � Σ \ S
for the set of states that are not in S and T S � T ∩ S+∞ for the selection of
the sequences of T that are non-empty sequences of states in S.

In order to define our semantics we need the following abstraction functions:

– The subsequence abstraction αs ∈ P(Σ+∞) → P(Σ+∞) extracts from a set
of sequences T ⊆ Σ+∞ the subsequences of sequences in T :

αs(T ) � {σ ∈ Σ+∞ | ∃σ′ ∈ Σ∗, σ′′ ∈ Σ∗∞ : σ′σσ′′ ∈ T }

– The guarantee abstraction αg ∈ P(Σ) → P(Σ+∞) → P(Σ+), given a set of
states S ⊆ Σ and a set of sequences T ⊆ Σ+∞, extracts from T ⊆ Σ+∞ the
subsequences of sequences of T whose neighborhood in αs(T ) consists only
of sequences of states in S̄ that are terminating with a state s ∈ S:

αg(S)T �
{
σs ∈ αs(T ) ∩ Σ+

∣∣∣∣ s ∈ S ∧ σ ∈ S̄∗ ∧
∀σ′ ∈ pf(σ) : T σ′ ∩ S̄+∞ = ∅

}
(6)

where pf ∈ Σ+∞ → P(Σ+∞) is the prefix abstraction (3) of Section 3 and
T σ � {σσ′′ ∈ Σ+∞ | σ′′ ∈ Σ∗∞ ∧ ∃σ′ ∈ Σ∗∞ : σ′σσ′′ ∈ T } is the set of
suffixes of sequences of T ⊆ Σ+∞ with prefix σ ∈ Σ+∞.

Example 2. Let T = {cdω, (cd)ω}, then T d = {dω, (dc)ω}. ��

Example 3. Let T = {(abcd)ω, (cd)ω , aω, cdω} and S = {c}, then αg(S)T =
{c, bc}. Let us consider the trace (abcd)ω: the subsequences of (abcd)ω that
are terminating with c (and never encounter c before) are {c, bc, abc, dabc}.
Let us consider the subsequence abc: T ab ∩ S̄+∞ = ∅ but T a ∩ S̄+∞ = {aω}.
Now let us consider dabc: T dab ∩ S̄+∞ = ∅ and T da ∩ S̄+∞ = ∅ but
T d ∩ S̄+∞ = {dω}. ��

The guarantee semantics τ g ∈ P(Σ) → (Σ ⇀ O) of a program can now be
defined by abstract interpretation of the program maximal trace semantics (1):

τ g(S) � αv(αg(S)τ+∞) = lfp�
∅̇ φ

g(S)

φg(S)v � λs.

⎧⎪⎨⎪⎩
0 s ∈ S
sup{v(s′) + 1 | 〈s, s′〉 ∈ τ} s ∈ p̃re(dom(v)) ∧ s 
∈ S
undefined otherwise

(7)

where αv ∈ P(Σ+) → (Σ ⇀ O) is the variant abstraction (5) presented in
Section 3.

Intuitively, given a set of states S ⊆ Σ, the guarantee semantics τ g(S) is
defined starting from the states in S and retracing the program backwards while
mapping each program state definitely leading to S (i.e., a program state such
that all the traces to which it belongs eventually reach a state in S) to an ordinal
in O representing an upper bound on the number of program execution steps
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remaining to S. The domain dom(τ g(S)) of τ g(S) is the set of states definitely
leading to a state in S: any trace starting in a state s ∈ dom(τ g(S)) must reach
a state in S in at most τ g(S)s execution steps, while at least one trace starting
in a state s 
∈ dom(τ g(S)) does not reach S.

Note that, when S is the set of final states Ω, φg(Ω) = φt and we rediscover
precisely Cousot and Cousot’s termination semantics [11] presented in Section 3.

Let ϕ be a state property. We define the ϕ-guarantee semantics τ g
ϕ ∈ Σ ⇀ O:

τ g

ϕ � τ g(Σϕ) (8)

The semantics τ g
ϕ is sound and complete for proving a guarantee property ♦ϕ:

Theorem 2. A program satisfies a guarantee property ♦ϕ for all execution
traces starting from an initial state s ∈ Σ if and only if s ∈ dom(τ g

ϕ).

6 Recurrence Temporal Properties

In the following, we define a sound and complete semantics for proving recur-
rence temporal properties by abstract interpretation of the program maximal
trace semantics, following the same approach used in Section 5 for guarantee
temporal properties. In particular, the recurrence semantics that we are going
to define reuses the guarantee semantics of Section 5 as starting point: from
the guarantee that some event happens once during a program execution, the
recurrence semantics ensures that the event happens infinitely many times.

In order to define our semantics we need the following abstraction function:

– The recurrence abstraction αr ∈ P(Σ) → P(Σ+∞) → P(Σ+), given a set
of states S ⊆ Σ and a set of sequences T ⊆ Σ+∞, extracts from T the
subsequences of sequences of T whose neighborhood in αs(T ) consists only
of sequences of states in S̄ that are terminating with a state in S, and that
are prefixes of sequences of T that reach infinitely often a state in S:

αr(S)T � gfp⊆
αg(S)T

φαr
(T, S)

φαr
(T, S)T ′ � αg(p̃re(T )T ′ ∩ S)T

(9)

where p̃re(T )T ′ � {s ∈ Σ | ∀σ ∈ Σ∗, σ′ ∈ Σ∗∞ : σsσ′ ∈ T ⇒ pf(σ′) ∩ T ′ 
=
∅} and αg ∈ P(Σ)→ P(Σ+∞)→ P(Σ+) is the guarantee abstraction (6) of
Section 5.
To explain intuitively (9), we use the Kleene dual fixpoint theorem [8] to
rephrase αr(S)T as follows:

αr(S)T =
⋂
i∈N

Ti+1 where Ti+1 �
[
φαr

(T, S)
]i

(αg(S)T )

Then, for i = 0, we get the set T1 = αg(S)T of subsequences of sequences of
T that guarantee S at least once. For i = 1, starting from T1, we derive the
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set of states S1 = p̃re(T )T1 ∩ S (i.e., S1 ⊆ S) whose successors all belong to
the subsequences in T1, and we get the set T2 = αg(S1)T of subsequences of
sequences of T that guarantee S1 at least once and thus guarantee S at least
twice. Note that all the subsequences in T2 terminate with a state s′ ∈ S1
and therefore are prefixes of subsequence of T that reach S at least twice.
More generally, for each i ∈ N, we get the set Ti+1 of subsequences which
are prefixes of subsequences of T that reach S at least i+ 1 times, i.e., the
subsequences that guarantee S at least i + 1 times. The greatest fixpoint
thus guarantees S infinitely often.

Example 4. Let T = {(cd)ω, caω, d(be)ω} and let S = {b, c, d}. For i = 0,
we have T1 = αg(S)T = {b, eb, c, d}. For i = 1, we derive S1 = {b, d}, since
c(dc)ω ∈ T and pf((dc)ω)∩T1 = {d} 
= ∅ but caω ∈ T and pf(aω)∩T1 = ∅. We
get T2 = αg(S1)T = {b, eb, d}. For i = 2, we derive S2 = {b}, since d(be)ω ∈
T and pf((be)ω) ∩ T1 = {b} 
= ∅ but d(cd)ω ∈ T and pf((cd)ω) ∩ T2 = ∅.
We get T3 = αg(S2)T = {b, eb} which is the greatest fixpoint: the only
subsequences of sequences in T that guarantee S infinitely often start with
b or eb. ��

The recurrence semantics τ r ∈ P(Σ) → (Σ ⇀ O) of a program can now be
defined by abstract interpretation of the program maximal trace semantics (1):

τ r(S) � αv(αr(S)τ+∞) = gfp�
τg(S) φ

r(S)

φr(S)v � λs.

{
v(s) s ∈ dom(τ g(p̃re(dom(v)) ∩ S))

undefined otherwise

(10)

where αv ∈ P(Σ+) → (Σ ⇀ O) is the variant abstraction (5) presented in
Section 3 and τ g ∈ P(Σ)→ (Σ ⇀ O) is the guarantee semantics (7) defined in
Section 5. Note that, given the definition of (7), (10) contains a nested fixpoint.

Given a set of states S ⊆ Σ, the recurrence semantics τ r(S) maps each pro-
gram state definitely leading infinitely many times to S to an ordinal in O
representing an upper bound on the number of execution steps remaining to
the next occurrence of a state in S: any trace starting in a state s ∈ dom(τ r(S))
must reach the next occurrence of a state in S in at most τ r(S)s execution steps,
while at least one trace starting in a state s 
∈ dom(τ r(S)) reaches a state in S
at most finitely many times.

Let ϕ be a state property. We the define ϕ-recurrence semantics τ r
ϕ ∈ Σ ⇀ O:

τ r

ϕ � τ r(Σϕ) (11)

The semantics τ r
ϕ is sound and complete for proving a recurrence property�♦ϕ:

Theorem 3. A program satisfies a recurrence property �♦ϕ for all execution
traces starting from an initial state s ∈ Σ if and only if s ∈ dom(τ r

ϕ).



200 C. Urban and A. Miné

7 Piecewise-Defined Ranking Functions

The termination semantics τ t of Section 3, the ϕ-guarantee semantics τ g
ϕ of Sec-

tion 5 and the ϕ-recurrence semantics τ r
ϕ of Section 6 are usually not computable

(i.e., when the program state space is infinite).
In [21,22,23], we present decidable abstractions of τ t by means of piecewise-

defined ranking functions over natural numbers [21], over ordinals [22] and with
relational partitioning [23]. In the following, we will briefly recall the main char-
acteristics of these abstractions and we will show how to modify the abstract
domains in order to obtain decidable abstractions of τ g

ϕ and τ r
ϕ as well.

7.1 Abstract Termination Semantics

The formal treatment given in the previous sections is defined over general tran-
sition systems. In practice, it is sufficient to provide a transfer function for each
atomic instruction of a programming language to define a semantics for all the
programs in the language and obtain an effective static analysis after opportune
abstraction.

In [21], we provide an isomorphic definition of the termination semantics τ t ∈
Σ ⇀ O for a C-like programming language by partitioning with respect to the
set of program control points L: τ t ∈ L → (E ⇀ O). In this way, to each control
point l ∈ L corresponds a function v ∈ E ⇀ O and to each program statement
i corresponds a transfer function �i�t ∈ (E ⇀ O) → (E ⇀ O). As an example,
given an assignment x := e of the expression e to the variable x ∈ X , the
transfer function is defined as follows:

�x := e�tv � λρ.

{
sup{v(ρ[x �→ z]) + 1 | z ∈ �e�ρ} ∀z ∈ �e�ρ : ρ[x �→ z] ∈ dom(v)

undefined otherwise

where �e� ∈ E → ℘(Z) maps an environment ρ ∈ E to the set of all possible
values for the expression e in the given environment. In case of a loop statement
the transfer function involves a least fixpoint. More details can be found in [21].

Subsequently, in [21,22,23] we present an abstract termination semantics ταt ∈
L → V : to each program control point l ∈ L corresponds an element v ∈ V of an
abstract domain V , equipped with a concretization function γ ∈ V → (E ⇀ O)
and a sound abstract transfer function �i�αt ∈ V → V for each program statement
i. In particular, the elements of the abstract domain V are piecewise-defined
ranking functions represented by means of two parameter abstract domains:
an abstract domain whose elements establish the shape of the pieces of the
ranking functions, and an abstract domain whose elements represent the value
of the ranking functions within their pieces. As an example, in [21] we consider
piecewise-defined ranking functions whose pieces have the shape of intervals and
whose value is represented by an affine function.

The abstract transfer functions are combined together to compute an abstract
ranking function for a program through backward analysis. The starting point
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is the constant function equal to zero at the program final control point. This
function is then propagated backwards towards the program initial control point
taking assignments and tests into account and, in case of loops, solving least
fixpoints by iteration with a widening operator. We give an intuition for how the
abstract assignment transfer function works by means of the following example:

Example 5. Let us consider the piecewise-defined ranking function with value
2x+1 for x ∈ [−∞, 3] and undefined elsewhere, and the assignment x := x + 1.
The abstract assignment transfer function substitutes the variable x with the
expression x + 1 and increases the value of the function by one (to take into
account that one more program step is needed before termination). The result
is the piecewise-defined ranking function with value 2(x + 1) + 1 + 1 = 2x + 4
for x+ 1 ∈ [−∞, 3] (i.e., x ∈ [−∞, 2]) and undefined elsewhere. ��
We refer to [21,22,23] for more details.

The abstract transfer functions are sound with respect to the approximation
order v1 � v2 � dom(v1) ⊇ dom(v2) ∧ ∀x ∈ dom(v2) : v1(x) ≤ v2(x)
(see [10] for further discussion on approximation and computational order of an
abstract domain):

Theorem 4. �i�tγ(v) � γ(�i�αt
v)

The backward analysis computes an over-approximation of the value of the most
precise ranking function τ t and an under-approximation of its domain of defi-
nition dom(τ t). In this way, an abstraction provides sufficient preconditions for
program termination: if the abstraction is defined on a program state, then all
the program execution traces branching from that state are terminating.

7.2 Abstract Guarantee Semantics

In the following, we describe how to reuse the piecewise-defined ranking function
abstract domains introduced in [21,22,23] and what changes are required in order
to obtain decidable abstractions of the ϕ-guarantee semantics τ g

ϕ (8).
First, as before, we partition the ϕ-guarantee semantics τ g

ϕ ∈ Σ ⇀ O with
respect to the set of program control points L: τ g

ϕ ∈ L → (E ⇀ O). The transfer
functions �i�g

ϕ ∈ (E ⇀ O) → (E ⇀ O) behave as the transfer functions for
the termination semantics but in addition they reset the value of the ranking
function for the environments that have the property ϕ. As an example, the
transfer function for an assignment x := e is now defined as follows:

�x := e�gv � λρ.

⎧⎪⎨
⎪⎩

0 ρ |= ϕ

sup{v(ρ[x �→ z]) + 1 | z ∈ �e�ρ} ρ �|= ϕ ∧ ∀z ∈ �e�ρ : ρ[x �→ z] ∈ dom(v)

undefined otherwise

where ρ |= ϕ means that the environment ρ ∈ E has the property ϕ (cf. Sec-
tion 4).

Then, we define the abstract ϕ-guarantee semantics ταg

ϕ ∈ L → V : to each
program control point l ∈ L corresponds a piecewise-defined ranking function
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v ∈ V . To each program statement i corresponds a sound (with respect to the
approximation order �) abstract transfer function �i�αg

ϕ ∈ V → V :

Theorem 5. �i�g
ϕγ(v) � γ(�i�αg

ϕ v)

We give an intuition for how the abstract assignment transfer function now
works by means of the following example:

Example 6. Let us consider the guarantee property♦(x = 3) and let us consider
again, as in Example 5, the piecewise-defined ranking function with value 2x+1
for x ∈ [−∞, 3] and undefined elsewhere, and the assignment x := x + 1. As in
Example 5, the abstract assignment transfer function substitutes the variable x
with the expression x+ 1 and increases the value of the function by one. Unlike
Example 5, it also resets the value of the function for x ∈ [3, 3]. The result is
the piecewise-defined ranking function with value 2x + 4 for x ∈ [−∞, 2], 0 for
x ∈ [3, 3] and undefined elsewhere. ��

As before, the abstract transfer functions are combined together through back-
ward analysis. The starting point is now the constant function equal to zero
only for the environments that have the property ϕ, and undefined elsewhere,
at the program final control point. The backward analysis computes an over-
approximation of the value of the function τ g

ϕ and an under-approximation of
its domain of definition dom(τ g

ϕ). In this way, an abstraction provides sufficient
preconditions for the guarantee property ♦ϕ: if the abstraction is defined on a
program state, then all the program execution traces branching from that state
eventually reach a state with the property ϕ. Note that, when the property ϕ
is le : true, where le ∈ L is the program final control point, we rediscover the
backward termination analysis from Section 7.1.

7.3 Abstract Recurrence Semantics

In the following, we describe how to reuse the piecewise-defined ranking function
abstract domains introduced in [21,22,23] and what changes are required in order
to obtain decidable abstractions of the ϕ-recurrence semantics τ r

ϕ (11).
As before, we associate each program control point l ∈ L with a different

ranking function v ∈ V : τ r
ϕ ∈ L → (E ⇀ O). The transfer functions �i�r

ϕ ∈ (E ⇀
O) → (E ⇀ O) behave as the transfer functions for the guarantee semantics
with the only difference that they reset the value of the ranking function for the
environments that have the property ϕ only if all successors of the environments
(by means of the program statement i) belong to the domain of the ranking
function; hence, they ensure that each time ϕ is satisfied, it will be satisfied
again in the future. As an example, the transfer function for an assignment
x := e is defined as follows:

�x := e�rv � λρ.

⎧⎪⎨
⎪⎩

0 ρ |= ϕ ∧ ∀z ∈ �e�ρ : ρ[x �→ z] ∈ dom(v)

sup{v(ρ[x �→ z]) + 1 | z ∈ �e�ρ} ρ �|= ϕ ∧ ∀z ∈ �e�ρ : ρ[x �→ z] ∈ dom(v)

undefined otherwise
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Then, we define the abstract ϕ-recurrence semantics ταr

ϕ ∈ L → V by means
of sound (with respect to �) abstract transfer functions �i�αr

ϕ ∈ V → V :

Theorem 6. �i�r
ϕγ(v) � γ(�i�αr

ϕ v)

We give an intuition for how the abstract assignment transfer function now
works by means of the following example:

Example 7. Let us consider the guarantee property �♦(x = 3) and let us con-
sider again, as in Example 6, the piecewise-defined ranking function with value
2x+1 for x ∈ [−∞, 3] and undefined elsewhere, and the assignment x := x + 1.
Unlike Example 6, the abstract assignment transfer function does not reset the
value of the function for x ∈ [3, 3] because the ranking function is undefined
for x ∈ [4, 4] (i.e., the successor of the environment x ∈ [3, 3] by means of the
assignment x := x + 1). The result is the piecewise-defined ranking function
with value 2x+ 4 for x ∈ [−∞, 2], and undefined elsewhere.

Let us consider instead the piecewise-defined ranking function with value
2x + 1 for x ∈ [−∞, 4] and undefined elsewhere. The result of the assignment
x := x + 1 is now the piecewise-defined ranking function with value 2x + 4
for x ∈ [−∞, 2], 0 for x ∈ [3, 3] and undefined elsewhere. ��

Since the program final states cannot satisfy a recurrence property, the
starting point of the recurrence backward analysis is now the totally undefined
function at the program final control point. This function is then propagated
backwards towards the program initial control point.

Note that, in case of a loop statement, according to the definition (10) of
τ r
ϕ from Section 5, the transfer function involves a least fixpoint nested into a
greatest fixpoint. Nested fixpoints are solved by iteration with the same widen-
ing operator used for termination [23] for the least fixpoint, and a new dual
widening operator 	̄ for the greatest fixpoint. The dual widening 	̄ obeys
(i) γ(A) � γ(B) � γ(A 	̄ B), and (ii) for any sequence (Xn)n∈N, the se-
quence Y0 = X0, Yn+1 = Yn 	̄ Xn+1 stabilizes (i.e., ∃i : Yi+1 = Yi). Dual
widenings are rather unknown and, up to our knowledge, only few practical in-
stance has been proposed (e.g., [5,18]). In our case, the dual widening 	̄ enforces
the termination of the analysis by preventing the set of pieces of a piecewise-
defined ranking function from growing indefinitely: given two piecewise-defined
ranking functions v1 ∈ V and v2 ∈ V , it enforces the piecewise-definition of the
first function v1 on the second function v2. Then, for each piece of the ranking
functions, it maintains the value of the function only if both v1 and v2 are defined
on that piece (cf. Figure 3).

The backward analysis computes an over-approximation of the value of the
function τ r

ϕ and an under-approximation of its domain dom(τ r
ϕ). In this way, an

abstraction provides sufficient preconditions for the recurrence property �♦ϕ:
if the abstraction is defined on a program state, then all the program execu-
tion traces branching from that state always eventually reach a state with the
property ϕ.
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Fig. 3. Example of Dual Widening

1c := 1;

while 2( true ) do
3x := c;

while 4( x > 0 ) do 5x := x − 1; 6c := c + 1;

Fig. 4. Program COUNT-DOWN

8 Implementation

We have incorporated the static analysis methods for guarantee and recurrence
temporal properties that we have presented into our prototype static analyzer
FuncTion based on piecewise-defined ranking functions. It is available online3.

The prototype accepts (non-deterministic) programs written in a C-like syntax
and, when the guarantee or recurrence analysis methods are selected, it accepts
state properties written as C-like pure expressions. It is written in OCaml and,
at the time of writing, the available abstract domains to control the pieces of the
ranking functions are based on intervals, octagons and convex polyhedra, and
the available abstract domain to represent the value of the ranking functions is
based on affine functions. The operators for the intervals, octagons and convex
polyhedra abstract domains are provided by the APRON library [14]. It is also
possible to activate the extension to ordinal-valued ranking functions [22] and
tune the precision of the analysis by adjusting the widening delay.

The analysis proceeds by structural induction on the program syntax, iterating
loops with widening (and, for recurrence properties, both widening and dual
widening) until stabilization. In case of nested loops, the analysis stabilizes the
inner loop for each iteration of the outer loop.

To illustrate the effectiveness of our new static analysis methods, we consider
more examples besides the program SIMPLE of Section 1.

Example 8. Let us consider the program COUNT-DOWN in Figure 4 and the
recurrence property �♦x = 0. At each iteration of the outer loop, the variable
x takes the value of some counter c (which initially has value one); then, the
inner loop decreases the value of x and increases the value of the counter c until
x becomes less than or equal to zero. The recurrence property is clearly satisfied

3 http://www.di.ens.fr/~urban/FuncTion.html

http://www.di.ens.fr/~urban/FuncTion.html
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while 1( true ) do
2x := ?;

while 3( x �= 0 ) do

if 4( x > 0 ) then 5x := x − 1; else 6x := x + 1; fi

Fig. 5. Program SINK

and indeed our prototype (parameterized by intervals and affine functions) is able
to prove it: the piecewise-defined ranking function inferred at program control
point 1 bounds the wait for the next occurrence of the desirable state x = 0 by
five program execution steps (i.e., executing the assignment c := 1, testing the
outer loop condition, executing the assignment x := c, testing the inner loop
condition and executing the assignment x := x − 1). The analysis infers a
more interesting raking function associated to program control point 4:

f r4 (x, c) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3c+ 2 x < 0 ∧ c > 0

3 x < 0 ∧ c = 0

1 x = 0 ∧ c ≥ 0

3x− 1 (x = 1 ∧ c ≥ − 1) ∨ (x ≥ 2 ∧ c ≥ − 2)

undefined otherwise

The function bounds the wait for the next occurrence of x = 0 by 3c+2 execution
steps if x < 0 ∧ c > 0, by 3 execution steps if x < 0 ∧ c = 0 (i.e., testing the inner
loop condition, testing the outer loop condition and executing the assignment
x := c), by 1 execution step if x = 0 ∧ c ≥ 0 (i.e., testing the inner loop
condition) and by 3x−1 execution steps if (x = 1 ∧ c ≥ −1) ∨ (x ≥ 2 ∧ c ≥ −2).
In the last case there is a precision loss due to a lack of expressiveness of the
intervals abstract domain: if x is strictly positive at program control point 4, the
weakest precondition ensuring infinitely many occurrences of the desirable state
x = 0 is c ≥ −x (which is not representable in the intervals abstract domain).

��

Example 9. Let us consider the program SINK in Figure 5 and the recurrence
property �♦x = 0. At each iteration of the outer loop, the value of the variable
x is reset by the non-deterministic assignment x := ?; then, the inner loop
decreases or increases the value of x until it becomes equal to zero. Note that the
program features unbounded non-determinism due to the assignment x := ?.
The recurrence property is clearly satisfied, however the number of execution
steps between two occurrences of the desirable state x = 0 is unbounded. Our
prototype (parameterized by intervals and ordinal-valued ranking functions) is
able to prove it as, at program control point 1, it finds a ranking function defined
everywhere; its value is ω + 8, meaning that the number of execution steps
between two occurrences of the desirable state x = 0 is unbounded but finite.

��
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flag1 := 0; flag2 := 0;⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

while 1( true ) do
2flag1 := 1
3turn := 2

while 4( flag2 �= 0 ∧ turn �= 1 ) do

BUSY WAIT

5
CRITICAL SECTION

6flag1 := 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
‖

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

while 1( true ) do
2flag2 := 1
3turn := 1

while 4( flag1 �= 0 ∧ turn �= 2 ) do

BUSY WAIT

5
CRITICAL SECTION

6flag2 := 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6. Program PETERSON (Peterson’s Algorithm)

Example 10. Let us consider the program PETERSON, Peterson’s algorithm for
mutual exclusion, in Figure 6. Note that weak fairness assumptions are required
in order to guarantee bounded bypass (i.e., a process cannot be bypassed by
any other process in entering the critical section for more than a finite number
of times). Since at the moment our prototype is not able to directly analyze
concurrent programs, we have modeled the algorithm as a fair non-deterministic
sequential program which interleaves execution steps from both processes while
enforcing 1-bounded bypass (i.e., a process cannot be bypassed by any other
process in entering the critical section for more than once). Our prototype is able
to prove that both processes are allowed to enter their critical section infinitely
often. ��

These and additional examples are available from FuncTion web interface.

9 Related Work

In the recent past, a large body of work has been devoted to proving liveness
properties of (concurrent) programs.

A successful approach for proving liveness properties is based on a transfor-
mation from model checking of liveness properties to model checking of safety
properties [3]. The approach looks for and exploits lasso-shaped counterexam-
ples. A similar search for lasso-shaped counterexamples has been used to gen-
eralize the model checking algorithm IC3 to deal with liveness properties [4].
However, in general, counterexamples to liveness properties in infinite-state sys-
tems are not necessarily lasso-shaped. Our approach is not counterexample-based
and is meant for proving liveness properties directly, without reduction to safety
properties.

In [20], Podelski and Rybalchenko present a method for the verification of
liveness properties based on transition invariants [19]. The approach, as in [24],
reduces the proof of a liveness properties to the proof of fair termination by
means of a program transformation. It is at the basis of the industrial-scale tool
Terminator [6]. By contrast, our method is meant for proving liveness properties
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directly, without reduction to termination. Moreover, it avoids the cost of explicit
checking for the well-foundedness of the transition invariants.

A distinguishing aspect of our work is the use of infinite height abstract do-
mains, equipped with (dual) widening. We are aware of only one other such
work: in [16], Massé proposes a method for proving arbitrary temporal proper-
ties based on abstract domains for lower closure operators. A small analyzer is
presented in [17] but the approach remains mainly theoretical. We believe that
our framework, albeit less general, is more straightforward and of practical use.

An emerging trend focuses on proving existential temporal properties (e.g.,
proving that there exists a particular execution trace). The most recent ap-
proaches [2,7] are based on counterexample-guided abstraction refinement. Our
work is designed for proving universal temporal properties (i.e., valid for all pro-
gram execution traces). We leave proving existential temporal properties as part
of our future work.

Finally, to our knowledge, the inference of sufficient preconditions for guaran-
tee and recurrence program properties, and the ability to provide upper bounds
on the wait before a program reaches a desirable state, is unique to our work.

10 Conclusion and Future Work

In this paper, we have presented an abstract interpretation framework for prov-
ing guarantee and recurrence temporal properties of programs. We have system-
atically derived by abstract interpretation new sound static analysis methods
to effectively infer sufficient preconditions for these temporal properties, and to
provide upper bounds on the wait before a program reaches a desirable state.

It remains for future work to express and handle fairness properties. We also
plan to extend the present framework to the full hierarchy of temporal prop-
erties [15] and more generally to arbitrary (universal and existential) liveness
properties.
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Abstract. In this paper we apply tree-automata techniques to refine-
ment of abstract interpretation in Horn clause verification. We go beyond
previous work on refining trace abstractions; firstly we handle tree au-
tomata rather than string automata and thereby can capture traces in
any Horn clause derivations rather than just transition systems; secondly,
we show how algorithms manipulating tree automata interact with ab-
stract interpretations, establishing progress in refinement and generating
refined clauses that eliminate causes of imprecision. We show how to de-
rive a refined set of Horn clauses in which given infeasible traces have
been eliminated, using a recent optimised algorithm for tree automata
determinisation. We also show how we can introduce disjunctive abstrac-
tions selectively by splitting states in the tree automaton. The approach
is independent of the abstract domain and constraint theory underly-
ing the Horn clauses. Experiments using linear constraint problems and
the abstract domain of convex polyhedra show that the refinement tech-
nique is practical and that iteration of abstract interpretation with tree
automata-based refinement solves many challenging Horn clause verifi-
cation problems. We compare the results with other state of the art Horn
clause verification tools.

1 Introduction

In this paper we apply tree-automata techniques to refinement of abstract inter-
pretation in Horn clause verification. We go beyond previous work on refining
trace abstractions [23]; firstly, we handle tree automata rather than word au-
tomata and thereby can capture traces in any Horn clause derivations rather
than just transition systems; secondly, we show how algorithms manipulating
tree automata interact with abstract interpretations, establishing progress in
refinement and generating refined clauses that eliminate causes of imprecision.

More specifically, we show how to construct tree automata capturing both
the traces (derivations) of a given set of Horn clauses and also one or more
infeasible traces discovered after abstract interpretation of the clauses. From
these we construct a refined automaton in which the infeasible trace(s) have been
eliminated and a new set of clauses is constructed from the refined automaton.
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This guarantees progress in that the same infeasible trace cannot be generated
(in any abstract interpretation). In addition, the clauses are restructured during
the elimination of the trace, leading to more precise abstractions which can
lead to better invariant generation in subsequent iterations. The refinement is
manifested in the refined clauses, rather than in an accumulated set of properties
as in the counterexample-guided abstraction refinement (CEGAR) [8] approach.
We rely on the abstract interpretation of the clauses to generate useful properties,
rather than hoping to find them during the refinement itself.

We also show how we can introduce disjunctive abstractions selectively by
splitting states in the tree automaton. The approach is independent of the ab-
stract domain and constraint theory underlying the Horn clauses. Experiments
using linear constraint problems and the abstract domain of convex polyhedra
show that the refinement technique is practical and that iteration of abstract in-
terpretation with tree automata-based refinement solves many challenging Horn
clause verification problems. We compare the results with other state of the art
Horn clause verification tools.

The main contributions of this paper are the following; (1) We construct a cor-
respondence between computations using Horn clauses and finite tree automata
(FTA) (Section 3). (2) We construct a refined set of clauses directly from a
tree automaton representation of the clauses and an infeasible trace; the trace
is eliminated from the refined clauses (Section 3.5) (3) We propose a “splitting”
operator on FTAs (Section 2) and describe its role in Horn clause verification
(Section 4.1). (4) We demonstrate the feasibility of our approach in practice
applying it to Horn clause verification problems (Section 5).

2 Finite Tree Automata

Finite tree automata (FTAs) are mathematical machines that define so-called
recognisable tree languages, which are possibly infinite sets of terms that have
desirable properties such as closure under Boolean set operations and decidability
of membership and emptiness.

Definition 1 (Finite tree automaton). An FTA A is a tuple (Q,Qf , Σ,Δ),
where Q is a finite set of states, Q ⊆ Qf is a set of final states, Σ is a set of
function symbols, and Δ is a set of transitions. We assume that Q and Σ are
disjoint.

Each function symbol f ∈ Σ has an arity n ≥ 0, written as ar(f) = n. The
function symbols with arity 0 are called constants. Term(Σ) is the set of ground
terms or trees constructed from Σ where t ∈ Term(Σ) iff t ∈ Σ is a constant
or t = f(t1, t2, ..., tn) where ar(f) = n and t1, t2, ..., tn ∈ Term(Σ). Similarly
Term(Σ ∪ Q) is the set of terms/trees constructed from Σ and Q, treating the
elements of Q as constants.

Each transition in Δ is of the form f(q1, q2, ..., qn)→ q where ar(f) = n. Given
δ ∈ Δ we refer to its left- and right-hand-sides as lhs(δ) and rhs(δ) respectively.
Let ⇒ be a one-step rewrite in which t1 ⇒ t2 iff t2 is the result of replacing one
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subterm of t1 equal to lhs(δ) by rhs(δ), from some δ ∈ Δ. The reflexive, transitive
closure of⇒ is ⇒∗. We say there is a run (resp. successful run) for t ∈ Term(Σ)
if t ⇒∗ q where q ∈ Q (resp. q ∈ Qf), and we say that t is accepted if t has a
successful run. An FTA A defines a set of terms, that is, a tree language, denoted
by L(A), as the set of all terms accepted by A.

Definition 2 (Deterministic FTA (DFTA)). An FTA (Q,Qf , Σ,Δ) is called
bottom-up deterministic iff Δ has no two transitions with the same left hand side.

We omit the adjective “bottom-up” in this paper and just refer to deterministic
FTAs. Runs of a DFTA are deterministic in the sense that for every t ∈ Term(Σ)
there is at most one q ∈ Q such that t⇒∗ q.

2.1 Operations on FTAs

FTAs are closed under Boolean set operations, but for our purposes we mention
only union and difference of automata, where in addition we assume that the
signature Σ is fixed and that the states of FTAs are disjoint from each other
when applying operations (the states can be renamed apart).

Definition 3 (Union of FTAs). Let A1,A2 be FTAs (Q1, Q1
f , Σ,Δ

1) and

(Q2, Q2
f , Σ,Δ

2) respectively. Then A1 ∪ A2 = (Q1 ∪ Q2, Q1
f ∪ Q2

f , Σ,Δ
1 ∪Δ2),

and we have L(A1 ∪A2) = L(A1) ∪ L(A2).

Determinisation plays a key role in the theory of FTAs. As far as expressive-
ness is concerned, we can limit our attention to DFTAs since for every FTA A
there exists a DFTA Ad such that L(A) = L(Ad) [9]. The standard construction
builds a DFTA Ad whose states are elements of the powerset of the states of
A. The textbook procedure for constructing Ad from A [9] is not viewed as a
practical procedure for manipulating tree automata, even fairly small ones. In
a recent work Gallagher et al. [14] developed an optimised algorithm for deter-
minisation, whose worst-case complexity remains unchanged, but which performs
dramatically better than existing algorithms in practice. A critical aspect of the
algorithm is that the transitions of the determinised automaton are generated
in a potentially very compact form called product form, which can often be used
directly when manipulating the determinised automaton.

Definition 4 (Product Transition). A product transition is of the form
f(Q1, . . . , Qn) → q where Qi are sets of states and q is a state. The product
transition represents a set of transitions {f(q1, . . . , qn)→ q | qi ∈ Qi, i = 1..n}.
Thus Πn

i=1|Qi| transitions are represented by a single product transition.

Alternatively, we can regard a product transition as introducing ε-transitions.
An ε-transition has the form q1 → q2 where q1, q2 are states. ε-transitions can be
eliminated, if desired. Given a product transition f(Q1, . . . , Qn)→ q, introduce
n new non-final states s1, . . . , sn corresponding to Q1, . . . , Qn respectively and
replace the product transition by the set of transitions {f(s1, . . . , sn) → q} ∪
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{q′ → si | q′ ∈ Qi, 1 = 1..n}. It can be shown that this transformation preserves
the language of the FTA.

Given FTAs A1 and A2 there exists an FTA A1 \A2 such that L(A1 \A2) =
L(A1)\L(A2). To construct the difference FTA we use union and determinisation
and exploit the following property of determinised states [14].

Property 1. Let Ad be the DFTA constructed from A. Let Q be the states of
A. Then there is a run t ⇒∗ q in A if and only if there is a run t ⇒∗ Q′ in Ad

where Q′ ∈ 2Q, such that q ∈ Q′.

Furthermore recall that a term is accepted by at most one state in a DFTA. This
gives rise to the following construction of the difference FTA A1 \ A2. We first
form the DFTA for the union of the two FTAs and then remove those of its final
states containing the final states of A2. In this way we remove the terms, and
only the terms (by Property 1), accepted by A2. The availability of a practical
algorithm for determinisation is what makes this construction of the difference
FTA feasible.

Definition 5 (Construction of difference of FTAs). Let A1,A2 be FTAs
(Q1, Q1

f , Σ,Δ
1) and (Q2, Q2

f , Σ,Δ
2) respectively. Let (Q′,Q′f , Σ,Δ′) be the de-

terminisation of A1 ∪ A2. Let Q2 = {Q′ ∈ Q′ | Q′ ∩ Q2
f 
= ∅}. Then A1 \ A2 =

(Q′,Q′f \ Q2, Σ,Δ′).

Next we introduce a new operation over FTA called state splitting. which
consists of splitting a state q into a number of states, based on a partition of the
set of transitions whose rhs is q. We define this splitting as follows:

Definition 6 (Splitting a state in an FTA). Let A = (Q,Qf , Σ,Δ) be an
FTA. Let q ∈ Q and Δq = {t ∈ Δ | rhs(t) = q}. Let Φ = {Δ1

q, . . . , Δ
k
q} (k > 1) be

some partition of Δq. Introduce k new states q1, . . . , qk. Then the FTA splitΦ(A)
is (Qs, Qs

f , Σ,Δ
s) where:

– Qs = Q \ {q} ∪ {q1, . . . , qk};
– Qs

f = Qf \ {q} ∪ {q1, . . . , qk} if q ∈ Qf , otherwise Q
s
f = Qf ;

– Δs = unfoldq(Δ \Δq ∪ {lhs(t) → qi | t ∈ Δi
q, i = 1..k}), where unfoldq(Δ

′)
is the result of repeatedly replacing a transition f(. . . , q, . . .) → s ∈ Δ′ by
the set of k transitions {f(. . . , q1, . . .) → s, . . . , f(. . . , qk, . . .) → s} until no
more such replacements can be made.

We have L(A) = L(splitΦ(A)).

3 Horn Clauses and Their Trace Automata

A constrained Horn clause (CHC) is a first order predicate logic formula of the
form ∀(φ ∧ p1(X1) ∧ . . . ∧ pk(Xk)→ p(X)) (k ≥ 0), where φ is a conjunction of
constraints with respect to some background theory, Xi, X are (possibly empty)
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vectors of distinct variables, p1, . . . , pk, p are predicate symbols, p(X) is the head
of the clause and φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) is the body.

There is a distinguished predicate symbol false which is interpreted as false.
In practice the predicate false only occurs in the head of clauses; we call clauses
whose head is false integrity constraints, following the terminology of deductive
databases. They are also sometimes referred to as negative clauses. We follow
the syntactic conventions of constraint logic programs and write a clause as
p(X)← φ, p1(X1), . . . , pk(Xk).

3.1 Interpretations and Models

An interpretation of a set of CHCs is represented as a set of constrained facts of
the form A ← φ where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn

are distinct variables and φ is a constraint over Z1, . . . , Zn. The constrained fact
A← φ is shorthand for the set of variable-free facts Aθ such that φθ holds in the
constraint theory, and an interpretation M denotes the set of all facts denoted
by its elements; M assigns true to exactly those facts. M1 ⊆ M2 if the set of
denoted facts of M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each
clause. There exists a minimal model with respect to the subset ordering, denoted
M [[P ]] where P is the set of CHCs.M [[P ]] can be computed as the least fixed point
(lfp) of an immediate consequences operator (called SD

P in [25, Section 4]), which
is an extension of the standard TP operator from logic programming, extended
to handle the constraint domain D. Furthermore lfp(SD

P ) can be computed as
the limit of the ascending sequence of interpretations ∅, SD

P (∅), SD
P (SD

P (∅)), . . ..
This sequence provides a basis for abstract interpretation of CHC clauses. The
minimal model of P is equivalent to the set of atomic logic consequences of P .

3.2 The Constrained Horn Clause Verification Problem.

Given a set of CHCs P , the CHC verification problem is to check whether there
exists a model of P . Obviously any model of P assigns false to the bodies of
integrity constraints. We restate this property in terms of the derivability of the
predicate false. Let P |= F mean that F is a logical consequence of P , that is,
that every interpretation satisifying P also satisfies F .

Lemma 1. P has a model if and only if P 
|= false.

This lemma holds for arbitrary interpretations (only assuming that the predicate
false is interpreted as false), uses only the textbook definitions of “interpretation”
and “model” and does not depend on the constraint theory. Due to the equiva-
lence of the minimal model of P with the set of atomic logical consequences of
P , we have yet another equivalent formulation of the CHC verification problem.

Lemma 2. P has a model if and only if false 
∈M [[P ]].
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c1. mc91(A,B) :- A > 100, B = A-10.

c2. mc91(A,B) :- A =< 100, C = A+11, mc91(C,D), mc91(D,B).

c3. false :- A =< 100, B > 91, mc91(A,B).

c4. false :- A =< 100, B =< 90, mc91(A,B).

Fig. 1. Example CHCs. The McCarthy 91-function.

It is this formulation that is most relevant to our method, since we compute
over-approximations of M [[P ]] by abstract interpretation. That is, if false 
∈ M ′

where M [[P ]] ⊆M ′ then we have shown that P has a model.

3.3 Trace Automata for CHCs

Before constructing the trace automaton we introduce identifiers for each clause.
An identifier is a function symbol whose arity is the same as the number of
atoms in the clause body. For instance a clause p(X)← φ, p1(X1), . . . , pk(Xk) is
assigned a function symbol with arity k. More than one clause can be assigned
the same function symbol, but all the clauses with the same identifier have the
same structure, including their constraints; that is, they differ only in one or
more predicate names. Given a set of CHCs and a set Σ of ranked function
symbols, let idP : P → Σ be the assignment of function symbols to clauses.

Definition 7 (Trace FTA for a set of CHCs). Let P be a set of CHCs.
Define the trace FTA for P as AP = (Q,Qf , Σ,Δ) where

– Q is the set of predicate symbols of P ;
– Qf ⊆ Q is the set of predicate symbols occurring in the heads of clauses of
P ;

– Σ is a set of function symbols;
– Δ = {c(p1, . . . , pk) → p | where c ∈ Σ, c = idP (cl),where cl = p(X) ←
φ, p1(X1), . . . , pk(Xk)}.

The elements of L(AP ) are called trace terms for P . In Section 4 we will see
that several clauses differing only in their predicate names are assigned the same
function symbol.

To motivate readers, we present an example set of CHCs P in Figure 1 which
will be used throughout this paper. This is an interesting problem in which the
computations are trees rather than linear sequences.

Example 1. Let P be the set of CHCs in Figure 1. Let idP map the clauses to
c1, . . . , c4 respectively. Then AP = (Q,Qf , Σ,Δ) where:

Q = {mc91, false} Δ = {c1 → mc91,
Qf = {mc91, false} c2(mc91, mc91)→ mc91,
Σ = {c1, c2, c3, c4} c3(mc91)→ false, c4(mc91)→ false}

For each trace term there exists a corresponding derivation tree called an
AND-tree, which is unique up to variable renaming. The concept of an AND-
tree is derived from [33] and [16].
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Definition 8 (AND-tree for a trace term). Let P be a set of CHCs and
let t ∈ L(AP ). Denote by AND(t) the following labelled tree, where each node of
AND(t) is labelled by a clause and an atomic formula.

1. For each subterm cj(t1, . . . , tk) of t there is a corresponding node in AND(t)
labelled by an atom p(X) and (a renamed variant of) some clause p(X) ←
φ, p1(X1), . . . , pk(Xk) such that cj = idP (p(X) ← φ, p1(X1), . . . , pk(Xk));
the node’s children (if k > 0) are the nodes corresponding to t1, . . . , tk and
are labelled by p1(X1), . . . , pk(Xk).

2. The variables in the labels are chosen such that if a node n is labelled by a
clause, the local variables in the clause body do not occur outside the subtree
rooted at n.

Definition 9 (Trace constraints). Let P be a set of CHCs. The set of con-
straints of a trace t ∈ L(AP ), represented as constr(t) is the set of all constraints
in the clause labels of AND(t).

Definition 10 (Feasible trace). We say that a trace term t is feasible if
constr(t) is satisfiable.

Definition 11 (FTA for a trace term). Let P be a set of CHCs and t ∈
L(AP ). The FTA At (whose construction is trivial) such that L(At) = {t} is
called the FTA for t. The states of At are chosen to be disjoint from those of
AP .

Example 2 (Trace FTA). Consider the FTA in Example 1. Let t = c3(c2(c1, c1)).
Each nodei represents a label in the trace. Then At = (Q,Qf , Σ,Δ) is defined
as:

Q = {node1, node2, node3, node4}
Qf = {node1}
Σ = {c1, c2, c3, c4}
Δ = {c1 → node3, c1 → node4, c2(node3, node4)→ node2,

c3(node2)→ node1}
and Σ is the same as in AP . The trace t is not feasible since constr(t) =
{A ≤ 100, B > 91, A ≤ 100, C = A+ 11, C > 100, D = C− 10, D > 100, B = D− 10}
and this is not satisfiable.

Definition 12 (Constrained trace atom). Let P be a set of CHCs and t ∈
L(AP ). Let p(X) be the atom labelling the root of AND(t). Then the constrained
trace atom of t is ∀X.(∃Z̄.constr(t)→ p(X)), where Z̄ = vars(constr(t)) \X.

We now restate a standard result from constraint logic programming [25] in
terms of the concepts defined above.

Proposition 1. Let P be a set of CHCs.

1. Then for all t ∈ L(AP ) the constrained trace atom for t is a logical conse-
quence of P . (Note that if t is not feasible this is trivially true).
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2. If p(a) is in the minimal model of P , there exists a feasible trace t ∈ L(AP )
whose constrained trace atom is of the form ∀X.φ → p(X) where the con-
straint φ[X/a] is true.

Assuming that the constraint theory has a complete satisfiability procedure, part
1 of Proposition 1 corresponds to the standard soundness result for resolution-
based proof systems, and part 2 corresponds to completeness.

3.4 Model-Preserving Transformation of Trace Automata

Proposition 1 implies that the constrained trace atoms for the feasible traces
describe exactly the elements of the minimal model, which is equivalent to the
set of atomic logical consequences of P . As a consequence the set of feasible
traces in L(AP ) can be regarded as a representation of the minimal model of P .

If we transform AP to another FTA while preserving the set of traces, we also
preserve the feasible traces. More generally, we can transform AP to another
FTA A′ so long as L(A′) ⊆ L(AP ) and the elements of L(AP ) \ L(A′) are all
infeasible. In this case the feasible traces of L(A′) are still a representation of
the minimal model of P . We will exploit this in our refinement procedure (see
Section 4).

3.5 Generation of CHCs from a Trace FTA

Now we describe a procedure (Algorithm 1) for generating a set of clauses P ′

from an FTA A = (Q,Qf , Σ,Δ) and a set of clauses P . We assume that Σ is the
same as that of AP ; so Σ is the range of the function idP mapping clauses of P to
function symbols. The transitions Δ are not in product form; a modification of
the algorithm and its correctness proposition is possible for product form but we
omit that here. We first introduce an injective function for renaming the states
of A since we need predicate names for the generated clauses.

ρ : Q→ Predicates

The function ρ maps each FTA state to a distinct predicate name. The algorithm
simply generates a clause for each transition, applying the renaming function
from states to predicates, and introducing variables arguments according to the
pattern obtained from any clause with the corresponding identifier (all clauses
with the same identifier having the same variable pattern).

Apart from generating a set of clauses P ′, Algorithm 1 also generates the
clause identification mapping idP ′ , preserving the function symbols from the
FTA. In this way the set of traces is preserved from P to P ′. The correctness of
Algorithm 1 is expressed by the following proposition.

Proposition 2. Let P be a set of CHCs and let A be an FTA whose signature
is the same as that of AP . Let P

′ be the set of clauses generated from A and
P by Algorithm 1. Then L(AP ′ ) = L(A). Furthermore if L(AP ′ ) includes all
the feasible traces of L(AP ) then the minimal model of P ′ is the same as the
minimal model of P , modulo predicate renaming.
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Input: An FTA A = (Q,Qf , Σ,Δ) and a set of Horn clauses P
Output: A set of Horn clauses P ′

P ′ ← ∅;
for each ci(q1, . . . , qn)→ q (where n ≥ 0) ∈ Δ do

let c = p(X)← φ, p1(X1), . . . , pn(Xn) be any clause in P where idP (c) = ci;
cnew = ρ(q)(X)← φ, ρ(q1)(X1), . . . , ρ(qn)(Xn) ;
idP ′(cnew) = ci;
P ′ ← P ′ ∪ {cnew};

end
return P ′;

Algorithm 1. Algorithm for generating a set of clauses from an FTA

Example 3 (Generation of clauses from an FTA). Consider the following tran-
sitions, relating to the signature for the program in Figure 1. The set of states is
{[false],[mc91],[e,false],[mc91,e1]}. (These are elements of the powerset
of the set of states {false,mc91,e,e1}, which were generated by the determin-
isation algorithm).

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91, e1]) -> [false].

c4([mc91]) -> [false].

c3([mc91, e1]) -> [e, false].

The clauses generated by Algorithm 1 are the following, with the renaming func-
tion ρ = {[false] 	→ false, [mc91] 	→ mc91, [e, false] 	→ false 1, [mc91, e1] 	→
mc91 1}. Below we also show the clause identifiers (the id function for the gen-
erated clauses) showing that several clauses can have the same identifier, thus
preserving traces.

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

c3: false_1 :- A =< 100, B > 91, mc91_1(A,B).
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3.6 Abstract Interpretation of Constrained Horn Clauses

Abstract interpretation [10] is a static program analysis techniques which de-
rives sound over-approximations by computing abstract fixed points. Convex
polyhedron analysis (CPA) [11] is a program analysis technique based on ab-
stract interpretation [10]. When applied to a set of CHCs P it constructs an
over-approximationM ′ of the minimal model of P , where M ′ contains at most
one constrained fact p(X) ← φ for each predicate p. The constraint φ is a
conjunction of linear inequalities, representing a convex polyhedron. The first
application of convex polyhedron analysis to CHCs was by Benoy and King [4].

We summarise briefly the elements of convex polyhedron analysis for CHC;
further details (with application to CHC) can be found in [11,4]. The abstract
interpretation consists of the computation of an increasing sequence of elements
of the abstract domain of tuples of convex polyhedra (one for each predicate)
Dn. We construct a monotonic abstract semantic function FP : Dn → Dn for the
set of Horn clauses P , approximating the concrete semantic “immediate conse-
quences” operator. Since Dn contains infinite increasing chains, a widening op-
erator for convex polyhedra [11] is needed to ensure convergence of the sequence.
The sequence computed is Z0 = ⊥n, Zn+1 = Zn∇FP (Zn) where ∇ is a widening
operator for convex polyhedra and the empty polyhedron is denoted ⊥. The con-
ditions on ∇ ensure that the sequence stabilises; thus for some finite j, Zi = Zj

for all i > j and furthermore the value Zj represents an over-approximation of
the least model of P . Much research has been done on improving the precision of
widening operators. One technique is known as widening-upto, or widening with
thresholds [22]. A threshold is an assertion that is combined with a widening
operator to improve its precision.

Our tool for convex polyhedral abstract interpretation, called CPA in the rest
of this paper, uses the Parma Polyhedra Library [2] to implement the operations
on convex polyhedra, and incorporates a threshold generation phase based on
the method described by Lakhdar-Chaouch et al. [27], as well as a constraint
strengthening pre-processing which propagates constraints both forwards and
backwards in the clauses of P . Space does not permit a detailed explanation.

4 Refinement of Horn Clauses Using Trace Automata

If an over-approximation of the clauses derived by polyhedral abstraction does
not contain false, the clauses are safe. However if false is contained in the ap-
proximation, we do not know whether the clauses are unsafe or whether the
approximation was too imprecise. In such cases we can produce a trace term
using the clauses in P which justifies the abstract derivation of false. The feasi-
bility of this trace can be checked by a constraint satisfiability check. If the trace
is feasible, then it corresponds to a proof of unsafety. Otherwise, refinement is
considered based on this trace. In some approaches, a more precise abstract do-
main is derived from the trace. In our refinement approach, which is described
next, we aim to generate a modified set of clauses that could yield a better
approximation. This is achieved through the steps shown in Algorithm 2.
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Input: A set of Horn clauses P and an infeasible trace t
Output: A set of Horn clauses P ′

1. construct the trace FTA AP (Definition 7);
2. construct an FTA At such that L(At) = {t} (Definition 11);
3. compute the difference FTA AP \ At (Definition 5);
4. generate P ′ from AP \ At and P (Algorithm 1) ;
return P ′;

Algorithm 2. Algorithm for clause refinement

Both AP and At in Algorithm 2 are deterministic by construction, however
their union is not. Determinisation is used to generate the difference FTA (step
3) and its result is in product form. The program P ′ has the same model (modulo
predicate renaming) as P , since the steps result in the removal of an infeasible
trace but all other traces are preserved.

Removal of one trace from the clauses might not seem much of a refinement.
However, the restructuring of the clauses required to remove a trace can split the
predicates. This restructuring is the effect of determinisation, which isolates the
infeasible trace. This in turn can induce a more precise abstract interpretation,
with less precision loss due to convex hull operations and widening.

The correctness of this refinement follows from Proposition 2. In particular
false ∈M [[P ]] if and only if false ∈M [[P ′]] (assuming that the predicate renaming
at least preserves the predicate name false).

Example 4. Consider again the FTA shown in Example 3. This is in fact the
determinisation of AP ∪ At where P is the set of clauses in Figure 1 and At

where t is the infeasible trace c3(c1). The only accepting state of At is e; thus
to construct the difference AP \At we need only to remove from the automaton
the states containing e, namely [mc91,e]. We can also remove any transitions
containing this state in the right hand side. This leaves the following FTA and
refined program, using the same renaming function as in Example 3. In this
program, the infeasible trace corresponding to c3(c1) cannot be constructed.

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91]) -> [false].

c4([mc91, e1]) -> [false].

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).
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c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

It can be seen that although the infeasible trace was very simple, its removal led
to a considerably restructured set of clauses. We have not shown the product
form here, which is in fact somewhat more compact.

The refinement process guarantees progress; that is, the infeasible computa-
tion once eliminated never arises again. Due to the construction of the idmapping
for P ′ the traces in the languages of the FTAs of P and P ′ are preserved, apart
from the eliminated trace.

Proposition 3 (Progress). Let P be a set of CHCs, and t be a trace in P .
Let P ′ be a refined set of CHCs obtained from P after the removal of t. Then t
cannot be generated in any approximation of P ′.

After the removal of the trace t (step 3 of Algorithm 2) the language of AP \At

does not contain t. Then using Algorithm 1 to generate P ′, t will not be a possible
trace in P ′. It is physically impossible to construct t, in any abstract domain.

4.1 Further Refinement: Splitting a State in the Trace FTA

We also apply a tree-automata-based transformation to split states represent-
ing predicates where convex hull operations have lost precision. A typical case
is where a number of clauses with the same head predicate contain disjoint
constraints, such as a predicate representing an if-then-else statement in an im-
perative program. The clauses defining the statement will have a clause for the
then branch and a clause for the else branch. The respective constraints in these
clauses are disjoint since one is the negation of the other. The convex hull will
thus contain the whole space for the variables involved in these constraints.

As defined in Definition 6, the FTA state corresponding to such a predicate
can be split. We partition the transitions corresponding to the clauses according
to the disjoint groups of constraints and apply the procedure in Definition 6, pre-
serving the set of traces. Thus the feasible traces and the model of the resulting
clauses is preserved. This enhances precision of polyhedral analysis [15].

Splitting has to be carried out in a controlled manner to prevent blow up in
the size of FTA and hence on the size of the clauses generated. With this in
mind we split only those states appearing in a counterexample trace.

5 Experiments on CHC Benchmark Problems

Our tool consists of an implementation of a convex polyhedra analyser for CLP
written in Ciao Prolog1 interfaced to the Parma Polyhedra Library [2] as well as
an implementation of an FTA determiniser written in Java. It takes as input a

1 http://ciao-lang.org/

http://ciao-lang.org/
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FTAM – Finite tree automata manipulation

AI –Abstract interpretation

CG – Clauses generation
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Fig. 2. Abstraction-refinement scheme in Horn clause verification

CLP program and returns “safe”, “unsafe” or “unknown” (after timeout). The
benchmark set contains 216 CHCs verification problems (179 safe and 37 unsafe
problems), taken mainly from the repositories of several state-of-the-art soft-
ware verification tools such as DAGGER [19] (21 problems), TRACER [26] (66
problems), InvGen [21] (68 problems), and also from the TACAS 2013 Software
Verification Competition [5] (52 problems). Most of these problems are avail-
able in C and they were first translated to CLP form2. The chosen problems are
representatives of different categories of the Software Verification Competition
(loops, control flow and integer, SystemC etc.) as well as specific problems used
to demonstrate the strength of different verification tools. The benchmarks are
available from http://akira.ruc.dk/~kafle/VMCAI15-Benchmarks.zip. The
experiments were carried out on an Intel(R) quad-core computer with a 2.66GHz
processor running Debian 5 in 6 GB memory.

5.1 Summary of Results

The results of our experiments are summarised in Table 3. Column CPA sum-
marises the results using our own convex polyhedra analyser (Section 3.6) with
no refinement step. Column CPA+R shows the results obtained by iterating the
CPA algorithm with the refinement step described in Section 4, Algorithm 2.
Column CPA+R+Split incorporates the FTA-based state splitting into the re-
finement step (Section 4.1). Column QARMC shows the results obtained on the
same problems using the QARMC tool [31].

5.2 Discussion of Results

The results show that CPA is reasonably effective on its own, solving 74%
(160/216) of the problems, though it times out for seven problems. When com-
bined with a refinement phase we can solve 22 further problems. Although only

2 Thanks to Emanuele De Angelis for the translation.

http://akira.ruc.dk/~ kafle/VMCAI15-Benchmarks.zip
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CPA CPA+R CPA+R+Split QARMC

solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37)

unknown/ timeout 49/7 -/34 -/22 -/38

average time (secs.) 5.98 51.66 50.08 59.1

% solved 74 84.25 90.27 82.4

Fig. 3. Experimental results on 216 (179 safe / 37 unsafe) CHC verification problems
with a timeout of five minutes

one infeasible trace is eliminated in each refinement step, the refined program
splits some of the predicates appearing in the trace, which we noted to be a
crucial point of precision for polyhedral analysis [15]. When adding the state
splitting refinement we solve an additional 13 problems. Further splitting would
solve more problems but we are unwilling to introduce uncontrolled splitting
due to the blow up in program size that could result. The maximum number
of iterations required to solve a problem was 8. Although the timeout limit was
five minutes, only 5% of the solved problems required more than one minute.
QARMC tends to perform more (but faster) iterations.

Our implementation uses the product form for DFTAs produced by the deter-
minisation algorithm, although the formalisation of refinement in Section 4 uses
only standard FTA transitions. Although the traces for clauses with predicates
produced from product states differ from the original clauses, they can be re-
garded as representing the original traces, by unfolding the clauses resulting from
ε-transitions. Product form adds to the scalability of the approach, especially for
Horn clauses with more than one body atom.

5.3 Comparison with Other Tools

Our results improve on QARMC both in average time and the number of in-
stances solved. Out of 216 problems QARMC solves 178 problems with an aver-
age time of 59 seconds whereas we can solve 195 problems with an average time
of 50 seconds. However, all unsafe programs in the benchmark set are solved
by QARMC in contrast to ours. Convex polyhedral analysis is good at finding
the required invariants to prove a program safe and due to this we solved more
safe problems than QARMC. QARMC seems to be more effective at finding
bugs. Most of the problems challenging to us come from particular categories
e.g. SystemC (modelled over fixed size integers) and Control Flow and Integer
Variables of [5] which requires some specific techniques to solve. Safe problems
challenging to us are also challenging to QARMC though this is not the case for
unsafe problems.

6 Related Work

The work by Heizmann et al. [23,24] uses word automata to construct a frame-
work for abstraction refinement. Our work could certainly be regarded as
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extending that framework to tree-structured computations, using tree automata
instead of (nested) word automata. However our aim is rather different. We
use automata techniques to perform the refinement whereas in [23] automata
notation is only used to re-express the verification problem, shifting the verifica-
tion problem to the construction of “interpolant automata”, without providing
any automata-based algorithms to do this. On the other hand we discuss the
practicality of the automata-based approach on a set of challenging problems.

While we eliminate only one trace at a time in the described procedure,
the FTA difference algorithm extends naturally to eliminating (infinite) sets
of traces. However in our setting that does not seem a useful goal – to find an
automaton describing an infinite set of infeasible traces often amounts to solving
the original problem.

Verification of CLP programs using abstract interpretation and specialisation
has been studied for some time. The use of an over-approximation of the se-
mantics of a program can be used to establish safety properties – if a state or
property does not appear in an over-approximation, it certainly does not ap-
pear in the actual program behaviour. A general framework for logic program
verification through abstraction was described by Levi [29]. Peralta et al. [30] in-
troduced the idea of using a Horn clause representation of imperative languages
and a convex polyhedral analyser to discover invariants of a program. Another
approach is taken in the work of De Angelis et al. [12,13] on applying program
specialisation to achieve verification. Unfolding and folding operations play a
vital role in that approach, and hence the program structure is changed much
more fundamentally than in our approach.

CEGAR [8] has been successfully used in verification to automatically refine
(predicate) abstractions [7,28] to reduce false alarms but not much has been ex-
plored in refining abstractions in the convex polyhedral domain. Some work on
this (with progress guarantee) has been done in [1] and [19]. [1] uses the powerset
domain, while [19] uses a Hint DAG to gain precision lost during the convex hull
operation. Both make use of interpolation. The use of interpolation in refinement
in verification of Horn clauses is explored in [6,20]. In our approach we guarantee
elimination of only one trace and elimination of others depends on properties of
the abstract interpretation techniques. By contrast in interpolation-based tech-
niques the refinement introduces new properties which guarantee progress and
the elimination of all counterexamples covered by those properties. However
the effectiveness of interpolation-based refinement depends on the generation of
“good” interpolants, which is a matter of continuing research, for example by
Rümmer et al. [32]. A number of tools implementing predicate abstraction and
refinement are available, such as HSF [18] and BLAST [3]. TRACER [17] is a
verification tool based on CLP that uses symbolic execution.

A point of contrast is that in our approach, the refinements are embedded
in the clauses whereas in CEGAR they are accumulated in the set of proper-
ties used for property-based abstraction. Also we rely on the abstraction us-
ing convex polyhedral analysis to discover invariants whereas CEGAR-based
approaches rely on interpolation in the refinement stage to discover relevant
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properties. Polyhedral analysis is more expensive, yet seems (along with the
threshold assertions, see Section 3.6) to be very effective at finding invariants
even on the first iteration. A weakness of invariant generation using interpola-
tion is that the interpolants must share variables with the unsatisfiable part of
the constraints, typically those in the integrity constraints, which can be insuffi-
cient for finding invariants of inner recursive predicates. Informally one can say
that approaches differ in where the “hard work” is performed. In the CEGAR
approaches and in [23] the refinement step is crucial, and interpolation plays a
central role. In our approach, by contrast, most of the hard work is done by the
abstract interpretation, which finds useful invariants. Finding the most effective
balance between abstraction and refinement techniques is a matter of ongoing
research.

7 Conclusion and Future work

In this paper we presented a procedure for abstraction refinement in Horn clause
verification based on tree automata. This was achieved through a combination
of abstraction (using abstraction interpretation) followed by a trace refinement
(using finite tree automata). The refinement is independent of the abstract do-
main used. The practicality of our approach was demonstrated on a set of Horn
clause verification problems.

In the future, we will investigate the elimination of a larger set of infeasible
traces in each refinement step, possibly by generalising a trace using interpolation
or by discovering a set of infeasible traces. The optimisation of our tool chain is
also an important topic for future work as it is clear that our prototype, built
by chaining together tools using shell scripts, contains much redundancy.

Acknowledgements. We thank the anonymous referees for useful comments.
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Abstract. We address the problem of automatically establishing syn-
chronization dependent correctness (e.g. due to using barriers or ensur-
ing absence of deadlocks) of programs generating an arbitrary number of
concurrent processes and manipulating variables ranging over an infinite
domain. Automatically checking such properties for these programs is
beyond the capabilities of current verification techniques. For this pur-
pose, we describe an original logic that mixes two sorts of variables: those
shared and manipulated by the concurrent processes, and ghost variables
referring to the number of processes satisfying predicates on shared and
local program variables. We then combine existing works on counter,
predicate, and constrained monotonic abstraction and nest two cooper-
ating counter example based refinement loops for establishing correctness
(safety expressed as non reachability of configurations satisfying formu-
las in our logic). We have implemented a tool (Pacman, for predicated
constrained monotonic abstraction) and used it to perform parameter-
ized verification for several programs whose correctness crucially depends
on precisely capturing the number of synchronizing processes.

Keywords: parameterized verification, counting logic, barrier synchro-
nization, deadlock freedom, multithreaded programs, counter abstrac-
tion, predicate abstraction, constrained monotonic abstraction.

1 Introduction

We address the problem of automatic and parameterized verification for concur-
rent multithreaded programs. We focus on synchronization related correctness
as in the usage by programs of barriers or integer shared variables for counting
the number of processes at different stages of the computation. Such synchro-
nizations orchestrate the different phases of the executions of possibly arbitrary
many processes spawned during runs of multithreaded programs. Correctness is
stated in terms of a new counting logic that we introduce. The counting logic
makes it possible to express statements about program variables and variables
counting the number of processes satisfying some properties on the program
variables. Such statements can capture both individual properties, such as as-
sertion violations, and global properties such as deadlocks or relations between
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the numbers of processes (e.g., the total number of spawner processes is smaller
or equal to the number of spawned processes).

Synchronization among concurrent processes is central to the correctness of
many shared memory based concurrent programs. This is particularly true in
certain applications such as scientific computing where a number of processes,
parameterized by the size of the problem or the number of cores, is spawned
in order to perform heavy computations in phases. For this reason, when not
implemented individually using shared variables, constructs such as (dynamic)
barriers are made available in mainstream libraries and programming languages
such as Pthreads, java.util.concurrent or OpenMP.

Automatically taking into account the different phases by which arbitrary
many processes can pass is already tricky for concurrent boolean programs with
barriers. It is now folklore that concurrent boolean programs can be encoded
using counter machines where counters track the number of processes at each
program location. In case the concurrent processes can only read, test and write
shared boolean variables, or spawn and join other processes, the obtained counter
machine is essentially a Vector Addition System (VAS) for which state reach-
ability is decidable [3,10]. For instance, works such as [6,7] build on this idea.
Such translations cannot exclude behaviors forbidden by the barriers, e.g., there
is no process still in the reading phase when some process crossed the barrier to
the writing phase. The reason is that VASs are inherently monotonic (more pro-
cesses can do more things). However, a counter machine transition that models a
barrier will need to test that all processes are finished with the current phase and
are waiting to cross the barrier. In other words, that the number of processes not
waiting for the barrier is zero. This makes it possible to encode counter machines
for which reachability is undecidable.

To make the problem more difficult, barriers may be implicitly implemented
using integer program variables that count the number of processes at certain
locations. Still, program correctness might depend on the fact that these pro-
gram variables do implement a barrier. Existing techniques, such as symmetric
predicate abstraction [7], generate (broadcast) concurrent boolean programs for
integer manipulating concurrent programs. The obtained transition systems are
monotonic and cannot exclude behaviors forbidden by the implicit barriers. In
this work, we build on such methods and strengthen the obtained transition
systems using automatically generated invariants in order to obtain counter ma-
chines that over-approximate the concurrent program behavior and still enforce
barriers semantics. We then build on our work on constrained monotonic ab-
straction [4] in order to decide state reachability by automatically generating
and refining monotonic over-approximations for such systems.

Our approach consists in nesting two counter example guided abstraction
refinement loops. We summarize our contributions in the following points.

1. We define a counting logic that allows us to express statements about pro-
gram variables and about the number of processes satisfying certain predi-
cates on the program variables.
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2. We implement the outer loop by leveraging on existing symmetric predi-
cate abstraction techniques [7]. We encode resulting boolean programs in
terms of a counter machine where reachability of the concurrent program
configurations satisfying a counting property from our logic is captured as a
reachability problem for a target state of the counter machine.

3. We explain how to strengthen the counter machine using counting invari-
ants, i.e. properties from our logic that hold on all runs. We generate these
invariants using classical thread modular analysis techniques [11].

4. We leverage on existing constrained monotonic abstraction techniques [15,4]
to implement the inner loop and to address the state reachability problem.

5. We have implemented both loops, together with automatic counting invari-
ants generation, in a prototype (Pacman) that automatically establishes or
refutes counting properties such as deadlock freedom and assertions.

Related work. Several works consider automatic parameterized verification for
concurrent programs. The works in [13,1] automatically check for cutoff condi-
tions. Except for checking larger instances, it is unclear how to refine entailed
abstractions. Similar to [2], we combine auxiliary invariants obtained on certain
variables in order to strengthen a reachability analysis. In [9], the authors pro-
pose an approach that synthesizes counters and uses them to build correctness
proofs. The proofs are then checked against programs given as control flow nets.
We instead discover the counters, including counters tracking local and mixed
thread predicates, and build sound over-approximations that have to be checked.
In [6], the authors present a highly optimized coverability checking approach for
VASs with broadcasts. We need more than coverability of monotonic systems.
In [14], the authors adopt symbolic representations that can track inter-thread
predicates. This yields a non monotonic system and the authors force mono-
tonicity as in [15,4]. They however do not explain how to refine the obtained
decidable monotonic abstraction for an undecidable problem. In [5], the authors
prove termination for depth-bounded systems by instrumenting a given over-
approximation with counters and sending the numerical abstraction to existing
termination provers. We automatically generate the abstractions on which we
establish safety properties. In addition, and as stated earlier, over-approximating
the concurrent programs we target with (monotonic) well structured transition
systems would result in spurious runs. The works that seem most closely re-
lated to our work are [4,8]. We introduced (constrained) monotonic abstraction
in [15,4]. Monotonic abstraction was not combined with predicate abstraction,
nor did it explicitly target counting properties or dynamic barrier based syn-
chronization. In [8], the authors propose a predicate abstraction framework for
concurrent multithreaded programs. As explained earlier such abstractions can-
not exclude runs forbidden by synchronization mechanisms such as barriers. In
our work, we build on [8] in order to handle shared and local integer variables.

Outline. We start by illustrating our approach using an example in Sec. 2 and
introduce some preliminaries in Sec. 3. We then define concurrent programs and
describe our counting logic in Sec. 4. Next, we explain the different phases of
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our nested loops in Sec. 5 and report on our experimental results in Sec. 6. We
finally conclude in Sec. 7. Proofs and examples are available in [12].

2 A Motivating Example

Consider the concurrent program described in Fig. 1. In this example, a main
process spawns (transition t1) an arbitrary number (count) of proc processes
(at location lcent in proc). All processes share four integer variables (namely
max, prev, wait and count) and a single boolean variable proceed. Initially,
the variables wait and count are 0 while proceed is false. The other variables
may assume non-deterministic values. Each proc process possesses a local integer
variable val that can only be read or written by its owner. Each proc process
assigns to max the value of its local variable val in case the later is larger than
the former. Transitions t6 and t7 essentially implement a barrier in the sense
that all proc processes must have reached lc3 in proc in order for any of them
to move to location lc4. After the barrier, the max value should be larger or
equal to any previous local val value stored in the shared prev (i.e., prev ≤
max should hold). Observe that prev is essentially a ghost variable we add to
check that max is indeed larger than any initial value of the local, and possibly
modified, val. Violation of this assertion can be captured with the counting
predicate (introduced in Sec. 4) (proc@lc4 ∧ ¬(prev ≤ max))# ≥ 1 stating that
the number of processes at location lc4 in proc and witnessing that prev > max
is larger or equal than 1. Observe that we could have used an error state to
capture assertion violations. However, our counting logic (see Sec. 4) also allows
us to express global properties (e.g., there are more processes with flag = tt

than those with flag = ff). We use counting properties to capture such global
configurations. These properties can already capture assertion violations.

int max, prev, wait, count := ∗, ∗, 0, 0
bool proceed := ff
main :

t1 : lcent � lcent : count := count + 1;
spawn(proc)

t2 : lcent � lc1 : proceed := tt
...

proc :
int val := ∗
t3 : lcent � lc1 : prev := val
t4 : lc1 � lc2 : max ≥ val
t5 : lc1 � lc2 : max < val; max := val
t5 : lc2 � lc3 : val := ∗
t6 : lc3 � lc4 : wait := wait + 1
t7 : lc4 � lc5 : proceed ∧ (wait = count)
t8 : lc5 � ...

(3, 7, 0, 0, ff) {(main@lcent)}

(3, 7, 0, 1, ff) {(main@lcent)(proc@lcent, 9)}

(3, 7, 0, 2, ff)
{
(main@lcent)(proc@lcent, 9)

2
}

(3, 9, 0, 2, ff) {(main@lc1)(proc@lcent, 9)(proc@lc1, 9)}

(3, 9, 0, 2, tt) {(main@lc1)(proc@lcent, 9)(proc@lc1, 9)}

...

(9, 9, 2, 2, tt) {(main@lc1)(proc@lc5, 9)(proc@lc5, 9)}

...

t1

t1

t3

t2

...

t7

...

Fig. 1. The max example (left) and a possible run (right). The run starts with themain
process being at location lcent where (max, prev,wait, count, proceed) = (3, 7, 0, 0, ff).
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The assertion (proc@lc5 ∧ ¬(prev ≤ max))# ≥ 1 is never violated when
starting from a single main process. In order to establish this fact, any verification
procedure needs to take into account the barrier in t7 in addition to the two
sources of infinitness; namely, the infinite domain of the variables and the number
of procs that may participate in the run. Any sound analysis that does not take
into account that the count variable holds the number of spawned proc processes
and that wait represents the number of proc processes at locations lc3 or later
will not be able to discard scenarios were a proc process executes prev := val
(possibly violating the assertion) although one of them is at lc5 in proc.

Our nested CEGAR, called Predicated Constrained Monotonic Abstraction
and depicted in Fig. 2, systematically leverages on simple facts that relate num-
bers of processes to the variables manipulated in the program. This allows us
to verify or refute safety properties (e.g., assertions, deadlock freedom) depend-
ing on complex behaviors induced by constructs such as dynamic barriers. We
illustrate our approach on the max example of Fig. 1.

Fig. 2. Predicated Constrained Monotonic Abstraction

From concurrent programs to boolean concurrent programs. We build on recent
predicate abstraction techniques for concurrent programs [8]. Such techniques
would initially discard all variables and predicates and only keep the control
flow together with the spawn and join statements. This leads to a number of
counter example guided abstraction refinement steps (the outer CEGAR loop
in Fig. 2) that require the addition of new predicates. Our implementation adds
the predicates proceed, prev ≤ val, prev ≤ max, wait ≤ count, count ≤ wait.
It is worth noticing that all variables of the obtained concurrent program are
booleans. Hence, one would need a finite number of counters in order to faithfully
capture the behavior of the abstracted program using counter abstraction.
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From concurrent boolean programs to counter machines. Given a concurrent
boolean program, we generate a monotonic counter machine for which reacha-
bility of a final state is equivalent to the violation of the assertion by the boolean
program. Each counter in the machine counts the number of processes at some
location with a given valuation of the local variables. One state in the counter
machine represents reaching a configuration violating the assertion. State reach-
ability is here decidable [3,10]. Such a machine cannot relate the number of pro-
cesses in certain locations (e.g., the number of spawned processes proc so far)
to the shared predicates that hold at a machine state (e.g., that count = wait).
For this reason, we make use of the auxiliary invariants [2]:

count =
∑

lc proc location

(proc@lc)# wait =
∑

lci proc location,i≥3

(proc@lci)
#

We automatically generate such invariants using a simple thread modular
analysis [11] that tracks the number of processes at each location. We then
strengthen the counter machine using such invariants. This results in a more
precise machine for which state reachability is undecidable in general.

Constrained monotonic abstraction. We monotonically abstract the resulting
counter machine in order to answer the state reachability problem. Spurious
runs are now possible. Indeed, forcing monotonicity amounts to removing [15,4]
processes violating the constraint imposed by the barrier in Fig.1. Suppose now
that two processes are spawned and proceed is set to tt. A first process gets
to lc3 and waits for the second process that moves to lc1. Removing the second
process (because it violates the barrier constraint) opens the barrier for the first
process waiting at lc3. The assertion can now be violated because the removed
process did not have time to update the variable max. Constrained monotonic
abstraction eliminates spurious traces by refining the preorder used in mono-
tonic abstraction. For the example of Fig.1, if the number of processes at lc1
is zero, then closing upwards will not alter this fact. By doing so, the process
that was removed in forward at lc1 is not allowed to be there to start with, and
the assertion is automatically established for any number of processes. The in-
ner loop of our approach (i.e., the constrained monotonic abstraction loop) can
automatically add more elaborate refinements such as comparing the number of
processes at different locations. Unreachability of the control location establishes
safety of the concurrent program.

Trace Simulation. Counter examples obtained in the counter machine corre-
spond to feasible runs as far as the concurrent boolean program is concerned.
Such runs can be simulated on the original program to find new predicates (e.g.,
using Craig interpolation) and use them in the next iteration of the outer loop.

3 Preliminaries

We use N and Z to mean the sets of natural and integer numbers respectively.
We let k denote a constant in Z. Unless otherwise stated, we use lower case
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letters such as v, s, l to mean integer variables and ṽ, s̃, l̃ to mean boolean vari-
ables with values in B. We use upper case letters such as V, S, L (resp. Ṽ , S̃
and L̃) to mean sets of integer (resp. boolean) variables. We let ∼ be an ele-
ment in {<,≤,=,≥, >}. An arithmetic expression e (resp. boolean expression
π) belonging to the set exprs(V ) (resp. preds(Ṽ , E)) of arithmetic expressions
(resp. boolean predicates) over integer variables V (resp. boolean variables Ṽ
and arithmetic expressions E) is defined as follows.

e ::= k || v || (e + e) || (e − e) || k e v ∈ V
π ::= b || ṽ || (e ∼ e) || ¬π || π ∧ π || π ∨ π ṽ ∈ Ṽ , e ∈ E

We write vars(e) to mean all variables v appearing in e, and vars(π) to mean
all variables ṽ and v appearing in π or in e in π. We also write atoms(π) (the set of
atomic predicates) to mean all comparisons (e ∼ e) appearing in π. We use greek
lower case letters such as σ, η, ν (resp. σ̃, η̃, ν̃) to mean mappings from variables
to Z (resp. B). Given n mappings νi : Vi → Z such that Vi ∩ Vj = ∅ for each
i, j : 1 ≤ i 
= j ≤ n, and an expression e ∈ exprs(V ), we write valν1,...,νn (e)
to mean the expression obtained by replacing each occurrence of a variable v
appearing in some Vi by the corresponding νi(v). In a similar manner, we write
valν,ν̃,... (π) to mean the predicate obtained by replacing the occurrence of integer
and boolean variables as stated by the mappings ν, ν̃, etc. Given a mapping
ν : V → Z and a set subst = {vi ← ki|1 ≤ i ≤ n} where variables v1, . . . vn are
pairwise different, we write ν [subst] to mean the mapping ν′ such that ν′(vi) = ki
for each 1 ≤ i ≤ n and ν′(v) = ν(v) otherwise. We abuse notation and write
ν [{vi ← v′i|1 ≤ i ≤ n}], for ν : V → Z where variables v1, . . . vn are in V and
pairwise different and variables v′1, . . . v

′
n are pairwise different and not in V , to

mean the mapping ν′ : (V \ {vi|1 ≤ i ≤ n}) ∪ {v′i|1 ≤ i ≤ n} → Z and such that
ν′(v′i) = ν(vi) for each i : 1 ≤ i ≤ n, and ν′(v) = ν(v) otherwise. We define
ν̃ [{ṽi ← bi|1 ≤ i ≤ n}] and ν̃ [{ṽi ← ṽ′i|1 ≤ i ≤ n}] in a similar manner.

A multiset m over a set X is a mapping X → N. We write x ∈ m to mean
m(x) ≥ 1. The size |m| of a multiset m is

∑
x∈Xm(x). We sometimes view a

multiset m as a sequence x1, x2, . . . , x|m| where each element x appears m(x)
times. We write x⊕m to mean the multiset m′ such that m′(y) equals m(y)+ 1
if x = y and m(y) otherwise.

4 Concurrent Programs and Counting Logic

To simplify the presentation, we assume a concurrent program (or program for
short) to consist in a single non-recursive procedure manipulating integer vari-
ables. Arguments and return values are passed using shared variables. Programs
where arbitrary many processes run a finite number of procedures can be en-
coded by having the processes choose a procedure at the beginning.

Syntax. A procedure in a program (S,L, T ) is given in terms of a set T of tran-
sitions (lc1 
 lc′1 : stmt1) , (lc2 
 lc′2 : stmt2) , . . . operating on two finite sets of
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integer variables, namely a set S = {s1, s2, . . .} of shared variables and a set
L = {l1, l2 . . .} of local variables. Each transition (lc 
 lc′ : stmt) involves two
locations lc and lc′ and a statement stmt. We let Locmean the set of all locations
appearing in T . We always distinguish two locations, namely an entry location
lcent and an exit location lcext. Program syntax is given in terms of pairwise
different variables v1, . . . vn in S ∪ L, expressions e1, . . . en in exprs(S ∪ L) and
predicate π in preds(exprs(S ∪ L)).

prog ::= (s := (k || ∗))∗ proc : (l := (k || ∗))∗ (lc 
 lc : stmt)+

stmt ::= spawn || join || π || v1, . . . , vn := e1, . . . , en || stmt; stmt

Semantics. Initially, a single process starts executing the procedure with both
local and shared variables initialized as stated in their definitions. Executions
might involve an arbitrary number of spawned processes. The execution of any
process (whether initial or spawned with the statement spawn) starts at the
entry location lcent. Any process at an exit point lcext can be eliminated by
a process executing a join statement. An assume π statement blocks if the
predicate π over local and shared variables does not evaluate to true. Each
transition is executed atomically without interruption from other processes.

More formally, a configuration is given in terms of a pair (σ,m) where the
shared state σ : S → Z is a mapping that associates an integer value to each
variable in S. An initial shared state (written σinit) is a mapping that complies
with the initial constraints for the shared variables. The multiset m contains
process configurations, i.e., pairs (lc, η) where the location lc belongs to Loc
and the process state η : L → Z maps each local variable to an integer value.
We also write ηinit to mean an initial process state. An initial multiset (written
minit) maps all (lc, η) to 0 except for a single (lcent, ηinit) mapped to 1. We

introduce a relation
stmt
"−−→

P
in order to define statements semantics (Fig. 3). We

write (σ, η,m)
stmt
"−−→

P
(σ′, η′,m′), where σ, σ′ are shared states, η, η′ are process

states, and m,m′ are multisets of process configurations, in order to mean that
a process at process state η when the shared state is σ and the other process
configurations are represented by m, can execute the statement stmt and take
the program to a configuration where the process is at state η′, the shared
state is σ′ and the configurations of the other processes are captured by m′.
For instance, a process can always execute a join if there is another process at
location lcext (rule join). A process executing a multiple assignment atomically
updates shared and local variables values according to the values taken by the
expressions of the assignment before the execution (rule assign).

A P run ρ is a sequence (σ0,m0), t1, ..., tn, (σn,mn). The run is P feasible if

(σi,mi)
ti+1−−→
P

(σi+1,mi+1) for each i : 0 ≤ i < n and σ0 andm0 are initial. Each

of the configurations (σi,mi), for i : 0 ≤ i ≤ n, is then said to be reachable.
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(σ, η,m)
stmt
−−−−→
P

(σ′ , η′,m′)

(σ, (lc, η) ⊕ m)

(
lc�lc′:stmt

)
−−−−−−−−−−−→

P
(σ′ , (lc′, η′) ⊕ m′)

: trans
valσ,η (π)

(σ, η, m)
π
−→
P

(σ, η,m)

: assume

(σ, η, m)
stmt
−−−−→
P

(σ′, η′,m′) (σ′, η′, m′) stmt′
−−−−→
P

(σ′′, η′′, m′′)

(σ, η, m)
stmt;stmt′


−−−−−−−−−→
P

(σ′′, η′′, m′′)

: seq
m =

(
(lcext, η

′) ⊕ m′)

(σ, η,m)
join


−−−→
P

(σ, η,m′)
: join

substA =
{
vi ← valσ,η

(
ei

) |vi ∈ A
}

(σ, η, m)
v1,...vn,:=e1,...en
−−−−−−−−−−−−−−−→

P
(σ[substS ], η[substL],m)

: assign
m′ = (lcent, ηinit) ⊕ m

(σ, η, m)
spawn


−−−−−→
P

(σ, η,m′)
: spawn

Fig. 3. Semantics of concurrent programs

Counting Logic. We use @Loc to mean the set {@lc | lc ∈ Loc} of boolean vari-
ables. Intuitively, @lc evaluates to tt exactly when the process evaluating it
is at location lc. We associate a counting variable (π)# to each predicate π in
preds(@Loc, exprs(S ∪ L)). Intuitively, in a given program configuration, the
variable (π)# counts the number of processes for which the predicate π holds. We
let ΩLoc,S,L be the set

{
(π)#|π ∈ preds(@Loc, exprs(S ∪ L))

}
. A counting pred-

icate is any predicate in preds(exprs(S ∪ΩLoc,S,L)). Elements in exprs(S ∪ L)
and preds(@Loc, exprs(S ∪ L)) are evaluated wrt. a shared configuration σ and
a process configuration (lc, η). For instance, valσ,(lc,η) (v) is σ(v) if v ∈ S and
η(v) if v ∈ L and valσ,(lc,η) (@lc

′) = (lc = lc′). We abuse notation and write
valσ,m (ω) to mean the evaluation of the counting predicate ω wrt. a configu-
ration (σ,m). More precisely, valσ,m

(
(π)#

)
=
∑

(lc,η) s.t. valσ,(lc,η)(π)
m((lc, η))

and the valuation valσ,m (v) = σ(v) for v ∈ S. Our counting logic is quite ex-
pressive. For instance, we can capture assertion violations, deadlocks or program
invariants. For location lc, we let En(lc) in preds(exprs(ΩLoc,S,L)) define when
a process can fire some transition from lc. The following counting predicates
capture sets of configurations from Fig. 1.

ωassert = (proc@lc5 ∧ ¬(prev ≤ max))# ≥ 1 ωinv = (count =
∑

lc proc location

(proc@lc)#)

ωdeadlock =
∧

lc proc location

¬En(lc) ∧
∧

lc main location

¬En(lc)

5 Relating Layers of Abstractions

We formally describe in the following the four steps involved in our predicated
constrained monotonic abstraction approach (see Fig. 2).

5.1 Predicate Abstraction

Given a program P = (S,L, T ) and a number of predicates Π on the variables
S ∪ L, we leverage on existing techniques (such as [7]) in order to generate an
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abstraction in the form of a boolean program abstOfΠ(P ) =
(
S̃, L̃, T̃

)
where all

shared and local variables take boolean values. To achieve this, Π is partitioned
into three sets Πshr, Πloc and Πmix. Predicates in Πshr only mention variables
in S and those in Πloc only mention variables in L. Predicates in Πmix mention
both shared and local variables of P . A bijection associates a predicate predOf(ṽ)
in Πshr (resp. Πmix ∪Πloc) to each ṽ in S̃ (resp. L̃).

In addition, there are as many transitions in T as in T̃ . For each (lc 
 lc′ : stmt)
in T there is a corresponding (lc 
 lc′ : abstOfΠ(stmt)) with the same source
and destination locations lc, lc′, but with an abstracted statement abstOfΠ(stmt)
that may operate on the variables S̃ ∪ L̃. For instance, statement (count :=
count+ 1) in Fig. 1 is abstracted with the multiple assignment:

(
wait leq count,
count leq wait

)
:=

(
choose (wait leq count, ff) ,
choose (¬wait leq count ∧ count leq wait, wait leq count)

)
(1)

The value of the variable count leq wait after execution of the multiple as-
signment (1) is tt if ¬wait leq count∧count leq wait holds, ff if wait leq count
holds, and is equal to a non deterministically chosen boolean value otherwise.
In addition, abstracted statements can mention the local variables of passive
processes, i.e., processes other than the one executing the transition. For this,

we make use of the variables L̃p =
{
l̃p|l̃ in L̃

}
where each l̃p denotes the lo-

cal variable l̃ of passive processes. For instance, the statement prev := val in
Fig. 1 is abstracted with the multiple assignment (2). Here, the local variable
prev leq val of each process other than the one executing the statement (written
prev leq valp) is separately updated. This corresponds to a broadcast where the
local variables of all passive processes need to be updated.

⎛
⎝ prev leq val,

prev leq max,
prev leq valp

⎞
⎠ :=

⎛
⎜⎜⎜⎝

tt,

choose

(
¬prev leq val

∧ prev leq max
,

prev leq val
∧ ¬prev leq max

)
,

choose

(
¬prev leq val

∧ prev leq valp
,

prev leq val
∧ ¬prev leq valp

)

⎞
⎟⎟⎟⎠ (2)

Syntax and semantics of boolean programs. We describe the syntax of boolean
programs. Variables ṽ1, . . . , ṽn are in S̃ ∪ L̃∪ L̃p. Predicate π is in preds(S̃ ∪ L̃),
and predicates π1, . . . , πn are in preds(S̃ ∪ L̃ ∪ L̃p). We further require for the

multiple assignment that if ṽi ∈ S̃ ∪ L̃ then vars(πi) ⊆ S̃ ∪ L̃.

prog ::= (s̃ := (tt || ff || ∗))∗ proc : (l̃ := (tt || ff || ∗))∗ (lc 
 lc : stmt)+

stmt ::= spawn || join || π || ṽ1, . . . , ṽn := π1, . . . , πn || stmt; stmt

Apart from the variables being now boolean, the main difference between Fig.

4 and Fig. 3 is the assign statement. For this, we write (σ̃, η̃, η̃p)
ṽ1,...ṽn:=π1,...πn	−−−−−−−−−−−→

abstOfΠ(P )

(σ̃′, η̃′, η̃′p) and mean that η̃′p is obtained in the following way. First, we change

the domain of η̃p from L̃ to L̃p and obtain η̃p,1 = η̃p

[{
l̃ ← l̃p|l̃ ∈ L̃

}]
, then
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we let η̃p,2 = η̃p,1

[{
ṽi ← valσ̃,η̃,η̃p,1 (πi) |ṽi ∈ L̃p in lhs of the assignment

}]
. Fi-

nally, we obtain η̃′p = η̃p,2

[{
l̃p ← l̃|l̃ ∈ L̃

}]
. This step corresponds to a broad-

cast. An abstOfΠ(P ) run is a sequence (σ̃0, m̃0), t̃1, ..., t̃n, (σ̃n, m̃n). It is feasible

if (σ̃i, m̃i)
t̃i+1−−−−−−−→

abstOfΠ (P )
(σ̃i+1, m̃i+1) for each i : 0 ≤ i < n and σ̃0, m̃0 are initial.

Configurations (σ̃i, m̃i), for i : 0 ≤ i ≤ n, are then said to be reachable.

(σ̃, η̃, m̃)
stmt�−−−−−−−−→

abstOfΠ (P )
(σ̃′, η̃′, m̃′)

(σ̃, (lc, η̃) ⊕ m̃)

(
lc�lc′:stmt

)
−−−−−−−−−−−→

abstOfΠ (P )
(σ̃′, (lc′, η̃′) ⊕ m̃′)

: trans valσ̃,η̃ (π)

(σ̃, η̃, m̃)
π�−−−−−−−−→

abstOfΠ (P )
(σ̃, η̃, m̃)

: assume

(σ̃, η̃, m̃)
stmt�−−−−−−−−→

abstOfΠ (P )
(σ̃′, η̃′, m̃′) and (σ̃′, η̃′, m̃′)

stmt′�−−−−−−−−→
abstOfΠ (P )

(σ̃′′, η̃′′, m̃′′)

(σ̃, η̃, m̃)
stmt;stmt′�−−−−−−−−→
abstOfΠ (P )

(σ̃′′, η̃′′, m̃′′)

: sequence

m̃′ = (lcent, η̃init) ⊕ m̃

(σ̃, η̃, m̃)
spawn

�−−−−−−−−→
abstOfΠ (P )

(σ̃, η̃, m̃′)
: spawn

m̃ =
(
(lcext, η̃

′) ⊕ m̃′)

(σ̃, η̃, m̃)
join

�−−−−−−−−→
abstOfΠ (P )

(σ̃, η̃, m̃′)
: join

σ̃′ = σ̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ S̃

}
]

η̃′ = η̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ L̃

}
]

h : {1, ...|m̃|} → {1, ...|m̃′|} some bijection associating each (lcp, η̃p)i ∈ m̃

to some (lcp, η̃
′
p)h(i) ∈ m̃′ s.t. (σ̃, η̃, η̃p)

ṽ1,...ṽn:=π1,...πn�−−−−−−−−−−−−−−−→
abstOfΠ (P )

(σ̃′, η̃′, η̃′
p)

(σ̃, η̃, m̃)
ṽ1,...ṽn:=π1,...πn�−−−−−−−−−−−−−−→

abstOfΠ (P )
(σ̃′, η̃′, m̃′)

: assign

Fig. 4. Semantics of boolean concurrent programs

Relation between P and abstOfΠ(P ). Given a shared state σ̃, we let predOf(σ̃)
denote the predicate

∧
s̃∈S̃(σ̃(s̃) ⇔ predOf(s̃)). In a similar manner, we let

predOf(η̃) denote
∧

l̃∈L̃(η̃(l̃) ⇔ predOf(l̃)). Notice that vars(predOf(σ̃)) ⊆
S and vars(predOf(η̃)) ⊆ S ∪ L. We abuse notation and use valσ (σ̃) (resp.
valσ,η (η̃)) to mean that valσ (predOf(σ̃)) (resp. valσ,η (predOf(η̃))) holds. We
also use valσ̃,η̃ (π), for a boolean combination π of predicates in Π , to mean the
predicate obtained by replacing each π′ in Πmix ∪ Πloc (resp. Πshr) with η̃(ṽ)
(resp. σ̃(ṽ)) where predOf(ṽ) = π′. We let valσ,m (m̃) mean there is a bijection
h : {1, ...|m̃|} → {1, ...|m̃′|} s.t. we can associate to each (lc, η)i in m an (lc, η̃)h(i)
in m̃ such that valσ,η (η̃) for each i : 1 ≤ i ≤ |m|. The concretization of an
abstOfΠ(P ) configuration (σ̃, m̃) is γ ((σ̃, m̃)) = {(σ,m)|valσ (σ̃) ∧ valσ,m (m̃)}.
The abstraction of (σ,m) is α ((σ,m)) = {(σ̃, m̃)|valσ (σ̃) ∧ valσ,m (m̃)}. We ini-
tialize the abstOfΠ(P ) variables such that for each initial σinit,minit of P ,
there are σ̃init, m̃init with α ((σinit,minit)) = {(σ̃init, m̃init)}. The abstraction
α (ρ) of a P run ρ = (σ0,m0), t1, ...tn, (σn,mn) is the singleton set of P runs{
(σ̃0, m̃0), t̃1, ...t̃n, (σ̃n, m̃n)|α ((σi,mi)) = {(σ̃i, m̃i)} and t̃i = abstOfΠ(ti)

}
.
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Definition 1 (predicate abstraction). Let P = (S,L, T ) be a program and

abstOfΠ(P ) =
(
S̃, L̃, T̃

)
be its abstraction wrt. Π. The abstraction is said to

be effective and sound if abstOfΠ(P ) can be effectively computed and to each
feasible P run ρ corresponds a non empty set α (ρ) of feasible abstOfΠ(P ) runs.

5.2 Encoding into a Counter Machine

Assume a program P = (S,L, T ), a set Π0 ⊆ preds(exprs(S ∪ L)) of predicates
and two counting predicates, an invariant ωinv in preds(exprs(S ∪ΩLoc,S,L))

and a target ωtrgt in preds(exprs(ΩLoc,S,L)). We write abstOfΠ(P ) =
(
S̃, L̃, T̃

)
to mean the abstraction of P wrt.Π = ∪(π)#∈vars(ωinv)∪vars(ωtrgt)atoms(π)∪Π0.
Intuitively, this step results in the formulation of a state reachability problem of
a counter machine enc (abstOfΠ(P )) that captures reachability of abstractions
of ωtrgt configurations with abstOfΠ(P ) runs that are strengthened wrt. ωinv.

δ = [q : op : q′] and θ
op
�−→
M

θ′

(q, θ)
δ−−→
M

(q′, θ′)
: transition

θ
nop
�−−→

M
θ

: nop θ
op
�−→
M

θ′ and θ′ op′
�−−→

M
θ′′

θ
op;op′
�−−−−→

M
θ′′

: seq

∃A.valθ (π) ∧ θ′ = θ [{ci ← valθ (ei) |i : 1 ≤ i ≤ n}]

θ
grd⇒(c1...cn:=e1...en)

�−−−−−−−−−−−−−−−−→
M

θ′
: gcmd

Fig. 5. Semantics of a counter machine

A counter machineM is a tuple (Q,C,Δ,QInit, ΘInit, qtrgt) whereQ is a finite
set of states, C is a finite set of counters (i.e., variables ranging over N), Δ is
a finite set of transitions, QInit ⊆ Q is a set of initial states, ΘInit is a set of
initial counters valuations (i.e., mappings from C to N) and qtrgt is a state in
Q. A transition δ in Δ is of the form [q : op : q′] where the operation op is either
the identity operation nop, a guarded command grd ⇒ cmd, or a sequential
composition of operations. We use a set A of auxiliary variables ranging over
N. These are meant to be existentially quantified when firing the transitions as
explained in Fig. 5. A guard grd is a predicate in preds(exprs(A ∪ C)) and a
command cmd is a multiple assignment c1, . . . , cn := e1, . . . , en that involves
e1, . . . en in exprs(A ∪C) and pairwise different c1, . . . cn in C. We only write
grd (resp. cmd) in case cmd is empty (resp. grd is tt) in grd⇒ cmd.

A machine configuration is a pair (q, θ) where q is a state in Q and θ is a
mapping C → N. Semantics are given in Fig. 5. A configuration (q, θ) is initial
if q ∈ QInit and θ ∈ ΘInit. An M run ρM is a sequence (q0, θ0), δ1, . . . (qn, θn).
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It is feasible if (q0, θ0) is initial and (qi, θi)
δi+1−−−→
M

(qi+1, θi+1) for i : 0 ≤ i < n. The
machine state reachability problem is to decide whether there is an M feasible
run (q0, θ0), δ1, . . . (qn, θn) s.t. qn = qtrgt.

Encoding. We describe in the following a counter machine enc (abstOfΠ(P )) ob-
tained as an encoding of the boolean program abstOfΠ(P ). Recall abstOfΠ(P )
results from an abstraction (Def. 1) wrt. ∪(π)#∈vars(ωinv)∪vars(ωtrgt)atoms(π) ∪
Π0 of the concurrent program P . The machine enc (abstOfΠ(P )) is a tuple
(Q,C,Δ,QInit, ΘInit, qtrgt). Each state in Q is either the target state qtrgt or is
associated to a shared state σ̃ of abstOfΠ(P ). We write qσ̃ to make the associa-
tion explicit. There is a bijection that associates a process configuration (lc, η̃) to
each counter c(lc,η̃) in C. TransitionsΔ coincide with ∪t∈T̃Δt∪Δtrgt as described
in Fig. 6. We abuse notation and associate to each statement stmt appearing
in abstOfΠ(P ) the set enc (stmt) of tuples [(σ̃, η̃) : op : (σ̃′, η̃′)]stmt generated
in Fig. 6. Given a multiset m̃ of program configurations, we write θm̃ to mean
the mapping associating m̃((lc, η̃)) to each counter c(lc,η̃) in C. We let QInit

be the set {qσ̃|σ̃ is an initial shared state of abstOfΠ(P )}, and ΘInit be the set
{θm̃|m̃((lcent, η̃)) = 1 for an η̃ initial in abstOfΠ(P ) and 0 otherwise}. We asso-
ciate a program configuration (σ̃, m̃) to each machine configuration (qσ̃, θm̃). The
machine encodes abstOfΠ(P ) in the following sense:

Lemma 1. qtrgt is enc (abstOfΠ(P )) reachable iff a configuration (σ̃, m̃) s.t.

ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} m̃(lc, η̃)|(π)# ∈ vars(ωtrgt)

}]
is reachable

in abstOfΠ(P ).

Observe that all transitions of a boolean program abstOfΠ(P ) are monotonic,
i.e., if a configuration (σ̃′, m̃′) is obtained from (σ̃, m̃) using a transition, then the
same transition can obtain a configuration larger (i.e., has the same and possibly
more processes) than (σ̃′, m̃′) from any configuration larger than (σ̃, m̃). This
reflects in the monotonicity of all transitions in Fig. 6 (except for rule target).
Rule target results in monotonic machine transitions for all counting predicates
ωtrgt that denote upward closed sets of processes. This is for instance the case
of predicates capturing assertion violation but not of those capturing deadlocks
(see Sec. 4). An encoding enc (abstOfΠ(P )) is said to be monotonic if all its
transitions are monotonic. Checking program assertion violations always results
in monotonic encodings.

Lemma 2. State reachability of all monotonic encodings is decidable.

However, monotonic encodings correspond to coarse over-approximations. In-
tuitively, bad configurations (such as those where a deadlock occurs, or those
obtained in a backward exploration for a barrier based program as described in
the running example) are no more guaranteed to be upward closed. This loss of
precision is irrevocable for techniques solely based on monotonic encodings. To
regain some of the lost precision, we constrain the runs using counting invariants.
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(
lc � lc′ : stmt

)
and

[
(σ̃, η̃) : op : (σ̃′, η̃′)

]
stmt

(qσ̃ : c(lc,η̃) ≥ 1⇒ (c(lc,η̃))
−−; op; (c(lc′,η̃′))

++ : qσ̃′ ) ∈ Δ(lc�lc′:stmt)

: transition

(qσ̃ : ωtrgt

[{
(π)# ←

∑{
(lc,η̃)|valσ̃,(lc,η̃)(π)

} c((lc,η̃))|(π)# ∈ vars(ωtrgt)

}]
: qtrgt) ∈ Δtrgt

: target

[
(σ̃, η̃) : op : (σ̃′, η̃′)

]
stmt

and
[
(σ̃′, η̃′) : op′ : (σ̃′′, η̃′′)

]
stmt′[

(σ̃, η̃) : op; op′ : (σ̃′′, η̃′′)
]
stmt;stmt′

: sequence

valσ̃,η̃ (π)

[(σ̃, η̃) : nop : (σ̃, η̃)]π
: assume [

(σ̃, η̃) : (c(lcent,η̃init)
)++ : (σ̃, η̃)

]
spawn

: spawn

[
(σ̃, η̃) : c(lcext,η̃

′) ≥ 1⇒ (c(lcext,η̃
′))

−− : (σ̃, η̃)
]
join

: join

σ̃′ = σ̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ S̃

}
] η̃′ = η̃[

{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ L̃

}
]

B =

{
a(lc,η̃p),(lc,η̃′

p)|lc ∈ Loc and (σ̃, η̃, η̃p)
ṽ1,...ṽn:=π1,...πn�−−−−−−−−−−−−−−→

abstOfΠ (P )
(σ̃′, η̃′, η̃′

p)

}
⎡
⎢⎢⎣(σ̃, η̃) :

⎛
⎜⎜⎝

∧
(lc,η̃p)(c(lc,η̃p) =

∑
a
(lc,η̃p),(lc,η̃′

p)
∈B a(lc,η̃p),(lc,η̃′

p))

⇒
⋃

(lc,η̃′
p)

{
c(lc,η̃′

p) :=
∑

a
(lc,η̃p),(lc,η̃′

p)
∈B a(lc,η̃p),(lc,η̃′

p)

}
⎞
⎟⎟⎠ : (σ̃′, η̃′)

⎤
⎥⎥⎦

ṽ1,...ṽn:=π1,...πn

: assign

Fig. 6. Encoding of the transitions of a boolean program
(
S̃, L̃, T̃

)
, given a counting

target ωtrgt, to the transitions Δ = ∪t∈T̃Δt ∪Δtrgt of a counter machine

[qσ̃ : op : qσ̃′ ] ∈ Δ

[qσ̃ : grdσ̃(ωinv); op; grdσ̃′(ωinv) : qσ̃′ ] ∈ Δ′ strengthen

Fig. 7. Strengthening of a machine transition given a counting invariant ωinv and
using the predicate grdσ̃(ωinv) in preds(exprs(C)) and defined as ∃S.predOf(σ̃) ∧
ωinv

[{
(π)# ←∑{(lc,η̃)|valσ̃,(lc,η̃)(π)} c((lc,η̃))|(π)# ∈ vars(ωinv)

}]

Lemma 3. Any feasible P run has a feasible abstOfΠ(P ) run with a feasible
run in any machine obtained as the strengthening of enc (abstOfΠ(P )) wrt. some
P invariant ωinv ∈ preds(exprs(S ∪ΩLoc,S,L)).

The resulting machine is not monotonic in general and we can encode the
state reachability of a two counter machine.

Lemma 4. State reachability is in general undecidable after strengthening.

5.3 Constrained Monotonic Abstraction and Preorder Refinement

This step addresses the state reachability problem for a counter machine M =
(Q,C,Δ,QInit, ΘInit, qtrgt). As stated in Lem. 4, this problem is in general un-
decidable for strengthened encodings. The idea here [15] is to force monotonicity
with respect to a well-quasi ordering , on the set of its configurations. A clas-
sical backward exploration that systematically closes upwards the obtained con-
figurationsUp�((q, θ)) is then sound and guaranteed to terminate [15]. We start
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with the natural component wise preorder θ , θ′ defined as ∧c∈Cθ(c) ≤ θ′(c).
Intuitively, θ , θ′ holds if θ′ can be obtained by “adding more processes to” θ. If
no run is found, then not reachable is returned. Otherwise a run is obtained and
simulated onM. If the run is possible, it is sent to the fourth step of our approach
(described in Sect. 5.4). Otherwise, the upward closure stepUp�((q, θ)) responsi-
ble for the spurious run is identified andan interpolant I (with vars(I) ⊆ C) is used
to refine the preorder as follows: ,i+1:= {(θ, θ′)|θ ,i θ

′ ∧ (valθ (I)⇔ valθ′ (I))}.
Although stronger, the new preorder is again a well quasi ordering and the run is
guaranteed to be eliminated in the next round. We refer the reader to [4] for more
details.

Lemma 5 (CMA [4]). Constrained Monotonic Abstraction is sound and effec-
tive and each round does terminate given the preorder is a well quasi ordering.

5.4 Simulation on the Original Concurrent Program

A given run of the counter machine (Q,C,Δ,QInit, ΘInit, qtrgt) is simulated by
this step on the original concurrent program P = (S,L, T ). This is possible be-
cause to each step of the counter machine run corresponds a unique and concrete
transition of P . This step is classical in counter example guided abstraction re-
finement approaches. In our case, we need to differentiate the variables belonging
to different processes during the simulation. As usual in such frameworks, if the
run turns out to be possible then we have captured a concrete run of P that vi-
olates an assertion and we report it. Otherwise, we deduce predicates that make
the run infeasible and send them to step 1 (Sect. 5.1).

Theorem 1 (predicated constrained monotonic abstraction). Assume
an effective and sound predicate abstraction. If the constrained monotonic ab-
straction step returns not reachable, then no configuration satisfying ωtrgt is
reachable in P . If a P run is returned by the simulation step, then it reaches
a configuration where ωtrgt holds. Every iteration of the outer loop terminates
given the inner loop terminates. Every iteration of the inner loop terminates.

Notice that there is no general guaranty that we establish or refute the safety
property (the problem is undecidable). For instance, it may be the case that one
of the two loops does not terminate or that we need to add predicates relating
local variables of two different processes.

6 Experimental Results

We report on experiments with our prototype Pacman(for predicated
constrained monotonic abstraction). We have conducted our experiments on an
Intel Xeon 2.67GHz processor with 8GB of RAM. To the best of our understand-
ing, the reported examples which require refinements of the natural preorder
cannot be verified by techniques such as [6,7]. Indeed, such approaches always
adopt monotonic abstractions when the correctness of these examples crucially
depends on the fact that non-monotonic behaviors of barriers are taken into
account.
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Table 1. Checking assertion violation with Pacman

outer loop inner loop results
example P enc (abstOfΠ(P )) num. preds. num. preds. time(s) output

max 5:2:8 18:16:104 4 5 6 2 192 correct

max-bug 5:2:8 18:8:55 3 4 5 2 106 trace

max-nobar 5:2:8 18:4:51 3 3 3 0 24 trace

readers-writers 3:3:10 9:64:121 5 6 5 0 38 correct

readers-writers-bug 3:3:10 9:7:77 3 3 3 0 11 trace

parent-child 2:3:10 9:16:48 3 4 5 2 73 correct

parent-child -nobar 2:3:10 9:1:16 2 1 2 0 3 trace

simp-bar 5:2:9 8:16:123 3 3 5 2 93 correct

simp-nobar 5:2:9 8:7:67 3 2 3 0 13 trace

dynamic-barrier 5:2:8 8:8:44 3 3 3 0 8 correct

dynamic-barrier-bug 5:2:8 8:1:14 2 1 2 0 3 trace

as-many 3:2:6 8:4:33 3 2 6 3 62 correct

as-many-bug 3:2:6 8:1:9 2 1 2 0 2 trace

Table 2. Checking deadlock with Pacman

outer loop inner loop results
example P enc (abstOfΠ(P )) num. preds. num. preds. time(s) output

bar-bug-no.1 4:2:7 7:16:66 4 4 6 2 27 trace

bar-bug-no.2 4:3:8 9:16:95 4 3 4 0 33 trace

bar-bug-no.3 3:2:6 6:16:78 5 4 6 1 21 trace

correct-bar 4:2:7 7:16:62 4 4 6 2 18 correct

ddlck bar-loop 4:2:10 8:8:63 3 2 3 0 16 trace

no-ddlck bar-loop 4:2:9 7:16:78 4 3 4 0 19 correct

All predicate abstraction predicates and counting invariants have been derived
automatically. For the counting invariants, we implemented a thread modular
analysis operating on the polyhedra numerical domain. This took less than 11
seconds for all the examples we report here. For each example, we report on the
number of transitions and variables both in P and in the resulting counter ma-
chine. We also state the number of refinement steps and predicates automatically
obtained in both refinement loops.

We report on experiments checking assertion violations in Tab.1 and deadlock
freedom in Tab.2. For both cases we consider correct and buggy (by removing
the barriers for instance) programs.Pacman establishes correctness and exhibits
faulty runs as expected. The tuples under the P column respectively refer to the
number of variables, procedures and transitions in the original program. The
tuples under the enc (abstOfΠ(P )) column refer to the number of counters,
states and transitions in the extended counter machine.

We made use of several optimizations. For instance, we discarded shared and
local states corresponding to unsatisfiable combinations of predicates, we used
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automatically generated invariants (such as (wait ≤ count) ∧ (wait ≥ 0) for
the max example in Fig.1) to filter the state space. Such heuristics dramatically
helped our state space exploration algorithms. Still, our prototype did not ter-
minate on several larger examples. We are working on improiving scalability by
coming up and combining with more clever optimisations.

7 Conclusions and Future Work

We have presented a technique, predicated constrained monotonic abstraction,
for the automated verification of concurrent programs whose correctness depends
on synchronization between arbitrary many processes, for example by means of
barriers implemented using integer counters and tests. We have introduced a
new logic and an iterative method based on combination of predicate, counter
and monotonic abstraction. Our prototype implementation gave encouraging
results and managed to automatically establish or refute program assertions and
deadlock freedom. To the best of our knowledge, this is beyond the capabilities
of current automatic verification techniques. Our current priority is to improve
scalability by leveraging on techniques such as cartesian and lazy abstraction,
partial order reduction, or combining forward and backward explorations. We
also aim to generalize to richer variable types.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful remarks and relevant references.
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3. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proc. LICS 1996, 11th IEEE Int. Symp. on Logic in
Computer Science, pp. 313–321 (1996)

4. Abdulla, P.A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.:
Constrained monotonic abstraction: A CEGAR for parameterized verification. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 86–101.
Springer, Heidelberg (2010)

5. Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 62–77.
Springer, Heidelberg (2013)

6. Basler, G., Hague, M., Kroening, D., Ong, C.-H.L., Wahl, T., Zhao, H.: Boom:
Taking boolean program model checking one step further. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 145–149. Springer, Heidelberg
(2010)



244 Z. Ganjei et al.

7. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate ab-
straction for shared-variable concurrent programs. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg (2011)

8. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate ab-
straction for shared-variable concurrent programs. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg (2011)

9. Farzan, A., Kincaid, Z., Podelski, A.: Proofs that count. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2014, pp. 151–164. ACM, New York (2014)

10. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Comput. Sci. 256(1-2), 63–92 (2001)

11. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

12. Ganjei, Z., Rezine, A., Eles, P., Peng, Z.: Abstracting and counting synchronizing
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Abstract. Designing and developing distributed and concurrent appli-
cations has always been a tedious and error-prone task. In this context,
formal techniques and tools are of great help in order to specify such
concurrent systems and detect bugs in the corresponding models. In this
paper, we propose a new framework for debugging value-passing process
algebra through coverage analysis. We illustrate our approach with LNT,
which is a recent specification language designed for formally modelling
concurrent systems. We define several coverage notions before showing
how to instrument the specification without affecting original behaviors.
Our approach helps one to improve the quality of a dataset of exam-
ples used for validation purposes, but also to find ill-formed decisions,
dead code, and other errors in the specification. We have implemented
a tool for automating our debugging approach, and applied it to several
real-world case studies in different application areas.

1 Introduction

Recent computing trends promote the development of software applications that
are intrinsically parallel, distributed and concurrent. However, designing and de-
veloping distributed software has always been a tedious and error-prone task, and
the ever increasing software complexity is making matters even worse. Therefore,
it is impossible for any human being to foresee all the possible executions of this
kind of application, which thus can hardly be free of bugs. In this context, formal
techniques and tools are of great help in order to detect bugs in abstract models
of concurrent systems. Although we are still far from proposing techniques and
tools avoiding the existence of bugs in complex, real-world software systems, we
know how to automatically chase and find bugs that would be very difficult, if
not impossible, to detect manually.

A variety of formal specification languages has been developed over the last
few decades, such as algebraic specifications (CASL), state-based formalisms
(VDM, Z, B), automata-based languages (FSM, UML state diagrams, State-
charts), Petri nets or (value-passing) process algebras. Process algebras were
designed for modelling concurrent systems and present several advantages com-
pared to similar specification languages (such as automata-based languages or
Petri nets): they are equipped with formal semantics, compositional notations,
and are expressive enough to provide several levels of abstraction (e.g., data
with LOTOS or mobility with π-calculus); real-world systems can be specified
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� Springer-Verlag Berlin Heidelberg 2015
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using textual notations, and there exist several verification toolboxes for them
(CADP, mCRL2, LTSA, FDR2, etc.). In contrast, the syntax of process alge-
bras is still hard to understand and use, particularly for non-experts. In order
to fill this gap, LNT [7] was proposed a few years ago. LNT is a value-passing
process algebra inspired from the E-LOTOS standard [19] and from imperative
programming languages. LNT supports both the description of complex data
types and of concurrent processes using the same user-friendly syntax. LNT
specifications can be analyzed using CADP [13], a toolbox that provides various
verification techniques and tools such as model checking, compositional verifica-
tion, or performance evaluation. LNT is already used by several universities for
teaching and research purposes, and by companies (such as STMicroelectronics
or Orange labs) for designing and verifying different kinds of systems.

When using model checking techniques as those available in CADP, we usually
have an LNT specification of a system, a dataset of validation examples, and a
set of temporal properties to be verified on the system being designed. When
we apply the LNT specification on a validation example, we obtain a Labelled
Transition System (LTS), which corresponds to all the possible executions of the
specification for this example. These LTSs are computed automatically using
CADP exploration tools (enumerative approach). A validation example defines
a set of inputs to the LNT specification and is similar to a test case in the
testing domain. The LTS generation without explicit inputs might turn out to be
impossible due to the enumeration on possibly infinite data domains. Bounding
the exploration is a solution but this often results in huge LTSs (state explosion),
which are therefore very long to analyze. This is why, in this setting, we prefer
to work with a set of concrete inputs that we call validation examples in this
paper.

The aforementioned properties can be verified on the generated LTS using
model checking techniques. At this stage, building the set of validation examples
and debugging the system is a real burden, in particular for non-experts. Coun-
terexamples (sequences of actions violating the property) provided by model
checkers are the only feedback one may have, and analysing such diagnostics
may be very complicated, especially when the counterexample consists of hun-
dreds of actions. More precisely here are a couple of issues that may arise during
this phase: (i) we do not know whether the set of validation examples covers all
the possible execution scenarios described in the LNT specification; (ii) the LNT
specification may contain ill-formed decisions, non-synchronizable actions, and
dead code, which require to be corrected, and are not necessarily found using
model checking techniques.

Structural coverage is considered as one important metric of software quality
and is normally used in implementation testing [21]. Coverage criteria can guide
the selection of test cases as well as software reliability estimation. One common
approach is to use coverage analysis for measuring the quality of the suite of
test cases, which is often evaluated by its ability to detect mutants, i.e., po-
tential faults that are artificially inserted [16]. Several coverage criteria are well
established, such as instruction coverage, decision coverage, data-flow coverage,
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and path coverage. In this paper, we explore a different angle of the same ques-
tion that relates to specification coverage. We demonstrate how to improve the
quality of validation examples, and more importantly to debug specifications
through coverage analysis. Formal specification languages have already bene-
fited from tool-supported coverage metrics, such as SDL with Telelogic’s Tau
that measures the coverage of states and transitions, and VDM with IFAD’s
VDMTools [2].

In this paper, we are interested in debugging value-passing process algebra
through coverage analysis, and we applied it to LNT specifications. We first de-
fine block, decision, and action coverage for specifications before showing how to
insert probes to collect coverage information. Then we present how to analyze
coverage based on the collected information in two steps. In the first step, we
simultaneously analyze block and decision coverage to locate uncovered areas.
We define a relationship between blocks and decisions, which is used to detect
ill-formed decisions as well as to choose the uncovered parts that may contain
non-synchronizable actions. In the second step, we perform action coverage anal-
ysis in these selected uncovered parts to find out the non-synchronizable actions.
We implemented a tool to automate our approach, and we applied it to more
than one hundred LNT specifications including six real-world case studies. It
is worth emphasizing that we found several important issues for these speci-
fications (e.g., incomplete dataset of validation examples, ill-formed decisions,
non-synchronizable actions, and dead code).

The main contributions of this paper are as follows:

– We developed new techniques to debug formal specifications, illustrated by
LNT.

– We proved that applying our techniques has no impact on the original be-
haviors of the system by proving branching equivalence preservation.

– We implemented these techniques as a tool, CAL, built on top of the publicly
available and widely-used CADP verification toolbox.

– We applied CAL to more than one hundred LNT specifications including six
real-world systems.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
LNT. In Section 3, our solution for LNT coverage analysis is presented, including
how to insert probes without impact on the original system behaviors as well as
how to compute coverage in two steps. Section 4 describes our implementation
and experimental results. Sections 5 and 6 present related work and concluding
remarks, respectively.

2 Overview of LNT

The LNT specification language is an improved variant of the E-LOTOS stan-
dard [19]. LNT combines the best features of imperative and functional pro-
gramming languages on the one hand, and value-passing process algebras on
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the other. Therefore, LNT supports both the description of complex data types
and of concurrent processes using the same user-friendly syntax. LNT formal
operational semantics is defined in terms of LTSs. For the sake of brievity, we
show in Table 1 the syntax and semantics of a fragment of LNT, where xi and
Ti represent a variable and its type respectively, E denotes a logical expression,
V is either a variable or an expression with type coercion, and Vi are its possible
values [7].

Table 1. Syntax and operational semantics of LNT fragment

B ::= stop | B1; B2 | select B1[]...[]Bn end select
| par G in B1||...||Bn end par | if E then B end if

| case V in V1 → B1 |...| Vm → Bm end case | while E loop B end loop

(SEQ1) B1
β−→ B1′

B1;B2
β−→ B1′;B2

(SEQ2)B1
δ−→ B1′ B2

β−→ B2′
B1;B2

β−→ B2′
(SEL)

k ∈ [1, n] Bk
β−→ Bk′

select B1[]...[]Bn end select
β−→ Bk′

(PAR)
k ∈ [1, n] Bk

β−→ Bk′ gate(β) �= G

par G in B1||...||Bn end par
β−→ par G in B1||...||Bk ′||...||Bn end par

(COM)
I ⊆ [1, n] ∀k ∈ I.Bk

β−→ Bk′ gate(β) = G j ∈ I

par G in B1||...||Bn end par
β−→ par G in B1||...||Bj ′||...||Bn end par

(IF1)
�E� = true B

β−→ B′
if E then B end if

β−→ B′
(IF2)

�E� = false

if E then B end if
δ−→ stop

(WHILE1)
�E� = true B

π−→ B′ B′ δ−→ B
while E loop B end loop

π−→ while E loop B end loop

(WHILE2)
�E� = false

while E loop B end loop
δ−→ stop

(CASE)
j ∈ 1, ...m (∀k ∈ 1, ..., j − 1)�V == Vk� = false, �V == Vj� = true Bj

β−→ B′
case V in V1 → B1 |...| Vm → Bm end case

β−→ B′

LNT processes are built from action, sequential composition (;), choice (se-
lect), parallel composition (par), condition (if, case, while), and termination
(stop). Communication is carried out by rendezvous on gates G (multiple syn-
chronization points) with bidirectional transmission of multiple values. For sim-
plicity, in Table 2, we consider actions with only two values being sent in both
directions. The gate on which an action β takes place is denoted by gate(β), and
we use π to denote a sequence of actions. Particularly, an action can be an emis-
sion (!) or a reception (?). The special action δ is used for successful termination.
The internal action is denoted by the special gate i, which cannot be used for
synchronization. Processes are parameterized by sets of actions (alphabets) and
input/output data variables.

LNT specifications can be analyzed using CADP [13], a verification toolbox
dedicated to the design, analysis, and verification of asynchronous systems con-
sisting of concurrent processes interacting via message passing.
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3 Coverage Analysis

In this section, we show how to analyze structural coverage for LNT specifi-
cations, which helps one to improve the quality of the dataset of validation
examples as well as to detect several issues in the specification, i.e., ill-formed
or unnecessary decisions, non-synchronizable actions, and dead code.

3.1 Terminology

One well-known coverage criteria is the instruction coverage, i.e., the number
of executed instructions out of the total number of instructions. It is used for
measuring code quality, i.e., checking the existence of non-executed code. How-
ever, this coverage requires checking each instruction separately, which is not
efficient for large programs. Since several instructions can be in the same block,
for efficiency reasons it makes more sense to keep track of blocks rather than
individual instructions. Note that 100% block coverage implies 100% instruction
coverage. This is why we choose block coverage as the first criterion. However,
from block coverage, we cannot deduce outcomes of decisions, e.g., whether a
loop reaches its termination condition or whether the false outcome of a decision
is evaluated. To solve this, we consider decision coverage as the second criterion,
which takes a more in-depth view of the program. Furthermore, note that for
LNT, synchronization points between processes are modelled by rendezvous on
synchronized actions. To check whether all actions are well designed to be syn-
chronizable, we choose action coverage as a third criterion. It is a special metric
for concurrent languages.

Let us define the notion of blocks for LNT. We first define control instructions
in LNT that will be used to determine blocks.

Definition 1 (LNT Control Instruction). The Control Instructions (CIs) of an
LNT specification include conditional instructions (if, case, while), parallel
and choice ones (par, select), and termination (stop).

Definition 2 (LNT Block). Given an LNT specification, an LNT block is the
largest sequence of instructions free of CIs. Particularly, we call a block without
action a silent block.

Now we formally define the notion of coverage for blocks, actions, and deci-
sions. In the following, we simply call LNT block as block if there is no ambiguity.
In LNT, a decision is a Boolean expression composed of conditions and zero or
more Boolean operators. Particularly, for case statements, each branch is con-
sidered as one decision. For example, given the following case statement:

case V in V0 → I0 | V1 → I1 | V2 → I2 end case
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we have the following three decisions, one per branch:

– V == V0;
– V == V1;
– V == V2.

Definition 3 (Covered block, action, and decision). Let s be an LNT specifica-
tion and ds be a dataset of validation examples. We have the following notions:

– a block b (an action a, resp.) in s is said to be covered w.r.t. ds if b (a, resp.)
is executed by at least one example e ∈ ds, denoted by Cs:B

ds (b) (Cs:A
ds (a),

resp.), simply CB(b) (CA(a), resp.) if there is no ambiguity;
– a decision d in s is said to be covered w.r.t ds if ∃e1, e2 ∈ ds, such that the

true outcome of d is evaluated by e1 and the false outcome is evaluated by
e2, denoted by Cs:D

ds (d), simply CD(d). Specially, if only true (false, resp.)
outcome of d is evaluated, we denote this by CD:t(d) (CD:f (d), resp.).

Definition 4 (Block (Decision, Action, resp.) coverage). Let s be an LNT spec-
ification and ds be a dataset of validation examples. Block (Decision, Action,
resp.) coverage w.r.t. s and ds, denoted by BCs

ds (DCs
ds, AC

s
ds, resp.), is the

percentage of the number of covered blocks (decisions, actions, resp.) out of
their total number. Formally, BCs

ds = ‖Bc‖/‖B‖ (DCs
ds = ‖Dc‖/‖D‖, ACs

ds =
‖Ac‖/‖A‖, resp.), where Bc = {b ∈ B | CB(b)} (Dc = {d ∈ D | CD(d)},
Ac = {a ∈ A | CA(a)}, resp.) and B (D, A, resp.) is the set of all blocks (de-
cisions, actions, resp.) in the given specification. If there is no ambiguity, we
simply denote the three coverage as BC, DC, and AC.

3.2 Probe Insertion

To measure structural coverage of LNT, we instrument the code with probes in
order to collect coverage information. Before showing how to do this, we first
define LTS, which will be used to explicitly capture such coverage information.

Definition 5 (LTS) An LTS is a tuple L = (SL, s
0
L, ΣL, TL) where SL is a

finite set of states; s0L ∈ SL is the initial state; ΣL is a finite set of actions;
TL ⊆ SL ×ΣL × SL is a finite set of transitions.

Given an LTS obtained from applying an LNT specification on one validation
example, the only elements of the specification contained in this LTS are actions.
Hence, to analyze the structural coverage, we propose to insert probes as new
actions, whose presence in the LTS explicitly shows their coverage information.
When inserting such probes, it is important to preserve the original system
behaviors when all probes are hidden as internal actions. It is reasonable to
consider probes as internal actions because they are represented by fresh and
non-synchronized actions, which do not interfere with the existing instructions.
In the following, we denote the set of LTSs corresponding to the dataset of
validation examples by Δ.
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Block. To measure the block coverage, we insert a probe P at the end of each
block. The presence of P in Δ implies that its associated block is covered, i.e.,
∃L ∈ Δ, such that P ∈ ΣL.

Decision. Table 2 illustrates how probes are inserted for decisions in LNT.
For decision coverage, to obtain the evaluated outcome(s) of a given decision
E, we equip the corresponding probe with this decision as its parameter, i.e.,
P (!E). The parameter !E displays the outcome of the decision E. Precisely, if
the decision E is evaluated to both true and false for a validation example, then
in its corresponding LTS, we have the action P !TRUE as well as P !FALSE.
Otherwise, if it is evaluated to only true (false, resp.), what we obtain in the
LTS is P !TRUE (P !FALSE, resp.). The decision E is covered if ∃L1, L2 ∈ Δ,
such that P !TRUE ∈ ΣL1, P !FALSE ∈ ΣL2 .

In Table 2, for the if construct, we add the corresponding probe just before
it to catch its outcome. For the case construct, its operational semantics is to
sequentially pick the first condition that holds true. To capture such semantics,
we first represent a decision for each branch by a different probe, i.e., P1 for
V = V1 and P2 for V = V2. At the beginning of each corresponding branch, we
add its probe with parameter TRUE and the probes representing all its prece-
dent branches with parameter FALSE. In this way, only probes with evaluated
decisions appear in the corresponding LTSs. For the loop construct (while),
probes should be inserted both before and after the corresponding construct to
guarantee that both outcomes of the decision are obtained if it is covered. Oth-
erwise, with the probe only before the construct, we will never capture the false
outcome if the value of decision is first true and then becomes false. With the
probe only after the construct, the true outcome cannot be caught in the same
situation.

Table 2. Probe insertion for decisions

Types Before Insertion After Insertion

If if E then B1 end if P (!E); if E then B1 end if

Case case V in V1 → B1 |V2 → B2 end case
case V in V1 → P1(!TRUE);B1

|V2 → P1(!FALSE);P2(!TRUE);B2 end case

While while E loop B1 end loop P (!E); while E loop B1 end loop; P (!E)

Action. For action coverage, we insert a probe just after the target action, whose
presence in an LTS indicates that this action is covered. Even though actions
can be manifested by themselves in LTSs, probes are still necessary. The reason
is that in an LNT specification, one action may be used several times at different
places. Each appearance of an action is called its instance. The presence of an
action in Δ does not mean that all its instances are covered. To determine which
exact instance of an action is not yet covered if there is any, we use different
probes to distinguish all action instances.



252 G. Salaün and L. Ye

Critical Block and Decision. Now we define critical blocks and decisions
that are located at the beginning of a choice branch, whose corresponding probes
should be inserted in a different way to preserve system behaviors.

Definition 6 (Critical block (decision)). Given a silent block (decision), if it
is a subpart of a select construct such that there is no action before it in the
corresponding choice branch, then it is called a critical block (decision).

Intuitively, given a critical block or decision, if we insert its probe as described
before, this probe becomes the first action in the corresponding choice branch.
In this case, the branching structure will be altered (τ.a+ b and a+ b, in a CCS-
like notation [20], are not branching equivalent). To solve this problem, Table 3
shows how to insert probes for critical blocks and decisions in a different way
to keep the original behaviors, where Bs

i denotes a silent block. For a critical
block, an additional variable, initialized as 0, is used to indicate whether this
block is completely executed. This variable is then used as the parameter of
the corresponding probe inserted after the choice construct. If the value is 1
(0, resp.), then this block is covered (not covered, resp.), represented by P (!1)
(P (!0), resp.) in the corresponding LTS. For a critical decision, an extra variable,
initialized as 2, is used as the parameter of the corresponding probe inserted after
the choice construct. The value being 1 (0, resp.) represents true (false, resp.)
outcome of the decision. Particularly, if the value is 2, then the decision is not
even evaluated.

Table 3. Probe insertion for critical blocks and critical decisions

Criterion Types Before Insertion After Insertion

Block
select Bs

1 [] B2 end select
tag:=0; select Bs

1 ; tag:=1 []
B2 end select P (!tag)

Decision

If
select Bs

1 ; if E then B2 end if ;
B3 [] B4 end select

tag:=2; select Bs
1 ;

if E then tag:=1 else tag:=0 end if;
if E then B2 end if ; B3 []

B4 end select P (!tag)

Case
select Bs

1 ; case V in V1 → B2

|V2 → B3 end case;
B4 [] B5 end select

tag1:=2; tag2:=2; select Bs
1 ;

case V in V1 → tag1 := 1;B2

|V2 → tag1 := 0; tag2 := 1;B3 end case;
...end select;

P1(!tag1); P2(!tag2)

While
select Bs

1 ; while E loop B2

end loop; B3[]B4 end select

tag1:=2; tag2:=2; select Bs
1 ;

if E then tag1:=1 else tag1:=0 end if;
while ... end loop;

if E then tag2:=1 else tag2:=0 end if;
B3[]B4 end select; P (!tag1); P (!tag2)

3.3 Behavior Preservation

In this section, we prove the behavioral equivalence between the original LNT
specification and the one with inserted probes hidden as internal actions, which
is called an extended specification in the following. We consider here branching
bisimulation, which is one of the finest behavioral equivalences studied in process
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theory [22]. This equivalence preserves the branching structure of systems by
considering all intermediate states including those with internal transitions. We
prove the branching equivalence directly on LNT specification, which is actually
a process algebra. The underlying model of process algebra is its corresponding
LTS, where each process represents a state in its LTS.

Definition 7 (Branching bisimulation). A branching bisimulation relation R is
a binary relation over a process algebra such that it is symmetric and satisfies
the following transfer property: if pRq and p

a−→ p′, then one of the two following
conditions should be satisfied:
– a = τ and p′Rq;

– there is a sequence of transitions q
τ∗
−→ q′′

a−→ q′, pRq′′ and p′Rq′.
If there is a branching bisimulation relation R between p and q, then p and q are
branching bisimilar, denoted by p ≈b q.

Theorem 1 Let s be an LNT specification, s′ be its corresponding extended
specification (both s and s′ are processes), then s and s′ are branching bisimilar,
i.e., s ≈b s

′.

Proof. From Definition 7 and the fact that the only difference between s and s′

is the set of inserted probes that are considered as internal actions, it follows
that to prove this theorem, we have to show that ∀τP ∈ s′, where τP represents
a probe considered as an internal action, for a binary relation R, the condition
Υ is satisfied, where Υ : ∀τP ∈ s′, p

τP−−→ p′ ⇒ pRp′. This means that any inserted
probe has no impact on the original behaviors in terms of branching structures.
Next we demonstrate, without loss of generality, that this is true for each probe.

1. For an action a in any composition or construct, it can be directly deduced
that its corresponding probe satisfies the condition Υ , from the silent step
law in process algebra, denoted by Lτ : a.τP ≈b a (CCS-like notation, which
will be used in the following for the sake of brievity).

2. For a block B, we analyze its corresponding probe in three different con-
structs separately, i.e., sequential, parallel and choice.
– For B in a sequential composition that is not inside any parallel and

choice construct, its probe satisfies the condition Υ since it is not possible
for this probe to change the branching structure.

– For B in a parallel composition that is not inside any choice construct,
there are two possible situations. One is that the corresponding probe
τP inserted for B is the first action in the corresponding parallel branch,
where B must be a silent block. Another one is that τP is not the first
action in this branch. For the latter one, τP satisfies Υ from Lτ . Now we
analyze the first situation in the following way.
Base case: consider (τP .a)||b, for which we have τP .a||b = τP .(a||b) +
b.τP .a. From this, the τP in b.τP .a satisfies Υ . Moreover, from Lτ , we
further get τP .(a||b) + b.τP .a = τP .(a||b) + b.a. Now we show that this
τP also satisfies Υ because b.a is included in a||b since a||b = a.b+ b.a.
Induction: now consider (τP .a)||(b1.....bn) = τP .(a||(b1.....bn))+b1.((τP .
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a)||(b2.....bn)). Now we suppose that τP in (τP .a)||(b2.....bn) satisfies Υ
and thus can be reduced to a||(b2.....bn). This follows that the first τP
also satisfies Υ since b1.(a||(b2.....bn)) is included in (a||(b1.....bn)). In
the same way, the induction is applied to structures with more than two
parallel branches.

– For B in a parallel composition that itself is inside a choice construct,
suppose that there is no action before B in the corresponding branch
and B is a silent block. Then B is a critical block and its corresponding
probe is inserted after the choice construct, which satisfies Υ .

– For B in a choice construct, either B is a critical block, or there is an
action before B. For the former case, the corresponding probe is inserted
after the choice construct and thus satisfies Υ . The probe of the latter
case also satisfies Υ from Lτ .

3. For a decision E, if it is not critical, the probe satisfy Υ from Lτ . If it is
critical, we avoid τP .a+ b 
≈b a+ b by inserting the corresponding probe in
the sequential composition after the choice construct, which then satisfies Υ .
Actually the demonstration follows the exact same line as described above
for blocks.

Now we have shown that each probe inserted as described in Section 3.2 does
not alter the original behaviors of the system in terms of branching structure
and this proves this theorem. �

3.4 Coverage Computing

If we simultaneously insert probes for all three criteria to compute their coverage,
the corresponding LTSs would suffer from the state explosion problem. To solve
this, we separate the coverage analysis into two steps. In a first step, we insert
probes for blocks and decisions to reveal those uncovered. The entry of a block
may be controlled by the outcome of a decision, e.g., the true outcome of an
if instruction allows the execution to enter its associated block. For such a
block, its coverage may be prevented by two possible reasons: the outcome of
its controlling decision prohibits the execution from entering it, or only a part
of the block is executed due to non-synchronizable actions. In a second step, we
are more interested in those partially covered blocks whose entry is allowed by
a decision to discover non-synchronizable actions.

Definition 8 (Dependency of block on decision).
– Given a block b and a decision d, if the execution of b is dependent of the true

(false, resp.) outcome of d, this dependency is denoted by b⇒pd d (b⇒nd d,
resp.).

– If b⇒pd d or b⇒nd d, we denote it b⇒d d.

A block whose entry is allowed is an executable block. Such a block either has
no dependent decision or is permitted to be entered by its associated decision.
In other words, if an executable block is dependent of the true (false, resp.)
outcome of a decision d, then this outcome of d is covered.
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Definition 9 (Executable block). A block b is executable if one of the following
conditions is satisfied:
– �d such that b⇒d d;
– if b⇒d d, then either b⇒pd d and CD:t(d), or b⇒nd d and CD:f (d).

Definition 10 (Partially covered block). A block is a partially covered block if
it is executable but not covered.

Figure 1 overviews our coverage analysis in two steps. In the first step, we
repeatedly apply the specification with probes for both blocks and decisions on
each validation example to obtain the corresponding LTS. Block and decision
coverages are simultaneously analyzed on these LTSs to obtain their coverage
results, denoted by RBC and RDC , respectively. We have RBC = {BC, ΓUB}
and RDC = {DC,ΓCD:t , ΓCD:f }, where BC (DC, resp.) is the percentage of
block (decision, resp.) coverage, ΓUB is the set of uncovered blocks, and ΓCD:t

(ΓCD:f , resp.) is the set of decisions whose true (false, resp.) outcome is covered.
We can deduce whether an uncovered block is executable and thus calculate
the set of partially covered blocks with RBC and RDC . In the second step, we
insert probes for actions in this set of blocks before obtaining the corresponding
LTSs and then perform action coverage analysis. The result of action coverage
is RAC = {AC, ΓPA}, where AC is the percentage of action coverage, and ΓPA

is the set of non-synchronizable actions.

set of partially 
covered blocks

+ ac�on coverage
analysisRAC

block & decision 
coverage analysis

        LTSs
       LNT spe.  (blocks  & 
    decisions)  + examples

     LNT spe. (ac�ons) 
          + examples         LTSs

STEP 1 STEP 2

RBC RDC

Fig. 1. Overview of coverage analysis in two steps

3.5 Results Analysis

Given the coverage results described in the precedent section, two reasons can
explain why the coverage percentages are lower than 100%:

1. lack of validation examples;
2. defects contained in the corresponding LNT specification.

For the first reason, the solution is to add examples that can explore those
missing execution scenarios. For instance, suppose that the false outcome of a
decision is never covered by the current dataset, we should add examples where
the value of this decision can be evaluated to false. If there is no such exam-
ples, then we should consider the second reason. For example, if we define one
specification with two input parameters and both have two possible values, then
we have in total four validation examples. In this case, if a coverage percentage
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cannot achieve 100%, then there must be some errors in the specification since
there is no other possible examples (for illustration see the case study named
AgtReconfig in Section 4). We list in the following the different types of errors
that may be the source of the uncovered parts, which can be deduced thanks to
the results obtained in the precedent section, e.g., ΓCD:f , ΓCD:t , ΓPA, etc.:

– Ill-formed decision: given a decision d such that d ∈ ΓCD:f and d /∈ ΓCD:t

(d ∈ ΓCD:t and d /∈ ΓCD:f , resp.), if ∃b, such that b ⇒pd d (b ⇒nd d, resp.),
this means that the uncovered outcome of a decision controls at least one
block. Such situation is probably due to an ill-formed decision. For example,
if a block is within an if conditional construct that always has false outcome,
then this block is never covered.

– Unnecessary decision: given a decision d such that d ∈ ΓCD:f and d /∈
ΓCD:t (d ∈ ΓCD:t and d /∈ ΓCD:f , resp.), if �b, such that b ⇒pd d (b ⇒nd d,
resp.), this means that the uncovered outcome of a decision controls no
block. Such decisions can be safely removed, e.g., the false outcome of an if
conditional construct is never achieved.

– Non-synchronizable actions: for an action a, if a ∈ ΓPA, then its cor-
responding synchronization is ill-designed, i.e., there is bad match between
the received and the sent parameter types of the corresponding actions.

– Dead code: a piece of unreachable code in an uncovered block b ∈ ΓUB is
called dead code if it is not due to the errors described above. This may be
caused for example by wrong location of stop.

4 Evaluation

We have implemented our approach as a tool called CAL (Coverage Analysis
of LNT). In this section, we first present the architecture of CAL joined with
CADP before showing some experimental results. We also show how our two-
step analysis can reduce the state space explosion problem compared to a more
naive approach, where the three coverage criteria are simultaneously computed.

4.1 Implementation

The architecture of CAL with the cooperation of CADP is shown in Figure 2.
The input of CAL is an LNT specification with a dataset of validation exam-
ples. The LNT specification is instrumented with probes for different criteria as
described in Section 3.2. Then CAL calls CADP compilers to repeatedly apply
the instrumented LNT specification on each validation example to obtain its
corresponding explicit LTS. In this way, we can obtain a set of LTSs associated
to the dataset of examples. Afterwards, the ANALYSER tool of CAL measures
the coverage percentage and provides other results as described in Section 3.4.
All experiments were conducted on a server machine that has six 3.07 GHz pro-
cessors and 11.7 GB of RAM. Considering that CADP has interfaces for reading
LTSs that can be used by an application program written in C or C++, CAL
is implemented in C, using gcc with version 3.4.3. The version of CADP used in
our evaluation is BETA-VERSION 2014-c ”Amsterdam”.
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Fig. 2. Implementation architecture of CAL with CADP

4.2 Experimental Results

To evaluate our approach, we have applied our tool to more than one hundred
LNT specifications, including six real-world case studies in different application
areas (hardware, cloud computing, multi-agent systems, and synchronization
protocols). Table 4 lists the six case studies with their designer and a short
description.

Table 4. Details of six real-world case studies

Case Study Designer Description

DirectCache STMicroelectronics
deals with cache coherence in multiprocessor

systems by using a common directory.

AgtReconfig Inria
provides an agent-based mechanism
allowing distributed applications
to be reconfigured at run-time [8].

DisCache STMicroelectronics
ensures data consistency in multiprocessor

shared memory systems that allow
multiple copies of a datum [1].

SelfConfig Inria, Orange labs
automates the configuration of a cloud application

that is distributed on more than one virtual machine
without requiring any centralized server [9,24,10].

ReConfig Inria, Orange labs
reconfigures a running system composed of a set of
interconnected components, where multiple failures
occurring at reconfiguration time are tolerated [5].

Synchro Inria
realizes the multiway rendezvous of LNT,

where all parallel processes are
organized in a hierarchical structure [11].

Table 5 lists both the size of the six case studies, i.e., number of lines and
validation examples, and their coverage results. Their size varies from 196 to
3700 lines. The number of validation examples differs from several to 200, which
depends on the available input domain. For example, in the specification of
AgtReconfig, the major process is defined with only two parameters that has
two possible values. In this case, we can have four validation examples in total.
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Table 5. Experimental results, where NL: number of lines, NV E : number of valida-
tion examples, NB (ND, NA, resp.): number of blocks (decisions, actions, resp.), BC
(DC,AC, resp.): block (decision, action, resp.) coverage

DirectCache AgtReconfig DisCache SelfConfig ReConfig Synchro1 Synchro2

NL 196 785 981 1635 3700 486 480
NV E 5 4 6 60 200 18 30

NB 12 31 33 31 90 66 66
BC 83.3% 67.7% 93.9% 83.8% 97.8% 62.1% 100%

ND 12 27 23 23 89 50 50
DC 83.3% 74.1% 91.3% 73.9% 92.1% 60% 100%

NA 9 50 33 32 53 72 72
AC 100% 64% 100% 93.8% 96.2% 68.1% 100%

In this table, we show two versions for the Synchro case study, the first version
is called Synchro1 and the second one Synchro2. The second version was obtained
using our coverage results on the first version, as described in Section 3.4 and
Section 3.5. Particularly, the block coverage was improved from 62.1% to 100%.
This demonstrates the interest of the subsequent utilization of the measured
coverage information computed by our approach. Precisely, to achieve 100% for
this case study, the authors have not only added 12 complementary validation
examples but have also corrected several non-synchronizable actions.

0

5

25

number of uncovered 
blocks

number of par�ally 
covered blocks

Fig. 3. Executability of uncovered blocks

Another point is that for several case studies (DirectCache, DisCache, and
ReConfig), all uncovered blocks were not executable, which is shown in Fig-
ure 3. In this case, the first step of coverage analysis is sufficient. For other case
studies, the majority of uncovered blocks were not executable. This means that
we consider very few blocks in the action analysis.
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Besides improving the quality of validation examples, our coverage analysis
also identified all types of errors described in Section 3.5. For example, several
crucial ill-formed decisions affecting the whole system behaviors were detected
and corrected for ReConfig, which were not discovered by model checking. An-
other point that we want to emphasize is that the analysis results can help in
correcting the corresponding bugs in the implementation. In ReConfig for in-
stance, the ill-formed decisions in the LNT specification, detected in the LTS
models, helped the developers of the corresponding Java implementation (Or-
ange labs) to locate and correct them immediately.

To show the efficiency of our approach, we compare it with a more naive
approach, where three criteria are simultaneously analyzed. We greatly reduce
the number of probes for all case studies that we tested when adopting our
approach in two steps. Take AgtReconfig as example, the total number of probes
is 108 with the naive approach and is only 60 with ours. In our experiments, the
reduced number of states and transitions for all case studies are between 30% and
60% thanks to the reduced number of probes. Furthermore, for some validation
examples of Synchro2, we could not even construct the corresponding LTSs using
the naive approach within a reasonable time (a few hours) but succeeded using
ours within one hour.

5 Related Work

Step-by-step execution for LOTOS is proposed in [17], which is also called in-
teractive simulation. The authors take the role of the environment by providing
events to the specification and then by observing the results. Although useful for
debugging, step-by-step execution is probably the simplest and weakest valida-
tion technique available for LOTOS. In [4], the authors propose to measure the
completeness of an example suite in terms of the structural coverage described
in LOTOS, where a probe is inserted after every action to check its achievement.
However, they do not consider the decisions, whose coverage may have an impor-
tant impact on the action coverage. The authors of [12] consider action, decision,
and condition coverage for LOTOS. These criteria are measured totally sepa-
rately. Furthermore, both works do not check behavioral equivalence between
the original specification and the extended one. By using new actions as probes,
their insertion techniques imply that only weak trace equivalence is preserved.
This is the weakest equivalence and thus not suitable for safety-critical systems,
where altering branching structure could have serious consequences since an in-
ternal transition may alter the desired behavior of the system. Furthermore,
compared to keeping weak trace equivalence, we guarantee the finest branching
equivalence with probes considered as internal action, which however does not
degrade the performance. The reason is that to preserve branching equivalence,
as described in Section 3.2, for each critical block and critical decision, we only
move their corresponding probe from inside the corresponding choice construct
to after it. In other words, the number of probes required is not increased.

In [18], the authors propose an approach to test specifications by first formu-
lating properties that should hold in the specification and then applying model
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checking or theorem proving to find violations. However, it is very difficult to
select the set of properties such that they can evaluate all behaviors in the spec-
ification. This is also the case for LNT specification, where some faults detected
by our coverage analysis cannot be identified by model checking. Model checking
techniques are also used to automatically generate test cases that satisfy cover-
age criteria [15]. Similarly, in [14], a suite of test sequences are generated from
SCR requirements specification by using a model checker’s ability to construct
counterexamples. Differently, our approach does not only improve the quality
of validation examples, but more importantly detect faults in the specification
through coverage analysis.

Coverage based testing is a widely used technique in software engineering and
different coverage criteria are described in classical books on software testing,
e.g., [21]. Test coverage is considered as an essential factor to enhance new
proposed models for software reliability estimation. For example, Piwowarsky et
al. [23] predict software reliability based on the fact that the fault removal rate
is a linear function of the code coverage. Cai and Lyu [6] propose to incorporate
testing time and test coverage together into one single mathematical form to es-
timate the software reliability. However, in this paper, our goal is not to discover
the quantitative relation between coverage analysis and fault detection rate but
to directly debug formal specification by using coverage techniques.

6 Conclusion

In this paper, we have proposed a new approach to debug process algebra speci-
fications, illustrated by LNT. First, we have introduced several coverage notions
before showing how to insert probes to measure them by keeping the same be-
haviors. Second, we have proposed the coverage analysis in two steps such that
we are able to find out uncovered parts keeping the number of probes as small
as possible. The obtained results can be considered as efficient guides to either
complete validation examples or correct errors in the given specification. Third,
we have applied our implemented tool, CAL, to six real-world case studies. It is
worth pointing out that our approach can also be applied to other value-passing
process algebra such as CSP with FDR2 or Promela with SPIN.

So far we have defined an elementary set of coverage criteria, therefore one
perspective of our work is to extend to other criteria for coverage analysis, such
as multiple condition coverage, modified condition/decision coverage variants,
or some criteria based on data flow [3].
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Abstract. This paper combines the benefits of Polyhedral Abstract In-
terpretation (poly-AI) with the flexibility of Property Directed Reacha-
bility (PDR) algorithms for computing safe inductive convex polyhedral
invariants. We develop two algorithms that integrate Poly-AI with PDR
and show their benefits on a prototype in Z3 using a preliminary eval-
uation. The algorithms mimic traditional forward Kleene and a chaotic
backward iterations, respectively. Our main contribution is showing how
to replace expensive convex hull and quantifier elimination computations,
a major bottleneck in poly-AI, with demand-driven property-directed
algorithms based on interpolation and model-based projection. Our ap-
proach integrates seamlessly within the framework of PDR adapted to
Linear Real Arithmetic, and allows to dynamically decide between com-
puting convex and non-convex invariants as directed by the property.

1 Introduction

Linear Real Arithmetic (LRA) enjoys a prominent rôle in symbolic model check-
ing. Semantics of many program statements and properties can be expressed
using LRA. In practice, it is often sufficient to limit the verification of such
programs to a search for linear arithmetic invariants [20,19,15,9,22,26,10,24,7].
These methods, however, cover only a tiny fraction of the search space of LRA
invariants, and even worse, miss simple invariants.

x← y ← z ← 0

0: while ∗ do
x← x+1; y ← y+ 1; z ← z − 2

end

1: while ∗ do
x← x− 1; y ← y− 3; z ← z +2

end

2: assert x ≤ 0→ z ≥ 0 ∧ y ≤ 0

Fig. 1. Program Bouncy

Consider for example the program
Bouncy in Fig. 1. It increments and
decrements variables x, y, z in tandem.
There is a simple proof of the assertion
by using convex polyhedra invariant: 
0 →
2x = 2y = −z, 
1 → 2x = −z∧ y ≤ x. On
the other hand, an abstraction-refinement
proof that starts from either end (the ini-
tial state or the assertion) gets stuck in
this example deriving specialized asser-

tions about exact values of each variable. Convex polyhedral invariants, how-
ever, are often insufficient. For example, they cannot express disequalities

� This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0001643.

D. D’Souza et al. (Eds.): VMCAI 2015, LNCS 8931, pp. 263–281, 2015.
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(e.g., x 
= y), and many disjunctive extensions (e.g.,[25,4,17,1]) have been pro-
posed to remedy this.

This paper embarks on the quest of devising practical property directed [8]
polyhedral abstraction algorithms [13]. Our grander ambition is to enable practi-
cal model checking methods that search effectively the relevant space of all linear
invariants. However, the goal of this paper is more modest: import the search
for convex linear invariants, as done by abstract interpretation, into a property
directed framework, and do so efficiently. The resulting approach should retain
the advantages of restricting the search in an abstract space as well as limiting
derived invariants to only the ones that are sufficient for establishing a given
property. Indeed, we claim that the combination of polyhedral abstraction and
property directed model checking allows to simultaneously address limitations
of each approach when they are used in isolation.

The first step towards this goal is a modular account of PDR (Section 3), and
the first complete description in Section 4 of APDR: PDR for LRA. We then
develop two main ingredients, a forward procedure, FPDR in Section 5, that
produces convex polyhedra invariants; and a backward, BPDR in Section 6, for
complements of convex polyhedra. FPDR mimics forward Kleene iteration, and
BPDR mimics backward chaotic iteration, respectively. We present the ingredi-
ents in isolation and show that they can be combined in Section 7 in a framework
we call PolyPDR. A crucial enabler for PolyPDR is the syntactic convex closure
method from [5] (Section 2). It allows us to avoid maintaining polyhedra ex-
plicitly, in contrast to main tools [3] for polyhedral abstraction that rely on
computationally expensive steps that amount to quantifier elimination. To use
syntactic convex closure effectively, we integrate a novel algorithm, CCSAT,
that finds polyhedra invariants incrementally as half-space interpolants [2]. The
resulting method inherits several features from polyhedral abstract interpreta-
tion and allows to refine the abstraction lazily based on a proof search. The
BPDR method dually computes co-convex polyhedra invariants. Section 8 re-
ports on a preliminary evaluation on selected examples that are known to be
difficult to APDR, yet are easy for FPDR or BPDR.

Verification with Interpolation-based MC versus Polyhedral AI. We believe that
this work also sheds light on the relationship between abstract interpretation-
based and interpolation-based approaches for discovering convex arithmetic in-
variants. Recall that a Craig Interpolant of two inconsistent formulas A and
B is a formula I such that A → I, I → ¬B, and the free variables of I are
common to A and B. Interpolation-based model checkers use interpolants as
oracles to extract constraints relevant for verifying a given property. Table 1
summarizes interpolation procedures for LRA. In the table, Bool , Mono, DNF ,
and HalfSpace stand for Boolean combinations of linear inequalities, monomi-
als (i.e., conjunctions of literals), disjunction of monomials, and a single linear
inequality, respectively. Note that the procedures are partial — they are only de-
fined when an interpolant of the particular kind exists. For example, a half-space
interpolant might not exists even when A and B are inconsistent.
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Table 1. Interpolation algorithms for Linear Real Arithmetic (LRA)

Name Domain Algorithm

SmtItp Bool × Bool → Bool MathSat5 [11]

Itp Mono × Bool → Mono GPDR [19]

HalfItp DNF ×DNF → HalfSpace [2]
HalfItp Bool ×Mono → HalfSpace CCSAT (Sec. 5.2)

PolyItp Mono × Bool → Mono —

The general interpolation procedure SmtItp does not guarantee that the
interpolant is convex (or a monomial), even if the inputs are. This makes it
difficult to compare it to AI. For other procedures, the key difference is that in AI
all operations are typically restricted to the faces of the input polyhedra, whereas
interpolation operates over linear combinations (so called Farkas consequences)
of the input constraints. We show in Section 5.3 that this leads to a significant
difference in the two approaches. To unify MC and polyhedral AI, we suggest
it is necessary to restrict interpolants to a subset of faces of A that suffice to
separate B. Such an interpolant, we call it PolyItp, can be implemented using
Fourier-Motzkin-based decision procedures for LRA (e.g., [14,23]), but we are
not aware of any interpolation or verification procedures based on it.

2 Preliminaries: Closures and Polyhedral Abstraction

In this section we recall some main notions from Polyhedral Abstraction. The
construction for syntactic convex closures [5] is central to our quest: it lets us
write down the convex closure of two convex polyhedra as the solutions to a linear
arithmetic formula. We also recall basic notions from polyhedral abstraction to
set the stage for our property directed approach.

2.1 Convex Hulls and Syntactic Convex Closures

Let X be a subset of Qn. We write X for the topological closure of X . X is
called closed if it is invariant under topological closure, i.e., X = X . We write
CH (X) for the convex hull of X defined as the set of all affine combinations of
points in X :

CH (X) ≡ {λx+ (1− λy) | x,y ∈ X, 0 ≤ λ ≤ 1} .

X is called convex if it is invariant under the convex hull. A convex hull of a
closed set is not necessarily closed. In particular, a convex hull of a closed set
and a point is not closed. For example,

CH (x = 0 ∧ y = 1 ∨ x ≥ 0 ∧ x = y) ≡ 0 ≤ x ≤ y < x+ 1 .

We write CC (X) ≡ CH (X) for the convex closure of X . Of course:

CC (x = 0 ∧ y = 1 ∨ x ≥ 0 ∧ x = y) ≡ 0 ≤ x ≤ y ≤ x+ 1 .
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A closed polyhedron P (x) ⊆ Qn is a set of solutions to a conjunction of linear
non-strict inequalities, of the form Ax ≤ a. P is closed and convex. In the
rest of the paper, unless noted otherwise, we do not distinguish between the
syntactic and semantic representation of P . We also restrict our attention to
closed polyhedra, i.e., systems with non-strict inequalities only. While this is a
significant limitation, in practice, we use systems over Q to approximate systems
over N. Hence, the restriction can be enforced before the relaxation.

A very useful property of convex closure is that it can be computed by Linear
Programming, using, what we call, a syntactic convex closure.

Definition 1 (Syntactic Convex Closure). [5] Let {Pi(x) = Aix ≤ ai} be
a set of polyhedra. The syntactic convex closure cc({Pi}) is defined as follows:

cc({Pi}) ≡
(
x =

∑
i

zi

)
∧
(
1 =

∑
i

σi

)
∧
∧
i

(Aizi ≤ σiai ∧ σi ≥ 0)

where {zi} and {σi} are fresh variables different from x.

Convex closure can be computed by existentially quantifying all variables intro-
duced by the syntactic convex closure transformation.

Theorem 1. [5] Let {Pi(x) = Aix ≤ ai} be a set of polyhedra. Then,

CC ({Pi}) ≡ ∃V · cc({Pi})

where V = {zi} ∪ {σi}.

This syntactic form is the basis of our approach.

2.2 Polyhedral Abstract Interpretation

We give a brief overview of polyhedral abstract domain that is necessary to
understand our results. The reader is referred to [12,13] for more details. The
polyhedral abstract domain over Qn is a tuple 〈P , α, γ,�,⊥,�,�,∇〉, where P
is the set of all polyhedra over Qn, and for X ⊆ Qn and P1, P2 ∈ P ,

α(X) = CC (X) γ(P1) = P1 P1 � P2 = CC ({P1, P2}) P1 � P2 = P1 ∩ P2

and∇ is a operator satisfying extrapolation (P1�P2 ⊆ P1∇P2), and convergence:
for any increasing sub-sequence of Qn, X0 ⊆ X1 ⊆ · · · , the sequence Yi, defined
as follows,

Y0 = X0 Yn = Yn−1∇(Yn−1 �Xn)

is ultimately convergent, (i.e., there is an N ∈ N s.t. YN = YN+1). The standard
polyhedra widening [13] ∇s is defined as follows:

P1∇sP2 = {H is a half-space of P1 | P2 → H}
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and is often extended to also keep the constraints of P2 that are mutually redun-
dant with those in P1 [18]. Note that for simplicity, we assume that an abstract
domain is a subset of a concrete one, making γ an identity.

Given post- and pre-transformers we can define abstract versions using convex
closures as follows:

postα(X) = CC (post(X)) preα(X) = CC (pre(X))

Forward abstract interpretation computes an over-approximation of the tran-
sitive closure of post by iterating the Kleene iteration sequence {Yi} until con-
vergence, where

Y0 = α(X) Yn =

{
Yn−1 � postα(Yn−1) if n 
∈W
Yn−1∇(Yn−1 � postα(Yn−1)) if n ∈W

(1)

and W is an infinite subset of N that determines the widening strategy. Note
that each Yi over-approximates the set of states reachable in i steps or less. Al-
ternatively, abstract interpretation can be done using chaotic iteration strategy
by computing the sequence {Zi}:

Z0 = α(X) sn ∈ post(γ(Zn−1)) Zn =

{
Zn−1 � α(sn−1) if n 
∈W
Zn−1∇(Zn−1 � α(sn−1)) if n ∈W

(2)

Intuitively, the sequence {Zi} over-approximates the sequence {si} of states
reachable by iterative application of best abstract transformer postα and con-
cretization γ. Backward abstract interpretation is defined similarly to over-
approximate transitive closure of pre.

3 Property Directed Reachability

This section introduces a modular, rule-based, description of property directed
reachability. It simplifies the presentation of our refinements to PDR throughout
the paper.

3.1 Symbolic Reachability

A symbolic reachability problem is given by a tuple:

〈v, Init , ρ,Bad〉 (3)

where v is a set of state variables. Init and Bad are formulae with free variables in
v representing the initial and bad states, respectively, and ρ(v,v′) is a transition
relation. The problem is to decide whether there is a state in Init that can reach
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a state in Bad . Formally, a bad state is reachable, if there is an N , such that the
following formula is satisfiable:

Init(v0) ∧
N−1∧
i=0

ρ(vi,vi+1) ∧ Bad(vN ) (4)

The bad states are unreachable if there exists a formula I over v, called an
inductive invariant, such that(

(I ∧ ρ) ∨ Init ′
)
→ I ′ I → ¬Bad (5)

We have used Init ′ and I ′ for formulas where the variables v are replaced by
primed versions v′.

Example 1. The transition system for program Bouncy (Fig. 1) is given by
v = x, y, z, π, where π is a program counter, and Init , Bad , and ρ are defined as
follows:

Init ≡ x = y = z = π = 0 Bad ≡ x ≤ 0 ∧ (z < 0 ∨ y ≥ 0) (6)

ρ ≡ (π = 0 ∧ π′ = 0 ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = z − 2) ∨
(π = 0 ∧ π′ = 1 ∧ x′ = x ∧ y′ = y ∧ z′ = z) ∨
(π = 1 ∧ π′ = 1 ∧ x′ = x− 1 ∧ y′ = y − 3 ∧ z′ = z + 2) ∨
(π = 1 ∧ π′ = 2 ∧ x′ = x ∧ y′ = y ∧ z′ = z)

(7)

Bad is unreachable, and a certificate is

(π = 0→ 2x = 2y = −z) ∧ ((π = 1 ∨ π = 2)→ 2x = −z ∧ y ≤ x) (8)

3.2 A Rule Based Algorithm Description

The finite state model checking algorithm IC3 was introduced in [8]. It maintains
sets of clauses R0, . . . , Ri, . . . , RN , called a trace, that are properties of states
reachable in i steps from the initial states Init . Elements of Ri are called lemmas.
In the following, we assume that R0 is initialized to Init . After establishing that
Init → ¬Bad , the algorithm maintains the following invariants (for 0 ≤ i < N):

Invariant 1

Ri → ¬Bad Ri → Ri+1 Ri ∧ ρ→ R′i+1

That is, each Ri is safe, the trace is monotone, and Ri+1 is inductive relative to
Ri. In practice, the algorithm enforces monotonicity by maintaining Ri+1 ⊆ Ri.

We introduce the following shorthand for convenience

F(R) ≡ (R ∧ ρ) ∨ Init ′ (9)
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Data: Q a queue of counter-examples. Initially, Q = ∅.
Data: N a level indication. Initially, N = 0.
Data: R0, R1, . . . , RN is a trace. Initially, R0 = Init .
repeat

Unreachable If there is an i < N s.t. Ri+1 → Ri, return Unreachable.
Reachable If there is an m s.t. 〈m, 0〉 ∈ Q return Reachable.
Unfold If RN → ¬Bad , then set N ← N + 1, RN ← �.
Candidate If for some m, m→ RN ∧ Bad , then add 〈m,N〉 to Q .
Decide If 〈m, i + 1〉 ∈ Q and there are m0 and m1 s.t. m1 → m, m0 ∧ m′

1 is
satisfiable, and m0 ∧m′

1 → F(Ri) ∧m′, then add 〈m0, i〉 to Q .
Conflict For 0 ≤ i < N : given a candidate model 〈m, i + 1〉 ∈ Q and clause ϕ,

such that ¬ϕ ⊆ m, if F(Ri ∧ ϕ)→ ϕ, then add ϕ to Rj , for j ≤ i+ 1.
Leaf If 〈m, i〉 ∈ Q , 0 < i < N and F(Ri−1)∧m′ is unsatisfiable, then add 〈m, i+1〉

to Q .
Induction For 0 ≤ i < N , a clause (ϕ ∨ ψ) ∈ Ri, ϕ �∈ Ri+1, if F(Ri ∧ ϕ) → ϕ,

then add ϕ to Rj , for each j ≤ i+ 1.

until ∞;

Algorithm 1. IC3/PDR

Alg. 1 summarizes, in a simplified form, a variant of the IC3 algorithm. The
algorithm maintains a queue of counter-examples Q. Each element of Q is a
tuple 〈m, i〉 where m is a monomial over v and 0 ≤ i ≤ N . Intuitively, 〈m, i〉
means that a state m can reach a state in Bad in N − i steps. Initially, Q is
empty, N = 0 and R0 = Init . Then, the rules are applied (possibly in a non-
deterministic order) until either Unreachable or Reachable rule is applicable.
Unfold rules extends the current trace and increases the level at which coun-
terexample is searched. Candidate picks a set of bad states. Decide extends a
counter-example from the queue by one step. Conflict blocks a counterexample
and adds a new lemma. Leaf moves the counterexample to the next level. Fi-
nally, Induction generalizes a lemma inductively. A typical schedule of the rules
is to first apply all applicable rules except for Induction and Unfold, followed
by Induction at all levels, then Unfold, and then repeating the cycle.

Define post and post∗ as follows:

post(R) = ∃v0 · R(v0) ∧ ρ(v0,v) post∗(R) =
∨

0≤i<ω

post i(R) (10)

The dual operators pre and pre∗ are defined similarly. A direct consequence of
Invariant 1 is that Ri over-approximates i applications of the forward image,
e.g., Ri is an over-approximation of states reachable in at most i steps:

Proposition 1.
∨

j≤i post
j(Init) → Ri

Theorem 2. If PDR (Alg. 1) returns from Reachable then property (4) holds.
If PDR returns from Unreachable with Ri+1 → Ri, then Ri satisfies (5).
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We have omitted many important optimizations and generalizations instru-
mental for the efficiency of PDR. For example, when propagating the monomial
m in the Decide rule, it is useful to keep m0 as general (i.e., weak) as pos-
sible to minimize backtracking during model search. Similarly, Induction can
be applied to each new lemma created by the Conflict rule. These and other
important insights are described in depth by others (e.g., [8,19]).

4 APDR: PDR for Linear Real Arithmetic

In this section, we describe APDR, a generalization of PDR to Linear Real
Arithmetic (LRA). The presentation is based on GPDR [19] and Spacer [21].
To our knowledge, this is the first complete description of APDR1.

The input to APDR is a transition system 〈v, Init , ρ,Bad〉, as in PDR, except
that the variables v are rational and Init , Bad , and ρ are formulas in LRA.
Naturally, the lemmas and the trace maintained by APDR are in LRA as well.

In principle, PDR as presented in Alg. 1 is applicable to LRA directly. How-
ever, Decide and Conflict rules are quite weak for LRA. In particular, they do
not guarantee even a bounded progress of the algorithm – in LRA, PDR might
diverge within a fixed level [21].
APDR extends PDR with two new rules, DecideA and ConflictA that

replace Decide and Conflict rules, respectively. The new rules are shown in
Algorithm 2. In the rules, we use P and P↓ to indicate a conjunction and

P ↑ a disjunction of linear inequalities, respectively. The DecideA is based on
Model Based Projection (Mbp) that under-approximates existential quantifica-
tion. MBP was introduced in [21] and is defined as follows. Let ϕ be a for-
mula, U ⊆ Vars(ϕ) a subset of variables of ϕ, and P a model of ϕ. Then,
ψ ∈ Mbp(U, P, ϕ) is a model based projection if (a) ψ is a monomial, (b)
Vars(ψ) ⊆ Vars(ϕ) \ U , (c) P |= ψ, (d) ψ → ∃V · ϕ. Furthermore, for a fixed
U and a fixed ϕ, Mbp is finite. In [21], an MBP function is defined for LRA
based on Loos-Weispfenning quantifier elimination. Note that finiteness of MBP
ensures that DecideA can only be applied finitely many times for a fixed set of
lemmas Ri.

The ConflictA rule is based on Craig interpolation (Itp). Given two formulas
A[x, z] and B[y, z] such that A ∧ B is unsatisfiable, a Craig interpolant I[z] =
Itp(A[x, z], B[y, z]), is a formula such that A[x, z]→ I[z] and I[z]→ ¬B[y, z].
Note that in the context of ConflictA, B is always a monomial. In this case, we
further require that the interpolant is a clause (i.e., a negation of a monomial).
An algorithm for extracting LRA clause interpolants from the theory lemmas
produced during DPLL(T) proof is given in [19]. There is an important differ-
ence between Conflict and ConflictA rules. While by the definition of Itp, in
ConflictA F(Ri)→ P ↑, the corresponding requirement of Conflict is weaker:
F(Ri ∧ P ↑)→ P ↑. It is not clear how to extend this to LRA.

1 Previous versions omit important aspects of IC3, such as priority queues, inductive
blocking. The addition of model based projection helps ensuring termination at fixed
levels.
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DecideA If 〈P, i+ 1〉 ∈ Q and there is a model m(v,v′) s.t. m |= F(Ri) ∧ P ′,
add 〈P↓, i〉 to Q , where P↓ ∈Mbp(v′,m,F(Ri) ∧ P ′).

ConflictA For 0 ≤ i < N , given a counterexample 〈P, i + 1〉 ∈ Q s.t.
F(Ri) ∧ P ′ is unsatisfiable, add P ↑ = Itp(F(Ri)(v0,v), P ) to Rj for
j ≤ i+ 1.

Algorithm 2. APDR.

An appealing feature of PDR is that it generates separate lemmas to block
spurious counter-examples. These lemmas can be strengthened and leverage mu-
tual induction. In propositional PDR, the space of lemmas is bounded by the
number of propositional variables. This guarantees convergence. Clearly, this is
not the case for arithmetic. However, we can show that APDR guarantees to
explore increasingly longer execution paths.

Theorem 3. In any infinite execution of APDR, the rule Unfold is enabled
infinitely often.

Several other approaches have been suggested to lift IC3 to arithmetic. [9] ex-
tracts lemmas as a side-effect of an incremental quantifier-elimination procedure
that enumerates satisfiable cubes, then eliminates variables from the cubes; [20]
develops IC3 for timed automata. More recent attention has been focused on
combination with predicate abstraction and arithmetic [10,7]. The abstraction
is refined (using interpolants) if the concrete interpretation is able to strengthen
inductive lemmas or block abstract counter-examples, otherwise preference is
given to a search over existing abstract predicates. In this setting, the interpo-
lation queries also include formulas from the abstract domain.

5 FPDR: Deriving Convex Invariants

In this section, we present our first major contribution – an algorithm, called
FPDR, to compute convex invariants. The algorithm terminates when it either
finds a convex polyhedral invariant, or an abstract counter-example that cannot
be refuted by the best polyhedral abstract transformer postα. Conceptually, the
main difference between FPDR and APDR is that FPDR uses an abstract post-
image postα instead of the concrete post of APDR. Furthermore, FPDR restricts
R0, . . . , RN to be convex polyhedra, i.e., conjunctions of linear inequalites. FPDR
uses the same data structures as APDR but maintains a stronger invariant:

Invariant 2 (FPDR) ¬Bad ← Ri → Ri+1 ← postα(Ri) and for 0 ≤ i ≤ N , Ri

are convex polyhedra.

To realize FPDR, we extend APDR with two new rules, ConflictF and
DecideF shown in Alg. 3. The new rules create abstract counter-example traces
that may not correspond to concrete traces. We differentiate abstract states by
inserting them into AQ instead of Q , which is not used in FPDR.
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Data: AQ a queue of abstract counter-examples. Initially, AQ = ∅.
ReachableF If there is an m s.t. 〈m, 0〉 ∈ AQ return AbstractReachable.
DecideF If 〈P, i + 1〉 ∈ AQ and there is a model m(v,v′) s.t.

m |= CC (F(Ri)) ∧ P ′, add 〈P↓, i〉 to AQ , where
P↓ = Mbp(v′,m,CC (F(Ri)) ∧ P ′).

ConflictF For 0 ≤ i < N , given a counterexample 〈P, i + 1〉 ∈ AQ s.t.
CC (F(Ri)) ∧ P ′ is unsatisfiable, add P ↑ = HalfItp(CC (F(Ri))(v0,v), P )
to Rj for j ≤ i+ 1.

Algorithm 3. FPDR.

To understand the rules, recall that the best abstract transformer for poly-
hedra is defined as postα(Ri)[v] = CC (∃v0 · F(Ri)(v0,v)). The only difference
between FPDR and APDR rules is that FPDR uses convex closure of the formu-
las representing the post-image. Furthermore, the ConflictF rule uses half-space
interpolantHalfItp(A,B) of [2] that restricts interpolants to a single inequality
(i.e., a half-space). ConflictF is well defined because both A and B are convex.
Hence, by Farkas lemma, there exists a half-space separating them. Invariant 2
follows immediately from the rules.

In the rest of this section, we establish the main properties of FPDR show
how to implement the rules in Alg. 3 efficiently, and, discuss the relationship
between FPDR and polyhedral Abstract Interpretation.

5.1 Properties

FPDR over-approximates the abstract iteration sequence (1).

Proposition 2. Let R0, . . . , RN be a trace of FPDR and 0 ≤ i ≤ N . Then,(⊔
j≤i post

j
α(Init)

)
→ Ri.

Proposition 2 is an immediate consequence of ConflictF rule. Note the analogy
with Proposition 1.

Since the abstract post-image over-approximates the concrete post-image,
whenever FPDR returns from Unreachable, it has found a concrete inductive
invariant that certifies that Bad is unreachable from Init .

Proposition 3. Let R0, . . . , RN be a trace of FPDR and 0 < i ≤ N be such
that Ri → Ri−1, then post∗(Init) ∩ Bad = ∅

Finally, FPDR returns from ReachableF only if there does not exist an un-
reachability certificate that can be established using the best abstract post-image
That is, every abstract iteration sequence (1), independently of the widening op-
erator or other strategy heuristics, reaches a bad state.

Proposition 4. Traces found by FPDR are contained in the abstraction:

〈P, 0〉 ∈ AQ implies postNα (Init) ∩ Bad 
= ∅.
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Proof. By construction, 〈P,N〉 ∩ Bad 
= ∅. Then, by induction on the size of N
that 〈P, i〉 ∈ AQ implies that postN−i

α (P ) ∩ Bad 
= ∅. ��
Propositions 2 and 3 establish soundness of FPDR. Proposition 4 provides an

interesting form of completeness: FPDR is guaranteed to terminate when the
polyhedral abstract domain is too weak to refute a counterexample (i.e., a false
alarm). However, FPDR might still diverge when Bad is unreachable even if the
abstract domain is strong enough to refute every finite counterexample.

5.2 Implementation

The main bottleneck in implementing the FPDR rules in Alg. 3 is deciding
satisfiability CC (ϕ) ∧ P of a convex closure CC (ϕ) of an arbitrary formula ϕ
and a monomial P , where both ϕ and P are over LRA. A näıve algorithm is
to (a) compute a DNF of ϕ, (b) compute the convex closure ψ = CC (ϕ) of the
disjuncts, and (c) check satisfiability of ψ∧P . This however, is not efficient: both
the explicit computation of the DNF and the convex closure are exponential in
the size of ϕ. Instead, we propose a novel algorithm CCSAT that avoids an
explicit convex closure computation by a combination of the syntactic convex
closure construction and interpolation.

The pseudo-code for algorithm CCSAT(ϕ, P ) is shown in Alg. 4. The inputs
to CCSAT are a formula ϕ[v,v′] and a monomial P [v]. The output is either
unsat and an interpolant between CC (ϕ) and P , or sat and a model-based
projection of v from CC (ϕ)∧P . CCSAT replaces an expensive up-front convex
closure computation with an iterative approximation using syntactic convex clo-
sure cc (see Def. 1). The algorithm maintains the set M of implicants of ϕ such
that CC (M) under-approximates CC (ϕ). In each iteration, checking whether
CC (M) and ϕ are consistent is reduced to an SMT-check using the syntac-
tic representation cc(M) of the convex closure CC (M). Note that cc(M) is an
SMT-formula that is linear in |M | and is easy to compute. If cc(M) and P are
consistent, their model is used to derive the model-based projection. Otherwise,
interpolation is used to construct an over-approximation P ↑ of cc(M). Crucially,
since both cc(M) and P are monomials, even a general interpolation procedure
Itp of [19] guarantees that P ↑ is a half-space. Thus, no special HalfItp proce-
dure is needed. If P ↑ contains ϕ, then P ↑ is an interpolant between CC (ϕ) and
P ′, and CCSAT terminates. Otherwise, CCSAT picks another implicant m of
ϕ that contains at least one point outside of P ↑, adds it to M , and repeats the
loop.

Example 2. We illustrate a run of CCSAT(ϕ, P ), where ϕ[x, y] and P [x, y] are
defined as follows:

ϕ ≡ ((0 ≤ y ≤ 1) ∧ (0 ≤ x ≤ 4) ∧ (x ≤ 1 ∨ x ≥ 2)) ∨ ((2 ≤ y ≤ 3) ∧ (2 ≤ x ≤ 3))

P ≡ x = 5 ∧ y = 4

First, an implicant m1 = (0 ≤ y ≤ 1) ∧ (0 ≤ x ≤ 1) is chosen and blocked by

P ↑1 = (y ≤ 3). Second, m2 = (2 ≤ x ≤ 3)∧ (2 ≤ y ≤ 3) is chosen and blocked by

P ↑2 = (x ≤ 4). Since ϕ→ P ↑2 , the algorithm terminates with (unsat, P ↑2 ).
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Input: ϕ[v,v′], P [v]
M ← ∅
while cc(M) ∧ P ′ |= ⊥ do

P ↑[v′]← Itp(cc(M), P ′)
if ϕ ∧ ¬P ↑[v′] |= ⊥ then

return unsat, P ↑[v]
else

m← implicant(ϕ) such that m ∧ ¬P ↑[v′] �|= ⊥
M ←M ∪ {m}

end

end
let m be s.t. m |= cc(M) ∧ P ′

P↓ ←Mbp(v′,m, cc(M) ∧ P ′)
return sat, P↓

Algorithm 4. CCSAT: Decides satisfiability of CC (ϕ)∧P ′. It produces either
a half-interpolant or a model-based projection.

The soundness of CCSAT follows immediately from the exit condition of the
while loop. Running time is bounded by the number of distinct propositional
implicants of ϕ.

Proposition 5. CCSAT terminates.

Proof. For all mi,mj ∈ M , by construction, there exists a polyhedron P ↑ such
that mi → P ↑ and mj → ¬P ↑. Thus, all elements of M are distinct. Further-
more, ϕ has only finitely many distinct propositional implicants. ��

The rules in Alg 3 are implemented by first using CCSAT to decide whether
CC (F(Ri)) ∧ P is satisfiable, and then applying either the DecideF or the
ConflictF rule, as applicable.

In conclusion, we remark that CCSAT is interesting in its own right as an
alternative algorithm for computing half-space (or beautiful) interpolants of [2].
In particular, let ϕ be a formula and P0, . . . , Pk be monomials over LRA. Then,
CCSAT(ϕ, cc({P0, . . . , Pk})) is a half-space interpolant of ϕ and

∨k
i=0 Pi, if such

an interpolant exists.

5.3 Discussion

What is the relationship between FPDR and the traditional Kleene iteration
sequence (1)? Both compute convex invariants, but can one simulate the other?
Let K be a natural number. For simplicity, consider a convergent Kleene se-
quence Y0, . . . , YK in which widening is only applied at the last step. That is,
∀i ≥ k · Yi = YK , and W = {K}. Similarly, take an N -step execution of FPDR
with N ≥ K, so that RK is well defined. Let Inv(RK) stand for an inductive
subset of RK , i.e., a subset that satisfies the first equation of (5). We are in-
terested in two questions: (Q1) given K and a run of FPDR, is there a Kleene
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sequence such that YK = Inv(RK); and (Q2) given K and a convergent Kleene
sequence, is there a run of PDR such that YK = Inv(RK). While we do not give
complete answers, in the rest of the section we explore some special cases.

We use the following transition system as a running example:

Init(x, y, z) ≡ x− y ≤ 0 ∧ x+ y ≤ 0 ∧ z = 1/2 Bad(x, y, z) ≡ x ≥ 2 (11)

ρ(x, y, z, x′, y′, z′) ≡ y′ = y ∧ (x ≤ 1→ x′ = x+ z ∧ z′ = 1/2× z) ∧
(x > 1→ x′ = x ∧ z′ = z)

(12)

Note that the set of reachable states is (x− y < 1) ∧ (x+ y < 1).
First, consider an execution of FPDR that converges with an inductive in-

variant x ≤ 3/2 ∧ z ≤ 1/2. A Kleene sequence with standard widening cannot
converge on this invariant for any value of K. In particular, the strongest Yi is of
the form x− y ≤ s(i)∧ x+ y ≤ s(i), where s(i) =

∑j≤i
j=1 2

−j. Since the standard
widening only drops constraints, any Kleene sequence converges to �. The key
difference here is that the Kleene iteration with standard widening is restricted
to the faces of the polyhedra appearing in the sequence Yi, while FPDR is lim-
ited only by interpolation (i.e., any linear combinations of constraints appearing
in RK−1 and in the transition relation ρ). In this particular example, other
choices for widening can easily simulate FPDR. Moreover, with a suitable (but
not necessarily efficiently computable) widening operator, a Kleene sequence can
simulate any other method for discovering convex invariants.

Second, consider a variant of the example above, where z is not changed: i.e,
replace z′ = 1/2×z by z′ = z in (12). In this example, Kleene iteration converges
to the exact set of reachable states in 2 steps. No widening is required. On the
other hand, FPDR, as presented, does not simulate the Kleene iteration. Once
again, the issue is that FPDR is not restricted to the faces of the polyhedra
involved. In fact, our formulation of the ConflictF rule further restricts the
set of lemmas to half-spaces of the form P ↑ = HalfItp(ϕ, P ). Alternatively,
we can redefine ConflictF to use P ↑ = PolyItp(ϕ, P ), where PolyItp(A,B)
is a polyhedral interpolant consisting of some faces of A (we assume that A is
convex). Note that PolyItp can be implemented, for example, by quantifying
out local variables from the subset of A inconsistent with B. We believe that
with this redefinition of ConflictF , FPDR can simulate the Kleene iteration.
However, an efficient implementation of PolyItp that avoids explicit quantifier
elimination remains open. In summary, FPDR and Kleene iteration are quite
distinct algorithms for computing convex inductive invariants. Their existing
implementation are unlikely to simulate one another. We leave further theoretical
and practical exploration of this question to future work.

We conclude this section with an interesting connection between FPDR and
widening refinement for AI (e.g., [16,1]). While there is no explicit widening in
FPDR, it is implicit in the choice of half-spaces added by ConflictF . Whenever
some half-spaces are not added in a given iteration (i.e., too much widening),
further iterations refine the trace, until all imprecisions introduced by a sub-
optimal choices in all previous applications of the ConflictF rule are removed.
This mimics the more elaborate algorithms of [16,1].
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6 BPDR: Co-convex Invariants

Not all necessary invariants can be expressed as convex polyhedra. Take for
example,

Init ≡ x = y = 0 Bad ≡ x > 1000 ∧ y > 1000

ρ ≡ (x < 100 ∨ y < 100) ∧ x′ ≤ x+ 1 ∧ y′ ≤ y + 1

The inductive invariant x ≤ 100 ∨ y ≤ 100 is not convex, but its complement
is. We call such invariants co-convex. In this section, we devise a property di-
rected algorithm BPDR, that finds co-convex invariants. Dually to FPDR, BPDR
mimics chaotic iteration (2) with the best abstract pre-image.

The rules for BPDR, are shown in Alg. 5. As before, the algorithm maintains
a trace R0, . . . , RN , but each Ri is restricted to a single clause (disjunction of
inequalities). We assume that Bad is convex, otherwise, take CC (Bad) as the
new set of bad states. Thus, ¬Bad is co-convex. BPDR maintains the following
invariant:

Invariant 3 ¬Bad ← ¬CC (S) ← Ri → Ri+1 ← F(Ri). ∀0 ≤ i ≤ N · Ri is
co-convex.

BPDR is based on the observation that the transitive closure pre∗α(Bad) of the
abstract pre-image is convex. Thus, instead of maintaining a queue Q of coun-
terexamples, BPDR maintains a set S s.t. the convex closure CC(S) of S under-
approximates pre∗α(Bad ), i.e., CC(S) ⊆ pre∗α(Bad). In each iteration, BPDR
either extends S by adding a state that reaches the convex closure of S in 1 or
0 steps (DecideB and CandidateB rules), or strengthen some Ri (ConflictB

rule). Since there is no queue,ReachableB checks whether there are states in the
intersection of Init and convex closure CC (S) of bad-reaching states. Further-
more, Leaf is unnecessary and Induction is disabled. DecideB is very similar
to DecideF of FPDR. The only difference is that convex closure is applied to
the bad states. ConflictB is more complex. First, since there is no queue of
counterexamples, we must find the smallest i at which the rule is applicable.
Second, since the trace Ri of BPDR is restricted to single clauses, the rule can
only change the content of Ri. To guarantee monotonicity of the trace, we stutter
the transition relation, i.e., we use R′i−1 ∨ F(Ri−1) as the transformer instead
of F(Ri−1). Finally, we compute lemmas by backward interpolation. We let the
bad states be the A-part of the interpolant, and use the backward interpolation
property: I = Itp(A,B) iff ¬I = Itp(B,A). Note that since CC (S) is convex,
the interpolant P ↑ is convex, and the backward interpolant ¬P ↑ is co-convex.

Unlike FPDR, implementing BPDR rules is straightforward. Since in Alg. 5
CC is only applied to the set S of convex polyhedra, all applications of CC are
simply replaced by its syntactic version cc.
BPDR satisfies similar properties to FPDR, but relative to the pre-image. In

particular, whenever BPDR returns from Unreachable, it has found a concrete
inductive invariant:
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ReachableB If Init ∧ CC(S) is satisfiable, return AbstractReachable
CandidateB If for some P , P → RN ∧ Bad , then S ← S ∪ {P}.
DecideB If there is an 0 < i ≤ N and a model m(v,v′) s.t.

m |= F(Ri) ∧ CC (S)′, then S ← S ∪ {P↓}, where
P↓ = Mbp(v′,m,F(Ri) ∧ CC (S)′).

ConflictB If there exists a minimal 0 < i ≤ N s.t.
(R′i−1 ∨ F(Ri−1)) ∧ CC (S)′ |= ⊥. Then, Ri ← ¬P ↑[v], N ← i+ 1, and
RN ← �, where P ↑[v′] = Itp(CC (S)′, R′i−1 ∨ F(Ri−1)).

Algorithm 5. BPDR

Proposition 6. Let R0, . . . , RN be a trace of BPDR and 0 < i ≤ N be such that
Ri → Ri+1, then Init ∩ pre∗(Bad) = ∅.

Similarly, BPDR returns from ReachableB only if there is no invariant that can
be established using best abstract pre-image. That is, every backward chaotic
iteration sequence (2) started from Bad states, reaches a state in Init .

Proposition 7. Traces found by BPDR are contained in the abstraction:

Init ∩ CC (Bad) 
= ∅ implies Init ∩ pre∗α(Bad) 
= ∅ .

It is also interesting to see whether BPDR simulates backward chaotic itera-
tion. Here, the correspondence is much more direct. The choice of si in (2) is in
one-to-one correspondence with the choice of P↓ in DecideB. Widening choices
in (2) correspond to constraints dropped by the interpolation during computa-
tion of P ↑ in ConflictB. In practice, the key difference is again in the choice
of the lemmas found by interpolation. On one hand, the chaotic iteration with
standard widening is restricted to the faces of the polyhedra involved. On the
other hand, BPDR is restricted to half-spaces found by interpolation.

7 Combinations

In the previous sections, we have presented 3 algorithms, APDR, FPDR, and
BPDR, for computing linear, convex, and co-convex sufficient inductive invari-
ants, respectively. In this section, we present a uniform framework that combines
the three algorithms.

First, note that ConflictB rule of BPDR is significantly different from the
corresponding rules ofAPDR and FPDR. Unlike inAPDR and FPDR,ConflictB

only modifies one element Ri of the trace, and ensures that each Ri contains
a single clause. This, however, is only necessary to prune the search space to
be co-convex invariants. To unify BPDR with the other algorithms, we replace
ConflictB with ConflictAB shown in Alg. 6. Note that ConflictAB still uses
the convex closure CC (S) of bad-reaching states S, but it adds the new lemma
P ↑ to all levels below i. BPDR remains sound with the new rule. However, it
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ConflictAB If there exists a 0 < i ≤ N s.t. F(Ri−1) ∧ CC (S)′ |= ⊥.
Rj ← Rj ∧ ¬P ↑[v] for 0 < j ≤ i, where P ↑[v′] = Itp(CC (S)′,F(Ri−1)).

ConflictAFB If there exists a 0 < i ≤ N s.t. CC (F(Ri−1)) ∧ CC (S)′ |= ⊥.
Rj ← Rj ∧ P ↑[v] for 0 < j ≤ i, where
P ↑[v′] = HalfItp(CC (F(Ri−1)),CC (S)′).

Algorithm 6. Additional conflict rules for BPDR

no longer mimics backward chaotic iteration, and produces more than just co-
convex invariants.

Second, we add a new rule ConflictAFB, shown in Alg. 6 that combines the
corresponding rules of FPDR and BPDR by taking the convex closures of both
the post-image and the bad-reaching states. Note that in this case, interpolation
guarantees that the corresponding lemma is a single inequality (i.e., a half-space).
The rule is implemented efficiently using CCSAT from Section 5.2.

Finally, the combined algorithm, called PolyPDR, is obtained by combining
all the rules of PDR (Alg. 1), APDR (Alg. 2), FPDR (Alg. 3), BPDR (Alg. 5),
and the new BPDR rules (Alg. 6), except for ConflictB, ReachableF , and
ReachableB. PolyPDR maintains 3 kinds of counterexamples: a queue of con-
crete counterexamples Q from PDR, a queue of abstract counterexamples AQ
from FPDR, and a set of abstract counterexamples S from BPDR. States from
Q can reach a state in Bad , states in AQ can abstractly reach a state in Bad
via the abstract post-image, and states in S are reachable from Bad via the ab-
stract pre-image. The soundness of PolyPDR follows directly from the soundness
of individual algorithms: it either finds a concrete counterexample in Q , or finds
a concrete or an abstract sufficient inductive invariant.

We suggest two schemes to apply the rules of PolyPDR to combine the effects
of abstract and concrete reasoning: pre-processing and in-processing. The pre-
processing scheme starts with enabling only the rules of FPDR and BPDR, and
applying them until either the algorithm terminates, or the pre-conditions of
ReachableF or ReachableB become true (i.e., an abstract counterexample is
found). Then, the rules of FPDR and BPDR are disabled and the rules of APDR
are enabled. This scheme is similar to first running an abstract interpreter to
discover an inductive invariant, and then using APDR to strengthen it or find
a counterexample. The two stages, abstract and concrete, communicate by the
lemmas learned in the trace.

The in-processing scheme also starts with enabling only FPDR and BPDR
rules. Then, whenever the pre-conditions for ReachableF or ReachableB be-
come true, abstract counterexamples AQ and S are reset. Next, the control is
given to APDR rules, until the Unfold rule is applied. At this point, the APDR
rules are disabled, the rules of FPDR and BPDR are enabled, and the cycle re-
peats. This scheme mimics the abstraction-refinement loop of Vinta [1]. First,
an abstract interpreter is used to compute an inductive, but not (necessarily)
sufficient invariant. Then, the concrete reasoning is used to refine the invariant
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and rule out false alarms. Whenever the concrete strengthening is not inductive,
the abstract reasoning is repeated starting from it. Again, the communication
between the abstract and concrete reasoning is captured by the lemmas com-
puted in the trace.

8 Evaluation

We have implemented variants of FPDR and BPDR algorithms in Z3. For the
FPDR variant, we have extended APDR with the DecideF rule, but not the
ConflictF rule. This makes our FPDR algorithm a generalization step forAPDR.
Whenever a candidate model is blocked by ConflictA, we check whether the
learned lemma P ↑ can be generalized to be convex. For the BPDR variant,
we have implemented a hybrid algorithm by adding the rule ConflictAB to
APDR. Furthermore, our BPDR implementation is limited to the incomplete
projection-based generalization strategy of [19], instead of the complete MBP-
based strategy presented here. Hence, it sometimes diverges without making
progress (i.e., gets into an infinite execution in which Unfold rule is never ap-
plied). Our implementation and benchmarks are available in the cc branch of
https://z3.codeplex.com/SourceControl/network/forks/arie/zag.

To answer the main question posed in the Introduction, we have selected sev-
eral benchmarks that are easy for polyhedral abstraction, but are hard for PDR-
based approaches, from [2] and Z3 regression test suite.

Name Z3 FPDR BPDR
addadd ∞ ε ∞
d03 ε ε ε
david ε ∞ ε
ev-down∞ ε ε
ev-up ∞ ε ε
ev ∞ ε ∞
ev1 ∞ ε ∞
updown ∞ ε ε
xyz ∞ ε ε
xyz2 ∞ ε ∞
gcnr ∞ ∞ ∞

Fig. 2. Results

While the examples are small, they illustrate well
the benefits of the new approach. The results
are summarized in Fig. 2. In the figure, ε and
∞ mean “solved in under a second” and “did
not terminate”, respectively. In all cases, except
for ev-series of examples, Z3 was configured with
the default configuration options and restricted
to Linear Arithmetic (an optional UTVPI solver
was disabled using fixedpoint.use utvpi=false

command line option). For ev-series, Z3 is fur-
ther restricted to projection-based generalization
strategy of [19] using command line option
fixedpoint.use model generalizer=true. The
original Z3 algorithm diverges on all examples ex-
cept for d03 and david. FPDR performs the best.
However, generalizing using convex closures interferes

with default algorithm for lemma generation in Z3. This makes david hard for
FPDR. BPDR often diverges. For some cases (ev, ev1) this is due to the fact that
Bad is not convex. For others (xyz2, addadd) this is a problem with our use of
projection-based generalization. Finally, the gcnr example, originally from [16],
and also used in [22,2], remains unsolved.

We believe that this evaluation, albeit limited and preliminary, demonstrates
the advantages of our framework. It shows the clear benefits of integrating poly-
hedral abstraction as a component within APDR.

https://z3.codeplex.com/SourceControl/network/forks/arie/zag
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9 Summary

This paper developed property directed model checking procedures using poly-
hedral abstraction. We showed how to combine syntactic convex closures with
interpolation to incrementally compute abstractions, and we correspondences be-
tween Kleene, chaotic abstract interpretation and property directed reachability.
We evaluated the new approaches on exemplary benchmarks. This work sheds
furter light on the synergy of polyhedral abstraction and interpolation-based
model checking.
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Abstract. Array partitioning analyses split arrays into contiguous parti-
tions to infer properties of cell sets. Such analyses cannot group together
non contiguous cells, even when they have similar properties. In this paper,
we propose an abstract domain which utilizes semantic properties to split
array cells into groups. Cells with similar properties will be packed into
groups and abstracted together. Additionally, groups are not necessarily
contiguous. This abstract domain allows to infer complex array invariants
in a fully automatic way. Experiments on examples from the Minix 1.1
memory management demonstrate its effectiveness.

1 Introduction

Arrays are ubiquitous, yet their mis-use often causes software defects. Therefore,
a large number of works address the automatic verification of array manipulating
programs. In particular, partitioning abstractions [5,11,13] split arrays in sets of
contiguous groups of cells, in order to, hopefully, infer they enjoy similar proper-
ties. A traditional example is that of an initialization loop, with the usual invariant
that splits the array in an initialized zone and an uninitialized region.

However, when cells that have similar properties are not contiguous, these ap-
proaches cannot infer adequate array partitions. This happens for unsorted arrays
of structures, when there is no relation between indexes and cell fields. Then,
there are usually relations among cell fields. This phenomenon can be observed in
low-level software, such as operating system services and critical embedded sys-
tems drivers, which rely on static array zones instead of dynamically allocated
blocks [20]. When cells with similar properties are not contiguous, traditional par-
tition based techniques are unlikely to infer relevant partitions / precise array
invariants. Figure 1 illustrates the Minix 1.1 Memory Management Process Table
(MMPT) main structure. The array of structures mproc defined in Figure 1(a)
stores the process descriptors. Each descriptor comprises a field mparent that
stores the index of the parent process in mproc, and a field mpflag that stores the
process status. Figure 1(c) depicts the concrete values stored in mproc to describe
the process topology shown in Figure 1(b) (we show only 8 processes). An element
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1 struct mproc {
2 unsigned mpflag;
3 int mparent;
4. } mproc[24];
(a) Definition of array mproc

system process descriptor

user process descriptor

free slot

0 mm

1 fs

2 init

3 usr14 usr0

6 usr2 5 free 7 free
(b) Topology of processes

[0] : mm

[1] : fs

[2] : init

[3] : usr1

[4] : usr0

[5] : free slot

[6] : usr2

[7] : free slot

1 ≤ mpflag

mparent = 0

1 ≤ mpflag

mparent = 0

1 ≤ mpflag

mparent = 0

1 ≤ mpflag

mparent = 2

1 ≤ mpflag

mparent = 2

1 ≤ mpflag

mparent = 4

mpflag = 0

mpflag = 0

(c) A segment of mproc

Fig. 1. Minix 1.1 Memory Management Process Table (MMPT) structure

of mproc is a process descriptor when its field mpflag is strictly positive and a free
slot if it is null.Minix 1.1 uses the three initial elements ofmproc to store the descrip-
tor of the memory management service, the file system service and the init process.
Descriptors of other processes appear in a randomorder. In the example of Figure 1,
init has two children whose descriptors are in mproc[3] and mproc[4]; similarly,
the process corresponding to mproc[4] has a single child the descriptor of which is in
mproc[6]. Moreover, Minix assumes a parent-child relation between mm and fs, as
mmhas index 0 and the parent field of fs stores 0. To abstract the process table state,
valid process descriptors and free slots should be partitioned into different groups.

Traditional, contiguous partitioning cannot achieve this for two reasons: (1)
the order of process descriptors in mproc cannot be predicted, hence is random in
practice, and (2) there is no simple description of the boundaries between these
regions (or even their sizes) in the program state. The symbolic abstract domain
by Dillig, Dillig and Aiken [8] also fails here as it cannot attach arbitrary abstract
properties to summarized cells.

In this paper, we set up an abstract domain to partition the array into non con-
tiguous groups for process descriptors and free slot so as to infer this partitioning
and precise invariants (Section 2) automatically. Our contributions are:

1. An abstract domain that partitions array elements according to semantic prop-
erties, and can represent non contiguous partitions (Section 3).

2. Static analysis algorithms for the computation of abstract post-conditions
(Sections 4 and Section 5), widening and inclusion check (Section 6).

3. The implementation and the evaluation of the analysis on the inference of
tricky invariants in an excerpt of the Minix 1.1 Memory Management Process
Table (MMPT) and other challenging array examples (Section 7).
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G2 = {0, 1, 3, 4, 6, . . .} G0 = {2}

G1 = {5, 7, . . .}

2 init0 mm

1 fs 3 usr14 usr0

6 usr2 5 free 7 free

(a) A concrete state of mproc

G0

Idx0 = 2

G1

0 ≤ Idx1 ≤ 23

G2

0 ≤ Idx2 ≤ 23

Numeric relations:

Sz0 = 1 ∧ 0 ≤ Sz1 ≤ 23 ∧ 0 ≤ Sz2 ≤ 23

∧ 1 ≤ m̂pflag0 ≤ 63 ∧ m̂pflag1 = 0 ∧ 1 ≤ m̂pflag2 ≤ 63

∧ ̂mparent0 = 0 ∧ 0 ≤ ̂mparent2 ≤ 23

Group relations:
̂mparent2 	 G0 ∪G2

(b) Abstract state with partition

Fig. 2. A partitioning of mproc based on non contiguous groups

2 Overview

The Minix MMPT requires mproc to permanently satisfy two invariants:

1. Each valid process descriptor has a mparent field, that should store a value
in [0, 23], hence represents a valid index in mproc: this entails the absence of
out-of-bound accesses in process table management functions.

2. The mparent field of any valid process descriptor should be the index of a
valid process descriptor: as a process can only complete its exit phase when
its parent calls wait, failure to maintain a parent for each process could cause
a terminating process to become dangling and never be eliminated.

To verify these invariants, we propose to check that all system calls preserve them.
We design an automatic analysis to verify that, if they are called in a state that
satisfies these invariants, they return in a state that also satisfies them. A concrete
state is displayed in Figure 2(a), and its abstraction is shown in Figure 2(b). Group
0 contains only the process descriptor of init. Group 1 collects all free slots. Group
2 consists of all the valid process descriptors except that of init. The reason why
we split init out into a separate group is that it is often treated in a special manner
by OS routines. We let Gi denote the set of indexes of all the elements in group i.

The abstract state shown in Figure 2(b) ties each group to properties of its
elements. These will be formally defined in Section 3. By the Minix specification,
the elements of group 2 satisfy the following correctness conditions C:
– their indexes are in [0, 23], which we note 0 ≤ Idx2 ≤ 23 in Figure 2(b);
– their flags are in [1, 63] (valid process descriptors have a strictly positive flag),

which we note 1 ≤ m̂pflag2 ≤ 63;
– their parents are valid indexes, which we note 0 ≤ ̂mparent2 ≤ 23;
– their parents are indexes of valid process descriptors, hence are also in group

0 or group 2, which we note ̂mparent2 ' G0 ∪G2;
– the size of group 2 is between 0 and 23, which we note 0 ≤ Sz2 ≤ 23.

Our abstraction relies on disjoint groups as other array partitioning abstrac-
tions [11,13]. However, our abstraction does not assume each group consists of
a contiguous set of cells. The non-contiguousness of groups is represented by
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void cleanup(int child){
. . .

0 int parent = mproc[child].mparent;
1 if(parent == 2){
2 mproc[parent].mpflag = 1;
3 mproc[child].mpflag = 0;
4 for(i = 0; i < 24; i++){
5 if(mproc[i].mpflag > 0)

if(i! = parent)
if(mproc[i].mparent == child)

mproc[i].mparent = 2;
}

6 }else{. . .} . . .}
(a) A simplified excerpt of cleanup

2 init

0 mm

1 fs

3 usr14 usr0

6 usr2 5 free 7 free

(b) Effect of cleanup

Fig. 3. Minix 1.1 process table management, system function cleanup

winding separation lines in Figure 2(b). To characterize groups, our abstraction
relies not only on constraints on indexes, but also on semantic properties of the cell
contents: while groups 1 and 2 correspond to a similar range, the mpflag values
of their elements are different (0 in group 1 and any value in [1, 63] in group 2).
Therefore our abstraction can express both contiguous and non contiguous parti-
tions. In this example, we believe the abstract state of Figure 2(b) is close to the
programmer’s intent, where the array is a collection of unsorted elements.

We now consider the verification of Minix MMPT management procedures. We
focus on cleanup, which turns elements of mproc that describe hanging processes
into free slots. Figure 3(a) displays an excerpt of a simplified, recursion free ver-
sion of cleanup, which is chosen to highlight the analysis difficulties. The call
cleanup(4) in the state of Figure 2(a) will remove process usr0 and falls in that
case; the result is shown in Figure 3(b): process usr2 becomes a child of init,
while the record formerly associated to usr0 turns into a free slot.

Function cleanup should be called in a correct Minix process table state and be
applied to a child process in group 2, which we note child'G2. Figure 4 overviews
the steps of the automatic static analysis of the excerpt of cleanup. The analysis
proceeds by computing abstract post-conditions and loop invariants [3]. In this
section, we focus on (1) cell materialization, (2) termination of the loop analysis
and (3) removal of unnecessary groups.

From the precondition, fields mparent of all elements in group 2 are indexes
in groups G0 or G2 (abstract state at point 0 ). The test entails mparent is 2
at point 2 (corresponding to process init). Combining this, with the fact that
group 0 has exactly one element (Sz0 = 1) at index 2 (Idx0 = 2), the analysis in-
fers that parent can only be in group 0 (point 2 ). Therefore, the update at point
2 affects a group with a single element, hence, is a strong update, and produces
predicate at point 3 . However, at that point, the next update is not strong, since
mproc[child] may be any element of group 2, which may have more than one
element (it has at least one element since child ' G2, thus Sz2 ≥ 1). Therefore,
our domain materializes the array element being assigned by splitting group 2 into
two groups, labeled 2 and 3. Both groups inherit predicates from former group 2.
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At point 0 C ∧ child 	 G2

At point 1 C ∧ child 	 G2 ∧ parent 	 G2 ∪G0

At point 2 C ∧ child 	 G2 ∧ parent 	 G0

At point 3 C ∧ child 	 G2 ∧ parent 	 G0 ∧ m̂pflag0 = 1
At point 4

group 0
. . .

group 1
. . .

group 2
0 ≤ Idx2 ≤ 23

group 3
0 ≤ Idx3 ≤ 23

Numeric relations:

{
0 ≤ Sz2 ≤ 22 ∧ Sz3 = 1 ∧ 1 ≤ m̂pflag2 ≤ 63

∧ m̂pflag3 = 0 ∧ 0 ≤ ̂mparent2 ≤ 23 ∧ 0 ≤ ̂mparent3 ≤ 23

Group relations: child 	 G3 ∧ ̂mparent2 	 G0 ∪G2 ∪G3 ∧ ̂mparent3 	 G0 ∪G2 ∪G3

At point 5
group 0

. . .

group 1
. . .

group 2
0 ≤ i ≤ Idx2 ≤ 23

group 3
. . .

group 4
Idx4 < i

Numeric relations:

⎧⎨⎩
0 ≤ i ∧ 0 ≤ Sz2 ≤ 22 ∧ 0 ≤ Sz4 ≤ 22 ∧ 1 ≤ m̂pflag2 ≤ 63

∧ 1 ≤ m̂pflag4 ≤ 63 ∧ 0 ≤ ̂mparent2 ≤ 23 ∧ 1 ≤ ̂mparent4 ≤ 63

∧ 0 ≤ ̂mparent4 ≤ 23

Group relations:
{

child 	 G3 ∧ ̂mparent2 	 G0 ∪G2 ∪G3 ∪G4

∧ ̂mparent4 	 G0 ∪G2 ∪G4

At point 6
group 0
Idx0 = 2

group 1
0 ≤ Idx1 ≤ 23

group 3
0 ≤ Idx3 ≤ 23

group 4
0 ≤ Idx4 ≤ 23

Numeric relations:

⎧⎨⎩
Sz0 = 1 ∧ 0 ≤ Sz1 ≤ 22 ∧ Sz3 = 1 ∧ 0 ≤ Sz4 ≤ 22

∧ m̂pflag0 = 1 ∧ m̂pflag1 = 0 ∧ m̂pflag3 = 0 ∧ 1 ≤ m̂pflag4 ≤ 63

∧ 0 ≤ ̂mparent0 ≤ 23 ∧ 0 ≤ ̂mparent3 ≤ 23 ∧ 0 ≤ ̂mparent4 ≤ 23

Group relations: ̂mparent4 	 G0 ∪G4 ∧ child 	 G3

Fig. 4. Overview of the analysis of cleanup

Additionally, group 3 has a single element (Sz3 = 1), thus the analysis performs a
strong update and generates the abstract state of 4 .

The analysis of all the statements in the program follows similar principles. We
only discuss the termination of the analysis here, as our abstract domain has in-
finite chains (the number of groups is not bounded), hence the analysis of loops
requires a terminating binary widening operator [3]. Widening associates groups
of its inputs with groups of its result (ensuring the number of groups can only
decrease to guarantee termination), and over-approximates group properties. Af-
ter two widening iterations, our analysis produces abstract post-fixpoint 5 , where
group 1 describes free slots, group 0 describes init, group 3 consists of child
(just cleaned up) and groups 2 (resp., 4) represent valid process descriptors with
indexes greater (resp., lower) than i. Our analysis can also decrease the number
of groups, when some become redundant, e.g., when the analysis proves a group
empty. For instance, the loop fixpoint 5 shows that indexes of elements in group
2 are greater than i. Thus, after the loop exit, any element of group 2 should
have an index greater than 24, which implies this group is empty. Hence, this
group is removed, and the analysis produces post-condition 6 , which entails cor-
rectness condition C (note that group 3, corresponding to child now describes a
free slot).
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3 Abstract Domain and Abstraction Relation

In this section, we formalize abstract elements and their concretization. We de-
scribe the abstraction of the contents of arrays, using numeric constraints, in
Section 3.1. Then, we extend it with relations between groups in Section 3.2.

3.1 The Non-contiguous Array Partition Domain

Concrete States. Our domain abstracts arrays of complex data structures. To high-
light its core principle and simplify the formalization, we make two assumptions
on the programs to analyze. First, there is no array access through pointer derefer-
ence (handling them would only require a product with a pointer domain), thus all
array index expressions are of the form a[ex]. Secondly, all variables are either base
type (e.g., scalar) variables (denoted by �) or arrays of structures (denoted by �).
Structures are considered arrays of length 1, and arrays of scalars are considered
arrays of structures made of a single field. A concrete state σ is a partial function
mapping basic cells (base variables and fields of array elements) into values (which
are denoted by �). We let � denote non-negative integers and � denote the set of
fields. Thus, the set � of concrete states is defined by � = (�× �× � ∪ �) → �.
More specifically, the set of all fields of elements of array a are denoted by �a, and
the set of valid indexes in a is denoted by �a.

Non-contiguous array partition. Our analysis partitions each array into one or
several groups of cells. A group is represented by an abstraction Gi of the set of
indexes of its elements, where subscript i identifies the group. We let � denote the
set of group names {Gi | i ≥ 0}. An array partition is a function p : � → P(�)
which maps each array variable to a set of groups. We always enforce the con-
straint that groups of distinct arrays should have distinct names, to avoid confu-
sion (∀a1, a2 ∈ �, a1 
= a2 ⇒ p(a1) ∩ p(a2) = ∅). To express properties of group
contents, sizes, and indexes, we adjoin numeric abstract values to partition p. This
numeric information is split into a conjunction made of two parts.

First, a global component ng constrains base type variables, group sizes and
group fields. Group fields are marked as summary dimensions [10] in ng, that is as
numeric abstract domain dimensions that account for one or more concrete cell(s),
whereas base type variables and group sizes are non-summary dimension, i.e., each
of them represents exactly one concrete cell.

Second, for each group Gi, the index Idxi is constrained by a numeric abstract
value ni. This second component is needed because our abstract domain allows
empty groups, and when groupGi is empty, Idxi has no value, which is expressed
by ni = ⊥. Intuitively, in the concrete level, Idxi denotes a possibly empty set of
values (an empty group example will be provided in Section 7.2).

To sum up, an abstract element is a pair (p,−→n ) where−→n is a tuple (ng, n0, . . . ,
nk−1), and p defines k array partitions. Our abstract domain is parameterized by
the choice of a numeric abstract domain �
, so as to tune the analysis precision
and cost. In this paper, we use the octagon abstract domain [18].
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a[0] value = 2

a[1] value = −110
a[2] value = 2

a[3] value = −120
a[4] value = 8

a[5] value = −100
a[6] value = −100
(a) Concrete array �

p(a) = {G0, G1}
G0

0 ≤ Idx0 ≤ 4

G1

1 ≤ Idx1 ≤ 6

ng : 2 ≤ v̂alue0 ≤ 8 ∧ −120 ≤ v̂alue1 ≤ −100
∧ Sz0 = 3 ∧ Sz1 = 4

(b) Abstract state a


Fig. 5. An abstraction in our domain

Example 1. Figure 5(a) displays a concrete state, with an array of integers a of
length 7 (each cell is viewed as a structure with a single field value). Figure 5(b)
shows an abstraction a
 = (p,−→n ) into two groups G0, G1, where G0 (resp., G1)
contains all cells storing a positive (resp., negative) values. This abstraction reveals
the array stores no value in [−99, 1].

Concretization. A concrete numeric mapping is a function ν, mapping each base
type variable to one value, each structure field to a non empty set of values and
each index to a possibly empty set of values. We write γ�� for the concretiza-
tion of numeric elements, which maps a set of numeric constraints −→n into a set
of functions ν as defined above. The concretization γ��(ni) of constraints over
group Gi is such that, when ni = ⊥ and ν ∈ γ��(ni), then ν(Idxi) = ∅. Then,
γ��(ng, n0, . . . , nk−1) = γ��(ng)∩γ��(n0) . . . γ��(nk−1). A valuation is a function
ψ ∈ Ψ = �→ P(�), and interprets each group by the set of indexes it represents
in a given concrete state.

Additionally, we use the following four predicates to break up the definition of
concretization:

Pv(ψ)
def.⇐⇒ ∀a ∈ �,

⋃
Gi∈p(a) ψ(Gi) = �a

∧ (∀Gi, Gj ∈ p(a), i 
= j ⇒ ψ(Gi) ∩ ψ(Gj) = ∅)
Pb(σ, ν)

def.⇐⇒ ∀v ∈ �, ν(v) = σ(v)
Pi(ν, ψ)

def.⇐⇒ ∀a ∈ �, Gi ∈ p(a), ψ(Gi) = ν(Idxi) ∧ |ψ(Gi)| = ν(Szi)
Pc(σ, ψ, ν)

def.⇐⇒ ∀a ∈ �, f ∈ �a, Gi ∈ p(a), j ∈ ψ(Gi), σ(a, j, f) ∈ ν(f̂i)

PredicatePv(ψ) states that each array element belongs to exactly one group (equiv-
alently, groups form a partition of the array indexes). Predicate Pb(σ, ν) expresses
that ν and σ consistently abstract base type variables. PredicatePi(ν, ψ) expresses
that ν andψ consistently abstract group indexes. Last, predicatePc(σ, ψ, ν) states
σ and ν define compatible abstractions of groups contents.

Definition 1 (Concretization). Concretization γ� is defined by:

γ�(p,
−→n ) def.

::= {(σ, ψ, ν) | ν ∈ γ��(−→n ) ∧ Pv(ψ) ∧ Pb(σ, ν) ∧ Pi(ν, ψ) ∧ Pc(σ, ψ, ν)}
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3.2 Relation Predicates

The abstraction we have defined so far can describe non-contiguous groups of cells,
yet lacks important predicates, that are necessary for the analysis. Let us consider
assignment parent = mproc[child].mparent in cleanup (Figure 3(a)). Numeric
constraints localize child in [0, 23], but this information does not determine pre-
cisely which group does cell mproc[child] belong to. In particular, the analysis will
ignore from that point whether parent is the index of a valid process descriptor or
not. To avoid this imprecision, we extend abstract states with relation predicates,
that express properties such as the membership of the value of a variable in a
group. They are defined by the grammar below:

Definition 2 (Relation predicates).

r ::= r ∧ r a conjunction of predicates
| true empty
| v ' Ga where v ∈ � var-index predicate
| f̂i ' G

a where f ∈ �a, Gi ∈ p(a) content-index predicate
Ga ::= Ga ∪Gi where Gi ∈ p(a) a disjunction of groups in a

| Gi where Gi ∈ p(a)
A relation predicate r is a conjunction of atomic predicates. Predicate v'Ga means
the value of variable v is an index inGa, whereGa is a disjunction of a set of groups
of array a. Similarly, predicate f̂i 'Ga means that all fields f of cells in group i are
indexes of elements of Ga. As an example, if Ga = G1 ∪G3, then v ' Ga expresses
that the value of v is either the index of a cell in G1 or the index of a cell in G3.

Example 2. We consider function cleanup of Figure 3(a). The pre-condition for
the analysis of Figure 4 is based on correctness property C, hence partitions mproc
in three groups, thus p(mproc) = {G0, G1, G2}. Additionally, cleanup should be
called on a valid process descriptor different from that of init, hence child should
be in groupG2, which corresponds to predicate child'G2. Then parent is initial-
ized as the parent of child. Since ̂mparent2 ' G0 ∪ G2, parent is a valid process
descriptor index, and the analysis derives parent ' G0 ∪ G2. Hence, at point 1 ,
the analysis will derive relations r = child ' G2 ∧ parent ' G0 ∪G2 ∧ . . ..

Similarly, in the else branch of condition if(parent == 2), the analysis derives
that parent ' G2.

Concretization. We now extend the concretization to account for relations. First,
we let ψ be defined on disjunction of groups, and let ψ(G0 ∪ . . . ∪Gi) = ψ(G0) ∪
. . . ∪ ψ(Gi). We write 	
 for the set of triples (p,−→n , r).
Definition 3 (Abstract states and their concretization). An abstract state
a
 is a triple (p,−→n , r) ∈ 	
. The concretization γ�� is defined by:

γ��(p,−→n , r) ::= {σ | ∃ψ, ν, (σ, ψ, ν) ∈ γaux(p,−→n , r)}
γaux(p,

−→n , true) ::= γ�(p,−→n )
γaux(p,

−→n , v ' Ga) ::= {(σ, ψ, ν) ∈ γ�(p,−→n ) | σ(v) ∈ ψ(Ga)}
γaux(p,

−→n , fi ' Ga) ::= {(σ, ψ, ν) ∈ γ�(p,−→n ) | ∀k ∈ ψ(Gi), σ(a, k, f) ∈ ψ(Ga)}
γaux(p,

−→n , r0 ∧ r1) ::= γaux(p,
−→n , r0) ∩ γaux(p,−→n , r1)
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G0

0 ≤ Idx0 ≤ 99

ng : v̂alue0 = 0
∧ Sz0 = 100

r : i 	 G0

(a) a


G0

0 ≤ Idx0 ≤ 99

G1

0 ≤ Idx1 ≤ 99

ng : v̂alue0 = 0 ∧ v̂alue1 = 0
∧ Sz0 = 99 ∧ Sz1 = 1

r : i 	 G1

(b) split(a
, i)

G0

0 ≤ Idx0 ≤ 99

G1

0 ≤ Idx1 ≤ 99

ng : v̂alue0 = 0 ∧ v̂alue1 = 1
∧ Sz0 = 100 ∧ Sz1 = 0

r : i 	 G0

(c) create(a
)

Fig. 6. Partition splitting and creation in array a from abstract state a


4 Basic Operators on Partitions

In this section, we define basic operations on partitions (such as creation and
merge), that abstract transfer functions and operators rely on.

Splitting and creation. Unless specified otherwise, our analysis initially partitions
each array into a single group, with no contents constraint. Additional groups get
introduced during the analysis, by two basic operations:

1. Operator split replaces a group with two groups, that inherit the properties
of the group they replace (also, membership in the old group turns into mem-
bership in the join of the new groups). It is typically applied to materialize a
cell of a given index (in the group bounds) and enable a strong update.

2. Operator create introduces an empty group and is used to generalize abstract
states in join and widening (note any field property is satisfied by the empty
group; the analysis selects properties depending on the context).

Both operators preserve concretization.

Example 3. Figure 6(a) defines an abstract state (p,−→n , r) with a single array, fully
initialized to 0, and represented by a single group. Applying operator split to that
abstract state and to index i produces the abstract state of Figure 6(b), where G1

is a group with exactly one element, with the same constraints Idx and v̂alue as
in the previous state. Similarly, Figure 6(c) shows a possible result for create.

Merging groups. Fine partitions with many groups can provide great precision
but may incur increased analysis cost. Therefore, the analysis can also force the
fusion of several groups into one by calling operation merge on a set of groups.
This is performed either as part of join and widening or when transfer functions
detect some groups get assigned similar values.

Example 4. Figure 7(a) defines an abstract state a
 which describes an array with
two groups. Applying merge to a
 and set {0, 1} produces the state shown in
Figure 7(b), with a single group and coarser predicates, obtained by joining the
constraints over the contents of the initial groups.

Reduction. Our abstract domain can be viewed as a product abstraction and can
benefit from reduction [4]. In a
 = (p,−→n , r), components −→n and r may help re-
fining each other. For instance, in Figure 4, the analysis infers at point 1 that
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G0

0 ≤ Idx0 ≤ 99

G1

0 ≤ Idx1 ≤ 99

ng : 3 ≤ v̂alue0 ≤ 5 ∧ v̂alue1 = 1
∧ Sz0 = 50 ∧ Sz1 = 50

r : i 	 G0 ∪G1

(a) a


G0

0 ≤ Idx0 ≤ 99

ng : 1 ≤ v̂alue0 ≤ 5
∧ Sz0 = 100

r : i 	 G0

(b) merge(a
, {0, 1})

Fig. 7. Merging in abstract state a


parent ' G0 ∪ G2 and Idx0 = 2. Combining this with the numerical information
derived from test parent == 2, the analysis should derive that parent ' G0 (i.e.,
parent is the index of init). Conversely, r may refine the information on −→n : if
child ' G2, then group G2 has at least one element, thus Sz2 ≥ 1.

Such steps are performed by a partial reduction operator reduce, which
strengthens the numeric and relation predicates, without changing the global con-
cretization [4] (the optimal reduction would be overly costly to compute). This
reduction is done lazily: for instance, the analysis will attempt to generate rela-
tions between i and Idxi only when i is used as an index to access the array Gi

corresponds to.
Basic operations split, create,merge and reduce are sound:

Theorem 1 (Soundness). If a
 is an abstract state, t an array,Gi a group, then
γ��(a
) ⊆ γ��(split(a
, t, Gi)) and γ��(create(a
, t)) = γ��(a
). Moreover, if S
is a set of groups, γ��(a
) ⊆ γ��(merge(a
, t, S)). Similarly, reduce does not
change concretization.

5 Transfer Functions

Our analysis of C programs proceeds by forward abstract interpretation [3]. In
this section, we study the abstract transfer functions for tests and assignments.

5.1 Analysis of Conditions

In the concrete level, if ex is an expression, test ex? filters out states that do not
let ex evaluate into TRUE. Its concrete semantics can thus be defined as a function
over sets of states, by ∀S ⊆ �, �ex?�(S) = {σ ∈ S | �ex�(σ) = TRUE}.

Intuitively, the abstract interpretation of a test fromabstract state a
 = (p,−→n , r)
can directly improve the constraints in the numeric component−→n , which can then
be propagated into r by reduce. The numeric test will derive new constraints only
over non summary dimensions, thus tests over fields of groups that contain more
than one element will not refine abstract values.

When a test involves an array cell as in a[i] == 0?, and if the group that
cell belongs to cannot be known precisely, a more precise post-condition can be
derived by performing a locally disjunctive analysis, that applies numeric test to
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each possible group, and then joins the abstract states. For instance, if i'G0∪G1,
the analysis will analyze test a[i] == 0? for both i ' G0 and i ' G1, join the
results of both tests, and apply operator reduce afterwards. Note that the ab-
stract test operator does not change the partition, thus this join boils down to
applying the abstract join join�� of numeric abstract domain �
 and set inter-
section to relations viewed as sets of atomic relations. The resulting join op-
erator, limited to cases where both arguments have the same partitioning is
defined by join≡((p,

−→n 0, r0), (p,
−→n 1, r1)) = (p, join��(−→n 0,

−→n 1), r0 ∩ r1). It is
sound: ∀i ∈ {0, 1}, γ��(p,−→n i, ri) ⊆ γ��(join≡((p,

−→n 0, r0), (p,
−→n 1, r1))).

Abstract transfer function test is sound in the sense that:

∀σ ∈ γ��(a
), �ex� = TRUE =⇒ σ ∈ γ��(test(ex, a
))

Example 5. We consider the analysis of the code studied in Section 2. At the be-
ginning of the first iteration of the loop, i is equal to 0, so mproc[i] may be in
G1 or in G2. Then, the analysis of test mproc[i].mpflag > 0 will locally create
two disjuncts corresponding to each of these groups. However, in the case of G1,
m̂pflag1 = 0, thus the numeric test m̂pflag1 > 0 will produce abstract value ⊥
denoting the empty set of states. Therefore, only the second disjunct contributes
to the abstract post-condition. Thus, the analysis derives i ' G2.

5.2 Assignment

Given l-value lv and expression ex, the concrete semantics of assignment lv = ex

writes the value of ex into the cell lv evaluates to. It can thus be defined as a
function over states, by �lv = ex�(σ) = σ[�lv�(σ)← �ex�(σ)].

In the abstract level, given abstract pre-condition a
 = (p,−→n , r), an abstract
post-condition for lv = ex can be done in three steps: (1) materialization of the
memory cell that gets updated, (2) call to assign

�� in �
 [14], and update of the
relations, and (3) reduction of the resulting abstract state.

Materialization. When lv denotes an array cell, it should get materialized into a
group consisting of a single cell, before strong updates can be performed on−→n and
r. To achieve this, the analysis computes which group(s) lv may evaluate into in
abstract state a
. If there is a single such groupGi, that contains a single cell (i.e.,
Szi = 1), then materialization is already achieved. If there is a single such group
Gi, but Szi may be greater than 1, then the analysis calls split in order to divide
Gi into a group of size 1 and a group containing the other elements. Last, when
there are several such groups (e.g., when lv is a[i] and i ' G0 ∪G1), the analysis
first calls merge to merge all such groups and then falls back to the case where
lv can only evaluate into a single group.

Note that in the last case, the merge of several groups may incur a loss in
precision since the properties of several groups get merged before the abstract
assignment takes place. We believe this loss in precision is acceptable here. The
other option would be to produce a disjunction of abstract states, yet it would in-
crease significantly the analysis cost and the gain in precision would be unclear, as
programmers typically view those disjunctions of groups of cells as having similar
roles. Our experiments (Section 7) did confirm this observation.
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G0

0 ≤ Idx0 ≤ 99

G1

0 ≤ Idx1 ≤ 99

ng : v̂alue0 = 0 ∧ Sz0 = 99

∧ v̂alue1 = 1 ∧ Sz1 = 1

r : i 	 G1 ∧ v̂alue1 	 G0 ∪G1

Fig. 8. Post-condition of assignment a[i] = 1

Constraints. New relations can be inferred after assignment operations in two
ways. First, when both sides are base variables, they get propagated: for instance,
if u ' Gi, then after assignment v = u, we get v ' Gi. Second, when the right
hand side is an array cell as in parent = mproc[child].mparent in the example
of Section 2, the analysis first looks for relations between fields and indexes such
as ̂mparent2 ' G0 ∪G2, and propagate them to the l-value. In this phase, the nu-
meric assignment relies on local disjuncts that are merged right after the abstract
assignment, as we have shown in the case of condition tests (Section 5.1).

The abstract transfer function for assignment is sound in the sense that:

∀σ ∈ γ��(a
), σ[�lv�(σ)← �ex�(σ)] ∈ γ��(assign(a
, lv, ex))

Example 6. We consider a[i] = 1 and abstract the pre-condition shown in
Figure 6(a). The l-value evaluates into an index in G0, but this group has sev-
eral elements, thus it is split, as shown in Figure 6(b). Then, the assignment boils
down to a strong update inG1, and produces the post-condition shown in Figure 8.
Note that reduction strengthens relations with v̂alue1 ' G0 ∪G1.

6 Join, Widening and Inclusion Check

Our analysis proceeds by standard abstract interpretation, and uses widening and
inclusion tests to compute abstract post-fixpoints for loops and abstract join for
control flow union (e.g., after an if statement). All these operators face the same
difficulties: when their inputs do not have a similar of clearly “matching” groups
they have to re-partition the arrays so that precise information can be computed.
We discuss this issue in detail in the case of join.

6.1 Join and the Group Matching Problem

Let us consider two abstract states a
0, a


1 with the same number of groups for

each array, that we assume to have the same names. Then, the operator join≡
introduced in Section 5.1 computes an over-approximation for a
0, a



1, by joining

predicates for each group name, the global numeric invariants and the side rela-
tions. However, this straightforward approach may produce very imprecise results
if applied directly. As an example, we show two abstract states a
0 and a
1 in Fig-
ure 9(a) and Figure 9(b), that are similar up to a group name permutation. The
direct join is shown in Figure 9(c). We note that the exact size of groups and
the tight constraints over value were lost. Conversely, if the same operation is
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G0

0 ≤ Idx0 ≤ 4

G1

1 ≤ Idx1 ≤ 6

ng
0 : 2 ≤ v̂alue0 ≤ 8 ∧ −120 ≤ v̂alue1 ≤ −100
∧ Sz0 = 3 ∧ Sz1 = 4

r0 : i 	 G0

(a) Abstract state a

0

G0

1 ≤ Idx0 ≤ 6

G1

0 ≤ Idx1 ≤ 4

ng
1 : −120 ≤ v̂alue0 ≤ −100 ∧ 2 ≤ v̂alue1 ≤ 8
∧ Sz0 = 4 ∧ Sz1 = 3

r1 : i 	 G1

(b) Abstract state a

1

G0

0 ≤ Idx0 ≤ 6

G1

0 ≤ Idx1 ≤ 6

ng : −120 ≤ v̂alue0 ≤ 8 ∧ −120 ≤ v̂alue1 ≤ 8
∧ 3 ≤ Sz0 ≤ 4 ∧ 3 ≤ Sz1 ≤ 4

r : true

(c) Imprecise join result

G0

1 ≤ Idx0 ≤ 6

G1

0 ≤ Idx1 ≤ 4

ng : −120 ≤ v̂alue0 ≤ −100 ∧ 2 ≤ v̂alue1 ≤ 8
∧ Sz0 = 4 ∧ Sz1 = 3

r : i 	 G1

(d) Precise join result

Fig. 9. Impact of the group matching on the abstract join

done after a permutation of group names, an optimal result is found, as shown in
Figure 9(d). This group matching problem is actually even more complicated in
general as a
0, a



1 usually do not have the same number of groups.

To properly associate G0 in Figure 9(a) with G1 in Figure 9(b), the analysis
should take into account the group field properties. This is achieved with the help
of a ranking function rank : � × � → �, which computes a distance between
groups in different abstract states by comparing their properties: rank(Gi, Gj)
returns a monotone function of the number of common constraints over the fields
and indexes of Gi and Gj in −→n 0 and −→n 1. A high value of rank(Gi, Gj) indicates
Gi of a
0 and Gj of a
1 are likely to describe sets of cells with similar properties.

Using the set of rank(Gi, Gj) values, the analysis computes a pairing↔, that
is a relation between groups of a
0 and groups of a
1 (this step relies on heuristics; a
non optimal pairing will impact only precision, but not soundness) and then apply
a group matching which transforms both arguments into “compatible” abstract
states using the following (symmetric) principles:
– if there is noGj such thatGi ↔ Gj , then an empty such group is created with

create;
– if Gi ↔ Gj andGi ↔ Gk, then Gi is split into two groups, respectively paired

with Gj and Gk;
– if Gi is mapped only to Gj , Gj is mapped only to Gi, and i 
= j, then one of

them is renamed accordingly.
After this process has completed, a pair of abstract states are produced that have
the same number of groups, and join≡ can be applied. This defines abstract join
operator join. The soundness of join follows from the soundness of join≡ (trivial),
and the soundness of split and create:

Theorem 2 (Soundness)

∀a
0, a


1, γ��(a
0) ⊆ γ��(join(a
0, a



1)) ∧ γ��(a
1) ⊆ γ��(join(a
0, a



1))
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0 : if(random()){
1 : a[i] = 1;
2 : }
3 : . . .

(a) Simple join

G0

0 ≤ Idx0 ≤ 99

G1

0 ≤ Idx1 ≤ 99

ng : v̂alue0 = 0 ∧ v̂alue1 = 1 r : i 	 G0 ∪G1

∧ 99 ≤ Sz0 ≤ 100 ∧ 0 ≤ Sz1 ≤ 1

(b) Join result

Fig. 10. Join of a one group state with a two groups state

Example 7. We assume a is an integer array of length 100 and i is an integer vari-
able storing a value in [0, 99], and consider the program of Figure 10(a). At the
exit of the if statement, the analysis needs to join the abstract states shown in
Figure 6(a) (that has a single group) and in Figure 8 (that has two groups). We
note that G0 in Figure 6(a) has similar properties asG0 in Figure 8, thus they get
paired. Moreover, G1 in Figure 8 is paired to no group, so a new group is created
(as in Figure 6(c), and paired to it. At that stage join≡ applies, and returns the
abstract state shown in Figure 10(b).

6.2 Widening

The widening algorithm is similar to that of join. The restriction of widening
to compatible abstract states is defined by widen≡((p,

−→n 0, r0), (p,
−→n 1, r1)) =

(p,widen��(−→n 0,
−→n 1), r0 ∩ r1) (note that r0, r1 are finite sets of relations, and

intersections of finite sets of relations naturally terminates).
The group matching algorithm of Section 6.1 does not ensure termination, as

it could create more and more groups. Therefore widen relies on a slightly mod-
ified group matching algorithm, which will never call split and create. Instead,
it will always match each group of an argument to at least one group of the other
argument, and call merge when two (or more) groups of one argument are paired
with a group of the other. This group matching ensures termination. Therefore,
the resulting widen operator is a sound and terminating widening operator [3].
For better precision, the analysis always uses join for the first abstract iteration
for a loop, and uses widening afterwards.

6.3 Inclusion Check

To check the termination of sequences of abstract iterates over loops, and the
entailment of post-conditions, the analysis uses a sound inclusion check operator
is_le: when is_le(a
0, a



1) returns TRUE, then γ��(a
0) ⊆ γ��(a
1).

Like join, such an operator is easy to define on compatible abstract states, using
an inclusion check operator is_le

�� for �
: if is_le
��(
−→n 0,
−→n 1) = TRUE and r1 is

included in r0 (as a set of constraints), then γ��(p,−→n 0, r0) ⊆ γ��(p,−→n 1, r1), hence
we let is_le≡ return TRUE in that case.

The group matching algorithm for is_le is different, although it is based on
similar principles. Indeed, it modifies the groups in the left argument so as to con-
struct an abstract state with the same groups as the right argument, using create,
split and merge.
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7 Verification of the Minix Memory Management Process
Table and Experimental Evaluation

We have implemented our analysis and evaluated how it copes with two classes of
programs: (1) the Minix Memory Management Process Table, and (2) academic
examples used in related works, where contiguity of groups is sometimes unneces-
sary for the verification. Our analyzer uses the MemCAD analyzer front-end, and
the Apron [14] implementation of octagons [18].

7.1 Verification of Memory Management Part in Minix

The main data-structure of the Memory Management operating system service of
Minix 1.1 is the MMPT mproc, which contains memory management information
for each process. At start up, it is initialized by function mm_init, which creates
process descriptors for mm, fs and init. After that, mproc should satisfy property
C (Section 2). Then, it gets updated by system calls fork, wait and exit, which
respectively create a process, wait for terminated children process descriptors be
removed, and terminate a process. Each of these functions should be called only in
a state that satisfies C, and should return a state that also satisfies C. System calls
wait and exit call the complex utility function cleanup discussed in Section 2,
to reclaim descriptors of terminated processes.

If property C was violated, several critical issues could occur. First, system calls
could crash due to out-of-bound accesses, e.g., when accessing mproc through field
mparent. Moreover, higher level, hard to debug issues could occur, such as the
persistence of dangling processes, that would never be eliminated.

Therefore, we verified (1) that mm_init properly establishes C (with no pre-
condition), and (2) that fork, wait and exit preserve C using our analysis (i.e.,
the analysis of each of these functions frompre-condition C returns a post-condition
that also satisfies C). Note that function cleanup was inlined in wait and fork

in a recursion free form (currently not supported by our analyzer), as well as
statements irrelevant to mproc.

Our tool achieves the verification of all these four functions. The results are
shown in the first four lines of the table in Figure 11, including analysis time and
peak number of groups for array mproc.

The analysis of mm_init and fork is very fast. The analysis of exit and wait

also succeeds, although it is more complex due to the intricate structure of cleanup
(which consists of five loops and many conditions) which requires 194 joins. Despite
this, the maximum number of groups remains reasonable (seven in the worst case).

7.2 Application on Other Cases

We now consider a couple of examples from the literature, where arrays are used
as containers, i.e., where the relative order of groups does not matter for the pro-
gram’s correctness. The purpose of this study is to examplify other examples of
cases our abstract domain is adequate for. Program int_init consists of a simple
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Program LOCs Verified property Time(s) Max. groups Description
mm_init 26 establishes C 0.092 4 Minix MMPT: mproc init
fork 22 preserves C 0.109 3 Minix MMPT sys call
exit 68 preserves C 5.41 7 Minix MMPT sys call
wait 70 preserves C 5.41 7 Minix MMPT sys call

complex 21 ∀i ∈ [0, 54], a[i] ≥ −1 0.296 4 Example from [5]
int_init 8 ∀i ∈ [0, N ], a[i] = 0 0.025 3 Array initialization

Fig. 11. Analysis results (timings measured on Ubuntu 12.04.4, with 16 Gb of RAM, on
an Intel Xeon E3 desktop, running at 3.2 GHz)

2 int a[56];
3 for(int i = 0; i < 56; i++){

1

4 a[i] = 0;
2

}
5 a[55] = random();
6 for(int i = 0; i < 55; i++){

3

7 int index = 21 ∗ i%55;
8 int num = random();
9 if(num < 0){num = −1; }
10 a[index] = num;
}

11 assert(∀i ∈ [0, 54], a[i] ≥ −1);

(a) Test case complex

state 1 G0

i ≤ Idx0 ≤ 55

G1

0 ≤ Idx1 ≤ i− 1

ng : Sz0 = 56− i ∧ Sz1 = i ∧ v̂alue1 = 0
r : i 	 G0

state 2 G0

i+ 1 ≤ Idx0 ≤ 55

G1

0 ≤ Idx1 ≤ i− 1

G2

Idx2 = i

ng : Sz0 = 55− i ∧ Sz1 = i ∧ Sz2 = 1

v̂alue1 = 0 ∧ v̂alue2 = 0
r : i 	 G2

state 3 G1

0 ≤ Idx1 ≤ 54

G2

0 ≤ Idx2 ≤ 54

G3

Idx3 = 55

ng : Sz1 = 54 ∧ Sz2 = 1 ∧ Sz3 = 1

−1 ≤ v̂alue1 ∧ −1 ≤ v̂alue2
r : i 	 G1 ∪G2

(b) Invariants

Fig. 12. Array random accesses

initialization loop. Our analysis succeeds here, and can handle other cases relying
on basic segments, although our algorithms are not specific to segments (and are
geared towards the abstraction of non contiguous partitions).

Moreover, Figure 12 shows complex, an excerpt of an example from [5]. The
second example is challenging for most existing techniques, as observed in [5] since
resolving a[index] at line 10 is tricky. As shown in Figure 11, our analysis handles
these two loops well, with respectively 4 and 3 groups.

The invariant of the first initialization loop in Figure 12 is abstract state 1 (at
line 4): group G1 accounts for initialized cells, whereas cells of G0 remain to be
initialized. The analysis of a[i] = 0; from 1 materializes a single uninitialized cell,
so that a strong update produces abstract state 2 . At the next iteration, and after
increment operation i++, widening mergesG2 with G1, which produces abstract
state 1 again. At loop exit, the analysis derives G0 is empty as 56 ≤ Idx0 ≤ 55.
At this stage, this group is eliminated. The analysis of the second loop converges
after two widening iterations, and produces abstract state 3 . We note that group
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G3 is kept separate, while groups G1 and G2 get merged when the assignment at
line 10 is analyzed (Section 5.2). This allows to prove the assertion at line 11.

8 Related Work and Conclusion

In this paper, we have presented a novel abstract domain that is tailored for arrays,
and that relies on partitioning, without imposing the constraint that the cells of
a given group be contiguous.

Most array analyses require each group be a contiguous array segment. This
view is used both in abstract interpretation based static analysis tools [5,11,13]
and in tools based on invariant generation, model checking and theorem prov-
ing [1,15,16,17,19]. We believe that both approaches are adequate for different
sets of problems: segment based approaches are adequate to verify algorithms
that use array to order elements, such as sorting algorithms, while our segment-
less approach works better to verify programs that use arrays as dictionaries.

Other works target dictionary structures and summarize non contiguous sets of
cells, that are not necessarily part of arrays. In particular, [8,9] seeks for a unified
way to reasonabout pointers, scalars and arrays.Theseworks are orthogonal to our
approach, as we strive to use properties specific to arrays in order to reason about
the structure of groups. Therefore, [8,9] cannot express the invariants presented in
Section 2 for two reasons: (1) the access paths cannot describe the contents of array
elements as an interval or with other numeric constraints; (2) they cannot express
content-index predicates. Similarly, HOO [6] is an effective abstract domain for
containers and JavaScript open objects. As it uses a set abstract domain [7], it
has a very general scope but does not exploit the structure of arrays, hence would
sacrifice efficiency in such cases.

Last, template-base methods [2,12] are very powerful invariant generation tech-
niques, yet require user supplied templates and can be quite costly.

Our approach has several key distinguishing factors. First, it not only relies on
index relation, but also exploits semantic properties of array elements, to select
groups. Second, relation predicates track lightweight properties, that would not be
captured in a numerical domain. Last, it allows empty groups, which eliminated
the need for any global disjunction in our examples (a few assignments and tests
benefit from cheap, local disjunctions). Finally, experiments show it is effective
at inferring non trivial array invariants with non contiguous groups, and verify a
challenging operating system data-structure.
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Abstract. Compilers perform a static analysis of a program prior to
optimization. The precision of this analysis is limited, however, by strict
time budgets for compilation. We explore an alternative, new approach,
which links external sound static analysis tools into compilers. One of
the key problems to be solved is that of propagating the source-level
information gathered by a static analyzer deeper into the optimization
pipeline. We propose a method to achieve this, and demonstrate its fea-
sibility through an implementation using the LLVM compiler infrastruc-
ture. We show how assertions obtained from the Frama-C source code
analysis platform are propagated through LLVM and are then used to
substantially improve the effectiveness of several optimizations.

1 Introduction

An optimizing compiler is commonly structured as a sequence of passes. The
input of each pass is a source code that is first analyzed and, using the analysis
information, transformed to a target code, which then becomes the source of the
next pass in the sequence. Each pass uses static analysis to guide optimization,
but the precision of this analysis is limited due to strict time budgets for compil-
ing (e.g., the GCC wiki has as rule 1: “Do not add algorithms with quadratic or
worse behavior, ever.") As a result, end users of compilers such as LLVM do not
benefit from advances in algorithms for program analysis and verification. These
advanced methods are, however, implemented in static analysis tools, which are
now widely used to detect programming errors during software development.
Examples such tools for C programs include BLAST [10], Frama-C [5], and F-
Soft [11], all of which employ SMT solvers to produce high-quality and precise
(inductive) invariants.

Static analysis tools are less time-constrained and are thus able to carry out
much deeper analysis of program behavior. In this work we explore how the in-
formation gathered by such tools can be used to augment the internal analysis of
a compiler, and whether this offers any practical benefit. While the compile-time
cost of employing additional tools may be high, it is often the case that runtime
improvements in optimization outweigh this additional cost, for example, for
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large frequently used code such as kernels and name servers. One approach is
to implement these as optional features inside the compiler. Yet another option,
employed here, is that of importing the analysis results computed by external
static analysis and software verification tools. There is much to be gained from
this modular approach, which decouples analysis from transformation. However,
there are two key challenges to be overcome: Linking the output of an analysis
tool to the C program representation in the compiler front-end, and propagating
the assertions through the program transformations performed at the back-end.

Let us consider the problem of propagating information through a series of op-
timization passes. The static analysis tool produces information about a source
program, say S. However, the various passes of a compiler transform S suc-
cessively into programs S = S0, S1, S2, . . . , Sf = T , where T denotes the final
target code. To use information gathered for S0 at the kth compilation stage
(k > 0), one must have a way of transforming this information into a form that
is meaningful for program Sk−1.

A simple example can illustrate this problem. Suppose that the program S has
variables x and y, and the static analysis tool concludes that (x < y) is invariant.
Now suppose that the first stage of compilation renames x and y to “temporary"
variables t1 and t2 respectively. The assertion (x < y) is meaningless for the
second compilation stage (from S1 to S2); to be useful, it must be transformed
to (t1 < t2).

How can assertions be transformed? It is desirable to avoid manually tailoring
the propagation of assertions to each transformation, a laborious and possibly
error-prone task. Our approach offers a uniform method for assertion propaga-
tion, which is based on the notion of refinement “witnesses" [14]. Note that when
the refinement relation induced by a transformation is available, it can be used
to transform any invariant on the source program to an invariant on the target
program 1. We obtain the refinement relation by instrumenting the optimization
to produce a refinement relation as it transforms a program. (The validity of
the generated relation can be checked independently, using SMT solvers. A valid
relation is a “witness" to the correctness of the optimization, hence the name.)

Many standard optimizations only introduce, remove, or rename variables.
Thus, witness relations are often conjunctions of equalities between a pair of cor-
responding source/target variables at a program point (or of the form vt = E(Vs)
where vt is a target variable, Vs are a source variables, and E is a simple
arithmetic expression.) For example, the witness for a dead-variables elimina-
tion transformation states that the values of live variables are preserved. In the
common case that the invariant depends on a single variable, its propagation
can be carried out by simply keeping track of the action that is applied to the
variable, without requiring logical manipulations.

In the implementation described in this paper, we handle this common case.
The invariants are obtained from the value-range analysis of the Frama-C source
code analysis platform [5,3]. Among other information, Frama-C (via its Value

1 Precisely, if ϕ is invariant for program S, and T refines S through relation W , then
〈W 〉ϕ is invariant for T .
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Analysis plug-in) produces invariants which express constant limits on the range
of a program variable (e.g., 10 ≤ x ≤ 20). Such invariants are propagated through
LLVM optimizations using a mechanism we describe in Sec. 3. The propagated
invariants are used to augment LLVM’s own analysis information for optimiza-
tions such as instruction combination and buffer overrun checking2. Sec. 5 de-
scribes some experimental results showing gains vary depending on the relative
accuracy of LLVM vs. Frama-C for each benchmark.

The prototype of our implementation is available at http://www.cs.uic.edu/
phu/projects/aruna/index.html.

2 Approach by Example

We use LLVM [12] as our target compiler infrastructure due to its widespread
use in academic and industrial settings, as well as its ability to handle a wide
variety of source languages. Among several tools (e.g., [5,2,18,9,1,13]) that can
be used to obtain external assertions to feed into LLVM, we focus our discussion
on Frama-C. In particular, we focus on the use of Frama-C to perform value
analysis, an abstract-interpretation-based analysis, to obtain various domains
of integers (sets of values, intervals, periodic intervals), floating points, and ad-
dresses for pointers. The value range analysis results obtained from Frama-C are
more powerful than those available in most compilers, and, as we demonstrate,
in LLVM.

Consider the code in Fig. 1(a). Even when compiled using the most aggressive
optimization scheduler (-O3 option of Clang), LLVM’s optimizer does not detect
that the else branch in location L6 is dead (and leaves the branch L6-L7 intact.)

In Fig. 1(b) we show the ACSL ([6], see also http://frama-c.com/acsl.html)
assertions produced by the Frama-C’s Value Analysis as comments. We note
that here examples are given at the C-level for readability, rather then the SSA
LLVM bitcode. The assumption of SSA form allows to consider each assertion
in a basic block (single-entry single-exit straight line code) to be implicitly the
conjunction of assertions preceding it.

We thus omit describing how the assertions produced by Frama-C (comments
in Fig. 1(b)) are propagated from the Clang input. The first pass that LLVM
performs that is relevant to us is to replace weak inequalities by strict inequal-
ities, possibly at the “cost” of introducing new variables, and replacing, signed
comparisons between integers with unsigned ones (subscripted by u) whenever
the integers are known to be non-negative.

Consider the uncommented lines in Fig. 1(c). There, a new line (L0) is added
in which a temporary variable tmp1 is assigned the value i − 1, which, when
i ≥ 1, is non-negative, and hence line L1 does not test it is greater than 0. This
allows LLVM to replace the conjunction of the test in L1 by a single unsigned
test for tmp1 <u 10. Following the quest to replace tests of weak inequality to
tests for strict inequalities, LLVM replaces that tests in L2 and L3 by their strict
equivalents. Finally, the j + i expression that appears in line L4 (Fig. 1(b)) is
2 The latter inserts checks; the invariants help identify some which as unnecessary.

http://www.cs.uic.edu/ phu/projects/aruna/index.html
http://www.cs.uic.edu/ phu/projects/aruna/index.html
http://frama-c.com/acsl.html
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replaced by two lines, one (L3.1) that assigns a new tmp2 the value j + i, and
the other (L4) tests whether tmp2 ≥ k (this inequality is left in its weak form,
since neither of the operands is a constant.)

Since the original program does not have the new temporaries, there is no
value-range analysis for them. However, we can propagate the assertion i ≥
1 ∧ i ≤ 10 to the assertion tmp1= i− 1 ∧ tmp1 ≥ 0 ∧ tmp1 ≤ 9, as appears in
L1’ of Fig. 1(c). Similarly, using the assertion for i and the assertion j ≥ 5 (from
L2’), we can propagate the assertion tmp2 = i+ j ∧ tmp2 ≥ 6, which is shown in
line L3.1’ of Fig. 1(c). Since k ≤ 4 and tmp2 ≥ 6, the test in L4 can be flagged as
trivially true, so that the else branch can be eliminated, resulting in the code in
Fig. 1(d). (The LLVM passes that accomplish this optimization are instruction
combination followed by constant folding followed by jump threading and dead
code elimination.)

L1: if(i>=1 && i<=10)

L2: if(j>=5)

L3: if(k <= 4)

L4: if(j+i >= k)
L5: j++;
L6: else
L7: j–;
L8: return j;

(a) source

L1: if(i>=1 && i<=10)
L1’: /*@assert i >= 1 && i<=10*/
L2: if(j>=5 )
L2’: /*@assert j >= 5 */
L3: if(k <= 4)
L3’: /*@assert k <= 4*/
L4: if(j+i >= k)
L5: j++;
L6: else
L7: j–;
L8: return j;

(b) with value analysis

L0: tmp1 = i-1
L1: if(tmp1 <u 10)
L1’:/*@assert tmp1>=0 && tmp1 <=9*/
L2: if(j>4)
L2’: /*@assert j >= 5 */
L3: if(k < 5)
L3’: /*@assert k <= 4*/
L3.1: tmp2 = j+i
L3.1’: /*@assert tmp2 >= 6*/
L4: if(tmp2 >= k)
L5: j++;
L6: else
L7: j–;
L8: return j;

(c) before instruction combination.

L0: tmp1 = i-1
L1: if(tmp1 <u 10)
L1’:/*@assert tmp1>=0 && tmp1 <=9*/
L2: if(j>4)
L2’: /*@assert j > 4*/
L3: if(k < 5)
L3’: /*@assert k < 5*/

L5: j++;

L8: return j;

(d) after using assertions.

Fig. 1. Code example illustrating our approach
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3 External Invariant Usage in LLVM

In this section, we discuss our approach for propagating and using invariants
produced by third party verification tools inside LLVM’s code transformation
passes. As indicated in the introduction, the general approach is based on con-
structing a refinement witness for each optimization. We describe the theoretical
foundations, practical considerations, and the implementation. [14] has a detailed
description of the approach while here we only give an overview of it.

Refinement Relations. Consider an optimization opt. The optimization opt can
be viewed as a transformer from the source program S into the target program
T = opt(S). Informally, opt is correct if every behavior of T is a possible behavior
of S – i.e., the transformation does not introduce undefined outcomes (such
as a divide-by-zero) or non-termination, which do not already exist in S. If S
is transition deterministic and S and T have identical initial states, this also
implies that every behavior of S has a corresponding one in T . This notion can
be formalized in several ways, depending on the notion of behavior that is to
be preserved. We choose to apply a refinement relation that maps T -states into
S-states. A valid refinement relation for a single procedure must:

– Relate every initial S-state into an initial T -state;
– Relate every initial T -state into an initial S-state;
– Be a simulation relation from T to S. The simulation condition may be

single-step simulation or the more relaxed stuttering simulation, and
– Relate every final state T -state into a final S-state with the same return

value(s).

(Note that here we are assuming that both S and T have the same observables
and that the return values are observables. Extending the definition for the case
where the observables are not the same requires adding a mapping between
observables.)

These conditions ensure (by induction) that for any terminating
T -computation there is a corresponding terminating S-computation with same
return value, and that every non-terminating T -computation has a corresponding
non-terminating S-computation. With the assumption of transition determin-
ism, this also implies that every terminating S-computation has a corresponding
terminating T -computation.

Invariant Propagation. Constructing a refinement relation from T to S ensures
the correctness of the transformation T = opt(S). We call such a relation a
witness. A witness also provides a means to propagate invariants from S to T
through the following theorem.

Theorem 1. Given a witness W for T = opt(S), and let VS (resp. VT ) denote
S’s (resp. T ’s) variables. Let 〈W 〉(ϕ) = (∃VS : W (VT , VS) ∧ ϕ(VS)) (thus,
〈W 〉(ϕ) is the pre-image of ϕ under W ). Then for any invariant ϕ of S, 〈W 〉(ϕ)
is an invariant for T . Moreover, if ϕ is inductive, so is 〈W 〉(ϕ).
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Proof. Consider any execution σ of T . By definition of W , there is an execution
δ of S such that every state of σ is related by W to a state of δ. As ϕ is an
invariant for S, every state of δ satisfies ϕ; hence (by definition), every state of
σ satisfies 〈W 〉(ϕ). Inductiveness is preserved since the relation W connects a
step of T to a (stuttering) step of S. ��

Generating witnesses. The problem of determining whether a program refines
another is, in general, undecidable. However, in the cases we study here, it’s
usually possible to generate a witness relation by augmenting an optimization
opt with a witness generator – an auxiliary function, wgen, that computes a
candidate witness, W = wgen(T, S), for a source S and a target T . The tuple
(T,W, S) can then be passed to a refinement checker, which checks the validity of
W = wgen(T, S) (by checking each refinement condition). Note that generation
and propagation are independent steps.

Effective manipulation of witnesses. Obviously, to make the above work in prac-
tice it is vital that the generation and propagation of witnesses be carried out
effectively. This implies that the witness should be expressed in a logic for which
checking is decidable, and for which propagation is computable.

We suppose that witnesses are defined on a basic-block level. Thus, for the
check, a program transition is execution of the straight-line (non-looping) code
in a basic block. This can usually be expressed as a quantifier-free, array theory
formula. (The arrays encode memory.)

What makes this feasible in practice is that the witness relations for standard
optimizations can also be expressed in quantifier-free, decidable theories. In fact,
they are often simply conjunctions of equalities of the form vT = E(uS) where
v is either a variable name or memory content and E(uS) is similar or possibly
a simple arithmetic expression over source variable names and constants. For
instance, a renaming of variable x to x′ has witness x′T = xS , dead code elimi-
nation has a witness which asserts the equality xT = xS for all live variables x,
and so forth. (More examples are given in [14].)

Propagation is the computation of 〈W 〉(ϕ). For witnesses and assertions ex-
pressed in a logic which supports quantifier elimination, one can compute a
“closed form” solution. If not, one can still use witnesses to answer queries, as
follows. To check whether an assertion q is true in T given the propagated invari-
ant for ϕ, one must check the validity of [〈W 〉(ϕ) ⇒ q]. This is equivalent to
the validity of [ϕ(VS) ∧ W (VT , VS) ⇒ q(VT )]. Note that, when ϕ is quantifier-
free, so is the second formula. Thus, it is not necessary to carry out quantifier
elimination in order to use propagated invariants.

For the experimental work described here, the invariants obtained from Frama-
C are of the form

∧
v∈V lv ≤ v ≤ hv where the lv and hv are integer constants.

The transformations of of the form VT = E(VS) where E is a simple arithmetic
expression over VS . Using similarly simple arithmetic manipulations one can
compute the pre-image of the invariant. E.g., if 2 ≤ x ≤ 4 is ϕ and y = 2x + 1
is W , then the propagated invariant is 5 ≤ y ≤ 9.
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Formally, for value-range analysis, ϕ is of the form
∧

v∈VS
lv ≤ v ≤ hv. We

then have:

〈W 〉(ϕ) = (∃VS : VT = E(VS) ∧
∧

v∈VS

lv ≤ v ≤ hv)

which is of the form
∧

v∈VT
lv ≤ v ≤ hv. To compute the exact bound for each

u ∈ VT we need only to track the bounds of the S-variables that appear in the
r-h-s of u’s definition (as per W ) and do the obvious arithmetic manipulations
to obtain the bounds for u.

4 System Description

4.1 Background on LLVM

LLVM’s back-end comprises a set of passes that operate on a single static assign-
ment intermediate (SSA) language referred to as LLVM IR or bitcode, which is
produced by the Clang front end. There are two types of these passes. One set
of passes, called the analysis passes gather different types of information about
the program, such as loop, alias, and variable evolution, but do not perform any
code transformations. The other set, called the transformation passes in turn
use the information gathered by the analysis passes to reason about and opti-
mize the code. Taken together, they implement several algorithms for program
analysis and transformation, such as alias analysis, scalar evolution, instruction
simplification, etc.

As mentioned in Sec. 1, recent advances in analysis and verification techniques
are not usually included in production compilers due to performance require-
ments and the implementation effort needed. Our approach aims to address this
problem by facilitating the use of results from external verification tools inside
the compiler. Using the witness mechanism described in the previous section, we
propagate assertions (for which we also use the term annotations interchange-
ably) obtained from tools such as Frama-C through the various backend passes
of LLVM. By this, we decouple the need for updating the compiler frequently as
newer or improved program analysis algorithms become available, as our system
is designed to obtain assertions from cutting-edge program analysis tools such
as Frama-C. We propagate the assertions to the compiler backend, and employ
them in program optimization. However, in realizing this approach, there are a
number of practical challenges that must be overcome.

4.2 Practical Challenges

These challenges stem from language heterogeneities among the source and in-
termediate language as well as the code transformations along the sequence of
passes. We describe each of these challenges in more detail.
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Source-IR Mapping. The first challenge faced by our approach is that of
propagating invariants from the source code through the front-end to the LLVM
IR. In fact, due to the LLVM IR’s SSA nature, every source variable can be
mapped to several SSA versions in the LLVM IR, and consequently invariants
about that source variable must also be bound to those SSA versions. In the
case of the C language, an additional problem is posed by its scoping rules
where same-named local variables can live in different scopes.

For example, Fig. 2(a) containing a snippet of C source code and Fig. 2(b)
containing the corresponding LLVM IR code (simplified for space reasons) up to
the comparison i+size<200. The two variables i declared in two different scopes
(L3, L8) are both declared in the entry block in the LLVM IR (L15 for the outer
scope i, and L16 for the inner scope i). However, the invariants (L2, L7) are
both with respect to the same identifier i, and need to be correctly bound to
the corresponding IR variables. Furthermore, these variables are used in different
basic blocks; Their values are loaded from memory into SSA variables (L20, L21,
L28), which are then used in the following instructions.

L0: int j = 0;
L1: int Arr[N];
L2: /*@assert i>=0 &&

i<=20*/
L3: int i=getArrNo();
L4: /*@assert size>=0 &&

size<=100*/
L5: int size=getArrSize(i);
L6: while(j<size)
L7: /*@assert i>=0

&& i<=99*/
L8: int i = getArrVal();
L9: if(i+size<200)
L10: Arr[j] = setVal(i);
L11: else
L12: ...
L13: j++;

(a) C source code.

L14: entry: //entry basic block
L15: %i = alloca i32 //allocate outer i
L16: %i1 = alloca i32 //allocate inner i
L17: ...
L18: br BB %5 //jump to basic block 5
L19: BB:5 //basic block 5
L20: %7 = load %j
L21: %8 = load %size
L22: %9 = icmp slt i32 %8, %9 //j<size
L23: br %9, ifTrue %10, ifFalse %22

//conditional jump
L24: BB:10
L25: %11 = call @getArrVal() //call function
L26: store %11, %i1 //store result in %i1
L27: %12 = load %i1
L28: %13 = load %size
L29: %14 = add %12, %13 //i+size
L30: %15 = icmp slt %14, 200 //i+size<200
L31: br %15, ifTrue %16, ifFalse %19

//conditional jump

(b) Corresponding LLVM IR

Fig. 2. Example illustrating propagation challenges from C code to LLVM bitcode

Intermediate Operations. Another problem introduced by LLVM’s IR is its
three address code nature: Consider the test i+size < 200 in L9 of Fig. 2(b).
It is compiled to two loads (L27, L28) and an addition (L29), followed by the
comparison L30, which based on the invariant information will always be true.
In order to fold it and set the value of %15 to true, it is necessary to propagate
the value-range information on size and i (therefore on %12 and %13) to the
value-range information on %14.
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Code Transformation. The LLVM IR undergoes transformations along the
sequence of passes, and the assertions must be transformed accordingly. Con-
sider, the transformation of L1 from Fig. 1(b) to Fig. 1(c), where the test
(i ≥ 1) ∧ (i ≤ 10) is replaced by the assignment tmp1= i − 1 followed by the
test tmp1 <u 10. This entails computing the bounds on tmp1 and verifying the
correct use of <u. Other passes, such as mem2reg, which promotes memory to
registers, may make even more drastic changes such as removing load and store
operations or introducing φ functions.

4.3 System Architecture

The architecture of our system is depicted in Figure 3. The input to the system
is a C source program and a set of invariants generated for that program by
verification tools. The C source code is annotated with the invariants and the
annotated source code is compiled by the front end into LLVM IR. Before be-
ing passed to the standard LLVM backend, the IR program is processed by two
LLVM passes that we wrote: Annotation Mapping and Annotation Propagation.
The former binds the assertions contained in the annotations to the SSA ver-
sions of the source code variables, while the latter combines the assertions and
propagates them to the intermediate operations that use those variables. These
two passes are run before any other pass, in order to operate on the IR program
version produced by the front end’ s code generation step.

We assume that every optimization pass generates a witness of its correctness
(see [14]), and, with the assertions produced by the external static analysis tools,
the witnesses are propagated to the passes that can utilize them. The experi-
ments described in this paper use per-variable value range assertions, hence the
assertions propagated are conjunctions of equalities (as described in Sec. 3) and
are easy to implement, without the need for explicit logical manipulation, as
explained in Sec. 3.

The value range invariants are currently used in three optimizations, namely
array bounds check insertion, integer overflow check removal, and instruction
combination. The first is a set of passes that insert run time checks for every
array reference in a program to detect out of bounds accesses. The second is an
optimization pass that we wrote to safely remove run time checks inserted by
LLVM when it is invoked with the bounds-checking option. The third is a mod-
ified instruction combination pass that operates on comparison simplifications.
We describe each component of our system in more detail next.

CIL-based rewriter. Our approach uses a subset of ACSL to express assertions,
which are supplied to the framework through an input file (see Figure 1). ACSL
allows for a wide variety of first order global and statement assertions. For
instance, this includes value-range assertions about variables and ghost variables
in each program location of the type a ≥ 0 ∧ a ≤ 10 and a = 10.

One of our goals is to support a wide variety of program analysis tools as
sources for assertions. A clean, compiler-independent way to do this is by storing
the assertions in ‘dummy’ string variables before the corresponding instructions
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in the source code. These variables are specially named so that they do not
interfere with the existing program variables. As the assertions are encoded as
assignments to special variables, these assertions are propagated to the LLVM
IR. To do this, we implemented a rewriter based on CIL [16] to inject assertion
strings into C source files. The result of this rewriting is shown in Listing 1.2,
where statement 1 is the injected one.

Listing 1.1. C Source

1 int* a=malloc(X*Y
2 *sizeof(int));
3 *(a+X+Y-1)= Z;
4 m= max(a, X*Y);

Listing 1.2. Annotated Code

1 char * acsl_b_1 ="X==2 && Y==4";
2 int* a=malloc(X*Y*sizeof(int));
3 *(a+X+Y-1)= Z;
4 m= max(a, X*Y);

Annotation Mapping. The goal of the Annotation Mapping pass is to bind every
invariant written in terms of source variables to the correct SSA variable versions
in the IR code. These variables are typically created by LLVM load instructions
before being used. To achieve its goal, the Annotation Mapping pass consults
the debugging information, which contains mappings between load instructions
and source code variables as well as information about the source scope of the
original variable. The scope information is used to disambiguate between the
SSA versions of the same-named source code variables.

Our pass binds invariants to load instructions by attaching to them LLVM
metadata containing the upper and lower bound of the range of the correspond-
ing variable. For instance, with respect to Fig. 2(b), the invariant (%12 ≥ 0∧ %12
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≤ 99) is attached as metadata to the instruction L27. These metadata are valid
until the next store instruction to the same variable or until a new invariant
about the same variable appears. The metadata are currently per-instruction
and are not modified by the normal transformation passes, except when the in-
struction and its uses are removed, in which case the metadata are also lost. In
those cases when an instruction or group of instructions are replaced by simpler
ones, the invariant information contained in their metadata is combined and
added as new metadata to the target instructions. Metadata are orthogonal to
the IR and the choice of using them for storing invariants enables us to imple-
ment a large range of additional logic and witness propagation while minimizing
the interference with the outputs of standard LLVM passes.

Annotation Propagation. Starting from the load metadata, this pass propagates
range information to the other instructions in the IR code, especially those that
compute intermediate results. With respect to Fig. 2(b), this pass combines the
invariant on L27 (%12 ≥ 0∧%12 ≤ 99) and the one on L28 (%13 ≥ 0∧ %13 ≤ 100)
to obtain a new invariant that is attached to L29 (%14 ≥ 0∧ %14 ≤ 199).

Currently, the supported LLVM instructions include add, sub, store, mul,
sdiv, udiv, sext, zext, and getelementptr.3 The binary arithmetic instruc-
tions are supported via an LLVM class, ConstantRange, which is used to rep-
resent constant ranges and provides the capability to perform such arithmetic
operations on ranges. The sext and zext operations on ranges yield the same
range. For the getelementptr operation, which takes in input an array reference
and an index and returns a pointer to the corresponding array element, we use
two types of metadata, one contains the index range and the other contains the
size of the array, if known at compile time. This latter type of metadata is widely
used in the bounds check elimination pass.

4.4 Optimizations

Bounds Check Removal (Safecode). Safecode [7] is a tool composed as a sequence
of passes, which insert calls to run time bounds checking procedures before ev-
ery array access in the LLVM IR. While ensuring safety of memory accesses,
however, it introduces substantial overhead at run time. More specifically, these
functions are inserted before every getelementptr instruction and store or
load instruction that makes use of the value returned by getelementptr. For
instance, consider Fig. 4, which contains the rest of the LLVM IR code that
follows Fig. 2(b) and which contains an array access. In this code, a function
call (L38) is inserted after the getelementptr instruction (L37) and before the
store instruction (L39). In addition to bounds checking, these functions perform
several pointer arithmetic operations increasing the program’s execution costs.

If, however, at compile time, it can be proved that an array access will never
be out of bounds during execution, then the bounds checks on that access can
be removed. To do so, in our implementation, we modify the Safecode passes
3 http://llvm.org/docs/LangRef.html

http://llvm.org/docs/LangRef.html
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to consult the two types of metadata (related to the index range and to the
array size) for the getelementptr instructions. If, using this information, it is
determined that out of bounds access is not possible, then the calls to the bounds
checking functions are removed.

L32: BB:16
L33: %17 = load %i1
L34: %18 = call @setVal(%17) //setVal(i)
L35: %19 = load %j
L36: %20 = sext %19 to i64
L37: %21 = getelementptr %array, %20 //Arr[j]
L38: %el = call @checkGEP(%array, %21, 200)
L39: call @checkStore(%array, %el, 200)
L40: store i32 %18, i32* %21 //Arr[j] <- setVal(i)
L41: br BB %19
L42: BB:19
L43: ...//j++
L44: br %5

Fig. 4. An Example (continued)

Integer Overflow Check Removal. Another use of the range information is to
remove unnecessary integer overflow checks inserted by some of the -fsanitize
family of Clang options. As shown in Fig. 5, these options transform every oper-
ation that may result in overflow into a procedure call (L3), which performs the
operation and sets an overflow flag. If overflow occurs, the control flow jumps to
an error handling procedure (basic block handle_overflow), otherwise execu-
tion proceeds normally (basic block cont).

L1: %12 = load %i1
L2: %13 = load %size
L3: %14 = call @llvm.sadd.with.overflow(%12, %13)
L4: %15 = extract overflow flag
L5: br %15, ifTrue %cont, ifFalse %handle_overflow
L6 handle_overflow:
L7: call usban_handle_overflow()
L8: br %cont
L9: cont:
L10 ...

Fig. 5. Integer Overflow Detection Example

The key intuition here is that if range information is available at compile time
for the operands, then the possibility of overflow may be checked at compile time
and unnecessary checks will be removed. In fact, each check transforms simple
(and frequent) operations like additions into procedure calls and comparisons,



312 R. Gjomemo et al.

incurring in high performance costs. Our pass, which at compile time is run after
the -fsanitize passes, checks the possible value range of the result and removes
the integer overflow procedure calls if it determines that overflow is not possible.

Instruction Combination. Instruction combination is a powerful transformation
pass in LLVM, which simplifies instructions based on algebraic properties. One
instruction on which the pass operates is the integer comparison instruction
(icmp), which performs comparisons between integers. The result of this in-
struction is placed in a boolean variable, which is usually consulted by branching
instructions to issue jumps to the true or false target basic blocks.

The use of range information in this case is fairly straightforward once it
is available to the pass. In particular, if the ranges of the two variables being
compared at run time are known at compile time and disjoint, then the com-
parison result is folded to either true or false. With respect to Fig. 2(b), using
the range information on the variable %14, the comparison is folded and L31 is
transformed into (br TRUE, ifTrue %16, ifFalse %19). Next, the standard
jump-threading pass replaces L31 with an unconditional jump (br %16), while
the dead code elimination pass removes L30 and L29, which are not used any-
more.

5 Evaluation

In this section, we present our experimental results on above mentioned opti-
mization passes in LLVM using our framework. We use a set of small to medium
size benchmarks that are listed in Table 1.

Table 1. Benchmarks with brief description and size information

Benchmark Brief description LoC Frama-C (ms)
Susan7 Low Level Image Processing 1463 528
NEC Matrix8 Matrix operations 113 2
CoreMark9 CPU performance with list and matrix operations 1831 251
Linpack10 Floating point computing power 579 11044
Dijkstra7 Network routing 141 6
Mxm10 Matrix-matrix multiplication problem A = B * C 373 9

7 http://www.eecs.umich.edu/mibench/source.html
8 Part of the NEC Lab benchmarks for F-soft [11]
9 http://www.eembc.org/coremark/download_coremark.php

10 http://people.sc.fsu.edu/j̃burkardt/c_src/
linpack_bench/linpack_bench.html

http://www.eecs.umich.edu/mibench/source.html
http://www.eembc.org/coremark/download_coremark.php
http://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
http://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
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Experimental Methodology. As mentioned earlier, we use the Frama-C tool [5]
as our input source for assertions for the benchmarks. Frama-C is based on ab-
stract interpretation and it can be configured with different options that control
its running time and accuracy. The running times of Frama-C on the benchmark
files, with its default options, are displayed in Table 1. For the Linpack bench-
mark instead, Frama-C was configured to unroll loops 1000 times. In particular,
we extract the value range information from Frama-C’s internal state, and its
translation to ACSL format. To this end, we have implemented a Frama-C plug-
in, which visits the program’s AST tree and the value analysis plug-in’s state,
and writes the value ranges available at each program point in a separate an-
notation file. Using these assertions, the CIL-based rewriter transforms the C
source file by injecting these assertions at the corresponding program locations
as described in Section 4.3. After the rewriting step, the annotated sources are
passed through the Clang front end of the LLVM compiler.

In our experiments, we report on the optimizations to the benchmarks. Our
comparisons are made by running the benchmarks under the unmodified LLVM
that does not include our optimizations. We report both the percentage of checks
that are removed using our framework (a static measure of improvements), and
also the percentage savings in running time (a runtime measure of improve-
ments). Our runtime tests were performed on a GNU-Linux machine running
the Ubuntu distribution 12.04, with Intel Xeon CPU at 2.40GHz.

5.1 Array Bound-Check Optimization

Fig. 6 shows our check elimination and runtime improvement results over the
benchmarks. Each benchmark is presented in two bars for check elimination
and runtime improvement percentage. The check elimination improvements are
observed by counting the number of checks on original code and comparing them
with the results on optimized code.

Fig. 6. Percentage check elimination and Runtime Improvement of Boundcheck (Safe-
code) optimization
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As illustrated by Fig. 6, there is a wide variety in our improvement results.
This variety is due to several factors. Some of these include the following: (a)
Frama-C is not able to produce assertions for every array access as it is not pos-
sible to determine the size of those arrays at compile time, or (b) because our
prototype does not support certain types of array accesses yet. In particular, we
noticed that in some benchmarks, it is not possible for Frama-C to determine the
size of the arrays in the case these array initializations depend on some runtime
arguments. In these cases, the improvement results are not significant. For exam-
ple, among the benchmarks, Dijkstra (a network routing algorithm) only obtains
8% of bound check elimination since its computations heavily depend on runtime
arguments which are based on the input data. In contrast, with a good quality
of assertions, our approach obtains very appealing improvements. For instance,
NEC Matrix gains the best improvement of 49% in our experiments. This is due
to fact that the benchmark has many array accesses, and most of which have
good assertions from Frama-C. In addition, the runtime improvements depend
on the location of the eliminated checks. If they are located in portions of code
that are not executed very often (e.g., initialization code in CoreMark), then
the runtime improvement is not significant. If, however, they are located in a
portion of the code that is executed often (e.g., Linpack) the improvements can
be significantly better. It is worth noting that our optimizations are done based
on Frama-C’s sound analysis, and therefore carry the same guarantees of the
safety of array accesses under LLVM’s Safecode bounds checking.

5.2 Integer Overflow Check

The chart in Fig. 7 illustrates the improvement on the integer overflow check
elimination by our framework. Similar to the previous experiment, here too we
report on both check elimination and runtime improvements for the benchmarks.
The checks are inserted for the LLVM IR’s operations of multiplication (mul),
addition (add), and subtraction (sub). As shown in the figure, the improvement
ranges from 7% (Susan) to 60% (Mxm) of checking code of integer overflow
on the benchmarks. As before, the improvements are dependent on the qual-
ity of assertions and the benchmark itself. For Susan, most of values of vari-
able depend on runtime arguments so that we do not get good assertions from
Frama-C. On the other hand, Mxm benchmark contains a large percentage of
integer computations and these computation variables have good assertions from
Frama-C.

5.3 Instruction Combination

To take advantage of range information for folding comparisons as described
in our examples, we have modified the Instruction Combination pass in LLVM
(-instcombine). We have tested our implementation with a number of small ex-
amples and our implementation is able to perform the optimization successfully.
In our experiments with the above benchmarks, the opportunities for applying
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Fig. 7. Percentage check elimination and runtime improvement of Integer Overflow
Check Optimization

these optimization does not arise. This is due to the fact that, in these bench-
marks, Frama-C does not produce assertions for branch expressions that lead
the branch condition to be evaluated to either true or false at compile time. We
have noticed that larger benchmarks such as bind and gcc and oggenc provide
opportunities for such optimization, but Frama-C does not successfully com-
pile these benchmarks out of the box. We have been working with the Frama-C
development team to get assertions on these larger benchmarks.

6 Related Work

To the best of our knowledge, our work is the first that uses analysis infor-
mation derived by third party tools, which are not as restricted as production
compilers, to improve compiler optimizations. The key issue is that of invari-
ant propagation. Our implementation results show that, for the common case of
single-variable invariants, we can carry out this propagation quite simply, which
results in substantial improvements to compiler optimizations. Propagation lets
a compiler use the results of sophisticated program analyses without incurring
the cost of the analysis during compilation. We strongly believe that this is a
promising approach that will has much potential for improvements.

There are several tools and compiler extensions which combine sophisticated
analysis with code transformation. Examples are Klee [4] (for symbolic execu-
tion), Polly [9] (for polyhedral optimization), CCured [15] (for bounds checking)
and IOC (Integer Overflow Checker) [8]. The key new element introduced by
our work is in loosening the coupling between analysis and optimization, i.e.,
providing a mechanism for introducing the results of any sound program anal-
ysis into a standard compiler (or, more generally, a program transformation),
without requiring that the analysis be built into the compiler.

The idea of propagating assertions through a witness mechanism was first
introduced in [14]. Witness generation is itself a variant of the translation vali-
dation framework introduced in [17] and developed by several researchers (cf. the
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citations in [14]). Just like the translation validation framework, it does not de-
pend on specific passes (even though the generation of witnesses, on which we
do not focus here, does depend on specific optimizations), but it depends on the
ability to “tweak" the compiler, as well on the assumptions that each optimiza-
tion is a separate, easy-to-identify, pass.

7 Conclusion and Future Work

We describe a methodology, supported by tools, for enabling compilers to use
the results of external program analysis tools to enable better optimizations.
The assertions produced by the external tools are propagated, through the wit-
ness approach, through the LLVM optimizations passes. We demonstrate the
methodology by improving three LLVM optimizations using the Frama-C value
analysis plugin. We are currently expanding our approach to encompass other
static analyses as well as targeting other LLVM passes, such as scalar evolution
and loop optimizations.
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Abstract. We investigate the formal connections between “quantita-
tive predicate abstractions” for stability analysis of hybrid systems and
“continuous simulation relations”. It has been shown recently that sta-
bility is not bisimulation invariant, and hence, stronger notions which
extend the classical simulation and bisimulation relations with continu-
ity constraints have been proposed, which force preservation of stability.
In another direction, a quantitative version of classical predicate abstrac-
tion has been proposed for approximation based stability analysis of cer-
tain classes of hybrid systems. In this paper, first, we present a general
framework for quantitative predicate abstraction for stability analysis.
We then show that this technique can be interpreted as constructing
a one dimensional system which continuously simulates the original sys-
tem. This induces an ordering on the class of abstract systems and hence,
formalizes the notion of refinement.

Keywords: Stability Analysis, Simulations/Bisimulations, Hybrid
Systems, Abstraction-Refinement.

1 Introduction

Hybrid systems refer to systems which consist of mixed discrete continuous be-
haviors. They manifest in embedded control systems, which typically consist of
one or more embedded processors controlling physical entities. Stability is a fun-
damental property in control system design. Intuitively, stability captures the
notion that small perturbations to the initial state or input to a system result in
only small variations in the behavior of the system. In this paper, we investigate
the formal foundations for an abstraction based analysis approach for stability
analysis of hybrid systems.

The classical approach to stability analysis in control theory is based on Lya-
punov functions (see, for instance, [10]). Here, stability of a continuous dynamical
system is established by exhibiting a Lyapunov function - a continuously differ-
entiable function on the state-space such that its value is zero at the equilibrium
point and positive everywhere else, and the value of the function decreases along
any execution of the system. A Lyapunov function is analogous to the rank-
ing function for proving termination of discrete programs [5]. The approach has
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been extended to hybrid systems in the form of common and multiple Lyapunov
functions [21,6,11]. Automated analysis involves starting with a template which
serves as a candidate Lyapunov function, and then using constraint/optimization
solvers to deduce the unknown parameters of the template. For instance, for a
polynomial template with coefficients as parameters, the requirements of Lya-
punov function can be encoded as a sum-of-squares programming problem, which
can be efficiently solved using tools such as SOSTOOLS [16,15,14]. One of the
major limiting factors of this approach is the ingenuity required in providing the
right templates; and automatically learning the templates is a challenge which
has not been adequately addressed (except for some recent work [9]). Moreover,
if a template fails to satisfy the conditions of Lyapunov function, then it typically
does not provide insights into the potential reasons for instability or towards the
choice of better templates for succeeding iterations.

To overcome some of the limitations of template based search, an alternate
approach based on abstractions has been investigated [19,20]. However, the de-
velopment of such an approach is not straightforward. Simulations and bisim-
ulations [13] are the foundational basis for abstraction and minimization based
analysis. Recent results [17,18] show that stability is not bisimulation invari-
ant, and a simulation relation between two systems does not suffice to preserve
stability. A stronger notion that extends stability with continuity constraints is
proposed and shown to preserve stability. These negative results suggest that
traditional abstraction techniques will need to be modified for stability analysis.

In [19,20], a quantitative version of predicate abstraction was proposed for
stability analysis. Recall that predicate abstraction [7] constructs a finite graph
which simulates a given system. The finite graph is obtained by partitioning
the state-space of the system into a finite number of regions using a finite set
of predicates. The regions correspond to the nodes of the graph and an edge
between two nodes indicates the possibility of an execution starting from the
region corresponding to the source of the edge to the region corresponding to
its target. Predicate abstraction has been widely applied for safety verification
in the context of both discrete and hybrid systems [4,2,3,22]. However, the fi-
nite graph does not provide useful information towards deciding the stability
of the system. Hence, in [19,20], a modified abstraction procedure is proposed,
which annotates the finite graph with quantitative information for the purpose
of stability analysis. The edges of the graph are annotated with a weight which
captures the ratio of the distance to the origin of final state to that of the initial
state, of the executions corresponding to the edge. Then stability is inferred by
analyzing certain structural properties about the graph, such as, the absence of
cycles with the product of weights on its edges greater than 1.

In this paper, we investigate the formal foundations for the quantitative pred-
icate abstraction proposed in [19,20]. First, we present a general framework for
quantitative predicate abstraction and identify conditions on the hybrid system
and the predicates for which the approach is sound. Next, we establish a formal
connection between the abstract weighted graph and the concrete hybrid system
using the notion of continuous simulations. For this, we interpret a weighted
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graph as representing a one-dimensional hybrid system whose executions follow
the edges in the graph and satisfy the weight constraints on them. We show
that the one-dimensional hybrid system representing the weighted graph “con-
tinuously simulates” the concrete hybrid system from which the graph is con-
structed. This establishes a partial ordering on the abstract weighted graphs,
and formalizes the notion of refinement.

2 Preliminaries

Sets of numbers. Let R, R≥0 and N denote the set of real numbers, non-negative
real numbers and natural numbers, respectively. We use [n] to denote the set
{0, · · · , n}. We use a superscript∞ to indicate that∞ is included in the set. For
example, R∞≥0 denotes the set R≥0 ∪{∞}. Given a subset I ⊆ R, last(I) denotes
the least upper bound of I in R∞.

Euclidean space Rn. Given x ∈ Rn, let (x)i denote the i-th component of x. Let
||x|| denote the Euclidean norm of x, that is, [

∑
i(x)

2
i ]

1/2. Given ε ≥ 0 and x ∈ Rn,
Bε(x) denotes the open ball of radius ε around x, that is, Bε(x) = {y | ||x−y|| < ε}.
Given a finite set Q, we extend the metric on Rn to an extended pseudo-metric
on Q×Rn as follows: The distance between (q1, x2), (q2, x2) ∈ Q×Rn, denoted
||(q1, x1)− (q2, x2)||, is given by, ||x1− x2||. Further, ||(q, x)|| = ||x|| will denote the
norm of (q, x).

Functions. Let dom(f) denote the domain of a function f . Given A,B ⊆ Rn.
Given a function f : A → B, and a set A′ ⊆ A, we use f(A′) to denote the set
{b | ∃a ∈ A′, f(a) = b}. For an element b ∈ B, the inverse of f at b, denoted
f−1(b), is the set {a ∈ A : f(a) = b}. Given a function f : A → B, where A is
equipped with a total ordering with a least element 0 and a difference operator
(a − b when a > b), we define ft and f t to be the function f restricted to the
domain up to t and to the domain starting from t. More precisely, ft is the
function with domain {t′ ∈ A | t′ ≤ t} and ft(t

′) = f(t) for all t′ ∈ dom(ft).
Similarly, f t is the function with domain {t′ ≥ 0 | ∃t′′ ∈ A, t′′ ≥ t, t′′ − t = t′}
and f t(t′) = f(t′′), where t′′ − t′ = t, for all t′ ∈ dom(f t).

Set-valued function. A set-valued function R : A� B is a function which maps
every element of A to a set of elements in B. Given A′ ⊆ A, R(A′) = ∪a∈A′R(a).
Every relation R ⊆ A×B can be interpreted as a set-valued function from A to
B, where for any a ∈ A, R(a) = {b | (a, b) ∈ R}. We interchangeably use R to
represent both the relation and the set-valued function it represents. The inverse
of R, denoted R−1, is the set {(b, a) | (a, b) ∈ R}.

A set-valued function R : A� B is said to be continuous at a point a ∈ A if

∀ε > 0, ∃δ > 0 such thatR(Bδ(a)) ⊆ Bε(R(a)).

Sequences. A sequence over a set A is a function S : D → A, where D = [n] for
some n, or D = N. The size of the sequence S, denoted |S|, is n if D = [n], in
which case S is said to be a finite sequence, and∞, otherwise. We also represent
S by enumerating its elements as in S(0), S(1), . . ..
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Graphs. A graph G is a triple (V, L,E), where V is a finite set of vertices, L a
finite set of labels and E ⊆ V ×L× V is a finite set of edges. A path of a graph
is a finite or infinite sequence of vertices and edges π = v0e0v1e1 . . .. A cycle is
a finite path where the first and the last vertices are the same; and it is simple
if all the vertices except the last are distinct.

A weighted function is an extension of a graph with a weighting function
on the edges. A weighted graphG = (V, L,E,W ) where (V, L,E) is a graph
and W : E → R∞≥0 is a weighting function. The weight of a finite path π is
the product of the weights on the edges. Hence, given π = v0e0v1e1 . . . envn,
W (π) = Πn

i=0W (ei). The maximum weight value of the graph, denoted MW(G),
is max

e∈E
W (e).

Linear expressions, homogeneity. A linear expression is an expression of the
form a ·x+b, where a ∈ Rn, x is a tuple of n-variables and b ∈ R; and it is called
homogeneous if b is the zero vector. Given a linear expression η := a · x + b, it
defines a function [[η]] : Rn → R where given a valuation v ∈ Rn, [[η]] maps it to
the value a · v + b. A linear constraint or predicate c is given by η ∼ 0, where η
is a linear expression and ∼ is a relational operator in {<,�,=}. Let [[c]] denote
the set of all v ∈ Rn such that [[η]](v) ∼ 0, where c is given by η ∼ 0. Given a set
of linear constraints C, it defines the set P = ∩c∈C [[c]] denoted [[C]]. A convex
polyhedral set is a set defined by a finite set of linear constraints C.

Polyhedral partition. A partition P of Rn into convex polyhedral sets is a finite
set of convex polyhedral sets {P1, . . . , Pk} such that ∪ki=1Pi = Rn and for each
i 
= j, Pi ∩ Pj = ∅.

3 Hybrid Systems

In this section, we present a semantic model for hybrid systems. We then define
a concrete class of hybrid system, namely, piecewise linear dynamical systems,
which we use in the sequel to illustrate the theoretical concepts.

3.1 A Semantic Definition of Hybrid Systems

Hybrid systems are systems exhibiting mixed discrete and continuous behaviors.
We present a semantic model of a hybrid system as consisting of discrete tran-
sitions and continuous trajectories. For a concrete specification formalism, see
the hybrid automaton model [1,8]. Let us fix a finite set Q and a set X = Rn,
for some n. Given an element (q, x) ∈ Q× X, [q, x]D = q and [q, x]C = x.

Trajectories. A trajectory over (Q,X) is a function τ : I → Q × X, where I is
either [0, T ] for some T ∈ R≥0 or [0,∞), such that [τ ]D is finitely varying ([τ ]D
restricted up to time t has finite number of discontinuities for any t ∈ [0, T ]) and
[τ ]C is a continuous function. We denote the set of all trajectories over (Q,X)
by Traj(Q,X).
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The last time of a trajectory τ , ltime(τ), is last(dom(τ)). The first state of the
trajectory τ , denote fstate(τ), is τ(0), and if ltime(τ) <∞, then the last state of
τ , denoted lstate(τ), is τ(ltime(τ)). The set of states of τ , denoted States(τ), is
the set {τ(t) | t ∈ dom(τ)}. Given a time t ∈ dom(τ), the prefix of τ up to time
t is the trajectory τt and the suffix of τ from time t is τ t.

Transitions. A transition over a pair (Q,X) is a pair ι = ((q1, x1), (q2, x2)) ∈ (Q×
X)×(Q×X) . We denote the set of all transitions over (Q,X) by Trans(Q,X). For
a transition ι = ((q1, x1), (q2, x2)), ltime(ι) = 0, fstate(ι) = (q1, x1), lstate(ι) =
(q2, x2) and States(ι) = {(q1, x1), (q2, x2)}.

Hybrid system definition. A hybrid system H is a tuple (Q,X, Σ,Δ), where:

– Q is a finite set of control locations;
– X = Rn, for some n, is the continuous state-space;
– Σ ⊆ Trans(Q,X) is a set of transitions; and
– Δ ⊆ Traj(Q,X) is a set of trajectories.

The dimension of H is n and the state-space, States(H), is Q×X.

Executions. An execution of a hybrid system is a finite or infinite sequence of
transitions and trajectories. An execution of a hybrid system H is a sequence
σ : D → Σ ∪Δ, such that for all 0 � i < |σ|, lstate(σ(i)) = fstate(σ(i+ 1)), and
if σ is an infinite sequence then

∑
i:σ(i)∈Δ last(dom(σ(i))) = ∞. Let Exec(H)

denote the set of all executions of H.
Let fstate(σ) = fstate(σ(0)) and if |σ| < ∞ and last(σ(|σ|)) < ∞, then

lstate(σ) = lstate(σ(|σ|)). Let States(σ) = ∪i∈dom(σ) States(σ(i)).

Hybrid time domain. We define a hybrid time domain for an execution, so that
we can interpret the execution as a function from this domain to the states of
the hybrid system. Given an execution σ : D → Σ ∪ Δ, the hybrid time do-
main of σ, denoted htd(σ), is the set {(i, 0) | i ∈ dom(σ), σ(i) ∈ Σ} ∪ {(i, t) | i ∈
dom(σ), σ(i) ∈ Δ, t ∈ dom(σ(i))}. The execution σ can be represented as a func-
tion fσ from htd(σ) to States(H), where for (i, t) ∈ htd(σ), fσ(i, t) = fstate(σ(i))
if σ(i) ∈ Σ, and σ(i)(t) otherwise. Note that there is a bijection from the set of
executions to the functions they represent. Given two points (i1, t1) and (i2, t2)
in a hybrid time domain, we define an ordering between them as (i1, t1) < (i1, t2)
if i1 < i2, or i1 = i2 and t1 < t2. We then denote by σ(i,t) and σ

(i,t), prefix of σ
up to (i, t) and suffix of σ from (i, t), respectively. σ(i,t) is given by the function

(fσ)(i,t) and σ
(i,t) is given by the function (fσ)

(i,t).

Splitting trajectories and executions. We say that (τ1, τ2) is a splitting of a
trajectory τ , denoted τ = τ1 ◦τ2, if there exists t ∈ dom(τ) such that τ1 = τt and
τ2 = τ t. Similarly, (σ1, σ2) is a splitting of an execution σ, denoted σ = σ1 ◦ σ2,
if there exists an (i, t) ∈ htd(σ) such that σ1 = σ(i,t) and σ2 = σ(i,t). Note that
splitting is associative that is σ = (σ1 ◦ σ2) ◦ σ3 if and only if σ = σ1 ◦ (σ2 ◦ σ3).
Hence, for a splitting of σ or τ into n parts, we do not need to specify the
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splitting order. Further, we write σ = σ1 ◦ σ2 ◦ . . . to denote a splitting of σ into
infinitely many parts, that is, there exist σ′1, σ

′
2, . . ., such that σ = σ1 ◦ σ′1 and

for i ≥ 1, σ′i = σi+1 ◦ σ′i+1.

3.2 Illustration Using Piecewise Linear Dynamical Systems

Next, we instantiate the semantic model with a concrete class of hybrid systems,
namely, piecewise linear dynamical systems. These are systems in which the
state-space is partitioned into a finite set of convex polyhedral sets, each of
which is associated with a linear dynamical system.

Definition 1. An n-dimensional piecewise linear dynamical system (PLDS)M
is a pair (P , F ), where P is a finite partition of Rn into convex polyhedral sets
and F : P → Rn×n is a function associating an n×n matrix with every element
of the partition.

An n-dimensional PLDS,M = (P , F ), is represented as a hybrid system with
the tuple (Q,X, Σ,Δ), where

– the control location set Q is equal to the partition P ,
– the continuous state-space X is equal to Rn,
– the set of transitions Σ is contained in {((P1, x), (P2, x)) ∈ (Q×X)×(Q×X) :
P1 
= P2, Closure(P1) ∩Closure(P2) 
= ∅} and

– the set of trajectories Δ includes every τ : I → P×Rn such that there exists
P ∈ P with [τ ]D(t) = P and [τ̇ ]C = F (P ) · [τ ]C for all t ∈ dom(τ).

Example 1. Consider the following linear dynamical systems:(
ẋ
ẏ

)
=

(
0 1
−0.1 0

)(
x
y

)
and

(
ẋ
ẏ

)
=

(
0 1
−4 0

)(
x
y

)
where x = x(t) and y = y(t). Let us call the matrices A and B, respectively.
The phase portraits for the systems are shown in Figure 1.

Next, we define two piecewise linear dynamical systemsM1 andM2, where
M1 follows the dynamics associated with B in the positive quadrant and the
quadrant diagonally opposite to it, and the dynamics A in the other two quad-
rants.M2 follows A in the quadrants in whichM1 follows B, and follows B in
the quadrants in which M1 follows A. A sample of execution for the systems
M1 andM2 is depicted in Figure 2(a) and 2(b), respectively. Each of the exe-
cutions consist of four trajectories each of which belongs to a particular location
(a quadrant), and discrete transitions which change locations at the boundaries
of the quadrants.

4 Lyapunov and Asymptotic Stability

In this section, we define two classical notions of stability in control theory for
hybrid systems, namely, Lyapunov and asymptotic stability. We will focus on
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Fig. 2. Sample executions

stability with respect to an equilibrium point. For simplicity of presentation, we
consider the origin in the continuous state-space of the hybrid system to be the
equilibrium point. For an n-dimensional hybrid system H, we use 0H to denote
the origin 0̄ ∈ Rn.

Lyapunov stability captures the notion that small perturbations in the initial
state of the system result in only small perturbations of the eventual behaviors.

Definition 2. A set of executions S ⊆ Exec(H) is said to be Lyapunov stable
if for every ε > 0, there exists a δ > 0 such that for every execution σ ∈ S with
[fstate(σ)]C ∈ Bδ(0H), [States(σ)]C ⊆ Bε(0H).

A hybrid system H is said to be Lyapunov stable, if Exec(H) is Lyapunov
stable.

Asymptotic stability requires convergence in addition to Lyapunov stability.
An execution σ of H is said to converge to 0H, denoted Conv(σ, 0H), if for every
ε > 0, there exists a pair (i, t) ∈ htd(σ) such that [States(σ(i,t))]C ⊆ Bε(0H).
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Definition 3. A set of executions S ⊆ Exec(H) is said to be asymptotically
stable if it is Lyapunov stable and there exists a δ > 0 such that every σ ∈ S
with [fstate(σ)]C ∈ Bδ(0H), Conv(σ, 0H) holds.

A hybrid system H is said to be asymptotically stable if Exec(H) is asymptoti-
cally stable.

In Example 1, the dynamics of the linear systems of Figure 1(a) and 1(b)
describe executions moving along an ellipsoid around the origin, the equilibrium
point. Both systems are Lyapunov stable, since the executions remain close to
the equilibrium point when they start close to the equilibrium point. For PLDS
M1 depicted in Figure 2(a), the executions eventually approach the equilibrium
point, hence, M1 is asymptotically stable. On the other hand, the systemM2

exhibits instability, since its executions, represented in Figure 2(b), diverge with
respect to the equilibrium point.

5 Quantitative Predicate Abstraction

In this section, we present a quantitative predicate abstraction technique for an-
alyzing stability of hybrid systems, which generalizes the abstraction techniques
in [19] and [20] for the class of piecewise constant derivative systems and poly-
hedral switched systems, respectively. In particular, we identify a condition on
the interaction between the hybrid system and the predicates used in the ab-
straction, which renders the method sound. We illustrate the approach on the
class of piecewise linear dynamical systems.

5.1 Weighted Graphs as Quantitative Abstractions

In the context of safety verification, a finite abstraction of a concrete system
is constructed from a partition of the state space of the system into a finite
number of regions. The nodes in the finite abstraction correspond to the regions
and the edges between two nodes capture the existence of an execution in the
concrete system starting from a state in the region corresponding to the first
node to a state in the region corresponding to the second node. This defines an
abstract system, a finite graph, which over-approximates the behaviors of the
concrete system, and hence, safety of the abstract system implies the safety of
the concrete system.

However, for stability verification, it does not suffice to merely construct a
system which over-approximates the behaviors of the concrete system. We need
to capture some quantitative information about the evolution of the distance of
the states to the origin along an execution. Hence, we annotate the finite graph
with weights. More precisely, we interpret the nodes in the abstract graph as
regions, an edge in the graph as the existence of a potential execution from one
region to other evolving through a third region, and the weights as the scaling
in the distance to the origin of the execution as it traverses from the first region
to the second one.
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We need some auxiliary constructs in the construction of the weighted graph.
Let H = (Q,X, Σ,Δ) be a hybrid system and P1, P2, P ⊆ States(H). We define
a predicate which represents pairs of states (s1, s2) such that there exists a
trajectory which enters P through P1 at s1, remains in P for sometime and
exits P through P2 at s2. More precisely,

ReachRelCH(P1, P, P2) := {(s1, s2) ∈ P1 × P2 | ∃τ ∈ Δ : fstate(τ) = s1,

lstate(τ) = s2 and τ(t) ∈ P for all 0 < t < ltime(τ)}.

Also, we define a predicate containing the pairs of states (s1, s2) such that there
exists a transition from P1 to P2 where s1 is contained in P1 and s2 in P2, it is

ReachRelDH(P1, P2) := {(s1, s2) ∈ P1 × P2 | ∃ι = (s1, s2) ∈ Σ}.

Definition 4. A weighted graph G = (V, V ∪ {γ}, E,W ) is a quantitative ab-
straction of a hybrid system H with respect to an abstraction function α :
States(H)→ V if the following hold. Given v1, v2 ∈ V , define

ZC(v1, v, v2) = ReachRelCH(α
−1(v1), α

−1(v), α−1(v2)).

ZD(v1, v2) = ReachRelDH(α
−1(v1), α

−1(v2)).

– Edge condition: For every v1, v2 ∈ V ,

ZC(v1, v, v2) 
= ∅ ⇒ (v1, v, v2) ∈ E,ZD(v1, v2) 
= ∅ ⇒ (v1, γ, v2) ∈ E.

– Weight conditions:
• For every edge e = (v1, v, v2).

v 
= γ ⇒ sup
(s1,s2)∈ZC(v1,v,v2)

||s2||
||s1||

≤W (e).

v = γ ⇒ sup
(s1,s2)∈ZD(v1,v2)

||s2||
||s1||

≤W (e).

Note that even when α is fixed, there are several weighted graphs quantita-
tively abstracting the concrete system. However, there is a minimal graph which
quantitatively abstracts the concrete system with respect to a given α.

Definition 5. A minimal quantitative abstraction G of a hybrid system H with
respect to an abstraction function α satisfies the implication on the edge condi-
tions and the inequality in the weight conditions in both directions.

Next, we identify a condition on the abstraction function α and the hybrid
system H which will ensure that the abstract graph captures all the executions
of H.
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Definition 6. A hybrid system H is well-behaved with respect to an abstrac-
tion function α : States(H) → V if for every continuous trajectory τ of H, the
function α ◦ τ is finitely varying on V .

From now on, we assume that the following assumption holds.

Assumption 1 The hybrid system is well-behaved with respect to the choice of
the quantitative predicate abstraction.

The following theorem provides efficiently verifiable conditions on the abstract
weighted graph which imply stability of the concrete system.

Theorem 1. Let G = (V, L,E,W ) be a quantitative abstraction of a hybrid
system H which satisfies Assumption 1. Consider the following conditions:

G1 there is no edge e in G with infinite weight, that is, W (e) < +∞, ∀e ∈ E,
G2 every simple cycle π of G satisfies W (π) � 1 and
G3 every simple cycle π of G satisfies W (π) < 1.

Then:

– H is Lyapunov stable if conditions G1 and G2 hold and
– H is asymptotically stable if conditions G1 and G3 hold.

We defer the proof of Theorem 1 to Section 6.3. Once we establish a connec-
tion between quantitative abstractions and continuous simulations, the proof of
Theorem 1 is straightforward. We briefly explain the motivation for the condi-
tions G1 −G3 in the theorem. For every execution of the hybrid system, there
is a path in the graph such that the weights on the path provide an upper bound
on how far the execution deviates with respect to the origin. Condition G1 states
that the executions which eventually remain within a particular region do not
diverge; while Conditions G2 (and G3 ) capture the fact that the executions
which switch between regions infinitely often do not diverge (do converge).

Remark 1. One of the main highlights of the quantitative abstraction based
stability analysis is that the method returns a counter-example in the event of
a failure, indicating a potential reason for instability. For instance, a cycle of
weight greater than one in the weighted graph expresses the possible existence
of an infinite diverging execution.

5.2 Illustration on PLDS

In this section, we illustrate the quantitative abstraction based stability analysis
on the class of piecewise linear dynamical systems. We use as the abstraction
function a polyhedral partition of the state-space, and show that piecewise linear
dynamical systems are well-behaved with respect to the polyhedral partition. We
then illustrate the abstraction procedure on a simple example.
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Let us fix an n-dimensional PLDS M = (P , F ). Recall that for this class of
hybrid systems, the control location set is the partition P and the continuous
state-space is Rn. A state is represented as (P, x) ∈ P×Rn. Fix a set of predicates
on Rn, which results in a partition P ′. The abstraction function is then given
by αP,P′((P, x)) = (P, P ′), where x ∈ P ′ and P ′ ∈ P ′. Next, we observe that
a PLDS is well-behaved with respect to the abstraction function defined above,
hence Assumption 1 holds.

Proposition 1. Given a square matrix A ∈ Rn and a variable t ∈ R, the expo-
nential matrix eAt is a square matrix whose elements are linear combinations of
terms of the form ctkeat cos(bt+ d), where a, b, c, d ∈ R and 0 � k � n− 1 is an
integer.

Proposition 2. Given an n-dimensional PLDSM = (P , F ) and a partition P ′
of Rn,M is well-behaved with respect to αP,P′ .

Proof. Consider a trajectory τ : [0, T ] → P × Rn in M such that for all t,
[τ(t)]D = P , and [τ(t)]C = eF (P )tx0, where P ∈ P and x0 is the initial continuous
state of the trajectory. Define B to be the maximum of bT + d, where cos(bt+
d) appears in the exponential matrix eF (P )t as given by Proposition 1. It is
shown in [12], that the first order theory of reals with addition, multiplication,
exponentiation and restricted cos and sin functions is o-minimal. This implies
that the subset of reals defined by any formula with one free variable in the logic
can be expressed as a finite union of intervals. Restricted cos and sin functions are
those which are identical to cos and sin in a finite interval, and 0 everywhere else.
Hence, we have that 〈R,�,+, ·, e, sin |[0,B], cos |[0,B]〉 is an o-minimal structure.

Next, we show that the trajectory enters and leaves a region of P ′ only finitely
many times. Since, the number of regions is finite, this establishes that τ is
finitely varying. Fix a polyhedron P ′ ∈ P ′. The following first-order logic formula
ϕ(t) over 〈R,�,+, ·, e, sin |[0,B], cos |[0,B]〉 defines the set of all times at which the
trajectory τ is in P ′.

ϕ(t) = ∃x(x ∈ P ′ ∧ 0 � t � T ∧ x = eF (P )tx0)

The last conjunct is expressible in the language due to Proposition 1. Further,
though the sin and cos are restricted, they only take arguments in the range
[0, B], due to t being restricted to the interval 0 ≤ t ≤ T and the way B is
computed. Hence, due to o-minimality, the times at which τ is in P ′ is a finite
union of intervals, and we obtain that τ exits P ′ only finitely many times in the
interval [0, T ].

The hybrid systemM is well-behaved with respect to αP,P′ , since, any finite
restriction of a trajectory (with a possibly infinite domain) has finite number of
discontinuities with respect to P ′. �

Remark 2. Note that the above proof extends to any partition which is definable
in the theory with addition, multiplication and exponentiation.

Next, we illustrate the quantitative abstraction construction and analysis on
the systems M1 and M2 in Example 1. The graphs G1 and G2 in Figure 3



Foundations of Quantitative Predicate Abstraction 329

f4

f1

f2

f3

0.52

0.340.52

0.34

(a) Weighted graph G1

f4

f1

f2

f3

3.2

2.13.2

2.1

(b) Weighted graph G2

Fig. 3. Quantitative Abstractions

are quantitative predicate abstractions ofM1 and M2 respectively. The state-
space is partitioned by using the linear inequalities {x = 0, x > 0, x < 0, y =
0, y > 0, y < 0}. This partition generates 9 different regions, the four quadrants,
the four positive and negative axes, which correspond to the boundary of the
quadrants, and the origin. In this example, a simple construction of the weighted
graph is presented, where the nodes corresponding to the quadrants and origin
are eliminated because of redundancy. In practice, we may need to prune the
graph to obtain useful results. The nodes f1 and f3 correspond to the positive
and negative x axes, respectively, and the nodes f2 and f4 to the positive and
negative y axes, respectively. There are several methods to compute weights
based on reachable set computation for linear dynamics.

Note that G1 satisfies conditions G1 and G2 which implies Lyapunov stability
of M1. On the other hand, G2 does not satisfy conditions G2 or G3 . Though
we cannot conclude instability ofM2, G2 returns a counterexample, namely, the
cycle f1f2f3f4f1 with weight > 1, explaining a potential reason for instability.
The counterexample suggests that an infinite diverging execution is feasible by
following the cycle infinitely many times. Such an execution exists in this case,
for instance, repeating a scaled version of the execution shown in Figure 2(b)
infinitely. However, in general, a diverging execution might not exist, as the
counter-example could be due to the conservativeness of the abstraction.

6 Foundations of Quantitative Abstraction

In this section, we present the connection between quantitative abstractions and
continuous simulations. First, we present an overview of continuous simulations
between hybrid systems and show that they preserve stability. Next, we interpret
a quantitative abstraction as a one dimensional hybrid system, which continu-
ously simulates the original one, and hence, preserves stability. We use these
results to provide a proof of Theorem 1. The connection between quantitative
abstraction and continuous simulations also enables us to define a partial order-
ing on the abstract weighted graphs, thus, formalizing the notion of refinement.
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6.1 Continuous Simulations and Stability Preservation

Pre-orders on systems which preserve properties of interest form the basis of any
abstraction refinement framework. Simulations [13] are the classical pre-orders
on systems which preserve various discrete-time properties including safety and
the safe fragments of several branching time properties. For instance, if a system
H2 simulates system H1 and H2 is safe, then H1 is safe as well.

Definition 7. Given two hybrid systems H1 and H2, a binary relation R ⊆
(Q1×X1)× (Q2×X2) is said to be a simulation from H1 to H2, denoted H1 ,R

H2, if the following hold for every (s1, s2) ∈ R:

– for every transition (s1, s
′
1) ∈ Σ1, there exists a transition (s2, s

′
2) ∈ Σ2 such

that (s′1, s
′
2) ∈ R; and

– for every trajectory τ1 ∈ Δ1 with fstate(τ1) = s1, there exists a trajectory
τ2 ∈ Δ2 with fstate(τ2) = s2 such that dom(τ1) = dom(τ2) and for all
t ∈ dom(τ1), (τ1(t), τ2(t)) ∈ R.

However, it was observed in [17] that simulations do not suffice to preserve
stability. Instead, a stronger notion which extends simulations with continuity
constraints was proposed and shown to preserve stability. Below we present a
simplified version of the definition of the relation and the stability preservation
theorem in [17], as required for our setting.

Definition 8. A binary relation R is a continuous simulation from H1 to H2,
denoted H1 ,R

c H2 if

A1 R a simulation from H1 to H2;

A2 R and R−1 are continuous at 0H1 and 0H2 , respectively;

A3 if R((q1, x1), (q2, x2)), then x1 = 0H1 if and only if x2 = 0H2 ; and

A4 ∃γ > 0, ∀(q, x), [(q, x)]C ∈ Bγ(0H1)⇒ R(q, x) 
= ∅.

Condition A3 states that the states corresponding to the origin in one system
are mapped to the states corresponding to the origin in the other. Condition A4
states that the image of the relation R is not empty in a small neighborhood
around the origin.

Theorem 2 ([17]). Let R be a continuous simulation from H1 to H2. Then:

– H2 is Lyapunov stable implies H1 is Lyapunov stable.

– H2 is asymptotically stable implies H1 is asymptotically stable.

This result shows that continuous simulations preserve both Lyapunov stabil-
ity and asymptotic stability. The proof of the theorem is similar to that of the
proof in [17].
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6.2 Quantitative Predicate Abstraction as a One-Dimensional
Hybrid System

A predicate abstraction procedure constructs a simpler system which simulates
the original system. Hence, it preserves all properties preserved by simulations.
In order to deduce a similar result for stability analysis, we need to formally
relate the hybrid system with a quantitative abstraction of the system. Hence,
we interpret the weighted graph as representing a simple one dimensional hybrid
system, and show that this one dimensional system continuously simulates the
original system. First, we define the one-dimensional system from the graph and
specify conditions which characterize their stability properties.

Given a weighted graph G, we construct a one-dimensional hybrid system
HG. The discrete locations of HG correspond to the nodes of G. Transitions
correspond to pair of states such that scaling associated with continuous states is
bounded by the weight of the edge corresponding to the discrete states. Similarly,
a trajectory ofHG corresponds to following a finite or infinite path in G such that
the scaling of any prefix of the trajectory corresponding to a prefix of the path is
bounded by the weight associated with the prefix of the path. Furthermore, the
scalings associated with any prefix of the trajectory is bounded by the maximum
weight of an edge in the graph.

Definition 9. Given an edge e = (v1, v, v2) of a weighted graph G = (V, V ∪
{γ}, E,W ), we define the set of trajectories corresponding to it, denoted Traj(e),
as the set of all finite trajectories τ over (V,R) satisfying:

– [τ(0)]D = v1;
– ∃v, ∀0 < t < last(dom(τ)), [τ(t)]D = v and ||τ(t)||/||τ(0)|| ≤ MW(G); and
– [τ(ltime(τ))]D = v2 and 0 ≤ ||τ(ltime(τ))||/||τ(0)|| ≤W (e).

A weight on an edge in a quantitative abstraction is an upper bound on
the scaling associated with the last time of an execution; however, the scalings
associated with all the intermediate time points are bounded by the weight of
the edge corresponding to the prefixes of the execution. Hence, in Traj(e) we
only allow trajectories such that the scalings associated with the intermediate
points is bounded by the maximum weight of an edge in the graph.

We will also define a set of infinite trajectories which is allowed by the graph.

InfTraj(G) = {τ ∈ Traj(V,R) | ltime(τ) = +∞, ∃v ∈ V,

∀t ∈ dom(τ), [τ(t)]D = v, 0 ≤ ||τ(t)||/||τ(0)|| ≤ MW(G)}

Definition 10. Given a weighted graph G = (V, V ∪ {γ}, E,W ), we define a
hybrid system HG = (V,R≥0, Σ,Δ), where:
Σ = {((v1, r1), (v2, r2)) | (v1, γ, v2) ∈ E, r2/r1 ≤W (v1, γ, v2)}.
Δ = {τ | ∃ finite or infinite splitting τ = τ1 ◦ τ2 ◦ . . ., such that ∀i,
either ∃e = (v1, v, v2) ∈ E, τi ∈ Traj(e) or τi ∈ InfTraj(G)}.

The next theorem characterizes when HG is Lyapunov stable.
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Theorem 3. Given a weighted graph G, HG is Lyapunov stable if and only if

C1 G does not contain any edges with infinite weights, that is, W (e) < +∞ for
every edge e of G.

C2 G does not contain simple cycles whose weight is strictly greater than 1, that
is, W (π) ≤ 1 for every simple cycle π of G.

Note that HG constructed above is in general not asymptotically stable, since
InfTraj(G) consists of infinite trajectories which do not converge. Hence we in-
terpret G as another one-dimensional hybrid system HConv

G which consists of
infinite trajectories remaining within a single region and converging if there are
no infinite weight edges.

InfTrajConv(G) = {τ ∈ Traj(V,R) |Conv(τ, 0)} ∩ InfTraj(G)

HConv
G is same as HG except that InfTraj(G) in the definition of Δ is replaced

by InfTrajConv(G) if G has no edges with infinite weight.

Theorem 4. Given a weighted graph G, HConv
G is asymptotically stable if and

only if Condition C1 holds and

C3 G does not contain simple cycles whose weight is greater than or equal to 1,
that is, W (π) < 1 for every simple cycle π of G.

6.3 Quantitative Predicate Abstraction as Continuous Simulation

Next, we show that there exists a simulation between H and the one-dimensional
systems HG and HConv

G .

Theorem 5. Let G be a quantitative abstraction of H with respect to α. Then
R = {((q, x), (α((q, x)), ||x||)) | (q, x) ∈ States(H)} is a continuous simulation
from H to HG and from H to HConv

G .

Now we are ready to provide a proof of Theorem 1.

Proof of theorem 1. Let us consider a hybrid system H and a quantitative ab-
straction G of H with respect to α. Suppose conditions G1 and G2 hold for G.
We want to prove Lyapunov stability for H. Due to conditions G1 and G2 , The-
orem 3 states that HG is Lyapunov stable. By Theorem 5, we know there exists
a continuous simulation R, defined as in the theorem, from H to HG. Then, by
Theorem 2, we obtain H is Lyapunov stable.

Next, we prove the second part of Theorem 1. Suppose conditions G1 and
G3 hold for G. We want to show asymptotic stability for the hybrid system H.
Since, Conditions G1 and G3 hold, we obtain from Theorem 4 that HConv

G is
asymptotically stable. Then, from Theorem 5, we know that there is a contin-
uous simulation R from H to HConv

G . Finally, from Theorem 2, we obtain H is
asymptotically stable. �



Foundations of Quantitative Predicate Abstraction 333

6.4 Refinements

The interpretation of the weighted graph as a one-dimensional system also pro-
vides a natural notion of refinements on the graphs.

Definition 11. Let H1 and H2 be hybrid systems and R a binary relation such
that H1 ,R

c H2. A hybrid system H3 is a refinement of H2 with respect to H1,
if there exist binary relations R1 and R2 such that H1 ,R1

c H3 ,R2
c H2.

Theorem 6. Let H be a hybrid system, and α1 : States(H) → V1 and α2 :
States(H) → V2 be two abstraction functions such that for every v2 ∈ V2 there
exists v1 ∈ V1 with α−1

2 (v2) ⊆ α−1
1 (v1). Let G1 and G2 be the minimal quantita-

tive abstractions of H with respect to α1 and α2, respectively. Then:

1. HG1
simulates HG2

.
2. HConv

G1
simulates HConv

G2
.

In particular, HG2 is a refinement of HG1 with respect to H and HConv
G2

is a

refinement of HConv
G1

with respect to H.

Remark 3. Note that Theorem 6 will not be true for arbitrary abstractions HG1

and HG2
. Hence, we enforce minimality, however, this can be relaxed to any

abstraction construction procedure which is monotonic with respect to the ab-
straction functions. A consequence of the theorem is that, it establishes a partial
ordering on the abstract graphs based on a partial ordering on the abstraction
functions. Hence, the ordering on the abstraction functions can be used to ob-
tain refinements of the graphs. For instance, adding more predicates yields a
refinement.

7 Conclusion

In this paper, we presented the formal foundations for the quantitative predi-
cate abstraction based stability analysis by establishing connections with con-
tinuous simulation relations. Here, we have ignored the computational issues
related to the computation of abstractions and refinements. These have been
explored to some extent in [19,20] for the class of piecewise constant derivative
systems and polyhedral switched systems. Future work will focus on extending
this approach to hybrid systems with richer dynamics. Further, since, a failure to
prove stability returns a potential counter-example, one can build a framework
of counter-example guided abstraction refinement for stability analysis, which
will be explored in the future.
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Abstract. Many practical static analyzers are not completely sound by
design. Their designers trade soundness to increase automation, improve
performance, and reduce the number of false positives or the annotation
overhead. However, the impact of such design decisions on the effective-
ness of an analyzer is not well understood. This paper reports on the first
systematic effort to document and evaluate the sources of unsoundness in
a static analyzer. We developed a code instrumentation that reflects the
sources of deliberate unsoundness in the .NET static analyzer Clousot
and applied it to code from six open-source projects. We found that 33%
of the instrumented methods were analyzed soundly. In the remaining
methods, Clousot made unsound assumptions, which were violated in
2–26% of the methods during concrete executions. Manual inspection of
these methods showed that no errors were missed due to an unsound
assumption, which suggests that Clousot’s unsoundness does not com-
promise its effectiveness. Our findings can guide users of static analyzers
in using them fruitfully, and designers in finding good trade-offs.

1 Introduction

Many practical static analyzers are not completely sound by design. Their design-
ers often trade soundness in order to increase automation, improve performance,
reduce the number of false positives or the annotation overhead, and achieve a
modular analysis. As a result, such static analyzers become precise and efficient
in detecting software bugs, but at the cost of making implicit, unsound assump-
tions about certain program properties. For example, ESC/Java uses bounded
loop unrolling to reduce the overhead of writing loop invariants, and Spec#
ignores exceptional control flow to speed up verification.

Despite how common such design decisions are, their practical impact on
the effectiveness of static analyzers is not well understood. There are various
approaches in the literature that study the efficiency and precision of static an-
alyzers by measuring, for instance, their performance and the number of false
positives [2]. In this paper, we focus on a different perspective: we report on the
first systematic effort to document and evaluate the sources of deliberate un-
soundness in a static analyzer. We present a code instrumentation that reflects
the sources of unsoundness in the static analyzer Clousot [10], an abstract in-
terpretation tool for .NET and Code Contracts [9]. This instrumentation adapts

D. D’Souza et al. (Eds.): VMCAI 2015, LNCS 8931, pp. 336–354, 2015.
© Springer-Verlag Berlin Heidelberg 2015
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our earlier technique to make the unsound assumptions of a static analyzer
explicit where they occur by automatically inserting annotations into the an-
alyzed code [6]. Most of these assumptions are motivated by Clousot’s design
goal to analyze programs modularly without imposing an excessive annotation
overhead. To evaluate the impact of Clousot’s unsound assumptions, we instru-
mented code from six open-source projects, measured how often the unsound
assumptions were violated during executions of the projects’ test suites, and
determined whether Clousot missed bugs due to unsound assumptions.

The contributions of this paper are the following:
- We report on the first systematic effort to document all sources of unsoundness

in an industrial-strength static analyzer. We focus on Clousot, a widely used,
commercial static analyzer.

- We present a code instrumentation that reflects the unsoundness in Clousot.
Most sources of unsoundness in Clousot are precisely captured by our encoding.

- We perform an experimental evaluation that, for the first time, sheds light on
how often the unsound assumptions of a static analyzer are violated in practice
and whether they cause the analyzer to miss bugs.
In our experiments, 33% of the instrumented methods were analyzed soundly.

In the remaining methods, Clousot made unsound assumptions, which were vi-
olated in 2–26% of the methods during concrete executions. Manual inspection
of these methods showed that no errors were missed due to an unsound as-
sumption, which suggests that Clousot’s unsoundness does not compromise its
effectiveness. We expect these results to guide users of static analyzers in using
them fruitfully, for instance, in deciding how to complement static analysis with
testing, and to assist designers of static analyzers in finding good trade-offs.

Outline. Sect. 2 explains all sources of unsoundness in Clousot and how we
instrument most of them. Sect. 3 gives an overview of our implementation. In
Sect. 4, we present and discuss our experimental results. We review related work
in Sect. 5 and conclude in Sect. 6.

2 Unsoundness in Clousot

In this section, we present a complete list of Clousot’s sources of deliberate un-
soundness and demonstrate how most of these can be expressed through simple
annotations. We have elicited Clousot’s unsound assumptions during the last
two years by studying publications, extensively testing the tool, and having nu-
merous discussions with its designers. Note that a formal proof that Clousot is
sound modulo the issues we document here is beyond the scope of our paper.

We make the unsoundness of a static analyzer explicit by automatically anno-
tating the analyzed code with assumed statements, also called explicit assump-
tions. An assumed statement is of the form assumed P , where P is a boolean
expression, and denotes that a static analyzer unsoundly assumed property P
at this point in the code; that is, the analyzer assumed P without checking that
it actually holds. Note that assumed statements are different from the classical
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assume statements, which express properties that the user intends the static
analyzer to take for granted.

Each unsound assumption in Clousot applies to a specific syntactic category
such as a kind of statement or expression (for instance, because Clousot’s abstract
transformer does not soundly reflect the semantics of that syntactic category). We
say that an explicit assumption precisely captures the unsound assumption for a
syntactic category if for all elements e of that category and all executions τ of e,
Clousot’s analysis is sound iff the execution τ does not violate e’s explicit assump-
tion. Here, sound means that the concrete states of τ lie within the concretization
of the corresponding abstract states. We say that an explicit assumption over-
approximates the unsound assumption if there is an element e and an execution τ
of e such that Clousot’s analysis is sound, but the execution τ violates e’s explicit
assumption. Conversely, an explicit assumption under-approximates the unsound
assumption if there is an element e and an execution τ of e such that Clousot’s
analysis is not sound, but the execution τ does not violate e’s explicit assump-
tion.

2.1 Heap Properties

Clousot treats the following aspects of the heap unsoundly: object invariants,
aliasing, write effects, and method purity.

Object Invariants. Code Contracts provide object (or class) invariants to
express which objects are considered valid. Clousot checks the invariant of the
receiver at the end of a method or constructor, and assumes it in the pre-state
of a method execution and after a call. However, the checks are insufficient
to justify these assumptions [8]. That is, Clousot makes the following unsound
assumptions to facilitate modular checking: Clousot assumes the invariant of the
receiver object in the pre-state of instance methods, without checking it at call
sites; moreover Clousot assumes the invariant of the receiver after a call to an
inherited method on this, without fully checking it.

class C {
bool b;

invariant !b;

void M() {
assumed invariant(this, typeof(C));
b = true;
N();
assert !b;

}

void N() {
assumed invariant(this, typeof(C));
assert !b;

}
}

The C# code on the right illustrates
the first unsoundness. Method M violates
the invariant of its receiver before calling
N. (We use the keywords invariant and
assert to denote Code Contracts’ object
invariants and assertions.) The gray boxes
in the code are discussed later. Clousot as-
sumes the invariant of the receiver in the
pre-state of method N, which is unsound
since it does not check this invariant at
call sites of N, in particular, before the call
to N in M. So Clousot emits no warning for
the assertion in N, although it will not hold
when N is called from M. The fact that there is no warning for the assertion in M is
a consequence of the same unsoundness. Clousot checks the receiver’s invariant
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in the post-state of method N; this check succeeds because of the same unsound
assumption in N’s pre-state. The check in the post-state justifies assuming the
invariant after the call.

We capture this unsoundness by introducing an assumed statement at the
beginning of each instance method in classes that declare or inherit object in-
variants. As shown in the gray boxes in the code, these explicit assumptions
use a predicate invariant(o, t), which holds iff object o satisfies the object in-
variants defined in class t in conjunction with all invariants inherited from t’s
super-classes. Here, type t is the type of the class in which the method is defined;
the corresponding type object is retrieved with the typeof expression in C#.
We label this kind of explicit assumption as “invariants at method entries” (IE).
We will refer to such labels in our experimental evaluation.

This explicit assumption captures the first unsoundness precisely because any
method execution in which the explicit assumption is violated (that is, where
the receiver’s invariant does not hold in the pre-state), will be analyzed with an
unsound abstraction of the initial state (unless Clousot’s abstract domains do
not reflect the invariant anyway, which we ignore here). This does not necessarily
mean that Clousot misses errors because the unsoundness might be irrelevant for
the checks performed on the method body. Conversely, if the abstraction of the
initial state is unsound because the receiver’s invariant is violated, the explicit
assumption will be false. Note that there are programs for which this will never
happen; some explicit assumptions may always hold in these programs (and still
be precise according to our definition).

class Super {
bool b;

void N() { b = true; }
}

class Sub : Super {
invariant !b;

Sub() { b = false; }

void M() {
N();
assumed invariant(this, typeof(Sub));
assert !b;

}
}

The code on the right illustrates the
second unsoundness. Method M of the
sub-class calls the inherited method N of
the super-class on the current receiver,
and N violates the invariant declared in
the sub-class. However, since Clousot’s
analysis is modular, Sub’s invariant is not
considered when analyzing Super and,
therefore, Clousot does not detect this
invariant violation. Nevertheless, Clousot
assumes the invariant of this after the
call to N in M, which is unsound. As a re-
sult, no warnings are emitted.

We precisely capture this unsoundness by introducing an assumed statement
after each call to an inherited method on the current receiver in classes that de-
clare or inherit object invariants. The explicit assumption states that the object
invariant of this holds for the enclosing class (here, Sub) and its super-classes.
We label this kind of explicit assumption as “invariants at call sites” (IC).

Aliasing. To avoid the overhead of a precise heap analysis, Clousot ignores
certain side-effects due to aliasing. For operations with side-effects, such as field
updates, Clousot unsoundly assumes that heap locations not explicitly aliased
in the code are non-aliasing and, thus, not affected.
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As an example of this unsoundness, consider method M below. (We use the
keyword requires to denote preconditions.) Clousot assumes that array a is not
modified by the update to array b, although a and b might point to the same
array in some calls to M. As a result, no warning is emitted.

void M(int[] a, int[] b) {
requires a != null && b != null;
requires 0 < a.Length && 0 < b.Length ;
assumed a == null || !object.ReferenceEquals(a, b);
a[0] = 0;
assumed b == null || !object.ReferenceEquals(b, a);
b[0] = 1;
assert a[0] == 0;

}

Clousot abstracts the heap
by a heap-graph, which main-
tains equalities about access
paths. The nodes of the heap-
graph denote symbolic values,
which represent concrete val-
ues, such as object references
and primitive values. An edge
of the heap-graph denotes how the symbolic value of the target node is retrieved
from the symbolic value of the source node, for instance, by dereferencing a field
or calling a pure method. (Programmers may declare a method as pure to indi-
cate that it makes no visible state changes.) All access paths in the heap-graph
are rooted in a local variable or a method parameter. When two access paths
lead to the same symbolic value, they represent the same concrete value, that
is, must be aliases. However, when two access paths lead to distinct symbolic
values, they may represent the same or different concrete values, that is, may
or may not be aliases. Nevertheless, Clousot unsoundly assumes in this case
that updating the heap through one path will not affect values read through the
other.

We precisely capture this unsoundness by introducing an assumed statement
before every side-effecting operation that unsoundly affects the values in the
heap-graph, that is, when the side effect is reflected only on some symbolic
values, although other symbolic values may represent the same heap locations.
Specifically, for each field, property, or array update (side effects via calls are
discussed below), we determine the set of symbolic values that are distinct from
the symbolic value for the receiver r of the update, but may be aliases of r. This
set is computed based on the heap-graph in the pre-state of the update and on
type information. For each element s of this set, our explicit assumption has a
conjunct expressing that the concrete values represented by r and s (and given
by the access paths leading to the symbolic values) are non-aliasing.

In our example, Clousot’s heap abstraction uses distinct symbolic values for
the arrays a and b in the initial heap-graph. Thus, for the first array update,
r represents a and the set of possible aliases consists of b. Hence, the explicit
assumption expresses that a and b are not aliases. The explicit assumption for the
second array update is analogous. Note that we call ReferenceEquals since the
== operator may be overloaded in C#. We label this kind of explicit assumption
as “aliasing” (A).

Write Effects. To avoid a non-modular, inter-procedural analysis or having
to provide explicit write effect specifications, Clousot uses unsound heuristics to
determine the set of heap locations that are modified by a method call. Clousot
then assumes that all other heap locations are not modified. This assumption is
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unsound since the heuristics in general may not include all heap locations that
are modified by a call.

class C {
int[] a;

void M() {
var b = new int[1];
a = b;
N();
assumed b == null || !writtenObjects().Contains(b));
assert b[0] == 0;

}

void N() {
if (a != null && 0 < a.Length ) { a[0] = 1; }

}
}

The code on the right il-
lustrates this unsoundness.
Clousot assumes that the
call to method N in M mod-
ifies only the fields of the
receiver object, and leaves
the elements of the array
unchanged. As a result, it
does not emit a warning
for the assertion. Note that
this unsoundness is caused
by Clousot’s heuristics for
write effects, regardless of
whether a and b are aliases.

We capture this unsoundness by introducing an assumed statement after each
call, stating that all heap locations in the heap-graph that Clousot assumes to
remain unmodified by the call are indeed not modified. This is achieved by com-
paring all symbolic values in the heap-graph before and after the call and using
their access paths to retrieve the concrete values they represent. The explicit
assumption has a conjunct for each unmodified concrete object reference stating
that it is not contained in the actual write effect of the method for the last call.
To obtain the actual write effect, we instrument the program to provide the
function writtenObjects, which returns the set of objects that were modified
by the most recently executed call (including any objects that were modified
indirectly through method calls). We label this kind of explicit assumption as
“write effects” (W). Note that this explicit assumption subsumes the aliasing
unsoundness for calls because it covers all objects Clousot assumes to be left
unchanged by a call, no matter whether this assumption is caused by ignor-
ing certain aliasing situations or by the unsound heuristics for write effects. In
method M above, writtenObjects returns the set consisting of array a and, since
a and b refer to the same array, the explicit assumption is violated at runtime.

How precisely we capture this unsoundness depends on the definition of func-
tion writtenObjects. If the function returns an over- or under-approximation
of the set of heap locations modified by the most recently executed call then our
assumptions over- or under-approximate Clousot’s unsoundness, respectively. In
our implementation, writtenObjects is precise for methods that we instrument,
but under-approximates the write effects of library methods (see Sect. 3).

Purity. Users may explicitly annotate a method with the Code Contracts at-
tribute Pure to express that the method makes no visible state changes. To avoid
the overhead of a purity analysis, Clousot assumes that all methods annotated
with the Pure attribute as well as all property getters indeed make no visible state
changes. (We will refer to property getters and methods annotated with Pure as
“pure methods”.) Moreover, Clousot uses unsound heuristics to determine which
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heap locations affect the result of a pure method, that is, the method’s read
effect. Clousot then assumes that all pure methods deterministically return the
same value when called in states that are equivalent with respect to their assumed
read effects.

We capture the first unsoundness with the explicit assumptions about write ef-
fects described above. After each call to a pure method, we introduce an assumed
statement stating that all heap locations in the heap-graph remained unmodified.

class C {
void M() {

var r = Random ();
assumed r == Random();
assert r == Random ();
assumed r == Random();

}

[Pure] int Random () {
return (new object()).GetHashCode();

}
}

class D {
int[] a;

void N() {
requires a != null && 0 < a.Length ;
var v = First ();
assumed v == First();
a[0] = v + 1;
assumed v == First();
assert v == First ();
assumed v == First();

}

[Pure] int First() {
requires a != null && 0 < a.Length ;
return a[0];

}
}

Method M on the right illustrates
the second unsoundness. Clousot as-
sumes that both calls to the pure
method Random in M deterministi-
cally return the same value, and no
warning is emitted.

Method N on the right illustrates
another aspect of this unsoundness.
Clousot assumes that the result of
the pure method First depends only
on the state of its receiver, but not
on the state of array a. Therefore, no
warning is emitted about the asser-
tion in N even though a[0] is modi-
fied after the first call to First.

Clousot’s heap-graph maintains
information about which values may
be retrieved by calling a pure
method. For instance, after the first
call to Random in M, the heap-graph
maintains an equality of r and a call
to Random. This information becomes
unsound if (1) the pure method is not
deterministic, (2) an object is modi-
fied, but Clousot unsoundly assumes that the pure method does not depend on
that object, or (3) an object is modified, but Clousot does not reflect the mod-
ification correctly in the heap-graph. The latter case is covered by the explicit
assumptions for aliasing and write effects. We capture the former two cases as
follows: (1) We generate an explicit assumption after each call to a pure method
stating that the method still yields the value stored in the heap-graph. This
assumption under-approximates Clousot’s unsoundness due to non-determinism
since even a non-deterministic method might return the same result several times
in a row. (2) Whenever the heap-graph retains a value for a pure method call
across a statement that may modify the heap, we generate an explicit assump-
tion stating that the method still yields the value stored in the heap-graph. This
assumption precisely captures the case that Clousot may assume a too small read
effect, as for method First. We label these explicit assumptions as “purity” (P).
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2.2 Method-Local Properties

We now present the sources of unsoundness in Clousot that are related to prop-
erties local to a method. We divide them into two categories, integral-type arith-
metic and exceptional control flow.

Integral-Type Arithmetic. To reduce the number of false positives, Clousot
ignores overflow in integral-type arithmetic operations and conversions. That
is, Clousot treats bounded integral-type expressions as unbounded (except for
checked expressions, which raise an exception when an overflow occurs).

int a = ...;
assumed (long)(a + 1) == (long)a + (long)1;
a = a + 1;
assert int.MinValue < a;

The code on the right illustrates the
unsoundness for operations. Although
the assertion fails when an overflow oc-
curs, no warning is emitted.

We precisely capture this unsoundness by introducing an assumed state-
ment before each bounded arithmetic operation that might overflow (and is not
checked) stating that the operation returns the same value as its unbounded
counterpart. We encode this unbounded counterpart by performing the opera-
tion on operands with types for which no overflow will occur, for instance, long
instead of int as in the example above, or arbitrarily large integers (BigInteger)
instead of long. We label this kind of explicit assumption as “overflows” (O).

int a = int.MaxValue;
assumed a == (short)a;
short b = ( short)a;
assert (int)b == int.MaxValue;

The code on the right illustrates the un-
soundness for conversions. Even though the
assertion fails due to an overflow that occurs
when converting a to a short integer, Clousot
does not emit any warnings.

We precisely capture this unsoundness by introducing an assumed statement
for each integral-type conversion to a type with smaller value range stating that
the value before the conversion is equal to the value after the conversion, as
shown above. We label this kind of explicit assumption as “conversions” (CO).

try {
throw new Exception();

} catch (Exception) {
assumed false;
assert false;

}

Exceptional Control Flow. Exceptions add a
large number of control-flow transitions and, thus,
complicate static analysis. To avoid losing efficiency
and precision, many static analyzers ignore excep-
tional control flow. Clousot ignores catch blocks and
assumes that the code in a finally block is executed
only after a non-exceptional exit point of the corre-
sponding try block has been reached.

The code on the right illustrates the unsoundness for catch blocks. Since
Clousot ignores the catch block, no warning is emitted about the assertion.
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We precisely capture this unsoundness by introducing an assumed statement
at the beginning of each catch block stating that the block is unreachable, as
shown in the code above. We label this kind of explicit assumption as “catch
blocks” (C).

bool b = false;
bool $noException$ = false;
try {

if (*)
throw new Exception();

b = true;
$noException$ = true;

} finally {
assumed $noException$;
assert b;

}

The code on the right illustrates the unsoundness
for finally blocks. Since Clousot assumes that the
finally block is entered only when the try block
executes normally, no warning is emitted about the
assertion. (We use * to denote an arbitrary boolean
condition.)

We precisely capture this unsoundness by intro-
ducing an assumed statement at the beginning of
each finally block stating that the block is entered
only when the try block terminates normally. This is expressed by introducing
a fresh boolean variable for each try block, which is initially false and set to
true at all non-exceptional exit points of the try block, as shown in the code.
The assumed statement then states that this variable is true. We label this kind
of explicit assumption as “finally blocks” (F).

2.3 Static Class Members

Here, we describe the sources of unsoundness for static fields and main methods.

Static Fields. To avoid the complications of class initialization [5] and to reduce
the annotation overhead and the number of false positives, Clousot assumes that
static fields of reference types contain non-null values.

static int[] a;

void M() {
assumed a != null;
assert a != null;

}

As an example of this unsoundness, consider the code
on the right, for which no warnings are emitted.

We precisely capture this unsoundness by introducing
an assumed statement for each read access to a static field
of reference type stating that the field is non-null, as shown
in the code. We label this kind of explicit assumption as “static fields” (S).

Main Methods. When a main method is invoked by the runtime system, the
array of strings that is passed to the method and the array elements are never
null. To relieve its users from providing preconditions for main methods, Clousot
assumes that the string array passed to a main method and its elements are non-
null for all invocations of the method.

void M() {
Main(null);

}

public static void Main(string[] args) {
assumed args != null && forall arg in args | arg != null;
assert args != null;
assert args.Length == 0 || args[0] != null;

}

As an example, con-
sider the code on the
right. Although method
M calls Main with a null
argument, no warning is
emitted about the asser-
tions in Main.
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We precisely capture this unsoundness by introducing an assumed statement
at the beginning of each main method stating that the parameter array and its
elements are non-null, as shown in the code above. (We use the forall keyword
to denote Code Contracts’ universal quantifiers.) We label this kind of explicit
assumption as “main methods” (M).

2.4 Uninstrumented Unsoundness

In the rest of this section, we give an overview of the remaining sources of
unsoundness in Clousot, which we do not instrument:

- Concurrency: Clousot does not reason about concurrency and assumes that
the analyzed code runs without interference from other threads.

- Reflection: Clousot assumes that the analyzed method does not use reflection.
- Unmanaged code: Clousot checks memory safety for unmanaged code, but does

not consider its effects on the analyzed method.
- Static initialization: Clousot assumes that the analyzed code runs without

interference from a static initializer.
- Iterators: Clousot does not analyze iterator methods (C#’s yield statements).
- Library contracts: Clousot assumes that the contracts provided for libraries

such as the .NET API are correct.
- Floating-point numbers: Under certain circumstances, Clousot assumes that

operations on floating-point numbers are commutative.

A very coarse way of capturing the first five sources of unsoundness would be
to introduce an assumed false statement at each program point that starts a
thread, invokes reflection, or contains unmanaged code, as well as in each static
initializer and for each yield statement. Such an instrumentation would grossly
over-approximate Clousot’s unsound assumptions (for instance, many static ini-
tializers do not interfere with the execution of the analyzed method). However, a
more precise instrumentation is complicated and would require explicit assump-
tions for most statements, for instance, to detect data races. Incorrect library
contracts could be detected by introducing an explicit assumption for the post-
condition of each call into the library. We omit these assumptions because they
are orthogonal to the design of the static analyzer. Finally, we do not instru-
ment the unsoundness about floating-point numbers because we were not able
to precisely determine where the assumptions occur.

Note that we do not consider Clousot’s inference of method contracts and
object invariants in this paper. In the presence of inference, an unsound as-
sumption in a method m might affect not only the analysis of m but also of
methods whose analysis assumes properties inferred from m, in particular, m’s
postcondition and the object invariant of the class containing m. One solution is
to introduce an explicit assumption whenever Clousot assumes a postcondition
or invariant that was inferred unsoundly; one can then determine easily which
methods have been analyzed soundly by inspecting the instrumented method
body. Another solution is to rely on the existing instrumentation, which is suf-
ficient to reveal unsound inference during the execution of the program. If the
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postcondition of a method or constructor m was inferred unsoundly, we detect an
assumption violation when executing a call to m, and analogously if m violates
an inferred invariant.

3 Implementation

To evaluate whether Clousot’s sources of unsoundness are violated in practice, we
have implemented a tool chain that instruments code with explicit assumptions
and checks them at runtime.

Instrumentation. The instrumentation stage runs Clousot on a given .NET
program, which contains code and optionally specifications expressed in Code
Contracts, and instruments the sources of unsoundness of the tool as described in
the previous section. For this purpose, we have implemented Inspector-Clousot, a
wrapper around Clousot that uses the debug output emitted during the analysis
to instrument the program (at the binary level).

Runtime Checking. In the runtime checking stage, we first run the exist-
ing Code Contracts binary rewriter to transform Code Contracts specifications
into runtime checks. We subsequently run a second rewriter, called Explicit-
Assumption-Rewriter, that transforms all assumed statements of the instru-
mented program into logging operations. More specifically, this rewriter replaces
each explicit assumption assumed P by an operation that logs the program
point of the assumed statement, which kind of unsoundness it expresses, and
whether the assumed property P is violated. If P contains method calls, we do
not further log assumed properties in the callees.

The Explicit-Assumption-Rewriter also instruments each method to compute
its set of written objects by keeping track of all object allocations and updates
to instance fields and array elements. The set of written objects of a method
consists of the objects that have been modified but are not newly allocated by
the method. The set of written objects for a call to an uninstrumented (library)
method is always empty, that is, our instrumentation under-approximates the
objects actually modified by such a method.

4 Experimental Evaluation

In this section, we present our experiments for evaluating whether Clousot’s
unsound assumptions are violated in practice and whether these violations cause
Clousot to miss errors.

For our experiments, we used code from six open-source C# projects (see
Tab. 1) from different application domains. We selected only applications that
come with a test suite so that the experiments achieve good code coverage. We
chose three applications to contain Code Contracts specifications to evaluate the
explicit assumptions about object invariants. We ran our tool chain on at least
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Table 1. Applications selected for our experiments. The first two columns describe the
C# applications. The third column indicates whether the applications contain Code
Contracts. The fourth column shows the number of analyzed methods per project. The
fifth column shows how many of the methods with explicit assumptions that were hit
at runtime contained assumption violations.

Application Description CC Analyzed Methods
methods with violations

BCrypt.Net1 Password-hashing library no 21 1 / 12 (8.3%)
Boogie2 Verification language and engine yes 299 2 / 119 (1.7%)
ClueBuddy3 GUI application for board game yes 139 16 / 67 (23.9%)
Codekicker.BBCode4 BBCode-to-HTML translator no 179 2 / 58 (3.4%)
DSA5 Data structures and algorithms library no 213 26 / 99 (26.3%)
Scrabble (for WPF)6 GUI application for Scrabble yes 127 8 / 41 (19.5%)

one substantial DLL from these applications to perform the instrumentation de-
scribed in the previous sections. For invoking Clousot, we enabled all checks,
set the warning level to the maximum, and disabled all inference options. We
subsequently ran tests from the test suite of each application and logged which
explicit assumptions were hit at runtime and which of those were violated. Fi-
nally, we manually inspected a large number of methods to determine whether
Clousot misses any errors because of its unsound assumptions.

4.1 Experimental Results: Instrumentation

Fig. 1 presents the percentage of analyzed methods from each project versus the
number of assumed statements in the methods. An analyzed method is checked
by Clousot but not necessarily hit at runtime by the test suite of a project. We
analyzed a total of 978 methods with Clousot. As shown in the figure, the major-
ity of these methods (860) contain less than 5 assumed statements, and a large
number of those (326) are soundly checked, that is, do not contain any explicit
assumptions. There are only 20 methods with more than 10 assumed statements.
In these methods, the prevailing sources of unsoundness are “invariants at call
sites” (IC), “write effects” (W), “purity” (P), and “overflows” (O).

Fig. 2 shows the average number of bytecode instructions in the analyzed
methods versus the number of assumed statements in the methods. Notice that
most methods that are soundly checked contain only a small number of bytecode
instructions. A manual inspection of these methods showed that many of them
are setters, getters, or (default) constructors. Our results indicate that methods
with more instructions contain a larger number of assumed statements.
1 http://bcrypt.codeplex.com, rev: d05159e21ce0
2 http://boogie.codeplex.com, rev: 8da19707fbf9
3 https://github.com/AArnott/ClueBuddy,

rev: c1b64ae97c01fec249b2212018f589c2d8119b59
4 http://bbcode.codeplex.com, rev: 80132
5 http://dsa.codeplex.com, rev: 96133
6 http://wpfscrabble.codeplex.com, rev: 20226

http://bcrypt.codeplex.com
http://boogie.codeplex.com
https://github.com/AArnott/ClueBuddy
http://bbcode.codeplex.com
http://dsa.codeplex.com
http://wpfscrabble.codeplex.com
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Fig. 1. The percentage of analyzed methods from each project versus the number of
assumed statements in the methods.

Fig. 3 shows Clousot’s sources of unsoundness versus the number of assumed
statements that are introduced in the analyzed methods of each project. The
results are dominated by the assumptions that are introduced for each method
(IE) or for common statements (IC, W, P). The unsound treatment of aliasing
(A) affects relatively few methods, even though it could be introduced for each
field, property, or array update. Assumptions about “main methods” (M) were
not introduced because there are either no main methods at all (for instance, in
libraries) or not in the portions of the code that we analyzed and instrumented.

4.2 Experimental Results: Runtime Checking

The experimental results for the instrumentation alone provide very limited in-
sight into the impact of Clousot’s unsoundness. For instance, while some explicit
assumptions reflect details of the analysis (such as A and W, which are based
on Clousot’s heap-graph), others merely indicate the existence of a syntactic
element (for instance, we generate one assumption of kind C per catch-block).
Moreover, some explicit assumptions are not violated in any concrete program
execution; for instance, the assumptions of kind M always hold if a program
does not call a main method. To better understand the impact of Clousot’s un-
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Fig. 2. The average number of bytecode instructions in the analyzed methods from
each project versus the number of assumed statements in the methods
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Fig. 3. Clousot’s sources of unsoundness versus the number of assumed statements
that are introduced in the analyzed methods of each project

Table 2. The number and percentage (rounded to two decimal places) of violated
explicit assumptions per application and kind of assumption. These numbers include
all executions of a single assumed statement. Cells with non-zero values are highlighted;
the “-” indicates that no explicit assumptions are hit at runtime.

BCrypt.Net Boogie ClueBuddy Codekicker.BBCode DSA Scrabble
IE - 0/1694124 (0%) 275/27318 (1.01%) - - -
IC - 0/628448 (0%) 0/9759 (0%) - - -
A 0/25844436 (0%) 0/24771 (0%) - - 131/992 (13.21%) -
W 0/6419169 (0%) 0/372851 (0%) 0/3589 (0%) 82/11577 (0.71%) 0/613 (0%) 25/5011 (0.50%)
P 0/6405279 (0%) 27/108506 (0.02%) 12198/241385 (5.05%) 0/10311 (0%) 0/1008 (0%) 425/21580 (1.97%)
O 102488804/326722626 (31.37%) 0/569258 (0%) 0/547 (0%) 0/1196 (0%) 0/6053 (0%) 0/909 (0%)
CO 0/6633876 (0%) - - - - 0/2 (0%)
C - - - - 1/1 (100%) -
F - 0/53246 (0%) 0/325 (0%) 0/114 (0%) 0/43 (0%) 0/65 (0%)
S 0/708 (0%) 1/155080 (0%) - 0/7 (0%) 129/640 (20.16%) 0/15 (0%)
M - - - - - -

IE : invariants at method entries P : purity F : finally blocks
IC : invariants at call sites O : overflows S : static fields
A : aliasing CO : conversions M : main methods
W : write effects C : catch blocks

sound assumptions, we measure how often the generated explicit assumptions
are violated during concrete program executions.

Tab. 2 shows the number and percentage of violated explicit assumptions per
application and kind of assumption. These numbers include all executions of
a single assumed statement. That is, different executions of the same assumed
statement in different method invocations or loop iterations are counted sep-
arately. Tab. 3 shows the corresponding numbers when counting only per oc-
currence of an assumed statement rather than per execution. For example, in
BCrypt.Net, the assumption violations shown in Tab. 2 occur in only 4 assumed
statements (see Tab. 3), which are all in the body of the same loop.
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Table 3. The number and percentage (rounded to two decimal places) of violated
explicit assumptions per application and kind of assumption. These numbers are per
occurrence of a single assumed statement. Cells with non-zero values are highlighted;
the “-” indicates that no explicit assumptions are hit at runtime.

BCrypt.Net Boogie ClueBuddy Codekicker.BBCode DSA Scrabble
IE - 0/108 (0%) 7/44 (15.91%) - - -
IC - 0/60 (0%) 0/59 (0%) - - -
A 0/16 (0%) 0/1 (0%) - - 16/46 (34.78%) -
W 0/30 (0%) 0/32 (0%) 0/43 (0%) 2/61 (3.28%) 0/51 (0%) 1/25 (4.00%)
P 0/7 (0%) 1/40 (2.50%) 10/81 (12.35%) 0/130 (0%) 0/86 (0%) 11/85 (12.94%)
O 4/11 (36.36%) 0/11 (0%) 0/5 (0%) 0/25 (0%) 0/134 (0%) 0/13 (0%)
CO 0/3 (0%) - - - - 0/1 (0%)
C - - - - 1/1 (100%) -
F - 0/3 (0%) 0/5 (0%) 0/3 (0%) 0/8 (0%) 0/2 (0%)
S 0/18 (0%) 1/31 (3.23%) - 0/2 (0%) 16/18 (88.88%) 0/2 (0%)
M - - - - - -

IE : invariants at method entries P : purity F : finally blocks
IC : invariants at call sites O : overflows S : static fields
A : aliasing CO : conversions M : main methods
W : write effects C : catch blocks

4.3 Manual Inspection

We manually inspected a large number of explicit assumptions, including all
violated assumptions, and made the following observations.

- “Invariants at method entries” (IE): Only Boogie and ClueBuddy contain in-
variant specifications, and all violations are found in ClueBuddy. These viola-
tions are all caused by constructors that call property setters in their body.
The object invariants are, therefore, violated on entry to the setters since the
constructors have not yet established the invariants. Objects that escape from
their constructors are a well-known problem; a possible solution is to annotate
methods that may operate on partially-initialized objects and, thus, must not
assume their invariants [16].

- “Invariants at call sites” (IC): These assumptions are never violated because
in all of our applications, sub-classes do not strengthen the object invariants
of their super-classes such that calls to inherited methods could violate them.

- “Aliasing” (A): These assumptions are violated only in DSA. All violations
occur in nine methods of two classes implementing singly and doubly-linked
lists. For example, one violation occurs in method AddAfter when expressions
this.Tail, this.Head, and the node to be added are aliased. The small num-
ber of these violations suggests that there is only a limited practical need for
performing a sound, but expensive heap analysis. However, an analyzer could
optionally allow users to run a sound heap analysis, for instance, for methods
with violations of “aliasing” assumptions.

- “Write effects” (W): Tab. 3 shows that these assumptions are hardly ever
violated. By inspecting assumptions of this kind that are not violated, we
confirmed that the write effects assumed by Clousot are usually conservative.



An Experimental Evaluation of Unsoundness in a Static Program Analyzer 351

- “Purity” (P): Most of these assumptions are violated for pure methods that
return newly-allocated objects, that is, for non-deterministic methods. In ap-
plications without Code Contracts, these assumptions are introduced only in
property getters, but are never violated.

- “Overflows” (O): These assumptions are violated only in BCrypt.Net. All viola-
tions occur in an unchecked block, which suppresses overflow exceptions. This
indicates that, in this application, overflows are actually expected to occur or
even intended.

- “Conversions” (CO): These assumptions are never violated. Our manual in-
spection showed that the value ranges of the converted expressions are suffi-
ciently small such that no overflow may occur.

- “Catch blocks” (C): Only one assumption of this kind was introduced in a
method that removes a value from an AVL tree in application DSA. An auxil-
iary method throws an exception when the AVL tree is empty. Catching this
exception violates the assumption. This violation could be avoided by using
an out-parameter instead of an exception to signal that the tree was empty.

- “Finally blocks” (F): Our instrumentation introduced only 39 assumptions
about “finally blocks”. The majority of these finally blocks are added by the
compiler to desugar foreach statements. If the body of the foreach statement
does not throw an exception, these assumptions are not violated.

- “Static fields” (S): The violations of these assumptions are, in some cases, due
to static fields being lazily initialized, that is, being assigned non-null values
after having first been read. Supporting lazy initialization via a language con-
struct, such as Scala’s “lazy val” declarations, could help avoid such violations.
In other cases, the values of static fields are passed as arguments to library
methods, which are designed to handle null arguments.

Missed Errors. The violation of an explicit assumption does not necessarily
mean that Clousot misses errors since the resulting unsoundness may be irrele-
vant for the subsequent checks. To determine whether the assumption violations
detected in our experiments might lead to missed errors, we manually inspected
the containing methods of all 70 violations (computed from Tab. 3). We did not
find any runtime errors or assertion violations that Clousot missed due to its
unsound assumptions. With the exception of a few cases, it was fairly straight-
forward to determine whether an assumption violation could conceal an error.
For instance, violations of explicit assumptions about “purity” (P) are harmless
when there is only a single call to the pure method. The same holds for explicit
assumptions about “aliasing” (A) when the updated field, property, or array
element is not accessed after the update.

The fact that we did not find any missed errors due to assumption violations
possibly indicates that providing slightly weaker soundness guarantees in cer-
tain situations in favor of performance, precision, and low annotation overhead
does not compromise Clousot’s effectiveness; its unsound assumptions are not
problematic in the code and executions we investigated.
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4.4 Threats to Validity

We identified the following threats to the validity of our experiments:

– Instrumentation: It is possible that we missed some of Clousot’s unsound
assumptions. Since we elicited the assumptions very diligently, it seems
unlikely that we overlooked any major sources of unsoundness. There are
several sources of unsoundness that we identified, but do not capture (see
Sect. 2.4). For most of these sources, a syntactic check suffices to deter-
mine whether a program might be affected. Moreover, even though our in-
strumentation captures most of Clousot’s unsound assumptions precisely, it
under-approximates the unsound treatment of write effects for calls to unin-
strumented (library) methods and of non-deterministic pure methods. As a
result, it is possible that Clousot’s analysis of a method is unsound even
though all runtime checks for explicit assumptions pass (this is very unlikely
for non-deterministic pure methods).

– Runtime checking: We measured assumption violations in executions of the
projects’ test suites. There were no failing tests, that is, any errors detected
by the test suites have been fixed. This explains in part why we did not
find any errors missed by Clousot. However, in our manual inspection of the
violated assumptions, we checked the entire method, that is, all execution
paths of the method for all its input states, not just the code covered by the
test suite. Thus, we could have detected errors that the tests missed.

– Project selection and sample size: The projects in our experiments were cho-
sen from different application domains. All projects were required to include
a test suite. We selected projects with and without Code Contracts. Since
Clousot analyzes each method modularly, we were able to pick those DLLs
that have the most comprehensive test suites. We ran Clousot on 978 meth-
ods; assumed statements were added in 652 methods, 396 out of which were
hit during the execution of the projects’ test suites. Therefore, we believe
that our projects are representative for a large class of C# code bases.

5 Related Work

To the best of our knowledge, there is no existing work on experimentally eval-
uating sources of deliberate unsoundness in static analyzers.

There are, however, several approaches for ensuring soundness of static analyz-
ers and checkers, ranging from manual proofs [14], over interactive and automatic
proofs [3,4], to less formal techniques, such as “smoke checking” [1].

Many static analyzers compromise soundness to improve on other qualities
such as precision or efficiency (see Cousot and Cousot [7] for an overview), and
there is existing work on evaluating these other qualities of analyzers in prac-
tice. For instance, Sridharan and Fink [15] evaluate the efficiency of Andersen’s
pointer analysis, and Liang et al. [11] evaluate the precision of different heap ab-
stractions. We show that such evaluations are also possible for the unsoundness
in static analyzers, and propose a practical approach for doing so.
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Our explicit assumptions could be used to express semantic environment con-
ditions inferred from a base program, as in VMV [13]; a new version of the
program could then be instrumented with these inferred conditions (in the form
of assumptions) to reduce the number of warnings reported by Clousot. More-
over, our technique could be applied in “probabilistic static analyzers” [12] to
determine the probabilities of their judgments about analyzed code. Specifically,
one could estimate the probability that an unsound assumption holds (or is
violated) based on its value along a number of concrete executions.

Finally, we refer the reader to http://soundiness.org for the “soundiness”
movement in static program analysis, which brings forward the ubiquity of un-
soundness in static analyzers, draws a distinction between analyzers with specific,
well-defined soundness trade-offs and tools that are not concerned with sound-
ness at all, and issues a call to the research community to clearly identify the
nature and extent of unsoundness in static analyzers.

6 Conclusion

In this paper, we report on the first systematic effort to document and evalu-
ate the sources of deliberate unsoundness in a widely used, commercial static
analyzer. Our technique is general and applicable to any analyzer whose un-
soundness is expressible using a code instrumentation. In particular, we have
explained how to derive the instrumentation by concretizing relevant portions of
the abstract state (in our case, the heap-graph). We believe that this approach
generalizes to a large class of assumptions made by static analyzers.

Our work can help designers of static analyzers in finding good trade-offs.
We encourage them to document all compromises of soundness and to motivate
them empirically. Such a documentation facilitates tool integration since other
static analyzers or test case generators could be applied to compensate for the
explicit assumptions. Information about violated assumptions (for instance, col-
lected during testing) could also be valuable in identifying methods that require
special attention during testing and code reviews. Finally, our results could be
used to derive programming guidelines and language designs that mitigate the
unsoundness of a static analyzer.
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Abstract. Replicated data types store copies of identical data across
multiple servers in a distributed system. For the replicas to satisfy even-
tual consistency, these data types should be designed to guarantee con-
flict free convergence of all copies in the presence of concurrent updates.
This requires maintaining history related metadata that, in principle, is
unbounded.

Burkhardt et al have proposed a declarative framework to specify
eventually consistent replicated data types (ECRDTs). Using this, they
introduce replication-aware simulations for verifying the correctness of
ECRDT implementations. Unfortunately, this approach does not yield
an effective strategy for formal verification.

By imposing reasonable restrictions on the underlying network, we
recast their declarative framework in terms of standard labelled partial
orders. For well-behaved ECRDT specifications, we are able to construct
canonical finite-state reference implementations with bounded metadata,
which can be used for formal verification of ECRDT implementations via
CEGAR. We can also use our reference implementations to design more
effective test suites for ECRDT implementations.

1 Introduction

Replicated data types are used by web services that need to maintain multiple
copies of the same data across different servers to provide better availability and
fault tolerance. Clients can access and update data at any copy. Replicated data
types cover a wide class of data stores that include distributed databases and
DNS servers, as well as NoSQL stores such as Redis and memcached. The CAP
theorem [1] shows that it is impossible for replicated data types to provide both
strong consistency and high availability in the presence of network and node
failures. Hence, web services that aim to be highly available in the presence
of faults opt for a weaker notion of consistency known as eventual consistency.
Eventual consistency allows copies to be inconsistent for a finite period of time.
However, the web service must ensure that conflicts arising due to concurrent
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updates across the multiple copies are resolved to guarantee that all the copies
eventually agree. Conflict-free Replicated Data Types (CRDTs), introduced in
[2,3], are a sub class of replicated data types that are eventually consistent and
conflict free.

An abstract specification of a data type describes its properties independent
of any implementation. Such a specification plays a crucial role in formal veri-
fication of the correctness of any implementation of the data type. Most of the
early work on CRDTs described these data types through implementations [2–5].
Recently, a comprehensive framework has been proposed in [6] to provide declar-
ative specifications for a wide variety of replicated data types, along with a
methodology to prove the correctness of an implementation via replication aware
simulations. Unfortunately this strategy does not lend itself to effective formal
verification of the implementations.

Finite state abstractions have been widely studied in the context of formal
verification. Model checking, for instance, uses techniques such as state space
enumeration, abstract interpretation and symbolic execution to algorthmically
verify if an abstract finite state system satisfies its specification. Finite state
models such as automata over distributed words, communicating finite state
machines and Petri nets have been successfully used to model and verify con-
current and distributed systems.

In this paper, we focus on a class of CRDTs known as the Commutative
Replicated Data Types (CmRDTs) whose replicas broadcast every update they
receive from a client. The key contributions of our work are as follows

– Demonstrating the use of labelled partial orders as a framework for providing
declarative specifications of CmRDTs.

– Generalizing the gossip problem introduced in [7] and providing a bounded
solution to this problem assuming bounded concurrency.

– Using the bounded solution of the gossip problem to obtain finite state im-
plementations of CmRDTs whose specifications satisfy certain properties.

The paper is organized as follows. In Section 2 we introduce replicated data
types. Following this, we show how to use standard labelled partial orders as
a framework for declarative specification for CmRDTs. After defining bounded
CmRDTs, we generalize the gossip problem and provide a bounded solution
in Section 5. We then show how this bounded solution can be used to derive a
bounded implementation of CmRDTs. In the next section we show how bounded
implementations can be used in the formal verification of CmRDTs. In the final
section we summarize our work and discuss interesting challenges.

2 Replicated Data Types

We consider distributed systems consisting of a set R of N replicas, denoted
[0..N−1]. We use p, q, r, s and their primed variants to range over R. These
replicas are interconnected through an asynchronous network. We assume that
replicas can crash and recover infinitely often. However, when a replica recovers
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from a crash it is expected to resume operation from some safe state that it
was in before the crash. We are interested in replicated data types that are
implemented on top of such distributed systems.

A replicated data type exposes a set of side-effect-free operations known as
queries for clients to obtain information contained in the data type. It makes
available a set of state-modifying operations known as updates to allow clients to
update the contents of the data type. For example in a replicated set, contains
is a query method, while add and delete are update methods.

At any point, a client can interact with any one of the N replicas. The replica
that services a query (respectively, update) request from the client is said to be
the source replica for that query (respectively, update). The source replica uses
its local information to process the query. Similarly, it updates its local state on
receiving an update request from the client.

In this paper, we restrict our attention to a class of replicated data types called
Commutative Replicated Data Types (CmRDTs), introduced in [2]. In these data
types, each time a replica receives an update request from a client, it applies the
update locally and broadcasts to all the other replicas a message containing the
data that they require to apply this update. On receiving this broadcast, each
replica performs a local update using the data sent by the source replica. We
assume that the updates are delivered in causal order—that is, if update u1 at
replica r1 is initiated before update u2 at replica r2, then every replica receives
information about u1 before information about u2. We shall define this notion
formally in the next section. Under this assumption, we note that when a replica
receives and applies an update operation, its state would contain the effect of
all operations that causally precede the current update. We now define some
terminology introduced in [2, 3] to reason about these data types.

A CmRDT D is a tuple (V ,Q,U) where:

– V is the underlying set of values stored in the datatype and is called the
universe of a replicated datatype. For instance, the universe of a replicated
read-write register is the set of integers that the register can hold.

– Q denotes the set of query methods exposed by the replicated data type.
– U denotes the set of update methods.

The send and receive components of a broadcast that follows an update oper-
ation are denoted by send and receive, respectively. We denote byM the set
{send, receive}.

For an instance of an operation o ∈ Q ∪ U ∪M, we use Rep(o), Op(o) and
Args(o) to denote the source replica, operation name and arguments, respec-
tively, of the operation.

Definition 1 (Run). A run of a replicated data type is a pair (α, ϕ) where

– α is a sequence of operations Io1o2 . . . on, where I is a special operation that
initializes the states of all the N replicas, and each oi ∈ Q ∪ U ∪M.

– ϕ is a partial function from [0..n] to 2[0..n] such that

• dom(ϕ) = {i ≤ n | oi is a send operation}.
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• ∀j ∈ ϕ(i) : j > i and oj is a matching receive operation. In particular,
the matching receive operation at replica r is denoted by ϕr(i).

Note that every update operation in a run Io1o2 . . . on will be followed by a
send operation where the source replica broadcasts details of this update to all
other replicas. Without loss of generality, we assume that this send event is the
next event in the run: in other words, if oi is an update event, then the send
event that broadcasts details of oi to all other replicas is the event oi+1.

For α = Io1o2 . . . on, we let α[j] denote the operation oj and α[:j] denote
the prefix Io1o2 . . . oj . Note that α[0] (and hence α[:0]) is always I. The subse-
quence of α consisting of all operations with source replica r is denoted αr. (By
convention, every replica r is a source replica for I.)

The state of replica r at the end of the run α is denoted by Sr(α).

Definition 2 (History). Let (α, ϕ) be a run and r be a replica. The history
of r with respect α, denoted by Hr(α) is the set of all update operations whose
effects are applied at r, either directly or indirectly, to arrive at the state Sr(α).
Formally, Hr(α) is inductively defined as follows:

– For α = I, ∀r ∈ R : Hr(α) = ∅

– For i > 0, Hr(α[:i]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hr(α[:i−1]) if Rep(α[i]) 
= r or
Op(α[i]) ∈ Q ∪ {send}

Hr(α[:i−1]) ∪ {α[i]} if Rep(α[i]) = r and
Op(α[i]) ∈ U

Hr(α[:i−1]) ∪Hs(α[:j]) if Rep(α[i]) = r,
Op(α[i]) = receive,
Rep(α[j]) = s,
and ϕr(j) = i

We define causality and concurrency for pairs of update operations as follows.

Definition 3 (Happened-Before and Concurrency). Let u = α[i] and u′ =
α[j] be update operations at source replicas r and r′, respectively, in a run (α, ϕ).

We say that u has happened before u′, denoted u
hb−→ u′, if u ∈ Hr′(α[:j−1]).

If neither u
hb−→ u′ nor u′

hb−→ u, we say that u and u′ are concurrent. This is
denoted by u ‖ u′.

Strong eventual consistency (SEC) [3] is a stronger variant of eventual consis-
tency [8] that is useful for reasoning about the correctness of replicated systems.

Definition 4 (Strong Eventual Consistency). Let (α, ϕ) be a run and let
r, r′ be a pair of replicas. We say that the replicated data type satisfies strong
eventual consistency if r and r′ are query equivalent whenever Hr(α) = Hr′(α)—
that is, for any query after α, r and r′ return the same values.

Note that strong eventual consistency does not refer to the order in which up-
dates are applied at a particular replica. As long as the sets of updates applied
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at two replicas are the same, the observable behaviour of the replicas is identical.
Commutative replicated data types (CmRDTs) [2,3] are a class of replicated data
types that satisfy strong eventual consistency by construction. The definition of
CmRDTs ensures that replicas do not need to detect or resolve conflicts. The
following characterization of CmRDTs is from [3].

Definition 5 (CmRDT). A replicated data type is said to be a commutative
replicated data type (CmRDT) iff for any pair of update operations u, u′ if u ‖ u′

then u and u′ are commutative. If u
hb−→ u′ then at every replica, the effect of u

is applied before applying the effect of u′.

The recent paper [6] provides a comprehensive declarative framework for spec-
ification of a large class of replicated data types. The framework is very general
and accommodates a wide variety of data stores. For instance, it allows reason-
ing about data stores with multiple replicated objects, with arbitrary delivery
patterns for messages. The variety of features permitted in the declarative frame-
work render it impractical for effective verification of CmRDTs. Retaining the
core idea from [6], we provide the specifications of CmRDTs in terms of standard
labelled partial orders [9, 10] in the next section.

3 Labelled Partial Orders Models for Replicated Data
Types

Let (α, ϕ) be a run of a replicated data type. We define Eα to be the set of events
associated with send and receive operations in α.
Eα = {ei | 0 ≤ i < |α|,Op(α[i]) ∈ U∪{receive}}. Each ei ∈ Eα corresponds to

some operation α[i] in α. We define Rep(ei), Op(ei) and Args(ei) to be Rep(α[i]),
Rep(α[i]) and Args(α[i]).

We extend ϕ to Eα as follows. For ei ∈ Eα, let α[i] be the corresponding event
in α. If α[i] ∈ U , recall that α[i+1] is assumed to be the send event where the
effect of this update is broadcast to all other replicas. We define ϕα(ei) = {ej |
j ∈ ϕ(i+1)}. Further, we define ϕr,α(ei) = ej if ej ∈ ϕα(ei) ∧ Rep(ej) = r.

For a replica r, let Erα = {e ∈ Eα | Rep(e) = r}. Since each replica is sequential,
all events in Erα are totally ordered. Let ≤r

α denote this total order on Erα. We
define ,α to be the smallest partial order on Eα such that:

– For any replica r, and any pair of events e, e′ ∈ Erα, e ≤r
α e

′ =⇒ e ,α e
′.

– For any event e ∈ Eα with Op(e) = receive, ϕ−1
α (e) ,α e.

We say that a pair of events e, e′ ∈ E are concurrent (denoted by e ‖ e′) when
neither e , e′ nor e′ , e.

Definition 6 (Trace). A run (α, ϕ) gives rise to an associated labelled partial
order (Eα, ϕα,,α). We shall use the term trace (borrowed from the theory of
Mazurkiewicz traces [9]) to refer to this labelled partial order.
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We usually drop the subscript α and assume that the trace that we refer to has
an associated run α. Recall that we have assumed that messages are delivered
in causal order. This can be formalized in the trace framework as follows:

∀ei, ej ∈ E : (Op(ei) = Op(ej) = receive ∧
Rep(ei) = Rep(ej) ∧ ϕ−1(ei) , ϕ−1(ej) ) =⇒ ei , ej.

Definition 7 (Subtrace). Let t = (E , ϕ,,) be a trace. Each subset E ′ ⊆ E
defines a subtrace tE

′
= (E ′, ϕ′,,′) where ϕ′ = ϕ|E′ and ,′=, |E′ .

Note that a subtrace can have “holes”—we could have three events e , e′ , e′′
in t and a subtrace t′ containing {e, e′′} but not e′.

If X is a predicate that defines the subset E ′ ⊆ E then tX denotes the subtrace
tE

′
. As special cases, tU and treceive respectively denote the subtraces consisting

of only the update events and receive events in t, respectively. We shall denote
by EU and Ereceive their respective event sets. For a pair of traces t and t′,
the notions t ⊆ t′, t ∪ t′ and t ∩ t′, are defined in the standard manner. For
t = (E , ϕ,,), we write e ∈ t to mean that e ∈ E .
Definition 8 (Downward Closure). Let t = (E , ϕ,,) be a trace. A subset
E ′ ⊆ E is said to be downward closed if ∀e, e′ ∈ E : (e , e′ ∧ e′ ∈ E ′ =⇒ e ∈ E ′)

In particular, for an event e, the downward closure of e is defined to be the
set ↓e = {e′ ∈ E | e′ , e}.
Clearly, the entire set of events E is downward closed. Also, if E ′ and E ′′ are
downward closed subsets of E , then so are E ′∪E ′′ and E ′∩E ′′. If E ′ is a downward
closed set and E ′′ is the set of maximal events in E ′, then E ′ =

⋃
e∈E′′ ↓e.

Definition 9 (Ideal). Let t = (E , ϕ,,) and E ′ ⊆ E. The subtrace tE
′
is said to

be an ideal if E ′ is downward closed.
In particular, if E ′ = ↓e for some e ∈ E, then we refer to the ideal tE

′
as the

prime trace generated by e and denote it by te.

Definition 10. Let t = (E , ϕ,,) be an ideal. Then,

– Events(t) denotes E, the set of events in t.
– Count(t) = |Events(t)| denotes the number of events in E.
– maxSet(t) denotes the set {e ∈ E | �e′ ∈ E : e , e′} of maximal events in t.
– For a replica r, the maximal r event in t, denoted by max r(t), is an event
e such that Rep(e) = r and ∀e′ ∈ E : Rep(e′) = r =⇒ e′ , e. (Note that
max r(t) is always defined since the event corresponding to the initialization
operation I is an r event for every replica r.)

– The r-view of t is the ideal generated by max r(t) and is denoted by ∂r(t).
– The latest r′ event that r is aware of in the ideal t, denoted by latestr→r′(t)

is defined to be max r′(∂r(t)).

The behaviour of a replicated data type is the set of traces that it generates.
Note that this set is downward closed—if a trace t is present in the set then all
ideals in t are also present in the set. We shall denote this set by T . We let Tp
denote the set of all prime traces in T . In the trace framework, the definitions
of happened-before and concurrency are straightforward.
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Definition 11 (Happened Before and Concurrency). Let t = (E , ϕ,,) be
a trace with events e and e′ that are associated with update operations u and

u′, respectively. Then u is said to have happened before u′, denoted u
hb−→ u′, if

e , e′, and u and u′ are said to be concurrent if neither e , e′ nor e′ , e.

We can now reformulate strong eventual consistency (SEC) as follows.

Definition 12 (Strong Eventual Consistency(SEC)). Let t be a trace and
let r, r′ be a pair of replicas. We say that the replicated data type satisfies
strong eventual consistency if the replicas r and r′ are query equivalent whenever
Events(∂r(t)

U ) = Events(∂r′(t)
U ).

Note that strong eventual consistency refers only to the subtraces ∂r(t)
U and

∂r′(t)
U defined by the updates events in the r and r′ views of t. These views

may have different sets of receive events.
We now show how we can specify CmRDTs in the framework of traces.

3.1 Specifications of CmRDTs

The internal state of a replicated data type is exposed to the client via queries.
Hence, a specification framework for a CmRDT should provide mechanisms for
uniformly defining the behaviour of any query operation that is applied at replica
at any stage of the computation, based on the update operations in the history
of the replica at that stage. Note that in the framework of traces, the history
of a replica corresponds to the update events in view of the replica, which is
a prime trace. Hence, we define the specification of a CmRDT with respect to
prime traces.

Definition 13 (Declarative Specification). Let D = (V ,Q,U) be a CmRDT.
Let A =

⋃
q∈Q Args(q). The specification of D, is a function SpecD : Q×A×Tp →

V which determines the return value of any query q ∈ Q in any prime trace
t ∈ Tp.

We highlight the key differences between our declarative specification and the
one proposed in [6]. Since messages in CmRDTs are causally delivered, the ,
relation in the trace framework captures both the visibility relation vis and the
replica order relation ro from [6]. However, while , is a partial order, vis is only
defined to be an acyclic relation over the events, while ro is the union of total
orders that is recovered by restricting , to events of the same replica. In [6],
the execution context of an event is defined to be the set of all events that are
visible to the event. The specification defines the return value of each query in
every execution context. In the trace framework, the execution context for an
event is the ideal generated by that event.

We now provide declarative specifications for a few CmRDTs in the framework
of traces.
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PN Counters. A PN counter maintains a counter by keeping track of the
number of increments and decrements it receives. A query should return the
latest count that a replica is aware of.

– U = {Inc,Dec}
– Q = {Fetch} and arity(Fetch) = 0
– Specification: Let t be a trace. Let I = {e ∈ t | Op(e) = Inc} and D =
{e ∈ t | Op(e) = Dec}. In any prime trace t,

SpecCounter (Fetch,⊥, t) = Count(tI)− Count(tD)

MV registers An MV register is a read-write register that on a read, returns
the values of the latest (possibly concurrent) writes.

– U = {Write}
– Q = {Read} and arity(Read) = 0
– Specification: Let W = {e ∈ t | Op(e) = Write}. In any prime trace t,

SpecMVReg(Read ,⊥, t) =
⋃

Args(maxSet(tW ))

OR sets An OR set is a distributed set that follows the “add-wins” semantics
for concurrent adds and deletes of the same element.

– U = {Add ,Delete}
– Q = {Contains} and arity(Contains) = 1
– Specification: For an element x ∈ V , define a predicate Ux = {e ∈ t | x ∈

Args(e)}. In any prime trace t,

SpecORSet(Contains , (x), t) = True ⇐⇒ ∃e ∈ maxSet(tUx) : Op(e) = Add

In the next section, we discuss how declarative specifications in terms of la-
belled partial orders can be used to obtain bounded implementations for a class
of well-behaved CmRDTs.

4 Bounded CmRDTs

In this section we discuss sufficient conditions for replicated data types to have
a bounded implementation.

Definition 14. We say that an implementation of a CmRDT is bounded if the
information maintained by every replica and the contents of each message prop-
agating an update are bounded, regardless of the length of the computation.

Finite state implementations have played an important role in formal verifica-
tion of reactive systems. We shall see later that they can be used for verification
of replicated data types as well. We use the example of OR-Sets to discuss the
challenges involved in arriving at a bounded implementation.
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Observe that if the universe V of an OR-Set is unbounded, we cannot hope
to achieve a bounded implementation since we need labels of unbounded size to
name the elements in V , even if the size of the actual set is bounded. Hence, we
assume that V is bounded, in order to achieve a bounded implementation.

If the size of V is bounded by K, then the number of unique queries is also
bounded by K. In the OR-Set specification, for an element x ∈ V , the query
contains(x) requires only the maximal x-events present in the view of the
replica. The number of such maximal x-events is bounded by N . This implies
that the number of events required to answer a query at any point in time is
bounded by KN . Thus, in a reference implementation, it suffices to keep track
of only this finite fragment of the partial order at any replica. Replicas can purge
from their view events that are no longer relevant for answering any queries.

However, this requires the causal order between the relevant events to be
correctly maintained by the replicas. Typically, vector clocks have been used to
track causality among the events of a distributed system. However, vector clocks
grow monotonically as the computation progresses. Hence, any implementation
that uses vector clocks cannot be bounded.

Earlier work such as [7, 11] has implemented bounded timestamping in dis-
tributed systems by solving what is known as the gossip problem. In the next
section, we present a generalized version of the gossip problem and provide a
bounded solution to it. We then use the bounded solution to arrive at a bounded
implementation for a class of well behaved replicated data types.

5 Generalized Gossip Problem

Consider a distributed system with N replicas. Whenever a replica interacts
with a client, it does some local processing and broadcasts a message to all the
other replicas. This is similar to the behaviour of CmRDTs described earlier.
Suppose now that every replica keeps track of the latest event it knows about
every other replica in the system. During a broadcast, along with the message,
each replica r also sends across its knowledge about the latest event of every
other replica r′ in the system. A recipient r′′ needs to correctly compute for
every replica r′ whether its knowledge of the latest r′ event is more up to date
than the knowledge of r′ that it has received from r. This is known as the gossip
problem, and has been studied in [7, 11].

In the generalized gossip problem, instead of maintaining just the latest events,
we assume that every replica keeps track of a bounded subtrace of its view which
we refer to as the primary information.

Definition 15 (Information graphs). An information graph G of a trace t =
(E ,,, ϕ) is a subtrace tE where E ⊆fin EU . We denote the set of all information
graphs of t by G(t). Let G =

⋃
t∈T G(t).

Definition 16 (Primary information). A primary information function is a
function f : Tp → G that assigns an information graph to each prime trace so
that the following conditions are satisfied.
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– f(t) ∈ G(t).
– For any trace t = ↓e and e′ ∈ maxSet(t \ {e}), f(t) ∩ ↓e′ ⊆ f(↓e′).

A primary information function f is said to be bounded if ∃M ∀t : |f(t)| ≤M .

Our goal is to ensure that f(↓e) can be computed from f(↓e1), . . . , f(↓en) and
e, where {e1, . . . , en} = maxSet(↓e \ {e}). We refer to this as the (generalized)
gossip problem for a primary information function f . Observe that even if
f(t) is a bounded set for every t, we still need an unbounded set of labels to
unambiguously identify the events.

We say that the gossip problem for f has a bounded solution if we can update
f using a bounded set of labels to identify the events. Clearly we must ensure
that no two distinct events in the primary information have the same labels.
Hence, each replica needs to identify which of its events are in the primary
information of other replicas. To capture this, we define secondary information.

Definition 17 (Secondary information). A function F : R × Tp → 2(E
0)

(E0 =
⋃

t∈Tp Events(t)) is a secondary information function for a primary in-
formation function f if, for each prime trace t = ↓e:

1. Events(f(∂r(t))) ∩ EU ⊆ F (r, t) ⊆ Events(t) ∩ Er.
2. F (r, t) = F (r, ↓ max r(t)) if e is not an r-event.
3. F (r, t) is computable from e,

⋃
e′∈maxSet(↓e\{e}) F (Rep(e

′), ↓e′) and f(t), if
e is an r-event.

4. If e and e′ are r-events such that e′ ∈ ↓e \ F (r, ↓e), then for any r′ and t′,
e ∈ ∂r′(t′) =⇒ e′ 
∈ f(∂r′(t′)).

5. For an r-event e′ ∈ t \F (r, t), if e′ ∈ f(↓e′′), then ϕr′′(e
′′) ∈ ∂r(t) for all r′′.

A secondary information function F is said to be bounded if ∃M ∀r ∀t :
|F (r, t)| ≤M .

The first three conditions are straightforward: they say that F is locally updat-
able and that it subsumes f . The fourth condition states, in essence, that r can
reuse the label of an event e′ that has left F (r, t) for a new event e, since at the
point when another replica r′ receives e, e′ would have moved out of its primary
information, so there is no ambiguity in the labelling. The last condition is subtle
and crucial for the next proof. It states that if r has generated a label for an
event e′ and potentially reused it for a later event after e′ leaves F (r, t), then
there is no update event e′′ by another replica r′ that could potentially send this
reused label later to an agent. In other words, such sends have been delivered to
all replicas before r reuses the label.

Theorem 18 (Bounded solution for gossip). Let f be a primary informa-
tion function such that the gossip problem for f has a solution. It has a bounded
solution if there is a bounded secondary information function F for f .

Proof. Let the gossip problem for f have a solution, and let the bound on F be
M . Clearly M + 1 labels suffice to label each event in F (r, t) uniquely, for any
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t. We fix a label set L of size M + 1. For any t, we label events in F (r, t) with
pairs (r, 
), such that 
 ∈ L. We also maintain a marking function that identifies
events in f(t), and the ordering ≺ restricted to f(t). As a trace progresses, we
can reassign an unused label (there is at least one) to each new event in the
set F . Since both f and F after each event e are computable from the values
of f and F at the maximal r events in t, the marking and ordering can also be
updated.

Finally, replica r can reuse labels for events in F (r, t) without fear of confusion
because of condition 4 in the definition of secondary information. If e′ and e are
two r update events with e′ ≺ e that are assigned the same label (r, 
), then
clearly e′ ∈ t \F (r, t). When r′ receives the event e (let us say this receive event
is e1 and t′ = ↓e1), e′ 
∈ f(∂r′(t′)) = f(t′). Thus r′ can decide if the received
event is new or old by referring to the f at the receive event.

Let e′ and e be r-update events such that t =↓e and e′ ∈ t \ F (r, t). Suppose
r uses the same label (r, 
) for e and e′. A replica r′′ can receive an event with
label (r, 
) from a replica r′ 
= r. This means that there is an r′-event e′′ such
that e′ ∈ f(↓e′′). (Note that replicas communicate their primary information
to others.) But condition 5 ensures that ϕr′′(e

′′) ∈ ∂r(t), so this send happens
before the label (r, 
) is reused.

Thus there is no ambiguity caused either by sends by the same replica or by
sends by different replicas. This shows that a bounded secondary information
function implies a bounded labelling solution. ��

5.1 Bounded Solution

In the gossip problem considered in [7,11], the primary information f at t is the
set {max r′(∂r(t)) | r, r′ ∈ R} along with some more information that ensures
that the gossip problem for f is solvable. A bounded solution for f is provided
in [11] when f itself is bounded, but under additional restrictions on the traces
of the system. A notion of acknowledgements is introduced, and all traces of the
system are required to have at most B unacknowledged messages.

In [11], replicas piggyback acknowledgements to previously received messages
in their subsequent broadcasts. Hence, the bound on unacknowledged messages
requires that replicas communicate with each other at regular intervals. Such a
solution would not work in CmRDTs, because replicas broadcast messages only
when they interact with a client. Hence, we need a stronger guarantee from the
underlying messaging system. One such condition is defined below.

Definition 19 (B-concurrency). A trace t is B-concurrent if for every e ∈
t, |{e′ ∈ t | e′ ‖ e}| ≤ B. A system is B-concurrent if all its traces are B-
concurrent.

The following theorem is the main result in this section. It implies (in conjunc-
tion with Theorem 18) that for a B-concurrent system and a bounded primary
information function f , if the gossip problem for f has a solution, then it has a
bounded solution.
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Theorem 20. If f is a bounded primary function defined on a B-concurrent
system, there is a bounded secondary information function for f .

Proof. Let the bound on f be M . To define the function F , we need the notion
of recent updates. An r-update event e is recent (in a trace t) if e ∈ f(∂r(t))
or there are at most B r-updates after e in ∂r(t). We define the function F as
follows: F (r, t) = {e ∈ ∂r(t) | e is a recent r-update event}.

Clearly |F (r, t)| ≤ M + B + 1 for any r and t, and conditions 1, 2 and 3 in
the definition of secondary information function easily hold.

Condition 4 is relatively simple. e′ ∈ (↓e \ F (r, ∂r(↓e))) implies that e′ 
∈
f(∂r(↓e)). Hence for any t′ such that e ∈ ∂r′(t′), by definition of a primary
information function, it is the case that e′ 
∈ f(∂r′(t′)).

Condition 5 is proved as follows. If e′ ∈ t\F (r, t), then there are B+1 r-update
events after e′. Suppose there is e′′ with e′ ∈ f(↓e′′) such that ϕr′′(e

′′) 
∈ ∂r(t),
for some replica r′′. Then there are more than B events concurrent with e′′,
which contradicts B-concurrency.

Thus whenever f is a primary information function with a bound M in a
B-concurrent system, there is a secondary information function F for f with
bound M +B + 1. ��

5.2 Bounding CmRDTs Using Generalized Gossip Problem

Definition 21. Let D = (V ,Q,U) be a CmRDT. We say that a function fD :
Tp → T is a specification-subtrace function iff:

∀q ∈ Q ∀t ∈ Tp ∀args ∈ Varity(q) : SpecD(q, args , t) = SpecD(q, args , fD(t))

Thus, a specification-subtrace function picks for every prime trace a subtrace
that is sufficient to answer every query of the CmRDT, as per its specification.
The identity map is a trivial specification-subtrace function for any CmRDT.

We now provide a sufficient condition for a CmRDT to have a bounded im-
plementation.

Theorem 22. A CmRDT D = (V ,Q,U) has a bounded implementation in
a distributed system whose underlying network guarantees B-concurrent traces
if there exists a locally computable specification-subtrace function fD that is a
bounded primary information function

Proof. From Theorem 20, we know that the generalized gossip problem has a
bounded solution in a distributed system whose traces are B-concurrent. The
bounded solution for the gossip problem with primary information function
fD maintains at every replica r in any trace t, fD(∂r(t)). Since fD is also a
specification-subtrace function for D, by definition, the information maintained
is sufficient to answer every query correctly as per the specification of D.

Thus, whenever a replica gets an update request u(args) from the client, it is
sufficient if it annotates the new event e with u(args) and invokes the bounded
solution to the generalized gossip problem. Also, it is sufficient to implement
each query operation q ∈ Q as per the specification of SpecD(q, args , fD(∂r(t))).
This provides a bounded implementation for D. ��
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Let us revisit the case of OR-Sets for which |V| ≤ K.

Definition 23. Let t ∈ Tp be any prime-ideal of an OR-Set. Let E(x, t) =
{e ∈ t | Args(e) = x ∧Op(e) ∈ U}. Let

E(t) = {
⋃
r∈R

max r(t
U )} ∪

⋃
x∈V

maxSet(∂r(t)
E(x,t)).

We define fORSet(t) = t
E(t).

From the definition of fORSet and the specification of OR-Sets presented ear-
lier in Section 3, the following result is evident:

Lemma 24. fORSet is a specification-subtrace function for OR-Sets.

We show that fORSet is a bounded primary information function.

Lemma 25. fORSet is a computable bounded primary information function.

Proof. In the following proof, we drop the subscript ORSet from fORSet and use
f , for ease of presentation.

Let t ∈ Tp be any prime ideal.
From the definition, f(t) is a subtrace of t consisting of only the maximal U

events corresponding to each element x ∈ V along with the maximal r-update
events for each replica r. Thus, f(t) ∈ G(t).

Let t = ↓e and e′ ∈ maxSet(t \ {e}). Let t′ = ↓e′. Now, an event e′′ ∈ f(t) iff
∃r ∈ R such that e′′ is an r-maximal update event in t or ∃x ∈ V such that e′′

is a maximal x-event in t. For an e′′ ∈ t′, since t′ ⊆ t, it is clear that if e′′ is a
maximal x-event in t then, e′′ is also a maximal x-event in t′. Similarly if e′′ ∈ t′
and e′′ is an r-maximal update event in t then e′′ is an r-maximal update event
in t′. Thus, e′′ ∈ f(t′). Hence, f(t) ∩ t′ ⊆ f(t′).

Thus we have shown that f is a primary information function.
For each replica r, there is one maximal r-update event in any trace t. For

each element x, there can be at most N maximal x-events in any prime ideal t.
Since |V| ≤ K, there can be at most KN events corresponding to the maximal
update events. Thus, in any prime ideal t, |f(t)| ≤ KN , so f is bounded.

Finally to show that f admits a solution to the generalized gossip problem, we
establish that f(t) can be locally computed from e, and

⋃
e′∈maxSet(t\{e}) f(↓e′).

We introduce the following notation which will be used below: For any prime
trace t′′, we write f(t′′) = (E′′,→′′) to denote that the set of events in f(t′′) is
E′′ and the trace order restricted to E′′ in f(t′′) is →′′.

Now, let Rep(e) = r. We consider the following cases:

Case e is an x-update event: Let {e′} = maxSet(t \ {e}). Let t′ = ↓e′, with
f(t′) = (E′,→′). Let Em = {e}∪E′ and→m =→′∪{(e′′, e) | e′′ ∈ E′}, with
tm = (Em,→m). It is easy to see that if e′′ ∈ f(t) then e′′ ∈ Em. Moreover,
since f(t′) ∈ G(t′) and t′ ⊆ t, the ordering on events of f(t′) is given by →′
which is consistent with their ordering in t. Finally e is a maximal event in
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t and hence is above other event in Em. Both these are captured in →m.
Hence we can compute f(t) by picking the subtrace of tm containing the
maximal r′ events for every r′ ∈ R and maximal y events for every y ∈ V .
Thus f(t) can be computed from f(t′) and e.

Case e is a receive event: Let {e′, e′′} = maxSet(t \ {e}). Let Rep(e′) = r
and Rep(e′′) = r′ Let t = ↓e, t′ = ↓e′ and t′′ = ↓e′′. We let f(t′) = (E′,→′)
and f(t′′) = (E′′,→′′).
By causal delivery, every event e′′′ ∈ t′′ \ {e′′} is already in t′. So if such
an e′′′ 
∈ f(t′) then e′′′ 
∈ f(t). Also, any event e′′′ ∈ (f(t′) ∩ t′′) \ f(t′′)
is not going to feature in f(t), from the definition of primary information.
Such an event can be identified correctly in f(t′) since it will be the case
that (e′′′,max r′(t

′)) ∈→′. Thus, the events required to compute f(t) are
Em = {e′′} ∪ E′ \ {e′′′ | e′′′ = max r′(t

′) ∨ e′′′ →′ max r′(t
′)}. Let →m=

(Em×Em)∩ (→′ ∪ →′′). Then, f(t) can be computed from tm = (Em,→m)
by picking the subtrace from tm consisting of the maximal r′′ events from
every replica r′′ and maximal x-events for every element x ∈ V . Thus f(t)
can be computed from f(t′), f(t′′) and e. ��

Hence, from Lemmas 24 and 25 we can conclude that an OR Set with a
bounded universe has a bounded implementation in a distributed system whose
underlying network guarantees B-concurrent traces.

We present the bounded implementation for OR-Sets via a bounded solution
for the generalized gossip problem in Algorithm 1 (page 370). The algorithm
stores the relevant information view of a replica in (V, P ). It uses a free set of
labels F which can be used to label a new update event at the replica and a
retired set of labels R (line 4) which keeps track of the labels that are no longer
relevant but might still be active in the system.

Lines 9–19 describe the generateNode() method that generates a new node
corresponding to the latest update event (Line 38). This method picks an unused
label from F (line 12) and increments the retired-duration of the labels in R (line
13). The labels which have been in the retired set for a duration of B-sends can
be recycled (Lines 15, 16). The node consists of the replica id, the label and the
private information that the client would have passed on to the replica (Line 18).
We shall later see that this private information will be the name of the update
function as well as the argument to it.

Helpers getRep() and getLabel() return the replica id and the label asso-
ciated with a node, respectively (Lines 21–29). Helper getMaximal() returns
the maximal events in the partial order (V ′, P ′) (Lines 31–35).

The send() method (Lines 37–41) creates a new node and computes the new
partial order with this new node as the maximal node (Lines 38–40). It locally
recomputes the value of the primary information (Line 41) and then broadcasts
the updated partial order to all the other replicas (Line 42). The receive()
method recomputes the relevant information based on the new information that
the replica has received.

recomputeRelevant() method merges the relevant information at the
replica along with the updated partial order that it has received and recomputes
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the relevant information from this new subtrace (Line 49). It then records the
nodes that werepresent in the relevant informationprior to recomputing but are no
longer present (Line 53 and 54). It retires the labels corresponding to these nodes
(Line 55). Finally it updates its primary information with the one that was com-
puted in Line 50 (Line 56).

The second part of the algorithm describes how OR Sets can be implemented
using the bounded solution to the gossip problem. Whenever a replica receives
an update request from the client, it invokes the send() method with the up-
date name and the argument as the private information (Lines 18–22). Lines
9–20 implement the specification-subtrace function for OR-Set that retains only
the maximal events corresponding to each element of the universe along with
the maximal events corresponding to each replica in the system. Lines 28–34
implement the exists query method that returns True if there is at least one
maximal node corresponding to the x that was added due to an add update
operation.

6 Applications to Verification

A bounded reference implementation can be used for verification. We outline
two scenarios in which such an implementation is useful.

CEGAR. Counterexample Guided Abstraction Refinement, or CEGAR, is an
iterative technique to verify reachability properties of software systems [12]. In
the CEGAR approach, one uses abstraction techniques from program analysis
and other domains to build a finite-state abstraction of a given implementation.
This abstraction is designed to over-approximate the behaviour of the original
system.

The finite-state approximation is run through a model-checker to verify if
the safety property is met. If no unsafe state is reachable, it means that the
original system is safe since the abstracted system over-approximates the actual
behaviour. On the other hand, if the model-checker asserts that an unsafe state
is reachable, the counterexample generated by the model-checker is executed on
the original system. If the counterexample is valid, a bug has been found. If the
counterexample is infeasible, the abstraction was too coarse and a refinement of
the abstraction is calculated. This process is iterated until a safe abstraction is
reached or a valid bug is detected.

As we have noted, implementations of replicated data types need to keep
track of metadata about past operations in order to reconcile conflicts. These
are typically done using unbounded objects such as counters or vector clocks. To
apply CEGAR to such an implementation, we can derive a finite state abstraction
and run it synchronously with our bounded reference implementation. We can
characterize each reachable state of the abstraction as legal or illegal depending
on whether or not it is query equivalent to the reference implementation. We
can then follow the usual CEGAR methodology outlined above.
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Algorithm 1. Bounded Reference Implementation

Bounded Reference Implementation

1 V : Set of nodes
2 P : Partial order on V
3 F : Set of available labels.
4 R: Set of pair of retired labels and

a modulo B+1 counter.
5 // E captures the relation ≺
6 // Each replica stores a copy of

V , E, F and R
7 initially ∅, ∅,L, ∅
8
9 helper generateNode(priv):

10 Returns v ∈ N
11 Let l ∈ F
12 Let F := F \ {l}
13 Let R′ := {(l′, c′ + 1) | (l′, c′) ∈ R}
14 Let F ′ := {(l′, c′) ∈ R′ | c′ = B}
15 R := R′ \ F ′

16 F := F ∪ {l′ | (l′, c′) ∈ F ′}
17 Let rep := myID()
18 Let v′ := (l, rep, priv)
19 return v′

20
21 helper getRep(v):
22 Returns the replica associated with a Node.
23 Let v = (l, r, p)
24 return r
25
26 helper getLabel(v):
27 Returns the replica associated with a Node.
28 Let v = (l, r, p)
29 return l
30
31 helper getMaximal(V ′, P ′):
32 Returns the set of maximal nodes in the

partial order
33 Let V max := {v ∈ V ′ |
34 ¬∃v′ ∈ V ′ : (v, v′) ∈ P ′}
35 return V max

36
37 generic send(priv):
38 Let v′ := generateNode(priv)
39 Let V ′ := V ∪ {v′}
40 Let P ′ := P ∪ {(v, v′) | v ∈ V }
41 recomputeRelevant(V ′, P ′)
42 Broadcast (V ′, P ′) to all other replicas
43
44 generic receive(V ′, P ′):
45 recomputeRelevant(V ′, P ′)

46 helper recomputeRelevant(V ′, P ′):
47 // Recomputes the relevant information
48 // in the partial order (V ∪ V ′, E ∪ P ′)
49 // and retires the irrelevant labels.
50 Let (V ′′, P ′′) := f(V ∪ V ′, P ∪ P ′)
51 Let {v′} := getMaximal(V ′, P ′)
52 Let rep := myId()
53 Let L := {getLabel(v) |
54 v∈V ∪ {v′}\V ′′, getRep(v)=rep}.
55 Let R := R ∪ {(l, 0) | l ∈ L}
56 (V, P ) := (V ′′, P ′′)

OR Set

1 helper getOp(v):
2 Let v = (l, r, (opname, x))
3 return opname
4
5 helper getArgs(v):
6 Let v = (l, r, (opname, x))
7 return x
8
9 helper fORSet (V

′, P ′):
10 For x ∈ V:
11 Let Vx := {v ∈ V ′ | getArgs(v) = x}
12 Let Px := P ′′ ∩ (Vx × Vx)
13 Let V max

x := getMaximal(Vx, Px)
14 For r ∈ R:
15 Let Vr := {v ∈ V ′ | getRep(v) = r}
16 Let Pr := P ′′ ∩ (Vr × Vr)
17 Let V max

r := getMaximal(Vr , Pr)
18 Let V ′′ :=

⋃
x∈V V max

x ∪
⋃

r∈R V max
r

19 Let P ′′ := P ′ ∩ (V ′′ × V ′′)
20 return (V ′′, P ′′)
21
22 update add(x):
23 send((add, x))
24
25 update delete(x):
26 send((delete, x))
27
28 query exists(x):

29 Let V add
x := {v ∈ V |

getArgs(v) = x ∧ getOpv = add}
30 If V add

x �= ∅:
31 Then
32 return True
33 Else:
34 return False

Testing of Distributed Systems. While verification approaches such as CE-
GAR can be used in a white box setting where we have access to internal details
of the implemenation under test, in a black box scenario we have to rely on
testing.

Effective testing of distributed systems is a challenging task. The first problem
is that we cannot typically test the system globally, so we have to apply tests
locally using notations such as TTCN [13]. Even when such a methodology is
available, there are two criteria that are difficult to establish for test suites:
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coverage and redundancy. In both cases, the main source of complexity is the
presence of concurrency. In a concurrent system, it is very difficult to estimate
if a test suite covers a reasonable set of reachable global states because of many
different linearizations possible. Secondly, it is not obvious to what extent tests
are overlapping, again because of reordering of independent events.

For the coverage problem, we can construct test suites that cover different
portions of the state space of the reference implementation. If this coverage is
widespread, we can have more confidence in the coverage of the implementation
under test. For redundancy, once again we can use the underlying independence
relation to identify when two tests overlap by checking how much the corre-
sponding traces overlap as partial orders. In the replicated data type scenario,
we may in fact want to generate redundant test cases that differ only in the
order of concurrent events in order to validate eventual consistency.

7 Conclusion and Summary

The theory of replicated data types is still at a formative stage. In early work [2,3]
eventually consistent replicated data types have been specified operationally, in
terms of a proposed implementation. This often leaves the actual behaviour of
the data type unclear under different combinations of concurrent updates.

This deficiency has been addressed in [6], which introduces a theory of declar-
ative specifications for replicated data types. However, the model proposed in [6]
is very general and hence ineffective for actual verification.

Most practical distributed systems provide strong guarantees on the underly-
ing message subsystem, such as causal delivery. In fact, causal delivery is assumed
to hold for the implementations described in [2, 3]. If we assume causal deliv-
ery, we have shown that we can drastically simplify the declarative framework
proposed in [6] and work with standard labelled partial orders.

Borrowing ideas from Mazurkiewicz trace theory, we have formulated a gen-
eralization of the gossip problem and shown that this can be used to derive
bounded implementations for replicated data types, provided we have an addi-
tional guarantee of bounded concurrency. Though bounded concurrency seems
like a very strong property, it is automatically achieved if we combine causal
message delivery with bounded message delays. The only complication that can
arise is from a replica crashing. However, if we assume that when a replica wakes
up from a crash, it first processes all pending receive actions before initiating any
sends, we retain bounded concurrency. Note that causal delivery is also infeasible
if we do not make similar assumptions about how a crashed process recovers.

Our main contribution is a systematic approach to construct bounded refer-
ence implementations for replicated data types. We have argued that this kind
of implementation is useful for both verification and testing.

In future work, we would like to explore further benefits of declarative spec-
ifications for replicated data types. In particular, one challenging problem is to
develop a theory in which we can compose such specifications to derive complex
replicated data types by combining simpler ones.
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Abstract. We report in this paper how we proved memory safety of
a complex Windows image parser written in low-level C in only three
months of work and using only three core techniques, namely (1) sym-
bolic execution at the x86 binary level, (2) exhaustive program path enu-
meration and testing, and (3) user-guided program decomposition and
summarization. We also used a new tool, named MicroX, for executing
code fragments in isolation using a custom virtual machine designed for
testing purposes. As a result of this work, we are able to prove, for the
first time, that a Windows image parser is memory safe, i.e., free of any
buffer-overflow security vulnerabilities, modulo the soundness of our tools
and several additional assumptions regarding bounding input-dependent
loops, fixing a few buffer-overflow bugs, and excluding some code parts
that are not memory safe by design. In the process, we also discovered
and fixed several limitations in our tools, and narrowed the gap between
systematic testing and verification.

1 Introduction

Systematic dynamic test generation [18,9] consists of repeatedly running a pro-
gram both concretely and symbolically. The goal is to collect symbolic con-
straints on inputs from predicates in branch statements along the execution,
and then to infer variants of the previous inputs, using a constraint solver, in
order to steer the next execution of the program toward an alternative program
path. By systematically repeating this process, the entire set of execution paths
of a program can, in principle, be explored. This approach to automatic test
generation has become popular over the last several years, and has been im-
plemented in many tools such as EXE [10], jCUTE [33], SAGE [21], Pex [36],
KLEE [8], BitBlaze [34], and Apollo [2] to name a few. These tools vary by the
programming languages, properties, and application domains they target, but
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they have all been successful in discovering new bugs missed by more conven-
tional techniques. Notably, SAGE is credited to have found roughly one third
of all the security bugs discovered by file fuzzing during the development of Mi-
crosoft’s Windows 7 [6]. Despite their success and popularity, the tools above
have never been used so far for program verification of a non-trivial application,
i.e., for proving the absence of specific classes of bugs.

In this paper, we show how we used and enhanced these techniques to prove
memory safety of the ANI Windows image parser. This parser is responsible for
processing structured graphics files to display “ANImated” cursors and icons on
more than a billion PCs. Such animated icons are ubiquitous in practice (like the
spinning ring or hourglass on Windows), and their domain of use ranges from web
pages and blogs, instant messaging and e-mails, to presentations and video clips.
The ANI parser consists of thousands of lines of low-level C code spread across
hundreds of functions. Yet, this parser is sequential (no concurrency or real-time
constraints). It is also of security interest: in 2007, a critical out-of-band security
patch was released for code in this parser (MS07-017) costing Microsoft and its
users millions of dollars [35,24]. A motivation for this work was to determine
whether the ANI parser is now free of security-critical buffer overflows.

We show how systematic dynamic test generation can be applied and extended
to program verification. To achieve this, we address the two main limitations of
dynamic test generation, namely imperfect symbolic execution and path ex-
plosion. For the former, we extended the tool SAGE to improve its symbolic
execution engine so that it could handle all the x86 instructions of that specific
ANI parser. To deal with path explosion, we used a combination of function
inlining, restricting the bounds of input-dependent loops, and function summa-
rization. We also used a new tool, named MicroX, for executing code fragments
in isolation using a custom virtual machine designed for testing purposes. We
emphasize that the focus of our work is restricted to proving the absence of
attacker-controllable memory-safety violations (as precisely defined in Sect. 3).

At a high-level, the main contributions of this paper are: (1) We report on
the first application of systematic dynamic test generation for verifying a real,
complex, security-critical, entire program. Our work sheds light on the shrinking
gap between systematic testing and verification in a model-checking style. (2) To
our knowledge, this is the first time that an operating-system (Windows or other)
image parser has been proven free of security-critical buffer overflows. (3) We
are also not aware of any past attempts at program verification without using
any static program analysis; all the techniques and tools used in this work are
exclusively dynamic.

This paper is organized as follows. In Sect. 2, we recall basic principles of system-
atic dynamic test generation and compositional symbolic execution, and briefly
present the SAGE and MicroX tools used in this work. In Sect. 3, we precisely
define memory safety, show how to verify it compositionally, and discuss how we
used and extended SAGE and MicroX for verification. Sect. 4 presents an overview
of the ANI Windows image parser. In Sect. 5, we present our verification results
in detail. During the course of this work, we discovered several memory-safety
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violations in the ANI parser code, which are discussed in Sect. 6. We review re-
lated work in Sect. 7 and conclude in Sect. 8.

2 Background

2.1 Systematic Dynamic Test Generation

Systematic dynamic test generation [18,9] consists of repeatedly running a pro-
gram both concretely and symbolically. The goal is to collect symbolic con-
straints on inputs from predicates in branch statements along the execution,
and then to infer variants of the previous inputs, using a constraint solver, in
order to steer the next execution of the program toward an alternative path.

Symbolic execution means executing a program with symbolic rather than
concrete values. Assignment statements are represented as functions of their
(symbolic) arguments, while conditional statements are expressed as constraints
on symbolic values. Side-by-side concrete and symbolic executions are performed
using a concrete store M and a symbolic store S, which are mappings from
memory addresses (where program variables are stored) to concrete and symbolic
values, respectively. For a program path w, a path constraint φw is a logic formula
that characterizes the input values for which the program executes along w. Each
symbolic variable appearing in φw is, thus, a program input. Each constraint is
expressed in some theory1 T decided by a constraint solver, i.e., an automated
theorem prover that can return a satisfying assignment for all variables appearing
in constraints it proves satisfiable.

All program paths can be enumerated by a search algorithm that explores
all possible branches at conditional statements. The paths w for which φw is
satisfiable are feasible, and are the only ones that can be executed by the actual
program provided the solutions to φw characterize exactly the inputs that drive
the program through w. Assuming that the constraint solver used to check the
satisfiability of all formulas φw is sound and complete, this use of symbolic exe-
cution for programs with finitely many paths amounts to program verification.

2.2 Compositional Symbolic Execution

Systematically testing and symbolically executing all feasible program paths
does not scale to large programs. Indeed, the number of feasible paths can be
exponential in the program size, or even infinite in the presence of loops with
an unbounded number of iterations. This path explosion can be alleviated by
performing symbolic execution compositionally [15,1].

In compositional symbolic execution, a summary φf for a function (or any pro-
gram sub-computation) f is defined as a logic formula over constraints expressed
in theory T . Summary φf can be generated by symbolically executing each path
of function f , then generating an input precondition and output postcondition
1 A theory is a set of logic formulas.
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for each path, and bundling together all path summaries in a disjunction. Pre-
cisely, φf is defined as a disjunction of formulas φwf

of the form

φwf
= prewf

∧ postwf

where wf denotes an intraprocedural path in f , prewf
is a conjunction of con-

straints on the inputs of f , and postwf
a conjunction of constraints on the

outputs of f . An input to a function f is any value that can be read by f , while
an output of f is any value written by f . Therefore, φwf

can be computed au-
tomatically when symbolically executing the intraprocedural path wf : prewf

is
the path constraint along path wf but expressed in terms of the function inputs,
while postwf

is a conjunction of constraints, each of the form v′ = S(v), where v′

is a fresh symbolic variable created for each program variable v modified during
the execution of wf (including the return value), and where S(v) denotes the
symbolic value associated with v in the program state reached at the end of wf .
At the end of the execution of wf , the symbolic store is updated so that each
such value S(v) is replaced by v′. When symbolic execution continues after the
function returns, such symbolic values v′ are treated as inputs to the calling
context. Summaries can be re-used across different calling contexts.

For instance, given the function is_positive below,
int is_positive(int x) {

if (x > 0) return 1;
return 0;

}

a summary φf for this function can be

φf = (x > 0 ∧ ret = 1) ∨ (x ≤ 0 ∧ ret = 0)

where ret denotes the value returned by the function.
Symbolic variables are associated with function inputs (like x in the example)

and function outputs (like ret in the example) in addition to whole-program
inputs. In order to generate a new test to cover a new branch b in some func-
tion, all the previously known summaries can be used to generate a formula φP

symbolically representing all the paths discovered so far during the search. By
construction [15], symbolic variables corresponding to function inputs and out-
puts are all bound in φP , and the remaining free variables correspond exclusively
to whole-program inputs (since only those can be controlled for test generation).

For instance, for the program P below,
#define N 100
void P(int s[N]) { // N inputs

int i, cnt = 0;
for (i = 0; i < N; i++) cnt = cnt + is_positive(s[i]);
if (cnt == 3) error(); // (*)

}

a formula φP to generate a test covering the then branch (*) given the above
summary φf for function is_positive can be

(ret0 + ret1 + . . . + retN−1 = 3)∧
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∧

0≤i<N

((s[i] > 0 ∧ reti = 1) ∨ (s[i] ≤ 0 ∧ reti = 0))

where reti denotes the return value of the ith call to function is_positive.
Even though program P has 2N feasible whole-program paths, compositional test
generation can cover symbolically all those paths with at most 4 test inputs: 2
tests to cover both branches in function is_positive plus 2 tests to cover both
branches of the if statement (*). In this example, compositionality avoids an
exponential number of tests and calls to the constraint solver at the cost of using
more complex formulas with more disjunctions.

When, where, and how compositionality is worth using in practice is still an
open question (e.g., [15,1,5,26]), which we discuss later in this paper.

2.3 SAGE and MicroX

Our ANI verification work was carried out using extensions of two existing tools:
SAGE [21] and MicroX [16]. SAGE is a whitebox fuzzer for security testing,
which implements systematic dynamic test generation and performs dynamic
symbolic execution at the x86 binary level. It is optimized to scale to very
large execution traces (billions of x86 instructions) and programs (like Excel).
SAGE also implements a limited form of summaries [19] as well as specialized
forms of summaries for dealing with floating-point computations [17] and input-
dependent loops [22]. The feature for floating-point computations was not used
in this work as the ANI parser considered here does not include floating-point
instructions, while the latter feature is too limited to deal with all the ANI
input-dependent loops—we handled those differently as explained in Sect. 5.2.

MicroX is a newer tool [16] for executing code fragments in isolation, without
user-provided test drivers or input data, using a custom virtual machine (VM)
designed for testing purposes. Given any user-specified code location in an x86
binary, the MicroX VM starts executing the code at that location, intercepts all
memory operations before they occur, allocates memory on-the-fly in order to
perform those read/write memory operations, and provides input values accord-
ing to a customizable memory policy, which defines what read memory accesses
should be treated as inputs. By default, an input is defined as any value read
from an uninitialized function argument, or through a dereference of a previous
input (recursively) that is used as an address. This memory policy is typically
adequate for testing C functions. No test driver/harness is required: MicroX
discovers automatically and dynamically the input/output signature of the code
being run. Input values are provided as needed along the execution and can be
generated in various ways, e.g., randomly or using some other test-generation
tool like SAGE. When used with SAGE, the very first test inputs are generated
randomly; then, SAGE symbolically executes the code path taken by the given
execution, generates a path constraint for that (concrete) execution, and solves
new alternate path constraints that, when satisfiable, generate new input values
guiding future executions along new paths.
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3 Proving Memory Safety

3.1 Defining Memory Safety

To prove memory safety during systematic dynamic test generation, all memory
accesses need to be checked for possible violations. Whenever a memory address
a stored in a program variable v (i.e., a = M(v)) is accessed during execution,
the concrete value a of the address is first checked “passively” to make sure
it points to a valid memory region mra (as done in standard tools like Purify,
Valgrind and AppVerifier); then, if this address a was obtained by computing an
expression e that depends on an input (i.e., e = S(v)), the symbolic expression
e is also checked “actively” by injecting a new bounds-checking constraint

0 ≤ (e − mra.base) < mra.size

in the path constraint to make sure other input values cannot trigger a buffer
overflow or underflow at this point of the program execution [10,20]. How to
keep track of the base address mra.base and size mra.size of each valid memory
region mra during the program execution is discussed in work on precise symbolic
pointer reasoning [14].

As an example, consider the following function:
void buggy(int x) {

char* buf[10];
buf[x] = 1;

}
If this function is run with x=1 as input, the concrete execution is memory
safe as the memory access buf[1] is in bounds. In order to force systematic
dynamic test generation to discover that this program is not memory safe, it is
mandatory to inject the constraint 0 ≤ x < 10 in the current path constraint
when the statement buf[x]=1 is executed. This constraint is later negated and
solved leading to other input values for x, such as -1 or 10, with which the
function will be re-tested and caught violating memory safety.

A program execution w is called attacker memory safe [17] if every memory
access during w in program P , which is extended with bound checks for all
memory accesses, is either within bounds, i.e., memory safe, or input indepen-
dent, i.e., its address has no input-dependent symbolic value, and hence, is not
controllable by an attacker through the untrusted input interface. A program is
called attacker memory safe if all its executions are attacker memory safe.

Thus, the notion of attacker memory safety is weaker than traditional memory
safety: a memory-safe program execution is always attacker memory safe, while
the converse does not necessarily hold. For instance, an attacker-memory-safe
program might perform a flawless and complete validation of all its untrusted
inputs, but might still crash (for instance, by accessing the address NULL) in
error-handling code that is executed exclusively after a trusted system call fails.

Security testing is primarily aimed at checking attacker memory safety since
buffer overflows that cannot be controlled by the attacker are not security critical.
In the rest of this paper, we focus on attacker memory safety, but we will often
refer to it simply as memory safety for convenience.
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3.2 Proving Attacker Memory Safety Compositionally

In order to prove memory safety compositionally, bounds-checking constraints
need to be recorded inside summaries and evaluated for each calling context.

Consider the following function bar:
void bar(char* buf, int x) {

if ((0 <= x) && (x < 10)) buf[x] = 1;
}

If we analyze bar in isolation without knowing the size of the input buffer buf,
we cannot determine whether the buffer access buf[x] is memory safe. When
we summarize function bar, we include in the precondition of the function that
bar accesses the address buf+x when the condition (0 ≤ x) ∧ (x < 10) holds. A
summary for this function executed with, say, x=3 can then be:

(0 ≤ x) ∧ (x < 10) ∧ (0 ≤ x < mrbuf.size) ∧ (buf[x] = 1)
Later, when analyzing higher-level functions calling bar, these bounds-checking
constraints can be checked because the buffer bounds will then be known. For
instance, consider the following function foo that calls bar:

void foo(int x) {
char *buf = malloc(5);
bar(buf, x);

}
If foo calls bar with x=3, the precondition of the above path summary for bar is
satisfied. The bounds-checking constraint can be simplified with mrbuf.size = 5
in this calling context and negated to obtain the new path constraint,

(0 ≤ x) ∧ (x < 10) ∧ ¬(0 ≤ x < 5)
which after simplification is

(0 ≤ x) ∧ (x < 10) ∧ ((x < 0) ∨ (x ≥ 5))
This constraint is satisfiable with, say, x = 7, and running foo and bar with
that new input value will then detect a memory-safety violation in bar.

To sum up, the procedure we use for proving memory safety compositionally
is as follows. We record bounds-checking constraints in the preconditions of
intraprocedural path-constraint summaries. Whenever a path summary is used
in a specific calling context, we check whether its precondition contains any
bounds-checking constraint. If so, we check whether the size of the memory
region appearing in the bounds-checking constraint is known. If this is the case,
we generate a new alternate path constraint defined as the conjunction of the
current path constraint and the negation of the bounds-checking constraint,
where the size of the memory region is replaced by the current size. We then
attempt to solve this alternate path constraint with the constraint solver, which
then generates a new test if the constraint is satisfiable.

For real C functions, the logic representations of their pre- and postconditions
can quickly become very complex and large. We show later in this paper that,
by using summarization sparingly and at well-behaved function interfaces, these
representations remain tractable.

We have implemented in SAGE the compositional procedure for proving mem-
ory safety described in this section.
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3.3 Verification with SAGE and MicroX

In order to use SAGE for verification, we turned on maximum precision for
symbolic execution: all runtime checkers (for buffer overflows and underflows,
division by zero, etc.) were turned on as well as precise symbolic pointer rea-
soning [14], any x86 instruction unhandled by symbolic execution was reported,
every path constraint was checked to be satisfiable before negating constraints,
we checked that our constraint solver, the Z3 automated theorem prover [13],
never timed out on any constraint, and we also checked the absence of any diver-
gence, which occurs whenever a new test generated by SAGE does not follow the
expected program path. When all these options are turned on and all the above
checks are satisfied, symbolic execution of an individual path has perfect preci-
sion: path constraint generation and solving is sound and complete (Sect. 2.1).

Moreover, we turned off all the unsound state-space pruning techniques and
heuristics implemented in SAGE to limit path explosion, such as limiting the
number of constraints generated for each program branch and constraint sub-
sumption, which eliminates constraints logically implied by other constraints
injected at the same program branch (most likely due to successive iterations of
an input-dependent loop) using a cheap syntactic check [21]. How we dealt with
path explosion in this work is discussed in Sect. 5.2 and 5.3.

As we describe in Sect. 5, we also used MicroX in conjunction with SAGE in
order to prove memory safety of individual ANI functions in isolation. Memory
safety of a function is proven for any calling context (soundly and completely) by
MicroX and SAGE if all possible function input values are considered, symbolic
execution of every function path is sound and complete, all function paths can
be enumerated and tested in a finite (and small enough) amount of time, and
all the checks defined above are satisfied for all executions. Instead of manually
writing a unit test driver that explicitly identifies all input parameters (and their
types) for each function, MicroX provided this functionality automatically [16].

During this work, many functions were not verified at first for various reasons:
we discovered and fixed several x86 instructions unhandled by SAGE’s symbolic
execution engine, we also fixed several root causes of divergences (by provid-
ing custom summaries for nondeterministic-looking functions, like malloc and
memcpy, whose execution paths depend on memory alignment), and we fixed a
few imprecision bugs in SAGE’s code. These SAGE limitations were much more
easily identified when verifying small functions in isolation with MicroX rather
than during whole-application fuzzing. After removing those limitations, we were
able to verify that many individual ANI functions are memory safe (Sect. 5.1).
The remaining functions could not be verified so easily mostly because of path
explosion due to input-dependent loops (Sect. 5.2) or due to too many paths in
functions lower in the callgraph (Sect. 5.3).

4 The ANI Windows Parser

The ANI Windows parser is written mostly in C, while the remaining code is
written in x86 assembly. The implementation involves at least 350 functions



Proving Memory Safety of the ANI Windows Image Parser 381

defined in 5 Windows DLLs. The parsing of input bytes from an ANI file takes
place in at least 110 functions defined in 2 DLLs, namely in user32.dll, which
is responsible for 80% of the parsing code, and in gdi32.dll, which is responsi-
ble for the remaining 20%2. user32.dll creates and manages the Windows user
interface, such as windows, mouse events and menus. Many functions defined in
user32.dll call into gdi32.dll, which is the graphics device interface associ-
ated with drawing and handling two-dimensional objects as well as managing
fonts. There are 47 functions defined in user32.dll that implement function-
ality of the ANI parser. These functions alone compile to approximately 3,050
x86 instructions.

5 Verification Results

We proved memory safety of the ANI Windows image parser by targeting the
47 functions that are defined in user32.dll and are responsible for 80% of the
parsing code (Sect. 4). The remaining 20% refers to at least 63 gdi32.dll func-
tions that are called (directly or indirectly) by the 47 user32.dll functions. In
addition to those user32.dll and gdi32.dll functions, the parser also exercises
code in at least 240 other functions (for a total of at least 350 functions). As
shown by sound and complete symbolic execution, all these other functions do
not (directly or indirectly) parse any input bytes from an ANI file and are by def-
inition attacker memory safe. For the purpose of this work, the gdi32.dll and
all these other functions can be viewed as inlined to the user32.dll functions,
which are the top-level functions of the parser. Verifying those 47 user32.dll
functions while inlining all remaining sub-functions is, thus, equivalent to prov-
ing attacker memory safety of the entire ANI parser. The callgraph of the 47
user32.dll functions is shown in Fig. 1. The functions are grouped depending
on the architectural component of the parser to which they belong. Note that
there is no recursion in this callgraph.

In this section, we describe how we proved memory safety of the ANI parser
using compositional exhaustive testing. Our verification results were obtained
with a 32bit Windows 7 version of the parser and are presented in three stages.

5.1 Stage 1: Bottom-Up Strategy

For verifying the ANI parser, we started with a bottom-up strategy with respect
to the callgraph of Fig. 1. We wanted to know how many functions of a real
code base can be proven memory safe for any calling context by simply using
exhaustive path enumeration. Our setup for this verification strategy consisted
in attempting to verify each user32.dll function (one at a time) using MicroX
with SAGE starting from the bottom of the callgraph. If all execution paths
of the function were explored in a reasonable amount of time, i.e., less than 12
hours, and no bugs or other incompleteness-check violations were ever detected
2 These percentages were obtained by comparing the number of constraints on sym-

bolic values that were generated by SAGE for each of the 2 DLLs.
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Fig. 1. The callgraph of the 47 user32.dll functions implementing the ANI parser
core. Functions are grouped based on the architectural component of the parser to
which they belong. The different shades and lines of the boxes denote the verifica-
tion strategy we used to prove memory safety of each function. The boxes with the
lighter shade and dotted lines indicate functions verified with the bottom-up strategy
(Stage 1), the medium shade and single solid line functions verified by restricting the
bounds of input-dependent loops (Stage 2), and the darker shade and double solid
lines functions verified with the top-down strategy (Stage 3). Functions are annotated
with the number of their execution paths. A + indicates that a function contains too
many execution paths to be exhaustively enumerated within 12 hours without using
additional techniques for controlling path explosion.

(Sect. 3.3), we marked the function as memory safe. To our surprise, 34 of the
47 functions shown in Fig. 1 could already be proven memory safe this way, and
are shown with the lighter shade and dotted lines in the figure.

An exception was the StringCchPrintfW function of the Bitmap conversion
component. This function writes formatted data to a specified string, which
is stored in a destination buffer. Exploring all execution paths of function
StringCchPrintfW that may be passed a destination buffer of any length and
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a format string with any number of format specifiers does not complete in 12
hours, and is actually very complex.

Inlining. To deal with this function, we just inlined it to each of its callers.
Inlining a function means replacing the call sites of the function with the function
body. In our context, inlining a function means that the function being inlined
is no longer treated as an isolated unit that we attempt to verify for any (all)
calling contexts, but instead, it is being included in the unit defined by its
caller function(s) and proven only for the specific calling context defined in these
caller function(s). For instance, function LoadICSLibrary, which takes no input
arguments, calls function StringCchPrintfW. By inlining StringCchPrintfW to
LoadICSLibrary, we can exercise the single execution path in LoadICSLibrary
and prove attacker memory safety of both functions.

Verification Results. With the simple bottom-up strategy of this section, we
were already able to prove attacker memory safety of 34 user32.dll functions
out of 47, or 72% of the top-level functions of the ANI Windows parser. So far, we
had to inline only one function, namely StringCchPrintfW to LoadICSLibrary
of the Bitmap conversion component. The gdi32.dll functions (not shown in
Fig. 1), which are called by the 47 user32.dll functions of Fig. 1, were also
inlined (recursively) in those user32.dll functions. The boxes with the lighter
shade and dotted lines of Fig. 1 represent the 34 functions that were verified with
the bottom-up strategy. All these functions, except for those that were inlined,
were verified in isolation for any calling context. This implies that all bounds for
all loops (if any) in all those functions either do not depend on function inputs,
or are small enough to be exhaustively explored within 12 hours. Recall that
accesses to function input buffers are not yet proven memory safe (Sect. 3.2).

5.2 Stage 2: Input-Dependent Loops

For the remaining 13 user32.dll functions of the ANI parser, path explosion
is too brutal and exhaustive path enumeration does not terminate in 12 hours.
Therefore, during the second stage of the verification process, we decided to
identify and restrict the bounds of input-dependent loops that might have been
preventing us from verifying functions higher in the callgraph of the parser in
Stage 1. We define an input-dependent loop as a loop whose number of iterations
depends on bytes read from an ANI file, i.e., whole-program inputs. In contrast,
when the number of iterations of a loop inside a function depends on function
inputs that are not whole-program inputs, path explosion due to that loop can
be eliminated by inlining that function to its caller(s).

Restricting Input-Dependent Loop Bounds. In order to control path ex-
plosion due to input-dependent loops, we manually fixed the bounds, i.e., the
number of iterations, of those loops by assigning a concrete value to the pro-
gram variable(s) containing the input bound(s). We extended MicroX for the
user to easily fix the value of arbitrary x86 registers or memory addresses. Natu-
rally, fixing an input value to a specific concrete value is like specifying an input
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Table 1. All the input-dependent loop bounds fixed during the verification of the
ANI parser. For each loop bound, the table shows the corresponding number of bytes
in an ANI input file, the component of the parser containing loops with this bound
(numbered as in Fig. 1), and the maximum value of the bound that we could verify in
12 hours.

Type of Component Maximum
loop bound loop bound

Frames 5 232
(4 bytes)

Steps 5 232
(4 bytes)

Images/frame 3 1(2 bytes/frame)
File size 1 110

precondition, and the verification of memory safety becomes restricted to calling
contexts satisfying that precondition.

As an example, consider function CreateAniIcon of the ANI creation com-
ponent of the parser. CreateAniIcon calls functions NtUserCallOneParam and
NtUserDestroyCursor, which have one execution path each, as well as func-
tion _SetCursorIconData, which has two execution paths as shown in Fig. 1.
Despite the very small number of paths in its callees, function CreateAniIcon
contains too many paths to be explored in 12 hours, which is indicated by the
+ in Fig. 1. This path explosion is due to two input-dependent loops inside that
function. By fixing the bounds of these loops to any value from 1 to 232, the
number of execution paths in the loops of function CreateAniIcon is always 4.
Thus, we can prove memory safety of CreateAniIcon for any such fixed number
of iterations of these loops.

Verification Results. During this stage of the verification process, we proved
memory safety of only one additional user32.dll function of the ANI parser,
namely CreateAniIcon. The box in Fig. 1 with the medium shade and single
solid line represents function CreateAniIcon that was verified in Stage 2.

Tab. 1 presents a complete list of the input-dependent loop bounds that we
fixed during the entire verification of the ANI parser. As described above, to verify
memory safety of function CreateAniIcon of the ANI creation component (com-
ponent 5 of Fig. 1), we had to fix two input-dependent loops using two whole-
program input parameters (namely, frames and steps). In the remainder of this
work (Sect. 5.3), we also had to fix two other whole-program input parameters to
control a few other input-dependent loops. First, in the Reading icon guts com-
ponent (component 3 of Fig. 1), there are three other input-dependent loops, lo-
cated in functions ReadIconGuts and GetBestImage. The number of iterations
of all those loops depends on the number of images contained in each icon, which
corresponds to 2 bytes per frame of an ANI file. (A single icon may consist of mul-
tiple images of different sizes and color depths.) To limit path explosion due to
those three loops, we had to fix the number of images per icon of the animated
cursor to a maximum of 1. Second, in the Reading and validating file component
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(component 1 of Fig. 1), there are two input-dependent loops, located in functions
LoadCursorIconFromFileMap and LoadAniIcon, whose number of iterations de-
pends on the size of the input file, which we had to restrict to a maximum of 110
bytes.

It is perhaps surprising that the number of input-dependent loop bounds in the
entire parser is limited to a handful of input parameters read from an ANI file, for
a total of around 10 bytes (plus the input file size) as shown in Tab. 1.

5.3 Stage 3: Top-Down Strategy
For the remaining 12 user32.dll functions still to be verified in the higher-level
part of the callgraph of Fig. 1, path explosion was still too severe even after using
inlining and fixing input-dependent loops. Therefore, we adopted a different, top-
down strategy using sub-function summaries in order to prove memory safety
compositionally as described in Sect. 2.2 and 3.

Summarization. As we explained earlier, summarizing sub-functions can alle-
viate path explosion in those sub-functions at the expense of computing re-usable
logic summaries that capture function pre- and postconditions expressed in terms
of function inputs and outputs, respectively. For this trade-off to be attractive,
it is therefore best to summarize sub-functions (1) that contain many execution
paths and (2) whose input/output interfaces with respect to higher-level func-
tions are not too complex so that the logic encoding of their summaries remains
tractable. Moreover, to prove memory safety of a sub-function with respect to
its input buffers, all bounds-checking constraints inside that sub-function must
be included in the precondition of its summary (Sect. 3.2).

Verification Results. To verify the remaining 12 top-level user32.dll func-
tions, we manually devised the following summarization strategy based on the
previous data about the numbers of paths in verified sub-functions (i.e., the num-
bers of paths in the boxes of Fig. 1) and by examining the input/output interfaces
of the remaining functions. Specifically, we verified one by one the top-level func-
tion of each remaining component of the parser, namely function ReadIconGuts
of the Reading icon guts component, ConvertDIBIcon of the Bitmap conversion
component, and LoadCursorIconFromFileMap of the Reading and validating file
component as follows (since the Chunk extraction and ANI creation components
had already been verified during the previous stages).

Verification of ReadIconGuts. (Reading icon guts component) We fixed the
bounds of the input-dependent loops of this component to a single loop itera-
tion (Tab. 1) as discussed in Sect. 5.2, and summarized function MatchImage.
This function only returns an integer (a “score”) that does not influence the
control-flow execution of its caller GetBestImage for one loop iteration, so its
visible postcondition postf is very simple. Moreover, MatchImage takes only one
buffer as input, therefore the precondition of its summary includes only bounds-
checking constraints for that buffer. In its caller GetBestImage, the size of this
buffer is always constant and equal to the size of a structure, so MatchImage is at-
tacker memory safe. Overall, when restricting the bounds of the input-dependent
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loops in the Reading icon guts component, summarizing MatchImage, and inlin-
ing all the other functions below it in the callgraph, ReadIconGuts contained
468 execution paths that are explored by our tools in 21m 53s.

Verification of ConvertDIBIcon. (Bitmap conversion component) In a similar
way, we verified this function after summarizing sub-function CopyDibHdr, whose
summarization is also tractable in practice (details not shown here). After sum-
marization, ConvertDIBIcon contains 28 execution paths exercised in 1m 58s.
Note that, in the Bitmap conversion component, there are no input-dependent
loops; although sub-function ConvertPNGToDIBIcon has loops whose numbers
of iterations depend on this function’s inputs and therefore could not be verified
in isolation, inlining it to its caller ConvertDIBIcon eliminated this source of
path explosion and it was then proven to be attacker memory safe.

Verification of LoadCursorIconFromFileMap. (Reading and validating file com-
ponent) This is the very top-level function of the parser and the final piece of
the verification puzzle. Since this final step targets the verification of the entire
parser, it clearly requires the use of summarization to alleviate path explosion.

Fortunately, and perhaps surprisingly, after closely examining the implemen-
tation of the ANI parser’s components, we realized that it is common for their
output to be a single “success” or “failure” value. In case “failure” is returned,
the higher-level component typically terminates. In case “success” is returned,
the parsing proceeds but without reading any other sub-component outputs and
with reading other higher-level inputs (such as other bytes that follow in the
input file), i.e., completely independently of the specific path taken in the sub-
component being summarized. Therefore, the visible postcondition of function
summaries with such interfaces is very simple: a success/failure value. This is
the case for the top-level functions of the lower-level components Reading icon
guts, Bitmap conversion, and ANI creation. This was not the case for the Chunk
extraction component, which mainly consists of auxiliary functions but does not
significantly contribute to path explosion and was not summarized.

More specifically, for the verification of LoadCursorIconFromFileMap, we
used three summaries for the following top-level functions of sub-components:

– ReadIconGuts, which returns a pointer to a structure that is checked for
nullness in its callers. Then, caller LoadCursorIconFromFileMap returns null
when this pointer is null. In caller ReadIconFromFileMap, in case the pointer
is non-null, it is passed as argument to ConvertDIBIcon, which has already
been verified for any calling context as described above.

– ConvertDIBIcon: case similar to ReadIconGuts.
– CreateAniIcon, which also returns a pointer to a structure. If this pointer

is null, the parser fails and caller LoadAniIcon emits an error message:
if (frames != 0) ani = CreateAniIcon(...);
if (ani == NULL) EMIT_ERROR("Invalid icon");

Otherwise, the pointer is returned by LoadAniIcon and subsequently by the
top-level function of the parser.
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Fig. 2. The number of execution paths in the top-level function
LoadCursorIconFromFileMap of the ANI parser and the time (in seconds) it takes
to exercise these paths versus the number of input bytes when summarizing components
Reading icon guts, Bitmap conversion, and ANI creation

Function LoadCursorIconFromFileMap also has an input-dependent loop
whose number of iterations depends on the size of the input file being read
and containing the ANI file to be parsed. By summarizing the top-level function
of the above three lower-level components and fixing the file size, we were able
to prove memory safety of the parser up to a file size of 110 bytes in less than
12 hours. Fig. 2 shows the number of execution paths in the parser as well as
the time it takes to explore these paths when summarizing components Reading
icon guts, Bitmap conversion, and ANI creation and controlling the file size.

6 Memory-Safety Bugs

In reality, the verification of the ANI Windows parser was slightly more compli-
cated than presented in the previous section because the ANI parser is actually
not memory safe! Specifically, we found three types of memory-safety violations
during the course of this work:

– real bugs (fixed in the latest version of Windows),
– harmless bugs (off-by-one non-exploitable buffer overflows),
– code parts not memory safe by design.

We briefly discuss each of these memory-safety violations. Details are omitted
on purpose.

Real Bugs. We found several buffer overflows all related to the same root cause.
Function ReadIconGuts of the Reading icon guts component allocates memory
for storing a single icon extracted from the input file and returns a pointer to this
memory. The allocated memory is then cast to a structure, whose fields are read
for accessing sub-parts of the icon, such as its header. However, the size of an
icon, and therefore the size of the allocated memory, depends on the (untrusted)
declared size of the images that make up the icon. These sizes are declared in
the ANI file and might not correspond to the actual image sizes. Consequently,
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if the declared size of the images is too small, then the size of the allocated
memory is too small, and there are buffer overflows when accessing the fields of
the structure located beyond the allocated memory for the icon. These buffer
overflows have been fixed in the latest version of Windows, but are believed to
be hard to exploit and hence not security critical.

Harmless Bugs. We also found several harmless buffer overflows related to
the bugs described above. For instance, function ConvertPNGToDIBIcon of the
Bitmap conversion component converts an icon in PNG format to DIB (Device
Independent Bitmap), and also takes as argument a pointer to the above struc-
ture for the icon. To determine whether an icon is in PNG format,
ConvertPNGToDIBIcon checks whether the icon contains the 8-byte PNG signa-
ture. However, the allocated memory for the icon may be smaller than 8 bytes,
in which case there can be a buffer overflow. Still, on Windows, every memory
allocation (call to malloc) always results in the allocation of a reserved memory
block of at least 8 bytes. So technically, accessing any buffer buf of size less than
8 up to buf+7 bytes is not a buffer overflow according to the Windows runtime
environment—such buffer overflows are harmless to both reliability and security.

Code Parts Not Memory Safe by Design. Finally, we found memory-
safety violations that were expected and caught as runtime exceptions using
try/except statements. For instance, CopyDibHdr of the Bitmap conversion
component copies and converts an icon header to a common header format. The
size of the memory that is allocated in CopyDibHdr for copying the icon header
depends on color information defined in the header itself. This color information
is read from the input file, and is therefore untrusted. Specifically, it can make
the parser allocate a huge amount of memory, which is often referred to as a
memory spike. Later, the actual header content is copied into this memory. To
check whether the declared size matches the actual size, CopyDibHdr uses a try
statement to probe the icon header in chunks of 4K bytes, i.e., the minimum page
size, to ensure that the memory is readable and properly initialized. While prob-
ing the icon header inside the try statement, the parser may access unallocated
memory beyond the bounds of the header, which is a memory-safety violation.
However, this violation is expected to be caught in an except statement, which
aborts parsing in higher-level functions.

The verification results of Sect. 5 were obtained after fixing or ignoring the
memory-safety bugs discussed in this section. Those results are therefore sound
only with respect to these additional assumptions.

7 Other Related Work

Traditional interactive program verification, based on static program analy-
sis, verification-condition generation, and theorem proving, provides a broader
framework for proving more complex properties of a larger class of programs but
at the expense of more work from the user. For instance, the VCC [12] project
verified the functional correctness, including memory safety and race freedom, of
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the Microsoft Hyper-V hypervisor [27], a piece of concurrent software (100K lines
of C, 5K lines of assembly), and required more than 13.5K lines of source-code
annotations for specifying contracts, loop invariants, and ghost state in about
350 functions by a team of more than 10 people and over a period of several years.
As another impressive example, the seL4 project [25] designed and verified the C
code of a microkernel using the interactive theorem prover Isabelle/HOL [31] and
requiring about 200K lines of Isabelle scripts and 20 years of research in devel-
oping and automating the proofs. Also recently, Typed Assembly Language [29]
(TAL) and the Boogie program verifier [4] were used to prove type and memory
safety of (part of) the Verve operating system [37] (a total of 20 functions imple-
mented in approximately 1.5K lines of x86 assembly), manually annotated with
pre-/postconditions, loop invariants, and external function stubs for a total of
1,185 lines of annotations in about nine months of work.

In contrast, our verification project required only three months of work, no
program annotations, no static program analysis, and no external function stubs,
although our scope was more focused (attacker memory safety only), our appli-
cation domain was different (sequential image parser versus concurrent/reactive
operating-system code), and we did require several key manual verification steps,
including fixing a few input-dependent loop bounds, as discussed in Sect. 5. Note
that our purely dynamic techniques and x86-based tools can handle ANI x86
code patterns such as stack-modifying compiler-injected code for structured ex-
ception handling (SEH prologue and epilogue code for try/except statements)
and stack-guard protection, which most static-analysis tools cannot handle.

Static-analysis-based software model checkers, like SLAM [3], BLAST [23],
and Yogi [32], can automatically prove control-oriented API properties of specific
classes of programs (specifically, device drivers). These tools rely on (predicate)
abstraction in order to scale, and are not engineered to reason precisely about
pointers, memory alignment, and aliasing. They were not designed and cannot
be used as-is for proving (attacker) memory safety of an application as large and
complex as the ANI Windows parser.

SAT/SMT-based bounded model checkers, as CBMC [11], are another class of
static-analysis tools for automatic program verification. For loop-free programs
and when symbolic execution has perfect precision, the program’s logic repre-
sentation generated by such model checkers is similar to verification-condition
generation and captures both data and control dependencies on all program vari-
ables, which is similar to eagerly summarizing (as in Sect. 2.2) every program
block and function. Even excluding all loops, such a monolithic whole-program
logic encoding would not scale to accurately represent the entire ANI parser.

As shown in Sect. 5, systematic dynamic test generation also does not scale to
the entire ANI parser without the selective use of function summarization and
fixing a few input-dependent loop bounds. These crucial steps were performed
manually in our work. Algorithms and heuristics for automatic program sum-
marization have been proposed before [15,1,26] as well as other closely related
techniques [5,28] and heuristics [21], which can be viewed as approximations
of sub-program summarization. However, none of this prior work on automatic
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summarization has ever been applied to verify an application as large and com-
plex as the parser considered here.

We emphasize that we are not aware of any automatic tool that, today, could
prove (attacker) memory safety of an application like the ANI parser. We do not
know which parts of the ANI code are in the subset of C for which tools like
CCured [30] or Prefix [7] are sound, or how many memory-safety checks could be
removed in those parts with such a sound static analysis. However, we do know
that Prefix was run on this code for years, yet bugs remained, which is precisely
why fuzzing is performed later [6].

Proving attacker memory safety, even more so compositionally, is novel: we
prove that an attacker cannot trigger buffer overflows, but ignore other buffer
overflows (for instance, due to the failure of trusted system calls). This requires
a whole-program taint analysis to focus on what the attacker can control, per-
formed using symbolic execution and the top-down strategy of Sect. 5.3. In con-
trast, other approaches like verification-condition generation, bounded model
checking or traditional static analysis lack this global taint view and treat all
program statements alike, without prioritizing the analysis towards parts closest
to the attack surface, which hampers scalability and relevance to security.

8 Concluding Remarks

We showed how to prove attacker memory safety of an entire operating-system im-
age parser using compositional exhaustive testing, i.e., no static analysis
whatsoever. These results required a high-level of automation in our tools and veri-
fication process although key steps were performed manually, like fixing
input-dependent loop bounds, guiding the summarization strategy, and fixing and
avoiding memory-safety violations. Also, the scope of our work was only to prove
attacker memory safety, not general memory safety or functional correctness, and
the ANI parser is a purely sequential program. Finally, the verification guarantees
provided by our work are valid only with respect to some important assumptions
we had to make, mostly regarding input-dependent loop bounds. Overall, after
this work, we are now confident that the presence of any remaining security-critical
(i.e., attacker-controllable) buffer overflows in the ANI Windows parser is unlikely,
but those conclusions are subject to the assumptions we made.

Here are some interesting findings that we did not expect:

– many ANI functions are loop free and were easy to verify (Sect. 5.1);
– all the input-dependent loops in the entire ANI parser are controlled by the

values of about 10 bytes only in any ANI file plus the file size (Sect. 5.2);
– the remaining path explosion can be controlled by using only 5 function

summaries with very simple interfaces (Sect. 5.3).

Our work suggests future directions for automating further several of the steps
that were done manually (e.g., dealing with few but critical input-dependent
loops and program decomposition at cost-effective interfaces). Perhaps future
tools will perform those steps intelligently and automatically.
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Abstract. Effective static analyses of heap-manipulating programs need
to track precise information about the heap structures and the values
computed by the program. Most existing heap analyses rely on man-
ual annotations to precisely analyze general and, in particular, recursive,
heap structures. Moreover, they either do not exploit value information
to obtain more precise heap information or require more annotations for
this purpose. In this paper, we present a combined heap and value anal-
ysis that infers complex invariants for recursive heap structures such as
lists and trees, including relations between value fields of heap-allocated
objects. Our analysis uses a novel notion of edge-local identifiers to track
value information about the source and target of a pointer, even if these
are summary nodes. With each potential pointer in the heap, our analysis
associates value information that describes in which states the pointer
may exist, and uses this information to improve the precision of the
analysis by pruning infeasible heap structures. Our analysis has been
implemented in the static analyzer Sample; experimental results show
that it can automatically infer invariants for data structures, for which
state-of-the-art analyses require manual annotations.

1 Introduction

Effective static analyses of heap-manipulating programs need to track precise
information about the heap structures and the values computed by a program.
Heap and value information is not independent: heap information determines
which locations need to be tracked by a value analysis, and information about
value fields may be useful to obtain more precise heap information, for instance,
to rule out certain forms of aliasing. Moreover, many interesting invariants of
heap-manipulating programs combine heap and value information such as the
invariant that a heap structure is a sorted linked list.

Despite these connections, heap and value analyses have often been treated
as orthogonal problems. Some existing heap analyses such as TVLA [18] rely on
manual instrumentation to infer invariants that combine heap and value infor-
mation. However, TVLA does not support general value domains, which limits,
for instance, arithmetical reasoning. Recent work addresses this issue by combin-
ing TVLA with value domains, but still requires the user to provide predicates
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to track and exchange information between the heap and value domains [21],
or is not able to track complex invariants over recursive data structures [14].
Chang and Rival [5] present an efficient inference for combined heap and value
invariants, which also relies on user-provided predicates. Other analyses do not
require manual annotations [2,3], but are specific to programs that manipulate
certain data structures such as singly-linked lists.

In this paper, we present a combined heap and value analysis—expressed as
an abstract interpretation [8]—that infers complex invariants of heap structures.
It is automatic in the sense that it uses only the information included in the
program, without relying on manual annotations. Our analysis uses a graph-
based abstraction of heaps, where each edge in the graph represents a potential
pointer in the concrete heap. Each edge is associated with an abstract value state
that characterizes in which concrete states this pointer might actually exist. The
value states on the edges allow our analysis to represent disjunctive information
in a single heap graph (like the bracketing constraints in Dillig et al.’s Fluid
Updates [10]). They are also used to improve the precision of the analysis when
value information implies that certain pointer chains cannot exist in concrete
heaps. Our analysis can be instantiated with different value domains to obtain
different trade-offs between precision and efficiency.

Like many heap analyses, we use summary nodes to abstract over sets of con-
crete objects. A key innovation of our analysis is to introduce edge-local iden-
tifiers for the source and target of each edge in the heap graph. An edge-local
identifier represents a field of one particular concrete object, even when the ob-
ject is abstracted by a summary node. By having identifiers per edge, the value
analysis may relate the fields of the source and the target of a concrete pointer
and, thus, track inductive invariants such as the sortedness of a linked list.

1 Node increasingList ( int v) {
2 Node result = null ;
3 int i = v;
4 while ( i > 0) {
5 Node p = new Node();
6 p.next = result ;
7 p.val = i − 1;
8 result = p;
9 i = i − 1;

10 }
11 return result ;
12 }

Fig. 1. Running example

Example. Method increasingList in Fig. 1 creates
and returns a linked list. If parameter v is non-
positive, the list is empty, that is, result is null
(invariant I1). Otherwise, the list satisfies the fol-
lowing properties: it is non-empty, that is, the re-
sult is non-null (I2), the first node has value 0 (I3),
the values of all other nodes are one larger than
their predecessor’s (I4), and the value of the last
node is v−1 (I5). Note that these invariants imply
that the list is acyclic and has v nodes.

Fig. 2 shows the abstract state that our analysis infers at the end of method in-
creasingList. Here, we use a numerical domain such as Polyhedra [9] or

next

[ ]]result nullnext

Fig. 2. The abstract heap state
inferred at line 11 of Fig. 1

Octagon [22] for the abstract states associ-
ated with each edge in the graph. The fig-
ure shows the relevant constraints from these
states. They are expressed in terms of param-
eter v and the edge-local identifiers (Src, val)
and (Trg, val), which refer to the val field of the
source and target of a pointer, respectively.
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The abstract state reflects the five invariants stated above. Variable result is
null if the constraints on the corresponding edge hold, that is, if v is non-positive
(I1). Otherwise, result points to the summary node n0, which implies that it is
non-null (I2). This example illustrates that our analysis represents disjunctive
information in a single graph: both possible values of result are represented by
the same graph, and we use value information to determine the states in which
each pointer may exist. The constraint (Trg, val) = 0 on the edge from result to
the summary node n0 expresses that the first list node has value 0 (I3). Note
that the edge-local identifier allows us to express properties of a single object,
even if it is abstracted by a summary node. The same feature is used in the
constraint (Trg, val) = (Src, val) + 1 on the edge from n0 to itself to express
invariant I4. Finally, the constraint (Src, val) = v − 1 on the edge from n0 to
null expresses that the last list node has value v − 1 (I5). All five invariants are
inferred automatically by our analysis without manual annotations.

Outline. Sec. 2 defines the language and the concrete domain. Sec. 3 formalizes
the abstract domain, while Sec. 4 defines the abstract semantics. Sec. 5 reports
the experimental results, Sec. 6 discusses related work, and Sec. 7 concludes.

2 Programming Language and Concrete Domain

We present our analysis for the small object-based language in Fig. 3. To simplify
the formalization, we model local variables as fields of a special object 1, that is,
treat local variables as heap locations. We distinguish reference field and value

rAE ::= 1.fr | rAE.fr
vAE ::= 1.fv | rAE.fv
rexp ::= null | rAE | new C
vexp ::= n | vAE | vexp 〈op〉 vexp
op ::= + | − | ∗ | · · ·
ST ::= rAE = rexp | vAE = vexp

Fig. 3. Expressions and statements

field access expressions rAE and vAE, de-
pending on the type of the accessed field.
A reference expression rexp may be null, a
reference field access expression, or an ob-
ject creation. A value expression vexp may
be a literal, a value field access expression,
or a binary expression. Since the treat-
ment of loops and conditionals is stan-
dard, the only relevant statements in ST
are value and reference assignments.

In the concrete domain, we partition the content of heap locations into values
and references. Let Ref be the set of concrete references (objects and null), with
1, null ∈ Ref, and let Val be the set of values. Let FieldRef and FieldVal be finite
sets of reference and value fields, respectively. An execution state consists of a
value store and a reference store. We model a value store as a partial map in
StoreVal = (Ref \ {null})× FieldVal ⇀ Val and a reference store as a partial map
in StoreRef = (Ref \ {null})× FieldRef ⇀ Ref. For each reference in their domain,
these maps contain an entry for every field. We will refer to entries in a reference
store as concrete edges. We define the set of all concrete states (concrete heaps)
as Σ = StoreRef × StoreVal.
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3 Abstract Domain and Operators

In this section, we present the abstract domain, the concretization function, as
well as join and widening operators.

3.1 Abstract Domain

Let Ref be the set of abstract references (or abstract nodes) with 1, null ∈ Ref
(that is, we overload the symbols 1 and null to denote both concrete and ab-
stract references). Each abstract node n ∈ Ref represents either a single concrete
non-null reference (definite node), or a non-empty set of concrete non-null ref-
erences (summary node) with 1 and null being definite nodes. The functions in
IsSummary = Ref → {true, false} define whether a node is a summary node.

An abstract reference store in StoreRef = P((Ref \ {null}) × FieldRef × Ref)
represents possible pointers between abstract nodes through reference fields. It
can be interpreted as a directed graph where edges are labeled with a field name.
Hence, we will refer to members of the abstract reference store as abstract edges.

For an abstract edge n1
fr−→ n2, we will refer to n1 as the source and to n2 as

the target of the edge.
Our heap analysis is parameterized by an abstract value domain V, which

tracks information about value fields, for instance, relations among numerical
values. Each abstract edge is associated with an abstract value state (abstract
condition) via a map in Cond = (Ref \ {null})×FieldRef ×Ref → V. The abstract
condition of an abstract edge approximates the concrete value stores in which
the edge exists. That is, our abstract domain tracks disjunctive information by
having several edges with the same source and field, and associating them with
different abstract conditions.

Abstract value states in V refer to memory locations via abstract identifiers
ID = Loc∪EId where Loc = (Ref\{null})×FieldVal and EId = {Src,Trg}×FieldVal.
An identifier (n, fv) ∈ Loc represents the value field fv of the concrete refer-
ences abstracted by the node n. Edge-local identifiers (Src, fv), (Trg, fv) ∈ EId
represent the value field fv of the single concrete source or target reference of
the concrete edges represented by an abstract edge. They track relations be-
tween the value fields of adjacent references in concrete heaps, which allows
us to infer precise invariants on summary nodes. For instance, the constraint

(Src, val) ≤ (Trg, val) in the abstract condition of an abstract edge n
next−−→ n ex-

presses sortedness of the concrete list that is abstracted by the summary node n.
We define the set of all abstract states (abstract heaps) as Σ = StoreRef ×

Cond× IsSummary.

Example. The abstract heap in Fig. 4 depicts the loop invariant of the program
in Fig. 1. Many of the constraints are similar to the constraints in Fig. 2. In
particular, combining the abstract heap for the loop invariant with the negation
of the loop guard (that is, i ≤ 0) yields the information reflected in Fig. 2, for
instance, that result is null iff v ≤ 0 and that the first list node has value 0.
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[
]

next

[

]

[
]

[
]

[ ]
next

result null

[ ]

next next

Fig. 4. The abstract heap representing the loop invariant at line 4 of the example
in Fig. 1. Solid and dashed circles denote definite and summary nodes, respectively.
Arrows depict abstract edges and are annotated with relevant constraints from their
abstract conditions. To improve readability, we depict local reference variables as nodes
and use local variables as identifiers in constraints, although the analysis models them
as fields of �.

3.2 Concretization

In this section, we define the concretization function γ : Σ → P(Σ) that yields
the set of concrete heaps represented by a given abstract heap.

We assume that our heap analysis is instantiated with a sound value analysis.
Its concretization function γV : V → P(ID → P(Val)) yields a set of maps from
abstract identifiers to sets of concrete values. These maps yield sets of concrete
values rather than single values since an abstract value state may contain identi-
fiers for fields of summary nodes, and the value analysis alone cannot concretize
them. Let references(stRef) be the set of concrete references of a given concrete
reference store stRef , including 1 and null. We define the concretization function
γ of abstract heaps as:

(stRef , stVal) ∈ γ(St, con, isSum)⇔

⎛⎝∃αRef ∈ (references(stRef)→ Ref)·
GraphEmbed(αRef , stRef , (St, isSum))∧
ValueEmbed(αRef , (stRef , stVal), con)

⎞⎠
That is, a concrete heap (stRef , stVal) is in the concretization of an abstract heap
(St, con, isSum) iff there exists an embedding αRef (a function from concrete
references to abstract nodes) such that the shape and the values of the concrete
heap can be embedded into the abstract heap. These embeddings are expressed
via the predicates GraphEmbed and ValueEmbed, which are defined as follows.

GraphEmbed holds if a given concrete reference store matches the shape of
a given abstract heap, ignoring the value information. This is the case if 1
and null are the only concrete references that are abstracted to the abstract 1
and null (1), if, whenever multiple concrete references are abstracted to a single
abstract reference, that abstract reference is a summary node (2), and if every
concrete edge is represented by an abstract edge in the abstract heap (3). Note
that this abstract edge is unique since αRef is a function:
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GraphEmbed (αRef , stRef , (St, isSum))⇔
α−1
Ref(1) = {1} ∧ α−1

Ref(null) = {null} ∧ (1)

(∀n ∈ img(αRef) · |α−1
Ref(n)| > 1⇒ isSum(n)) ∧ (2)

∀r1
fr−→ r2 ∈ stRef · αRef(r1)

fr−→ αRef(r2) ∈ St (3)

where α−1
Ref is the preimage of αRef (that is, it yields the set of concrete references

abstracted by a given abstract reference).
ValueEmbed expresses that, for a given concrete reference store stRef , the value

store stVal matches all relevant abstract conditions in the abstract heap. Here,
an abstract condition is relevant if it is associated with an abstract edge that
corresponds to a concrete edge in stRef . In the definition below, we relate the
concrete value store stVal to each relevant abstract condition via a map s from

abstract identifiers to sets of concrete values. For each concrete edge r1
fr−→ r2

in the concrete reference store stRef , there is a map s in the concretization of
the abstract condition of the corresponding abstract edge (4). The map s may
constrain a concrete location (r, fv) in three ways: via the abstract identifier
(αRef(r), fv), via the edge-local identifier (Src, fv) if r is the source of the concrete
edge, that is, r = r1, and via the edge-local identifier (Trg, fv) if r is the target of
the concrete edge, that is, r = r2. In all three cases, the map s must yield a set
that contains the value v stored in the concrete value store for (r, fv) (5). Finally,
any concrete value store matches the relevant abstract conditions only if the
conditions do not contradict each other, even on abstract locations that are not
included in a given concrete heap. To ensure there are no such contradictions,
s must be in the concretization of all relevant conditions, ignoring edge-local
identifiers, which may denote different locations for different abstract edges. We
use the operator ↓Loc to project to the identifiers in Loc, that is, to remove
edge-local identifiers (6).

ValueEmbed(αRef , (stRef , stVal), con)⇔

∀r1
fr−→ r2 ∈ stRef · ∃s ∈ γV(con(αRef(r1)

fr−→ αRef(r2))) · (4)

∀((r, fv) 	→ v) ∈ stVal ·

⎛⎝v ∈ s(αRef(r), fv)∧
r = r1 ⇒ v ∈ s(Src, fv)∧
r = r2 ⇒ v ∈ s(Trg, fv)

⎞⎠ ∧ (5)

s ↓Loc∈ γV

⎛⎜⎜⎝ �

r′1
f′
r−→r′2∈stRef

(
con(αRef (r

′
1)

f ′
r−→ αRef(r

′
2)) ↓Loc

)⎞⎟⎟⎠ (6)

Example. Fig. 5 shows the reference and value stores of two concrete heaps. The
heap of the left) is in the concretization of the abstract heap in Fig. 2. For the
embedding αRef = [1 	→ 1, null 	→ null, r1 	→ n0, r2 	→ n0], GraphEmbed holds
since n0 is a summary node and all three concrete edges have corresponding
abstract edges. ValueEmbed also holds since the concrete value store satisfies
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result
next next

null[
v �→ 2, (r1, val) �→ 0, (r2, val) �→ 1

] result

next

[
v �→ 1, (r1, val) �→ 0

]
Fig. 5. Concrete heaps, consisting of a reference store, displayed on top, and a value
store, displayed underneath. The heap on the left is in the concretization of the abstract
heap in Fig. 2, whereas the heap on the right is not because it violates the condition
that list nodes store increasing values.

the three relevant abstract conditions, and these conditions do not contradict
each other.

In contrast, the heap on the right is not in the concretization of the abstract
heap in Fig. 2. The graph embedding forces the embedding to be αRef = [1 	→
1, null 	→ null, r1 	→ n0]. Therefore, both edge-local identifiers (Src, val) and
(Trg, val) on the abstract edge from n0 to n0 correspond to (r1, val), such that
there is no value for (r1, val) that satisfies the constraint (Trg, val) = (Src, val)+1.
In other words, any map s in the concretization of this constraint assigns different
values to these edge-local identifiers and, thus, does not satisfy condition (5).

3.3 Join

The join operator �Σ first computes an abstract reference store for the joined
heaps and then the abstract conditions for the edges in this store.

Abstract Reference Store. An abstract heap can be viewed as a directed
graph in which vertices are labeled as 1, null, definite node other than 1 and
null, or summary node; edges are labeled with reference fields. The vertex labels
are used to avoid matching nodes in two heaps that cannot correspond (for
instance, a summary node and a definite node). A labeled heap graph is a triple
g = (V,E, η) ∈ Graph, where V ⊆ Ref is a set of vertices, E ⊆ V × FieldRef × V
is a set of edges labeled with a reference field, and η : V → {1,Null,Def, Sum}
is a labeling function on vertices. We assume a strict total order <G on graphs
that ensures in particular that g1 <G g2 if g1 has fewer vertices than g2 or the
same number of vertices but fewer edges.

To improve performance, we define the join of two abstract reference stores
such that it minimizes the size of the resulting store. Its structure is the minimum
common supergraph of the two joined stores. Let g1 and g2 be graphs. Graph g
is a common supergraph of g1 and g2 iff g1 and g2 are subgraph isomorphic to g
with the isomorphisms I1 and I2, respectively. We call g the minimum common
supergraph (MCS) of g1 and g2 if there exists no other common supergraph that
is smaller in the ordering <G. The procedure MCS (g1, g2) yields the (unique)
minimum common supergraph g of g1 and g2 as well as the corresponding sub-
graph isomorphisms I1 and I2 between g1 and g, and g2 and g, respectively.
The problem of computing MCS can be reduced to the well-studied problem
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Fig. 6. The abstract heap graphs on the left occur before and after the second iteration
of the fixed-point computation of the loop invariant (line 4) in Fig. 1. Joining them
results in the heap on the right. Bold arrows indicate edges of the maximum common
subgraph.

of finding the maximum common subgraph [4]. See the accompanying technical
report [15] for the definitions of graph/subgraph isomorphism and maximum
common subgraph. Intuitively, we can compute (g, I1, I2) = MCS (g1, g2) by
“gluing” to the maximum common subgraph of g1 and g2 those parts of g1 and
g2 that are not in their maximum common subgraph.

Let Π : StoreRef × IsSummary → Graph be a bijective function from ab-
stract stores to heap graphs. The abstract store and the IsSummary function
of the join of (St1, con1, isSum1) and (St2, con2, isSum2) are (St, isSum) =
Π−1(MCS (Π(St1, isSum1), Π(St2, isSum2)) ↓1), where ↓1 denotes projection
of a tuple on the first component, that is, the graph returned by MCS . Note
that Π(St, isSum) includes both Π(St1, isSum1) and Π(St2, isSum2). Hence,
the abstract reference store (St, isSum) subsumes the abstract reference stores
(St1, isSum1) and (St2, isSum2).
Example. Fig. 6 shows on the left the abstract heap graphs g1 and g2 before and
after the second iteration of the fixed-point computation of the loop invariant
(line 4) in Fig. 1, and their join g on the right. Besides the special nodes 1 and
null, the maximum common subgraph includes node n1 as well as the edges from
result to n1 and from n1 to null. To this common subgraph, we add the remainder
of g1 (the edge from result to null) and the remainder of g2 (n2 with its edges).
Note that both g1 and g2 are subgraph isomorphic to g, where the isomorphism
is the identity function.

Abstract Conditions. Consider an edge in the abstract store resulting from
the join of two abstract heaps. We determine its abstract condition as follows.
If the edge is in the maximum common subgraph of the joined heap graphs,
its abstract condition is the join of the abstract conditions in the two heaps.
Otherwise, the condition is the same as in the heap that contributed the edge,
after applying the subgraph isomorphism.

As explained above, computing the minimum common supergraph (g, I1, I2) =
MCS (Π(St1, isSum1), Π(St2, isSum2)) yields the subgraph isomorphisms I1
and I2 from Π(St1, isSum1) to g and from Π(St2, isSum2) to g, respectively.
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We define the function rename ISO : (Ref → Ref)× V→ V to rename the identi-
fiers in Loc of a given abstract value state according to an isomorphism. Using
this renaming, we define the join operator �Σ : Σ× Σ→ Σ as

(St1, con1, isSum1) �Σ (St2, con2, isSum2) = (St, con, isSum)

where:

(g, I1, I2) = MCS (Π(St1, isSum1), Π(St2, isSum2)) ∧
(St, isSum) = Π−1(g) ∧

con =

⎡⎣e 	→ s

∣∣∣∣∣∣ e ∈ St ∧ s =
⊔⎧⎨⎩s′

∣∣∣∣∣∣
∃ i ∈ {1, 2} · ∃ (n1, fr, n2) ∈ Sti ·
e = (Ii(n1), fr, Ii(n2)) ∧
s′ = rename ISO(Ii, coni(n1, fr, n2))

⎫⎬⎭
⎤⎦

Computing the maximum common subgraph is NP-complete; however, most
code fragments change only small portions of the abstract heap. Our implemen-
tation exploits this fact to compute the isomorphisms incrementally, usually in
linear time.

Example. Consider the edge from result to n1 in the heap on the right of Fig. 6,
which is in the maximum common subgraph of the heaps on the left. Hence,
its abstract condition is the join of the conditions for those heaps (assuming a
relational numerical domain). Since the constraint v−1 = i in the top left abstract
heap implies the constraint 3 > v− i > 0 in the lower heap, the latter constraint
is tracked by the result of the join operation; the other constraints of the joined
conditions are identical and, thus, carried over to the result. Conversely, the
edges from result to null, from n1 to n2, and from n2 to null are not in the
maximum common subgraph; their conditions come from the heap contributing
the edges.

3.4 Widening

The above join operator does not guarantee the convergence of the analysis. In
fact, the size of the abstract heap may grow at each application of join, and the
abstract conditions may not stabilize. Therefore, we define a widening operator
∇Σ : Σ × Σ → Σ that guarantees that the analysis reaches a fixed point in
finite time (that is, terminates). In order to do so, the widening operator must
bound the size of the abstract heap, which means that it has to merge nodes
into summary nodes. This merging is controlled via a finite set of field access
expressionsW , which is a parameter of the analysis and denotes references that
the analysis should track separately. By default, W is the set of local reference
variables, but it can be extended to any set of field access expressions if desired.
For all examples in our evaluation (Sec. 5), the analysis uses the default.

We perform widening in two steps. First, in both input heaps, we merge nodes
that (i) are denoted by the same set of field access expressions from W , and
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Fig. 7. Heap before the fourth iteration of the fixed-point computation of the loop
invariant in Fig. 1.

[
]

next

[
]

[ ]
next

result null

[ ]

next next

[

]

[

]

[
]

next

[
]

[ ]
next

result null

[ ]

next next

[

]

[

]

Fig. 8. Heaps with merged nodes before the fourth (left) and fifth (right) iteration of
the fixed-point computation. The heaps differ only in the highlighted constraints.

(ii) are reachable (via some access path) from the same set of local variables.
Second, if the two heaps are isomorphic, we apply edge-wise widening to the
abstract conditions; otherwise, we join them. We refer the reader to our technical
report [15] for more details and a complete formalization.
Example. Suppose we widen the abstract heap before the fourth iteration of the
fixed-point computation for the loop in Fig. 1 with the heap before the fifth
iteration. The abstract heap before the fourth iteration is displayed in Fig. 7;
the heap before the fifth iteration looks similar, but has four definite nodes.

In the first step, widening merges nodes using the defaultW = {result}. In the
heap from Fig. 7, we merge n2 and n3 into a single summary node n2 since they
are (i) denoted by the same set of field access expressions from W (the empty
set since result denotes neither n2 nor n3), and (ii) they are reachable from the
same set of local variables ({result}). However, n1 is denoted by a different set of
field access expressions ({result}), and therefore not merged with n2 and n3. The
edges from n2 and n3 to null are also merged, and their conditions are joined.
The resulting heap is shown on the left of Fig. 8. Merging nodes in the heap
before the fifth iteration (not shown) results in the heap on the right of Fig. 8.
Note that these heaps are isomorphic, that is, the heap shape has stabilized.

In the second step, since the heaps after merging are isomorphic, we apply
edge-wise widening to the abstract conditions. This step removes the upper
bound on v − i, but leaves all other constraints unaffected, that is, the abstract
conditions have stabilized. The resulting heap is shown in Fig. 4; it represents
the loop invariant of the program from Fig. 1.
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4 Abstract Semantics

In this section, we formalize the semantics of reference and value assignments.

4.1 Reference Assignment

An abstract store includes disjunctive information. Therefore, for a reference
assignment p.fr = rhs, there may be several abstract references for the receiver
p and the right-hand side rhs, which may be reached through different paths
with different value conditions. The value states on the edges along each path
specify the conditions under which p and rhs evaluate to a particular abstract
reference. The abstract semantics for reference assignments adds an abstract
edge for each possible combination of receiver p and right-hand side rhs, with an
abstract condition that reflects when this combination exists.

The rule below formalizes reference assignments of the form p.fr = rhs, where
p.fr ∈ rAE and rhs ∈ rexp. Since we encode local variables as fields of a spe-
cial reference 1, the rule also covers assignments to those. It uses an auxiliary
function eval rexp (defined in the technical report [15]), which takes a reference
expression (or 1) re and an abstract state σ and yields (a) a set NC of pairs,
each consisting of an abstract reference to which re may evaluate in σ and the
condition under which re may evaluate to this reference, and (b) a resulting
abstract state, which is used to encode allocation, that is, when re contains new
expressions.

(NC rhs, (Strhs, conrhs, isSumrhs)) = eval rexp(rhs, σ) (1)

(NC p, ) = eval rexp(p, (Strhs, conrhs, isSumrhs)) (2)

strong ⇐⇒ ∃ n ∈ Ref · (NC p = {(n, )} ∧ ¬isSumr(n)) (3)
strong ⇒ (St = {(n1, f, n2) ∈ Strhs | (n1, ) /∈ NC p ∨ fr 
= f}) (4)

(¬strong)⇒ (St = Strhs) (5)

conasg =

[
(np, fr, nrhs) 	→ (TrgToSrc(sp) � srhs)

∣∣∣∣ (np, sp) ∈ NC p ∧
(nrhs, srhs) ∈ NC rhs

]
(6)

St
′
= St ∪ dom(conasg) (7)

con′ = conrhs

[
e 	→ s

∣∣∣∣e ∈ dom(conasg) ∧ (e /∈ St⇒ s = conasg(e)) ∧
(e ∈ St⇒ s = conasg(e) � conrhs(e))

]
(8)

〈p.fr = rhs, σ〉 →Σ (St
′
, con′, isSumrhs)

A reference assignment first evaluates rhs to obtain the possible abstract refer-
ences for the right-hand side expression together with the corresponding condi-
tions, as well as a successor state (1). The receiver p is evaluated in this successor
state. Since it is side-effect free (see Fig. 3), we discard the state resulting from
its evaluation (2). The analysis performs a strong update iff there is only one
abstract reference n for the receiver, which is a definite node (3). In that case,
the analysis removes all edges whose source is the receiver node and that are
labeled with the assigned field fr (4); otherwise, it performs a weak update, that
is, retains all existing edges (5). To add the edges for all possible combinations
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Fig. 9. The abstract heap after line 7 of the program in Fig. 1. The bold edges are
added by the reference assignment in line 6; the highlighted constraints come from the
value assignment in line 7.

of receivers and right-hand sides, we first create a map conasg that maps each of
the new edges to the abstract condition that describes when the particular com-
bination exists, that is, the greatest lower bound of the conditions for choosing a
particular abstract reference for the receiver and a particular abstract reference
for the right-hand side, respectively (6). The only twist in this step is how to
handle edge-local identifiers. The receiver is denoted by Trg in conditions on
edges pointing to the receiver, but by Src in the new edges. Function TrgToSrc
performs this conversion. Since the map conasg contains an entry for each new
edge, we obtain the final abstract store by adding the domain of this map to the
store constructed in step 4 or 5 (7). Finally, the abstract conditions are updated:
For each new edge that is not present in the store before the reference assign-
ment, we add the condition from conasg . For each edge that is already present
(which may happen during a weak update), we join the condition from conasg
and the existing condition (8).

Example. Fig. 9 without the bold edges and the highlighted constraints, shows
the abstract heap after line 5 in Fig. 1. It is obtained from the abstract heap
in Fig. 4 (the loop invariant) by (i) assuming the loop guard (i > 0) in all
abstract conditions and (ii) applying the abstract semantics of the statement
Node p = new Node() (line 5), which introduces the definite node n3. (Its next
field initially points to null, which is not shown in the figure.) We will now illus-
trate the abstract semantics of the reference assignment p.next = result (line 6).

The right-hand side of the assignment, result, evaluates to null or to n1 (point
(1) of of the rule above). Since the receiver p evaluates to a single definite node n3
(2), we perform a strong update (3). The strong update removes all out-edges of
n3 labeled with next (4) and introduces new edges for all combinations of abstract
references for the receiver and for the right-hand side, that is, edges from n3 to
null and from n3 to n1 (7). These edges are shown in bold in Fig. 9. The former
edge exists if the right-hand side (result) evaluates to null, that is, if v = i > 0; the
latter exists if result evaluates to n1, that is, if v − i > 0∧ i > 0∧(Trg, val) = i (6).
These constraints are the abstract conditions of the new edges (8), as shown in
Fig. 9 (still ignoring the highlighted constraints, which will be discussed later).
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4.2 Value Assignment

Like the semantics of reference assignments, the abstract semantics of a value
assignment p.fv = rhs (where p.fv ∈ vAE and rhs ∈ vexp) needs to consider each
possible combination of evaluations for the receiver p and for the right-hand side
rhs. For each combination, it updates all abstract conditions in the abstract store
to reflect the assignment and the conditions under which the combination exists.
The following rule formalizes this intuition.

S = eval vexp(rhs, (St, con, isSum)) (1)

(NC p, ) = eval rexp(p, (St, con, isSum)) (2)
con′ = updateCond(rhs, fv,NC p, S, con) (3)

〈p.fv = rhs, (St, con, isSum)〉 →Σ (St, con′, isSum)

Each way of evaluating the right-hand side expression rhs, if it contains a
field access, chooses a path through the abstract store. The abstract conditions
of the edges along a path describe when this path may be chosen. Function
eval vexp (defined in our technical report [15]) yields the set S of conditions (value
states) that describe each way of evaluating rhs (1). Analogously to step 2 of
reference assignment, we evaluate the receiver expression p to obtain the possible
receiver references, each with a condition under which p may evaluate to this
reference (2). We use the function updateCond (defined in our technical report [15])
to reflect the value assignment in the value states of all edges in the abstract
store (3). This function considers all possible combinations of receiver reference
(obtained from NC p) and value state for a particular way of evaluating the
right-hand side expression (from S). For each of them, it propagates the value
information that has to hold when this combination is chosen to the conditions
of each edge in the abstract store and applies the assignment operation of the
value domain. The condition of each edge in the abstract store is then defined
to be the join of the conditions obtained for all ways of executing the value
assignment.

Example. Fig. 9 without the highlighted constraints shows the abstract heap
after line 6 in Fig. 1. The highlighted constraints are introduced by the abstract
semantics of the statement p.val = i - 1 (line 7). There is only one way to
evaluate the right-hand side expression. Therefore, eval vexp yields a singleton set
(point (1) of the rule above). This set contains the condition v − i ≥ 0 ∧ i > 0,
which holds in each concrete heap (otherwise there would be no value for result).
Similarly, the receiver expression p evaluates to a single node, n3, under the same
condition (2). This condition must be satisfied in order to be able to perform
the assignment. Therefore, we conjoin it to each abstract condition in the store
(which has no effect in this example), and then assign i − 1 to (n3, val) since p
evaluates to n3 (3). Moreover, since n3 is the target of the edge from p to n3,
we also add the constraint (Trg, val) = i− 1 for the edge-local identifier to the
condition on this edge, and analogously for (Src, val) on both out-edges of n3 (3).
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Table 1. Analysis times (in seconds) of classes implementing different data structures
when instantiating the analysis with the Octagon and Polyhedra value domains. For
each class, we inferred an object invariant by computing a fixed point over all its
methods.

Data Structure Operations Octa. Poly.

SortedSLL constructor
insertKey
deleteKey
findKey
deepCopy

1.24 1.82

SortedDLL constructor
insertKey
deleteKey
findKey
deepCopy

1.91 2.83

Data Structure Operations Octa. Poly.

BST constructor
insertKey
findKey

1.96 2.43

NodeCachingSLL constructor
add
remove
findKey

0.87 1.04

PersonAndAccount withdraw
deposit
changeInterest

0.38 0.43

5 Experimental Results

We implemented our analysis in the static analyzer Sample and applied it to
Scala implementations of typical list and tree operations (some of which we
took from the literature [5,7,14]), operations on nested recursive data structures
(such as lists of lists), and a simple aggregate structure [12]. We performed the
experiments on an Intel Core i7-Q820 CPU (1.73GHz, 8GB) running the 64-
bit version of Ubuntu 14.04. We instantiated our analysis with the Octagon [22]
and Polyhedra [9] value domains implemented in Apron [17]. We used the default
widening parameter, that is,W is the set of local reference variables. There were
no manual annotations for any of the benchmarks.

Inference of Object Invariants. Tab. 1 reports the analysis times (the aver-
age of 10 runs) for implementations of five different data structures. We instan-
tiated Logozzo’s framework [19] with our analysis to infer object invariants for
each data structure by computing a fixed point over all its operations.

SortedSLL implements a sorted singly-linked list (SLL). The inferred object
invariant expresses that the values stored in the list nodes are non-decreasing.

SortedDLL implements a sorted doubly-linked list (DLL). Our analysis infers
sortedness in both directions, that is, via the next and prev fields. However,
the analysis cannot infer the structural invariant of doubly-linked lists n.next 
=
null⇒ n = n.next.prev because it has no way of relating the concrete references

of the two edges n
next−−→ n and n

prev−−→ n for the summary node n.
BST implements a binary search tree. The analysis infers both the value and

the shape information of a BST data structure. Our implementation stores the
infimum and supremum of all keys of a sub-tree in its root. This information
allows our analysis to relate the value stored in the root to the values in the left
and right sub-trees, and, thus, to infer that the shape is a tree, that is, loop-
free and not a general DAG. We omitted method deleteKey because our analysis
is not able to infer that replacing the deleted key with the next smallest key
preserves sortedness; it does, however, infer that the tree shape is preserved.
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Table 2. Analysis times (in seconds) for single operations on different data structures
when instantiating the analysis with the Octagon and Polyhedra value domains. The
first 4 operations work on singly-linked lists (SLL) and doubly-linked lists (DLL). The
fifth operation works on lists of singly-linked lists that store values. The last operation
transforms an SLL to a binary search tree.

Operation Octa. Poly.

insertionSort 0.43 - SLL
0.72 - DLL

0.48 - SLL
0.85 - DLL

partitionWithKey 0.32 - SLL
0.48 - DLL

0.34 - SLL
0.55 - DLL

createListOfZerosAndSum 0.22 - SLL
0.39 - DLL

0.23 - SLL
0.43 - DLL

increasingList 0.28 - SLL
0.41 - DLL

0.31 - SLL
0.50 - DLL

sortListOfListsOfValues 1.45 1.88

listToBST 1.03 1.21

NodeCachingSLL implements an acyclic SLL that maintains a cache of node
objects to reduce object creation and garbage collection. The inferred object
invariant expresses that the list and the cache are disjoint and that the size of
the cache is between 0 and maximumCacheSize. Moreover, we inferred that the
addKey method creates a new object only if the cache is empty. Every node of
the list stores the length of the list rooted at the node. This information lets
our analysis infer that the list and its cache are acyclic, which is needed to infer
disjointness of the list and the cache. The latter step required materialization,
that is, splitting a definite node off a summary node, which is supported by our
implementation, but not explained in this paper.

Besides the object invariants for these four classes, our analysis infers that
the result of method findKey is either null or has the value of the given key. This
postcondition is inferred even if the result is represented by a summary node.

PersonAndAccount implements an aggregate data structure similar to the ex-
ample from a paper on the verification of object invariants [12]. The analysis
infers combined shape and value invariants, for instance, that Account and Per-
son objects reference each other, the sum of the account balance and person’s
salary is positive, and the interest rate of the account is always non-negative.

Inference of Method Postconditions. Tab. 2 reports the analysis times of
individual operations on different data structures. The initial abstract states and
the abstract heaps that represent the arguments to the operations contain only
information that is provided by the static types; no annotations were used. The
first four operations manipulate singly and doubly-linked lists. insertionSort takes
an unsorted list of values and sorts it. The analysis infers that the result is a
sorted list. partitionWithKey takes a list of values and a key, and creates two new
lists such that the keys in one are less than or equal to the given key, and the
keys in the other are greater. The analysis infers this value property and that
the resulting lists are disjoint. createListOfZerosAndSum creates a list of zeros
and subsequently traverses the list and sums up the values. The analysis infers
that the result is a list of zeros, and the sum of the values is zero. increasingList
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is the method from Fig. 1, with an analogous implementation for DLLs. The
analysis infers the heap in Fig. 2 (and an analogous heap for DLLs).

The last two operations of Tab. 2 demonstrate that the analysis is able to
infer non-trivial shape and value properties for programs manipulating nested
recursive data structures or a combination of different data structures.
sortListOfListsOfValues takes a singly-linked list of SLLs that store values, and
sorts each of the lists. The analysis infers that the result is a list of sorted SLLs.
listToBST takes an SLL of values and creates a binary search tree out of it,
without using the methods of the BST class discussed above. The analysis infers
that the result is a binary search tree.

Discussion. The analysis times in Tab. 1 and Tab. 2 demonstrate the efficiency
of our analysis. For all our benchmark classes, the fixed point over all their meth-
ods was computed within 3 seconds when using the Polyhedra domain. When
instantiated with a more efficient but less precise value domain, the efficiency of
the analysis increases, as illustrated by the usage of the Octagon domain.

Our experiments demonstrate that our analysis can infer invariants that com-
bine shape and value information in interesting ways, for instance, sortedness
of lists and trees, or invariants that relate the states of different objects in an
aggregate structure. Our analysis leverages data stored in value fields, such as
the infimum and supremum in the BST class discussed above, to obtain more
precise shape information. As future work, we plan to rely less on such fields
by tracking additional abstract conditions (such as injectivity of references) on
edges and by generalizing edge-local identifiers to reference fields.

6 Related Work

Dillig et al. [10,11] present a precise content analysis for arrays and containers,
in which heap edges are qualified by logical constraints over indexes into a con-
tainer. This idea inspired our approach of tracking disjunctive information via
the value states associated with edges in the heap. Our analysis uses generic
value domains instead of logical constraints and can therefore be instantiated
with different levels of precision and efficiency. Moreover, it uses edge-local iden-
tifiers instead of indexes, which allows us to express constraints on arbitrary
nodes (especially summary nodes) in the heap, not only on indexed structures
such as arrays and containers. Whereas Dillig et al. concentrate on clients of ar-
rays and containers, our analysis targets arbitrary heap-manipulating programs
including implementations of containers.

Similarly to our work, Bouajjani et al. [2,3] introduce a static analysis that
automatically infers combined shape and numerical invariants and is parametric
in the underlying value domain. The main difference is that their technique is
specific to programs that manipulate singly-linked lists of values. For such data
structures Bouajjani et al.’s approach is more powerful since it can relate an
arbitrary number of successive positions in a list. In contrast, the aim of our
analysis is to be applicable to general heap-manipulating programs.
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Sagiv et al. [23] introduce a shape analysis in which invariants are expressed
in 3-valued first order logic with transitive closure (FOLTC). These invariants
may combine shape and value constraints. The analysis requires user-supplied
predicates, whereas our analysis does not need manual annotations; it repre-
sents a state by a set of logical structures, whereas our analysis maintains a
single abstract heap, reducing the number of nodes and edges, and therefore
the complexity of the overall analysis. The merging of nodes in our widening
operator can be viewed as a special case of canonical abstractions.

McCloskey et al. [21] propose a framework for combining shape and numerical
domains (encoded as predicates in FOLTC) in a generic way. However, users
have to supply shared predicates via which the domains communicate and which
usually resemble the properties one wants to prove. In contrast, our analysis can
be parameterized by arbitrary value domains without any manual overhead.

Ferrara et al. [13,14] and Fu [16] combine different heap and value analyses.
Whereas their work represents a state as a heap abstraction and a single value
state, our analysis attaches a value state to each edge in the heap abstraction,
allowing for a precise tracking of disjunctive information. Moreover, in the value
states of Ferrara et al.’s and Fu’s work, different heap identifiers represent disjoint
portions of the heap. This is not the case for our edge-local identifiers, which
refer to memory locations already represented by abstract identifiers and which
enable a precise treatment of summary nodes.

Chang et al. [7] introduce a shape analysis based on user-supplied invariants
that describe data structures such as lists and trees. These invariants are used to
abstract over a potentially unbounded number of concrete references. Chang and
Rival [5,6] extend this work and present a framework for combining shape and
numeric abstractions into a single domain. Their approach enables the precise
and modular analysis of heap and numeric invariants, but relies on user-supplied
properties, whereas our analysis does not require manual annotations.

Abdulla et al. [1] introduce a fully automatic analysis of dynamically-allocated
heap data structures. They abstract heaps as forest automata, extended by con-
straints on the values stored in heap nodes. While the analysis precisely tracks
shape information, the value constraints can represent only a fixed set of or-
dering relations. For instance, they cannot express invariant I4 of our running
example (see introduction). Moreover, our analysis can be parametrized with
different value domains, allowing for different trade-offs between precision and
efficiency.

Marron et al. [20] introduce heap abstractions that are similar to the graphs
representing abstract heaps in our work. In fact, the formalization of the con-
cretization function in Sec. 3.2 is inspired by their work. However, there are
important technical differences. In particular, Marron et al.’s analysis maintains
a normal form, which makes their lattice finite, but loses information when merg-
ing two heap graphs. In contrast, we deal with an infinite lattice, but preserve
some of this information. Moreover, Marron et al.’s heap graphs track specific
aliasing predicates (such as injectivity of fields or tree shapes), but no value
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information. Finally, the purpose of their work is to provide a high-level abstrac-
tion of concrete runtime heaps, whereas we propose an abstract domain and an
abstract semantics for a static code analysis.

7 Conclusion

In this paper, we have presented a static analysis that infers complex invari-
ants combining shape and value information. The analysis is parametric in the
underlying value domain, allowing for different trade-offs between precision and
efficiency. A key innovation of our analysis is the introduction of edge-local iden-
tifiers to track value information about the source and target of a pointer, which
allows it to infer inductive invariants such as sortedness of a linked list. The
analysis has been implemented in the static analyzer Sample. Our experiments
demonstrate its effectiveness.

As future work, we plan to generalize the abstract conditions associated with
abstract edges to track richer information. Supporting reference equalities and
inequalities would allow our analysis to infer more structural invariants such as
the invariant of a doubly-linked list. Supporting regular expressions over field
names as additional abstract identifiers would allow the analysis to infer global
properties.
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checkers. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–
401. Springer, Heidelberg (2007)



Automatic Inference of Heap Properties Exploiting Value Domains 411

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
ACM (1977)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL. ACM (1978)

10. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. Weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

11. Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In:
POPL. ACM (2011)

12. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A unified framework
for verification techniques for object invariants. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008)

13. Ferrara, P.: Generic combination of heap and value analyses in abstract interpre-
tation. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp.
302–321. Springer, Heidelberg (2014)

14. Ferrara, P., Fuchs, R., Juhasz, U.: TVAL+: TVLA and value analyses together. In:
Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504,
pp. 63–77. Springer, Heidelberg (2012)

15. Ferrara, P., Müller, P., Novacek, M.: Automatic inference of heap properties ex-
ploiting value domains. Technical Report 794, ETH Zurich (2013)

16. Fu, Z.: Modularly combining numeric abstract domains with points-to analysis,
and a scalable static numeric analyzer for Java. In: McMillan, K.L., Rival, X.
(eds.) VMCAI 2014. LNCS, vol. 8318, pp. 282–301. Springer, Heidelberg (2014)
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Abstract. We present a type-based program analysis capable of infer-
ring expressive invariants over array programs. Our system combines
dependent types with two additional key elements. First, we associate
dependent types with effects and precisely track effectful array updates,
yielding a sound flow-sensitive dependent type system that can capture
invariants associated with side-effecting array programs. Second, without
imposing an annotation burden for quantified invariants on array indices,
we automatically infer useful array invariants by initially guessing very
coarse invariant templates, using test suites to exercise the functionality
of the program to faithfully instantiate these templates with more precise
(likely) invariants. These inferred invariants are subsequently encoded
as dependent types for validation. Experimental results demonstrate the
utility of our approach, with respect to both expressivity of the invariants
inferred, and the time necessary to converge to a result.

1 Introduction

A program invariant describes valid behaviors a program is expected to produce,
and can often be derived by a fixpoint construction over an over-approximation
of program states [4]. However, applying such a strategy to discover useful prop-
erties of values stored in unbounded collections of heap cells is nontrivial.

Dependent type systems [22,17] have been proven to be successful in auto-
mated verification of complex invariants for data structures, even when there
are an unbounded number of heap locations under consideration [23]. In these
systems, decidability is achieved, however, at the loss of flow-sensitivity, i.e., a
strong update to a concrete location (e.g. a single array cell) must be subsumed
by the whole data structure (e.g. the whole array). As a result, it is not obvious
how existing dependent type systems can be extended to verify useful functional
properties (e.g. a sorting procedure will sort only a part of the elements in an in-
put array) that are beyond the scope of global invariants (e.g. a general memory
safety properties).

In this paper, we address these issues by introducing a new dependent type
system for array programs that can discharge complex flow-sensitive array in-
variants naturally characterized in terms of quantifiers on array indices. The
dependent type system is effectful because it can tolerate side-effecting array
updates. Built on top of a standard type system, our system refines basic type

D. D’Souza et al. (Eds.): VMCAI 2015, LNCS 8931, pp. 412–430, 2015.
c© Springer-Verlag Berlin Heidelberg 2015
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with a type refinement predicate that captures precise properties of the values
defined by the type. Importantly, to verify flow-sensitive invariants, type refine-
ments may be quantified. This is crucial, as strong updates in a procedure may
only update a subset of the array.

Rather than requiring users to annotate types with refinements, our approach
attempts to learn quantified array invariants. Although significant advances have
been made in recent years to allow useful array invariants to be inferred auto-
matically, prior approaches either (a) require a predefined fixed or parameterized
partition of array indices [10,14], (b) entail sophisticated reasoning over quan-
tified abstract domains [12], or (c) rely on powerful theorem provers to provide
predicates [1,2,15,18,20,24] (as interpolants) that may hold on the program in
general. We consider the problem from a different perspective, based on the ex-
pectation that useful array invariants should be observable from test runs. By
summarizing or generalizing the properties that hold in all such runs, we can
construct a set of candidates or likely invariants. We then lift these presumed
invariants to our dependent type system for validation.

Deducer
(Template 
Inference)

Miner
(Template 

Instantiation)

Verifier 
(Effectful Type 

System)

Program

Verified inv

Likely inv

templates

Runner
(Testing)

test data

Fig. 1. Framework

The framework of our approach is
outlined in Figure 1 : (I) a Deducer
initially guesses coarse templates for
the invariants; (II) a Runner then runs
the subject program through simple
random test suites; (III) a Miner gen-
erates a constraint system by substi-
tuting the variables in the template
with concrete values from test runs;
(IV) a Verifier validates the likely de-

pendent types derived from the solution of the constraint system.
Our technique is compositional—invariants are inferred for each procedure

without the need for additional context information about callers and callees. It
is lightweight because the constraint system from which program invariants are
inferred is obtained from concrete program states and not limited by a specific
abstract domain construction; experimental results also indicate that the ap-
proach allows fast convergence from a likely to a provable invariant. Our paper
thus makes the following contributions:

1. We propose a novel data driven algorithm to infer array invariants that
leverages observations from test cases to guide inference.

– Avoiding the high cost of inferring exact array invariants, our approach
initially guesses coarse invariant templates, at the expense of precision.

– We train the template with concrete program states collected from test
runs to instantiate it to likely invariants, recovering precision.

2. We integrate our technique within a new effectful dependent type system that
can be used to automatically validate the correctness of the likely invariants.
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2 Overview

We use the inner loop of the classic insertion-sort program shown in Figure 2
to illustrate and motivate our approach. Figure 2 visualizes the execution of

i

i

j

j

a

a

...

...

return i +1

i ja ...

a[i+1..j) > a[j]

a[i+1..j) > a[j]

a[i] <= a[j]

(1)

(2)

(3)

Fig. 2. Inner array insertion-sort program

the recursive function insert : (1) initially parameter i is set to the index of
the left adjacent element of a[j]; (2) function insert then accesses the array
elements with indices less than j iteratively; (3) it terminates when it finds an
element that is no greater than a[j]. Our approach can automatically infer a
useful dependent type for insert , capturing the behaviors described above.

Instead of directly inferring an exact invariant, Deducer (in Figure 1) guesses
the invariant’s template based on a backward symbolic execution. Assume we
infer that the postcondition of insert is ϕpost. We focus on the first branch (L1)
and unwind the recursion only once, deriving the following precondition,

ϕpre ≡ ∃a′. [a′/a]ϕpost ∧ ((i >= 0 ∧ a[i] > a[j]∧
∀a0.((a0 = i+ 1⇒ a′[i+ 1] = a[i]) ∧ (a0 
= i+ 1⇒ a′[a0] = a[a0])) ∧ ...) ∨ ...)

where a0 is a special universal variable and we use a′ to refer to a in the state
after the update. Note that the precondition provides information about how
array elements are manipulated by a procedure. In particular, ϕpre reflects the
fact that the (i)th element of a is moved to its right position if it is greater
than the (j)th element in insert. It is unclear, however, how to generalize this
condition, which defines only an under-approximation of the desired invariant.

Nonetheless, it is possible to guess that a general invariant may be in the
shape of the predicate a[i] > a[j] from ϕpre. Based on the assumption that
array invariants are typically universally quantified on array indices, we infer
the following form for a valid invariant:

∀a0. 0 ≤ a0 < χ1(x̄)⇒ a[a0;χ2(x̄)] > a[χ3(x̄)]}

where x̄ = {i, j} is used to denote all the scalar parameters of insert and
χ(x̄) = c̄ ∗ x̄ represents a parameterized linear expression over x̄ (c̄ are unknown
coefficients). This predicate abstracts a relation to describe how insert (iterat-
ing over i) might maintain an invariant over array a. In this formula, a[a0;χ2(x̄)]
is universally quantified on the special variable a0 which is bounded by χ1(x̄).
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Obviously, concrete program states collected from test runs must satisfy the
guessed invariant template in terms of insert ’s preconditions (and postcondi-
tions). To generate such states, Runner calls the array insertion-sort program
with a randomly generated array. We dump the input/output values of insert

as its concrete pre- and post-states. For each pre-state, we substitutes the vari-
ables in the template with their values in this concrete state, deriving some
constraints. Thus we obtain a linear constraint system over the unknown coef-
ficients. Using an SMT solver, Miner is able to instantiate the template to the
following likely invariant (precondition):

∀a0. 0 ≤ a0 < j− i− 1⇒ a[a0 + i+ 1] > a[j]

Note that this likely invariant is obtained by exploiting the local states of insert
solely. Not all instantiations are real invariants; spurious instantiations coincide
with properties exposed by particular test cases but do not hold in general. Veri-
fier validates whether a likely invariant generalizes by encoding the invariant into
a dependent type system (covered in Section 4). Dependent type constraints are
solved via an abstract interpretation to yield valid types (whose type refinements
are a conjunction of the predicates from the likely invariants) for the program.
We delay details of how the above invariant can be validated to Example 2.

Applying all these steps (with a similar inference step for deriving the post-
condition), we are able to associate the following non-trivial type to insert :

i : int→ j : int→ a : {array|∀ν0. 0 ≤ ν0 < j− i− 1⇒ ν[ν0 + i+ 1] > ν[j]}
→ ret : int/[a : {array|∀ν0. 0 ≤ ν0 < j− ret⇒ ν[ν0 + ret] > ν[j]}]

where the special variable ν is used to denote the value of term a in its corre-
sponding type refinement predicate (we ignore the dependent type for i and j for
simplicity). If ν refers to an array, then ν0 denotes its first subscript. This type
specifies that, in insert , the array elements in a[i+ 1, · · · , j− 1] are greater
than a[j]; and produces as a side-effect that, the elements in a[ret, · · · , j− 1]
are greater than a[j] where ret denotes the return value (in Section 7, we discuss
how the predicates over a and a′ in ϕpre are also exploited to deduce a universally
existentially quantified (∀∃) invariant capable of proving preservation property).

3 Language

In the rest of the paper, we focus on single-dimensional arrays for simplicity; our
approach can be naturally extended to handle multi-dimensional cases.

We formalize our ideas in the context of a call-by-value variant of the λ-
calculus with support for dependent types. The syntax of the language is shown
in Figure 3. Typically a is only bound to arrays and x and y are usually bound to
both scalar variables, drawn from some non-array base type, and arrays. Pred-
icates (p) are Boolean expressions built from a predefined set (Q) of first-order
relational operators (functions); the arguments to these operators are restricted
to simple expressions - variables, constants, or array expressions and arithmetic
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x, y ∈ Var a ∈ Arr c ∈ Constant ::= 0, . . ., true, false B ∈ Base ::= int | bool | array
τ ∈ Monotype ::= B | τ → τ P ∈ DepType ::= {ν : B | r}/T | {x : P → P}

r ∈ Refinement ::= κ | p T ∈ EffType ::= (x : {ν : B | r}/[ ]);T | [ ]
p ∈ Predicate ::= p and p | p or p | Q(s, . . . , s) Q ∈ {>=, >, · · · }
s ∈ SimpleExp ::= ν0 | ν | x | a | c | s op s | a[s] op ∈ {+,−, · · · }
e ::= s | a[s] := s | λ x. e | if p then e else e | let x = e in e | e x

Fig. 3. Syntax

compositions of such expressions; a type refinement (r) is either a type refinement
variable (κ) that represents an unknown type refinement or a concrete predicate
(p). Instantiation of the type refinement variables to concrete predicates takes
place through the type refinement algorithm described in Section 5.

Our language supports a small set of base types (B), monotypes (τ) and
dependent types (P ) that include dependent base types and dependent function
types. A dependent base type is written {ν : B| r}/ T . B is a base type, such as
int or bool, and r is called a type refinement that constrains the value defined
by the type. Effect type T is a sequence of dependent types binding to side-
effecting arrays, conservatively approximating the side-effects an expression may
produce. These bindings have no further effect, i.e., effect types are not nested.
In the following, we will often omit the declaration of ν or T if it is empty for
simplicity. For example, the expression (let = a[x] := 1 in 0) where x is an
integer, has type {{int | ν = 0}/Tex} where

Tex ≡ {a : {array|∀ν0. (ν0 = x⇒ ν [ν0] = 1) ∧ (ν0 
= x⇒ ν [ν0] = a [ν0])}}

This type reflects that the expression yields 0, but additionally has a side-effect
that updates the x th element of array a to 1. When this effect is merged with
the type environment of this expression (detailed in Section 4), the array a inside
the type refinement will be modified to refer to the old array before the update.

A dependent function type is written {x : Px → P}1 where the argument x
is constrained by the dependent type Px, and the result type is specified by P .
For instance, {a : array→ x : {ν : int | ν > 0} → {ν : int | ν > x}/Tex} specifies
the function that given a positive integer returns an integer greater than x, that
also raises a side-effect captured by Tex.

Unknown type refinements for array type parameters and return value (ā) of a
function are instantiations from a general template that is created for each array
ai (ai ∈ ā and the syntactic sugar ā[ai0; x̄] denotes an arbitrary array expression
whose array indices are arithmetic compostions from variables in [|ai0; x̄|]):

I ≡ ∀ai0.0 ≤ ai0 < ϕi(x̄)⇒ (
∧

aj∈{ā/ai}
ϕj(x̄) ≤ ψj(x̄) < ϕ

′
j(x̄))⇒ Q(ā[ai0; x̄], x̄)

1 Although side-effects can be associated to closures (function typed), we disallow it
in the paper to keep simplicity but implement it in our tool (Section 8).
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where ai0 represents the single subscript of array ai, ϕi(x̄) is an arithmetic ex-
pression over non-array base type parameters, serving as an upper bound for ai0,
and Q(ā[ai0; x̄], x̄) is a predicate (drawn from the language of linear arithmetic
and uninterpreted functions) over array expressions ā[ai0; x̄] and all scalars pa-
rameters x̄ of the function. The second implication condition naturally bounds
the array index for arrays other than ai. To translate an instantiation of the tem-
plate into a type refinement, we simply perform the substitution [ν/ai][ν0/ai0]I,
which can be embedded into the dependent type of ai (e.g., see the type of
insert in Section 2).

4 Dependent Type System for Arrays

Figure 4 defines dependent type inference rules; these rules are adapted from
[22], generalized to deal with array update effects. Syntactically, Γ 2 e : P states
that expression e has dependent type P under type environment Γ , which is a
sequence of type bindings x : P and guard predicates p. The former are standard;
the latter capture path-sensitivity of program branches, following [22].

As in [22], the built-in units of function such as +,− are encoded as constants
which have predefined dependent types that capture their semantics. In this pa-
per we are particularly interested in array updates as side-effects and we encode
array update function a[x] := y as primitive constant. Its type is given as:

Γ 2 (a[x] := y) : {a : array→ x : int→ y : int→
unit/[a : {array|∀ν0. (ν0 = x⇒ ν[ν0] = y) ∧ (ν0 
= x⇒ ν[ν0] = a[ν0])}]}

Before describing the key components of the type system, we introduce some
auxiliary functions. We define mod (Γ, e) as the function that returns all the
arrays bound in Γ that have array updates inside e. Firstly, mod (Γ, a[x] := y) =
a. The other cases are simply recursively defined. Additionally, function Eff (P )
returns the effect of dependent type P (a function definition given as a lambda
expression does not produce side-effects). Function Ty (P ) erases the effects for
base dependent types. We use dom(T ) to return the keys of the bindings of effect
T .

Eff ({ν : B | p} / T ) = T Eff ({x : P → P}) = [ ]

Ty ({ν : B | p} / T ) = {ν : B | p} / [ ] Ty ({x : P → P}) = {x : P → P}

Well-Formedness Judgement. These rules are of the form Γ@ modset 2 P ,
and check if dependent type P is well defined under type environment Γ , which
is extended with a set of arrays(modset) that may be updated by this type’s
underlying expression. Rule WF Base firstly checks that the type refinement p of
a dependent base type does not refer to program variables that escape from its
type environment Γ , i.e, p is a well defined predicate. Secondly we enforce that all
the side-effects raised by an expression must be captured by its type by checking
that the keys of the binding in its effect T must contain modset and that T
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Γ ; ν : B � p : bool modset ⊆ dom(T ) Γ � T

Γ@ modset � {ν : B|p}/T WF Base

Γ ;x : Px@ modset � P

Γ@ modset � x : Px → P
WF Fun

∀{a : P} ∈ T. Γ@[ ] � P

Γ � T
WF Eff

Γ ;x : Px � e : Pe Γ ;x : Px � Pe <: P

Γ � λx.e : {x : Px → P} Fun

Γ � e : {x : Px → P} Γ � y : P ′
x Γ � P ′

x <: Px

Γ � e y : [y/x]P
App

Γ � e1 : P ′ Γ@{mod (Γ, e1) ∪ mod (Γ, e2)} � P
θ = {[ỹ/y] | y ∈ dom( Eff (P ′))}

θ(Γ ;x : Ty (P ′); Eff (P ′);∀y ∈ dom( Eff (P ′)).ỹ : Γ (y)) � e2 : P

Γ � let x = e1 in e2 : P
Let

Γ � p : bool Γ ; p � e2 : P Γ ;¬p � e3 : P Γ@{ mod (Γ, e1) ∪ mod (Γ, e2)} � P

Γ � if p then e1 else e2 : P
If

〈Γ 〉 ∧ 〈ν : r1〉 ⇒ 〈ν : r2〉 Γ � T1 <: T2

Γ � {ν : B|r1}/T1 <: {ν : B|r2}/T2
Sub Base

Γ � P ′
x <: Px Γ ;x : P ′

x � P <: P ′

Γ � {x : Px → P} <: {x : P ′
x → P ′} Sub Fun

dom(T1) ⊆ dom(T2) ∀{a : P} ∈ T2. Γ ;T1 � a : P

Γ � T1 <: T2
Sub Eff

Fig. 4. Typing rules

is well-formed. Rule WF Fun and WF Eff define well-formedness conditions for
functions and effects, resp.

Type Judgements. The typing rules state how an expression e can be depen-
dently typed. Rules Fun and App are standard. As in [22], our approach requires
the need for pending substitutions because the dependent type of a function ap-
plication is derived by substituting all the formal argument x in the output by
the actual y. It is formally defined as θ ::= [y/x]; θ | [ ]. Pending substitution for
base dependent type is defined as θ({ν : B | p} / T ) = {ν : B | θp} / θT . where
θT = {θx : θP | x : P ∈ T }. Note that we push pending substitution to effects.
Pending substitution for functional types are trivially recursively defined.

In rule Let , the well-formedness condition checks that the effect of the entire
Let -expression subsumes all the effects produced by e1 and e2. When typing ex-
pression e2, we require that the side-effects of e1 must refresh e2’s typing environ-
ment for soundness ( Ty (P ′) resets P ′’s effects to empty). Note that Γ ;T means Γ
is merged with the effects T : for each binding x : P ∈ T , we substitute the original
binding to x in Γ with P . However, the original binding is not simply discarded.
If y is an array which could be updated by e1 (witnessed by its type’s effect), its
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original dependent type recorded in Γ is re-associated to a ỹ. Intuitively, we use
ỹ to refer to y in the state before the update. This relieves typing burden because
now the array y after the update can refer to its original version ỹ for the elements
that are not changed. To retain soundness, the appearance of y in the type refine-
ment predicates of the dependent types bound to Γ must be substituted with ỹ.
This is achieved by performing environment substitution θ as defined in the rule.
Formally, θΓ = {x : θP |x : P ∈ Γ}. Rule If is standard except we require that
all the effects made by its subexpressions must be subsumed by the effect of the
entire If -expression.

Subtype Judgement. This class of rules checks at each call site that the ac-
tual arguments satisfy the precondition of the called function and verify, at each
definition site, that the return value establishes the desired postcondition. Rule
Sub Base checks whether a dependent type subtypes another dependent type
for based typed expression. The premise check requires the conjunction of en-
vironment formula 〈Γ 〉 and 〈ν : r1〉 implies 〈ν : r2〉. Our encoding of 〈Γ 〉 (or
〈ν : r1〉 and 〈ν : r2〉) as a first order logic formula is inspired by [22]:∧

{p | p ∈ Γ} ∧
∧
{[x/ν][x0/ν0]r | x : {ν : B | r}/T ∈ Γ} (�)

For example, consider typing an expression e when it is enclosed in a statement
let = A[x] := y in e. According to rule App and Let, the type environment of e

is [Ã/A](A : {∀ν0. (ν0 = x⇒ ν[ν0] = y)∧(ν0 
= x⇒ ν[ν0] = A[ν0])}; Ã : {Γ (a)})
where Ã is a copy of the original array. The encoding for A according to (�) is

A : [A/ν][A0/ν0]{array|∀ν0. (ν0 = x⇒ ν[ν0] = y) ∧ (ν0 
= x⇒ ν[ν0] = Ã[ν0])}

This illustrates the fact the array update application A[x] := y produces as
a side-effect, an update to the x th element of the array; the other elements
of the array are not changed and hence refer to the original array which is
remembered by the type system as Ã. This kind of embedding aims to strengthen
the antecedent of the implication and is conservative [22]. Rule Sub Fun is again
standard, and rule Sub Eff checks wether two effects are subtyped. Arrays
bound in T1 should be subsumed by that in T2; subtype checking is reduced
to dependent type checking Γ ;T1 2 a : P for each array a bound in T2.

Features. Our analysis has several notable characteristics. First, by piggyback-
ing type refinements (which are inferred using the techniques described in Sec-
tion 5) on top of standard type inference, we can use abstract interpretation
(in the form of liquid type inference [22]) to verify array properties. Thus, our
technique reduces static analysis for arrays to a Boolean fixpoint computation.
Unlike a theorem prover based approach which must generate suitable predicates
on the fly, our type system ensures termination. A detailed comparison with re-
lated work is summarized in Section 9. Our type system maintains precision in
the face of array updates by using case splits on array indices; to avoid case
explosion, we exploit the natural function summarization that is expressed by a
function type signature.
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5 Array Type Refinements Inference

In this section we show how type refinements in dependent types can be auto-
matically inferred from tests. Specifically, we infer a dependent function type for
each function by inferring the function’s precondition and postcondition. Our
type refinement inference is compositional, i.e., we generate likely array invari-
ants for a function, independent of its caller and callee.

5.1 Template Generation

As we have discussed in Section 2, our inference starts from a symbolic analysis
analogous to weakest precondition generation wp. We guess invariant templates
for each function according to its wp. Our wp algorithm simply pushes postcon-
ditions backward, substituting terms for values in the presumed postcondition
based on the structure of the predicate used to generate the precondition.

wp(e, φ) = case e of

| if p then e1 else e2 → (p ∧ wp(e1, φ) ∨ (¬p ∧ wp(e2, φ)))

| let x = e1 in e2 → wp(e1, [ν/x]wp(e2, φ)))

| (λx.e) y → [y/x]wp(e, φ)

| e y → wp((λx.e′) y, φ) (where e can be deferred to λx.e′)

| a[s1] := s2 → ∃a′. φ[a′/a]∧
{∀a0. (a0 = s1 ⇒ a′[s1] {≥, ≤} s2) ∧ (a0 
= s1 ⇒ a′[a0] = a[a0])}

| s→ [s/ν]φ

To invoke wp, we initially supply true as the φ argument. Notably, during the
process, it is refined to capture all the array reads and updates through if

cases and array update cases of the rules. However this wp definition does not
terminate for recursive functions. Since our aim is to guess coarse templates
of array invariants, we simply bound the number of times a recursive function
call is unrolled (at most 2 in our experiments). When wp has just traversed a
function f , our system remembers the immediate result as f ’s weakest precon-
dition and can later retrieve it using wp(f). As stated in Section 2, wp reflects
under-approximative information about how array elements are manipulated by
a procedure. Our inference principle is that, while information implied in wp is
under-approximate, if encoded into a template, can nonetheless be potentially
generalized by running tests for instantiation.

We supply the weakest precondition wp(f) of a function f to our template
generation algorithm, guessT in Figure 5, which outputs a set of invariant tem-
plates for f . We define scalar(f) as the scalar parameters and return value of
function f , and scalar(p) as the scalar variables used in a predicate p. Simi-
larly, scalar(s) returns the scalar variables used in a simple expression s. For
readability, we define that notation s 
≡ si is true if and only if scalar(s) ∩
scalar(si) = ∅.
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let guessT f wp =

foreach atomic predicate (p as Q(ā[ ]; x̄)) in wp
L: foreach ai[si] in p

let ai0 = create var "ai0" in

let b = χ(scalar(f)) in

output "

∀ai0 . 0 ≤ ai0 < b ⇒
{∧ a[s]∈p

a �=ai∧s�≡si

χ(scalar(f)/scalar(p)) ≤ χ(scalar(f) ∪ scalar(p))
< χ(scalar(f)/scalar(p))

} ⇒

Q(ai[ai0 ; scalar(f)]; (a[χ(ai0 ; scalar(f))] | a[s]∈p∧a	=ai ∧ ¬(s 	≡ si));
(a[χ(scalar(f))] | a[s]∈p∧a	=ai ∧ (s 	≡ si)); x̄)"

Fig. 5. Array Invariant Template Inference

In guessT , our algorithm traverses wp and generates invariant templates
(defined in Section 3) for each of its simple relational predicates Q(ā[ ]; x̄)),
denoted as p, if it ranges over some array expression ā[ ]. Inside the loop at
location L, for each array expression ai[si], we create a universal variable ai0
and its upper bound as χ(scalar(f)) for array ai. Suppose v̄ is a set of scalar
variables. χ(v̄) is an arithmetic template over v̄: c1 ∗ v1 + · · · + cn ∗ vn + c0,
with coefficients ci(0 ≤ i < n) as integer variables. Arrays other than ai are also
required to be accordingly bounded (intuitively corresponding to an array index
partition) as the algorithm shows (the set minus operation used in these lower-
and upper-bounds simply helps avoid considering uninteresting invariants).

Our algorithm then infers appropriate index templates over f ’s scalar variables
for each array expression a[s] in p, while it maintains the main shape of p. If an
array expression a[s] is exactly ai[si] or it happens to share some scalar variables
with ai[si] in their subscripts, we create its index template, applying χ over the
special universal variable ai0 and the scalar parameters defined in scalar(f).
Otherwise, s and si have disjoint scalar variables; the index of a is transformed
to an index template over scalar(f) only.

Example 1. Consider the insert procedure in Figure 2. The weakest precondi-
tion of insert , wp (insert), defines a simple predicate: p1 ≡ a[i] > a[j]. Inside
the loop at L, assume array expression a[i] is picked. To infer a precondition,
the type signature of insert reveals that scalar(insert) = {i, j}. So p1 is
parameterized to a[χ2(a0, i, j)] ≤ a[χ3(i, j)] as a template and the universal
variable a0 is accordingly bounded by χ1(i, j). The final template is:

∀a0. 0 ≤ a0 < χ1(i, j)⇒ {a[χ2(a0, i, j)] ≤ a[χ3(i, j)]}

5.2 Program Sampling

We train the invariant templates of a function using its concrete program states
collected from test runs. To this end we instrument the entry and exit of function
bodies to dump values of function parameters and returns into a log-file, as pre-
and post-states of the corresponding function resp. The format of a concrete
program state is as follows.
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V x =

{
u ← type(x) = int or bool

[|0 : u0, 1 : u1, · · · |] ← type(x) = Array

If a variable x is scalar, V maps it to the corresponding scalar value, u, sampled
in the log file. Otherwise if x is of array type, V maps it to a record where each
array element is indexed by its corresponding array subscript. We can use V x j
to retrieve the jth element (uj) of the array x. The program may be run with
multiple tests so we collect a set of pre- or post-states V s.

5.3 Template Instantiation

With an invariant template and a set of program states V s, we build a constraint
system to find all valid template instantiations that fit the concrete states. For
each state V ∈ V s, four constraints are generated. The first one constrains the
array content for all array ā, which is encoded as∧

0≤i<|ā|

∧
0≤k< Array.length (ai)

ai[k] = V ai k

The second constraint enforces that the requirement that an instantiation should
be invariant for all the elements in array ai:

∧
0≤k< Array.length (ai)

[k/ai0][V x̄/x̄]
(0 ≤ ai0 < ϕi(x̄))⇒ (

∧
aj∈{ā/ai}(ϕj(x̄) ≤ ψj(x̄)

< ϕ′
j(x̄)))⇒ Q(ā[ai0; x̄], x̄)

In the first substitution, since ai0 is bounded by Array.length(ai) and must be
no less than 0, we instantiate it to each possible value k ∈ [0, Array.length A).
In the second substitution, we replace scalar variables x̄ by V x̄. As an im-
plication with a false premise is always an invariant, albeit useless, the third
constraint guarantees the integrity of instantiated invariants:

0 ≤ ϕi(x̄) ≤ Array.length (ai) ∧
∧

aj∈{ā/ai}
0 ≤ ϕj(x̄) ≤ ϕ′

j(x̄) ≤ Array.length (aj)

The fourth constraint aims to rule out array bound exceptions. Index expres-
sions, after instantiation, must respect array length and be positive.∧

a[χ]∈Q(ā[ai0;x̄],x̄)

0 ≤ χ < Array.length(a)

These rules help to shrink the search space for likely invariants into a subset of
those syntactically restricted by the template. To avoid over-fitting, we further
require that all the coefficients must fall into the interval [−d, d] where d is the
maximum known constant in the function where the template is inferred. We
feed all 4|V s| constraints to a decision procedure to find all the valid assignments
for the unknown coefficients.
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6 Array Type Refinements Checking

Inferred invariants are not guaranteed to generalize. We lift likely invariants into
dependent types, which are subsequently validated through the type system
introduced in Section 4. Initially we represent dependent base type as standard
base type extended with a type refinement variable κ indicating an unknown type
refinement. The dependent type P for an expression e must over-approximate e’s
side-effects. To generate the effect T for e, for all the arrays x ∈ mod (Γ, e) where
Γ is the type environment for e, we call an auxiliary function Push (P, x : Px)
where Px is a dependent type for x with unknown type refinement. This function
pushes the effect to the right position in P ; its definition is given as

Push ({{ν : B | p} / T }, T ′) = {{ν : B | p} / T ;T ′}
Push ({x : P1 → P2}, T ′) = {x : P1 → Push (P2, T

′)}

This process is performed before the generation of type constraints.
Type constraints over unknown type refinement variables that capture the

subtyping relations between the types of various subexpressions are generated
by traversing the program expression in a syntax-directed manner, applying the
typing rules in Figure 4. We prove (see [30]) that the generated type constraints
are solvable if and only if a valid type derivation exists. In our system, the
type refinements for arrays are automatically inferred from test runs and are
initially associated to all the unknown type refinement variables for array types.
The type checker enumerates all possible solutions following the strategy in [22].
Notably, the type inference is abstracted into an abstract interpretation infras-
tructure [4]. Specifically, we solve these type constraints by iteratively removing
the type refinements for unknown type refinement variables that prevent a type
constraint from being satisfied using a decision procedure (an SMT solver) for
the implication check in the subtyping rule shown in Figure 4.

Example 2. Consider the insert function in Figure 2. Refining insert’s stan-
dard type, we initially generate its dependent type with unknown type refine-
ment variables: {i : {int|κi} → j : {int|κj} → a : {array|κa} → ret :
{int|κret}/[a : {array|κEffa }]}. The variable κEffa represents the effect this func-
tion makes; syntactic sugar ret represents the return value. According to type
checking rule Let, the effect of the let expression in if branch must be merged
with the type environment for the locally-bound subexpressions. Thus, we gen-
erate a constraint:

· · · ; ã : κa; i >= 0; ã[i] > ã[j] 2 {∀a0.((a0 = i+ 1⇒ a[i+ 1] = ã[i])

∧ (a0 
= i+ 1⇒ a[a0] = ã[a0]))} <: [i− 1/i]κa

from the call to insert that forces the actual array a passed in at the callsite to
be a subtype of the formal of insert , according to rule App. Note that ã denotes
the old array before the update operation, in the type environment. Instantiating
κa to the likely invariant inferred in Section 2 and executing the implication
check in rule Sub Base for subtyping would yield a verification condition, whose
validity implies the invariant’s correctness.
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However, such implication checks are quantified formulae which are generally un-
decidable. The reason is that SMT solvers do not support quantifier instantiation
for formulae of arbitrary structure. Our approach provides a heuristic wrapper
to SMT solvers, similar to [28]. For a formula given as an universally quantified
array invariant, we instantiate its universal variable with all the array accessing
indices collected from the program. This mechanism is conservative because all
such formulae are quantified over array indices, and is also sound. If a formula
is also existentially quantified, we instantiate its existential with a fresh variable
which is again matched to other corresponding universally quantified formulae.

7 Extensions

The template (over array and scalar variables) produced from Figure 5 covers
a fairly general family of properties and is expressive enough to infer array
invariants over an unbounded number of array elements. A natural question
to ask is how we might judge the quality or usefulness of the invariants?

To show usefulness, we propose to use the inferred invariants to prove two
important classes of program specifications: those that reflect sorting properties,
and those that preserve the elements of the input. However, specifying suit-
able sorting and preservation invariants within a proper array bound requires
array-specific domain knowledge. Instead, we equip our system with two built-in
very simple templates for capturing sorting and preservation and use tests to
instantiate such two specifications.

Array Sorting Invariants. The following template allows our system to infer an
array sorting invariant for an arbitrary array a:

∀a0. χ(x̄) ≤ a0 < χ
′(x̄)⇒ a[a0] {≤,≥} a[a0 + 1]

Array Preservation Invariants. We are also interested in discovering and veri-
fying properties like: “After sorting, the output array ai preserves all the set of
elements from the input array aj”. To this end, the postcondition of a function
must be both universally and existentially quantified, and be able to refer to the
state of the array aj at the beginning of the function, which we denote as ãj:

∀aj0.∃ai0. 0 ≤ aj0 < χj(x̄)⇒ 0 ≤ ai0 < χi(x̄) ∧ (ãj [χ
′
j(aj0; x̄)] = ai[χ

′
i(ai0; x̄)])

where ai0 in this case is existentially quantified while another special variable aj0
for ãj (aj may or may not equal to ai) is universally quantified. An instantiation
of this template yields a preservation invariant: for all the set of array elements
(in some scope) in ãj , they are preserved in ai. Such templates can be created
when we detect an array update involving two arrays during the process of
generating the weakest precondition.

To deal with this extension, our template instantiation algorithm in Section 5
needs to be sightly extended. A concrete state logged in a file must include both
ā and ¯̃a (the array at the beginning of the function) when trying to infer a
function’s post-condition. Specifically, for a ∀∃ template and a set of program
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state V s, for each state V ∈ V s, we again generate four similar constraints.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1.
∧

0≤k< Array.length (ai)
ai[k] = V ai k ∧

∧
0≤k< Array.length (ãj)

ãj [k] = V ãj k

2. 0 ≤ χj(x) ≤ Array.length(ãj) ∧ 0 ≤ χi(x) ≤ Array.length(ai)

3. 0 ≤ χ′j(aj0; x̄) < Array.length(ãj) ∧ 0 ≤ χ′i(ai0; x̄) < Array.length(ai)

4.
∧

0≤k< Array.length (aj)
[k/aj0][ex/ai0][V x̄/x̄]

0 ≤ aj0 < χj(x̄)⇒ 0 ≤ ai0 < χi(x̄) ∧ (ãj [χ
′
j(aj0; x̄)] = ai[χ

′
i(ai0; x̄)])

The first three constraints are self-explanatory. The fourth constraint enforces
that an (instantiated) invariant must hold for all the possible values of the univer-
sal variable aj0. It also requires the solver to present a witness for the existential
variable ai0 for each possible value of aj0 (ex is always a fresh variable).

8 Experimental Results

We have implemented our method 2 and evaluated it using benchmarks from
recent related work [7,19]. We additionally infer invariants for binarysearch,
quicksort-inner and the complete mergesort (see a detailed case study in [30])
and insertionsort programs. The results are summarized in Table 1. For the
sorting programs, we try to infer and prove the sorted-ness of the result. For
each of these benchmarks, our system successfully finds the desired pre- and
post-conditions. In the table, we record the number of likely invariants and the
time spent in invariant generation as gen inv and inv time, resp.; columns inv
and vc time represents the number of validated invariants and the time for val-
idation. Columns tests refers to the number of tests (array input are randomly
generated) needed to converge. In the experiment, we keep the size of input
arrays to be a small value, either 4 or 5, to refute over-fitting invariants and
achieve efficiencies. Notably, we use exactly the same test suites for the classic
array sorting benchmarks. Compared to [7,19], our primary point of distinction
is the use of test runs to infer array invariants and the absence of any requirement
to annotate post-conditions, which are now inferred; the overall execution time
of our implementation just slightly increases compared to [7], although we re-
quire much less annotations. A subset of our benchmarks can be verified via the
system presented in [12], that extends abstract interpretation with a quantified
abstract domain; like our technique, [12] also does not assume predefined pred-
icates and annotated post-conditions. With the invariants inferred from a small
set of tests, our approach can (significantly) more quickly converge to a solution
compared to [12], which only relies on static semantics. Subsequent work [28]
improves on [12], achieving results similar to ours, but at the cost of requiring
programmers to explicitly specify a set of predicates and templates from which
invariants are composed.

We also evaluated how increasing tests can affect the performance of our
tool by tuning the number of test cases for insertion-sort-full in Table 2. It

2 webpage: https://www.cs.purdue.edu/homes/zhu103/asolve/index.html

https://www.cs.purdue.edu/homes/zhu103/asolve/index.html


426 H. Zhu, A.V. Nori, and S. Jagannathan

Table 1. ∀ invariant results

Benchmarks gen inv inv tests inv time vc time total time

parlindrome[19] 4 4 1 1.22s 0.13s 1.50s

seq-init [19] 2 2 1 0.33s 0.22s 0.71s

max-and-min[19] 4 4 1 0.27s 0.94s 1.78s

first-occur [19] 5 5 2 0.54s 0.59s 1.59s

sum-pair [19] 23 5 2 9.02s 1.63s 11.22s

array-init [7] 7 7 1 0.16s 0.25s 0.61s

array-reverse[7] 4 4 1 0.80s 0.36s 1.40s

array-copy [7] 7 7 1 0.46s 0.36s 1.05s

array-find [7] 2 2 1 0.10s 0.22s 0.45s

array-difference[7] 7 7 2 1.32s 0.76s 2.52s

binarysearch 8 5 2 0.95s 1.00s 2.46s

bubblesort-inner [7] 7 3 3 2.68s 1.40s 4.61s

selection-sort-inner [7] 6 4 3 3.03s 0.84s 4.36s

quick-sort-inner 12 8 2 2.58s 3.86s 7.26s

insert-sort-inner 8 3 2 0.66s 0.78s 1.76s

merge-sort-full 36 32 1 26.66s 22.66s 52.12s

Table 2. Increasing the number of tests for verifying insertion-sort-full

Benchmarks gen inv inv tests inv time vc time total time

insert-sort-full 20 9 1 3.57s 2.20s 6.43s

insert-sort-full 14 9 2 4.07s 1.83s 6.60s

insert-sort-full 12 9 3 4.34s 1.74s 6.83s

insert-sort-full ≤12 9 ≥4 ≥6.37s ≤1.79s ≥8.96s

can be seen that although increasing tests could reduce the number of false
invariants generated (the verification time reduces correspondingly), the time
spent in inference grows. Based on our experience, the number of tests never
needs to be greater than a small number (2 or 3 in our experiments). Indeed,
our experiments provide evidence to our claim that a simple random test suite
suffices to infer very complex array invariants. Finally we show the result of
applying our tool to infer preservation (∀∃) properties in Table 3.

Limitations. We briefly comment some limitations of our approach. First, the
search space for array invariant is restricted by the shape of the general templates
defined in Section 3, and can only discover program invariants that reside within
this space. For example, our technique cannot find array invariants that express
properties related to non-contiguous partitions of the array. Secondly, invariants
discovered from the general template may sometimes be redundant. The reason
is that discovered array invariants are all universally quantified. Adjusting the
bound for universally quantified variables and the array indices computed from
these variables accordingly may generate array invariants with different surface-
level descriptions that have the same intension. Our approach bounds the value
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Table 3. ∀∃ invariant results

Benchmarks gen inv inv tests inv time vc time total time

selection-sort 3 3 1 0.27s 1.41s 2.44s

bubble-sort 3 3 1 0.27s 1.68s 2.76s

quick-sort 9 8 1 1.31s 5.89s 9.05s

constants used by the general template to reduce the likelihood of redundant
invariants. In future work, we plan to exploit deeper semantic approaches to
filter redundant invariants.

9 Related Work and Conclusion

The idea of using a dependent type system to verify data structures is well stud-
ied. LiquidType [22] infers sound dependent types whose type refinements are
conjunctions over atomic predicates presented from programmers. This approach
can prove complex invariants over data structures [16], and has been extended
to support abstract type refinements [29], which allows dependent types to be
parametrized over type refinements. The ability to infer and verify flow-sensitive
properties (for array programs) distinguishes our approach from these efforts.

Abstract interpretation [4] has long been used to infer array invariants. In [10]
and its subsequent work [14], invariants are discovered based on an abstract in-
terpretation over abstract values associated with each symbolic array partition.
To overcome the problem that array indices can only be quantified over inter-
vals from a fixed partition, [12] introduces quantified abstract domains and infers
more general array properties of the form ∀l.ϕ(l) ⇒ ψ(a[l] · · · ). However, ab-
stract interpretation becomes difficult because ϕ must be under-approximated
and it also requires programmers to provide templates for the invariants to be
inferred. To overcome these difficulties, a similar but more scalable framework
for array programs is presented in [5]. With parameterized bound expressions,
arrays are automatically divided and each segment can be uniformly abstracted;
such analyses are then combined via a reduced product with existing analyses
for scalars. Our approach, in contrast, does not require array divisions and a
fixed set of predicates in advance. Another dedicated array program analysis,
fluid update [8], also avoids explicit array index partition. It also models array
as an abstract location quantified by its index. To avoid the need for explicit
array partitions, it retains both over- and under-approximative information of
array updates, blurring the boundary of strong and weak updates. In contrast
to our approach (dedicated to discovering complex invariants about unbounded
array elements), their focus is on unified pointer, scalar and array reasoning.

Theorem provers have also been used for discovering invariants for array pro-
grams. Some approaches follow a counterexample guided abstraction refinement
paradigm to extract information from spurious error paths about the range of
array indices over which a universally quantified property may hold, or derive
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array entries that violate an assertion from which predicates that may hold in
unbounded intervals are then inferred [1,15,18,20,24]. Similar to our technique,
these approaches are flexible because they do not assume a finite set of abstrac-
tions fixed in advance but generate suitable assertions on the fly. In contrast, our
technique does not rely on program assertions or spurious program paths, and
can infer likely program invariants before verification. Other techniques attempt
to solve for unknown relations such as loop invariants that occur in verification
conditions. This line of work has also been applied to array program in [2] by
extending Horn solver to handle quantified predicates. Constraint-based invari-
ant generation [3] is similarly adopted for discovering and verifying universally
quantified properties over array variables. For example, a CLP program trans-
formation [11] has been extended to handle array manipulating program in [7].
This work generates a set of verification conditions expressed as CLP (Array)
program whose satisfiability implies that the program specification is proved.
In [19], by means of Farkas’ Lemma, the problem of discovering loop invariants
is transformed into a satisfiability problem over the constraints generated from
array programs. In contrast to these efforts, our approach builds simple con-
straints over concrete program states and hence is agnostic to specific program
instructions so that it does not rely on the power of specialized theorem provers.

Our approach is inspired by the idea of using tests to improve the precision
and efficiency of program analysis. Daikon [9] uses conjunctive template to find
invariants, from configurations recorded along test runs. One of its extension
in [21] uses equation solving to find array invariant but does not support im-
plication and quantification. In contrast, we search quantified array invariants
that allows implication (disjunction). In [6], since invariants are produced from
symbolic execution of program paths that the concrete tests satisfy during their
executions, the relevance of the generated invariants is increased compared to
Daikon. In [13], the information obtained from static abstract interpretation is
combined with that from tests to strengthen the ability of invariant generators
but it does not consider quantified invariants. We are also inspired by recent
interest in using machine learning to infer loop invariants. Compared to learn-
ing algorithms that synthesize program invariants in terms of classifiers distin-
guishing good and bad program samples [27,26,25], we search invariants from
a broader program space since the typical learning techniques only search for
invariants bounded by annotated assertions; we are unaware of prior learning
based approaches capable of handling array programs as complex as the ones we
have considered.

Conclusion. This paper presents a compositional and lightweight invariant
inference technique that uses test runs to infer quantified array invariants. Our
technique builds a constraint system for inferring array invariants on top of con-
crete program states. All likely flow-sensitive invariants inferred are validated
by our dependent type system that allows side-effecting array updates. Exper-
imental results demonstrate the practicality and expressivity of our approach.
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Abstract This paper presents a theoretical and experimental comparison of
sound proof rules for proving invariance of algebraic sets, that is, sets satisfying
polynomial equalities, under the flow of polynomial ordinary differential equa-
tions. Problems of this nature arise in formal verification of continuous and hy-
brid dynamical systems, where there is an increasing need for methods to expedite
formal proofs. We study the trade-off between proof rule generality and practical
performance and evaluate our theoretical observations on a set of heterogeneous
benchmarks. The relationship between increased deductive power and running
time performance of the proof rules is far from obvious; we discuss and illustrate
certain classes of problems where this relationship is interesting.

1 Introduction

In safety verification of dynamical systems, either purely continuous or hybrid [22,29],
one is typically concerned with ensuring that by initializing a system in some set of
states X0 ⊆ X (where X is the state space), the system will never evolve into an
unsafe state (belonging to some Xu ⊆ X). When the system is given by ordinary
differential equations ẋ = p(x), one may attempt to solve this problem by showing
that the solution to the initial value problem, for any initial value x0 ∈ X0, cannot enter
the unsafe region; that is, x(x0, t) /∈ Xu for all t ≥ 0, where x(x0, t) is the state of the
system at time t w.r.t. the initial value x0. This safety verification problem is equivalent
to showing that the intersection of the reachable set {x(x0, t) ∈ X | t ≥ 0} with the
set of unsafe states is empty. However, solutions to ordinary differential equations will
rarely be available in closed form; and even when they are, will often be much more
complicated than the differential equations themselves. Instead, it is possible to work
with the differential equations directly [26,21,23,29].

A fundamental notion in safety verification is that of an invariant set. In fact, exact
reachable sets of any given state x0 of the system are the smallest invariant sets one can
hope to find that includex0. However, obtaining and working with exact descriptions of
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reachable sets is not always practical or even possible. This does not mean that system
safety cannot be established by other means - if one finds a larger invariant set, I ⊆ X ,
with a simpler (perhaps algebraic) description which contains the reachable set and
does not itself intersect the set of unsafe states (i.e. I ∩Xu = ∅), then one can soundly
conclude that the system is safe. In this paper, we focus on checking whether a given
set is an invariant region from which no system trajectory can escape.

Hybrid systems verification completely reduces to questions about invariant regions
[20,22]. We focus on the important case where the invariant regions are algebraic sets,
i.e. can be defined by polynomial equations. Many sound proof rules already exist for
deciding invariance properties of algebraic sets. However, in order to identify a good
trade-off, it is crucial to study the relationship between the deductive power and the
practical running time performance of these proof rules.

Contributions. (I) We theoretically compare the deductive power of 7 different proof
rules for checking invariance properties of algebraic sets under the flow of polynomial
ordinary differential equations. Further, we assess the practical utility of each of these
rules in order to identify a good trade-off between generality and running time perfor-
mance. (II) We investigate the effect of square-free reduction on both the deductive
power and the computational complexity of the proof rules. (III) We assess the prac-
tical proof rule performance on a heterogeneous set of 75 benchmarks. We demonstrate
the counter-intuitive fact that square-free reduction does not necessarily improve the
computational efficiency of certain proof rules and explore interesting connections be-
tween the deductive power and the practical running time performance that we observe
for the proof rules.

Content. In Section 2, we recall some basic definitions and concepts that will be used
throughout the paper. We then introduce (in Section 3) two proof rules that serve as
extensions of Lie’s criterion for equational invariants. In Section 4, we compare the
deductive power of the proof rules. The benefits and drawbacks of performing square-
free reduction as a pre-processing step are investigated in Section 5. In Section 6, we
present the set of benchmarks and our experimental results. We finally discuss other
related work in Section 7 before concluding. All proofs, as well as more detailed results
from running our benchmarks, can be found in the companion technical report [10].

2 Preliminaries

We consider autonomous1 polynomial vector fields (see Def. 1 below).
Let x = (x1, . . . , xn) ∈ Rn, and x(t) = (x1(t), . . . , xn(t)), where xi : R → R,

t 	→ xi(t). The ring of polynomials over the reals will be denoted by R[x1, . . . , xn].

Definition 1 (Polynomial Vector Field). Let pi, 1 ≤ i ≤ n, be multivariate polynomi-
als of the polynomial ring R[x]. A polynomial vector field, p, is an explicit system of
ordinary differential equations with polynomial right-hand side:

1 That is, the rate of change of the system over time depends only on the system’s state, not on
time. Non-autonomous systems with polynomial time-dependence can be made autonomous
by adding an extra clock variable that reflects the progress of time.



Checking Differential Invariance of Algebraic Sets 433

dxi
dt

= ẋi = pi(x), 1 ≤ i ≤ n . (1)

Since polynomial functions are smooth (C∞, i.e. they have derivatives up to any order),
they are locally Lipschitz-continuous. By the Cauchy-Lipschitz theorem (a.k.a. Picard-
Lindelöf) [14], there exists a unique maximal solution to the initial value problem (ẋ =
p, x(0) = x0) defined for t in some nonempty open interval.

For h ∈ R[x1 . . . , xn], if h(x(t)) = 0 for all t ≥ 0, we say that the equation h = 0 is
a (positive) invariant under the flow of p. In differential dynamic logic [20], invariance
of h = 0 is semantically equivalent to the validity of the following formula:

(h = 0)→ [ẋ = p](h = 0) (2)

Geometrically, the equation h = 0 represents the set of real roots of h. Such a set is
known as real algebraic set or a real variety and will be henceforth denoted by VR(h).
Algebraic sets are intimately related to sets of polynomials with special algebraic prop-
erties called ideals. Ideals are closed under addition and external multiplication; that is,
if I is an ideal, then for all h1, h2 ∈ I , the sum h1+h2 ∈ I; and if h ∈ I , then, qh ∈ I ,
for all q ∈ R[x1 . . . , xn]. To say that the real variety VR(h) of the ideal generated by
h is invariant under the flow of the vector field p is equivalent to the statement that the
equation h = 0 is invariant.

We will use∇h to denote the gradient of h : Rn → R, that is the vector of its partial
derivatives

(
∂h
∂x1
, . . . , ∂h

∂xn

)
. The Lie derivative of h along the vector field p gives the

rate of change of h along the flow of ẋ = p(x) and is formally defined as the scalar
product of∇h and p.

Lp(h)
def
= ∇h · p . (3)

Higher-order Lie derivatives are defined recursively as L(k+1)
p (h) = Lp(L

(k)
p (h)), with

L
(0)
p (h) = h.
We now recall five important proof rules for checking invariance of polynomial

equalities, or equivalently the validity of Eq. (2). In Fig. 1, DI= shows the differen-
tial invariant [21] proof rule restricted to handling equalities. The condition imposed
by the premise of DI= is sufficient, but not necessary; it characterizes polynomial in-
variant functions. The premise of the Polynomial-scale consecution proof rule [26], P-c
in Fig. 1, requires Lp(h) to be in the ideal generated by h. The condition is also only
sufficient (but is particularly suitable for generating invariant varieties [16]). We also
consider the constant-scale consecution proof rule [26,29], denoted byC-c. The premise
of proof rule C-c requires that Lp(h) = λh, where λ is a scalar, not a polynomial as in
P-c. It is therefore a simple special case of P-c. When λ = 0, one obtains the premise of
the proof rule DI=. It is worth noting that P-c, including its special case C-c, was men-
tioned as early as 1878 [5] and used extensively in the study of integrability of dynam-
ical systems, where they are known as second integrals [12, Chapter 2]. It serves as a
natural extension to invariant functions, also known as first integrals, which are covered
by the proof rule DI=. The proof rule Lie gives Lie’s criterion [13,19] for invariance of
h = 0; this proof rule will be discussed in more depth and extended to handle tricky
cases in Section 3. The last rule, DRI in Fig. 1, was recently introduced and character-
izes (i.e. gives necessary and sufficient conditions for) invariant varieties under the flow
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(DI=)
Lp(h) = 0

(h = 0)→ [ẋ = p](h = 0)
(C-c)

∃λ ∈ R, Lp(h) = λh

(h = 0)→ [ẋ = p](h = 0)

(Lie)
h = 0→ (Lp(h) = 0 ∧∇h �= 0)

(h = 0)→ [ẋ = p](h = 0)
(P-c)

Lp(h) ∈ 〈h〉
(h = 0)→ [ẋ = p](h = 0)

(DRI)
h = 0→ ∧N−1

i=0 L
(i)
p (h) = 0

(h = 0)→ [ẋ = p](h = 0)

Fig. 1. Proof rules for checking the invariance of h = 0 w.r.t. p: DI= [23, Theorem 3], C-c and
P-c [26, Lemma 2], Lie [19, Theorem 2.8], DRI [9, Theorem 2]

of polynomial vector fields [9]. The number N in DRI is the maximum length of the
ascending chain of polynomial ideals 〈h〉 ⊂ 〈h,Lp(h)〉 ⊂ 〈h,Lp(h),L

(2)
p (h)〉 ⊂ · · · ,

which is finite and computable [9].

3 Lie’s Criterion

One immediate (and somewhat embarrassing) deficiency of the proof rule Lie (Fig. 1)
is its inability to prove invariance properties for isolated points (e.g. system equilibria)
for the simple reason that a description of such a point a = (a1, . . . , an) ∈ Rn is (when
n > 1) given by the sum-of-squares equation h(x) = (x1−a1)2+· · ·+(xn−an)2 = 0.
This sum-of-squares polynomial h is positive-definite, i.e. h(a) = 0 and h(x) > 0 for
all x ∈ Rn \{a}. Positive definite functions have vanishing gradient at their minima, in
this case a, and thus the formula h = 0 → ∇h = 0 holds. This violates the regularity
condition in the premise of the proof rule Lie, namely:

h = 0 −→ ∇h 
= 0 . (4)

In fact, h = 0 → Lp(h) = 0 is a necessary condition when h = 0 is an invariant
equation. Note that simply removing Eq. (4) from the premise of the proof rule Lie is
unsound (see e.g. [23]); that is, the condition h = 0→ Lp(h) = 0 alone is insufficient
to prove the invariance property for h = 0. Unsoundness in the above naı̈ve attempt
at a generalization is a consequence of singularities that may be present in the variety
VR(h). Singularities of VR(h) are points x ∈ VR(h) where the gradient of h vanishes,
i.e.∇h(x) = 0.

Definition 2 (Singular Locus). Let h ∈ R[x1, . . . , xn], the singular locus of h = 0,
henceforth denoted SL(h), is the set of singular points, that is, points x satisfying

h = 0 ∧ ∂h

∂x1
= 0 ∧ · · · ∧ ∂h

∂xn
= 0 .

Points that are not singular are called regular. At singular points, the Lie derivative of
h along any vector field is 0 · p = 0. To avoid these degenerate cases, the regularity
condition (Eq. (4)) rules out singularities altogether. In the next section we present two
extensions of Lie’s criterion that, in a similar vein to [27], partially overcome the strong
regularity condition by treating the points on the singular locus separately.
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3.1 Handling Singularities

Equilibria are points in the state space where the vector field vanishes (p = 0) so that
there is no motion. However, as seen above, Lie’s criterion cannot generally be applied
to prove invariance properties of isolated equilibria because their description involves
singularities. One simple way to resolve this issue is to drop the non-vanishing gradient
condition and replace it with the proviso that there be no flow (that is p = 0) in the
variables of the invariant candidate on the singular locus; this will allow singularities in
the invariant candidate and will provide a sound proof method in which there is no need
to check for non-vanishing gradient. Below we present two extensions to the proof rule
Lie and justify their soundness after recalling some basic geometric notions.

Definition 3 (Lie◦: Lie + Equilibria).

(Lie◦)
h = 0→

(
Lp(h) = 0 ∧

(
SL(h)→

∧
xi∈vars(h) pi = 0

))
(h = 0)→ [ẋ = p](h = 0)

,

where vars(h) denotes the set of state variables xi occurring in the polynomial h.

The Lie◦ proof rule can be generalized further at the expense of adding an extra
variable by replacing the “no flow” condition (pi = 0) for points on the singular locus
with ∀λ. h(x+ λp(x)) = 0, where λ is a fresh symbol.

Definition 4 (Lie∗: Lie + Vanishing Sub-tangent).

(Lie∗)
h = 0→

(
Lp(h) = 0 ∧ (SL(h)→ h(x+ λp) = 0)

)
(h = 0)→ [ẋ = p](h = 0)

.

To prove soundness of Lie◦ and Lie∗, we use a result about positive invariance of
closed sets under locally Lipschitz-continuous vector fields, known as the Nagumo the-
orem [18,30, Chapter 10, XV–XVI, pp. 117-119], which gives a powerful (but generally
intractable) geometric characterization of positively invariant closed sets. The notion of
positive invariance of the equation h = 0 from Section 2 generalizes to an arbitrary set.

Definition 5 (Invariant Sets). A set S is positively (negatively) invariant under the
flow of ẋ = p if for all x0 ∈ S we have x(x0, t) ∈ S for all t ≥ 0 (t ≤ 0), where
x(x0, t) is the solution of the initial value problem (ẋ = p,x(0) = x0). A set S is
bi-invariant if it is both positively and negatively invariant.

Nagumo’s theorem needs the geometric notion of sub-tangential vectors to a set.

Definition 6 (Sub-tangent vector). A vector v ∈ Rn is sub-tangential to a set S at
x ∈ S if

lim inf
λ→0+

dist (S,x+ λv)

λ
= 0,

where dist denotes the Euclidean set distance, i.e. dist(S,x) ≡ infy∈S‖x− y‖.
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Theorem 1 (Nagumo Theorem). Given a continuous system ẋ = p(x) and assuming
that solutions exist and are unique inside some open setO ⊆ Rn, let S ⊂ O be a closed
set. Then, S is positively invariant under the flow of the system if and only if p(x) is
sub-tangential to S for all x ∈ ∂S, where ∂S is the boundary of S.

Let us observe that given x ∈ ∂S, if x + λp(x) ∈ S for all λ ∈ R, then dist
(S,x+ λp(x)) = 0 and p(x) is sub-tangential to S at x. This observation is important
for algebraic sets, for which ∂S = S, and the condition x + λp(x) ∈ S translates to
h(x + λp(x)) = 0. This is the main idea behind the soundness of the proof rule Lie∗

(see [10] for the detailed proof).

Proposition 1. The proof rule Lie∗ is sound.

The case p(x) = 0 for all x in the singular locus is a special case of the proof rule
Lie∗. Therefore, the soundness of Lie◦ is an immediate corollary of Prop. 1.

Corollary 1. The proof rule Lie◦ is sound.

4 Proof Rules: Hierarchy and Complexity

In this section, we compare the deductive power of the existing (Fig. 1) and the newly-
introduced proof rules (Lie◦ and Lie∗ in Section 3) for checking the invariance of al-
gebraic sets. This study should be complemented by another comparison that considers
the interaction between the different proof rules in the context of a formal proof system
in a similar vein to [24]. We leave this for future work.

Given two proof rules (let us call them R1 and R2) featuring the same conclusion
((h = 0) −→ [ẋ = p](h = 0)), we will say that R2 generalizes R1 and write R2 � R1

(or R1 � R2), if the premise of R1 implies the premise of R2. That is, if R1 proves
that h = 0 is an invariant, then so does R2. If R1 � R2 and R1 � R2, we say that R1

and R2 are equivalent, and denote this by R1 ∼ R2. Likewise, R1 
� R2 (or R2 
� R1)
denotes that R1 is not generalized by R2. We also write R1 ≺ R2 when R1 � R2 and
R1 
� R2. That is, the rule R2 increases the deductive power of R1.

It is easy to see that the order � is a partial order (with ∼ acting as equality): it is
reflexive, R � R (the premise of R implies itself); it is anti-symmetric (by definition),
and transitive: if R1 � R2 and R2 � R3, then the premise of R1 implies the premise of
R3 by transitivity of the implication, so R1 � R3. Finally, If R1 
� R2 and R1 
� R2,
we will write R1 ≺" R2 and say that the proof rules R1 and R2 are incomparable. This
means that for both R1 and R2 there are problems that one rule can prove and the other
cannot. In the sequel, we use the partial order � to illustrate the lattice structure of the
proof rules under consideration. In Section 4.2 we discuss the computational complexity
of the conditions appearing in their premises.

4.1 Hierarchy

We use the partial order (�) to compare the deductive power of all considered proof
rules {DI=,C-c,P-c,Lie,Lie

◦,Lie∗,DRI}. For convenience, the propositions of this
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DRI

Lie∗

Lie◦

Lie

P-c

C-c

DI=

Fig. 2. Hasse diagram. An
arrow R1 → R2 means
R1 ≺ R2, all other non de-
picted links mean (≺").

DI= C-c P-c Lie Lie◦ Lie∗ DRI

DI= ∼ ≺
2

≺ ≺"
6
≺"

8
≺"

7
≺

C-c "
2

∼ ≺
3

≺"
9
≺"
10

≺"
10

≺

P-c " "
3

∼ ≺"
9
≺"
10

≺"
10

≺
5

Lie ≺"
6
≺"

9
≺"

9
∼ ≺

4
≺ ≺

Lie◦ ≺"
8
≺"
10
≺"
10

"
4

∼ ≺
4

≺

Lie∗ ≺"
7
≺"
10
≺"
10

" "
4

∼ ≺
5

DRI " " " " " " ∼

Fig. 3. Comparison matrix of the deductive power of
{DI=,C-c,P-c,Lie,Lie

◦,Lie∗,DRI}. The numbers re-
fer to the propositions.

section are summarized in the comparison matrix (Fig. 3). For instance, Prop. 6 proves
that DI= ≺" Lie. Cells without numbers are proved by transitivity of the partial order.
For instance, DI= ≺ DRI can be proved using DI= ≺ C-c (Prop. 2) and C-c ≺ P-c
(Prop. 3) and P-c ≺ DRI (Prop. 5). The Hasse diagram (Fig. 2) gives the lattice struc-
ture where arrows represent strictly increasing deductive power; every missing edge in
the graph represents≺", as shown in the comparison matrix.

We begin by comparing Darboux-based proof rules, i.e. {DI=,C-c,P-c} and then
proceed to the Lie-based proof rule family, i.e. {Lie,Lie◦,Lie∗}. Next, we demonstrate
the deductive superiority of the necessary and sufficient conditions in the premise of
the proof rule DRI. Finally, we establish that Darboux-based proof rules and Lie-based
proof rules form two distinct proof rule families; that is, any proof rule from one family
is deductively incomparable to any proof rule from the other family.

Proposition 2. DI= ≺ C-c.

Proof. The premise of the rule C-c requires the existence of some λ ∈ R, such that
Lp(h) = λh. In particular, λ = 0 gives the premise of DI=. Thus, DI= � C-c. To
see that DI= 
� C-c, consider the one-dimensional vector field p = (x), we have
Lp(x) = 1x, and hence C-c (λ = 1) concludes that x = 0 is an invariant. However,
DI= cannot prove the invariance of x = 0 because x is not a conserved quantity in the
system. ��

Proposition 3. C-c ≺ P-c.

Proof. The premise of the rule P-c requires the existence of some α ∈ R[x], such
that Lp(h) = αh (equivalently, Lp(h) ∈ 〈h〉). In particular, the constant polynomial
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gives the premise of C-c. Thus, C-c � P-c. To prove that C-c 
� P-c, consider he two-
dimensional vector field p = (xy, x), we have Lp(x) = xy (or equivalently Lp(x) ∈
〈x〉 ⊂ R[x, y]) and hence conclude, using P-c, that x = 0 is an invariant. However, C-c
fails to prove this invariant as the required cofactor is not a scalar. ��

Proposition 4. Lie ≺ Lie◦ and Lie◦ ≺ Lie∗.

Proof. We already established that Lie � Lie◦ (Prop. 1) and Lie◦ � Lie∗ (Prop. 1); we
give two counterexamples to establish the strict inclusion. (I) Lie 
� Lie◦. Whenever
the variety has a singularity, the proof rule Lie will fail. Lie◦ is tailored to prove invari-
ance of equilibrium points in addition to regular points of the variety. For instance, for
p = ((−1+x1)x2, x2(1+x2)), Lie fails to prove that h = (−1+x1)2+(1+x2)

2 = 0
is invariant as the gradient ∇h vanishes at (1,−1) and h((1,−1)) = 0. However, at
(1,−1) we also have p1 = p2 = 0, and hence the premise of Lie◦ is satisfied, and
h = 0 is proved to be an invariant under the flow of p. (II) Lie◦ 
� Lie∗. In addition
to equilibria, Lie∗ goes one step further and handles all singular points, x, where the
vector x + λp is in the variety VR(h) for all λ ∈ R (that is h(x + λp) = 0, for all
λ). For instance, consider the polynomial h = x1x2x3, its singular locus is given by
the three axes x1 = x2 = 0, x1 = x3 = 0 and x2 = x3 = 0. For the vector field
p = (x1, x2, x3), the equilibrium point is at the origin (0, 0, 0), which obviously does
not contain the entire singular locus of h. Thus, Lie◦ fails but Lie∗ succeeds because
h(x+ λp) = 0 when x is a point of one of the axes. ��

Proposition 5. P-c ≺ DRI and Lie∗ ≺ DRI.

Proof. DRI is both necessary and sufficient [9], so we know that P-c � DRI and
Lie∗ � DRI. To prove the claim it is left to show that (I) P-c 
� DRI. Consider the
following two-dimensional vector field: p = ((−1+ x1)(1+ x1), (−1+ x2)(1 + x2)).
The candidate invariant (given by the roots of the Motzkin polynomial)h = 1−3x21x22+
x41x

2
2+x

2
1x

4
2 = 0 cannot be proved using P-c, as Lp(h) 
∈ 〈h〉. However, the invariance

property may be proved using DRI. For this, we need to consider the second-order Lie
derivative of h and we prove that L(2)

p (h) ∈ 〈h,Lp(h)〉. Thus, the premise of DRI
holds for N = 2. (II) Lie∗ 
� DRI. Consider the following three-dimensional vector
field p = (−x2+x1(1−x21−x22), x1+x2(1−x21−x22), x3). We want to prove that h =
(−1+x21+x22)2+x23 = 0 is an invariant. In this case, the variety VR(h) is exactly equal
to the singular locus of h which is the two-dimensional unit circle −1 + x21 + x22 = 0.
However, at all points of this unit circle, the vector field p is equal to (−x2, x1, 0) 
= 0,
which prevents us from using Lie∗ (because h((x1, x2, 0) + λ(−x2, x1, 0)) 
= 0 for
some λ ∈ R). The rule DRI proves the invariance of h = 0 with N = 2. ��

To appreciate the difference between DI= and Lie, let us note that while the condi-
tion in the premise of DI= may seem strong (i.e. too conservative), singularities in the
invariant candidate do not present a problem for DI=, whereas the premise of Lie rules
out such candidates altogether (see Fig. 4). Indeed, the proof rule Lie cannot prove that
0 = 0 (the whole space is invariant), whereas this is the most trivial case for DI=.

Proposition 6 (DI= and Lie are incomparable.). DI= ≺" Lie.



Checking Differential Invariance of Algebraic Sets 439

Fig. 4. The invariance of the variety VR(x
2
1+x3

1−x2
2) (left) provable using DI= (but not Lie since

(0, 0) is a singular point) and a smooth invariant limit cycle VR(x
2
1 + x2

2 − 1) (right) provable
using Lie (but not DI= since it is not an invariant function)

Proof. (I) DI= 
� Lie. For the vector field p = (−2x2,−2x1 − 3x21), the equation
x21 + x

3
1 − x22 = 0 is provable with DI= but not Lie, see Fig. 4 (left). (II) DI= 
� Lie.

For the vector field p = (x1 − x31 − x2 − x1x22, x1 + x2 − x21x2 − x32), the invariance
of the limiting cycle x21 + x22 − 1 = 0 is provable with Lie but not DI=, see Fig. 4
(right). ��

We now prove that Lie-based proof rules {Lie,Lie◦,Lie∗}, and Darboux-based proof
rules {DI=,C-c,P-c} are two distinct families of proof rules; that is, any Lie-based
proof is deductively incomparable to any Darboux-based proof rule. The following
lemma follows from the transitivity of the partial order.

Lemma 1. If R1 � R2 and R3 ≺" R1, then R2 
� R3.

Proof. Consider three proof rules R1, R2 and R3. If R2 � R3, using R1 � R2, one
gets by transitivity R1 � R3, which contradicts the assumption R3 ≺" R1.

Proposition 7. DI= ≺" Lie∗.

Proof. Since Lie � Lie◦ (Prop. 1) and Lie◦ � Lie∗ (Prop. 1), then Lie � Lie∗. By
Lem. 1, from Lie � Lie∗ and DI= ≺" Lie (Prop. 6), we get Lie∗ 
� DI=. The fol-
lowing example proves that DI= 
� Lie∗: Consider the three-dimensional vector field
p = (x2,−x1, 0). The invariance of the equation x23 + (−1+ x21 + x22 + x23)2 = 0 can-
not be established using Lie∗ (the singular locus is a circle in R3), but is easily provable
using DI= as Lp(h) vanishes. ��

Proposition 8. DI= ≺" Lie◦.

Proof. By Lem. 1, fromLie � Lie◦ (Prop. 1) andDI= ≺" Lie (Prop. 6), we get Lie◦ 
�
DI=. On the other hand, if DI= � Lie◦ then, by transitivity DI= � Lie∗ (since Lie◦ �
Lie∗ by Prop. 1), which contradicts DI= ≺" Lie∗ (Prop. 7). Thus, DI= 
� Lie◦, and
the proposition follows. ��

Similarly, by substituting DI= by Lie, Lie∗ by P-c, and Lie◦ by C-c in Prop. 7 and
Prop. 8 as well as their respective proofs, we show that:
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Proposition 9. Lie ≺" P-c and Lie ≺" C-c.

Proof. To complete the proof, we still need an example showing that Lie 
� P-c. Con-
sider the vector field p = (3(−4 + x2), 3 + xy − y2), the proof rule Lie fails to prove
that the equation h = −3+x2+2xy+6y2+2xy3+y4 = 0 is invariant as the singular
locus of h contains (−2, 1) and (2,−1). However, Lp(h) = (6x − 4y)h and therefore
P-c proves that h = 0 is an invariant equation. ��

The remaining cases follow from the results established above.

Proposition 10. For d ∈ {C-c,P-c}, 
 ∈ {Lie◦,Lie∗}, d ≺" 
.

Proof. Since DI= ≺ d, if d � 
, then DI= � 
. However, DI= ≺" 
 (Prop. 7 and
Prop. 8). Thus d 
� 
. Similarly, since l " Lie, if d � 
, then d � Lie which contradicts
d ≺" Lie (Prop. 9). Hence d 
� 
 and the proposition follows. ��

Remark 1. Provided the invariant candidate has no singular points, Lie’s criterion is
known to be both necessary and sufficient to prove invariance properties of level sets
[19, Theorem 2.8]. Also, DI= characterizes invariant functions [23] but not all invari-
ant equations. On the other hand, for algebraic differential equations, the differential
radical criterion in DRI fully characterizes all invariant algebraic sets [9]. Thus, as es-
tablished in Prop. 5, DRI increases the deductive power of both Darboux-based rules
{DI=,C-c,P-c} and Lie-based rules {Lie,Lie◦,Lie∗}, which form different families.

4.2 Complexity

While decidable [28], the complexity of real quantifier elimination is doubly expo-
nential in the number of quantifier alternations [6]. Most existing implementations of
real quantifier elimination procedures are based on cylindrical algebraic decomposition
(CAD) [2,3], which has doubly-exponential running time in the number of variables.

The purely existential fragment of real quantifier elimination has been shown to ex-
hibit singly exponential time complexity in the number of variables [1]. However, in
practice this has not yet led to an efficient decision procedure, so typically it is much
more efficient to use CAD. Theoretically, the best bound on the complexity of deciding
a sentence in the universal theory of R is given by (sd)O(n), where s is the number of
polynomials in the formula, d their maximum degree and n the number of variables [1].

The premises of rules DI=, Lie, Lie◦, Lie∗ are universally quantified sentences in
the theory of real arithmetic. One sees from the expression for the complexity bound
that it is important for these rules to keep the number of variables low and also that it is
desirable to work with polynomials of low degree. In this respect, we would anticipate
the rule Lie∗ to incur a performance penalty from introducing a fresh variable.

C-c and P-c involve reasoning about multivariate polynomial ideal membership,
which is an EXPSPACE-complete problem over Q [17]. Gröbner basis algorithms al-
low us to perform membership checks in ideals generated by multivariate polynomials.
Significant advances have been made in algorithms for computing Gröbner bases [8]
which in practice can be expected to perform very well.

The premise of DRI may be decided using a real quantifier elimination procedure,
like any other first-order sentence in the theory of real arithmetic. However, in order to
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obtain the boundN on the order of the Lie derivatives, one is also required to check for
polynomial ideal membership at least N − 1 times.

5 Square-Free Reduction

In this section we assess the utility of performing square-free reduction of invariant
candidates as a means of (i) increasing the deductive power of Lie-based proof rules
and (ii) simplifying problems passed to decision procedures for real arithmetic.

5.1 Square-Free Reduction with Lie-Based Proof Rules

While Lie uses a powerful criterion that captures a large class of practically relevant
invariant sets, it will fail for some seemingly simple invariant candidates. For instance,
the condition in the premise of Lie will not hold when the goal is to prove that h =
x2 − 6x + 9 = 0 is invariant, no matter what vector field one considers. The reason
for this is simple: x2 − 6x + 9 factorizes into (x − 3)2. The problem here lies in the
polynomial h itself, rather than the real variety VR(h). In fact, VR(h) is exactly the
singular locus of h and the proof rule Lie fails because all points inside VR(h) are
singular points. More generally, the chain rule implies∇hk · p = khk−1∇h · p, which
has the consequence that any polynomial h which is not square-free will have vanishing
gradient at the real roots of factors with multiplicity greater than 1.

One can eliminate such annoying instances by reducing h to square-free form, which
is a basic pre-processing step used in computer algebra systems. The square-free reduc-
tion of a polynomial h may be computed efficiently as follows:

SF(h) =
h

gcd
(
h, ∂h

∂x1
, . . . , ∂h

∂xn

) . (5)

Intuitively, in performing square-free reduction we hope to shrink the singular locus
of the original polynomial. If SL(SF(h)) is the empty set (which is the case for h =
x2 − 6x + 9 in the example given above), the proof rule Lie applies to SF(h) but not
to h. In general, SF(h) may satisfy the assumptions of the proof rules Lie◦ or Lie∗,
where h fails to do so. It is always sound to conclude that h = 0 is invariant from
the knowledge that SF(h) = 0 is invariant, since real varieties remain unaltered under
square-free reduction of their defining polynomials [4], i.e. VR(h) ≡ VR(SF(h)), thus
replacing hwith SF(h) in the premise of Lie, Lie◦ and Lie∗ remains sound and enlarges
the class of polynomials that these proof rules can work with.

Proposition 11. For all 
 ∈ {Lie,Lie◦,Lie∗}, 
 ≺ SF 
.

This result is unsurprising when one understands that Lie-based proof rules use geo-
metric concepts to prove invariance properties of sets. In fact, the square-free reduction
removes some purely algebraic oddities that prevent the geometric condition from hold-
ing true when checked syntactically by a machine.

In addition to increasing the deductive power, the square-free reduction reduces the
total degree of the polynomial in the invariant candidate and hence serves to reduce
the complexity of deciding the conditions in the premise (see Section 4.2). In our im-
plementation, we adopt the convention that invariant candidates supplied to Lie and its
generalizations are square-free reduced in a pre-processing step.
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5.2 Square-Free Reduction with Darboux-Based Proof Rules

Unlike Lie-based proof rules, it is perhaps surprising that using square-free reduction
as a pre-processing step for the proof rules DI= and C-c, denoted SFDI= and SFC-c
respectively, does not, in general, increase the deductive power.

Proposition 12. DI= ≺" SFDI=.

Proof. (I) DI= 
≺ SFDI=. The polynomial h = x2y is an invariant function for the
vector field p = (x2,−2xy), thus DI= proves the invariance of h = 0. However, SF(h)
is not an invariant function for the same vector field, since Lp(SF(h)) = Lp(xy) =
−x2y 
= 0, thus SFDI= fails to prove the invariance of h = 0. (II) SFDI= 
≺ DI=.
Similarly, the polynomial h = xy is an invariant function for the vector field p =
(x,−y), thus SFDI= proves the invariance of x2y = 0, since SF(x2y) = h. However,
DI= fails to prove the invariance of x2y = 0, because Lp(x

2y) = x2y 
= 0. ��
Prop. 12 may at first seem counter-intuitive. However, the criterion in the premise of

DI= is different in that it proves that the candidate h is an invariant function. In per-
forming square-free reduction on h, one in general obtains a different function, SF(h),
which need not be conserved in the system if h is conserved or, conversely, may be
conserved even if h is not.

The same observation holds for C-c as the SF reduction does not preserve the con-
stant rate exponential decrease (or increase).

Proposition 13. C-c ≺" SFC-c.

Proof. (I) C-c 
≺ SFC-c. The proof rule C-c proves the invariance of h = x2y = 0
for the vector field p = (x2, y(1 − 2x)) as Lp(h) = 1h. However, C-c cannot prove
SF(h) = 0, since Lp(SF(h)) = Lp(xy) = (1− x) SF(h). (II) SFC-c 
≺ C-c. For the
same h, C-c proves the invariance of SF(h) = 0 for the vector field p = (x2, y(1− x))
as Lp(SF(h)) = Lp(xy) = 1 SF(h). However, without the SF reduction C-c alone
fails to prove the invariance of h = 0 for the considered p, as Lp(h) = (x + 1)h. ��

After Prop. 12 and 13, one expects P-c to be incomparable with its square-free coun-
terpart. Surprisingly, the proof rules P-c and SFP-c (which applies P-c after the square-
free reduction) are in fact equivalent. This follows from the fact that a polynomial is
Darboux for a vector field p if and only if all its factors are also Darboux for the same
vector field. Our findings are stated in Prop. 14 and its corollary Prop. 15 (both proofs
are available in the report [10]).

Proposition 14. Let h = qm1
1 · · · qmr

r denote the decomposition of the polynomial h
into irreducible (over the reals) factors, qi. Then, h is Darboux for p if and only if, for
all i, qi is Darboux for p.

Proposition 15. P-c ∼ SFP-c.

Remark 2. The condition Lp(p) ∈ 〈SF(p)〉 is not sufficient to prove the invariance of
p = 0. It is therefore an unsound proof rule. Consider the polynomial p = (−1 + x2)2
and the 1-dimensional vector field ẋ = x. Although Lp(p) = 4(−1 + x2)x2 ∈ 〈−1 +
x2〉 = 〈SF(p)〉, the equation p = 0 is not invariant, however, because x(t) = ±et.
Notice that the proof rule P-c (with or without the square-free reduction) is unable to
prove or disprove the invariance of p = 0.
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5.3 Square-Free Reduction On Differential Radical Invariants (DRI)

Square-free reduction cannot increase the deductive power of the proof rule DRI be-
cause its premise is necessary and sufficient to prove invariance of real algebraic sets,
which is unaffected by applying SF reduction. However, the computational impact of
using square-free reduction with DRI remains an interesting question. Empirically, we
observed a better performance of DRI when the SF reduction is applied first. In addi-
tion to lowering the degrees of the involved polynomials (as it did for Lie-based proof
rules), we observed that the order NSF for SF(h) is always lower than the order N for
h. We, therefore, conjecture NSF ≤ N . However, we identified an example for which
square-free reduction resulted in a significant (×100) computational overhead (see [10,
Section 5.3]) due to the ideal membership checking (which we perform using Gröbner
bases with reverse lexicographic monomial ordering). In our implementation of DRI,
called DRIopt in the sequel, we use the square-free reduction only as a pre-processing
step for the quantifier elimination problems in the premise of DRI.

Remark 3. Notice that Prop. 14 does not have an analogue for DRI. In other words, if
a polynomial equation h = 0 is invariant for p, its irreducible factors need not define
invariant equations themselves. Geometrically, this means that if a variety is invariant
under the flow of p, its irreducible components need not be invariants under the flow of
p. For instance, consider the irreducible polynomials q1 = y−1 and q2 = x2+(y−1)2.
The equation q1q2 = 0 which is equivalent to y = 1, is invariant for p = (1, 0), since
the premise of the proof rule DRI holds true forN = 3. However, the equation q2 = 0,
which is equivalent to x = 0 ∧ y = 1, is not an invariant equation for p.

6 Experimental Comparison

We empirically compare the running time performance of all the proof rules discussed
in this paper on a heterogeneous collection of 76 invariant varieties (available in [10]).
The examples we used originate from a number of sources—many come from textbooks
on Dynamical Systems; some from the literature on formal verification of hybrid sys-
tems; others have been hand-crafted to exploit sweetspots of certain proof rules. In this
section, the prefix SF is implicit for all Lie-based proof rules. We consider 4 equally
sized classes of invariant sets: (1) 24 smooth invariants, where Lie is both necessary
and sufficient, (2) 17 isolated equilibria as trivial (for humans, not machines) equa-
tional invariants for which both Lie◦ and Lie∗ provide necessary and sufficient condi-
tions, (3) 17 other singularities and high integrals, (4) 18 functional invariants, where
DI= is necessary and sufficient. The most interesting experimental question we seek to
address here is whether the greater generality of the more deductively powerful proof
rules also comes at a substantially higher computational cost when assessed across the
entire spectrum of examples. As a complement to the theoretical deductive power re-
lationships between the different proof rules (Section 4), we also seek to identify some
nuances in the complexity of the conditions in the premises, which the coarse-grained
complexity bounds miss, being highly sensitive to the number of variables.

From our experiments it emerges that the proof rules exhibit different (and at times
surprising) trade-offs between generality and efficiency. Figure 5 compares the number
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Fig. 5. Experimental performance of proof rules: problems solved per time (log scale)

of invariant varieties that each rule could prove within 60 seconds. The vertical axis
shows cumulative time spent on the problems. All runs were performed on an Intel
Core i5 1.7GHz machine with 4Gb RAM. Generally, we observe DRI performing very
well across the entire spectrum of problem classes. This is very encouraging, but also
at first sight appears to defy intuition since it implies that one does not necessarily
sacrifice performance when opting to use a more deductively powerful rule. In this
graph, we also see that overall Lie◦ appears to offer an interesting compromise between
deductive power and efficiency—it is able to prove a significant body of problems that
are out of scope for Lie, while avoiding the complexity penalty which affects Lie∗ (due
to introducing an extra variable).

A more careful analysis of the benchmarks reveals interesting relationships that are
obscured in the “big picture”; to see them, one needs to consider the individual classes
of invariants for which some of the sufficient conditions in the rules are in fact neces-
sary and sufficient. Together with DRI, this yields two decision procedures for each
class and allows us to focus only on running time performance and assess practical-
ity of proof rules. In Fig. 6, we observe the rules Lie◦ and Lie∗ performing very well in
proving invariance of isolated equilibria. This is to be expected as Lie◦ in particular was
formulated with this problem class in mind. It is interesting that DRI remains highly
competitive here; though its performance is slightly poorer in our set of benchmarks.

It is clear that because proof rules Lie◦ and Lie∗ generalize Lie, they will be able
to prove every problem in the smooth invariant benchmarks. The running time perfor-
mance of the three rules is almost identical, with Lie offering a slight speed-up over
its generalizations. The premises of Lie◦ and Lie∗ impose conditions on states in the
singular locus, which is the empty set for smooth invariants; this, in practice, appears
to be slightly more expensive than checking an equivalent property that the gradient is
non-vanishing on the variety (as in the premise of Lie).

The proof rules DI= and P-c, corresponding to conditions with historical origins in
the study of integrability of dynamical systems, can be seen to perform very well in
proving functional invariants, while performing very poorly in benchmarks for isolated
equilibria. In proofs of smooth invariants their behaviour is radically different, with
DI= proving only a handful of examples and P-c succeeding in proving most of the



Checking Differential Invariance of Algebraic Sets 445

Smooth invariants Isolated equilibria

Singularities Functional invariants

Fig. 6. Number of problems solved per class (log scale)

problems very efficiently. This can be explained by the fact that P-c generalizes DI=
and is therefore more deductively powerful.P-c appears slightly slower at proving func-
tional invariants, but shows very impressive running time performance for some prob-
lems from the smooth invariant benchmarks, where it is the fastest proof rule for many
of problems where it succeeds. Comparing running time performance with DRI, we
see that DRI is only slightly slower at proving functional invariants than DI= and P-c.
Again, the performance gap between DRI and the two rules appears to be insignificant
for most problems. Theoretically, when P-c proves an invariant,DRI applies conditions
that are identical to the premise of P-c. Hence, although DRI is a generalization, this
does not come at a significant extra cost for the classes where P-c shows good running
time performance. The slightly greater running time of DRI compared to that of P-c
can be accounted for by the fact that in our implementation DRI computes the Gröbner
basis for every orderN including for N = 1 where such computation is unnecessary.

For functional invariants DI= benefits from the fact that the condition in its premise,
which requires to show that the Lie derivative evaluates to zero everywhere, is equivalent
to showing that the Lie derivative is the zero polynomial, which can be checked very
efficiently by symbolic computation, without a decision procedure for real arithmetic.

In the examples featuring singularities and high integrals in the benchmarks we see
DRI as the clear winner, simply because there was no other rule that was tailored
to work on this class. Indeed, the structure of these invariant sets can be rather in-
volved, making it difficult to characterize in a single proof rule; however, sometimes it is
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possible to exploit the structure of high integrals inside a proof system and arrive at very
efficient proofs that outperform DRI [11].

It is not surprising that DRI should overtake all the other rules in terms of deductive
power (it is, after all, necessary and sufficient); what is remarkable is that the perfor-
mance we observe for DRI is often very competitive to that of the sufficient rules when
they also succeed at a proof. This observation suggests a possible strategy for proof
search in a proof system: give precedence to DRI and switch to other sufficient rules
if DRI takes longer than some time-out value. The rationale behind this decision is our
empirical observation that DRI performs consistently well on all problem classes we
considered, but it is also sometimes possible to save time by using a proof rule which
is less deductively powerful. It is important to note here that the overall proof system
benefits from including the sufficient proof rules, rather than relying solely upon DRI.

7 Related Work

TALY & TIWARI in [27] investigate an approach to proving invariance properties of
non-strict polynomial inequalities and closed semi-algebraic sets which inspired our
formulation of the proof rules Lie◦ and Lie∗ for real algebraic varieties; we employ
the same ideas for reasoning about the singular locus separately and appealing to the
Nagumo theorem for the proof of soundness. At least some of the difficulties encoun-
tered with inequalities in [27] can be eliminated for real algebraic sets by working only
with square-free reduced polynomials; a reduction we perform as a pre-processing step.
Indeed, in [27] the authors provide a simple example in which an invariant polynomial
equality is encoded as a polynomial inequality of the form h2 ≤ 0 (over the reals this is
equivalent to h2 = 0) which falls out of scope of their proof rules. Square-free reduc-
tion may be extended to polynomial inequalities using order parity decomposition [7]
and makes progress possible on similar problems.

The deductive power of the proof rule DI (which generalizes DI= to semi-algebraic
sets) combined with other proof rules (such as differential cut or differential weakening)
have been investigated in [24]. In this work, we focus on sound proof rules for checking
invariance properties of algebraic sets and investigate their deductive power as well as
their practical efficiency. To our knowledge, this is the first attempt to structure and
empirically compare the performance of the proof rules we considered.

8 Conclusions and Future Work

We have theoretically and empirically compared proof rules for checking invariance
properties of real algebraic sets in polynomial vector fields. Our work investigated an
important aspect of deductive safety verification of continuous and hybrid dynamical
systems. Namely, given the abundance of existing sufficient conditions for invariant
equations (DI=, C-c and P-c, Lie), in addition to the extensions of Lie’s criterion,
Lie◦ and Lie∗, and the recently developed necessary and sufficient conditions for real
algebraic invariants (DRI [9]), it is crucial to know whether the gains in deductive
power come at the price of greater computational complexity and poor running time
performance that would hinder practical applications. The work presented in this paper
leads us to arrive at the following conclusions:
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• Empirically, we observe that the most deductively powerful rule (DRI) performs
very well in checking invariance of polynomial equalities.
• P-c is made redundant by DRI (DRI strictly increases the deductive power of P-c

while being equally efficient).
• Reducing polynomials to square-free form is always of benefit to the proof rule Lie

and its generalizations, where it yields improvements in both the deductive power
and the running time performance.
• We proved that combining SF with the proof rules DI= and C-c yields new incom-

parable proof rules, whereas SF with P-c is as powerful as P-c alone.
• Performing square-free reduction of an invariant candidate may introduce a perfor-

mance penalty for DRI and therefore cannot be regarded as an optimization.

It is our hope to extend this work to similarly study proof methods for invariance of
semi-algebraic sets in polynomial vector fields. This problem is of fundamental impor-
tance to verification of continuous and hybrid systems [20,22] and a better understand-
ing of the factors affecting proof rule efficiency has the potential to be of considerable
practical utility. There are currently three available methods that have been proposed
for checking invariance of semi-algebraic sets: the method of differential invariants due
to Platzer [25], a characterization of invariant semi-algebraic sets due to Liu et al. [15]
and a method for closed semi-algebraic sets based on the Nagumo theorem proposed
by Taly & Tiwari [27]. The latter approach can unfortunately be shown to be unsound
(we identify the problem in [10, Appendix B]); however, this deficiency can be fixed. It
would be very interesting to extend the work presented in this paper to investigate the
relationship between deductive power and running time performance in the aforemen-
tioned methods. We leave this for future work.
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Abstract. We present a new abstract interpretation based approach for automat-
ically verifying concurrent programs running on relaxed memory models.

Our approach is based on three key insights: (i) behaviors of relaxed mod-
els (e.g. TSO and PSO) are naturally captured using explicit encodings of store
buffers. Directly using such encodings for program analysis is challenging due
to shift operations on buffer contents that result in significant loss of analysis
precision. We present a new abstraction of the memory model that eliminates
expensive shifting of store buffer contents and significantly improves the preci-
sion and scalability of program analysis, (ii) an encoding of store buffer sizes
that leverages knowledge of the abstract interpretation domain, further improv-
ing analysis precision, and (iii) a source-to-source transformation that realizes
the above two techniques: given a program P and a relaxed memory model M , it
produces a new program PM where the behaviors of P running on M are over-
approximated by the behavior of PM running on sequential consistency (SC).
This step makes it possible to directly use state-of-the-art analyzers under SC.

We implemented our approach and evaluated it on a set of finite and infinite-
state concurrent algorithms under two memory models: Intel’s x86 TSO and PSO.
Experimental results indicate that our technique achieves better precision and
efficiency than prior work: we can automatically verify algorithms with fewer
fences, faster and with lower memory consumption.

1 Introduction

To improve performance, modern hardware architectures support relaxed memory mod-
els. A relaxed memory model allows the underlying architecture to reorder memory op-
erations and execute them non-atomically. As a result, a concurrent program can have
additional behaviors that would not be possible to obtain under the intuitive, sequen-
tially consistent setting [16]. These additional relaxed behaviors complicate the task of
reasoning about the correctness of the program, manually and automatically.

This necessitates the development of new, scalable and precise analysis techniques
for automatic verification of (potentially infinite-state) concurrent programs running on
relaxed memory models. Automatic verification in this setting is a challenging problem
as the relaxed memory model can significantly increase the number and diversity of new
behaviors, which in turn affects the overall precision and scalability of the analysis.

Our Approach. We present a new analysis system for verifying concurrent programs
running on relaxed memory models such as Intel’s x86 TSO and PSO buffered memory
models. Our system builds upon three core concepts:
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First, we present a new abstraction that eliminates some of the expensive work in
managing the store buffers required by the memory model, thus significantly reducing
the analysis effort and improving its precision. This abstraction is also directly appli-
cable and useful for other verification frameworks, both finite and infinite-state (e.g.,
bounded model checking, abstract interpretation and predicate abstraction).

Second, we show how to leverage knowledge of the particular program analysis used
in this work (abstract interpretation with numerical domains) by encoding the size of
the store buffers in a way that reduces the loss of precision under that abstract domain.

Third, we address the problem of building a robust analyzer that incorporates the
above two concepts. We present a source-to-source transformation that enables direct
reuse of program analyzers under sequential consistency for verifying concurrent pro-
grams running on relaxed memory models. That is, given a program P , a specification
S and a memory modelM , the transformation automatically constructs a new program
PM such that if PM |=SC S then P |=M S. The program PM contains an abstraction
of the relaxed behaviors induced byM , thereby ensuring soundness of the approach.

While prior works [10,3,18] also suggest source-to-source transformations, we show
experimentally that our approach is more precise and efficient: it enables verification of
(infinite-state) concurrent algorithms that prior work cannot, and for programs where
prior work succeeds, our approach is faster and requires less memory.

In addition to presenting the above techniques (useful for both finite and infinite-state
verification), this work represents one of the few studies on using abstract interpreta-
tion for verifying properties of infinite-state concurrent programs running on relaxed
memory models and what’s more, our approach requires no user annotations.

Main Contributions. The main contributions of this paper are:

– A new abstraction for the store buffers of the memory model that eliminates ex-
pensive shifting of buffer contents. This abstraction reduces the workload on sub-
sequent program analyzers and improves their scalability and precision.

– A source-to-source transformation that realizes the new abstraction (and the mem-
ory model effects), producing a program that can be soundly analyzed with verifiers
for sequential consistency. The translation also leverages knowledge of the under-
lying abstract domain in order to encode the size of the store buffers in a way which
reduces the overall loss of analysis precision.

– A complete implementation of the approach integrated with CONCURINTERPROC

[12], a tool based on abstract interpretation [8] with numerical abstract domains
that can analyze infinite-state concurrent programs under sequential consistency.

– A thorough empirical evaluation on a range of challenging concurrent algorithms.
Experimental results indicate that our technique is superior in both precision and
efficiency to prior work and enables verification, for the first time, of several con-
current algorithms running on Intel’s x86 TSO and PSO memory models.

2 Overview

In this section we illustrate our approach on a running example. The goal of this section
is to give some intuition about and informal understanding of the work. Full formal
details are provided in later sections.
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initial values: X=0 Y=0

Thread 1:

1: X = 1
2: a = Y
3: X = a + 1
4: fence
5:

Thread 2:

1: Y = 1
2: b = X
3: Y = b + 1
4: fence
5:

Spec: ((pc1 = 5)∧(pc2 = 5))⇒(X + Y ≥ 2)

Fig. 1. Example program

To understand our approach, consider the concurrent program shown in Fig. 1. It
consists of two threads that share the integer variables X and Y (variables a and b are
local to each thread). The figure also shows an assertion which holds once both threads
have completed their execution, namely that X + Y ≥ 2. Our objective is to verify that
the program satisfies this assertion under relaxed memory models such as Intel’s x86
TSO and PSO.

2.1 Relaxed Behaviors

In the example in Fig. 1, Thread 1 can execute the statements at labels 1 and 2 in
the opposite order. Similarly, Thread 2 can execute the statements at labels 1 and 2 in
the opposite order due to the nature of relaxed memory models such as TSO. Relaxed
models such as TSO allow program statements to be executed out of order, resulting
in behaviors not possible under sequential consistency. Under TSO, a store and a load
(by the same thread) accessing different memory locations are allowed to be reordered.
Therefore after both threads execute the statements at the labels 1 and 2, one can end
up in a state where the state is X = Y = 0. This state is impossible to obtain under
sequential consistency (SC), yet is allowed under TSO. Weaker models such as PSO
allow not only the reordering of store and load instructions but even the reordering of
two stores (if they access different memory locations). In general, such reorderings are
possible because the processor maintains store buffers per each thread, and delays ex-
pensive writes to shared memory. For instance, in Intel’s x86 TSO, every thread updates
a FIFO store buffer where the thread enqueues its shared memory writes and the mem-
ory sub-system dequeues these buffered writes (in the order of least recent write first)
non-deterministically and updates shared memory.

2.2 SC Equivalence vs. Flexible Safety Specifications

When considering the problem of verifying programs running on relaxed models, there
are two general choices for how we select the safety property to be verified, each influ-
encing the design of the analysis abstraction. One direction is to develop analyzers that
try to prove and (if need to) enforce that the relaxed program produces results equiva-
lent to the sequentially consistent program (and, if not equivalent, to insert fences that
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make it so). This line of work was pioneered by Shasha and Snir [22], with various
works later improving on the precision of the analysis and fence inference [23,2].

Another direction, and the one pursued in this paper, is to develop analyzers which
can enforce arbitrary safety properties, not only equivalence. This is advantageous for
two reasons:

(i) the relaxed program might produce behaviors which are valid yet do not exist
under SC, and enforcing equivalence leads to generation of redundant fences. To
illustrate this point, consider the program in Fig. 1. As mentioned before, the
state X = Y = 1 is reachable under TSO at the end of the program. This state
is impossible to reach under SC. If we aim to achieve SC equivalence, additional
fence statements should be inserted in the program to prevent re-orderings that
lead to this state. If we focus on ensuring the safety specification, only the current
fences at labels 4 in the two threads are sufficient for verification; and

(ii) even if equivalence is the right specification, it may be difficult to produce an anal-
ysis that can prove equivalence; writing a more program specific, flexible safety
property (which enforces the same constraints) may be easier to verify. We illus-
trate this point in Section 6: we show that [2] produces redundant fences, which
our analysis avoids.

2.3 Our Approach

We now discuss the flow taken in this work. For ease of presentation, we directly present
the source-to-source transformation with the abstraction embedded into that transfor-
mation.

Step 1: Buffer analysis A preliminary step of our approach is a buffer-size analysis of
the input program (recall that a buffer exists in each thread). This analysis outputs an
over-approximation of the size of the write buffer at each point in the program. For our
running example, the analysis determines that at line 1 (of both threads), the maximum
write buffer size is 1, at line 3 the maximum buffer size is 2, and at line 5, the maximum
buffer size is 0 (due to fence).

Step 2: Abstraction and source-to-source transformation A key step of our approach
is an abstraction that eliminates buffer shifting and a source-to-source transformation
realizing that abstraction (we focus on presenting both together). Here, the write buffer
of each thread is directly encoded into the source code of the target program. The trans-
formation (with abstraction) proceeds by processing the original program in a statement
by statement manner. In Fig. 2, we show the result of applying our transformation for
TSO on the statements of Thread 1. We next informally discuss this procedure.

To encode the store buffers used by the relaxed memory model, we introduce two
kinds of variables. An example of the first kind is X1t1, which captures the value of
the first write to shared variable X found in the buffer of thread t1. An example of the
second kind is the boolean variable flagX1t1, which denotes whether or not the first
element of the write buffer of t1 stores a write to shared variable X (as in general the
first write found in the buffer of thread t1 could be to some other shared variable).



Effective Abstractions for Verification under Relaxed Memory Models 453

Original Transformed
statement: statement:

X = 1 X1t1 = 1
flagX1t1 = true

flush

while random do
if flagX1t1 then

X = X1t1

flagX1t1 = false

a = Y a = Y

flush

while random do
if flagX1t1 then

X = X1t1

flagX1t1 = false

X = a + 1

if flagX1t1 then
X2t1 = a + 1
flagX2t1 = true

else
X1t1 = a + 1
flagX1t1 = true

flush

while random do
if flagX1t1 then

X = X1t1

flagX1t1 = false
else if flagX2t1 then

X = X2t1

flagX2t1 = false

fence assume(¬ flagX1t1 ∧
¬ flagX2t1)

Fig. 2. The result of applying our transformation for TSO
on Thread 1 from Fig. 1. The flush statements are not
part of the program but need to be captured by the transla-
tion (and are inserted after every program statement).

Returning to our example,
since the buffer is initially
empty, the statement X = 1 is
translated to two updates. First,
the new variable X1t1 is up-
dated and set to 1, and second,
the boolean variable flagX1t1

is set to true.
However, simply updating

the two newly generated vari-
ables is not enough because
under TSO (and PSO), the
memory sub-system can trig-
ger a non-deterministic flush of
a thread’s store buffer at any
point (the flush operation de-
queues the least recent write in
the buffer and updates shared
memory with that write). To
capture this behavior, we add
a special flush code fragment
after every program statement.
Therefore, in our example, a
flush is added after the state-
ments at labels 1,2 and 3. The
flush code fragments follow-
ing the statements at labels 1

and 2 are identical. The loop
captures the non-deterministic
effects of the flush semantics: ei-
ther the flush takes place and the
write stored in X1t1 is flushed
to shared memory (and if so,
the boolean variable flagX1t1

is reset to false), or the program continues with no changes.
Statement a = Y is translated without change as the buffer size analysis determines

that Y is never written to by Thread 1 and hence the value is always read from shared
memory (as opposed to the buffer).

Next, statement X = a + 1 is translated. The generated code fragment first tests
if flagX1t1 is set to true. This answers the question of whether the first position
in the buffer is already taken. We need this test as it is statically unknown whether a
non-deterministic flush has fired. Depending on the result of the test, we now know
where to write the value a + 1. If the first position of the write buffer is occupied,
a + 1 is stored to the second element of the write buffer and the appropriate flag is set
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(i.e., flagX2t1 is set to true). Otherwise, we store the value a + 1 to the first position
in the buffer and set the appropriate flag.

We next generate the flush code fragment after the statement at label 3. This flush
code is slightly different than the previous two flush fragment because at this point in
the translation, the buffer-size analysis indicates that the maximum possible buffer size
is 2. Therefore, we need to dynamically check what the actual size of the buffer is and
flush the appropriate entry. This can either be the variable X1t1 or the variable X2t1.
Naturally, once the write to shared memory is completed, we set the corresponding
auxiliary boolean variable accordingly: flagX1t1 or flagX2t1.

A key point is that we do not shift the store buffer contents on flush as a direct
encoding of the memory model would do (and as previous approaches do ; see [10],
[18]. Doing less work on a flush leads to more precise analysis and greater efficiency
than prior work.

Finally, the fence statement at label 4 ensures that all writes before the fence are
flushed to shared memory. An assume statement on both boolean variables captures
this requirement.

Fig. 3. The effect of a program trace on shared state and the state used by the two translations.
The figure shows only statements of Thread 1 as well as flushes affecting Thread 1’s write buffer.

An example trace. In Fig. 3 we illustrate how a particular program trace updates the
shared memory and the newly generated variables. The first line of that figure shows
the sequence of statements in the trace. The second line shows the shared memory
state (before and after each statement is executed). The third line (titled “robust buffer
abstraction”) shows the values of the newly generated variables. Here, the first square
box corresponds to X1t1 and the second square box corresponds to X2t1. Similarly, the
first flag corresponds to flagX1t1 and the second flag to flagX2t1. If a flag is raised,
it means the variable is set to true; otherwise it is set to false. For now we can ignore
the fourth line (this is a previous transformation used by [10] and [18] and is discussed
later in the paper in Section 4). The trace we show and discuss is:

(i) initially, flagX1t1 and flagX2t1 are set to false and shared variables X and Y

contain 0;
(ii) thread 2 executes Y = 1 and a flush updates Y in shared memory (the trace in

Fig. 3 starts after this step);
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(iii) thread 1 executes X = 1 resulting in flagX1t1 being set to true and X1t1 con-
taining the value 1;

(iv) thread 1 reads a = Y, obtaining the value 1 (Fig. 3 omits local variable a, so no
changes are shown);

(v) thread 1 executes X = a + 1 resulting in flagX2t1 being set to true and X2t1

containing the value 2 at which point we have two writes in the store buffer of
Thread 1;

(vi) a flush of Thread 1’s buffer results in X1t1’s value being written to shared memory
setting X to 1 and flagX1t1 is set to false to mark that the flush completed;

(vii) a flush of Thread 1’s buffer results in X being set to 2 in shared memory and in
setting flagX2t1 to false;

Step 3: Program Analysis Once the translated (and potentially infinite-state) concurrent
program is obtained, the final step is to analyze it and attempt to prove the property of
interest. Any analysis can be used; in this work we chose logico-numerical abstract
domains for the following reasons:(i) there are readily available tools that implement
these domains (e.g., we use CONCURINTERPROC, which implements convex numerical
domains combined with boolean values), allowing us to focus on the novel parts of the
work, and (ii) our benchmarks manipulate numerical variables and the properties we
prove depend only on such numerical manipulations. We do note, however, that our
abstraction can be useful in any setting, not just that of abstract interpretation.

The resulting analysis outputs invariants for each pair of thread locations. For in-
stance, at labels 5, when both threads have completed, a fragment of the resulting in-
variant produced by the analysis is:

¬flagX1t1 ∧ ¬flagX2t1 ∧ X ≥ X1t1 ∧ X1t1 ≥ 1 ∧ ...

This invariant contains both a boolean part, consisting of concrete values for the
auxiliary variables flagX1t1 and flagX2t1, and a numerical part in the polyhedra
numerical domain: X ≥ X1t1 and X1t1 ≥ 1.

Both auxiliary boolean variables are false, which corresponds to an empty write
buffer for Thread 1. From the numerical inequalities, we conclude that X ≥ 1. Similar
constraints are obtained for the variables in Thread 2, allowing us to conclude that
Y ≥ 1. Thus, we can conclude that the specification X + Y ≥ 2 holds when both
threads terminate.

We note that for our running example, direct handling of write buffer contents as
used in [18] fails to verify the specification, even though the program satisfies it. This
is because a direct, shift-based handling causes precision loss during the analysis. In
the next section, we formally present our abstraction and transformation, discuss how it
compares to prior work, and show why it leads to more scalable and precise analysis.

3 Background

In this section we provide a brief review of previous direct encoding techniques as well
as terms that will be useful for our new abstraction in Section 4.
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3.1 Direct Source-to-Source Encoding

Let Prog be the set of all programs, Rmm be the set of relaxed memory models (in
this paper Rmm = {x86 TSO, PSO}), and N the natural numbers. The translation
mechanism can be seen as a function with the signature: T : (Prog × Rmm× N) →
Prog where P ∈ Prog is an input program,M ∈ Rmm is a relaxed memory model,
and b ∈ N is a bound on the buffer size.

The meaning of buffer size bound b Key elements of the x86 TSO memory model (and
the PSO memory model) are the store buffers found between each thread and shared
memory. Given buffer size bound b, the output of the translation is a new program
PM ∈ Prog where PM = T (P,M, b).

By construction, the behavior of PM under sequential consistency semantics cap-
tures the behavior of P under the relaxed model M , with the exception of potentially
overflowing the store buffer. That is, if during the execution of PM an attempt is made
to store more than b elements to the buffer, then the program PM aborts.

If we manage to verify that PM satisfies the specification (without aborting), we can
guarantee that P satisfies the specification under the memory modelM . If the program
PM aborts, we may have to refine our model and retry verification with a larger buffer
size.

It is generally impossible to statically determine the maximal store buffer size reach-
able during a program execution. However, in practice, static analysis can over-
approximate the maximal possible store buffer size. We distinguish two cases:(i) the
over-approximated value is finite. In this case, the buffer size over-approximation is
useful in optimizing the transformation procedure, and (ii) the over-approximated value
is unbounded. In this case, the transformation has a fixed buffer bound defined by the
user.

3.2 Direct Translation

We first discuss the intuitive, direct translation function which encodes the relaxed
memory semantics into the program source code. This direct translation is used by prior
works focusing on infinite-state verification [10,18]. We denote this translation by:

TD : (Prog ×Rmm× N)→ Prog.

In the following, we use Local to denote the set of local variables (per thread) and
Shared the set of global shared variables. Expressions, both numerical and boolean,
can refer only to local variables. Statements can read and write global variables. We use
Stmt to denote all statements.

The translation encodes relaxed memory store buffers using temporary variables.
For each statement of P ∈ Prog we generate a code segment that captures the relaxed
behavior of that statement. We define a transformation function at statement level:

[[ ]] ∈ Stmt× Thread× N→ Stmt.

The direct translation introduces new variables for capturing the effect of storing
values into store-buffers instead of directly into main memory. For TSO (the translation
for PSO is similar), the buffer is modeled with the following local variables:
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– variable identifiers: lhs1t, lhs2t, . . . , lhsbt, where b is the maximum size of the
buffer. The identifier of a global variable is an integer – it stores an index of the
shared variable to be written to shared memory.

– buffer content values: rhs1t, rhs2t, . . . , rhsbt – each stores the actual value to
be written to shared memory.

– buffer counter: cnt_t takes values in the range [0, b] – it stores the size of the buffer
during execution.

[[X = r]]tb [[r = X]]tb [[flush]]tb [[fence]]tb

if (cnt_t=b)
abort("overflow")

cnt_t = cnt_t+1
if (cnt_t=1)

lhs1t = X
rhs1t = r

...
if (cnt_t=b)

lhsbt = X
rhsbt = r

if (cnt_t=n)∧
(lhsbt=X)

r = rhsbt
...
else if (cnt_t=n)∧

(lhs1t=X)
r = rhs1t

else
r = X

while random do
if (cnt_t>0)

� ∀ X ∈ Shared :
if (lhs1t = X)
X = rhs1t

� end
if (cnt_t>1)

lhs1t = lhs2t
rhs1t = rhs2t
...
if (cnt_t=b)

lhsb−1t = lhsbt
rhsb−1t = rhsbt

cnt_t = cnt_t-1
yield

assume
(cnt_t = 0)

Fig. 4. Direct TSO Translation Rules of TD

Fig. 4 presents the rules of the direct translation. In the translation of each statement,
the generated sequence of statements is atomic. An exception to that rule is the flush in
which only the inside of the generated loop is atomic and context switches are allowed
between the loop iterations.

Write to a global variable [[X = r]]tb: the store to a global variable X first checks whether
it can exceed the buffer bound b, and if so, the program aborts. Otherwise, the counter is
incremented. The rest of the logic checks the value of the counter and updates the cor-
responding local variables. The global variable X is not updated and only local variables
are modified.

Read from a global variable [[r = X]]tb: the load from a global variable X checks the
current depth of the buffer and then loads from the corresponding local variable. When
the buffer is empty (i.e., cnt_t = 0), or the variable has no occurrences in the buffer,
the load is performed directly from shared memory.

Fence statement [[fence]]tb: the fence waits for the buffer to be empty before executing.

Flush procedure [[flush]]tb: the flush procedure is translated into a non-deterministic
loop (we use random). If the buffer counter is positive and the entry at position 1 in the
buffer (lhs1t) refers to X, then the write value at position 1 (i.e., rhs1t) is stored in
X. The contents of the local variables are then updated by shifting: the content of each
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Xj+1t is moved to its predecessor Xjt where 1 ≤ j < b. Finally, the buffer count is
decremented.

To encode non-deterministic flushes of the memory sub-system, a flush procedure is
added by the translation function to the output program. The role of the flush procedure
is to soundly encode the possible non-deterministic flushes of the store buffer, triggered
by the memory subsystem. Naively, a faithful translation of the flush action requires
placing the flush code after each statement of the program that accesses shared memory.
However, this can be optimized using a simple preliminary static analysis that finds
cases where the store buffer is guaranteed to be empty (and thus no flush is needed), or
guaranteed to be bounded by a fixed size (and thus the flush code can be simplified).

Trace Example. Returning to Fig. 3 of Section 2, the last row of the figure (titled “Di-
rect translation”) illustrates how a given trace is processed using the direct translation.
The key here is the processing of the first flush statement, where the contents of the
store buffer are explicitly shifted. As we will see next, such explicit shifting is in fact
completely avoided by our new abstraction and subsequent translation.

Shortcomings of the Direct Translation. The main problem with the direct translation
is that it performs operations that have a devastating effect on verification. Specifically:
(i) the flush operation performs a shift of the array content, an operation that is very
costly and makes it harder to track the relationships between values; (ii) the sizes of store
buffers are tracked via numerical variables (i.e., cnt_t), the value of which may be lost
under abstraction. As we show in Section 5, these shortcomings cause verification using
direct translation to fail in more than 50% of our benchmarks, and to be costly for the
remaining ones. In the next section, we present an abstraction and a translation which
address these two shortcomings.

4 Abstraction-Guided Translation

We next present our new translation, which is based on a novel abstraction of the store
buffers. We also contrast our approach with the direct encoding discussed earlier:

TV : (Prog ×Rmm× N)→ Prog.

Our presentation focuses on the x86 TSO memory model (the details for PSO are
similar). We first discuss the new abstraction, which eliminates shifting of values in the
store buffers. Here, when an element is flushed from the buffer, the other elements main-
tain their position, significantly reducing the cost of the flush operation. This abstraction
is generally applicable for any analysis. We then discuss an approach for replacing the
counter variables that track the current size of the write buffers with boolean variables,
which also improves precision when using abstract interpretation based analysis.

4.1 Robust Buffer Abstraction – Eliminating Buffer Shifting

The flush procedure appears at multiple places in the resulting program and hence its
operation is critical to the overall precision and scalability of the analysis. As discussed
earlier, the direct translation encodes a store buffer using two bounded arrays per thread
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[[X = r]]tb [[r = X]]tb [[flush]]tb [[fence]]tb

if OR(b,t)
abort("overflow")

else
if OR(b-1,t)

Xbt = r
flagXbt = true

else
if OR(b-2,t)

...
else

X1t = r
flagX1t = true

if (flagXbt)
r = Xbt

else
if (flagXb−1t)

...
else

r = X

while random do
yield
if (flagX1t)

X = X1t
flagX1t = false

else
if (flagY1t)

Y = Y1t
flagY1t = false

else
if (flagX2t)

...

assume
(¬OR(b,t) ∧
. . . ∧
¬OR(1,t))

Fig. 5. Abstraction-guided translation rules (i.e. TV ) for TSO.

(i.e. lhs and rhs) and a counter. If the bound is reached during analysis, an overflow
error is triggered and the analysis aborts. When this happens, the user may increase the
buffer bound, transform the program using the new bound, and rerun the analysis on
the newly obtained program. The flush routine in the direct translation is implemented
using a non-deterministic loop. In the loop body, the first element in the store buffer
(the oldest) is flushed to memory. Next, the remaining elements are shifted one position
to the left in the buffer. An advantage of shifting is that it frees entries at the end of
the arrays encoding the buffer, thus creating free space for buffering additional store
operations.

Key Idea: Our observation is that we can handle the flush operation without shifting the
array content, thus obtaining an abstraction (over-approximation) of the relaxed mem-
ory semantics. This approximation is sound (the proof is presented in Section 4.4) but
may introduce additional cases of overflow. That is, if a program reaches an overflow
when analyzed with our abstraction, it is possible that this overflow may not occur when
using the direct, shifting encoding. However, we believe such situations are very rare
in practice – in our evaluation in Section 5, no additional such overflows appeared in
any of the benchmarks. We formally discuss how our abstraction is incorporated into
the translation later in Section 4.3.

4.2 Replacing Counters with Boolean Flags

Another ingredient of our approach is leveraging properties of the underlying program
analysis. Unlike the general abstraction above, here we discuss an optimization suitable
for abstract interpretation based analysis with numerical domains.

The direct translation keeps designated counters to track the current position in store
buffers. When using numerical abstract domains such as Octagon [19] and Polyhedra
[9], the exact numerical value of a variable may be abstracted away at program join
points. This abstraction, desirable in most cases, has negative effects when applied to
key variables such as buffer counters. We would therefore like to keep the values of
buffer counters even when different values for the count reach program join points.
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Towards this, we use a logico-numerical domain, which combines a numerical do-
main and a logical domain that tracks boolean combinations of predicates. Rather than
storing values of buffer counters as integers in the numerical part of the domain, we en-
code them using boolean variables in the logical part. This allows us to naturally main-
tain a disjunction of possible values for counters, without joining them. Using boolean
variables to track buffer sizes therefore improves the precision of the analysis inside the
flush procedure by differentiating cases where values of counter variables differ. This
encoding can be viewed as a form of trace partitioning [20], where joins are delayed
based on certain key values (in our case, the values of counter variables).

4.3 New Translation Rules

The source-to-source translation presented next incorporates both of the ideas described
above. It replaces cnt_t counter variables with boolean variables. For each shared vari-
able X ∈ Shared, write buffer index i ∈ [1, b], and thread identifier t ∈ Thread, a
boolean variable flagXit is added.

If flagXit is true, then there is a shared variable X write in the thread twrite buffer,
to position i.

The x86 TSO memory model has a single write buffer per thread. This translates to
the invariant: for a fixed i ∈ [1, b] and a fixed t ∈ Thread, there exists at most one
shared variable X such that flagXit is true. In other words, at each location of the
TSO buffer there is at most one shared variable write. We define the function:

OR(i, t) = ∨X∈Shared flagXit.

The function OR(i, t) returns true if there exists a write (to any shared variable) at
the position i in the write buffer of thread t. The previously mentioned invariant means
that at most one disjunct will be true in the formula above. Fig. 5 shows the rules of the
abstraction-guided translation:

Write to a global variable [[X = r]]tb: first checks if there is a write in the last element of
the store buffer. If so, the analysis indicates an overflow and stops. If the store buffer is
not yet full, the translation determines the highest index i in the buffer which is already
occupied and places the current write at the position i + 1. Note that in each branch of
the if-then-else statement, a boolean variable is modified. This enables the robust buffer
abstraction (Sec. 4.1) and the boolean encoding of counters (Sec. 4.2).

Read from a global variable [[r = X]]tb: searches in the store buffer for the most recent
write to the shared variable X and returns that value. If there is no write to X in the store
buffer, then the value is read from the shared memory.

Fence statement [[fence]]tb: assumes that at this point the store buffer is empty – there
are no pending writes.

Flush action [[flush]]tb: searches for the least recent entry in the store buffer and writes
it to the shared memory. As opposed to the direct encoding, the element at position 1 is
not flushed because the shifting procedure was removed. To know which variable is the
buffered write, case testing is performed.

The new translation extends naturally to a sequence of statements and to programs
with n concurrent threads: [[P ]]b = [[S]]1b ‖ · · · ‖ [[S]]nb .
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4.4 Soundness of the Robust Buffer Abstraction

We next prove that the RBA abstraction incorporated in the translation TV is sound as
it over-approximates the direct translation TD. Given a program P , memory modelM ,
and buffer bound b, PD = TD(P,M, b) is the program that results from applying direct
translation, and PV = TV (P,M, b) is the result of the abstraction-guided translation.

D: direct translation domain. V: abstraction-guided translation.
[b] = value of cnt_t ∈ {0 . . . b} (Shared→ Bool) = values of flagXit
Shared× N = values of lhsit, rhsit (Shared→ N) = values of Xit
BD

t = [b]× Seq≤b(Shared× N) BV
t = Seq≤b(Shared→ (Bool × N))

Fig. 6. Translation Domains

Fig. 6 summarizes the data structures needed to encode the write buffer of a thread t
in the direct and abstraction-guided translations:

– BD
t is the tuple containing the value of cntt ∈ [b] and the sequence of pairs of

values for lhsi ∈ Shared and rhsit ∈ N, i ∈ {1 . . . b}.
– BV

t is a sequence of elements which, for each shared variable X ∈ Shared, as-
sociate a tuple containing the boolean variable flagXit ∈ B and the stored value
Xit∈ N .

Let BD = {BD
t |t ∈ Threads} andBV = {BV

t |t ∈ Threads} be the sets of values
of all write buffers of the programs PD and PV .

We define the state of a translated program as the values of the shared variables,
local variables, program counter, and auxiliary variables added by the translation: σ =
〈Sharedσ, Localσ, pcσ, B〉 or σ = overflow. B is either the direct translation buffer
state BD or the abstraction-guided translation buffer state BV .

Definition 1 (Observable part of a state). The observable part of a state includes:
(i) the values of the shared variables, (ii) the values of the local variables, and (iii) the
values and order between elements of the non-empty section of the buffer.

For TD, the observable part of the state contains the values of the shared and local
variables and the values of lhsi and rhsi for i ∈ [1 . . . cnt_t]. Similarly, for TV , the
observable part of the state contains the values of the shared and local variables and the
values of Xit for i and t, where flagXit is true.

Definition 2 (Equivalent states). Two states σD and σV are equivalent if their ob-
servable parts correspond (the global and local variables have the same values and the
buffers BD and BV denote the same buffer content).

We define the transitions between two states (σi, σi+1) for transformed programs
as the translation rule (Fig. 4 or Fig. 5) corresponding to the transition in the original
program P . A trace of a program is represented as a sequence of states π = σ1 . . . σn.

Theorem 1 (The RBA abstraction used in TV is sound). For any trace πD = σD1
. . . σDs of PD of finite length s, there exists a corresponding trace πV = σV1 . . . σ

V
s of

T V , such that for all i ∈ {1 . . . s}, σVi and σDi are equivalent or σVi is overflow.
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Proof. The proof is by induction on the length of πD .
First, we show how to build the trace πV . Given πD = σD1 . . . σ

D
s , the transition

(σDi , σ
D
i+1) for i ∈ [1 . . . s−1] is a rule in Fig. 4, corresponding to the translation of

an instruction in program P . We construct πV by applying at each step (σVi , σ
V
i+1) the

corresponding rule from Fig. 5.
Next, we prove that πV and πD have equivalent states.
Base case: for i = 1, in the initial state, all write buffers are empty, the shared

variables have their initial values, and the local variables are not yet declared. Thus,
states σV1 and σD1 are equivalent.

Induction step: for i > 1, we assume that the states σVi and σDi are equivalent or σVi
is overflow. If σVi is overflow, then σVi+1 is also overflow (by convention, an overflow
state cannot be changed).

If σVi is not overflow, then the states σVi and σDi are equivalent (by the induction
assumption). Our construction applies the transition (σDi , σ

D
i+1) as defined by the rules

in Fig. 4 and the corresponding transition (σVi , σ
V
i+1) as defined by Fig. 5. We now show

that σDi+1 and σVi+1 are equivalent or σVi+1 is overflow via case splitting on the transition
type:

– store: write to a global variable [[X = r]]tb. Here, the local and shared variables
remain unchanged. From the induction assumption σDi and σVi , buffers hold the
same values in the same order. From the assumption σDi 
= overflow and from the
definition of store, we have that buffer content in σDi and σVi is the same or σVi+1

will reach overflow.
– load: read from a global variable [[r = X]]tb. Here, the buffer contents are unchanged.

The shared variables are also unchanged. From the induction assumption and the
definition of load we have that the values of r for σDi+1 and for σVi+1 are the same.

– fence: fence statement [[fence]]tb. Here, the transition assumes that at this point
the store buffers are empty for both translations. The states do not change and the
assumption on σDi and σVi propagates to the states σDi+1 and σVi+1.

– flush: flush action [[flush]]tb. Here, the local variables are unchanged. From the in-
duction assumption, the buffers of σDi and σVi hold the same values in the same
order, i.e., the same least recent element in the buffer will be flushed to main mem-
ory for σDi+1 and σVi+1.

This concludes the proof of Theorem 1 that T V is an over-approximation of TD and
the RBA abstraction is sound. This also means that even if the trace πD does not reach
an overflow, the corresponding trace πV may result in overflow.

5 Evaluation

We implemented our approach and evaluated it on a range of challenging concurrent
algorithms. We then compared its performance with the direct transformation discussed
earlier [18]. All our experiments ran on an Intel(R) Xeon(R) 2.13 GHz server with 250
GB RAM. To perform the analysis, we used CONCURINTERPROC [12], a tool based on
the APRON library [13], which supports various numerical abstract domains. We relied
on the Z3 [11] SMT solver to check that the inferred invariants imply the specification.
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Table 1. Verification results comparing our new transformation with prior work [18]

Abstraction-guided translation Direct translation [18]
Program Model Number fences Time (sec) Memory (MB) Time (sec) Memory (MB)

Abp TSO 0 5 189 14 352
PSO 0 6 167 12 222

Bakery TSO 4 1148 4749 - -
PSO 4 3429 10951 - -

Concloop TSO 2 8 547 18 891
PSO 2 6 504 23 783

Dekker TSO 6 227 2233 - -
PSO 4 121 1580 - -

Kessel TSO 4 14 357 15 424
PSO 4 6 198 80 628

Loop2 TLM TSO 2 66 2234 - -
PSO 2 36 1650 - -

Peterson TSO 2 89 1549 - -
PSO 4 20 901 331 2280

Pgsql TSO 3 282 1727 - -
PSO 1 55 758 - -

Queue TSO 1 1 101 1 115
PSO 1 1 108 1 106

Sober TSO 2 30 1784 - -
PSO 3 148 263 215 3499

Szymanski TSO 3 1066 3781 - -
PSO 4 507 2076 - -

Chase-Lev WSQ TSO 2 17 550 - -
PSO 4 9 520 10 528

THE WSQ TSO 4 125 1646 - -
PSO 4 391 2338 - -

The verification procedure has three steps:

(i) Applying the transformation on program P , obtaining a new program PM .
(ii) Running CONCURINTERPROC on that transformed program.

(iii) Using Z3 to check whether the inferred invariants satisfy the specification.

The above procedure is repeated until it is no longer possible to further reduce the
number of fences in the algorithm. We evaluated our approach on 13 concurrent al-
gorithms, out of which 5 are infinite-state. The safety specifications are either mutual
exclusion or reachability invariants involving labels of different threads.

Our main goal was to study the Abstraction-guided translation precision and effi-
ciency gains (i.e. memory consumption, speed) compared to the direct translation [18],
while using the same analysis tool (in this case CONCURINTERPROC) to verify the output
programs. Where applicable, we also discuss how our work compares to other works
that are state of the art(here and in Section 6). Table 1 summarizes our experimental
results for both the x86 TSO and PSO memory models.

The minimal number of fences necessary to verify each algorithm are shown in col-
umn 3 of Table 1. The time and memory resources used by the analysis are shown for
both the new transformation (in columns 4 and 5 of the table) and the previous trans-
formation (in columns 6 and 7). We observe two trends:
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– For Bakery, Dekker, Loop2-TLM, Pgsql, Szymanski and THE WSQ, the new trans-
formation verifies the program with strictly fewer fences than the direct translation.
The dash indicates that verification failed (out of memory or timeout) for those
placements (or their subsets) using the direct translation.

– For the rest of the benchmarks, the direct translation was successful in verifying the
same fence placement as our new translation. But in all those cases the time and
memory consumption were better using the new translation, and in some instances
(e.g., Sober) memory consumption was reduced by 10x.

Comparison to other work. Recent work [2] infers fences such that the program under
the relaxed model is equivalent to SC – recall that we discussed such approaches as
one of two general approaches in Section 3. Although scalable, the authors’ abstraction
tends to lead to significant precision loss, thus inserting redundant fences. For instance,
in Lamport’s Bakery under TSO, their abstraction inserts 8 fences, compared to 4 fences
inserted by our analysis. This precision loss is observed also for other mutual exclusion
algorithms such as Peterson under TSO (3 vs. 2 fences) and Szymansky under TSO (8
vs. 3 fences).

Another line of work [3] also produces an SC program from the original program
and the relaxed memory model semantics. The work uses testing to find bugs in many
litmus tests and algorithms (e.g., Bakery, Peterson, Dekker, Szymanski), but does not ac-
tually perform verification on any of them. Nor does it address the problem of how the
proposed translation would affect infinite-state verification. For instance, when we tried
[3] even on a few small examples, the resulting SC program used many more auxiliary
boolean variables than our translation (e.g., 40 vs. 8). Note that even a small increase
in the number of boolean variables quickly leads to state explosion (more disjunctions)
in the program analysis. This is also confirmed by our experiments with CONCURINTER-
PROC, where, for instance, any program with more than 40 boolean variables could not
be verified due to state explosion.

Summary of Results. In summary, for each program, our new transformation enables
verification with a lower or equal number of fences compared to the direct translation.
The new transformation also leads to a more efficient (in space and time) subsequent
analysis of the resulting program. Based on our experimental results, we believe that
our new abstraction-gudied transformation is a key building block in automating verifi-
cation of both finite and infinite-state concurrent programs on relaxed memory models.

6 Related Work

We next discuss some additional work most closely related to ours. Over the last few
years there has been significant interest in ensuring correctness (via synthesis and ver-
ification) of concurrent programs running on relaxed memory models. Most of the re-
search has so far considered only finite-state programs [5,6,7,14,15,17]. (Some of these
papers however, do handle specific kinds of infinite-state problems, such as unbounded
store buffers, but where all shared variables range over finite domains). Some recent
works also handle infinite-state programs [1,2,10,18,21].

One approach to handling relaxed memory models is to encode the effect of the model
directly into the program and then analyze the resulting program using tools that work
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for sequential consistency (e.g., [3,4,10]). We follow the same general idea. The main
contribution of our work is a new abstraction and a transformation which improves the
precision and efficiency of the resulting program analysis. For instance, as we showed in
the paper, using the direct encoding as in [18] will result in significant loss of precision
and efficiency (i.e., failure to verify correct programs). Abdulla et al. [1] explore online
predicate abstraction for handling infinite-state verification while Dan et al. [10] also
explore predicate abstraction but this time based on offline analysis of boolean programs.
Technically, these works are quite different from ours since: (i) they both use direct
encoding and also (ii) they both use predicate abstraction which, even with abstraction
refinement, tends to require manually supplied predicates. In contrast, we provide a new
robust abstraction of the store buffers and explore the application of numerical abstract
domains that do not require manual annotations. We also provide a more comprehensive
experimental study than either of aforementioned works (we consider x86 TSO, as well
as the more relaxed PSO model and a range of challenging concurrent algorithms). For
the common benchmarks, [1] and our approach achieve comparable results. A possible
limitation of this work is locked writes, meaning that fences are generated immediately
following a write to shared memory. Our tool is more flexible since fences can be placed
at any label. We again note that the robust buffer abstraction (RBA) proposed in this
work can be immediately useful with predicate abstraction as well. In the work of [21],
arbitrary safety properties are not taken into account. This work supports two fence
removal optimizations (for TSO), which are not enough to eliminate redundant fences.
We applied their optimizations on a few of our benchmarks and, unfortunately, it failed
to remove redundant fences (e.g., in the Chase WSQ algorithm).

7 Conclusion

We proposed a new approach for verifying concurrent programs on relaxed memory
models. Our approach consists of a robust abstraction of the store buffers, an encoding
of the store buffer sizes that leverages the underlying abstract domains, and a source
to source translation that encodes relaxed memory model semantics into the target pro-
gram, thereby enabling the use of existing verification tools for sequential consistency.

We implemented our approach and evaluated it on a set of finite and infinite-state
concurrent algorithms using an existing state-of-the art abstract interpretation engine.
Our experimental results demonstrate that the overall system is superior to prior work
in terms of precision and performance, enabling verification of concurrent algorithms
on both x86 TSO and PSO memory models not possible before.
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