
Pierre Ganty
Michele Loreti (Eds.)

 123

LN
CS

 9
53

3

10th International Symposium, TGC 2015
Madrid, Spain, August 31 – September 1, 2015
Revised Selected Papers

Trustworthy
Global Computing

Lecture Notes in Computer Science 9533

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Pierre Ganty • Michele Loreti (Eds.)

Trustworthy
Global Computing
10th International Symposium, TGC 2015
Madrid, Spain, August 31 – September 1, 2015
Revised Selected Papers

123

Editors
Pierre Ganty
IMDEA Software Institute
Pozuelo de Alarcón, Madrid
Spain

Michele Loreti
Università degli Studi di Firenze
Florence
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-28765-2 ISBN 978-3-319-28766-9 (eBook)
DOI 10.1007/978-3-319-28766-9

Library of Congress Control Number: 2015959594

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the proceedings of TGC 2015, the 10th International Symposium
on Trustworthy Global Computing. The symposium was held in Madrid, Spain, from
August 31 to September 1. The TGC Symposium was co-located with CONCUR,
QUEST, and FORMATS. Informal pre-symposium proceedings were made available
in electronic form to the attendees of the symposium. The papers in this volume were
further improved by the authors in response to helpful feedback received at the
symposium.

The Symposium on Trustworthy Global Computing is an international annual venue
dedicated to safe and reliable computation in the so-called global computers, i.e., those
computational abstractions emerging in large-scale infrastructures such as service-
oriented architectures, autonomic systems, and cloud computing. The TGC series
focuses on providing frameworks, tools, algorithms, and protocols for designing open-
ended, large-scaled applications and for reasoning about their behavior and properties
in a rigorous way. The related models of computation incorporate code and data
mobility over distributed networks that connect heterogeneous devices and have
dynamically changing topologies.

The first TGC event took place in Edinburgh in 2005, with the co-sponsorship of
IFIP TC-2, as part of ETAPS 2005. TGC 2005 was the evolution of the previous
Global Computing I workshops held in Rovereto in 2003 and 2004 (see LNCS vol.
2874) as well as of the workshops on Foundation of Global Computing held as satellite
events of ICALP and CONCUR (see ENTCS vol. 85). Four editions of TGC were
co-located with the reviews of the EU-funded projects AEOLUS, MOBIUS, and
SENSORIA within the FP6 initiative. They were held in Lucca, Italy (TGC 2006,
LNCS vol. 4661); in Sophia Antipolis, France (TGC 2007, LNCS vol. 4912); in
Barcelona, Spain (TGC 2008, LNCS vol. 5474); and in Munich, Germany (TGC 2010,
LNCS vol. 6084). Further editions of TGC were held in Aachen, Germany (TGC 2011,
LNCS vol. 7173), Newcastle upon Tyne, UK (TGC 2012, LNCS vol. 8191), Buenos
Aires (TGC 2013, LNCS vol. 8358), and Rome (TGC 2014, LNCS vol. 8358). TGC
2015 solicited contributions in all areas of global computing, including (but not limited
to) languages, semantic models, and abstractions; security, trust, and reliability; privacy
and information flow policies; algorithms and protocols; resource management; model
checking, theorem proving, and static analysis; and tool support.

The fruitful collaboration with CONCUR, initiated in 2013, was continued this year
allowing for concurrent submissions to CONCUR and TGC, with the reviewing
schedule of TGC slightly delayed with respect to that of CONCUR and submissions
accepted by CONCUR were automatically withdrawn from TGC. This year there were
seven papers concurrently submitted to TGC and CONCUR and 12 papers were
submitted only to TGC. As with the last edition, the papers submitted at CONCUR and
TGC were also reviewed by the Program Committee of TGC, which was provided with
the CONCUR reviews.

The Program Committee selected ten papers to be included in this volume and to be
presented at the symposium. The program was structured in four sessions chaired by
Lenore Zuck, Giorgio Delzanno, Michele Loreti, and Pierre Ganty. Finally, the TGC
program had invited talks by Andrey Rybalchenko (Microsoft Research Cambridge,
UK) and, jointly with CONCUR, by Gianluigi Zavattaro (University of Bologna/
INRIA, Italy).

We would like to thank the Steering Committee of TGC for inviting us to chair the
conference; the members of the Program Committee and external referees for their
detailed reports and the stimulating discussions during the review phase; the authors of
submitted papers, the invited speakers, the session chairs, and the attendees for con-
tributing to the success of the event. Finally, we thank the providers of the EasyChair
system, which was used to manage the submissions.

November 2015 Pierre Ganty
Michele Loreti

VI Preface

Organization

Program Committee

Myrto Arapinis University of Birmingham, UK
Alessandro Armando DIBRIS, Università di Genova, Italy
Laura Bocchi University of Kent, UK
Luis Caires Universidade Nova de Lisboa, Portugal
Marco Carbone IT University of Copenhagen, Denmark
Ilaria Castellani Inria Sophia Antipolis, France
Pedro R. D’Argenio Universidad Nacional de Córdoba - CONICET, Argentina
Giorgio Delzanno DIBRIS, Università di Genova, Italy
Fabio Gadducci Università di Pisa, Italy
Pierre Ganty IMDEA Software Institute, Spain
Rolf Hennicker Ludwig-Maximilians-Universität München, Germany
Christos Kaklamanis University of Patras and CTI, Greece
Steve Kremer Inria Nancy - Grand Est, France
Alberto Lluch

Lafuente
Technical University of Denmark

Michele Loreti Università degli Studi di Firenze, Italy
Parthasarathy

Madhusudan
University of Illinois at Urbana-Champaign, USA

Matteo Maffei CISPA, Saarland University, Germany
Gennaro Parlato University of Southampton, UK
Michael Rusinowitch LORIA - Inria Nancy, France
Davide Sangiorgi Università di Bologna, Italy
Emilio Tuosto University of Leicester, UK

Additional Reviewers

Accattoli, Beniamino
Bartoletti, Massimo
Calzavara, Stefano
Cirstea, Horatiu
Costa, Gabriele
Fabre, Eric
Jorge A., Pérez
Kissig, Christian
Klarl, Annabelle
Lee, Matias David
Peressotti, Marco

Petri, Gustavo
Prasad, K.V.S.
Radhakrishna, Arjun
Reniers, Michel
Ruffing, Tim
Schrammel, Peter
Turuani, Mathieu
Villard, Jules
Zhang, Lijun
Zucca, Elena

Contents

Secure Two-Party Computation in Applied Pi-Calculus: Models
and Verification . 1

Sergiu Bursuc

Multiparty Testing Preorders. 16
Rocco De Nicola and Hernán Melgratti

Data Tracking in Parameterized Systems . 32
Giorgio Delzanno

Modular Monitor Extensions for Information Flow Security in JavaScript . . . 47
José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos

Hybrid Typing of Secure Information Flow in a JavaScript-Like Language . . . 63
José Fragoso Santos, Thomas Jensen, Tamara Rezk, and Alan Schmitt

Fault Ascription in Concurrent Systems . 79
Gregor Gössler and Jean-Bernard Stefani

Disjunctive Information Flow for Communicating Processes 95
Ximeng Li, Flemming Nielson, Hanne Riis Nielson, and Xinyu Feng

Near-Optimal Scheduling for LTL with Future Discounting 112
Shota Nakagawa and Ichiro Hasuo

A Switch, in Time. 131
Lenore D. Zuck and Sanjiva Prasad

Verification of Component-Based Systems via Predicate Abstraction
and Simultaneous Set Reduction . 147

Wang Qiang and Simon Bliudze

Author Index . 163

http://dx.doi.org/10.1007/978-3-319-28766-9_1
http://dx.doi.org/10.1007/978-3-319-28766-9_1
http://dx.doi.org/10.1007/978-3-319-28766-9_2
http://dx.doi.org/10.1007/978-3-319-28766-9_3
http://dx.doi.org/10.1007/978-3-319-28766-9_4
http://dx.doi.org/10.1007/978-3-319-28766-9_5
http://dx.doi.org/10.1007/978-3-319-28766-9_6
http://dx.doi.org/10.1007/978-3-319-28766-9_7
http://dx.doi.org/10.1007/978-3-319-28766-9_8
http://dx.doi.org/10.1007/978-3-319-28766-9_9
http://dx.doi.org/10.1007/978-3-319-28766-9_10
http://dx.doi.org/10.1007/978-3-319-28766-9_10

Secure Two-Party Computation in Applied
Pi-Calculus: Models and Verification

Sergiu Bursuc(B)

School of Computer Science, University of Bristol, Bristol, UK
s.bursuc@bristol.ac.uk

Abstract. Secure two-party computation allows two distrusting par-
ties to compute a function, without revealing their inputs to each other.
Traditionally, the security properties desired in this context, and the
corresponding security proofs, are based on a notion of simulation, which
can be symbolic or computational. Either way, the proofs of security are
intricate, requiring first to find a simulator, and then to prove a notion of
indistinguishability. Furthermore, even for classic protocols such as Yao’s
(based on garbled circuits and oblivious transfer), we do not have ade-
quate symbolic models for cryptographic primitives and protocol roles,
that can form the basis for automated security proofs.

We propose new models in applied pi-calculus to address these gaps.
Our contributions, formulated in the context of Yao’s protocol, include:
an equational theory for specifying the primitives of garbled computa-
tion and oblivious transfer; process specifications for the roles of the two
parties in Yao’s protocol; definitions of security that are more clear and
direct: result integrity, input agreement (both based on correspondence
assertions) and input privacy (based on observational equivalence). We
put these models together and illustrate their use with ProVerif, provid-
ing a first automated verification of security for Yao’s two-party compu-
tation protocol.

1 Introduction

In secure two-party computation, two parties with inputs a and b wish to com-
pute a function f(a, b) such that each party can both preserve the privacy of
its inputs and be sure to receive the correct result of the computation [1]. Even
more, each party would like assurance that the other party does not learn more
from the protocol, like the evaluation of the function f on other inputs, e.g.
f(a′, b′), or the evaluation of another function on the same inputs, e.g. g(a, b).
A classic, and still most efficient, way of achieving secure two-party computa-
tion is Yao’s protocol [2]. It allows two parties to exchange a garbled circuit and
garbled inputs for a function, and compute the corresponding output, without
leaking private inputs. In addition, zero-knowledge proofs can be incorporated
into this protocol to ensure that any party cannot cheat [3,4].

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO.

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 1–15, 2016.
DOI: 10.1007/978-3-319-28766-9 1

2 S. Bursuc

Security Proofs in Computational Models. The active security of Yao’s
protocol has been defined and proved in the simulation-based model [3,5,6],
which states that, by executing a two-party computation protocol for a func-
tion f , an attacker can obtain essentially nothing more than the output of the
function. First, this requires the definition of an ideal model where the desired
functionality can be securely computed in a trivial manner, for instance relying
on a trusted third party and private channels. Secondly, one has to show that
the view of every attacker on the real protocol can be matched by a computa-
tionally indistinguishable view that comes from the ideal model. This requires
a simulator, whose role is to decorate an ideal run with innocuous data that
makes it look like a real run to any polynomially bounded adversary. This level
of generality comes however at a cost, the security proofs being complex and
challenging to automate.

Security Proofs in Symbolic Models. On the other hand, significant progress
has been made in the field of automated verification of security protocols in
formal (or symbolic) models [7,8]. However, even symbolic definitions of
simulation-based security, e.g. [9,10] or [11,12] (in applied pi-calculus), are still
a challenging task for such methods, which are tailored for basic properties like
secrecy, authentication or privacy. Indeed, recent work aiming to automate ver-
ification for multi-party computation protocols is either relying on additional
manual input [12,13], or only captures properties of correctness [14]. For Yao’s
protocol in particular, we also lack symbolic models for the required crypto-
graphic primitives of garbled computation and oblivious transfer. Overall, we do
not yet have the models that could be given directly to a verification tool and
ask the basic question: is a particular two-party computation protocol secure or
not? We propose such models for Yao’s protocol.

Our Approach and Contributions. The main challenge in automating
simulation-based security proofs comes from the fact that a simulator first needs
to be found, and, for some methods (e.g. [12,13]), processes need to be rearranged
to have the same structure in order to check indistinguishability - this requires
some human input in order to be tractable by tools. In this paper, we propose an
alternative approach, formulating two-party computation security for Yao’s pro-
tocol as a conjunction of three basic properties: result integrity, input agreement
and input privacy (Sect. 5). They are based on the standard symbolic notions
of correspondence assertions and observational equivalence (of two processes
with the same structure), do not require a simulator, and are directly amenable
to automation. We also propose formal models in applied pi-calculus for the
cryptographic primitives (Sect. 3) and the processes (Sect. 4) of Yao’s two-party
computation protocol. We show that our models can be combined and verified
with ProVerif, deriving a first automated proof of security for Yao’s protocol.

Relations Among Notions. Computational soundness results in [9,10,13,14]
show that it is sufficient to prove security in the symbolic model, in order to
derive security guarantees in the corresponding computational model. The mod-
els in [11,12] have not yet been shown to be computationally sound, to our

Secure Two-Party Computation in Applied Pi-Calculus 3

knowledge. Our models are related to [11–14], being formulated in the same lan-
guage of applied pi-calculus. In future work, we aim to show an even stronger
relation, deriving conditions under which our properties imply, or not, simulation-
based security in these formal models. We discuss this open problem and related
work in more detail in Sect. 6.

2 Preliminaries

2.1 Secure Two-Party Computation with Garbled Circuits

Assume two parties A (with secret input x) and B (with secret input y) want to
compute f(x, y), for a function f . The basic tool in Yao’s two-party computation
protocol [2,6] is a garbling construction that can be applied to any circuit repre-
senting the function f . For a fresh key k, it generates a garbled circuit GF (f, k)
and garbled input wires GW (x, k, a), GW (y, k, b), where a and b mark the circuit
wires corresponding to the input of A or B. Then: (i) the output of the circuit
GF (f, k) on inputs GW (x, k, a), GW (x, k, b) is equal to f(x, y), as depicted in the
left part of Fig. 1; and (ii) without access to the key k, f(x, y) is the only mean-
ingful information that can be derived from GF (f, k), GW (x, k, a), GW (y, k, b).
In particular, the values x and y remain secret and, for any {x′, y′} �= {x, y},
these garbled values do not allow to compute f(x′, y′). Relying on garbling, one
of the two parties, say A, can play the role of a sender and the other party, say
B, can play the role of a receiver. The role of the sender, as depicted in the right
part of Fig. 1, is to garble the circuit and the inputs of the two parties. The role
of the receiver is to execute the garbled computation and send the result back
to A. Note, however, that the party A does not have access to the private input
of B, so we need another tool to ensure that A and B can agree on a garbled
input for B.

Fig. 1. Garbled computation and Yao’s protocol for two parties

This is where A and B rely on oblivious transfer [15,16]. An oblivious transfer
protocol allows a receiver to obtain a message from a set computed by the sender
such that: (i) only one message can be received and (ii) the sender does not know
which message has been chosen by the receiver. In Yao’s protocol, the receiver
B can then get one message, which is the garbling of his desired input for the
function, and nothing else, whereas the sender A does not learn what value B
has chosen as input. Having obtained GF (f, k), GW (x, k, a) and GW (y, k, b), B
can evaluate the garbled circuit and obtain f(x, y), which can be sent back to
A as the result of the computation.

4 S. Bursuc

Active Security. In the case when B might be malicious, we have to ensure
that A can obtain from B the correct result. For this, the functionality of the
garbled circuit is modified such that its output is a pair of values f(x, y) and
enc(f(x, y), k), where k is a fresh secret key chosen by A for each protocol session.
Then, instead of f(x, y), B returns enc(f(x, y), k) to A: the result f(x, y) is
authenticated by the key k. To counter the case of a malicious A, the sender
A can prove that the garbling is correct, relying on cut-and-choose techniques
[3,17] or zero-knowledge proofs [4,18].

2.2 Applied Pi-Calculus and ProVerif [19–23]

Term Algebra. We are given a set of names, a set of variables and a signature F
formed of a set of constants and function symbols. Names, constants and variables
are basic terms and new terms are built by applying function symbols to already
defined terms. The signature F can be partitioned into public and private sym-
bols. A substitution σ is a function from variables to terms, whose application
to a term T is the term Tσ, called an instance of T , obtained by replacing every
variable x with the term xσ. A term context is a term C[1, . . . , n] containing
special constants 1, . . . , n (also called holes). For a context C[1, . . . , n] and a
sequence of terms T1, . . . , Tn, we denote by C[T1, . . . , Tn] the term obtained by
replacing each i with the corresponding Ti in C.

An equational theory is a pair E = (F ,R), for a signature F and a set R of
rewrite rules of the form U → V , where U, V are terms. A term T1 rewrites to T2

in one step, denoted by T1 → T2, if there is a context C[], a substitution σ and
a rule U → V such that T1 = C[Uσ] and T2 = C[V σ]. More generally, T1 →∗ T2,
if T1 rewrites to T2 in several steps [24]. We assume convergent theories: for any
term T , there is a unique term T↓ such that T →∗ T↓. We write U =E V if
U↓ = V ↓. A term T can be deduced from a sequence of terms S, denoted by
S �E T (or simply S � T), if there is a context C[1, . . . , n] and terms T1, . . . , Tn

in S such that C[T1, . . . , Tn]↓ = T and C does not contain function symbols in
Fpriv. Such a context, together with the positions of terms T1, . . . , Tn in S, is
called a proof of S �E T .

ssecorpllun0 P | Q parallel composition
!P replication new n;P name restriction
in(c, x);P input x on c out(c, T);P output T on c
if U = V then P else Q conditional let x = T in P term evaluation
event T ;P event occurence

Fig. 2. Process algebra

Processes of the calculus, denoted by P,Q, . . ., are built according to the gram-
mar in Fig. 2, where c, n are names, x is a variable, T,U, V are terms. Replication
allows the creation of any number of instances of a process. Names introduced
by new are called private, or fresh, otherwise they are public, or free. The term

Secure Two-Party Computation in Applied Pi-Calculus 5

T in event T is usually of the form A(T1, . . . , Tn), where A is a special symbol
representing the name of an occuring event (e.g. the start of a protocol session),
while the terms T1, . . . , Tn represent the parameters of the event (e.g. the names
or inputs of parties). A variable x is free in a process P if P does not contain x
in any of its input actions and any term evaluation of the form x = T . A process
P with free variables x1, . . . , xn is denoted by P (x1, . . . , xn), i.e. x1, . . . , xn are
parameters of P that will be instantiated in the context where P is used. We
denote by sig(P) the set of function symbols that appear in P . A process context
C[] is defined similarly as a term context.

Formally, the operational semantics of processes is defined as a relation on
tuples of the form (N ,M,L,P), called configurations, whose elements represent
the following information in the execution of a process: N is the set of freshly
generated names; M is the sequence of terms output on public channels (i.e. to
the attacker); L is the set of occured events; P is the multiset of processes being
executed in parallel. The rules that define the operational semantics, presented in
the associated research report [25] and adapted from [21,22], are quite standard
and correspond to the informal meaning previously discussed. We denote by
P →∗ (N ,M,L,P) if the configuration (N ,M,L,P) can be reached from the
initial configuration of P , which is (∅, ∅, ∅, {P}).

Security Properties. We rely on correspondence assertions [21] and observa-
tional equivalence [22]. Correspondence assertions allow to specify constraints
for events occuring in the execution of the protocol. They are based on formulas
Φ, Ψ whose syntax is defined as follows:

ev : T att : T U = V Φ ∧ Ψ Φ ∨ Ψ ¬Φ

Their semantics, for a configuration C = (N ,M,L,P) and equational theory E ,
is defined by C |=E ev : T ⇔ ∃T ′ ∈ L. T ′ =E T , and C |=E U = V ⇔ U =E V
and C |=E att : T ⇔ M �E T , plus the usual semantics of boolean operators.
Note, a predicate ev : T is true for a configuration if the event T occured in the
execution trace leading to it, and att : T is true if the attacker can deduce T from
the public messages of the configuration. A correspondence assertion is a formula
of the form Φ � Ψ . Such a formula is satisfied for a process P if and only if, for
every process Q, with sig(Q) ∩ Fpriv = ∅, and every configuration C reachable
from P | Q, i.e. P | Q →∗ C, and any substition σ, we have that C |= Φσ
implies C |= Ψσ′, for some substition σ′ that extends σ, i.e. if xσ is defined,
then xσ′ = xσ. Intuitively, a correspondence assertion requires that every time
the formula Φ is true during the execution of a process, the constraints specified
in Ψ must also be true for the same parameters. The process Q stands for any
computation that may be performed by the attacker.

Observational equivalence, denoted by P1 ∼ P2, specifies the inability of the
attacker to distinguish between two processes P1 and P2. Formally, P1 ∼ P2

is true if and only if, for every process Q, with sig(Q) ∩ Fpriv = ∅, and every
configuration (N1,M1,L1,P1) reachable from P1 | Q, there is a configuration
(N2,M2,L2,P2) reachable from P2 | Q, such that for any term T1 and any two

6 S. Bursuc

different proofs π1, π2 of M1 �E T1, there is a term T2 such that π1, π2 are also
proofs of M2 �E T2 [19,22,23,26].

3 Equational Theory for Garbled Computation

In this section we present an equational theory to model the cryptographic prim-
itives used in garbled computation protocols like [2,3,6]. We will refer to a party
A as the sender (who garbles and transmits data), and to a party B as the
receiver (who receives and ungarbles data). The equational theory, presented
in Fig. 3 and discussed below, allows B to evaluate a garbled circuit on garbled
inputs; A to prove that the circuits and its inputs are correctly garbled; B to
obtain by oblivious transfer B’s garbled input.

Garbled Circuit Evaluation. The term eval(TF , TA, TB) represents the result
of evaluating a circuit, represented by the term TF , on inputs of A and B,
represented by terms TA and TB respectively.

The term gf(TF , TK) represents the garbling of a circuit TF , given a garbling
key TK. The term gw(T, TK, i), with i ∈ {a, b}, represents a garbling of the input
T with a key TK, where T corresponds to the input wires of party A, when i is
a, or of party B, when i is b.

The term geval(gf(TF , TK), gw(TA, TK, a), gw(TB, TK, b)) represents the com-
putation performed on the garbled function and garbled inputs given as argu-
ments to geval, the result of which is eval(TF , TA, TB), as specified by the rewrite
rule R1.

F =
eval/3 gf/2 gw/3 a/0 b/0 geval/3 geval′/3 ok/0
ungarb/2 checkf/2 gwot/3 com/2 get/3 enc/2 dec/2

R =

1. geval(gf(x, y), gw(x1, y, a), gw(x2, y, b)) → eval(x, x1, x2)
2. geval′(gf(x, y), gw(x1, y, a), gw(x2, y, b)) → enc(eval(x, x1, x2), y)
3. ungarb(gw(x, y, z), y) → x
4. ungarb(gf(x, y), y) → x
5. checkf(gf(x, y), x) → ok
6. get(gwot(com(x, z), y1, y2), x, z) → gw(x, y1, y2)
7. dec(enc(x, y), y) → x

Fig. 3. Equational theory EGC for garbled computation

In addition, the function geval′ specified by R2 provides an encryption of the
function output. As explained in Sect. 2.1, this ciphertext can be sent as response
to A, providing confidence that the final result correctly reflects A’s inputs in
the protocol, even while interacting with a malicious B. For brevity, the key in
the encryption returned by R2 is the same as the one used for garbling, but the
model can be easily adapted for more complex scenarios.

Secure Two-Party Computation in Applied Pi-Calculus 7

Overall, R1 and R2 are the only operations that can be performed on garbled
values without the key, this way enforcing several security properties. First,
the function and the inputs of the garbled circuit cannot be modified. Second,
the computation in rules R1,R2 succeeds only for circuits and inputs that are
garbled with the same key y (otherwise, a malicious party may combine garbled
values from different sessions of the protocol in order to derive more information
than it should). Third, the inputs must be used consistently, e.g. the garbled
input of A cannot be substituted with a garbled input for B (ensured by the
constants a and b). Garbled data can only be ungarbled by the key holder, as
specified by the rule R3 for garbled functions and the rule R4 for garbled inputs.

These features ensure that a malicious receiver cannot cheat. In addition,
we need to ensure that a malicious sender cannot cheat. This is the role of
R5, which allows a party to check that a function is correctly garbled, without
access to the garbling key. Cryptographically, there are various ways in which
this abstraction can be instantiated, e.g. by zero-knowledge proofs [4] or cut-and-
choose techniques [3,27]. The model of oblivious transfer that we explain next
will also allow the receiver to be convinced that his input is correctly garbled.

Garbled oblivious transfer is modeled relying on functions gwot, get, com,
and the rewrite rule R6, as follows: the term com(TB, V) represents a commit-
ment to a term TB, which cannot be modified, and is hidden by a nonce V ; such
a term will be used by B to request a garbled version of TB without disclosing it.

The term gwot(com(TB, V), TK, T) is an oblivious transfer term, obtained
from a commited input com(TB, V) and a garbling key TK; such a term will be
constructed by A and sent in response to B’s commitment.

The term get(gwot(com(TB, V), TK, T), TB, V) allows to obtain gw(TB, TK, T)
from an oblivious transfer term, if a party has the secret input TB and the nonce
V that have been used to construct the corresponding commitment. The term
T would be equal to the constant b in a normal execution of the protocol.

This way, we capture formally the security properties of oblivious transfer
protocols like [15,16,27,28]: for a sender A and a receiver B: B should only
learn one garbled value among many possible ones; and A should not learn
which value B has chosen. The first property is ensured in our model by the fact
that a dishonest B cannot change the commitment com(TB, V) in an oblivious
transfer term gwot(com(TB, V), TK, T). The only way to obtain a garbling of
a second message would be to run a second instance of the protocol with A,
involving another commitment and corresponding oblivious transfer term - this
is a legitimate behaviour that is also allowed by our model. The second property
is ensured by the fact that a commitment com(TB, V) does not reveal TB or V .
Furthermore, only the holder of TB and V can extract the respective garbled
value from an oblivious transfer term, ensuring that B is in fact the only party
that can obtain gw(TB, TK, T).

4 Formal Protocol Specification

In this section, we show how the equational theory from Sect. 3 is integrated
into higher level protocols modeled by processes communicating over a public

8 S. Bursuc

network. Figure 4 contains the process specifications of the two roles in Yao’s
protocol for secure two-party computation: the sender process A and the receiver
process B. Text within (* and *) represents comments. The public parameter
of A and B is the function to be evaluated, represented by the free variable
xF . The private parameters of A and B are their respective inputs, represented
by the free variables xA and respectively xB. The goal of A and B is therefore
to obtain eval(xF , xA, xB), without disclosing xA to B and xB to A. A public
name c represents the communication channel between the two parties, possibly
controlled by an attacker.

Sender A(xF , xA)

(* Receive B’s commited input *)
in(c, xc);
(* Characterize a started session *)
event Ain(xF , xA, xc);
(* Generate a new garbling key *)
new kA;
(* Garble and send the function *)
let xgf = gf(xF , kA) in out(c, xgf);
(* Garble and send A’s input *)
let xga = gw(xA, kA, a) in out(c, xga);
(* Oblivious transfer of

B’s garbled input *)
let xot = gwot(xc, kA, b) in
out(c, xot);
(* Receive the result *)
in(c, yA); let xres = dec(yA, kA) in
(* Characterize an ended session *)
event Ares(xF , xA, xc, xres)

Receiver B(xF , xB)

(* Send B’s commited input *)
new nB; let xc = com(xB, nB) in out(c, xc);
(* Receive garbled xF and xA *)
in(c, xgf); in(c, xga);
(* Characterize a started session *)
event Bin(xF , xga , xB);
(* Oblivious receival of

B’s garbled input *)
in(c, xot); let xgb = get(xot , xB, nB) in
(* Verify the garbled function *)
if checkf(xgf , xF) = ok then
(* Perform garbled computation *)
let xres = geval(xgf , xga , xgb) in
let yA = geval′(xgf , xga , xgb) in
(* Send the result to A *)
out(c, yA);
(* Characterize an ended session *)
event Bres(xF , xga , xB, xres)

Fig. 4. Processes for two-party computation

Sender. The sender A creates a new key kA, which it uses to garble the circuit
xF , its input xA and, obliviously, the input of B. As part of the oblivious transfer,
A first receives the commited input of B. The garbled values, as well as the
corresponding oblivious transfer term, are sent to B over the public channel c.
As response from B, A receives the result of the computation encrypted with kA.

Receiver. The receiver B obtains garbled data from A and, to get a garbled ver-
sion xgb of its own input xB, engages in the oblivious transfer protocol: it makes
a commitment to xB, sends the commitment to A and receives in response the
corresponding oblivious transfer term containing the garbled input. Next, B veri-
fies that the function is correctly garbled and performs the garbled computation.
The value xres is the result obtained by B, while yA is the encrypted result that
is sent back to A.

Secure Two-Party Computation in Applied Pi-Calculus 9

Events. The events Ain, Ares, Bin and Bres are used as part of the formal specifi-
cation of security properties that we present in Sect. 5. The event Ain(xF , xA, xc)
records that A has engaged in a protocol session for the computation of xF ,
having A’s input equal to xA, and B’s input being committed to xc. The event
Ares(xF , xA, xc, xres) records in addition that A has obtained the result xres as
outcome of the protocol session.

The event Bin(xF , xga, xB) records that B has engaged in a protocol session
for the computation of xF , having B’s input equal to xB, and A’s input being
garbled as xga. The event Bres(xF , xga, xB, xres) records in addition that B has
obtained the result xres as outcome of the protocol session.

Attacker. As usual, the attacker can execute any of the operations that we have
described, as well as any other operations allowed by the equational theory, and
(pretend to) play the role of any party, while interacting with an honest party A
or B on the public channel c. This is captured formally by the semantics of the
applied pi-calculus and the definition of the security properties that we present
in the next section.

5 Formal Models of Security for Two-Party Computation

Informally, we require the following security properties for a two-party compu-
tation protocol:

1. The dishonest parties should not learn too much:
(a) The only leakage about the input of an honest party should come from

the result of the evaluated function (Input privacy).
(b) A dishonest party should be able to evaluate a function on honest inputs

only as agreed by the corresponding honest party (Input agreement).
2. The honest parties learn the correct result (Result integrity).

The distinction between input privacy and input agreement separates the
task of input protection for honest parties into (a) protecting the honest input
during the protocol flow (without bothering about the output of the function);
and (b) ensuring that function outputs are released only as agreed to by the
owners of private inputs. This distinction helps to address automated verification
problems when the public output of the protocol depends on the private input
of parties. For example, automating privacy proofs for electronic voting proto-
cols is known to be problematic, because care should be taken to separate the
legitimate (e.g. the result of the election) from the illegitimate information flow
[29,30]. This is also a problem for automating simulation-based proofs, where
an ideal functionality models exactly what can be leaked by the protocol, and a
simulator needs to be found that shows the protocol not to leak more [11–13].
Our separation of this property into (a) and (b) is a new way of addressing this
problem, and is making more explicit the properties that are achieved, without
requiring a simulator as in [11–13] or additional honest parties as in [29,30].

These security properties can be formalized in a general setting, but for
brevity we present them in relation to the models of Sects. 3 and 4, and leave

10 S. Bursuc

their generalization as future work. In this setting, a specification of a two-party
computation protocol is given by a triple (A,B, E), where E is an equational
theory containing EGC from Sect. 3, A is a sender process with free variables
xF , xA, B is a receiver process with free variables xF , xB, and these processes
are enriched with events Ain,Bin,Ares,Bres presented in Sect. 4.

5.1 Result Integrity

Result integrity should ensure that the final result obtained by an honest party
P ∈ {A,B} after a session of the protocol is consistent with the function that
P expects to be evaluated, with the input of P in this session, and with the
input of the other party, that has responded to this session, or has initiated it.
Formally, the events Ares(xF , xA, xc, xres) and Bres(xF , xga, xB, xres) capture
the views of A and B after a session of the protocol has ended, recording all the
relevant data, in particular the result obtained by the respective party, and the
committed (resp. garbled) input of the other party. Therefore, we can specify the
requirement of result integrity by the correspondence assertions ΦA

int and ΦB
int

presented in Definition 1.

Definition 1 (Result Integrity). Let (A,B, E) be a specification of a two-
party computation protocol. We define the correspondence assertions ΦA

int and
ΦB

int as follows:

ΦA
int

.= ev : Ares(x, y, z, w) � z = com(z1, z2) ∧ w = eval(x, y, z1)
ΦB

int
.= ev : Bres(x, y, z, w) � y = gw(y1, y2, a) ∧ w = eval(x, y1, z)

We say that (A,B, E) satisfies result integrity if

! (in(c, xF); in(c, xA);A(xF , xA)) |=E ΦA
int and

! (in(c, xF); in(c, xB);B(xF , xB)) |=E ΦB
int

The specification lets the attacker execute any number of sessions of an honest
party A or B, with any function xF and any values xA, xB as inputs, and requires
the correspondence assertions ΦA

int and ΦB
int to be satisfied by this process. In

turn, ΦA
int and ΦB

int require that for any occurence of the event Ares or Bres,
the result obtained by the respective honest party, recorded in the variable w,
correctly reflects the function and relevant messages of the corresponding session,
recorded in variables x, y, z. Note that the variables z1, z2, y1, y2 in ΦA

int, Φ
B
int

are existentially quantified implicitly. This allows the specified property to hold
for any message choices in the protocol, as long as the desired constraints are
satisfied.

5.2 Input Agreement

Input agreement should ensure that the function outputs obtained by a dis-
honest party after executing a session of the protocol are consistent with the
expectation of an honest party when it releases its private inputs. Specifically,

Secure Two-Party Computation in Applied Pi-Calculus 11

consider the case where an honest party A supplied an input TA in order to
compute a function TF . Then, the other party should only be able to obtain
eval(TF , TA, TB), where TB is its own input when playing the role of B in the
corresponding protocol session. In particular, the other party should not be able
to obtain eval(TF , TA, T ′

B), for a different input T ′
B, or eval(T ′

F , TA, TB), for
different function T ′

F . Similar guarantees should hold for an honest party B.
We formally define these requirements as correspondence assertions. The fact

that the attacker knows a particular function output can be expressed by the
formula att : :eval(x, y, z). To express the constraints associated with this for-
mula, we rely on events Ain(xF , xA, xc) and Bin(xF , xga, xB), that record the
parameters of each honest party in a started protocol session. In particular, the
event Ain records the commited input of B, received by A, and Bin records
the garbled input of A, received by B. Therefore, these events fully determine
the result that each party (and in particular a dishonest party) should obtain
from the respective protocol session. Then, in Definition 2 we require that to
any function output eval(x, y, z) obtained by the attacker, there corresponds an
initial event recording the agreement of the respective honest party A or B.

Definition 2 (Input Agreement). Let (A,B, E) be a specification of a two-
party computation protocol. We define the correspondence assertions ΦA

agr and
ΦB

agr as follows:

ΦA
agr

.= att : eval(x, y, z) � (ev : Ain(x, y, z1) ∧ z1 = com(z, z2)) ∨ att : y
ΦB

agr
.= att : eval(x, y, z) � (ev : Bin(x, y1, z) ∧ y1 = gw(y, y2, a)) ∨ att : z

We say that a specification (A,B, E) of a two-party computation protocol
satisfies input agreement if:

! (in(c, xF);new iA;A(xF , iA)) |=E ΦA
agr and

! (in(c, xF);new iB;B(xF , iB)) |=E ΦB
agr

Note, however, that this property cannot be achieved if the input of the
honest party is known to the attacker, who can obtain eval(x, y, z) from x, y, z,
by simply evaluating the function. Therefore, input agreement as defined here
makes sense only for honest input values that are not available to the attacker.
This is captured by the disjunction in the correspondence assertions ΦA

agr and
ΦB

agr of Definition 2, and by the fact that inputs iA, iB of honest parties in the
test processes A(xF , iA),B(xF , iB) are locally generated for each session.

5.3 Input Privacy

Traditionally, e.g. for verifying strong secrecy [31] or vote privacy [29,30], the
privacy of an input x in a process P(x) is defined as a property of indistin-
guishability between two of its instances, say P(a1) and P(a2). In our case, we
have to make the indistinguishability notion robust in order to take into account
information flow that is inherent from the functionality of the protocol. In fact,

12 S. Bursuc

we will require that the only leakage about the input of an honest party comes
from the evaluated function. In other words, if the output of the function is with-
held from the attacker, no leakage should occur about the honest inputs. This
amounts to a standard requirement of strong secrecy, which can be formalized
as an observational equivalence.

It remains to formalize what it means for the output of the function to be
withheld from the attacker. The attacker might be able to compute the output
by combining data gathered throughout the protocol (for example, an attacker
playing the role of B in Yao’s protocol can evaluate the function output from the
received garbled data). In such cases, it is not clear what data can be legitimately
withheld from the attacker when defining input privacy. Instead, we will enrich
the equational theory such that, for honest inputs, all corresponding function
outputs are equivalent, i.e. the attacker cannot observe the difference between
them. Therefore, rather than suppressing the function output in the protocol
specification, we suppress the attacker’s ability to gain information from this
output. The enriched equational theory relies on special function symbols α and
β that will decorate the private inputs of an honest party A, respectively B. The
additional rewrite rules for eval declare function evaluations of these inputs to
be equivalent, relying on the constants α0, β0.

Definition 3. Let E be an equational theory. Consider the function symbols
α, β and the constants α0, β0. We define the equational theories Eα = E ∪
{eval(x, α(y), z) → eval(x, α0, z)} and Eβ = E∪{eval(x, y, β(z))→eval(x, y, β0)}
The specification in Definition 4 considers two versions of a process: for any
number of sessions, and any choice of terms x0, x1 for each session, in the first
version an honest party A, respectively B, inputs α(x0), respectively β(x0);
in the second version the party inputs α(x1), respectively β(x1). We say that
the protocol satisfies input privacy if these two versions are in observational
equivalence, i.e. indistinguishable for the attacker.

Definition 4 (Input Privacy). Let (A,B, E) be a specification of a two-party
computation protocol and Eα, Eβ be the equational theories from Definition 3.
Let Cin[] be the process context in(c, xF); in(c, x0); in(c, x1); []. We say that
(A,B, E) satisfies input privacy if

! Cin[A(xF , α(x0))] ∼Eα
! Cin[A(xF , α(x1))] and

! Cin[B(xF , β(x0))] ∼Eβ
! Cin[B(xF , β(x1))]

Note that α(x0) and α(x1) remain distinct terms with respect to Eα when
considered in any context other than in terms of the form eval(y, α(x0), z),
eval(y, α(x1), z); and similarly for Eβ . That is why, if there is a privacy weakness
in the protocol, the attacker will be able to spot the difference between the two
experiments in Definition 4, for either A or B.

6 Conclusion and Related Work

The ProVerif code for the models introduced in this paper is available online and
in the associated research report [25]. ProVerif returns within seconds positive

Secure Two-Party Computation in Applied Pi-Calculus 13

results for all queries, and we also perform reachability tests to ensure that all
parties can execute the protocol correctly. Our models and results differ from
related work in several aspects, and also open new research questions:

The model of Backes et al. [14] considers multi-party computation function-
alities abstractly, allowing to reason about their use in larger protocols, without
necessarily representing the cryptographic primitives that realize the function-
ality. Their framework comes equipped with a computational soundness result
and is applied to the case study of an auction protocol [32]. A property of robust
safety, which can be related to our property of result integrity, is verified auto-
matically relying on type-checking.

Dahl and Damg̊ard [13] propose a computationally sound formal framework
for two-party computation protocols in applied pi-calculus and use ProVerif to
verify an oblivious transfer protocol based on homomorphic encryption [28]. In
order to use ProVerif, they have to find a simulator and to additionally transform
the processes manually. On the other hand, we do not require a simulator and our
models can be given as input directly to automated tools. Our case study is also
different, allowing to evaluate any given function, relying on garbled circuits and
on oblivious transfer as a sub-protocol. However, we do not provide a soundness
result, and the relation of our models to simulation-based security remains an
open question. In that direction, we can also explore extensions of our models
into a general framework allowing the verification of other protocols, for two or
multiple parties, and relying on various cryptographic primitives.

Delaune et al. [11] and Böhl and Unruh [12] study definitions of simulation-
based security in applied pi-calculus, showing their application to the analysis of
several protocols. Although quite general, their frameworks are not easily amenable
to automation. As in [13], the authors of [12] have to perform a significant amount
of manual proof before applying ProVerif. Earlier computationally sound symbolic
models for simulation-based security are yet more complex [9,10,33]. Our paper
proposes a different approach: rather than directly expressing simulation-based
security in formal models, we propose several security notions whose conjunction
should be sufficient for secure two-party computation, while it remains to be seen
under what conditions they imply simulation-based security. This methodology
promises not only better automation, but also a better understanding of what
security properties are achieved. In turn, this may aid the design of new proto-
cols, where some of the properties can be relaxed.

A formal model for oblivious transfer in applied pi-calculus is presented by
Dahl and Damg̊ard [13]. Their specification is a process modeling a particular
protocol, whereas we propose a more abstract equational theory. However, our
theory only models oblivious transfer of garbled values; automated verification
modulo a more general equational theory for oblivious transfer remains for future
work. Conversely, the model of Goubault et al. [34] aims to capture formally the
probabilistic aspect of some oblivious transfer protocols.

Acknowledgement. We thank the reviewers for their valuable comments.

14 S. Bursuc

References

1. Yao, A.: Protocols for secure computations (extended abstract). In: FOCS, pp.
160–164. IEEE Computer Society (1982)

2. Yao, A.: How to generate and exchange secrets (extended abstract). In: FOCS, pp.
162–167. IEEE Computer Society (1986)

3. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In: Naor [35], pp. 52–78

4. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed
inputs. In: Naor [35], pp. 97–114

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

6. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

7. Abadi, M., Blanchet, B., Comon-Lundh, H.: Models and proofs of protocol security:
a progress report. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 35–49. Springer, Heidelberg (2009)

8. Cortier, V., Kremer, S. (eds.): Formal Models and Techniques for Analyzing Secu-
rity Protocols. Cryptology and Information Security Series. IOS Press, Amsterdam
(2011)

9. Canetti, R., Herzog, J.: Universally composable symbolic security analysis. J. Cryp-
tol. 24(1), 83–147 (2011)

10. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS 2003, Washington, DC, USA, 27–30 October 2003
(2003)

11. Delaune, S., Kremer, S., Pereira, O.: Simulation based security in the applied pi
calculus. In: Kannan, R., Narayan Kumar, K. (eds.), FSTTCS. LIPIcs, vol. 4, pp.
169–180 (2009)

12. Böhl, F., Unruh, D.: Symbolic universal composability. In: 2013 IEEE 26th Com-
puter Security Foundations Symposium, New Orleans, LA, USA, 26–28 June 2013,
pp. 257–271. IEEE (2013)

13. Dahl, M., Damg̊ard, I.: Universally composable symbolic analysis for two-party
protocols based on homomorphic encryption. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 695–712. Springer, Heidelberg (2014)

14. Backes, M., Maffei, M., Mohammadi, E.: Computationally sound abstraction and
verification of secure multi-party computations. In: Lodaya, K., Mahajan, M. (eds.)
FSTTCS. LIPIcs, vol. 8, pp. 352–363 (2010)

15. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol.
ePrint Arch. 2005, 187 (2005)

16. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

17. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (eds.) STOC,
pp. 218–229. ACM (1987)

19. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL 2001), pp. 104–115, January 2001

Secure Two-Party Computation in Applied Pi-Calculus 15

20. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Computer Security Foundations Workshop (CSFW 2001) (2001)

21. Blanchet, B.: Automatic verification of correspondences for security protocols. J.
Comput. Secur. 17(4), 363–434 (2009)

22. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Log. Algebr. Program. 75(1), 3–51 (2008)

23. Ryan, M., Smyth, B.: Applied pi calculus. In: Cortier, V., Kremer, S. (eds.) Formal
Models and Techniques for Analyzing Security Protocols. Cryptology and Infor-
mation Security Series. IOS Press (2011)

24. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pp. 243–320. MIT
Press (1990)

25. Bursuc, S.: Secure two-party computation in applied pi-calculus: models and ver-
ification. Cryptology ePrint Archive, Report 2015/782 (2015). http://eprint.iacr.
org/

26. Cortier, V., Delaune, S.: A method for proving observational equivalence. In: Com-
puter Security Foundations Symposium (CSF), Port Jefferson, New York, USA,
8–10 July 2009, pp. 266–276. IEEE Computer Society (2009)

27. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. J. Cryptol. 25(4), 680–722 (2012)

28. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally composable
oblivious transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461,
pp. 318–335. Springer, Heidelberg (2009)

29. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

30. Backes, M., Hriţcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: Computer Security Foundations
Symposium (CSF), pp. 195–209. IEEE Computer Society (2008)

31. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: 2004
IEEE Symposium on Security and Privacy (S&P 2004), 9–12 May 2004, Berkeley,
CA, USA, p. 86. IEEE Computer Society (2004)

32. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

33. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Inf. Comput. 205(12), 1685–1720 (2007)

34. Goubault-Larrecq, J., Palamidessi, C., Troina, A.: A probabilistic applied pi–
calculus. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 175–190. Springer,
Heidelberg (2007)

35. Naor, M. (ed.): EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer,
Heidelberg (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/

Multiparty Testing Preorders

Rocco De Nicola1 and Hernán Melgratti2(B)

1 IMT, Institute for Advanced Studies, Lucca, Italy
rocco.denicola@imtlucca.it

2 FCEyN, University of Buenos Aires, Buenos Aires, Argentina
hmelgra@dc.uba.ar

Abstract. Variants of the must testing approach have been success-
fully applied in Service Oriented Computing for analysing the com-
pliance between (contracts exposed by) clients and servers or, more
generally, between two peers. It has however been argued that multi-
party scenarios call for more permissive notions of compliance because
partners usually do not have full coordination capabilities. We propose
two new testing preorders, which are obtained by restricting the set of
potential observers. For the first preorder, called uncoordinated, we allow
only sets of parallel observers that use different parts of the interface of
a given service and have no possibility of intercommunication. For the
second preorder, that we call independent, we instead rely on parallel
observers that perceive as silent all the actions that are not in the inter-
face of interest. We have that the uncoordinated preorder is coarser than
the classical must testing preorder and finer than the independent one.
We also provide a characterisation in terms of decorated traces for both
preorders: the uncoordinated preorder is defined in terms of must-sets
and Mazurkiewicz traces while the independent one is described in terms
of must-sets and classes of filtered traces that only contain designated
visible actions.

1 Introduction

A desired property of communication-centered systems is the graceful termi-
nation of the partners involved in a multiparty interaction, i.e., every possible
interaction among a set of communicating partners ends successfully, in the sense
that there are no messages waiting forever to be sent, or sent messages which
are never received. The theories of session types [8,16] and of contracts [3,5,6,9]
are commonly used to ensure such kind of properties. The key idea behind both
approaches is to associate to each process a type (or contract) that gives an
abstract description of its external, visible behaviour and to use type checking
to verify correctness of behaviours.

Services are often specified by sequential nondeterministic ccs processes [12]
describing the communications offered by peers, built-up from invoke and accept
activities, which are abstractly represented as input and output actions that take
place over a set of channels or names, and internal τ actions. Basic actions can

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 16–31, 2016.
DOI: 10.1007/978-3-319-28766-9 2

Multiparty Testing Preorders 17

be composed sequentially (prefix operator “.”) or as alternatives (non determin-
istic choice “+”) and no operator for parallel composition is used for describing
services.It is assumed that all possible interleavings are made explicit in the
description of a service and communication is used only for modelling the inter-
action among different peers.

Services come equipped with a notion of compliance that characterises all
valid clients of a service, i.e., those clients that are guaranteed to terminate
after any possible interaction with the service. Compliance has been charac-
terised by using a variant of the must testing approach [7], which allows com-
paring processes according to the ability of external observers to distinguishing
them. Processes that are must-equivalent are characterised by the set of tests or
observers that they are able to pass; an observer is just a process that runs in
parallel with the tested service. Two processes p and q are related via the must
preorder (p �must q) if q passes all tests that are passed by p. Consequently, p
and q are equivalent (p ≈must q) if they pass exactly the same tests.

If one considers a multiparty setting, each service may interact with several
partners and its interface is often (logically) partitioned by allowing each partner
to communicate only through dedicated parts of the interface. Moreover, in many
cases, the peers of a specific service do not communicate with each other. In these
situations, the classical testing approach to process equivalences or preorders
turns out to be too demanding.

Consider the following scenario involving three partners: an organisation (the
broker) that sells goods produced by a different company (the producer) to a
specific customer (the client). The behaviour of the broker can be described with
the following process:

B = req.order.inv.

The broker accepts requests on channel req and then places an order to the
producer with the message order and sends an invoice to the customer with
the message inv. In this scenario, the broker uses the channels req and inv to
interact with the customer, while the interaction with the producer is over the
channel order. Moreover, the customer and the producer do not know each other
and are completely independent. Hence, the order in which messages order and
inv are sent is completely irrelevant for them. They would be equally happy with
a broker defined as follows:

B′ = req.inv.order.

Nevertheless, these two different implementations are not considered must-
equivalent.

The main goal of this paper is to introduce alternative, less discriminating,
preorders that take into account the distributed nature of the peers and thus
the limited coordination and interaction capabilities of the different players.
A first preorder, called uncoordinated must preorder, is obtained by assuming
that all clients of a given service do interact with it via disjoint sets of ports,
i.e. they use different parts of its interface, have no possibility of intercommu-
nication, and all of them terminate successfully in every possible interaction.

18 R. De Nicola and H. Melgratti

However, even without communication among clients, some inter-dependency
among them is still possible, e.g. because one of them does not behave as expected
and thus blocks the other. Indeed, the uncoordinated must preorder differenti-
ates B from B′ when the observer cannot communicate over the port order . We,
thus, introduce a second preorder, called independent must preorder, that avoids
inter-dependencies among clients actions and, thanks to its limited discriminat-
ing power, guarantees increased acceptability of offered services.

The two preorders are defined as usual in terms of the outcomes of experi-
ments by specific sets of observers. For defining the uncoordinated must preorder,
we allow only sets of parallel observers that cannot intercommunicate and do
challenge services via disjoint parts of their interface. For defining the indepen-
dent must preorder, we instead rely on parallel observers that, again, cannot
intercommunicate but in addition perceive as silent all the actions that are not
in the interface of their interest. This is instrumental to permit all observers
to perform independent tests. As expected, we have that the uncoordinated
preorder is coarser than the classical must testing preorder and finer than the
independent one.

Just like for classical testing preorders, we provide a characterisation for
both new preorders in terms of decorated traces, which avoids dealing with
universal quantifications over the set of observers for relating any two processes.
The alternative characterisations make it even more evident that our preorders
permit action reordering. Indeed, the uncoordinated preorder is defined in terms
of Mazurkiewicz traces [11] while the independent one is described in terms of
classes of traces quotiented via specific sets of visible actions. We would like to
remark that our two preorders are different from those defined in [4,13,14], which
also permit action reordering by relying on buffered communication. Additional
details will be provided in Sect. 6.

Synopsis. The remainder of this paper is organised as follows. In Sect. 2 we recall
the basics of the classical must testing approach. In Sects. 3 and 4 we present
the theory of uncoordinated and independent must testing preorders and their
characterisation in terms of traces. In Sect. 5 we show that the uncoordinated
preorder is coarser than the must testing preorder but finer than the independent
one. Finally, we discuss some related work and future developments in Sect. 6.

2 Processes and Testing Preorders

Let N be a countable set of action names, ranged over by a, b, As usual, we
write co-names in N as a, b, . . . and assume a = a. We will use α, β to range
over Act = (N ∪ N). Moreover, we consider a distinguished internal action τ ,
not in Act, and use μ to range over Act ∪ {τ}. We fix the language of defining
services as the sequential fragment of CCS extended with a success operator, as
specified by the following grammar.

p, q :: = 0 | 1 | μ.p | p + q | X | recX .p

Multiparty Testing Preorders 19

The process 0 stands for the terminated process, 1 for the process that reports
success and then terminates, and μ.p for a service that executes μ and then
continues as p. Alternative behaviours are specified by terms of the form p + q,
while recursive ones are introduced by terms like recX .p. We sometimes omit
trailing 0 and write, e.g., a.b + c instead of a.b.0+ c.0. We write n(p) for the set
of names a ∈ N such that either a or a occur in p.

The operational semantics of processes is given in terms of a labelled transi-
tion system (lts) p

λ→ q with λ ∈ Act ∪ {τ,�}, where � signals the successful
termination of an execution.

Definition 1 (Transition Relation). The transition relation on processes,
noted λ→ , is the least relation satisfying the following rules

1 �→ 0 μ.p
μ→ p

p
λ→ p′

p + q
λ→ p′

q
λ→ q′

p + q
λ→ q′

p[recX .p/X] λ→ p′

recX .p
λ→ p′ ��

Multiparty applications, named configurations, are built by composing
processes concurrently. Formally, configurations are given by the following
grammar.

c, d :: = p | c‖d

We sometimes write Πi∈0..npi for the parallel composition p0 ‖ . . . ‖ pn. The
operational semantics of configurations, which accounts for the communication
between peers, is obtained by extending the rules in Definition 1 with the fol-
lowing ones:

c
μ→ c′

c ‖ d
μ→ c′ ‖ d

d
μ→ d′

c ‖ d
μ→ c ‖ d′

c
α→ c′ d

α→ d′

c ‖ d
τ→ c′ ‖ d′

c
�→ c′ d

�→ d′

c ‖ d
�→ c′ ‖ d′

All rules are standard apart for the last one that is not present in [7]. This
rule states that the concurrent composition of processes can report success only
when all processes in the composition do so.

We write c
λ→ when there exists c′ s.t. c

λ→ c′; ⇒ for the reflexive and
transitive closure of τ→. Moreover, we write c

λ=⇒ c′ when λ ∈ Act ∪ {�} and
c =⇒ λ→=⇒; c

λ0...λn=⇒ c′ when c
λ0=⇒ . . .

λn=⇒ c′; and, finally, c
s=⇒ when s ∈

(Act∪ {�})∗ and there exists c′ s.t. c
s=⇒ c′. We use str(c) and init(c) to denote

the sets of strings and enabled actions of c, defined as follows

str(c) = {s ∈ (Act ∪ {�})∗ | c
s=⇒} init(c) = {λ ∈ Act ∪ {�} | c

λ=⇒}

As behavioural semantics, we will consider the must preorder of [7]. We take
all possible configurations obtained from processes and from groups of O of
observers, ranged over by o, o0, o1, . . . , o

′, It is worth noting that, to recover
the standard framework of [7], it is sufficient to use only sequential observers,
and to allow only to them to use action �.

20 R. De Nicola and H. Melgratti

Definition 2 (Must).

– A sequence of transitions p0 ‖ o0
τ→ . . .

τ→ pk ‖ ok
τ→ . . . is a maximal com-

putation if either it is infinite or the last term pn ‖ on is such that pn ‖ on � τ→.
– p must o iff for each maximal computation p ‖ o = p0 ‖ o0

τ→ . . .
τ→ pk ‖ ok

τ→
. . . there exists n ≥ 0 such that on

�→ . ��
We say that a computation co

μ0→ . . . ci
μi→ . . .

μn→ cn+1 is unsuccessful
when cj � �→ for all 0 ≤ j ≤ n + 1, we say it successful otherwise.

The notion of passing a test represents the fact that a set of partners (observers)
can successfully interact with the process under test. It is then natural to compare
processes according to their capacity to satisfy set of partners.

Definition 3 (Must Preorder).

– p �must q iff ∀o ∈ O : p must o implies q must o.
– We write p ≈must q when both p �must q and q �must p. ��

2.1 Semantic Characterisation

The must testing preorder has been characterised in [7] in terms of the sequences
of actions that a process may perform and the possible sets of actions that it
may perform after executing a particular sequence of actions. This characterisa-
tion relies on a few auxiliary predicates and functions that are presented below.
A process p diverges, written p ⇑, when it exhibits an infinite, internal compu-
tation p

τ→ p0
τ→ p1

τ→ We say p converges, written p ⇓, otherwise. For
s ∈ Act∗, the convergence predicate is inductively defined by the following rules:

– p ⇓ ε if p ⇓.
– p ⇓ α.s if p ⇓ and p

α=⇒ p′ implies p′ ⇓ s.

The residual of a process p (or a set of processes P) after the execution of
s ∈ Act∗ is given by the following equations

– (p after s) = {p′ | p
s=⇒ p′}.

– (P after s) =
⋃

p∈P (p after s).

Definition 4 (Must-set). A must-set of process p (or set of processes P) is
L ⊆ Act, with L finite and such that

– p MUST L iff ∀p′ s.t. p =⇒ p′, ∃α ∈ L such that p′ α=⇒.
– P MUST L iff ∀p ∈ P.p MUST L. ��

Then, the must testing preorder can be characterised in terms of strings and
must-sets as follows.

Definition 5. p �must q if for every s ∈ Act∗, for all finite L ⊆ Act, if p ⇓ s
then

– q ⇓ s.
– (p after s) MUST L implies (q after s) MUST L. ��
Theorem 1 ([7]). �must=�must.

Multiparty Testing Preorders 21

3 A Testing Preorder with Uncoordinated Observers

The must testing preorder is defined in terms of the tests that each process is
able to pass. Remarkably, the classical setting can be formulated by consider-
ing only sequential tests (see the characterisation of minimal tests in [7]). Each
sequential test is a unique, centralised process that handles all the interaction
with the service under test and, therefore, has a complete view of the externally
observable behaviour of the service. For this reason, we refer to the classical must
testing preorder as a centralised preorder. Multiparty interactions are generally
structured in such a way that pairs of partners communicate through dedicated
channels, for example, partner links in service oriented models or buffers in com-
municating machines [1]. Conceptually, the interface (i.e., the set of channels) of
a service is partitioned and a given service interacts with each partner by using
only specific sets of channels in its interface. In addition, there are common
scenarios in which partners do not know each other and cannot directly commu-
nicate. As a consequence, clients of a service cannot establish causal dependen-
cies among actions that take place over different parts of the service interface.
These constraints reduce the discriminating power of partners and call for coarser
equivalences that equate processes that cannot be distinguished by independent
sets of sequential processes that are interested only in specific interactions.

Example 1. Consider the classical scenario for planning a trip. A user U interacts
with a broker B, which is responsible for booking flights provided by a service
F and hotel rooms available at service H. The expected interaction can be
described as follows: U makes a booking request by sending a message req to B
(we will just describe the interaction and abstract away from data details such
as trip destination, departure dates and duration). Depending on the request, B
may contact service F (for booking just a flight ticket), H (for booking rooms)
or both. Service B uses channels reqF and reqH to respectively contact F and
H (for the sake of simplicity, we assume that any request to F and H will be
granted). Then, the expected behaviour of B can be described with the following
process:

B0
def
= req .(τ.reqF + τ.reqH + τ.reqH .reqF)

In this process, the third branch represents B’s choice to contact first H and
then F . Nevertheless, the other partners (U , F and H) are not affected in any
way by this choice, thus they would be equally happy with alternative definitions
such as:

B1
def
= req .(τ.reqF + τ.reqH + τ.reqF .reqH)

B2
def
= req .(τ.reqF + τ.reqH + τ.reqH .reqF + τ.reqF .reqH)

Unfortunately, B0, B1 and B2 are distinguished by the must testing equiva-
lence. It suffices to consider o0 = req .(τ.1+reqF .(τ.1+reqH .0)) for showing that
B0 ��must B1 and that B0 ��must B2, and use o1 = req .(τ.1+ reqH .(τ.1+ reqF .0))
for proving that B1 ��must B2. ��

22 R. De Nicola and H. Melgratti

This rest of this section is devoted to the study of a preorder that is coarser
than the classical must preorder and relates processes that cannot be distin-
guished by distributed contexts. A (trace-based) alternative characterisation of
the new preorder will also be introduced. We start by defining uncoordinated
observers.

Definition 6 (Uncoordinated Observer). A process Πi∈0..noi = o0 ‖ . . . ‖ on

is an Uncoordinated observer if n(oi) ∩ n(oj) = ∅ for all i �= j. ��
Obviously, the condition n(oi) ∩ n(oj) = ∅ forbids the direct communication

between the sequential components of an uncoordinated observer. As a conse-
quence, an uncoordinated observer cannot impose a total order between actions
that are controlled by different components of the observer. Indeed, the execu-
tions of such an observer are the interleavings of the executions of all sequential
components {oi}i∈0..n (this property is formally stated in Sect. 3.1, Lemma 1).
We remark that a configuration does report success (i.e., perform action �) only
when all sequential processes in the composition do report success; an uncoor-
dinated observer reports success when all its components report success simul-
taneously.

The uncoordinated must testing preorder is obtained by restricting the set
of observers to consider just uncoordinated observers over a suitable partition of
the interface of a process. We will say I = {Ii}i∈0...n is an interface whenever I is
a partition of Act and ∀α ∈ Act, α ∈ Ii implies α ∈ Ii. In the remainder of this
paper, we usually will write only the relevant part of an interface. For instance,
we will write {{a}, {b}} for any interface {I0, I1} such that a ∈ I0 and b ∈ I1, if
only action a and b are of interest.

Definition 7 (Uncoordinated must Preorder �I

unc). Let I = {Ii}i∈0...n

be an interface.

– We say p �I

unc q iff for all Πi∈0..noi such that n(oi) ⊆ Ii, p must Πi∈0..noi

implies q must Πi∈0..noi.
– We write p ≈I

unc q when both p �I

unc q and q �I

unc p. ��
Example 2. Consider the scenario presented in Example 1 and the following
interface I = {{req}, {reqF}, {reqH }} for the process B that thus interacts with
each of the other partners by using a dedicated part of its interface. It can
be shown that the three definitions for B in Example 1 are equivalent when
considering the uncoordinated must testing preorder, i.e., B0 ≈I

unc B1 ≈I

unc B2.
The actual proof, which uses the (trace-based) alternative characterisation of
the preorder, is deferred to Example 3. ��

3.1 Semantic Characterisation

We now address the problem of characterising the uncoordinated must testing
preorder in terms of traces and must-sets. In order to do that, we shift from
strings to Mazurkiewicz traces [10]. A Mazurkiewicz trace is a set of strings,

Multiparty Testing Preorders 23

obtained by permuting independent symbols. Traces represent concurrent com-
putations, in which commuting letters stand for actions that execute indepen-
dently of one another and non-commuting symbols represent causally dependent
actions. We start by summarising the basics of the theory of traces; the interested
reader is referred to [10] for further details.

Let D ⊆ Act × Act be a finite, equivalence relation, called the dependency
relation, that relates the actions that cannot be commuted. Thus if (α, β) ∈ D,
the two actions have to be considered causally dependent. Symmetrically, ID =
(Act × Act) \ D stands for the independency relation with (α, β) ∈ ID meaning
that α and β are concurrent.

The trace equivalence induced by the dependency relation D is the least
congruence ≡D in Act such that for all α, β ∈ Act : (α, β) ∈ ID =⇒ αβ ≡D βα.

The equivalence classes of ≡D, denoted by [s]D, are the (Mazurkiewicz)
traces, namely the strings quotiented via ≡D. The trace monoid, denoted as
M(D), is the quotient monoid M(D) = Act∗/≡D

whose elements are the traces
induced by D. We remark that no action can commute with � because ID is
defined over Act × Act.

Let I be an interface, the dependency relation induced by I is D =
⋃

I∈I
I × I.

The alternative characterisation of the uncoordinated preorder is defined in
terms of equivalence classes of traces. Hence, we extend the transition relation
and the notions of convergence and residuals to equivalence classes of strings:

– q
[s]D=⇒ q′ if and only if ∃s′ ∈ [s]D such that q

s′
=⇒ q′

– p ⇓ [s]D if ∀s′ ∈ [s]D.p ⇓ s′

– (p after [s]D) = {p′ | p
[s]D=⇒ p′}

Now we can characterise the behaviour of an uncoordinated observer. We
formally state that an uncoordinated observer reaches the same processes after
executing any of the sequences of actions in an equivalence class. This result is
instrumental for proving the alternative characterisation of the uncoordinated
preorder.

Lemma 1. Let o = Πi∈0..noi be an observer for the interface I = {Ii}i∈0..n and
D the dependency relation induced by I. Then, for all s ∈ Act∗ and s′ ∈ [s]D we

have o
s=⇒ o′ iff o

s′
=⇒ o′.

Corollary 1. Let o = Πi∈0..noi be an observer for the interface I = {Ii}i∈0..n

and D the dependency relation induced by I. Then, ∀s ∈ Act∗, s′ ∈ [s]D,

1. s ∈ str(o) implies s′ ∈ str(o) .
2. o ⇓ s implies o ⇓ s′.
3. (o after s) MUST L implies (o after s′) MUST L.
4. If there exists an unsuccessful computation o

s=⇒, then there exists an unsuc-

cessful computation o
s′

=⇒.

24 R. De Nicola and H. Melgratti

The alternative characterisation for the uncoordinated preorder mimics the
definition of the classical one, but relies on Mazurkiewicz traces. In the definition
below, the condition L ⊆ I, with I ∈ I, captures the idea that each observation
is relative to a specific part of the interface.

Definition 8. Let I be an interface and D the dependency relation induced by
I. Then, p �I

unc q if for every s ∈ Act∗, for any part I ∈ I, for all finite L ⊆ I,
if p ⇓ [s]D then

1. q ⇓ [s]D
2. (p after [s]D) MUST L implies (q after [s]D) MUST L ��
Theorem 2. �I

unc=�I

unc.

In the following we will write LI
p,[s]D

for the smallest set such that if (p after

[s]D) MUST L and L ⊆ I then LI
p,[s]D

⊆ L.

Example 3. We take advantage of the alternative characterisation of the unco-
ordinated preorder to show that the three processes for the broker in Example 1
are equivalent when considering I = {{req}, {reqF}, {reqH }}. Actually, we will
only consider B0 ≈I

unc B1, being that the proofs for B0 ≈I

unc B2 and B1 ≈I

unc B2

are analogous.
Firstly, we have to consider that B0 ⇓ s and B1 ⇓ s for any s because B0

and B1 do not have infinite computations. The relation between must-sets are
described in the two tables below. The first table shows the sets (B0 after [s]D)
and LI

B0,[s]D
. Note that [s]D in the first column will be represented by any string

s′ ∈ [s]D. Moreover, we write “−” in the tree last columns whenever LI
B0,[s]D

does not exist. The second table does the same for B1. In the tables, we let
B′

0 stand for τ.reqF + τ.reqH + τ.reqH .reqF and B′
1 stand for τ.reqF + τ.reqH +

τ.reqF .reqH .

[s]D B0 after [s]D L
{req}
B0,[s]D

L
{reqH}
B0,[s]D

L
{reqF}
B0,[s]D

ε B0 {req} − −
req {B′

0, reqF , reqH , reqH .reqF} − − −
req .reqF {0} − − −
req .reqH {0, reqF} − − −
req .reqF .reqH {0} − − −
other ∅ ∅ ∅ ∅

[s]D B1 after [s]D L
{req}
B0,[s]D

L
{reqH}
B0,[s]D

L
{reqF}
B0,[s]D

ε B1 {req} − −
req {B′

1, reqF , reqH , reqF .reqH } − − −
req .reqF {0, reqH } − − −
req .reqH {0} − − −
req .reqF .reqH {0} − − −
other ∅ ∅ ∅ ∅

Multiparty Testing Preorders 25

By inspecting the tables, we can check that for any possible trace [s]D and
I ∈ I, it holds that LI

B0,[s]D
= LI

B1,[s]D
. Consequently, (B0 after [s]D) MUST L

iff (B1 after [s]D) MUST L and thus we have B0 ≈I

unc B1.

We now present two additional examples that help us in understanding the
discriminating capability of the uncoordinated preorder, its differences with the
classical must preorder and its adequacy for modelling process conformance.

The first of these examples shows that a process that does not communicate
its internal choices to all of its clients is useless in a distributed context.

Example 4. Consider the process p = τ.a + τ.b that is intended to be used by
two partners with the following interface: I = {{a}, {b}}. We show that this
process is less useful than 0 in an uncoordinated context, i.e., τ.a + τ.b �I

unc 0.
It is immediate to see that p and 0 strongly converge for any s ∈ Act∗, then the
minimal sets L

{a}
p,[s]D

, L
{b}
p,[s]D

, L
{a}
0,[s]D

and L
{b}
0,[s]D

presented in the tables below are
sufficient for proving our claim.

[s]D p after [s]D L
{a}
p,[s]D

L
{b}
p,[s]D

ε p, a, b − −
a {0} − −
b {0} − −
other ∅ ∅ ∅

[s]D 0 after [s]D L
{a}
0,[s]D

L
{b}
0,[s]D

ε 0 − −
a ∅ ∅ ∅
b ∅ ∅ ∅
other ∅ ∅ ∅

Note that differently from the classical must preorder, the uncoordinated
preorder does not consider the must-set {a, b} to distinguish p from 0 because
this set involves channels in different parts of the interface. The key point here is
that each internal reduction of p is observed just by one part of the interface: the
choice of branch a is only observed by one client and the choice of b is observed
by the other one. Since uncoordinated observers do not intercommunicate, they
can only report success simultaneously if they can do it independently from the
interactions with the tested process, but such observers are exactly the ones that
0 can pass.

Like in the classical must preorder, we have that 0 ��I

unc τ.a + τ.b. This is
witnessed by the observer o = a.0 + τ.1 ‖ 1 that is passed by 0 but not by
τ.a + τ.b. ��
The second example shows that the uncoordinated preorder falls somehow short
with respect to the target we set in the introduction of allowing servers to swap
actions that are targeted to different clients.

Example 5. Consider the interface I = {{a}, {b}} and the two pairs of processes

– a.b + a + b and b.a + a + b
– a.b and b.a

26 R. De Nicola and H. Melgratti

By inspecting traces and must-sets in the two tables below, where we use p
and q to denote a.b + a + b and b.a + a + b

[s]D p after [s]D L
{a}
p,[s]D

L
{b}
p,[s]D

ε {p} {a} {b}
a {b, 0} − −
b {0} − −
ab {0} − −

other ∅ ∅ ∅

[s]D q after [s]D L
{a}
q,[s]D

L
{b}
q,[s]D

ε {p} {a} {b}
a {0} − −
b {a, 0} − −
ab {0} − −

other ∅ ∅ ∅
It is easy to see that

a.b + a + b ≈I

unc b.a + a + b

However, by using o = a.1 ‖ 1 and o′ = 1 ‖ b.1 as observers, it can be shown
that

a.b ��I

unc b.a and b.a ��I

unc a.b

Note that o = a.1 ‖ 1 actually interacts with the process under test by using
just one part of the interface and relies on the fact that the remaining part of
the interface stays idle. Thanks to this ability, uncoordinated observers have still
a limited power to track some dependencies among actions on different parts of
the interface.

The preorder presented in the next section limits further the discriminating
power of observers and allows us to equate processes a.b and b.a. ��

4 A Testing Preorder with Independent Observers

In this section we explore a notion of equivalence equating processes that can
freely permute actions over different parts of their interface. As for the uncoor-
dinated observers, the targeted scenario is that of a service with a partitioned
interface interacting with two or more independent partners by using separate
sets of ports. In addition, each component of an observer cannot exploit any
knowledge about the design choices made by the other components, i.e., each of
them has a local view of the behaviour of the process that ignores all actions
controlled by the remaining components. Local views are characterised in terms
of a projection operator defined as follows.

Definition 9 (Projection). Let V ⊆ N be a set of observable ports. We write
p � V for the process obtained by hiding all actions of p over channels that are
not in V . Formally,

p
α→ p′ α ∈ V ∪ V

p � V
α→ p′ � V

p
α→ p′ α �∈ V ∪ V

p � V
τ→ p′ � V

��
Definition 10 (Independent(must) Preorder �I

ind). Let I = {Ii}i∈0..n be
an interface.

Multiparty Testing Preorders 27

– p �I

ind q iff for all Πi∈0..noi such that n(oi) ⊆ Ii, p � Ii must oi implies
q � Ii must oi. ��

Note that a.b and b.a cannot be distinguished anymore by the observer o =
a.1 ‖ 1 used in the previous section to prove a.b ��{{a},{b}}

unc b.a (Example 5),
because a.b � {a} must a.1, b.a � {a} must a.1, a.b � {b} must 1 and b.a �
{b} must 1. Indeed, later (Example 6) we will see that:

a.b ≈{{a},{b}}
ind b.a

4.1 Semantic Characterisation

In this section we address the characterisation of the independent preorder in
terms of traces. We start by introducing an equivalence notion of traces that
ignores hidden actions.

Definition 11 (Filtered Traces). Let I ⊆ Act. Two strings s1, s2 ∈ Act∗

are equivalent up-to I, written s1
•≡ I s2, if there exist s′

1, s
′
2 ∈ (Act \ I)∗ s.t.

s1s
′
1 ≡D s2s

′
2 where D is the dependency relation induced by {I,Act \ I}. We

write [[s]]I for the equivalence class of s. ��
Basically, two traces are equivalent up-to I when they coincide after the removal
of hidden actions. Note that the set s′ ∈ [[s]]I ∩ I∗ has a unique element, which
is the string obtained by removing from s all actions that are not in I. We write
s � I to denote that element. As for the distributed preorder, we extend the
notions of reduction, convergence and residuals to equivalence classes of strings.

– q
[[s]]I=⇒ q′ if and only if ∃t ∈ [[s]]I such that q

t=⇒ q′

– p ⇓ [[s]]I if and only if ∀t ∈ [[s]]I .p ⇓ t

– (p after [[s]]I) = {p′ | p
[[s]]I=⇒ p′}

The following auxiliary result establishes properties relating reductions, hid-
ing and filtered traces, which will be useful in the proof of the correspondence
theorem.

Lemma 2.

1. p
s=⇒ p′ implies p � I

s�I
=⇒ p′ � I.

2. p � I
s=⇒ p′ � I implies ∃t ∈ [[s]]I and p

t=⇒ p′.
3. p ⇑ [[s]]I implies p � I ⇑ s � I.
4. (p after [[s]]I) MUST L iff (p � I after s � I) MUST L ∩ I.

The alternative characterisation for the independent preorder is given in terms
of filtered traces.

Definition 12. Let p �I

ind q if for every I ∈ I, for every s ∈ I∗, and for all
finite L ⊆ I, if p ⇓ [[s]]I then

28 R. De Nicola and H. Melgratti

1. q ⇓ [[s]]I
2. (p after [[s]]I) MUST L ∪ (Act\I) implies (q after [[s]]I) MUST L ∪ (Act\I)

We would like to draw attention to condition 2 above; it only considers must-
sets that always include all the actions in (Act\I) to avoid the possibility of
distinguishing reachable states because of actions that are not in I. Consider
that this condition could be formulated as follows: for all finite L ⊆ Act,

(p after [[s]]I) MUST L implies ∃L′ s.t (q after [[s]]I) MUST L′ and L ∩ I =
L′ ∩ I that makes evident that only the actions from the observable part of the
interface are relevant.

Theorem 3. �I

ind=�I

ind.

Example 6. Consider the processes p = a.b and q = b.a and the interface I =
{{a}, {b}}. The table below shows the analysis for the part of the interface {a} .

[[s]]{a} p after [[s]]{a} L
{a}
p,[[s]]I

q after [[s]]{a} L
{a}
q,[[s]]I

ε {p} {a} {q, a} {a}
a {0, b} − {0} −
other ∅ ∅ ∅ ∅

When analysing the sets (p after [[ε]]{a}) = {p} and (q after [[ε]]{a}) = {q, a},
we ignore the fact that q starts with a hidden action b; the only relevant residuals
are those performing a. With a similar analysis we conclude that the condition
on must-sets also holds for set {b}. Hence, a.b ≈I

ind b.a holds. ��
The following example illustrates also the fact that independent observers are
unable to track causal dependencies between choices made in different parts of
the interface.

Example 7. Let p1 = a.c + b.d and p2 = a.d + b.c be two alternative implemen-
tations for a service with interface I = {{a, b}, {c, d}}. These two implemen-
tations are distinguished by the uncoordinated preorder (p1 �≈{{a,b},{c,d}}

unc p2)
because of the observers o1 = a.1 ‖ c.1 (p1 ��{{a,b},{c,d}}

unc p2) and o2 = b.1 ‖ c.1
(p2 ��{{a,b},{c,d}}

unc p1).
They are instead equated by the independent preorder, p1 ≈I

ind p2, indeed,
if only the part of the interface {a, b} is of interest, we have that p1 and p2
are equivalent because they exhibit the same interactions over channels a and
b. Similarly, without any a priori knowledge of the choices made for {a, b}, the
behaviour observed over {c, d} can be described by the non-deterministic choice
τ.c + τ.d, and hence, p1 and p2 are indistinguishable also over {c, d}.

We use the alternative characterisation to prove our claim. As usual, p1 ⇓ s
and p2 ⇓ s for any s. The tables below show coincidence of the must-sets. We
would only like to remark that ac ∈ [[a]]{a,b} and, consequently, p1 after [[a]]{a,b}
contains also process 0.

Multiparty Testing Preorders 29

[[s]]{a,b} p1 after [[s]]{a,b} L
{a,b}
p1,[[s]]I

p2 after [[s]]{a,b} L
{a,b}
p2,[[s]]I

ε p1 {a, b} p2 {a, b}
a {c, 0} − {d, 0} −
b {d, 0} − {c, 0} −
other ∅ ∅ ∅ ∅

[[s]]{c,d} p1 after [[s]]{a,b} L
{c,d}
p1,[[s]]I

p2 after [[s]]{a,b} L
{c,d}
p2,[[s]]I

ε p1 {c, d} p2 {c, d}
c {0} − {0} −
d {0} − {0} −
other ∅ ∅ ∅ ∅

��

5 Relating Must, Uncoordinated and Independent
Preorders

In this section, we formally study the relationships between the classical must
preorder and the two preorders we have introduced. We start by showing that a
refinement of an interface induces a coarser preorder, e.g., splitting the observa-
tion among more uncoordinated observers decreases the discriminating power of
the tests. We say that an interface I

′ is a refinement of another interface I when
the partition I

′ is finer than the partition I.

Lemma 3. If I is an interface and I
′ a refinement of I, we have that p �I

unc q
implies p �I

′
unc q.

This result allows us to conclude that the uncoordinated preorder is coarser than
the classical must testing preorder. It suffices to note that the preorder associated
to the maximal element of the partition lattice, i.e., the trivial partition I =
{Act}, corresponds to �must.

Proposition 1. If I is an interface, we have that p �must q implies p �I

unc q.

The converse of Lemma 3 and Proposition 1 do not hold. Consider the processes
p = a.b + a + b and q = b.a + a + b. It has been shown, in
Example 5, that we have p �{{a},{b}}

unc q. Nonetheless, it is easy to check that
p ��must q (i.e., p �{Act}

unc q) by using o = b.(τ.1 + a.0) as observer.
We also have that the independent preorder is coarser than the uncoordinated

one.

Proposition 2. Let I be an interface. Then, p �I

unc q implies p �I

ind q.

The converse does not hold, i.e., p �I

ind q does not imply q �I

unc p. Indeed, we
have that a.b �{{a},{b}}

ind b.a (Example 6) but a.b ��{{a},{b}}
unc b.a (Example 5).

30 R. De Nicola and H. Melgratti

6 Conclusions and Related Works

In this paper we have explored two different relaxations of the must preorder
aiming at defining new behavioural relations that, in the framework of Service
Oriented Computing, are more suitable to study compliance between contracts
exposed by clients and servers interacting via synchronous binary communication
primitives in multiparty sessions.

The first variant of the must preorder, that we called uncoordinated preorder,
corresponds to multiparty contexts without runtime communication between
peers but with the possibility of one peer blocking another by not performing
the expected action. The second variant we introduced is called independent
preorder and accounts for partners that are completely independent. Indeed,
from a viewpoint of a client, actions by other clients are considered as fully
unobservable.

We have shown that the discriminating power of the induced equivalences
decreases as observers become weaker; and thus that the independent preorder
is coarser than the uncoordinated preorder which in turn is coarser than the
classical must preorder. As future work we plan to consider different “real life”
scenarios and to assess the impact of the different assumptions at the basis of the
two new preorders and the identifications/orderings they induce. We plan also to
perform further studies to get a fuller account, possibly via axiomatisations, of
their discriminating power. In the near future, we will also consider the impact
of our testing framework on calculi based on asynchronous interactions.

We would like now to briefly consider related works. Several variants of must
preorder, contract compliance and sub-contract relation have been developed in
the literature to deal with different aspects of services compositions, such as
buffered asynchronous communication [4,13,14], fairness [15], peer-interaction [2],
or others. We wold like to stress that these approaches deal with aspects that are
orthogonal to the discriminating power of the distributed tests analysed in this
work. Our preorders have some similarities with those relying on buffered com-
munications in that both aim at guaranteeing the possibility of reordering actions
performed by independent peers. Nevertheless, our work considers a model with
synchronous communication and, hence, message reordering is not obtained by
swapping buffered messages. As mentioned above, we have left the study of dis-
tributed tests under asynchronous communication as a future work. However, we
would like to remark that the uncoordinated and the independent preorders are
different from those in [4,13,14] that permit explicit action reordering. The para-
digmatic example is the equivalence a.c+b.d ≈{a,b},{c,d}

ind a.d+b.c, which does not
hold for any of the preorders with buffered communication. The main reason is
that in the works based on reordering buffered messages, the local causal depen-
dence (e.g., between a and c in the example above) is taken into account.

Acknowledgments. We would like to thank Maria Grazia Buscemi with whom we
started investigating this topic. We have also to thank the anonymous reviewers of
CONCUR and TGC 2015 for their careful reading of our manuscript and their many
insightful comments and suggestions. This research has been partially supported by
UBACyT 20020130200092BA and by the MIUR PRIN project CINA.

Multiparty Testing Preorders 31

References

1. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: ACM
SIGPLAN Notices, vol. 47, pp. 191–202. ACM (2012)

2. Bernardi, G., Hennessy, M.: Mutually testing processes. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 61–75.
Springer, Heidelberg (2013)

3. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

4. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party
service composition. Fundam. Informaticae 89(4), 451–478 (2008)

5. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
In: POPL, pp. 261–272 (2008)

6. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 1–61 (2009)

7. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

8. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

9. Laneve, C., Padovani, L.: The Must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007)

10. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets: Applications and Relationships to Other Models of Concurrency. LNCS,
vol. 255, pp. 278–324. Springer, Heidelberg (1986)

11. Mazurkiewicz, A.W.: Introduction to trace theory. The Book of Traces pp. 3–41
(1995)

12. Milner, R.: Communication and Concurrency. Prentice Hall International,
Hertfordshire (1989)

13. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009)

14. Padovani, L.: Contract-based discovery of web services modulo simple orchestra-
tors. Theoret. Comput. Sci. 411(37), 3328–3347 (2010)

15. Padovani, L.: Fair subtyping for multi-party session types. In: De Meuter, W.,
Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 127–141.
Springer, Heidelberg (2011)

16. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

Data Tracking in Parameterized Systems

Giorgio Delzanno(B)

DIBRIS, University of Genova, Genoa, Italy
giorgio.delzanno@unige.it

Abstract. We study parameterized verification problems for concurrent
systems with data enriched with a permission model for invoking remote
services. Processes are modelled via register automata. Communication is
achieved by rendez-vous with value passing. Permissions are represented
as graphs with an additional conflict relation to specify incompatible
access rights. The resulting model is inspired by communication archi-
tectures underlying operating systems for mobile devices. We consider
decision problems involving permission violations and data tracking for-
mulated for an arbitrary number of processes and use reductions to well
structured transition systems to obtain decidable fragments of the model.

1 Introduction

Resource control is a very difficult task in presence of interprocess communica-
tion. An interesting example comes from Android applications, whose underlying
communication model is based on RPC. In Android processes use special mes-
sages, called intents, to start new activities. Intents can contain data that can
thus be trasmitted from the caller to the callee. Consider for instance the example
in [9]. Assume that processes of type A (Activities in Android) have permissions,
statically declared in the Manifest, to retrieve user contact details and to start
new instances of process of type B. Furthermore, assume that, upon reception
of a start intent, a process of type B extracts the data and send them to a third
party. Process interaction does not directly violate the permissions declared in
the Manifest. However data exchanged by process instances can lead to leakage
of private information.

In this paper we study the problem of resource control from the perspec-
tive of parameterized verification, i.e., formal verification of concurrent systems
composed by an arbitrary number of components. We model processes as com-
municating register automata, i.e., automata with a local memory defined by a
finite set of registers. Registers are used to store identifiers, an abstract repre-
sentation of resources. Rendez-vous communication with value passing is used to
model remote service invocations and data flows between components. To con-
trol access to remote services, we define a permission model using two additional
components: a permission graph, whose edges are indicated A ⇀ B, where A
and B are process types, and a conflict relation A�B again defined on process
types.

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 32–46, 2016.
DOI: 10.1007/978-3-319-28766-9 3

Data Tracking in Parameterized Systems 33

For instance, we represent the above mentioned example in Fig. 1 where
component C and I have both a single register r1 and a single loop with
label s(c, 1) and r(i, ↓1), respectively. The permission graph contains the edges
C ⇀ A ⇀ B ⇀ I. C is a process that handles the contents of a device, and I
represents a potential intruder. We assume here that C�I.

r1

r(c, ↓1) s(s, 1)

A r1

r(s, ↓1) s(i, 1)

B

Fig. 1. Register automata for components A and B.

We consider verification problems that capture two types of design errors:
permission violations, i.e., a process instance invokes a service without rights,
and conflict detection, i.e., during a computation an identifier is transferred from
a process of type A to a process of type B such that A and B are incompatible.
Since processes are designed to operate in an open environment, it is particularly
interesting to consider verification problems in which the number of concurrent
processes in the initial configuration is not fixed a priori, i.e., parameterized
verification. In the paper we first show that, despite of the fact that permission
graphs are statically defined on finitely many process types, parameterized veri-
fication of permission violations and conflict detection is undecidable in general.
We then consider fragments of the model by restricting the interplay between
registers and message fields, and show that it is possible to obtain non trivial
fragments for which we can give decision procedures for both properties. For
properties that require data tracking, the proof consists of two steps: we first
extend the operational semantics with predicates that encode footprints of data
exchanged by processes. The additional information represent an unbounded
memory containing footprints that share information with the current state.
The alphabet used to represent the memory is infinite. We then show that the
resulting semantics can be represented symbolically via a low level language
based on rewriting and constraints [11] and infer decidability results from those
obtained in that setting. In the general case of r > 1 registers, the link with
rewriting and constraints can be exploited to apply a symbolic backward reach-
ability engine [10] as a possibly non terminating procedure to verify absence of
violations and conflicts for any number of component instances.

2 Process Model

We model a concurrent system using a collection of interacting processes. Each
process is described by an automaton with operations over a finite set of registers.

34 G. Delzanno

Data are identifiers viewed as handlers to more complex resources. Communi-
cation is achieved via rendez-vous, an abstraction of synchronization, message
passing and remote procedure calls. We assume here that send and receptions
are executed without delays. A process can transmit part of its current data to
other nodes by inserting the current value of some of its registers inside mes-
sages. Messages carry both a type and a finite tuple of data. A receiver can
either compare the data contained inside messages with the current values of its
registers, can store data in the registers or simply ignore some of the fields in
the message payload.

Let us first describe the set of actions. We use r ≥ 0 and f ≥ 0 to denote
resp. the number of registers in each node and the number of data fields available
in each message and consider a finite alphabet Σ of message types.

The set of actions A is defined as follows. Local actions are defined by labels
l(m) where m ∈ Σ. Send actions are defined by labels s(m, p), where m ∈ Σ,
p = p1, . . . , pf and pi ∈ [1..r] for i ∈ [1..f]. The action s(m, p) corresponds to a
message or remote procedure call of type m whose i-th field contains the value of
the register pi of the sending node. For instance, in s(req, 1, 1) the current value
of the register 1 of the sender is copied in the first two fields of the message.

The set of field actions Opr is defined as {?k, ↓k, ∗ | k ∈ [1..r]}. When used at
position i of a reception action, ?k tests whether the content of the k-th register
is equal to the i-th field of the message, ↓k is used to store the field into the
k-th register, and ∗ is used to ignore the field. Reception actions are defined by
labels r(m,α), α = α1, . . . , αf , where m ∈ Σ, αi ∈ Opr for i ∈ [1..f].

As an example, for r = 2 and f = 3, r(req, ?2, ∗, ↓1) specifies the reception
of a message of type req in which the first field is tested for equality against the
current value of the second register, the second field is ignored, and the third
field is assigned to the first register.

Definition 1. A process definition over Σ is a tuple D̆ = 〈Q,R, q0〉 where: Q is
a finite set of control states, q0 ∈ Q is an initial control state, and R ⊆ Q×A×Q.

We use D = {D1, . . . , Dn} to denote a set of process definitions such that Di =
〈Qi, Ri, q

i
0〉, and Q = Q1 ∪ . . . ∪ Qn ∪ {error} to denote the set of all control

states. We assume here that Qi ∩ Qj = ∅ and that error �∈ Qi for all i, j.
In the rest of the paper, we will use definitions as process types, i.e., we will

say that a process has type D if its behaviour is defined by the automata D.

Definition 2. Process Definitions with Permissions (PDP) are defined by a
graph G = (D,⇀), where D is a set of process definitions, and ⇀⊆ D × D
is a set of permission edges. D1 ⇀ D2 is used to denote 〈D1,D2〉 ∈⇀.

The permission graph defines a dependency relation between process definitions.
Namely, if D1 ⇀ D2, then a process of type D1 has the permission to use services
provided by a process of type D2.

2.1 Operational Semantics

We now move to the definition of an operational semantics for our model. First
of all, values of registers are taken from a denumerable set of identifiers Id.

Data Tracking in Parameterized Systems 35

A configuration γ is a tuple 〈V,L〉, where V = {n1, . . . , nk} is a set of process
instances for k ≥ 0, L : V → D × Q × Idr is a labeling function that associates
a definition, a control state (taken from the union of control states of all defin-
itions), and values to registers of each process. We use Γ to denote the infinite
set of all configurations (the set is infinite since it contains configurations with
any number of process instances).

Terminology For a process v ∈ V , we denote by LD(v), LQ(v) and LM (v)
the three projections of L(v). With an abuse of a notation, we use the same
notation to extract the projections relative to a given node v from a configuration
γ, i.e., LD(γ, v) = LD(v) is the definition (or type) associated to node v in γ;
LQ(γ, v) = LQ(v) is the current state of node v in γ; and LM (γ, v, i) = LM (v)[i]
is the current value of register i of node v in γ. Finally, the configuration γ is
said to be initial if (1) all nodes are in their initial control states, i.e., for all
v ∈ V , LQ(v) = q0 if LD(v) = 〈Q,R, q0〉; (2) for all nodes, all registers contain
different values, i.e., for all u, v ∈ V and all i, j ∈ [1..r], if u �= v or i �= j then
LM (v)[i] �= LM (v)[j]. We use Γ0 ⊆ Γ to denote the infinite subset of initial
configurations.

For a configuration γ = 〈V,L〉, u, v ∈ V , p = p1, . . . , pf and an action
A = s(m, p), let S(v, u,A) ⊆ Q × Idr be the set of the possible labels that can
take u on reception of the message m sent by v, i.e., we have (q′,M) ∈ S(v, u,A),
where M is an r-tuple of identifiers, if and only if there exists a receive action
of the form 〈LQ(u), r(m,α), q′〉 where α = α1, . . . , αf verifying the following
condition: For all i ∈ [1..f], (1) if αi = ?j, then LM (u)[j] = LM (v)[pi]; (2) if
αi = ↓j then M [j] = LM (v)[pi], otherwise M [j] = LM (u)[j].

Given G = 〈D,⇀〉, we define the transition system TSG = 〈Γ,⇒〉, where
⇒⊆ Γ × Γ . Specifically, for γ = 〈V,L〉 and γ′ = 〈V,L′〉 ∈ Γ , A = s(m, p) we
have γ ⇒ γ′ if and only if (1) for all u ∈ V , LD(γ′, u) = LD(γ, u), and (2) one
of the following conditions holds:

– there exist u, v ∈ V u �= v s.t. 〈LQ(γ, v), A, LQ(γ′, v)〉 ∈ R, LM (γ′, v) =
LM (γ, v) 〈LQ(γ′, u), LM (γ′, u)〉 ∈ S(v, u,A), LD(γ, v) ⇀ LD(γ, u),
LQ(γ′, u′) = LQ(γ, u′) and LM (γ′, u′) = LM (γ, u′) for u′ ∈ V s.t. u′ �= u, v.

– there exist v, u ∈ V v �= u, q1, q2 ∈ Q, and M ∈ Idr s.t. 〈LQ(γ, v), A, q1〉 ∈ R,
〈q2,M〉 ∈ S(v, u,A), LD(γ, v) �⇀ LD(γ, u), LQ(γ′, v) = error, LM (γ′, v) =
LM (γ, v), LQ(γ′, u′) = LQ(γ, u′), LM (γ′, u′) = LM (γ, u′), for u′ ∈ V (includ-
ing u) s.t. u′ �= u.

– there exist v ∈ V , 〈LQ(γ, v), l(a), LQ(γ′, v)〉 ∈ R and LQ(γ′, u) = LQ(γ, u),
LM (γ′, u) = LM (γ, u) for u ∈ V s.t. u �= v.

We use ∗⇒ to denote the reflexive and transitive closure of ⇒.
Finally, given G = 〈D,⇀〉 with TSG = 〈Γ,⇒〉, the set of reachable configu-

rations is defined as follows: Reach(G) = {γ ∈ Γ | ∃γ0 ∈ Γ0 s.t. γ0
∗⇒ γ}. We

observe that the number of nodes in V does not change during a computation,
i.e., all successors of a given configuration γ0 have the same set of nodes V .
However, assuming that D �= ∅, the set of initial configuration Γ0 is infinite by
construction and contains all possible combinations (of any number) of instances
of process with types in D. Therefore, Reach(G) is always infinite when D �= ∅.

36 G. Delzanno

Detection of Permission Violations. Given a PDP G = 〈D,⇀〉, our goal is
to decide whether there exists an initial configuration containing any number of
process instances of any type from which it is possible to reach a configuration
exposing a permission violation, i.e., containing a process with error control
state. The formal definition of the decision problem is given below.

Definition 3. Given a PDP G = 〈D,⇀〉 s.t. D �= ∅, with TSG = 〈Γ,⇒〉, the
problem VD(r, f) is defined as follows: ∃γ ∈ Reach(G) with nodes in V and
∃v ∈ V such that LQ(γ, v) = error?

As remarked in the previous section, Γ0 is an infinite set of configurations. Hence
for fixed r, f VD(r, f) cannot be solved directly by using a reduction to a finite-
state system. Intuitively, we need to guess an adequate number of processes in
the initial configuration to expose a violation. We will show that in general this
is not possible in algorithmic way.

Data Tracking. We are also interested in tracking data exchanged by differ-
ent processes during a computation and data can generate violations of per-
missions that are invisible to the ⇀ dependency relation. More specifically, we
first introduce a symmetric relation � ⊆ D × D to specify (a priori) potential
conflicts between permissions associated to process types (i.e. definitions in D).
We now consider the extended model PDP with conflicts (PDPC), defined as
G = 〈D,⇀,�〉. For instance, if processes of type D1,D2 can access internet ser-
vices and processes of type D3 cannot, then we assume that D1�D3 and D2�D3.

We now move to the second decision problem that we consider in the paper.

Definition 4. Given PDPC G = 〈D,⇀,�〉 with TSG = 〈Γ,⇒〉, the problem
CD(r, f) is defined as follows: ∃γ1, γ2 ∈ Reach(G) with nodes in V , ∃u, v ∈
V , and ∃ registers i, j such that γ1

∗⇒ γ2, LM (γ1, u, i) = LM (γ2, v, j), and
LD(γ1, u)�LD(γ2, v)?

Finally, we say that a PDP [resp. a PDPC] is violation-free [resp. conflict-free] if
and only if there are no violations of the above mentioned types. As for VD, in
the CD decision problem there are no restrictions a priori on the number of com-
ponent instances in the initial configuration. From a computational perspective,
this feature is a major obstacle for algorithmic solutions to the problem.

3 Violation Detection

In this section we prove that violation detection is undecidable for r ≥ 2, f = 1.
This property is due to the special parameterized formulation of the prob-
lem. The possibility of choosing an initial configuration of arbitrary size can
be exploited to set up a network configuration in which a special node plays the
role of controller linked to a finite but arbitrary sequence of nodes that encode
unitary elements of a memory (e.g. a counter or the tape of a Turing machine).
Elements of the memory are linked via identifiers stored in registers. By set-
ting up a specific set of process definitions and an adequate permission relation,
it is possible to reduce the halting problem of a counter machine to violation
detection. The statement is proved formally in the rest of the section.

Data Tracking in Parameterized Systems 37

0
s(u1, 1) r(u2, ↓2) s(e1, 1)

1 2

f qf

s(op1, 2) r(op2, ?2)

s(e2, 1)

Fig. 2. Process of type C: we use op1 and op2 to denote messages needed for completing
an entire simulation step of instruction op; op is a label in {incN, zeroN, nzeroN, decN}
for a counter N , .

r(e1, ↓2) r(e2, ?2)

Fig. 3. Component of type E.

Theorem 1. The VD(2, 1) problem is undecidable.

We exhibit a reduction from the termination problem for two counter machines.
Counter machines are sequential programs that manipulate a finite set of coun-
ters with values over natural numbers. We consider here instructions such as
inci, deci, if zeroi gotoj , if notzeroi gotoj for i ∈ [1, . . . , r] (number of coun-
ters) and j ∈ [1 . . . k] (instructions) and programs P with instructions I1, . . . , Ik.
For the encoding, we need process definitions C, U and E whose permission
graph is as follows: C ⇀ U,U ⇀ C,C ⇀ E. An instance IC of process definition
C is used to keep track of the current instruction of P (program counter). Fur-
thermore, in the initialization phase IC has the following tasks: synchronization
with a process of type E used in the last step of the simulation, construction of
a linked list, connected to IC whose elements are instances of type U . Processes
of type C and U have two registers, id and next for simplicity. Register id is
used as identifier of each process instance. Register next is used as pointer to
the first/next process instance (the next cell in the list). Instances of type U
simulate the unit of a counter ci, its state denotes a zero or one value for ci. The
types of the elements in the list are chosen non-deterministically. In other words
we represent the current values of all counters in a single list.

To create a list of finite but arbitrary length, we just need to first propagate
a request message through U cells. U cells can non-deterministically decide to
stop propagation and return their identifier to a process of type C. In this phase,
upon reception, a process instance stores the identifier in the second register, the
“next pointer”and sends its own identifier to another instance. Several lists can
be constructed in parallel starting from different initial states. The acknowl-
edgment phases is then needed to build a well formed list in which each node
has the identifier of the next cell. Observe that, due to the non-determinism

38 G. Delzanno

c0i w0
i

r(u1, ∗) s(u2, 1)

s(u1, 1)

r(u2, ↓2)

s(u2, 1)

w0
i w1

i

r(incN1, ?1) s(incN2, 1)

r(decN1, ?1)s(decN2, 1)

w0
i

r(zeroN2, ?2)

s(zeroN2, 1)

r(zeroN1, ?1)

s(zeroN1, 2)

w0
i

r(decN1, ?1) s(decN1, 2)

r(decN2, ?2)s(decN2, 1)

w1
i

r(incN1, ?1) s(incN1, 2)

r(incN2, ?2)s(incN2, 1)

Fig. 4. Process of type U .

of rendez-vous, a well formed lists can have elements taken from other lists
constructed in the first phase. An alternative algorithm can be obtained by con-
structing a list backwards, i.e., propagating the “next pointer” sending id to a
node that directly stores in its second register. We adopt the first algorithm so
as to use process of type C as initiator and coordinator of all the phases and
to show the power of data to isolate special topologies in a fully connected set
of processes. When the list is ready, IC synchronizes, via handshaking, with one
instance IE of a process of type E. The simulation of the program P can now
start. The list denotes value k for counter ci if it contains k instances of process
U with an internal state that encode a single unit for the counter ci. Process U is
such that, upon reception of an operation request, it can either execute it locally

Data Tracking in Parameterized Systems 39

(1,-) (2,-) (3,-) (1,-) (2,-) (3,-)

(4,-) (5,-) (6,-) (4,-) (5,-) (6,-)

u1

u1

u1

u1

(1,-) (2,-) (3,-)

(4,-) (5,3) (6,-)

(1,5) (2,-) (3,-)

(4,-) (5,3) (6,-)
u2 u2

Fig. 5. Example of list construction in which the second phase is used to fix the “next”
pointers.

(e.g. increment of a zero cell) or forward the request to the next cell and wait
for an answer (in state w). Simulation of an increment on counter Ci propagates
the request to set to one the internal state of a cell of type ci with value zero in
the list. Simulation of a decrement on counter Ci propagates the request to set
to zero the internal state of a cell of type ci with value one in the list. Simulation
of a zero-test on counter Ci propagates the test on on the value of the cell to
the whole list. An acknowledgment is sent back to the sender if all cells are zero.
For a non-zero test the first non-zero cell sends an acknowledgement back to the
sender (Fig. 5).

The last phase of the simulation starts when the simulation of the counter
machine terminates, i.e., IC has a control state that corresponds to the halt
location of P . IC then sends a special request pv to the first U cell in the
list. Upon reception of the pv request, the cell tries to call an action of the IE

instance, generating a permission violation. The definition of process C, E and
U are given in Figs. 2, 3 and 4, respectively.

By construction, the counter machine P terminates if and only if there exists
an initial configuration from which we can generate a configuration with well-
formed lists, and enough memory cells, that can simulate a complete execution
of the program P . Formally, P reaches location �f if an only if there exists
an initial configuration γ0 s.t. γ0 ⇒∗ γ1 and LQ(γ1, u) = �f for some node u.
From the previous property and following from the interaction between C and E
processes, it follows that P reaches location �f if and only if there exists an initial
configuration γ0 s.t. γ0 ⇒∗ γ1 and LQ(γ1, u) = error for some node u. Therefore
halting of P is reduced to violation detection in the application D = 〈C,E,U〉.

When processes do not exchange data, i.e., r = 0 or f = 0, it is possible
to decide violation detection by using algorithms for deciding the coverability
problem in Petri Nets (see appendix for main definitions). Formally, the following
property holds.

Theorem 2. The VD(r, f) problem is decidable if either r = 0 or f = 0.

Proof. Let D = {C1, . . . , Cn} with Ci = 〈Qi,Σi, δi, q
i
0〉 for i : 1, . . . , n. The

reduction is defined as follows. The set P of places is defined as P = {err} ∪

40 G. Delzanno

(
⋃n

i=1 Qi). The transitions are defined as follows. For i ∈ {n} and every rule
r = 〈q, a, q′〉 ∈ δi, we define a transition tr = 〈Pre, Post〉 s.t. Pre = {q} and
Post = {q′}. For i, j ∈ {n} and every pair of rules r1 = 〈q1, s(a), q′

1〉 ∈ δi,
r2 = 〈q2, r(a), q′

2〉 ∈ δj s.t. Ci ⇀ Cj , we define a transition tr = 〈Pre, Post〉
s.t. Pre = {q1, q2} and Post = {q′

1, q
′
2}. For i, j ∈ {n} and every pair of rules

r1 = 〈q1, s(a), q′
1〉 ∈ δi, r2 = 〈q2, r(a), q′

2〉 ∈ δj s.t. Ci �⇀ Cj , we define a transition
tr = 〈Pre, Post〉 s.t. Pre = {q1, q2} and Post = {err, q2}.

Given a configuration γ = 〈q1, . . . , qn〉 we define the associated marking Mγ

that contains as many occurrences of state q as those in γ. By construction of our
reduction, we obtain that γ0 reaches configuration γ1 iff Mγ0 	Mγ1 . To represent
an arbitrary initial configuration, we add a transition that non-deterministically
adds token to places that represent initial states of processes. Furthermore, to
separate initialization and normal operations we can simply use and additional
place ok and use it to block process interactions during the initialization phase.
Namely, iti = 〈Pre, Post〉 s.t. Pre = {init} and Post = {init, qi

0} for any i.
Furthermore, iti+1 = 〈Pre, Post〉 s.t. Pre = {init} and Post = {ok}. All the
other rules are modified in order to add ok to their pre-set. As a corollary, we
have that the safety property holds for D iff coverability holds for the Petri net P
and the two markings Mγ0 = {init} and Merr = {e}. Following from properties
of Petri Nets, we obtain that the safety problem is decidable for VD(0, 0).

In the rest of the paper we will focus our attention on conflict detection and
derive other decidability results for violation detection as a side-effect of more
general results obtained for processes and messages with data.

4 Conflict Detection

In this section we move to the analysis of the conflict detection problem. We
first observe that conflict detection is undecidable for r > 1. The proof is similar
to the encoding of counter machines used for the undecidability of violation
detection. Instead of generating a permission violation as a last step of the
simulation the controller C sends its identifier to a special process of type D
s.t. C and D are in conflict. This way, a conflict is detected starting from some
initial configuration if and only if the counter machine program terminates. We
show that both violation and conflict detection are decidable for r = f = 1.

The decidability proof consists of two steps. We first extend the transition
system of a PDPC by adding a sort of external memory in which to keep track
of footprints of identifiers. Footprints are represented via a collection of predi-
cates that mark all types of processes in which an identifier has been stored. It
is important to remark that footprints share data with current configurations,
i.e., the alphabet used to define footprints is infinite as for configurations. To
deal with the conflict detection problem, we may need infinite set of footprints
since the problem is parametric in the initial configuration. By extending the
transition relation with historical information we can reduce conflict detection
to a reachability problem formulated over the predicates in the history. It is

Data Tracking in Parameterized Systems 41

important to notice that for this kind of problem we just need a monotonically
increasing external memory. The second step of the proof consists in reducing
the reachability problem for the transition system with history to coverability
in a formalism called MSR(C) that is a special class of multiset rewriting with
constraints. The desired result follows then by observing that, for r = 1, the
resulting encoding produces only rewriting rules with monadic predicates. We
can then apply the decision procedure based on the theory of well-structured
transition systems defined in [11] to solve algorithmically the CD problem. We
start from defining the extended operational semantics.

4.1 Transition System with History

Given D, let us consider the set of unary predicates PD = {hC |C ∈ D}. We use
the formula hC(id) to denote a footprint for the identifier id ∈ Id. Let FD =
{hC(id)|id ∈ Id, hC ∈ P} be the set of all footprints associated to D. We use HD
to denote all possible multisets of footprints in FD, i.e., HD = F⊕

D . For a config-
uration γ, let fp(γ) be the multiset of footprints such that hC(id) ∈ fp(γ) iff the
identifier id occurs in some register of a process of type C in γ. As an example,
for γ with nodes n1, n2, n3 of type A,B,C with values in the two registers resp.
(1, 2), (2, 3), and (3, 4), fp(γ) = {hA(1), hA(2), hB(2), hB(3), hC(3), hC(4)}.

Extended configurations are tuples of the form γ[h], where γ is a configuration
and h ∈ HD. An initial configuration is defined then as γ0[h0], where h0 =
fp(γ0), i.e., h0 contains the footprints for each identifier in γ0.

The extended transition relation ⇒h⊆ Γ ×HD is built on top of ⇒ as follows:

– γ[h] ⇒h γ′[h] if γ ⇒ γ′ via an application of a local rule;
– γ[h] ⇒h γ′[h ⊕ fps(γ′)] if γ ⇒ γ′ via an application of a rendez-vous step,

where fps(γ′) is the multiset of footprints in fp(γ′) generated by store oper-
ations after a reception, i.e., hC(id) ∈ fps(γ′) iff hC(id) ∈ fp(γ′) and id is
stored in a register of a process of type C during the rendez-vous, for some C
and identifier id.

We use ∗⇒h to denote the reflexive and transitive closure of ⇒h.
The CD problem can now be formulated by considering the history of a

computation. Namely, CD amounts to checking whether there exists an initial
configuration γ0[h0] (of arbitrary shape) from which it is possible to reach a
configuration γ[h] such that h contains at least two footprints hC(i) and hD(i)
for some process type C,D s.t. C�D . It is important to observe that we just
need unary predicates to represent footprints for identifiers.

4.2 Encoding into MSR(Id)

An encoding of the problem into coverability of a model inspired by Petri nets
with identifiers called MSR(C) in which the constraint system consists of equal-
ities. In the encoding we model both the behavior of an application as well as
footprints of data exchanged by instances of processes. Footprints are repre-
sented via monadic predicates. Each predicate keeps track of the history of a

42 G. Delzanno

given identifier during its lifetime, namely every type of process in which the
identifier has been stored during execution. The history can then be queried in
search for conflicts. MSR(C) is a formal model for concurrent systems based on
a combination of rewriting and constraints. A constraint system C is defined by
formulas with free variables in V , an interpretation domain D, and a satisfiabil-
ity relation |= for formulas in C interpreted over D. We use D |=σ ϕ to denote
satisfiability of ϕ via a substitution σ : V ar(ϕ) → D, where V ar(ϕ) is the set
of free variables in ϕ. For a fixed set of predicates P , an atomic formula with
variables has the form p(x1, . . . , xn) where p ∈ P and x1, . . . , xn ∈ V . A rewrit-
ing rule has the form M → M ′ : ϕ, where M and M ′ are multiset of atomic
formulas with variables over P and V , and ϕ is a constraint formula over vari-
ables V ar(M ⊕ M ′) occurring in M ⊕ M ′. We use M = A1, . . . , An to denote a
multiset of atoms.

MSR(Id) is the instance obtained by considering the constraint system Id
defined as follows. Constraint formulas are defined by the grammar ϕ:: =
ϕ1, ϕ2|x = y|x < y for variables x, y ∈ V . Here ϕ1, ϕ2 denotes a conjunction
of formulas ϕ1 and ϕ2. The interpretation domain is defined over an infinite
and ordered set of identifiers 〈Id,=, <〉. For substitution σ : V → Id, x = y is
interpreted as σ(x) = σ(y), x < y is interpreted as σ(x) < σ(y), and ϕ1, ϕ2 is
interpreted as σ(ϕ1) ∧ σ(ϕ2). A constraint ϕ is satisfied by a substitution σ if
σ(ϕ) evaluates to true. An instance Mσ → M ′σ of a rule M → M ′ : ϕ is defined
by taking a substitution σ : V ar(M ⊕ M ′) → Id such that σ(ϕ) is satisfied in
the interpretation Id.

As an example, consider the rule p(x, y), q(x) → p(x, y), q(x), q(u) : x < u
The intuition is that processes p(x, y) and q(z) synchronize when x = z and gen-
erate a new instance q(u) with x < u. By associating natural numbers to identi-
fiers, p(1, 2), q(1) → p(1, 2), q(1), q(4) and p(3, 10), q(3) → p(3, 10), q(3), q(8) are
two instances of the considered rule. We use Inst(Δ) to indicate the infinite set
of instances of a set Δ of MSR rules.

A configuration is a multiset N of atoms of the form p(d1, . . . , dn) with
di ∈ Id for i : 1, . . . , n. For a set Δ of rules and a configuration N , a rewriting
step is defined by the relation 	 s.t. N = (M ⊕ Q) 	 (M ′ ⊕ Q) = N ′ for (M →
M ′) ∈ Inst(Δ). A computation is a sequence of configurations N1 . . . Nm . . . s.t.
Ni 	Ni+1 for i ≥ 0. For a set of rules Δ, an initial configuration N0, and a zerary
predicate pf , the coverability problem, COV, consists in checking whether there
exists a computation from N0 to a configuration N1 s.t. pf ∈ N1.

We now encode the CD(r, f) problem as a coverability instance in monadic
MSR(Id). Let D = {C1, . . . , Cn} with Ci = 〈Qi, Ri, q

i
0〉 for i : 1, . . . , n. We define

the set P = {init,max, ok} ∪ {hC |C ∈ D} ∪ (
⋃n

i=1 Qi) of monadic predicates.
Predicates init and ok are used to separate the initialization phase from the sim-
ulation steps. Predicates hC define footprints for data. In order to represent an
arbitrary initial configuration we define MSR(Id) rules that non-deterministically
add predicates with distinct identifiers. The rules are defined as follows:

– init → init,max(x) : true where max is used to generate fresh identifiers;
– for each initial state q0 of process C ∈ D with x = x1, . . . , xn,

Data Tracking in Parameterized Systems 43

init,max(x) → init,max(y), q0(x), hC(x1), . . . , hC(xn) : φ,

with φ = y > x1 > x2 . . . xn > x, injects a node with initial state q0 and
registers initialized to fresh values x1, . . . , xn. The value stored in max is
reset to a value greater than the last value seen so far.

– The initialization is non-deterministically terminated by the rule init,max(x)
→ ok : true. Inserting ok marks the beginning of the simulation phase.

The simulation of process rules is defined by the following rules.
Local For i ∈ {n} and every rule r = 〈q, l(a), q′〉 ∈ Ri, we define a rewriting rule

ok, q(x1, . . . , xn) → ok, q′(x′
1, . . . , x

′
n) : x′

1 = x1, . . . , x
′
n = xn

where x1, . . . , xn denote the current values of the registers, and q/q′ is the
current/next state.
Rendez-vous. For i, j ∈ {n} and every pair of rules r1 = 〈q1, s(a, p1, . . . , pf), q′

1〉 ∈
Ri, r2 = 〈q2, r(a, α1, . . . , αf), q′

2〉 ∈ Rj s.t. q1 is the state of a process of type A,
q2 is the state of a process of type B, A ⇀ B, we define a rule

ok, q1(x1, . . . , xr), q2(y1, . . . , yr) → ok, q′
1(x

′
1, . . . , x

′
r), q

′
2(y

′
1, . . . , y

′
r) ⊕ Mf : ϕ

where ϕ is the constraint ϕ1, . . . , ϕf , ψ1, ψ2 defined as follows: for i : 1, . . . , f ,
if αi =?pj , then ϕi is the equality yi = xj (each guard must be satisfied); if
αi =↓ pj , then ϕi is the equality y′

i = xj (assignment to register i) and Mf

contains predicate hB(xj) encoding a footprint; if αi = ∗, then ϕi = true.
Furthermore, ψ = (∧r

i=1x
′
i = xi) ∧ (∧r

i=1,αi �=↓k,k≥1y
′
i = yi) to denote that values

of registers remain unchanged unless modified by some store operations in the
receiver process.
Violation. For i, j ∈ {n} and every pair of rules r1 = 〈q1, s(a, p1, . . . , pf), q′

1〉 ∈
Ri, r2 = 〈q2, r(a, α1, . . . , αf), q′

2〉 ∈ Rj s.t. q1 is the state of a process of type A,
q2 is the state of a process of type B, A �⇀ B, we define a rule:

ok, q1(x1, . . . , xr), q2(y1, . . . , yr) → ok, err(x′
1, . . . , x

′
r), q

′
2(y

′
1, . . . , y

′
r) : ϕ

where ϕ is the constraint ϕ1, . . . , ϕf , ψ defined as follows: for i : 1, . . . , f , if
αi =?pj , then ϕi is the equality yi = xj (each guard must be satisfied), if
αi =↓ pj or αi = ∗, then ϕi = true; Furthermore, ψ = ∧r

i=1x
′
i = xi, y

′
i = yi to

denote that values of registers remain unchanged.
Finally, for each pair C�D we define a rule hC(x), hD(x) → conflict to detect

conflicts over data that have been stored in incompatible processes.
By construction of our reduction, we obtain that γ0[h0] reaches configuration

γ[h] iff init 	 Nγ ⊕ h, where Nγ is the multiset that contains ok, and, for each
node u of type A in γ, a formula q(v) where q = LQ(γ, u), and v = LM (γ, u).

In the above construction we use the monadic predicate hC(x) to maintain
footprints of identifier x received by an instance of a process of type C. The last
rule is used to detect conflicts between two footprints for the same identifier.
Footprints work as records of an infinite memory that associates to every iden-
tifier all processes visited during an execution. We need here infinite memory
since our decision problems consider any possible initial configuration.

44 G. Delzanno

Theorem 3. The CD(1, 1) problem is decidable.

Proof. For r = 1, the rewriting rules resulting from the encoding of the CD(1, 1)
problem into MSR(Id) consist of monadic predicates only. By construction, the
problem CD(1, 1) is satisfied if and only if from the MSR(Id) configuration init
it is possible to reach a configuration N s.t. conflict belongs to N . This is an
instance of the coverability problem for MSR(Id) that is decidable for monadic
rewriting rules as shown in [11].

Besides decidability, the encoding can still be applied to obtain a possibly non
terminating procedure for solving conflict detection for r > 2. The procedure is
based on the symbolic backward reachability procedure for MSR(C) specifica-
tions described in [11].

Theorem 4. The VD(1, 1) problem is decidable.

Proof. We use the same reduction to MSR(Id) used for conflict-detection and
add rules of the form err(x1, . . . , xn) → err : true to detect error states in
individual processes. By construction, it follows that VD(1, 1) holds if and only
if from the configuration init we can reach a configuration N s.t. err ∈ N .

5 Conclusions and Related Work

We have presented a framework for reasoning about abstract models of concur-
rent systems in which interaction is regulated by a statically defined permission
model. In this setting we have studied computational issues of two fundamen-
tal problems: detecting permission violations and conflicts due to value passing.
The problems are formulated in sucha a way to capture properties for concur-
rent systems with an arbitrary number of components. Our model is inspired by
the automata-based model of distributed systems proposed in [13–15] to study
of robustness of broadcast communication in unreliable networks with different
types of topology and different types of dynamic reconfigurations. Verification
of broadcast protocols in fully connected networks in which nodes and messages
range over a finite set of states has been considered, e.g., in [4,16–18,24]. Dif-
ferently from the above mentioned works, the focus of the present paper is the
analysis of process interaction, via rendez-vous and value passing, controlled by
permission models and of its interplay with data. Parameterized verification of
provenance in distributed applications has been considered in [20] where regular
languages are used as a formal tool to symbolically analyze the provenance of
messages taken from a finite alphabet. In the present paper we consider messages
from an infinite alphabet and use transition systems with histories that share
information in common with the current state. The use of predicates to observe
the history of data shares similarities with approaches based on the use of policy
automata and type systems. Type systems have been defined in abstract lan-
guages that model Android applications in [2,9] based on the history expressions
introduced in [5,6]. Policy automata are automata with management of names

Data Tracking in Parameterized Systems 45

that can be used to specify policies for accessing resources. They can be ana-
lyzed by using model checking algorithms for BPAs [7]. Concerning validation
of updates of access control policies, parameterized reasoning via constraint and
SMT solvers has been considered, e.g., in [3,21,22,25]. Register Automata and
History-Register Automata have also been used to model programs with dynamic
allocation in [26,27]. To our knowledge, the use of history predicates that share
information with the current state and the application of well-structured tran-
sition systems to verify data tracking in parameterized concurrent systems are
two novel ideas. From a technical point of view, our results are obtained via
reductions to low level concurrency models like Petri nets and rewriting systems
in which it is possible to manipulate data taken from an infinite ordered domain
of identifiers like MSR(Id) [1,8,11]. MSR(Id) is also strictly related to ν-nets
[23] that provide fresh name generation and equality constraints. The relation
between MSR(Id) and ν-nets is studied in [12]. As shown in [1], the MSR(Id)
model is strictly more expressive than Petri Nets and it has the same expressive
power of Datanets [19], an extension of Petri Nets with ordered data.

References

1. Abdulla, P.A., Delzanno, G., Van Begin, L.: A classification of the expressive power
of well-structured transition systems. Inf. Comput. 209(3), 248–279 (2011)

2. Armando, A., Costa, G., Merlo, A.: Formal modeling and reasoning about the
android security framework. In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012.
LNCS, vol. 8191, pp. 64–81. Springer, Heidelberg (2013)

3. Armando, A., Ranise, S.: Scalable automated symbolic analysis of administrative
role-based access control policies by SMT solving. J. Comput. Secur. 20(4), 309–
352 (2012)

4. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with
automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

5. Bartoletti, M., Degano, P., Ferrari, G.-L., Zunino, R.: Types and effects for resource
usage analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47.
Springer, Heidelberg (2007)

6. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource
usage analysis. ACM TOPLAS, vol. 31(6) (2009)

7. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies.
MSCS 25(3), 710–763 (2015)

8. Bozzano, M.: A Logic-Based Approach to Model Checking of Parameterized and
Infinite-State Systems, Ph.D. thesis, DISI, University of Genova, June 2002

9. Bugliesi, M., Calzavara, S., Spanò, A.: Lintent: towards security type-checking of
android applications. In: Beyer, D., Boreale, M. (eds.) FORTE 2013 and FMOODS
2013. LNCS, vol. 7892, pp. 289–304. Springer, Heidelberg (2013)

10. Delzanno, G.: An overview of MSR(C): A CLP-based framework for the symbolic
verification of parameterized concurrent systems. ENTCS 76, 65–82 (2002)

11. Delzanno, G.: Constraint-based automatic verification of abstract models of mul-
tithreaded programs. TPLP 7(1–2), 67–91 (2007)

12. Delzanno, G., Rosa-Velardo, F.: On the coverability and reachability languages of
monotonic extensions of petri nets. Theor. Comput. Sci. 467, 12–29 (2013)

46 G. Delzanno

13. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of para-
meterized reachability in reconfigurable broadcast networks. In: FSTTCS 2012, pp.
289–300 (2012)

14. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

15. Delzanno, G., Sangnier, A., Zavattaro, G.: On the Power of Cliques in the Parame-
terized Verification of Ad Hoc Networks. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 441–455. Springer, Heidelberg (2011)

16. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: LICS, pp. 70–80 (1998)

17. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS 1999, pp. 352–359 (1999)

18. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

19. Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens
which carry data. Fundam. Inform. 88(3), 251–274 (2008)

20. Majumdar, R., Meyer, R., Wang, Z.: Provenance verification. In: RP, pp. 21–22
(2013)

21. Ranise, S.: Symbolic backward reachability with effectively propositional logic -
applications to security policy analysis. FMSD 42(1), 24–45 (2013)

22. Ranise, S., Traverso, R.: ALPS: an action language for policy specification and
automated safety analysis. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS,
vol. 8743, pp. 146–161. Springer, Heidelberg (2014)

23. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability results for restricted models of
petri nets with name creation and replication. In: Franceschinis, G., Wolf, K. (eds.)
PETRI NETS 2009. LNCS, vol. 5606, pp. 63–82. Springer, Heidelberg (2009)

24. Schnoebelen, P.: Revisiting ackermann-hardness for lossy counter machines and
reset petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

25. Stoller, S.D., Yang, P., Gofman, M.I., Ramakrishnan, C.R.: Symbolic reachability
analysis for parameterized administrative role-based access control. Comput. Secur.
30(2–3), 148–164 (2011)

26. Tzevelekos, N.: Fresh-register automata. In: POPL 2011, pp. 295–306 (2011)
27. Tzevelekos, N., Grigore, R.: History-register automata. In: Pfenning, F. (ed.) FOS-

SACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 17–33. Springer, Heidelberg (2013)

Modular Monitor Extensions for Information
Flow Security in JavaScript

José Fragoso Santos1(B), Tamara Rezk2, and Ana Almeida Matos3

1 Imperial College London, London, UK
jose.fragoso.santos@imperial.ac.uk

2 Inria, Sophia Antipolis, France
tamara.rezk@inria.fr

3 SQIG-Instituto de Telecomunicações, University of Lisbon, Lisbon, Portugal
ana.matos@ist.utl.pt

Abstract. Client-side JavaScript programs often interact with the web
page into which they are included, as well as with the browser itself,
through APIs such as the DOM API, the XMLHttpRequest API, and
the W3C Geolocation API. Precise reasoning about JavaScript secu-
rity must therefore take API invocation into account. However, the con-
tinuous emergence of new APIs, and the heterogeneity of their forms
and features, renders API behavior a moving target that is particularly
hard to capture. To tackle this problem, we propose a methodology for
modularly extending sound JavaScript information flow monitors with
a generic API. Hence, to verify whether an extended monitor complies
with the proposed noninterference property requires only to prove that
the API satisfies a predefined set of conditions. In order to illustrate
the practicality of our methodology, we show how an information flow
monitor-inlining compiler can take into account the invocation of arbi-
trary APIs, without changing the code or the proofs of the original com-
piler. We provide an implementation of such a compiler with an extension
for handling a fragment of the DOM Core Level 1 API. Furthermore,
our implementation supports the addition of monitor extensions for new
APIs at runtime.

1 Introduction

Isolation properties guarantee protection for trusted JavaScript code from mali-
cious code. The noninterference property [9] provides the mathematical foun-
dations for reasoning precisely about isolation. In particular, noninterference
properties guarantee absence of flows from confidential/untrusted resources to
public/trusted ones.

Although JavaScript can be used as a general-purpose programming lan-
guage, many JavaScript programs are designed to be executed in a browser in
the context of a web page. Such programs often interact with the web page in
which they are included, as well as with the browser itself, through Application
Programming Interfaces (APIs). Some APIs are fully implemented in JavaScript,

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 47–62, 2016.
DOI: 10.1007/978-3-319-28766-9 4

48 J. Fragoso Santos et al.

whereas others are built with a mix of different technologies, which can be
exploited to conceal sophisticated security violations. Thus, understanding the
behavior of client-side web applications, as well as proving their compliance with
a given security policy, requires cross-language reasoning. The size, complexity,
and number of commonly used APIs poses an important challenge to any attempt
at formally reasoning about the security of JavaScript programs [13]. To tackle
this problem, we propose a methodology for extending JavaScript monitored
semantics. This methodology allows us to verify whether a monitor complies
with the proposed noninterference property in a modular way. Thus, we make it
possible to prove that a security monitor is still noninterferent when extending
it with a new API, without having to revisit the whole model. Generally, an
API can be viewed as a particular set of specifications that a program can follow
to make use of the resources provided by another particular application. For
client-side JavaScript programs, this definition of API applies both to: (1) inter-
faces of services that are provided to the program by the environment in which
it executes, namely the web browser (for instance, the DOM, the XMLHttpRe-
quest, and the W3C Geolocation APIs); (2) interfaces of JavaScript libraries that
are explicitly included by the programmer (for instance, jQuery, Prototype.js,
and Google Maps Image API). In the context of this work, the main difference
between these two types of APIs is that in the former case their semantics escapes
the JavaScript semantics, whereas in the latter it does not. The methodology
proposed here was designed as a generic way of extending security monitors to
deal with the first type of APIs. Nevertheless, we can also apply it to the second
type whenever we want to execute the library’s code in the original JavaScript
semantics instead of the monitored semantics.

Example 1 (Running example: A Queue API). Consider the following API for
creating and manipulating priority queues. The API is available to the program-
mer through the global variable queueAPI, and variable queueObj is bound to
a concrete queue:

queueAPI.queue() : creates a new priority queue;
queueObj.push(el, priority) : adds a new element to the queue;
queueObj.pop() : pops the element with the highest priority.

The method calls from this API cannot be verified by the JavaScript moni-
tor, as we are assuming that the code of the methods is not available to the
JavaScript engine. Furthermore, the specification of the queue API may not
obey the JavaScript semantics and hence prevention of the security leaks may
need different constraints.

In order to extend a JavaScript security monitor to control the behavior of
this API, one has to define what we call an API Register to set the security
constraints associated to the corresponding API method calls on queueAPI and
queueObj. API method calls should be implemented as interception points of
the monitor semantics and the API Register should then make the invocation of
these methods if the security constraints are satisfied.

Modular Monitor Extensions for Information Flow Security in JavaScript 49

The following questions then arise: What constraints must we impose on
the new API register in order to preserve the noninterference guarantees of
the JavaScript monitor? Is it possible to modularly prove noninterference of the
extended monitor without revisiting the whole set of constraints, including those
of the JavaScript monitor?

There are two main approaches for implementing a monitored JavaScript
semantics: either one modifies a JavaScript engine so that it also implements the
security monitor (as in [15]), or one inlines the monitor in the original program
(as in [8,10,16]). Both these approaches suffer from the problem of requiring
ad-hoc security mechanisms for all targeted APIs. We show how to extend an
information flow monitor-inlining compiler so that it also takes into account the
invocation of APIs. Our extensible compiler requires each API to be associated
with a set of JavaScript methods that we call its IFlow Signature, which describes
how to handle the information flows triggered by its invocation. We provide a
prototype of the compiler, which is available online [20]. A user can easily extend
it by loading new IFlow signatures. Using the compiler, we give realistic examples
of how to prevent common security violations that arise from the interaction
between JavaScript and the DOM API. In a nutshell, the benefit of our approach
is that it allows us to separate the proof of security for each API from the proof
of security for the core language. This separation is, to the best of our knowledge,
new and useful as new APIs are continuously emerging.

The contributions of the paper are: (1) a methodology for extending
JavaScript monitors with API monitoring (Sect. 3.2), (2) the design of an exten-
sible information flow monitor-inlining compiler that follows our methodology
(Sect. 4), (3) an implementation [20] of a JavaScript information flow monitor-
inlining compiler (Sect. 5) that handles an important subset of the DOM API
and is extensible with new APIs by means of IFlow Signatures.

2 Related Work

We refer the reader to a recent survey [7] on web scripts security and to [19]
for a complete survey on information flow enforcement mechanisms up to 2003,
while focusing here on the most closely related work on dynamic mechanisms
for enforcing noninterference.

Flow-sensitive monitors for enforcing noninterference can be divided into
purely dynamic monitors [3–5] and hybrid monitors [12,22]. While hybrid mon-
itors use static analysis to reason about untaken execution paths, purely dynamic
monitors do not rely on any kind of static analysis. There are three main strate-
gies in designing sound purely dynamic information flow monitors. The no-
sensitive-upgrade (NSU) strategy [3] forbids the update of public resources inside
private contexts. The permissive-upgrade strategy [4] allows sensitive upgrades,
but forbids programs to branch depending on values upgraded in private con-
texts. Finally, the multiple facet strategy [5] makes use of values that appear
differently to observers at different security levels. Here, we show how to extend
information flow monitors that follow the NSU discipline.

50 J. Fragoso Santos et al.

Hedin and Sabelfeld [15] are the first to propose a runtime monitor for enforc-
ing noninterference for JavaScript. The technique that we present for extending
security monitors can be applied to this monitor, which is purely dynamic and
follows the NSU discipline. In [14], the authors implement their monitor as an
extended JavaScript interpreter. Their implementation makes use of the informal
concepts of shallow and deep information flow models in order to cater for the
invocation of built-in libraries and DOM API methods. However, these concepts
are not formalised. In fact, our definition of monitored API can be seen as a
formalisation of the notion of deep information flow model for libraries.

Both Chudnov and Naumann [8] and Magazinius et al. [16] propose the
inlining of information flow monitors for simple imperative languages. In [10],
we present a compiler that inlines a purely dynamic information flow moni-
tor for a realistic subset of JavaScript. In the implementation presented in this
paper we extend the inlining compiler of [10] with the DOM API, applying the
methodology proposed here.

Taly et al. [21] study API confinement. They provide a static analysis
designed to verify whether an API may leak its confidential resources. Unlike
us, they only target APIs implemented in JavaScript, whose code is available for
either runtime or static analysis.

Russo et al. [18] present an information flow monitor for a WHILE language
with primitives for manipulating DOM-like trees and prove it sound. They do
not model references. In [2], we present an information flow monitor for a simple
language that models a core of the DOM API based on the work of Gardner
et al. [11]. In contrast to [18], we can handle references and live collections.
Here, we apply the techniques of [2] to develop monitor extensions for a fragment
of the DOM Core Level 1 API [17]. Recent work [23] presents an information
flow monitor for JavaScript extended with the DOM API that also considers
event handling loops. To the best of our knowledge, no prior work proposes a
generic methodology to extend JavaScript monitors and inlining compilers with
arbitrary web APIs.

3 Modular Extensions for JavaScript Monitors

In this section we show how to extend a noninterferent monitor so that it takes
into account the invocation of web APIs, while preserving the noninterference
property.

3.1 Noninterferent JavaScript Monitors

JavaScript Memory Model. In JavaScript [1], objects can be seen as partial
functions mapping strings to values. The strings in the domain of an object are
called its properties. Memories are mappings from references to objects. In the
following, we assume that memories include a reference to a special object called
the global object pointed to by a fixed reference #glob, that binds global variables.
In this presentation, objects, properties, memories, references and values, are
ranged over by o, p, μ, r and v, respectively.

Modular Monitor Extensions for Information Flow Security in JavaScript 51

We use the notation [p0 �→ v0, . . . , pn �→ vn] for the partial function that maps
pi to vi where i = 0, . . . n, and f [p0 �→ v0, . . . , pn �→ vn] for the function that
coincides with f everywhere except in p0, . . . , pn, which are otherwise mapped
to v0, . . . , vn respectively. Furthermore, we denote by dom(f) the domain of a
function f , and by f |P the restriction of f to P (when P ⊆ dom(f)). Finally, we
write f(r)(p) instead of (f(r))(p), the application of the image of r by function
f to p.

Sequences are denoted by stacking an arrow as in −→v , and ε denotes the
empty sequence. The length of −→v is given by |−→v | and · denotes concatenation
of sequences.

Security Setting. Information flow policies such as noninterference are specified
over security labelings that assign security levels, taken from a given security
lattice, to the observable resources of a program. In the following, we use a fixed
lattice L of security levels ranged over by σ. We denote by ≤ its order relation,
by σ0 �σ1 the least upper bound between levels σ0 and σ1, and by �−→σ the least
upper bound of all levels in the sequence −→σ . In the examples, we consider two
security levels {H,L} such that L < H, meaning that resources labeled with
high level H are more confidential than those labeled with low level L.

In our setting, a security labeling is as a pair 〈Γ,Σ〉, where Γ maps references,
followed by properties, to security levels, and Σ maps references to security
levels. Then, given an object o pointed to by a reference r, if defined, Γ (r)(p)
corresponds to the security levels associated with o’s property p, and Σ(r) with
o’s domain. The latter, also referred to as o’s structure security level, controls
the observability of the existence of properties [15].

We say that memory μ is well-labeled by 〈Γ,Σ〉 if dom(Γ) = dom(Σ) ⊆
dom(μ) and for every reference r ∈ dom(Γ), dom(Γ (r)) ⊆ dom(μ(r)).

Security Monitor. JavaScript programs are statements, that include expres-
sions, ranged over by s and e, respectively. We model an information flow mon-
itor as a small-step semantics relation →IF between configurations of the form
〈μ, s,−→σpc, Γ,Σ,−→σ 〉 composed of (1) a memory μ (2) a statement s, that is to
execute, (3) a sequence of security levels −→σpc, matching the expressions on which
the original program branched to reach the current context, (4) a security label-
ing 〈Γ,Σ〉, and (5) a sequence of security levels −→σ matching the reading effects
of the subexpressions of the expression being computed.

The reading effect [19] of an expression is defined as the least upper bound
on the security levels of the resources on which the value to which it evaluates
depends. Additionally, we assume that the reading effect of an expression is
always higher than or equal to the level of the context in which it is evaluated,
�−→σpc.

Low-equality. In order to account for a non-deterministic memory allocator,
we rely on a partial injective function which relates observable references that
point to the same resource in different executions of the same program [6]. The
β relation is extended to relate observable values via the β-equality, which is
denoted ∼β : two objects are β-equal if they have the same domain and all their

52 J. Fragoso Santos et al.

corresponding properties are β-equal; primitive values and parsed functions are
β-equal if syntactically equal; and, two references r0 and r1 are β-equal if the
latter is the image by β of the former.

Two memories μ0 and μ1 are said to be low-equal with respect to labelings
〈Γ0, Σ0〉 and 〈Γ1, Σ1〉, a security level σ, and a partial injective function β,
written μ0, Γ0, Σ0 ≈β,σ μ1, Γ1, Σ1, if μ0 and μ1 are well-labeled by 〈Γ0, Σ0〉 and
〈Γ1, Σ1〉 respectively, and for all references r0, r1 ∈ dom(β), such that r1 = β(r0),
the following hold:

1. The observable domains (i.e. set of observable properties) of the objects
pointed by r0, r1, coincide: Pσ = {p ∈ dom(μ0(r0)) | Γ0(r0)(p) ≤ σ} =
{p ∈ dom(μ1(r1)) | Γ1(r1)(p) ≤ σ};

2. The objects pointed by r0, r1 coincide in their observable domain: μ0(r0)|P ∼β

μ1(r1)|P ;
3. If the structure security level of either object pointed by r0, r1 is observable

(Σ0(r0)≤σ or Σ1(r1)≤σ), then their domains and structure security levels
coincide: dom(μ0(r0)) = dom(μ1(r1)) and Σ0(r0) = Σ1(r1).

We extend informally the definition of low-equality to sequences of labeled
values and to program continuations (the interested reader can find the formal
definitions in [20]). Two sequences of labeled values are low-equal with respect
to a given security level σ, denoted −→v0,−→σ0 ≈β,σ

−→v1,−→σ1 if for each position of
both sequences, either the two values in that position are low-equal, or the levels
that are associated with both of them are not observable. Low-equality between
program continuations s0,

−−→σpc0,
−→σ0 ≈β,σ s1,

−−→σpc1,
−→σ1 relaxes syntactic equality

between programs in order to relate the intermediate states of the execution
of the same original program in two low-equal memories, as illustrated by the
following example.

Example 2 (Low-equal program continuations). Consider the program x = y,
an initial labeling 〈Γ,Σ〉 such that Γ (#glob)(x) = Γ (#glob)(y) = H, and two
memories μ0 and μ1 such that μi = [#glob �→ [x �→ undefined, y �→ i]], for i ∈
{0, 1}. The execution of one computation step of this program in μ0 and μ1

yields the programs x = 0 and x = 1. Since the reading effects associated with
the values 0 and 1 are both H, the expressions x = 0 and x = 1 are low-equal.
Formally: x=0, 〈L〉, 〈H〉 ≈id,L x=1, 〈L〉, 〈H〉 (where id is the identity function).

Finally, two monitor configurations 〈μi, si,
−−→σpci, Γi, Σi,

−→σi〉 with i =
0, 1 are said to be low-equal w.r.t a level σ and function β, writ-
ten 〈μ0, s0,

−−→σpc0, Γ0, Σ0,
−→σ0〉 ≈β,σ 〈μ1, s1,

−−→σpc1, Γ1, Σ1,
−→σ1〉, if μ0, Γ0, Σ0 ≈β,σ

μ1, Γ1, σ1 and s0,
−−→σpc0,

−→σ0 ≈β,σ s1,
−−→σpc1,

−→σ1.

Noninterferent Monitor. In the remaining of the paper, we consider only non-
interferent JavaScript monitors. As usual, a monitor →IF is noninterferent, writ-
ten NImon(→IF), if its application on two low-equal configurations produces two
low-equal configurations.

Definition 1 (Monitor Noninterference). A monitor →IF is said to be non-
interferent, written NImon(→IF), if for every programs s0, s1, memories μ0, μ1,

Modular Monitor Extensions for Information Flow Security in JavaScript 53

and labeling 〈Γ,Σ〉, such that μ0, μ1 are well-labeled by 〈Γ,Σ〉 and, for all secu-
rity levels σ, if there exists β such that 〈μ0, s0, ε, Γ, Σ, ε〉 ≈β,σ 〈μ1, s1, ε, Γ, Σ, ε〉 and
〈μi, si, ε, Γ, Σ, ε〉 →∗

IF 〈μ′
i, v

′
i, ε, Γ

′, Σ′, σ′〉 for i = 0, 1 then there is an extension β′

of β such that 〈μ′
0, v

′
0, ε, Γ

′, Σ′, σ′〉 ≈β,σ 〈μ′
1, v

′
1, ε, Γ

′, Σ′, σ′〉.

3.2 API Extensions to JavaScript Monitors

API Relation. Even if the execution of certain APIs escapes the JavaScript
semantics, the interaction between JavaScript programs and these APIs is medi-
ated via special API objects that exist in the JavaScript memory. In the follow-
ing, we assume that (1) the state of the API can be fully encoded in a JavaScript
memory and (2) the behavior of each API method only depends on its state. An
API is thus modeled as a semantic relation ⇓JS

API of the form 〈μ,−→v 〉 ⇓JS
API 〈μ′, v′〉

where μ is the JavaScript memory in which the API is executed, μ′ is the result-
ing memory, the sequence of values −→v corresponds to the arguments of the API
invocation, and v′ is the value to which the API invocation evaluates. Accord-
ingly, a monitored API relation, ⇓API, has the form

〈μ, Γ,Σ,−→v ,−→σ 〉 ⇓API 〈μ′, Γ ′, Σ′, v, σ〉

which adds to the original API configuration the initial and final labelings 〈Γ,Σ〉
and 〈Γ ′, Σ′〉 (respectively), the sequence of security levels −→σ that is associ-
ated with the arguments of the API invocation, and their corresponding reading
effect σ.

API Register. The bridge between API invocations and the corresponding moni-
tored API semantics is performed by a API register, denoted by RAPI. We define
an API register as a function that, given a memory and a sequence of values,
returns a monitored API relation.

Example 3 (Queue API Register). In order for an extended monitor to take into
account the methods of the Queue API from Example 1, the API Register must
be extended to handle invocations of the Queue API methods. In the following,
⇓QU , ⇓PU , and ⇓PO are the API relations corresponding to each one of the
methods of the Queue API:

RQ(μ, 〈r,m, . . .〉) =

{⇓QU if m = “queue” ∧ $q ∈ dom(μ(r))
⇓PU if m = “push” ∧ $q ∈ dom(μ(r))
⇓PO if m = “pop” ∧ $q ∈ dom(μ(r))

The idea is to “mark” the Queue API object (the one bound to variable
queueAPI) as well as the concrete queue objects, with a special property (in
this case, $q).

Monitor-Extending Constructor. We now define a monitor-extending construc-
tor E that, given a monitored small-step semantics →IF, a partial function
Intercept mapping statements to sequences of values, and an API register RAPI,
produces a new monitored small-step semantics E(→IF, Intercept,RAPI). The new

54 J. Fragoso Santos et al.

Fig. 1. Definition of the monitor-extending constructor E .

extended semantics handles the invocation of APIs by applying the API rela-
tion that is returned by RAPI. API invocation is triggered by interception points,
statements containing expression redexes (expressions that only have values as
subexpressions) and that are in the set Intercept. Then, if the sequence of values
to which its subexpressions evaluate is in the domain of the API register RAPI,
their image by RAPI is the semantic relation that models the API to be executed.

The definition of E , given in Fig. 1, makes use of a syntactic function,
SubExpressions, defined on JavaScript statements, such that SubExpressions[[s]]
corresponds to the sequence comprising all the subexpressions of s in the order
by which they are evaluated. Rules [Non-Intercepted Program Construct]

and [Intercepted Program Construct - Standard Execution] model the case
in which the new small-step semantics behaves according to the original seman-
tics →IF. Rule [Intercepted Program Construct - API Execution] models
the case in which an API is executed. The semantics rule retrieves the seman-
tics relation that models the API to execute (using the API register) and then
executes the API. After executing the API, the sequence of values of its subex-
pressions is replaced with the value to which the API call evaluates. Analogously,
the sequence of levels of its subexpressions is replaced with the reading effect of
the API call.

3.3 Sufficient Conditions for Noninterferent API Extensions

We identify sufficient conditions to be satisfied by API relations in order for the
new extended monitored semantics E(→IF, Intercept,RAPI) to be noninterferent,
assuming that the original monitor →IF is noninterferent.

The first condition requires that the API relation is confined, as formalized
in Definition 2. An API relation is confined if it only creates/updates resources
whose levels are higher than or equal to the least upper bound on the levels
of its arguments. This constraint is needed because the choice of which API to
execute may depend on all of its arguments.

Modular Monitor Extensions for Information Flow Security in JavaScript 55

Definition 2 (Confined API Relation/Register). An API relation ⇓API

is confined if, for every memory μ well-labeled by a labeling 〈Γ,Σ〉, every
sequence of argument values −→v and corresponding sequence of security levels −→σ ,
if 〈μ, 〈Γ, Σ〉, −→v , −→σ 〉 ⇓API 〈μ′, 〈Γ ′, Σ′〉, v′, σ′〉 for some memory μ′, labeling 〈Γ ′, Σ′〉,
value v′, and level σ′; then, for all security levels σ̂:

�−→σ ≤ σ̂ ⇒ μ, Γ,Σ ≈id,σ̂ μ′, Γ ′, Σ′ ∧ σ′ ≤ σ̂

Furthermore, we say that the API Register function RAPI is confined, written
Conf(RAPI), if all the API relations in its range are confined, and if for every
memories μ and μ′, labelings 〈Γ,Σ〉 and 〈Γ ′, Σ′〉, sequence of values −→v , security
level σ, and function β, such that μ, Γ,Σ ≈β,σ μ′, Γ ′, Σ′, then RAPI(μ,−→v) =
RAPI(μ′, β(−→v)).

The second condition requires that the API relation is noninterferent, as
formalized in Definition 3. In order to relate the outputs of the API Register in
two low-equal memories, we extend the notion of low-equality to API registers.
Informally, two API registers are said to be low-equal if, whenever they are
given as input two low-equal memories and two low-equal sequences of values,
they output the same noninterferent API relation. Then, an API relation is
noninterferent if whenever it is executed on two low-equal memories, it produces
two low-equal memories and two low-equal values.

Definition 3 (Noninterferent API Relation/Register). An API relation
⇓API is said to be noninterferent, written NI(⇓API), if for every two memories
μ0 and μ1 respectively well-labeled by 〈Γ0, Σ0〉 and 〈Γ1, Σ1〉, any two sequences
of values −→v0 and −→v1, respectively labeled by two sequences of security levels −→σ0

and −→σ1, and any security level σ for which there exists a function β such that
−→v0 , −→σ0 ≈β,σ

−→v1 , −→σ1 and μ0, Γ0, Σ0 ≈β,σ μ1, Γ1, Σ1, if:

〈μ0, Γ0, Σ0, −→v0, −→σ0〉 ⇓API 〈μ′
0, Γ ′

0, Σ′
0, v′

0, σ′
0〉 ∧ 〈μ1, Γ1, Σ1, −→v1, −→σ1〉 ⇓API 〈μ′

1, Γ ′
1, Σ′

1, v′
1, σ′

1〉

then: μ′
0, Γ

′
0, Σ

′
0 ≈β′,σ μ′

1, Γ
′
1, Σ

′
1 and 〈v′

0〉, 〈σ′
0〉 ≈β′,σ 〈v′

1〉, 〈σ′
1〉 for some β′ that

extends β. Furthermore, we say that the API Register function RAPI is noninter-
ferent, written NI(RAPI), if all the API relations in its range are noninterferent.

Example 4 (Noninterferent JavaScript program using the Queue API). Assume
that the APIs given in Example 1 are noninterferent and consider the following
program that starts by computing two objects o0 and o1:

1 q = queueAPI.createQueue ();

2 if (h) { q.push(o1, 1); }

3 q.push(o0 , 0); l = q.pop();

If this program starts with memories μi (i ∈ {0, 1}) using labeling 〈Γ,Σ〉 and
assuming that in both executions the invocations of all the external APIs go
through (i.e. the execution is never blocked), then it must terminate with mem-
ories μ′

i labeled by Γ ′, Σ:

56 J. Fragoso Santos et al.

μi =
[
(#glob,o0) �→r0,(#glob,o1) �→r1,

(#glob,h) �→i

]

Γ =
[

(#glob,h) �→H,(#glob,l) �→L,

(#glob,o0) �→L,(#glob,o1) �→L

]

μ′
i =

[
(#glob,o0) �→r0,(#glob,o1) �→r1,

(#glob,h) �→i,(#glob,l) �→ri,(#glob,q) �→rq

]

Γ ′ =
[
(#glob,h) �→H,(#glob,l) �→H,

(#glob,o0) �→L,(#glob,o1) �→L

]

Since initial memories are low-equal, μ0, Γ, Σ ≈id,L μ1, Γ, Σ, we use the hypothesis
that all three API relations are noninterferent to conclude that the memories
yielded by the invocation of the API relations in lines 1, 2 and 3 are also low-
equal. Furthermore, in the execution that maps h to 1, the value of l clearly
depends on the value of h, from which we conclude that it is also the case in the
execution that maps h to 0.

Our main result states that if the API relation is confined and noninterfer-
ent, then the extension of the noninterferent JavaScript monitor with the API
monitor is noninterferent.

Theorem 1 (Security). For every monitored semantics →IF, API register
RAPI and set of interception points Intercept:

NImon(→IF) ∧ NI(RAPI) ∧ Conf(RAPI) ⇒ NImon(E(→IF, Intercept,RAPI))

4 A Meta-Compiler for Securing Web APIs

We now propose a way of extending an information flow monitor inlining com-
piler to take into account the execution of arbitrary APIs.

Input compilers. We assume available two inlining compilers specified by compi-
lation functions Ce and Cs for compiling JavaScript expressions and statements,
respectively. Function Cs makes use of function Ce. The compilers Ce/Cs map
every expression e/statement s to a pair 〈s′, i〉, where:

1. statement s′ simulates the execution of e/s in the monitored semantics;
2. index i is such that, after the execution of s′, (1) the compiler variable $v̂i

stores the value to which e/s evaluates in the original semantics and (2) the
compiler variable $l̂i stores its corresponding reading effect.

We assume that the inlining compiler works by pairing up each variable/prop-
erty with a new one, called its shadow variable/property [8,16], that holds its
corresponding security level. Since the compiled program has to handle security
levels, we include them in the set of program values, which means adding them
to the syntax of the language as such, as well as adding two new binary operators
corresponding to ≤ (the order relation) and � (the least upper bound). Besides
adding to every object o an additional shadow property $lp for every property
p in its domain, the inlined monitoring code is also assumed to extend o with a
special property $struct that stores its structure security level.

Example 5 (Instrumented Labeling). Given an object o = [p �→ v0, q �→ v1]
pointed to by ro and a labeling 〈Γ,Σ〉, such that Γ (ro) = [p �→ H, q �→ L] and
Σ(ro) = L, the instrumented counterpart of o labeled by 〈Γ,Σ〉 is ô = [p �→
v0, q �→ v1, $lp �→ H, $lq �→ L, $struct �→ L].

Modular Monitor Extensions for Information Flow Security in JavaScript 57

Fig. 2. Extended compiler CAPI.

4.1 IFlow Signatures

We propose IFlow signatures to simulate monitored executions of API relations.
IFlow signatures are composed of three methods – domain, check, and label.
Method domain checks whether or not to apply the API, check checks if the
constraints associated with the API are verified, and label updates the instru-
mented labeling and outputs the reading effect associated with a call to the API.
Functions check and label must be specified separately because check has to be
executed before calling the API (in order to prevent its execution when it can
potentially trigger a security violation), whereas label must be executed after
calling the API (so that it can label the memory resulting from its execution).
Formally, we define an IFlow Signature as a triple 〈#check,#label,#domain〉,
where: #check is the reference of the check function object, #label is the refer-
ence of the label function object, and #domain is the reference of the domain
function object.

Runtime API Register. We assume the existence of a runtime function called
the runtime API register, that simulates the API Register, which we denote by
$apiRegister. The function $apiRegister makes use of the domain method of
each API in its range to decide whether there is an API relation associated with
its inputs, in which case it outputs an object containing the corresponding IFlow
Signature, otherwise it returns null.

Meta-compiler. Figure 2 presents a new meta-compiler, CAPI, that receives as
input an inlining compiler for JavaScript expressions, Ce, and outputs a new
inlining compiler that can handle the invocation of the APIs whose signatures
are in the range of the API register simulated by $apiRegister. Since state-
ment redexes are not intercepted, the compilation function Cs is left unchanged
except that it uses the new compilation function for expressions for compiling the
subexpressions of the given statement. The specification of the meta-compiler
makes use of a syntactic function Replace that receives as input an expression
and a sequence of variables and outputs the result of substituting each one of its
subexpressions by the corresponding sequence variable. Intercept is the set of all
statements that contain an expression redex whose execution is to be intercepted
by the monitored semantics. Each expression that can be an interception point

58 J. Fragoso Santos et al.

Fig. 3. API register RDOM
API for the DOM API.

of the semantics is compiled by the compiler generated by the meta-compiler
to a statement, which: (1) executes the statements corresponding to the com-
pilation of its subexpressions, (2) tests if the sequence of values corresponding
to the subexpressions of the expression to compile is associated with an IFlow
signature, (3) if the test is true, it executes the check method of the correspond-
ing IFlow signature, an expression equivalent to the original expression, and
the label method of the corresponding IFlow signature. If the test is false, it
executes the compilation of an expression equivalent to the original one by the
original inlining compiler. For simplicity, we do not take into account expressions
that manipulate control flow, meaning that the evaluation of a given expression
implies the evaluation of all its subexpressions. Therefore, we do not consider the
JavaScript conditional expression. This limitation can be surpassed by re-writing
all conditional expressions as IF statements before applying the compiler.

Note that the meta-compiler proposed in this section allows the developer
of the inlining compiler to extend it in a modular way, developing and proving
each API IFlow signature at a time.

5 Implementation and DOM API Extension

An implementation of a meta-compiler based on the JavaScript inlining compiler
of [10] can be found in [20] together with an online testing tool and a set of IFlow
signatures that includes all those studied in the paper. As a case study, we give
a high-level description of our the DOM API extension.

Interaction between client-side JavaScript programs and the HTML docu-
ment is done via the DOM API [17]. In order to access the functionalities of
this API, JavaScript programs manipulate a special kind of objects, here named
DOM objects. In contrast to the ECMA Standard [1] that specifies in full detail
the internals of objects created at runtime, the DOM API only specifies the
behavior that DOM interfaces are supposed to exhibit when a program interacts
with them. Hence, browser vendors are free to implement the DOM API as they
see fit. In fact, in all major browsers, the DOM is not managed by the JavaScript
engine. Instead, there is a separate engine, often called the render engine, whose
role is to do so. Therefore, interactions between a JavaScript program and the
DOM may potentially stop the execution of the JavaScript engine and trigger a
call to the render engine. Thus, a monitored JavaScript engine has no access to
the implementation of the DOM API.

Modular Monitor Extensions for Information Flow Security in JavaScript 59

We model DOM objects as standard JavaScript objects and we assume
that every memory contains a document object denoted doc, which is accessed
through the property “doc” and stored in fixed reference #doc. Each DOM
object defines a property @tag that specifies its tag (for instance, 〈div〉, 〈html〉,
〈a〉) and, possibly, an arbitrary number of indexes 0, ..., n each pointing to one
of its n+1 children. DOM Element objects form a forest, such that the displayed
HTML document corresponds to the tree hanging from the object pointed to by
#doc. Due to lack of space, we only present the labeled API relation for remov-
ing a DOM Element object from its parent object in the DOM forest. This API
method gives rise to implicit information flows [2,18,23] that its labeled version
needs to take into account.

Example 6 (Leak via removeChild - Order Leak). Suppose that in the original
memory there are three orphan DIV nodes bound to variables div1, div2, and
div3.

1 div1.appendChild(div2); div1.appendChild(div3);

2 if(h) { div1.removeChild(div2); }

3 l = div1 [0];

After the execution of this program, depending on the value of the high variable
h, the value of the low variable l can be either that of div2 or div3, meaning
that the final level associated with variable l must be H in both executions.
This example shows that, when removing a node, the new indexes of its right
siblings are affected. To tackle this problem, the labelled DOM API methods
enforce that the level of the property through which a DOM object is accessed
is always lower than or equal to the levels of the properties corresponding to its
right siblings.

Below we give the specification of the labeled API relation ⇓rem for removing a
DOM object from its parent in the DOM forest. This rule receives a sequence of
arguments 〈r0,m1, r2〉 as input and removes the object pointed to by r2 from the
children of the object pointed to by r1. To this end, it first checks that μ(r0) is
in fact the parent of μ(r2). Then, the object μ(r0) is updated by shifting by −1
all the indexes equal to or higher than i (the index of the object being removed)
and by removing its index n. The levels of the indexes of the right siblings of
the node to remove are accordingly shifted by −1. The constraint of the rule
prevents a program from removing in a high context a node that was inserted
in a low context. Function R#Children receives a memory μ as input and outputs
a binary relation such that if 〈r, n〉 ∈ R#Children(μ), then the DOM node pointed
to by r has n children (with indexes 0, . . . , n − 1).

60 J. Fragoso Santos et al.

Fig. 4. IFlow signature of ⇓rem

removeChild
μ(r0)(i) = r2 〈r0, n + 1〉 ∈ R#Children(μ) dom(o0) = dom(γ0) = dom(μ(r0))\{n}

∀0≤j<i . o0(j) = μ(r0)(j) ∀i≤j<n . o0(j) = μ(r0)(j + 1) o0(@tag) = μ(r0)(@tag)

∀0≤j<i . γ0(j) = Γ (r0)(j) ∀i≤j<n . γ0(j) = Γ (r0)(j + 1)
††

γ0(@tag) = Γ (r0)(@tag)

μ′ = μ [r0
→ o0] Γ ′ = Γ [r0
→ γ0] σ0 � σ1 � σ2 ≤ Γ (r0)(i)
†

〈μ, Γ, Σ, 〈r0, m1, r2〉, 〈σ0, σ1, σ2〉〉 ⇓rem 〈μ′, Γ ′, Σ, r2, σ0 � σ1 � σ2
†††〉

In order for DOM API relations to be added to the semantics, one has to
add them to the API register. Hence, we assume that the RAPI extends the
API register given in Fig. 3. The following lemma validates the hypotheses of
the security theorem (Theorem 1) for RDOM

API , allowing us to conclude that the
extension of a noninterferent JavaScript monitor with the DOM API relations
here defined is noninterferent.

Lemma 1 (Conf. and NI for the DOM API). Conf(RDOM
API) ∧ NI(RDOM

API)

Figure 4 presents a possible IFlow signature for the API relation ⇓rem, which
makes use of the following runtime functions: (1) $check diverges if its argument
is different from true and returns true otherwise; (2) $shadow receives as input
a property name and outputs the name of the corresponding shadow property;
and (3) $index outputs the index of its second argument in the list of children
of its first argument. The labeled boxes in the API relation rule and in the code
of the IFlow signature are intended to emphasize the correspondence between
the two.

Modular Monitor Extensions for Information Flow Security in JavaScript 61

6 Conclusion

In summary, we have proposed a methodology for extending arbitrary monitored
JavaScript semantics with secure APIs, which allows to prove the security of the
extended monitor in a modular way. As a case study, we extend the inlining
compiler of [10] with a fragment of the DOM Core Level 1 API. Further related
technical developments, as well as an implementation that includes the IFlow
signatures of the APIs studied in the paper, can be found in [20].

Acknowledgments. Fragoso Santos acknowledges funding from the EPSRC grant
reference EP/K032089/1. No new data was collected in the course of this research.

References

1. The 5.1th edition of ECMA 262, ECMAScript Language Specification. Technical
report, ECMA 2011, June 2011

2. Almeida-Matos, A., Fragoso Santos, J., Rezk, T.: An information flow monitor for
a core of DOM. In: Maffei, M., Tuosto, E. (eds.) TGC 2014. LNCS, vol. 8902, pp.
1–16. Springer, Heidelberg (2014)

3. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
PLAS (2009)

4. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In:
PLAS (2010)

5. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: POPL
(2012)

6. Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in
a java-like language. In: CSFW (2002)

7. Bielova, N.: Survey on javascript security policies and their enforcement mecha-
nisms in a web browser. Special Issue on Automated Specification and Verification
of Web Systems of JLAP (2013)

8. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: CSF (2010)
9. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),

236–243 (1976)
10. Santos, J.F., Rezk, T.: An information flow monitor-inlining compiler for securing

a core of javascript. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El
Kalam, A., Sans, T. (eds.) SEC 2014. IFIP AICT, vol. 428, pp. 278–292. Springer,
Heidelberg (2014)

11. Gardner, P., Smith, G., Wheelhouse, M.J., Zarfaty, U.: Dom: Towards a formal
specification. In: PLAN-X (2008)

12. Le Guernic, G.: Confidentiality Enforcement Using Dynamic Information Flow
Analyses. Ph.D. thesis, Kansas State University (2007)

13. Guha, A., Lerner, B., Gibbs Politz, J., Krishnamurthi, S.: Web API verification:
Results and challenges. In: Analysis of Security APIs (2012)

14. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: Tracking information
flow in JavaScript and its APIs. In: SAC (2014)

15. Hedin, D., Sabelfeld, A.: Information-flow security for a core of javascript. In: CSF
(2012)

62 J. Fragoso Santos et al.

16. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. Comput. Secur. 31, 827–843 (2012)

17. W3C Recommendation. DOM: Document Object Model (DOM). Technical report,
W3C (2005)

18. Russo, A., Sabelfeld, A., Chudnov, A.: Tracking information flow in dynamic tree
structures. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp.
86–103. Springer, Heidelberg (2009)

19. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. J. Sel. Areas
Commun. 21, 5–19 (2003)

20. Santos, J.F., Rezk, T.: Information flow monitor-inlining compiler. http://
www-sop.inria.fr/indes/ifJS/

21. Taly, A., Erlingsson, U., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis
of security-critical javascript apis. In: SP (2011)

22. Venkatakrishnan, V.N., Xu, W., DuVarney, D.C., Sekar, R.: Provably correct run-
time enforcement of non-interference properties. In: Ning, P., Qing, S., Li, N. (eds.)
ICICS 2006. LNCS, vol. 4307, pp. 332–351. Springer, Heidelberg (2006)

23. Garg, D., Rajani, V., Bichhawat, A., Hammer, C.: Information Flow control for
Event Handling and the DOM in Web Browsers. In: CSF (2015). to appear

http://www-sop.inria.fr/indes/ifJS/
http://www-sop.inria.fr/indes/ifJS/

Hybrid Typing of Secure Information Flow
in a JavaScript-Like Language

José Fragoso Santos1(B), Thomas Jensen2, Tamara Rezk2,
and Alan Schmitt2

1 Imperial College London, London, UK
jose.fragoso.santos@imperial.ac.uk

2 Inria, Sophia Antipolis, France
{thomas.jensen,tamara.rezk,alan.schmitt}@inria.fr

Abstract. As JavaScript is highly dynamic by nature, static informa-
tion flow analyses are often too coarse to deal with the dynamic con-
structs of the language. To cope with this challenge, we present and
prove the soundness of a new hybrid typing analysis for securing infor-
mation flow in a JavaScript-like language. Our analysis combines static
and dynamic typing in order to avoid rejecting programs due to impre-
cise typing information. Program regions that cannot be precisely typed
at static time are wrapped inside an internal boundary statement used
by the semantics to interleave the execution of statically verified code
with the execution of code that must be dynamically checked.

1 Introduction

The dynamic aspects of JavaScript make the analysis of JavaScript programs
very challenging. On one hand, one may use a purely static analysis, but either
restrict the language to exclude these dynamic aspects or over-approximate
them; this is too coarse to be applicable in practice. On the other hand, one
may use purely dynamic mechanisms, such as monitoring or secure multi-
executions [1,6,8,16]; but the gained precision comes at the cost of a much
lower performance compared to the original code [7].

We propose a general hybrid analysis to statically verify secure information
flow in a core of JavaScript. Following the hybrid typing motto “static analysis
where possible with dynamic checks where necessary”[5], we are able to reduce
the runtime overhead introduced by purely dynamic analyses without exclud-
ing dynamic field operations. In fact, our analysis can handle some of the most
challenging JavaScript features, such as prototype-based inheritance, extensi-
ble objects, and constructs for checking the existence of object properties. Its
key ingredient is an internal boundary statement inspired by recent work in
inter-language interoperability [10]. The static component of our analysis wraps
program regions that cannot be precisely verified inside an internal boundary
statement instead of rejecting the whole program. This boundary statement
identifies the regions of the program that must be verified at runtime—which
may be as small as a single statement—and enables the initial set up required
c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 63–78, 2016.
DOI: 10.1007/978-3-319-28766-9 5

64 J. Fragoso Santos et al.

by the dynamic analysis. In summary, the proposed boundary statement allows
the semantics to effortlessly interleave the execution of statically verified code
with the execution of code that must be verified at runtime.

Although our work is generally motivated by the verification of dynamic
features of JavaScript, we choose to focus on the particular case of constructs
that rely on dynamic computation of object field names, which we call dynamic
field operations. In JavaScript, one can access a field f of an object o either
by writing o.f or o[e], where e is an expression that dynamically evaluates to
the string f. Dynamic computation of field names is one of the major sources of
imprecision of static analyses for JavaScript [9].

Example 1 (Running example: the challenge of typing dynamic field operations).
Below we present a program that creates an object o with a secret field secret1

and two public fields public1 and public2.
o = {}; o.secret1 = secret_input();
o.public1 = public_input(); o.public2 = public_input(); public = o[g()]

The secret field secret1 gets a secret input via function secret_input, while
the two public fields public1 and public2 each get a public input via function
public_input. The program then assigns the value of one of the three fields to
the public variable public, as determined by the return value of function g.
Concretely, when g returns the string "secret1", the program assigns a secret
value to public and the execution is insecure. On the other hand, when g returns
either "public1" or "public2", the program assigns a public value to public and
the execution is secure. However, in order to make sure that g never returns
"secret1", a static analysis needs to predict the dynamic behaviour of g, which
is, in general, undecidable.

The loss of precision introduced by the dynamic computation of field names
is not exclusive to field projections. It also occurs in method calls, field dele-
tions, and membership checks. We account for the use of these operations by
verifying them at runtime. When verifying a statement containing a dynamic
field operation, the static component of the analysis wraps it inside a bound-
ary statement. In the case of the running example, all statements except the
last one are statically typed. In contrast, the last assignment is re-written as
@monitor(@type_env, @pc, @ret, public = o[g()]), where the first three arguments
of the monitor statement are used for the setup of the runtime analysis. Hence,
when the program is executed the only overhead introduced by the dynamic
component of our hybrid analysis regards the security checks for validating or
rejecting the statement public = o[g()].

Contributions. The main contribution of the paper is the design of a new
hybrid analysis for verifying secure information flow in a JavaScript-like lan-
guage. To achieve this, we introduce: (1) a type language specifically designed
to control information flow in a subset of JavaScript, (2) a static type system
for verifying statements not containing dynamic field operations, (3) a dynamic
typing analysis for verifying statements containing dynamic field operations, and
(4) a novel boundary operator for interleaving the execution of statically verified

Hybrid Typing Secure Information Flow in a JavaScript-Like Language 65

Table 1. Core JS syntax - expressions and statements

v ∈ Val ::= lit | lit | l | λx : τ̇ .s

e ∈ Expr ::= v | this | x | x = e | { } [τ̇] | e.f | e1[e2] | e1.f = e2

| e1[e2] = e3 | f in e | [e1] in e2 | delete e.f | delete e1[e2]
| function (x)[τ̇]{s} | e1(e2) | e1.x(e) | e1[e2](e3)

s ∈ Stmt ::= e | var x [τ̇] | s1; s2 | if(e) {s1} else {s2} | return e

regions with dynamically verified ones. Finally, we have implemented a prototype
as well as a case study, available online at [15].

2 Core JS

Syntax. The syntax of Core JS is given in Table 1. Expressions include val-
ues, the keyword this, variables, variable assignments, object literals, static
and dynamic field projections, static and dynamic field assignments, static and
dynamic membership checks, static and dynamic field deletions, function lit-
erals, function calls, and static and dynamic method calls. Statements include
expression statements, variable declarations, sequences, conditional statements,
and return statements. We distinguish two types of values: literal values and
runtime values. Literal values include numbers, booleans, strings, and undefined.
Runtime values, ranged over by v, include parsed literal values, locations, and
parsed function literals. Object literals, function literals, and variable declara-
tions are annotated with their respective security types (which are explained in
Sect. 3). In the following, we use Expr� for the set of Core JS dynamic field
operations.

Memory Model. A heap H ∈ Heap : Loc × X ⇀ Val is a partial mapping
from locations in Loc and field names in X to values in Val. We denote a heap
cell by (l, f) �→ v, the union of two disjoint heaps by H1 � H2, a read operation
by H(l, f), and a heap update operation by H[l.f �→ v]. An object can be seen
as a set of heaps cells addressed by the same location but with different field
names. We use l �→ {f1 : v1, . . . , fn : vn} as an abbreviation for the object
(l, f1) �→ v1 � . . . � (l, fn) �→ vn.

Every object has a prototype, whose location is stored in a special field
proto . In order to determine the value of a field f of an object o, the semantics

first checks whether f is one of the fields of o. If that is the case, the field look-up
yields that value. Otherwise, the semantics checks whether f belongs to the fields
of the prototype of o and so forth. The sequence of objects that can be accessed
from a given object through the inspection of the respective prototypes is called
a prototype chain. The prototype chain inspection procedure is modelled by
the semantic function π given in appendix. Informally, the expression π(H, l, f)
denotes the location of the first object that defines f in the prototype chain of the
object pointed to by l (if no such object exists, π returns null). Given that most

66 J. Fragoso Santos et al.

Table 2. Evaluation contexts

Ê ::= � | x = Ê | Ê.f | Ê[e] | l[Ê] | Ê.f = e | Ê[e1] = e2

| l[Ê] = e | l[f] = Ê | [Ê] in e | [f] in Ê | delete Ê.f | delete Ê[e]

| delete l[Ê] | Ê(e) | l(Ê) | Ê.f(e) | Êe | l[Ê](e) | l[f](Ê)

E ::= Ê | E; s | if(Ê) {s1} else {s2} | return Ê

implementations of JavaScript allow for explicit prototype mutation, we include
this feature in Core JS. For instance, x. proto evaluates to the prototype of the
object bound to x and x. proto = y sets the prototype of the object bound to
x to the object bound to y.

Scope is modelled using environment records. An environment record is sim-
ply an internal object that maps variable names to their respective values.
An environment record is created for every function or method call. We use
act(l, x, v, s, l′) to denote the environment record that: (1) is identified by loca-
tion l where it is stored, (2) maps x to v, (3) maps all the variables declared in
s to undefined, and (4) maps the field @this to the location l′. (Note that envi-
ronment records map a single variable because functions have a single argument.
Moreover, in the execution of a method call, the field @this is used to store the
location of the object on which the method was invoked.) Variables are resolved
with respect to a list of environment record locations, called scope chain. The
variable inspection procedure is modelled by the semantic function σ given in
appendix. We let σ(H,L, x) denote the location of the first environment record
that defines x in the scope chain L. The global object, assumed to be pointed
to by a fixed location lg, is the environment record that binds global variables.

Since functions are first-class citizens, the evaluation of a function literal
triggers the creation of a special type of object, called function object. Every
function object has two fields: @body and @scope, which respectively store the
corresponding parsed function literal and the scope chain that was active when
the function literal was evaluated. Functions execute in the scope in which the
they were evaluated.

Semantics. Figure 1 presents a fragment of the semantics of Core JS in the
style of Wright and Felleisen [19] (the full semantics is given in appendix).
A configuration Ψ has the form 〈H,L, s〉 where H is the current heap, L the
current scope chain, and s the statement to execute. Transitions are labelled
with an internal event α for the use of the dynamic analysis. The evaluation
order is specified with the help of evaluation contexts, whose syntax is given in
Table 2. In the following, we use l :: L for the list obtained by prepending l to L
and head(L) for the first element of L.

Rule Variable uses σ to determine the location l′ of the environment record
that defines x and reads its value from the heap. Rule Dyn Field Projection
uses π to determine the location l′′ of the object that defines f in the prototype
chain of the object pointed to by l′ and then reads its value from the heap. Rule

Hybrid Typing Secure Information Flow in a JavaScript-Like Language 67

Fig. 1. Fragment of the small-step semantics of core JS

Dyn Field Assignment updates the current heap with a mapping from l and
f to v. Rule Membership Check - True checks if f is defined in the prototype
chain of the object pointed to by l and evaluates to true. Rule Function Lit-
eral adds a new function object to the heap. Rule Function Call extends the
heap with a new environment record for the evaluation of the function pointed
to by l. The current scope chain L is replaced with the scope chain L′ that was
active when the corresponding function literal was evaluated extended with the
location l′′ of the newly created environment record. The semantics makes use of
an internal statement @FunExe(L, s) for keeping track of the caller’s scope chain
during the execution of the function’s body. Rule If - True checks if the guard of
the conditional does not belong to the set of falsy values –{false, 0, undefined, null}–
and replaces the whole conditional with its then-branch followed by an internal
statement @EI for notifying the dynamic analysis of the end of that branch.
Contextual Propagation is standard.

3 Static Typing Secure Information Flow in Core JS

In this section, we present both a new type language for controlling information
flow in JavaScript and the static component of our analysis. Here, the specification
of security policies relies on two key elements: a lattice of security levels and a

68 J. Fragoso Santos et al.

typing environment that maps resources to security types, which can be viewed
as safety types annotated with security levels. In the examples, we use L =
{H,L} with L � H, meaning that L-labelled resources (low resources) are less
confidential than those labelled with H (high). We use �, ⊥, and
 for the least
upper bound (lub), the bottom level, and the top level, respectively.

Security Types. A security type τ̇ = τσ is obtained by pairing up a raw type τ
with a security level σ, called its external level. The external level of a security
type establishes an upper bound on the levels of the resources on which the values
of that type may depend. For instance, a primitive value of type PRIM

L may only
depend on low resources. The syntax of raw types is given and explained below:

τ :: = PRIM | 〈τ̇ .τ̇
σ→ τ̇〉 | 〈κ.τ̇

σ→ τ̇〉
| μκ.〈fσ : τ̇ , · · · , fσ : τ̇ , ∗σ : τ̇〉 | μκ.〈fσ : τ̇ , · · · , fσ : τ̇〉

– The type PRIM is the type of expressions which evaluate to primitive values.
– The type 〈τ̇0.τ̇1 σ→ τ̇2〉 is the type of expressions which evaluate to functions

that map values of type τ̇1 to values of type τ̇2 and during the execution
of which, the keyword this is bound to an object of type τ̇0. Level σ is the
writing effect [14] of functions of this type, that is, a lower bound on the levels
of the resources updated or created during their execution. When specifying
a function type inside an object type, one can use the type variable bound
by that object type as the type of the keyword this (in the syntax of types, κ
ranges over the set of type variables).

– The type μκ.〈fσ0
0 : τ̇0, · · · , fσn

n : τ̇n, ∗σ∗ : τ̇∗〉 is the type of expressions which
evaluate to objects that may define the fields f0 to fn mapping each field fi

to a value of security type τ̇i. The security type assigned to ∗ is the default
security type, which is the security type of all fields not in {f0, · · · , fn}. Every
field fi is further associated with an existence level σi that establishes an
upper bound on the levels of the contexts in which the field can be created or
deleted. The level σ∗ is the default existence level. When no default security
type is declared, the objects of the type may only define explicitly declared
fields.

The reason why we do not precisely track the presence of fields in object
types is that we do not want the type of an object to change at runtime even
though its structure may change. Notice that the absence of a field in a type
does not mean it cannot be accessed in objects of that type: this field may
still be defined in the prototype chain. We could have flattened security types
for objects by requiring every object type to explicitly declare all the fields
accessible through the prototype chains of the objects of that type, but this
would have two disadvantages. First, object types would be less precise, and
second, they would be much larger as the types of prototype fields would be
duplicated. The cost of this design choice is a more complex Static Field
Projection typing rule that has to take the prototype chain into account.

Given a security type τ̇ , the expression lev(τ̇) denotes its external level and
�τ̇ its raw type (for instance, lev(PRIML) = L and �PRIML� = PRIM). We define τ̇σ

Hybrid Typing Secure Information Flow in a JavaScript-Like Language 69

Table 3. Typing environment for the Examples 1 to 6

Γ (public) = PRIM
L

Γ (secret) = PRIM
H

Γ (secret input) = 〈τ̇g. H→ PRIM
H〉L

Γ (public input) = 〈τ̇g. H→ PRIM
L〉L

Γ (g) = 〈τ̇g. H→ PRIM
L〉L

τ̇o = μκ ·〈public1L : PRIM
L,

public2L : PRIM
L,

secret1H : PRIM
H

secret2H : PRIM
H
〉L

Γ (o0) = μκ.〈 proto H : τ̇o〉L
Γ (o) = Γ (o1) = Γ (o2) = τ̇o

as �τ̇�lev(τ̇)�σ (for example, (PRIML)H = PRIM
H). Given a function security type

τ̇ = 〈τ̇0.τ̇1 σ→ τ̇2〉σ′
, we use τ̇ .this, τ̇ .arg, τ̇ .ret, and τ̇ .wef to denote τ̇0, τ̇1, τ̇2,

and σ, respectively. Given an object security type τ̇ , we use dom(τ̇) for the set
containing all field names explicitly declared in τ̇ (including ∗, if present). Given
a field name f and an object security type τ̇ , τ̇ .f (τ̇ .f , resp.) denotes either
the security type (existence level resp.) with which τ̇ associates f or its default
security type (existence level, resp.) when f �∈ dom(τ̇) and ∗ ∈ dom(τ̇). The
ordering � on security levels induces a simple ordering � on security types:
τ̇0 � τ̇1 iff lev(τ̇0) � lev(τ̇1) and �τ̇0 = �τ̇1. We use τ̇g for the type of the global
object. Finally, a typing environment Γ is simply a mapping from variables to
security types.

Example 2. Table 3 presents the typing environment used to type the programs
given in Examples 1 to 6. Since secret input, public input, and g are to be
used as functions, their respective types use the type of the global object as the
type of the keyword this. Since none of these three functions expects an argument
or updates the heap, their respective types omit the type of the argument and
declare a high writing effect. Our design choice of not flattening object types can
also be seen in this example: the type of o0 is much shorter as it does not need
to mention at top level the fields declared in τ̇o.

Static Type System. The key insight of the static type system is that it
wraps program regions which cannot be precisely analysed at static time within
a boundary statement @monitor(Γ, pc, τ̇r, s) responsible for turning on the typing
analysis at runtime. The parameters Γ , pc, and τ̇r are the typing environment,
the context level [14], and the type of the function whose body is being typed,
respectively. Given a typing environment Γ , a level pc, and an expression e, the
typing judgment Γ, pc �e e ↪→ e′ : τ̇ means that e is rewritten as a semantically
equivalent expression e′, which may include boundary statements, has raw type
�τ̇, and reads variables or fields of level at most lev(τ̇). Typing judgements for
statements, with the form Γ, pc, τ̇r �s s ↪→ s′, differ from typing judgements for
expressions in that they do not assign a type to the statement. When e (s resp.)
coincides with e′ (s′ resp.), we omit ↪→ e′ (↪→ s′ resp.) from the typing rules. The
most relevant typing rules are given in Fig. 2 and described below. (We omit

70 J. Fragoso Santos et al.

Fig. 2. Static typing core JS expressions

the explanations of Rules Literal, Variable, and Assignment as they are
standard).

Static field projection. As a given field may be defined anywhere in the
prototype chain of the inspected object, this rule needs to take into account
the whole prototype chain of that object. To this end, we overload function
π to model a static prototype chain inspection procedure. Informally, π(τ̇ , f)
computes the lub between the security types of f in the prototype chain of objects
of type τ̇ and upgrades the external level of this type with the lub between the
existence levels of the field proto in that prototype chain.

Hybrid Typing Secure Information Flow in a JavaScript-Like Language 71

Example 3 (Leaks via Prototype Mutations). The program below creates three
empty objects bound to: o0, o1, and o2. Then, it creates a field named public1 in
both o1 and o2, which is set to 0 in o1 and to 1 in o2. Depending on the value of
a high variable secret, the prototype of o0 is either set to o1 or to o2. Finally, the
low variable public1 is set to the value of the field public1 of the prototype of o0
(because o0 does not define that field), thereby creating an implicit information
flow between secret and public.

o0 = {}; o1 = {}; o2 = {}; o1.public1 = 0; o2.public1 = 1;
if(secret){o0._proto_ = o1} else {o0._proto_ = o2}; public = o0.public1

Letting Γ be the typing environment of Table 3, it follows that
π(Γ (o0), public1) = PRIM

H because Γ (o0). proto = H. Hence, the assignment
public = o0.public1 is not typable as the type of o0.public1, PRIM

H , is not lower
than or equal to PRIM

L.

Static Member Check. Since the domain of an object can change at execution
time and since programs can check if a given field is defined using the keyword
in, the mere existence of a field may disclose secret information. The existence
security levels declared in object security types serve to control this type of
information flows. However, analogously to field projections, this rule needs to
take into account the whole prototype chain of the inspected object, because the
field whose existence is being checked may be defined anywhere in that prototype
chain. To this end, we make use of the static function π̄(τ̇ , f) that computes the
lub between the existence levels of f and proto in the prototype chain of objects
of type τ̇ .

Example 4 (Leaks via Membership Checks). The program below creates an
object with two fields secret1 and secret2. Then, depending on the value of
a high variable secret, it deletes either secret1 or secret2 from the domain of
o. Finally, the low variable public is assigned to true if secret1 is defined in the
prototype chain of o or to false if it is not, thereby creating an implicit flow
between secret and public.
o = {}; o.secret1 = 0; o.secret2 = 0;
if (secret) { delete o.secret1 } else { delete o.secret2 }; public = secret1 in o

Letting Γ be the typing environment of Table 3, it follows that π̄(Γ (o), secret1) =

PRIM
H because Γ (o).secret1 = H. Hence, the last assignment is not typable as the

type of the expression secret1 in o, PRIM
H , is not lower than or equal to PRIM

L.

Static field assignment. The first constraint of the rule checks if the type of
the assigned expression is a subtype of the assigned field type, thus preventing
the assignment of a secret value to a public field. The second constraint checks if
the context level is lower than or equal to the existence level of the assigned field,
thereby preventing the creation of a visible field depending on secret information.

Field Deletion. The rule checks if the context level is lower than or equal to
the field’s existence level, thereby preventing visible fields from being deleted in
invisible contexts.

72 J. Fragoso Santos et al.

Functional literal. This rule checks if the context level is lower than or
equal to the writing effect of the type of the function literal, thereby preventing
the evaluation of function literals that update or create public resources inside
secret contexts. Then, the type system types the body of the function literal
using the typing environment obtained by extending the current one with the
type of the the formal argument, the type of the keyword this, and the types of
the variables declared in the body of the function literal. To this end, we make
use of a syntactic function hoist that extends the typing environment given as its
first argument with the mappings from the variables declared in the statement
given as its second argument to their respective security types. Note that this
rule may re-write the the body of the function literal in order to enable the
dynamic analysis.

Method call. This rule first verifies if the context level is lower than or equal
to the writing effect of the method to call, thereby preventing the calling of
a method that creates or updates public resources depending on secret values.
Then, the rule checks if the type of the object on which the method is called
and the type of the function argument match the type of the keyword this and
the type of the formal parameter. The method call is finally typed with the
return type of the method type upgraded with the context level.

Dyn. expression statement. This rule wraps every expression that contains a
dynamic field operation inside a boundary statement. Recall that Expr� denotes
the set of Core JS dynamic field operations.

Conditional. If the conditional guard contains a dynamic field operation, the
whole conditional is wrapped inside a boundary statement. In the opposite case,
the type system types both branches, upgrading the context level with the exter-
nal level of the security type of the conditional guard.

Example 5 (Hybrid versus Static Typing of the Running Example). Consider the
program from Example 1 and the typing environment of Table 3. When typing
the assignment public = o[g()], which contains a dynamic field operation, the
type system applies the Dyn. expression statement rule and wraps the whole
assignment inside a boundary statement. All the other statements, which do not
contain dynamic field operations, are fully statically verified and, therefore, left
unchanged. Hence, the resulting program is given by:

o = {}; o.secret1 = secret_input(); o.public1 = public_input();
o.public2 = public_input(); @monitor(@type_env, @pc, @ret, public = o[g()])

If, instead, the type system tried to statically type this assignment, it would
need to check that the type of o[g()] was less than or equal to the type of public,
PRIM

L. Since we do not know the value to which the call to g evaluates, the type
system would need to use the lub between the types of all the fields declared in
the type of o. Consequently, as one of those fields has type PRIM

H , the assignment
would not be typable.

Hybrid Typing Secure Information Flow in a JavaScript-Like Language 73

Fig. 3. Monitored semantics rules

4 Dynamic Typing Secure Information Flow in Core JS

The goal of a boundary statement is to enable and disable the information flow
analysis at runtime. In this section, we define the semantics of the boundary
operator by extending the semantics of Core JS with optional tracking of security
types and verification of security constraints.

Monitored Semantics. A configuration of the monitored semantics has the
form �Ψ,Ω� where Ψ is a Core JS configuration and Ω is a possibly empty set
of monitor configurations. A monitor configuration ω is associated to a specific
function call and has the form ω = 〈Γ, τ̇r, l, o, ρ〉 where: (1) Γ is a typing environ-
ment, (2) τ̇r is the type of the function that is executing, (3) l is the identifier of
the environment record associated to the function call that is being monitored,
(4) o is a control context, which is a list containing the levels of the expressions
on which the monitored statement branched in order to reach the current con-
text, and (5) ρ is an expression context, which is a list consisting of the security
types of the values of the current evaluation context. The rules of the monitored
semantics are given in Fig. 3 and described below. We use er(ω) to denote the
location of the environment record associated with ω.

Rule Monitor sync corresponds to a monitored step. The transition of
the monitor is synchronised with the transition of Core JS semantics through
an internal event αl, where l identifies the running function that performed a
computation step.

Rule Unmonitored step models the case where there is no matching mon-
itor configuration for the current computation step. In this case, Core JS seman-
tics performs an unconstrained computation step (that takes place outside a
boundary statement).

Rule Monitor configuration + generates a new monitor configuration
for verifying the statement inside a boundary statement. In order to account for
computation steps inside boundary statements, we extend the syntax of evalua-
tion contexts with a special boundary context: E = @monitor(E′).

74 J. Fragoso Santos et al.

Fig. 4. Dynamic typing core JS expressions and statements

Rules Monitor configuration - 1 and Monitor configuration - 2
remove a monitor configuration from the current set of monitor configurations
when its corresponding statement finishes executing.

Monitoring Rules. Monitor transitions are defined in Fig. 4. We use Γ, τ̇r, l �
〈o, ρ〉 αl→ 〈o′, ρ′〉 as shorthand for 〈Γ, τ̇r, l, o, ρ〉 αl→ 〈Γ, τ̇r, l, o

′, ρ′〉. The constraints
enforced by the monitor are the same as the constraints enforced by the type
system of Sect. 3. However, in contrast to the type system, the monitor can
precisely type dynamic expressions, since it has access to field names computed
at runtime.

Example 6 (Monitoring a Dynamic Field Look-up). In the following, we present
the sequence of monitor configurations generated when executing the statement:
@monitor(@type_env, @pc, @ret, public = o[g()]) (check the running example).

〈⊥, []〉 varl(o)→ 〈L, τ̇o〉 varl(g)→ 〈L, 〈τ̇g .
H→ PRIML〉L::τ̇o〉 f-calll→ 〈L, PRIML::τ̇o〉

If g() returns public1:
f-projl(public1)→ 〈L, PRIML〉 v-assl(public)→ 〈L, PRIML〉

If g() returns private1:
f-projl(private1)→ 〈L, PRIMH〉

v-assl(public)�→

Hybrid Typing Secure Information Flow in a JavaScript-Like Language 75

We consider two different cases: the case in which g() evaluates to public1 and
the case in which it evaluates to secret1. While in the first case, the execution
is allowed to go through, in the second one it gets stuck, because the program
tries to assign a secret value to a public variable.

Let us now briefly explain the rules that better illustrate our choices when
designing the monitor. Since, by default, all literal values are public, when a
literal value is evaluated, the monitor simply pushes PRIM⊥ onto the expression
stack. In contrast, when a variable is evaluated, the monitor has to read its type
from the typing environment and push it onto the expression stack. When a
field projection is evaluated, the first two types on the expression stack are the
types of the expressions that evaluate to the field name and to the inspected
object, respectively. Furthermore, the name of the inspected field is available in
the internal event that labels the transition. Hence, the monitor simply has to
replace the first two types of the expression stack with the type of the inspected
field upgraded with the external levels of the types of the current subexpressions.
When an if statement is evaluated, the type of the conditional guard is on top
of the expression stack. Hence, the monitor simply pops that type out of the
expression stack and pushes its external level (upgraded with the current pc)
onto the control stack. Complementarily, when the execution leaves the branch
of a conditional, the monitor just pops out the top of the control stack.

Implementation. Instead of wrapping statements containing dynamic field
operations within boundary statements, which are not part of the JavaScript
language, the prototype of the hybrid type system [15] in-lines the monitor-
ing logic in the statement itself [16]. This approach has the advantage of being
immediately deployable. The prototype implementation was used to secure sim-
ple Web application accessible online [15].

5 Security Guarantees

This section describes the security guarantees offered by the proposed analysis.
To formally define the absence of information leaks, we rely on an intuitive notion
of low-projection [14] that establishes the part of a heap that an attacker at a
given security level can see. Informally, given a heap H, an attacker at level σ
can observe:

1. the existence of a field f in the domain of an object whose type has external
level ≤ σ and associates f with an existence level ≤ σ and

2. the value of a field f in the domain of an object whose type has external level
≤ σ and associates f with a security type with external level ≤ σ.

Figure 5 presents a labelled object together with its low-projection at level L.
The object in the figure has three fields: f1, f2, and f3. An attacker at level L can
observe both the existence and the value of f1 since it has low existence level and
is associated with a visible value and the existence but not the value of f2, since
it has low existence level but is associated with an invisible value. The attacker

76 J. Fragoso Santos et al.

Fig. 5. A labelled object and its low projection

can neither observe the value nor the existence of f3 because it has high existence
level and is associated with an invisible value. Two heaps H0 and H1 are said
to be low-equal at level σ, written H0 ∼σ H1, if they coincide in their respective
low-projections. Theorem 1 states that the monitored successfully-terminating
execution of a program generated by the static type system on two low-equal
heaps always yields two low-equal heaps. A sketch of the proof of Theorem 1 is
given in the long-version of the paper available online at [15].

Theorem 1 (Noninterference). For any typing environment Γ , levels σ and
pc, security type τ̇ , statement, s, and two heaps H0 and H1, such that Γ, pc, τ̇ �s

s ↪→ s′, H0 ∼σ H1, and �〈Hi, [], s′〉, {}� →∗ �〈H ′
i, [], vi〉, {}� for i = 0, 1, it holds

that H ′
0 ∼σ H ′

1.

6 Related Work

There is a wide variety of mechanisms for enforcing and verifying secure infor-
mation flow, ranging from purely static type systems [14,18] to different flavours
of dynamic analysis [2,13]. The main mechanisms for securing information flow
in JavaScript [1,6,8] are mostly-dynamic due to the dynamicity of the language.

There is a long line of research on safety types for JavaScript which dates
back to the seminal work of Thieman [17]. Since then, the TypeScript pro-
gramming language [11] was proposed as a flexible language that adds optional
types to JavaScript with the goal of harnessing the flexibility of real JavaScript,
while at the same time providing some of the advantages otherwise reserved
for statically typed languages, such as informative compiling errors. Recently,
Rastogi et al. [12] designed and implemented a new gradual type system for safely
compiling TypeScript to JavaScript. The soundness of the proposed approach
is guaranteed by combining strict static checks with residual runtime checks.
We believe that our work can serve as a basis for extending TypeScript types
with security labels in order to verify secure information flow in TypeScript web
applications.

Gradual type systems for secure information flow have been proposed for a
pure lambda calculus [3] and for a core ML-like language with references [4].
The goal of these two works is significantly different from ours, as their main

Hybrid Typing Secure Information Flow in a JavaScript-Like Language 77

intent is to cater for the use of polymorphic security labels. For instance, the
type language proposed in [4] includes a special annotation “?” representing an
unknown security level at static time. Expressions that use variables whose types
contain the unknown level annotation, “?”, cannot be precisely typed at static
time. The programmer can introduce runtime casts in points where values of a
pre-determined security type are expected. Then the dynamic analysis checks
whether or not a cast can be securely performed during execution. However, in
order to verify such casts at runtime, these analyses must track security labels
during the execution of both dynamically verified and statically verified program
regions. In contrast, our analysis only needs to dynamically verify the execution
of program regions which were not statically verified.

7 Conclusions

We propose a sound hybrid typing analysis for enforcing secure information flow
in a core of JavaScript that includes dynamic field operations. Furthermore,
our analysis can be easily extended to handle other dynamic constructs of the
language such as eval or unknown code, which only need to be wrapped inside
the proposed boundary statement. Finally, we have implemented our analysis
and used it to verify a web application available online [15].

This work follows a well-established trend on combining static and dynamic
analysis to devise more permissive and efficient hybrid mechanisms [13]. Our
approach can be applied to other scenarios, such as the verification of isola-
tion properties [9], where it could be used to derive mostly-static lightweight
enforcement mechanisms from prior purely static specifications.

Acknowledgments. We acknowledge funding from the EPSRC grant reference
EP/K032089/1 (Fragoso Santos) and the ANR project AJACS ANR-14-CE28-0008
(Jensen, Rezk, and Schmitt). No new data was collected in the course of this research.

References

1. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in
webkit’s javascript bytecode. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS
2014). LNCS, vol. 8414, pp. 159–178. Springer, Heidelberg (2014)

2. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: SP
(2010)

3. Disney, T., Flanagan, C.: Gradual information flow typing. In: STOP (2011)
4. Fennell, L., Thiemann, P.: Gradual security typing with references. In: CSF (2013)
5. Flanagan, C.: Hybrid type checking. In: POPL (2006)
6. De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: Flowfox: a web browser

with flexible and precise information flow control. In: CCS (2012)
7. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow

in JavaScript and its APIs. In: SAC (2014)
8. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In: CSF

(2012)

78 J. Fragoso Santos et al.

9. Maffeis, S., Taly, A.: Language-based isolation of untrusted JavaScript. In: CSF
(2009)

10. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
In: ACM TOPLAS (2009)

11. Microsoft. TypeScript language specification. Technical report, Microsoft (2014)
12. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & efficient

gradual typing for TypeScript. In: POPL (2015)
13. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:

CSF (2010)
14. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.

Areas Commun. 21(1), 5–19 (2003)
15. Santos, J.F.: Online materials - hybrid type system 2015. http://www.doc.ic.ac.

uk/∼jfaustin
16. Santos, J.F., Rezk, T.: An information flow monitor-inlining compiler for securing

a core of javascript. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El
Kalam, A., Sans, T. (eds.) SEC 2014. IFIP AICT, vol. 428, pp. 278–292. Springer,
Heidelberg (2014)

17. Thiemann, P.: Towards a type system for analyzing javascript programs. In: Sagiv,
M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg (2005)

18. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analy-
sis. J. Comput. Secur. 4(2), 167–187 (1996)

19. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

http://www.doc.ic.ac.uk/~jfaustin
http://www.doc.ic.ac.uk/~jfaustin

Fault Ascription in Concurrent Systems

Gregor Gössler(B) and Jean-Bernard Stefani

INRIA Grenoble – Rhône-Alpes, Université Grenoble – Alpes, Grenoble, France
gregor.goessler@inria.fr

Abstract. Fault diagnosis is becoming increasingly important and dif-
ficult with the growing pervasiveness and complexity of computer sys-
tems. We propose in this paper a general semantic framework for fault
ascription, a precise form of fault diagnosis that relies on counterfac-
tual analysis for identifying necessary and sufficient causes of faults in
component-based systems. Our framework relies on configuration struc-
tures to handle concurrent systems, partial and distributed observations
in a uniform way. It defines basic conditions for a counterfactual analysis
of necessary and sufficient causes, and it presents a refined analysis that
conforms to our basic conditions while avoiding various infelicities.

1 Introduction

The increasing reliance of our modern societies on computer systems makes the
diagnosis of faults in such systems a crucial necessity. In complex computer
systems, for instance in large distributed systems, fault diagnosis is a difficult
proposition. Several approaches to fault diagnosis have been put forward in the
literature, e.g. using techniques from artificial intelligence [16,17], from auto-
matic control [12], or from concurrency theory [3,9].

In this paper, we contribute to the latter line of work by developing a gen-
eral framework for fault ascription in concurrent systems. Fault ascription, also
called blaming [6], is a form of fault diagnosis that goes beyond the identifica-
tion of explanations, typically understood as executions that are congruent with
observed behavior, to identify necessary and sufficient causes for some observed
behavior, and that can pinpoint the origin of a fault in the failure of given
components to meet their specification.

Intuitively, a necessary cause is a set of events that must take place in order
for a fault to occur in the context of given observations; a sufficient cause is
a set of events that is enough to trigger an observed fault. These notions are
reminiscent of similar notions in philosophy and legal reasoning [4,14]. They
are required in order to determine, in a complex system, which components
are responsible for the occurrence of a fault, and to ascribe legal responsibility
for a fault occurring in multi-vendor systems [15]. In contrast to classical fault
diagnosis and fault isolation, fault ascription requires some form of counterfactual
reasoning of the form “would f also have occurred if c had not occurred?” in
order to assess the modality of causes.

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 79–94, 2016.
DOI: 10.1007/978-3-319-28766-9 6

80 G. Gössler and J.-B. Stefani

C1 C2

f1

g s

r
f2

f

Fig. 1. Running example (color figure online)

Example 1. As a very simple example, consider the system depicted by the small
Petri net in Fig. 1, where observable transitions are colored dark blue, while unob-
servable ones are colored light grey. The system comprises two components, C1
and C2. C1 can either perform action g (its normal behavior), or perform action
f1 (a fault), followed by action r. C2 can either perform action s (its normal
behavior), or perform action f2 (a fault), followed by action f. The composi-
tion of the two components enforces the serialization of executions of C1 and
C2. The overall behavior of the composition is given by the unfolding of the
Petri net in Fig. 1, which consists of the following event configurations:

{∅, {g},

{g, s}, {g, f2}, {g, f2, f}, {f1}, {f1, r}, {f1, r, s}, {f1, r, f2}, {f1, r, f2, f}}.
Consider now an observation on the execution of this system that consists of

the recording of the following observable event configurations {∅, {f1}, {f1, f}},
and assume we are interested in knowing which faulty component behavior is to
blame for the occurrence of the fault f. Intuitively, it seems clear that C1 is not
to blame: indeed, even if C1 performs the faulty transition f1, the system can
recover from this fault via transition r, and let C2 behave normally. It would thus
appear that C2 is to blame, and that the fault that is necessary for f to occur is
just f2, for had C2 not misbehaved via action f2, then the whole system would
not have experienced fault f. In contrast, the fact that C1 had a fault f1 during
the observed execution has no bearing on the final fault since even without the
fault f1, the fault f2 alone would have been sufficient to entail f.

In this paper, we develop a general concurrency theoretic framework which
formalizes the counterfactual analysis required to analyse fault ascription sce-
narios as in the above example. It is based on configuration structures [19],
and encompasses truly concurrent executions, as well as partial and distributed
observations.

The paper is organized as follows. Section 2 details the notations and opera-
tions on configuration structures we use in the paper, defines our formalization
of component-based systems, of faults and of observation logs. Section 3 moti-
vates constructions needed for fault ascription by means of a simple example,
and presents our abstract framework for fault ascription. Section 4 presents an
instance of our framework, with definite constructions for ascertaining necessary
and sufficient causes of faults, which generalizes previous works based on traces

Fault Ascription in Concurrent Systems 81

[6,7,20]. Section 5 discusses several examples that illustrate various features of
our framework. Section 6 discusses related work. Section 7 concludes the paper.

2 Preliminaries

Notations. We use [n] to denote the finite set of naturals {1, . . . , n}. We
use boldface to denote tuples of elements taken from a given set, as in s =
〈s1, . . . , sn〉. We use

⋃
S to denote

⋃
s∈S s. A predicate P that applies to ele-

ments of a set S is identified with a subset of S. In the paper, we use both set
operations, e.g. s ∈ P, or predicate notation, e.g. P(s), where appropriate.

2.1 Operations on Configuration Structures

Definition 1 (Configuration Structure). A configuration structure is a
tuple (E, C), where E is a set (of events), and C ⊆ 2E is a set of subsets of
E, called configurations.

A rooted configuration structure (E, C) is such that ∅ ∈ C.

We now define some operations on configuration structures.

– (E1, C1) ‖ (E2, C2) = (E, C) where E = E1 ∪ E2 and C = {c ∈ 2E | c ∩ Ei ∈
Ci, i = 1, 2}

– (E1, C1) ∩ (E2, C2) = (E1 ∩ E2, C1 ∩ C2)
– (E1, C1) ⊆ (E2, C2) iff E1 ⊆ E2 ∧ C1 ⊆ C2

– max C = {c ∈ C | ∀c′ ∈ C : c ⊆ c′ ⇒ c = c′}
– (E, C)↓F = (E ∩ F, C↓F) where C↓F = {c↓F | c ∈ C}, and c↓F = c ∩ F.
– Let (E, C) be a configuration structure, and let F be a set such that E ⊆ F.

We define c↑F = {c′ ⊆ F | c′ ∩E = c}, C↑F =
⋃

c∈C c↑F, and (E, C)↑F = (F, C↑F).

Remark 1. When E ⊆ F, we have by definition: ∀d ∈ c↑F, d↓E = c.

Definition 2 (Hasse Diagram). For a set of configurations C we define the
graph HC = (V,E) with vertices V = C and edges

E = {(c, c′) | c, c′ ∈ C ∧ c ⊆ c′ ∧ ∀c′′ ∈ C : c ⊆ c′′ ⊆ c′ =⇒ c = c′′ ∨ c′′ = c′}

Definition 3 (Conflict). Let C = (E, C) be a configuration structure. We say
that a pair of events (e, e′) is conflictual in C if there exists no c ∈ C such that
{e, e′} ⊆ c. C is conflict-free if no pair of events of E is conflictual.

2.2 Systems and Components

A component specification is a rooted configuration structure. A component spec-
ification is the expected behavior of an actual component. Similarly, a system
specification is the abstraction of a system composed of a set of interacting
components:

82 G. Gössler and J.-B. Stefani

Definition 4 (System Specification). A system specification is a pair
(S, B), where:

– S = (Si)i∈I is a finite tuple of component specifications Si = (Ei, Ci), where
the sets Ei are assumed to be mutually disjoint, i.e. ∀i, j ∈ I, i �= j =⇒
Ei ∩ Ej = ∅.

– B = (B,B) is a rooted configuration structure, where B ⊆ E =
⋃

i∈I Ei.

We use the word “component” in a broad sense to denote part of a system behav-
ior. The configuration structure B plays the role of a behavioral model: it is used
to express assumptions and constraints on the possible (correct and incorrect)
behaviors. In particular, B may be used to model synchronization and coor-
dination between components. The component specifications define the correct
behavior of components, in the sense of normality of [10]; the actual component
behavior may violate those specifications. Note that B may contain behaviors
not in S =‖i∈I Si, for instance events in (

⋃
i∈I Ei)\(

⋃
i∈I

⋃ Ci). Conversely, part
of the behaviors of S may not be feasible according to B.

Remark 2. An alternate definition for a system specification that explicitly
accounts for events E

∗ not appearing in component specifications could be
defined as follows:
System specification – alternate definition. A system specification is a pair (S, B),
where:

– S = (Si)i∈I is a finite tuple of component specifications Si = (Ei, Ci)
– B = (B,B) is a rooted configuration structure where B ⊆ E ∪ E

∗, where
E =

⋃
i∈I Ei and E

∗ ∩ E = ∅.

However, one can always transform a system specification (S, B) according to the
above definition into a system specification A(S, B) complying with Definition 4:
it suffices to define A(S, B) = (S′, B), where S′ = S,�E∗ and �E∗ = (E∗, 2E

∗
).

2.3 Faults and Logs

Given a system specification (S, B) with events in E, a fault is an incorrect
behavior. To define a fault, we require a predicate P ⊆ 2E, which characterizes
the correct configurations. In this paper, we focus on safety properties, using
the standard transition system associated with a configuration structure under
the asynchronous interpretation [19]. A fault occurs whenever P is violated. We
require that system specifications be consistent with respect to the given property,
which amounts to say that when all the components behave according to their
specification, the system is not at fault. Formally:

Definition 5 (Consistent System Specification). A consistently specified
system is a tuple (σ,P) where σ = (S, B) is a system specification with S =
((Ei, Ci))i∈[n], and P is a predicate such that ‖i∈[n] Ci ∩ B ⊆ P.

Fault Ascription in Concurrent Systems 83

Under a consistent specification, property P may be violated only if at least
one of the components violates its specification. In contrast, the violation of a
component specification does not necessarily entail a violation of P. This is useful
e.g. to model systems that tolerate certain component failures. Throughout this
paper we consider only consistent system specifications.

Remark 3. In addition to being consistent, a meaningful specification of a system
should satisfy ‖i∈[n] Si ∩ B �= ∅ — i.e. B should allow for some correct behavior
of its components —, although this is not required for the analysis described
below.

Observations of the execution of a system specified by (S, B), with events E,
take the form of logs.

Definition 6 (Logs, Observables and Detected Faults). A log of a system
with specification (S, B) is a rooted conflict-free configuration structure (O,L)
such that (O,L) ⊆ B↓O, with O ⊆ E. We call O the set of observable events
or observables. Given a consistently specified system ((S, B),P) and a set of
observables O, we say a fault is detected by a log (O,L) whenever L �⊆ P↓O.

Definition 7 (Filtering �). Let L = (O,L) and B = (B,B) be two configura-
tion structures such that O ⊆ B. We define the filter of B by L, noted L �B, as
follows:

L � B =
{
c ∈ L↑B ∩ B | ∃c′ ∈ B : c ∪

⋃
L ⊆ c′}

The filtering operation extracts configurations from B that are compatible with
observations provided by L, avoiding introducing configurations that would be
inconsistent with observations (because of conflicts between unobservable events
and observed events).

Example 2. For B = (B,B) with B = {τ, a, b}, B =
{∅, {τ}, {a}, {a, b}}, O =

{a}, and a log L = (O,L) with L =
{∅, {a}} we have L � B =

{∅, {a}, {a, b}}.
The configuration {τ} is consistent with the observed configuration ∅ ∈ L but
inconsistent with the observation {a}, hence we do not have {τ} in L � B.

We use filtering L�B, as in the example above, to retrieve explanations for the
observed behavior recorded in a log. One might want to refine the definition of
L�B so as to be more precise concerning inferred non-observable behavior, that
is, eliminate configurations that are not consistent with observed configurations
in the log. This is standard practice in fault diagnosis [5]. However, for the sake
of simplicity, we will stick in this paper to the definition of filtering given in
Sect. 2, and the simple consistency check it provides.

Example 3. Figure 1 illustrates an example system specification. The system B
is specified by the unfolding of the Petri net in the figure (following e.g. [19]). The
specification of component C1 is given by the configurations

{∅, {g}} built on
events E1 = {g, f1, r}. The specification of component C2 is given by the configu-
rations

{∅, {s}} over E2 = {s, f2, f}. The behavior B adds the faulty transitions

84 G. Gössler and J.-B. Stefani

f1, f2, f to the behavior of components, as well as the synchronization constraint
forcing the occurrence of transitions s or f2 after the occurrence of transitions g
or r. The set of events of B is B = {g, f1, r, s, f2, f}. The configurations of B are
B =

{∅, {g}, {g, s}, {g, f2}, {g, f2, f}, {f1}, {f1, r}, {f1, r, s}, {f1, r, f2}, {f1, r,
f2, f}}. Observables O are events {f1, s, f}, marked in dark blue in Fig. 1. The
configurations of the log L in this example are {∅, {f1}, {f1, f}}.

Remark 4. To simplify notations in the following sections, given a system speci-
fication and its behavioral model (B,B), we often write P and in general sets of
configurations X ⊆ B using logical formulas with events as propositional vari-
ables indicating the occurrence of these events. For instance, X = f1 stands for
X = {c ∈ B | f1 ∈ c}.

3 A General Framework for Fault Ascription

In this section we define causality of component behaviors for the violation of a
system-level property. We assume the following inputs to be given:

– a system specification σ = (S, B) with component specifications
S = ((Ei, Ci))i∈I and B = (B,B), with B ⊆ ⋃

i∈I Ei;
– a set O ⊆ B of observable events;
– a property P such that (σ,P) is consistently specified;
– a log L = (O,L);
– a set X ⊆ B \ ‖iCi of faulty configurations to be checked for causality.

Notice that the set of faulty configurations (L�B)\‖iCi is, in general, incom-
parable with (L�B)\P: a violation of P does not need to occur simultaneously
with the violation of component specifications.

In order to verify whether the violations X are a cause for the violation of P
in L, we construct the (hypothetical) system behavior where the failures in X
and their effects on the observed execution do not occur, under the contingency
that the parts of the log that are not impacted by X remain consistent with the
actual observations. We then verify whether all obtained behaviors satisfy P.
Let CFX (“counterfactuals with respect to X”) be an operation on configuration
structures with the following property, for L = (O,L):

⎧
⎨

⎩

CFX (L) ⊆ B \ X ∧
∀i ∈ [n] :

(
(L � B)↓Ei

⊆ Ci ⇒ CFX (L)↓Ei
⊆ Ci

)
if (L � B) ∩ X �= ∅

CFX (L) = L � B if (L � B) ∩ X = ∅
(1)

Intuitively, the set of configurations CFX (L) models the system behavior “if X
had not happened”, while avoiding the introduction of new component failures.

For a given CFX we can now define the notions of necessary and sufficient
causality.

Fault Ascription in Concurrent Systems 85

Definition 8 (Necessary Causality). Consider a consistently specified sys-
tem

(
(S, B),P)

with component specifications S = 〈S1, ..., Sn〉 and Si = (Ei, Ci),
a log L = (O,L) with L � B �⊆ P, and a predicate X of faulty configurations.
X is a necessary cause of the violation of P in L (with respect to counterfac-
tual operator CF) if CFX (L) ⊆ P. The faults of a subset I of components are a
necessary cause if X Δ= {c ∈ B | ∃i ∈ I : c↓Ei

/∈ Ci} is a necessary cause.

That is, the incorrect configurations in X are a necessary cause for the violation
of P in L if, in the counterfactual scenarios where configurations in X do not
occur, P would have been satisfied.

The definition of necessary causality above is parameterized by a counterfac-
tual operator CF. We can check that, regardless of the counterfactual operator
used, this definition agrees with a naive notion of necessary causality as necessary
condition, defined as follows:

Definition 9 (Naive Necessary Causality). Let B = (B,B) be a system
specification, and let P ⊆ 2B be a property. Let x ⊆ B and Y ⊆ 2B. We say that
x is a naive necessary cause for the violation of P in Y, if x appears as a subset
of all faulty configurations in Y, formally: ∀c ∈ Y \ P, x ⊆ c.

Example 4. Naive necessary causality is not satisfactory for analyzing causality
relative to the behavior recorded in the log. To see this, consider two components
with specifications (Ei, Ci) with Ei = {ai, fi}, Ci =

{∅, {ai}
}
, i = 1, 2, the

behavioral model B = 2E with E = E1 ∪ E2, and the property P = ¬(f1 ∨ f2):
a failure fi of any of the components violates P. For the log L = (E,L) with
L =

{∅, {a1}, {a1, f2}
}
, f2 is not a naive necessary cause with respect to B,

but it is a necessary cause in L (that is, under the contingency that f1 has not
occurred) since CFX (L) ⊆ P.

Proposition 1 (Soundness with Respect to Naive Necessary Causality).
Let

(
(S, (B,B)),P)

be a consistently specified system and L = (O,L) be a log as
specified in Definition 8. Assume that there exists e ∈ B such that {e} is a naive
necessary cause for the violation of P in B. Then X = e is a necessary cause of the
violation of P in L.

Proof. By definition of naive necessary causality, e belongs to all faulty configu-
rations. Hence, we have B \ P = X . Since L � B �⊆ P (by Definition 8), we have
(L � B) ∩ X �= ∅ and thus CFX (L) ⊆ P, as required.

Example 5. Returning to our simple example in Fig. 1, it is easy to check that
X = f2 is identified as a naive necessary cause for the violation of P = ¬f in
B, and as a necessary cause for the violation of P in L using any counterfactual
operation meeting Condition 1. Note that in a system consisting of two copies of
the Petri Net in Fig. 1 running in parallel, with the second copy having primed
events x′ where the first has event x, X = f2 is still identified as a necessary
cause for the violation of P ′ = f ∨ f′ in L using any counterfactual operation
meeting Condition 1, but is not a naive necessary cause for the violation of P ′

in B ‖ B′.

86 G. Gössler and J.-B. Stefani

Definition 10 (Inevitable). Given sets C, C′ of configurations with ∅ ∈ C, we
call C′ inevitable in C if for any c ∈ max C, any path from ∅ to c in the Hasse
diagram HC transits by some configuration in C′, and only a finite subset of C is
reachable from ∅ in HC without transiting by some configuration in C′.

C is inevitably faulty with respect to a predicate P if C \ P — that is, a
violation of P — is inevitable in C.

Intuitively, a set of configurations is inevitably faulty with respect to P if all its
maximal elements can only be reached through some intermediate configuration
violating P.

The definition of sufficient causality is dual to necessary causality, where in
the alternative worlds we remove the failures not in X and verify whether P
is still violated. In order for the definition to correctly cope with configurations
simultaneously encompassing component failures within and outside of X , we
only define sufficient causality on the level of components, rather than faulty
configurations.

Definition 11 (Sufficient Cause). Given

– a consistently specified system
(
(S, B),P)

with S = 〈S1, ..., Sn〉 and Si =
(Ei, Ci),

– a log L = (O,L) such that L � B is inevitably faulty with respect to P; and
– a subset I ⊆ [n] of components,

the failures of components in I are a sufficient cause for the violation of P in L

if with X Δ= {c ∈ B | ∃i ∈ [n] \ I : c↓Ei
/∈ Ci}, CFX (L) is inevitably faulty with

respect to P.

That is, the failures of components in I are a sufficient cause for the violation
of P if for the counterfactual scenarios where failures of components other than
I do not occur, a violation of P is still inevitable.

Remark 5. One may wonder whether we have for sufficient causes an equivalent
of Proposition 1. Unfortunately, we don’t. We can certainly mirror what we did
with necessary causality, and define a notion of sufficient cause as sufficient
condition for a failure, i.e. say that some configuration c is a sufficient cause for
a failure f if the occurrence of the events in c inevitably leads to the occurrence
of failure f . The two definitions of sufficient and of naive sufficient causality
in general lead to different identification of sufficient causes, though. This is
because the configuration structures on which inevitable faultiness is verified,
are incomparable.

Proposition 2 (Soundness). If X is a necessary cause for the violation of P
in the log L = (O,L) then (L � B) ∩ X �= ∅.

If the failures of components I are a sufficient cause for the violation of P
in the log L = (O,L) then (L � B)↓Ei

�⊆ Ci for some i ∈ I.

Intuitively, any cause contains some configuration of the log where at least
one component has violated its specification.

Fault Ascription in Concurrent Systems 87

Proof. Necessary causality: Let X be such that (L � B) ∩ X = ∅. We show that
X is not a cause. Let C = CFX (L). By hypothesis on CFX we have C = L � B,
thus ¬(C ⊆ P), and X is not a cause for the violation of P in L.

Sufficient causality: Let I be such that ∀i ∈ I, (L � B)↓Ei
⊆ Ci. We have

X = {c ∈ B | ∃i ∈ [n] \ I : c↓Ei
/∈ Ci}. Let C = CFX (L). By hypothesis on CFX

we have C ⊆ B \ X ∧ ∀i ∈ [n] :
(
(L � B)↓Ei

⊆ Ci ⇒ CFX (L)↓Ei
⊆ Ci

)
, hence

C ⊆ B ∩ ‖iCi. By consistency of the specification it follows that CFX (L) is not
inevitably faulty with respect to P, hence the failures of components in I are
not a sufficient cause.

Proposition 3 (Completeness). Each violation (resp. inevitable violation) of
P in L � B has a necessary (resp. sufficient) cause.

Proof. Necessary causality: Let X = B \ ‖iCi and C = CFX (L). By hypothesis
on CFX we have C ⊆ B \ X . Thus, C contains only observations consistent
with executions where all components behave correctly. By consistency of the
specification we have CFX (L) ⊆ P, thus X is a necessary cause for the violation
of P in L.

Sufficient causality: Suppose that L � B is inevitably faulty with respect to P,
and let I = {i ∈ [n] | (L � B)↓Ei

�⊆ Ci}. We have X = ∅. Let C = CFX (L). By
hypothesis on CFX we have C = L � B. Since L � B is inevitably faulty with
respect to P, so is C, hence X is a sufficient cause for the violation of P in L.

Proposition 4. If the failures of a subset I of components are a necessary (resp.
sufficient) cause then the failures of components [n]\I are not a sufficient (resp.
necessary) cause.

Proof. If X = {c ∈ B | ∃i ∈ I : c↓Ei
/∈ Ci} is a necessary cause then CFX (L) ⊆ P,

thus CFX (L) is not inevitably faulty, thus [n] \ I is not a sufficient cause.
Conversely, if I is a sufficient cause then CFX (L), with X = {c ∈ B | ∃i ∈

[n]\I : c↓Ei
/∈ Ci}, is inevitably faulty with respect to P, hence ¬(CFX (L) ⊆ P),

and [n] \ I is not a necessary cause.

4 An Instantiation

Following Stalnaker’s and Lewis’ closest world assumption [14,18], X is a cause
for the violation of P if among the worlds (that is, alternative behaviors) where
X is true, some world where P is violated is closer to the actual world L than
any world where P holds. In this section we first illustrate with Example 6 why
“closeness” of the counterfactuals is important also in our framework, and then
propose a concrete definition for CFX . The goal of this instantiation is to con-
struct from L — in the spirit of the closest world assumption — a counterfactual
configuration structure where exactly the faults X to be checked for causality
and their effects are eliminated and replaced with correct behaviors.

The following example illustrates that, with the extreme choices of CFX sat-
isfying Condition (1), Definitions 8 and 11 do not pinpoint the expected cause.

88 G. Gössler and J.-B. Stefani

Example 6 (Extreme choices of CFX). Let us illustrate why the extreme choices
of CFX satisfying Condition (1) are not useful in practice.

First, take CF1
X (L) = {∅} and consider the component alphabets Ei =

{fi} and component specifications Ci = {∅}, i = 1, 2, the behavioral model
B =

{∅, {f1}, {f2}, {f2, f3}
}
, the property P = ¬(f1 ∨ f2), the log L = (E,L)

with E = E1 ∪ E2 and L =
{∅, {f1}, {f1, f2}

}
, and X = f1. Intuitively,

both components produce a fault event fi, each of which is sufficient to vio-
late P. The counterfactual configuration structure where X does not happen
is CF1

X (L) = {∅} ⊆ P, thus X is (wrongly) considered as a necessary cause.
This is because CF1

X discards all configurations of L, resulting in complete loss
of information about the observed behavior of the second component. In other
words, CF1

X is not a closest world to L where X does not happen. Similarly, f2

is not recognized as a sufficient cause since CF1
X is not inevitably faulty with

respect to P.
Now take CF2

X (L) = {c ∈ B \ X | ∀i ∈ [n] : (L � B)↓Ei
⊆ Ci ⇒ c↓Ei

∈ Ci}
and consider the component specifications (Ei, Ci), i = 1, 2, with E1 = {f1},
E2 = {f2, f3}, and Ci = {∅}, i = 1, 2, the behavioral model B = 2E with E =
E1 ∪ E2, the property P = ¬(f1 ∨ f3), the log (E,L′) with L′ =

{∅, {f1}, {f2}
}
,

and X = f1. Intuitively, the first component is faulty and violates P, whereas
the second component is faulty but does not contribute to the violation of
P. The counterfactual configuration structure where X does not happen is
CF2

X (L′) =
{∅, {f2}, {f3}, {f2, f3}

}
. The occurrence of f3 violates P, thus X is

(wrongly) not considered as a necessary cause. This is because CF2
X encompasses

all configurations not satisfying X , including those where the second component
fails with f3, in contrast to its observed behavior.

We now develop a concrete definition of CFX where the set of counterfactuals
is represented by a configuration structure computed by the composition of a
pruning and a grafting operations. Pruning restricts the faulty configurations in
(L � B) ∩ X to the maximal non-faulty sub-configurations, while remembering
the original configuration.

Definition 12 (Pruning). The pruning of a log L = (O,L) with respect to a
predicate X is

L/X =
{
(c′, c \ c′) | c ∈ L � B ∧ c′ is a maximal subset of c s.t.

¬X (c′) ∧ ∀i ∈ [n] : c′
↓Ei

∈ B↓Ei

}

Example 7. For L = (O,L) with L =
{∅, {f1, f2}

}
, B =

{∅, {f1}, {f2}, {f1, f2}
}
,

and X =
{{f1, f2}

}
we have L/X =

{
(∅, ∅), ({f1}, {f2}), ({f2}, {f1})

}
.

Before instantiating the counterfactual operator CF, we introduce an auxil-
iary function that will be used to remove the effects of a set X of faulty config-
urations in the counterfactual model CFX (L).

Definition 13 (Predecessor Closure, wf). Given sets of configurations C
and C′, a configuration c ∈ C is predecessor-closed in C with respect to C′ if c = ∅

Fault Ascription in Concurrent Systems 89

or max{c′ ∈ C′ | c′
� c}∩C �= ∅. We say that C is predecessor-closed with respect

to C′ if all its elements are predecessor-closed with respect to C′. Let wfC′(C) be
the greatest transitively predecessor-closed subset of C with respect to C′.

Intuitively, a configuration c ∈ C is predecessor-closed in C with respect to C′

if some immediate predecessor of c in C′ is in C.
Example 8. For C =

{∅, {a, b}, {d}, {c, d}} and C′ =
{∅, {a}, {a, b}, {c}, {c, d}}

we have wfC′(C) =
{∅, {d}, {c, d}}.

The goal of grafting is to construct from L/X a configuration structure mod-
eling the alternative behaviors where the configurations in X do not occur.
Definition 14 (Grafting). Let S be a vector of component specifications Si =
(Ei, Ci). The grafting of a set of tuples S — obtained by pruning L with respect
to a set X — with a set of configurations C is S �L,X ,S C = wfB(Y) where

Y = {c | (c, ∅) ∈ S} ∪ {
c ∈ C \ X | ∃(c′, c′′) ∈ S : c′′ �= ∅ ∧ c′ ⊆ c ∧ (2)

∀i :
(
c′′
↓Ei

= ∅ ⇒ c↓Ei
= c′

↓Ei

) ∧ (3)
(
(c′ ∪ c′′)↓Ei

∈ Ci ⇒ c↓Ei
∈ Ci

) ∧ (4)
(
c↓Ei

/∈ Ci ⇒ c↓Ei
= (c′ ∪ c′′)↓Ei

)}
(5)

That is, the set Y is the union of the unpruned original configurations where
X does not hold, and the configurations of C that are supersets of some pruned
configuration (line (2)). For the latter set, Condition (3) ensures that, for each
component, only pruned configurations are grafted. Component configurations
of the log that have not been pruned could be observed the same way in the coun-
terfactual model, and are not grafted to stay as close as possible to the observed
log. Condition (4) ensures the extensions to preserve invariance of the component
specifications, that is, no new component failures are introduced. Condition (5)
makes sure that configurations of a component that violate its specification are
not grafted since in the absence of a fault model — representing all possible
incorrect behaviors — we have no knowledge about how to extend faulty behav-
iors.

A path in HB from ∅ to a configuration c ∈ L�B can be seen as an explana-
tion of how c may have been reached in L. Intuitively, configurations that cannot
be explained in Y represent effects of X that would not have occurred without
X . The role of wfB in grafting is to remove those configurations.
Proposition 5. If L = (O,L) is such that L � B is predecessor-closed with
respect to B then with CFX (L) = (L/X) �L,X ,S B, Condition (1) is satisfied.

Proof. If (L � B) ∩ X �= ∅, the fact that CFX (L) ⊆ B \ X ∧ ∀i ∈ [n] :(
(L � B)↓Ei

⊆ Ci ⇒ CFX (L)↓Ei
⊆ Ci

)
follows immediately from the observation

that both sets whose union defines Y in Definition 14, exclude any configuration
satisfying X , or introducing failures of components that behave correctly in L.
On the other hand, if (L � B) ∩ X = ∅ we have L/X = {(c, ∅) | c ∈ L � B} and
CFX (L) = (L/X) �L,X ,S B = wfB(L � B) = L � B.

L � B is predecessor-closed with respect to B for any log that is obtained as
the projection M↓O of some rooted path M in HB.

90 G. Gössler and J.-B. Stefani

5 Examples

Example 9 (Use of grafting). Consider two components with specifications
(Ei, Ci) where Ei = {ei, fi} and Ci =

{∅, {ei}
}
, i = 1, 2, the behavioral model

B = 2E with E = E1 ∪E2, the property P = ¬(
(f1 ∧f2)∨ (f1 ∧ e2)∨ (e1 ∧f2)

)
—

that is, a failure event fi becomes fatal once the other component produces
some event —, and the log L = (E,L) with L =

{∅, {f1}, {f1, f2}
}
. In order to

check whether X1 = f1 is a necessary cause for the violation of P we com-
pute L � B = L, L/X1 =

{
(∅, ∅), (∅, {f1}), ({f2}, {f1})

}
, and CFX1(L) =

(L/X1) �L,X1,S B = wfB
({∅, {e1}, {f2}, {e1, f2}

})
=

{∅, {e1}, {f2}, {e1, f2}
}
.

The obtained configuration structure still violates P, hence X1 is not a neces-
sary cause for the violation of P. Intuitively, even if the first component had
behaved correctly, P would have been violated. Simply taking the projection of
L/X1 on the first configuration of the tuples we would have given the set of
configurations

{∅, {f2}
} ⊆ P.

Example 10 (Causal over-determination). Consider a system of two components
with the same specifications and behavioral model as in Example 9, the property
P = ¬(f1 ∨ f2), and the log L = (E,L) with L =

{∅, {f1}, {f1, f2}
}
. In order to

check whether X1 = f1 is a necessary cause for the violation of P we compute
L/X1 =

{
(∅, ∅), (∅, {f1}), ({f2}, {f1})

}
and CFX1(L) = (L/X1) �L,X1,S B =

wfB
({∅, {e1}, {f2}, {e1, f2}

})
=

{∅, {e1}, {f2}, {e1, f2}
}
. This configuration

structure still violates P, hence X1 is not a necessary cause for the violation
of P. Symmetrically, X2 = f2 is not a necessary cause either. On the other hand,
as CFX1(L) (resp. CFX2(L)) is inevitably faulty with respect to P, the failures
of the second (resp. first) component are found to be a sufficient cause for the
violation of P.

Example 11 (Joint causation). Consider the same component specifications,
behavioral model, and log as in Example 10, and the property P = ¬(f1 ∧ f2).
In order to check whether X1 = f1 is a necessary cause for the violation of P we
compute, as above, CFX1(L) that satisfies our new property, hence X1 is a neces-
sary cause for the violation of P. As CFX1(L) (resp. CFX2(L)) is not inevitably
faulty with respect to P, the failure of the second (resp. first) component alone
is not a sufficient cause for the violation of P.

Example 12 (Use of wf in grafting). Consider two components with specifica-
tions (Ei, Ci) where E1 = {f1, a}, E2 = {f2}, and C1 = C2 = {∅}, with observable
events O = {f1, a, f2}, the behavioral model B =

{∅, {f1}, {f1, a}, {f2}, {f1, f2},
{f1, a, f2}

}
, the property P = ¬(f1 ∧ a), the log L = (E1 ∪ E2,L) with

L =
{∅, {f1}, {f1, f2}, {f1, a, f2}

}
, and X = f1 ∧ ¬a: both components pro-

duce a fault event fi; the conjunction of f1 and a violates P. We have L/X ={
(∅, ∅), (∅, {f1}), ({f2}, {f1}), ({f1, a, f2}, ∅)

}
and (L/X) �L,X ,S B = wfB(C) ={∅, {f2}

} ⊆ P, where C =
{∅, {f2}, {f1, a, f2}

}
. Hence X is a necessary cause.

The configuration {f1, a, f2} is not reachable in HB by any path passing only

Fault Ascription in Concurrent Systems 91

through the configurations in C, therefore it is removed by wfB. Without apply-
ing wfB we would have obtained the set of configurations C that still violates P,
thus X would not be found to be a necessary cause.

Example 13 (Comparison with [7]). Consider three components S (scheduler),
C1 and C2 (clients) with the following event sets and specifications: ES =
{go1, go2}, CS =

{∅, {go1}, {go2}
}
, EC1 = {p1, w1}, CC1 =

{∅, {p1}, {w1}
}

EC2 = {p2, w2, f2}, CC2 =
{∅, {p2}, {w2}

}
, the behavioral model B = (p1 ⇒

go1)∧ (p2 ⇒ go2), and the property P = ¬(p1 ∧ p2)∧¬(w1 ∧ f2). Intuitively, the
scheduler grants one of the components access to some critical section. Client Ci

may enter with pi if it has been granted access, or do wi. The second component
may fail with event f2. The property requires mutual exclusion, and absence of
f2 in conjunction with w1. We want to analyze causality of X = go1 ∧go2 on the
log L = (ES ∪ EC1 ∪ EC2 ,L) with L =

{∅, {f2}, {f2, go1}, {f2, go1, p1}, {f2, go2},
{f2, go2, p2}, {f2, go1, go2, p1}, {f2, go1, go2, p2}, {f2, go1, go2, p1, p2}

}
. We have

(L/X)�L,X ,SB =
{∅, {f2}, {f2, go1}, {f2, go1, p1}, {f2, go2}, {f2, go2, p2}

}
. Thus,

X is a necessary cause for the violation of P, and the failure f2 of C2 is not a
sufficient cause.

The trace-based formalism of [7] cannot express the fact that the log does
not distinguish any order among go1 and go2; if we fix this by introducing a new
fault event go12, then the unaffected prefixes — that is, the longest prefixes that
could have been observed if go12 had not occurred — of the vector of component
logs (go12; p1; f2.p2) are (ε; ε; f2), and the set of counterfactual traces includes
the vector of component traces (go1;w1; f2) that still violates P. Hence, the fault
of the scheduler is (incorrectly) not recognized as a necessary cause due to the
fact that the information that the first client actually performed p1, is lost.

In contrast, in the approach we present here, the use of configuration
structures enables us to represent disjunctive counterfactual scenarios as in the
example above that share different (sub-)configurations with the log that are
incompatible among each other (here, {f2, go1, p1} and {f2, go2, p2}).

Example 14 (Unobservable failure events). Consider the component specifica-
tions (Ei, Ci) with E1 = {f1, e1}, E2 = {f2}, E3 = {f3, e3}, and Ci = {∅},
i = 1, ..., 3, with observable events O = {e1, f2, e3}, the behavioral model
B = (e1 ⇒ f1) ∧ (e3 ⇒ f3), the property P = ¬(e1 ∨ f2), the log L = (O,L)
with L =

{∅, {e1}, {e1, e3}
}
, and X = f1. Intuitively, the first and third com-

ponent produce an unobservable violation of their specification; event e1 follow-
ing f1 violates P, whereas the second component behaves correctly. We have
(L/X) �L,X ,S B =

{∅, {f3}, {f3, e3}
} ⊆ P, thus X is correctly recognized as a

necessary cause.

Example 15 (Running example). For Example 3, L = (O,L) with L =
{∅, {f1},

{f1, f}}, X1 = f1, and the property P = ¬f we obtain L/X1 =
{
(∅, ∅), (∅, {f1}),

(∅, {f1, r}), ({f2}, {f1, r}), ({f2, f}, {f1, r}
}

and CFX1(L) = (L/X1)�L,X1,S B ={∅, {g}, {g, f2}, {g, f2, f}} which still violates P, hence X1 is not a necessary
cause for the violation of P. On the other hand, for X2 = f2 we have CFX2(L) =

92 G. Gössler and J.-B. Stefani

(L/X2) �L,X1,S B =
{∅, {f1}, {f1, r}, {f1, r, s}} ⊆ P, hence X2 is a necessary

cause. Conversely, as CFX1(L) is inevitably faulty whereas CFX2(L) is not, the
failure of the second component is a sufficient cause but not the failure of the
first component.

6 Related Work

As we remarked in the introduction, fault diagnosis is an active research field,
with diverse questions and techniques drawn from different areas, including con-
currency theory, discrete event systems, artificial intelligence, and control theory.
We consider in this section only what we believe to be the most relevant works
in these areas.

With respect to the techniques we use, our work is clearly related to works on
diagnosis in discrete event systems [5,21] and specifically diagnosis via unfold-
ing [9]. The diagnosis questions in these works are actually very different from
ours. They include diagnosability questions, which amount to determining the
possible occurrence of (types of) hidden faults from the observation of execu-
tions, and explanation questions, which amount to determining which (prefix
of) executions are compatible with observations recorded in a given log. Finding
explanations is the key objective in the work by Haar et al. [3,9]. In the terms of
our framework, their goal is to find efficient algorithms (using Petri net unfolding
techniques) for computing prefixes of L � B, where L records observed configu-
rations, and B is the system specification. They also extended their techniques
to finding explanations in systems with evolving topology [1], which we do not
consider in this paper. To the best of our knowledge, these works do not consider
fault ascription as we do here.

Closest to our approach on fault ascription are [7,20], which also target fault
ascription, and share a similar setting of black-box components equipped with
specifications, and a log in the form of a vector of component traces. In contrast
to the work presented here these works do not consider unobservable events, they
are limited to linear component traces and, as pointed out in Example 13, they
use a construction of the (sub-)configurations shared between the log and the
counterfactuals that may result in either loss of information or inconsistencies
in the counterfactual scenarios.

With their definition of actual causality based on a model of structural equa-
tions over a set of propositional variables [11], Halpern and Pearl have proposed
the most influential definition of causality in computer science to date. Intu-
itively, the observed values of a set X of variables is an actual cause for an
observed property ϕ if with different values of X, ϕ would not hold, and there
exists a contingency in which the observed values of X entail ϕ. At first glance,
it would seem that the notion of actual causality does not coincide with our
notions of necessary and sufficient causality, but pinpointing the exact reasons
for the difference, and characterizing the situations leading to different results,
appears non-trivial, and we leave this as a question for further study.

Several approaches use [11] to encode and analyze execution traces. [2] deter-
mines potential causes for the first violation of an LTL formula by a trace.

Fault Ascription in Concurrent Systems 93

As [11] only considers a propositional setting without any temporal connectors,
the trace is modeled as a matrix of propositional variables. The structure of
the formula is used as a model to determine which events may have caused the
violation of the property. The reported causes are, in general, neither necessary
nor sufficient. [13] extends the definition of actual causality to totally ordered
sequences of events, and uses this definition to construct from a set of traces a
probabilistic fault tree. The accuracy of the diagnostic depends on the number
of traces used to construct the model.

The use of a distance metric is explored in [8] to localize, from a counter-
example from model-checking, a possible fault as the difference between the error
trace and a closest correct trace. This work features a “white box” approach that
relies on access to source code, with no component specification.

7 Conclusion

We have presented in this paper a general framework for fault ascription, based
on configuration structures. The framework supports the definition of analyses
providing notions of necessary and sufficient causes for failures in component-
based systems. Analyses in our framework relies on operators CFX for construct-
ing counterfactual configurations, which we characterize abstractly via a simple
constraint. The key contribution of this framework lies in the definition of notions
of necessary and sufficient causality relative to an observed execution, recorded
in a log, which we prove to be sound (each necessary or sufficient cause indeed
explains an observed failure by some component failures) and complete (each
failure has a necessary cause and a sufficient cause). We have also presented an
instantiation of the framework that presents pruning and grafting constructions
used to define a non-trivial counterfactual operator. Our framework generalizes
previous works on fault ascription based on traces [7,20], and we have shown
by means of an example that our pruning and grafting constructions help solve
the problem of inaccurate counterfactuals — leading to inconsistencies or loss of
information — inherent in the trace-based approach.

Much work remains to be done however. For a start, we intend to formalize
a symbolic algorithm implementing our definitions of fault ascription directly
on Petri nets and synchronized products of transition systems, similar to the
symbolic approach to fault ascription in real-time systems of [6] based on timed
automata. For increased precision, we intend to leverage in our analysis tech-
niques developed for fault diagnosis, especially those relying on unfolding [9].
Finally, following up the work of Baldan et al. on fault diagnosis in systems with
evolving topology [1], we intend to extend our framework and causal analysis for
fault ascription to dynamically configurable systems.

References

1. Baldan, P., Chatain, T., Haar, S., König, B.: Unfolding-based diagnosis of systems
with an evolving topology. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 203–217. Springer, Heidelberg (2008)

94 G. Gössler and J.-B. Stefani

2. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterex-
amples using causality. Formal Methods Syst. Des. 40(1), 20–40 (2012)

3. Benveniste, A., Haar, S., Fabre, E., Jard, C.: Distributed monitoring of concurrent
and asynchronous systems. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003.
LNCS, vol. 2761, pp. 1–26. Springer, Heidelberg (2003)

4. Brennan, A.: Necessary and sufficient conditions. In: Zalta, E.N., (ed.) The Stan-
ford Encyclopedia of Philosophy. Winter 2012 (edn.) (2012)

5. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.
Springer, New York (2008)

6. Gössler, G., Astefanoaei, L.: Blaming in component-based real-time systems. In:
2014 International Conference on Embedded Software, EMSOFT. IEEE (2014)

7. Gössler, G., Le Métayer, D.: A general framework for blaming in component-based
systems. Sci. Comput. Program. 113, 223–235 (2015). (in Press)

8. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. STTT 8(3), 229–247 (2006)

9. Haar, S., Fabre, E.: Diagnosis with petri net unfoldings. In: Seatzu, C., Silva Suárez,
M., van Schuppen, J.H. (eds.) Control of Discrete-event Systems. LNCIS, vol. 433,
pp. 301–318. Springer, Heidelberg (2013)

10. Halpern, T.Y., Hitchcock, C.: Graded causation and defaults. CoRR (2013).
abs/1309.1226

11. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural approach. part i:
causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)

12. Hwang, I., Kim, S., Kim, Y., Seah, C.E.: A survey of fault detection, isolation
and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653
(2010)

13. Kuntz, M., Leitner-Fischer, F., Leue, S.: From probabilistic counterexamples via
causality to fault trees. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFE-
COMP 2011. LNCS, vol. 6894, pp. 71–84. Springer, Heidelberg (2011)

14. Lewis, D.: Counterfactuals, 2nd edn. Blackwell, Oxford (2000)
15. Le Métayer, D., Maarek, M., et al.: Liability issues in software engineering: the

use of formal methods to reduce legal uncertainties. Commun. ACM 54(4), 99–106
(2011)

16. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge
University Press, Cambridge (2009)

17. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

18. Stalnaker, R.: A Theory of Conditionals. Studies in Logical Theory. Blackwell,
Oxford (1968)

19. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
petri nets. Theor. Comput. Sci. 410(41), 4111–4159 (2009)

20. Wang, S., Ayoub, A., Ivanov, R., Sokolsky, O., Lee, I.: Contract-based blame assign-
ment by trace analysis. In: 2nd ACM Interational Conference HiCoNS. ACM (2013)

21. Zaytoon, J., Lafortune, S.: Overview of fault diagnosis methods for discrete event
systems. Ann. Rev. Control 37(2), 308–320 (2013)

http://www.abs/1309.1226

Disjunctive Information Flow
for Communicating Processes

Ximeng Li1(B), Flemming Nielson1, Hanne Riis Nielson1, and Xinyu Feng2

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{ximl,fnie,hrni}@dtu.dk

2 University of Science and Technology of China, Hefei, China
xyfeng@ustc.edu.cn

Abstract. The security validation of practical computer systems calls
for the ability to specify and verify information flow policies that are
dependent on data content. Such policies play an important role in con-
current, communicating systems: consider a scenario where messages are
sent to different processes according to their tagging. We devise a secu-
rity type system that enforces content-dependent information flow poli-
cies in the presence of communication and concurrency. The type system
soundly guarantees a compositional noninterference property. All theo-
retical results have been formally proved in the Coq proof assistant [9].

1 Introduction

Language-based information flow control [27] aims to provide end-to-end guaran-
tees against inadvertent information leakage in the execution of programs. The
security enforcement is usually achieved by static type systems [32], dynamic
monitoring [13], or a mixture of both [4]. The security guarantee is usually
provided by noninterference properties (e.g., [10,26]) requiring that the public
parts of a system should stay invariant against variations in the confidential
parts [8]. The area has gained practical impact in securing voting systems [7],
cryptographic implementations such as RSA encryption (e.g., [27]), and in the
end-to-end confidentiality enforcement in real-world programming languages like
PHP [18] and JavaScript [3,15].

In recent years, an emerging concern in information flow control is the enforce-
ment of content-dependent flow policies ([1,6,20]). In this setting, different
security classes are assigned to a variable under different memory contents.
Content-dependent policies are useful in concurrent systems — consider processes
exchanging messages whose destinations depend on their tagging. However,
despite all the aforementioned existing work (all in a sequential setting), the inter-
action between content-dependent policies on the one hand, and concurrency and
communication on the other, is largely unexplored so far.

In this paper, we enforce content-dependent information flow policies in a
concurrent language, where processes make use of local variables and commu-
nicate with each other to share information. The selection of relevant policies

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 95–111, 2016.
DOI: 10.1007/978-3-319-28766-9 7

96 X. Li et al.

at each program point is achieved with the help of a Hoare logic [2] compo-
nent in our information flow type system. We consider synchronous commu-
nication much in the manner of a process calculus like CCS [23]. The types
of communication channels act as bridges between the modular typing of the
individual processes. The presence and content of communication behaviors are
treated separately (e.g., [21,24]), which leads to a more flexible confidential-
ity enforcement, and a more intuitive formulation of noninterference property
(termed “communication-aware security”) that is bisimulation-based, progress-
sensitive [16], and compositional.

This paper is structured as follows. A motivating example where a multiplexer
and a demultiplexer communicate with each other, is introduced in Sect. 2. We
then introduce the simple concurrent language used throughout our development
in Sect. 3. Our security policies, termed disjunctive policies, are introduced in
Sect. 4. This is followed by the presentation of our information flow type system
in Sect. 5, and noninterference property in Sect. 6. The security of the motivating
example is guaranteed by its well-typedness. We conclude and discuss certain
elements of our development and related work in Sect. 7.

All theoretical results in this paper have been formally proved1 in the Coq
proof assistant [9].

2 Motivating Example

The MILS security architecture [25] aims to achieve controlled information flow
between different system partitions that share certain resources. A typical kind
of shared component is a multiplexer (e.g., [12]) that directs confidential input
from partition I to confidential output to partition II, and public input from
partition III to public output to partition IV . Separation between confidential
traffic and public traffic is to be enforced.

Consider a (simple-minded) concretization of this scenario with the processes
in Fig. 1. A multiplexer process (SM) wraps up the source data in x1 or x2, along
with tags 1 and 2 respectively, and forwards it over the dyadic channel c to a
demultiplexer process (SD). The demultiplexer will then unwrap the data and
forward it to the sinks z1 or z2, depending on the tag value.

Multiplexer (SM) : while true do
c!(1, x1);
c!(2, x2)

Demultiplexer (SD) : while true do
c?(y, z);
if y = 1

then z1 := z
else z2 := z

Fig. 1. The code for the multiplexer and the demultiplexer

1 The proof script is accessible at http://lbtweb.pbworks.com/w/file/fetch/97133580/
dif com coq.zip.

http://lbtweb.pbworks.com/w/file/fetch/97133580/dif_com_coq.zip
http://lbtweb.pbworks.com/w/file/fetch/97133580/dif_com_coq.zip

Disjunctive Information Flow for Communicating Processes 97

Suppose the variable x1 is confidential, whereas x2 is public. The information
flow analysis should then reveal that z1 needs to be confidential, while z2 can be
public.

For modularity reasons, a type-based analysis needs to assign a confidentiality
level to the channel c, to be able to type SM and SD separately. In the demul-
tiplexer process SD, both z1 and z2 obtain data from c, depending on whether
the tag is 1 or not. It would then be desirable for the type system to have the
knowledge that either c is confidential and communicating (1,), or c is public
and communicating (2,). This is precisely what our disjunctive policies aim to
capture, in the setting of concurrent systems.

Moreover, when it is said that “c is confidential”, what is actually meant is
that it communicates confidential content. The observation of the mere presence
of any communication action over c, without observing the content communi-
cated, does not jeopardize the confidentiality of x1. We thus distinguish between
the presence and content of channel communication (e.g., [19,21]), for a more
fine-grained, permissive enforcement of our disjunctive policies.

3 The Language

We introduce the concurrent imperative language to be used, and specify its
structural operational semantics.

Syntax. A system Σ consists of a fixed number of concurrent processes. All
variables are local to their own processes, and information sharing is achieved
by means of communication.

All processes are assumed to have distinct identifiers in {1, 2, ...}. For a sys-
tem Σ with the set Pid(Σ) of process identifiers, its set of variables can thus
be denoted by VarΣ =

⊎
i∈Pid(Σ) VarΣ,i, where the process with identifier i

can only use variables from VarΣ,i. For communication, the set of polyadic
channels is PCh and the set of atomic channels is Ch = {c.1, · · · , c.m | c ∈
PCh, and c has arity m}.

We write x, y, z for variables, X for sets of variables, c for either a polyadic
channel name or an atomic channel name (it will always be clear from the con-
text which is the case), n for unspecified constants, op for unspecified arithmetic
operators, rel for unspecified relational operators, and tt for the boolean con-
stant denoting truth. The set of variables contained in an arithmetic expression
a (resp. boolean expression b) is fv(a) (resp. fv(b)).

The syntax of our language is given by:

a ::= n | x | a1 op a2

b ::= tt | a1 rel a2 | b1 ∧ b2 | ¬b

S ::= nil | skip | x := a | S1; S2 | if b then S1 else S2 | while b doS | c?x | c!a

Σ ::= i : Si | Σ1||Σ2 | Σ \ Ω

Sequential processes S can contain communication binders: c!a for output of
the vector a of arithmetic expressions over the polyadic channel c and c?x for

98 X. Li et al.

input from the polyadic channel c into the vector x of variables. The process nil
is an inert process that cannot perform any computation.

Systems are composed of concurrent, communicating processes. The con-
struct i : Si represents a process running the statement Si, with process iden-
tifier i. The construct Σ1||Σ2 represents two systems running concurrently. We
require Pid(Σ1) ∩ Pid(Σ2) = ∅ for the well-formedness of Σ1||Σ2. Finally the
construct Σ \ Ω is the system that can perform all the input/output actions
of Σ provided that those actions are not over the polyadic channels in Ω. This
last construct is similar to the CCS restriction operator [23], whose introduction
allows to specify whether each channel used by a process is shared with another
process or with the environment.

Table 1. Small-step semantics of processes and systems.

�i 〈skip; σ〉 τ−→ 〈nil; σ〉 �i 〈x := a; σ〉 τ−→ 〈nil; σ[x A→� [[a]]σ]〉

�i 〈c!a; σ〉 c!v−→ 〈nil; σ〉 if v = A[[a]]σ �i 〈c?x; σ〉 c?v−→ 〈nil; σ[x �→ v]〉
�i 〈S1; σ〉 α−→ 〈S′

1; σ
′〉

�i 〈S1; S2; σ〉 α−→ 〈S′
1; S2; σ

′〉
if S′

1 �= nil
�i 〈S1; σ〉 α−→ 〈nil; σ′〉

�i 〈S1; S2; σ〉 α−→ 〈S2; σ
′〉

�i 〈if b then S1 else S2; σ〉 τ−→ 〈S1; σ〉 if B[[b]]σ = tt

�i 〈if b then S1 else S2; σ〉 τ−→ 〈S2; σ〉 if B[[b]]σ = ff

�i 〈while b doS; σ〉 τ−→ 〈(S;while b doS); σ〉 if B[[b]]σ = tt

�i 〈while b doS; σ〉 τ−→ 〈nil; σ〉 if B[[b]]σ = ff

�i 〈Si; σ〉 α−→ 〈S′
i; σ

′〉
〈i : Si; σ〉 α−→i 〈i : S′

i; σ
′〉

〈Σ; σ〉 α−→η 〈Σ′; σ′〉
〈Σ \ Ω; σ〉 α−→η 〈Σ′ \ Ω; σ′〉

if ch(α) �∈ Ω

〈Σ1; σ1〉 cρv−→i 〈Σ′
1; σ

′
1〉 〈Σ2; σ2〉 cρ̃v−→j 〈Σ′

2; σ
′
2〉

〈Σ1||Σ2; σ1
 σ2〉 τ−→i,j 〈Σ′
1||Σ′

2; σ
′
1
 σ′

2〉
where ρ ∈ {!, ?}

〈Σ1; σ1〉 α−→η 〈Σ′
1; σ

′
1〉

〈Σ1||Σ2; σ1
 σ2〉 α−→η 〈Σ′
1||Σ2; σ

′
1
 σ2〉

〈Σ2; σ2〉 α−→η 〈Σ′
2; σ

′
2〉

〈Σ1||Σ2; σ1
 σ2〉 α−→η 〈Σ1||Σ′
2; σ1
 σ′

2〉

Semantics. The structural operational semantics of our language is presented
in Table 1. In order to handle communication, the transitions are annotated with
the action taking place; an action α takes one of three forms: c!v (for output over
c), c?v (for input over c) or τ (for the remaining cases) where v ∈ Val� denotes
the sequence of values being communicated over the channel. We tacitly assume
that arities match without having explicitly to require this in the semantics.

Disjunctive Information Flow for Communicating Processes 99

The evaluation of arithmetic and boolean expressions is specified using the func-
tions A and B, respectively.

The general form of the transitions for processes is �i 〈S;σ〉 α−→ 〈S′;σ′〉,
where i is the identifier of the process being executed, and σ, σ′ ∈ VarΣ,i → Val.
The transition rules are fairly standard.

Lifting the semantics to systems, the configurations take the form 〈Σ;σ〉,
where we tacitly assume that σ ∈ StΣ, and StΣ is VarΣ → Val. The transitions
are of the form 〈Σ;σ〉 α−→η 〈Σ′;σ′〉 where η is the list of identifiers for the
processes executed. For a polarity ! or ?, we have !̃ =? and ?̃ =!. For a mapping
A, we write DA for its domain. For two mappings A and B such that DA ∩
DB = ∅, we denote by A 	 B the mapping with domain DA
 DB , such that

(A
 B)(i) =

{
A(i) (if i ∈ DA)

B(i) (if i ∈ DB)
. Then the transition rules for systems are mostly

self-explanatory. In particular, the second rule says that 〈Σ \ Ω; σ〉 can perform
an action α of 〈Σ;σ〉 if the channel used by α is not in Ω.

Example 1. The combination of the multiplexer and demultiplexer considered in
Sect. 2 can be represented by the system ΣMD = (1 : SM || 2 : SD) \ {c}.
�

4 Security Policies

Each confidentiality level is taken from the two-point confidentiality lattice
LabS = ({L,H},�) where L � H, throughout our development. The level
H (resp. L) represents high (resp. low) confidentiality. A generalization to arbi-
trary security lattices is straightforward but induces notational sophistication;
hence we stay with LabS. We will also allow to write LabS for the underlying
set {L,H}.

P = [1 P→� (1)]
 ...
 [n P→� (n)]

P(i) = {P | P = (PS, PV), where PS ∈ VarΣ,i → LabS, PV ∈ LabF}

Pch = {P ◦, P •
1 , P •

2 , ..., P •
m}

P ◦ ∈ PCh → LabS

P •
j = (P •

jS, P
•
jV), where P •

jS = Ch → LabS, and P •
jV = Ch → LabV

Fig. 2. The structure of policy environments and policies

The structure of our policies is illustrated by Fig. 2. For systems Σ, we intro-
duce policy environments P such that for each i ∈ Pid(Σ), P(i) is a set of
policies for the variables in VarΣ,i. Each variable policy P ∈ P(i) consists
of two components, PS : VarΣ,i → LabS and PV : LabF, where PS con-
tains the confidentiality level of each variable in VarΣ,i and PV is a logical

100 X. Li et al.

formula describing the possible values of these variables. Given a set X ⊆
VarΣ,i, we define PS[X] as

⊔
x∈X PS(x). We denote by P EP the fact that

P ∈ {(
⊎

i∈DP PiS,
∧

i∈DP PiV) | ∀i ∈ DP : Pi ∈ P(i)}.
We also allow to specify a (global) set Pch of channel policies. The set Pch has

a distinguished member P ◦ : PCh → LabS that gives the confidentiality level
of the “presence” of communications over each polyadic channel. Apart from
P ◦, there is at least one content policy P • ∈ Pch. Each P • has two components
P •
S : Ch → LabS and P •

V : Ch → LabV, where for each atomic channel c, P •
S (c)

is the confidentiality level of the communication contents over c, and P •
V(c) is

the set of values potentially communicated over c.
For a variable policy P , PV can capture “relational constraints” between

different variables. For instance, given an output c!(x − y), it is valid to have
PV = (p(x) = p(y)) where p(−) is the parity function. Correspondingly, a channel
policy P • may come with the set of even numbers for P •

V(c.1).
Each P(i) (i ∈ Pid(Σ)) resembles a disjunctive formula of variable policies

(where each policy is a conjunction over the confidentiality and content informa-
tion provided by it). The same analogy is enjoyed by the set Pch

• = {P • | P • ∈
Pch} of content policies for channels. Hence we term our policies disjunctive
policies. Hereafter, the parameterization on Pch in our formulations will often
be elided since Pch is treated as a global constant. The distinguished presence
policy P ◦ ∈ Pch will be left implicit for the same reason.

Example 2. We will use the following policies for the multiplexer example pre-
sented in Sect. 2, where Z is the set of all integers.

PMD(1)= {Pm = (x1 : H; x2 : L, tt)}
PMD(2)= {P 1

d = (y : L; z : H; z1 : H; z2 : L, y = 1),
P 2
d = (y : L; z : L; z1 : H; z2 : L, y �= 1)}

Pch
MD = {P ◦ = (c : L),

P •
1 = (c.1 : L; c.2 : H, c.1 : {1}; c.2 : Z),

P •
2 = (c.1 : L; c.2 : L, c.1 : {2}; c.2 : Z)}

For convenience of reference, the policies are named. Take the policy Pm ∈
PMD(1) for example, we have PmV = tt and PmS = [x1 �→ H][x2 �→ L]. The
syntax with colons and semi-colons is used for confidentiality policy components
such as PmS for conciseness.
�

We next define the satisfaction of variable policies by states (σ |= P), and
the satisfaction of channel policies by actions (α |=ρ P •). Our concern here is
what policies are relevant according to the memory content or communication
content. For a vector v , we write |v | for its total number of components, and vj

for the j-th one.

Definition 1 (Satisfaction).

σ |= P � σ |= PV (σ is a model of the formula PV)

α |=ρ P • � P • ∈ Pch ∧ ∀c, v : α = cρv ⇒ ∀j s.t. 1 ≤ j ≤ |v| : vj ∈ P •
V (c.j)

For channel policies, the satisfaction relation |=ρ is parameterized with a
polarity ρ. The intuition is that the check on content is turned on only when the

Disjunctive Information Flow for Communicating Processes 101

polarity of α is ρ. In this case it is required that the j-th value communicated
over the polyadic channel of α should indeed be described by the value compo-
nent of P • for the atomic channel c.j. If α does not have the polarity ρ, then
nothing is required.

5 The Type System

We specify a type system for ensuring that a system Σ respects the information
flow policies given by P (such that DP = Pid(Σ)) and Pch. To deal with the
value components PV of policies P , the type system is integrated with a Hoare
logic for reasoning about the values of variables [2]. The typing rules for processes
and systems are specified in Table 2 in order.

The Typing of Processes. The judgment of the type system for processes has
the form X, l1 �K {φ} S {φ′} : Y, l2 where X is a set of variables that may incur
implicit flows [11], Y is a set of variables whose information can be leaked through
progress, K is the set of variable policies for the process S, and φ and φ′ are the
pre- and post-conditions of S in the form of logical formulae over the variables
local to S. In addition, l1 and l2 are the levels of information that can be leaked
through blocked communication attempts (due to inability of synchronization),
before reaching S, and within S, respectively. The levels l1 and l2 become H
when encountering communication channels whose presence levels are H.

In Table 2, P � P ′ represents PS � P ′
S ∧ PV ⇒ P ′

V, where PS � P ′
S if and

only if ∀u ∈ DPS
∩ DP ′

S
: PS(u) � P ′

S(u). We write P [x �→ l]S for (PS[x �→
l], PV), which is an update if x ∈ DPS

and an extension otherwise, P [u/x]V for
(PS, PV[u/x]) where u is an arithmetic expression or an atomic channel, and
P ∧ f for (PS, PV ∧ f) where f is a logical formula.

The Hoare logic part of the type system is fairly simple since all variables are
local. Most typing rules strengthen a precondition φ to the formula φ ∧ PV that
allows to select the relevant variable policies P using their content information
PV. We elaborate on the rules for assignment, output and input.

The typing rule for assignment requires the existence of a post-policy P ′ for
each selected pre-policy P . This policy P ′ should satisfy l�PS[fv(a)∪X] � P ′

S(x),
and for all variables y different than x, PS(y) � P ′

S(y) should hold. Requiring
l � P ′

S(x) and PS[X] � P ′
S(x) is to capture implicit flows [11]. On the other

hand, under the pre-condition PV ∧ φ[a/x], it is required that PV ⇒ P ′
V[a/x].

In other words, PV ∧ φ[a/x] ⇒ P ′
V[a/x] should hold. This guarantees that for a

state σ satisfying P and the precondition φ[a/x], the post state derived from σ
after the assignment satisfies the post policy P ′.

Example 3. We have {y}, L �PMD(2) {y = 1} z1 := z {y = 1} : ∅, L for the assign-
ment z1 := z in the demultiplexer process SD of Fig. 1. Essentially, it needs to be
shown that no matter if P is instantiated with P 1

d or P 2
d , we can find an appropri-

ate policy in PMD(2) for the instantiation of P ′, satisfying the side conditions of
the typing rule for assignment. First instantiate P with P 1

d . We still use P 1
d for P ′,

102 X. Li et al.

Table 2. Information flow type system for processes and systems.

X, l �K {φ} nil {φ} : ∅, L X, l �K {φ} skip {φ} : ∅, L

X, l �K {φ[a/x]} x := a {φ} : ∅, L

if ∀P ∈ K : PV ∧ φ[a/x] ⇒ ∃P ′ ∈ K : P [x �→ l � PS[fv(a) ∪ X]]S � P ′[a/x]V

X, l �K {φ} S1 {ρ} : Y1, l1 X ∪ Y1, l � l1 �K {ρ} S2 {ψ} : Y2, l2

X, l �K {φ} S1; S2 {ψ} : Y1 ∪ Y2, l1 � l2

X ∪ fv(b), l �K {φ ∧ b} S1 {ψ} : Y1, l1 X ∪ fv(b), l �K {φ ∧ ¬b} S2 {ψ} : Y2, l2

X, l �K {φ} if b then S1 else S2 {ψ} : Y1 ∪ Y2 ∪ fv(b), l1 � l2

Y, l �K {φ ∧ b} S {φ} : Y, l

X, l �K {φ}while b doS {φ ∧ ¬b} : Y, l
if X ∪ fv(b) ⊆ Y

X, l �K {φ} c!a {φ} : ∅, l′ if l � P ◦(c) � l′ and

∀P ∈ K : PV ∧ φ ⇒ (PS[X] � P ◦(c) ∧ ∃P ′ ∈ K, P • ∈ Pch :
P [(c.j �→ PS(aj))j]S � (P ′

S
 P •
S , P ′

V ∧ ∧
j aj ∈P •

V (c.j)))

X, l �K {∀x : φ} c?x {φ} : ∅, l′ if l � P ◦(c) � l′ and

∀P ∈ K : PV ∧ (∀x : φ) ⇒ (PS[X] � P ◦(c) ∧ ∀P • ∈ Pch : ∀v s.t.
∧

j vj ∈ P •(c.j) :

∃P ′ ∈ K : P [(xj �→ P •
S (c.j) � P ◦(c))j]S � P ′[(vj/xj)j]V)

X ′, l′1 �K {φ′} S {ψ′} : Y ′, l′2
X, l1 �K {φ} S {ψ} : Y, l2

if (φ ⇒ φ′) ∧ (ψ′ ⇒ ψ) ∧
X ⊆ X ′ ∧ Y ′ ⊆ Y ∧ l1 � l′1 ∧ l′2 � l2

∅, L �K {φ} Si {ψ} : Y, l′

[i K→�] � {[i �→ φ]} i : Si {[i �→ ψ]} ifnip(K)
P � {Φ} Σ {Ψ}

P � {Φ} Σ \ Ω {Ψ}
P1 � {Φ1} Σ1 {Ψ1} P2 � {Φ2} Σ2 {Ψ2}
P1
 P2 � {Φ1
 Φ2} Σ1||Σ2 {Ψ1
 Ψ2}

and the side condition specializes to y = 1 ⇒ P 1
d [z1 �→ L � P 1

dS[{y, z}]] � P 1
d [z/z1]V.

This condition further expands to the following, which holds.

y = 1 ⇒ ((y : L; z : H; z1 : H; z2 : L)[z1 �→ H], y = 1)
� ((y : L; z : H; z1 : H; z2 : L), (y = 1)[z/z1]).

Next instantiate P with P 2
d . The side condition specializes to y = 1 ∧ y �= 1 ⇒ ...,

which vacuously holds.
�
The typing rule for output imposes the constraint l � P ◦(c) � l′. Here P ◦(c) � l′

takes care of the possibility for the output to be blocked by the environment
(in line with the use of synchronous communication the treatment of output
is “symmetric” to that of input; hence the possibility of blocked output is also

Disjunctive Information Flow for Communicating Processes 103

considered). In more detail, the presence/absence of the output can leak informa-
tion if the subsequent computation is not kept confidential. This kind of leakage
is in a sense analogous to the leakage created by looping. On the other hand,
l � P ◦(c) takes care of the possibility that a previously blocked communication
can be revealed through the indirect blockage (absence) of the current output.
Next, the constraint PS[X] � P ◦(c) is concerned with the implicit flows from
conditionals having variables in X to the presence of the output. Finally, the
seemingly involved constraint P [(c.j �→ PS(aj))j]S � (P ′

S
 P •
S , P ′

V ∧∧j aj ∈P •
V (c.j))

can be understood by comparing the output c!a to the assignment c := a .
The typing rule for input uses constraints about the presence label P ◦(c) of

the channel c in a way similar to the rule for output does. Its last constraint
P [(xj �→ P •

S (c.j)�P ◦(c))j]S � P ′[(vj/xj)j]V, on the other hand, can be understood
by comparing the input c?x to the assignment x := c. The constraint P ◦(c) �
P ′
S(xj) is imposed for all j ∈ {1, 2, ..., |c|}, because the presence of the input

leads to the modification of the variable xj .
We remark on the typing rule for if, where the set fv(b) is unioned into

the “progress set”, resulting in fv(b)∪Y1 ∪Y2. This guarantees a noninterference
condition where two systems advance in a manner close to “lock-step” execution.
Similar treatment of the “termination effect” of the if statement in typing can
be found in [5,29]. We conjecture that this facilitates our articulation of the
security guarantees when the execution of the processes is controlled by certain
schedulers in the future.

The Typing of Systems. The typing judgments for systems are of the form
P � {Φ} Σ {Ψ}. Here P is a policy environment for the system Σ, and for each
i ∈ Pid(Σ), Φ(i) and Ψ(i) are the pre-condition and post-condition, respectively,
for the process with identifier i in Σ. We also denote by TΣ the mapping such
that DTΣ = Pid(Σ) and ∀i ∈ DTΣ : TΣ(i) = tt. The typing rules follow
patterns that are fairly straightforward.

The side condition nip(K) of the rule for i : Si is a “healthiness” constraint
saying that the choice of policies cannot be decided by confidential information.
This is desirable since confidentiality levels have access control implications.
A public observer would be able to deduce information about confidential vari-
ables based on whether it is allowed to access the values of certain variables, if
confidential information had interference on the policies in use.

The predicate nip(−) is expressed with the help of the notations σ1
K= σ2 and

cρ′v1
K=
ρ

cρ′v2. The notation σ1
K= σ2 represents that σ1 and σ2 have the same

domain and map each variable that is low with respect to every policy in K to
the same value. Similarly, cρ′v1

K=
ρ

cρ′v2 says that if ρ is the same as ρ′, then

the atomic channels of c that are low with respect to every policy in K should
communicate the same values.

104 X. Li et al.

Definition 2 (Low Equivalence Parameterized by Sets of Policies).

σ1
K
= σ2 � Dσ1 = Dσ2 ∧ ∀x ∈ Dσ1 : (∀P ∈ K : PS(x) = L) ⇒ σ1(x) = σ2(x)

cρ′v1
K
=
ρ

cρ′v2 � ∀j : (ρ = ρ′ ∧ ∀P ∈ K : PS(c.j) = L) ⇒ v1j = v2j

Formally, we have:

nip(K) � ∀σ1, σ2 : σ1
K
= σ2 ⇒ (∀P ∈ K : σ1 |= P ⇔ σ2 |= P) ∧

∀c, v , v ′ : c!v
Pch

•=
!

c!v ′ ⇒ (∀P • : c!v |=! P • ⇔ c!v ′ |=! P •).

Example 4. The system ΣMD of Example 1 can be typed using the policies given
in Example 2. It is not difficult to verify that nip(PMD(1)) and nip(PMD(2)) hold,
and that PMD � {TΣMD} ΣMD {TΣMD} can be established.
�

Subject Reduction. In the subject reduction result of Theorem 1, σ |= Φ
represents ∀i ∈ DΦ : σ |= Φ(i) and all un-quantified symbols are implicitly
universally quantified. When an input is performed, the existence of channel
policies describing the values received are relied on to ensure the satisfaction of
the pre-condition Φ′ of the derived system Σ′, by the resulting state σ′.

Theorem 1 (Subject Reduction). If P � {Φ} Σ {Ψ}, 〈Σ; σ〉 α−→η 〈Σ′; σ′〉,
σ |= Φ, P EP and σ |= P , then

1. ∃P • : α |=! P •, and
2. if ∃P • : α |=? P •, then ∃P ′

EP, Φ′ : P � {Φ′} Σ′ {Ψ} ∧ σ′ |= Φ′ ∧ σ′ |= P ′.

6 Noninterference

We introduce a bisimulation-based, compositional noninterference property that
accounts for both the communications performed by a system and the modifica-
tion of memory states. We prove that this noninterference property is enforced by
the information flow type system presented in Sect. 5. Some auxiliary notations
are first presented in Fig. 3, where Definitions 1 and 2 from previous sections are
used.

We extend our transition labels α with inaction ε and suspension �. We also
introduce action schemas β where the inputs come with holes rather than data.
The idea is that the data to be received is under the environment’s control. For
transitions, we write C

α�η C ′ to represent that there may be a transition from
the configuration C to the configuration C ′; the inability to perform a transition
is indicated by α = �.

Low-equivalence of configurations is defined with respect to particular poli-
cies P EP in Fig. 3. The main constraints are that P should be satisfied by the
states of the two configurations, and that the values of variables that are low
under PS should be equal.

To be able to relate the communications performed in the two executions in
our bisimulation-based property, we introduce a notion of low equivalence (P •

∼
ρ

)

Disjunctive Information Flow for Communicating Processes 105

Actions and action schemas:

α ::= c!v | c?v | τ | ε | �
β ::= c!v | c?[] | τ | ε | �
γ ::= α | β

Decorated transitions:

C
α�η C′ � C

α−→η C′ ∨
α = ε ∧ C′ = C ∨
(∀α′ : C

α′−→ ⇒ h prc(α′)) ∧ α = � ∧ C′ = C

h prc(α′) � ∃c, ρ,v : α′ = cρv ∧ P ◦(c) = H

Low equivalence of configurations:

〈Σ1; σ1〉 P
=
P

〈Σ2; σ2〉 � P EP ∧ Pid(Σ1) = Pid(Σ2) = DP ∧
σ1 |= P ∧ σ2 |= P ∧ σ1

{P}
= σ2

Low equivalence of actions and actions/action schemas (α
P •∼
ρ

γ):

cρ′v P •∼
ρ

ε if P ◦(c) = H ∧ cρ′v |=ρ P •

cρ′v1
P •∼
ρ

cρ′v2 if P ◦(c) = L ∧ cρ′v1 |=ρ P • ∧ cρ′v2 |=ρ P • ∧ cρ′v1
{P •}
=
ρ

cρ′v2

τ
P •∼
ρ

τ

τ
P •∼
ρ

�

Hole filling (β(v′)):

c!v(v′) = c!v c?[](v′) = c?v′ β(v′) = β, if β ∈ {τ, ε, �}

Fig. 3. Auxiliary definitions for noninterference

between actions α and actions/action schemas γ. The relation P •
∼
ρ

is the smallest

one satisfying the rules in Fig. 3. Concerning the “presence” of communication,
α

P •
∼
ρ

γ requires that a communication with confidential presence should corre-

spond to inaction (ε), which implies among others the absence of communication
on the same channel2. It is worth pointing out that the v2 in the same defini-
tion can be the unary vector []. Although Definition 1 has not been explicitly

2 This pattern is reminiscent of the “Weak bisimulation up to H” by Focardi and
Rossi [14].

106 X. Li et al.

extended to take care of holes, the bisimulation to be given in Definition 4 will
use α

P •
∼
ρ

γ in such a way that the check [] ∈ P •
V(c.1) can never be reached.

We are now in a position to define our noninterference property, termed
communication-aware security (CA-security). In Definition 3, − com∼

P
− is the

union of all communication-aware bisimulations (CA-bisimulations) that are in
turn characterized in Definition 4.

Definition 3 (CA-Security). Seccom(Σ,P) if and only if for all σ1, σ2, and
P , if 〈Σ;σ1〉 P=

P
〈Σ;σ2〉, then (〈Σ; σ1〉, P)

com∼
P

(〈Σ; σ2〉, P).

Definition 4 (CA-Bisimulation).
A CA-bisimulation RP is a symmetric relation such that
(C1, P) RP (C2, P) implies C1

P=
P

C2 and the following:

∀α, η, C′
1 s.t. C1

α−→η C′
1 :

∃P •
! , β : α

P •
!∼
!

β ∧
∀P •

? , v s.t. α
P •
?∼
?

β(v) :

∃C′
2, P

′ : C2
β(v)
�η C′

2 ∧ (C′
1, P

′) RP (C′
2, P

′).

In prose, a symmetric relation RP qualifies as a CA-bisimulation if for a pair
(C1, P) and (C2, P) related by RP , and a transition performing action α from
C1, involving processes in η, there exists a policy P •

! and an action schema β
low-equivalent to α concerning output, and for all value vectors v and policies P •

?

such that β(v) is low-equivalent to α concerning input, there exists a simulation

of α−→η by
β(v)
� η from C2, and a policy P ′ whose pairings with the configurations

reached are still related under RP .

Example 5. To aid the reader’s intuition, we provide a partial unfolding of a
CA-bisimulation for the system 2 : SD. Note that a proof of the CA-security of
2 : SD is not the aim here. We represent by σv1v2v3v4 the local state [y �→ v1][z �→
v2][z1 �→ v3][z2 �→ v4], and by PD the policy environment [2 �→ PMD(2)].

We have 〈2 : SD;σ2070〉 P 2
d=

PD
〈2 : SD;σ2080〉. Hence one of the conditions that

Seccom(2 : SD,PD) calls for is the existence of CA-bisimulation R� such that

(〈2 : SD; σ2070〉, P 2
d) R� (〈2 : SD; σ2080〉, P 2

d).

Suppose
〈2 : SD; σ2070〉 τ−→2 〈2 : c?(y, z); if ; wh; σ2070〉 (1)

There exist P •
1 and τ , such that τ

P •
1∼
!

τ . Pick for instance P •
? = P •

1 and v = (0, 0),

for which τ
P •

1∼
?

τ(0, 0). Simulation of (1) is required with the action τ(0, 0) = τ .

Disjunctive Information Flow for Communicating Processes 107

The only possibility is 〈2 : SD;σ2080〉 τ−→2 〈2 : c?(y, z); if ;wh;σ2080〉. Since
σ2070 |= P 2

d but σ2070 �|= P 1
d , the following is required:

(〈2 : c?(y, z); if ; wh; σ2070〉, P 2
d) R� (〈2 : c?(y, z); if ; wh; σ2080〉, P 2

d).

This further necessitates the condition below, which can be verified easily:

〈2 : c?(y, z); if ; wh; σ2070〉 P2
d=

PD
〈2 : c?(y, z); if ; wh; σ2080〉.

Suppose

〈2 : c?(y, z); if ; wh; σ2070〉 c?(1,k1)−→ 2 〈2 : if ; wh; σ1k170〉, (2)

where k1 is an integer. There should exist some P •
! and β such that c?(1, k1)

P •
!∼
!

β.

Since P ◦(c) = L, β = c?[]. Pick for instance P •
? = P •

1 , and v , c?(1, k1)
P •

1∼
?

c?[](v) implies v1 = 1 since P •
1 (c.1) = L. Hence a simulation of (2) with action

c?[](1, k2) is required for all k2 ∈ Z (P •
1 (c.2) = H). It can only be of the

form 〈2 : c?(y, z); if ;wh;σ2080〉 c?(1,k2)−→ 2 〈2 : if ;wh;σ1k280〉. And the following is
required

(〈2 : if ; wh; σ1k170〉, P 1
d) R� (〈2 : if ; wh; σ1k280〉, P 1

d).

This further requires 〈2 : if ;wh;σ1k170〉
P 1

d=
PD

〈2 : if ;wh;σ1k280〉, which holds.

Going through two more “lock steps”, the following is required.

(〈2 : z1 := z;wh;σ1k170〉, P 1
d) R� (〈2 : z1 := z;wh;σ1k280〉, P 1

d)

(〈2 : SD;σ1k1k10〉, P 1
d) R� (〈2 : SD;σ1k2k20〉, P 1

d) (3)

And we still have 〈2 : SD;σ1k1k10〉
P 1

d=
PD

〈2 : SD;σ1k2k20〉 as required by (3).

We stop this demonstration here.
�
In CA-bisimulation, the treatment of output and input resembles that of rely-
guarantee reasoning [17], and leads to the preservation of security under || —
the second compositionality result given below.

Theorem 2 (Compositionality). For Σ1 with policy environment P1, and Σ2

with policy environment P2, such that DΣ1 ∩ DΣ2 = ∅,
1. Seccom(Σ1, P1) =⇒ ∀Ω ⊆ PCh : Seccom(Σ1 \ Ω, P1), and
2. Seccom(Σ1, P1) ∧ Seccom(Σ2, P2) =⇒ Seccom(Σ1||Σ2, P1
 P2).

The most important result of this section, that well-typedness guarantees commun-
ication-aware security, is formalized in Theorem 3. This soundness result means
that our motivating example is noninterfering (Example 6).

Theorem 3 (Soundness). For all systems Σ with policy environments P, if
P � {TΣ} Σ {TΣ}, then Seccom(Σ,P).

108 X. Li et al.

Example 6. Going back to the multiplexer example, by Theorem 3, the well-
typedness of the system ΣMD of Example 1 guarantees Seccom(ΣMD, PMD).
�

The proof of Theorem 3 is sketched below, where the role played by the
compositionality result will also be elucidated. All details of this proof can be
found in the Coq development.

We define high/low processes with the help of the type system, following the
approach of [30,32]. The non-standard facet is: to take care of content-dependent
policies, the memory state σ and policy P satisfied by σ are made explicit in the
defined predicates.

Definition 5. A process S with set K of variable policies is high at state σ,
under precondition φ and with policy P , written hiKφ (〈S;σ〉, P), if

σ |= P ∧ σ |= φ ∧
∃X, l, X ′, l′, ψ : σ |= φ ∧ X, l �K {φ} S {ψ} : X ′, l′ ∧ (l = H ∨ ∃x ∈ X : PS(x) = H)

Definition 6. A process S with set K of variable policies is low at state σ,
under precondition φ and with policy P , written loK

φ (〈S;σ〉, P), if

σ |= P ∧ σ |= φ ∧
(∃X, l, X ′, l′, ψ : X, l �K {φ} S {ψ} : X ′, l′) ∧
(∀X, l, X ′, l′, ψ : X, l �K {φ} S {ψ} : X ′, l′ ⇒ (l = L ∧ ∀x ∈ X : PS(x) = L))

We then define a low-equivalence relation
[i�→K]� concerned with systems of the

form i : S in Table 3. For two singleton systems with low processes to be related,
the processes they execute need to be the same, and the preconditions used
should be identical. In both cases of Table 3, the policies used on both sides of
[i�→K]� are the same (P), and the memory states are required to be low-equivalent
under P .

Table 3. The low equivalence relation on singleton systems

(LOEQ)
∃φ : loK

φ (〈S; σ1〉, P) ∧ loK
φ (〈S; σ2〉, P) σ1

{P}
= σ2 nip(K)

(〈i : S; σ1〉, P)
[i K→�]� (〈i : S; σ2〉, P)

(HIEQ)
hiKφ1(〈S1; σ1〉, P) ∧ hiKφ2(〈S2; σ2〉, P) σ1

{P}
= σ2 nip(K)

(〈i : S1; σ1〉, P)
[i K→�]� (〈i : S2; σ2〉, P)

We next build up to the following results:

–
[i�→K]� qualifies as a CA-bisimulation, and

Disjunctive Information Flow for Communicating Processes 109

– if [i �→ K] � {[i �→ tt]} i : S {[i �→ tt]} holds, and 〈i : S;σ1〉 P=
[i�→K]

〈i : S;σ2〉,

then (〈i : S; σ1〉, P)
[i�→K]� (〈i : S; σ2〉, P) holds.

In other words, if [i �→ K] � {[i �→ tt]} i : S {[i �→ tt]} can be established, then
Seccom(i : S, [i �→ K]) holds. Suppose a system Σ� has the form Σ1||Σ2 or
Σ′ \ Ω, and the policy environment P�. By the typing rule for systems, and
compositionality, we can then inductively show that P� � {TΣ�} Σ� {TΣ�}
implies Seccom(Σ�,P�).

7 Conclusion and Discussion

This paper studies information flow problems with the use of content-dependent
confidentiality policies in a concurrent language. In our language, processes use
local variables and communicate along channels with each other and the environ-
ment. A bisimulation-based noninterference condition is formulated to character-
ize security under the selection of different confidentiality policies according to
the current memory and communication content. “Presence” and “content” are
treated as separate aspects of communication, and a “rely-guarantee” pattern
in picking the policies relevant to output and input leads to a compositionality
result. The satisfaction of the condition is achieved by a static type system that
employs a Hoare logic component, which provides information on the possible
memory content at different program points.

A major scenario related to our development is a concurrent system in which
the destination of messages depends on their tagging. This is illustrated by our
running example involving a communicating pair of multiplexer and demulti-
plexer, that is shown to be well-typed and secure.

The CA-bisimulation formulated in Sect. 6 has the flavor of the “flat bisim-
ulation” considered in [10] that further goes back to [5]. “Flat bisimulations”
consider only memories consistent with the execution and are thus more realistic
compared with notions (e.g., in [28]) that range over all memories (irrespective
of their reachability) at each step. However, flat bisimulations do not give rise
to a compositional notion of security when shared-memory is used, since mem-
ory modifications by other concurrent processes are not captured. Nevertheless,
our use of local variables with communication rectifies this issue and makes our
CA-security compositional. Not surprisingly, this compositionality result allows
us to focus on systems with single processes in our soundness proof.

As mentioned in the introduction, several developments [1,6,20] where infor-
mation flow policies depend on certain conditions exist for sequential languages.
On the other hand, type/proof systems and noninterference properties have been
studied extensively for concurrent systems (e.g., [5,10,21]), using information
flow policies from simple security lattices.

We have not discussed the security of our concurrent processes under (dis-
junctive policies and) the control of certain schedulers [22,26,31]. We leave the
investigation of the security implications of different types of schedulers in our
setting to future work.

110 X. Li et al.

References

1. Amtoft, T., Dodds, J., Zhang, Z., Appel, A., Beringer, L., Hatcliff, J., Ou, X.,
Cousino, A.: A certificate infrastructure for machine-checked proofs of conditional
information flow. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and
Trust. LNCS, vol. 7215, pp. 369–389. Springer, Heidelberg (2012)

2. Apt, K.R.: Ten years of Hoare’s logic: A survey - part 1. ACM Trans. Program.
Lang. Syst. 3(4), 431–483 (1981)

3. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
PLAS 2009, pp. 113–124 (2009)

4. Besson, F., Bielova, N., Jensen, T.: Hybrid information flow monitoring against
web tracking. In: CSF 2013 (2013)

5. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread
systems. Theoret. Comput. Sci. 281(1), 109–130 (2002)

6. Broberg, N., Sands, D.: Paralocks: role-based informationflow control and beyond.
In: POPL 2010, pp. 431–444 (2010)

7. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: S&P 2008, pp. 354–368 (2008)

8. Cohen, E.S.: Information transmission in computational systems. In: SOSP 1977
(1977)

9. The Coq Proof Assistant. http://coq.inria.fr
10. Dam, M.: Decidability and proof systems for language-based noninterference rela-

tions. In: POPL 2006 (2006)
11. Denning, D.E., Denning, P.J.: Certification of programs for secure information

flow. Commun. ACM 20(7), 504–513 (1977)
12. Eggert, S., van der Meyden, R., Schnoor, H., Wilke, T.: The complexity of intran-

sitive noninterference. In: S&P 2011, pp. 196–211 (2011)
13. Fenton, J.S.: Memoryless subsystems. Comput. J. 17(2), 143–147 (1974)
14. Focardi, R., Rossi, S.: Information flow security in dynamic contexts. In: (CSFW

2002), pp. 307–319 (2002)
15. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow

in javascript and its APIs. In: SAC 2014, pp. 1663–1671 (2014)
16. Hedin, D., Sabelfeld, A.: A perspective on information-flow control. In: Software

Safety and Security - Tools for Analysis and Verification, pp. 319–347 (2012)
17. Jones, C.B.: Development Methods for Computer Programs including a Notion of

Interference. Ph.D. thesis, Oxford University, June 1981
18. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting

web application vulnerabilities, p. 6 (2006)
19. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf.

42(4–5), 291–347 (2005)
20. Lourenço, L., Caires, L.: Dependent information flow types. In: POPL 2015 (2015)
21. Mantel, H., Sabelfeld, A.: A unifying approach to the security of distributed and

multi-threaded programs. J. Comput. Secur. 11(4), 615–676 (2003)
22. Mantel, H., Sudbrock, H.: Flexible scheduler-independent security. In: Gritzalis,

D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
116–133. Springer, Heidelberg (2010)

23. Milner, R.: Communication and Concurrency, vol. 84. Prentice hall, Upper Saddle
River (1989)

24. Rafnsson, W., Sabelfeld, A.: Compositional information-flow security for interac-
tive systems. In: CSF 2014, pp. 277–292 (2014)

http://coq.inria.fr

Disjunctive Information Flow for Communicating Processes 111

25. Rushby, J.: Separation and integration in MILS (the MILS constitution). Computer
Science Laboratory SRI International, Technical Report (2008)

26. Sabelfeld, A.: Confidentiality for multithreaded programs via bisimulation. In:
Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 260–274. Springer,
Heidelberg (2004)

27. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

28. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: CSFW 2000, pp. 200–214 (2000)

29. Smith, G.: Improved typings for probabilistic noninterference in a multi-threaded
language. J. Comput. Secur. 14(6), 591–623 (2006)

30. Smith, G., Volpano, D.M.: Secure information flow in a multi-threaded imperative
language. In: POPL 1998, pp. 355–364 (1998)

31. van der Meyden, R., Zhang, C.: Information flow in systems with schedulers, part
I: definitions. Theor. Comput. Sci. 467, 68–88 (2013)

32. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analy-
sis. J. Comput. Secur. 4(2/3), 167–188 (1996)

Near-Optimal Scheduling for LTL with Future
Discounting

Shota Nakagawa and Ichiro Hasuo(B)

University of Tokyo, Tokyo, Japan
ichiro@is.s.u-tokyo.ac.jp

Abstract. We study the search problem for optimal schedulers for the
linear temporal logic (LTL) with future discounting. The logic, introduced
by Almagor, Boker and Kupferman, is a quantitative variant of LTL in
which an event in the far future has only discounted contribution to a
truth value (that is a real number in the unit interval [0, 1]). The precise
problem we study—it naturally arises e.g. in search for a scheduler that
recovers from an internal error state as soon as possible—is the following:
given a Kripke frame, a formula and a number in [0, 1] called a margin,
find a path of the Kripke frame that is optimal with respect to the
formula up to the prescribed margin (a truly optimal path may not
exist). We present an algorithm for the problem; it works even in the
extended setting with propositional quality operators, a setting where
(threshold) model-checking is known to be undecidable.

1 Introduction

In the field of formal methods where a mathematical approach is taken to mod-
eling and verifying systems, the conventional theory is built around the Boolean
notion of truth: if a given system satisfies a given specification, or not. This quali-
tative theory has produced an endless list of notable achievements from hardware
design to communication protocols. Among many techniques, automata-based
ones for verification and synthesis have been particularly successful in serving
engineering needs, by offering a specification method by temporal logic and push
button-style algorithms. See e.g. [20,23].

However, trends today in the use of computers—computers as part of more
and more heterogeneous systems—have pushed researchers to turn to quantita-
tive consideration of systems, too. For example, in an embedded system where a
microcomputer controls a bigger system with mechanical/electronic components,
concerns include real-time properties—if an expected task is finished within the
prescribed deadline—and resource consumption e.g. with respect to electricity,
memory, etc.

Quantities in formal methods can thus arise from a specification (or an objec-
tive) that is quantitative in nature. Another source of quantities are systems that
are themselves quantitative, such as one with probabilistic behaviors.

An extended version of the current paper, with further details and proofs, is found
at [19].

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 112–130, 2016.
DOI: 10.1007/978-3-319-28766-9 8

Near-Optimal Scheduling for LTL with Future Discounting 113

Besides, quantities can arise simply via refinement of the Boolean notion of
satisfaction. For example, consider the usual interpretation of the linear temporal
logic (LTL) formula Fϕ—it is satisfied by a sequence s0s1 . . . if there exists i
such that si |= ϕ. It has the following natural quantitative refinement, where
the modality F is replaced with a discounted modality Fexp 1

2
:

�s0s1 . . . , Fexp 1
2
ϕ� = (12)i, where i is the least index such that si |= ϕ. (1)

This value �s0s1 . . . , Fexp 1
2
ϕ� ∈ [0, 1] is a quantitative truth value and is like util-

ity in the game-theoretic terminology. Such refinements allow quantitative rea-
soning about so-called quality of service (QoS), specifically “how soon ϕ becomes
true” in this example. Another example is a variation Gexp 1

2
ϕ of Gϕ, where

�s0s1 . . . , Gexp 1
2
ϕ� = 1 − (12)i—where i is the least index such that si �|= ϕ—

meaning that violation of ϕ in the far future only has a small negative impact.

LTLdisc[D,F]: LTL with Future Discounting. The last examples are about
quantitative refinement of temporal specifications. An important step in this
direction is taken in the recent work [3]. There various useful quantitative refine-
ments in LTL—including the last examples—are unified under the notion of
future discounting, an idea first presented in [12] in the field of formal methods.
They introduce a clean syntax of the logic LTLdisc[D,F]—called LTL with dis-
counting—that combines: (1) a “discounting until” operator Uη; (2) the usual
features of LTL such as the non-discounting one U; and (3) so-called proposi-
tional quality operators such as the (binary) average operator ⊕, in addition to
∧ and ∨. In [3] they define its semantics; and importantly, they show that usual
automata-theoretic techniques for verification and synthesis (e.g. from [20,23])
mostly remain applicable.

Probably the most important algorithm in [3] is for the threshold model-
checking problem: given a Kripke structure K, a formula ϕ and a threshold v ∈
[0, 1], it asks if �K, ϕ� > v, i.e. the worst case truth value of a path of K is
above v or not. The core idea of the algorithm is what we call an event horizon:
assuming that a discounting function η in Uη tends to 0 as time goes by, and
that v > 0, there exists a time beyond which nothing is significant enough to
change the answer to the threshold model-checking problem. In this case we can
approximate an infinite path by its finite prefix.

Our Contribution: Near-Optimal Scheduling for LTLdisc[D,F]. Now
that a temporal formula ϕ assigns quantitative truth or utility �ξ, ϕ� to each
path ξ, a natural task is to find a path ξ0 in a given Kripke structure K that
achieves the optimal. On the ground that the logic LTLdisc[D,F] from [3] is
capable of expressing many common specifications encountered in real-world
problems, finding an optimal path—i.e. resolving nondeterminism in the best
possible way—must have numerous applications. The situation is similar to one
with timed automata, for which optimal scheduling problems are studied e.g.
in [1].

114 S. Nakagawa and I. Hasuo

It turns out, however, that a (truly) optimal path need not exist (Example 4.1):
v0 = supξ∈path(K)�ξ, ϕ� is obviously a limit point but no ξ0 achieves �ξ0, ϕ� = v0.
This leads us to the following near -optimal scheduling problem:

Near-optimal scheduling. Given a Kripke structure K, an
LTLdisc[D,F] formula ϕ and a margin ε ∈ (0, 1), find a path ξ0 ∈
path(K) that is ε-optimal, that is, supξ∈path(K)�ξ, ϕ� − ε ≤ �ξ0, ϕ�.

We study automata-theoretic algorithms for this problem. In the basic setting
where there are no propositional quality operators, we can find a straightfor-
ward algorithm that conducts binary search using the model-checking algorithm
from [3]. Our main contribution, however, is an alternative algorithm that takes
the usual workflow: it constructs, from a formula ϕ and a margin ε, an automa-
ton Aϕ,ε with which we combine a system model K; running a nonemptiness
check-like algorithm to the resulting automaton then yields an answer.

On the one hand, our (alternative) algorithm resembles the one in [3]. In
particular it relies on the idea of event horizon: a margin ε in our setting plays
the role of a threshold v in [3] and enables us to ignore events in the far future.

On the other hand, a major difference from [3] is that we translate
a specification (ϕ, ε) into an automaton that is itself quantitative (what
we call a [0, 1]-acceptance values automaton, with Boolean branching and
[0, 1]−acceptance values). This is unlike [3] where the target automaton is totally
Boolean. An advantage of [0, 1]-acceptance automata is that they allow opti-
mal path search much like emptiness of Büchi automata is checked (via lasso
computations). Applied to our current problem, this enables us to directly
find a near-optimal path for LTLdisc[D,F] without knowing the optimal value
supξ∈path(K)�ξ, ϕ�.

Presence of ⊕ and Other Propositional Quality Operators. Notably,
our (alternative) algorithm is shown to work even in the presence of any proposi-
tional quality operators that are monotone and continuous (in the sense we will
define later; an example is the average operator ⊕). Those operators makes the
logic more complex: indeed [3] shows that, in presence of the average operator
⊕, the model-checking problem for the logic LTLdisc[D,F] becomes undecidable.
The binary-search algorithm mentioned earlier (that repeats model checking)
ceases to work for this reason; our alternative algorithm works, nevertheless.

We analyze the complexity of the proposed algorithm, focusing on a sub-
class of the logic LTLdisc[D,F] (Sect. 4.3). Furthermore we present our prototype
implementation and some experimental results (see the extended version [19]).
They all seem to suggest the following: addition of propositional quality opera-
tors (like the average operator ⊕) does incur substantial computational costs—
as is expected from the fact that ⊕ makes model checking undecidable; still
our automata-theoretic approach is a viable approach, potentially applicable to
optimization problems in the field of model-based system design.

The significance of the average operator ⊕ in envisaged applications is that
it allows one to superpose multiple objectives. For example, one would want an
event ϕ as soon as possible, but at the same time avoiding a different event ψ as

Near-Optimal Scheduling for LTL with Future Discounting 115

long as possible. This is a trade-off situation and the formula Fηϕ⊕Gη′¬ψ—with
suitable discounting functions η, η′—represents a 50-50 trade-off. Other trade-
off ratios can be represented as (monotone and continuous) proportional quality
operators, too, and our algorithm accommodates them.

Related Work. Quantitative temporal logics and their decision procedures have
been a very active research topic [2,3,7,12,14]. We shall lay them out along a
basic taxonomy. We denote by K (the model of) the system against which a
specification formula ϕ is verified (or tested, synthesized, etc.).

Quantitative vs. Boolean System Models. Sometimes we need quantitative con-
siderations just because the system K itself is quantitative. This is the case
e.g. when K is a Markov chain, a Markov decision process, a timed or hybrid
automaton, etc. In the current work K is a Kripke structure and is Boolean.

Quantitative vs. Boolean Truth Values. The previous distinction is quite orthog-
onal to whether a formula ϕ has truth values from [0, 1] (or another continuous
domain), or from {tt, ff}. For example, the temporal logic PCTL [15] for reason-
ing about probabilistic systems has modalities like P>vψ (“ψ with a probability
> v”) and has Boolean interpretation. In LTLdisc[D,F] studied here, truth values
are from [0, 1].

Linear Time vs. Branching Time. This distinction is already there in the qualita-
tive/Boolean setting [22]—its probabilistic variant is studied in [11]—and gives
rise to temporal logics with the corresponding flavors (LTL vs. CTL, CTL∗). In
fact the idea of future discounting is first introduced to a branching-time logic
in [12], where an approximation algorithm for truth values is presented.

Future Discounting vs. Future Averaging. The temporal quantitative operators
in LTLdisc[D,F] are discounting—an event’s significance tends to 0 as time
proceeds—a fact that benefits model checking via event horizons. Different tem-
poral quantitative operators are studied in [7], including the long-run average
operator G̃ψ. Presence of G̃, however, makes most common decision problems
undecidable [7].

Let us discuss a few other related works. In [14] LTL (without additional
quantitative operators) is interpreted over the unit interval [0, 1], and its model-
checking problem against quantitative systems K is shown to be decidable. In this
setting—where the LTL connectives are interpreted by idempotent operators min
and max—the variety of truth values arises only from a finite-state quantitative
system K, hence is finite.

In [3, Theorem 4] the threshold synthesis problem is shown to be feasible for
the logic LTLdisc[D, ∅] (see Definition 2.4). This problem asks: given a partition of
atomic propositions into the input and output signals, an LTLdisc[D, ∅] formula
ϕ and v ∈ [0, 1], to come up with a transducer (i.e. a finite-state strategy) that
makes the truth value of ϕ at least v. We remark that this is different from

116 S. Nakagawa and I. Hasuo

the near-optimal scheduling problem that we solve in this paper. The synthesis
problem in [2, Sect. 2.2], without a threshold, is closer to ours.

Automata- (or game-) theoretic approaches are taken in [6,8] to the synthesis
of controllers or programs with better quantitative performance, too. In these
papers, a specification is given itself as an automaton, instead of a temporal for-
mula in the current work. Another difference is that, in [6,8], utility is computed
along a path by limit-averaging, not future discounting. The algorithms in [6,8]
therefore rely on those which are known for mean-payoff games, including the
ones in [10].

More and more diverse quantitative measures of systems’ QoS are studied
recently: from best/worst case probabilities and costs, to quantiles, conditional
probabilities and ratios. See [5] and the references therein. Study of such in
LTLdisc[D,F] is future work.

In [9] so-called cut-point languages of weighted automata are studied. Let
L : Σω → R be the quantitative language of a weighted automata A. For a
threshold η, the cut-point language of A is the set of all words w such that
L(w) ≥ η. In [9] it is proved that the cut-point languages of deterministic limit-
average automata and those of discounted-sum automata are ω-regular if the
threshold η is isolated, that is, there is no word w such that L(w) is close to
η. We expect that similar properties for the logic LTLdisc[D,F] are not hard to
establish, although details are yet to be worked out.

Discounting in temporal logics/automata/MSOs has also been used as a tech-
nical tool for forcing certain convergence properties in the setting of infinite
words. See e.g. [13].

Organization of the Paper. In Sect. 2 we review the logic LTLdisc[D,F] and
known results on threshold model checking and satisfiability, all from [3]. We
introduce quantitative variants of (alternating) Büchi automata, called (alternat-
ing) [0, 1]-acceptance automata, in Sect. 3, with auxiliary observations on their
relation to fuzzy automata [21]. These automata play a central role in Sect. 4
where we formalize and solve the near-optimal scheduling problem for the logic
LTLdisc[D,F] (under certain assumptions on D and F). We also study com-
plexities, focusing on the average operator ⊕ as the only propositional quality
operator. in Sect. 5 we conclude, citing some future work. Omitted proofs and
further details are found in the extended version [19] of the current paper.

Notations and Terminologies. We shall fix some notations and terminologies,
mostly following [3]. They are all standard.

The powerset of a set X is denoted by PX. We fix the set AP of atomic
propositions. A computation (over AP) is an infinite sequence π = π0π1 . . . ∈
(P(AP))ω over the alphabet P(AP). For i ∈ N, πi = πiπi+1 . . . denotes the
suffix of π starting from its i-th element.

A Kripke structure over AP is a tuple K = (W,R, λ) of: a finite set W
of states; a transition relation R ⊆ W 2 that is left-total (meaning that ∀s ∈
W.∃s′ ∈ W. (s, s′) ∈ R), and a labeling function λ : W → P(AP). We follow [17]
and call an infinite sequence ξ = s0s1 . . . of states si ∈ W , such that (si, si+1) ∈
R for each i ∈ N, a path of a Kripke structure K. The set of paths of K is

Near-Optimal Scheduling for LTL with Future Discounting 117

denoted by path(K). A path ξ = s0s1 . . . ∈ Wω gives rise to a computation
λ(s0)λ(s1) . . . ∈ (P(AP))ω; the latter is denoted by λ(ξ).

Given a set X, B+(X) denotes, as usual, the set of positive propositional
formulas (using ∧,∨,�,⊥) over x ∈ X as atomic propositions.

2 The Logic LTLdisc[D,F], and its Threshold Problems

Here we recall from [2,3] our target logic, and some existing (un)decidability
results.

The logic LTLdisc[D,F] extends LTL with: (1) propositional quality opera-
tors [2] like the average operator ⊕; and (2) discounting in temporal operators [3].
In [3] the two extensions have been studied separately because their coexistence
leads to undecidability of the (threshold) model-checking problem; here we put
them altogether.

The logic LTLdisc[D,F] has two parameters: a set D of discounting functions;
and a set F of propositional connectives, called propositional quality operators.

Definition 2.1 (Discounting Function [3]). A discounting function is a
strictly decreasing function η : N → [0, 1] such that limi→∞ η(i) = 0. A spe-
cial case is an exponential discounting function expλ, where λ ∈ (0, 1), that is
defined by expλ(i) = λi.
The set Dexp = {expλ | λ ∈ (0, 1) ∩ Q} is that of exponential discounting
functions.

Definition 2.2 ((Monotone and Continuous) Propositional Quality
operator [2]). Let k ∈ N be a natural number. A k-ary propositional quality
operator is a function f : [0, 1]k → [0, 1].

We will eventually restrict to propositional quality operators that are
monotone (wrt. the usual order between real numbers) and continuous (wrt.
the usual Euclidean topology). The set of such monotone and continuous oper-
ators is denoted by Fmc.

Example 2.3. A prototypical example of a propositional quality operator is the
average operator ⊕ : [0, 1]2 → [0, 1], defined by v1 ⊕ v2 = (v1 + v2)/2. (Note that
⊕ is a “propositional” average operator and is different from the “temporal”
average operator Ũ in [7]). The operator ⊕ is monotone and continuous. Other
(unary) examples from [4] include: �λ(v) = λ · v and �λ(v) = λ · v + (1 − λ)
(they are explained in [4] to express competence and necessity, respectively).
The conjunction and disjunction connectives ∧,∨, interpreted by infimums and
supremums in [0, 1], can also be regarded as binary propositional quality oper-
ators. They are monotone and continuous, too.

Recall that the set AP is that of atomic propositions.

118 S. Nakagawa and I. Hasuo

Definition 2.4. (LTLdiscD,F) Given a set D of discounting functions and a set
F of propositional quality operators, the formulas of LTLdisc[D,F] are defined
by the grammar: ϕ : := True | p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕUη ϕ | f(ϕ, . . . , ϕ),
where p ∈ AP , η ∈ D is a discounting function and f ∈ F is a propositional
quality operator (of a suitable arity). We adopt the usual notation conventions:
Fϕ = TrueUϕ and Gϕ = ¬F¬ϕ. The same goes for discounting operators: Fηϕ =
TrueUηϕ and Gηϕ = ¬Fη¬ϕ.

As we have already discussed, the logic LTLdisc[D,F] extends the usual LTL
with: (1) discounted temporal operators like Uη (cf. (1)); and (2) propositional
quality operators like ⊕ that operate, on truth values from [0, 1] that arise
from the discounted modalities, in the ways other than ∧ and ∨ do. The precise
definition below closely follows [2,3].

Definition 2.5 (Semantics of LTLdisc[D,F] [2,3]). Let π = π0π1 . . . ∈
(P(AP))ω be a computation (see Sect. 1), and ϕ be an LTLdisc[D,F] formula.
The truth value �π, ϕ� of ϕ in π is a real number in [0, 1] defined as follows.
Recall that πi = πiπi+1 . . . is a suffix of π.

�π, True� = 1 �π, p� = 1 (if p ∈ π0);0 (if p �∈ π0)
�π,¬ϕ� = 1 − �π, ϕ� �π, ϕ1 ∧ ϕ2� = min

{
�π, ϕ1�, �π, ϕ2�

}

�π,Xϕ� = �π1, ϕ�

�π, ϕ1Uϕ2� = supi∈N

{
min

{
�πi, ϕ2�,min0≤j<i�π

j , ϕ1�
}}

�π, ϕ1Uηϕ2� = supi∈N

{
min

{
η(i)�πi, ϕ2�, min0≤j<i η(j)�πj , ϕ1�

}}

�π, f(ϕ1, . . . , ϕk)� = f
(
�π, ϕ1�, . . . , �π, ϕk�

)

Compare the semantics of ϕ1Uϕ2 and that of ϕ1Uηϕ2. The former is a straight-
forward quantitative analogue of the usual Boolean semantics; the latter addi-
tionally includes “discounting” by η(i), η(j) ∈ [0, 1]. Recall that a discounting
function η is deemed to be strictly decreasing; this allows us to express intuitions
like in (1).

Proposition 2.6. The truth value �π, ϕ1Uηϕ2� lies between 0 and η(0). ��
Definition 2.7. Let K be a Kripke structure and ξ be a path of K. The truth
value �ξ, ϕ� of ϕ in the path ξ is defined by �ξ, ϕ� = �λ(ξ), ϕ�, where λ(ξ) ∈
(P(AP))ω is the computation induced by ξ (see Sect. 1). The truth value �K, ϕ�

of ϕ in K is defined by �K, ϕ� = infξ∈path(K)�ξ, ϕ�.

Remark 2.8. In this paper we restrict to propositional quality operators that
are monotone and continuous, i.e. LTLdisc[D,F] with F ⊆ Fmc. Such a logic can
nevertheless express some non-monotonic operators with the help of negation.
For example, the function f0 : [0, 1] → [0, 1], f0(v) = |v − 1

2 | can be expressed
as a combination f0(v) = max{1 − f1(v), f2(v)}, using f1(v) = min{v + 1

2 , 1}
and f2(v) = max{v − 1

2 , 0} (note that f1, f2 ∈ Fmc)—i.e. as the semantics of
the formula (¬f1ϕ) ∨ (f2ϕ). A nonexample is the function f3(v) = v · sin 1

v that
oscillates infinitely often in [0, 1].

The following “threshold” problems are studied in [3,4]. It is shown that
the logic LTLdisc[D, ∅]—i.e. without propositional quality operators other than
∧,∨—has those problems decidable. Adding the average operator ⊕ makes them

Near-Optimal Scheduling for LTL with Future Discounting 119

undecidable [3], while adding �λ (Example 2.3) maintains decidability [4]. Here
the complexities are in terms of a suitable notion |〈ϕ〉| of the size of ϕ (see [3]).

Theorem 2.9 ([3]). The threshold model-checking problem for LTLdisc[D, ∅]
is: given a Kripke structure K, an LTLdisc[D, ∅] formula ϕ and v ∈ [0, 1],
decide whether �K, ϕ� ≥ v. It is decidable; when restricted to LTLdisc[Dexp, ∅]
and v ∈ Q, the problem is in PSPACE in |〈ϕ〉| and in the description of v,
and in NLOGSPACE in the size of K. The threshold satisfiability problem for
LTLdisc[D, ∅] is: given an LTLdisc[D, ∅] formula ϕ, v ∈ [0, 1] and ∼ ∈ {<,>},
decide whether there exists a computation π ∈ (P(AP))ω such that �π, ϕ� ∼ v.
This is decidable; when restricted to LTLdisc[Dexp, ∅] and v ∈ Q, the problem is
in PSPACE in |〈ϕ〉| and in the description of v. ��
Theorem 2.10 ([3]). For LTLdisc[D, {⊕}] where D �= ∅, both the thresh-
old model-checking problem and the threshold satisfiability problem are
undecidable. ��

3 [0, 1]-Acceptance Büchi Automata

Our algorithm for near-optimal scheduling relies on a certain notion of quantita-
tive automaton—called [0, 1]-acceptance Büchi automaton, see Definition 3.1—
and an algorithm for its optimal value problem (Lemma 3.2). The notion is not
extensively studied in the literature, to the best of our knowledge. In a [0, 1]-
acceptance Büchi automaton a state has a value v ∈ [0, 1], instead of b ∈ {tt, ff},
of acceptance. Note that branching is Boolean (i.e. nondeterministic) and not
[0, 1]-weighted.

Definition 3.1 ([0, 1]-Acceptance Automaton). A [0, 1]-acceptance Büchi
automaton—or simply a [0, 1]-acceptance automaton henceforth—is A =
(Σ,Q, I, δ, F), where Σ is a finite alphabet, Q is a finite set of states, I ⊆ Q
is a set of initial states, δ : Q × Σ → (P(Q) \ {∅}) is a transition function and
F : Q → [0, 1] is a function that assigns an acceptance value to each state. We
define the (weighted) language L(A) : Σω → [0, 1] of A by

L(A)(w) = max{F (q) | ∃ρ ∈ run(w). q ∈ Inf(ρ)} for each w ∈ Σω, (2)

where the sets run(w) and Inf(ρ) are defined as usual.

Note that, when we restrict to Boolean acceptance values (i.e. F (q) ∈ {0, 1}),
the acceptance value in (2) precisely coincides with the one in the usual notion
of Büchi automaton. Note also that, in (2), we take the maximum of finitely
many values (the state space Q is finite).

The following observation, though not hard, is a key fact for our search
algorithm. It is a quantitative analogue of emptiness check in usual (Boolean)
automata.

120 S. Nakagawa and I. Hasuo

Lemma 3.2 (The Optimal Value Problem for [0, 1]-Acceptance
Automata). Let A be a [0, 1]-acceptance Büchi automaton. There exists the
maximum maxw∈Σω L(A)(w) of L(A). Moreover, there is an algorithm that
computes the value maxw∈Σω L(A)(w) as well as a run ρmax = q0a0q1a1 . . . ∈
(Σ × Q)ω that realizes the maximum. ��
The algorithm is much like for emptiness check of (ordinary) Büchi automata,
searching for a suitable lasso computation.

We first translate a formula into an alternating [0, 1]-acceptance automata.

Definition 3.3 (Alternating [0, 1]-Acceptance Automaton). An alternat-
ing [0, 1]-acceptance (Büchi) automaton is a tuple A = (Σ,Q, I, δ, F), where Σ
is a finite alphabet, Q is a finite set of states, I ⊆ Q is a set of initial states,
δ : Q × Σ → B+(Q ∪ [0, 1]) is a transition function and F : Q → [0, 1] gives
acceptance values. Recall (Sect. 1) that B+(Q∪ [0, 1]) is the set of positive propo-
sitional combinations of q ∈ Q and v ∈ [0, 1]. We define the (weighted) language
L(A) : Σω → [0, 1] of A by L(A)(w) = maxτ∈runA(w) minρ∈pathA,w(τ) F∞(ρ),
where runs, paths and the function F∞ are formally defined much like with the
usual alternating automata.

Precise definitions of runs, paths and F∞ are found in the extended version [19].
In the above we used max and min (not sup or inf) since {F (q) | q ∈ Q} is a
finite set.

Proposition 3.4. Let A = (Σ,Q, I, δ, F) be an alternating [0, 1]-acceptance
automaton. There exists a [0, 1]-acceptance automaton A′ such that L(A) =
L(A′). ��
The construction of A′ is a quantitative adaptation of the one in [18] that turns
an alternating ω-automaton into a nondeterministic one. In our adaptation we
use what we call exposition flags, an idea that is potentially useful in other
settings with Büchi-type acceptance conditions, too. See Appendix B.1 (of the
extended version [19]) for details of the proof and the construction therein.

Later we will also use the fact that [0, 1]-acceptance automata are closed
under monotone propositional quality operators (Definition 2.2).

Proposition 3.5. Let f : [0, 1]k → [0, 1] be monotone, and A1, . . . ,Ak be [0,
1]-acceptance automata over a common alphabet Σ. There is a [0, 1]-acceptance
automaton f(A1, . . . ,Ak) such that L(

f(A1, . . . ,Ak)
)
(w) = f

(L(A1)(w), . . . ,
L(Ak)(w)

)
for each w. ��

A generalization of [0, 1]-acceptance automaton is naturally obtained by mak-
ing transitions also [0, 1]-weighted. The result is called fuzzy automaton and
studied e.g. in [21]. In Appendix C of the extended version [19] we show that
this generalization does not add expressivity. In fact we prove a more general
result there, parametrizing [0, 1] into a suitable semiring K.

Near-Optimal Scheduling for LTL with Future Discounting 121

4 Near-Optimal Scheduling for LTLdisc[D,Fmc]

In [3,4] the threshold model-checking problem for the logic LTLdisc[D,F] is stud-
ied. In this paper, instead, we are interested in the following problem: what path
of a given Kripke structure K is the best for a given LTLdisc[D,F] formula ϕ.

In general, however, there does not exist an opti-
mal path ξ0 of K, i.e. one that achieves �ξ0, ϕ� =
supξ∈path(K)�ξ, ϕ�.

Example 4.1 (Optimality not Achievable). Take a formula ϕ = GηFp and
the Kripke structure K shown in the above. This example illustrates that the
existence of an optimal path is not guaranteed in general: indeed, whereas
supξ′∈path(K)�ξ

′, ϕ� = 1 in this example, there is no path ξ that achieves
�ξ, ϕ� = 1.

More specifically: we first note that, in each path ξ of the Kripke structure,
p is true at most once. The later the state s1 occurs in a path ξ, the bigger the
truth value �ξ, ϕ� is; moreover the value �ξ, ϕ� tends to 1 (since η tends to 0).
However there is no path ξ that achieves exactly �ξ, ϕ� = 1: if p is postponed
indefinitely, no state in ξ satisfies p, in which case Fp is everywhere false and
hence �ξ, ϕ� = 0.

Definition 4.2. The near-optimal scheduling problem for LTLdisc[D,F] is:
given a Kripke structure K = (W,R, λ), an LTLdisc[D,F] formula ϕ and
a positive real number ε ∈ (0, 1), to find a path ξ0 ∈ path(K) such that
�ξ0, ϕ� ≥ supξ∈path(K)�ξ, ϕ� − ε.

Ultimately we will show that the problem in the above is decidable
(Theorem 4.14), when all the propositional quality operators are monotone and
continuous (F ⊆ Fmc).

We first note that, in the special case for LTLdisc[D, ∅] (i.e. no propositional
quality operators), there is a straightforward binary search algorithm that relies
on the (threshold) model-checking algorithm in [3] (Theorem 2.9). Specifically,
the binary search algorithm repeatedly conducts threshold model-checking for:
the threshold v = 1

2 in the first round; v = 1
4 or 3

4 in the second round, depending
on the outcome of the first round; then for v = 1

8 , . . . , 6
8 or 7

8 , depending on the
outcome of the second round; and so on. Given a margin ε ∈ (0, 1), this way, we
need − log ε rounds. This binary search algorithm is rather effective (see Sect. 5
of the extended version [19]).

However the binary search algorithm does not work in presence of the
average operator ⊕, simply because the threshold model-checking problem is
undecidable (Theorem 2.10). Our main contribution is a novel algorithm for
near-optimal scheduling that works even in this case (and more generally for
the logic LTLdisc[D,Fmc]). Our algorithm first translates a formula ϕ and a
margin ε ∈ (0, 1) to an alternating [0, 1]-acceptance automaton Aϕ,ε, which is
further turned into a [0, 1]-acceptance automaton (Proposition 3.4). The result-
ing automaton—after taking the product with K—is amenable to optimal value
search (Lemma 3.2), yielding a solution to the original problem.

122 S. Nakagawa and I. Hasuo

In the rest of the section we describe our algorithm. We shall however first
restrict to the logic LTLdisc[D, ∅] for the sake of presentation (although this
basic fragment allows binary search). After describing the basic algorithm for
LTLdisc[D, ∅] in Sect. 4.1, in Sect. 4.2 we explain how it can be modified to accom-
modate propositional quality operators.

4.1 Our Algorithm, When Restricted to LTLdisc[D, ∅]
Our translation of ϕ and ε ∈ (0, 1) to an automaton Aϕ,ε is an extension of
the standard translation from LTL formulas to alternating Büchi automata (e.g.
in [23]), with: (1) incorporation of quantities—accumulation of discount factors,
more specifically—by means of what we call discount sequences; and (2) cutting
off those events which are far in the future—the idea of event horizon from [3].
The extension is not complicated on the conceptual level. Its details need care,
however, especially in handling negations and alternation of greatest and least
fixed points.

As preparation, we recall some definitions and notations from [3].

Definition 4.3 (η+k, xcl(ϕ) [3]). Let η : N → [0, 1] be a discounting function.
We define a discounting function η+k : N → [0, 1] by η+k(i) = η(i + k) for each
k ∈ N. For an LTLdisc[D,F] formula ϕ, the extended closure xcl(ϕ) of ϕ [3] is
defined by xcl(ϕ) = Sub(ϕ) ∪ {ϕ1Uη+kϕ2 | k ∈ N, ϕ1Uηϕ2 ∈ Sub(ϕ)}, where
Sub(ϕ) denotes the set of subformulas of ϕ.

Discounting Sequences. We go on to technical details. In the alternating [0,
1]-acceptance automaton Aϕ,ε that we shall construct, a state is a pair (ψ, d) of
a formula ψ and a discount sequence d ∈ [0, 1]+.

Definition 4.4 (Discount Sequence). A discount sequence is a sequence d =
d1d2 . . . dn ∈ [0, 1]+ of real numbers with a nonzero length (di ∈ [0, 1] for each i).

The notion of discount sequence is a quantitative extension of that of priority in
parity automata. Specifically, the length n of a discount sequence d = d1d2 . . . dn

corresponds to a priority—i.e. the alternation depth of greatest and least fixed
points. Each real number di in the sequence, in turn, stands for the accumulated
discount factor in each level of fixed-point alternation. For example, the formula
Fexp 1

2
Gexp 2

3
Fexp 3

4
p will induce a discount sequence (12)n1 , (23)n2 , (34)n3 of length

3—where n1, n2 and n3 are the numbers of steps for which the three discounting
temporal operators Fη1 , Gη2 and Fη3 “have waited,” respectively.

We use three operators �, :,� that act on discount sequences; the intuitions
are as follows. The first two are for accumulating discount factors: we use �
in case there is no alternation of greatest and least fixed points; and we use :
in case there is. Examples are:

(
(12)2, (23)3, 3

4

) � 4
5 =

(
(12)2, (23)3, 3

4 · 4
5

)
=(

(12)2, (23)3, 3
5

)
and

(
(12)2, (23)3, 3

4

)
: 4

5 =
(
(12)2, (23)3, 3

4 , 4
5

)
. Note that in the

former the length is preserved, while in the latter the sequence gets longer by one.

Near-Optimal Scheduling for LTL with Future Discounting 123

Definition 4.5 (d � d′, d:d′). The operator � takes a discount sequence d and
a discount factor d′ ∈ [0, 1] as arguments, and multiplies the last element of d by
d′. That is, (d1d2 . . . dn) � d′ = d1d2 . . . dn−1(dn · d′) ∈ [0, 1]+. The operator
: is simply the concatenation operator: given d = d1d2 . . . dn and d′ ∈ [0, 1], the
sequence d:d′ is d1d2 . . . dnd′ of length n + 1.

We use the operator � in d � v to let a discount sequence d act on a truth
value v ∈ [0, 1].

Definition 4.6 (d � v). The operator � takes d ∈ [0, 1]+ and v ∈ [0, 1] as
arguments. The value d � v ∈ [0, 1] is defined inductively by:

d � v = dv , dd′ � v = d � (1 − d′v) . Explicitly: (3)

(d1d2 . . . dn) � v =
d1 − d1d2 + d1d2d3 − · · · + (−1)nd1d2 . . . dn−1 + (−1)n+1d1d2 . . . dnv .

(4)

The intuition behind the action d � v is most visible in (3), where dv and
d′v denote multiplication of real numbers. Given a discount sequence dd′: (1)
we apply the final discount factor d′ to the truth value v, obtaining d′v; (2)
the alternation between greatest and least fixed points is taken into account, by
taking the negation 1 − d′v (cf. Definition 2.5); and (3) we apply the remaining
sequence d inductively and obtain d � (1 − d′v). An example is

(
3
4 , 1

3 , 2
5

)
� 1 =(

3
4 , 1

3

)
�

(
1 − 2

5 · 1
)

=
(
3
4 , 1

3

)
� 3

5 =
(
3
4

)
�

(
1 − 1

3 · 3
5

)
=

(
3
4

)
� 4

5 = 3
5 .

Table 1. Transition function δ of Ap
ϕ,ε

124 S. Nakagawa and I. Hasuo

The following relationship between � and � is easily seen to hold: (d �
d′) � v = d � (d′ · v). The three operators �, :,� defined in the above will be
used shortly, in the construction of the automaton Aϕ,ε. Their roles are briefly
discussed after Definition 4.7.

Construction of Aϕ,ε. We describe the construction of Aϕ,ε, for a formula
ϕ of LTLdisc[D, ∅] and a margin ε. We subsequently discuss ideas behind it,
comparing the definition with other known constructions.

We first define Ap
ϕ,ε that is infinite-state, and obtain Aϕ,ε as the reachable

part. The latter will be shown to be finite-state (Lemma 4.8).

Definition 4.7 (The Automata Ap
ϕ,ε,Aϕ,ε). Let ϕ be an LTLdisc[D, ∅] for-

mula and ε ∈ (0, 1). We define an alternating [0, 1]-acceptance automaton
Ap

ϕ,ε = (P(AP), Q, I, δ, F) as follows. Its state space Q is xcl(ϕ) × [0, 1]+; hence
a state is a pair (ψ, d) of a formula and a discount sequence. The transition
function δ : Q × P(AP) → B+(Q ∪ [0, 1]) is defined as in Table 1, where we let
d = d1d2 . . . dn ∈ [0, 1]+ and σ ∈ P(AP).

The set I of the initial states of Ap
ϕ,ε is {(ϕ, 1)}. The acceptance function

F is

F (ψ, d) =

{
1 if ψ = ψ1Uψ2 and |d| is even
0 otherwise.

(8)

The alternating [0, 1]-acceptance automaton Aϕ,ε is defined to be the restric-
tion of Ap

ϕ,ε to the states that are reachable from the initial state (ϕ, 1).

Examples of Aϕ,ε are in Figs. 1–2, where (ϕ, ε) = (Gexp 1
2
Fexp 2

5
p, 1

3) and

(Fexp 1
2
Gp, 1

3). There a discount sequence d1 . . . dn is denoted by 〈d1, . . . , dn〉 for
readability.

Some remarks on Definition 4.7 are in order.

In Absence of Discounting (Sanity Check). If the formula ϕ contains no
discounting operator Uη, then the construction essentially coincides the usual one
in [23] that translates a (usual) LTL formula to an alternating Büchi automaton.
To see it, recall that the length |d| of a discount sequence plays the role of
a priority in parity automata (Sect. 4.1). Therefore in the first case of (8), |d|
being even means that we are in fact dealing with a greatest fixed point. This
makes the state accepting (in the Büchi sense), much like in [23].

Aϕ,ε is Quantitative. The acceptance values of the states of Aϕ,ε are Boolean
(see (8)). Nevertheless the automaton is quantitative, in that non-Boolean values
from [0, 1] appear as atomic propositions in the range B+(Q ∪ [0, 1]) of the
transition δ (they occur at the leaves in Figs. 1–2). Once we transform Aϕ,ε to
a non-alternating automaton (Proposition 3.4), these non-Boolean propositional
values give rise to non-Boolean acceptance values.

Near-Optimal Scheduling for LTL with Future Discounting 125

Gexp 1
2
Fexp 2

5
p, 1

Fexp
+1
2
5

p, 1, 1, 1

Fexp
+2
2
5

p, 1, 1, 1

Fexp
+1
2
5

p, 1, 1
2
, 1

Fexp
+2
2
5

p, 1, 1
2
, 11, 1

2
, 1 � 2

5
= 7

10

1, 1, 1 � 2
5
= 2

5

Fexp
+1
1
2

¬ Fexp 2
5
p, 1, 1

Fexp
+2
1
2

¬ Fexp 2
5
p, 1, 1

Fig. 1. The automaton Aϕ,ε for
ϕ = Gexp 1

2
Fexp 2

5
p and ε = 1

3

,

,

Fig. 2. The automaton Aϕ,ε for ϕ =
Fexp 1

2
Gp and ε = 1

3 . The double-lined

nodes have the acceptance value 1.

Event Horizon. A fundamental idea from [3] is the following. A discounting
operator, in presence of a threshold (in [3]) or a nonzero margin (here), allows
an exact representation by a (finitary) formula without a fixed point operator.
The latter means, for example:

�π,Fexp 1
2
ϕ� ≥ 1

4 ⇐⇒ π |= ϕ ∨ Xϕ ∨ XXϕ , and (9)

�π,Gexp 1
2
ϕ� ≥ 3

4 ⇐⇒ π |= ϕ ∧ Xϕ ∧ XXϕ , (10)

and so on. Note that in (9), whatever happens after two time units has contribu-
tions less than (12)2 = 1

4 and therefore never enough to make up the threshold.
The example (10) is similar, with events in the future having only negligible
negative contributions. In other words: fixed point operators with discounting
have an event horizon—in the above examples (9–10) it lies between t = 2 and
3—nothing beyond which matters.

This idea of event horizon is used in the distinction between (6) and (7). The
value η(0) · ∏n

i=1 di is, as we shall see, the greatest contribution to a truth value
that the events henceforth potentially have. In case it is smaller than the margin
ε we can safely ignore the positive contribution henceforth and take the smallest
possible truth value 0—much like the disjunct X3ϕ∨X4ϕ∨· · · is truncated in (9).
This is what is done in the first case in (6). The second case in (6) is about a
greatest fixed point and we truncate the negative contributions of the events
beyond the event horizon—this is much like the obligation X3ϕ ∧ X4ϕ ∧ · · · is
lifted in (10). In this case we use the greatest truth value possible, namely η(0).
This is what is done in (6).

Use of Discount Sequences. Discount sequences d are used for two purposes.
Firstly, as we already described, its length |d| indicates the alternation between
positive and negative views on a formula—observe that a discount sequence gets
longer in (5). Consequently many clauses in the definition of δ distinguish cases
according to the parity of |d|. Secondly it records all the discount factors that

126 S. Nakagawa and I. Hasuo

have been encountered. See (7), where the last element of d is multiplied by the
newly encountered factor η(0) and updated to d � η(0). Such accumulation d of
discount factors acts on a truth value via the � operator, like in (6) and in the
definition of δ

(
(True, d), σ

)
.

Lemma 4.8. The automaton Aϕ,ε has only finitely many states. ��
The following “correctness lemma” claims that Aϕ,ε conducts the expected

task.

Lemma 4.9. Let ϕ be an LTLdisc[D, ∅] formula and ε ∈ (0, 1) be a positive
real number. For each computation π ∈ (P(AP))ω, we have �π, ϕ� − ε ≤
L(Aϕ,ε)(π) ≤ �π, ϕ� ��

The Algorithm. After the construction of Aϕ,ε, the algorithm proceeds in the
following manner. We first translate Aϕ,ε to a (non-alternating) [0, 1]-acceptance
automaton (relying on Proposition 3.4).

Corollary 4.10. Let ϕ be an LTLdisc[D, ∅] formula and ε ∈ (0, 1) be a pos-
itive real number. There exists a (non-alternating) [0, 1]-acceptance automa-
ton Ana

ϕ,ε such that �π, ϕ� − ε ≤ L(Ana
ϕ,ε)(π) ≤ �π, ϕ� for each computation

π ∈ (P(AP))ω. ��
Towards the solution of the near-optimal scheduling problem (Definition 4.2),

we construct the product of Ana
ϕ,ε in Corollary 4.10 and the given Kripke structure

K. Since transitions of [0, 1]-acceptance automata are nondeterministic, this
product can be defined just as usual.

Definition 4.11. Let A = (P(AP), Q, I, δ, F) be a [0, 1]-acceptance automaton
and K = (W,R, λ) be a Kripke structure. Their product A × K is a [0, 1]-
acceptance automaton (1, Q′, I ′, δ′, F ′)—over a singleton alphabet 1 = {•}—
defined by: Q′ = Q; I ′ = I×W ; δ′((q, s), •)

=
{

(q′, s′)
∣
∣ q′ ∈ δ(q, λ(s)), (s, s′) ∈

R
}
; and F ′(q, s) = F (q).

Lemma 4.12. Let (q0, s0) • (q1, s1) • . . . be an optimal run of the automa-
ton A × K (that necessarily exists by Lemma 3.2). The path s0s1 . . . ∈
path(K) realizes the optimal value of A, that is, L(A)

(
λ(s0)λ(s1) . . .

)
=

maxξ∈path(K) L(A)
(
λ(ξ)

)
. ��

Theorem 4.13 (Optimal Scheduling for (LTLdisc[D, ∅]). Assume the set-
ting of Definition 4.2, and that F = ∅ (i.e. the formula ϕ contains no proposi-
tional quality operators). Let (q0, s0) • (q1, s1) • . . . be an optimal run (computed
by Lemma 3.2) for the [0, 1]-acceptance automaton Ana

ϕ,ε × K constructed as in
Definition 4.7, Corollary 4.10 and Definition 4.11. Then the path s0s1 . . . ∈
path(K) is a solution to the near-optimal scheduling problem (Definition 4.2).

Moreover, the solution s0s1 . . . can be chosen to be ultimately periodic. ��

Near-Optimal Scheduling for LTL with Future Discounting 127

4.2 Our General Algorithm for LTLdisc[D,Fmc]

Our general algorithm works in the setting of LTLdisc[D,Fmc]—i.e. in the pres-
ence of monotone and continuous propositional quality operators like ⊕—where
threshold model checking is potentially undecidable [3] and therefore the binary-
search algorithm (described after Definition 4.2) may not work.

The general algorithm is a (rather straightforward) adaptation of the one
we described for LTLdisc[D, ∅] (Sect. 4.1). Here we construct the alternating [0,
1]-acceptance automaton Aϕ,ε inductively on the construction on the formula ϕ:
(1) when the outermost connective is other than a propositional quality operator,
the construction is much like in Definition 4.7; (2) when the outermost connective
is a propositional quality operator, we rely on Proposition 3.5. The rest of the
algorithm (i.e. the part described in Sect. 4.1) remains unchanged. An extensive
description of the details of the construction is deferred to Appendix A of [19].

Theorem 4.14 (Main Theorem, Optimal Scheduling for LTLdisc

[D,Fmc]). In the setting of Definition 4.2, assume that F ⊆ Fmc (i.e. all the
operators in ϕ are monotone and continuous). Then the near-optimal scheduling
problem is decidable. ��

4.3 Complexity

The two parameters D and F in LTLdisc[D,F]—i.e. discounting functions (Def-
inition 2.1) and propositional quality operators (Definition 2.2)—are both rele-
vant to the complexity of our algorithm. Formulating a complexity result is hard
when these parameters are left open. We therefore restrict to: (1) exponential
discounting functions (Definition 2.1), i.e. D = Dexp = {expλ | λ ∈ (0, 1) ∩ Q},
as is done in [3]; and (2) the average operator ⊕, i.e. F = {⊕}. We use the defin-
ition |〈ϕ〉| of the size of a formula ϕ, which is from [3]: it reflects the description
length of λ ∈ Q that appears in discounting functions, as well as the length of
ϕ as an expression.

Proposition 4.15 (Size of Aϕ,ε). Let ϕ be an LTLdisc[Dexp, {⊕}] formula and
ε ∈ (0, 1) ∩ Q be a positive rational number. The size of the state space of the
alternating [0, 1]-acceptance automaton Aϕ,ε is singly exponential in |〈ϕ〉| and
in the length of the description of ε. ��
Theorem 4.16 (Complexity for LTLdisc[Dexp, {⊕}]). The near-optimal
scheduling problem for LTLdisc[Dexp, {⊕}] is: in EXPSPACE in |〈ϕ〉| and in
the description length of ε; and in NLOGSPACE in the size of K. ��

In case of absence of propositional quality operators (i.e. LTLdisc[Dexp, ∅]),
we can further optimize the complexity by using a heuristic and avoiding the
exponential blowup from Aϕ,ε to Ana

ϕ,ε. This yields the following complexity
result, which is also achievable by the binary-search algorithm.

Theorem 4.17 (Complexity for LTLdisc[Dexp, ∅]). The near-optimal
scheduling problem for LTLdisc[Dexp, ∅] is: in PSPACE in |〈ϕ〉| and in the
description length of ε; and in NLOGSPACE in the size of K. ��

128 S. Nakagawa and I. Hasuo

We implemented our algorithm in Sect. 4 that solves the near-optimal
scheduling for LTLdisc[Dexp, {⊕}]. There are some experimental results in the
extended version [19].

5 Conclusions and Future Work

For the quantitative logic LTLdisc[Dexp,F] with future discounting [3], we formu-
lated a natural problem of near-optimal scheduling, and presented an algorithm.
The latter relies on: the existing idea of event horizon exploited in [3] for the
threshold model checking problem, as well as a supposedly widely-applicable
technique of translation to [0, 1]-acceptance automata and a lasso-style optimal
value algorithm for them.

Here are several directions of future work.

Controller Synthesis for Open Systems. We note that the current results
are focused on closed systems. For open or reactive systems (like a server that
responds to requests that come from the environment) we would wish to syn-
thesize a controller—formally a strategy or a transducer—that achieves a near-
optimal performance.

An envisaged workflow, following the one in [23], is as follows. We will use
the same automaton Aϕ,ε (Definition 4.7). It is then: (1) determinized, (2) trans-
formed into a tree automaton that accepts the desired strategies, and (3) the opti-
mal value of the tree automaton is checked, much like in Lemma 3.2. While the
step (2) will be straightforward, the steps (1) and (3) (namely: determinization of
[0, 1]-acceptance automata, and the optimal value problem for “[0, 1]-acceptance
Rabin automata”) are yet to be investigated. Another possible workflow is by
an adaptation of the Safraless algorithm [16].

Probabilistic Systems and LTLdisc[Dexp,F]. Here and in [3] the system
model is a Kripke structure that is nondeterministic. Adding probabilistic
branching will gives us a set of new problems to be solved: for Markov chains
the threshold model-checking problem can be formulated; for Markov decision
processes, we have both the threshold model-checking problem and the near-
optimal scheduling problem. Furthermore, another axis of variation is given by
whether we consider the expected value or the worst-case value. In the latter
case we would wish to exclude truth values that arise with probability 0. All
these variations have important applications in various areas.

Acknowledgments. Thanks are due to Shaull Almagor, Shuichi Hirahara, and the
anonymous referees, for useful discussions and comments. The authors are supported
by Grants-in-Aid No. 24680001, 15KT0012 and 15K11984, JSPS.

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor.
Comput. Sci. 354(2), 272–300 (2006)

Near-Optimal Scheduling for LTL with Future Discounting 129

2. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part II. LNCS, vol. 7966, pp. 15–27. Springer, Heidelberg (2013)

3. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 424–439.
Springer, Heidelberg (2014)

4. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality.
Extended version of [2], preprint (private communication) (2014)

5. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: Henzinger, T.A., Miller, D. (eds.), CSL-LICS 2014, p. 1. ACM
(2014)

6. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

7. Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 266–280. Springer, Heidel-
berg (2014)

8. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quanti-
tative synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011)

9. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. Logical Methods Comput. Sci. 6(3), 1–23 (2010)

10. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In:
LICS 2005, pp. 178–187. IEEE Computer Society (2005)

11. Cheung, L., Stoelinga, M., Vaandrager, F.W.: A testing scenario for probabilistic
processes. J. ACM 54(6) (2007). Article No. 29

12. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in sys-
tems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.),
ICALP 2003, volume 2719 of LNCS, pp. 1022–1037. Springer (2003)

13. Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting.
Theor. Comput. Sci. 410(37), 3481–3494 (2009)

14. Faella, M., Legay, A., Stoelinga, M.: Model checking quantitative linear time logic.
Electr. Notes Theor. Comput. Sci. 220(3), 61–77 (2008)

15. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994)

16. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer,
Heidelberg (2006)

17. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

18. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Com-
put. Sci. 32, 321–330 (1984)

19. Nakagawa, S., Hasuo, I.: Near-optimal scheduling for LTL with future discounting
(2015). CoRR, abs/1410.4950

20. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11–13, 1989, pp. 179–190. ACM Press
(1989)

21. Rahonis, G.: Infinite fuzzy computations. Fuzzy Sets Syst. 153(2), 275–288 (2005)

130 S. Nakagawa and I. Hasuo

22. van Glabbeek, R.J.: The linear time-branching time spectrum I; the semantics of
concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.),
Handbook of Process Algebra, chapter 1, pp. 3–99. Elsevier (2001)

23. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics
for Concurrency: Structure Versus Automata, vol. 1043 of LNCS, pp. 238–266.
Springer-Verlag (1996)

A Switch, in Time

Lenore D. Zuck1 and Sanjiva Prasad2(B)

1 University of Illinois at Chicago, Chicago, USA
lenore@cs.uic.edu

2 Indian Institute of Technology Delhi, New Delhi, India
sanjiva@cse.iitd.ac.in

Abstract. Communication networks are quintessential concurrent and
distributed systems, posing verification challenges concerning network
protocols, reliability, resilience and fault-tolerance, and security. While
techniques based on logic and process calculi have been employed in the
verification of various protocols, there is a mismatch between the abstrac-
tions used in these approaches and the essential structure of networks. In
particular, the formal models do not accurately capture the organization
of networks in terms of (fast but dumb) table-based switches forwarding
structured messages, with intelligence/control located only at the end-
points.

To bridge this gap, we propose an extension of the axiomatic basis of
communication proposed by Karsten et al. In this paper, a simple model
of abstract switches and table-based prefix rewriting is characterized
axiomatically using temporal logic. This formulation is able to address
reconfigurations over time of the network. We illustrate our framework
with simple examples drawn from SDNs, IPv6 mobility and anonymous
routing protocols.

Keywords: Abstract switches · Network protocols · Data plane ·
Control · Time-dependent behavior · Correctness

1 Introduction

Communication networks are quintessential concurrent and distributed systems.
Apart from issues pertaining to scale and efficient implementation, networks
pose challenging verification and validation problems such as the correctness
of protocols, reliability, resilience and fault-tolerance, and security. Indeed, the
correct operation of most distributed systems depends on the correctness of
networks and their protocols.

Networks are organized as a “stack” of several protocol layers, from the
physical to application (and beyond), with the workhorse being the network
layer and the suite of IP protocols configured as a reticulum of fast (but “dumb”)
table-based routers/switches that forward packets. “Intelligence” is confined to

This work was partially supported by a grant from Microsoft Research to the first
author, and NSF CCS-1228697 to the second author.

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 131–146, 2016.
DOI: 10.1007/978-3-319-28766-9 9

132 L.D. Zuck and S. Prasad

the peripheries of the data forwarding network [5]. Much of the robustness and
efficiency of the Internet derives from this architecture. Proposals to embed
greater intelligence into the data network often (i) suffer from inefficiency, (ii)
are difficult to deploy, configure and maintain, and (iii) may introduce potential
vulnerabilities.

Several formal techniques have been used to model and verify different aspects
of a wide variety of network protocols. Approaches based on automata and tem-
poral logic have traditionally been used to reason about fundamental protocols.
Modal logics (particularly of knowledge) have been used to formulate protocol
correctness [10,12]. However, verifying whether a system satisfies a given property
usually requires considerable expertise since one has to formalize within the frame-
work the behavior of all agents, including that of the adversary/environment.

The AVISPA project [3] and subsequent lines of research, e.g. [4,7] comprise
a large body of work involving the automated validation of internet security pro-
tocols. Several security properties have been expressed using LTL with a “some-
time in the past” operator [17], following which model-checking techniques have
been used to verify or detect errors in a large number of widely used protocols.
Such Safety Temporal Properties are of the form �(P → �– Q), which roughly
states: “For any reachable state satisfying a property P , there was a past state
satisfying Q.”

An alternative approach uses process calculi to provide a formal operational
model of the system, and where the adversarial context is mapped to the generic
notion of an observer. For example, CCS has been used for modeling the alter-
nating bit protocol [6,18]; the π-calculus for mobile handover protocols [19];
and the applied π-calculus for security protocols [1]. While the process calculus
approach is attractive as it comes equipped with notions of equivalence such
as bisimulation and their associated proof techniques, stating logical properties
about the protocols is not always easy.

Although these approaches have been successful in formally modeling and
verifying various network protocols, they have done so by abstracting away
much of the essential structure of communication networks. There is a mismatch
between the structure of networks and the manner in which they are repre-
sented in these ad hoc (used in the original, non-pejorative sense) abstract mod-
els. While the hierarchical structure of the network stack presents apparently
abstract and modular structures, these do not correlate well with the formal
notions of abstraction and refinement. When attempting to refine the elegant
abstract models to account for the nitty-gritty details of network structure and
behavior, the formal approaches often end up “over-modeling” mundane or irrel-
evant details about, say, data delivery. Another issue is the lack of modularity
when combining different analyses (e.g., routing and security) that were inde-
pendently modeled and verified under assumptions of orthogonality, and often
in quite different formalisms.

We therefore posit that it is important to have a simple modular framework
for reasoning about the delivery of data messages that corresponds well with the
actual structures of communication networks over which other analyses may be
formalized. A presentation that is general enough to capture the complexities of

A Switch, in Time 133

existing data networks which is also compatible with existing formal operational
and logical models (for modeling and specification) will facilitate robust proofs of
correctness. Indeed, we hope that many analyses in the literature can be adapted
and refined to work in a modular fashion with such a framework.

In this paper, we propose a framework in which data communication network
structures and behavior may be represented at any appropriate level of detail.
The framework naturally admits refinements in the description of the network
elements as well as in the logical specification of their behavior. An organizing
principle in our treatment is a systematic separation between the data and con-
trol planes. This factoring of network structure and function into a data plane
and control plane has gained far greater importance with the advent of Software
Defined Networks (SDNs) [15], which are motivated by the need to respond to
the dynamics of network events and to enforce policies in continuously changing
environments.

The main contribution of this paper is an abstract presentation of the struc-
ture and operational behavior of the data plane. The description of the data
plane is (in logical terms) an extension of the formal model of abstract switches
presented in [14]. The advantages of choosing that framework lie in (1) its ability
to formalize fundamental network concepts (names, addresses, links, scopes, etc.)
at all layers of the so-called network stack as well as across layers; (2) its opera-
tional simplicity (being based on table-based prefix rewriting); (3) its axiomatic
treatment of arbitrarily complex multi-layer forwarding systems [14]; (4) its nat-
ural support for refinement and compositionality [21]; (5) that it can be easily
interfaced with process calculi, typically for expressing the control protocols.

The new contribution of this paper is a reformulation of the axiomatic
basis for communication [14,21] using temporal logic (Sect. 2). This presenta-
tion enables a clearer exposition of time-varying routing behavior and associated
properties, as seen in, e.g., SDNs and Mobile IP. It also supports a more natural
form of reasoning about network invariants, abstracting from detailed reasoning
about topological structure. The version of LTL that we employ in this paper is
expressive enough for stating the desired time-dependent properties, and admits
hierarchical reasoning about the model [16].

We illustrate our approach by presenting a fresh and concise analysis of the
IPv6 mobility model using temporal logic (Sect. 3). This is in contrast to the
detailed process calculus model of [2], where the correctness properties were not
explicitly stated, and the correctness of the protocol was expressed as barbed
equivalence [22] to a simpler reference system. Next, we present an extension
that allows switches perform transformations on messages, including crypto-
graphic operations (Sect. 4). We model an anonymizing network service such as
TOR [8], and outline how one may reason about the correctness of the design
of such anonymizing network services by using knowledge modalities. We con-
clude in Sect. 5 with a recapitulation of the main ideas of this paper, and some
directions for future work. In our exposition of the framework and approach, we
have attempted to convey the intuitions, restricting the formalism to the bare
essentials.

134 L.D. Zuck and S. Prasad

2 The Model

The architecture of our model reflects ideas from Software Defined Networks
(SDNs). The network’s operation is decoupled into a data plane — a collection
of fast (unintelligent) table-based switching elements that relay messages —
and a control plane, the part of a network that carries signaling traffic and
is responsible for routing. The occurrence of events in the data plane triggers
the control plane to initiate changes in switches/routers in the data plane. We
describe here the structure and behavior of the data plane, which is designed to
be a generic message delivery architecture, agnostic to the control operations.
The data plane can be seen as a massive distributed system, with many orders
of magnitude more messages than those in the control plane. The purpose of
most control plane protocols is to configure or make changes in the data plane,
which should continue to operate concurrently while those changes are effected.
Network protocols in the control plane may be described in any of a variety of
process calculi or other formalisms. The examples in this paper do not focus on
the specification and operation of the control protocols, but model their effects
on the data plane. While our account omits the precise interface between the
two planes, we believe this would be relatively straightforward to specify.

2.1 The Data Plane Model

The data plane is a directed graph the nodes of which are abstract switches
(ASs), denoted as A,B,C, . . . X, Y, Z. Switches represent any kind of processing
elements — hardware or software — at any level of the network stack. Each AS
(Fig. 1) has a number of named input and output ports. These ports are the end-
points of simplex directed edges (written e(A,B)) between adjacent ASs. We use
the notation A

B

and
A
B to denote the output port at A directly connected to

B, and the input port at B with an incoming edge from A. We write ?B and A
?

when we wish to leave unspecified a port’s connection. Generic ports are denoted
x, y, z.

The ASs send messages along the edges. Messages are represented as strings
of identifiers drawn from an arbitrary alphabet Σ. Typical messages are denoted

Fig. 1. Schematic view of an abstract switch

A Switch, in Time 135

m,m′, . . . and prefixes of messages are usually denoted as p, p′, . . . The presence
of a message m at a port x is denoted as m@x. Creation and consumption of
messages may be internalized within the system as follows: The creation of a
message m at B is modeled as m being at a (virtual logical) port 0B, and its
consumption as it being at the (virtual logical) port B

0
.

An AS maintains a local switching table. The switching table at AS B,
denoted as SB , contains mappings of the form 〈A, p〉 �→ {〈Ci, p

′
i〉} (SB maps an

AS-prefix pair to a set of AS-prefix pairs). The table represents a finite-domain
function, which may not be defined for several 〈A, p〉 pairs. The switching table
specifies a local prefix rewriting system at that AS. We assume that switching
table entries are exact matches, i.e., if SB [A, p] �= ∅, then for no prefix p′ of
p is SB [A, p′] �= ∅1. The correctness of computer network protocols crucially
hinges on the distributed state of the switching tables collectively satisfying and
maintaining certain properties that ensure deliverability of messages.

Informally, the operation of model is: When a message pm appears on the
input port

A
B such that SB has an entry 〈A, p〉 �→ {〈Ci, p

′
i〉}, then for each i,

a message p′
im is placed on the output port B

Ci . Note that the switching tables
at different ASs may be quite different.

Definition 1. A message m arriving at an input port
X
A is called a barb, writ-

ten m@
X
A ↑, if SA[X, p] = ∅ for each prefix p of m.

Barbs are the observables of the data plane, which occur when a switch is unable
to handle an incoming message. Barbs can form the basis for an operational
account of the data plane’s behavior. In this paper, instead, we provide a logical
account of the behavior.

2.2 Axioms

The following axiom schema specify the behavior of edges and switches.

RT1. (Direct Communication)

e(A,B) ∧ m@A
B ⇒ � (m@

A
B)

RT2. (Local Switching)

pm@
A
B ∧ 〈C, p′〉 ∈ SB [A, p] ⇒ � (p′m@B

C

)

Axiom RT1 describes direct communication between ASs. If there is a direct
edge from A to B, a message on output port A

B

eventually appears on the input
port

A
B. Axiom RT2 expresses the lookup and switching capability of an AS.

If a message with prefix p is at an input port of B and the switching table
1 This assumption is to keep the model simple; more complex matching rules such as

matching with the maximal prefix, or allowing for priorities among potential prefixes
may be viewed as practical optimizations.

136 L.D. Zuck and S. Prasad

there indicates that a message with this prefix at that input port should have
its prefix rewritten to p′ and placed on output port C, then the transformed
message eventually appears at that port. Note that RT2 also covers any form of
multi-recipient forwarding, such as multicast, since SB [A, p] may have multiple
elements.

These axiom schema capture a notion of deliverability, and apply to message
transmission between ASs at any two levels in the protocol stack in the data
plane. For simplicity of exposition, we assume that messages do not get lost or
corrupted at ASs or at edges. Note that loss and corruption of messages may be
explicitly simulated within the model by using suitably defined ASs. The model
naturally permits message reordering. The model is completely distributed: ASs
may operate concurrently and independent of one another, and even the opera-
tions on messages at the same/different ports of an AS may be concurrent.

We write m@x � m′@y (read relays-to2) as convenient shorthand for
m@x ⇒ � m′@y. We abbreviate, e.g., m@x ⇒ � m′@y ∧ m′@y ⇒ � m′′@z
by writing m@x � m′@y � m′′@z. The relays-to relation helps define a number
of well-known communication concepts.

Let A and B be ASs and p �= ε. We then define:

Name. Prefix p is a name for B at A if

∃X,Y,Z : ∃p′ �= ε : ∀m : pm@
X
A � p′m@

Y
B � m@B

Z

.

The name for an AS B at another AS A is a non-empty prefix that is removed
when a message is transmitted from A to B. By default, names are local and
their meaning is relative to the AS where they are interpreted. Note that p can
be a name at A for multiple ASs, and that the ASs denoted by a name can vary
with changes to switching tables. The condition p′ �= ε ensures that B is indeed
the AS where the prefix or any residual of it is removed.

Address. Prefix p is an address for B at A if

∀X : ∃Y,Z : ∀m : pm@
X
A � pm@

Y
B � m@B

Z

.

An address is a special kind of name whose meaning is independent of the input
port, and which does not change along the path traversed by a message (though
the ASs between A and B may add prefixes to pm). Note that p can be an
address for multiple ASs.

Tunnel. There is a tunnel from A to B if

∃W,X, Y, Z : ∃p, p′ �= ε : ∀m : m@
W

A � pm@A
X � p′m@

Y
B � m@B

Z

A tunnel from A to B takes a message at A, “wraps” it with a prefix, and
delivers it to B where it is unwrapped. Tunnels provide a means for abstracting
away the series of intermediate edges that establish the connection between two
2 In [14], this relation was inductively defined using four axiom schema, two of which –

reflexivity and transitivity — are implicit in temporal logic.

A Switch, in Time 137

nodes. Let tunnel(
W

A,B
Z

) denote the existence of a tunnel between A and B
with entry and exit ports at W,Z.

Tunnels can be composed (by connecting the output port of the first to the
input port of the second):

Lemma 1 (Tunnel Composition). If tunnel(
W

A,B
X

) and tunnel(
Y
B,C

Z

),
then (by linking B

X

to
Y
B), tunnel(

W
A,C

Z

).

2.3 Table Updates

Network events necessitate dynamic updates to switching tables. New entries
can be added and existing entries modified or deleted. Updates to switching
tables occur relatively infrequently and are atomic. Consequently, we may safely
assume that at each point in the execution, the tables are stable and well defined.

An update S1
B of SB is monotone if for every 〈C, p′〉 ∈ SB[A, p], 〈C, p′〉 ∈

S1B [A, p]. The update S1B preserves a name for A at C if the name is not disturbed
by the update. Similarly, the update S1B preserves a tunnel from A to C if this
tunnel is not disturbed by the update.

Lemma 2. Monotone updates preserve names and tunnels.

Example: Routing updates in SDNs. The occurrence of a barb in the data plane
indicates that at some AS there is no switching rule for handling a message
that arrived there. This may indicate an error in the protocol. However, if the
tables have been properly configured (as presumed), the barb is an event that
necessitates action on part of the control plane to update the switching tables.
Such an event may occur, for instance, when a new device has been introduced
into the network, and messages addressed to it need to be forwarded. Typically,
the control plane responds by placing output messages at some output ports
and performing a monotone update to the switching table of that AS. Lemma2
implies that such SDN updates preserve names and tunnels.

Corollary 1. Routing updates in SDNs preserve names and tunnels.

Routing updates, being monotone, preserve deliverability of messages. Note
though, that while they are intended to remove the barbs that triggered them,
they may introduce new barbs at other nodes.

Further, they may introduce forwarding cycles, which cause messages
to traverse cycles. A message m is said to traverse a cycle if for some
A, p, p′, p′′,X, Y, Z, pm@

X
A � p′m@A

Y � p′′m@
Z
A. Note that a message tra-

versing a cycle does not necessarily imply that it will remain in that loop indef-
initely — by returning to A at a different input port, and/or with a different
prefix p′′, it may be switched differently the second time around. Another way
that forwarding cycles may be broken is via updates to a switching table.

138 L.D. Zuck and S. Prasad

3 IP Mobility

Changes in the network topology may disrupt the “relays-to” relation, resulting
in the invalidation of certain names or a change in their meaning. This may be
repaired by updates to one or more switching tables. A good example of such
updates occurs in IPv6 mobility [20], the essence of which we model here.

3.1 Tunnel Maintenance

Recall that tunnels allow us to abstract from the details of all nodes and direct
edges in the network graph. Thus we can focus on only IP layer nodes and tunnels
between them. For each node A, let nA be its universal address (a “well-known
address” in networks parlance). We write tunnel (nB)(X,Y) to indicate that at
AS X the switching tables are configured to tunnel any message with prefix nB

to Y .
IPv6 support for mobility is based on a proxy architecture, where a mobile

node B is associated with

– its identifying IP address nB ;
– its home router, denoted H(B), which never changes;
– its current location, denoted h(B), which may change over time. At any point

in time, B is “hosted by” at most one router.

We assume that if a message intended for B reaches h(B), it will eventually
be delivered to B.

(mIP) nBm@?h(B) ⇒ � (m@B
?
)

In a stable state of the network, a sender sends a message to a mobile node
B by either

1. tunneling it to B’s home router H(B) (B’s default location); (a) if B is at
home (h(B) = H(B)), the message will be delivered to B. (b) if B is away
(h(B) �= H(B)), H(B) tunnels it to h(B), which H(B) presumably knows.

2. alternatively, if the sender knows h(B), it may tunnel the message to h(B).

In all the above cases, Lemma 1 and (mIP) ensure that the message will be
delivered to B.

However, when B moves, we cannot assume that h(B) will be known to nodes,
in particular to H(B), wishing to communicate with it. With a small number
of control messages that eventually lead to (re)establishing correct forwarding
tables, the IPv6 mobility protocol achieves correct forwarding of messages. We
focus here only on the effects of the control messages on the switching tables.
It is the control protocol’s responsibility to ensure that table update messages
received out-of-order are ignored (this can be achieved using sequence numbers).

We assume that initially for every X �= H(B), tunnel (nB)(X,H(B)).
Moreover, at any time, if nodes X and Y are not in {H(B), h(B)}

A Switch, in Time 139

and tunnel (nB)(Y,X) exists, this tunnel can be removed and replaced by
tunnel (nB)(Y,H(B)) (a “time-out reset”). Once registered at h(B), B (or h(B)
on its behalf) may send control messages to any correspondent node A not nec-
essarily involved in the move, telling A of its current location, in which case A
may update to tunnel (nB)(Y, h(B)). The only possible other nB-tunnel changes
are triggered by B’s moves, with the associated mandatory updates summarized
in Fig. 2.

Move Remove Tunnels Create Tunnel
H(B) to F1 tunnel (nB)(F1, X), tunnel (nB)(H(B), F1)

tunnel (nB)(H(B), X) X �= F1

F1 toH(B) tunnel (nB)(F1, X) X �= H(B) tunnel (nB)(F1, H(B))

tunnel (nB)(H(B), X)

F1 to F2 tunnel (nB)(F2, X) tunnel (nB)(H(B), F2)

tunnel (nB)(H(B), F1) exactly one of tunnel (nB)(F1, F2)

or tunnel (nB)(F1, H(B))

Fig. 2. Tunnel updating on moves

The IPv6 protocol implementation is assumed to ensure that control messages
will get delivered, especially to the home network, and consequently that there
are no ways of creating tunnel (nB)(X,Y) other than those in Fig. 2, or by “timing
out”. We assume that the removal and creation of tunnels at a single AS happens
atomically. Observe that the updates mentioned are not monotonic.

3.2 Properties

By induction on the tunnel update moves, we can prove the following properties:

Tunnel Endpoint. Tunnels only end at previously visited hosts.

∀X. tunnel (nB)(X,Y) ⇒ (Y = H(B) ∨ �– (Y = h(B))

No Wandering. Messages (at tunnel end-points) can only visit their sender,
receiver, the receiver’s home or any node that hosted it: For every message
m from sender A to receiver B,

∀X.nBm@?X ⇒ (X = A ∨ X = B ∨ X = H(B) ∨ �– (X = h(B)))

Note that all tunnels created in response to control messages involve a router
that has been visited earlier.

No Forwarding Cycles. Tunnels do not form a true cycle3. Let (tunnel∗)(nB)

be the transitive closure of tunnel (nB) as per Lemma 1.

∀X : ¬((tunnel∗)(nB)(X,X))
3 Actually, this property can be weakened to one requiring only that any such for-

warding cycle will eventually get broken (see [23] for details).

140 L.D. Zuck and S. Prasad

Lemma 3. If the mobile node settles at its home, eventually there is permanent
tunnel from all other nodes to its home.

�(h(B) = H(B)) ⇒ ∀Y �= H(B). � �tunnel (nB)(Y,H(B))

Proof. Let σ be a computation satisfying �(h(B) = H(B)) and let Y /∈
{B,H(B)}. Initially tunnel (nB)(Y,H(B)); from the “time-out” action or if B
moves, it follows from the rules of Fig. 2 that there exists a suffix σ′ of σ where
tunnel (nB)(Y,H(B)). Now, since B remains at H(B), Y creates no other tunnel
for nB . Thus, σ′ satisfies �(tunnel (nB)(Y,H(B))).

Of course, there may be points in a computation where a nB-tunnel does not
exist to B’s location. However, by the eventual delivery of control messages, or
by time-out, such a tunnel will be constructed. Observe that the model does not
place any buffer-space limitations or delivery-order restrictions on messages, so
in an implementation, their deliverability relies on buffering them until a tunnel
is (re-)constructed. The next lemma addresses nB-tunnels when B settles at a
non-home node.

Lemma 4. If the mobile node settles at a place, there is a tunnel from home to
that place, and a tunnel from every previously visited node to either home or to
that permanent host. The proof is similar to that of Lemma 3.

∀X,Y.�(h(B) = X ∧ X �= H(B) ∧ Y /∈ {h(B),H(B)}) ⇒

� �
(
tunnel (nB)(H(B), h(B))
∧ (tunnel (nB)(Y, h(B)) ∨ tunnel (nB)(Y,H(B)))

)

Theorem 1 establishes that if a node remains at a single host for sufficiently long,
then it will receive every message sent to it.

Theorem 1. If a mobile node settles, any message addressed to it eventually
gets delivered.

�(h(B) = X) ⇒ (nBm@?A ⇒ � (m@B
?
))

Proof. Let σ be a computation satisfying �(h(B) = X), and assume nBm@?A
holds. From Lemmas 3 and 4 it follows that there exists a suffix σ′ of σ such
that σ′ |= �(tunnel (nB)(Y,X) for every Y /∈ {X,H(B), B}. The No Wandering
property establishes that at the initial state of σ′, m has either already reached
its destination B or is at some other node. In the latter case, once in σ′, m
will be forwarded through the permanent tunnel to X, and eventually reach B
by (mIP).

The theorem does not (incorrectly) claim that messages cannot go into a cycle.
The No Forwarding Cycles property guarantees it does not stay in a cycle if the
mobile node settles (rendered as “ever after” in LTL) at a host. However, if a
mobile node B does not stay “long enough” at any node, a message may forever
keep chasing it without ever catching up with it.

This theorem has been validated for a finite version of the model using
TLV [23].

A Switch, in Time 141

4 Security Primitives: The TOR Example

In addition to routing, security is an important issue in network protocols.
Encryption and decryption operations on messages motivate an extension to the
model of Sect. 2 by allowing switches to perform cryptographic and other func-
tional transformations on messages. We illustrate the extension by presenting
the essence of the TOR [8] architecture, which is designed to support anony-
mous communication. Formal notions of anonymity have always been among
the hardest security properties to capture [13].

We modify the Local Switching axiom to

RT2′ pm@
A
B∧〈C, p′, fABC〉 ∈ SB [A, p] ⇒ � (p′m′@B

C

) (m′ = fABC(p,m))

Mappings of the form 〈A, p〉 �→ {〈C, p′, fABC〉} now populate SB , the switch-
ing table at AS B, where C and p′ are as before, and fABC is a function that
transforms messages. A message placed on an output port is a functional trans-
formation of the incoming message, where the function may depend on the switch
B and on the input and output ports. This generalization permits expressing a
variety of operations, such as encryption, hashing, route recording, etc.

4.1 TOR

TOR (The Onion Router) is a low-latency anonymous communication service.
To send an anonymous message, a client chooses at least three intermediate
routers to be used as a chain of relays to the recipient. The client establishes
shared secret session keys with each of the intermediate TOR nodes, and encrypts
the message successively with these keys in the inverse order with respect to the
routers through which the message will pass. The TOR routers are only aware of
their successor and predecessor nodes in the relay chain. The protocol is designed
to ensure that none of the intermediate routers are aware of both the sender and
receiver of the message.

For example, suppose sender A ∈ A, where A is the set of potential senders,
wishes to sends a message m to receiver B ∈ B (B is the set of potential destina-
tions) via TOR nodes X;Y ;Z. To simplify the presentation, we connect Z to an
extra (non-TOR) “fan-out” router W to communicate with the actual recipient
of the message. (See Fig. 3, where for simplifying the exposition, we depict the
tunnels between the routers as direct links).

Fig. 3. Schematic view of TOR

142 L.D. Zuck and S. Prasad

Client node A sends to the first TOR router X the message

mA = nX EX(nY EY (nZ EZ(nBmB)
︸ ︷︷ ︸

mZ

)

︸ ︷︷ ︸
mY

)

︸ ︷︷ ︸
mZ

where Ei(m′) is the cipher text obtained by encrypting m′ with the key shared
between A and i; each ni is the “well-known” address of i. Upon receipt of a
message each TOR node decrypts it using the shared key, and transmits the
result to the next node in the chain. Here anonymity implies that neither Y
nor Z is able to learn the identity of sender A, and neither X nor Y can learn
the identity of receiver B from a set of potential senders and receivers of the
message.

The TOR protocol involves a very special version of switching, where the
switching decisions are not made based on the prefixes of the messages but
rather are effected based on the decrypted content of the messages. Moreover,
the function fABC at TOR nodes depends only on B (in fact on the key shared
by B with the TOR client): for every A′ and C ′, fA′BC′ = fABC . We therefore
refer to the switch transformation function as fB .

Suppose X is the ingress TOR router, with input messages from possible
sources A1, . . . Ak. The switching table at the ingress router X has entries of the
form:

〈Ai, nX〉 �→ 〈Y, ε, E−1
X 〉

where E−1
X is the decryption function using the key shared with the client and

X. When X receives the message nXEX(nY mY), it places nY mY on the output
port to Y . Note that since X does not have the keys shared between A and Y ,
it cannot learn that the message is intended for B. At the intermediate TOR
router Y , with predecessor X and successor Y , the switching table has entries
of the form:

〈X,nY 〉 �→ 〈Z, ε, E−1
Y 〉

When Y receives the message nY mZ , it places nZmZ on the output port to
Z. Since Y does not have the keys shared between A,Z, it cannot learn that
the message is intended for B, nor does it know the source A of this message,
since the message was from the input port from X. At the TOR router Z, with
predecessor Y and a single egress router W which connects to nodes in B, the
switching table is:

〈Y, nZ〉 �→ 〈W, ε,E−1
Z 〉

When Z receives the message nZEZ(nBmB), it places nBmB on the output port
to W . Router Z does not have any indication of the source A of this message,
since all messages were on the input port from Y .

A Switch, in Time 143

4.2 Proving Some TOR Properties

Our main technique for proving correctness of TOR is derived from the strand
formalism in [11], which supports a representation of the execution of a pro-
tocol in terms of local views of principals and the messages exchanged in that
execution.

Security protocols are cast as cryptoalgebras in [11], where to decrypt an
encrypted term t = EP (m), an adversary needs to have received prior mes-
sages from which EP can be derived. Though the Dolev-Yao model [9] abstracts
from more realistic assumptions regarding message structure and cryptographic
schemes addressed by [11] (e.g., bounds on message length, the particular encryp-
tion/decryption functions, and ability to guess keys and ciphers), it is considered
a standard adversarial model for formal security analysis. For the purpose of this
section, we restrict to the Dolev-Yao model. Recall that a Dolev-Yao adversary
can only encrypt/decrypt messages whose keys it possesses.

Following terminology roughly influenced by formal reasoning about knowl-
edge (see, e.g., [10,12]), let Ki(z) denote that a participant i knows the value of
a variable z. Initially, every participant P knows the names of all participants
and the encryption/decryption keys to which it is privy, i.e., KP (nQ) for every
participant P and Q, and KP (EP). The adversary may know additional keys,
but we assume that it knows at most two of the three keys A shares with X,
Y , and Z. During the course of the protocol, the adversary may decrypt any
messages whose encryption keys it knows, as well as send messages that may
be encrypted with keys known to it. Moreover, for every honest participant P ,
the encryption key EP can never be derived, that is, honest participants never
send any information that reveals their keys. In particular, if the adversary does
not initially know Ei and cannot derive it from any message it had seen, then it
cannot decrypt any message encrypted with Ei.

We assume that every participant knows the sets A and B. For TOR mes-
sage m, let src(m) ∈ A be its source and dest(m) ∈ B be its intended des-
tination. Thus, when a TOR message m is received, for every participant P ,
KP (src(m) ∈ A) and Kadv (dest(m) ∈ B). Moreover, for every honest partici-
pant P , ¬Kadv (EP).

Our goal is to show that no participant, but for the source and destination,
get to learn both source and destination of a TOR message even if adversary
knows all but one key of an intermediate node.

Theorem 2. For every TOR message mA and every participant P �= A,B,

�¬(KP (src(mA)) ∧ KP (dest(mA)))

even if two of X, Y , and Z are compromised.

Proof (Proof Outline). We present the most commonly studied case, where X
and Z are compromised, but not Y . Initially Kadv (EX) and Kadv (EZ). When
mA = nXmY @?X, the adversary can learn src(mA). We have to show that it
never learns dest(mA). From our assumption it follows that � ¬Kadv (EY). In

144 L.D. Zuck and S. Prasad

the protocol, X sends the message mY , thus eventually mX = nY mY @?Y . While
the adversary may know mX@?Y , from our assumptions it follows that it cannot
decipher mY , and hence, cannot associate the event mZ = nZmZ@Y

?
with the

message mA. That is, it cannot derive that mZ = nY EY (mZ). From here the
adversary cannot determine that mZ@Y

?
implies that �– mA@?X, from which

the claim follows.

5 Conclusions

The disparity between the structure and behavior of computer networks and the
abstract formal models used for modeling and verifying protocols motivated us
to present a modular logical account of the data plane of networks. By sepa-
rating the data plane from control protocol descriptions, we hope that formal
analyses of various control protocols (routing, security, etc.) can be performed
independently of modeling the details of message delivery within a given abstract
framework. Our framework provides a general model of message relay at multiple
layers of the network stack, thereby supporting formal analyses using appropri-
ate abstractions that accurately capture real network behavior. By ensuring that
the data plane model is presented in a manner that naturally admits refinements,
both in temporal logical specifications and in the hierarchical structure, we claim
that the resultant framework can support more robust proofs of correctness. In
this paper, we have accounted for changes in the routing and forwarding topolo-
gies, and can specify and model network structure and behavior that changes
over time.

To our knowledge there are few formal models of networks, and fewer that
account for dynamic changes to network structure. The example we chose to
illustrate our approach, i.e., modeling IPv6 mobility shows how one can con-
struct concise and abstract proofs of correctness of a protocol, without modeling
too many operational details of the protocol and the network. Our analysis is
minimalist in that it does not mistakenly claim stronger properties than are nec-
essary. For example, some formal analyses of IPv6 mobility claimed (incorrectly)
that the protocol does not allow data messages traverse cycles, or that forward-
ing cycles are never created. The correctness of the protocol, however, hinges
on a far weaker property: that any temporarily created message or forwarding
cycles will be broken (“sooner or later” – though this argument is made without
explicitly reasoning about time).

The other generalization made in this paper is to endow switches with the
ability to perform functional transformations on messages. This supports the
modeling of a large variety of security protocols within the data plane. We are
unaware of any earlier formal logical account of the correctness of the TOR
protocol in providing anonymity.

In this paper, the two extensions — dealing with dynamic changes in the
forwarding topologies and providing switches with the ability to transform mes-
sages — have been treated orthogonally. We believe that there are a large num-
ber of time-dependent security protocols that can fruitfully be explored in a

A Switch, in Time 145

combination of these extensions, for instance, whether the TOR protocol pro-
vides perfect forward secrecy or perfect forward anonymity. Indeed, the notion of
anonymity merits further investigation.

Acknowledgements. The authors thank the anonymous referees for their valuable
suggestions.

References

1. Abadi, M., Fournet, C.: Private authentication. Theor. Comput. Sci. 322(3), 427–
476 (2004)

2. Amadio, R.M., Prasad, S.: Modelling IP mobility. In: Sangiorgi, D., de Simone, R.
(eds.) CONCUR 1998. LNCS, vol. 1466, pp. 301–316. Springer, Heidelberg (1998)

3. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

4. Armando, A., Basin, D.A., Cuéllar, J., Rusinowitch, M., Viganò, L.: Automated
reasoning for security protocol analysis. J. Autom. Reason. 36(1–2), 1–3 (2006)

5. Clark, D.: The design philosophy of the DARPA internet protocols. In: Proceed-
ings of SIGCOMM 1988: ACM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, vol. 8, pp. 106–114. ACM
(1988)

6. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench. In: Sifakis, J.
(ed.) Automatic Verification Methods for Finite State Systems. LNCS, vol. 407,
pp. 24–37. Springer, Heidelberg (1989)

7. Delzanno, G., Ganty, P.: Automatic verification of time sensitive cryptographic
protocols. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
342–356. Springer, Heidelberg (2004)

8. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Proceedings of 13th USENIX Security Symposium, SSYM 2004, pp.
303–320. USENIX Association (2004)

9. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29(2), 198–207 (1983)

10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.:Knowledge-based programs. In:
Proceedings of PODC 1995: 14th Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 153–163. ACM (1995)

11. Guttman, J.D., Thayer, F.J., Zuck, L.D.: The faithfulness of abstract protocol
analysis: message authentication. J. Comput. Secur. 12(6), 865–891 (2004)

12. Halpern, J.Y., Zuck, L.D.: A little knowledge goes a long way: Knowledge-based
derivations and correctness proofs for a family of protocols. J. ACM 39(3), 449–478
(1992)

13. Hughes, D.J.D., Shmatikov, V.: Information hiding, anonymity and privacy: a mod-
ular approach. J. Comput. Secur. 12(1), 3–36 (2004)

14. Karsten, M., Keshav, S., Prasad, S., Beg, M.: An axiomatic basis for communica-
tion. In: Proceedings of SIGCOMM 2007:ACM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications, pp. 217–228.
ACM (2007)

146 L.D. Zuck and S. Prasad

15. Kreutz, D., Ramos, F.M.V., Veŕıssimo, P.J.E., Esteve Rothenberg, C., Azodol-
molky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc.
IEEE 103(1), 14–76 (2015)

16. Lamport, L.: What good is temporal logic? In: Information Processing 83 - Pro-
ceedings of WCC 1983: 9th IFIP World Computer Congress, pp. 657–668. North-
Holland/IFIP (1983)

17. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

18. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

19. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I. Inf. Comput.
100(1), 1–40 (1992)

20. Perkins, C.E., Johnson, D.B.: Mobility support in IPv6. In: Proceedings of Mobi-
Com 1996: 2nd Annual International Conference on Mobile Computing and Net-
working, pp. 27–37, New York, NY, USA. ACM (1996)

21. Prasad, S.: Abstract switches: A distributed model of communication and compu-
tation. In: Perspectives in Concurrency Theory. CRC Press (2009)

22. Sangiorgi, D., Walker, D.W.: On barbed equivalences in π-Calculus. In: Larsen,
K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 292–304. Springer,
Heidelberg (2001)

23. Zuck, L.D., Prasad, S.: Limited mobility, eventual stability. In: Piterman, N., et al.
(eds.) HVC 2015. LNCS, vol. 9434, pp. 139–154. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26287-1 9

http://dx.doi.org/10.1007/978-3-319-26287-1_9

Verification of Component-Based Systems
via Predicate Abstraction and Simultaneous

Set Reduction

Wang Qiang(B) and Simon Bliudze

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
qiang.wang@epfl.ch

Abstract. This paper presents a novel safety property verification app-
roach for component-based systems modelled in BIP (Behaviour, Inter-
action and Priority), encompassing multiparty synchronisation with data
transfer and priority. Our contributions consist of: (1) an on-the-fly lazy
predicate abstraction technique for BIP; (2) a novel explicit state reduc-
tion technique, called simultaneous set reduction, that can be combined
with lazy predicate abstraction to prune the search space of abstract
reachability analysis; (3) a prototype tool implementing all the proposed
techniques. We also conduct thorough experimental evaluation, which
demonstrates the effectiveness of our proposed approach.

1 Introduction

BIP [2] is a component-based rigorous system design framework, that advocates
the methodology of correctness-by-construction. Rigorous system design can be
understood as a formal, accountable and coherent process for deriving trustwor-
thy implementations from high-level system models, which aims at guaranteeing
the essential properties of a design at the earliest possible design phase, and
then automatically generating correct implementations by a sequence of prop-
erty preserving model transformations progressively refining the models with
details specific to the target platforms [22].

BIP supports the rigorous design flow with the well-defined BIP modelling
language and an associated tool-set. To model complex systems, the BIP lan-
guage advocates the principle of separation of concerns (i.e. computation and
coordination), and provides a three-layered mechanism for this purpose, i.e.
Behaviour, Interaction, and Priority. Behaviour is characterised by a set of
atomic components, defined as automata extended with linear arithmetic. Inter-
action represents the multiparty synchronisation of atomic components, among
which data transfer may take place. Priority can be used to schedule the inter-
actions or resolve conflicts when several interactions are enabled simultaneously.

This work was carried out within the D-MILS project, which is partially funded
under the European Commission’s Seventh Framework Programme (FP7).

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 147–162, 2016.
DOI: 10.1007/978-3-319-28766-9 10

148 W. Qiang and S. Bliudze

In the BIP framework, DFinder [4] is the dedicated tool for automatic invari-
ant generation and safety properties verification. DFinder computes an invari-
ant in a compositional manner: it first computes a component invariant for each
component over-approximating its behaviour and then computes the interac-
tion invariant characterising the coordination constraint of all components. The
invariant of the global system is then the conjunction of component invariants
and the interaction invariant. However, DFinder does not handle system models
with data transfer. This limitation hampers the practical application of DFinder
and of the BIP framework, since data transfer is necessary and common in the
design of real-life systems. Besides, it is not clear in DFinder how to refine
the abstraction automatically when the inferred invariant fails to justify the
property.

Some other works on automatic verification of BIP models exist, but they all
suffer from certain limitations. The VCS [14] tool translates a BIP model into
a symbolic transition system and then performs the bounded model checking.
It handles data transfer among components, but only deals with finite domain
variables. In [23], a timed BIP model is translated into Timed Automata and
then verified with Uppaal [3]. The translation handles data transfers, but it is
limited to BIP models with finite domain data variables. In [18], the authors
show an encoding of a BIP model into Horn Clauses, which are verified with
Eldarica [17], but they do not handle data transfers on interactions.

In [5], the authors instantiate the ESST (Explicit Scheduler Symbolic
Thread) framework [8] for BIP, where a dedicated BIP scheduler is developed to
orchestrate the abstract reachability analysis, and partial order reduction tech-
niques [11] are applied to further boost the analysis. Although being closely
related, our approach is tailored for BIP and leverages its operational semantics
to define the necessary minimal notion of abstract state, as opposed to that of
ESST, where additional component status information and primitive functions
have to be stored to account for the BIP scheduler.

Our approach is inspired by the idea of separation of computation and coor-
dination, advocated by BIP three-layered modelling mechanism. In brief, we pro-
pose to decompose the verification of component-based systems into two levels
by taking advantage of the structure features of such systems. Thus, we han-
dle the computation of components and the coordination among components
separately. On the computation level, we exploit the state-of-the-art counterex-
ample guided abstraction refinement technique (e.g. lazy abstraction [15,16]) to
analyse the behaviour of components; while on the coordination level, we deal
with the redundant interleavings by a novel explicit state reduction technique,
called simultaneous set reduction. The basic idea is that when two concurrent
actions are enabled at the same time, instead of taking into account all the
possible interleavings, we may consider executing them simultaneously. To this
end, we make the following contributions in this paper: (1) we propose an on-
the-fly lazy predicate abstraction technique for the verification of BIP models;
(2) we propose a novel explicit state reduction technique (i.e. simultaneous set
reduction) to reduce the search space when performing the abstract reachability

Verification of Component-Based Systems via Predicate Abstraction 149

analysis; (3) we have implemented the proposed techniques in our prototype
tool and conducted thorough experimental evaluation, which shows the proposed
techniques are promising for verifying generic BIP models.

2 BIP Framework

In this section we introduce the syntax and semantics of a subset of the BIP
language, which encompasses the multiparty synchronisation and data transfer.

2.1 BIP Modelling Language

We use symbol Var to denote a finite set of variables with both finite and infinite
domains. A guard (or predicate) is a boolean expression over Var . An operation
is either an assignment or a sequence of assignments of the form x := exp, where
x ∈ Var and exp is an expression in linear arithmetic over Var . We denote
by Guard and Op the set of guards and operations over Var respectively, and
Op includes a special operation skip, which has no effect on variables in Var .
Symbols can be indexed to refer to a specific component.

Definition 1 (Atomic Component). An atomic component is a tuple Bi =
(Var i,Loci,Port i, Transi, l0i), where:

1. Var i is a finite set of variables;
2. Loci is a finite set of control locations;
3. Port i is a finite set of ports, which are labels on the transitions;
4. Transi ⊆ Loci × Guard i × Port i × Opi × Loci is a set of transitions with

guards and operations over Var i.
5. l0i ∈ Loci is the initial control location.

S1 S2

S3

S4 S5

S6

S1 S2

S3

S4 S5

S6

error1

error2

A

B
restart2

insert2

x:=1 y:=z
respond2

error2
[x!=y]

request2
z:=x

y:=0
z:=0

valid2

invalid2

x:=0
y:=0

restart1

insert1

x:=1 y:=z
respond1

error1
[x!=y]

request1
z:=x

y:=0
z:=0

valid1

invalid1

x:=0
y:=0

Fig. 1. An example BIP model

The values of atomic component variables
can be transfered to other components
upon interaction (see Definition 2 below).
However, they cannot be modified by the
receiving components.

Transitions are labelled by ports,
which form the interface of atomic compo-
nents, and are used for defining the inter-
actions. A port is enabled iff the transition
labelled by this port is enabled.

Given a set of atomic components
{Bi}n

i=1, we denote Port =
⋃n

i=1 Port i

the set of all the ports and Var =⋃n
i=1 Var i the set of all the variables

belonging to the components {Bi}n
i=1.

Notice that we assume that all Port i

150 W. Qiang and S. Bliudze

and all Var i, for i = 1, ..., n, are pairwise disjoint. Thus, in particular, the scope
of a variable can be considered to be the component, to which it belongs. The
model in Fig. 1 has six variables: x, y and z in each of the two components A
and B.

Composition of a set of atomic components is then specified by a set of
interactions.

Definition 2 (Interaction). An interaction γ is a tuple (g, u, op), where u ⊆
Port such that |u ∩ Port i| ≤ 1, ∀i ∈ [1, n], and g ∈ Guard, op ∈ Op.

Intuitively, an interaction γ specifies a guarded synchronisation among the par-
ticipating components: the synchronisation and the corresponding operation (i.e.
data transfer) op can take place only when the guard g is satisfied, and all the
ports in u are enabled. When an interaction is taken, the transitions labelled by
these ports are taken synchronously, i.e. the execution of all the operations asso-
ciated to the interaction and the involved transitions constitutes a single atomic
operation. When several interactions are enabled at the same time, priority can
be used to schedule the ones to be executed.

Definition 3 (Priority Model). Given a set of interactions Γ , a priority
model π is a strict partial order on Γ . For γ, γ′ ∈ Γ , we write γ < γ′ if and only
if (γ, γ′) ∈ π, which means that interaction γ′ has a higher priority than γ.

Given a set of atomic components {Bi}n
i=1, a set of interactions Γ = {γi}m

i=1, and
a priority model π, we denote by Γπ(B1, ..., Bn) the system model constructed
by composing atomic components with Γ and π.

Example 1. To give an intuitive understanding of the BIP modelling language,
we show a simple BIP model with two components A and B in Fig. 1. Each com-
ponent has three integer variables and may enter a deadlock state S5 by taking
transition error1 or error2 when the guard x �= y is true. There is one binary
interaction γ = (true, {error1, error2}, skip) synchronising the two transitions
labelled by ports error1 and error2, and all the other transitions form singleton
interactions (e.g. (true, {invalid1}, x := 0; y := 0)). No data transfer or priority
is defined in this model.

2.2 Operational Semantics of BIP

To define the operational semantics of BIP, we first introduce the notion of
configuration.

Definition 4 (Configuration of a BIP Model). Given a BIP model
Γπ(B1, ..., Bn), a configuration is a tuple c �

(
(l1,x1), ..., (ln,xn)

)
, where each li

is a control location of component Bi, and xi is a valuation of variables in Var i

of Bi.

An interaction γ = (g, u, op) is enabled in a configuration c =(
(l1,x1), ..., (ln,xn)

)
, if the following two conditions are satisfied: (1) the guard g

is satisfied by (xi)n
i=1; and (2) for each component Bi such that u∩Port i = {pi},

there is a transition (li, gi, pi, opi, l
′
i) ∈ Transi starting from li and labelled by

pi, such that guard gi is satisfied by xi.

Verification of Component-Based Systems via Predicate Abstraction 151

Definition 5 (Operational Semantics of BIP). Given a BIP model
Γπ(B1, ..., Bn), there is a transition from c =

(
(l1,x1), ..., (ln,xn)

)
to c′ =(

(l′1,x
′
1), ..., (l

′
n,x′

n)
)

if there is an interaction γ = (g, u, op), such that

1. γ is enabled in c ;
2. for each component Bi such that u ∩ Port i = {pi}, there is a transition

(li, gi, pi, opi, l
′
i) ∈ Transi and x′

i = opi

(
op(xi)

)
;

3. for each component Bj such that u ∩ Portj = ∅, we have (l′j ,x
′
j) = (lj ,xj) ;

4. there does not exist an interaction γ′, such that γ′ is enabled in c and γ′ > γ .

Whenever there is a transition from configuration c to c′, we use the notation
c

γ−→ c′ to indicate that this transition is triggered by the interaction γ. Nota-
tion op(x) denotes the application of operation op to the expression x. When
op is an assignment of form x := exp, its semantics can be given by substitu-
tion x[exp/x] denoting the valuation of variables, where the valuation of x is
substituted by exp.

We say that configuration c0 = ((l1,x1), . . . , (ln,xn)) is an initial configu-
ration if li = l0i , for all 1 ≤ i ≤ n. A trace is then a sequence of transitions
c0

γ1−→ c1
γ2−→ · · · γk−→ ck. A configuration c is reachable if and only if there exists

a trace that starts from the initial configuration and ends in c.
To encode a safety property, we identify a set of error locations (which are

also deadlock locations, e.g. location S5 in Fig. 1), such that a BIP model is safe
if and only if no error locations are reachable. Notice that every safety property
verification problem can be encoded into a reachability problem with additional
transitions, interactions and error locations in the BIP model.

3 On-the-fly Lazy Predicate Abstraction of BIP

In this section, we present our key verification algorithm for BIP which is based
on lazy abstraction [15,16] and features an on-the-fly exploration of the abstract
reachable states.

3.1 Verification Algorithm

The main function of our verification algorithm is shown in Algorithm1. The
algorithm takes a BIP model with the encoding of safety property as input, and
explores its reachable state space by constructing an abstract reachability tree
(ART). The verification procedure is sound and complete: the lazy abstraction
approach consists in verifying the most abstract model sufficient to establish
a definite result (safe or unsafe). Abstraction is refined every time a spurious
counterexample is found.

Our algorithm constructs the ART by expanding the ART nodes progres-
sively, starting from the initial one. Whenever an error node is encountered,
it generates a counterexample (line 8) and checks if the counterexample is real
(line 9). If the counterexample is real, the algorithm stops and reports the model

152 W. Qiang and S. Bliudze

is unsafe and a counterexample is found (line 10). Otherwise, the algorithm will
refine the abstraction and restart the exploration (line 12). An ART node is
expanded when it cannot be covered by another one and all its children will be
pushed into the worklist (lines 16 and 17). When a node is covered, the algorithm
stops the expansion from this node by marking it as covered (line 14).

Algorithm 1. Main function
Input: a BIP model B = Γπ(B1, ..., Bn) with encoding of safety property
Output: Either B is safe, or B is unsafe with a counterexample cex
1: create an ART node node0 from the initial state
2: create an ART art with node0 being the root
3: create a worklist wl of ART nodes
4: push node0 into wl
5: while wl �= ∅ do
6: node ← pop(wl)
7: if node is an error node then
8: cex ← CounterExample(node)
9: if cex is real then

10: return B is unsafe with a real counterexample cex
11: else
12: Refine(art, cex)
13: else if node is covered then
14: mark node as covered
15: else
16: Expand(node)
17: push all children of node into wl
18: return B is safe

Definition 6 (ART Node). Given a BIP model B = Γπ(B1, ..., Bn), an ART
node is a tuple

(
(l1, φ1), ..., (ln, φn), φ

)
, where (li, φi) is the local region consisting

of the control location li and the abstract data region φi of component Bi, and φ
is the global data region.

A data region is a formula that over-approximates the concrete valuations of
variables. We maintain a global data region φ to keep track of all the variables
that are used in data transfer. An ART node is an error node if at least one of
the control location li is an error location and the data regions are consistent,
i.e. φ ∧ ∧n

i=1 φi is satisfiable.

Definition 7 (Node Covering). An ART node
(
(l1, φ1), ..., (ln, φn), φ

)
is cov-

ered by another node
(
(l′1, φ

′
1), ..., (l

′
n, φ′

n), φ′) if li = l′i and the implication
φi ⇒ φ′

i is valid for all i ∈ [1, n], and φ ⇒ φ′ is valid.

We say that an ART is safe when all the nodes are either fully expanded or
covered, and there are no error nodes.

Verification of Component-Based Systems via Predicate Abstraction 153

Node Expansion. The node expansion procedure is shown in Algorithm2. The
procedure first computes the set of enabled interactions on this node (function
EnabledInteraction in line 2). We say that an interaction γ = (u, g, op) is enabled
on an ART node

(
(l1, φ1), ..., (ln, φn), φ

)
if for each component Bi such that

u ∩ Port i = {pi}, there is a transition (li, gi, pi, opi, l
′
i) ∈ Transi starting from li

and labelled by pi. Notice that the interaction enabledness on an ART node is
different from the one on a BIP configuration. We do not check the satisfiability of
the guards on the ART node, since we are doing lazy abstraction: if an interaction
is disabled on the ART node, the successor node will be inconsistent.

For each enabled interaction γ, the procedure creates a new successor ART
node with dummy elements, which will be updated accordingly (line 4). To
update the abstract data region of Bi, that participates in γ (line 7), the proce-
dure calls ExtractTransition(Trans i, li, pi) in line 8 to extract the participating
transition starting from li and labelled by port pi from the set of transitions
Transi, and then builds a sequential composition (denoted by symbol •) of the
guard and operation of this transition (line 11). The new abstract data region
φ′

i is then obtained by applying the abstract strongest post-condition SP
πl′

i

ˆopi
(φi)

to the previous data region φi (line 12). Our algorithm maintains precisions for
both control location (e.g. l′i) and global region, denoted by πl′i and π respec-
tively. A precision is a set of predicates, over which the predicate abstraction is
performed. We refer to [16] for more details. For other components, which do
not participate in this interaction, their local regions and control locations will
stay the same (line 15 and 16).

To update the global region, we need to consider all the participating tran-
sitions, since they may also modify component variables. For this purpose, the
procedure creates two temporary variables g′ and op′ (line 5). Variable g′ is
the conjunction of interaction guard and all the participating transition guards
(line 9), and op′ is the sequential composition of the data transfer and all the
participating transitions (line 10). Notice that, since the operations associated
to the transitions modify only variables local to the respective components, the
order of composition is irrelevant. The new global region φ is then updated by
applying the abstract strongest post-condition SPπ

ôp(φ) to the previous global
region φ (line 18), where ôp is the guarded operation composed of g′ and op′. If
all abstract strongest post-condition computations succeed, the new ART node
is inserted as the child of node and the edge is labelled by interaction γ (function
AddChild in line 21). Otherwise, this new successor node does not represent any
concrete reachable configurations, thus will be ignored.

Counterexample Analysis and Abstraction Refinement. If an error node
is encountered during the exploration of abstract state space, we check if this
error is reachable or not in the concrete state space in two steps. First, our
algorithm constructs a counterexample by backtracking the ART from the error
node to the root (function CounterExample in Algorithm1). In BIP, we denote
a counterexample cex by a sequence of interactions, labelling the path from the
root to the error node. Then, our algorithm builds a sequential execution trcex

154 W. Qiang and S. Bliudze

Algorithm 2. Node expansion procedure
1: procedure EXPAND(node = ((l1, φ1), ..., (ln, φn), φ))
2: interactions ← EnabledInteraction(node)
3: for γ = (g, u, op) ∈ interactions do
4: node ′ ← ((l′′1 , φ′

1), ..., (l
′′
n, φ′

n), φ′)
5: g′ ← g; op′ ← op
6: for Bi ∈ B = Γπ(B1, ..., Bn) do
7: if Port i ∩ u = {pi} then
8: (li, gi, pi, opi, l

′
i) ← ExtractTransition(Transi, li, pi)

9: g′ ← g′ ∧ gi

10: op′ ← op′ • opi

11: ˆopi ← gi • opi

12: φ′
i = SP

πl′
i

ˆopi
(φi); l′′i = l′i

13: if φ′
i is false then

14: goto 3
15: else if Port i ∩ u = ∅ then
16: l′′i = li; φ′

i = φi

17: ôp ← g′ • op′

18: φ′ = SP π
ôp(φ)

19: if φ′ is false then
20: goto 3
21: AddChild(γ, node ′)

of the counterexample cex , such that the counterexample cex is real if and only
if SPtrcex (true) is satisfiable.

Formally, given a counterexample cex = γ1γ2 . . . γk, where for each i ∈ [1, k],
interaction γi = (ui, gi, opi), ui = {pi

1, . . . , p
i
t}, our algorithm constructs a

sequence trγi
of transitions gi •opi •opi

j1
• ...•opi

jt
, where the sequence of indices

j1, . . . , jt is an arbitrary permutation of {1, . . . , t}, and opi
j1

is the operation of
transition labelled by port pi

j1
. Then the sequential execution of counterexample

cex is the sequential composition of all trγi
, i.e. trcex = trγ1 • ... • trγk

.
If the analysis reveals that the encountered error location is unreachable in

the concrete state space, the precisions of the abstract analysis must be refined
to eliminate the spurious counterexample by adding new predicates (function
Refine in Algorithm 1). Our algorithm discovers new predicates from the inter-
polants of trace formula of trcex . If a predicate involves only variables that are
not used in the data transfer, it is added to the precisions associated to the
corresponding control locations. A predicate involving variables that are used in
the data transfer is added to the global precision.

Once the precisions are refined, our algorithm will remove the sub-tree that
contains the spurious counterexample, and then restart the expansion using the
refined precisions. We refer to [15] for more details and the correctness of this
abstraction refinement approach.

Verification of Component-Based Systems via Predicate Abstraction 155

3.2 Correctness Proof

To prove the correctness of Algorithm 1, we need to relate the construction of
ART with BIP operational semantics. We first show that the node expansion
procedure creates successor nodes that cover (or over-approximate) the corre-
sponding reachable configurations.

Let B = Γπ(B1, ..., Bn) be a BIP model, and c =
(
(l1,x1), ..., (ln,xn)

)
be

a configuration of B. Let node =
(
(l′1, φ1), ..., (l′n, φn), φ

)
be an ART node. We

say that configuration c satisfies ART node node (or node covers c), denoted by
c |= node, if and only if, for all i ∈ [1, n], we have li = l′i and xi |= φi, and
(xi)n

i=1 |= φ.

Lemma 1. Let node be an ART node for a BIP model B = Γπ(B1, ..., Bn) and
node ′ be its successor. Let c be a configuration such that c |= node. If node ′

is obtained by performing interaction γ, then for any configuration c′ such that
c

γ−→ c′, we have c′ |= node ′.

Proof. Suppose c =
(
(l1,x1), ..., (ln,xn)

)
, and node =

(
(l1, φ1), ..., (ln, φn), φ

)
,

where xi |= φi, for each i ∈ [1, n], and (xi)n
i=1 |= φ, since c |= node. Suppose

the successor configuration following γ = (g, u, op) is c′ =
(
(l′1,x

′
1), ..., (l

′
n,x′

n)
)
,

and the successor node is node ′ =
(
(l′′1 , φ′

1), ..., (l
′′
n, φ′

n), φ′). To prove c′ |= n′, we
have to show that l′i = l′′i and x′

i |= φ′
i, for all i ∈ [1, n], and (x′

i)
n
i=1 |= φ′.

Consider a component Bi, such that u ∩ Port i = {pi}, and let the corre-
sponding transition in Transi be (li, gi, pi, opi, l

′
i). Then we have xi |= gi and

x′
i = opi(op(xi)). According to Algorithm 2, we have l′′i = l′i and φ′

i = SP ˆopi
(φi),

where ˆopi denotes gi • opi. Based on the semantics of strongest post-condition,
the fact that xi |= φi and φi ∧ gi is satisfiable, we have x′

i |= φ′
i. Following a

similar argument, we can prove (x′
i)

n
i=1 |= φ′.

For each component Bi such that u∩Port i = ∅, since it does not participate
the interaction, its state is unchanged. Thus, the satisfaction relation trivially
holds.

Theorem 1 (Correctness of On-the-fly Lazy Predicate Abstraction of
BIP). Given a BIP model B, and for every terminating execution of Algorithm1,
we have the following properties:

1. if Algorithm1 returns a real counterexample path cex , then there is a concrete
execution c

cex−−→ c′ from an initial configuration c and an error configuration c′

in B;
2. if Algorithm1 returns a safe ART, then for every reachable configuration c of
B, there is an ART node that covers this configuration.

Proof. (Sketch) In the safe case, the conclusion follows from Lemma 9 and an
induction proof on the execution path to the reachable configuration c. In the
unsafe case, the conclusion holds because the counterexample analysis boils down
to a symbolic simulation. �

156 W. Qiang and S. Bliudze

4 Simultaneous Set Reduction for BIP

In this section, we present a novel reduction technique, which can be combined
with on-the-fly lazy predicate abstraction to reduce the search space of reach-
ability analysis. The idea is based on the observation that in component-based
systems, when two concurrent interactions are enabled at the same time (e.g.
interactions {insert1} and {insert2} in Fig. 1), we may consider executing them
simultaneously instead of taking into account all the possible interleavings in the
reachability analysis. First of all, we have to formalise the constraints imposed
on the set of interactions, which can be executed simultaneously, in order to
make sure no error location is missed during the reachability analysis.

4.1 Simultaneous Set Constraints

Two interactions can be executed simultaneously only when they are indepen-
dent.

Definition 8 (Independent Interactions). Two interactions γ1 and γ2 are
independent if for every configuration c, the following conditions hold:

1. if γ1 is enabled in c, then γ2 is enabled in c iff γ2 is enabled in c′, where
c

γ1−→ c′.
2. if γ1 and γ2 are both enabled in c, then c′

1 = c′
2, where c

γ1;γ2−−−→ c′
1, and

c
γ2;γ1−−−→ c′

2.

Since independence relation is a global property, in the sequel we will instead
use the valid dependence relation.

Definition 9 (Valid Dependency Relation). A valid dependence relation D
over a set of interactions Γ is a symmetric, reflexive relation such that for every
(γ1, γ2) /∈ D, the interactions γ1 and γ2 are independent interactions.

In BIP context, we can compute a valid dependency relation statically from the
specifications: two interactions are dependent if they share one common com-
ponent. It is worthy to notice that our independency and dependency relations
also work for abstract analysis.

However, independency is not enough. For instance, in the example BIP
model in Fig. 1, suppose we want to expand the node

(
(S3, φA), (S4, φB), φ

)
,

where component A is in control location S3 and component B is in control
location S4. The set of enabled interactions is {{request1}, {restart2}}. Notice
that interaction {error1, error2} is disabled since port error1 is disabled. The
two interactions {request1} and {restart2} are independent, however, if we exe-
cute them simultaneously we will miss the following (fragment) counterexam-
ple from this node: {request1}, {respond1}, {error1, error2}. This observation
tells us to take into account the future executions when firing interactions
simultaneously.

Verification of Component-Based Systems via Predicate Abstraction 157

Definition 10 (Simultaneous Set). A set of interactions SSet on configura-
tion c is called a simultaneous set if the following two constraints are satisfied:

1. all the interactions in SSet are independent;
2. for each α ∈ SSet, let c

α−→ c1
β1−→ ...

βn−−→ cn+1 be a finite execution fragment
starting with α, then for each α′ ∈ SSet, such that α′ �= α, all βi are independent
of α′.

Intuitively, the second constraint means that whatever one does from the simul-
taneous set should still be independent from the others in the set. We remark
that simultaneous set is different from the ample set [10] in that members in
ample set are interdependent, and interleavings should be taken into account.

We use notation AG to represent the full reachable state space, and AR to rep-

resent reduced reachable state space. A transition in AR is denoted by c
SSet(c)−−−−−→

c′, where SSet(c) is a simultaneous set on c. A trace in AR is then labelled by

a sequence of simultaneous sets, e.g. c0
SSet(c0)−−−−−→ c1

SSet(c1)−−−−−→ . . .
SSet(ck−1)−−−−−−−→ ck.

Similarly, we say that a configuration c is reachable in AR if and only if there
exists a trace that starts from the initial configuration and ends up with c. How-
ever, a trace in AR is not a trace of AG, but a representation of several equivalent
traces.

Definition 11 (Semantics of Simultaneous Set). Given a configuration c,

a transition c
SSet(c)−−−−−→ c′ in AR denotes a set of transition sequences {c

γ1−→ ...
γk−→

c′|∀i ∈ [1, k], γi ∈ SSet(c) and |SSet(c)| = k} in AG.

Each transition sequence c
γ1−→ ...

γk−→ c′ is a representation of c
SSet(c)−−−−−→ c′.

Inductively, we can also define the representation of a trace in AR. Based on
the definition of simultaneous set, it is easy to see that each representation of a
trace in AR is a trace in AG.

The correctness of simultaneous set reduction for deadlock state reachability
analysis is stated in the following theorem.

Theorem 2 (Correctness of Simultaneous Set Reduction). Let e be an
error configuration. If there is a trace ρg leading to e in AG, then there is also
a trace ρr leading to e in AR.

Proof. Assume ρg = c0
γ0−→ · · · γn−2−−−→ cn−1, where cn−1 = e. The proof proceeds

by using complete induction on the number of configurations in ρg. For the base
case |ρg| = 1, the result trivially holds since the initial configuration is also the
error one. Assume the theorem holds for all the cases |ρg| <= n, where n >= 1,
then we prove it also holds for |ρg| = n + 1.

Assume ρg = c0
γ0−→ c1

γ1−→ · · · γn−2−−−→ cn−1
γn−1−−−→ cn, where cn = e, and the

simultaneous set on configuration c0 that contains interaction γ0 is SSet(c0). If
SSet(c0) is a singleton set, then ρr is ρg. If SSet(c0) = {βi|i ∈ [1, k]} ∪ {γ0},
according to the definition of simultaneous set, βi is independent of γj , for all
i ∈ [1, k], and j ∈ [1, n − 1], then βi should be enabled on configuration cn,

158 W. Qiang and S. Bliudze

which contradicts with the fact that cn is a deadlock state. Thus, all βi should
be executed, i.e. for each βi there must exist a γj such that βi = γj . Then by
permuting independent interactions, we obtain an equivalent trace ρ′

g = c0
γ0−→

c1
β1−→ · · · βk−→ γk+1−−−→ · · · γn−1−−−→ cn. The sequence of interactions

γ0−→ β1−→ · · · βk−→ is
a representation of the simultaneous set SSet(c0), while based on the induction
hypothesis the rest is a representation of some trace in AR. They all together
prove our theorem. �

4.2 Combining Simultaneous Set Reduction with Lazy
Predicate Abstraction

To combine the simultaneous set reduction with lazy predicate abstraction of
BIP, we modify the node expansion procedure in Algorithm2 by replacing the
function EnabledInteraction in line 2 with Algorithm3, such that instead of
creating a new successor node for each possible interaction (line 3), we create a
new successor node for each simultaneous set. Notice that since a simultaneous
set is a set of interactions, the successor computation (the loop in line 3) should
also be slightly adjusted.

Algorithm 3 computes the set of simultaneous sets on an ART node. It uses
two additional functions EnabledInteraction and DisabledInteraction. Function
DisabledInteraction computes the set of disabled interactions on an ART node,
which is simply the complement of the set of enabled interactions.

Algorithm 3. Simultaneous set computation
Input: an ART node node = ((l1, φ1), ..., (ln, φn), φ)
Output: a set of simultaneous sets SSets
1: enabled interactions ← EnabledInteraction(node)
2: disabled interactions ← DisabledInteraction(node)
3: create a worklist of interaction sets wl
4: push enabled interactions into wl
5: while wl �= ∅ do
6: current set ← pop(wl)
7: if exists γ1, γ2 ∈ current set , s.t. γ1, γ2 are dependent then
8: copy1 ← current set − {γ1}
9: copy2 ← current set − {γ2}

10: push copy1, copy2 into wl
11: else if exists γ1, γ2 ∈ current set , γ3 ∈ disabled interactions,

s.t. γ3, γ1 are dependent, and γ3, γ2 are dependent then
12: copy1 ← current set − {γ1}
13: copy2 ← current set − {γ2}
14: push copy1, copy2 into wl
15: else
16: if SSets does not contain current set then
17: push current set into SSets

Verification of Component-Based Systems via Predicate Abstraction 159

The basic idea is that starting from the set of enabled interactions, the algo-
rithm progressively refines this set by splitting it into two sets. If two interactions
from the set are dependent (line 7), or they are independent of each other, but
dependent with a disabled interaction (line 11), then this set is split into two,
each of which is obtained by removing one of the interactions (lines 8, 9 and
12, 13). Otherwise, if all interactions are independent of each other and with the
disabled interactions, then the set is a simultaneous set and is added into the
result set SSets.

Assume that, given two interactions γ1 and γ2, it takes O(1) time for the
dependence check with precomputed dependence relation on lines 7 and 11.
The while loop (line 5) executes at most |enabled interactions| times, where
|enabled interactions | denotes the number of enabled interactions on the input
ART node, since in each loop execution at most two interactions will be split
and one simultaneous set will be added into the worklist wl . In the worst case,
|enabled interactions |2 ∗ |disabled interactions | checks need to be performs to
find the two interactions to be split. Thus, the worst case time complexity of
Algorithm 3 is O(|enabled interactions |3 ∗ |disabled interactions |).

The correctness of Algorithm 3 is straightforward, according to the simulta-
neous set constraints in Definition 10.

Theorem 3 (Correctness of Lazy Predicate Abstraction with Simulta-
neous Set Reduction). Given a BIP model, and for every terminating execu-
tion of the combination of Algorithms 1 and 3, the two properties of Theorem 10
still hold.

Proof (Sketch). Algorithm 3 computes the set of simultaneous sets on an ART
node. A simultaneous set on an ART node is a simultaneous set on the configu-
rations that are covered by this ART node. Therefore, the theorem follows from
Theorem 15.

5 Related Work

Although there are plenty of works on safety property verification in literature,
we review the most related ones in two aspects. With respect to combining
abstraction techniques with explicit state reduction techniques, the works most
related to ours are [8,9,24]. In [8,9] the authors propose two ESST-based veri-
fication techniques for multi-threaded programs with a preemptive and stateful
scheduler (e.g. SystemC [20] and FairThreads [7]). The work in [24] combines
classical lazy abstraction and partial order reduction [11] for the verification
of generic multi-threaded programs with pointers. The difference between these
works and ours is that they combine the abstraction techniques with classical
partial order reduction techniques, (e.g. persistent set approach [11] and ample
set approach [10]) in which one reduces the interleavings of concurrent tran-
sitions by exploring only a representative subset of all enabled transitions. In
our approach, we leverage the BIP operational semantics to tackle this issue by
executing concurrent interactions simultaneously.

160 W. Qiang and S. Bliudze

With respect to the compositional verification, the most related ones
are [6,13,21]. In [6] the authors presents an assume-guarantee abstraction refine-
ment technique for compositional verification of component-based systems. How-
ever, the target system model is finite state and without data transfer. In [13]
the authors propose a compositional verification technique for multi-threaded
programs based on abstract interpretation framework. This algorithm relies on
solving recursion-free Horn clauses to refine the abstraction. Later the work
in [21] combines this method with a reduction technique based on Lipton’s the-
ory of reduction [19]. The programming model is quite different from ours. They
handle shared variable concurrent programs, whereas BIP does not provide com-
munication through shared variables, but only multiparty synchronisation and
data transfer.

6 Experimental Evaluation

We implemented the proposed techniques in our prototype tool BIPChecker,
based on the symbolic model checker nuXmv and the SMT solver MathSAT. In
the experimental evaluation, we took a set of benchmarks from the literature,
including the untimed temperature and railway control system [18], the ATM
transaction model [4], the leader election algorithm [1], and the Quorum consen-
sus algorithm [12]. We modelled them in the BIP framework and verified differ-
ent safe and unsafe invariant properties. All these benchmarks (1) are scalable
in terms of the number of components; (2) are infinite-state, using potentially
unbounded integer variables and (3) feature data transfer on interactions.

Fig. 2. Cumulative plot of time for
solving all benchmarks

All the experiments have been per-
formed on a 64-bit Linux PC with a
2.8 GHz Intel i7-2640M CPU, with a mem-
ory limit of 4 Gb and a time limit of 300 s
per benchmark. We refer to our website1

for all the benchmarks and the tool.
We run two configurations of BIP-

Checker: OLA and OLA+SSR, where OLA
stands for on-the-fly lazy abstraction, and
SSR stands for the simultaneous set reduc-
tion. We do not compare the performance
of our tool with DFinder [4] and VCS [14],
since they do not handle data transfer and infinite-state models respectively.
The comparison of OLA and OLA+SSR on the full set of benchmarks is shown
in Figs. 2 and 3.

In Fig. 2, we plot the cumulative time (x-axis) to solve an increasing number
of benchmarks (y-axis), and in Fig. 3, we show the scatter plot of time for solving

1 http://risd.epfl.ch/bipchecker.

http://risd.epfl.ch/bipchecker

Verification of Component-Based Systems via Predicate Abstraction 161

Fig. 3. Scatter plot of time for solving
each benchmark

each benchmark.2 The plots show that
simultaneous set reduction can improve the
performance in general when it is combined
with the on-the-fly lazy abstraction. In par-
ticular, from Fig. 3 we find that for safe
models, OLA is comparable to OLA+SSR,
while for unsafe models, OLA+SSR is
always more efficient than OLA. In other
words, OLA+SSR is more efficient to find
counterexamples. This phenomenon can be
explained because with simultaneous set
reduction, some independent interactions
are executed simultaneously, thus reduc-
ing the length of execution steps and being
faster to detect counterexamples.

7 Conclusion

In this paper we proposed a generic approach to safety property verification of
BIP models, which combines on-the-fly lazy abstraction and simultaneous set
reduction technique. We also implemented our techniques in the BIPChecker
tool. The experimental evaluation demonstrates the efficiency of the proposed
approach. As future work we will investigate more efficient reduction techniques
for component-based systems, that can boost the abstract reachability analysis,
such as property guided reduction.

Acknowledgements. We want to thank Alessandro Cimatti, Marco Roveri and Ser-
gio Mover for the instructive guidance during our collaboration that enabled this work
and for their help with the nuXmv model checker and the MathSAT SMT solver, and
all the anonymous reviewers for their careful reading of the paper.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H.,
Sifakis, J.: Rigorous component-based system design using the BIP framework.
Softw. IEEE 28, 41–48 (2011)

3. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST (2006)

4. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: a tool for composi-
tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

2 Red diagonal guides provide a reference for comparison, each indicating shift of one
order of magnitude.

162 W. Qiang and S. Bliudze

5. Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., Wang, Q.:
Formal verification of infinite-state BIP models. In: Finkbeiner, B., et al. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 326–343. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-24953-7 25

6. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

7. Boussinot, F.: FairThreads: mixing cooperative and preemptive threads in C.
Concur. Comput. Pract. Exp. 18, 445–469 (2006)

8. Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking with explicit
scheduler and symbolic threads. Log. Methods Comput. Sci. 8, 1–42 (2012)

9. Cimatti, A., Narasamdya, I., Roveri, M.: Verification of parametric system designs.
In: FMCAD (2012)

10. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

11. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Lecture Notes in Computer Science,
vol. 1032. Springer, Heidelberg (1996)

12. Guerraoui, R., Kuncak, V., Losa, G.: Speculative linearizability. In: PLDI (2012)
13. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for

verifying multi-threaded programs. In: POPL (2011)
14. He, F., Yin, L., Wang, B.-Y., Zhang, L., Mu, G., Meng, W.: VCS: a verifier for

component-based systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS,
vol. 8172, pp. 478–481. Springer, Heidelberg (2013)

15. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: ACM SIGPLAN Notices. ACM (2004)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
(2002)

17. Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems - tool paper. In: FM (2012)

18. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating timed
systems. In: HCVS (2014)

19. Lipton, R.J.: Reduction: a method of proving properties of parallel programs.
Commun. ACM 18, 717–721 (1975)

20. IEEE 1666: SystemC language Reference Manual (2005)
21. Popeea, C., Rybalchenko, A., Wilhelm, A.: Reduction for compositional verification

of multi-threaded programs. In: FMCAD (2014)
22. Sifakis, J.: Rigorous system design. In: Foundations and Trends in Electronic

Design Automation (2013)
23. Su, C., Zhou, M., Yin, L., Wan, H., Gu, M.: Modeling and verification of

component-based systems with data passing using BIP. In: ICECCS (2013)
24. Wachter, B., Kroening, D., Ouaknine, J.: Verifying multi-threaded software with

Impact. In: FMCAD (2013)

http://dx.doi.org/10.1007/978-3-319-24953-7_25
http://dx.doi.org/10.1007/978-3-319-24953-7_25

Author Index

Bliudze, Simon 147
Bursuc, Sergiu 1

De Nicola, Rocco 16
Delzanno, Giorgio 32

Feng, Xinyu 95

Gössler, Gregor 79

Hasuo, Ichiro 112

Jensen, Thomas 63

Li, Ximeng 95

Matos, Ana Almeida 47
Melgratti, Hernán 16

Nakagawa, Shota 112
Nielson, Flemming 95
Nielson, Hanne Riis 95

Prasad, Sanjiva 131

Qiang, Wang 147

Rezk, Tamara 47, 63

Santos, José Fragoso 47, 63
Schmitt, Alan 63
Stefani, Jean-Bernard 79

Zuck, Lenore D. 131

	Preface
	Organization
	Contents
	Secure Two-Party Computation in Applied Pi-Calculus: Models and Verification
	1 Introduction
	2 Preliminaries
	2.1 Secure Two-Party Computation with Garbled Circuits
	2.2 Applied Pi-Calculus and ProVerif [19--23]

	3 Equational Theory for Garbled Computation
	4 Formal Protocol Specification
	5 Formal Models of Security for Two-Party Computation
	5.1 Result Integrity
	5.2 Input Agreement
	5.3 Input Privacy

	6 Conclusion and Related Work
	References

	Multiparty Testing Preorders
	1 Introduction
	2 Processes and Testing Preorders
	2.1 Semantic Characterisation

	3 A Testing Preorder with Uncoordinated Observers
	3.1 Semantic Characterisation

	4 A Testing Preorder with Independent Observers
	4.1 Semantic Characterisation

	5 Relating Must, Uncoordinated and Independent Preorders
	6 Conclusions and Related Works
	References

	Data Tracking in Parameterized Systems
	1 Introduction
	2 Process Model
	2.1 Operational Semantics

	3 Violation Detection
	4 Conflict Detection
	4.1 Transition System with History
	4.2 Encoding into MSR(Id)

	5 Conclusions and Related Work
	References

	Modular Monitor Extensions for Information Flow Security in JavaScript
	1 Introduction
	2 Related Work
	3 Modular Extensions for JavaScript Monitors
	3.1 Noninterferent JavaScript Monitors
	3.2 API Extensions to JavaScript Monitors
	3.3 Sufficient Conditions for Noninterferent API Extensions

	4 A Meta-Compiler for Securing Web APIs
	4.1 IFlow Signatures

	5 Implementation and DOM API Extension
	6 Conclusion
	References

	Hybrid Typing of Secure Information Flow in a JavaScript-Like Language
	1 Introduction
	2 Core JS
	3 Static Typing Secure Information Flow in Core JS
	4 Dynamic Typing Secure Information Flow in Core JS
	5 Security Guarantees
	6 Related Work
	7 Conclusions
	References

	Fault Ascription in Concurrent Systems
	1 Introduction
	2 Preliminaries
	2.1 Operations on Configuration Structures
	2.2 Systems and Components
	2.3 Faults and Logs

	3 A General Framework for Fault Ascription
	4 An Instantiation
	5 Examples
	6 Related Work
	7 Conclusion
	References

	Disjunctive Information Flow for Communicating Processes
	1 Introduction
	2 Motivating Example
	3 The Language
	4 Security Policies
	5 The Type System
	6 Noninterference
	7 Conclusion and Discussion
	References

	Near-Optimal Scheduling for LTL with Future Discounting
	1 Introduction
	2 The Logic LTLdisc[D,F], and its Threshold Problems
	3 [0, 1]-Acceptance Büchi Automata
	4 Near-Optimal Scheduling for LTLdisc[D, Fmc]
	4.1 Our Algorithm, When Restricted to LTLdisc[D,]
	4.2 Our General Algorithm for LTLdisc[D,Fmc]
	4.3 Complexity

	5 Conclusions and Future Work
	References

	A Switch, in Time
	1 Introduction
	2 The Model
	2.1 The Data Plane Model
	2.2 Axioms
	2.3 Table Updates

	3 IP Mobility
	3.1 Tunnel Maintenance
	3.2 Properties

	4 Security Primitives: The TOR Example
	4.1 TOR
	4.2 Proving Some TOR Properties

	5 Conclusions
	References

	Verification of Component-Based Systems via Predicate Abstraction and Simultaneous Set Reduction
	1 Introduction
	2 BIP Framework
	2.1 BIP Modelling Language
	2.2 Operational Semantics of BIP

	3 On-the-fly Lazy Predicate Abstraction of BIP
	3.1 Verification Algorithm
	3.2 Correctness Proof

	4 Simultaneous Set Reduction for BIP
	4.1 Simultaneous Set Constraints
	4.2 Combining Simultaneous Set Reduction with Lazy Predicate Abstraction

	5 Related Work
	6 Experimental Evaluation
	7 Conclusion
	References

	Author Index

