
Type Systems
for Distributed
Programs:
Components and
Sessions

Ornela Dardha

Atlantis Studies in Computing
Series Editors: J. A. Bergstra · M. W. Mislove

Atlantis Studies in Computing

Volume 7

Series editors

Jan A. Bergstra, Amsterdam, The Netherlands
Michael W. Mislove, New Orleans, USA

Aims and Scope of the Series

The series aims at publishing books in the areas of computer science, computer
and network technology, IT management, information technology and informatics
from the technological, managerial, theoretical/fundamental, social or historical
perspective.

We welcome books in the following categories:

Technical monographs: these will be reviewed as to timeliness, usefulness,
relevance, completeness and clarity of presentation.
Textbooks.

Books of a more speculative nature: these will be reviewed as to relevance and
clarity of presentation.

For more information on this series and our other book series, please visit our
website at:

www.atlantis-press.com/publications/books
Atlantis Press
29, avenue Laumière
75019 Paris, France

More information about this series at http://www.springer.com/series/10530

http://www.springer.com/series/10530

Ornela Dardha

Type Systems for Distributed
Programs: Components
and Sessions

Ornela Dardha
School of Computing Science
University of Glasgow
Glasgow
UK

ISSN 2212-8557 ISSN 2212-8565 (electronic)
Atlantis Studies in Computing
ISBN 978-94-6239-203-8 ISBN 978-94-6239-204-5 (eBook)
DOI 10.2991/978-94-6239-204-5

Library of Congress Control Number: 2016942511

© Atlantis Press and the author(s) 2016
This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by any
means, electronic or mechanical, including photocopying, recording or any information storage and
retrieval system known or to be invented, without prior permission from the Publisher.

Printed on acid-free paper

Foreword

The Italian Chapter of the EATCS (European Association for Theoretical Computer
Science) was founded in 1988, and aims at facilitating the exchange of ideas and
results among Italian theoretical computer scientists, and at stimulating cooperation
between the theoretical and the applied communities in Italy.

One of the major activities of this Chapter is to promote research in theoretical
computer science, stimulating scientific excellence by supporting and encouraging
the very best and creative young Italian theoretical computer scientists. This is done
also by sponsoring a prize for the best Ph.D. thesis. An interdisciplinary committee
selects the best Ph.D. thesis, among those defended in the previous year and dealing
with one of the many themes in theoretical computer science.

In 2012 we started a cooperation with Atlantis Press so that the selected Ph.D.
theses will be published as volumes in the Atlantis Studies in Computing.

The present volume contains the thesis selected for publication in 2015:
Type Systems for Distributed Programs: Components and Sessions by Ornela

Dardha (supervisor: Prof. Davide Sangiorgi, University of Bologna, Italy).
The scientific committee that selected this thesis was composed of

Profs. Margherita Napoli (University of Salerno), Paolo Santi (CNR of Pisa) and
Andrea Masini (University of Verona).

They gave the following motivation to justify the assignment of the award to the
thesis by Ornela Dardha:

The Ph.D. thesis “Type Systems for Distributed Programs: Components and
Sessions” by Ornela Dardha deals with type-based systems for distributed pro-
grams. The goal of the thesis is the development of static techniques based on type
systems aimed at dealing with consistency and safety properties related with
dynamic reconfiguration and communication in complex distributed systems. The
main original contributions of the thesis are:

• the design of a type system for a realistic concurrent object-oriented calculus to
statically guarantee the consistency of dynamic reconfigurations;

• the study of concrete, non-trivial safety properties of complex distributed
systems, namely deadlock freedom, livelock freedom, and progress.

v

All the theoretical proposals of the thesis are original and extremely interesting.
They represent a major breakthrough in the study of type systems for concurrent
languages. It is our opinion that the ideas of this thesis could also help in the design
and implementation of real type systems for concrete distributed programming
languages.

I would like to thank the members of the scientific committee, and I hope that
this initiative will further contribute to strengthen the sense of belonging to the
same community of all the young researchers that have accepted the challenges
posed by any branch of theoretical computer science.

Rome Tiziana Calamoneri
January 2016 President of the Italian Chapter of the EATCS

vi Foreword

Preface

It is a pleasure for me to write a preface for Ornela Dardha’s Ph.D. thesis in the
occasion of its publication in the Atlantis Studies in Computing, as recipient of a
prize for “Best Italian 2015 Ph.D. Thesis in Theoretical Computer Science”
awarded by the Italian Chapter of EATCS.

I am happy that Ornela has obtained the prize, as a reward for the time and the
energy that she has invested into research during the Ph.D. period. Ornela’s
achievement is also gratifying for the Focus team and the whole Department of
Computer Science of the University of Bologna, in which the thesis has been
carried out. I like to think that Focus and the Department have provided a fertile
environment in which her desire of learning and growing has been nourished.

The general topic of Ornela’s thesis is type systems for programming languages.
Type systems have been developed in sequential languages, initially with the goal
of improving the efficiency of programs, and later also with the goals of ensuring
certain correctness properties during execution and of specifying the intended use
of certain objects or components in a program. The application of type systems to
concurrency is more recent. The field has presented, and still presents, a number of
challenges: in a concurrent system new features, such as interactions, have to be
taken into account; other features, such as dynamic reconfigurations, take a
prominent role. Concurrency has sometimes led to the design of new type systems.
A relevant example is the so-called session types, roughly types capable of spec-
ifying the protocols that a set of components should follow, in order to accomplish a
certain task. The past two decades have seen a thorough investigation of session
types. Ornela’s thesis shows how types can be used in presence of interactions and
dynamic reconfiguration to guarantee some fundamental behavioural properties of
distributed systems, such as forms of consistency, deadlock freedom, progress.
Moreover, the thesis sheds light into the foundations of session types. The thesis
shows that session types, at least in their most common format, are not a primitive
concept, as they had been treated in the literature: they can be derived from more

vii

basic and well-known type constructs. This is important, both to understand better
the concept, and to develop its metatheory.

I would like to conclude with my personal congratulations to Ornela for the work
done, and my warmest wishes for her future.

Bologna Davide Sangiorgi
Gennaio 2016

viii Preface

Acknowledgments

The work for the Ph.D. thesis was carried out while I was a Ph.D. student at the
Computer Science Department of the University of Bologna and a member of the
Focus team, and also during my one-year visit at the IT University of Copenhagen.

I am very grateful to my supervisor Davide Sangiorgi, who during my Ph.D. has
been of great support and guidance. I also want to thank the external reviewers of
my Ph.D. thesis: Ilaria Castellani and Vasco T. Vasconcelos for their careful work
and useful feedbacks.

Currently I am a Research Associate at the School od Computing Science of the
University of Glasgow, working with Simon J. Gay and supported by the
UK EPSRC project From Data Types to Session Types: A Basis for Concurrency
and Distribution (ABCD) (EP/K034413/1).

A very special thanks goes to Elena Giachino for her help and support, for the
scientific and life-related advice she gave me during those years.

I also want to thank Jorge A. Pérez, for being a very good friend and a very good
“older academic brother”. Thank you for your prompt response every time I needed
your help.

During my one-year visit at ITU of Copenhagen, I had the pleasure to work with
Marco Carbone and Fabrizio Montesi. Thank you for the very nice year at ITU and
for making research a lot fun.

An enormous hug goes to all my friends around the world, especially the ones in
Rome, Bologna, Copenhagen, Glasgow and London. Thank you for the great time
together, for being of inspiration and support and above all for making me feel
home whenever I visit you.

Falenderoj familjen time babin, mamin dhe dy motrat e mia te mrekullueshme,
per prezencën, durimin dhe dashurinë e tyre të pakushtëzuar. Ju dua shumë!

Ringrazio la mia (seconda) famiglia, mamma, papi, Titi e Ernesto: il tempo con
voi non è mai abbastanza… Vi voglio un mondo di bene!

Last, but absolutely not least, I want to thank my Simon. During the time I was
writing this book he has been very supportive, understanding and caring. You are
truly a wonderful person!

ix

Contents

Foreword . v

Preface . vii

Acknowledgements . ix

List of Figures . xv

Part I Safe Dynamic Reconfiguration of Components

1 Background on Components. 5
1.1 Syntax . 5
1.2 Semantics . 8

1.2.1 Runtime Syntax . 8
1.2.2 Functions and Predicates . 9
1.2.3 Evaluation of Pure and Guard Expressions 10
1.2.4 Reduction Rules. 12

1.3 Server and Client Example . 16

2 A Type System for Components . 19
2.1 Typing Features . 19
2.2 Subtyping Relation. 20
2.3 Functions and Predicates. 21
2.4 Typing Rules. 24
2.5 Typing Rules for Runtime Configurations 29

3 Properties of the Type System . 33
3.1 Main Results . 33
3.2 Proofs. 34

xi

http://dx.doi.org/10.2991/978-94-6239-204-5_1
http://dx.doi.org/10.2991/978-94-6239-204-5_1
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec7
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec7
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_1#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_2
http://dx.doi.org/10.2991/978-94-6239-204-5_2
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_2#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_3
http://dx.doi.org/10.2991/978-94-6239-204-5_3
http://dx.doi.org/10.2991/978-94-6239-204-5_3#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_3#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_3#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_3#Sec2

Conclusions, Related and Future Work for Part I 43

Part II Safe Communication by Encoding

4 Background on π-Types . 51
4.1 Syntax . 51
4.2 Semantics . 52
4.3 π-Types . 54
4.4 π-Typing Rules . 55
4.5 Main Results . 58

5 Background on Session Types . 61
5.1 Syntax . 63
5.2 Semantics . 64
5.3 Session Types . 65
5.4 Session Typing Rules . 67
5.5 Main Results . 69

6 Session Types Revisited . 73
6.1 Types Encoding. 73
6.2 Terms Encoding . 75
6.3 Properties of the Encoding . 77

6.3.1 Auxiliary Results . 78
6.3.2 Typing Values by Encoding 79
6.3.3 Typing Processes by Encoding 80
6.3.4 Operational Correspondence 88

6.4 Corollaries from the Encoding . 95

Part III Advanced Features on Safety by Encoding

7 Subtyping . 99
7.1 Subtyping Rules . 99
7.2 Properties . 100

8 Polymorphism . 105
8.1 Parametric Polymorphism . 105

8.1.1 Syntax . 106
8.1.2 Semantics . 106
8.1.3 Typing Rules. 107
8.1.4 Encoding . 107
8.1.5 Properties of the Encoding . 108

8.2 Bounded Polymorphism . 111
8.2.1 Syntax . 111
8.2.2 Semantics . 113
8.2.3 Typing Rules. 113
8.2.4 Encoding . 114
8.2.5 Properties of the Encoding . 115

xii Contents

http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_4#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_5#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec7
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec7
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_6#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_7
http://dx.doi.org/10.2991/978-94-6239-204-5_7
http://dx.doi.org/10.2991/978-94-6239-204-5_7#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_7#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_7#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_7#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_8
http://dx.doi.org/10.2991/978-94-6239-204-5_8
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec7
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec7
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec9
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec9
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec10
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec10
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec11
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec11
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec12
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec12
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec13
http://dx.doi.org/10.2991/978-94-6239-204-5_8#Sec13

9 Higher-Order Communication . 123
9.1 Syntax . 123
9.2 Semantics . 124
9.3 Typing Rules. 125

9.3.1 HOπ Session Typing Rules . 125
9.3.2 HOπ Typing Rules. 126

9.4 Encoding . 128
9.5 Properties of the Encoding . 130

9.5.1 Typing HOπ Processes by Encoding 130
9.5.2 Operational Correspondence for HOπ 137

10 Recursion . 141
10.1 Syntax . 141
10.2 Semantics . 142
10.3 Typing Rules. 142
10.4 Encoding . 144
10.5 Properties of the Encoding . 146

11 From π-Types to Session Types . 149
11.1 Further Considerations . 149
11.2 Typed Behavioural Equivalence . 150

11.2.1 Equivalence Results for the Encoding 151

Conclusions, Related and Future Work for Part II and III 153

Part IV Progress of Communication

12 Background on π–Types for Lock Freedom 161
12.1 Syntax . 161
12.2 Semantics . 161
12.3 π-Types for Lock Freedom . 162
12.4 π-Typing Rules for Lock Freedom . 164

13 Background on Session Types for Progress 169
13.1 Syntax . 169
13.2 Semantics . 169
13.3 Session Types . 170
13.4 Session Typing Rules . 172

14 Progress as Compositional Lock Freedom 173
14.1 Lock Freedom for Sessions . 173
14.2 Progress for Sessions . 174
14.3 Lock Freedom Meets Progress . 176

14.3.1 Properties of Closed Terms . 176
14.3.2 Properties of Open Terms . 177

14.4 A Type System for Progress . 180

Contents xiii

http://dx.doi.org/10.2991/978-94-6239-204-5_9
http://dx.doi.org/10.2991/978-94-6239-204-5_9
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec7
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec7
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec8
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec9
http://dx.doi.org/10.2991/978-94-6239-204-5_9#Sec9
http://dx.doi.org/10.2991/978-94-6239-204-5_10
http://dx.doi.org/10.2991/978-94-6239-204-5_10
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_10#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_11
http://dx.doi.org/10.2991/978-94-6239-204-5_11
http://dx.doi.org/10.2991/978-94-6239-204-5_11
http://dx.doi.org/10.2991/978-94-6239-204-5_11#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_11#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_11#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_11#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_11#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_11#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_12#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_12#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_12#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_12#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_12#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_12#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_12#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_12#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_13
http://dx.doi.org/10.2991/978-94-6239-204-5_13
http://dx.doi.org/10.2991/978-94-6239-204-5_13#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_13#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_13#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_13#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_13#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_13#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_13#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_13#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_14
http://dx.doi.org/10.2991/978-94-6239-204-5_14
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec1
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec2
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec3
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec4
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec5
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec6
http://dx.doi.org/10.2991/978-94-6239-204-5_14#Sec6

Conclusions, Related and Future Work for Part IV 183

References . 187

xiv Contents

List of Figures

Figure 1.1 Component extension of core ABS 6
Figure 1.2 Runtime syntax . 8
Figure 1.3 Evaluation of pure expressions . 11
Figure 1.4 Evaluation of guard expressions. 12
Figure 1.5 Reduction rules for configurations (1). 13
Figure 1.6 Reduction rules for configurations (2). 14
Figure 1.7 Reduction rules for configurations (3). 15
Figure 1.8 Reduction rules for rebinding . 15
Figure 1.9 Workflow in ABS . 16
Figure 1.10 Workflow in the component model 17
Figure 1.11 Client and controller objects creation 17
Figure 2.1 Subtyping relation . 21
Figure 2.2 Lookup functions. 22
Figure 2.3 Auxiliary functions and predicates 23
Figure 2.4 Typing rules for the functional level. 25
Figure 2.5 Typing rules for expressions with side effects 26
Figure 2.6 Typing rules for statements . 27
Figure 2.7 Typing rules for declarations . 28
Figure 2.8 Typing the workflow example . 29
Figure 2.9 Typing rules for runtime configurations 30
Figure 4.1 Syntax of the standard π-calculus 52
Figure 4.2 Structural congruence for the standard π-calculus. 53
Figure 4.3 Rules for equational reasoning. 53
Figure 4.4 Semantics of the standard π-calculus 54
Figure 4.5 Syntax of linear π-types . 54
Figure 4.6 Combination of π-types and typing contexts 56
Figure 4.7 Type duality for linear π-types . 57
Figure 4.8 Typing rules for the standard π-calculus 58
Figure 5.1 Syntax of the π-calculus with sessions 63
Figure 5.2 Structural congruence for the π- calculus with sessions. 64
Figure 5.3 Semantics of the π-calculus with sessions 65

xv

Figure 5.4 Syntax of session types . 66
Figure 5.5 Type duality for session types . 66
Figure 5.6 Context split and context update . 67
Figure 5.7 Typing rules for the π-calculus with sessions 68
Figure 6.1 Encoding of session types . 74
Figure 6.2 Encoding of session terms. 76
Figure 6.3 Encoding of session typing contexts 77
Figure 7.1 Subtyping rules for the π-calculus with sessions 100
Figure 7.2 Subtyping rules for the standard π-calculus 100
Figure 8.1 Syntax of parametric polymorphic constructs. 106
Figure 8.2 Typing rules for parametric polymorphic constructs 107
Figure 8.3 Encoding of parametric polymorphic constructs 107
Figure 8.4 Syntax of bounded polymorphic session constructs 111
Figure 8.5 Syntax of bounded polymorphic π-constructs 112
Figure 8.6 Typing rules for bounded polymorphic session constructs . . . 114
Figure 8.7 Typing rules for bounded polymorphic π-constructs 114
Figure 8.8 Encoding of bounded polymorphic types 115
Figure 8.9 Encoding of bounded polymorphic terms 115
Figure 9.1 Syntax of higher-order constructs. 124
Figure 9.2 Semantics of higher-order constructs 124
Figure 9.3 Typing rules for the HOπ with sessions: values 126
Figure 9.4 Typing rules for the HOπ with sessions: processes. 127
Figure 9.5 Typing rules for the standard HOπ: values 128
Figure 9.6 Typing rules for the standard HOπ: processes 129
Figure 9.7 Encoding of HOπ types and terms 130
Figure 10.1 Syntax of recursive session types and terms 142
Figure 10.2 Syntax of recursive standard π-calculus types and terms 142
Figure 10.3 Typing rules for recursive constructs 144
Figure 10.4 Encoding of recursive types, terms and typing contexts 145
Figure 12.1 Syntax of the standard π-calculus: repeated. 162
Figure 12.2 Semantics of the standard π-calculus: repeated 162
Figure 12.3 Syntax of usage types. 163
Figure 12.4 Typing rules for the π-calculus with usage types 167
Figure 13.1 Syntax of the π-calculus with sessions: updated. 170
Figure 13.2 Semantics of the π-calculus with sessions: updated 170
Figure 13.3 Syntax of session types: updated . 171
Figure 13.4 Typing rules for the π-calculus with sessions: updated 171
Figure 14.1 Checking progress with TyPiCal . 181

xvi List of Figures

Introduction to the Ph.D. Thesis

History’s Worst Software Bugs

Report on Wired News in August 11, 2005

Computer bugs are still with us, and show no sign of going extinct. As the line
between software and hardware blurs, coding errors are increasingly playing
tricks on our daily lives. Bugs don’t just inhabit our operating systems and
applications—today they lurk within our cell phones and our pacemakers, our
power plants and medical equipment, and in our cars. […]

July 28, 1962—Mariner I space probe. A bug in the flight software for the
Mariner 1 causes the rocket to divert from its intended path on launch. Mission
control destroys the rocket over the Atlantic Ocean. The investigation into the
accident discovers that a formula written on paper and pencil was improperly
transcribed into computer code, causing the computer to miscalculate the rocket’s
trajectory.

1985–1987—Therac-25 medical accelerator. A radiation therapy device mal-
functions and delivers lethal radiation doses at several medical facilities. […]
Because of a subtle bug called a ”race condition,” a quick-fingered typist could
accidentally configure the Therac-25 so the electron beam would fire in high-power
mode but with the metal X-ray target out of position. At least five patients die;
others are seriously injured.

June 4, 1996—Ariane 5 Flight 501. Working code for the Ariane 4 rocket is
reused in the Ariane 5, but the Ariane 5’s faster engines trigger a bug in an
arithmetic routine inside the rocket’s flight computer. The error is in the code that
converts a 64-bit floating-point number to a 16-bit signed integer. The faster
engines cause the 64-bit numbers to be larger in the Ariane 5 than in the Ariane 4,
triggering an overflow condition that results in the flight computer crashing […]
and causes the rocket to disintegrate 40 s after launch.

xvii

The previous text is taken from an article reported in the WIRED magazine on
August 11, 2005 [90]. The events above are just a few taken from the long list of
software bugs that have caused big havoc. The severity and impact of the bugs
grows when dealing with safety critical applications and can result in huge amount
of money and time loss or even worse, people lives loss.

This clearly shows the importance of correctness and safety properties in
software programs. However, the more complex the software systems are and the
more difficult it is to ensure such properties. As described in the remainder of the
introduction, guaranteeing safety properties for complex distributed systems is what
guides this thesis.

Problem Description

Complex software systems, in particular distributed ones, are everywhere around us
and are at the basis of our everyday activities.

These systems are highly mobile and dynamic: programs or devices may move
and may often execute in networks owned and operated by other parties; new
devices or pieces of software may be added; the operating environment or the
software requirements may change over time.

These systems are also heterogeneous and open: the pieces that form a system
may be quite different from each other, built by different people or industries, even
using different infrastructures or programming languages; the constituents of a
system only have a partial knowledge of the overall system, and may only know, or
be aware of, a subset of the entities that operate in the system.

These systems are often being thought of and designed as structured composition
of computational units often referred to as components, which give rise to the name
of Component-Based Ubiquitous Systems (CBUS) [62]. These components are
supposed to interact and communicate with each other following some predefined
patterns or protocols. The notion of component is widely used also in industry, in
particular the following informal definition, from Szyperski [103] is often adopted:
“a software component is a unit of composition with contractually specified
interfaces and explicit context dependencies”. An interface is a set of named
operations that can be invoked by clients and context dependencies are specifica-
tions of what the deployment environment needs to provide, such that the com-
ponents can properly function.

In order to handle the complexity of distributed systems, it is natural to aim at
verification methods and techniques that are compositional. On the other hand,
compositionality is also useful and can be exploited in dealing with the inherent
heterogeneity of software components.

When reasoning about complex distributed systems, their reliability and their
usability are fundamental and necessary requirements.

xviii Introduction to the Ph.D. Thesis

(i) In order to be reliable, compositional models of software systems need to
account for dynamic reconfiguration, i.e., changing at runtime the commu-
nication patterns. This is important because the needs and the requirements of
a system may change over time. This may happen because the original
specification was incomplete or ambiguous, or because new needs arise that
had not been predicted at design time. As designing and deploying a system is
costly, it is important for the system to be capable of adapting itself to changes
in the surrounding environment. In addition, this is also important when
modelling failure recovery.

(ii) In order to be useful, compositional models of software systems need to
account for interaction. Interaction can be seen as communication patterns
among components which collaborate together to achieve a common task.

As far as (i) is concerned it is important to understand how correctness and
consistency criteria can be enforced. Guaranteeing consistency of dynamic recon-
figurations, especially the unplanned ones, is challenging, since it is difficult to
ensure that such modifications will not disrupt ongoing computations.

As far as (ii) is concerned it is important to understand how correctness and
safety criteria can be enforced. In the communication setting, the notion of safety
comes as a collection of several requirements, including basic properties like
privacy, guaranteeing that the communication means is owned only by the com-
municating parties or communication safety, guaranteeing that the protocol has the
expected structure. Stronger safety properties related to communication may be
desirable like deadlock freedom, guaranteeing that the system does not get stuck or
progress, guaranteeing that every engaged communication or protocol satisfies all
the requested interactions. Enforcing each of the previous safety requirements is a
difficult task, which becomes even more difficult if one wants to enforce a com-
bination of them. In many distributed systems, in particular, safety critical systems,
a combination of these properties is required.

Aim of the Ph.D. and Methodology

The aim of the Ph.D. was to develop powerful techniques based on formal methods
for the verification of correctness, consistency and safety properties related to
dynamic reconfigurations and communications in complex distributed systems.

In particular, static analysis techniques based on types and type systems appear
to be an adequate methodology, as they stand at the formal basis of useful pro-
gramming tools. Before using them in a practical setting, a rigorous development of
such techniques is needed, which is more easily done on models and core lan-
guages, such as object-oriented and concurrent calculi. The reason why we have
adopted types and type systems in our work is twofold.

(i) Type systems are a very adequate means to guarantee safety properties. Their
benefits are well known in sequential programming, starting from early

Introduction to the Ph.D. Thesis xix

detection of programming errors to facilitating code optimisation and read-
ability. In concurrent and distributed programming the previous benefits still
hold and in addition other properties, typical of these systems, can be guar-
anteed by using types and type systems. In particular, there has been a con-
siderable effort over the last 20 years in the development of types for
processes, mainly in the π-calculus [57, 58, 72, 83, 98, 99, 101, 104] or
variants of it, which is by all means the calculus mostly used to model
concurrent and distributed scenarios. For instance, types have been proposed
to ensure termination, so that when we interrogate a well-typed process we are
guaranteed that an answer is eventually produced [36, 100, 117], or deadlock
freedom, ensuring that a well-typed process never reaches a deadlocked state,
meaning that communications will eventually succeed, unless the whole
process diverges [66, 70, 73], or a stronger property, that of lock freedom
[67, 68, 74] ensuring that communication of well-typed processes will suc-
ceed, (under fair scheduling), even if the whole process diverges. Types and
type systems for guaranteeing safety properties have been successfully
adopted also in a more complex setting than the typed π-calculus, that of
concurrent component-based systems, to guarantee, for example deadlock
freedom of components communication [50, 51].

(ii) There are several types and type system proposals for communication, starting
from the standard channel types in the typed π-calculus [72, 83, 98, 101] to the
behavioural types [17, 21, 38, 57, 58, 88, 104, 109, 112, 118], generally
defined for (variants) of the π-calculus. The standard channel types are
foundational. They are simple, expressively powerful and robust and they are
well studied in the literature. Moreover, they are at the basis of behavioural
types, which were defined independently. In this thesis, we concentrate on the
standard channel types and on the session types, the latter being a formalism
used to describe and model a protocol as a type abstraction. We focus on
session types because they guarantee several safety properties, such as privacy
of the communication channel, communication safety and session fidelity,
ensuring that the type of the transmitted data and the structure of the session
type are as expected. However, as previously stated, we are also interested in
studying stronger properties, such as deadlock and lock freedom of commu-
nicating participants and progress of a session. Again, these properties can be
guaranteed by using session types.

Contributions

The contributions of this thesis are listed in the following:

• We design a type system for a concurrent object-oriented calculus, to statically
ensure consistency of dynamic reconfigurations related to modifications of
communication patterns in a program. The type system statically tracks runtime

xx Introduction to the Ph.D. Thesis

information about the objects. It can be seen as a technique which can be applied
to other calculi and frameworks, for purposes related to tracking runtime
information during compile time.

• We present an encoding of the session typed π-calculus into the standard typed
π-calculus, by showing that the type and term primitives of the former can be
obtained by using the primitives of the latter. The goal of the encoding is to
understand the expressive power of session types and to which extent they are
more sophisticated and complex than the standard π-calculus types. The
importance of the encoding is foundational, since

– The encoding is proved faithful as it allows the derivation of properties of the
session π-calculus, for e.g., subject reduction, by exploiting the theory of the
standard typed π-calculus.

– The encoding is proved robust by extending it to handle non trivial features
like, subtyping, polymorphism, higher order communication and recursion
and by using it to derive new properties in the session π-calculus due to these
new features from the corresponding ones in the standard typed π-calculus.

– The encoding is an expressiveness result for the standard π-calculus. There
are many more expressiveness results in the untyped settings as opposed to
expressiveness results in the typed ones.

• We study advanced safety properties related to communication in complex
distributed systems. We concentrate on (dyadic) session types and study prop-
erties like deadlock freedom, lock freedom and progress. We study the relation
among these properties and present a type system for guaranteeing the progress
property by exploiting our encoding.

Structure of the Thesis

The structure of the thesis is given in the following. Every part is roughly an
extension of the previous one and is self-contained.

• Part I: Safe Dynamic Reconfiguration of Components.
This part focuses on components and is based on [31]. Chapter 1 introduces the
component calculus, which is a concurrent object-oriented language designed
for distributed programs. Chapter 2 introduces a type system for the component
calculus, which statically guarantees consistency properties related to runtime
modifications of communication patterns. Chapter 3 gives the theoretical results
and properties that the component type system satisfies, as well as the detailed
proofs.

• Part II: Safe Communication by Encoding.
This part focuses on the encoding of session types and terms and is based on
[32]. Chapter 4 presents the typed π-calculus [101]. We give the syntax of types

Introduction to the Ph.D. Thesis xxi

http://dx.doi.org/10.2991/978-94-6239-204-5_1
http://dx.doi.org/10.2991/978-94-6239-204-5_2
http://dx.doi.org/10.2991/978-94-6239-204-5_3
http://dx.doi.org/10.2991/978-94-6239-204-5_4

and terms, the operational semantics and the typing rules. Chapter 5 gives a
detailed overview of the notions of sessions and session types, as well as the
statics and dynamics of a session calculus [109]. Chapter 6 gives the encoding
of session types into linear channel types and variant types and the encoding of
session terms into standard typed π-calculus terms. In addition, we present the
theoretical results and their detailed proofs that validate our encoding.

• Part III: Advanced Features on Safety by Encoding.
This part is a continuation of the previous one. It shows the robustness of the
encoding by analysing important extensions to session types and by showing yet
the validity of our encoding. In particular, Chap. 7 focuses on subtyping;
Chap. 8 on polymorphism; Chap. 9 on higher order and Chap. 10 focuses on
recursion. Chapter 11 gives an alternative encoding and hence an alternative
way of obtaining session types.

• Part IV: Progress of Communication.
This part focuses on the progress property for sessions and is based on [19].
Chapters 12 and 13 give a background on the standard π-calculus typed with
usage types and the π-calculus with sessions, respectively, which report few
modifications with respect to the ones introduced in Part II. In particular,
Chap. 12 focuses on types and the type system for guaranteeing the lock free-
dom property. Chapter 14 introduces the notion of progress for the π-calculus
with session, by relating it to the notion of lock freedom for sessions. In
addition, it gives a static way for checking progress for sessions, by using the
type system for lock freedom given in Chap. 12.

xxii Introduction to the Ph.D. Thesis

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_7
http://dx.doi.org/10.2991/978-94-6239-204-5_8
http://dx.doi.org/10.2991/978-94-6239-204-5_9
http://dx.doi.org/10.2991/978-94-6239-204-5_10
http://dx.doi.org/10.2991/978-94-6239-204-5_11
http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_13
http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_14
http://dx.doi.org/10.2991/978-94-6239-204-5_12

Part I
Safe Dynamic Reconfiguration

of Components

Introduction to Part I

In modern complex distributed systems, unplanned dynamic reconfiguration, i.e.,
changing at runtime the communication pattern of a program, is challenging as it is
difficult to ensure that such modifications will not disrupt ongoing computations.
In [77] the authors propose to solve this problem by integrating notions coming
from component models [4, 11, 14, 29, 82] within the Abstract Behavioural
Specification programming language (ABS) [63].

We start this thesis with a component extension of the ABS calculus because it
has interesting constructs for modelling components, especially reconfigurable
components and hence for designing complex distributed systems. The reconfig-
urable component constructs can be adopted in calculi and languages other than
ABS in order to model a component layer system and to address the (dynamic)
reconfiguration problem. The communication-based problems are addressed (in the
remainder parts of the thesis) after a solid system is built.

ABS is an actor-based language and is designed for distributed object-oriented
systems. It integrates concurrency and synchronisation mechanisms with a
functional language. The concurrency and synchronisation mechanisms are used
to deal with data races, whether the functional level is used to deal with data,
namely, data structures, data types and functional expressions. Actors, called
concurrent object groups, cogs or simply groups, are dynamic collections of
collaborating objects. Cogs offer consistency by guaranteeing that at most one
method per cog is executing at any time. Within a cog, objects collaborate using
(synchronous) method calls and collaborative concurrency with the suspend and
await operations which can suspend the execution of the current method, and thus
allow another one to execute. Between cogs, collaboration is achieved by means of
asynchronous method calls that return future, i.e., a placeholder where the result of
the call is put when its computation finishes. Futures are first-class values. ABS

ensures the encapsulation principle by using interfaces to type objects and thus by
separating the interface from its (possibly) various implementations. For the same
reason classes are (possibly) parametrised in a sequence of typed variables. In this
way, when creating a new object, the actual parameters initialise the class’ formal
parameters, differently from other object-oriented languages, where the fields are
the one to be initialised. The fields in ABS are initialised by calling a special
method initðCÞ, or differently one can initialise them in a second step after the
object creation by performing an assignment statement. In the present work we
adopt the latter way of initialising an object’s fields.

ABS is a fully fledged programming language. On top of the implementation of
ABS language, the authors in [63] define the Core ABS, a calculus that abstracts
from some implementation details. In the remainder of this part, we use the
Core ABS calculus. However, without leading to confusion, we often will refer to it
as simply the ABS language.

On top of the ABS language, [77] adds the notion of components, and more
precisely, the notions of ports, bindings and safe state to deal with dynamic
reconfiguration. Ports define variability points in an object, namely they define the
access points to functionalities provided by the external environment, and can be
rebound (i.e., modified) from outside the object. On the contrary, fields, which
represent the inner state of the object, can only be modified by the object itself. To
ensure consistency of the rebind operation, [77] enforces two constraints on its
application: (i) it is only possible to rebind an object’s port when the object is in a
safe state; and (ii) it is only possible to rebind an object’s port from any object
within the same cog. Safe states are modelled by annotating methods as critical,
specifying that while a critical method is executing, the object is not in a safe state.
The resulting language offers a consistent setting for dynamic reconfigurations,
which means performing modifications on a program at runtime while still ensuring
consistency of its execution.

On the other hand, consistency is based on two constraints: synchronous method
calls and rebinding operations must involve two objects in the same cog. These
constraints are enforced at runtime; therefore, programs may encounter unexpected
runtime errors during their execution.

The contribution of Part I of the thesis, is to statically check that synchronous
method calls and rebinding operations are consistent. In particular, we define a type
system for the aforementioned component model that ensures the legality of both
synchronous method calls and port rebindings, guaranteeing that well-typed
programs will always be consistent.

Our approach is based on a static tracking of group membership of the objects.
The difficulty in retrieving this kind of information is that cogs as well as objects are
dynamic entities. Since we want to trace group information statically, we need a
way to identify and track every group in the program. To this aim, we define a
technique that associates to each group creation a fresh group name. Then, we keep
track of which cog an object is allocated to, by associating to each object a group
record. The type system checks that objects indeed have the specified group record,

2 Part I: Safe Dynamic Reconfiguration of Components

and uses this information to ensure that synchronous calls and rebindings are
always performed locally to a cog. The type system is proven to be sound with
respect to the operational semantics. We use this result to show that well-typed
programs do not violate consistency during execution.

Roadmap to Part I The rest of Part I is organised as follows. Chapter 1 gives a
detailed presentation of the component calculus. We start by introducing the syntax
of terms and types, give the operational semantics and we conclude by presenting a
running example that illustrates the calculus, its features and the problems we deal
with. Chapter 2 presents the main contribution of this part of the thesis, namely the
type system. We start by explaining the features of types, then we present the
subtyping relation and we conclude with the typing rules for the component cal-
culus. In Chap. 3 we present the properties that our type system satisfies and give
the complete proofs of these properties.

Part I: Safe Dynamic Reconfiguration of Components 3

http://dx.doi.org/10.2991/978-94-6239-204-5_1
http://dx.doi.org/10.2991/978-94-6239-204-5_2
http://dx.doi.org/10.2991/978-94-6239-204-5_3

Chapter 1
Background on Components

In this chapter we give an overview of the component calculus, which is an extension
of the ABS language. We first present the syntax of terms and types; then the opera-
tional semantics and we conclude by giving a running example, which illustrates the
main features of components.

1.1 Syntax

The calculus we present in Fig. 1.1 is an extension of the ABS language [63] and is
mainly inspired by the component calculus in [77]. It is a concurrent object-oriented
calculus designed for distributed programs. It is roughly composed by a functional
part, containingdata types anddata type constructors, pure functional expressions and
case expressions; and a concurrent part, containing object and object/cog creations,
synchronous and asynchronous method calls, suspend, await and get primitives.
We include the functional part of the language in order to have a complete general-
purpose language, which can be used in practice, as ABS. Notice that, the functional
part is present in ABS but is not present in the component calculus [77]. On the
other hand, we include in the present calculus the component primitives from [77],
like port and rebind and critical methods to deal with critical sections. Notice
that the component part is not present in the original ABS language. The present
calculus differs, from both calculi mentioned above, in the syntax of types which use
group information. Moreover, for the sake of readability, the component calculus we
consider lacks the notion of location, present in [77]. This notion is orthogonal to the
notion of ports and rebinding operations and does not influence the aim of our work.
The validity of our approach and of our type system still holds for the full calculus.

The syntax of the component calculus is given in Fig. 1.1. It is based on several
categories of names: I and C range over interface and class names, respectively; V

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_1

5

6 1 Background on Components

Fig. 1.1 Component extension of core ABS

ranges over type variables for polymorphism; G ranges over cog names—which will
be explained in details later on; D, Co and fun range respectively over data type,
constructor and function names; m and x range respectively over method names
and variables, in particular x ranges over fields and ports. For readability, we will
often use f for fields and p for ports, or just f for both fields and ports in order
to distinguish them from other variables. There are also some special variables, like
this, indicating the current object, and the special variable destiny, indicating the
placeholder for the returned value of the method invocation. We adopt the following
notations in the syntax and in the rest of the work: an overlined element corresponds
to any finite, possibly empty, sequence of such element; and an element between
square brackets is optional. Finally, for simplicity we let L be either a class name C
or an interface name I. A program P consists of a sequence of declarations Dl ended
by a main block, namely a statement s to be executed. We refer to the sequence of
declarations in a program as a Class Table (CT), the same way as called in [61].

Declarations Dl include data type declarations D, function declarations F , inter-
face declarations I and class declarations C .

A type T can be a type variable V; a data type name D, which can be a ground
type like Bool, Int or a future Fut〈T 〉, used to type data structures—we will
thoroughly explain future types in the remainder; or a pair consisting of an interface
name I or class name C and a record r to type objects. The pair (C, r) is only used
to type object this. Records are a new concept and are associated to types in order to
track group information. The previous calculi, neither ABS [63] nor its component
extension [77] used the notion of records in types. A record can be: ⊥, meaning that

1.1 Syntax 7

the structure of the object is unknown; G[f : T], meaning that the object is in the cog
G and its fields f are typed with T ; or regular terms, using the standard combination
of variables α and theμ-binder.Wework up-to unfolding, meaning equating a record
and its unfolding.

Data types D have at least one constructor, with name Co, and possibly a list
of type parameters T . Examples of data types are: data IntList = NoInt | Cons
(Int,IntList), or parametric data types data List〈T 〉 = Nil | Cons
(T,List〈T 〉), or predefined data types like data Bool = true | false ; or
data Int ; or data Fut〈T 〉 ; where the names of the predefined data types are used
as types, as given by the production T introduced earlier.

Functions F are declared with a return type T , a name fun, a list of parameters
T x and a code or body e. Note that both data types and functions can also have in
input type parameters for polymorphism.

Interfaces I declare methods and ports that can be modified at runtime.
Classes C implement interfaces; they have a list of fields and ports Fl and imple-

ment all declared methods. Classes are possibly parametrised in a sequence of typed
variables, T x , as in Core ABS and in its implementation. This respects the encap-
sulation principle, often desired in the object-oriented languages. There is a neat
distinction between the parameters of the class, which are the ones that the class
exhibits, and the inner fields and ports of the class, given by Fl.

Method headers S are used to declare methods with their classic type annotation,
and (i) the possible annotation critical that ensures that no rebinding will be per-
formed on that object during the execution of that method; (ii) a method signature
(G, r) which will be described and used in our type system section.

Method declarationsM consist of a header and a body, the latter being a sequential
composition of local variables and commands.

Statements s are mainly standard. Statements skip and s1; s2 indicate the empty
statement and the composition statement, respectively. Variable declaration T x , as in
many programming languages and also in the implementation of the ABS language,
is a statement. Assignment statement x = z assigns an expression with side-effects
to variable x . The statement await g suspends the execution of the method until the
guard g istrue. Statements if e then s1 else s2 andwhile e { s } indicate the standard
conditional and loop, respectively. Statement return e returns the expression e after a
method call. Statement rebind e.x = z rebinds the port x of the object e to the value
stored in z, and statement suspend merely suspends the currently active process.

Expressions are divided in expressions with side effects, produced by z and pure
expressions, produced by e. We will often use the term expression to denote both of
them, when it does not lead to confusion.

Expressions z include: pure expressions e; new C (e) and new cog C (e) that
instantiate a class C and place the object in the current cog and in a new cog, respec-
tively; synchronous e.m(e) and asynchronous e!m(e)method calls, the latter returning
a future that will hold the result of the method call when it will be computed; and
get(e) which gives the value stored in the future e, or actively waits for it, if it is not
computed yet.

8 1 Background on Components

Pure expressions e include values v, variables x , function call fun(e), pattern
matching case e {p ⇒ ep} that tests e and executes ep if itmatches p and a constructor
expression Co[(e)], possibly parametrised in a sequence of expressions.

Values v can be null or a constructor value Co[(v)], possibly parametrised in a
sequence of values. For example, values true and false are obtained as values
from the corresponding constructor, as defined previously by the data type Bool.

Patterns p are standard, they include wildcard _ which matches everything, vari-
able x which matches everything and binds it to x , value null which matches a null
object and value Co(p) which matches a value Co(ep) where p matches ep.

Finally, a guard g can be: an expression e; x? which is true when the future x is
completed, false otherwise; ‖e‖which is truewhen the object e is in a safe state,
i.e., it is not executing any critical method, false otherwise; and the conjunction
of two guards g ∧ g has the usual meaning.

1.2 Semantics

In this section we present the operational semantics of the component calculus,
which is defined as a transition system on the runtime configurations. Hence, we first
define the runtime configurations and then give some auxiliary functions which the
operational semantics relies on.

1.2.1 Runtime Syntax

The operational semantics is defined over runtime configurations, presented in
Fig. 1.2 which extend the language with constructs used during execution, namely
runtime representations of objects, groups and tasks. Let o, f and c range over
object, future, and cog identifiers, respectively. A runtime configuration N can be
empty, denoted with ε, an interface, a class, an associative and commutative union of
configurations N N ′, an object, a cog, a future or an invocation message. An object

Fig. 1.2 Runtime syntax

1.2 Semantics 9

ob(o, σ, Kidle, Q) has a name o; a substitution σ mapping the object’s fields, ports
and special variables (this, class, cog, destiny) to values; a running process Kidle,
that is idle if the object is idle; and a queue of suspended processes Q. A process
K is { σ | s } where σ maps the local variables to their values and s is a list of
statements. The statements are the ones presented in Fig. 1.1 augmented with the
statement cont(f), used to control continuation of synchronous calls. A substitu-
tion σ is a mapping from variable names to values. For convenience, we associate
the declared type of the variable with the binding, and we also use substitutions to
store: (i) in case of substitutions directly included in objects, their this reference,
their class, their cog, and an integer denoted by nbcr which counts how many open
critical sections the object has; and (ii) in case of substitution directly included in
tasks, destiny is associated to future return field. A cog cog(c,oε) has a name c
and a running object oε, which is ε when no execution is taking place in the cog. A
future fut(f, v⊥) has a name f and a value v⊥ which is ⊥ when the value has not
been computed yet. Finally, the invocation message invoc(o,f,m, v), which is the
initial form of an asynchronous call, consists of the callee identifier o, the name of
the future f where the call’s result should be returned, the invoked method name m,
and the call’s actual parameters v.

The initial state of a program is denoted by ob(start, ε, p,∅) where the process
p is the activation of the main block of the program. We call execution of a program
a sequence of reductions established by the operational semantics starting from the
initial state of the program.

1.2.2 Functions and Predicates

In this section we introduce the auxiliary functions and predicates that are used to
define the operational semantics of the calculus.

Function bind(o,f,m, v,C) returns the process being the instantiation of the body
of method m in class C with this bound to o, destiny bound to f, and the parameters
of the method bound to the actual values v. If the method is critical, then nbcr is first
incremented and then decremented when the method finishes its execution. Instead,
if binding does not succeed, then error is returned. Since, in the component calculus
we have standard and critical methods, the bind function is defined differently from
the corresponding one in ABS—whereas, the rest of the functions and predicates
are defined in the same way. Formally, the bind function is defined by the following
two rules, where rule (NM-Bind) applies for a normal method and rule (CM-Bind)
applies for a critical method:

10 1 Background on Components

(NM- Bind)

class C . . . {T m(T x){T ′ x ′ s} . . .} ∈ N

bind(o,f,m, v,C) = {T x = v; T ′ x ′ = null; this = o | s}
(CM- Bind)

class C . . . {critical T m(T x){T ′ x ′ s ′} . . .} ∈ N
s = nbcr = nbcr + 1; s ′;nbcr = nbcr − 1

bind(o,f,m, v,C) = {T x = v; T ′ x ′ = null; this = o | s}

Function atts(C, v,o,c) returns the initial state of an instance of class C with its
fields, this and cog mapped to v, o and c, respectively.

Function select(Q, σ, N) selects from the queue of suspended processes the next
process to be active.

Predicate fresh is defined on names of objects o, futures f and names of cogs c
and asserts that these names are globally unique. It is defined on a variable x or a
sequence of variables {x1 . . . xn} and asserts that the variables are globally new.

Function match(p, v) returns a unique substitution σ such that σ(p) = v and
dom(σ) = vars(p), otherwise match(p, v) = ⊥.

Function vars(p) returns the set of variables in the pattern p and is defined by
induction on the structure of p: vars(_) = vars(null) = ∅, vars(x) = {x} and
vars(Co(p1 . . . pn)) = ⋃

i vars(pi).

1.2.3 Evaluation of Pure and Guard Expressions

In this section we present the evaluation of pure and guard expressions, before intro-
ducing the operational semantics for runtime configurations.

Pure Expressions The evaluation of pure expressions is defined by a small-step
reduction relation σ � e � σ ′ � e′ and is given in Fig. 1.3. Let σ be a substitution
and e be a pure expression, then the reduction relation means that expression e in the
context σ reduces to expression e′ in the context σ ′. We use the notation e[x �→ y]
to denote the expression e in which every occurrence of variable xi is substituted
by variable yi . The same holds for σ [x �→ y]. For simplicity in the reduction rules
to follow, we denote with [[e]]σ the evaluation of the expression e in the context σ

to its ground value, given by the production v. In particular, when e is a boolean
expression, then [[e]]σ = true and ¬[[e]]σ = false.

Rule (RedCons) states that the expression Co(e1 . . . ei . . . en) reduces to
Co(e1 . . . e′

i . . . en) whenever ei reduces to e′
i . Rule (RedVar) states that variable

x in the context σ evaluates to the value assigned by σ , namely σ(x), in the same
context. Function evaluation is given by rules (RedFunExp) and (RedFunGround).
A function fun is defined by def T fun(T x) = e, and we denote by xfun the list
of formal parameters x and by efun the body e of the function; namely, we use

1.2 Semantics 11

Fig. 1.3 Evaluation of pure expressions

the subscript fun to state the belonging to the function having name fun. By rule
(RedFunGround), the evaluation of a function callfun(v) in a context σ reduces to
the evaluation of efun[xfun �→ y] in σ [y �→ v]. First of all, in order to get the values
v, the reduction rule (RedFunExp) is applied, where the expressions e are evaluated
to values v. In addition, the change in scope in evaluating a function body is obtained
by replacing the list of formal parameters xfun by fresh variables y in the body of the
function, thus avoiding name capture. There are three reduction rules for case expres-
sions. Rule (RedCase1) states that the case expression case v {p ⇒ ep; p′ ⇒ e′

p′ }
reduces if its argument e reduces. Case expressions reduce only if the pattern in one of
the branches matches. In order to achieve this, we use the function match(p, v), pre-
viously defined. Rules (RedCase2) and (RedCase3) check this matching function.
In case match(σ (p), v) = ⊥, then the case expression case v {p ⇒ ep; p′ ⇒ e′

p′ }
reduces to case v {p′ ⇒ e′

p}. Otherwise, if match(σ (p), v) �= ⊥, first variables in p
are bound to ground values, given by the substitution σ ′′ and then, in order to avoid
names to be captured, variables in x are substituted by fresh variables in y, which in
turn have associated values given by σ ′′(x). Thus, the context for evaluating the new
expression is σ augmented with y associated to σ ′′(x). Then, the case expression
reduces to the body ep of the corresponding branch, where x is replaced by y.

Guard Expressions The evaluation of guards is given in Fig. 1.4.
Let σ be a substitution and N be a configuration. The evaluation of a guard to

a ground value is either true or false. For simplicity, we denote with [[g]]Nσ the
evaluation of a guard g in a context σ, N to true. Hence, we denote with ¬[[g]]Nσ
the evaluation of a guard g in a context σ, N to false.

Rules (RedReply1) and (RedReply2) assert that the guard x? evaluates totrue,
whenever the value associated to the evaluation of x is ready to be retrieved, namely

12 1 Background on Components

Fig. 1.4 Evaluation of guard expressions

is different from⊥; otherwise, it evaluates to false. Rule (RedConj) is straightfor-
ward and asserts the evaluation of boolean conjunctions of guards g1 and g2. Rules
(RedCS1) and (RedCS2) are the new evaluation rules of the component calculus,
wrt ABS. They state that, when in the object o the field nbcr is different from zero,
then the object has an open critical section and hence the test ‖e‖ returns true;
otherwise, if nbcr = 0 it means that no critical section is open and ‖e‖ evaluates to
false.

1.2.4 Reduction Rules

In this section we introduce the operational semantics for configurations. The reduc-
tion rules are given in Figs. 1.5, 1.6, 1.7 and 1.8.

We start with Fig. 1.5. Rule (Context) is straightforward. Rule (Skip) merely
executes the skip statement and reduces to the object having only s as part of its
active process. Rules (Assign-Local) and (Assign-Field) update the values of the
local variables and of the object variables, respectively, where σ [x �→ v] denotes the
updating of σ with the substitution of x to v. Rules (Cond-True) and (Cond-False)
select branch s1 or branch s2 of the if e then s1 else s2 statement if the evaluation
of expression e is true or false, respectively. Rules (While-True) and (While-
False) for loops are similar to the ones for conditionals. In case the evaluation of
the expression e is true, then the loop reduces to its body s composed with the loop
itself—which is then evaluated again. Otherwise, if the evaluation returns false
then the loop reduces to skip. Rule (Suspend) simply suspends the currently active
process by moving it to the queue Q of suspended process. Rule (Release-Cog),
after a process is suspended, updates the cog configuration, by setting the object
entry to idle meaning that there is no active object in the cog. Rule (Activate),

1.2 Semantics 13

Fig. 1.5 Reduction rules for configurations (1)

as opposed to (Suspend), selects a task p from the queue of suspended processes
and activates it. The process is removed from the queue and the cog configuration is
updated accordingly.

Now we move to Fig. 1.6. Rule (Return) assigns the return value to the call’s
associated future. Rule (Read-Fut) retrieves the value associated to the future f
when ready (v �= ⊥). Rules (Await-True) and (Await-False) define the behaviour
of statement await g, which depending on the truth value of g either succeeds,
and lets the current task continue with its execution, or suspends the current task,
allowing other tasks to execute (see rule (Suspend)), respectively. Rule (Bind-Mtd)
adds a process p′ to the queue of the suspended processes by first letting p′ be the
process obtained by the bind auxiliary function after the invocation configuration
is consumed. The latter provides the arguments to the bind function. Rules (New-
Object) and (New-Cog-Object) spawn a new object runtime configuration, bound
to the current cog or to a freshly created cog, respectively. The names of the object
and the cog created are globally unique. The object’s fields are given default values
by applying function atts(C, v,o′,c).

We comment now on the rules in Fig. 1.7. Rule (Self-Sync-Call) looks up the
body of the method using function bind, as previously described. After the reduction,
the active task for object owill be the body of the method (suitably instantiated with
the actual parameters) and the continuation statement s will be put in the queue of

14 1 Background on Components

Fig. 1.6 Reduction rules for configurations (2)

the suspended processes. The statement cont(f), which is a statement added to the
runtime syntax of the calculus, is used to resume the execution of s as stated by rule
(Self-Sync-Return-Sched). Rule (Async-Call) sends an invocation message
to o′ with a new (unique) future f, method name m and actual parameters v. The
return value of f is undefined (i.e., ⊥). Rules (Cog-Sync-Call) and (Cog-Sync-
Return-Sched) are specific to synchronous method calls between objects residing
in the same cog. When a method is called synchronously, inside a cog, then the
active object in that cog changes from o to o′, by thus respecting that only one object
per cog is active. In (Cog-Sync-Call) the cont statement is composed with the
statement s ′ of the newly created process in order to be used to activate the caller in
(Cog-Sync-Return-Sched).

Finally, we comment on the reduction rules for rebinding of ports in Fig. 1.8. Rule
(Rebind-Local) is applied when an object rebinds one of its own ports. The rule
first checks that the object is not in a critical section, by testing if nbcr is zero, and
then updates the port. Rule (Rebind-Global) is applied when an object rebinds
a port of another object, within the same group, and follows the same line as the
previous one. Rule (Rebind-None) states that when a rebind is attempted on a port
that does not exist, then nothing happens and the rebind operation is simply ignored
and discarded. Intuitively, the reason for this rule is the following: a component can
replace another one if the former offers less services, accessed by ports, than the

1.2 Semantics 15

Fig. 1.7 Reduction rules for configurations (3)

Fig. 1.8 Reduction rules for rebinding

latter—this intuition is respected by the subtyping relation which is defined in the
next section. So, during execution a component can be replaced by another one with
a smaller number of ports. As a consequence, if a rebind is performed on a port not
present, this is going merely to be ignored.

16 1 Background on Components

1.3 Server and Client Example

In this section we present a running example which gives a better understanding of
the ABS language and its component extension. In addition, this example gives a
flavour of the motivation behind our type system.

Consider the following typical distributed scenario: suppose that we have several
clients working together in a specific workflow and using a central server for their
communications. Suppose we want to update the server. Updating the server is a
difficult task, as it requires to update its reference in all clients at the same time in
order to avoid communication failures.

We first consider how the above task is achieved in ABS. The code is presented
in Fig. 1.9. The programmer declares two interfaces Server and Client and a
class Controller. Basically, the class Controller updates the server in all the
clients ci by synchronously calling their setter method. All the clients are updated at
the same time: since they are in the same cog as the controller they cannot execute
until the execution of method updateServer has terminated. However, this code
does not ensure that the update is performed when the clients are in a safe state.
This can lead to inconsistency issues because clients that are using the server are
not aware of the modification taking place. This problem can be solved by using the
notions of port and rebind as shown in [77].

The solution is presented in Fig. 1.10. In this case, the method updateServer
first waits for all clients to be in a safe state (await statement performed on the
conjunction of all clients) and then updates their reference one by one (rebind server
s which is declared to be a port). However, even with the component extension
and the presence of critical sections, runtime errors can still occur. For instance, if
the clients and the controller are not in the same cog, by following the operational
semantics rules, the update will fail.

Fig. 1.9 Workflow in ABS

1.3 Server and Client Example 17

Fig. 1.10 Workflow in the component model

Fig. 1.11 Client and controller objects creation

Consider the code in Fig. 1.11. Method main instantiates classes Client and
Controller—and possibly other classes, like Server, present in the program—
by creating objects c1,c2,...,cn ,c. These objects are created in the same cog by
the new command, except for client c1, which is created and placed in a new cog
by the new cog command. Now, suppose that the code in Fig. 1.10 is executed. At
runtime, the program will check if the controller and the client belong to the same
cog to respect the consistency constraints for rebinding. In case of c1 this check will
fail by leading to a runtime error.

In the remainder of the present Part, we address the aforementioned problem;
namely to avoid these kind of runtime errors and the overhead in dealing with them,
while performing runtime modifications. We present our type system which tracks
cogmembership of objects thus permitting to typecheck only programswhere rebind-
ing is consistent.

Chapter 2
A Type System for Components

In this chapter we present the type system for the component model. We first give
a thorough explanation of the types we adopt and how the type system achieves
tracking of cog membership. Then, we introduce the subtyping relation; we present
the auxiliary functions and predicates that the type system relies on, and we conclude
with the typing rules.

2.1 Typing Features

In this sectionwe give the intuition behind the types and the records used in the typing
rules, the latter being a new concept not adopted either in ABS or in its component
extension [77].We explain also themeaning of themethod signature and how the type
system addresses the problem of consistent rebindings and consistent synchronous
method calls.

Cog Names The goal of our type system is to statically check if rebindings and
synchronous method calls are performed locally to a cog. Since cogs and objects are
entities created at runtime, we cannot know statically their identity. The interesting,
and also difficult part, in designing the type systems is how to statically track cogs
identity and hence membership to a cog. We address this issue by using a linear type
system on names of cogs, which range over G,G′,G′′, in a way that abstracts the
runtime identity of cogs. The type system associates to every cog creation a unique
cog name, which makes it possible to check if two objects are in the same cog or not.

Precisely, we associate objects to their cogs using records r, having the form
G[f : T], where G denotes the cog in which the object is located and [f : T] maps
any object’s fields in f to its type in T . In fact, in order to correctly track cog
membership of each expression, we also need to keep information about the cog of
the object’s fields in a record. This is needed, for instance, when an object stored in

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_2

19

20 2 A Type System for Components

a field is accessed within the method body and then returned by the method; in this
case one needs a way to bind the cog of the accessed field to the cog of the returned
value.

Cog Sets In order to deal with linearity of cogs created, and to keep track of them
after their creation, our type system, besides the standard typing context � (formally
defined in the next section) uses a set of cogs, ranged over by G,G ′,G ′′, that keeps
track of the cogs created so far and uses the operator � to deal with the disjoint union
of sets, namely G � G ′, where the empty set acts as the neutral element, namely
G � ∅ = ∅ � G = G. We will discuss the details in Sect. 2.4.

Method Signature Let us now explain the method signature (G, r) used to annotate
a method header. The record r is used as the record of the object this during the
typing of the method, i.e., r is the binder for the cog of the object this in the scope of
the method body, as we will see in the typing rules in the following. The set of cog
names G is used to keep track of the fresh cogs that the method creates. In particular,
when we deal with recursive method calls, the set G gathers the fresh cogs of every
call, which is then returned to the main execution. Moreover, when it is not necessary
to keep track of cog information about an object, because the object is not going to
take part in any synchronous method call or any rebind operation, it is possible to
associate to this object the unknown record ⊥. This special record does not keep any
information about the cog where the object or its fields are located, and it is to be
considered different from any other cog, thus to ensure the soundness of our type
system. Finally, notice that data types also may contain records; for instance, a list
of objects is typed with List〈T 〉 where T is the type of the objects in the list and it
may include the records of the objects.

2.2 Subtyping Relation

There are two forms of subtyping: structural and nominal subtyping. In a language
where subtyping is nominal, A is a subtype of B if and only if it is declared to be
so, meaning if class (or interface) A extends (or implements) class (or interface)
B; these relations must be defined by the programmer and are based on the names
of classes and interfaces declared. In the latter, subtyping relation is established by
analysing the structure of a class, i.e., its fields and methods: class (or interface) A
is a subtype of class (or interface) B if and only if the fields and methods of A are
a superset of the fields and methods of B, and their types in A are subtypes of their
types in B. (Featherweight) Java uses nominal subtyping, languages like [44, 52, 81,
92] use structural subtyping. In [33] the authors integrate both nominal and structural
subtyping.

The subtyping relation ≤ for our language is given in Fig. 2.1; we adopt both
nominal and structural subtyping. Rule (S-Data) states that data types are covariant
in their type parameters. Rule (S-Type) states that annotating classes and interfaces

2.2 Subtyping Relation 21

Fig. 2.1 Subtyping relation

with records does not change the subtyping order. Rules (S-Fields) and (S-Ports)
use structural subtypingon records. Fields, likemethods, arewhat the object provides,
hence it is sound to forget about the existence of a field in an object. This is why
the rule (S-Fields) allows to remove fields from records. Ports on the other hand,
model the dependencies the objects have on their environment, hence it is sound
to consider that an object may have more dependencies than it actually has during
its execution. This is why the rule (S-Ports) allows to add ports to records. So, in
case of fields, one object can be substituted by another one if the latter has at least
the same fields; on the contrary, in case of ports, one object can be substituted by
another one if the latter has at most the same ports. Notice that in the standard object-
oriented setting this rule would not be sound, since trying to access a non-existing
attribute would lead to a null pointer exception. Therefore, to support our vision of
port behaviour, we add a (Rebind-None) reduction rule to the component calculus
semantics which simply permits the rebind to succeed without modifications if the
port is not available. Rules (S-Class) and (S-Interface) use nominal subtyping and
state that a class C (respectively, an interface I) is a subtype of an interface Ii that it
implements (respectively, extends). Rules (S-Refl) and (S-Trans) are standard and
state that our subtyping relation is a preorder.

2.3 Functions and Predicates

In this section we define the auxiliary functions and predicates that are used in
the typing rules. We start with the lookup functions params, ports, fields, ptype,
mtype, heads shown in Fig. 2.2. These functions are similar and are inspired by the
corresponding ones in Featherweight Java [61]. For readability reasons, the lookup

22 2 A Type System for Components

Fig. 2.2 Lookup functions

functions are written in italics, whether the auxiliary functions and predicates are
not. Function params returns the sequence of typed parameters of a class. Function
ports returns the sequence of typed ports. Instead, function f ields returns all the
fields of the class it is defined on, namely the inner state and the ports too. Functions
ptype and mtype return the declared type of respectively the port and the method
they are applied to. Function heads returns the headers of the declared methods.

2.3 Functions and Predicates 23

Fig. 2.3 Auxiliary functions and predicates

Except function f ields which is defined only on classes, the rest of the lookup
functions is defined on both classes and interfaces.

The auxiliary functions and predicates are shown in Fig. 2.3. Function tmatch
returns a substitution σ of the formal parameters to the actual ones. It is defined
both on types and on records. The matching of a type T to itself, or of a record r
to itself, returns the identity substitution id; the matching of a type variable V to a

24 2 A Type System for Components

type T returns a substitution of V to T ; the matching of data type D parametrized on
formal types T and on actual types T ′ returns the union of substitutions that corre-
spond to the matching of each type Ti with T ′

i , in such a way that substitutions
coincide when applied to the same formal types, the latter being expressed by
∀i, j σi |dom(σ j) = σ j |dom(σi); the matching of records follows the same idea as that
of data types. Finally, tmatch applied on types (I, r), (I, r′) returns the same sub-
stitution obtained by matching r with r′. Function pmatch, performs matchings on
patterns and types by returning a typing context �. In particular, pmatch returns
an empty set when the pattern is _ or null, or x : T when applied on a variable x
and a type T . Otherwise, if applied to a constructor expression Co(p) and a type
T ′′ it returns the union of typing contexts corresponding to patterns in p. The pair
(I,G[σ � σ ′(f : (I, r))]) is a member of crec(G,C, σ) if class C implements inter-
face I and σ ′ and σ are substitutions defined on disjoint sets of names. Predicate
coloc states the equality of two cog names. Predicates implements and extends check
when a class implements an interface and an interface extends another one. A class
C implements an interface I if the ports of C are at most the ones of I. Instead, for
methods, Cmay define at least the methods declared in I having the same signature.
The extends predicate states when an interface I properly extends another interface
I′ and is defined similarly to the implements predicate.

2.4 Typing Rules

A typing context � is a partial function and assigns types T to variables, a pair (C, r)
to this, and arrow types T → T ′ to function symbols like Co or fun, namely:

� ::= ∅ | x : T, � | this : (C, r), � | Co : T → T ′, � | fun : T → T ′, �

As usual dom(�) denotes the domain of the typing context �. We define the com-
position of typing contexts, � ◦ �′, as follows: � ◦ �′(x) = �′(x) if x ∈ dom(�′),
and � ◦ �′(x) = �(x) otherwise. We say that a typing context �′ extends a typ-
ing context �, denoted with � ⊆ �′ if dom(�) ⊆ dom(�′) and �(x) = �′(x) for
all x ∈ dom(�). Typing judgements have the following forms, where a cogset G
indicates the set of new cogs created by the term being typed. � � g : Bool for
guards;� � e : T for pure expressions;�,G � z : T for expressionswith side effects;
�,G � s for statements; � � M for method declarations; � � C for class declara-
tions and � � I for interface declarations.

Pure Expressions The typing rules for pure expressions are given in Fig. 2.4. Rule
(T-Var/Field) states that a variable is of type the one assumed in the typing context.
Rule (T-FieldR) assigns to x a type T and a record r fetched from the type of this.
Rule (T-FieldBot) assigns (T,⊥) to x , since x is not part of the record for this but is
a field ofC. Rule (T-Null) states that the valuenull is of type any interfaceI declared
in the CT (class table) and any record r. Rule (T-Wild) states that the wildcard _ is

2.4 Typing Rules 25

Fig. 2.4 Typing rules for the functional level

of any type T . Rule (T-ConsExp) states that the application of the constructor Co
to a list of expressions e is of type σ(T ′) whenever the constructor is of a functional
type T → T ′ and the expressions are of type T ′; where the auxiliary function tmatch
applied on the formal types T and the actual ones T ′ returns the substitution σ . Rule
(T-FunExp) is similar to the previous one for constructor expressions, namely, the
application of the function fun to a list of expressions e is of type σ(T ′) whenever
the function is of a functional type T → T ′ and the expressions are of type T ′,
and again tmatch is applied to obtain σ . Rule (T-Case) states that if all branches in
p ⇒ ep are well typed with the same type, then the case expression is also well typed
with the return type of the branches. Rule (T-Branch) states that a branch p ⇒ ep
is well typed with an arrow type T → T ′ if the pattern p is well typed with T and
the expression ep is well typed with type T ′ in the composition of � with typing
assertions for the pattern obtained by the function pmatch, previously defined. Rule
(T-Sub) is the standard subsumption rule, which uses the subtyping relation defined
in Sect. 2.2.

Guard Expressions The typing rules for guard expressions are given at the bottom
of Fig. 2.4. Rule (T-FutGuard) states that if a variable x has type Fut〈T 〉, the guard
x? has type Bool. Rule (T-CriticGuard) states that ‖x‖ has type Bool if x is an
object, namely having type (I, r). Rule (T-ConjGuard) states that if each gi has
type Bool for i = 1, 2 then the conjunction g1 ∧ g2 has also type Bool.

26 2 A Type System for Components

Fig. 2.5 Typing rules for expressions with side effects

Expressions with Side Effects The typing rules for expressions with side effects are
given in Fig. 2.5. As already stated at the beginning of the section, these typing rules
are different wrt the typing rules for pure expressions, as they keep track of the new
cogs created. Rule (T-Exp) is a weakening rule which asserts that a pure expression
e is well typed in a typing context � and an empty set of cogs, if it is well typed in
�. Rule (T-Get) states that get(e) is of type T , if expression e is of type Fut〈T 〉.
Rule (T-New) assigns type T to the object new C(e) if the actual parameters have
types compatible with the formal ones, by applying function tmatch; the new object
and this have the same cog C and the type T belongs to the crec(G,C, σ) predicate,
which means that T is of the form (I,G[f : σ(I, r)]) and implements(C,I) and
σ is obtained by the function tmatch. Rule (T-NewCog) is similar to the previous
one, except for the creation of a new cog G where the new object is placed, and
hence the group of object this is not checked. Rules (T-SCall) and (T-ACall) type
synchronous and asynchronous method calls, respectively. Both rules use function
mtype to obtain the method signature i.e., (G, r)(T x) → T . The group record r,
the parameters types and the return type of the method are the formal ones. In order
to obtain the actual ones, we use the substitution σ that maps formal cog names
to actual cog names. The callee e has type (I, σ (r)) and the actual parameters e
have types σ(T). Finally, the invocations are typed respectively in the substitution
σ(T) and Fut〈σ(T)〉, with T being the formal return type. Rule (T-SCall) checks

2.4 Typing Rules 27

Fig. 2.6 Typing rules for statements

whether the group of this and the group of the callee coincide, by using the auxiliary
function coloc, whether this check is not performed in rule (T-ACall).

Statements The typing rules for statements are given in Fig. 2.6. Rules (T-Skip) and
(T-Suspend) state that skip and suspend are alwayswell typed. Rule (T-Decl) states
that T x is well typed if variable x is of type T in �. Rule (T-Comp) states that, if s1
and s2 are well typed in the same typing context and, like in linear type systems, they
use distinct sets of cogs, then their composition is well typed and uses the disjoint
union � of the corresponding cogsets. Rule (T-Assign) states the well typedness of
the assignment x = z if both x and z have the same type T and the set of cogs is the
one corresponding to z. Rule (T-AssignFieldR) and rule (T-AssignFieldBot) deal
with the assignment x = z when field x is not present in dom(�) and they follow the
same idea as rules (T-FieldR) and (T-FieldBot), respectively. The main difference
in the premises of rule (T-AssignFieldR) and rule (T-AssignFieldBot) is the fact
that in the former rule x is in the record of this, whether in the latter rule x is not
in the record of this but it is a field of the class of this. Rule (T-Await) asserts that
await g is well typed whenever the guard g has type Bool. Rules (T-Cond) and

28 2 A Type System for Components

Fig. 2.7 Typing rules for declarations

(T-While) are quite standard, except for the presence of the linear set of cog names:
the typing of the conditional statement follows the same principle as the composition
of statements in rule (T-Comp); the typing of the loop uses instead an empty set of
cogs. Rule (T-Return) asserts that return e is well typed if expression e has type
T whether the variable destiny has type Fut〈T 〉. Finally, rule (T-Rebind) types the
statement rebind e.x = z by checking that: (i) x is a port of the right type, (ii) z has
the same type as the port, and (iii) the object stored in e and the current one this are
in the same cog, by using the predicate coloc(r, �(this)). Rule (T-RebindBot) is
similar but it deals with the case when x is not present in the record of this, namely
it is assigned to ⊥.

Declarations The typing rules for declarations of methods, classes and interfaces
are presented in Fig. 2.7. Rule (T-Method) states that method m is well typed in
class C if the method’s body s is well typed in a typing context augmented with
the method’s typed parameters; destiny being of type Fut〈σ(T)〉 and this being of
type (C, σ (r)). A substitution σ is used to obtain the actual values starting from the
formal ones. Rule (T-Class) states that a class C is well typed when it implements
all the interfaces I and all its methods are well typed. Finally, rule (T-Interface)
states that an interface I is well typed if it extends all interfaces in I.

Remark The typing rule for assignment requires the group of the variable and the
group of the expression being assigned to be the same. This restriction applies to
rule for rebinding, as well. To see why this is needed let us consider a sequence of
two asynchronous method invocations x !m(); x !n(), both called on the same object
and both modifying the same field. Say m does this.f = z1 and n does this.f = z2.
Because of asynchronicity, there is noway to know the order inwhich the updateswill
take place at runtime. A similar example may be produced for the case of rebinding.
Working statically, we can either force the two expressions z1 and z2 to have the
same group as f, or keep track of all the different possibilities, thus the type system
must assume for an expression a set of possible objects it can reduce to. In this work
we adopt the former solution, we let the exploration of the latter as a future work.

2.4 Typing Rules 29

Fig. 2.8 Typing the workflow example

We plan to relax this restriction following a similar idea to the one proposed in [51],
where a set of groups can be associated to a variable instead of just only one group.

Example Revisited We now recall the example of the workflow given in Figs. 1.10
and1.11.We showhow the type systemworks on this example: by applying the typing
rule for rebind we have the derivation in Fig. 2.8 for any clients from c2 to cn . Let
us now try to typecheck client c1. If we try to typecheck the rebinding operation, we
would have the following typing judgement in the premise of (T-Rebind):

�(this) = (Controller,G[...]) �, ∅ � c1 : (Client,G′[. . . , s : (Server,)])

But then, the predicate coloc(G′[. . . , s : (Server, r)], �(this)) is false, since equals
(G,G′) is false. Then, one cannot apply the typing rule (T-Rebind), by thus not
typechecking rebind c1.s = s2, exactly as we wanted.

2.5 Typing Rules for Runtime Configurations

In this section we present the typing rules for runtime configurations, introduced in
Sect. 1.2. In order to prove the subject reduction property, typing rules for runtime
configurations are needed and are presented in Fig. 2.9.

Runtime typing judgements are of the form �,G �R N meaning that the config-
uration N is well typed in the typing context � by using a set G of new cogs. The
(runtime) typing context � is an extension of the (compile time) typing context �

with runtime information about objects, futures and cogs and is formally defined as
follows:

� ::= ∅ | �,� | o : (C, r),� | f : Fut〈T 〉,� | c : G,�

Anobject identifiero is given type (C, r)whereC is the class the object is instantiating
and r is the group record containing group information about the object itself and the
object’s fields. A future value f is assigned type future Fut〈T 〉 and a cog identifier
c is assigned a cog name G.

Rules (T-Weak1), (T-Weak2) and (T-Weak3) state respectively that when an
expression is of type T in some typing context �, then it has the same type in �,
which is an extension of �; and whenever a statement s or a declaration Dl is well

http://dx.doi.org/10.2991/978-94-6239-204-5_1
http://dx.doi.org/10.2991/978-94-6239-204-5_1
http://dx.doi.org/10.2991/978-94-6239-204-5_1

30 2 A Type System for Components

Fig. 2.9 Typing rules for runtime configurations

typed in�, then it is also well-typed in�, which is an extension of�. Rule (T-State)
asserts that the substitution of variable x with value v is well typed when x and v
have the same type T . Rule (T-Cont) asserts that the statement cont(f), which is
a new statement added to the runtime syntax, is well typed whenever f is a future.
Rule (T-Future1) states that the configuration fut(f, v) is well typed if the future
f has type Fut〈T 〉 where T is the type of v. Instead, rule (T-Future2) states that
fut(f,⊥) is well typed whenever f is a future. Rule (T-Process- Queue) states that
the union of two queues is well typed if both queues are well typed and the set of cogs
is obtained as a disjoint union of the two sets of cogs corresponding to each queue.
Rule (T-Process) states that a task or a process is well typed if its local variables
x are well typed and statement s is well typed in a typing context augmented with
typing information about the local variables and the set of cogs G. Rule (T-Config)
states that the composition N N ′ of two configurations is well typed whenever N
and N ′ are well typed using disjoint sets of cog names. Rule (T-Cog) asserts that a
group configuration cog(c,oε) is well typed if c is declared to be associated to G in
�. Rules (T-Empty) and (T-Idle) are straightforward. Rule (T-Object) states that
an object is well typed whenever: (i) the declared record of o is the same as the one
associated to c; (ii) its fields are well typed and (iii) its running process and process

2.5 Typing Rules for Runtime Configurations 31

queue are well typed. Finally, (T-Invoc) states that invoc(o,f,m, v) is well typed
under substitution σ when: (i) callee o is assigned type (C, σ (r)); (ii) future f is of
type Fut〈σ(T)〉 and (iii) values v are typed accordingly by applying substitution σ ,
namely σ(T).

Chapter 3
Properties of the Type System

3.1 Main Results

In this section we present the main results regarding our type system. We start with
subject reduction for expressions, then we present subject reduction for configura-
tions and finally we conclude with the correctness theorems, the main result of this
part. Intuitively the latter theorems state that well-typed programs do not perform
illegal rebinding or illegal synchronous method calls.

A substitution σ is well typed in a typing context �, denoted by � � σ , if
� � σ(x) : �(x) for all x ∈ dom(σ). Recall that a typing context �′ extends a typ-
ing context �, denoted with � ⊆ �′ if dom(�) ⊆ dom(�′) and �(x) = �′(x) for
all x ∈ dom(�).

Lemma 3.1.1 (Subject Reduction for Expressions) Let � be a typing context and
σ a substitution such that � � σ . If � � e : T and σ � e � σ ′ � e′, then there is a
typing context �′ such that � ⊆ �′, �′ � σ ′ and �′ � e′ : T .

The type system is proven correct in a Wright–Felleisen style [116], namely we
prove the subject reduction property stating that if a well-typed configuration N
reduces to some configuration N ′ then, the latter configuration is also well typed.

Theorem 3.1.2 (Subject Reduction for Configurations) If�,G �R N and N → N ′
then ∃ �′, G ′ such that � ⊆ �′, G ⊆ G ′ and �′,G ′ �R N ′.

Theorem 3.1.3 (Correctness of Rebindings) If �,G �R N, then for all objects
ob(o, σ,{ σ ′ | s }, Q) ∈ N and s ≡ rebind e. fi = e′; s ′ there exists an object
ob(o′, σ ′′, Kidle, Q′) ∈ N such that [[e]](σ◦σ ′) = o′ and σ(cog) = σ ′′(cog).

Theorem 3.1.4 (Correctness of Sync Method Calls) If �,G �R N, then for all
objects ob(o, σ,{ σ ′ | s }, Q) ∈ N and s ≡ x = e.m(e); s ′ there exists an object
ob(o′, σ ′′, Kidle, Q′) ∈ N such that [[e]](σ◦σ ′) = o′ and σ(cog) = σ ′′(cog).

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_3

33

34 3 Properties of the Type System

As a consequence of the previous results, rebinding and synchronousmethod calls
are always performed between objects of the same cog:

Corollary 3.1.5 Well-typed programs do not perform (i) an illegal rebinding or
(ii) a synchronous method call outside the cog.

3.2 Proofs

In this section we give the detailed proofs of the previous lemmas and theorems that
validate our type system. We state the following auxiliary lemma needed to prove
the former properties.

Lemma 3.2.1 (Weakening) If �,G �R N, then �′,G �R N, where � ⊆ �′.

Proof The proof follows immediately by the definition of � and the typing judge-
ments for configurations �,G �R N . �

Proof of Lemma 3.1.1 on Subject Reductions for Exprs: Let � be a typing context
and σ a substitution such that � � σ . If � � e : T and σ � e � σ ′ � e′, then there
is a typing context �′ such that � ⊆ �′, �′ � σ ′ and �′ � e′ : T .
Proof The proof is done by induction on the reduction rules for the pure expressions,
given in Fig. 1.4.

• Case (RedVar): By assumption � � σ and � � x : T and σ � x � σ � σ(x).
Since σ is well typed � � σ(x) : �(x), so, � � σ(x) : T .

• Case (RedCons): By induction hypothesis � � ei : Ti and since
σ � ei � σ ′ � e′

i 1 ≤ i ≤ n, the�′ � e′
i : Ti and� ⊆ �′ and�′ � σ ′. By assump-

tion � � Co(e1 . . . ei . . . en) : T . Since � ⊆ �′, the �′ � Co(e1 . . . e′
i . . . en) : T .

• Case (RedFunExp): This case follows exactly the same line as (RedCons). By
induction hypothesis � � ei : Ti and since σ � ei � σ ′ � e′

i for 1 ≤ i ≤ n, the
�′ � e′

i : Ti and � ⊆ �′ and �′ � σ ′. By assumption we have
� � fun(e1 . . . ei . . . en) : T . Since � ⊆ �′, the �′ � fun(e1 . . . e′

i . . . en) : T .
• Case (RedFunGround): By assumption � � σ and � � fun(v) : T and by
rule (T-FunExp) we have � � v : T and �(fun) = T ′ → T ′, and there is a
type substitution ρ such that T = ρ(T ′) and T = ρ(T ′). It is the case that
�, xfun : ρ(T ′) � xfun : T ′. By rule (T-FunDecl)�, xfun : T ′ � efun : T ′. Since
typing is preserved by substitution, then �, xfun : ρ(T ′) � efun : ρ(T ′). This is
the same as �, xfun : T � efun : T . Let �′ = �, y : T where a renaming of vari-
ables has occurred. Then, �′ � efun[xfun �→ y] : T . Since fresh({y1 . . . yn}), then
� ⊆ �′ and �′ � σ , so �′ � σ ′.

• Case (RedCase1): By assumption� � σ and� � case e {p ⇒ ep} : T ′. By induc-
tion hypothesis� � e : T ,� ⊆ �′ and�′ � σ ′ and�′ � e′ : T . Then, since� ⊆ �′
we have �′ � case e′ {p ⇒ ep} : T ′.

http://dx.doi.org/10.2991/978-94-6239-204-5_1

3.2 Proofs 35

• Case (RedCase2): By assumption � � case v {p ⇒ ep; p′ ⇒ e′
p′ } : T , then also

case v {p′ ⇒ e′
p′ } : T .

• Case (RedCase3): By assumption � � case v {p ⇒ ep; p′ ⇒ e′
p′ } : T ′ and

� � σ and match(σ (p), v) = σ ′′ which implies that vars(σ (p)) ∩ dom(σ) = ∅.
By rule (T-Case)we have that� � v : T and� � p ⇒ ep; p′ ⇒ e′

p′ : T → T ′ for
some type T . By rule (T-Branch) we have that �′′ = � ◦ pmatch(σ (p), T) and
�′′ � σ(p) : T , �′′ � ep : T ′, and let ρ = pmatch(σ (p), T). Since
dom(ρ) ∩ dom(σ) = ∅, then � ◦ ρ � σ ◦ σ ′′. By renaming the variable
in σ(p) we let �′ = �, y : �′′(x) and � ⊆ �′. Then we get
�′ � σ ′ and �′ � ep[x �→ y] : T ′, which concludes the proof. �

Proof of Theorem 3.1.2 on Subject Reduction for Configs: If �,G �R N and
N → N ′ then ∃ �′, G ′ such that � ⊆ �′, G ⊆ G ′ and �′,G ′ �R N ′.

Proof The proof is done by induction on the reduction rules. We assume that class
definitions are well typed and for simplicity we omit them from the runtime syntax.

• Case (Skip): By assumption �,G �R ob(o, σ, {σ ′|skip; s}, Q); but then also
�,G � ob(o, σ, {σ ′|s}, Q).

• Case Assignment: By assumption

�,G �R ob(o, σ, {σ ′|x = e; s}, Q)

and x ∈ dom(σ ′) and v = [[e]](σ◦σ ′), and let σ = T x w; θ and σ ′ = T ′ x ′ v; θ ′.
Let �′ = �, x : T , x ′ : T ′. Then, by rules (T- Object) and (T- Process) and
Lemma 3.1.1, we have �′,G1 �R x = v; s, such that G = G1 � G2 and �′,
G2 �R Q. The derivation �′,G1 �R x = v; s implies that �′,∅ �R v : �′(x), by
rule (T- Assign) being v a value, and �′,G1 �R s. By rule (Assign- Local) we
have ob(o, σ, {σ ′|x = v; s}, Q) → ob(o, σ, {σ ′[x �→ v]|s}, Q). By applying typ-
ing rule (T-Object) we obtain �,G �R ob(o, σ, {σ ′[x �→ v]|s}, Q).
Case (Assign-Field) follows the same line as case (Assign-Local).
Since ob(o, σ, {σ ′|x = v; s}, Q) → ob(o, σ [x �→ v], {σ ′|s}, Q), then we derive
�,G �R ob(o, σ [x �→ v], {σ ′|s}, Q).

• Case Conditionals: By assumption

�,G �R ob(o, σ, {σ ′|if e then s1 else s2; s}, Q)

and [[e]](σ◦σ ′) = true. There exists �′ which extends � with typing assumptions

present in σ and σ ′; namely σ = T x w; θ and σ ′ = T ′ x ′ v; θ ′, and �′ = �,

x : T , x ′ : T ′. By assumption �′,∅ �R x : Bool, �′,G ′
1 �R s1, �′,G ′′

1 �R s2,
�′,G2 �R s, and �′,G3 �R Q where G1 = G ′

1 � G ′′
1 and G = G1 � G2 � G3. Then,

by rule (T-Comp) we have that �′,G ′
1 � G2 �R s1; s. By rule (Cond-True)

we obtain ob(o, σ, {σ ′|if e then s1 else s2; s}, Q) → ob(o, σ, {σ ′|s1; s}, Q)

and by rule (T-Object) we conclude that �,G \ G ′′
1 �R ob(o, σ, {σ ′|s1; s}, Q).

The case (Cond-False) follows the same line as case (Cond-True), where

36 3 Properties of the Type System

[[e]](σ◦σ ′) = false and hence ob(o, σ, {σ ′|if e then s1 else s2; s}, Q) →
ob(o, σ , {σ ′|s2; s}, Q), then we derive �,G �R ob(o, σ, {σ ′|s2; s}, Q).

• Case Loops: By assumption

�,G �R ob(o, σ, {σ ′| while e { s }; s ′}, Q)

and [[e]](σ◦σ ′) = true. There exists �′ which extends � with typing assump-

tions present in σ and σ ′; namely σ = T x w; θ and σ ′ = T ′ x ′ v; θ ′, and �′ =
�, x : T , x ′ : T ′. By assumption �′,G1 �R while e { s }; s ′, and �′,G2 �R Q,
where G = G1 � G2. By applying (T-Comp) and (T-While) we have �′,∅ �R

while e { s }, and �′,G1 �R s ′. By rule (While-True) we have
ob(o, σ, {σ ′| while e { s }; s ′}, Q) → ob(o, σ, {σ ′| s;while e { s }; s ′}, Q).
Since �′,∅ �R s and �′,∅ �R while e { s } then by applying (T-Comp) we
obtain �′,∅ �R s ;while e { s }. By rule (T-Comp) we have that �′,G1 �R

s;while e { s }; s ′. We conclude by (T-Object). The case for [[e]](σ◦σ ′) = false
and rule (While-False) is similar.

• Case Awaits: By assumption

�,G �R ob(o, σ, {σ ′| await g; s}, Q) N

By (Await-True), since [[g]]N(σ◦σ ′), then ob(o, σ, {σ ′| await g; s}, Q) N →
ob(o, σ, {σ ′|s}, Q) N . Trivially, �,G �R ob(o, σ, {σ ′|s}, Q) N . By (Await-
False), since ¬[[g]]N(σ◦σ ′), then ob(o, σ, {σ ′| await g; s}, Q) N →
ob(o, σ, {σ ′| suspend; await g; s, Q) N . By (T-Suspend), �,∅ �R suspend.
Then, by (T-Comp), �,G �R ob(o, σ, {σ ′| suspend; await g; s, Q) N .

• Case (Return): By assumption

�,G �R ob(o, σ, {σ ′| return e; s}, Q) fut(f,⊥)

and �,∅ �R fut(f,⊥) and by reduction rule σ ′(destiny) = f and v = [[e]](σ◦σ ′)
and ob(o, σ, {σ ′| return e; s}, Q) fut(f,⊥) → ob(o, σ, {σ ′|s}, Q) fut(f, v). Triv-
ially, �,G �R ob(o, σ, {σ ′|s}, Q). By the premises of (T-Return) we have
� �R e : T and �(destiny) = Fut〈T 〉. By assumption σ ′(destiny) = f, hence
�(f) = Fut〈T 〉. By assumption v = [[e]](σ◦σ ′), then by applying Lemma 3.1.1
we have � �R v : T . By applying (T-Future1) we have �,∅ �R fut(f, v). We
conclude by applying (T-Config).

• Case (Read-Fut): By assumption

�,G �R ob(o, σ, {σ ′ | x = get(e); s}, Q) fut(f, v)

where �,∅ �R fut(f, v), v �= ⊥ and f = [[e]](σ◦σ ′). By reduction rule
ob(o,σ, {σ ′ | x = get(e); s}, Q) fut(f, v) → ob(o, σ, {σ ′|x = v; s}, Q) fut(f, v).
By (T-Future1) �(f)=Fut〈T 〉 and � �R v : T . Since by assumption

3.2 Proofs 37

f=[[e]](σ◦σ ′), consequently �,∅ �R get(e) : T . Then, �,∅ �R x = v and hence
�,G �R ob(o, σ, {σ ′|x = v; s}, Q).

• Case (Bind-Mtd): By assumption

�,G �R ob(o, σ, p, Q) invoc(o,f,m, v)

and by reduction rule ob(o, σ, p, Q) invoc(o,f,m, v) → ob(o, σ, p, Q ∪ p′).
By (T-Config) we have�,G1 �R ob(o, σ, p, Q) and�,G2 �R invoc(o,f,m, v)
such that G = G1 � G2. By assumption p′ = bind(o,f,m, v, class(o)) and let
class(o) = C. By (T-Invoc) we have mtype(m,C) = (Gm, r)(T x) → T ,
�(o) = (C, σ (r)), �(f) = Fut〈σ(T)〉, and � �R v : σ(T) and G2 = σ(Gm).
The bind function returns a process p′ = {T x = v; T ′ x ′ = null; this = o | s}
where either (NM-Bind) or (CM-Bind) is applied, depending on whether the
method m is critical or not. Let σ = T x w; θ and let�′ = �, x : T . Then, process
p′ is well typed in � augmented with f ields(C), namely �′,∅ �R p′. Then, by
(T-Object) and (T-Process-Queue) �,G �R ob(o, σ, p, Q ∪ p′).

• Case (New-Object): By assumption

�,G �R ob(o, σ,{ σ ′′ | x = new C (e); s }, Q)

and ob(o, σ,{ σ ′′ | x = new C (e); s }, Q) → ob(o, σ, {σ ′′|x = o′; s}, Q)

ob (o′, σ ′, idle, ε). By assumption v = [[e]](σ◦σ ′′) fresh(o′) σ ′ = atts(C, v,o′,c).

Suppose σ = T x w; θ and σ ′′ = T ′ x ′ v; θ ′, and let �′ = �, x : T , x ′ : T ′. By
(T-Object) and (T-Process) we have that �′,G1 �R x = new C (e); s and G2

is the set of cogs in Q where G = G1 � G2. By (T-Comp)�′,∅ �R x = new C (e)
and �′,G1 �R s. By rule (T-Assign) we have that �′(x) = T and
�′,∅ �R new C (e) : T . By the premises of the typing rule we have that f ields
(C) = T f , �′ � x : T ′, tmatch(T , T ′) = π and T ∈ crec(G,C, π), and let
π = σ ◦ σ ′′. Then, by the definition of the auxiliary function crec, it means that
T = (I,G[π � ρ(f : (I, r))]) and implements(C,I). Let
r = G[π � ρ(f : (I, r))]. Since f resh(o′), then let �′′ = �,o′ : (C, r). Then,
�′′,G1 � G2 �R ob(o, σ, {σ ′′|x = o′; s}, Q), by (T-Process), (T-Comp), and
(T-Object). By assumption, function atts(C, v,o′,c) returns a substitution σ ′
that is well typed in �′′. So, �′′,∅ �R ob(o′, σ ′, idle, ε). Then, by (T-Config)
we have �′′,G �R ob(o, σ, {σ ′′|x = o′; s}, Q) ob(o′, σ ′, idle, ε).

• Case (New-Cog-Object): By assumption

�,G �R ob(o, σ, {σ ′′|x = new cog C (e); s}, Q)

and by reduction we have ob(o, σ, {σ ′′|x = new cog C (e); s}, Q) →
ob (o, σ, {σ ′′|x = o′; s}, Q) ob(o′, σ ′, idle, ε) cog(c′,o′). By assumption
v = [[e]](σ◦σ ′′), fresh(o′), σ ′ = atts(C, v,o′,c). Suppose σ = T x w; θ and

σ ′′ = T ′ x ′ v; θ ′, and let �′ = �, x : T , x ′ : T ′. By the typing rules (T-Object)
and (T-Process) we have that �′,G1 �R x = new cog C (e); s �,G2 �R Q,
where G = G1 � G2. By rules (T-Comp) and (T-Assign)

38 3 Properties of the Type System

�′, {G} �R x = new cog C (e) and �′,G1 \ {G} �R s. By rule (T-Assign),
�′(x) = T and �′, {G} �R new cog C (e) : T . By the premise of typing rule
(T-NewCog), we have that f ields(C) = T f , �′ � x : T ′, tmatch(T , T ′) = π

and T ∈ crec(G,C, π). Then, by definition of the auxiliary function crec, it
means that T = (I,G[f : π ◦ ρ(I, r)]) and implements (C,I). Let r be such that
r = G[π ◦ ρ(f : (I, r))]. Since f resh(o′) and f resh(c′), we have
�′′ = �,o′ : (C, r),c′ : G. By applying typing rules (T-Process), (T-Comp),
and (T-Object) �′′,G1 \ {G} � G2 �R ob(o, σ, {σ ′′|x = o′; s}, Q). By (T-Cog)
we have �′′, {G} �R cog(c′,o′). By assumption, function atts(C, v,o′,c′) returns
a substitution σ ′ that is well typed in �′′. So, �′′,∅ �R ob(o′, σ ′, idle, ε). By
(T-Config) we obtain the result.

• Case (Self-Sync-Call): By assumption

�,G �R ob(o, σ, {σ ′ | x = e.m(e); s}, Q)

and ob(o, σ, {σ ′ | x = e.m(e) ; s}, Q) → ob(o, σ, {σ ′′ | s ′; cont(f′)},
Q ∪ {σ ′ | x = get(f); s}) fut(f,⊥). Then, it is the case that
o = [[e]](σ◦σ ′), v = [[e]](σ◦σ ′), σ ′(destiny) = f′, fresh(f), and also
{σ ′′|s ′} = bind (o,f,m, v, class(o)) and let class(o) = C. Since, by assump-
tion class C is well typed in �, by (T-Class) this means that all methods in C
are well typed, in particular method m is well typed in C. The auxiliary func-
tion bind returns a process {σ ′′|s ′}, which contains the body s ′ of the method m,
which in turn by (T-Method) is well typed. Suppose
σ = T x w; θ and σ ′ = T ′ x ′ w′; θ ′, and let �′ = �, x : T , x ′ : T ′. By typing
rules (T-Object) and (T-Process) we have that �′,G1 �R x = e.m(e); s and
�′,G2 �R Q, where G = G1 � G2. From the first judgement by using (T-Comp),
we have that �′,G ′

1 �R x = e.m(e) and �′,G ′′
1 �R s, where G1 = G ′

1 � G ′′
1 .

By typing rules (T-Assign) and (S-Call) we have �′,G ′
1 �R e.m(e) : ρ(T)

for some substitution ρ. By the premises of (T-SCall) we have
mtype(m,I) = (Gm, r)(T x) → T , �′ � e : (I, ρ(r)), �′ � e : ρ(T),
coloc(ρ(r),�′(this)) and G ′

1 = ρ(Gm). Since o = [[e]](σ◦σ ′) then,
�′(o′) : (C, ρ(r)), such that implements(C,I) and mtype(m,C) = mtype(m,I).
Let σ ′′ = T ′′ x ′′ w′′; θ ′′, then by (T-Method) we have�′, x ′′ : T ′′,G ′

1 � s ′, hence
�′,G ′

1 �R {σ ′′|s ′}. Since σ ′(destiny) = f′, then �′,G ′
1 �R {σ ′′|s ′; cont(f′)}.

Since f resh (f), let �′′ = �,f : ρ(T), then �′′,∅ �R x = get(f). By rule
(T-Comp) and Lemma 3.2.1 we have �′′,G ′′

1 �R x = get(f); s. Then,
�′′,G �R ob(o, σ, {σ ′′|s ′; cont(f′)}, Q ∪ {σ ′| x = get(f); s}). By (T-Future2)
we have �′′,∅ �R fut(f,⊥). We conclude by (T-Config).

• Case (Self-Sync-Return-Sched): By assumption

�,G �R ob(o, σ, {σ ′′|cont(f)}, Q ∪ {σ ′|s})

and by reduction rule ob(o, σ, {σ ′′|cont(f)}, Q ∪ {σ ′|s}) → ob(o, σ, {σ ′|s}, Q),
since σ ′(destiny) = f. Suppose σ = T x v; θ , and let �′ = �, x : T . By
(T-Object) we have that �′,G �R Q ∪ {σ ′|s}, by (T-Process-Queue) �′,

3.2 Proofs 39

G1 �R Q and �′,G2 �R {σ ′|s}, where G = G1 � G2. By (T-Object) we have
�,G �R ob(o, σ, {σ ′|s}, Q).

• Case (Async-Call): By assumption

�,G �R ob(o, σ, {σ ′ | x = e!m(e); s}, Q)

and also ob(o, σ, {σ ′ | x = e!m(e); s}, Q) → ob(o, σ, {σ ′|x = f; s}, Q)

invoc(o′,f,m, v) fut(f,⊥). Suppose σ = T x w; θ and σ ′ = T ′ x ′ v; θ ′, and
let �′ = �, x : T , x ′ : T ′. By (T-Object) and (T-Process) we have that �′,
G1 �R x = e!m(e); s where G = G1 � G2 and G2 is the set of cogs in Q.
By (T-Comp) we have �′,G ′

1 �R x = e!m(e) and �′,G ′′
1 �R s where

G1 = G ′
1 � G ′′

1 . For the first judgement, by (T-Assign) and (T-ACall), we have
that �′(x) = Fut〈ρ(T)〉 and �′,G ′

1 �R e!m(e) : Fut〈ρ(T)〉, for some
substitution ρ. By the premise of (T-ACall) we have
mtype(m,I) = (Gm, r)(T x) → T , �′ �R e : (I, ρ(r)) and �′ �R e : ρ(T) and
G ′
1 = ρ(Gm). By the premises of (Async-Call) we have o′ = [[e]](σ◦σ ′),

v = [[e]](σ◦σ ′), and since substitutions are well typed in �′ and by Lemma 3.1.1
it means �′ �R o′ : (C, ρ(r)) for a class C such that implements(C,I) such
that mtype(m,C) = mtype(m,I). Also, by Lemma3.1.1 �′ �R v : ρ(T). Since,
by assumption f resh(f), let �′′ = �′,f : Fut〈ρ(T)〉, hence f can be safely
added. By applying (T-Assign) we have �′′ �R x = f, and by (T-Object) we
have �′′,G \ G ′

1 �R ob(o, σ, {σ ′|x = f; s}, Q). By applying (T-Invoc) we have
�′′,G ′

1 �R invoc(o′,f,m, v). By applying (T-Future2) we have �′′,
∅ �R fut(f,⊥). Then, we conclude by applying (T-Config).

• Case (Rebind-Local): By assumption

�,G �R ob(o, σ,{ σ ′ | rebind e. f = e′; s }, Q)

and ob(o, σ,{ σ ′ | rebind e. f = e′; s }, Q) → ob(o, σ [f �→ v],{ σ ′ | s }, Q)

and σ(nbcr) = 0, o = [[e]](σ◦σ ′), and v = [[e′]](σ◦σ ′). Suppose σ = T x w; θ and

σ ′ = T ′ x ′ v; θ ′, and let �′ = �, x : T , x ′ : T ′. Then, �′,G1 �R rebind
e. f = e′; s and where G = G1 � G2 and G2 is the set of cogs in Q. By (T-Rebind)
�′ �R e : (I, r) and�′,G1 �R e′ : T and T f ∈ ports(I) and coloc(r,�′(this))
—meaning, belonging to the same cog. Since v = [[e′]](σ◦σ ′), then by Lemma 3.1.1
�′ �R v : T . Then, by (T-Object) �,G �R ob(o, σ [f �→ v],{ σ ′ | s }, Q).

• Case (Rebind-Global): By assumption

�,G �R ob(o, σo, Kidle, Q) ob(o′, σo′ ,{ σ ′
o′ | rebind e. f = e′; s }, Q′)

and ob(o, σo, Kidle, Q) ob(o′, σo′ ,{ σ ′
o′ | rebind e. f = e′; s }, Q′) →

ob(o, σo [f �→ v], Kidle, Q) ob(o′, σo′ ,{ σ ′
o′ | s }, Q′). By typing rule

(T-Config) it means that �,G1 �R ob(o, σo, Kidle, Q) and also �,

G2 �R ob(o′, σo′ ,{ σ ′
o′ | rebind e. f = e′; s }, Q′) and G = G1 � G2. Suppose

σo′ = T x w; θ and σ ′
o′ = T ′ x ′ w′; θ ′, and let �′ = �, x : T , x ′ : T ′. Then, �′,

G ′
2 �R rebind e. f = e′; s and G2 = G ′

2 � G ′′
2 and G ′′

2 is the set of cogs in Q′.

40 3 Properties of the Type System

By (T-Rebind) �′ �R e : (I, r) and �′,G ′′
2 �R e′ : T and T f ∈ ports(I) and

coloc(r,�′(this))—meaning, belonging to the same cog. By assumption
o = [[e]]

(σo′ ◦σ ′
o′)

and v = [[e′]]
(σo′ ◦σ ′

o′)
, then by Lemma 3.1.1 we have that

�′ �R v : T . Then, trivially �,G1 �R ob(o, σo[f �→ v], Kidle, Q) and
�,G2 �R ob(o′, σo′ ,{ σ ′

o′ | s }, Q′). We conclude by (T-Config). �

Proof of Theorem 3.1.3 on Correctness of Rebindings: If �,G �R N , then for
all objects ob(o, σ,{ σ ′ | s }, Q) ∈ N and s = (rebind e. f = e′; s ′) there exists an
object ob(o′, σ ′′, Kidle, Q′) such that [[e]](σ◦σ ′) = o′ and σ(cog) = σ ′′(cog).

Proof The proof is done by induction on the structure of N . Let
N = ob(o, σ,{ σ ′ | s }, Q) and s = (rebind e. f = e′; s ′). By assumption we
have �,G �R ob(o, σ,{ σ ′ | rebind e. f = e′; s ′ }, Q). Suppose σ = T x v; θ and
σ ′ = T ′ x ′ v′; θ ′ and let �′ = �, x : T , x ′ : T ′. Notice that, by the well-typedness
of the configuration we also have that �′,∅ �R σ and �′,∅ �R σ ′. By the defini-
tion of substitutionwe have that σ(this) = o and let σ(cog) = c. By (T-Object)�′,
G1 �R rebind e. f = e′; s ′ and �′,G2 �R Q where G = G1 � G2. By rules
(T-Weak2), (T-Comp) and (T-Rebind) it means that �′,G ′

1 �R rebind e. f = e′
and �′,G ′′

1 �R s ′ where G1 = G ′
1 � G ′′

1 . By the premise of (T-Rebind) and by
(T-Weak1) and (T-Exp) we have that �′,∅ �R e : (I, r) and f is a port of I. Let
[[e]](σ◦σ ′) = vwhere v is a value produced by the runtime syntax. ByLemma3.1.1 this
means that �′,∅ �R v : (I, r). This implies that v is an object identifier o′. Then, by
the reduction rules (New-Object) or (New-Cog-Object), it means that the object
was already created, and moreover it is well typed. Let o′ have ob(o′, σ ′′, Kidle, Q′)
as its configuration. We distinguish the following two cases:

• o′ = o: this means that the object is rebinding its own port. Trivially, the cog is
the same.

• o′ �= o: this means that the object o is rebinding the port f of another object o′. By
typing rule (T-Rebind) and (T-Weak1) we have that the predicate coloc is true.
Namely, coloc(r,�′(this)), which by the premise of coloc we have that the cog
of r is the same as the cog of this, namely c. This means that σ(cog) = σ ′′(cog).

The inductive case for N = ob(o, σ,{ σ ′ | rebind e. f = e′; s ′ }, Q) N ′ follows by
the base case and by applying (T-Config) and (Context). �

Proof of Theorem 3.1.4 on Correctness of Method Calls: If �,G �R N , then
for all objects ob(o, σ,{ σ ′ | s }, Q) ∈ N and s = (x = e.m(e); s ′) there exists an
object ob(o′, σ ′′, Kidle, Q′) such that [[e]](σ◦σ ′) = o′ and σ(cog) = σ ′′(cog).

Proof The proof is done by induction over the structure of N . Let
N = ob(o, σ,{ σ ′ | s }, Q) and s = (x = e.m(e); s ′). By assumption
�,G �R ob(o, σ,{ σ ′ | x = e.m(e); s ′ }, Q). Suppose σ = T x v; θ and
σ ′ = T ′ x ′ v′; θ ′, and let �′ = �, x : T , x ′ : T ′. Notice that, by the well-typedness
of the configuration we also have that �′,∅ �R σ and �′,∅ �R σ ′. By the definition
of substitution we have that σ(this) = o and let σ(cog) = c. By (T-Object) �′,
G1 �R x = e.m(e); s ′ and �′,G2 �R Q where G = G1 � G2. By the typing rules

3.2 Proofs 41

(T-Weak2), (T-Comp) and (T-Rebind) it means that �′,G ′
1 �R x = e.m(e) and

�′,G ′′
1 �R s ′ where G1 = G ′

1 � G ′′
1 . By (T-Assign) we have �′,G ′

1 �R e.m(e) : T
and �′(x) = T for some type T . By (T-SCall) we have that T = ρ(T ′) for some
substitution ρ of the formal return type T ′ to the actual return type and T . More-
over, mtype(m,I) = (Gm, r)(T x) → T ′, and G ′

1 = ρ(Gm). Since the synchronous
method call is well typed, by the premise of (T-SCall) and (T-Weak1) we have
that �′ �R e : (I, ρ(r)) and let [[e]](σ◦σ ′) = v. By Lemma 3.1.1 this means that
�′,∅ �R v : (I, ρ(r)). By following the same lines as in the previous theorem, it is
the case that v is an object identifier o′. Then, by the reduction semantics rules (New-
Object) or (New-Cog-Object), it means that the object was already created, and in
addition it iswell typed. Leto′ have ob(o′, σ ′′, Kidle, Q′) as its configuration. The rest
of the proof follows exactly the same line as the correctness of rebinding proof where
again by the premise of (T-SCall) we have that the predicate coloc(ρ(r),�′(this))
is true.

The inductive case for N = ob(o, σ,{ σ ′ | x = e.m(e); s ′ }, Q) N ′ follows by
the base case and by applying (T-Config) and (Context). �

Conclusions, Related and Future Work
for Part I

In Part I we presented a type system for a component-based calculus. The calculus
we adopt is inspired by [77], the latter being an extension of the Abstract
Behavioural Specification (ABS) language [63]. This extension consists of the
notions of ports and rebind operations.

Ports and fields differ in a conceptual meaning: ports are the access points tothe
functionalities provided by the environment whether fields are used to savethe inner
state of an object. Fields are modified freely by an assignment, only by the object
that owns them, whilst ports are modified by a rebind operation by any object in
the same cog.

There are two consistency issues involving ports: (i) ports cannot be modified
while in use; this problem is solved in [77] by combining the notions of ports and
critical section; (ii) it is forbidden to modify a port of an object outside the cog; this
problem is solved in the present thesis by designing a type system that guarantees
the above requirement. The type system tracks an object’s membership to a certain
cog by adopting group records. Rebind statement is well typed if there is com-
patibility of groups between objects involved in the operation.

In the remainder we discuss the related works by dividing them in three separate
paragraphs respectively for, ABS, component extension and type systems. We
conclude with future work.

ABS Language Related Work Actor-based ABS language is designed for dis-
tributed object-oriented systems. It integrates concurrency and synchronisation
mechanisms with a functional language. Actors, called concurrent object groups
cogs, are dynamic collections of collaborating objects. Cogs offer consistency by
guaranteeing that at most one method per cog is executing at any time.

There are several concurrent object-oriented models that integrate concurrent
objects and actors, the same as cogs in ABS language, which adopt asynchronous
communication and usage of futures as first-class values, like [1, 5, 13, 24, 54,
64, 114]. As stated in [63], the concurrency model of ABS is a generalisation of the
concurrency model of Creol [65] passing from one concurrent object to concurrent
groups of objects, implemented in JCoBox [102], which is its Java extension. Creol
is based on asynchronous communication and hence future values are present.

Futures are adopted in particular in [13, 114] whereas asynchronous calculi for
distributed systems are adopted in [1, 5, 24, 64] and in [2] which is mostly oriented
in verification of various properties.

Despite the concurrency basically performed by the communication among
different cogs, an important and typical feature of ABS is its synchronisation
mechanism inside one cog, that permits only one object at a time to be active. The
cooperation of objects inside the cog is similar to the so called cooperative
scheduling in Creol where the concurrent cogs are merely the concurrent objects.
As stated in [63] cogs in ABS can be compared to monitors in [55]. However,
differently from monitors, there is no explicit signalling. It is possible to encode
monitors in the language, as stated in [64].

The concurrent object calculus in [12] adopts both synchronous and asyn-
chronous method calls, having different semantics. This is similar to the component
extension and differs from ABS where a synchronous method call between two
different cogs reduces into an asynchronous one, whether in the component model it
is not defined which means it reduces to error.

Components Related Work Most component models [4, 7, 11, 14, 29, 79, 82, 87]
have a notion of component different from that of object. The resulting language is
structured in two separate layers, one using objects for the main execution of the
program and the other using components for the dynamic reconfiguration. This
separation makes it harder for the (unplanned) dynamic reconfiguration requests to
be integrated in the program’s workflow. For example, models like Click [75] do
not allow runtime reconfigurations at all, whether OSGi model [4] allows addition
of classes and objects but does not allow modification of components, whether the
Fractal model [14] allows modifications by performing new bindings, which allow
addition of components.

However, there are other component models that go towards integrating the
notions of objects and components, thus having a more homogeneous semantics.
For example, models like Oz/K [79] and COMP [78] offer a more unified way of
presenting objects and components. However, both Oz/K and COMP deal with
dynamic reconfigurations in a very complex way.

The component model we adopt in the present work, inspired by [77], has a
unified description of objects and components by exploiting the similarities
between them. This brings in several benefits wrt previous component models:
(i) the integration of components and objects strongly simplifies the reconfiguration
requests handling, (ii) the separation of concepts (component and object, port and
field) makes it easier to reason about them, for example, in static analysis, and
(iii) ports are useful in the deployment phase of a system by facilitating, for
example, the connection to local communication.

Type Systems Related Work The type system for components presented in
Chap. 2 is an extension of the type system of ABS which is an extension of the type
system for Featherweight Java [61], which is nominal. However, differently from
both FJ and ABS, we also adopt the structural approach, in particular in the sub-
typing relation defined in Sect. 2.2. Differently from FJ and similarly to ABS,

44 Part 1: Conclusions, Related and Future Work for Part I

http://dx.doi.org/10.2991/978-94-6239-204-5_2
http://dx.doi.org/10.2991/978-94-6239-204-5_2

objects are typed with interfaces, and not classes, by thus having a neat distinction
between the two concepts which enables abstraction and encapsulation. Creol’s
type system has more characteristic in common with our type system. It tracks types
which are implicitly associated to untyped futures by using an effect system as in
[80]. This allows more flexibility in reusing future variables with different return
type. This feature is not present either in ABS or in our type system, where future
variables have explicit future types.

Various other type systems have been designed for components. The type sys-
tem in [115] categorises references to be either Near (i.e., in the same cog), Far
(i.e., in another cog) or Somewhere (i.e., we don’t know). The goal is to auto-
matically detect the distribution pattern of a system by using the inference algo-
rithm, and also control the usage of synchronous method calls. It is more flexible
than our type system since the assignment of values of different cogs is allowed, but
it is less precise than our analysis: consider two objects o1 and o2 in a cog c1, and
another one o3 in c2; if o1 calls a method of o3 which returns o2, the type system will
not be able to detect that the reference is Near. In [3] the authors present a tool to
statically analyse concurrency in ABS. Typically, it analyses the concurrency
structure, namely the cogs, but also the synchronisation between method calls. The
goal is to get tools that analyse concurrency for actor-based concurrency model,
instead of the traditional thread-based concurrency model. The relation to our work
is in the analysis of the cog structure.

On the other hand, our type system has some similarities with the type system in
[22] which is designed for a process calculus with ambients [23], the latter roughly
corresponding to the notion of components in a distributed scenario. The type
system is based on the notion of group which tracks communication between
ambients as well as their movement. However, groups in [22] are a “flat” structure
whether in our framework we use group records defined recursively; in addition, the
underlying language is a process calculus, whether ours is a concurrent
object-oriented one. As object-oriented languages are concerned, another similar
work to ours is the one on ownership types [25], where basically, a type consists of
a class name and a context representing object ownership: each object owns a
context and is owned by the context it resides in. The goal of the type system is to
provide alias control and invariance of aliasing properties, like role separation,
restricted visibility etc. [56].

Future Work Our type system can be seen as a technique for tracking membership
of a component to a group or a context or to similar notions. Hence it can also be
applied to other component-based languages [4, 11, 14, 29] to deal with dynamic
reconfiguration and rebindings. Or, more specifically, in business processes and
web-services languages [86, 91] to check (dynamic) binding of input or output ports
and guarantee consistencies of operations, or in [76] to deal with dynamic recon-
figuration of connectors which are created from primitive channels and resemble to
ports in our setting. In addition, the group-based type system can be applied not
only to tracking membership of an object to a cog, but also to detect misbehaviours,
like deadlock, as shown in [50, 51]. So, first of all we want to explore the various

Part 1: Conclusions, Related and Future Work for Part I 45

areas in which the type system can be applied. Second, as discussed in Sect. 2.4 our
current approach imposes a restriction on assignments, namely, it is possible to
assign to a variable/field/port only an object belonging to the same cog. We plan to
relax this restriction following a similar idea to the one proposed in [51], where
instead of having just one group associated to a variable, it is possible to have a set
of groups. Third, we want to deal with runtime misbehaviours, like deadlocks or
livelocks. The idea is to use group information to analyse dependencies between
groups. We take inspiration from [50].

46 Part 1: Conclusions, Related and Future Work for Part I

http://dx.doi.org/10.2991/978-94-6239-204-5_2

Part II
Safe Communication by Encoding

Introduction to Part II

In complex distributed systems, participants willing to communicate should
previously agree on a protocol to follow. The specified protocol describes the types
of messages that are exchanged as well as their direction. In this context, session
types came into play. Session types are a formalism proposed as a foundation to
describe and model structured communication-based programming. They were
originally introduced in [57, 104] and later in [58] for a polyadic p-calculus, which
is the most successful setting. After that, session types have been developed for
various paradigms, like (multi-threaded) functional programming [49, 108, 111],
component-based object systems [107], object-oriented languages [18, 40–42, 47],
Web Services and Contracts, W3C-CDL a language for choreography [21, 88], etc.

Since their appearance, many extensions have been made to session types. An
important research direction is the one that brings from dyadic or binary sessions
types [38, 57, 58, 104, 109, 118], describing communication between only two
participants, to multiparty session types [10, 59], where the number of participants
can be greater than just two, or where the number of participants can be variable,
namely participants can dynamically join and leave [37] or to choreographies [21,
88]. In dyadic session types, different typing features have been added. Subtyping
relation for (recursive) session types is added in [48]. Bounded polymorphism is
added in [45] as a further extension to subtyping, and parametric polymorphism is
added in [15]. The authors in [89] add higher order primitives in order to allow not
only the mobility of channels but also the mobility of processes.

Session types describe a protocol as a type abstraction, guaranteeing privacy,
communication safety and session fidelity. Privacy requires that the session channel
is owned only by the communicating parties. Communication safety is an extension
to a structured sequence of interactions of the standard type safety property in the
(polyadic) p-calculus: it is the requirement that the exchanged data have the

expected type. Instead, session fidelity is a typical property of sessions and is the
requirement that the session channel has the expected structure.

Session types are defined as a sequence of input and output operations, explicitly
indicating the types of messages being transmitted. However, they offer more
flexibility than just performing inputs and outputs: they permit choice, internal and
external one. Branch and select are typical type (and also term) constructs in the
theory of session types, the former being the offering of a set of alternatives and the
latter being the selection of one of the possible options being offered.

A fundamental notion of session types is that of duality. In order to achieve
communication safety, a binary session channel is split by giving rise to two
opposite endpoints, each of which is owned by one of the interacting participants.
These endpoints are required to have dual behaviour and thus have dual types. So,
duality is a fundamental concept in the theory of session types as it is the ingredient
that guarantees communication safety and session fidelity. In order to better
understand session types and the notion of duality, let us consider a simple
example: a client and a server communicating over a session channel. The
endpoints x and y of the channel are owned by the client and the server, respectively
and should have dual types. If the type of channel endpoint x is

?Int:?Int:!Bool:end
meaning that the process listening on channel x receives an integer value

followed by another integer value and then sends back a boolean value—then the
type of channel endpoint y should be

!Int:!Int:?Bool:end
meaning that the process listening on channel y sends an integer value followed

by another integer value and then waits to receive back a boolean value—which is
the dual type. As shown in the next chapter, term constructs like ðmxyÞ, are added to
the syntax of processes and are used to create the endpoints of a session channel, on
which the duality relation is then checked.

Another important feature related to session types is that of session channel
transmission, namely delegation, where a session endpoint is send to a participant,
for the latter to carry out the session.

Session types and session primitives are added to the syntax of standard p-
calculus types and terms, respectively. In doing so, sessions give rise to additional
separate syntactic categories. Hence, the syntax of types need to be split into
separate syntactic categories, one for session types and the other for standard p-
calculus types [48, 58, 104, 118] (this often introduces a duplication in the typing
contexts, as well).

In this part of the thesis we try to understand to which extent this redundancy is
necessary, in the light of the following similarities between session constructs and
standard p-calculus constructs.

Consider the session type previously mentioned: ?Int:?Int:!Bool:end. This type
assigned to a session channel endpoint describes a structured sequence of inputs
and outputs by specifying the type of messages that it can transmit. This recalls the
linearised channels [72], which are channels used multiple times for

48 Part II: Safe Communication by Encoding

communication but only in a sequential manner. Linearised types can be encoded,
as shown in [72], into linear types—i.e., channel types used exactly once and
recursive types. Differently from session types, linearised channel types have the
same carried type (or payload) and the same direction of communication.

Let us now consider branch and select. These constructs added on both the
syntax of types and of processes give more flexibility by offering and selecting a
range of possibilities. This brings in mind an already existing type construct in the
typed p- calculus, namely the variant type and the case process [99, 101].

Other analogies between session types and p-types concern session creation and
duality. Session creation is modelled via the restriction construct, used to create and
bind a new private session channel. Duality describes the split of behaviour of
session channel endpoints. This reminds us of the split of capabilities: once a new
channel is created, it can be used by two communicating processes by owning the
opposite capabilities.

The goal of this work is to investigate further the relation between session types
and standard p-types and to understand the expressive power of session types and to
which extent they are more sophisticated and complex than standard p-calculus
types. There is a plethora of papers on session types in which session types are
always taken as primitives. However, by following Kobayashi [71], we define an
encoding of session types into standard p-types and by exploiting this encoding,
session types and their theory are shown to be derivable from the well-known
theory of the typed p-calculus. For instance, basic properties such as subject
reduction and type safety in session types become straightforward corollaries of the
encoding and the corresponding properties in the typed p-calculus.

Intuitively, a session channel is interpreted as a linear channel transmitting a pair
consisting of the original payload and a new linear channel which is going to be
used for the continuation of the communication. The contribution of this encoding
is meant to be foundational: we show that it does permit to derive session types and
their basic properties; and in the next part of the thesis, we show that it is robust, by
examining some extensions of session types.

While the encoding first introduced by Kobayashi was generally known, its
strength, robustness, and practical impact were not. Probably, the reasons for this
are the following:

(a) Kobayashi did not prove any properties of the encoding and did not
investigate, its robustness;

(b) as certain key features of session types do not clearly show up in the
encoding, the faithfulness of the encoding was unclear.

A good example for (b) is duality. In the encoding, dual session types for
example, the branch type and the select type, are mapped using the same type for
example, the variant type. Basically, dual session types will be mapped onto linear
types that are identical except for the outermost I/O tag—duality on session types
boils down to the duality between input and output capability of channels.

Part II: Safe Communication by Encoding 49

Roadmap to Part II The rest of Part II is structured as follows. Chapter 4 gives a
detailed overview on the standard p-calculus. Chapter 5 gives a detailed overview
on the p-calculus with sessions. These chapters introduce both the statics and the
dynamics of the calculi. Chapter 6 presents the encoding of both session types and
session processes and gives the theoretical results that follow from the encoding.

50 Part II: Safe Communication by Encoding

http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_6

Chapter 4
Background on π-Types

In this chapterwepresent the standard typed polyadicπ-calculus [83, 84, 85, 101].We
start by giving the syntax of terms and the operational semantics, then we introduce
the syntax of types and the typing rules.

4.1 Syntax

The syntax of the standard polyadic π-calculus is given in Fig. 4.1. Let P, Q range
over processes, x, y over variables, l over labels and v over values, i.e., variables,
boolean values (and possibly other ground values like integers, strings etc.) and
variant values, which are labelled values. For our purposes, we adopt the polyadic
π-calculus where a tuple of values denoted by ṽ can be sent and replaces a tuple of
variables ỹ. We denote with ·̃ an ordered sequence of elements “·”.

The output process x!〈ṽ〉.P sends a tuple of values ṽ on channel x and proceeds
as process P; the input process x?(ỹ).P performs the opposite operation, it receives
on channel x a tuple of values and substitutes them for the placeholders ỹ in P .
The process if v then P else Q is the standard one. The process P | Q is the
parallel composition of processes P, Q. The process 0 is the terminated process.
The process (νx)P creates a new variable x and binds it with scope P . The process
case v of {li_xi � Pi }i∈I offers different behaviours depending on the (labelled) value
v. Labels li for all i in some set I are all different, and their order is not important.

We say that a process is prefixed in a variable x , if it is either of the form x!〈v〉.
P or of the form x?(y).P . For simplicity, we will avoid triggering the terminated
process, so we will omit 0 from processes in the remainder of the thesis. We use
fv(P) to denote the set of free variables in P , bv(P) to denote the bound ones and
vars(P) = fv(P) ∪ bv(P) to denote the set of all variables in P . The bound variables
are: in (νx)P variable x is bound in P , in x?(y).P variable y is bound in P and in

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_4

51

52 4 Background on π-Types

Fig. 4.1 Syntax of the standard π -calculus

case v of {li_xi � Pi }i∈I every variable xi is bound in Pi . If not under the previous
cases, then the variable is a free one. We will use substitution and alpha-conversion
as defined in [101]. We use P[x/y] to denote process P where every occurrence of
the free variable y is substituted by variable x . Substitution is coupled with avoiding
the unintended variable capture by the binders of the calculus. In order to achieve
this, the alpha-conversion of variables is performed, which performs a renaming of
bound variables in a process.

Definition 4.1.1 (Alpha-convertibility and Substitution) The following give a pro-
cedure for substituting and renaming variables in a process.

1. If a variable x does not occur in a process P , then P[x/y] is the process obtained
by replacing every occurrence of y by x in P .

2. An alpha conversion of the bound variables in a process P is the replacement of
a subterm

• x?(y).Q by x?(w).Q[w/y] or
• (νy)Q by (νw)Q[w/y] or
• case v of {li_yi � Qi }i∈I by case v of {li_wi � Qi [wi/yi]}i∈I
where in each case w does not occur in Q or any wi does not occur in Qi .

3. Processes P and Q are alpha-convertible P =α Q if Q can be obtained from P
by a finite number of changes in the bound variables.

However, in this work we adopt the Barendregt variable convention, namely that
all variables in bindings in anymathematical context are pairwise distinct and distinct
from the free variables.

4.2 Semantics

Before presenting the operational semantics, we introduce the notion of structural
congruence ≡ for the standard π-calculus as defined in [101]. It is the smallest
congruence relation on processes that satisfies the following axioms.

4.2 Semantics 53

Fig. 4.2 Structural congruence for the standard π-calculus

Fig. 4.3 Rules for equational reasoning

The first three axioms state respectively that the parallel composition of processes
is commutative, associative and uses process 0 as the neutral element. The last three
axioms state respectively that one can safely add or remove any restriction to the
terminated process, the order of restrictions is not important and the last one called
scope extrusion states that one can extend the scope of the restriction to another
process in parallel as long as the restricted variable is not present in the new process
included in the restriction, side condition x /∈ fv(Q). By the convention of names
adopted, this side condition is redundant, However, for more clarity, we report the
condition as part of the last axiom.

Since ≡ is a congruence, it means that it is closed under every context C, where
informally a context is a process with a hole. Hence, in addition to the axioms
presented in Fig. 4.2, we also need the rules in Fig. 4.3 for equational reasoning,
where we read = as ≡.

The operational semantics of the standard π-calculus is given in Fig. 4.4. It
is a binary reduction relation → defined over processes. We use →∗ to denote
the reflexive and transitive closure of →. We call a redex a process of the form
(x!〈ṽ〉.P | x?(ỹ).Q). Rule (Rπ -Com) is the communication rule: the process on
the left sends a tuple of values ṽ on x , while the process on the right receives the
values and substitutes them for the placeholders in ỹ. Rule (Rπ -Case), is also called
a case normalisation since it does not require a counterpart to reduce. The case
process reduces to Pj substituting x j with the value v, if the label l j is selected.
This label should be among the offered labels, namely j ∈ I . Rules (Rπ -IfT) and
(Rπ -IfF) state that the conditional process if v then P else Q reduces either to P
or to Q depending on whether the value v is true or false, respectively. Rules
(Rπ -Res) and (Rπ -Par) state that communication can happen under restriction and
parallel composition, respectively. Rule (Rπ -Struct) is the standard one, stating
that reduction can happen under the structural congruence, previously introduced.

54 4 Background on π-Types

Fig. 4.4 Semantics of the standard π -calculus

4.3 π-Types

The syntax of linear π-types is given in Fig. 4.5. Let α, β range over actions or
capabilities, being ‘i’ input, ‘o’ output or ‘�’ connection. Let τ range over channel
types and T range over types. Linear types are �i [T̃], �o [T̃] and �� [T̃]. These types
specify both the capability and the multiplicity of a channel i.e., how the channel
should be used and for howmany times. In particular, type �i [T̃] is the type assigned
to a channel that can be used exactly once for receiving a sequence of values of types
T̃ ; type �o [T̃] is the type assigned to a channel that can be used exactly once for
sending a sequence of values of types T̃ , and type �� [T̃] is the type assigned to a
channel that can be used exactly once for receiving and once for sending a sequence
of values of types T̃ . The capability � denotes the combination of i and o capabilities.
In addition, we denote with ∅[T̃] the type of a channel with no capabilities, namely
a channel that cannot be used for communication at all. Types include channel types
τ ; the variant type 〈li_Ti 〉i∈I and Bool type. The variant type is a labelled form of
disjoint union of types. The labels ranging in a set I are all distinct. The order of the
components does not matter. The Bool type is the type assigned to boolean values,

Fig. 4.5 Syntax of linear π-types

4.3 π-Types 55

true and false. We include only the Bool type just for simplicity. One can add
to the syntax of types any other standard constructs of the π-calculus. For example,
other ground types like Int,String etc., or non-linear channel types that can be
used an unbounded number of times (see [101]).Wewill use these types in examples.

In order to better understand linearity in the linear π-calculus, we present the
following simple examples. If x and y have types �o [T] and �i [S] respectively, then
the following processes:

x!〈v〉.P y?(z).Q

respect linearity of x and y, if x /∈ fv(P) and y /∈ fv(Q). Instead, the processes:

x!〈v〉.P | x!〈w〉.Q x!〈v〉.x!〈w〉.R

do not respect linearity of x since it is used twice to send a value v and value w.

4.4 π-Typing Rules

A typing context is a partial function from variables to types and is defined as follows:

� ::= ∅ | �, x : T

The predicates lin and un on the standard π-types are defined as follows:

lin(T) if T = �α [T̃] or (
T = 〈li_Ti 〉i∈I and for some j ∈ I. lin(Tj)

)

un(T) otherwise

A type is linear if it is a linear channel type or if it is a variant type containing a linear
type in at least one of its branches; otherwise it is unrestricted. These predicates are
extended to typing contexts in the expected way:

lin(�) if there is (x : T) ∈ �, such that lin(T)

un(�) otherwise

We define the combination of types and of typing contexts in Fig. 4.6. We use � to
denote the operator of combination. This operator is associative and hence we do not
use brackets. The combination of linear types states that a linear input type combined
with a linear output type results in a linear connection type, whenever the tuple of
carried types is the same. The combination of unrestricted types is defined only if the
two types combined are the same, otherwise it is undefined. Notice that, in particular
the unrestricted combination gives ∅[T̃] � ∅[T̃] � ∅[T̃]. The combination of typing
contexts is defined by following the same line as that of combination of types. The
type of a variable x in �1 � �2 is the combination of the type of x in �1 and the type
of x in �2 if x is both in �1 and �2; otherwise, it is the type assumed either in �1 or
in �2, where defined, otherwise the combination is undefined. The combination of

56 4 Background on π-Types

F
ig
.4
.6

C
om

bi
na
tio

n
of

π
-t
yp
es

an
d
ty
pi
ng

co
nt
ex
ts

4.4 π-Typing Rules 57

Fig. 4.7 Type duality for linear π-types

typing contexts �1 � �2 is extended to a tuple of typing contexts �1 � · · · � �n and
we denote this for simplicity as �̃.

We define the duality of π-types to be simply the duality on the capability of the
channel. Formally, it is defined in Fig. 4.7.

Typing judgements are of the following two forms: � � v : T stating that value v
is of type T in the typing context �; and � � P stating that process P is well typed
in the typing context �.

The typing rules for the linear π-calculus are given in Fig. 4.8. Rule (Tπ -Var)
states that a variable is of type the one assumed in the typing context. Moreover, the
typing context contains only unrestricted type assumptions. Rule (Tπ -Val) states
that a boolean value, either true or false, is of type Bool. Again, the typing
context contains only unrestricted type assumptions. Rule (Tπ -Inact) states that
the terminated process 0 is well typed in every unrestricted typing context. Rule
(Tπ -Par) states that the parallel composition of two processes is well typed in the
combination of typing contexts that are used to typecheck eachof the processes. There
are two typing rules for the restriction process, rule (Tπ -Res1) and rule (Tπ -Res2).
Rule (Tπ -Res1) states that the restriction process (νx)P is well typed if process P is
well typed under the same typing context augmented with x : �� [T̃]. Since the type
assumption on variable x is needed to type P and it is a linear channel type, it means
that x is free in P . Rule (Tπ -Res2) states that the restriction (νx)P is well typed if P
is well typed and variable x is not used for communication in P . This rule is needed
in the standard π-calculus to prove subject reduction stated by Theorem (see [101]).
Moreover, this rule is also needed in our encoding that we present in Chap.6. Rule
(Tπ -If) is standard, except for the combination of typing contexts. Note that both
branches of the conditional are typed in the same typing context, since only one of
the branches will be chosen. Rules (Tπ -Inp) and (Tπ -Out) state that the input and
output processes are well typed if x is a linear channel used in input and output,
respectively and the carried types are compatible with the types of ỹ and ṽ. Note
that �̃2 is the combination of all the typing contexts used to type ṽ. Rule (Tπ -LVal)
states that the variant value l j_v is of type variant 〈li_Ti 〉i∈I if v is of type Tj and j
is in I . Rule (Tπ -Case) states that process case v of {li_xi � Pi }i∈I is well typed if
the value v has compatible variant type and every process Pi is well typed assuming
xi has type Ti . Notice that the case process, in the same way as for the conditional
one, uses only one typing context to type its branches. Again, this does not violate
linearity, since only one of the branches is going to be executed.

http://dx.doi.org/10.2991/978-94-6239-204-5_6

58 4 Background on π-Types

Fig. 4.8 Typing rules for the standard π-calculus

4.5 Main Results

In this section we recall the main result for the linear π-calculus. We start with the
definition of closed typing context.

Definition 4.5.1 (Closed Typing Context) A typing context � is closed if for all
x ∈ dom(�), then �(x)
= �� [T̃].

In the following we give the substitution lemma for the linear π-calculus and the
unrestricted weakening and strengthening lemmas.

Lemma 4.5.2 (Substitution Lemma for Linear π-Calculus) Let �, x : T � P, and
let � � �′ be defined and �′ � v : T . Then, � � �′ � P[v/x].
Lemma 4.5.3 (Unrestricted Weakening in Linear π-Calculus) If � � P, then
�, x : T � P, for all x /∈ fv(P) and un(T).

Lemma 4.5.4 (Strengthening in Linear π-Calculus) If �, x : T � P and x /∈ fv(P)

and un(T), then � � P.

The following lemma states the type preservation of a linear process under struc-
tural congruence.

Lemma 4.5.5 (Type Preservation under ≡ for Linear π-Calculus) Let � � P and
P ≡ P ′, then � � P ′.

4.5 Main Results 59

As often in the literature, in order to prove type soundness, we show first the
subject reduction (or type preservation under reduction) and the type safety as stated
in [97]. We start with subject reduction.

Theorem 4.5.6 (Subject Reduction for Linear π-Calculus) Let � be a closed linear
typing context. If � � P and P → P ′, then � � P ′.

By the statement of subject reduction for linearπ-calculus, since the typing context
is closed (it has no linear channel owning both capabilities), this means that, P
reduces to P ′ either by a case normalisation or by a conditional reduction or if case
a communication occurs, then it is a communication on a restricted channel which
owns both capabilities of input and output. Reduction rules under a context are a
generalisation of the above.

In the following we give the definition of well-formed processes, which is also
present in the π-calculus with session types. The notion of well-formed processes
is in opposition to that of ill-formed processes. The ill-formed processes fall in
three different categories: (i) conditional processes whose guard is neither true nor
false, like if x then P else Q; (ii) case processeswhose guard is not a variant value,
like case x of {li_xi � Pi }i∈I ; and (iii) two threads, each owning the same variable
and using it with the same capability, like (νx)(x?(z) | x?(z)).
Definition 4.5.7 (Well-Formedness for Linear π-Calculus) A process iswell formed
if for any of its structural congruent processes of the form (ν x̃)(P | Q) the following
hold.

• If P is of the form if v then P1 else P2, then v is either true or false.
• If P is of the form case v of {li_xi � Pi }i∈I , then v is l j_w for some variable w and
for j ∈ I .

• If P is prefixed in xi and Q is prefixed in xi where xi ∈ x̃ , then P | Q is a redex.

After the definition of well-formedness of a process, we are now ready to state
the type safety property for the linear π-calculus.

Theorem 4.5.8 (Type Safety for Linear π-Calculus) If � P, then P is well formed.

The following theorem states that a well-typed closed process does not reduce to
an ill-formed one.

Theorem 4.5.9 (Type Soundness for Linear π-Calculus) If � P and P →∗ Q, then
Q is well formed.

Notice that this is one way of presenting the type soundness in the standard typed
π-calculus. Anotherwaywould be by introducing the notion ofwrong and extending
the operational semantics with reductions to wrong and stating the type soundness
as “well-typed programs do not go wrong”. This is shown in [101].

Chapter 5
Background on Session Types

We start this chapter with an example, the “Distributed Auction System” taken
from [110].

Example 5.0.1 Distributed Auction System
There are three roles in this scenario: sellers that want to sell their items, auction-

eers that are responsible for selling the items on behalf of the sellers and bidders that
bid for the items being auctioned. We describe now the protocols of the three roles.
Wewill usemeaningful names starting in capital letter to denote types for values, like
Item, Price etc. We describe first the protocol for sellers. The only operation that
a seller performs towards an auctioneer is selling, by first sending to the auctioneer
the kind of the item that he wants to sell and the price that he wants the item to be
sold. Then, the seller waits a for a reply from the auctioneer, which in case the item
is sold, sends to the seller the price otherwise if the item is not sold, terminates the
communication. However, in both cases the communication terminates. Formally we
have:

Seller: ⊕ {selling : !Item.!Price.&{sold : ?Price.end, not : end}}

As previously, ? and ! denote, input and output actions, respectively; whether, &
and⊕ denote external and internal choices, receptively, which are branch and select.
Names in italics selling, sold, not indicate the labels of the choices. Item is the type
of the items, which abstractly can be a string or an identifier denoted by a number
etc. Price is the type of the price and generally can be an integer.

We now show the protocol for the auctioneers. An auctioneer communicates with
both sellers and bidders, so its session type is as follows:

Auctioneer: &{selling : ?Item.?Price. ⊕ {sold : !Price.end, not : end},
register : ?Id.!Item.!Price.?Bid.end}

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_5

61

62 5 Background on Session Types

The auctioneer offers a choice to the seller by the selling label: it receives from the
seller the kind of item to be sold and the price and then, if the auctioneer manages
to sell the item, he sends back to the seller the price to which the item was sold, if
not, the communication ends. We can easily see the duality between the type of the
seller and the selling branch of the auctioneer’s session type.

⊕{selling : !Item.!Price.&{sold : ?Price.end, not : end}}
&{selling : ?Item.?Price. ⊕ {sold : !Price.end, not : end} . . .}

The auctioneer offers a choice to the bidder by the register branch. Id is the type
of the identity of the bidder, which abstractly can be an identity string or an identity
number.Bid is the type of price that the bidder can offer for the item being auctioned.
The register branch will be clearer once we describe the bidders protocol. Formally
we have:

Bidder: ⊕ {register : !Id.?Item.?Price.!Bid.end}

This means that a bidder selects the register branch, which is the only branch avail-
able in its internal choice operator, and sends to the auctioneer his identity, which
abstractly can be a string or a number etc. Then he receives from the auctioneer the
item being auctioned and its price. Before terminating the communication, the bidder
sends to the auctioneer his bid. Again, there is duality between the register branch
of the auctioneer’s session type and the type of the bidder.

&{. . . , register : ?Id.!Item.!Price.?Bid.end}
⊕{register : !Id.?Item.?Price.!Bid.end}

So, summing it up we have the following situation:

Auctioneer:{selling : . . . , register : . . .}
Seller: ⊕ {selling : . . .}
Bidder: ⊕ {register : . . .}

Notice that, the above session types are not dual with each other, because the auc-
tioneer’s session type has one branch more than the seller’s and the bidder’s session
type. However, by using subtyping, which we will introduce in Chap.7, one can
safely extend the types for seller and bidder to also include the missing branch, by
thus establishing duality.

This example involves three participants and usesmultiparty session types in order
to illustrate their expressiveness; however, in our formal development we focus on
dyadic session types.

http://dx.doi.org/10.2991/978-94-6239-204-5_7

5.1 Syntax 63

Fig. 5.1 Syntax of the π -calculus with sessions

5.1 Syntax

The syntax of the π -calculus with sessions is given in Fig. 5.1. Let P, Q range over
processes, x, y over variables, v over values, i.e., variables and ground values (inte-
gers, booleans, strings) and l over labels. For simplicity, we include in the present
syntax only the boolean values, true and false. However, other ground values
can be added to the above syntax and often in examples we will use them. The output
process x!〈v〉.P sends a value v on channel x and proceeds as process P; the input
process x?(y).P receives a value on channel x , stores it in variable y and proceeds
as P . The process x � l j .P selects label l j on channel x and proceeds as P . The
branching process x � {li : Pi }i∈I offers a range of labelled alternatives on channel
x , followed by their respective process continuations. Branching and selection indi-
cate the external and the eternal choice, respectively. The order of labelled processes
is not important and the labels are all different. Process if v then P else Q is the
standard conditional process. Process P | Q is the parallel composition of processes
P, Q. Process 0 is the terminated process. Process (νxy)P restrict variables x, y
with scope P . This restriction is different from the standard one in the π-calculus.
It states that variables x and y are bound with scope P , and most importantly, are
bound together, by representing two endpoints of the same (session) channel. When
occurring under the same restriction, x and y are called co-variables. Some nota-
tional comments follow. We say that a process is prefixed in a variable x , if it is of
the form x!〈v〉.P, x?(y).P, x � l j .P, orx � {li : Pi }i∈I . For simplicity, we will avoid
triggering the terminated process, so wewill omit 0 from any process in the examples
to follow. The parenthesis in the terms represent bindings, in particular in (νxy)P
both variables x and y are bound with scope P; and in x?(y).P variable y is bound
with scope P . A variable can be bound or free, the latter holds when the variable
does not occur under a restriction or as the object of an input process. We denote
with bv(P) the set of bound variables of process P and with fv(P) we denote the set
of free variables of process P . Hence, we use vars(P) = bv(P) ∪ fv(P) to denote
the set of variables in P . We will use alpha-conversion and substitution which are
defined in the same way as for the standard π-calculus [101]. We use P[x/y] as a
notation for process P where every occurrence of the free variable y is substituted by

64 5 Background on Session Types

Fig. 5.2 Structural congruence for the π-calculus with sessions

variable x . As usual in the π-calculus, substitution is coupled with alpha-conversion
to avoid the unintended capture of variables by the binders of the calculus.

Definition 5.1.1 (Alpha-convertibility and Substitution) The following give a pro-
cedure for substituting and renaming variables in a process.

1. If a variable x does not occur in a process P , then P[x/y] is the process obtained
by replacing every occurrence of y by x in P .

2. An alpha conversion of the bound variables in a process P is the replacement of
a subterm x?(y).Q by x?(w).Q[w/y] or of a subterm (νxy)Q by (νwy)Q[w/x]
or by (νxw)Q[w/y] such that w does not occur in Q.

3. Processes P and Q are alpha-convertible P =α Q if Q can be obtained from P
by a finite number of changes in the bound variables.

In this work, we adopt the same variable convention as in the original paper [109],
namely that all variables in bindings in anymathematical context are pairwise distinct
and distinct from the free variables.

5.2 Semantics

Before presenting the operational semantics, we introduce the notion of structural
congruence ≡ which is the smallest congruence relation on session processes that
satisfies the axioms in Fig. 5.2. The first three axioms state that the parallel com-
position of processes is commutative, associative and uses process 0 as the neutral
element. The last three axioms state that one can safely add or remove any restriction
to the terminated process, the order of restrictions is not important and the last one
called scope extrusion states that one can extend the scope of the restriction to another
process in parallel. Notice that, as stated in [109], the side condition x, y /∈ fv(Q) is
redundant, since in this calculus we adopt the variable convention that prohibits x, y
to be free in Q since they occur bound in P . However, for more clarity, we report
the condition as part of the last axiom. As for the standard π-calculus, we need the
rules for equational reasoning. They are the same as the ones given in Sect. 4.2.

The semantics of the π -calculus with sessions is given in terms of the reduc-
tion relation →, which is a binary relation over processes, and it is defined by
the rules in Fig. 5.3. We denote with →∗ the reflexive and transitive closure of →.
We call redexes processes of the form (νxy)(x!〈v〉.P | y?(z).Q) or of the form
(νxy)(x � l j .P | y � {li : Pi }i∈I), for j ∈ I . Rule (R-Com) is the rule for communi-
cation: the process on the left sends a value v on x , while the process on the right

http://dx.doi.org/10.2991/978-94-6239-204-5_4

5.2 Semantics 65

Fig. 5.3 Semantics of the π -calculus with sessions

receives the value on y and substitutes the placeholder z with it. A key difference
wrt the standard π -calculus is that the subject of the output (x) and the subject of
the input (y) are two co-variables, created and bound together by (νxy). As a conse-
quence, communication occurs only on boundvariables.After the communication the
restriction still persists in order to enable further possible communications. Process
R collects other usages of variables x and y. Rule (R-Sel) is similar: the commu-
nicating processes have prefixes that are co-variables according to the restriction
(νxy). The selecting process continues as P and the branching process continues as
Pj where j is the selected label. Again, notice that communication occurs only on
bound variables and the restriction persists after reduction in order to enable further
communications. Process R collects other usages of variables x and y. Rules (R-IfT)
and (R-IfF) state that the conditional process if v then P else Q reduces either to
P or to Q depending on whether the value v is true or false, respectively. Rules
(R-Res) and (R-Par) state that communication can happen under restriction and
parallel composition, respectively. Rule (R-Struct) is the structural rule. It states
that reduction is closed under structural congruence.

5.3 Session Types

The syntax of session types is given in Fig. 5.4. Let q range over type qualifiers,
p over pretypes, qp over qualified pretypes, and T,U over types. A type can be
Bool, the type of boolean values, end, the type of the terminated channel where no
communication can take place further and qp, the qualified pretype. A pretype can
be !T .U or ?T .U , which respectively, is the type of sending or receiving a value of
type T with continuation of typeU . Select ⊕{li : Ti }i∈I and branch &{li : Ti }i∈I are
sets of labelled types indicating, respectively, internal and external choice. The labels
are all different and the order of the labelled types does not matter. Qualifiers are lin
(for linear) or un (for unrestricted) and have the following meaning. Linear qualified

66 5 Background on Session Types

Fig. 5.4 Syntax of session types

pretypes describe channelswhose pretype is executed exactly once, or said differently
describe channels that are used exactly once in one thread, the latter being any process
not including parallel composition. On the contrary, the unrestricted qualifier is used
for channels that can be used an unlimited number of times in parallel. In the rest
of this thesis, we refer to types T whose qualifier is lin as session types. Instead, we
refer to the unrestricted ones as shared channel types. In the rest of the work, we
assume that the qualifier lin is used for every pretype unless it is stated otherwise.

The following predicates state when a type is linear or unrestricted.

lin(T) if T = lin p
un(T) otherwise

A key notion in session types is duality. Type duality is standard, as in seminal
works [58, 109], and is defined in Fig. 5.5. Qualifiers do not influence duality of
types. The dual of the terminated channel type is itself. The dual of an input type is
an output type and vice versa, and the dual of a branch type is a select type and vice
versa. Duality is undefined otherwise. For example, duality is not defined on Bool.
If we include other ground types to the syntax above, like Int or String, duality
would not be defined on them either. This is standard in session types theory and the
reason for this is that if Bool = Bool, then as stated in [109], the following process
would be typable.

(νxy) if x then 0 else 0

Trivially, we do not want this to be the case. To conclude, duality satisfies the con-

volution property, namely T = T .

Fig. 5.5 Type duality for session types

5.4 Session Typing Rules 67

5.4 Session Typing Rules

The syntax of typing contexts is defined as follows:

� :: = ∅ | �, x : T

As usual, we consider the typing context � to be a partial function from variables to
types. Therefore, we write �,�′ only when � and �′ have disjoint domains.

Typing rules make use of context split and context update defined in Fig. 5.6. The
context split operator ‘◦’ adds a linear type linp to either �1 or �2, when �1 ◦ �2 is
defined. When linp is added to �1 it is not present in �2 and vice versa, when it is
added to �2 it is not present in �1. If un(T), then it is possible to add this type to both
�1 and �2. The context update operator ‘+’ is used to update the type of a variable
with the continuation type in order to enable typing after an input (or branch) or an
output (or select) has occurred. When the typing context � is updated with a variable
having linear type, then the variable must not be present in dom(�), otherwise, if
the variable is of unrestricted type, then the typing context is updated only if the type
of the variable is the same, namely un(T). We extend the lin and un predicates to
typing contexts in as expected:

lin(�) if there is (x : T) ∈ �, such that lin(T)

un(�) otherwise

The type system for session processes satisfies two invariants. First, linear chan-
nels occur in exactly one thread, and second, co-variables have dual types. The first
invariant is guaranteed by context split operation on typing contexts, and the sec-
ond one is guaranteed by the typing rule for restriction. The type system avoids
communication errors such as type mismatches and race conditions.

Fig. 5.6 Context split and context update

68 5 Background on Session Types

Typing judgements for values have the form � � v : T , stating that a value v has
type T in the typing context �, and typing judgements for processes have the form
� � P , stating that a process P is well typed in the typing context �.

The typing rules for the π-calculus with sessions are given in Fig. 5.7. Rule
(T-Var) states that a variable x is of type T , if this is the type assumed in the
typing context. Rule (T-Val) states that a value v, being either true or false, is
of type Bool. Rule (T-Inact) states that the terminated process 0 is always well-
typed. Notice that in all the previous rules, the typing context � is an unrestricted
one. The reason for un(�) is because every time we have a linearly qualified vari-
able, that variable has to be used, which is not the case is these rules. Rule (T-Par)
types the parallel composition of two processes, using the split operator for typing
contexts ◦ which ensures that each linearly-typed channel x , is used linearly, i.e., in
P | Q, x occurs either in P or in Q but never in both. However, this constraint is
not required in case of unrestricted variables, which by context split definition can
be on both �1 and �2. Rule (T-Res) states that (νxy)P is well typed if P is well
typed and the co-variables have dual types, namely T and T . Rule (T-If) states that
the conditional statement is well typed if its guard is typed by a boolean type and
the branches are well typed under the same typing context. �2 types both P and Q
because only one of the branches is going to be executed. Rules (T-In) and (T-Out)
type, respectively, the receiving and the sending of a value; these rules deal with both
linear and unrestricted types. In (T-In) the typing context is split in two parts, �1 and

Fig. 5.7 Typing rules for the π -calculus with sessions

5.4 Session Typing Rules 69

�2, respectively. �1 checks x is of type q?T .U , whether �2 augmented with y : T
states the well-typedness of P . In addition, �2 is updated by x : U which is the type
of the continuation of the communication. Notice that, by the definition of context
update, if variable x is linearly qualified, then it is not in dom(�2), otherwise, if it
is unrestricted then the update is defined only if U = q?T .U . Rule (T-Out) splits
the typing context in three parts, �1, �2 and �3, respectively. �1 checks x is of type
q!T .U , �2 checks the value to be sent v is of correct type T , and �3 updated with
the continuation type U checks the well-typedness of P . As in the previous rule, in
case q = un the update operation is defined only if U = un!T .U . Rule (T-Brch)

types an external choice on channel x , checking that each branch continuation Pi
follows the respective continuation type of x . Dually, rule (T-Sel) types an internal
choice communicated on channel x , checking that the chosen label is among the
ones offered by the receiver and that the continuation proceeds as expected by the
type of x . In both rules, the typing context is split in �1 ◦ �2. �1 types the variable
x by q&{li : Ti }i∈I and q ⊕ {li : Ti }i∈I , respectively. In (T-Brch), every Pi process
for i ∈ I is well typed in �2 updated with x having type Ti . Since only one of the
processes offered in the branching is going to be chosen, one can safely use only �2

to typecheck them all. In (T-Sel), however, only the process P corresponding to the
selected label l j is typechecked. And again, the typing context �2 is updated by the
continuation type Tj that variable x has in P . The update of �2 in case q = un is
defined only if Ti = un&{li : Ti }i∈I and Tj = un ⊕ {li : Ti }i∈I , respectively.

However, all the four equations reported above, for the input rules, (T-Inp) and
(T-Brch) and for the output rules, (T-Out) and (T-Sel), in case variable x has an
unrestricted type, are not solvable by only using the syntax of types presented so far.
For example, consider the process

x!〈true〉 | x!〈false〉

Since x is used in two threads in parallel, it should have an unrestricted type, i.e.,
x : un!Bool.T . Then, by rule (T-Out) we have x : un!Bool.T + x : T , which
obviously is not satisfied by any type produced by the syntax of types presented
in Sect. 5.3. This means that the only processes typable are the ones that use only
linear channels. However, it will be possible to typecheck the process previously
written by introducing recursive types, as we will see in Chap.10.

5.5 Main Results

In this section we present the main properties satisfied by the session type system
presented in Fig. 5.7. The following lemmas and theorems are proven in [109].

Weakening allows introduction of new unrestricted channels in a typing context.
It holds only for unrestricted channels, for linear ones it would be unsound, since
when a linear channel is in a typing context, this means that it should be used in the
process it types. The weakening lemma is useful when we need to relax the typing

http://dx.doi.org/10.2991/978-94-6239-204-5_10

70 5 Background on Session Types

assumptions for a process and include new typing assumptions of variables not free
in the process.

Lemma 5.5.1 (Unrestricted Weakening in Sessions) If � � P and un(T), then
�, x : T � P.

Strengthening is somehow the opposite operation of weakening, since it allows
us to remove unrestricted channels from the typing context that are not free in the
process being typed. This operation is mostly used after a context split is performed.

Lemma 5.5.2 (Strengthening in Sessions) Let � � P and x /∈ FV (P), then

• x : linp /∈ �

• � = �′, x : T then, �′ � P.

The substitution lemma that follows is important in proving the main results that
we give at the end of the section. Notice that the lemma is not applicable in case
x = v and un(T), since there exists no � such that � = �1 ◦ �2 where x : T ∈ �1

but x : U /∈ �2 for all types U .

Lemma 5.5.3 (Substitution Lemma for Sessions) If �1 � v : T and �2, x : T � P
and � = �1 ◦ �2, then � � P[v/x].

Another important property is the following one, stating the type preservation of
a process under structural congruence.

Lemma 5.5.4 (Type Preservation under ≡ for Sessions) Let � � P and P ≡ P ′,
then � � P ′.

Before giving the type safety and the subject reduction properties, we first give
the definitions ofwell-formed and ill-formed processes. The ill-formed processes fall
in three different categories: (i) conditional processes whose guard is neither true
nor false, like if x then P else Q; (ii) two threads using a variable in parallel
with different actions like (x!〈true〉 | x?(z)); and (iii) two threads, each owning a
co-variable but using them by not respecting duality, like (νxy)(x?(z) | y � l j .P). In
order to avoid process as the previous ones, [109] defines the notion of well-formed
processes, which we report in the following.

Definition 5.5.5 (Well-Formedness for Sessions) A process iswell-formed if for any
of its structural congruent processes of the form (ν x̃ y)(P | Q) the following hold.

• If P is of the form if v then P1 else P2, then v is either true or false.
• If P and Q are prefixed at the same variable, then the variable performs the same
action (input or output, branching or selection).

• If P is prefixed in xi and Q is prefixed in yi where xi yi ∈ x̃ y, then P | Q is a
redex.

5.5 Main Results 71

Notice that well-typedness of a process does not imply the process is well formed.
Consider if x then P else Q and x : Bool � if x then P else Q. This process is not
well formed since x is not a boolean value. However, this is no longer true when the
process is closed, namely it is well typed in an empty typing context. The following
theorem holds and is proven in [109].

Theorem 5.5.6 (Type Safety for Sessions) If � P, then P is well formed.

Another important result is the subject reduction property, stated by the following
theorem.

Theorem 5.5.7 (Subject Reduction for Sessions) If � � P and P → Q, then
� � Q.

Notice that, since communication occurs only on co-variables, if P → Q as a result of
a communication, then it implies that the session channel inwhich the communication
occurs is restricted and is not in the typing context �.

We are ready now to present the main result of the session type system. The
following theorem states that a well-typed closed process does not reduce to an
ill-formed one.

Theorem 5.5.8 (Type Soundness for Sessions) If � P and P →∗ Q, then Q is well
formed.

Chapter 6
Session Types Revisited

In this chapter we introduce the encoding of session types into linear channel types
and variant types and of session processes into standard π -calculus processes. We
start by giving first the encoding of types and then the encoding of terms.

6.1 Types Encoding

Recall that the syntax of types presented in Sect. 5.3 uses the notion of qualifiers: lin
and un. Linear pretypes denote the standard session types, as known in the literature,
whereas the unrestricted ones can be roughly associated to the standard π -channels
usedmultiple times in different threads,with the additional feature of being structured
and describing a communication. In this chapter, by following [32], we present the
encoding of session types into linear π -types augmented with variant type. We will
define the encoding of the unrestricted pretypes in Chap.10, when dealing with
recursion and recursive types.

Formally, we encode the types produced by the following grammar:

T ::=Bool | end | linp

where the encoding of a boolean type, and in general, the encoding of any other
ground type added to the syntax of types, likeInt,String,Unit . . ., is the identity
function, since the same type constructs can be added to the syntax of types in the
standard π -calculus, namely:

�Bool� � Bool (E-Bool)
�Int� � Int (E-Int)

�String� � String (E-String)

�Unit� � Unit (E-Unit)

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_6

73

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_10

74 6 Session Types Revisited

Fig. 6.1 Encoding of session types

The encoding of session types into standard π -types is given in Fig. 6.1. (E-End)
states that the encoding of the terminated communication channel is ∅ [], namely the
channel with no capability which cannot be used for communication. (E-Out) states
that the encoding of !T .U is a linear type used in output to carry a pair of values of
type the encoding of T and of type the encoding of the dual of U . The reason for
duality ofU is that the sender sends to its peer the channel for the continuation of the
communication, and hence the sender sends a channel being typed according to how
the peer is going to use it. (E-Inp) states that the session type ?T .U is encoded as the
linear input channel type carrying a pair of values of type the encoding of T and of the
encoding of continuation type U . (E-Select) and (E-Branch) define the encoding
of select and branch, respectively. Select and branch types are generalisations of
output and input types, respectively. They are interpreted as linear output and linear
input channels carrying variant types with the same labels l1 . . . ln and types the
encodings of T1 . . . Tn and T1 . . . Tn , respectively. Again, the reason for duality is the
same as for the output type.

Let us now illustrate the encoding of types with a simple example. Let x : T and
y : T where

T = ?Int.?Int.!Bool.end

and

T = !Int.!Int.?Bool.end

A process well-typed in x : T uses channel x to receive in sequence two integer
numbers and then to output a boolean value. Instead, a process well-typed in y : T
uses channel y to perform exactly the opposite actions: it outputs in sequence two
integer numbers and waits for a boolean value in return.

The encoding of these types is as follows:

�T � = �i [Int, �i [Int, �o [Bool,∅[]]]]

and
�T � = �o [Int, �i [Int, �o [Bool,∅[]]]]

The duality on session types boils down to opposite capabilities of linear channel
types. The encodings above differ only in the outermost level, that corresponds to

6.1 Types Encoding 75

having �i or �o types. The π -calculus channels having these types carry exactly the
same messages. This happens because duality is incorporated in the output typing,
where the receiver’s point of view of the output type is considered, which is therefore
dual wrt that of the sender.

6.2 Terms Encoding

In this section we present the encoding of terms of the π -calculus with sessions
into terms of the standard π -calculus. The encoding of terms is different from the
encoding of types as it is parametrised by a function f , which is a partial function
from variables to variables. We use dom(f) to denote the domain of function f . We
use fx , fy as an abbreviation for f (x), f (y), respectively. Let P be a session process.
We say that function f is a renaming function for P , if f is used in the encoding of P ,
i.e., �P� f , and it satisfies the following conditions: dom(f) ⊇ vars(P)meaning that
f is defined on both free and bound variables of P; f is the identity function on the
bound variables of P and it renames only the free variables of P . We assume that the
set of variables used to rename the free variables of P is different from all variables in
P , namely different from the set vars(P). During the encoding of a session process,
its renaming function f is updated as in f, {x �→ c} or f, {x, y �→ c}, where variables
x and y are now associated to c, namely f (x) and f (y) are updated to c. The notion
of renaming function is extended also to values, being ground values and variables,
and is as expected. We now explain the reason for using a renaming function f in
the encoding of terms. Since we are using linear channel types to encode session
types, for the linearity to be guaranteed, once a channel is used it should not be used
again. However, to enable structured communication and simulate the structure of
session types, at every output action a new channel is created and is sent along with
the original payload, in order to be used for the continuation of the session. This is
called continuation-passing style. Finally, we will often refer to a renaming function
f for a session process P , simply as a function f , keeping in mind that it satisfies
all the conditions previously presented.

The encoding of terms of the π -calculus with sessions is defined in Fig. 6.2.
(E-Variable) states that a variable x is encoded by using a renaming function f for
x , meaning that f is defined on x . (E-True) and (E-False) state that the encoding of
true and false is respectively true and false under any renaming function. In
particular, this holds for every ground value, like integers, strings etc., which can be
added to both the π -calculus with and without sessions. (E-Inaction) states that the
terminated session process is interpreted as the terminated process in the standard
π -calculus by using any renaming function. The encoding of the output process,
given by (E-Output), is as follows: a new channel c is created and is sent along with
�v� f on channel fx ; the encoding of the continuation process P is parametrised in f
updated by mapping x to c. The encoding of the input process, given by (E-Input),
receives on channel fx a value that substitutes variable y and a fresh channel c that
substitutes fx in the continuation process. The encodings of selection and branching,

76 6 Session Types Revisited

Fig. 6.2 Encoding of session terms

given by (E-Selection) and (E-Branching), are generalisations of the output and
input ones, respectively. The selection process x � l j .P is encoded as the process that
first creates a new channel c and then sends on fx a variant value l j_c, with l j being
the selected label and c the channel created for the continuation of the session, and
proceeds as process P encoded in the updated renaming function f . The encoding
of branching is more complex: first, there is an input on fx of a value (typically
being a variant value), which is the guard of the case process. According to the
label of the guard one of the corresponding processes �Pi� f,{x �→c} for i ∈ I , will be
chosen. The encoding of conditional, given by (E-Conditional), is the conditional
in the standard π -calculus where the guard v and both branches P and Q are encoded
using the renaming function f . The encodingof the parallel compositionof processes,
given by (E-Composition), is an homomorphism, namely it is the composition of the
encodings of the subprocesses. The encoding of the restriction processes is given by
(E-Restriction). A new channel c is created and the encoding of P uses a renaming
function f updated by associating both x and y to c.

Let us now illustrate the encoding of processes by a simple example. Consider
the equality test problem. There are two processes, a server and a client, where the
client sends to the server two integers, one after the other, and receives from the
server a boolean value, being true if the integers are equal or false otherwise.
The processes are defined as follows:

server � x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0
client � y!〈3〉.y!〈5〉.y?(eq).0

These processes communicate on a session channel by owning two opposite end-
points x and y, respectively. The system is given by

(νxy)
(
server | client)

6.2 Terms Encoding 77

The client process sends over channel y two integers, being 3 and 5, respectively,
and waits for a boolean value in return which asserts the equality of the integers.
On the other hand, the server process receives the two integers, which substitutes
for the placeholders nr1 and nr2 and sends back to the client the boolean value
corresponding to the result of testing (nr1 == nr2), which in this case is false.

The encoding of the above system, by following (E-Restriction), is

�(νxy)
(
server | client)� f = (νz) �

(
server | client)� f,{x,y �→z}

where the encodings of server and client processes are as follows:

�server� f,{x,y �→z} = z?(nr1, c).c?(nr2, c′).(νc′′)c′!〈nr1 == nr2, c′′〉.0
�client� f,{x,y �→z} = (νc)z!〈3, c〉.(νc′)c!〈5, c′〉.c′?(eq, c′′).0

Function f, {x, y �→ z} maps x and y to a new name z, and after that, before every
output action, a new channel is created and sent to the partner together with the
payload: first channel c, then c′ and at the end c′′ are created to accommodate the
continuation of communication. The endpoints x and y are respectively typed with
T and T , which were previously introduced and encoded.

6.3 Properties of the Encoding

In this section we present some important theoretical results regarding our encoding,
by following the requirements stated in [53] about an encoding being a good means
for language comparison.

In order to prove these results, the encoding is extended to typing contexts and
is presented in Fig. 6.3. The notion of renaming function is thus extended to typing
contexts and is as expected. Notice that, the ‘,’ operator in session typing contexts is
interpreted as the ‘�’ operator in linear π -calculus typing contexts. The reason is the
following: the (dual) co-variables are interpreted as the same (linear) channel, which
in order to be used for communication, must have connection capability. Hence, by
using the ‘�’ operator, the dual capabilities of linear channels can be combined into
the connection capability.

Fig. 6.3 Encoding of session typing contexts

78 6 Session Types Revisited

6.3.1 Auxiliary Results

In this section we present some auxiliary results needed to prove the correctness of
the encoding wrt typing and reduction.

The following proposition states that the encoding of typing contexts, given in
Fig. 6.3, is sound and complete wrt to predicates lin and un.

Lemma 6.3.1 Let � be a session typing context and q be either lin or un. Then,
q(�) if and only if q(��� f), for all renaming functions f for �.

Proof The result follows immediately by the encoding of typing contexts given in
Fig. 6.3 and by the definitions of lin and un on typing contexts in the π -calculus with
sessions and in the standard π -calculus. �

The following two lemmas give the relation between the combination operator
‘�’ and the standard ‘,’ operator in linear π -typing contexts.

Lemma 6.3.2 If � � x : T is defined and x /∈ dom(�), then also�, x : T is defined.

Proof The result follows immediately by the definition of combination of typing
contexts. �

Lemma 6.3.3 If �, x : T is defined, then also � � x : T is defined.

Proof By definition on ‘,’ operator, we have that x : T /∈ �. The result follows
immediately by the definition of combination of typing contexts. �

The following lemmas give a relation between the context split operator ‘◦’ in
session typing contexts and the combination operator ‘�’ in linear π -typing contexts
by using the encoding of typing contexts presented in Fig. 6.3.

Lemma 6.3.4 (Split to Combination) Let �1, . . . , �n be session typing
contexts, such that �1 ◦ · · · ◦ �n is defined. Let f be a renaming function
for all �i , for i ∈ 1 . . . n such that ��1� f � · · · � ��n� f is defined. Then,
��1 ◦ · · · ◦ �n� f = ��1� f � · · · � ��n� f .

Proof The result follows immediately by the encoding of typing contexts, given in
Fig. 6.3, context split ‘◦’ for session typing contexts, given in Fig. 5.6 and context
combination ‘�’ for linear typing contexts, given in Fig. 4.6. �

Lemma 6.3.5 (Combination to Split) Let � be a session typing context and f a
renaming function for � and ��� f = �π

1 � · · · � �π
n . Then, � = �1 ◦ · · · ◦ �n and

for all i ∈ 1 . . . n, �π
i = ��i� f .

Proof The result follows immediately by the encoding of typing contexts, given in
Fig. 6.3, context split ‘◦’ for session typing contexts, given in Fig. 5.6 and context
combination ‘�’ for linear typing contexts, given in Fig. 4.6. �

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_4

6.3 Properties of the Encoding 79

Lemma 6.3.6 Let ��� f
 �P� f for some renaming function f for P. For all
functions g with dom(g) ⊇ dom(f) such that, for all x : S ∈ � with lin(S) and
g(x) = f (x), and for some y : T ∈ � with un(T) and g(y) �= f (y) and g(y) is
fresh, then it is the case that ���g
 �P�g.

Proof The proof follows immediately from the encoding of processes, the definition
of renaming functions and the typing rules for the linear π -calculus. �

The following lemma gives an important result that relates the encoding of dual
session types to dual linear π -calculus channel types.

Lemma 6.3.7 (Encoding of Dual Session Types) If �T � = τ , then �T � = τ .

Proof The proof is done by induction on the structure of session type T . We use
the duality of session types defined in Fig. 5.5 and the duality of standard π -types
defined in Fig. 4.7.

• T = end
By (E-End) we have �end� = ∅[] and T = end. It follows by duality of ∅[].

• T = !T .U
By (E-Out) we have �!T .U� = �o [�T �, �U�]. By duality of session types we have
!T .U = ?T .U . By (T-In) we have �?T .U� = �i [�T �, �U�]. We conclude by the
duality of π -types.

• T = ?T .U
By (E-In) we have �?T .U� = �i [�T �, �U�]. By duality of session types we have

?T .U = !T .U . By (E-Out) we have �!T .U� = �o [�T �, �U�], which by the con-
volution property of duality means �o [�T �, �U�]. We conclude by the duality of
π -types.

• T = ⊕{li : Ti }i∈I
By (E-Select) we have �⊕{li : Ti }i∈I � = �o [〈li_�Ti�〉i∈I] By duality on session
types we have ⊕{li : Ti }i∈I = &{li : T i }i∈I . By (E-Branch) we have
�&{li : T i }i∈I � = �i [〈li_�Ti�〉i∈I]. We conclude by the duality of π -types.

• T = &{li : Ti }i∈I
By (E-Branch) we have �&{li : Ti }i∈I � = �i [〈li_�Ti�〉i∈I] By duality on session
types we have &{li : Ti }i∈I = ⊕{li : T i }i∈I . By (E-Select) we have

�⊕{li : T i }i∈I � = �o [〈li_�Ti�〉i∈I], which by the convolution property of duality
means �o [〈li_�Ti�〉i∈I]. We conclude by the duality of π -types. �

6.3.2 Typing Values by Encoding

The following two lemmas state the correctness of the encoding wrt typing values,
namely if a session value v has a session type T in a session typing context �, then
the encoding of v has a type encoding of T in a typing context being the encoding
of �, and vice versa.

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_4

80 6 Session Types Revisited

Lemma 6.3.8 (Soundness: Value Typing) If ��� f
 �v� f : �T � for some renaming
function f for v, then �
 v : T .
Proof The proof is done by cases on the value v:

• Case v = x :
By (E-Variable) we have that �x� f = fx and assume ��� f
 fx : �T �. By
(Tπ -Var) this means that (fx : �T �) ∈ ��� f and hence ��� f = �π

1 , fx : �T �
which by Lemma 6.3.3 and by (E-Gamma) means that � = �1, x : T , where
�π
1 = ��1� f . By (Tπ -Var) we have un(��1� f). By Lemma 6.3.1 also un(�1)

holds. By applying rule (T-Var) we obtain the result.
• Case v = true:
By (E-True) and (E-Bool) we have that �true� f = true and assume
��� f
 true : Bool and un(��� f). By Lemma 6.3.1 also un(�) holds. By
applying rule (T-Val) we obtain the result.
Case v = false is symmetrical to the above. �

Lemma 6.3.9 (Completeness: Value Typing) If �
 v : T , then ��� f
 �v� f : �T �
for some renaming function f for v.

Proof The proof is done by induction on the derivation �
 v : T .
• Case (T-Var):

un(�)

�, x : T
 x : T
By Lemma 6.3.1 we obtain un(��� f). By (E-Gamma), (E-Variable), Lemma
6.3.2 and rule (Tπ -Var) we obtain ��� f , fx : �T �
 fx : �T � for any renaming
function f for x .

• Case (T-Val):
un(�) v = true / false

�
 v : Bool
ByLemma6.3.1weobtainun(��� f). By applying (E-True) or (E-False) depend-
ing on whether v is true or false, (E-Bool) and rule (Tπ -Val) we obtain
��� f
 �v� f : �Bool�, for any renaming function f . �

6.3.3 Typing Processes by Encoding

Recall that we are interested in encoding session types, namely linear pretypes.
Hence, in the following we will omit q from the typing rules. The only unrestricted
types we encode areBool andend. Moreover, the update operator+ used in session
typing rules boils down to ‘,’ operator, by following the definition of context update
given in Fig. 5.6.

http://dx.doi.org/10.2991/978-94-6239-204-5_5

6.3 Properties of the Encoding 81

The following two theorems give the correctness of the encoding wrt typing
processes, namely if a session process P is well typed in a session typing context �,
then the encoding of P is also well typed in the encoding of �, and vice versa.

Theorem 6.3.10 (Soundness: Process Typing) If ��� f
 �P� f for some renaming
function f for P, then �
 P.

Proof The proof is done by induction on the structure of session process P .

• Case 0:
By (E-Inaction) we have �0� f = 0 and assume ��� f
 0, where un(��� f) holds.
By Lemma 6.3.1 we obtain un(�). By applying (T-Inact) we conclude this case.

• Case P | Q:
By (E-Composition) we have that �P | Q� f = �P� f | �Q� f and assume
��� f
 �P� f | �Q� f , which by rule (Tπ -Par) means:

�π
1
 �P� f �π

2
 �Q� f

�π
1 � �π

2
 �P� f | �Q� f

where ��� f = �π
1 � �π

2 . By Lemma 6.3.5 �π
1 = ��1� f and �π

2 = ��2� f , such
that � = �1 ◦ �2. By induction hypothesis we have �1
 P and �2
 Q. Then,
by applying (T-Par) we obtain �1 ◦ �2
 P | Q.

• Case if v then P else Q:
By (E-Conditional) we have that:

�if v then P else Q� f = if �v� f then �P� f else �Q� f

Assume ��� f
 if �v� f then �P� f else �Q� f , which by rule (Tπ -If) means:

�π
1
 �v� f : Bool �π

2
 �P� f �π
2
 �Q� f

�π
1 � �π

2
 if �v� f then �P� f else �Q� f

where ��� f = �π
1 � �π

2 .ByLemma6.3.5�π
1 = ��1� f and�π

2 = ��2� f , such that
� = �1 ◦ �2. By Lemma 6.3.8 we have �1
 v : Bool. By induction hypothesis
we have �2
 P and �2
 Q. Then, by applying (T-If) we obtain
�1 ◦ �2
 if v then P else Q.

• Case (νxy)P:
By (E-Restriction) we have �(νxy)P� f = (νc)�P� f,{x,y �→c} and assume
��� f
 (νc)�P� f,{x,y �→c}. Then, either (Tπ -Res1) or (Tπ -Res2) is the last typ-
ing rule applied. We consider both cases in the following:

– (Tπ -Res1) is applied.

��� f , c : �� [W]
 �P� f,{x,y �→c}
(Tπ -Res1)

��� f
 (νc)�P� f,{x,y �→c}

82 6 Session Types Revisited

The premise of the rule asserts that c : �� [W] and c ∈ �P� f,{x,y �→c}, which
implies ��� f , c : �β [W] � c : �β [W]
 �P� f,{x,y �→c}. By Lemma 6.3.3 we
obtain ��� f � c : �β [W] � c : �β [W]
 �P� f,{x,y �→c}. Let �T � = �β [W], then
by Lemma 6.3.7 we have �T � = �β [W]. Then, by induction hypothesis we have
�, x : T, y : T
 P . By applying rule (T-Res) we obtain �
 (νxy)P , which
concludes the proof.

– (Tπ -Res2) is applied.

��� f , c : ∅[]
 �P� f,{x,y �→c}
(Tπ -Res2)

��� f
 (νc)�P� f,{x,y �→c}

Since ��� f , c : ∅[]
 �P� f,{x,y �→c} holds, then c /∈ dom(��� f). By the com-
bination operation on unrestricted variables and by Lemma 6.3.3 we have
��� f � c : ∅[] � c : ∅[]
 �P� f,{x,y �→c}. By induction hypothesis and by
(E-End) we have�, x : end, y : end
 P . By (T-Res) we obtain�
 (νxy)P ,
which concludes the case.

• Case x?(y).P:
By (E-Input) we have �x?(y).P� f = fx?(y, c).�P� f,{x �→c} and assume that
��� f
 fx?(y, c).�P� f,{x �→c}, which by rule (Tπ -Inp) means:

�π
1
 fx : �i[T π ,Uπ] �π

2 , y : T π , c : Uπ
 �P� f,{x �→c}

��� f
 fx?(y, c).�P� f,{x �→c}

where ��� f = �π
1 � �π

2 . By Lemma 6.3.5 we have that �π
1 = ��1� f and

�π
2 = ��2� f , such that � = �1 ◦ �2. By Lemma 6.3.8 we have �1
 x : ?T .U ,

where T π = �T �,Uπ = �U�. By induction hypothesis and Lemma 6.3.3 we have
�2, y : T, x : U
 P , where f, {x �→ c} is used in the encoding of the top-right
premise. By applying rule (T-Inp) we obtain the result.

• Case x!〈v〉.P:
By (E-Output) we have �x!〈v〉.P� f = (νc) fx !〈�v� f , c〉.�P� f,{x �→c} and assume
��� f
 (νc) fx !〈�v� f , c〉.�P� f,{x �→c}. Since c is a restricted channel, then either
rule (Tπ -Res1) or (Tπ -Res2) is applied. We consider only the former, as the case
where (Tπ -Res2) is applied for c : ∅[] is similar. By rule (Tπ -Res1) and rule
(Tπ -Out) we have the following derivation:

�π
1
 fx : �o[T π ,Uπ] �π

2
 �v� f : T π

�π
3 , c : �α[W]
 �P� f,{x �→c} c : �α[W]
 c : �α[W]

��� f , c : ��[T π ,Uπ]
 fx !〈�v� f , c〉.�P� f,{x �→c}
(Tπ -Out)

��� f
 (νc) fx !〈�v� f , c〉.�P� f,{x �→c}
(Tπ -Res1)

where ��� f = �π
1 � �π

2 � �π
3 . By Lemma 6.3.5 we have �π

1 = ��1� f ,
�π
2 = ��2� f and �π

3 = ��3� f , such that � = �1 ◦ �2 ◦ �3. Notice that the type
of c is �� [W], meaning that c owns both capabilities of input and output. One

6.3 Properties of the Encoding 83

capability of c is sent along with value �v� f and the other one is used in the
encoding of the continuation �P� f,{x �→c}. By Lemma 6.3.8 we have �1
 x : !T .U
where �o[T π ,Uπ] = �!T .U�, which by (E-Out) means that T π = �T � and
Uπ = �U� = �α[W], for the capability α. By Lemma 6.3.8 we have �2
 v : T .
By induction hypothesis and by Lemma 6.3.3 we have �3, x : U
 P , where
f, {x �→ c} is used in the encoding of this premise and �U� = �α[W], which
is obtained by applying Lemma 6.3.7. By rule (T-Out) we obtain the result
�1 ◦ �2 ◦ �3
 x!〈v〉.P

• Case x � {li : Pi }i∈I :
By (E-Branching) �x � {li : Pi }i∈I � f = fx?(y). case y of {li_c � �Pi� f,{x �→c}}i∈I .
Assume ��� f
 fx?(y). case y of {li_c � �Pi� f,{x �→c}}i∈I which by (Tπ -Inp) and
(Tπ -Case) means that the following derivation is possible:

(Tπ -Inp)

�π
1
 fx : �i[〈li_T π

i 〉i∈I]

(Tπ -Case)

y : 〈li_T π
i 〉i∈I
 y : 〈li_T π

i 〉i∈I
�π
2 , c : T π

i
 �Pi� f,{x �→c} ∀i ∈ I

�π
2 , y : 〈li_T π

i 〉i∈I
 case y of {li_c � �Pi� f,{x �→c}}i∈I
��� f
 fx?(y). case y of {li_c � �Pi� f,{x �→c}}i∈I

where ��� f = �π
1 � �π

2 . By Lemma 6.3.5 �π
1 = ��1� f and �π

2 = ��2� f , such
that� = �1 ◦ �2. By Lemma 6.3.8 we have�1
 x : &{li : Ti }i∈I and by applying
(E-Branch) we have �&{li : Ti }i∈I � f = �i[〈li_T π

i 〉i∈I], which implies that for all
i ∈ I �Ti� = T π

i . By induction hypothesis and by Lemma 6.3.3, for all i ∈ I we
have �2, x : Ti
 Pi , where f, {x �→ c} is used in the encoding of this premise.
By applying rule (T-Brch) we obtain �1 ◦ �2
 x � {li : Pi }i∈I .

• Case x � l j .P:
By (E-Selection) we have �x � l j .P� f = (νc) fx !〈l j_c〉.�P� f,{x �→c} and assume
��� f
 (νc) fx !〈l j_c〉.�P� f,{x �→c}. Since c is a restricted channel in the encoding
of x � l j .P , then either rule (Tπ -Res1) or (Tπ -Res2) must have been applied. We
consider only the case for (Tπ -Res1), as the one for (Tπ -Res2) and c : ∅[] is sim-
ilar. By (Tπ -Res1), (Tπ -Out), (Tπ -Lval) and (Tπ -Var) we have the following
derivation:

(Tπ -Res1)

(Tπ -Out)

�π
1
 fx : �o [〈li_T π

i 〉i∈I] �π
2 , c : T π

j
 �P� f,{x �→c}

(Tπ -Lval)
(Tπ -Var)

c : T π
j
 c : T π

j j ∈ I

c : T π
j
 l j_c : 〈li_T π

i 〉i∈I
��� f , c : �� [W]
 fx !〈l j_c〉.�P� f,{x �→c}

��� f
 (νc) fx !〈l j_c〉.�P� f,{x �→c}

where ��� f = �π
1 � �π

2 . By using Lemma 6.3.5 we have that �π
1 = ��1� f and

�π
2 = ��2� f , such that � = �1 ◦ �2. Notice that the type of c is �� [W], meaning

that c owns both capabilities of input and output, because one capability of c is
sent along with value l j_c and the other one is used in the continuation process
�P� f,{x �→c}. This implies that �� [W] = T π

j � T π
j . In the case where (Tπ -Res2)

84 6 Session Types Revisited

is applied, c is of type ∅[] = ∅[] � ∅[]. By using Lemma 6.3.8 we have that
�1
 x : ⊕{li : Ti }i∈I . By (E-Select) �o [〈li_T π

i 〉i∈I] = �⊕{li : Ti }i∈I � and for
all i ∈ I. T π

i = �Ti�. By induction hypothesis and by Lemma 6.3.3, we have �2,

x : Tj
 P , where f, {x �→ c} is used in the encoding of this premise. By rule
(T-Sel) we obtain the result �1 ◦ �2
 x � l j .P . �

Theorem 6.3.11 (Completeness: Process Typing) If �
 P, then ��� f
 �P� f for
some renaming function f for P.

Proof The proof is done by induction on the derivation �
 P .

• Case (T-Inact):
un(�)

(T-Inact)
�
 0

By Lemma 6.3.1 we obtain un(��� f). By applying (E-Inaction) and rule
(Tπ -Inact) and letting f be any function on dom(�), we obtain the result.

• Case (T-Par):
�1
 P �2
 Q

(T-Par)
�1 ◦ �2
 P | Q

By induction hypothesis we have ��1� f ′
 �P� f ′ for some function f ′ and
��2� f ′′
 �Q� f ′′ for some function f ′′. Since �1 ◦ �2 is defined by assump-
tion, then for all x ∈ dom(�1) ∩ dom(�2) it holds that �1(x) = �2(x) = T and
un(T). Let dom(�1) ∩ dom(�2) = D and let f ′

D = f ′\⋃
d∈D{d �→ f ′(d)} and

f ′′
D = f ′′\⋃

d∈D{d �→ f ′′(d)}. Hence, for all d ∈ D we are not making any
assumption on f ′(d) and f ′′(d). We define f as f = ⋃

d∈D{d �→ d ′} ∪ f ′
D ∪ f ′′

D ,
where for all d ∈ D we create a fresh name d ′ and associate d �→ d ′. Moreover,
f is a function since its subcomponents act on disjoint domains. We can then
rewrite the induction hypothesis as ��1� f
 �P� f and ��2� f
 �Q� f , by apply-
ingLemma6.3.6. By applying (E-Composition), rule (Tπ -Par) andLemma6.3.4
we obtain ��1 ◦ �2� f
 �P | Q� f .

• Case (T-Res):
�, x : T, y : T
 P

(T-Res)
�
 (νxy)P

Notice that x, y /∈ dom(�) by typability assumptions. We distinguish the follow-
ing two cases:

– Suppose T �= end. By duality on session types T �= end. By induction hypoth-
esis ��, x : T, y : T � f ′
 �P� f ′ , for some function f ′, which by (E-Gamma)
means ��� f ′ � f ′

x : �T � � f ′
y : �T �
 �P� f ′ . Let f = f ′ and update f with

{x, y �→ c} for a fresh name c that does not occur in the codomain of f .
We will use f, {x, y �→ c} as a renaming function. By Lemma 6.3.7, �T � = τ

and �T � = τ . Since T �= end and T �= end, we have that �T � = �α [W] and
�T � = �α [W] and by the combination of linear channel types

6.3 Properties of the Encoding 85

�α [W] � �α [W] = �� [W], where W denotes the pair of carried types,
which are irrelevant for this proof. Hence, we can rewrite
the induction hypothesis as ��� f � c : �� [W]
 �P� f,{x,y �→c}. By
Lemma 6.3.2, ��� f , c : �� [W]
 �P� f,{x,y �→c}. By (Tπ -Res1) we obtain
��� f
 (νc)�P� f,{x,y �→c}, which concludes this case.

– Suppose T = end. By duality on session types T = end. By induction hypoth-
esis ��, x : end, y : end� f ′
 �P� f ′ , for some function f ′. By (E-Gamma) it
means that ��� f ′ � f ′

x : �end� � f ′
y : �end�
 �P� f ′ . Let f = f ′ and update

f with {x, y �→ c} for a fresh name c that does not occur in the codomain of f .
We will use f, {x, y �→ c} as a renaming function. Hence, we can rewrite the
induction hypothesis as ��� f � c : ∅[] � c : ∅[]
 �P� f,{x,y �→c}, which by the
combination of unrestricted types means ��� f � c : ∅[]
 �P� f,{x,y �→c}. More-
over, c /∈ dom(��� f), since c is chosen fresh. By Lemma 6.3.2 we obtain
��� f , c : ∅[]
 �P� f,{x,y �→c}. We conclude by applying rule (Tπ -Res2).

• Case (T-In):
�1
 x : ?T .U �2, y : T, x : U
 P

(T-In)
�1 ◦ �2
 x?(y).P

By Lemma 6.3.9 ��1� f ′
 f ′
x : �?T .U�, for some function f ′ and by induc-

tion hypothesis ��2, y : T, x : U� f ′′
 �P� f ′′ , for some function f ′′. By apply-
ing (E-Inp) we have ��1� f ′
 f ′

x : �i[�T �, �U�] and by (E-Gamma) we have
��2� f ′′ � f ′′

y : �T � � f ′′
x : �U�
 �P� f ′′ . By rule (Tπ -Var) we can derive

y : �T �
 y : �T �. Since f ′′ is a renaming function for P and y ∈ fv(P), by the top-
right premise of (T-In), then y /∈ dom(��2� f ′′) and y �= f ′′

x . Then,
��2� f ′′ � y : �T � � f ′′

x : �U� is defined. By Lemma 4.5.2 we obtain that
��2� f ′′ � y : �T � � f ′′

x : �U�
 �P� f ′′ [y/ f ′′
y]. Since �1 ◦ �2 is defined, it means

that for all x ∈ dom(�1) ∩ dom(�2) it holds that �1(x) = �2(x) = T and un(T).
Let dom(�1) ∩ dom(�2) = D and let f ′

D = f ′\ ⋃
d∈D{d �→ f ′(d)} and

f ′′
D = f ′′\⋃

d∈D{d �→ f ′′(d)}. Now, suppose that f ′′(x) = c. Then, we define f
as f = ⋃

d∈D{d �→ d ′} ∪ f ′
D ∪ f ′′

D, {y �→ y}\{x �→ c}, where for all d ∈ D we
create a fresh name d ′ and associate d �→ d ′. Notice that f ′′

D(y) is defined and
is f ′′

y from the induction hypothesis. Then, f ′′
D, {y �→ y} updates f ′′

y to y by the
association of {y �→ y}. Moreover, f is a function since its subcomponents act on
disjoint domains. Then, by Lemma 6.3.6 we can rewrite the above as:

��1� f
 fx : �i[�T �, �U�]

Since x, y /∈ dom(�2), then ��2, y : T, x : U� f,{x �→c} can be optimised and dis-
tributed as ��2� f � y : �T � � c : �U�. Then, by Lemma 6.3.2:

��2� f , y : �T �, c : �U�
 �P� f,{x �→c}

By applying (E-Input), rule (Tπ -Inp) and Lemma 6.3.4 we obtain the result
��1� f � ��2� f
 fx?(y, c).�P� f,{x �→c}.

http://dx.doi.org/10.2991/978-94-6239-204-5_4

86 6 Session Types Revisited

• Case (T-Out):

�1
 x : !T .U �2
 v : T �3, x : U
 P
(T-Out)

�1 ◦ �2 ◦ �3
 x!〈v〉.P
By Lemma 6.3.9 ��1� f ′
 �x : !T .U� f ′ , for some function f ′, which by
applying (E-Out) means that ��1� f ′
 f ′

x : �o[�T �, �U�]. By Lemma 6.3.9
��2� f ′′
 �v� f ′′ : �T � for some function f ′′. By induction hypothesis and by
applying (E-Gamma) we have ��3� f ′′′ � f ′′′

x : �U�
 �P� f ′′′ , for some f ′′′.
Since �1 ◦ �2 ◦ �3 is defined, then for all x ∈ dom(�1) ∩ dom(�2) ∩ dom(�3) it
must be the case that �1(x) = �2(x) = �3(x) = T and un(T). Now, let
D = dom(�1) ∩ dom(�2) ∩ dom(�3). Let f ′

D = f ′\⋃
d∈D{d �→ f ′(d)},

f ′′
D = f ′′\⋃

d∈D{d �→ f ′′(d)} and f ′′′
D = f ′′′\ ⋃

d∈D{d �→ f ′′′(d)}. Suppose
f ′′′
x = c. Then, define f as f = ⋃

d∈D{d �→ d ′} ∪ f ′
D ∪ f ′′

d ∪ f ′′′
D \{x �→ c},where

for all d ∈ D we create a fresh name d ′ and associate d �→ d ′. Notice that
f is a function because its subcomponents act on disjoint domains. Then, by
Lemma 6.3.6, the above can be rewritten as:

��1� f
 fx : �o[�T �, �U�] ��2� f
 �v� f : �T �

Since x /∈ dom(�3), then ��3, x : U� f,{x �→c} can be optimised and distributed as
��3� f � c : �U�. Then, the induction hypothesis becomes:

��3� f � c : �U�
 �P� f,{x �→c}

Assume U �= end and hence U �= end. By rule (Tπ -Var) we can derive
c : �U�
 c : �U�. By rule (Tπ -Out) and by using Lemma 6.3.7 and “�” operator
to obtain c : �� [W], we have the following derivation:

��1� f
 fx : �o[�T �, �U�]��2� f
 �v� f : �T �c : �U�
 c : �U���3� f � c : �U�
 �P� f,{x �→c}
��1� f � ��2� f � ��3� f � c : �� [W]
 fx !〈�v� f , c〉.�P� f,{x �→c}

Then, by Lemma 6.3.2 and by applying (Tπ -Res1) we have the following:

��1� f � ��2� f � ��3� f , c : �� [W]
 fx !〈�v� f , c〉.�P� f,{x �→c}

��1� f � ��2� f � ��3� f
 (νc) fx !〈�v� f , c〉.�P� f,{x �→c}

The case where U = U = end, which yields c : ∅[], is symmetrical and is
obtained by using (Tπ -Res2) instead of (Tπ -Res1). By Lemma 6.3.4 and
(E-Output) we conclude this case.

6.3 Properties of the Encoding 87

• Case (T-Brch):

�1
 x : &{li : Ti }i∈I �2, x : Ti
 Pi ∀i ∈ I
(T-Brch)

�1 ◦ �2
 x � {li : Pi }i∈I
By Lemma 6.3.9 ��1� f ′
 �x : &{li : Ti }i∈I � f ′ , for some function f ′, which by
applying (E-Branch)means ��1� f ′
 f ′

x : �i[〈li_�Ti�〉i∈I]. By induction hypothe-
sis ��2� f ′′ � f ′′

x : �Ti�
 �Pi� f ′′ for all i ∈ I , for some function f ′′. Since�1 ◦ �2 is
defined, it means that for all x ∈ dom(�1) ∩ dom(�2) it holds that
�1(x) = �2(x) = T and un(T). Let dom(�1) ∩ dom(�2) = D and define
f ′
D = f ′\ ⋃

d∈D{d �→ f ′(d)} and f ′′
D = f ′′\⋃

d∈D{d �→ f ′′(d)}. Now, suppose
that f ′′(x) = c. Then, define f = ⋃

d∈D{d �→ d ′} ∪ f ′
D ∪ f ′′

D\{x �→ c}, where
for all d ∈ D we create a fresh name d ′ and associate d �→ d ′. Moreover, f is
a function since its subcomponents act on disjoint domains. Then, by applying
Lemma 6.3.6, the above can be rewritten as:

��1� f
 fx : �i[〈li_�Ti�〉i∈I] ��2� f � c : �Ti�
 �Pi� f,{x �→c} for all i ∈ I

Since x /∈ dom(�2), then ��2, x : Ti� f,{x �→c} can be optimised and distributed
as ��2� f � c : �Ti�, as we did in the previous cases. By rules (Tπ -Case), and
(Tπ -Var) for deriving y : 〈li_�Ti�〉i∈I , and Lemma 6.3.2 we have the following
derivation:

(Tπ -Case)
(Tπ -Var)

y : 〈li_�Ti�〉i∈I
 y : 〈li_�Ti�〉i∈I ��2� f , c : �Ti�
 �Pi� f,{x �→c} ∀i ∈ I

��2� f , y : 〈li_�Ti�〉i∈I
 case y of {li_c � �Pi� f,{x �→c}}i∈I
Then, by applying (Tπ -Inp) we have:

(Tπ -Inp)

��1� f
 fx : �i[〈li_�Ti�〉i∈I]
��2� f , y : 〈li_�Ti�〉i∈I
 case y of {li_c � �Pi� f,{x �→c}}i∈I
��1� f � ��2� f
 fx?(y). case y of {li_c � �Pi� f,{x �→c}}i∈I

By (E-Branching) and Lemma 6.3.4 we conclude this case.
• Case (T-Sel):

�1
 x : ⊕{li : Ti }i∈I �2, x : Tj
 P j ∈ I
(T-Sel)

�1 ◦ �2
 x � l j .P

By Lemma 6.3.9 ��1� f ′
 �x : ⊕{li : Ti }i∈I � f ′ , for some function f ′, which
by applying (E-Select) means that ��1� f ′
 f ′

x : �o[〈li_�Ti�〉i∈I]. By induction
hypothesis and (E-Gamma) ��2� f ′′ � f ′′

x : �Tj�
 �P� f ′′ for j ∈ I , for some func-
tion f ′′. Since�1 ◦ �2 is defined, itmeans that for all x ∈ dom(�1) ∩ dom(�2) it is

88 6 Session Types Revisited

the case that �1(x) = �2(x) = T and un(T). Now, let dom(�1) ∩ dom(�2) = D
and let f ′

D = f ′\⋃
d∈D{d �→ f ′(d)} and f ′′

D = f ′′\ ⋃
d∈D{d �→ f ′′(d)} and sup-

pose that f ′′(x) = c. Then, define f as f = ⋃
d∈D{d �→ d ′} ∪ f ′

D ∪ f ′′
D\{x �→ c},

where for all d ∈ Dwecreate a fresh name d ′ and associate d �→ d ′.Moreover, f is
a function since its subcomponents act on disjoint domains. Then, by Lemma 6.3.6
we can rewrite the above as follows:

��1� f
 fx : �o[〈li_�Ti�〉i∈I] ��2� f � c : �Tj�
 �P� f,{x �→c} for j ∈ I

Since x /∈ dom(�2), then ��2, x : Tj� f,{x �→c} can be optimised and distributed as
��2� f � c : �Tj�, as we did in the previous cases. By applying (Tπ -Var) to derive
c : �Tj�, and by (Tπ -LVal) we have:

c : �Tj�
 c : �Tj�
(Tπ -Var)

c : �Tj�
 l j_c : 〈li_�Tj�〉i∈I
(Tπ -LVal)

Assume Tj �= end and hence Tj �= end. By rule (Tπ -Out) and by using
Lemma 6.3.7 and “�” operator to obtain c : �� [W], we have the following deriva-
tion:

��1� f
 fx : �o[〈li_�Ti �〉i∈I]
c : �Tj �
 l j_c : 〈li_�Tj �〉i∈I ��2� f � c : �Tj �
 �P� f,{x �→c} j ∈ I

��1� f � ��2� f � c : ��[W]
 fx !〈l j_c〉.�P� f,{x �→c}
(Tπ -Out)

Then, by Lemma 6.3.2 and by applying (Tπ -Res1) we have:

��1� f � ��2� f , c : ��[W]
 fx !〈l j_c〉.�P� f,{x �→c}

��1� f � ��2� f
 (νc) fx !〈l j_c〉.�P� f,{x �→c}

The case where Tj = Tj = end, which yields c : ∅[], is symmetrical and is
obtained by using (Tπ -Res2) instead of (Tπ -Res1). By (E-Selection) and
Lemma 6.3.4 we conclude this case. �

6.3.4 Operational Correspondence

In this section we prove the operational correspondence. This property states that
the encoding of session-typed processes is sound and complete wrt the operational
semantics of the π -calculus with and without sessions. We start by introducing the
notion of evaluation context and give two auxiliary lemmas that are used in the proof
of the operational correspondence.

6.3 Properties of the Encoding 89

Definition 6.3.12 (Evaluation Context) An evaluation context is a process with a
hole [·] and is produced by the following grammar:

E [·] � [·] | (νxy)[·]

Given a session process P , we say that E [·] is a suitable evaluation context for
process P , if whenever E [·] = (νxy)[·], then x, y ∈ fv(P). Hence, [·] is always a
suitable evaluation context for every session process. In the remainder of the thesis
we will consider only suitable evaluation contexts and we will refer to them simply
as evaluation contexts.

Lemma 6.3.13 Let Q be a session process and let Q[v/z] denote process Q where
variable z is substituted by value v. Then,

�Q[v/z]� f = �Q� f [�v� f / fz]

for all renaming functions f for Q and v.

Proof It follows immediately by the encoding of processes given in Fig. 6.2 and by
the standard substitution of variables by values in a process. �

Lemma 6.3.14 (Structural Congruence and Encoding) Let P and P ′ be session
processes. Then, P ≡ P ′ if and only if �P� f ≡ �P ′� f for all renaming functions f
for P and P ′.

Proof The proof is done by cases on the structural congruence relation. �

Let ↪→ denote structural congruence extended with a case normalisation, namely
a reduction by using (Rπ -Case).

Theorem 6.3.15 (Operational Correspondence) Let P be a session process, � a
session typing context, and f a renaming function for P such that ��� f
 �P� f .
Then, the following statements hold.

1. If P → P ′, then �P� f →↪→ �P ′� f .
2. If �P� f → Q, then there are P ′, E [·], such that E [P] → E [P ′] and Q ↪→ �P ′� f ′ ,

and either f ′ = f or f ′ = f, {x, y �→ c} for x, y such that (νxy) appears in
E [P].

Proof Notice that, since ��� f
 �P� f , by Theorem 6.3.10 it means that �
 P . We
split the proof as follows.

1. The proof is done by induction on the derivation P → P ′.

• Case (R-Com):

P � (νxy)(x!〈v〉.Q1 | y?(z).Q2) → (νxy)(Q1 | Q2[v/z]) � P ′

90 6 Session Types Revisited

By the encoding of session processes we have

�P� f = �(νxy)
(
x!〈v〉.Q1 | y?(z).Q2

)
� f

= (νc)
(
�x!〈v〉.Q1 | y?(z).Q2� f,{x,y �→c}

)

= (νc)
(
�x!〈v〉.Q1� f,{x,y �→c} | �y?(z).Q2� f,{x,y �→c}

)

= (νc)
(
(νc′)(c!〈�v� f , c′〉.�Q1� f,{x,y �→c,x �→c′}) | c?(z, c′).�Q2� f,{x,y �→c,y �→c′}

)

→ (νc)
(
(νc′)

(
�Q1� f,{x,y �→c,x �→c′} | �Q2� f,{x,y �→c,y �→c′}[�v� f /z]

))

≡ (νc′)
(
�Q1� f,{x,y �→c,x �→c′} | �Q2� f,{x,y �→c,y �→c′}[�v� f /z]

)

Since z is bound with scope Q2 it means that fz = z. Notice that since P
is a session-typed process, it means that x /∈ fv(Q2) and y /∈ fv(Q1). Then,
f, {x, y �→ c, x �→ c′} and f, {x, y �→ c, y �→ c′} can be subsumed by
f, {x, y �→ c′}. We can rewrite the above as:

(νc′)
(
�Q1� f,{x,y �→c′} | �Q2� f,{x,y �→c′}[�v� f /z]

)

On the other hand we have:

�P ′� f = �(νxy)
(
Q1 | Q2[v/z]

)
� f

= (νc′)
(
�Q1� f,{x,y �→c′} | �Q2[v/z]� f,{x,y �→c′}

)

= (νc′)
(
�Q1� f,{x,y �→c′} | �Q2� f,{x,y �→c′}[�v� f,{x,y �→c′}/�z� f,{x,y �→c′}]

)

= (νc′)
(
�Q1� f,{x,y �→c′} | �Q2� f,{x,y �→c′}[�v� f / fz]

)

= (νc′)
(
�Q1� f,{x,y �→c′} | �Q2� f,{x,y �→c′}[�v� f /z]

)

In order to obtain �Q2� f,{x,y �→c′}[�v� f,{x,y �→c′}/�z� f,{x,y �→c′}] in line 3 we apply
Lemma 6.3.13. Function f coincides with f, {x, y �→ c′} when applied to value
v and variable z and fz = z, so we can obtain �Q2� f,{x,y �→c′}[�v� f /z].
The above implies:

�P� f →≡ �P ′� f

• Case (R-Sel):

P � (νxy)(x � l j .Q | y � {li : Pi }i∈I) → (νxy)(Q | Pj) � P ′ if j ∈ I

By the encoding of session processes we have

�P� f = �(νxy)
(
x � l j .Q | y � {li : Pi }i∈I

)
� f

= (νc)
(
�x � l j .Q | y � {li : Pi }i∈I � f,{x,y �→c}

)

= (νc)
(
�x � l j .Q� f,{x,y �→c} | �y � {li : Pi }i∈I � f,{x,y �→c}

)

= (νc)
(
(νc′)

(
c!〈l j_c′〉.�Q� f,{x,y �→c,x �→c′}

) |
c?(z).case z of {li_c′ � �Pi� f,{x,y �→c,y �→c′}}i∈I

)

→ (νc)
(
(νc′)

(
�Q� f,{x,y �→c,x �→c′} |

case l j_c′ of {li_c′ � �Pi� f,{x,y �→c,y �→c′}}i∈I
))

→ (νc)
(
(νc′)

(
�Q� f,{x,y �→c,x �→c′} | �Pj� f,{x,y �→c,y �→c′}

))

≡ (νc′)
(
�Q� f,{x,y �→c,x �→c′} | �Pj� f,{x,y �→c,y �→c′}

)

6.3 Properties of the Encoding 91

Notice that since P is a well-typed session process, it means that for all i ∈ I ,
x /∈ fv(Pi) and y /∈ fv(Q). Then, both functions f, {x, y �→ c, x �→ c′} and
f, {x, y �→ c, y �→ c′} can be subsumed by f, {x, y �→ c′}. We can rewrite the
above as:

(νc′)
(
�Q� f,{x,y �→c′} | �Pj� f,{x,y �→c′}

)

On the other hand we have:

�P ′� f = �(νxy)
(
Q | Pj

)
� f

= (νc′)
(
�Q� f,{x,y �→c′} | �Pj� f,{x,y �→c′}

)

The above implies:
�P� f →↪→ �P ′� f

• Case (R-IfT):
if true then P1 else P2 → P1

By the encoding of processes we have

�P� f = �if true then P1 else P2� f

= if true then �P1� f else �P2� f

→ �P1� f

• Case (R-Res):
P → Q

(νxy)P → (νxy)Q

By the encoding of session processes we have

�(νxy)P� f = (νc)�P� f,{x,y �→c} �(νxy)Q� f = (νc)�Q� f,{x,y �→c}

By induction hypothesis we have that �P� f,{x,y �→c} →↪→ �Q� f,{x,y �→c}. We con-
clude that (νc)�P� f,{x,y �→c} →↪→ (νc)�Q� f,{x,y �→c} by applying (Rπ -Res) and
(Rπ -Struct) and the transitivity of the reduction relation.

• Case (R-Par):
P → P ′

P | Q → P ′ | Q

By the encoding of session processes we have

�P | Q� f = �P� f | �Q� f �P ′ | Q� f = �P ′� f | �Q� f

92 6 Session Types Revisited

By induction hypothesis we have that �P� f →↪→ �Q� f . We conclude that
�P� f | �Q� f →↪→ �P ′� f | �P ′� f by applying (Rπ -Par) and (Rπ -Struct) and
the transitivity of the reduction relation.

• Case (R-Struct):
P ≡ P ′, P ′ → Q′, Q′ ≡ Q

P → Q

Trivial case, by applying (Rπ -Struct) andLemma6.3.14on the inductionhypoth-
esis.

2. The proof is done by induction on the structure of the session-typed process P .
The cases to be considered are the following:

• Case P = P1 | P2.
Since �
 P1 | P2, by inversion on (T-Par) we have that �1
 P1 and �2
 P2
and � = �1 ◦ �2. By (E-Composition) we have �P1 | P2� f = �P1� f | �P2� f and
assume �P1� f | �P2� f → Q. There are only the following cases to be considered:

– Only �P1� f reduces. Let �P1� f → R. Then, by rule (Rπ -Par)
�P1� f | �P2� f → R | �P2� f and let Q = R | �P2� f . Since P1 is a subprocess of
P , by induction hypothesis there exist P ′

1, E
′ [·], such that E ′ [P1] → E ′ [P ′

1] and
R ↪→ �P ′

1� f ′′ , where either f ′′ = f or f ′′ = f, {z,w �→ d}, such that (νzw)

appears in E ′ [P1]. Choose E [·] = E ′ [·]. Since E [·] is a suitable context for
P1 and �
 P1 | P2 it means that for all (νzw) that appear in E [P1], it is
the case that z,w /∈ fv(P2). Hence, by structural congruence we obtain that
E [P1] | P2 ≡ E [P1 | P2] (1). By rule (R-Par)wehaveE [P1] | P2 → E [P ′

1] | P2 (2).
Again, by structural congruence we have E [P ′

1] | P2 ≡ E [P ′
1 | P2] (3). By rule

(R-Struct) on (1), (2), (3)we can conclude that E [P1 | P2] → E [P ′
1 | P2]. Let

P ′ = P ′
1 | P2.We observe that E [P ′

1 | P2] = E [P ′]. The last thing to show is that
Q ↪→ �P ′� f ′ , where either f ′ = f or f ′ = f, {x, y �→ c} and (νxy) appears in
E [P]. Choose f ′ = f ′′.
If f ′ = f ′′ = f , then by context closure of structural congruence
and by applying rules (Rπ -Struct) and (Rπ -Par) we obtain the result
Q = R | �P2� f ↪→ �P ′

1� f | �P2� f = �P ′� f .
If f ′ = f ′′ = f, {z,w �→ d} and since for all (νzw) that appear in E [P1], it is
the case that z,w /∈ fv(P2), we can use f ′ instead of f to encode P2 and we
obtain Q = R | �P2� f ↪→ �P ′

1� f ′ | �P2� f ′ = �P ′� f ′ .
– Only �P2� f reduces. This case is symmetrical to the previous one, by simply
exchanging the roles of P1 and P2.

– �P1� f and �P2� f communicate and both reduce. Since communication occurs
between two processes in parallel, it means that rule (Rπ -Com) is applied. Let
�P1� f perform and output action and �P2� f perform and input action – the
symmetrical case is similar. But then, since these are encodings of session-
typed processes and �1
 P1 and �2
 P2 and � = �1 ◦ �2, there are only two
possible cases:

• Case P1 | P2 = x!〈v〉.P ′
1 | y?(z).P ′

2.

6.3 Properties of the Encoding 93

By (E-Composition), (E-Output) and (E-Input), we have that:

�P1� f | �P2� f = (νc) fx !〈�v� f , c〉.�P ′
1� f,{x �→c} | fy?(z, c).�P

′
2� f,{y �→c}

→ �P ′
1� f,{x �→c} | �P ′

2� f,{y �→c}[�v� f /z]
= �P ′

1� f,{x,y �→c} | �P ′
2� f,{x,y �→c}[�v� f /z]

= Q

Since z is bound with scope P ′
2, then fz = z. The assumption �P� f → Q implies

that fx = fy . Since �
 P1 | P2, it means that x /∈ fv(P2) and y /∈ fv(P1). Hence,
in line 3 above we used function f, {x, y �→ c} to subsume both f, {x �→ c} and
f, {y �→ c}.Wewill show that there are P ′, E [·] such that E [P1 | P2] → E [P ′] and
Q ↪→ �P ′� f ′ , where either f ′ = f or f ′ = f, {z,w �→ d} for z,w such that (νzw)

appears in E [P]. Choose E [·] = (νxy)[·], then by rule (R-Com) on E [P1 | P2] we
have that:

(νxy)
(
x!〈v〉.P ′

1 | y?(z).P ′
2

) → (νxy)
(
P ′
1 | P ′

2[v/z]
)

Choose P ′ = P ′
1 | P ′

2[v/z] and f ′ = f, {x, y �→ c}. By the encoding of P ′ we
have:

�P ′� f ′ = �P ′
1 | P ′

2[v/z]� f ′

= �P ′
1� f,{x,y �→c} | �P ′

2� f,{x,y �→c}[�v� f / fz]
= �P ′

1� f,{x,y �→c} | �P ′
2� f,{x,y �→c}[�v� f /z]

= Q

Line 2 above holds by Lemma 6.3.13. Notice that v �= x, y and z �= x, y by the
well-typedness of P . Hence, we can simply use f instead of f ′ in the encoding
of v and z and since z is bound, fz = z. This concludes the case.

• Case P1 | P2 = x � l j .P ′
1 | y � {li : P ′′

i }i∈I .
By (E-Composition), (E-Selection) and (E-Branching) we have:

�P1� f | �P2� f = (νc) fx !〈l j_c〉.�P ′
1� f,{x �→c} |

fy?(z). case z of {li_c � �P ′′
i � f,{y �→c}}i∈I

→ �P ′
1� f,{x �→c} | case l j_c of {li_c � �P ′′

i � f,{y �→c}}i∈I
= �P ′

1� f,{x,y �→c} | case l j_c of {li_c � �P ′′
i � f,{x,y �→c}}i∈I

= Q

The assumption �P� f → Q implies that fx = fy . Since�
 P1 | P2, it means that
x /∈ fv(P2) and y /∈ fv(P1). Hence, in line 4 above we used function f, {x, y �→ c}
to subsume both f, {x �→ c} and f, {y �→ c}. We need to show that there are
P ′, E [·] such that E [P1 | P2] → E [P ′] and Q ↪→ �P ′� f ′ , where either f ′ = f
or f ′ = f, {z,w �→ d} for z,w such that (νzw) appears in E [P]. Choose E [·] =
(νxy)[·]. Then, by rule (R-Sel) on E [P1 | P2] we have that:

94 6 Session Types Revisited

E [P1 | P2] = (νxy)
(
x � l j .P ′

1 | y � {li : P ′′
i }i∈I

)

→ (νxy)
(
P ′
1 | P ′′

j

)
for j ∈ I

= E [P ′]

Choose P ′ = P ′
1 | P ′′

j and f ′ = f, {x, y �→ c}. By the encoding of P ′ we have:

�P ′� f ′ = �P ′
1 | P ′′

j � f ′ = �P ′
1� f,{x,y �→c} | �P ′′

j � f,{x,y �→c}

It remains to show that Q ↪→ �P ′� f,{x,y �→c}. By rules (Rπ -Case) and
(Rπ -Par) we obtain the result:

Q = �P ′
1� f,{x,y �→c} | case l j_c of {li_c � �P ′′

i � f,{x,y �→c}}i∈I
→ �P ′

1� f,{x,y �→c} | �P ′′
j � f,{x,y �→c}

= �P ′� f,{x,y �→c}

• Case P = (νxy)P1.
Since �
 (νxy)P1, then there is a session type T , such that by inversion on
(T-Res) we have �, x : T, y : T
 P1. By (E-Restriction) we have
�(νxy)P1� f = (νc)�P1� f,{x,y �→c} and assume (νc)�P1� f,{x,y �→c} → Q. This implies
that the reduction comes from �P1� f,{x,y �→c}. The reason is that in the standard
π -calculus restriction does not enable any new communication in addition to
the ones performed by process �P1� f,{x,y �→c}; differently from communications
in the session π -calculus which occur only under restricted co-variables. Hence,
Q = (νc)R. By rule (Rπ -Res) it means that �P1� f,{x,y �→c} → R. By induc-
tion hypothesis there are P ′

1, E ′ [·] such that E ′ [P1] → E ′ [P ′
1] and R ↪→ �P ′

1� f ′′ ,
where either f ′′ = f, {x, y �→ c} or f ′′ = f, {x, y �→ c}, {z,w �→ d} such that
(νzw) appears in E ′ [P1]. We need to prove that there are P ′, E [·], such that
E [(νxy)P1] → E [P ′] and Q ↪→ �P ′� f ′ , where either f ′ = f or f ′ = f, {k, l �→ e}
such that (νkl) appears in E [P1]. We distinguish the following cases according to
the structure of E ′ [·].
– E ′ [·] = [·]. The induction hypothesis is rewritten as P1 → P ′

1. By rule (R-Res)
we have (νxy)P1 → (νxy)P ′

1. Choose P ′ = (νxy)P ′
1 and E [·] = [·]. We know

by induction hypothesis that R ↪→ �P ′
1� f ′′ , where either f ′′ = f, {x, y �→ c} or

f ′′ = f, {x, y �→ c}, {z,w �→ d}, such that (νzw) appears in P1.
If f ′′ = f, {x, y �→ c}, choose f ′ = f . Then, R ↪→ �P ′

1� f,{x,y �→c} and
�P ′� f ′ = (νc)�P ′

1� f,{x,y �→c}. By context closure of structural congruence and
(Rπ -Struct) and (Rπ -Res) we have (νc)R ↪→ (νc)�P ′

1� f,{x,y �→c}.
If f ′′ = f, {x, y �→ c}, {z,w �→ d}, choose f ′ = f, {z,w �→ d}.We can distin-
guish two possible cases: either {x, y} = {z,w} and d overrides c, or
{x, y} ∩ {z,w} = ∅. All other cases would violate linearity and hence the well-
typedness assumption.
If {x, y} = {z,w} and d overrides c, then it is the case that f ′′ = f, {x, y �→ c},
{z,w �→ d} = f, {x, y �→ d} and f ′ = f, {x, y �→ d}. Then, the induction
hypothesis can be rewritten as R ↪→ �P ′

1� f,{x,y �→d}. The encoding of P ′ under f ′

6.3 Properties of the Encoding 95

is �P ′� f ′ = (νc)�P ′
1� f,{x,y �→d},{x,y �→c} and (νxy) appears in E [P1] = P1. Since

(νxy)P1 is well-typed and (νxy) appears in P1, by Lemma 5.5.1 it must be that
the outermost x, y are terminated channels, namely T = T = end. The result
follows by context closure of structural congruence and by rules (Rπ -Struct)
and (Rπ -Res).
If {x, y} ∩ {z,w} = ∅, then it holds that f ′′ = f, {x, y �→ c},
{z,w �→ d} = f, {z,w �→ d}, {x, y �→ c}. Then, the induction hypothesis can
be rewritten as R ↪→ �P ′

1� f,{z,w �→d},{x,y �→c}. The encoding of P ′ under f ′ is
�P ′� f ′ = (νc)�P ′

1� f,{z,w �→d},{x,y �→c} and (νzw) appears in E [P1]. Hence, by con-
text closure of structural congruence and by rules (Rπ -Struct) and (Rπ -Res)
we have (νc)R ↪→ (νc)�P ′

1� f,{z,w �→d},{x,y �→c}.
– E ′ [·] = (νxy)[·]. We have that (νxy)P1 → (νxy)P ′

1. Let P ′ = (νxy)P ′
1 and

E [·] = [·]. The result follows by context closure of structural congruence and
by rules (Rπ -Res) and (Rπ -Struct).

– E ′ [·] = (νx ′y′)[·], such that {x ′, y′} ∩ {x, y} = ∅. We have that (νx ′y′)
P1 → (νx ′y′)P ′

1. Choose P ′ = (νxy)P ′
1 and E [·] = E ′ [·]. We need to show

that (νx ′y′)(νxy)P1 → (νx ′y′)(νxy)P ′
1. By structural congruence and by rules

(R-Res) and (R-Struct) we obtain the result. �

6.4 Corollaries from the Encoding

In this section we show how we can use our encoding and properties from the
standard typed π -calculus to derive the analogous properties in the π -calculus with
session types. Before proving the subject reduction and type safety theorems, we
give the following auxiliary lemmas. We start with an auxiliary result, that of type
preservation for the structural congruence.

Lemma 6.4.1 (Type Preservation under ≡ for Sessions by Encoding) Let P be a
session process. If �
 P and P ≡ P ′, then �
 P ′.

Proof Assume �
 P and P ≡ P ′. By Theorem 6.3.11 we have ��� f
 �P� f

for some renaming function f for P . By Lemma 6.3.14 �P� f ≡ �P ′� f , then by
Lemma 4.5.5 we have ��� f
 �P ′� f . We conclude by Theorem 6.3.10. �

Now we are ready to prove the subject reduction property for the π -calculus with
sessions by using our encoding and by the corresponding subject reduction for the
linear π -calculus.

Theorem 6.4.2 (Subject Reduction for Sessions by Encoding) Let P be a session
process. If �
 P and P → P ′, then �
 P ′.

Proof Assume �
 P and P → P ′. By Theorem 6.3.11 we have ��� f
 �P� f , for
some renaming function f for P and by point 1. of Theorem 6.3.15 we have that
�P� f →↪→ �P ′� f . Let Q be theπ -calculus process such that �P� f → Q ↪→ �P ′� f .

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_4

96 6 Session Types Revisited

By subject reduction for the linear π -calculus, given by Theorem 4.5.6, we have
��� f
 Q. By type preservation for structural congruence, given by Lemma 4.5.5,
and by subject reduction for the linear π -calculus, we have ��� f
 �P ′� f . By the
assumption that P → P ′ and the operational semantics rules in the π -calculus with
sessions which state that communication occurs only in restricted co-variables, we
can conclude that ��� f is closed. By Theorem 6.3.10 we conclude that �
 P ′. �

Theorem 6.4.3 (Type Safety for Sessions by Encoding) Let P be a session process.
If
 P, then P is well formed.

Proof By Theorem 6.3.11 we have
 �P� f for some renaming function f for P . By
type safety in the linearπ -calculus, given byTheorem4.5.8,we have that �P� f iswell
formed. The result follows immediately by applying the notion of well-formedness
in session π -calculus, given by Definition 5.5.5 and the encoding of processes given
in Fig. 6.2. �

At this point we can derive the main result, that of type soundness, which states
the absence of runtime errors of well-typed programs. It follows immediately from
subject reduction given by Theorem 6.4.2 and type safety given by Theorem 6.4.3,
which we proved by using the corresponding properties in the standard typed
π -calculus and our encoding.

Theorem 6.4.4 (Type Soundness for Sessions by Encoding) Let P be a session
process. If
 P and P →∗ Q, then Q is well formed.

Proof The result follows immediately from Theorem 6.4.2 and Theorem 6.4.3. �

http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_5

Part III
Advanced Features on Safety

by Encoding

Introduction to Part III

In the p-calculus with session types, different typing features have been added.
Subtyping relation for (recursive) session types is added in [48]. Bounded
polymorphism is added in [45] as a further extension to subtyping. The authors
in [89] add higher order primitives in order to allow not only mobility of channels
but also mobility of processes.

In most of these works, when new typing features are added, they are added on
both syntactic categories of standard p-types and session types. Also the syntax of
processes will contain both standard process constructs and session primitives. This
redundancy in the syntax leads to redundancy also in the theory, and makes the
proofs of properties of the language heavy. For instance, if a new type construct is
added, the corresponding properties must be checked both on ordinary types and on
session types.

In Part III we try to understand to which extent this redundancy is necessary.
After having analysed the effectiveness of the encoding on basic session types, in
the following chapters we show its robustness by examining non-trivial extensions,
namely subtyping, polymorphism, higher-order and recursion. Furthermore, we
present an optimisation of linear channels enabling the reuse of the same channel,
instead of a new one, for the continuation of the communication.

Roadmap to Part III Chapters 7, 8, 9 and 10 present the extensions to the
p- calculus with sessions and to the encoding. They present subtyping, polymor-
phism, higher order, and recursion respectively, and study the encoding wrt these
extensions. Chapter 11 presents an optimisation on the usage of linear channels. By
enhancing the type system for linear types, we show that it is possible to avoid the
redundancy of creating a fresh channel before every output operation.

http://dx.doi.org/10.2991/978-94-6239-204-5_7
http://dx.doi.org/10.2991/978-94-6239-204-5_8
http://dx.doi.org/10.2991/978-94-6239-204-5_9
http://dx.doi.org/10.2991/978-94-6239-204-5_10
http://dx.doi.org/10.2991/978-94-6239-204-5_11

Chapter 7
Subtyping

Subtyping has been studied in the standard typed π -calculus [98,101] and later on
in the π -calculus with session types [48]. In this section we show that subtyping in
the standard π -calculus is enough to derive subtyping in session types.

7.1 Subtyping Rules

Subtyping rules for the π -calculus with sessions are given in Fig. 7.1 and the ones
for the standard typed π -calculus are given in Fig. 7.2. We use the symbol <: for
subtyping in session types, and ≤ for subtyping in the standard π -calculus.

We start with subtyping rules for session types. Rules (S-Bool) and (S-End)
state the reflexivity of subtyping on a boolean type and on a terminated channel
type, respectively. Rules (S-Inp) and (S-Out) define subtyping on input and output
session types. The input rule states that subtyping is co-variant on the payload type,
whether the output rule states that subtyping is contra-variant on the payload type.
Subtyping is co-variant on the continuation type, for both the input and the output
rules. Rules (S-Brch) and (S-Sel) are similar to the previous ones. These rules state
that subtyping is co-variant in depth in the types of values being transmitted. Rule
(S-Brch) states that subtyping is co-variant in breadth, whether (S-Sel) states it is
contra-variant in breadth.

We now focus on subtyping for standard π -calculus types. Rules (Sπ -Refl) and
(Sπ -Trans) state that subtyping is a pre-order. Rules (Sπ -ii) and (Sπ -oo) define
subtyping for input and output channel types, respectively. The input action is
co-variant in the carried types, whether the output action is contra-variant. Rule
(Sπ -Variant) defines subtyping for variant types which is co-variant both in depth
and in breadth, namely in the carried types and in the set of labelled types.

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_7

99

100 7 Subtyping

Fig. 7.1 Subtyping rules for the π -calculus with sessions

Fig. 7.2 Subtyping rules for the standard π -calculus

7.2 Properties

In order to use the encoding of the π -calculus with session types to derive basic
properties like subject reduction, type safety etc., in presence of subtyping, we need
to prove the correctness of the encoding wrt subtyping.

Lemma 7.2.1 (Subtyping on Dual Types) If �T� ≤ �T ′�, then �T ′� ≤ �T�.

Proof The lemma follows immediately by the definition of encoding, the duality
function in standard π -types and the subtyping rules presented in Fig. 7.2. �

Theorem 7.2.2 (Soundness wrt Subtyping) If �T� ≤ �T ′�, then T<:T ′.

Proof The proof is done by induction on the structure of session types T ,T ′.

• Case T = T ′ = Bool:
By (E-Bool) we have �T� = �T ′� = Bool. By rule (Sπ -Refl) we have that
Bool ≤ Bool. By applying rule (S-Bool) we obtain the result.

• Case T = T ′ = end:
By (E-End) we have �T� = �T ′� = ∅[]. By rule (Sπ -Refl) we have that ∅[] ≤ ∅[].
By applying rule (S-End) we obtain the result.

• Case T = ?T1.U1 and T ′ = ?T2.U2:
Assume that �?T1.U1� ≤ �?T2.U2�, which encoding of input means �i[�T1�, �U1�]
≤ �i[�T2�, �U2�]. The last rule applied is (Sπ -ii), which by its premise asserts that

7.2 Properties 101

�T1� ≤ �T2� and �U1� ≤ �U2�. By induction hypothesis we have that T1<:T2
and U1<:U2. By applying rule (S-Inp) on the induction hypothesis we obtain
?T1.U1<:?T2.U2.

• Case T = !T1.U1 and T ′ = !T2.U2:
Assume that �!T1.U1� ≤ �!T2.U2�, which by encoding of output means
�o[�T1�, �U1�] ≤ �o[�T2�, �U2�]. The last rule applied is (Sπ -oo), which by its
premise asserts that �T2� ≤ �T1� and �U2� ≤ �U1�. By Lemma 7.2.1, we get
�U1� ≤ �U2�. By induction hypothesis we have that T2<:T1 and U1<:U2. By
applying rule (S-Out) we obtain !T1.U1<:!T2.U2.

• Case T = &{li : Ti}i∈I and T ′ = &{lj : T ′
j }j∈J :

Assume that �&{li : Ti}i∈I� ≤ �&{lj : T ′
j }j∈J�, which by encoding of branch means

�i [〈li_�Ti�〉i∈I] ≤ �i [〈lj_�T ′
j �〉j∈J]. The last rule applied must have been (Sπ -ii),

which by its premise asserts that 〈li_�Ti�〉i∈I ≤ 〈lj_�T ′
j �〉j∈J . By rule (Sπ -Variant)

this means that �Ti� ≤ �T ′
j � for all i ∈ I and I ⊆ J . By induction hypothesis we

have that Ti<:T ′
j for all i ∈ I and I ⊆ J . By applying rule (S-Brch) we obtain

&{li : Ti}i∈I<:&{lj : T ′
j }j∈J .• Case T = ⊕{li : Ti}i∈I and T ′ = ⊕{lj : T ′

j }j∈J :
Assume that �⊕{li : Ti}i∈I� ≤ �⊕{lj : T ′

j }j∈J�, which by encoding of select

means �o [〈li_�Ti�〉i∈I] ≤ �o [〈lj_�T ′
j �〉j∈J]. The last rule applied must have been

(Sπ -oo), which by its premise asserts that 〈lj_�T ′
j �〉j∈J ≤ 〈li_�Ti�〉i∈I . By rule

(Sπ -Variant), �T ′
j � ≤ �Ti� for all j ∈ J and J ⊆ I . By Lemma 7.2.1, we obtain

�Ti� ≤ �Tj� for all j ∈ J and J ⊆ I . By induction hypothesis we have that Ti<:T ′
j

for all j ∈ J and J ⊆ I . By applying rule (S-Sel) on the induction hypothesis we
obtain ⊕{li : Ti}i∈I<: ⊕ {lj : T ′

j }j∈J . �

Theorem 7.2.3 (Completeness wrt Subtyping) If T<:T ′, then �T� ≤ �T ′�.

Proof The proof is done by induction on the derivation for T<:T ′.

• Case (S-Bool):
By (E-Bool) and by rule (Sπ -Refl) we obtain Bool ≤ Bool, which concludes
the case.

• Case (S-End):
It means end<:end. By (E-End) and rule (Sπ -Refl) we obtain ∅[] ≤ ∅[] and
this concludes the case.

• Case (S-Inp):
T<:T ′ U<:U ′

?T .U<:?T ′.U ′

By induction hypothesis we have that �T� ≤ �T ′� and �U� ≤ �U ′�. We need to
prove that �?T .U� ≤ �?T ′.U ′�. By applying (E-Inp) we obtain
�?T .U� = �i [�T�, �U�] and �?T ′.U ′� = �i [�T ′�, �U ′�]. By applying rule (Sπ -ii)
on the induction hypothesis we obtain the result.

102 7 Subtyping

• Case (S-Out):
T ′<:T U<:U ′

!T .U<:!T ′.U ′

By induction hypothesis we have that �T ′� ≤ �T� and �U� ≤ �U ′�. We need to
prove that �!T .U� ≤ �!T ′.U ′�. By applying (E-Out) we obtain
�!T .U� = �o [�T�, �U�] and �!T ′.U ′� = �o [�T ′�, �U ′�]. By Lemma 7.2.1 we
get �U ′� ≤ �U�. By applying rule (Sπ -oo) on the induction hypothesis we obtain
the result.

• Case (S-Brch):
I ⊆ J Ti<:T ′

j ∀i ∈ I

&{li : Ti}i∈I<:&{lj : T ′
j }j∈J

By induction hypothesis we have that �Ti� ≤ �T ′
j � for all i ∈ I . We need to

prove that �&{li : Ti}i∈I� ≤ �&{lj : T ′
j }j∈J�. By applying (E-Branch) we obtain

�&{li : Ti}i∈I� = �i [〈li_�Ti�〉i∈I] and �&{lj : T ′
j }j∈J� = �i [〈lj_�T ′

j �〉j∈J]. By
applying rules (Sπ -Variant) and (Sπ -ii) on the induction hypothesis we obtain
the result.

• Case (S-Sel):
I ⊇ J Ti<:T ′

j ∀j ∈ J

⊕{li : Ti}i∈I<: ⊕ {lj : T ′
j }j∈J

By induction hypothesis we have that �Ti� ≤ �T ′
j � for all j ∈ J . We need to

prove that �⊕{li : Ti}i∈I� ≤ �⊕{lj : T ′
j }j∈J�. By applying (E-Select) we obtain

�⊕{li : Ti}i∈I� = �o [〈li_�Ti�〉i∈I] and �⊕{lj : T ′
j }j∈J� = �o [〈lj_�T ′

j �〉j∈J]. By
Lemma 7.2.1 we get �T ′

j � ≤ �Tj� for all j ∈ J . By (Sπ -Variant) and (Sπ -oo) on
the induction hypothesis we obtain the result. �

In order to benefit from the subtyping relation, we introduce the subsumption rule
to the type system, both on the π -calculus with and without sessions.

� � x : T T subtype T ′

� � x : T ′

where subtype is instantiated with <: or ≤ depending on the calculus where it is
used. Then, we can prove the following results.

Lemma 7.2.4 (Value Typing) � � v : T if and only if ��� f � �v� f : �T� for some
renaming function f for v.

Proof The proof is split as follows.

(⇒) Follows the cases in Lemma 6.3.9; we add the case for subsumption which
is trivial, since this rule is added on both calculi.

http://dx.doi.org/10.2991/978-94-6239-204-5_6

7.2 Properties 103

(⇐) Follows the cases in Lemma 6.3.8; we add the case for subsumption which
is trivial, since this rule is added on both calculi. �

Theorem 7.2.5 (Process Typing) If � � P if and only if ��� f � �P� f for some
renaming function f for P.

Proof The proof is split as follows.

(⇒) Follows the cases in Theorem 6.3.11. Instead of Lemma 6.3.9, we apply
Lemma 7.2.4.

(⇐) Follows the cases in Theorem 6.3.10. Instead of Lemma 6.3.8 we apply
Lemma 7.2.4. �

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

Chapter 8
Polymorphism

Polymorphism is a common and useful type abstraction in programming languages
as it allows generic operations by using an expression with several types. In Chap.7
we studied subtyping on both session types and standard π -types, which is a simple
form of type abstraction.

A more complex form of type abstraction is the parametric polymorphism that
is already present and well studied in the standard π -calculus [101], and in general
is the form of polymorphism best known in programming languages. In Sect. 8.1
we show that, by extending the encoding and by adding parametric polymorphism
to the syntax of types and terms in the π -calculus with sessions, we obtain the
properties in the polymorphic sessions for free by deriving them from the theory of
the polymorphic π -calculus.

In [45] the author studies bounded polymorphism. To the best of our knowl-
edge, this is the first work on polymorphism in session types and the first work
on bounded polymorphism in the π -calculus. In Sect. 8.2 we will show how we
can obtain bounded polymorphism in the π -calculus with session types by adding
bounded polymorphism to the standard π -calculus and by extending our encoding.

8.1 Parametric Polymorphism

We start with parametric polymorphism. We present the syntax of types and term,
give the typing rules and the reduction rules. We extend the encoding and by proving
its soundness and completeness wrt typing of values and processes, we show our
encoding is robust.

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_8

105

http://dx.doi.org/10.2991/978-94-6239-204-5_7

106 8 Polymorphism

Fig. 8.1 Syntax of parametric polymorphic constructs

8.1.1 Syntax

The syntax of the polymorphic π -calculus with and without sessions is given in
Fig. 8.1. Notice that, since the new constructs for polymorphic types and terms are
the same for both the π -calculi with and without sessions, for simplicity, we present
them under the same grammar. We will distinguish them in the context and often
we will refer to the standard π -calculus constructs as the encoded constructs of the
π -calculus with sessions.

We extend both syntaxes of the π -calculus with and without sessions with the
type variable X and the polymorphic type 〈X; T 〉.

Modifications in the syntax of types trigger modifications in the syntax of terms,
as expected. So, we add the polymorphic value 〈T ; v〉 and the unpacking process
open v as (X; x) in P .

To conclude, we add another typing context � containing polymorphic type vari-
ables. We will present the new typing judgements in the following.

8.1.2 Semantics

The reduction rule for the unpacking process is given below.

(R[π]- Unpack) open 〈T ; v〉 as (X; x) in P → P[T/X][v/x]

This reduction rule holds for both the π -calculus with and without sessions. In order
to distinguish them, we use [π] in square brackets, which means that π is optional:
where π is present, then the rule refers to the standard π -calculus, otherwise it refers
to the sessionπ -calculus. This reduction is similar to the case reduction, as it does not
require any communication. We can refer to it as unpack normalisation, in analogy
to case normalisation.

Rule (R[π]- Unpack) states that process open 〈T ; v〉 as (X; x) in P , with the
guard being a polymorphic value 〈T ; v〉, reduces to process P where two substitutions
occur: type T substitutes type variable X and value v substitutes the placeholder
variable x .

8.1 Parametric Polymorphism 107

Fig. 8.2 Typing rules for parametric polymorphic constructs

Fig. 8.3 Encoding of parametric polymorphic constructs

8.1.3 Typing Rules

We are ready now to give the typing rules for the π -calculus with and without
sessions. Typing judgements are of the new form�;� � v : T or�;� � P , where�

is the typing context introduced in Sect. 5.4 for the π -calculus with sessions and in
Sect. 4.4 for the standard π -calculus, and � collects the polymorphic type variables,
needed to type polymorphic constructs.

The typing rules for parametric polymorphism are given in Fig. 8.2. Again, we
present in the same figure both the typing rules for the session π -calculus and the
typing rules for the standard one. In order to distinguish them, we use [π] in square
brackets, which means that π is optional: where π is present, then the rule refers to
the standard π -calculus, otherwise it refers to the session π -calculus.

Rule (T[π]- PolyVal) asserts that a polymorphic value 〈T ′; v〉 is of a polymor-
phic type 〈X; T 〉, whenever the value v is of type T with T ′ substituting the type
variable X . Rule (T[π]- Unpack) states thewell-typedness of the unpacking process.
Process open v as (X; x) in P is well typed if the guard v is of a polymorphic type
〈X; T 〉 and process P is well typed in x of type T and � augmented with X .

8.1.4 Encoding

The encoding of polymorphic types and terms is an homomorphism and is given in
Fig. 8.3. (E-PolyVar) states that the encoding of the type variable X is X itself.
(E-PolyType) states that the encoding of a polymorphic session type 〈X; T 〉 is
a polymorphic standard π -type 〈X; �T �〉, acting on the same type variable X and
carrying �T �.

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_4

108 8 Polymorphism

The encoding of a polymorphic value and a polymorphic process is parametrised
in a function f that renames variables in the session term, as originally shown in
Sect. 6.2. (E-PolyVal) states that the encoding of a polymorphic value 〈T ; v〉 added
to the sessionπ -calculus is a polymorphic value 〈�T �; �v� f 〉 added to the standardπ -
calculus having type the encoding of T and the value v is renamed according f , result-
ing in �v� f . (E-Unpack) states that the encoding of the unpacking session process
open v as (X; x) in P is the unpacking process open �v� f as (X; fx) in �P� f added
to the standard π -calculus where the guard is the encoded value �v� f , the polymor-
phic placeholder x is renamed as fx and process P is encoded using f , i.e., �P� f .

The encoding of typing contexts is given by:

�∅� f � ∅ (E-Empty)

��, x : T � f � ��� f � fx : �T � (E-Gamma)

��;�� f � ��� f ;� (E-Delta)

We encode � as in Fig. 6.3, and on � the encoding is the identity function, since
the encoding of type variables is the identity function.

8.1.5 Properties of the Encoding

In this section we prove the correctness of the encoding wrt typing derivations for
polymorphic processes and values and the operational correspondence.We start with
the following lemma which relates substitution of types and encoding.

Lemma 8.1.1 Let T be a session type and let T [T ′/X] denote type T where the
type variable X is substituted by type T ′. Then,

�T [T ′/X]� = �T �[�T ′�/X]

Proof It follows immediately from the encoding of types and the standard definition
of type substitution. �

To complete Lemma 6.3.8 of soundness and Lemma 6.3.9 of completeness of
the encoding wrt typing values, it suffices to add the case for polymorphic values.
However, adding this case requires modification in the typing judgements: previous
typing judgements of the form � � v : T should be now written as �;� � v : T
(with � = ∅ in absence of polymorphism).

Proof of Lemmas 6.3.8 and 6.3.9 for Parametric Polymorphic Values:

1. If ��;�� f � �v� f : �T � for some renaming function f , then �;� � v : T .
2. If �;� � v : T , then ��;�� f � �v� f : �T � for some renaming function f .

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

8.1 Parametric Polymorphism 109

Proof We split the proof as follows.

1. The proof is done by induction on the structure of the value v.
We consider only the case for polymorphic values, namely v = 〈T ′; v′〉. By
applying (E-PolyVal) we have �〈T ′; v′〉� f = 〈�T �; �v′� f 〉 and assume
��;�� f � 〈�T �; �v′� f 〉 : 〈X; �T �〉, which means that the last typing rule applied
must have been (Tπ - PolyVal).

��;�� f � �v′� f : �T �[�T ′�/X]
��;�� f � 〈�T �; �v′� f 〉 : 〈X; �T �〉

By induction hypothesis and by Lemma 8.1.1 we obtain � � v′ : T [T ′/X]. We
conclude by applying (T-PolyVal).

2. The proof is done by induction on the derivation for �;� � v : T .
We consider only the case for (T-PolyVal).

�;� � v′ : T [T ′/X]
�;� � 〈T ′; v′〉 : 〈X; T 〉

By induction hypothesis and by Lemma 8.1.1, there is f ′ such that
��;�� f ′ � �v′� f ′ : �T �[�T ′�/X]. By choosing f = f ′ and by applying rules
(Tπ - PolyVal), (E-PolyType) and (E-PolyVal), we obtain the result.

�

To complete Theorems 6.3.10 and 6.3.11 on the correctness of the encoding wrt
typing processes, it suffices to add the case for the unpack process. As with val-
ues, adding this case to the proofs of the previous theorems requires modifications
in the typing judgements: previous typing judgements of the form � � Q should
be now written as �;� � Q, (with � = ∅ in absence of polymorphism). These
modifications will affect also the statement of operational correspondence given by
Theorem 6.3.15.

Proof of Theorems 6.3.10 and 6.3.11 for Parametric Polymorphic Processes:

1. If ��;�� f � �Q� f for some renaming function f for Q, then �;� � Q.
2. If �;� � Q, then ��;�� f � �Q� f for some renaming function f for Q.

Proof We split the proof as follows.

1. The proof is done by induction on the structure of session process Q.
We consider only the case for the unpack process. By (E-Unpack) we have that
��;�� f � open �v� f as (X; fx) in �P� f . This means that the last rule applied
must be (Tπ -Unpack):

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

110 8 Polymorphism

��� f ;� � �v� f : 〈X; �T �〉 ��� f , fx : �T �;�, X � �P� f

��� f ;� � open �v� f as (X; fx) in �P� f

By the soundness of the encoding wrt typing parametric polymorphic val-
ues, given previously, we have �;� � v : 〈X; T 〉. By induction hypothesis
�, x : T ;�, X � P . Then, by applying (T-Unpack), we conclude the case.

2. The proof is done by induction on the derivation �;� � Q.
We consider only the case when (T-Unpack) is applied:

�1;� � v : 〈X; T 〉 �2, x : T ;�, X � P

�1 ◦ �2;� � open v as (X; x) in P

By the completeness of the encoding wrt typing parametric polymorphic
values ��� f ′ ;� � �v� f ′ : 〈X; �T �〉, for some function f ′. By induction
hypothesis ��, x : T � f ′′ ;�, X � �P� f ′′ , for some function f ′′. By (E-Gamma)
it means ��� f ′′ � f ′′

x : �T �;�, X � �P� f ′′ Since �1 ◦ �2 is defined, then for all
x ∈ dom(�1) ∩ dom(�2) it holds that �1(x) = �2(x) = T and un(T). Let
dom(�1) ∩ dom(�2) = D and define f ′

D = f ′ \ ⋃
d∈D{d �→ f ′(d)} and

f ′′
D = f ′′ \ ⋃

d∈D{d �→ f ′′(d)}. Let f = ⋃
d∈D{d �→ d ′} ∪ f ′

D ∪ f ′′
D , such that

for all d ∈ D we create a fresh name d ′ and associate d �→ d ′. Moreover, f is a
function since its subcomponents act on disjoint domains. By Lemma 6.3.6 and
since x /∈ �2, by Lemma 6.3.2 we have the following:

��� f ;� � �v� f : 〈X; �T �〉 ��� f , fx : �T �;�, X � �P� f

By applying (E-Unpack) and rule (Tπ -Unpack) we obtain the result.
�

To complete the operational correspondence given in Theorem 6.3.15, we add the
case for polymorphic processes.

Proof of Theorem 6.3.15 for Parametric Polymorphic Processes: Let P be a
session process, �,� session typing contexts, and f a renaming function for P such
that ��;�� f � �P� f . Then, the following statements hold.

1. If P → P ′, then �P� f →↪→ �P ′� f .
2. If �P� f → Q, then there are P ′, E [·], such that E [P] → E [P ′] and Q ↪→ �P ′� f ′ ,

and either f ′ = f or f ′ = f, {x, y �→ c} for x, y such that (νxy) appears in E [P].
Proof We split the proof as follows.

1. We consider only the case when (R-Unpack) is applied.
If open 〈T ; v〉 as (X; x) in P → P[T/X][v/x], then by (E-Unpack),
Lemmas 8.1.1 and 6.3.13 and by reduction (Rπ -Unpack) we can obtain
�open 〈T ; v〉 as (X; x) in P� f →≡ �P[T/X][v/x]� f .

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

8.1 Parametric Polymorphism 111

2. We consider only the case for the unpack process.
If �open 〈T ; v〉 as (X; x) in P� f → Q, then by applying (E-Unpack), rule
(R-Unpack), the definition of structural congruence and by applying Lemmas
8.1.1 and 6.3.13 we obtain open 〈T ; v〉 as (X; x) in P → P ′ and Q ≡ �P ′� f .
Notice that f ′ = f and E [·] = [·]. �

8.2 Bounded Polymorphism

We now consider bounded polymorphism, which is studied in [45]. This kind of
polymorphism has not been studied in the standard π -calculus; we add it and show
how we can derive bounded polymorphism in session π -calculus passing through
the standard one. Bounded polymorphism for session types in [45] is added only to
the labels of branch and select type and term constructs. In our work, we specify
only upper bounds and use only basic types in the bounds. This is a simplification
wrt [45] which is sufficient to illustrate how the encoding works.

8.2.1 Syntax

In this sectionwe present both the bounded polymorphicπ -calculuswith andwithout
sessions. We give the syntax of types and terms, the typing rules and the reduction
rules.

Syntax of bounded polymorphic constructs in session π -calculus We give in
Fig. 8.4 only the new constructs added to the syntax of types and terms.

Type B stands for basic types e.g., integer, boolean, X, . . . Types produced by
Ts , in addition to lin p | end, include basic types B. Recall that in Sect. 5.3 we
adopted only the boolean type and stated that every other ground type can be added
as well as data structures. In this section, we adopt the same syntax as in the orig-
inal paper [45], so we include data structures explicitly. The pretypes produced by

Fig. 8.4 Syntax of bounded polymorphic session constructs

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_5

112 8 Polymorphism

p report modifications only in the select and branch types, where labels are anno-
tated with conditions of the form (Xi <: Bi), resulting in ⊕{li (Xi <: Bi) : Ti }i∈I
and &{li (Xi <: Bi) : Ti }i∈I , respectively. This basically means that the variables
Xi , which can occur in Ti , can be instantiated by types that respect the condition,
where <: indicates the subtyping relation on session types presented in Fig. 7.1.
Processes produced by Ps report modifications only in selection and branching,
namely x � l j (B).P and x � {li (Xi <: Bi) : Pi }i∈I , respectively. In the boundedpoly-
morphic branching every label li is annotated with the condition (Xi <: Bi), which
has the same meaning as for the types. In the bounded polymorphic selection, the
selected label is accompanied also with a selected basic type. The reduction rules,
introduced in the next section, give a better understanding of how label annotations
are used.

Type duality for the bounded polymorphic pretypes is as expected, by following
the standard definition of type duality for session types.

⊕{li (Xi <: Bi) : T }i∈I � &{li (Xi <: Bi) : Ti }i∈I
&{li (Xi <: Bi) : T }i∈I � ⊕{li (Xi <: Bi) : Ti }i∈I

Syntax of bounded polymorphic constructs in standard π -calculus We add
bounded polymorphism in the standard typed π -calculus, by following the same
idea as for session types: we add type constraints to the labels of variant types and
values. We give in Fig. 8.5 only the new constructs or the modifications made to
the syntaxes of standard π -types and π -processes introduced in Sects. 4.1 and4.3,
respectively.

Types produced by Tπ include basic types, which can be data types and type vari-
ables, and a modified version of variant type, called bounded polymorphic variant.
The difference wrt the standard variant is the presence of constraints of the form
(Xi ≤ Bi), which are added to the labels of the variant. The meaning of this con-
straint is the same as for session types, namely the variables Xi which occur in Ti can
be instantiated be types that respect the condition, where ≤ indicates the subtyping
relation on π -types presented in Fig. 7.2. As long as terms are concerned, the modi-
fication of variant type triggers modifications in the case process and in the variant
value, which now are bounded polymorphic forms of the standard ones. The bounded
polymorphic case, as the variant type, has attached to the labels li the constraints
(Xi ≤ Bi), whether the bounded polymorphic value, has attached to its label l a

Fig. 8.5 Syntax of bounded polymorphic π -constructs

http://dx.doi.org/10.2991/978-94-6239-204-5_7
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_7

8.2 Bounded Polymorphism 113

chosen basic type B. Again, the reduction rules, will give us a better understanding
of how label annotations are used.

8.2.2 Semantics

We now introduce the reduction rules for bounded polymorphic processes for both
the π -calculus with and without sessions. We start with session π -calculus.

(R-BPolySel) (νxy)(x � l j (B).P | y � {li (Xi <: Bi) : Pi }i∈I) →
(νxy)(P | Pj [B/X j]) j ∈ I

(Rπ-BPolyCase) case l j (B)_v of {li (Xi ≤ Bi)_xi � P}i∈I → Pj [B/X j][v/x j] j ∈ I

Rule (R-BPolySel) states that a communication occurs between a selection
process l j (B).P and a branching process y � {li (Xi <: Bi) : Pi }i∈I , whenever x and
y are co-variables. In addition, together with the selected label l j there is also a selec-
tion of type B. This communication reduces to P composed with the j th process
offered by branching where the corresponding type variable X j is substituted by the
selected basic type B.

Rule (Rπ -BPolyCase) states that a case normalisation occurs when the guard of
case is a variant value l j (B)_v. This reduces to the j th process offered by the bounded
polymorphic case where in addition to the standard substitution of the placeholder
x by v, also the type variable X j is substituted by the selected basic type B. In both
cases, the reduction rules succeed only if j ∈ I .

8.2.3 Typing Rules

We now give the typing rules for both the π -calculus with and without sessions.

Typing rules for bounded polymorphic session π -calculus The typing judgements
now are of the form �;� � v : Ts stating that a session value v is of bounded poly-
morphic session type Ts in a typing context � and a set of type variables �, and
�;� � Ps stating that a bounded polymorphic session process is well typed in a
typing context � and a set of type variables �.

The new typing rules for the bounded polymorphic branching and selection are
given in Fig. 8.6. Rule (T-BPolySel) states that the selection process, where label
l j together with the basic type B are selected, is well typed whenever channel x is of
bounded polymorphic select type and B <: Bi for all i ∈ I . In addition, process P is
well typed under x having the appropriate type where type variable X j is substituted
by the selected type B. Rule (T-BPolyBrch) states that the branching process is
well typed whenever channel x is of bounded polymorphic branch type and every

114 8 Polymorphism

Fig. 8.6 Typing rules for bounded polymorphic session constructs

process Pi in the branching is well typed under the condition Xi <: Bi .

Typing rules for bounded polymorphic standard π -calculus The typing
judgements in the bounded polymorphic π -calculus are of the form �;� � v : Tπ ,
stating that a value v is of type Tπ in a typing context � and a set of type variables
�, and �;� � Pπ , stating that the bounded polymorphic process Pπ is well typed
in a typing context � and a set of type variables �.

The new typing rules for the standard π -calculus are presented in Fig. 8.7. Rule
(Tπ -BPolyLVal) states that the bounded polymorphic variant value l j (B)_v is of
bounded polymorphic variant type 〈li (Xi ≤ Bi)_Ti 〉i∈I , whenever B ≤ Bi for all
i ∈ I and value v is of type Tj where the corresponding type variable X j is substi-
tuted by the selected basic type B. Rule (Tπ -BPolyCase) states that the bounded
polymorphic case is well typed whenever the guard v is of the appropriate variant
type and every process Pi is well typed under the augmented typing context with the
type assumption xi : Ti and the constraint Xi ≤ Bi .

8.2.4 Encoding

The encodingof boundedpolymorphic types is defined inFig. 8.8. (E-BPolyB) states
that the encoding is the identity function on a basic type, namely the encoding of a
data type and of a type variable is the same data type and type variable in the standard

Fig. 8.7 Typing rules for bounded polymorphic π -constructs

8.2 Bounded Polymorphism 115

Fig. 8.8 Encoding of bounded polymorphic types

Fig. 8.9 Encoding of bounded polymorphic terms

π -calculus. (E-BPolySel) states that the encoding of a bounded polymorphic select
type is a linear channel type, used to output a value of type bounded polymorphic
variant where subtyping constraint Xi <: Bi in the select type is interpreted as the
subtyping constraint Xi ≤ Bi in the variant type and the types in the branches of the
variant type are �Ti� for all i ∈ I . (E-BPolyBrch) states the dual of the previous
one: the bounded polymorphic branch is encoded as a linear input channel type. The
subtyping constraints are the same and the types in the branches of the variant type
are �Ti� for all i ∈ I .

The encoding of bounded polymorphic terms is defined in Fig. 8.9. The differ-
ence wrt (E-Selection) and (E-Branching) is the annotation of labels with types.
(E-BPolySelection) states that the bounded polymorphic selection is interpreted
as an output with subject the renamed variable x and object a bounded polymorphic
variant value, where the selected label and the basic type are the same as the original
ones and the value carried by the variant value is a freshly created channel c, used in
the rest of the communication. The continuation process P is encoded in f updated
with x renamed as c. (E-BPolyBranching) states that the bounded polymorphic
branching is interpreted as an input with subject the renamed x followed by a case
process having as guard the object of the input. The branches of case are encoded as
in (E-Branching).

The encoding of typing contexts is defined as follows:

��;�� f � ��� f ;�

and is the same as in the case of parametric polymorphism.

8.2.5 Properties of the Encoding

In this sectionwe prove the correctness of the encoding of bounded polymorphic con-
structs wrt typing and reduction. This means that by using the encoding and bounded

116 8 Polymorphism

polymorphism in the standard π -calculus, we can derive bounded polymorphism in
the π -calculus with session types.

To complete Lemma 6.3.8 of soundness and Lemma 6.3.9 of completeness of the
encoding wrt typing values, it suffices to add the cases for bounded polymorphic
variables. However, adding this case requires modification in the typing judgements:
previous typing judgements of the form � � v : T should be now written as �;
� � v : T , (with � = ∅ in absence of polymorphism).

The cases for bounded polymorphic variables for Lemmas 6.3.8 and 6.3.9, fol-
low immediately by (E-BPolySel) and (E-BPolyBrch) and by rules (T-Var) and
(Tπ -Var).

To complete Theorems 6.3.10 and 6.3.11 on the correctness of the encoding wrt
typing processes, it suffices to add the cases for bounded branching and selection.
Adding these cases to the proofs of the previous theorems requires modification in
the typing judgements: previous typing judgements of the form � � Q should be
now written as �;� � Q, (with � = ∅ in absence of polymorphism). These modi-
fications will also influence the operational correspondence, as we will show in the
following.

Proof of Theorem 6.3.10 for Bounded Polymorphic Processes:
If ��;�� f � �Q� f for some renaming function f for Q, then �;� � Q.

Proof The proof is done by induction on the structure of session process Q.
We consider only the new cases for bounded polymorphic processes.

• Case Q = x � l j (B).P:
By (E-BPolySelection) we have �x � l j (B).P� f = (νc) fx !〈l j (B)_c〉.
�P� f,{x �→c} and assume ��� f ;� � (νc) fx !〈l j (B)_c〉.�P� f,{x �→c}. Since c is a
restricted channel in the encoding of Q, then either rule (Tπ -Res1) or (Tπ -Res2)
must be applied. We consider only the case for (Tπ -Res1), as the one for
(Tπ -Res2) is symmetrical. Then, by (Tπ -Res1) and (Tπ -Out) we have the fol-
lowing derivation:

(Tπ - Res1)
(Tπ - Out)

�π
1 ;� � fx : �o [〈li (Xi ≤ Bi)_T

π
i 〉i∈I] �π

2 , c : T π
j [B/X j];� � �P� f,{x �→c}

c : T π
j [B/X j];� � l j (B)_c : 〈li (Xi ≤ Bi)_T

π
i 〉i∈I

��� f , c : �� [W][B/X j];� � fx !〈l j (B)_c〉.�P� f,{x �→c}
��� f ;� � (νc) fx !〈l j (B)_c〉.�P� f,{x �→c}

and ��� f = �π
1 � �π

2 . By Lemma 6.3.5 �π
1 = ��1� f , and �π

2 = ��2� f such that
� = �1 ◦ �2. By applying (Tπ -Var) and (Tπ -BPolyLval) for some j ∈ I , we
have the following derivation:

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

8.2 Bounded Polymorphism 117

(Tπ - Var)

c : T π
j [B/X j]; � � c : T π

j [B/X j] B ≤ Bi ∀i ∈ I

c : T π
j [B/X j]; � � l j (B)_c : 〈li (Xi ≤ Bi)_T

π
i 〉i∈I (Tπ - BPolyLVal)

Notice that c is of type �� [W][B/X j], which is T π
j [B/X j] � T π

j [B/X j] and one
capability of c is sent along l j (B)_c whether the other one is used in the contin-
uation �P� f,{x �→c}. In the case where (Tπ -Res2) is applied, c is of type ∅[] � ∅[].
By the correctness of the encoding wrt typing bounded polymorphic values, as
shown earlier in Sect. 8.2.5, we have �1;� � x : ⊕{li (Xi ≤ Bi) : Ti }i∈I which
by (E-BPolySel) means �⊕{li (Xi ≤ Bi) : Ti }i∈I � = �o [〈li (Xi ≤ Bi)_�T π

i �〉i∈I]
and T π

i = �Ti� for all i ∈ I . By induction hypothesis �2, x : Tj [B/X j];� � P .
By Theorem 7.2.2 we obtain B <: Bi for all i ∈ I . By applying typing rule
(T-BPolySel) we obtain �1 ◦ �2;� � x � l j (B).P , as required.

• Case Q = x � {li (Xi ≤ Bi) : Pi }i∈I :
By (E-BPolyBranching) we have

�x � {li (Xi ≤ Bi) : Pi }i∈I � f = fx?(y). case y of {li (Xi ≤ Bi)_c � �Pi� f,{x �→c}}i∈I
and assume ��� f ;� � fx?(y). case y of {li (Xi ≤ Bi)_c � �Pi� f,{x �→c}}i∈I , which
by rules (Tπ -Inp) means that:

(Tπ - Inp)

�π
1 ;� � fx : �i [〈li (Xi ≤ Bi)_T

π
i 〉i∈I]

�π
2 , y : 〈li (Xi ≤ Bi)_T

π
i 〉i∈I ;� � case y of {li (Xi ≤ Bi)_c � �Pi� f,{x �→c}}i∈I

��� f ;� � fx?(y). case y of {li (Xi ≤ Bi)_c � �Pi� f,{x �→c}}i∈I
and ��� f = �π

1 � �π
2 . By Lemma 6.3.5 we have that �π

1 = ��1� f , and
�π
2 = ��2� f such that � = �1 ◦ �2.

By (Tπ -BPolyCase) and (Tπ -Var) we have the following derivation:

(Tπ - BPolyCase)
(Tπ - Var)

y : 〈li (Xi ≤ Bi)_T
π
i 〉i∈I ;� � y : 〈li (Xi ≤ Bi)_T

π
i 〉i∈I

�π
2 , c : T π

i ;�, Xi ≤ Bi � �Pi� f,{x �→c} ∀i ∈ I

�π
2 , y : 〈li (Xi ≤ Bi)_T

π
i 〉i∈I ;� � case y of {li (Xi ≤ Bi)_c � �Pi� f,{x �→c}}i∈I

By the correctness of the encoding wrt typing bounded polymorphic values, we
have that �1;� � x : &{li (Xi ≤ Bi) : Ti }i∈I where by (E-BPolyBrch)
�&{li (Xi ≤ Bi) : Ti }i∈I � f = �i [〈li (Xi ≤ Bi)_T π

i 〉i∈I] and �Ti� = T π
i for all i ∈ I .

By the premise of (Tπ -Inp) ��2� f , c : �Ti�;�, Xi ≤ Bi � �Pi� f,{x �→c}, then by

http://dx.doi.org/10.2991/978-94-6239-204-5_7
http://dx.doi.org/10.2991/978-94-6239-204-5_6

118 8 Polymorphism

induction hypothesis we have �2, x : Ti ;�, Xi <: Bi � Pi for all i ∈ I . By
(T-BPolyBrch) we obtain �1 ◦ �2;� � x � {li (Xi ≤ Bi) : Pi }i∈I , as required.

�

Proof of Theorem 6.3.11 for Bounded Polymorphic Processes:
If �;� � Q, then ��;�� f � �Q� f for some renaming function f for Q.

Proof The proof is done by induction on the derivation �;� � Q. We examine only
the cases where either (T-BPolySel) or (T-BPolyBrch) is applied.

• Case (T-BPolySel):

�1;� � x : ⊕{li (Xi ≤ Bi) : Ti }i∈I
�2, x : Tj [B/X j];� � P j ∈ I B <: Bi ∀i ∈ I

�1 ◦ �2;� � x � l j (B).P
(T- BPolySel)

By the correctness of the encoding wrt typing bounded polymorphic values,
as shown in Sect. 8.2.5, ��1� f ′ ;� � f ′

x : �o [〈li (Xi ≤ Bi)_�Ti�〉i∈I] for
some function f ′. By induction hypothesis, (E-Gamma) and Lemma 8.1.1 we
have that ��2� f ′′ � f ′′

x : �Tj�[B/X j];� � �P� f ′′ for j ∈ I for some function
f ′′. By Theorem 7.2.3 B ≤ Bi for all i ∈ I . Since �1 ◦ �2 is defined, then
for all x ∈ dom(�1) ∩ dom(�2) it holds that �1(x) = �2(x) = T and un(T).
Let dom(�1) ∩ dom(�2) = D and let f ′

D = f ′ \ ⋃
d∈D{d �→ f ′(d)} and

f ′′
D = f ′′ \ ⋃

d∈D{d �→ f ′′(d)}. Now, suppose f ′′(x) = c, then define
f = ⋃

d∈D{d �→ d ′} ∪ f ′
D ∪ f ′′

D \ {x �→ c}, where for all d ∈ D we create a fresh
name d ′ and associate d �→ d ′. Moreover, f is a function since its subcomponents
act on disjoint domains. Hence, by Lemma 6.3.6 we can rewrite the induction
hypothesis as follows:

��1� f ;� � fx : �o [〈li (Xi ≤ Bi)_�Ti�〉i∈I]

and for j ∈ I
��2� f � c : �Tj�[B/X j];� � �P� f,{x �→c}

Since x /∈ dom(�2), then ��2, x : Tj [B/X j]� f,{x �→c} can be optimised and distrib-
uted as ��2� f � c : �Tj�[B/X j]. By applying (Tπ -Var) in order to derive c : �Tj�,
rule (Tπ -BPolyLVal) and by Theorem 7.2.3 on completeness of subtyping wrt
to encoding we have the following:

c : �Tj �[B/X j]; � � c : �Tj �[B/X j]
(Tπ - Var)

j ∈ I
B ≤ Bi ∀i ∈ I

c : �Tj �[B/X j]; � � l j (B)_c : 〈li (Xi ≤ Bi)_�Ti �〉i∈I
(Tπ - BPolyLVal)

Suppose that Tj �= end and hence Tj �= end. By applying rule (Tπ -Out) we
have the following derivation:

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_7
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_7

8.2 Bounded Polymorphism 119

��1� f ;� � fx : �o [〈li (Xi ≤ Bi)_�Ti�〉i∈I]
c : �Tj�[B/X j];� � l j (B)_c : 〈li (Xi ≤ Bi)_�Ti�〉i∈I

��2� f � c : �Tj�[B/X j];� � �P� f,{x �→c} j ∈ I

��1� f � ��2� f � c : ��[W][B/X j];� � fx !〈l j (B)_c〉.�P� f,{x �→c}

In the above derivation we have that c : �Tj�[B/X j] and c : �Tj�[B/X j] are com-
bine and Lemma 6.3.7 we obtain c : ��[W][B/X j], where �Tj� = �α[W] and
�Tj� = �α[W]. We conclude by applying Lemma 6.3.2 and (Tπ -Res1):

��1� f � ��2� f , c : ��[W][B/X j];� � fx !〈l j (B)_c〉.�P� f,{x �→c}

��1� f � ��2� f ;� � (νc) fx !〈l j (B)_c〉.�P� f,{x �→c}

The case where Tj = Tj = end, which yields c : ∅[], is symmetrical and is
obtained by using (Tπ -Res2) instead of (Tπ -Res1).

• Case (T-BPolyBrch):

(T- BPolyBrch)

�1;� � x : &{li (Xi ≤ Bi) : Ti }i∈I �2, x : Ti ;�, Xi <: Bi � Pi ∀i ∈ I

�1 ◦ �2;� � x � {li (Xi ≤ Bi) : Pi }i∈I
By the correctness of the encoding wrt typing bounded polymorphic values,
we have ��1� f ′ ;� � f ′

x : �i [〈li (Xi ≤ Bi)_�Ti�〉i∈I] for some function f ′.
By induction hypothesis, by (E-Gamma) and Theorem 7.2.3 we have that
��2� f ′′ � f ′′

x : �Ti�;�, Xi ≤ Bi � �Pi� f ′′ for all i ∈ I and for some function f ′′.
Since �1 ◦ �2 is defined, it means that for all x ∈ dom(�1) ∩ dom(�2) it holds
that �1(x) = �2(x) = T and un(T). Let dom(�1) ∩ dom(�2) = D. Then, we
define f ′

D = f ′ \ ⋃
d∈D{d �→ f ′(d)} and f ′′

D = f ′′ \ ⋃
d∈D{d �→ f ′′(d)}. Sup-

pose f ′′(x) = c. We let f = ⋃
d∈D{d �→ d ′} ∪ f ′

D ∪ f ′′
D \ {x �→ c}, where for all

d ∈ D we create a fresh name d ′ and associate d �→ d ′. Moreover, f is a function
since its subcomponents act on disjoint domains. We now have:

��1� f ;� � fx : �i [〈li (Xi ≤ Bi)_�Ti�〉i∈I]

and for all i ∈ I ,

��2� f � c : �Ti�;�, Xi ≤ Bi � �Pi� f,{x �→c}

Since x /∈ dom(�2), then ��2, x : Tj� f,{x �→c} can be optimised and distributed as
��2� f � c : �Tj�. By (Tπ -Var) in order to derive y : 〈li (Xi ≤ Bi)_�Ti�〉i∈I , and
(Tπ -BPolyCase) and Lemma 6.3.2 we have the following derivation:

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_7
http://dx.doi.org/10.2991/978-94-6239-204-5_6

120 8 Polymorphism

(Tπ - BPolyCase)
(Tπ - Var)

y : 〈li (Xi ≤ Bi)_�Ti�〉i∈I ;� � y : 〈li (Xi ≤ Bi)_�Ti�〉i∈I
��2� f , c : �Ti�;�, Xi ≤ Bi � �Pi� f,{x �→c} ∀i ∈ I

��2� f , y : 〈li (Xi ≤ Bi)_�Ti�〉i∈I ;� � case y of {li (Xi ≤ Bi)_c � �Pi� f,{x �→c}}i∈I
Then, by applying (Tπ -Inp) we conclude as follows:

��1� f ;� � fx : �i [〈li (Xi ≤ Bi)_�Ti�〉i∈I]
��2� f , y : 〈li (Xi ≤ Bi)_�Ti�〉i∈I ;� � case y of {li_c(Xi ≤ Bi) � �Pi� f,{x �→c}}i∈I

��1� f � ��2� f ;� � fx?(y). case y of {li (Xi ≤ Bi)_c � �Pi� f,{x �→c}}i∈I
�

In the following, we prove the operational correspondence in the case of bounded
polymorphic processes.

Proof of Theorem 6.3.15 for Bounded Polymorphic Processes: Let P be a session
process, �,� session typing contexts, and f a renaming function for P such that
��;�� f � �P� f . Then, the following statements hold.

1. If P → P ′, then �P� f →↪→ �P ′� f .
2. If �P� f → Q, then there are P ′, E [·], such that E [P] → E [P ′] and Q ↪→ �P ′� f ′ ,

and either f ′ = f or f ′ = f, {x, y �→ c} for x, y such that (νxy) appears in E [P].
Proof Since ��;�� f � �P� f , then by Theorem 6.3.10 for bounded polymorphic
processes, given earlier in this section, it is the case that �;� � P . We consider both
cases in the following.

1. We consider only the case where rule (R-BPolySel) is applied.

P � (νxy)(x � l j (B).Q | y � {li (Xi ≤ Bi) : Pi }i∈I) → (νxy)(Q | Pj [B/X j]) � P ′ j ∈ I

By the encoding of bounded polymorphic processes we have

�P� f = �(νxy)(x � l j (B).Q | y � {li (Xi ≤ Bi) : Pi }i∈I)� f

= (νc)
(
�x � l j (B).Q� f,{x,y �→c} | �y � {li (Xi ≤ Bi) : Pi }i∈I � f,{x,y �→c}

)

= (νc)
(
(νc′)

(
c!〈l j (B)_c′〉.�Q� f,{x,y �→c,x �→c′}

) |
c?(z). case z of {li (Xi ≤ Bi)_c′ � �Pi� f,{x,y �→c,y �→c′}}i∈I

)

→ (νc)
(
(νc′)

(
�Q� f,{x �→c,c �→c′} |

case l j (B)_c′ of {li (Xi ≤ Bi)_c′ � �Pi� f,{y �→c,c �→c′}}i∈I
))

→ (νc)
(
(νc′)

(
�Q� f,{x,y �→c,x �→c′} | �Pj� f,{x,y �→c,y �→c′}[B/X j]

))

≡ (νc′)
(
�Q� f,{x,y �→c,x �→c′} | �Pj� f,{x,y �→c,y �→c′}[B/X j]

)

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

8.2 Bounded Polymorphism 121

Notice that since P is a well-typed session process, it means that for all i ∈ I ,
x /∈ fv(Pi) and y /∈ fv(Q). Then, function f, {x, y �→ c, x �→ c′} and function
f, {x, y �→ c, y �→ c′} can both be subsumed by f, {x, y �→ c′}. We can rewrite
the above as:

(νc′)
(
�Q� f,{x,y �→c′} | �Pj� f,{x,y �→c′}

)

On the other hand we have:

�P ′� f = �(νxy)(Q | Pj [B/X j])� f

= (νc′)
(
�Q� f,{x,y �→c′} | �Pj� f,{x,y �→c′}[B/X j]

)

We use Lemma 8.1.1 to obtain �Pj� f,{x,y �→c′}[B/X j]. The above implies:

�P� f →≡ �P ′� f

2. Case P = P1 | P2 = x � l j (B).P ′
1 | y � {li (Xi ≤ Bi) : P ′′

i }i∈I .
By (E-Composition), (E-BPolySelection) and (E-BPolyBranching), we
have that:

�P1� f | �P2� f

= (νc) fx !〈l j (B)_c〉.�P ′
1� f,{x �→c} |

fy?(z). case z of {li (Xi ≤ Bi)_c � �P ′′
i � f,{y �→c}}i∈I

→ �P ′
1� f,{x �→c} | case l j (B)_c of {li (Xi ≤ Bi)_c � �P ′′

i � f,{y �→c}}i∈I [B/X j]
= �P ′

1� f,{x,y �→c} | case l j (B)_c of {li (Xi ≤ Bi)_c � �P ′′
i � f,{x,y �→c}}i∈I [B/X j]

= Q

The assumption �P1� f | �P2� f → Q implies that fx = fy . Since by assumption
�;� � P1 | P2, it means that x /∈ fv(P2) and y /∈ fv(P1). Hence, in the last line
before Q above we used function f, {x, y �→ c} to subsume both f, {x �→ c} and
f, {y �→ c}.We need to show that there are P ′, E [·] such that E [P1 | P2] → E [P ′]
and Q ↪→ �P ′� f ′ , where either f ′ = f or f ′ = f, {z,w �→ d} for z,w such that
(νzw) appears in E [P]. Choose E [·] = (νxy)[·]. Then, by rule (R-BPolySel) on
E [P1 | P2] we have that:

E [P1 | P2] = (νxy)
(
x � l j (B).P ′

1 | y � {li (Xi ≤ Bi) : P ′′
i }i∈I

)

→ (νxy)
(
P ′
1 | P ′′

j [B/X j]
)

= E [P ′]

Choose P ′ = P ′
1 | P ′′

j [B/X j] and f ′ = f, {x, y �→ c}. By the encoding of P ′ we
have:

�P ′� f ′ = �P ′
1 | P ′′

j [B/X j]� f ′ = �P ′
1� f,{x,y �→c} | �P ′′

j � f,{x,y �→c}[B/X j]

It remains to show that Q ↪→ �P ′� f,{x,y �→c}. By rules (Rπ -BPolyCase) and
(Rπ -Par) and Lemma 8.1.1 we have:

122 8 Polymorphism

Q = �P ′
1� f,{x,y �→c} | case l j (B)_c of {li (Xi ≤ Bi)_c � �P ′′

i � f,{x,y �→c}}i∈I [B/X j]
→ �P ′

1� f,{x,y �→c} | �P ′′
j � f,{x,y �→c}[B/X j]

= �P ′� f,{x,y �→c}

This concludes the proof.
�

Chapter 9
Higher-Order Communication

Higher-Order π -calculus (HOπ) models mobility of processes that can be sent and
received and can be run locally [101]. Higher-order communication has also been
studied in theπ -calculuswith sessions [89]. Following the same line as in the previous
chapters, we want to use standard HOπ to obtain higher-order communication in the
π -calculus with sessions by exploiting the encoding.

9.1 Syntax

Wepresent in Fig. 9.1 themodifications done to the syntax of types and terms for both
the π -calculus with and without sessions. We will distinguish the session constructs
from the standard π -calculus ones by the context in which they are used and in
particular, we will often refer to the standard π -calculus constructs as the encoded
constructs of the π -calculus with sessions.

Let ♦ denote the type of a process and let σ range over a general type T in
the π -calculus with and without sessions, and on the type of processes ♦. We add
to the syntax of types T the type Unit, the functional type T → σ , assigned to a
functional term that can be used without any restriction and the linear functional

type T
1→ σ , assigned to a term that should be used exactly once. The reason for

the linear functional type is privacy and communication safety properties that we
want to guarantee in session types. In particular, a function may contain free session
channels, hence it should necessarily be used at least once, in order to complete the
session and so to ensure communication safety and on the other hand it should not be
used more than once, so not to violate privacy. As long as terms are concerned, they
include constructs borrowed from theλ-calculus: the abstraction and the application,
used to enable mobility not only of values but also of processes. A process can be
the application PQ of a process P, typically being a functional value, to a process

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_9

123

124 9 Higher-Order Communication

Fig. 9.1 Syntax of higher-order constructs

Q. A value v can be an abstraction λx : T .P having exactly the same meaning as
in λ-calculus, where variable x is bound with scope P, or a unit value � having
Unit type.

9.2 Semantics

In this sectionwe present the new reduction rules added to the existing ones presented
in Sect. 5.2 for sessions and in Sect. 4.2 for standard π -calculus, respectively. We
give them in Fig. 9.2. We will distinguish the reduction rules for the π -calculus with
sessions from the ones for the standard π -calculus by the presence of [π] in the rule
name.

Rule (R[π]-Beta) states that the application of an abstraction λx : T .P to a
value v reduces to P where v substitutes x. Rules on context closure, given by
(R[π]-ApplLeft) and (R[π]-ApplRight), state that the application process reduces
if one of its subprocesses reduces as well.

Fig. 9.2 Semantics of higher-order constructs

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_4

9.3 Typing Rules 125

9.3 Typing Rules

In this section we present the typing rules for the HOπ with and without sessions.
Typing judgements are of the form �;�;S � P : σ . For simplicity, in case P is a
process and not a value, we use �;�;S � P instead �;�;S � P : ♦.

9.3.1 HOπ Session Typing Rules

The session typing contexts are defined as follows:

�:: = ∅ | �, x : Bool | �, x : Unit
�, x : T → σ | �, x : T 1→ σ (general typing context)

�:: = ∅ | �, x : linp | �, x : end (session typing context)
S:: = ∅ | S ∪ {x} (linear functional variables)

where � associates value types, except session types, to identifiers. � associates
linear pretypes or terminated channel types, namely session types, to channels.
S denotes the set of linear functional variables. The context split ◦ is defined as
in Fig. 5.6. We state that a typing judgement is well formed if S ⊆ dom(�) and
dom(�) ∩ dom(�) = ∅. The predicates lin and un are defined in Sect. 5.3. Since
we use only linear pretypes, this means that the only unrestricted types are the ground
types, like Bool,Unit . . . and the terminated channel type end.

The typing rules for the HOπ with sessions are given in Figs. 9.3 and 9.4. We
start with Fig. 9.3. Rule (T-HoSess) states that a variable x has session type T , if
this is assumed in �. Rule (T-HoVar) states that a variable has type T different
from a session type and from a linear functional type, if this is assumed in �. Rule
(T-HoBool) states that a boolean value, true or false, is of type Bool where
� is unrestricted and S = ∅. Rule (T-HoFun) states that a variable is of a linear
functional type, if this is assumed in �. Rule (T-HoUnit) is similar to (T-HoBool).
There are two typing rules for abstractions, depending on the type of the binder x in
the λ-abstraction. Rule (T-HoAbs1) states that λx : T .P is of type T → σ if process
P is of type σ and x has a value type. In case x is a linear functional variable, then
it appears in S. Rule (T-HoAbs2) is similar to the previous one, but in this case x
has a session type. Rule (T-HoSub) is a subsumption typing rule. It states that a
functional type can be lifted to a linear functional type. Rule (T-HoApp) states that

the application of process P toQ has type σ if P is of a linear functional type T
1→ σ

and Q is of type T . In case the type of Q is a standard functional type, then Q does
not have any session channel, enforced by condition un(�2), or any linear functional
variables, enforced by condition S2 = ∅, otherwise this would violate linearity.

The typing rules for processes are given in Fig. 9.4. Rule (T-Inact) states that the
terminated process iswell typed in any typing contextwithout assumptions on session
types or linear functional types. Rule (T-HoPar) is straightforward, it uses context

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_5

126 9 Higher-Order Communication

Fig. 9.3 Typing rules for the HOπ with sessions: values

split and union of sets of linear functional variables. Rules (T-HoRes) and (T-HoIf)
are straightforward. There are two typing rules for the input process, depending on
the type of the placeholder of the input prefix. Rule (T-HoInp1) is similar to (T-Inp)
where the type of the placeholder y is a session type. Rule (T-HoInp2) states the
well-typedness of the input process where y is of a value type. In case y is a linear
functional variable, then it occurs in the set S. Rule (T-HoOut) states the well-
typedness of the output process by using the context split operator and the union of
sets of linear functional variables present in v and P. This rule is used when a session
channel is sent (and in that case it can be read as (T-Out)), or when a value is sent. In
the latter case, if the value v is of a standard functional type, then it does not contain
either free session channels or linear functional variable. This condition is the same
as for (T-HoApp). Rules (T-HoBrch) and (T-HoSel) are the same as the standard
ones, the only difference is in the typing contexts, which are split in three parts.

9.3.2 HOπ Typing Rules

The typing contexts for the standard HOπ are defined as follows:

9.3 Typing Rules 127

Fig. 9.4 Typing rules for the HOπ with sessions: processes

�:: = ∅ | �, x : Bool | �, x : Unit
�, x : 〈li_Ti〉i∈I | �, x : T → σ

�, x : T 1→ σ (general typing context)
�:: = ∅ | �, x : τ (channel typing context)
S:: = ∅ | S ∪ {x} (linear functional variables)

where � associates value types, except channel types, to identifiers. � associates τ

types to channels. S denotes the set of linear functional variables. The
 operation
is defined as in Fig. 4.6. As for sessions, we state that a typing judgement is well
formed if S ⊆ dom(�) and dom(�) ∩ dom(�) = ∅. The predicates lin and un are
defined as in Sect. 4.3. However, since we use only linear channel types, this means
that the only unrestricted types are the ground types, like Bool,Unit . . . and the
type of a channel with no capabilities ∅[].

http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4

128 9 Higher-Order Communication

Fig. 9.5 Typing rules for the standard HOπ : values

The typing rules for the standard HOπ are given in Figs. 9.5 and 9.6, for values
and processes, respectively. Most of the rules follow the same line as the corre-
sponding ones in HOπ with sessions. We comment only on the typing rules that
are new or different wrt the ones previously presented. Rule (Tπ -HoLVal) is the
same as (Tπ -LVal), the only difference is the split of the typing contexts in three
parts. There are two typing rules for restriction, as in the case of first-order standard
π -calculus. Rule (Tπ -HoCase) is similar to (Tπ -Case). In addition, it uses a set of
linear functional variables that comes from the union of linear variables in the guard
v and in Pi for all i ∈ I . In the same way as for the branching process, the set of linear
variables for every Pi is the same set S2, considering that only one of such processes
will be executed.

9.4 Encoding

We start with the encoding of typing contexts, defined in the following:

9.4 Encoding 129

Fig. 9.6 Typing rules for the standard HOπ : processes

�∅� f � ∅ (E-Empty)

��;�;S� f � ��� f ; ��� f ; �S� f (E-HOContext)
��, x : T� f � ��� f
 fx : �T� (E-Gamma)

��, x : T� � ��� f , fx : �T� (E-Phi)

The encoding of � is the same as in Fig. 6.3. The encoding on the typing contexts �

and S is an homomorphism.
The encoding of HOπ session types and terms is an homomorphism and is given

in Fig. 9.7. The process type, functional types, �, abstraction and application in the
HOπ-calculus with sessions are encoded respectively as the process type, functional
types, �, abstraction and application in the standard HOπ- calculus.

http://dx.doi.org/10.2991/978-94-6239-204-5_6

130 9 Higher-Order Communication

Fig. 9.7 Encoding of HOπ types and terms

9.5 Properties of the Encoding

In this section we present the correctness of the encoding of HOπ constructs wrt typ-
ing derivations for values and processes. Since processes include values, we present
the result in the same theorem.We also give the operational correspondence for HOπ

constructs.

9.5.1 Typing HOπ Processes by Encoding

We start this section by introducing the following auxiliary lemmas.

Lemma 9.5.1 Let S1, . . . ,Sn be sets of linear functional variables such that their
union is defined. Let f be a renaming function for all Si for i ∈ 1 . . . n such that
�S1� f ∪ · · · ∪ �Sn� f is defined. Then, �S1 ∪ · · · ∪ Sn� f = �S1� f ∪ · · · ∪ �Sn� f .

Proof The proof follows immediately by applying any renaming function on the
disjoint union of sets of linear session functional variables. �

Lemma 9.5.2 The following hold.

• Let S be a set of linear functional variables and f a renaming function for
S and �S� f = Sπ

1 ∪ · · · ∪ Sπ
n . Then, S = S1 ∪ · · · ∪ Sn and for all i ∈ 1 . . . n,

Sπ
i = �Si� f .

• Let Sπ = �S1� f ∪ · · · ∪ �Sn� f and f a renaming function for all Si for i ∈ 1 . . . n.
Then, S = S1 ∪ · · · ∪ Sn and Sπ = �S� f .

Proof The proof follows immediately from the definition of the encoding of S and
the disjoint union of subsets of S. �

Lemma 9.5.3 (Substitution Lemma for Linear HOπ - Calculus) Let P be a HOπ

process. The following hold.

• If �;�, x : T;S � P or
• If �, x : T;�;S � P or
• If �, x : T;�;S, {x} � P and

�′;�′;S ′ � v : T and �,�′, and �
 �′ and S,S ′ are defined, then it holds
�,�′;�
 �′;S,S ′ � P[v/x].

9.5 Properties of the Encoding 131

Proof The result is immediate as it is a generalisation of Lemma 4.5.2. �

We are ready now to present the main contribution of this chapter, namely the
correctness of the encoding of higher-order processes wrt typing.

Theorem 9.5.4 (Soundness: Typing HOπ Processes) If ��;�;S� f � �P� f : �σ �
for some renaming function f for P, then �;�;S � P : σ .

Proof The proof is done by induction on the structure of process P.
The cases for values different from λ-abstractions are trivial, as the encoding

is an homomorphism and the typing rules for both the HOπ - calculus with and
without sessions follow the same line. We present only the case for a value being a
λ-abstraction.

• Case λx : T .P:
By applying (E-Abstraction) and (E-FunType) we have

�λx : T .P� f = λx : �T�.�P� f

and �T → σ � = �T� → �σ �. Since x is bound with scope P, then fx = x.
Assume

��� f ; ��� f ; �S� f � λx : �T�.�P� f : �T� → �σ �

This implies that either rule (Tπ -HoAbs1) or rule (Tπ -HoAbs2) is applied. We
consider both cases in the following:

– Rule (Tπ -HoAbs1) is applied:

��� f , x : �T�; ��� f ;Sπ
1 � �P� f : �σ �

if �T� = Tπ
1

1→ σπ
1 then x ∈ Sπ

1

��� f ; ��� f ;Sπ
1 − {x} � λx : �T�.�P� f : �T� → �σ �

where �S� f = Sπ
1 − {x}, which implies Sπ

1 = �S� f ∪ {x}. By Lemma 9.5.2
�S1� f = Sπ

1 and thus S = S1 − x. By induction hypothesis we have
�, x : T;�;S1 � P : σ . We conclude by (T-HoAbs1).

– Rule (Tπ -HoAbs2) is applied:

��� f ; ��� f , x : �T�; �S� f � �P� f : �σ �

��� f ; ��� f ; �S� f � λx : �T�.�P� f : �T� → �σ �

By induction hypothesis �;�, x : T;S � P : σ . Then, we obtain the result by
applying rule (T-HoAbs1).

• Case PQ:
By (E-Application) we have �PQ� f = �P� f �Q� f and assume

��� f ; ��� f ; �S� f � �P� f �Q� f : �σ �

http://dx.doi.org/10.2991/978-94-6239-204-5_4

132 9 Higher-Order Communication

Then, rule (Tπ -HoApp) is applied:

��� f ;�π
1 ;Sπ

1 � �P� f : Tπ 1→ �σ �
��� f ;�π

2 ;Sπ
2 � �Q� f : Tπ if Tπ = Tπ

1 → σπ
1 then un(�π

2) and Sπ
2 = ∅

��� f ;�π
1
 �π

2 ;Sπ
1 ∪ Sπ

2 � �P� f �Q� f : �σ �

We have that ��� f = �π
1
 �π

2 and �S� f = Sπ
1 ∪ Sπ

2 . By Lemma 6.3.5 we have
�π
1 = ��1� f and �π

2 = ��2� f , such that � = �1 ◦ �2. By Lemma 9.5.2 we have
that �S1� f = Sπ

1 and �S2� f = Sπ
2 such thatS = S1 ∪ S2. By induction hypothesis

�;�1;S1 � P : T 1→ σ where Tπ = �T�, and�;�2;S2 � Q : T . Then, the result
follows immediately by applying rule (T-HoApp) on the induction hypothesis.

• Case x?(y).P:
By assumption and by (E-Input) we have that

��� f ; ��� f ; �S� f � fx?(y, c).�P� f,{x �→c}

Then, rule (Tπ -HoInp) is applied:

��� f ;�π
1 ; ∅ � fx : 	i[Tπ ,Uπ] (��� f ;�π

2), y : Tπ , c : Uπ ;Sπ
1 � �P� f,{x �→c}

if Tπ = Tπ
1

1→ σπ, then y ∈ Sπ
1

��� f ;�π
1
 �π

2 ;Sπ
1 − {y} � fx?(y, c).�P� f,{x �→c}

We have that ��� f = �π
1
 �π

2 . By Lemma 6.3.5 we obtain �π
1 = ��1� f

and �π
2 = ��2� f , such that � = �1 ◦ �2. Moreover, �S� f = Sπ

1 − {y}, namely
Sπ
1 = �S� f ∪ {y} and notice that since y is bound, then fy = y. By Lemma 9.5.2

�S1� f = Sπ
1 and S = S1 − y. By induction hypothesis we have �;�1;

∅ � x : ?T .U and, depending on whether y is a channel variable or not, we have
one of the following:

�;�2, x : U, y : T;S � P or �, y : T;�2, x : U;S � P

where Tπ = �T�, Uπ = �U�. Then, we apply either rule (T-HoInp1) or rule
(T-HoInp2) to obtain the result.

• Case x!〈v〉.P:
By assumption and by (E-Output) we have

��� f ; ��� f ; �S� f � (νc) fx!〈�v� f , c〉.�P� f,{x �→c}

By rule (Tπ -HoSess) we have

��� f ; c : 	α[W]; ∅ � c : 	α[W] Tπ - HoSess

By rules (Tπ -HoRes1) and (Tπ -HoOut), we have the following derivation:

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

9.5 Properties of the Encoding 133

Tπ - HoRes1
Tπ - HoOut

��� f ;�π
1 ; ∅ � fx : 	o[Tπ ,Uπ] ��� f ;�π

2 ;Sπ
2 � �v� f : Tπ

��� f ;�π
3 , c : 	α[W];Sπ

3 � �P� f,{x �→c} ��� f ; c : 	α[W]; ∅ � c : 	α[W]
if Tπ = Tπ

1 → σπ
1 , then un(�π

2) and Sπ
2 = ∅

��� f ;�π
1
 �π

2
 �π
3 , c : 	�[Tπ ,Uπ];Sπ

2 ∪ Sπ
3 � fx!〈�v� f , c〉.�P� f,{x �→c}

��� f ;�π
1
 �π

2
 �π
3 ;Sπ

2 ∪ Sπ
3 � (νc) fx!〈�v� f , c〉.�P� f,{x �→c}

We have ��� f = �π
1
 �π

2
 �π
3 . By Lemma 6.3.5 we have that

�π
1 = ��1� f , �π

2 = ��2� f and �π
3 = ��3� f , such that � = �1 ◦ �2 ◦ �3. We

also have �S� f = Sπ
2 ∪ Sπ

3 . By Lemma 9.5.2 we have that �S2� f = Sπ
2 and

�S3� f = Sπ
3 such that S = S2 ∪ S3. By induction hypothesis we have �;�1;

∅ � x : !T .U where 	o[Tπ ,Uπ] = �!T .U�, which by (E-Out) means that
Tπ = �T� and Uπ = �U� = 	α[W], and �;�2;S2 � v : T , and �;�3, x : U;
S3 � P, where �U� = 	α[W], by Lemma 6.3.7. By applying (T-HoOut) on the
induction hypothesis we obtain the result �;�1 ◦ �2 ◦ �3;S2 ∪ S3 � x!〈v〉.P.
Notice that in the above we have used rule (Tπ -HoRes1) and hence we have
that �U� = 	α[W] and �U� = 	α[W]. The case for �U� = �U� = ∅[] and rule
(Tπ -HoRes2) is symmetrical. �

Theorem 9.5.5 (Completeness: Typing HOπ Processes) If �;�;S � P : σ , then
��;�;S� f � �P� f : �σ � for some renaming function f for P.

Proof The proof is done by induction on the derivation �;�;S � P : σ .

• Case (T-HoFun):
un(�)

�, x : T 1→ σ ;�; {x} � x : T 1→ σ

We need to prove that ��� f , fx : �T
1→ σ �; ��� f ; { fx} � fx : �T

1→ σ �. By
Lemma 6.3.1 we obtain un(��� f). By (E-LinFunType) and by applying rule
(Tπ -HoFun) we conclude the case.

• Case (T-HoAbs1):

�, x : T;�;S � P : σ

if T = T ′ 1→ σ then x ∈ S
�;�;S − {x} � λx : T .P : T → σ

By induction hypothesis ���f ′ , f ′
x : �T�; ���f ′ ; �S�f ′ � �P�f ′ : �σ � for some func-

tion f ′ and if �T� = �T ′ 1→ σ �, then f ′
x ∈ �S�f ′ . Since f ′ is a renaming

function for P and x ∈ fv(P), then x /∈ dom(���f ′) and x /∈ dom(���f ′). We

distinguish two cases, according to the shape of type T . If T �= T ′ 1→ σ , then also

�T� �= �T ′ 1→ σ �. By typing rule (Tπ -HoVar) we have x : �T�; ∅; ∅ � x : �T�.

Otherwise, if T = T ′ 1→ σ , then also �T� = �T ′ 1→ σ �. By rule (Tπ -HoFun) we

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

134 9 Higher-Order Communication

have x : �T�; ∅; {x} � x : �T�. Then, ���f ′ , x : �T�; ���f ′ ; �S�f ′ [x/ f ′
x] is defined.

Finally, by applyingLemma9.5.3 ���f ′ , x : �T�; ���f ′ ; �S�f ′ [x/ f ′
x] � �P�f ′ [x/ f ′

x] :
�σ �. Let f = f ′, {x �→ x}. It holds that if �T� = �T ′ 1→ σ � then x ∈ �S� f . Then, we
write the induction hypothesis as ��� f , x : �T�; ��� f ; �S� f � �P� f . By applying
(E-Abstraction) and (E-FunType) and by rule (Tπ -HoAbs1) and Lemma 9.5.1
on the induction hypothesis, we obtain the result.

• Case (T-HoAbs2):

�;�, x : T;S � P : σ

�;�;S � λx : T .P : T → σ

We need to prove that ��� f ; ��� f ; �S� f � �λx : T .P� f : �T → σ �. By induction
hypothesis ���f ′ ; ���f ′ , f ′

x : �T�; �S�f ′ � �P�f ′ : �σ �, for some function f ′. By rule
(Tπ -HoSess) we can derive ∅; x : �T�; ∅ � x : �T�. As in (T-HoAbs1) it means
that ���f ′ ; ���f ′ , x : �T�; �S�f ′ is defined and by Lemma 9.5.3 ���f ′ ; ���f ′ , x :
�T�; �S�f ′ � �P�f ′ [x/ f ′

x] : �σ �. Let f = f ′, {x �→ x}. By applying (E-Abstrac-
tion), (E-FunType) and typing rule (Tπ -HoAbs2) we obtain the result.

• Case (T-HoApp):

�;�1;S1 � P : T 1→ σ �;�2;S2 � Q : T
if T = T ′ → σ ′ then un(�2) and S2 = ∅

�;�1 ◦ �2;S1 ∪ S2 � PQ : σ

By induction hypothesis ���f ′ ; ��1�f ′ ; �S1�f ′ � �P�f ′ : �T�
1→ �σ � for some func-

tion f ′ and ���f ′′ ; ��2�f ′′ ; �S2�f ′′ � �Q�f ′′ : �T� for some function f ′′. Since�1 ◦ �2

is defined, then for all x ∈ dom(�1) ∩ dom(�2) it holds that �1(x) = �2(x) = T
and un(T). Let dom(�1) ∩ dom(�2) = D and let f ′

D = f ′\⋃
d∈D{d �→ f ′(d)} and

f ′′
D = f ′′\ ⋃

d∈D{d �→ f ′′(d)}\⋃
q∈�{q �→ f ′′(q)}. Hence, for all d ∈ D we are not

making any assumption on f ′(d) and f ′′(d). Let f = ⋃
d∈D{d �→ d′} ∪ f ′

D ∪ f ′′
D ,

where for all d ∈ D we create a fresh name d′ and associate d �→ d′. Moreover,
f is a function since its subcomponents act on disjoint domains. By applying
Lemma 6.3.6, the induction hypothesis can be rewritten as follows:

��� f ; ��1�f ; �S1� f � �P�f : �T�
1→ �σ �

and
��� f ; ��2�f ; �S2� f � �Q�f : �T�

By (E-Application), (Tπ -HoApp), by Lemmas 6.3.2 and 9.5.1 we obtain the
result: ��� f ; ��1� f
 ��2� f ; �S1� f ∪ �S2� f � �P� f �Q� f : �σ �.

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

9.5 Properties of the Encoding 135

• Case (T-HoInp1):

�;�1; ∅ � x : ?T .U �;�2, x : U, y : T;S � P

�;�1 ◦ �2;S � x?(y).P

By induction hypothesis and by (E-Inp) ���f ′ ; ��1�f ′ ; ∅ � f ′
x : 	i[�T�, �U�],

for some function f ′. By induction hypothesis and by (E-Gamma) we have
���f ′′ ; ��2�f ′′
 f ′′

x : �U�
 f ′′
y : �T�; �S�f ′′ � �P�f ′′ for some function f ′′.

By rule (Tπ -HoSess) we can derive ∅; y : �T�; ∅ � y : �T�. Since f ′′ is a
renaming function for P and y ∈ fv(P), by the top-right premise of typing
rule (T-HoInp1), then y /∈ dom(���f ′′), y /∈ dom(��2�f ′′) and y �= f ′′

x . Then,
���f ′′ ; ��2�f ′′
 f ′′

x : �U�
 y : �T�; �S�f ′′ is defined. By Lemma 9.5.3
we obtain that ���f ′′ ; ��2�f ′′
 f ′′

x : �U�
 y : �T�; �S�f ′′ � �P�f ′′ [y/ f ′′
y].

Since �1 ◦ �2 is defined, then for all x ∈ dom(�1) ∩ dom(�2) it holds that
�1(x) = �2(x) = T and un(T). Let dom(�1) ∩ dom(�2) = D and define
f ′
D = f ′\⋃

d∈D{d �→ f ′(d)} and f ′′
D = f ′′\ ⋃

d∈D{d �→ f ′′(d)}\ ⋃
q∈�{q �→ f ′′(q)},

meaning that only f ′
D acts on variables in �. Suppose f ′′(x) = c. We let

f = ⋃
d∈D{d �→ d′} ∪ f ′

D ∪ f ′′
D, {y �→ y}\{x �→ c}, where for all d ∈ D we create a

fresh name d′ and associate d �→ d′. Notice that f ′′
D(y) is defined and is f ′′

y from
the induction hypothesis. Then, f ′′

D, {y �→ y} updates f ′′
y to y by mapping {y �→ y}.

Moreover, f is a function since its subcomponents act on disjoint domains. By
applying Lemma 6.3.6, we can rewrite the induction hypothesis as:

��� f ; ��1� f ; ∅ � fx : 	i[�T�, �U�]

and
��� f ; ��2� f
 c : �U�
 y : �T�; �S� f � �P� f,{x �→c}

Since x, y /∈ dom(�2), then ��2, x : U, y : T� f,{x �→c} can be optimised as ��2� f

c : �U�
 y : �T�. Also in ��� f and �S� f we simply use f . Then, by Lemma 6.3.2
we have ��� f ; ��2� f , c : �U�, y : �T�; �S� f � �P� f,{x �→c}. By (E-Input), rule
(Tπ -HoInp) and by Lemma 6.3.4 we obtain the result ��� f ; ��1� f
 ��2� f ; �S� f

� fx?(y, c).�P� f,{x �→c}.
• Case (T-HoInp2):

�;�1; ∅ � x : ?T .U

�, y : T;�2, x : U;S � P if T = T ′ 1→ σ then y ∈ S
�;�1 ◦ �2;S − {y} � x?(y).P

By induction hypothesis and by (E-Inp) ���f ′ ; ��1�f ′ ; ∅ � f ′
x : 	i[�T�, �U�], for

some function f ′. By induction hypothesis and by (E-Gamma)
���f ′′ , f ′′

y : �T�; ��2�f ′′
 f ′′
x : �U�; �S�f ′′ � �P�f ′′ , for some function f ′′. Since f ′′

is a renaming function for P and y ∈ fv(P), by the second premise of
(T-HoInp2), then y /∈ dom(���f ′′), y /∈ dom(��2�f ′′) and y �= f ′′

x . Then, by fol-
lowing the same reasoning as in (T-HoAbs1) and by Lemma 9.5.3 we have

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

136 9 Higher-Order Communication

���f ′′ , y : �T�; ��2�f ′′
 f ′′
x : �U�; �S�f ′′ [y/ f ′′

y] � �P�f ′′ [y/ f ′′
y]. Since �1 ◦ �2 is

defined, then for all x ∈ dom(�1) ∩ dom(�2) it holds that
�1(x) = �2(x) = T and un(T). Let dom(�1) ∩ dom(�2) = D and define
f ′
D = f ′\⋃

d∈D{d �→ f ′(d)} and f ′′
D = f ′′\ ⋃

d∈D{d �→ f ′′(d)}\ ⋃
q∈�{q �→ f ′′(q)},

meaning that only f ′
D acts on variables in �. Suppose f ′′(x) = c. We let

f = ⋃
d∈D{d �→ d′} ∪ f ′

D ∪ f ′′
D, {y �→ y}\{x �→ c}, where for all d ∈ D we create a

fresh name d′ and associate d �→ d′. Notice that f ′′
D(y) is defined and is f ′′

y from
the induction hypothesis. Then, f ′′

D, {y �→ y} updates f ′′
y to y by mapping {y �→ y}.

Moreover, f is a function since its subcomponents act on disjoint domains. By
applying Lemma 6.3.6, we can rewrite the induction hypothesis as:

��� f ; ��1� f ; ∅ � fx : 	i[�T�, �U�]

and
��� f , y : �T�; ��2� f
 c : �U�; �S� f � �P� f,{x �→c}

Since x /∈ dom(�2), then ��2, x : U� f,{x �→c} can be optimised and
distributed as ��2� f
 c : �U�. We also use f in ��� f and �S� f . Moreover, the

condition “if �T� = �T ′� 1→ �σ � then y ∈ S” holds. By (E-Input), typing rule
(Tπ -HoInp) and by Lemmas 6.3.2 and 6.3.4 we obtain the result
��� f ; ��1� f
 ��2� f ; �S� f − {y} � fx?(y, c).�P� f,{x �→c}.

• Case (T-HoOut):

�;�1; ∅ � x : !T .U �;�2;S2 � v : T
�;�3, x : U;S3 � P if T = T ′ → σ ′ then un(�2) and S2 = ∅

�;�1 ◦ �2 ◦ �3;S2 ∪ S3 � x!〈v〉.P

By induction hypothesis and (E-Out) ���f ′ ; ��1�f ′ ; ∅ � f ′
x : 	o[�T�, �U�], for

some function f ′ and ���f ′′ ; ��2�f ′′ ; �S2�f ′′ � �v�f ′′ : �T� for some function f ′′ and
by (E-Gamma) ���f ′′′ ; ��3�f ′′′
 f ′′′

x : �U�; �S3�f ′′′ � �P�f ′′′ for some function f ′′′.
Since �1 ◦ �2 ◦ �3 is defined by assumption, then for all
x ∈ dom(�1) ∩ dom(�2) ∩ dom(�3), we have �1(x) = �2(x) = �3(x) = T and
un(T). Now, let D = dom(�1) ∩ dom(�2) ∩ dom(�3). We define
f ′
D = f ′\⋃

d∈D{d �→ f ′(d)} and f ′′
D = f ′′\⋃

d∈D{d �→ f ′′(d)}\⋃
q∈�{q �→ f ′′(q)}

and f ′′′
D = f ′′′\⋃

d∈D{d �→ f ′′′(d)\ ⋃
q∈�{q �→ f ′′(q)}. Suppose f ′′′

x = c. Then,
define f = ⋃

d∈D{d �→ d′} ∪ f ′
D ∪ f ′′

d ∪ f ′′′
D \{x �→ c}, where for all d ∈ D we

create a fresh name d′ and associate d �→ d′. Notice that f is a function because
its subcomponents act on disjoint domains. Then, by Lemma 6.3.6, the induction
hypothesis can be rewritten as follows:

��� f ; ��1� f ; ∅ � fx : 	o[�T�, �U�] ��� f ; ��2� f ; �S2� f � �v� f : �T�

and
��� f ; ��3� f
 c : �U�; �S3� f � �P� f,{x �→c}

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

9.5 Properties of the Encoding 137

Since x /∈ dom(�3), then ��3, x : U� f,{x �→c} can be optimised and distributed as
��3� f
 c : �U�. Assume U �= end and hence U �= end. By (Tπ -HoSess) we
can derive c : �U� � c : �U�. By rule (Tπ -HoOut) and by using Lemma 6.3.7
and “
” operator to obtain c : 	� [W], we have the following:

��� f ; c : �U�; ∅ � c : �U�

��� f ; ��1� f ; ∅ � fx : 	o[�T�, �U�] ��� f ; ��2� f ; �S2� f � �v� f : �T�
��� f ; ��3� f
 c : �U�; �S3� f � �P� f,{x �→c}

��� f ; ��1� f
 ��2� f
 ��3� f
 c : 	�[W]; �S2� f ∪ �S3� f

� fx!〈�v� f , c〉.�P� f,{x �→c}

Then, by Lemma 6.3.2 and by applying (Tπ -Res1) we have the following:

��� f ; ��1� f
 ��2� f
 ��3� f , c : 	�[W]; �S2� f ∪ �S3� f � fx!〈�v� f , c〉.�P� f,{x �→c}
��� f ; ��1� f
 ��2� f
 ��3� f ; �S2� f ∪ �S3� f � (νc) fx!〈�v� f , c〉.�P� f,{x �→c}

ThecasewhereU = U = end,whichyields c : ∅[], is symmetrical and is obtained
by using (Tπ -Res2) instead of (Tπ -Res1). By (E-Output) and Lemmas 6.3.4
and 9.5.1 we conclude the proof. �

9.5.2 Operational Correspondence for HOπ

In the following, we prove the operational correspondence in the case of higher-order
constructs.

Proof of Theorem 6.3.15 for Higher-Order Terms: Let P be a session process,
�,�,S session typing contexts, and f a renaming function for P such that
��� f ; ��� f ; �S� f � �P� f . Then, the following statements hold.

1. If P → P′, then �P� f →↪→ �P′� f .
2. If �P� f → Q, then there are P′, E ·[], such that E [P] → E [P′] and Q ↪→ �P′�f ′ ,

and either f ′ = f or f ′ = f , {x, y �→ c} for x, y such that (νxy) appears in E [P].
Proof Since ��� f ; ��� f ; �S� f � �P� f , then by Theorem 9.5.4 it is the case that
�;�;S � P. We consider both cases in the following.

1. The proof is done by induction on the derivation P → P′.

• Case (R-Beta):
P � (λx : T .Q)v → Q[v/x] � P′

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

138 9 Higher-Order Communication

By the encoding of abstraction in HOπ with session types we have:

�P� f = �(λx : T .Q)v� f

= (λx : �T�.�Q� f)�v� f

→ �Q� f [�v� f /x]

Notice that x is bound with scope Q, hence fx = x. On the other hand, by the
encoding of P′ and by using Lemma 6.3.13 we have:

�P′� f = �Q[v/x]� f = �Q� f [�v� f / fx] = �Q� f [�v� f /x]

This implies that �P� f →≡ �P′� f .
• Case (R-ApplLeft):

P → P′

PQ → P′Q

By induction hypothesis �P� f →↪→ �P′� f . We conclude by context clo-
sure of structural congruence and by applying rules (Rπ -ApplLeft) and
(Rπ -Struct).

• Case (R-ApplRight):
P → P′

vP → vP′

This case is symmetrical to the previous one. By induction hypothesis
�P� f →↪→ �P′� f . We conclude by context closure of structural congruence
and by applying rules (Rπ -ApplRight) and (Rπ -Struct).

2. The proof is done by induction on the structure of the higher-order session
process P. There is only one case to be considered in addition to the cases
of Theorem 6.3.15, namely P = P1P2. By (E-Application) and by assump-
tion we have �P1� f �P2� f → Q. We need to show that there exist P′, E [·], such
that E [P] → E [P′] and Q ↪→ �P′�f ′ , and either f ′ = f or f ′ = f , {x, y �→ c} for
x, y such that (νxy) appears in E [P]. There are only the following cases to be
considered:

• P = P1P2 = (λx : T .Q′)v and the abstraction λx : T .Q′ is applied on v.
By assumption we have that �λx : T .Q′� f �v� f → Q, for some Q. By
(E-Abstraction) �λx : T .Q′� f = λx : �T�.�Q′� f and since x is bound with
scope Q′, then fx = x. Then, by rule (Rπ -Beta) we have (λx : �T�.�Q′� f)

�v� f → �Q′� f [�v� f /x]. Let Q = �Q′� f [�v� f /x]. We need to show that there
exist P′, E [·], such that E [P] → E [P′] and Q ↪→ �P′�f ′ , where either
f ′ = f or f ′ = f , {z,w �→ c} such that (νzw) appears in E [P]. Let
E [·] = [·], P′ = Q′[v/x] and f ′ = f . Then, it is the case that P → Q′[v/x] and
�P′� f = �Q′[v/x]� f , which by Lemma 6.3.13 means that
�Q′[v/x]� f = �Q′� f [�v� f / fx]. Again, since fx = x, then Q ≡ �Q′� f [�v� f /x].

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

9.5 Properties of the Encoding 139

• Only �P1� f reduces.
Let �P1� f → R. By rule (Rπ -ApplLeft) �P1� f �P2� f → R�P2� f . Let
Q = R�P2� f . By induction hypothesis, since P1 is a subprocess of P and
�P1� f → R, there exist P′

1, E ′[·], such that E ′[P1] → E ′[P′
1] and R ↪→ �P′

1�f ′′ ,
where either f ′′ = f or f ′′ = f , {z,w �→ c}, such that (νzw) appears in E ′ [P1].
Let E[·] = E ′[·]. Since E[·] is a suitable context for P1 and �;�;S � P1P2 it
means that for all (νzw) that appear in E [P1], it is the case that z,w /∈ fv(P2).
Hence, by structural congruence we obtain that E [P1]P2 ≡ E [P1P2] (1). By
rule (R-ApplLeft) we have E [P1]P2 → E [P′

1]P2 (2). Again, by structural
congruence we have E [P′

1] | P2 ≡ E [P′
1 | P2] (3). By rule (R-Struct) on

(1), (2), (3) we can conclude that E [P1P2] → E [P′
1P2]. Let P′ = P′

1P2 and
f ′ = f . Then, R�P2� f ↪→ �P′

1� f �P2� f = �P′� f .
• Only �P2� f reduces.
This case is symmetrical to the previous one where the roles of P1 and P2 are
exchanged and rules (Rπ -ApplRight) and (R-ApplRight) are used instead
of (Rπ -ApplLeft) and (R-ApplLeft), respectively. �

Chapter 10
Recursion

So far we have worked with processes that have a finite behaviour. In this chapter,
we introduce recursion, which is widely known and used not only in process calculi,
but also in other programming paradigms. Replication, on the other hand, is a simple
form of recursion. It states what is exactly needed, for example in representing data
and functions [101]. There is a strong relation between recursion and replication.
In [101] it is shown that recursion definitions can be represented by replication and
replication is redundant in the presence of recursion. In [95] the authors show an
encoding that relates the two constructs.

10.1 Syntax

In this section we present the syntax of types and terms for both the π -calculus with
and without sessions.

Recursion in the π -calculus with sessions The syntax of recursive types and recur-
sive processes in the π -calculus with sessions is given in Fig. 10.1.

Recursion in the standard π -calculus The syntax of recursive types and recursive
processes in the standard π -calculus is given in Fig. 10.2.

Recall that α ranges over ‘i’ input, ‘o’ output, or ‘�’ connection capabilities. A
channel can be of a linear type �α[T̃], or of an unrestricted type α[T̃], or without
any capability ∅[T̃]. The syntax of types includes type variables t, t and recursive
types, in addition to the types given in Fig. 4.5. μ and rec are binders of the type
and process variables, respectively. Type μt.T is the solution to the equation t = T ,
which is obtained by replacing the free occurrence of the type variable t in T with
T itself. In order to avoid meaningless types, like μt.t, we require that our recursive
types, on both π -calculus with and without sessions, satisfy the constraint that the
type variable t of the μt.T expression is guarded in the type T , which means that

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_10

141

http://dx.doi.org/10.2991/978-94-6239-204-5_4

142 10 Recursion

(type variable)
(recursive type)
(other type constructs)

(process variable)
(recursive process)
(other process constructs)

Fig. 10.1 Syntax of recursive session types and terms

(linear qualifier used in capability α)
(unrestricted qualifier used in capability α)
(channel type used in capability mα)
(channel with no capability)
(channel type)
(type variable)
(recursive type)
(other type constructs)

(process variable)
(recursive process)
(other process constructs)

Fig. 10.2 Syntax of recursive standard π -calculus types and terms

can occur free only underneath at least one of the other type constructs in the syntax.
Moreover, recursive types are contractive, i.e., do not contain subexpressions like
μt1 . . . μtn.T .

10.2 Semantics

The reduction rule for the recursive process is the same in both the π -calculus with
and without sessions and is given in the following.

(R[π]- Rec)

P[recX.P/X] → P ′

recX.P → P ′

Rule (Rπ -Rec) states that a recursive process recX.P reduces to a process P ′ if
process P where X is substituted by the recursion process recX.P , reduces to the
same P ′. The rest of the reduction rules are the same as in the corresponding sections
where the operational semantics is given.

10.3 Typing Rules

On types for the π -calculus with sessions Type duality for session types extends
the inductive type duality for finite types, earlier defined, to accommodate recursive
types.

10.3 Typing Rules 143

t � t
μt.T � μt.T

However, type duality for recursive session types is a delicate matter. Recent work [8,
9] has shown that inductive duality is not complete. In particular, in the presence of
recursive types having a type variable as a carried type, for exampleμt.!t, it is unsafe
to adopt inductive duality ·, since it does not commute with unfolding. In order to
overcome this problem, we follow the standard way adopted in the literature, con-
sidering the above type to be ill-formed, and thus ruling it out. We let the exploration
of more accurate duality relations as future work.

On types for the standard π -calculus Type duality for standard π -types is defined
as follows:

m i [T̃] � mo [T̃]
mo [T̃] � m i [T̃]

∅[T̃] � ∅[T̃]
t � t

μt.T � μt.T [t/t]

It also holds that t = t. A type variable t and its dual t are treated differently as long
as substitution is concerned, which is defined in the following.

Definition 10.3.1 The substitution of a standard π -calculus type T for a type vari-
able t is defined as follows:

t[T/t] � T
t[T/t] � T

The combination of types is defined as follows:

mo [T̃] � m i [T̃] � m� [T̃]
T � T � T if un(T)

T � S � undef otherwise

In particular, the second definition implies ∅[T̃] � ∅[T̃] = ∅[T̃].
Typing contexts The typing context � is defined for both the π -calculi with and
without sessions as follows:

� ::= ∅ | �, x : T

In addition to this typing context, we introduce a new typing context �, used to
accommodate the recursion variables, namely:

� ::= ∅ | �, X : �

144 10 Recursion

Fig. 10.3 Typing rules for recursive constructs

Then, the typing judgements for both the π -calculi with recursion constructs have
the form:

�;� � P

The generalisation of the lin and un predicates to typing contexts is the same as in
the previous sections.

Type equality An important notion related to the recursive types is that of type
equality denoted with ∼type. Following [101] we write T1 ∼type T2 to mean that the
underlying (possibly infinite) trees of T1 and T2 are the same. To formalise it, we say
that ∼type is a congruence and satisfies the following:

(Eq-Unfold)
μt.T ∼type T [μt.T/t]

Typing rules for the π -calculus with and without sessions The typing rules for
the recursive process added to the π -calculus with and without sessions is given in
Fig. 10.3. The rest of the typing rules are the same as in Sect. 5.4 for the π -calculus
with sessions and Sect. 4.4 for the standard π -calculus, respectively and the typing
judgements are augmented with �.

Rule (T[π]-RecVar) states that a process variable X is well typed in �;� if it
is assumed in � that X has “type” �. Rule (T[π]-RecProc) states that the recursive
process recX.P is well typed in �;� if process P is well typed in a typing context
where X is associated with �. Rule (T[π]-EqVal) is a subsumption rule for the
equality relation ∼type on infinite recursive types. It states that a value v is of type S
if it has type T by the premise of the typing rule and T ∼type S.

10.4 Encoding

The encodings of recursive types, recursive processes and typing contexts, are given
in Fig. 10.4.

The encoding of types is a conservative extension of the encoding presented in
Sect. 6.1. Here, we give the encoding of both the linear and the unrestricted pretypes
as well as the recursive types that we introduced at the beginning of this chapter. The
encoding of linear pretypes is exactly as in Sect. 6.1, by letting the lin qualifier be
interpreted as �α , where α is the action that follows the qualifier. The encoding of

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

10.4 Encoding 145

Fig. 10.4 Encoding of recursive types, terms and typing contexts

unrestricted pretypes follows the same idea as for the linear ones, by letting the un
qualifier be interpreted as α, the latter being the action that follows the qualifier. Put
together, the encoding of a q pretype is a channel type with action α and multiplicity
m, linear or unrestricted, namely mα . The encoding of recursive type constructs is
an homomorphism and is given by (E-TVar) and (E-TRec), respectively for the
recursive type variable t and for the recursive type μt.T . It is important to notice
that, the duality function in the encoding of session types in rules (E-qOut) and
(E-qSelect), is now applied on the encoded session type rather than on the session
type itself. This is to accommodate the encoding of dual type variables. Moreover,
it is easy to see that for all finite session types T it is the case that �T � = �T �.

The encoding of processes is the one presented in Sect. 6.2, with the addition
of two new definitions for recursion, being (E-Pvar) and (E-Prec): the encoding
of a process variable and a recursive process is an homomorphism. The encoding of
typing contexts is as expected.

Finally, in order to better understand the non-standard substitution in Defini-
tion 10.3.1, we give the following example.

Example 10.4.1 Let S � μt.!Bool.t be a session type. Then, by duality on recursive
session types, given in Sect. 10.3, the dual of S is S = μt.!Bool.t = μt.!Bool.t =
μt.?Bool.t. By the encoding of recursive s, we have

T � �μt.!Bool.t� = μt.�o [�Bool�, �t�] = μt.�o [Bool, t]

http://dx.doi.org/10.2991/978-94-6239-204-5_6

146 10 Recursion

and
T = �μt.?Bool.t� = μt.�i [�Bool�, �t�] = μt.�i [Bool, t]

If we unfold the above types, we have

T = μt.�o [Bool, t]
∼type �o [Bool, t[T/t]]
= �o [Bool, T]
= �o [Bool, μt.�i [Bool, t]]

and

T = μt.�i [Bool, t]
∼type �i [Bool, t[T /t]]
= �i [Bool, T]
= �i [Bool, μt.�i [Bool, t]].

10.5 Properties of the Encoding

In this section we present the main properties related to the encoding of recursive
types and terms. Notice in the following that the typing judgements are different wrt
the ones in the original theorem, in that they are augmented with � to accommodate
assumptions on recursive variables.

To complete Theorems 6.3.10 and 6.3.11 on the correctness of the encoding wrt
typing processes, it suffices to add the case for recursive processes. In order to
accommodate recursion, the new typing context � has to be considered. Previous
typing judgements of the form � � P should be now written as �;� � P , (with
� = ∅ in absence of recursion). These modifications will affect also the statement
of operational correspondence given by Theorem 6.3.15.

Proof of Theorems 6.3.10 and 6.3.11 for Recursive Processes:

1. If ��;�� f � �P� f for some renaming function f for P , then �;� � P .
2. If �;� � P , then ��;�� f � �P� f for some renaming function f for P .

Proof We split the proof as follows:

1. The proof is done by induction on the structure of the process.

We consider only the case for the recursive process recX.P . By (E-PRec) we
have �recX.P� f = recX.�P� f and assume that ��� f ; ��� f � �recX.P� f . This

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

10.5 Properties of the Encoding 147

means that the last rule applied must have been (Tπ -RecProc). By induction
hypothesis ��� f ′ , X : ��� f ′ ; ��� f ′ ,� �P� f ′ , for some function f ′. We conclude
by letting f = f ′ and by applying (T-RecProc).

2. The proof is done by induction on the derivation �;� � P .

We consider only the case for (T-RecProc). By induction hypothesis we have
that ��� f ′ , X : ��� f ′ ; ��� f ′ � �P� f ′ , for some function f ′. By letting f = f ′
and by rule (Tπ -RecProc) we obtain ��� f ; ��� f � �recX.P� f . �

In the following we show the operational correspondence in the case of recursive
processes. We first start with an auxiliary definition.

Lemma 10.5.1 Let Q be a session process and let Q[recX.Q/X] denote process
Q where process variable X is substituted by μX.Q. Then,

�Q[recX.Q/X]� f = �Q� f [recX.�Q� f /X]

for all renaming functions f for Q and recX.Q.

Proof Immediate by the definition of encoding and substitution. �

Proof of Theorem 6.3.15 for Recursive Processes: LetP be a session process,�,�

session typingcontexts, and f a renaming function forP such that ��� f ; ��� f ��P� f .
Then, the following statements hold.

1. If P → P ′, then �P� f →↪→ �P ′� f .
2. If �P� f → Q, then there are P ′, E [·], such that E [P] → E [P ′] and Q ↪→ �P ′� f ′ ,

and either f ′ = f or f ′ = f, {x, y �→ c} for x, y such that (νxy) appears in E [P].
Proof Since by assumption ��� f ; ��� f � �P� f , then by Theorem 6.3.10 for recur-
sive processes given above, we have that �;� � P .

1. The proof is done by induction on the derivation P → P ′. The only case to be
considered is when (R-Rec) is applied.

P[recX.P/X] → P ′

P → P ′

By induction hypothesis we have that �P[recX.P/X]� f →↪→ �P ′� f . By apply-
ing (Rπ -Rec) and (Rπ -Struct) we conclude that �P� f →↪→ �P ′� f .

2. The proof is done by induction on the derivation for �P� f → Q. The case to
be considered is when (Rπ -Rec) is applied. By the premise of (Rπ -Rec) and
Lemma 10.5.1 we have that �P� f [recX.�P� f /X] → Q. We conclude by induc-
tion hypothesis, by (R-Rec) and by letting E [·] = [·] and Q ≡ �P ′� f . �

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6

Chapter 11
From π-Types to Session Types

11.1 Further Considerations

As explained in the previous sections, a session type is encoded as a linear channel
type,which in turn carries a linear channel. In order to satisfy linearity, a fresh channel
is created at every step of communication and is sent along together with the original
payload. This fresh channel is then used to continue the rest of the communication.
The continuation-passing of channels simulates the structure of session types. There
are two processes in the encoding presented in Chap.6 that create a new channel,
the output process and the selection process, the latter being a generalisation of the
former. Namely

�x!〈v〉.P� f � (νc) fx !〈�v� f , c〉.�P� f,{x �→c}
�x � l j .P� f � (νc) fx !〈l j_c〉.�P� f,{x �→c}

One can argue that there is an overhead in creating at every output a new channel
for the continuation of the communication. In the following, we show that the trans-
mission of new channels is not necessary. What are going to modify the encoding in
order to mimic a session type even more faithfully. In this optimised approach we
reuse the same channel. But then, since channel variables have linear types, doing
so would violate linearity. In order to overcome this problem, we modify the typing
rules for both the output and the selection processes.

Output Consider the output process x!〈v〉.P in the session π -calculus, which again
is encoded as:

�x!〈v〉.P� f � (νc) fx !〈�v� f , c〉.�P� f,{x �→c} (11.1)

The optimised encoding is as follows:

�x!〈v〉.P� � x!〈�v� f , x〉.�P� (11.2)
© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_11

149

http://dx.doi.org/10.2991/978-94-6239-204-5_6

150 11 From π -Types to Session Types

In order to overcome the linearity violation,wemodify the type systemby introducing
the following typing rule for the output:

�1 � x : �o [T̃] �̃2, x : �α [S̃] � ṽ : T̃ �3, x : �α [S̃] � P
(Tπ -OutBis)

�1 � �̃2 � �3 � x!〈ṽ〉.P
The above typing rule states that the output process x!〈ṽ〉.P is well typed if the vari-
able x is a linear channel used in output to transmit values of type T̃ , and the sequence
of values ṽ is of the expected sequence of types T̃ . Notice that the typing context �̃,
differently from the original (Tπ -Out), is augmented with the type assumption of
x having type �α [S̃]. Since this is a linear type, it implies that x ∈ ṽ. In addition,
process P is well typed under the assumption that x has the dual type of the type it
has when transmitted, namely �α [S̃].
Selection Consider the selection process x � l j .P in the session π -calculus, which
again is encoded as:

�x � l j .P� f � (νc) fx !〈l j_c〉.�P� f,{x �→c} (11.3)

The optimised encoding is as follows:

�x � l j .P� � x!〈l j_x〉.�P� (11.4)

By using (Tπ -LVal)

�, x : �α [S̃] � x : �α [S̃] = Tj j ∈ I
(Tπ -LVal)

�, x : �α [S̃] � l j_x : 〈li_Ti 〉i∈I
And using (Tπ -OutBis), we type the encoding of the selection process.

Notice that the encoding of session types remains as in Fig. 6.1, and the encoding
of session processes remains as in Fig. 6.2, except for Eqs. 11.2 and 11.4 which
substitute respectively Eqs. 11.1 and 11.3.

11.2 Typed Behavioural Equivalence

In this section we show that Eqs. 11.1 and 11.2 as well as Eqs. 11.3 and 11.4 are typed
strong barbed congruent. We first give a few definitions, taken from [101], that can
lead us to our result. We start with the following two auxiliary definitions:

Definition 11.2.1 (Context) A context in the π -calculus is obtained when the hole
[·] replaces an occurrence of the terminated process 0 in a process term produced by
the grammar in Sect. 4.1.

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_4

11.2 Typed Behavioural Equivalence 151

Definition 11.2.2 (Strong Barbed Bisimilarity) Strong barbed bisimilarity is the
largest, symmetric relation ∼ such that if whenever P ∼ Q,

1. If P performs an input/output action with subject x , then Q also performs an
input/output action with subject x .

2. P → P ′ implies Q → Q′ for some process Q′ with P ′ ∼ Q′.

Two processes P, Q are strong barbed bisimilar if P ∼ Q.

Definition 11.2.3 (Strong Barbed Congruence) Two processes are strong barbed
congruent if they are strong barbed bisimilar for every arbitrary context they are
placed into.

We pass now from the definition of strong barbed congruence to the typed version
of it.

Definition 11.2.4 (Typed Strong Barbed Congruence) Let � � P and � � Q. We
say that processes P, Q are strong barbed congruent at �, denoted � � P �c Q,
if they are strong barbed congruent for every (�/�)-context, with � closed.

We explain intuitively a (�/�)-context.We refer to [101] for the formal definition.
A (�/�)-context, when filled with a well-typed process in � becomes a well-typed
process in �.

An important result, which will act as a proof technique in the following, is the
Context Lemma for the typed strong barbed congruence.

Definition 11.2.5 Suppose � � P and � � Q. We write � � P �s Q if for every
closed � that extends �, for every �-to-� substitution σ and every process R such
that � � R, it holds that R | σ(P) is strong barbed bisimilar to R | σ(Q).

Lemma 11.2.6 (Context Lemma) Suppose� � P and� � Q.� � P �s Q if and
only if � � P �c Q.

11.2.1 Equivalence Results for the Encoding

We present in the following the result on typed strong barbed congruence of the
encoding of the output and the selection processes.

Output Let

� � x : �o [T, �α [S̃]], v : T, �′

P � (νc)x!〈v, c〉.�R� f,{x �→c}

Q � x!〈v, x〉.�R�

�′ � �R� f,{x �→c} and �′, x : �α [S̃] � �R�.
Then

152 11 From π -Types to Session Types

� � P �c Q (11.5)

Selection Let

� � x : �o [〈li_Ti 〉i∈I], �′

P � (νc)x!〈l j_c〉.�R� f,{x �→c}

Q � x!〈l j_x〉.�R�

�′ � �R� f,{x �→c} and �′, x : Tj � �R�.
Then

� � P �c Q (11.6)

Above, P is the encoding of output (respectively selection) by following the rules
in Fig. 6.2 and Q is the encoding of output (respectively selection) by following the
rules in Sect. 11.1. By using the typing context � for output (respectively selection),
(11.5) and (11.6) follow by Theorem 4.5.6 and the Lemma 11.2.6.

http://dx.doi.org/10.2991/978-94-6239-204-5_6
http://dx.doi.org/10.2991/978-94-6239-204-5_4

Conclusions, Related and Future Work
for Part II and III

In Part II and III of this thesis we proposed an interpretation of session types into
ordinary p-types, more precisely into linear channel types and variant types.

Linearity is a concept widely used in various areas of computer science.
Intuitively, when linearity of a resource is enforced, it means that the resource is
used exactly once, namely it cannot be used more than once and on the other hand it
must be used at least once. Linear channel types [72, 101] assure that a channel is
used exactly once for communication.

Variant types [99, 101] are labelled disjoint union of types, where the order of
components does not matter and labels are all distinct. A variant value is a labelled
value and a case process is a process construct native of the standard p-calculus.
The branching and selection processes in the session p-calculus are similar and are
inspired by the case process, in that they offer a sequence of labelled processes from
which the communicating party can choose.

In Part II we developed Kobayashi’s proposal of an encoding of session types
into linear channel types and variant types. We showed that the encoding is faithful,
in that it allows us to derive all the basic properties of session types, by exploiting
the analogous properties of p-types. In Part III we showed that the encoding is
robust, by analysing a few non-trivial extensions to session types, namely sub-
typing, polymorphism and higher-order. Finally, we proposed an optimisation of
linear channels permitting the reuse of the same channel for the continuation of the
communication and proved a typed barbed congruence result. This optimisation
considerably simplifies the encoding, which is parametrised in function f which on
some terms, like in input and output processes becomes the identity function. The
encoding of session types, however is the same as before.

Contribution The encoding we presented in Part II and III has several benefits. We
list them in the following.

• The elimination of the redundancy introduced both in the syntax of types and in
the syntax of terms.

• The derivation of properties like subject reduction and type safety as straight-
forward corollaries, thus eliminating redundancy also in the proofs.

• Privacy, communication safety and session fidelity requirements in session
types are enforced by the check of linearity and the encoding in the standard
typed p-calculus. Duality boils down to opposite outermost capabilities of linear
channel types.

• The encoding is robust wrt extensions like subtyping, polymorphism,
higher-order communication and recursion. This allows us to derive properties
for these new features by exploiting the encoding and the theory of the standard
typed p-calculus.

As the last point states, the encoding allows us to easily obtain extensions of the
session calculus, by exploiting the theory of the p-calculus. In particular, as shown
in Sect. 8.2 about the bounded polymorphism, our approach makes it easy even
when the intended extension was not already present in the p-calculus. In these
cases one can just provide the p-calculus with the intended capability and obtain the
same capability in sessions. The whole process has shown to be much easier
passing through p-calculus than doing it from scratch for sessions.

Related and Future Work The idea of encoding session types into p-calculus
linear types is not new. Kobayashi [71] was the first to propose such an encoding,
but he did not prove any properties and did not investigate its robustness; moreover,
as certain key features of session types do not clearly show up in the encoding, like
duality, the faithfulness of the encoding was unclear. Later on, Dardha et al. [32]
studied such encoding by showing its soundness and completeness wrt typing and
reduction. Advanced features, such as subtyping, polymorphism and higher-order
communication are introduced to prove the robustness of the encoding. In [30], the
author investigates recursion. The interesting part of [30] is the use of the com-
plement function as opposed to the inductive duality function �, since the latter does
not commute with the unfolding of recursive session types, as stated in Chap. 10
and [8, 9].

Demangeon and Honda [35] provide a subtyping theory for a p-calculus aug-
mented with branch and select constructs and show an encoding of the session
calculus. They prove the soundness of the encoding and the full abstraction. The
main differences wrt our work are: (i) the target language is closer to the session
calculus having branch and select constructs, instead we adopt the standard
p-calculus where in place of branching and selection we provide the native case
process and in place of the branch and select type we provide the standard variant
type; (ii) a refined subtyping theory is provided, instead we focus on encoding of
the session calculus in the standard p-calculus in order to exploit its rich and
well-established theory; (iii) we study the encoding in a systematic way as a means
to formally derive session types and all their properties, in order to provide a
methodology for the treatment of session types and their extensions without the
burden of establishing the underlying theory.

Variant types are essential type constructs in the typed p-calculus. This has been
proved also by other works on encodings where variant types have been used,
in particular, we mention the encoding of a typed object-oriented calculus into the
typed p-calculus with variant types [99].

154 Part 2: Conclusions, Related and Future Work for Part II and III

http://dx.doi.org/10.2991/978-94-6239-204-5_10_8
http://dx.doi.org/10.2991/978-94-6239-204-5_10

Other expressivity results regarding session types include the work by Caires
and Pfenning [16]. This paper presents a type system for the p-calculus that cor-
responds to the standard sequent calculus proof system for dual intuitionistic linear
logic (DILL). It gives an interpretation of intuitionistic linear logic formulas as a
form of session types. These results are complemented and strengthened with a
theory of logical relations [96]. An interpretation of the simply-typed k-calculus
in the p-calculus with session is given in [105]. As stated by the authors this
encoding is done in two steps: first by giving a standard embedding of simply-typed
k-calculus in a linear k-calculus and second by a translation of linear natural
deduction into linear sequent calculus. Another work on expressivity is the one by
Wadler [113], which follows the line of [16]. In this paper, the author proposes a
calculus where propositions of classical linear logic correspond to session types.

Igarashi and Kobayashi [60] have developed a single generic type system
(GTS) for the p-calculus from which numerous specific type systems can be
obtained by varying certain parameters. A range of type systems are thus obtained
as instances of the generic one. In [46] the authors define an interpretation from
session types and terms into GTS by proving operational correspondence and
correctness of the encoding. However, as the authors state, the encoding they
present is very complex and deriving properties of sessions passing through GTS
would be more difficult than proving them directly. Instead, the encoding we
present is very simple and properties of sessions are derived as straightforward
corollaries from the corresponding ones in the p-calculus.

All the above works are clearly an expressivity result. The encoding we propose
is an expressivity result, as well. However, in addition our encoding is a powerful
means for deriving the theory of session types and its possible extensions by the
well-known theory of the standard p-calculus.

As future work on the encoding we want to investigate the multiparty session
types [59]. In a nutshell, multiparty session types differ from dyadic session types in
the interleaving of channels used among different participants. The order in which
these channels are used is important to guarantee communication safety and session
fidelity. Our encoding should be extended in order to accommodate this notion of
causality of channels introduced in [59].

Part 2: Conclusions, Related and Future Work for Part II and III 155

Part IV
Progress of Communication

Introduction to Part IV

Progress is a fundamental characteristic of safe programs. Intuitively, it means that
a safe program never gets “stuck”, i.e., reach a state that is not designated as a final
value and the semantics of the language does not tell how to evaluate further [97].
The notion of progress is well understood in computational models like the
k-calculus [6] and it is typically analysed in closed terms using type systems. We
have only recently begun to research its meaning in computational models for
concurrency and distributed systems.

The most basic property related to progress in concurrency is that of deadlock
freedom: “a process is deadlock-free if it can always reduce until it eventually
terminates” [69–71]. Said differently, a communication will eventually succeed
unless the whole process diverges. Observe that a deadlock-free process can
diverge, and more interestingly, some subprocesses can get stuck. For instance,
consider the following process:

P ¼ ðmxÞðx?ðyÞ:0jXÞ
where X is a diverging process executing an infinite series of internal actions.

Even though the subterm x?ðyÞ:0 will never reduce, process P is deadlock-free.
In order to cope with this limitation of deadlock freedom, lock freedom or

livelock freedom has been proposed as a stronger property that requires every
input/output action to be eventually executed under fair process scheduling [68, 69,
71]. Said differently, a communication will eventually succeed even if the whole
process diverges. Different techniques have been proposed for guaranteeing
deadlock freedom and lock freedom, mostly based on type systems for the
p-calculus [66, 68–71, 74].

All the aforementioned techniques are applied to closed processes, i.e., processes
that do not communicate with the environment. However, a useful application of
process calculi is to model open-ended systems where participants can join the

system dynamically [37, 88, 91]. A recent line of work [1, 20, 27, 39] has begun
investigating the meaning of progress for such open-ended systems. Intuitively, in
this setting a process has the progress property if it can reduce when it is put in a
suitable context. This notion has been analysed when considering only the
behaviour of each single channel in isolation [32, 109] and of the whole
system [10, 20, 27] in the context of session types.

We observe that progress in open-ended systems is a compositional notion, since
an open process that has progress can be composed with another compatible
process to obtain a system that reduces and does not get stuck. Interestingly, this
compositionality seems to lead back to the notion of lock freedom, in that both
notions inspect subprocesses of a system. Thus, we pose the research question:

What is the relationship between the notions of lock freedom and progress for
open-ended systems?

Answering the question above would lead to a better understanding of the
progress property in concurrency. Ideally, it would allow techniques and results
obtained for one property to be applied to the other. This part of the thesis is based
on [19]. In the following we list the major contributions and give the roadmap to
Part IV.

Progress in the p-calculus with sessions We discuss the relationship between
progress and lock freedom in the setting of p-calculus with sessions (Sect. 14.3), by
studying the properties of processes that are well typed in the session type system
given in [109]. Our first result is that for well-typed closed processes, progress and
lock freedom properties coincide: a well-typed closed process has progress if and
only if it is lock-free (Sect. 14.3.1). We then focus on open precesses and we prove
that it is possible to relate progress to lock freedom even for processes with open
sessions (Sect. 14.3.2): a well-typed process has progress if and only if it can be put
in a context such that the composition is a well-typed closed process and lock-free.
In other words, we prove that for well-typed processes in the p-calculus with
sessions, progress is a compositional form of lock freedom. Crucial to our devel-
opment is the definition of a new “closure” procedure for generating well-typed
contexts that are guaranteed not to introduce locks.

A static analysis for progress in the p-calculus with sessions Based on the fact
that progress is related to lock freedom, we show that it is possible to build a static
analysis for progress in the p-calculus with sessions by reusing a static analysis for
lock freedom in the standard p-calculus. We present how Kobayashi’s type system
for lock freedom [68] can be reused to check whether a process has progress. Using
Kobayashi’s type system for progress analysis yields a new technique, which is
more accurate than previous techniques in the literature.

Roadmap to Part IV The rest of Part IV is organised as follows. Chapter 12
gives a background on the standard p-calculus by focusing on the syntax of types
and typing rules for guaranteeing the lock freedom property. Chapter 13 gives a
background on the p- calculus with sessions which reports a few modifications wrt

158 Part IV: Progress of Communication

http://dx.doi.org/10.2991/978-94-6239-204-5_14
http://dx.doi.org/10.2991/978-94-6239-204-5_14
http://dx.doi.org/10.2991/978-94-6239-204-5_14
http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_13

the one introduced in Part II: it includes recursion and recursive types and the
choice operator is enhanced to accommodate the progress property. Chapter 14
introduces the notion of progress for the p-calculus with sessions, by relating it to
the notion of lock freedom for sessions. In addition it gives a static way for
checking progress by using the type system for lock freedom given in Chap. 12.

Part IV: Progress of Communication 159

http://dx.doi.org/10.2991/978-94-6239-204-5_14
http://dx.doi.org/10.2991/978-94-6239-204-5_12

Chapter 12
Background on π–Types for Lock Freedom

In this chapter we introduce Kobayashi’s type system for lock freedom [68]. The
syntax of terms and the operational semantics are the same as in Chap. 4. For sim-
plicity, we recall them in this chapter. We then introduce the usage types and give
the type system with usage types, which guarantees lock freedom.

12.1 Syntax

The syntax of terms for the standard π -calculus is the same as in Sect. 4.1 with the
addition of recursive term constructs given in Sect. 10.1. We present the complete
syntax of terms in Fig. 12.1.

Processes include the output x!〈ṽ〉.P and the input x?(ỹ).P processes, where a
tuple of values ṽ is transmitted and a tuple of placeholders ỹ is used, respectively;
conditional if v then P else Q; other standard constructs like parallel composition
P | Q, inaction 0 and restriction (νx)P; the case process and term constructs for
recursion, which are the process variable X and the recursive process recX.P . Values
include variables ranged by x , ground values, in particular the boolean ones true
and false, and variant value, which is simply a labelled value l_v.

12.2 Semantics

We give some of the reduction rules for the standard π -calculus in Fig. 12.2. These
rules are presented in Sect. 4.2 and in Sect. 10.2. We do not give the reduction rules
for context closure under composition, restriction and structural congruence, which
are standard and are given in Sect. 4.2.

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_12

161

http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_10
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_10
http://dx.doi.org/10.2991/978-94-6239-204-5_4

162 12 Background on π–Types for Lock Freedom

Fig. 12.1 Syntax of the standard π -calculus: repeated

Fig. 12.2 Semantics of the standard π -calculus: repeated

Rule (Rπ -Com) is the communication rule: the process on the left sends a tuple
of values ṽ on x , while the process on the right receives the values and substitutes
them for the placeholders in ỹ. Rule (Rπ -Case) states that the case process reduces
to Pj substituting x j with the value v, if the label l j is selected. This label should
be among the offered labels, namely j ∈ I . Rule (Rπ -Rec) states that a recursive
process recX.P reduces to a process P ′ if process P where X is substituted by the
recursion process recX.P , reduces to the same P ′.

12.3 π-Types for Lock Freedom

The syntax of usage types is given in Fig. 12.3 and is inspired by Kobayashi’s works
on lock freedom [68, 70, 71]. Let o, c range over natural numbers, α range over
actions, being only ‘i’ input or ‘o’ output. LetU range over usages and T over types.
Let mU be either �U , for a linear usage U , or simply U for an unrestricted usage
U . Usages U are used to build channel types. A usage can be an empty usage ∅,
which denotes a channel that cannot be used at all for communication; we will often
omit it when it is not necessary. Usage ioc .U describes a channel used once for input
and then used according to U . Symmetrically, usage ooc .U describes a channel used
once for output and then used according toU . We will comment on o and c numbers
in the following. Usage U1 | U2 describes a channel used according to U1 and U2

possibly in parallel. Usage variable t is combined with the recursive usage μt.U

12.3 π -Types for Lock Freedom 163

Fig. 12.3 Syntax of usage types

which is used according toU [μt.U/t]. A type T can be a channel type [T̃]mU , used
according usage mU to transmit a sequence of values of types T̃ . Notice that, the
usages describe a channel used in structured way, differently from the linear types
presented in Fig. 4.5 and similar to session types. However, the main difference wrt
session types is that the carried type associated to a usage is always the same T̃ .
A type can also be variant type 〈li_Ti 〉i∈I or a ground type like Bool, or other type
constructors, as stated in Sect. 4.3.

The annotations o and c in the actions are called obligation level and capabil-
ity level of that action, respectively. We will commonly refer to them as tags or
attributes. They are thought of and defined as abstract representations of time tags or
reduction steps. The reason for this vague interpretation of tags is that what matters
is their relative meaning and how tags are ordered among them, rather than their
absolutemeaning. They capture the inter-channel dependencies in communications.
Intuitively, the obligation level o of an action (input or output) denotes the necessity
of the action to be executed, namely when the action is ready to be performed; the
capability level c of an action denotes the guarantee for success of the action, namely
how long it take for the action to find its co-action. By citing Kobayashi’s works [68,
70, 71], their relation may be described as:

• An obligation of level n must be fulfilled by using only capabilities of level less
than n. Said differently, an action of obligation n must be prefixed by actions of
capabilities less than n.

• For an action with capability of level n, there must exist a co-action with obligation
of level less than or equal to n.

It is important to notice that in the original works [68, 70, 71], tags may also range
over ‘∞’, which means that the success of the action is not guaranteed, or even that
the action itself need not be executed at all. In this work, since we are considering
processes that correspond to the encoding of a session process and we want that
every action eventually takes place and succeeds, we exclude ‘∞’ and require that
tags range over natural numbers. We illustrate the usage of tags with two simple
examples, given in the following. The first example shows how tags work on a
deadlocked process and the second example shows how tags work on a deadlock-
free but livelocked process.

Example 12.3.1 Theprocess (νx)(νy)(x?().y!〈〉 | y?().x!〈〉) is deadlocked. Suppose
that x has usage io1c1 | oo2c2 and y has usage io3c3 | oo4c4 . Since x?() must wait for the

http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4

164 12 Background on π–Types for Lock Freedom

corresponding output x!〈〉 to be executed, it must be the case that o2 ≤ c1; for the
same reason o4 ≤ c3. Moreover, from the left-hand side of the parallel composition
we know that y is used for output only after the input on x succeeds, which yields
c1 < o4; for the same reason c3 < o2. From these inequations we have o2 ≤ c1 <

o4 ≤ c3 < o2, which is a contradiction.

Example 12.3.2 The following process is deadlock-free but livelocked:
(νx)(x?(w) | (νy)(y!〈x〉 | y?(z).recX.(y!〈z〉 | y?(z).X))). This process is never
stuck, because of infinite sendings, however the first input on x will be never exe-
cuted, thus making the process livelocked. Suppose y sends x having usage oo1c1 . A
message sent on y is received by its counterpart in o3(> 0) steps. The subprocess
y?(z).recX.(y!〈z〉 | y?(z).X) receives z of usage oo1c1 and so it is supposed to use it
in time o1 for output. Then, z is resent again on y which means it needs o3 steps to
be received, as previously stated. Then o1 + o3 ≤ o1, which is a contradiction.

12.4 π-Typing Rules for Lock Freedom

In this section we present the type system for lock freedom, which is an extension
of the type system in [68, 71] with case process and variant values. We start by
giving some auxiliary definitions and operations on types and typing contexts taken
from [68].

Definition 12.4.1 (Normal Form) A process is in normal form if it a restriction of
parallel composition, namely (ν x̃)(R1 | . . . | Rn) and all variables in x̃ are different
from each other and from the free ones in the process.

Definition 12.4.2 (Reduction Sequence) A set of processes {Pi }i∈I for I ⊆ Nat is
called a reduction sequence, if Pi−1 → Pi for all i ∈ I \ {0}.

A reduction sequence is normal if (i) for all i ∈ I , Pi is in normal form and (ii)
the sequence of the restricted channels of Pi−1 is a prefix of the sequence of the
restricted channels of Pi .

A reduction sequence is complete if either I = Nat or I = [n] and Pn �.

Definition 12.4.3 (Fair Reduction Sequence) A normal, complete reduction
sequence P0 → P1 → P2 → · · · is fair if the following conditions hold.

1. If there exists an infinite increasing sequence n0 < n1 < · · · of natural
numbers such that Pn j ≡ (ν x̃ j)(x!〈v〉.Q | x?(z).Q j | R j), for all n j , then
there exists n ≥ n0 such that Pn ≡ (ν x̃)(x!〈v〉.Q | x?(z).Q′ | R′) and
(ν x̃)(Q | Q′[v/z] | R′) ≡ Pn+1.

2. If there exists an infinite increasing sequence n0 < n1 < · · · of natural
numbers such that Pn j ≡ (ν x̃ j)(x?(z).Q | x!〈v〉.Q j | R j), for all n j , then
there exists n ≥ n0 such that Pn ≡ (ν x̃)(x?(z).Q | x!〈v〉.Q′ | R′) and
(ν x̃)(Q[v/z] | Q′ | R′) ≡ Pn+1.

We are ready now to give the definition of the lock freedomproperty in the standard
π -calculus.

12.4 π -Typing Rules for Lock Freedom 165

Definition 12.4.4 (Lock Freedom for Standard π -Calculus) A process P0 in nor-
mal form is lock-free under fair scheduling, if for any fair reduction sequence
P0 → P1 → P2 → · · · the following hold.

1. if Pi ≡ (ν x̃)(x!〈v〉.Q | R) some i ≥ 0, then there exists n ≥ i such that
Pn ≡ (ν x̃ ′)(x!〈v〉.Q | x?(z).R1 | R2) and Pn+1 ≡ (ν x̃ ′)(Q | R1[v/z] | R2).

2. if Pi ≡ (ν x̃)(x?(z).Q | R) for some i ≥ 0, then there exists n ≥ i such that
Pn ≡ (ν x̃ ′)(x?(z).Q | x!〈v〉.R1 | R2) and Pn+1 ≡ (ν x̃ ′)(Q[v/z] | R1 | R2).

Remark 12.4.5 Note that in the original work [68], the lock freedom property states
that a process annotated with a mark c, eventually succeeds; for the non marked
processes it is not required such a constraint. In our framework, we drop the mark
and proceed as if all processes were marked, since we want all processes to satisfy
the lock freedom property, and eventually communicate.

The unary operation ↑t applied to a usage U lifts its obligation level up to t, and
is inductively defined as follows:

↑t ∅ � ∅
↑t αo

c .U � αmax(o,t)
c .U

↑t (U1 | U2) � (↑t U1 | ↑t U2)

↑t t � t
↑t μt.U � μt. ↑t U

The ↑t operator is extended to types and typing contexts in the expected way and is
given in the following. It is undefined otherwise.

↑t [T̃]mU � [T̃]m ↑t U
(↑t �)(x) � ↑t (�(x))

The composition operation on types, denoted | , is based on the composition of
usages and is defined as follows:

U1[T̃] | U2[T̃] � (U1 | U2)[T̃]
T | T � T if un(T)

T � S � undef otherwise

Its generalisation to typing contexts, denoted (�1 | �2)(x), is as expected and is
defined in the following:

x : T ∈ �1 | �2 iff

⎧
⎪⎪⎨

⎪⎪⎩

x : T1 ∈ �1 and x : T2 ∈ �2

and T = T1 | T2
x : T ∈ �1 and x /∈ dom(�2)

x : T ∈ �2 and x /∈ dom(�1)

166 12 Background on π–Types for Lock Freedom

Notice that the parallel operator | is defined similarly to the combination operator �
given in Sect. 4.4. As a result we remove the connection � from the syntax of actions
as it is simulated by | present in the syntax of usages. In particular, � and | on types
(as well as � and | on typing contexts) denote channels capable of both input and
output actions possibly in parallel.

The operator † is defined on typing contexts. � = x : [T] αo
c † � is such that the

following holds:

dom(�) = {x} ∪ dom(�)

�(x) =
{ [T̃]αo

c .U if �(x) = [T̃] U
[T̃]αo

c if x /∈ dom(�)

�(y) =↑c+1 �(y) if y �= x

The final required notion is that of a reliable usage. Intuitively, a usage U is said
to be reliable, denoted with rel(U), if after any reduction step, whenever it contains
an action (input or output) having capability level c, it also contains the co-action
having obligation level at most c. The following definitions are taken from [68, 70].

Definition 12.4.6 Let U be a usage. The input and output obligation levels (resp.
capability levels) of U , written obi(U) and obo(U) (resp. capi(U) and capo(U)),
are defined as follows:

obα(αo
c .U) = o

capα(αo
c .U) = c

obα(U1 | U2) = min(obα(U1),obα(U2))

capα(U1 | U2) = min(capα(U1), capα(U2))

The definition of reliable usages depends on a reduction relation on usages, noted
U → U ′. Intuitively, U → U ′ means that if a channel of usage U is used for
communication, then after the communication occurs, the channel should be used
according to usage U ′. Thus, e.g., ioc .U1 | io′

c′ .U2 reduces to U1 | U2.

Definition 12.4.7 (Reliability) We write conα(U) when obα(U) ≤ capα(U). We
write con(U) when coni(U) and cono(U) hold. Usage U is reliable, noted rel(U),
if con(U ′) holds for all U ′ such that U →∗ U ′.

The typing judgements are of the form � �LF v : T , for values and � �LF P , for
processes. We use �LF instead of � in order to distinguish the type system for lock
freedom from the type system for the linear π -calculus given in Sect. 4.4.

The typing rules for lock-freedom are given in Fig. 12.4. (LF-Var), (LF-Val) and
(LF-LVal) are the same as the corresponding ones given in Sect. 4.4, where linear
types are used. Rules (LF-Inact), (LF-If), (LF-Par) and (LF-Case) are the same as
the corresponding ones in Sect. 4.4, but instead of the � operator on linear types we
use the | operator on usages. Rule (LF-In) states that the input process x?(ỹ).P is
well typed if x is a channel used in input with obligation level 0. The obligations of
the other channels in � are raised by using the operator †, because the actions inside
process P are prefixed by the input action and will thus become available one step

http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4
http://dx.doi.org/10.2991/978-94-6239-204-5_4

12.4 π -Typing Rules for Lock Freedom 167

Fig. 12.4 Typing rules for the π -calculus with usage types

later. Rule (LF-Out) states that the output process x!〈ṽ〉.P is well typed and ready
for execution if x is a channel used in output and has obligation level 0. Moreover,
the obligation level of the values ṽ is decremented by 1, by applying the operation
↑ T̃ in the premise of the rule: this is to reflect the fact that the actions on these values
will become available one step later, since they have to be transmitted first through
the output action that is being typed. Finally, the obligations of channels in �1 | �2

are raised by † for the same reasons as in rule (LF-In). As stated in [69, 71], the
typing rule for the output process is the only one that differs in the type system for
deadlock freedom from the type system for lock freedom. The decrement operation
on the obligation level avoids infinite sendings, and hence livelocks, as shown in
Example 12.3.2. Rule (LF-Res) is the key rule for establishing lock freedom; it
states that the restriction of a name x in a process P is well typed if x is used reliably
in P . The notion of reliability is checked by the predicate rel(U)whichwe previously
introduced. Rules (LF-RecVar), (LF-RecProc) and (LF-EqVal) are the same as
the ones presented in Sect. 10.3.

The next theorems imply that well-typed processes by the type system in Fig. 12.4
are lock-free.

http://dx.doi.org/10.2991/978-94-6239-204-5_10

168 12 Background on π–Types for Lock Freedom

Theorem 12.4.8 (Subject Reduction for Usage Types) If � �LF P and P → Q,
then �′ �LF Q for some �′ such that � → �′.

Theorem 12.4.9 (Lock Freedom) If ∅ �LF P, then P → Q for some Q.

Corollary 12.4.10 If ∅ �LF P, then P is lock-free.

Chapter 13
Background on Session Types for Progress

In this chapter we recall the π -calculus with session types given in Chap. 5. We male
some modifications to the syntax of types and terms in order to accommodate the
progress property.

13.1 Syntax

The syntax of terms of the π -calculus with sessions is presented in Fig. 13.1.
Processes include the output x!〈v〉.P and the input x?(y).P processes, conditional
if v then P else Q, parallel composition P | Q and inaction 0. Process (νxy)P is
the restriction of co-variables and X and recX.P model recursion. Branching is the
standard one x � {li : Pi }i∈I as in Sect. 5.1. We adopt a more general notion of se-
lection x � {li : Pi }i∈I , which substitutes the standard selection x � l j .P . The reason
for this modification is to accommodate the notion of progress for sessions, as we
will show in the next sections.

13.2 Semantics

The reduction rules are the same as the ones given in Sect. 5.2. We give some of
the most important ones in Fig. 13.2. Rules (R-Com), (R-Sel) and (R-Rec), were
explained in details in the previous chapters. Rule (R-SelNorm) is a selection nor-
malisation, stating that the generalised selection process x � {li : Pi }i∈I reduces to
x � l j .P being j one of the indexes in I . We omit the context closure rules for par-
allel composition, restriction and structural congruence and the reader can refer to
Sect. 5.2 for a detailed presentation.

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_13

169

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_5

170 13 Background on Session Types for Progress

Fig. 13.1 Syntax of the π -calculus with sessions: updated

Fig. 13.2 Semantics of the π -calculus with sessions: updated

13.3 Session Types

The syntax of session types is given in Fig. 13.3 and is an extension of the syntax
of session types given in Sect. 5.3, since it includes t and μt.T . Recursive types are
needed not only to model infinite behaviour of processes, but also to be able to use
unrestricted types, as we explained in Sect. 5.4.

Qualifiers are lin (for linear) or un (for unrestricted) and have the usual meaning.
A type can be qp, the qualified pretype; end, the type of the terminated channel
where no communication can take place further; Bool, the type of boolean values;
or recursive types and recursive variables. A pretype can be !T .U or ?T .U , which
respectively, is the type of sending or receiving a value of type T with continuation
of type U . Select ⊕{li : Ti }i∈I and branch &{li : Ti }i∈I are sets of labelled types
indicating, respectively, internal and external choice.

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_5

13.3 Session Types 171

Fig. 13.3 Syntax of session types: updated

Fig. 13.4 Typing rules for the π -calculus with sessions: updated

172 13 Background on Session Types for Progress

13.4 Session Typing Rules

The typing judgements now have the form �;� � v : T , for values and �;� � P ,
for processes, such that:

� ::= ∅ | �, x : T � ::= ∅ | �, X : �

The typing context � is the same as in Sect. 5.4 and the typing context � is used to
accommodate recursive processes.

The typing rules are given in Fig. 13.4. The differences wrt the typing rules in
Sect. 5.4 is the presence of� and rule (T-Sel) which types the new selection process.
This typing rule is very similar to the typing rule for branching, since the selection
process chooses over a set of labels and not only one label. For completeness, we
present all the updated typing rules.

http://dx.doi.org/10.2991/978-94-6239-204-5_5
http://dx.doi.org/10.2991/978-94-6239-204-5_5

Chapter 14
Progress as Compositional Lock Freedom

In this chapter we present our main results about progress and lock freedom in the
π -calculus with session types. We start by giving the definition of lock freedom for
session communication, which is an adaptation of the corresponding definition in
the standard π -calculus and we give a relation between lock freedom and the notion
of progress, the latter being already defined for sessions [10, 20, 27].

14.1 Lock Freedom for Sessions

In order to formally define lock freedom for session communication, we need the
definitions of normal form and reduction sequence. These definitions are the same
as the ones for the standard π -calculus which are given in Sect. 12.4.

We now give the definition of fair reduction sequence, which is an adaptation of
Definition 12.4.3 given Sect. 12.4.

Definition 14.1.1 (Fair Reduction Sequence for Sessions) A normal, complete
reduction sequence P0 → P1 → P2 → . . . is fair if the following conditions
hold.

1. If there exists an infinite increasing sequence n0 < n1 < . . . of natural
numbers such that Pn j ≡ (ν x̃ j y j)(x!〈v〉.Q | y?(z).Q j | R j), for all n j , then
there exists n ≥ n0, such that Pn ≡ (ν x̃ y)(x!〈v〉.Q | y?(z).Q′ | R′) and
(ν x̃ y)(Q | Q′[v/z] | R′) ≡ Pn+1.

2. If there exists an infinite increasing sequence n0 < n1 < . . . of natural
numbers such that Pn j ≡ (ν x̃ j y j)(x?(z).Q | y!〈v〉.Q j | R j), for all n j , then
there exists n ≥ n0, such that Pn ≡ (ν x̃ y)(x?(z).Q | y!〈v〉.Q′ | R′) and
(ν x̃ y)(Q[v/z] | Q′ | R′) ≡ Pn+1.

3. If there exists an infinite increasing sequence n0 < n1 < . . . of natural
numbers such that Pn j ≡ (ν x̃ j y j)(x �{li : Pi }i∈I | y
{li : Qi }i∈I | R j), for all n j ,
then there exists n ≥ n0, such that Pn ≡ (ν x̃ y)(x�{li : Pi }i∈I | y
{li : Q′

i }i∈I | R′)

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5_14

173

http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_12

174 14 Progress as Compositional Lock Freedom

and (ν x̃ y)(x � {li : Pi }i∈I | y
 lk .Q′
k | R′) ≡ Pn+1 for some k ∈ I and

(ν x̃ y)(Pk | Q′
k | R′) ≡ Pn+2.

4. If there exists an infinite increasing sequence n0 < n1 < . . . of natural
numbers such that Pn j ≡ (ν x̃ j y j)(x
{li : Pi }i∈I | y�{li : Qi }i∈I | R j), for all n j ,
then there exists n ≥ n0, such that Pn ≡ (ν x̃ y)(x
{li : Pi }i∈I | y�{li : Q′

i }i∈I | R′)
and (ν x̃ y)(x
 lk .Pk | y � {li : Q′

i }i∈I | R′) ≡ Pn+1 for some k ∈ I and
(ν x̃ y)(Pk | Q′

k | R′) ≡ Pn+2.

We are now ready to give the definition of lock freedom. Intuitively, a process is
lock-free if for any fair reduction sequence a process which is trying to perform a
communication will eventually succeed.

In order to define lock freedom, we assume, as in the original work, a strongly fair
scheduling [28, 43], which intuitivelymeans that every process enabled to participate
in a communication infinitely many times, will eventually do so.

Definition 14.1.2 (Lock Freedom for Sessions) A process P0 is lock-free under fair
scheduling, if for any fair reduction sequence P0 → P1 → P2 → . . . we have the
following:

1. if Pi ≡ (ν x̃ y)(x!〈v〉.Q | R) (for i ≥ 0), implies that there exists n ≥ i such that
Pn ≡ (ν˜x ′y′)(x!〈v〉.Q | y?(z).R1 | R2) and Pn+1 ≡ (ν˜x ′y′)(Q | R1[v/z] | R2);

2. if Pi ≡ (ν x̃ y)(x?(z).Q | R) for some i ≥ 0, there exists n ≥ i such that
Pn ≡ (ν˜x ′y′)(x?(z).Q | y!〈v〉.R1 | R2) and Pn+1 ≡ (ν˜x ′y′)(Q[v/z] | R1 | R2);

3. if Pi ≡ (ν x̃ y)(x
 {li : Pi }i∈I | R) for some i ≥ 0, there exists n ≥ i such that
Pn ≡ (ν˜x ′y′)(x
{li : Pi }i∈I | y�{li : Qi }i∈I | R′) and Pn+2 ≡ (ν˜x ′y′)(Pj |Q j | R′)
for j ∈ I ;

4. if Pi ≡ (ν x̃ y)(x � {li : Pi }i∈I | R) for some i ≥ 0, there exists n ≥ i such that
Pn ≡ (ν˜x ′y′)(x�{li : Pi }i∈I | y
{li : Qi }i∈I | R′) and Pn+2 ≡ (ν˜x ′y′)(Pj |Q j | R′)
for j ∈ I .

Notice that in the definition of lock freedom for sessions the reduction sequence
goes from Pn to Pn+2. This means that Pn+1 is obtained by a selection normalisation.

14.2 Progress for Sessions

The progress property has been studied for the session π -calculus by adopting cum-
bersome definitions and type systems. Progress is checked for closed and open
processes. Intuitively, it states that each session, once started, is guaranteed to satisfy
all the requested interactions. In particular this means that progress property is a
stronger property than deadlock freedom.

Before giving the formal definition of progress, we first need to introduce some
auxiliary definitions.We start with the definition of characteristic process. Intuitively,
a characteristic process is the simplest process that can inhabit a type.

14.2 Progress for Sessions 175

Definition 14.2.1 (Characteristic Process) Given a session type T, its characteristic
process �T �xf is inductively defined on the structure of T as follows:

(inVal) �q?Bool.U�xf = x?(y).�U�xf
(outVal) �q!Bool.U�xf = x!〈true〉.�U�xf
(inSess) �q ′?(qp).U�xf = x?(y).(�U�xf | �qp�yf)

(outSess) �q ′!(qp).U�xf = (νzw)(x!〈z〉.(�U�xf | �qp�w
f))

(inSum) �q&{li : (qi pi)i }i∈I �xf = x � {li : �qi pi�xf }i∈I
(outSum) �q ⊕ {li : (qi pi)i }i∈I �xf = x
 {li : �qi pi�xf }i∈I

(end) �end�xf = 0
(recVar) �t�xf = f (t)

(rec) �μt.T �xf = recX.�T �xf,{t �→X}

Our definition of characteristic process is an extension of the original definition
given in [20], with recursive types and variables. Moreover, (outSum) is more gen-
eral and accurate than in [20], since it uses the new selection process.

We now introduce the notion of evaluation context, which is an extension of
Definition 6.3.12.

Definition 14.2.2 (Evaluation Context) An evaluation context is a process with a
hole [·] and is produced by the following grammar:

E [·] ::= [·] | P | (νxy)E [·] | E [·] | E [·] | recX.E [·]

We now define the notion of catalyser, inspired by [27] and we illustrate it with
a simple example.

Definition 14.2.3 (Catalyser) A catalyser is a context produced by the following
grammar:

C [·] ::= [·] | (νxy) C [·] | C [·] | �T �xf

Example 14.2.4 The following context C [·] is a catalyser obtained by compos-
ing the characteristic processes P1 and P2 respectively of the channel types T1 =
?(!Bool.end).end and T2 = ⊕{l1 : end, l2 : !Bool.end}:

C [·] = (νwx)(νuy)([·] | P1 | P2)
P1 = x?(z).(z!〈true〉.0 | 0)
P2 = y
 l2.y!〈true〉.0

To conclude, we define the duality or compatibility �
 relation over processes,
which relates processes that startwith respective co-actions. This operator, differently
from the original one in [10, 27], is parametrised in a pair of variables {x, y}, which
are co-variables.

http://dx.doi.org/10.2991/978-94-6239-204-5_6

176 14 Progress as Compositional Lock Freedom

Definition 14.2.5 (�
) The duality �
{x,y} between input and output processes is
defined as follows:

x!〈v〉.P �
{x,y} y?(z).Q
x
 {li : Pi }i∈I �
{x,y} y � {li : Qi }i∈I

We are now ready to give the formal definition of progress. This definition is
inspired by [10, 27], which is an improvement of the definition of progress used
in [20].

Definition 14.2.6 (Progress) A process P has progress if for all C [·] such that C [P]
is well typed, C [P] →∗ E [R] (where R is an input or an output) implies that there
exist C ′ [·], E ′ [·][·] and R′ such that C ′ [E [R]] →∗ E ′ [R][R′] and R �
{x,y} R′ for
some x and y such that (νxy) is a restriction in C ′ [E [R]].

14.3 Lock Freedom Meets Progress

In this section we put together lock freedom and progress for the π -calculus with
sessions in order to understand their relation.We split this section in two subsections,
by analysing separately the closed processes and then the open ones.

14.3.1 Properties of Closed Terms

By analysing the definitions of lock freedom and progress, we notice that there is
some similarity. In particular, for closed terms, i.e., processes with no free variables,
the properties of lock freedom and progress are tightly related. We formalise this
relation in the following.

Theorem 14.3.1 (Lock freedom ⇒ Progress) Let P be a well-typed closed session
process. Then, P is lock-free implies P has progress.

Proof The proof proceeds by contradiction. Let us assume that P does not have
progress. Formally, it means that: there exists C [·] such that C [P] is well typed,
C [P] →∗ E [R] where R is an input or an output, and for all C ′ [·], E ′ [·][·] and R′ it
holds that C ′ [E [R]] �

∗ E ′ [R][R′] such that R �
{x,y} R′ where x and y are such that
(νxy) is a restriction in C ′ [E [R]]. Instead, we show that there exists C ′ [·], E ′ [·][·]
and R′ such that C ′ [E [R]] →∗ E ′ [R][R′] such that R �
{x,y} R′. Since P is closed
it means that it does not communicate with any context C [·] it is inserted in. Hence,
C [P] →∗ E [R]means that reductions have occurred either in the catalyser C or in P ,
separately. Let C ′ [·] = [·]. We show that E [R] →∗ E ′ [R][R′]. Since P is lock-free,
by definition P →∗ Pi and for some n ≥ i , Pi →∗ Pn and Pn has both action and
co-action on some channels in (νx ′y′). Notice that Pi is a subprocess of E [R] and
hence Pn is a subprocess of E ′ [R][R′] where R and R′ are the action and co-action

14.3 Lock Freedom Meets Progress 177

that have come up at the top level in the reduction under the restriction (νx ′y′) and
let x = x ′, y = y′. �

What we find interesting in the case of closed processes, is that the opposite of
the previous theorem is also true. We show it in the following.

Theorem 14.3.2 (Progress ⇒ Lock freedom) Let P be a well-typed closed session
process. Then, P has progress implies P is lock-free.

Proof From the definition of progress, for all catalysers C [·], C [P] →∗ E [R]. In
particular, this holds also for the empty catalyser [·]. Hence, P →∗ E [R] ≡ Pi .
Here we can assume, without any loss of generality (the other cases are trivial) that
R is an input or an output process. Furthermore, we know that there exist C ′ [·],
E ′ [·][·] and R′ such that C ′ [E [R]] →∗ E ′ [R][R′] and R �
{x,y} R′ for some x and y
such that (νxy) is a restriction in C ′ [E [R]]. Since P is closed, Pi is also closed and
this means that it does not communicate with any catalyser it is inserted in. Hence,
C ′ [E [R]] →∗ E ′ [R][R′] means that reductions have occurred either in the catalyser
C ′ or in E [R], separately. Notice that R is part of E [R] ≡ Pi , and since R occurs
in the redex E ′ [R][R′] together with its counterpart R′, it means that Pi →∗ Pn
where Pn is a subprocess of E ′ [R][R′], and the communication occurs over (νxy).
We conclude by applying the definition of lock freedom. �

It follows as a corollary from Theorems 14.3.1 and 14.3.2 that the lock freedom
and progress properties coincide for closed terms.

Corollary 14.3.3 (Progress ⇔ Lock freedom) Let P be a well-typed closed session
process. Then P is lock-free if and only if P has progress.

14.3.2 Properties of Open Terms

Weswitch now to amore general setting, i.e., processes that can be open.As expected,
differently from the case of closed terms, the definitions of lock freedom and progress
do not coincide in the case of open terms. For example, consider the following
process:

P = x!〈true〉.x?(z).0

In process P , x is an open session with a missing participant. Process P has progress,
by following Definition 14.2.6 but it is not lock-free because it does not respect
Definition 14.1.2, since it is stuck and does not reduce.

In this section we try to reply to the question we posed in the introduction,
namely trying to understand the relationship between the notions of lock freedom
and progress for open-ended systems. Although the two properties do not coincide
in the case of open terms, we can still relate progress to lock freedom.

178 14 Progress as Compositional Lock Freedom

The idea is to use catalysers in order to reduce the problem of checking progress
for open terms to the problem of checking progress (and lock freedom) for closed
terms. The intuition for using catalysers is that when a process is open, its type can
provide us some information about how such a process can be put in a context such
that the final composition is closed. We formalise this idea with the notion of closure
given below.

Definition 14.3.4 (Closure) Let P be a session process such that � � P . Then, the
closure of P , denoted as close(P), is the process C [P] where

C [·] = (ν x̃ y)

(

[·] |
∏

xi :Ti∈�

�Ti�
yi
f

)

Notice that in the definition above all xi in the sequence x̃ y correspond exactly to
the domain of �. The yi in x̃ y are all different from xi and are the variables used to
create the characteristic processes from every type Ti . Below, we give an example of
how the closure of a process works.

Example 14.3.5 Consider the open process previously shown

P = x!〈true〉.x?(z).0

We can type P in a typing context � = x : !Bool.?Bool.end. Then, the closure
of P is defined as:

close(P) = (νxy)([P] | y?(z).y!〈true〉.0)

The closure procedure close(P) can also be applied to processes that are already
closed, as shown in the following.

Example 14.3.6 Consider the closed process:

P = (νxy)(x!〈true〉.0 | y?(z).0)

Since P can only be typed with the empty typing context, i.e., ∅ � P , in this case
we have that close(P) = P . This means that the catalyser that we can place P into,
in order to close it, is the empty catalyser [·].

As a first property of closure, we can immediately observe that the closure oper-
ation preserves typability.

Proposition 14.3.7 (Closure preserves typability) If � � P, then ∅ � close(P).

Proof It follows immediately by the definition of characteristic process and (repeated
applications of) the typing rules (T-Par) and (T-Res). �

14.3 Lock Freedom Meets Progress 179

We present in the following one of the major properties of our technical develop-
ment, which will be crucial in establishing our main results. The closure procedure
defines a new way for checking progress: a process P has progress if its closure
can always reduce to terms where an action at the top level can be matched with its
co-action in a parallel subterm. We formalise this notion below.

Lemma 14.3.8 (From Closure to Progress) Let P be a session process and �

a session typing context such that � � P. Then, P has progress if and only if
close(P) →∗ E [R] implies there are E ′ [·][·] and R′ such that E [R] →∗ E ′ [R][R′]
and R �
{x,y} R′ for some x and y such that (νxy) is a restriction in E [R].
Proof We split the proof into the following two cases.
(=⇒) Follows immediately by the definitions of progress and close(P).
(⇐=) Let C [·] be a catalyser such that C [P] is well typed. Intuitively, any catalysers
can be written by splitting the processes put in parallel with P in two: the ones that
implement and the ones that do not implement the counterparts of sessions in P;
formally:

C [·] ≡ (ν x̃ y)
([·] | Q1 | Q2

)

Q1 = ∏
x j :Tj /∈��Tj�

y j
f

Q2 = ∏
xi :Ti∈�′�Ti�

yi
f where �′ ⊆ �

Moreover, from the definition of close(P) we know that:

close(P) = (ν x̃ y′)
(
P | Q2 | Q3

)

Q3 = ∏
xi :Ti∈�\�′�Ti�

yi
f

Since C [P] is well typed, from the typing rules we know that Q1 cannot
interact neither with P nor with Q2; therefore we have only three possible cases
for C [P] →∗ E ′′ [R]: (i) P →∗ P ′; (ii) (ν x̃ y)Q1 →∗ (ν x̃ y)Q′

1; and finally
(iii) (ν x̃ y)(P | Q2) →∗ (ν x̃ y)(P ′ | Q′

2).

(i) For this case, we know that close(P) →∗ close(P ′) ≡ E [R] and
C [P] →∗ C [P ′]. We now choose close as catalyser for C [P ′];
therefore: close(C [P ′]) ≡ C [close(P ′)] ≡ (ν x̃ y′′)(ν x̃ y)

(
P ′ | Q1 | Q2 | Q3

)

where x̃ y′′ are the free names in the typing of C [P ′]. Since, by hypothesis,
close(P ′) →∗ E ′ [R][R′] we also know that: close(C [P ′]) →∗ C [E ′ [R][R′]]
and the thesis follows trivially.

(ii) (ν x̃ y)Q1 →∗ (ν x̃ y)Q′
1. This means that C [P] →∗ C ′ [P], since only the

catalyser reduces. We now choose close as catalyser for C ′ [P]; therefore:
close(C ′ [P]) ≡ C ′ [close(P)] →∗ C ′ [E [R]] and the thesis follows by applying
the hypothesis for close(P).

(iii) (ν x̃ y)(P | Q2) →∗ (ν x̃ y)(P ′ | Q′
2). This means that C [P] →∗ C ′ [P ′] and

C ′ [P ′] ≡ (ν x̃ y)
(
P ′ | Q1 | Q′

2

)
, since both the catalyser and the process

reduce. By hypothesis, close(P) →∗ E [R] and since the closure gives to
P its missing counterpart, it means that P and Q2 communicate, hence
E [R] ≡ (ν x̃ y′)

(
P ′ | Q′

2 | Q3
)
We know that E [R] →∗ E ′ [R][R′] and

180 14 Progress as Compositional Lock Freedom

R �
{x,y} R′ for some x and y such that (νxy) is a restriction in E [R]. Let
C ′′ [·] be the catalyser for C ′ [P ′] defined as: C ′′ [·] ≡ (ν x̃ y′)

([·] | Q3
)
. Then

C ′′ [C ′ [P ′]] ≡ (ν x̃ y′)(ν x̃ y)
(
P ′ | Q1 | Q′

2 | Q3
)
and the thesis follows by apply-

ing the hypothesis for close(P). �

By Lemma 14.3.8, we establish that checking the progress property for a session
process P is equivalent to checking the progress property for its closure.

Theorem 14.3.9 (Closure Progress ⇔ Progress) Let P be a session process and �

a session typing context such that � � P. Then, close(P) has progress if and only
if P has progress.

Proof We split the proof into the following two cases.
(⇐=) Since P has progress, then for all catalyserswemust prove that for every reach-
able process we can find another catalyser such that every input/output action will
eventually be consumed. But then this also holds for close(P) by Definition 14.3.4
and Lemma 14.3.8.
(=⇒) Follows immediately by Lemma 14.3.8. �

We are finally able to link progress and lock freedom and give our main contri-
bution in the following theorem.

Theorem 14.3.10 (Progress ⇔ Closed Lock Freedom) Let P be a session
process and � a session typing context such that � � P. Then, P has progress if and
only if close(P) is lock-free.

Proof It follows immediately from Theorem 14.3.9 and Corollary 14.3.3. �

We summarise the main results as follows. We have proved that, for closed terms,
i.e., terms with no free variables, lock freedom and progress coincide. For open
terms, i.e., terms containing free variables, we have shown that these notions do
not coincide. However, we define a procedure for closing a process by using the
notions of catalyser and characteristic process. Then, we prove that progress and
lock freedom coincide for close(P), which implies progress for P .

14.4 A Type System for Progress

In this section we show some important theoretical results that permit us to use the
type system for lock freedom in the standard π -calculus to check progress in the
π -calculus with sessions.

We first recall the encoding of session types presented in Sect. 10.4. In order
to encode qualifiers lin and un, and also adopt usages, we perform the following
translation from mα given in Sect. 10.4, to mU given in Sect. 12.3.

http://dx.doi.org/10.2991/978-94-6239-204-5_10
http://dx.doi.org/10.2991/978-94-6239-204-5_10
http://dx.doi.org/10.2991/978-94-6239-204-5_12

14.4 A Type System for Progress 181

Fig. 14.1 Checking progress with TyPiCal

��i� = �ioc .∅ ��o� = �ooc .∅
�i� = ioc .∅ �o� = ooc .∅

We are ready now to give the main result of this part of the thesis.

Theorem 14.4.1 (Progress in Sessions by Encoding) Let P be a session process
and � a session typing context such that � � P. If ∅ �LF �close(P)� f for some
renaming function f for P, then process P has progress.

Proof Let � � P and ∅ �LF �close(P)� f for some renaming function f for P .
By Corollary 12.4.10 it means that �close(P)� f is lock-free. By lock freedom for
the standard π -calculus, given by Definition 12.4.4, operational correspondence,
given by Theorem 6.3.15 and by Definition 14.1.2 on lock freedom for the session
π -calculus, it is the case that also close(P) is lock-free. By Theorem 14.3.10 we
have that process P has progress. �

Kobayashi’s type system comes with a reference implementation, the tool
TyPiCal [106], which tests deadlock freedom and lock freedom for processes in
the standard π -calculus. In the light of Theorem 14.4.1, we could use TyPiCal to test
the progress property for a session process by checking the lock freedom property
for its encoding. Thus, we present in Fig. 14.1 an algorithm for checking the progress
property for a session process.

http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_12
http://dx.doi.org/10.2991/978-94-6239-204-5_6

Conclusions, Related and Future Work
for Part IV

In Part IV of the thesis we presented the notion of lock freedom for the p-calculus
with sessions and studied the relationship between the notions of progress and lock
freedom. We proved that they are strongly connected and progress can be thought
of as a compositional form of lock freedom. In particular, for closed terms, i.e.,
terms with no free variables, lock freedom and progress coincide. For open terms,
i.e., terms containing free variables, lock freedom and progress do not coincide.
However, we defined a procedure to close a process P, by using catalysers and
characteristic processes and obtain close(P). Then, we proved that progress and
lock freedom coincide for close(P). Guided by this discovery, we used an existing
static analysis for lock freedom, i.e., Kobayashi’s type system from [68, 69, 71], for
analysing the progress property. We show in the following that, reusing
Kobayashi’s technique captures new interesting processes that have progress but
could not be typed by previous type systems for progress studied for the p-calculus
with sessions.

Comparison with Related Work Progress for session p-calculus has been studied
by several works [10, 19, 20, 26, 27, 39, 93]. In [93] the author defines a session
type system for the progress property by using Kobayashi’s obligation and capa-
bility levels. In [10, 26, 39] progress is studied for multiparty session types.
Padovani studies deadlock and lock freedom in the linear p-calculus, and by using
our encoding of session types into linear p-calculus types, he transfers these
properties from the linear p-calculus to the session p- calculus [94]. A very recent
work [34] studies the formal relationship between the class of deadlock free session
processes induced by the correspondence of session types with linear logic [16] and
the class of deadlock free session processes induced by the encoding and
Kobayashi’s type system for deadlock freedom [70].

In the following we recall some examples taken from [10, 20, 27, 39, 93], show
how the encoding works and compare them with our analysis. For the sake of
readability, we simplify the encoding by omitting the creation of fresh channels
when the latter are not used in the continuation of a process.

Example 14.4.2 Consider the session process

P , ðmabÞðmcdÞða?ðzÞ:d!hzi j c?ðwÞ:b!hwiÞ

which is deadlocked, and therefore does not have progress. This process is not
typable in the type systems for progress presented in [10, 27, 93]. By the encoding
we obtain the following process:

P½ �½ �f ¼ ðmxÞðmyÞðx?ðzÞ:y!hzi j y?ðwÞ:x!hwiÞ

where in the encoding of session process P, there are the following associations
a, b ↦ x and c, d ↦ y. As expected, our technique discards 〚P〛f above since the
process is untypable in Kobayashi’s type system. In particular, this process results
untypable since the rel predicate does not hold.

Example 14.4.3 Consider the session process

Q , ðmabÞðmcdÞ
a?ðxÞ: c!hxi: c?ðyÞ: a!hyi
j
b!htruei: d?ðzÞ: d!hfalsei: b?ðzÞ

0
@

1
A

This process satisfies the progress property, but it is rejected by the type systems
in [10, 20]. This is because in the two processes in parallel there is a circular
dependency between channels. However, this circularity does not lead to deadlock.
Let us now consider its encoding in the p-calculus, given by the following process:

Q½ �½ �f ¼ ðmkÞðmlÞ
k?ðx; c1Þ: ðmc2Þð l!hx; c2i: c2?ðyÞ: c1!hyi Þ
j
ðmc1Þðk!htrue; c1i: l?ðz; c2Þ: c2!hfalsei: c1?ðzÞÞ

0
@

1
A

This process is correctly recognised as having progress by using our technique,
since it is well typed in Kobayashi’s type system. The types assigned to the
channels are as follows:

k : ½Bool; T1� i00 j o00 l : ½Bool; T2� o11 j i11
such that

T1 ¼ ½Bool� o13 j i31 T2 ¼ ½Bool� i20 j o02
Future Work As future work, we plan to extend our approach to multiparty
sessions [27, 59]. For the multiparty setting, we need to investigate an extension of
the encoding to a setting where sessions are established between more than two
peers and messaging is asynchronous, which is future work related to Part II and III.
It is not clear yet whether Kobayashi’s usage types are expressive enough to handle

184 Part 4: Conclusions, Related and Future Work for Part IV

such situations, because, as long as the encoding is concerned, usage types have the
same expressive power as linear types.

The works in [16, 113] use linear logic to type processes in the p-calculus with
sessions. While these works guarantee lock freedom, we conjecture that their
techniques can be reused for progress, similarly to what we have done with
Kobayashi’s type system. We leave such an investigation as future work.

Part 4: Conclusions, Related and Future Work for Part IV 185

References

1. Gul A. Agha. ACTORS - a model of concurrent computation in distributed systems. MIT Press
series in artificial intelligence. MIT Press, 1990.

2. Wolfgang Ahrendt and Maximilian Dylla. A system for compositional verification of asyn-
chronous objects. Sci. Comput. Program., 77(12):1289–1309, 2012.

3. Elvira Albert, Antonio Flores-Montoya, and Samir Genaim. Analysis of may-happen-in-
parallel in concurrent objects. In FMOODS/FORTE, volume 7273 of LNCS, pages 35–51.
Springer, 2012.

4. OSGi Alliance. Osgi Service Platform, Release 3. IOS Press, Inc., 2003.
5. Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.

Addison-Wesley, 2000.
6. Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland, 2nd edi-

tion, 1984.
7. Thaís Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic reconfigu-

ration in component-based systems. In EWSA, volume 3527 of LNCS, pages 1–17. Springer,
2005.

8. Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouzapas. On duality rela-
tions for session types. In TGC, volume 8902 of LNCS, pages 51–66. Springer, 2014.

9. Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session
types (extended abstract). In CONCUR, volume 8704 of LNCS, pages 387–401. Springer,
2014.

10. Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty
sessions. In CONCUR, volume 5201 of LNCS, pages 418–433. Springer, 2008.

11. Nina T. Bhatti, Matti A. Hiltunen, Richard D. Schlichting, andWanda Chiu. Coyote: A system
for constructing fine-grain configurable communication services. ACM Trans. Comput. Syst.,
16(4), 1998.

12. Paolo Di Blasio and Kathleen Fisher. A calculus for concurrent objects. In CONCUR, volume
1119 of LNCS, pages 655–670. Springer, 1996.

13. Frank S. De Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future. In
ESOP, volume 4421 of LNCS, pages 316–330. Springer, 2007.

14. EricBruneton,ThierryCoupaye,MatthieuLeclercq,VivienQuema, and Jean-BernardStefani.
The fractal component model and its support in java. Software - Practice and Experience,
36(11-12), 2006.

© Atlantis Press and the author(s) 2016
O. Dardha, Type Systems for Distributed Programs:
Components and Sessions, Atlantis Studies in Computing 7,
DOI 10.2991/978-94-6239-204-5

187

188 References

15. Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral polymor-
phism and parametricity in session-based communication. In ESOP, volume 7792 of LNCS,
pages 330–349. Springer, 2013.

16. Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CON-
CUR, volume 6269 of LNCS, pages 222–236. Springer, 2010.

17. Luís Caires and Hugo Torres Vieira. Conversation types. In ESOP, volume 5502 of LNCS,
pages 285–300. Springer, 2009.

18. Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, and
ElenaGiachino.Amalgamating sessions andmethods in object-oriented languageswith gener-
ics. Theor. Comput. Sci., 410(2-3):142–167, 2009.

19. Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compositional lock-
freedom. In COORDINATION, volume 8459 of LNCS, pages 49–64. Springer, 2014.

20. Marco Carbone and Søren Debois. A graphical approach to progress for structured commu-
nication in web services. In ICE, volume 38 of EPTCS, pages 13–27, 2010.

21. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP, volume 4421 of LNCS, pages 2–17. Springer, 2007.

22. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Types for the ambient calculus. Infor-
mation and Computation, 177(2):160 – 194, 2002.

23. Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–
213, 2000.

24. Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asynchronous and deterministic
objects. SIGPLAN Not., 39(1):123–134, 2004.

25. David G. Clarke, John Potter, and James Noble. Ownership types for flexible alias protection.
In OOPSLA, pages 48–64. ACM, 1998.

26. Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. Infer-
ence of global progress properties for dynamically interleaved multiparty sessions. In CO-
ORDINATION, volume 7890 of LNCS, pages 45–59. Springer, 2013.

27. Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Global progress for
dynamically interleaved multiparty sessions (long version), 2008. http://www.di.unito.it/
~dezani/papers/cdy12.pdf.

28. Gerardo Costa and Colin Stirling. Weak and strong fairness in ccs. Information and Compu-
tation, 73(3):207 – 244, 1987.

29. Geoff Coulson, Gordon S. Blair, Paul Grace, François Taïani, Ackbar Joolia, Kevin Lee,
Jo Ueyama, and Thirunavukkarasu Sivaharan. A generic component model for building sys-
tems software. ACM Trans. Comput. Syst., 26(1), 2008.

30. Ornela Dardha. Recursive session types revisited. In BEAT, volume 162 of EPTCS, pages
27–34, 2014.

31. Ornela Dardha, Elena Giachino, and Michael Lienhardt. A type system for components. In
SEFM, volume 8137 of LNCS, pages 167–181. Springer, 2013.

32. Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In PPDP,
pages 139–150, New York, NY, USA, 2012. ACM.

33. Ornela Dardha, Daniele Gorla, and Daniele Varacca. Semantic subtyping for objects and
classes. In FMOODS/FORTE, volume 7892 of LNCS, pages 66–82. Springer, 2013.

34. Ornela Dardha and Jorge A. Pérez. Comparing deadlock-free session typed processes. In
EXPRESS/SOS, volume 190 of EPTCS, pages 1–15, 2015.

35. Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with linear
types. In CONCUR, volume 6901 of LNCS, pages 280–296. Springer, 2011.

36. Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. Inf. Comput.,
204(7):1045–1082, 2006.

37. Pierre-MaloDeniélou andNobukoYoshida. Dynamicmultirole session types. InPOPL, pages
435–446. ACM, 2011.

38. Mariangiola Dezani-Ciancaglini and Ugo de’ Liguoro. Sessions and session types: an
overview. In WS-FM, volume 6194 of LNCS. Springer, 2010.

http://www.di.unito.it/~dezani/papers/cdy12.pdf
http://www.di.unito.it/~dezani/papers/cdy12.pdf

References 189

39. Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. On progress for
structured communications. In TGC, volume 4912 of LNCS, pages 257–275. Springer, 2008.

40. Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and Nobuko
Yoshida. Bounded session types for object oriented languages. In FMCO, volume 4709 of
LNCS, pages 207–245. Springer, 2007.

41. Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. Session types for object-oriented languages. In ECOOP, volume 4067 of
LNCS, pages 328–352. Springer, 2006.

42. Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and Sophia
Drossopoulou. A distributed object-oriented language with session types. In TGC, volume
3705 of LNCS, pages 299–318. Springer, 2005.

43. E. Allen Emerson. Handbook of theoretical computer science (vol. b). chapter Temporal and
modal logic, pages 995–1072. MIT Press, Cambridge, MA, USA, 1990.

44. Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. Semantic casts: Contracts and
structural subtyping in a nominal world. In ECOOP, volume 3086 of LNCS, pages 364–388.
Springer, 2004.

45. Simon J. Gay. Bounded polymorphism in session types.Mathematical Structures in Computer
Science, 18(5):895–930, 2008.

46. Simon J. Gay, Nils Gesbert, and António Ravara. Session types as generic process types. In
EXPRESS/SOS, volume 160 of EPTCS, pages 94–110, 2014.

47. Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vasconcelos. Modular
session types for objects. Logical Methods in Computer Science, 11(4), 2015.

48. Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Infor-
matica, 42(2-3):191–225, 2005.

49. Simon J.Gay andVascoThudichumVasconcelos. Linear type theory for asynchronous session
types. J. Funct. Program., 20(1):19–50, 2010.

50. Elena Giachino, Carlo A. Grazia, Cosimo Laneve, Michael Lienhardt, and Peter Y. H. Wong.
Deadlock analysis of concurrent objects: Theory and practice. In IFM, volume 7940 of LNCS,
pages 394–411. Springer, 2013.

51. Elena Giachino and Tudor A. Lascu. Lock Analysis for an Asynchronous Object Calculus.
Presented at ICTCS. Available at http://www.cs.unibo.it/~giachino/, 2012.

52. Joseph Gil and Itay Maman. Whiteoak: introducing structural typing into java. SIGPLAN
Not., 43(10):73–90, 2008.

53. Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9):1031–1053, 2010.

54. Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 2008.

55. C. A. R. Hoare. Monitors: an operating system structuring concept. Commun. ACM,
17(10):549–557, 1974.

56. John Hogg, Doug Lea, Alan Wills, Dennis de Champeaux, and Richard Holt. The geneva
convention – on the treatment of object aliasing. OOPS Messenger, 1992.

57. Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages 509–
523. Springer, 1993.

58. Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type disci-
plines for structured communication-based programming. In ESOP, volume 1381 of LNCS,
pages 22–138. Springer, 1998.

59. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, volume 43(1), pages 273–284. ACM, 2008.

60. Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theo.
Comput. Sci., 311(1-3):121–163, 2004.

61. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal core
calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

62. Focus Inria. Overall objectives. http://raweb.inria.fr/rapportsactivite/RA2012/focus/uid3.
html.

http://www.cs.unibo.it/~giachino/
http://raweb.inria.fr/rapportsactivite/RA2012/focus/uid3.html
http://raweb.inria.fr/rapportsactivite/RA2012/focus/uid3.html

190 References

63. Einar Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. Abs: A
core language for abstract behavioral specification. In FMCO, volume 6957 of LNCS, pages
142–164. Springer, 2012.

64. Einar Broch Johnsen and Olaf Owe. An asynchronous communication model for distributed
concurrent objects. Software and System Modeling, 6(1):39–58, 2007.

65. Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-oriented
model for distributed concurrent systems. Theor. Comput. Sci., 365(1-2):23–66, 2006.

66. Naoki Kobayashi. A partially deadlock-free typed process calculus. ACM Trans. Program.
Lang. Syst., 20(2):436–482, 1998.

67. NaokiKobayashi. Type systems for concurrent processes: Fromdeadlock-freedom to livelock-
freedom, time-boundedness. In IFIP TCS, volume 1872 of LNCS, pages 365–389. Springer,
2000.

68. Naoki Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122–159, 2002.
69. Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary Colloquium

of UNU/IIST, pages 439–453, 2002.
70. Naoki Kobayashi. A new type system for deadlock-free processes. InCONCUR, volume 4137

of LNCS, pages 233–247. Springer, 2006.
71. Naoki Kobayashi. Type systems for concurrent programs. Extended version of [69], Tohoku

University, 2007.
72. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. In

POPL, pages 358–371. ACM, 1996.
73. Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-free process

calculus. In CONCUR, volume 1877 of LNCS, pages 489–503. Springer, 2000.
74. Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile

processes. ACM Trans. Program. Lang. Syst., 32(5), 2010.
75. Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click

modular router. ACM Trans. Comput. Syst., 18(3):263–297, 2000.
76. Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Modeling dy-

namic reconfigurations in reo using high-level replacement systems. Sci. Comput. Program.,
76(1):23–36, 2011.

77. Michael Lienhardt, Mario Bravetti, and Davide Sangiorgi. An object group-based component
model. In ISoLA (1), volume 7609 of LNCS, pages 64–78. Springer, 2012.

78. Michael Lienhardt, Ivan Lanese, Mario Bravetti, Davide Sangiorgi, Gianluigi Zavattaro, Yan-
nick Welsch, Jan Schäfer, and Arnd Poetzsch-Heffter. A component model for the ABS
language. In FMCO, volume 6957 of LNCS, pages 165–183. Springer, 2012.

79. Michael Lienhardt, Alan Schmitt, and Jean-Bernard Stefani. Oz/k: a kernel language for
component-based open programming. In GPCE, pages 43–52. ACM, 2007.

80. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL, pages 47–57, New
York, NY, USA, 1988. ACM.

81. Donna Malayeri and Jonathan Aldrich. Integrating nominal and structural subtyping. In
ECOOP, volume 5142 of LNCS, pages 260–284. Springer, 2008.

82. Sun Microsystems. JSR 220: Enterprise javabeans, version 3.0 – ejb core contracts and re-
quirements, 2006.

83. Robin Milner. Communicating and Mobile Systems: the π -Calculus. Cambridge University
Press, may 1999.

84. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992.

85. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II. Inf.
Comput., 100(1):41–77, 1992.

86. Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented programming
with jolie. In Web Services Foundations, pages 81–107. Springer, 2014.

87. Fabrizio Montesi and Davide Sangiorgi. A model of evolvable components. In TGC, volume
6084 of LNCS, pages 153–171. Springer, 2010.

References 191

88. FabrizioMontesi and Nobuko Yoshida. Compositional choreographies. InCONCUR, volume
8052 of LNCS, pages 425–439. Springer, 2013.

89. Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for higher-order mobile
processes. In TLCA, volume 4583 of LNCS, pages 321–335. Springer, 2007.

90. WiredNews. History’s worst software bugs, 2005. http://www.wired.com/software/coolapps/
news/2005/11/69355.

91. OASIS. Web Services Business Process Execution Language. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html.

92. KlausOstermann. Nominal and structural subtyping in component-based programming. Jour-
nal of Object Technology, 7(1):121–145, 2008.

93. Luca Padovani. From lock freedom to progress using session types. In PLACES, volume 137
of EPTCS, pages 3–19, 2013.

94. Luca Padovani. Deadlock and Lock Freedom in the Linear π -Calculus. In CSL-LICS, pages
72:1–72:10. ACM, 2014.

95. Catuscia Palamidessi and D. Valencia, Frank. Recursion vs replication in process calculi: Ex-
pressiveness.Bulletin of the EuropeanAssociation for Theoretical Computer Science, 87:105–
125, 2005.

96. Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Inf. Comput., 239:254–302,
2014.

97. Benjamin C. Pierce. Types and programming languages. MIT Press, MA, USA, 2002.
98. Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. In

LICS, pages 376–385. IEEE Computer Society, 1993.
99. Davide Sangiorgi. An interpretation of typed objects into typed pi-calculus. Inf. Comput.,

143(1):34–73, 1998.
100. Davide Sangiorgi. Termination of processes.Mathematical. Structures inComp. Sci., 16(1):1–

39, 2006.
101. Davide Sangiorgi and David Walker. The π -calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.
102. Jan Schäfer and Arnd Poetzsch-Heffter. Jcobox: generalizing active objects to concurrent

components. In ECOOP, volume 6183 of LNCS, pages 275–299. Springer, 2010.
103. Clemens Szyperski. Component Software, 2nd edition. Addison-Wesley, 2002.
104. Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its

typing system. In PARLE, volume 817 of LNCS, pages 398–413. Springer, 1994.
105. Bernardo Toninho, Luís Caires, and Frank Pfenning. Functions as session-typed processes.

In FoSSaCS, volume 7213 of LNCS, pages 346–360. Springer, 2012.
106. TYPICAL. Type-based static analyzer for the pi-calculus. http://www-kb.is.s.u-tokyo.ac.jp/

~koba/typical/.
107. Antonio Vallecillo, Vasco ThudichumVasconcelos, and António Ravara. Typing the behavior

of software components using session types. Fundam. Inform., 73(4):583–598, 2006.
108. Vasco Vasconcelos, António Ravara, and Simon J. Gay. Session types for functional multi-

threading. In CONCUR, volume 3170 of LNCS, pages 497–511. Springer, 2004.
109. Vasco T. Vasconcelos. Fundamentals of session types. Information Computation, 217:52–70,

2012.
110. Vasco Thudichum Vasconcelos. Fundamentals of session types. In SFM, pages 158–186,

2009.
111. Vasco Thudichum Vasconcelos, Simon J. Gay, and António Ravara. Type checking a multi-

threaded functional language with session types. Theor. Comput. Sci., 368(1-2):64–87, 2006.
112. Hugo Torres Vieira, Luís Caires, and João Costa Seco. The conversation calculus: A model

of service-oriented computation. In ESOP, volume 4960, pages 269–283. Springer, 2008.
113. Philip Wadler. Propositions as sessions. In ICFP, pages 273–286. ACM, 2012.
114. AdamWelc, Suresh Jagannathan, and Antony L. Hosking. Safe futures for java. In OOPSLA,

pages 439–453. ACM, 2005.

http://www.wired.com/software/coolapps/news/2005/11/69355
http://www.wired.com/software/coolapps/news/2005/11/69355
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/

192 References

115. YannickWelsch and Jan Schäfer. Location types for safe distributed object-oriented program-
ming. In TOOLS, volume 6705 of LNCS, pages 194–210. Springer, 2011.

116. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994.

117. Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the π -calculus.
Inf. Comput., 191(2):145–202, 2004.

118. NobukoYoshida andVasco ThudichumVasconcelos. Language primitives and type discipline
for structured communication-based programming revisited: Two systems for higher-order
session communication. Electr. Notes Theor. Comput. Sci., 171(4):73–93, 2007.

	Foreword
	Preface
	Acknowledgments
	Contents
	List of Figures
	Introduction to the Ph.D. Thesis
	Problem Description
	Aim of the Ph.D. and Methodology
	Contributions
	Structure of the Thesis

	Safe Dynamic Reconfiguration of Components
	Part1

	1 Background on Components
	1.1 Syntax
	1.2 Semantics
	1.2.1 Runtime Syntax
	1.2.2 Functions and Predicates
	1.2.3 Evaluation of Pure and Guard Expressions
	1.2.4 Reduction Rules

	1.3 Server and Client Example

	2 A Type System for Components
	2.1 Typing Features
	2.2 Subtyping Relation
	2.3 Functions and Predicates
	2.4 Typing Rules
	2.5 Typing Rules for Runtime Configurations

	3 Properties of the Type System
	3.1 Main Results
	3.2 Proofs

	Conclusions, Related and Future Work for Part I
	Sec1

	Safe Communication by Encoding
	Part2

	4 Background on π-Types
	4.1 Syntax
	4.2 Semantics
	4.3 π-Types
	4.4 π-Typing Rules
	4.5 Main Results

	5 Background on Session Types
	5.1 Syntax
	5.2 Semantics
	5.3 Session Types
	5.4 Session Typing Rules
	5.5 Main Results

	6 Session Types Revisited
	6.1 Types Encoding
	6.2 Terms Encoding
	6.3 Properties of the Encoding
	6.3.1 Auxiliary Results
	6.3.2 Typing Values by Encoding
	6.3.3 Typing Processes by Encoding
	6.3.4 Operational Correspondence

	6.4 Corollaries from the Encoding

	Advanced Features on Safety by Encoding
	Part3

	7 Subtyping
	7.1 Subtyping Rules
	7.2 Properties

	8 Polymorphism
	8.1 Parametric Polymorphism
	8.1.1 Syntax
	8.1.2 Semantics
	8.1.3 Typing Rules
	8.1.4 Encoding
	8.1.5 Properties of the Encoding

	8.2 Bounded Polymorphism
	8.2.1 Syntax
	8.2.2 Semantics
	8.2.3 Typing Rules
	8.2.4 Encoding
	8.2.5 Properties of the Encoding

	9 Higher-Order Communication
	9.1 Syntax
	9.2 Semantics
	9.3 Typing Rules
	9.3.1 HOπ Session Typing Rules
	9.3.2 HOπ Typing Rules

	9.4 Encoding
	9.5 Properties of the Encoding
	9.5.1 Typing HOπ Processes by Encoding
	9.5.2 Operational Correspondence for HOπ

	10 Recursion
	10.1 Syntax
	10.2 Semantics
	10.3 Typing Rules
	10.4 Encoding
	10.5 Properties of the Encoding

	11 From π-Types to Session Types
	11.1 Further Considerations
	11.2 Typed Behavioural Equivalence
	11.2.1 Equivalence Results for the Encoding

	Conclusions, Related and Future Work for Part II and III
	Sec1

	Progress of Communication
	Part4

	12 Background on π--Types for Lock Freedom
	12.1 Syntax
	12.2 Semantics
	12.3 π-Types for Lock Freedom
	12.4 π-Typing Rules for Lock Freedom

	13 Background on Session Types for Progress
	13.1 Syntax
	13.2 Semantics
	13.3 Session Types
	13.4 Session Typing Rules

	14 Progress as Compositional Lock Freedom
	14.1 Lock Freedom for Sessions
	14.2 Progress for Sessions
	14.3 Lock Freedom Meets Progress
	14.3.1 Properties of Closed Terms
	14.3.2 Properties of Open Terms

	14.4 A Type System for Progress

	Conclusions, Related and Future Work for Part IV
	Sec1

	References

